WorldWideScience

Sample records for resonance epr signals

  1. Electron paramagnetic resonance (EPR) biodosimetry

    International Nuclear Information System (INIS)

    Desrosiers, Marc; Schauer, David A.

    2001-01-01

    Radiation-induced electron paramagnetic resonance (EPR) signals were first reported by Gordy et al. [Proc. Natl. Acad. Sci. USA 41 (1955) 983]. The application of EPR spectroscopy to ionizing radiation dosimetry was later proposed by Brady et al. [Health Phys. 15 (1968) 43]. Since that time EPR dosimetry has been applied to accident and epidemiologic dose reconstruction, radiation therapy, food irradiation, quality assurance programs and archaeological dating. Materials that have been studied include bone, tooth enamel, alanine and quartz. This review paper presents the fundamentals and applications of EPR biodosimetry. Detailed information regarding sample collection and preparation, EPR measurements, dose reconstruction, and data analysis and interpretation will be reviewed for tooth enamel. Examples of EPR biodosimetry application in accidental overexposures, radiopharmaceutical dose assessment and retrospective epidemiologic studies will also be presented

  2. Preliminary study on electron paramagnetic resonance (EPR) signal properties of mobile phone components for dose estimation in radiation accident

    Energy Technology Data Exchange (ETDEWEB)

    Park, Byeong Ryong; Ha, Wi Ho; Park, Sun Hoo; Lee, Jin Kyeong; Lee, Seung Sook [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2015-12-15

    We have investigated the EPR signal properties in 12 components of two mobile phones (LCD, OLED) using electron paramagnetic resonance (EPR) spectrometer in this study.EPR measurements were performed at normal atmospheric conditions using Bruker EXEXSYS-II E500 spectrometer with X-band bridge, and samples were irradiated by {sup 137}C{sub s} gamma-ray source. To identify the presence of radiation-induced signal (RIS), the EPR spectra of each sample were measured unirradiated and irradiated at 50 Gy. Then, dose-response curve and signal intensity variating by time after irradiation were measured. As a result, the signal intensity increased after irradiation in all samples except the USIM plastic and IC chip. Among the samples, cover glass(CG), lens, light guide plate(LGP) and diffusion sheet have shown fine linearity (R{sup 2} > 0.99). Especially, the LGP had ideal characteristics for dosimetry because there were no signal in 0 Gy and high rate of increase in RIS. However, this sample showed weakness in fading. Signal intensity of LGP and Diffusion Sheet decreased by 50% within 72 hours after irradiation, while signals of Cover Glass and Lens were stably preserved during the short period of time. In order to apply rapidly EPR dosimetry using mobile phone components in large-scale radiation accidents, further studies on signal differences for same components of the different mobile phone, fading, pretreatment of samples and processing of background signal are needed. However, it will be possible to do dosimetry by dose-additive method or comparative method using unirradiated same product in small-scale accident.

  3. Thermal induced EPR signals in tooth enamel

    International Nuclear Information System (INIS)

    Fattibene, P.; Aragno, D.; Onori, S.; Pressello, M.C.

    2000-01-01

    Electron paramagnetic resonance (EPR) spectroscopy was used to detect the effects of temperature on powdered human tooth enamel, not irradiated in the laboratory. Samples were heated at temperature between 350 and 450, at 600 and at 1000 deg. C, for different heating times, between 6 min and 39 h. Changes in the EPR spectra were detected, with the formation of new signals. Possible correlation between the changes in EPR spectra and modifications in the enamel and in the mineral phase of bone detected with other techniques is discussed. The implications for dosimetric applications of signals induced by overheating due to mechanical friction during sample preparation are underlined

  4. Effect of absorbed dose and storage length on electron paramagnetic resonance (EPR) signal strength in irradiated alfalfa seeds

    International Nuclear Information System (INIS)

    Li Naining

    2006-01-01

    A kind of alfalfa seeds was irradiated by 1, 2, 3, 4 and 5 kGy at a dose rate of 6.288 kGy·h -1 in a self-shielded irradiator of 137 Cs gamma rays. The EPR spectra, which were measured subsequently between 0.3401 and 0.3501 T, showed that there was a direct proportional relationship between the EPR signal strength of free radicals produced by gamma irradiation in the alfalfa seeds and absorbed dose. The first derivative EPR spectra of the alfalfa seeds were very clear and easy to identify. However, the EPR signal strength of the peak-to-peak amplitude decreased rapidly and most of them decayed beyond 50% within 3 days after the seeds were irradiated. It tended to stabilize after half a month since the seeds were irradiated. the differences of the EPR signal strength between the irradiated and unirradiated alfalfa seeds still remained. All seeds were stored at ambient temperature for more than 3 months. Therefore, using EPR spectrometry technique to measure free radicals in alfalfa seeds as a means to determine whether the seeds have been irradiated or not is feasible, relatively fast and simple. (authors)

  5. Investigation of EPR signals on tooth enamel

    Energy Technology Data Exchange (ETDEWEB)

    Pavlenko, A; Mironova-Ulmane, N; Polakov, M; Riekstina, D [Institute of Solid State Physics, University of Latvia, Riga (Latvia)

    2007-12-15

    Calcified tissues are involved in continues metabolic process in human organism exchanging a number of chemical elements with environment. The rate of biochemical reactions is tissue dependent and the slowest one at the tooth enamel, the most mineralized tissue of human organism. The long time stability and unique chemical composition make tooth enamel suitable for number of application. The assessment of individual radiation dose by Electron Paramagnetic Resonance (EPR) and evaluations of elemental composition by Instrumentation Neutron Activation Analysis (INAA) are the well known procedures where properties of tooth enamel intensively used. The current work is focused on investigation of EPR signals and determination of chemical composition on several teeth samples having different origin. The EPR spectra and INAA element content of milk tooth, caries tooth, and paradantose tooth have been compared to each other. The results showed that the intensity of EPR signal is much higher for the caries tooth than the for paradantose tooth that is in agreement with depleted Ca content.

  6. Electron paramagnetic resonance (EPR) in medical dosimetry

    International Nuclear Information System (INIS)

    Schauer, David A.; Iwasaki, Akinori; Romanyukha, Alexander A.; Swartz, Harold M.; Onori, Sandro

    2006-01-01

    This paper describes the fundamentals of electron paramagnetic resonance (EPR) and its application to retrospective measurements of clinically significant doses of ionizing radiation. X-band is the most widely used in EPR dosimetry because it represents a good compromise between sensitivity, sample size and water content in the sample. Higher frequency bands (e.g., W and Q) provide higher sensitivity, but they are also greatly influenced by water content. L and S bands can be used for EPR measurements in samples with high water content but they are less sensitive than X-band. Quality control for therapeutic radiation facilities using X-band EPR spectrometry of alanine is also presented

  7. Alcoholic extraction enables EPR analysis to characterize radiation-induced cellulosic signals in spices.

    Science.gov (United States)

    Ahn, Jae-Jun; Sanyal, Bhaskar; Akram, Kashif; Kwon, Joong-Ho

    2014-11-19

    Different spices such as turmeric, oregano, and cinnamon were γ-irradiated at 1 and 10 kGy. The electron paramagnetic resonance (EPR) spectra of the nonirradiated samples were characterized by a single central signal (g = 2.006), the intensity of which was significantly enhanced upon irradiation. The EPR spectra of the irradiated spice samples were characterized by an additional triplet signal at g = 2.006 with a hyperfine coupling constant of 3 mT, associated with the cellulose radical. EPR analysis on various sample pretreatments in the irradiated spice samples demonstrated that the spectral features of the cellulose radical varied on the basis of the pretreatment protocol. Alcoholic extraction pretreatment produced considerable improvements of the EPR signals of the irradiated spice samples relative to the conventional oven and freeze-drying techniques. The alcoholic extraction process is therefore proposed as the most suitable sample pretreatment for unambiguous detection of irradiated spices by EPR spectroscopy.

  8. On the annealing of the EPR dislocation signal in silicon

    International Nuclear Information System (INIS)

    Zolotukhin, M.N.; Kveder, V.V.; Osip'yan, Yu.A.

    1981-01-01

    The annealing kinetics of the (EPR) dislocation signal (D-centers) in silicon is studied. The disappearance of the dislocation EPR signal as a result of annealing is ascribed to rearrangement of the nuclei of the partial dislocations accompanied by pairwise ''closing'' of the broken bonds in the S=0 state. The height of the energy barrier for the rearrangement process is approximately 2 eV. A residual ''nonannealing'' EPR signal is observed in strongly deformed silicon crystals. It resembles an isotropic line with a width approximately 7.5 Oe and a g-factor approximately 2.006. It is suggested that the respective EPR centers (O-centers) are similar to the EPR centers in amorphic silicon [ru

  9. Towards improving the detection limit of electron paramagnetic resonance (EPR) dosimetry of drywall (wallboard)

    Energy Technology Data Exchange (ETDEWEB)

    Mistry, R.; Thompson, J.W. [Dept. of Medical Physics and Applied Radiation Sciences, McMaster Univ., Hamilton, Ontario (Canada); Rink, W.J. [School of Geography and Earth Sciences, McMaster Univ., Hamilton, Ontario (Canada); Boreham, D. [Dept. of Medical Physics and Applied Radiation Sciences, McMaster Univ., Hamilton, Ontario (Canada)

    2009-07-01

    The intensity of the electron paramagnetic resonance (EPR) line corresponding to the carbonate free radical (CO{sub 3}{sup -}) in gypsum (CaSO{sub 4}{center_dot}2H{sub 2}O) drywall was previously shown to be proportional to absorbed dose. Heating irradiated drywall reduces the radiosensitive signal of the CO{sub 3}{sup -} radical. The response of the CO{sub 3}{sup -} EPR line to heat treatments is being studied in order to determine a background for an arbitrary drywall sample. Ultimately this is expected to improve the precision of dose measurements with drywall and to reduce the detection limit. Controlled heating of irradiated drywall was performed at temperatures between 50{sup o}C and 100{sup o}C. Although higher temperatures reduce the radiosensitive signal rapidly, the non-radiosensitive EPR signals are affected dramatically as well, presumably due to a phrase change from gypsum to plaster of Paris to anhydrite. (author)

  10. Multi-photon transitions and Rabi resonance in continuous wave EPR.

    Science.gov (United States)

    Saiko, Alexander P; Fedaruk, Ryhor; Markevich, Siarhei A

    2015-10-01

    The study of microwave-radiofrequency multi-photon transitions in continuous wave (CW) EPR spectroscopy is extended to a Rabi resonance condition, when the radio frequency of the magnetic-field modulation matches the Rabi frequency of a spin system in the microwave field. Using the non-secular perturbation theory based on the Bogoliubov averaging method, the analytical description of the response of the spin system is derived for all modulation frequency harmonics. When the modulation frequency exceeds the EPR linewidth, multi-photon transitions result in sidebands in absorption EPR spectra measured with phase-sensitive detection at any harmonic. The saturation of different-order multi-photon transitions is shown to be significantly different and to be sensitive to the Rabi resonance. The noticeable frequency shifts of sidebands are found to be the signatures of this resonance. The inversion of two-photon lines in some spectral intervals of the out-of-phase first-harmonic signal is predicted under passage through the Rabi resonance. The inversion indicates the transition from absorption to stimulated emission or vice versa, depending on the sideband. The manifestation of the primary and secondary Rabi resonance is also demonstrated in the time evolution of steady-state EPR signals formed by all harmonics of the modulation frequency. Our results provide a theoretical framework for future developments in multi-photon CW EPR spectroscopy, which can be useful for samples with long spin relaxation times and extremely narrow EPR lines. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Electron paramagnetic resonance (EPR) in characterization of rocks and minerals

    Energy Technology Data Exchange (ETDEWEB)

    Valezi, D.F.; Mauro, E. di [Universidade Estadual de Londrina (UEL), PR (Brazil). Centro de Ciencias Exatas. Lab. de Fluorescencia e Ressonaancia Paramagnetica Eletronica (LAFLURPE); Zaia, D.A.M.; Carneiro, C.E.A. [Universidade Estadual de Londrina (UEL), PR (Brazil). Centro de Ciencias Exatas. Dept. de Quimica; Costa, A.C.S. da [Universidade Estadual de Maringa (UEM), PR (Brazil). Centro de Ciencias Agrarias. Dept. de Agronomia

    2011-07-01

    Full text. his work is based on the study of several stones and minerals from the Parana state, Brazil. They were analyzed by the Electron Paramagnetic Resonance (EPR) technique. The measurements were made on a spectrometer JEOL (JES-PE-3X), operating on X-band and at room temperature, with the exception of the mineral Goethite, which was measured with temperature variation. In all the samples were determined spectroscopic factors (or g factor) and line widths of paramagnetic species. A great number of the samples showed in their spectra, the presence of iron complexes. Phyllite and shale showed a resonance signal with approximately g = 2, and line width with about 1000 Gauss, which indicates the presence of the hematite mineral hematite in these rocks. Shale and coal samples showed the presence of free radical, it was identified as a very intense signal, centered at about g = 2.003. Phyllite sample showed in its spectra a resonance signal between the third and fourth line of the g marker (Mg O:Mn{sup 2+}) used in the measurements, and also a signal at g = 4.3, these characteristics may indicate the presence of Kaolinite in the sample. Limestone showed a signal with line width of about 600 Gauss, centered around g = 2, this signal is probably due to a mixture of ferrihydrite and some other compound, besides the presence of manganese, displaying a spectra with its six peculiar lines, due to hyperfine splitting. The two different types of limestone presented a overlap of two distinct spectra lines for the manganese, in the first limestone sample, rich in calcite, the existence of these different spectra is a result of the manganese substitution in a single site with different orientations of the calcite; the other limestone sample, this one abundant in dolomite, the existence of these different spectra is the result of the manganese substitution in different dolomite sites, taking the place of calcium and or of the magnesium. Now, we are focusing our research in the

  12. The effect of thermal treatment on radiation-induced EPR signals in tooth enamel

    International Nuclear Information System (INIS)

    Vorona, I.P.; Ishchenko, S.S.; Baran, N.P.

    2005-01-01

    The effect of thermal treatment on the radiation-induced EPR spectrum of tooth enamel was studied. Annealing before sample irradiation was found to increase enamel radiation sensitivity by more than 40%. Depending on the annealing conditions the EPR signals of three supplementary radiation radicals were observed in addition to the main signal caused by CO 2 - radicals. It was found that the presence of these signals in the enamel EPR spectra provides evidence of sample annealing. The possibility of obtaining information about sample history by studying the additional EPR signals is discussed. It can be important to EPR dating and EPR dosimetry

  13. Radiation-induced electron paramagnetic resonance signal and soybean isoflavones content

    International Nuclear Information System (INIS)

    Oliveira, Marcos R.R. de; Mandarino, José M.G.; Mastro, Nelida L. del

    2012-01-01

    Electron Paramagnetic Resonance (EPR) is a well-known spectroscopic technique that detects paramagnetic centers and can detect free radicals with high sensitivity. In food, free radicals can be generated by several commonly used industrial processes, such as radiosterilization or heat treatment. EPR spectroscopy is used to detect radioinduced free radicals in food. In this work the relation between EPR signal induced by gamma irradiation treatment and soybean isoflavones content was investigated. Present results did not show correlation between total isoflavones content and the EPR signal. Nevertheless, some isoflavone contents had a negative correlation with the radiation-induced EPR signal. - Highlights: ► Electron Paramagnetic Resonance (EPR) detects free radicals. ► Ionizing radiation as free radicals inducer. ► Total soybean isoflvones do not correlate with radiation-induced EPR intensity but a soybean glucosyl glucoside isoflavone does.

  14. Echo detected EPR as a tool for detecting radiation-induced defect signals in pottery

    International Nuclear Information System (INIS)

    Zoleo, Alfonso; Bortolussi, Claudia; Brustolon, Marina

    2011-01-01

    Archaeological fragments of pottery have been investigated by using CW-EPR and Echo Detected EPR (EDEPR). EDEPR allows to remove the CW-EPR dominant Fe(III) background spectrum, hiding much weaker signals potentially useful for dating purpose. EDEPR spectra attributed to a methyl radical and to feldspar defects have been recorded at room and low temperature for an Iron Age cooking ware (700 B.C.). A study on the dependence of EDEPR intensity over absorbed dose on a series of γ-irradiated brick samples (estimated age of 562 ± 140 B.C.) has confirmed the potential efficacy of the proposed method for spotting defect signals out of the strong iron background. - Highlights: → Fe(III) CW-EPR signals cover CW-EPR-detectable defects in ceramics. → Echo detected EPR gets rid of Fe(III) signals, disclosing defect signals. → Echo detected EPR detects defect signals even at relatively low doses.

  15. Retrospective dosimetry by electronic paramagnetic resonance (EPR) in dental enamel

    International Nuclear Information System (INIS)

    Dubner, D.; Gisone, P.; Perez, M.R.; Davila, F.A.; Boveris, A.; Puntarulo, S.

    1998-01-01

    Biophysical dosimetry based on EPR in biological solid samples (like bone and teeth) or in organic materials (like textile fibres, sugar, etc.) is a complementary technique that could contribute, along with the biological dosimetry, to the retrospective evaluation of the absorbed dose in accidental situations. Dental enamel could be considered as the only tissue with structure and composition essentially constant over time: this characteristic feature allows its use as an index of radiation exposure since tooth retains indefinitely its radiation history. Samples of human molars were exposed to gamma-Rays (Co 60) with doses between 0,5 Gy to 10 Gy. After a chemical treatment of samples, enamel was removed by grinding with a dental drill and reduced to a fine powder. A characteristic EPR signal was detected at g=2.002. The dose effect curves were done using 20 mw of microwave power. Measurements were done both, with flat cells and disposable Pasteur pipettes allowing the use of lower amounts of sample. The intensity of the signal was proportional to the dose and linearity was verified in both cases. We discuss the applicability of this technique in evaluating radiation dose in accidental overexposures. (author) [es

  16. SU-C-BRD-05: Non-Invasive in Vivo Biodosimetry in Radiotherapy Patients Using Electron Paramagnetic Resonance (EPR) Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bahar, N; Roberts, K; Stabile, F; Mongillo, N; Decker, RD; Wilson, LD; Husain, Z; Contessa, J; Carlson, DJ [Yale University School of Medicine, New Haven, Connecticut (United States); Williams, BB; Flood, AB; Swartz, HM [Geisel Medical School at Dartmouth University, Hanover, New Hampshire (United States)

    2015-06-15

    Purpose: Medical intervention following a major, unplanned radiation event can elevate the human whole body exposure LD50 from 3 to 7 Gy. On a large scale, intervention cannot be achieved effectively without accurate and efficient triage. Current methods of retrospective biodosimetry are restricted in capability and applicability; published human data is limited. We aim to further develop, validate, and optimize an automated field-deployable in vivo electron paramagnetic resonance (EPR) instrument that can fill this need. Methods: Ionizing radiation creates highly-stable, carbonate-based free radicals within tooth enamel. Using a process similar to nuclear magnetic resonance, EPR directly measures the presence of radiation-induced free radicals. We performed baseline EPR measurements on one of the upper central incisors of total body irradiation (TBI) and head and neck (H&N) radiotherapy patients before their first treatment. Additional measurements were performed between subsequent fractions to examine the EPR response with increasing radiation dose. Independent dosimetry measurements were performed with optically-stimulated luminescent dosimeters (OSLDs) and diodes to more accurately establish the relationship between EPR signal and delivered radiation dose. Results: 36 EPR measurements were performed over the course of four months on two TBI and four H & N radiotherapy patients. We observe a linear increase in EPR signal with increasing dose across the entirety of the tested range. A linear least squares-weighted fit of delivered dose versus measured signal amplitude yields an adjusted R-square of 0.966. The standard error of inverse prediction (SEIP) is 1.77 Gy. For doses up to 7 Gy, the range most relevant to triage, we calculate an SEIP of 1.29 Gy. Conclusion: EPR spectroscopy provides a promising method of retrospective, non-invasive, in vivo biodosimetry. Our preliminary data show an excellent correlation between predicted signal amplitude and delivered

  17. Structure and dynamics of paramagnetic transients by pulsed EPR and NMR detection of nuclear resonance

    International Nuclear Information System (INIS)

    Trifunac, A.D.

    1981-01-01

    Structure and dynamics of transient radicals in pulse radiolysis can be studied by time resolved EPR and NMR techniques. EPR study of kinetics and relaxation is illustrated. The NMR detection of nuclear resonance in transient radicals is a new method which allows the study of hyperfine coupling, population dynamics, radical kinetics, and reaction mechanism. 9 figures

  18. Detection and characterisation of radicals using electron paramagnetic resonance (EPR) spin trapping and related methods

    DEFF Research Database (Denmark)

    Davies, Michael Jonathan

    2016-01-01

    Electron paramagnetic resonance (EPR) spectroscopy (also known as electron spin resonance, ESR, or electron magnetic resonance, EMR, spectroscopy) is often described as the “gold standard” for the detection and characterisation of radicals in chemical, biological and medical systems. The article...... reviews aspects of EPR spectroscopy and discusses how this methodology and related techniques can be used to obtain useful information from biological systems. Consideration is given to the direct detection of radicals, the use of spin traps and the detection of nitric oxide, and the advantages...

  19. Error in assessing the absorbed dose from the EPR signal from dental enamel

    International Nuclear Information System (INIS)

    Kleshchenko, E.D.; Kushnereva, K.K.

    1997-01-01

    Dose measurements from EPR signals from dental enamel were analyzed in a random sampling of 100 teeth extracted in liquidators of the Chernobyl accident aftermath and the EPR spectra of dental enamel of 80 intact teeth from children studied. The mean square deviation of enamel sensitivity to ionizing radiation in some teeth is approximately 0.3 of the mean sensitivity value. The variability of the nature EPR spectrum of dental enamel limits in principle the lower threshold of EPR-measured 60 mGy doses. When assessing the individual absorbed doses from the EPR signal from dental enamel without additional exposure it is necessary to bear in mind the extra error of approximately 6-% at a confidence probability P=0.95 caused by the variability of enamel sensitivity to radiation in some teeth. This additional error may be ruled out by graduated additional exposure of the examined enamel samples

  20. Electronic Paramagnetic Resonance (EPR) of free radicals induced by X-rays in pyrene

    International Nuclear Information System (INIS)

    Moya Partiti, C.S. de.

    1982-01-01

    Pyrene single crystals C 16 H 10 , irradiated by X-rays, at room temperature, were studied by EPR technique, to determine free radicals formed by radiation. The angular dependence of EPR spectra was explained by the presence of two kinds of radicals with an aditional hydrogen: 2-H 2 pyrene and 3-H 2 pyrene. It was studied the isothermic decay of the EPR signal and two typical values for the activation energy were found = (1,9+-0,1) eV and (1,93+-0,03) eV. (author) [pt

  1. Effects of water treatment and sample granularity on radiation sensitivity and stability of EPR signals in X-ray irradiated bone samples

    International Nuclear Information System (INIS)

    Ciesielski, Bartlomiej; Krefft, Karolina; Penkowski, Michal; Kaminska, Joanna; Drogoszewska, Barbara

    2014-01-01

    The article describes effects of sample conditions during its irradiation and electron paramagnetic resonance (EPR) measurements on the background (BG) and dosimetric EPR signals in bone. Intensity of the BG signal increased up to two to three times after crushing of bone to sub-millimetre grains. Immersion of samples in water caused about 50 % drop in intensity of the BG component followed by its regrowth in 1-2 months. Irradiation of bone samples produced an axial dosimetric EPR signal (radiation-induced signal) attributed to hydroxyapatite component of bone. This signal was stable and was not affected by water. In samples irradiated in dry conditions, EPR signal similar to the native BG was also generated by radiation. In samples irradiated in wet conditions, this BG-like component was initially much smaller than in bone irradiated as dry, but increased in time, reaching similar levels as in dry-irradiated samples. It is concluded that accuracy of EPR dosimetry in bones can be improved, if calibration of the samples is done by their irradiations in wet conditions. (authors)

  2. Pulse Double-Resonance EPR Techniques for the Study of Metallobiomolecules.

    Science.gov (United States)

    Cox, Nicholas; Nalepa, Anna; Pandelia, Maria-Eirini; Lubitz, Wolfgang; Savitsky, Anton

    2015-01-01

    Electron paramagnetic resonance (EPR) spectroscopy exploits an intrinsic property of matter, namely the electron spin and its related magnetic moment. This can be oriented in a magnetic field and thus, in the classical limit, acts like a little bar magnet. Its moment will align either parallel or antiparallel to the field, giving rise to different energies (termed Zeeman splitting). Transitions between these two quantized states can be driven by incident microwave frequency radiation, analogous to NMR experiments, where radiofrequency radiation is used. However, the electron Zeeman interaction alone provides only limited information. Instead, much of the usefulness of EPR is derived from the fact that the electron spin also interacts with its local magnetic environment and thus can be used to probe structure via detection of nearby spins, e.g., NMR-active magnetic nuclei and/or other electron spin(s). The latter is exploited in spin labeling techniques, an exciting new area in the development of noncrystallographic protein structure determination. Although these interactions are often smaller than the linewidth of the EPR experiment, sophisticated pulse EPR methods allow their detection. A number of such techniques are well established today and can be broadly described as double-resonance methods, in which the electron spin is used as a reporter. Below we give a brief description of pulse EPR methods, particularly their implementation at higher magnetic fields, and how to best exploit them for studying metallobiomolecules. © 2015 Elsevier Inc. All rights reserved.

  3. Crystallite arrangement of hydroxyapatite microcrystals in human tooth cementum as revealed by electron paramagnetic resonance (EPR)

    International Nuclear Information System (INIS)

    Skaleric, U.; Gaspirc, B.; Cevc, P.; Schara, M.

    1998-01-01

    Human dental cementum was analyzed by electron paramagnetic resonance (EPR). The measured EPR powder spectra of γ-irradiated cementum resembled those of γirradiated enamel. Both spectra were characterized by the same line shapes and g values. The position of the extreme first derivate peaks can be described by g 1 =2.0023 and g 2 =1.9971±0.0002, and are assignable to the CO 3 3- center. The angular dependence of the cementum EPR spectra indicates a different arrangement of the hydroxyapatite microcrystals compared to that of enamel. A corresponding model of cementum micro-crystal alignment has been proposed. The methodology presented can be utilized for studying the mineralization process of root cementum and other mineralized tissues. (au)

  4. A dozen useful tips on how to minimise the influence of sources of error in quantitative electron paramagnetic resonance (EPR) spectroscopy-A review

    International Nuclear Information System (INIS)

    Mazur, Milan

    2006-01-01

    The principal and the most important error sources in quantitative electron paramagnetic resonance (EPR) measurements arising from sample-associated factors are the influence of the variation of the sample material (dielectric constant), sample size and shape, sample tube wall thickness, and sample orientation and positioning within the microwave cavity on the EPR signal intensity. Variation in these parameters can cause significant and serious errors in the primary phase of quantitative EPR analysis (i.e., data acquisition). The primary aim of this review is to provide useful suggestions, recommendations and simple procedures to minimise the influence of such primary error sources in quantitative EPR measurements. According to the literature, as well as results obtained in our EPR laboratory, the following are recommendations for samples, which are compared in quantitative EPR studies: (i) the shape of all samples should be identical; (ii) the position of the sample/reference in the cavity should be identical; (iii) a special alignment procedure for precise sample positioning within the cavity should be adopted; (iv) a special/consistent procedure for sample packing for a powder material should be used; (v) the wall thickness of sample tubes should be identical; (vi) the shape and wall thickness of quartz Dewars, where used, should be identical; (vii) where possible a double TE 104 cavity should be used in quantitative EPR spectroscopy; (viii) the dielectric properties of unknown and standard samples should be as close as possible; (ix) sample length less than double the cavity length should be used; (x) the optimised sample geometry for the X-band cavity is a 30 mm-length capillary with i.d. less then 1.5 mm; (xi) use of commercially distributed software for post-recording spectra manipulation is a basic necessity; and (xii) the sample and laboratory temperature should be kept constant during measurements. When the above recommendations and procedures were used

  5. Studied by electron paramagnetic resonance (EPR) of polymethyl methacrylate (PMMA) irradiated with gamma photons from cobalt 60

    International Nuclear Information System (INIS)

    Jalali, Hajer

    2013-01-01

    Ionizing radiation is radiation able to deposit enough energy in the material through which they pass to create ionization. These ionizing radiations, when mastered, have many practical uses beneficial (areas of health, industry ...). Gamma rays are emitted by radioactive nuclei. The objective of our work is the study of polymethyl methacrylate (PMMA) irradiated by gamma photons from cobalt-60. To study the technique of radio spectroscopy (9 to 10Hz) electron paramagnetic resonance EPR is used. This technique is specific to characterize transient free radicals involved in chemical reactions such as oxidation, combustion, polymerization reactions ... We analyzed the EPR spectra three batch KS, EB, and JF our dosimeter according to the dose (high and low) and showed that the dosimetric response can be represented in exponential form (high dose) and linear form (low dose). We also studied the kinetics of decay of the EPR signal as a function of time (fading) and showed that the responses relating to stabilize after 20 min of irradiation.

  6. Determination of the Antioxidant Status of the Skin by In Vivo-Electron Paramagnetic Resonance (EPR Spectroscopy

    Directory of Open Access Journals (Sweden)

    Silke Barbara Lohan

    2015-08-01

    Full Text Available Organisms produce free radicals which are essential for various metabolic processes (enzymatic oxidation, cellular respiration, signaling. Antioxidants are important chemical compounds that specifically prevent the oxidation of substances by scavenging radicals, especially reactive oxygen species (ROS. Made up of one or two unpaired electrons, ROS are free radicals that are highly reactive and can attack other metabolites. By using electron paramagnetic resonance (EPR spectroscopy, it is possible to measure paramagnetic substances such as free radicals. Therefore the dermal antioxidant activity can be determined by applying semi-stable radicals onto the skin and measuring the antioxidant-induced radical scavenging activity in the skin. In recent years, EPR has been developed as a spectroscopic method for determining the antioxidant status in vivo. Several studies have shown that an additional uptake of dietary supplements, such as carotenoids or vitamin C in physiological concentrations, provide a protective effect against free radicals. Using the EPR technique it could be demonstrated that the radical production in stress situations, such as irradiation with infrared and visible light, was reduced with time. However, not only the oral uptake of antioxidants, but also the topical application of antioxidants, e.g., a hyperforin-rich cream, is very useful against the development of oxidative stress. Regular application of a hyperforin-rich cream reduced radical formation. The skin lipids, which are very important for the barrier function of the skin, were also stabilized.

  7. Electron paramagnetic resonance (EPR spectral components of spin-labeled lipids in saturated phospholipid bilayers: effect of cholesterol

    Directory of Open Access Journals (Sweden)

    Heverton Silva Camargos

    2013-01-01

    Full Text Available Electron paramagnetic resonance (EPR spectroscopy was used to study the main structural accommodations of spin labels in bilayers of saturated phosphatidylcholines with acyl chain lengths ranging from 16 to 22 carbon atoms. EPR spectra allowed the identification of two distinct spectral components in thermodynamic equilibrium at temperatures below and above the main phase transition. An accurate analysis of EPR spectra, using two fitting programs, enabled determination of the thermodynamic profile for these major probe accommodations. Focusing the analysis on two-component EPR spectra of a spin-labeled lipid, the influence of 40 mol % cholesterol in DPPC was studied.

  8. EPR dating CO2- sites in tooth enamel apatites by ENDOR and triple resonance

    International Nuclear Information System (INIS)

    Vugman, N.V.; Rigby, S.E.J.

    1995-01-01

    In this work we combine electron paramagnetic resonance (EPR), high-resolution electron nucleus double resonance (ENDOR) and general triple resonance (GTR) spectroscopies, to study the local environment of the CO 2 - groups created by ionizing radiation in fossil tooth enamel. We demonstrate that the CO 2 - groups occupy slightly modified phosphate sites in the hydroxyapatite lattice. In quaternary shark enamel we found these groups to be interacting with water molecules in the apatite channels. The absence of water molecules as first neighbours in mammalian samples indicate, however, that these molecules are not significantly responsible for the stabilization of CO 2 - dating centers in enamel. (author)

  9. Flexible, wireless, inductively coupled surface coil resonator for EPR tooth dosimetry

    International Nuclear Information System (INIS)

    Schreiber, Wilson; Petryakov, Sergey V.; Kmiec, Maciej M.; Feldman, Matthew A.; Wood, Victoria A.; Boyle, Holly K.; Flood, Ann Barry; Williams, Benjamin B.; Swartz, Harold M.; Meaney, Paul M.

    2016-01-01

    Managing radiation injuries following a catastrophic event where large numbers of people may have been exposed to life-threatening doses of ionizing radiation relies on the availability of biodosimetry to assess whether individuals need to be triaged for care. Electron Paramagnetic Resonance (EPR) tooth dosimetry is a viable method to accurately estimate the amount of ionizing radiation to which an individual has been exposed. In the intended measurement conditions and scenario, it is essential that the measurement process be fast, straightforward and provides meaningful and accurate dose estimations for individuals in the expected measurement conditions. The sensing component of a conventional L-band EPR spectrometer used for tooth dosimetry typically consists of a surface coil resonator that is rigidly, physically attached to the coupler. This design can result in cumbersome operation, limitations in teeth geometries that may be measured and hinder the overall utility of the dosimeter. A novel surface coil resonator has been developed for the currently existing L-band (1.15 GHz) EPR tooth dosimeter for the intended use as a point of care device by minimally trained operators. This resonator development provides further utility to the dosimeter, and increases the usability of the dosimeter by non-expert operators in the intended use scenario. (authors)

  10. Thermal resonance in signal transmission

    International Nuclear Information System (INIS)

    Reigada, Ramon; Sarmiento, Antonio; Lindenberg, Katja

    2001-01-01

    We use temperature tuning to control signal propagation in simple one-dimensional arrays of masses connected by hard anharmonic springs and with no local potentials. In our numerical model a sustained signal is applied at one site of a chain immersed in a thermal environment and the signal-to-noise ratio is measured at each oscillator. We show that raising the temperature can lead to enhanced signal propagation along the chain, resulting in thermal resonance effects akin to the resonance observed in arrays of bistable systems

  11. Thermal resonance in signal transmission

    Energy Technology Data Exchange (ETDEWEB)

    Reigada, Ramon; Sarmiento, Antonio; Lindenberg, Katja

    2001-06-01

    We use temperature tuning to control signal propagation in simple one-dimensional arrays of masses connected by hard anharmonic springs and with no local potentials. In our numerical model a sustained signal is applied at one site of a chain immersed in a thermal environment and the signal-to-noise ratio is measured at each oscillator. We show that raising the temperature can lead to enhanced signal propagation along the chain, resulting in thermal resonance effects akin to the resonance observed in arrays of bistable systems.

  12. EPR dosimetry of irradiated human teeth

    International Nuclear Information System (INIS)

    Rodas Duran, J.E.; Panzeri, H.; Mascarenhas, S.

    1985-01-01

    The determination of the absorbed radiation dose in man may be made by Electron Paramagnetic Resonance (EPR) spectroscopy of dental enamel. We analysed the EPR signals for dental enamel submitted to gamma radiation in doses between 1 Gy and 25 Gy. We conclude that independent of the type of tooth analysed there exists a linear relation between the EPR signals and the absorbed doses. These studies were extended to enamel irradiated with gamma rays and with X rays in doses between 0.1 Gy and 0.6 Gy. The graph of the intensity of the EPR signals as a function of the dose has a slope of 0.22. This calibration may be used to calculate the absorbed dose for humans from a measurement of the EPR signal from small samples of enamel taken from any permanent tooth. Finally we comment on some EPR studies of effects of radiation of milk teeth. (author)

  13. A Tunable Reentrant Resonator with Transverse Orientation of Electric Field for in Vivo EPR Spectroscopy

    Science.gov (United States)

    Chzhan, Michael; Kuppusamy, Periannan; Samouilov, Alexandre; He, Guanglong; Zweier, Jay L.

    1999-04-01

    There has been a need for development of microwave resonator designs optimized to provide high sensitivity and high stability for EPR spectroscopy and imaging measurements ofin vivosystems. The design and construction of a novel reentrant resonator with transversely oriented electric field (TERR) and rectangular sample opening cross section for EPR spectroscopy and imaging ofin vivobiological samples, such as the whole body of mice and rats, is described. This design with its transversely oriented capacitive element enables wide and simple setting of the center frequency by trimming the dimensions of the capacitive plate over the range 100-900 MHz with unloadedQvalues of approximately 1100 at 750 MHz, while the mechanical adjustment mechanism allows smooth continuous frequency tuning in the range ±50 MHz. This orientation of the capacitive element limits the electric field based loss of resonatorQobserved with large lossy samples, and it facilitates the use of capacitive coupling. Both microwave performance data and EPR measurements of aqueous samples demonstrate high sensitivity and stability of the design, which make it well suited forin vivoapplications.

  14. Investigation of linear regression of EPR dosimetric signal of the man tooth enamel

    International Nuclear Information System (INIS)

    Pivovarov, S.P.; Rukhin, A.B.; Zhakparov, R.K.; Vasilevskaya, L.A.

    2001-01-01

    The experimental relations of the EPR radiation signal in samples of man tooth enamel of three donors of different age up to doses 1350 Gy are examined. To all of them the linear regression is applicable. The considerable errors leading to apparent non-linearity are eliminated most. (author)

  15. Digitally generated excitation and near-baseband quadrature detection of rapid scan EPR signals.

    Science.gov (United States)

    Tseitlin, Mark; Yu, Zhelin; Quine, Richard W; Rinard, George A; Eaton, Sandra S; Eaton, Gareth R

    2014-12-01

    The use of multiple synchronized outputs from an arbitrary waveform generator (AWG) provides the opportunity to perform EPR experiments differently than by conventional EPR. We report a method for reconstructing the quadrature EPR spectrum from periodic signals that are generated with sinusoidal magnetic field modulation such as continuous wave (CW), multiharmonic, or rapid scan experiments. The signal is down-converted to an intermediate frequency (IF) that is less than the field scan or field modulation frequency and then digitized in a single channel. This method permits use of a high-pass analog filter before digitization to remove the strong non-EPR signal at the IF, that might otherwise overwhelm the digitizer. The IF is the difference between two synchronized X-band outputs from a Tektronix AWG 70002A, one of which is for excitation and the other is the reference for down-conversion. To permit signal averaging, timing was selected to give an exact integer number of full cycles for each frequency. In the experiments reported here the IF was 5kHz and the scan frequency was 40kHz. To produce sinusoidal rapid scans with a scan frequency eight times IF, a third synchronized output generated a square wave that was converted to a sine wave. The timing of the data acquisition with a Bruker SpecJet II was synchronized by an external clock signal from the AWG. The baseband quadrature signal in the frequency domain was reconstructed. This approach has the advantages that (i) the non-EPR response at the carrier frequency is eliminated, (ii) both real and imaginary EPR signals are reconstructed from a single physical channel to produce an ideal quadrature signal, and (iii) signal bandwidth does not increase relative to baseband detection. Spectra were obtained by deconvolution of the reconstructed signals for solid BDPA (1,3-bisdiphenylene-2-phenylallyl) in air, 0.2mM trityl OX63 in water, 15 N perdeuterated tempone, and a nitroxide with a 0.5G partially-resolved proton

  16. A high-resolution EPR-CT microscope using cavity-resonators equipped with small field gradient coils

    International Nuclear Information System (INIS)

    Miki, T.; Murata, T.; Kumai, H.; Yamashiro, A.

    1996-01-01

    Cylindrical cavity resonators equipped with field gradient coils were developed for two-dimensional EPR-CT microscope systems. The field gradient coils lie in four (or six) thin metal tubes placed along the direction of the microwave magnetic field in the cavity to minimize impact on the resonator's quality factor. Two pairs of the tubes carry a 100 kHz current for magnetic field modulation. This cavity has high spin-detection sensitivity and can provide EPR images with submillimeter resolution. In order to reconstruct better images from fewer projections, we used an algebraic reconstruction technique (ART) for the two-dimensional image reconstruction. The ART method may be suitable for not only spectral-spatial two-dimensional EPR imaging, but also spatio-temporal EPR imaging in dynamic spin systems. (author)

  17. Properties of light induced EPR signals in enamel and their possible interference with gamma-induced signals

    International Nuclear Information System (INIS)

    Sholom, S.V.; Chumak, V.V.; Haskell, E.H.; Hayes, R.B.; Kenner, G.H.

    1998-01-01

    Exposure of tooth enamel to natural and artificial UV light results in stable EPR signals with g-factors of 1.9985, 2.0018, 2.0045, 2.0052 and 2.0110. The first three signals correspond to the parallel and perpendicular components of the radiation induced or dosimetric signal and the native signal reported in dosimetry and dating studies. The latter two signals were found to be sensitive to both gamma-ray and sunlight exposure, however, their responses to light differed from that to radiation, giving rise to the possibility of using them as indicators of the dose-equivalent resulting from light exposure

  18. Primary Study about Intensity Signal of Electron Paramagnetic Resonance in vivo Tooth Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hoon; Gang, Seo Gon; Kim, Jeong In; Lee, Byung Il [KHNP Radiation Health Institute, Gyeongju (Korea, Republic of)

    2017-04-15

    The signal of Electron Paramagnetic Resonance(EPR) dosimetry system using human tooth has been well introduced as one of the efficient tool to evaluate radiation exposure. But, EPR dosimetry, even in the case of classical in vitro EPR system using tooth sample(measured molars), was regarded as having big signal fluctuation. One of reason for such difficulty in getting accurate intensity was the big effect of organic materials mixed in enamel part of teeth samples. They are mainly caused by the adaptation process of system itself to the movement of measured human subject. Generally, when we measured human teeth in vivo, five of six teeth spectrum were gathered and averaged for real evaluation. The these spectrum are measured under very different environment like angle of external magnet making magnetic filed with teeth(incisor). Random movement of these signals should be considered in different view point to understand and compare each EPR in vivo EPR spectrum. The peak to peak value of obtained five or six in vivo EPR system to get averaged value for final quantity of free radicals in hydroxy apatite crystal construction in enamel part of human teeth looks so randomly changed without regulation. But, in overall view, the EPR signal, especially at no irradiation level, is almost same for every measurement trial which is mainly composed of big noise and very small signal from real free radicals. The peak to peak value of obtained five or six in vivo EPR system to get averaged value for final quantity of free radicals in hydroxy apatite crystal construction in enamel part of human teeth looks so randomly changed without regulation.

  19. Primary Study about Intensity Signal of Electron Paramagnetic Resonance in vivo Tooth Dosimetry

    International Nuclear Information System (INIS)

    Choi, Hoon; Gang, Seo Gon; Kim, Jeong In; Lee, Byung Il

    2017-01-01

    The signal of Electron Paramagnetic Resonance(EPR) dosimetry system using human tooth has been well introduced as one of the efficient tool to evaluate radiation exposure. But, EPR dosimetry, even in the case of classical in vitro EPR system using tooth sample(measured molars), was regarded as having big signal fluctuation. One of reason for such difficulty in getting accurate intensity was the big effect of organic materials mixed in enamel part of teeth samples. They are mainly caused by the adaptation process of system itself to the movement of measured human subject. Generally, when we measured human teeth in vivo, five of six teeth spectrum were gathered and averaged for real evaluation. The these spectrum are measured under very different environment like angle of external magnet making magnetic filed with teeth(incisor). Random movement of these signals should be considered in different view point to understand and compare each EPR in vivo EPR spectrum. The peak to peak value of obtained five or six in vivo EPR system to get averaged value for final quantity of free radicals in hydroxy apatite crystal construction in enamel part of human teeth looks so randomly changed without regulation. But, in overall view, the EPR signal, especially at no irradiation level, is almost same for every measurement trial which is mainly composed of big noise and very small signal from real free radicals. The peak to peak value of obtained five or six in vivo EPR system to get averaged value for final quantity of free radicals in hydroxy apatite crystal construction in enamel part of human teeth looks so randomly changed without regulation.

  20. Stability of X-band EPR signals from fingernails under vacuum storage.

    Science.gov (United States)

    Sholom, Sergey; McKeever, Stephen

    2017-12-01

    EPR signals of different origin have been tested in human finger- and toe-nails with an X-band EPR technique for different conditions of nail storage. Three different signals were identified, namely a singlet at g=2.005, a doublet at g=2.004 with a splitting constant A=1.8 mT, and an anisotropic signal at g1=2.057, g2=2.029 and g3=2.003 (positions of local extrema). All EPR spectra from nails, whether irradiated or mechanically stressed, can be described as a superposition of these three signals. The singlet is responsible for the background signal (BG), is the main component of radiation-induced signals (RIS) for low doses (100 Gy or lower) and also contributes to mechanically-induced signals (MIS). This signal is quite stable under vacuum storage, but can be reduced almost to zero by soaking in water. The behavior of this signal under ambient conditions depends on many factors, such as absorbed dose, air humidity, and ambient illumination intensity at the place of storage. The doublet arises after exposure of nails to high (few hundreds Gy and higher) doses or after mechanical stress of samples. Depending on how this signal was obtained, it may have bulk or surface locations with quite different stability properties. The surface-located doublet (generated on the nail edges during cutting or clipping) is quite unstable and decays over about two hours for samples stored at ambient conditions and within several seconds for samples immersed in water. The volume-distributed doublet decays within a few minutes in water, several hours at ambient conditions and several days in vacuum. The anisotropic signal may also be generated by both ionizing radiation and mechanical stress; this signal is quite stable in vacuum and decays over several days at ambient conditions or a few tens of minutes in water. The reference lines for the above-described three EPR signals were obtained and a procedure of spectra deconvolution was developed and tested on samples exposed to both

  1. Signal processing for radiation dosimetry using EPR in dental enamel: comparison of three methods

    International Nuclear Information System (INIS)

    Pass, B. Barry.; Shames, A.I. Alexander I.

    2000-01-01

    We are reporting an alternative method of extracting useful dose information from complex EPR spectra of dental enamel. Digital differentiation of the initial first derivative spectrum followed by filtering is used to clearly distinguish the radiation-induced signal from the native background signal. The peak-to-peak height of the resulting second derivative of the signal is then measured as an indication of absorbed dose. This method does not require preliminary elimination of the native background signal, and is not effected by any uncertainty in the determination of the background signal or by errors resulting from the subtraction of two signals of comparable magnitude. Ten enamel samples were irradiated with known doses in the range of 250-10 5 mGy. There was agreement for all the samples, within the typical experimental error of ±10% for EPR dosimetry in dental enamel, between the doses determined by two common techniques using native signal subtraction and the doses determined by the new second derivative method proposed here

  2. EPR studies of melanin from Cladosporium cladosporioides

    International Nuclear Information System (INIS)

    Pilawa, B.; Buszman, E.; Latocha, M.; Wilczok, T.

    1996-01-01

    Free radical properties of Cladosporium cladosporioides mycelium and melanin, and synthetic eumelanin and pheomelanin were studied by electron paramagnetic resonance method. Single EPR line and complex EPR spectrum with hyperfine splitting were measured for model DOPA-melanin and cysteinyldopa-melanin, respectively. EPR spectra of Cladosporium cladosporioides samples and pheomelanin show the same character. The concentration of paramagnetic centers in melanins isolated from Cladosporium cladosporioides is considerably higher than that of crude mycelium, whereas the EPR line widths are lower for mycelium than for melanin samples. For all analyzed samples the increase of EPR signals intensity with the increase of microwave power, and the decrease of intensities after saturation were observed the low values of microwave power sufficient for EPR lines saturation demonstrate that the spin-lattice relaxation times of unpaired electrons in melanins are long. (author)

  3. Characterization of the factors having an influence on the evolution of the EPR signal of irradiated alanine

    International Nuclear Information System (INIS)

    Feaugas-Le-Berre, Valerie

    1999-01-01

    EPR/alanine dosimetry has been used by the LNHB (Laboratoire National Henri Becquerel) since many years for applied metrology. This technic is based on the measurement of the EPR signal of the free radicals induced in alanine by irradiation. The aim of this work is to characterize the factors having an influence on the evolution of the amplitude of the EPR signal of irradiated alanine to limit the uncertainties on the determination of the absorbed dose. The first step of this work has been the choice of the dosimeter. A bibliographic study completed by experiments on the response of alanine isomers to the dose and on its stability with time has lead us to choose L-α-alanine powder as dosimeter. The influence of the recording parameter of the spectrometer on the characteristics of the EPR spectrum has then been studied. This has enabled us to optimize the recording conditions of EPR spectra. As the angular anisotropy of the EPR signal limits the measurements reproducibility, an experimental protocol has been defined to solve this problem. The repeatability of the measurements has been enhanced by modifying the spectrometer and using an internal standard constituted of single crystals of CuSO 4 .5H 2 O. As the amplitude of the EPR signal is sensitive to the measurement temperature, a method of normalization of the results to 20 C has been determined. We have studied the influence of an irradiation parameter and of environmental parameters. We have shown that the EPR signal amplitude increases with irradiation temperature. The EPR signal amplitude and its evolution vary strongly with storage conditions (temperature and moisture) of the dosimeter before and after irradiation. The presence of moisture in alanine powder leads to a loss of signal amplitude. The dosimeters exposition to light also entails a loss of amplitude. Oxygen does not influence the EPR spectrum of alanine. We have noticed that the EPR signal amplitude of samples stored in absence of moisture

  4. Cathodoluminescence (CL) and electron paramagnetic resonance (EPR) studies of clay minerals

    International Nuclear Information System (INIS)

    Goetze, J.; Ploetze, M.; Goette, T.; Neuser, R.D.; Richter, D.K.

    2002-01-01

    Sheet silicates of the serpentine-kaolin-group (serpentine, kaolinite, dickite, nacrite, halloysite), the talc-pyrophyllite-group (talc, pyrophyllite), the smectite-group (montmorillonite), and illite (as a mineral of the mica-group) were investigated to obtain information concerning their cathodoluminescence behavior. The study included analyses by cathodoluminescence (CL microscopy and spectroscopy), electron paramagnetic resonance (EPR), x-ray diffraction (XRD), scanning electron microscopy (SEM) and trace element analysis. In general, all dioctahedral clay minerals exhibit a visible CL. Kaolinite, dickite, nacrite and pyrophyllite have a characteristic deep blue CL, whereas halloysite emission is in the greenish-blue region. On the contrary, the trioctahedral minerals (serpentine, talc) and illite do not show visible CL. The characteristic blue CL is caused by an intense emission band around 400 nm (double peak with two maxima at 375 and 410 nm). EPR measurements indicate that his blue emission can be related to radiation induced defect centers (RID), which occur as electron holes trapped on apical oxygen (Si-O center) or located at the Al-O-Al group (Al substituting Si in the tetrahedron). Additional CL emission bands were detected at 580 nm in halloysite and kaolinite, and between 700 and 800 nm in kaolinite, dickite, nacrite and pyrophyllite. Time-resolved spectral CL measurements show typical luminescence kinetics for the different clay minerals, which enable differentiation between the various dioctahedral minerals (e.g. kaolinite and dickite), even in thin section. (author)

  5. Dynamic changes in oxygenation of intracranial tumor and contralateral brain during tumor growth and carbogen breathing: A multisite EPR oximetry with implantable resonators

    Science.gov (United States)

    Hou, Huagang; Dong, Ruhong; Li, Hongbin; Williams, Benjamin; Lariviere, Jean P.; Hekmatyar, S.K.; Kauppinen, Risto A.; Khan, Nadeem; Swartz, Harold

    2013-01-01

    Introduction Several techniques currently exist for measuring tissue oxygen; however technical difficulties have limited their usefulness and general application. We report a recently developed electron paramagnetic resonance (EPR) oximetry approach with multiple probe implantable resonators (IRs) that allow repeated measurements of oxygen in tissue at depths of greater than 10 mm. Methods The EPR signal to noise (S/N) ratio of two probe IRs was compared with that of LiPc deposits. The feasibility of intracranial tissue pO2 measurements by EPR oximetry using IRs was tested in normal rats and rats bearing intracerebral F98 tumors. The dynamic changes in the tissue pO2 were assessed during repeated hyperoxia with carbogen breathing. Results A 6–10 times increase in the S/N ratio was observed with IRs as compared to LiPc deposits. The mean brain pO2 of normal rats was stable and increased significantly during carbogen inhalation in experiments repeated for 3 months. The pO2 of F98 glioma declined gradually, while the pO2 of contralateral brain essentially remained the same. Although a significant increase in the glioma pO2 was observed during carbogen inhalation, this effect declined in experiments repeated over days. Conclusion EPR oximetry with IRs provides a significant increase in S/N ratio. The ability to repeatedly assess orthotopic glioma pO2 is likely to play a vital role in understanding the dynamics of tissue pO2 during tumor growth and therapies designed to modulate tumor hypoxia. This information could then be used to optimize chemoradiation by scheduling treatments at times of increased glioma oxygenation. PMID:22033225

  6. Comparison of continuous wave, spin echo, and rapid scan EPR of irradiated fused quartz

    International Nuclear Information System (INIS)

    Mitchell, Deborah G.; Quine, Richard W.; Tseitlin, Mark; Meyer, Virginia; Eaton, Sandra S.; Eaton, Gareth R.

    2011-01-01

    The E' defect in irradiated fused quartz has spin lattice relaxation times (T 1 ) about 100-300 μs and spin-spin relaxation times (T 2 ) up to about 200 μs, depending on the concentration of defects and other species in the sample. These long relaxation times make it difficult to record an unsaturated continuous wave (CW) electron paramagnetic resonance (EPR) signal that is free of passage effects. Signals measured at X-band (∼9.5 GHz) by three EPR methods: conventional slow-scan field-modulated EPR, rapid scan EPR, and pulsed EPR, were compared. To acquire spectra with comparable signal-to-noise, both pulsed and rapid scan EPR require less time than conventional CW EPR. Rapid scan spectroscopy does not require the high power amplifiers that are needed for pulsed EPR. The pulsed spectra, and rapid scan spectra obtained by deconvolution of the experimental data, are free of passage effects.

  7. Elimination of the background signal in tooth enamel samples for EPR-dosimetry by means of physical-chemical treatment

    International Nuclear Information System (INIS)

    Ivannikov, A.I.; Tikunov, D.D.; Skvortsov, V.G.; Stepanenko, V.F.; Khomichyonok, V.V.; Khamidova, L.G.; Skripnik, D.D.; Bozadjiev, L.L.; Hoshi, M.

    2001-01-01

    A method of elimination of the background EPR signal in tooth enamel is proposed. This method implies treatment of enamel powder by highly active reduction reagent hydrazine with subsequent washing out by ethanol-water solution. Such treatment results in reducing both the native background signal (which is assumed to be originated by the organic component) and the mechanical induced EPR signal in enamel. Testing of the efficiency of hydrazine treatment is made for different sizes of enamel powder. It is shown that the optimal results are obtained for a powder fraction of about 100-200 μm. The radiation-induced EPR signal in enamel is practically not changed after treatment by hydrazine

  8. Detection of undistorted continuous wave (CW) electron paramagnetic resonance (EPR) spectra with non-adiabatic rapid sweep (NARS) of the magnetic field

    Science.gov (United States)

    Kittell, Aaron W.; Camenisch, Theodore G.; Ratke, Joseph J.; Sidabras, Jason W.; Hyde, James S.

    2011-01-01

    A continuous wave (CW) electron paramagnetic resonance (EPR) spectrum is typically displayed as the first harmonic response to the application of 100 kHz magnetic field modulation, which is used to enhance sensitivity by reducing the level of 1/f noise. However, magnetic field modulation of any amplitude causes spectral broadening and sacrifices EPR spectral intensity by at least a factor of two. In the work presented here, a CW rapid-scan spectroscopic technique that avoids these compromises and also provides a means of avoiding 1/f noise is developed. This technique, termed non-adiabatic rapid sweep (NARS) EPR, consists of repetitively sweeping the polarizing magnetic field in a linear manner over a spectral fragment with a small coil at a repetition rate that is sufficiently high that receiver noise, microwave phase noise, and environmental microphonics, each of which has 1/f characteristics, are overcome. Nevertheless, the rate of sweep is sufficiently slow that adiabatic responses are avoided and the spin system is always close to thermal equilibrium. The repetitively acquired spectra from the spectral fragment are averaged. Under these conditions, undistorted pure absorption spectra are obtained without broadening or loss of signal intensity. A digital filter such as a moving average is applied to remove high frequency noise, which is approximately equivalent in bandwidth to use of an integrating time constant in conventional field modulation with lock-in detection. Nitroxide spectra at L- and X-band are presented. PMID:21741868

  9. Structure and dynamics of paramagnetic transients by pulsed EPR and NMR detection of nuclear resonance. [Pulse radiolysis of methanol in D/sub 2/O

    Energy Technology Data Exchange (ETDEWEB)

    Trifunac, A.D.

    1981-01-01

    Structure and dynamics of transient radicals in pulse radiolysis can be studied by time resolved EPR and NMR techniques. EPR study of kinetics and relaxation is illustrated. The NMR detection of nuclear resonance in transient radicals is a new method which allows the study of hyperfine coupling, population dynamics, radical kinetics, and reaction mechanism. 9 figures.

  10. EPR dosimetry with tooth enamel: A review

    International Nuclear Information System (INIS)

    Fattibene, Paola; Callens, Freddy

    2010-01-01

    When tooth enamel is exposed to ionizing radiation, radicals are formed, which can be detected using electron paramagnetic resonance (EPR) techniques. EPR dosimetry using tooth enamel is based on the (presumed) correlation between the intensity or amplitude of some of the radiation-induced signals with the dose absorbed in the enamel. In the present paper a critical review is given of this widely applied dosimetric method. The first part of the paper is fairly fundamental and deals with the main properties of tooth enamel and some of its model systems (e.g., synthetic apatites). Considerable attention is also paid to the numerous radiation-induced and native EPR signals and the radicals responsible for them. The relevant methods for EPR detection, identification and spectrum analyzing are reviewed from a general point of view. Finally, the needs for solid-state modelling and studies of the linearity of the dose response are investigated. The second part is devoted to the practical implementation of EPR dosimetry using enamel. It concerns specific problems of preparation of samples, their irradiation and spectrum acquisition. It also describes how the dosimetric signal intensity and dose can be retrieved from the EPR spectra. Special attention is paid to the energy dependence of the EPR response and to sources of uncertainties. Results of and problems encountered in international intercomparisons and epidemiological studies are also dealt with. In the final section the future of EPR dosimetry with tooth enamel is analyzed.

  11. Assessment of performance parameters for EPR dosimetry with tooth enamel

    International Nuclear Information System (INIS)

    Wieser, A.; Fattibene, P.; Shishkina, E.A.; Ivanov, D.V.; De Coste, V.; Guettler, A.; Onori, S.

    2008-01-01

    In the framework of a comparison between three laboratories, electron paramagnetic resonance (EPR) signal-to-dose response curves were measured for sets of 30 tooth enamel samples and the variance of EPR measurements in dependence on absorbed dose was evaluated, in nine combinations of laboratory of sample preparation and EPR evaluation, respectively. As a test for benchmarking of EPR evaluation, the parameters 'critical dose' and 'limit of detection' were proposed as performance parameters following definitions from chemical-metrology, and a model function was suggested for analytical formulation of the dependence of the variance of EPR measurement on absorbed dose. First estimates of limits of detection by weighted and unweighted fitting resulted in the range 101-552 and 67-561 mGy, respectively, and were generally larger with weighted than with unweighted fitting. Indication was found for the influence of methodology of sample preparation and applied EPR measurement parameters on performance of EPR dosimetry with tooth enamel

  12. Uniform field loop-gap resonator and rectangular TEU02 for aqueous sample EPR at 94 GHz

    Science.gov (United States)

    Sidabras, Jason W.; Sarna, Tadeusz; Mett, Richard R.; Hyde, James S.

    2017-09-01

    In this work we present the design and implementation of two uniform-field resonators: a seven-loop-six-gap loop-gap resonator (LGR) and a rectangular TEU02 cavity resonator. Each resonator has uniform-field-producing end-sections. These resonators have been designed for electron paramagnetic resonance (EPR) of aqueous samples at 94 GHz. The LGR geometry employs low-loss Rexolite end-sections to improve the field homogeneity over a 3 mm sample region-of-interest from near-cosine distribution to 90% uniform. The LGR was designed to accommodate large degassable Polytetrafluorethylen (PTFE) tubes (0.81 mm O.D.; 0.25 mm I.D.) for aqueous samples. Additionally, field modulation slots are designed for uniform 100 kHz field modulation incident at the sample. Experiments using a point sample of lithium phthalocyanine (LiPC) were performed to measure both the uniformity of the microwave magnetic field and 100 kHz field modulation, and confirm simulations. The rectangular TEU02 cavity resonator employs over-sized end-sections with sample shielding to provide an 87% uniform field for a 0.1 × 2 × 6 mm3 sample geometry. An evanescent slotted window was designed for light access to irradiate 90% of the sample volume. A novel dual-slot iris was used to minimize microwave magnetic field perturbations and maintain cross-sectional uniformity. Practical EPR experiments using the application of light irradiated rose bengal (4,5,6,7-tetrachloro-2‧,4‧,5‧,7‧-tetraiodofluorescein) were performed in the TEU02 cavity. The implementation of these geometries providing a practical designs for uniform field resonators that continue resonator advancements towards quantitative EPR spectroscopy.

  13. Use of the Frank sequence in pulsed EPR

    DEFF Research Database (Denmark)

    Tseitlin, Mark; Quine, Richard W.; Eaton, Sandra S.

    2011-01-01

    The Frank polyphase sequence has been applied to pulsed EPR of triarylmethyl radicals at 256MHz (9.1mT magnetic field), using 256 phase pulses. In EPR, as in NMR, use of a Frank sequence of phase steps permits pulsed FID signal acquisition with very low power microwave/RF pulses (ca. 1.5m......W in the application reported here) relative to standard pulsed EPR. A 0.2mM aqueous solution of a triarylmethyl radical was studied using a 16mm diameter cross-loop resonator to isolate the EPR signal detection system from the incident pulses. Keyword: Correlation spectroscopy,Multi-pulse EPR,Low power pulses,NMR,EPR...

  14. EPR spectroscopy of spices

    Directory of Open Access Journals (Sweden)

    R. T. Тimakova

    2016-01-01

    Full Text Available From 01 January 2017 you enter the interstate standard GOST 33271-2015 “Dry Spices, herbs and vegetable seasonings. Manual exposure in order to combat pathogens and other microorganisms” which States that the absorbed dose of radiation to the spices should be from 3 to 30 kGy. The study found that before the introduction of permissive legislative framework in the consumer market of Russia there are irradiated food products (chili, ground chili, ground spicy chili, black pepper. For radiation monitoring of food safety, we used the method of electron paramagnetic resonance (EPR, which allows quickly and with a high degree of reliability to establish the fact of irradiation. It is established that all samples of spices irradiated with dose of 12 kGy (technology radappertization gave typical spectra of the signals established by the method of electron paramagnetic resonance in the domestic EPR spectrometer, the intensity, amplitude and peak width of the EPR signal of samples of spices with the increase of irradiation dose increases. It is proven that repeated exposure no effect accumulation. Integration with 2017 Russia in the global practi ce of using radiation technologies of processing of food products and food raw materials with the purpose of extending shelf life confirms the need for a data Bank on the radiation sensitivity of various food products to determine the optimal doses and the eff ect of radiation doses on the shelf life and quality of products.

  15. Dosimetry of an accident in mixed field (neutrons, photons) using the spectrometry by electronic paramagnetic resonance(EPR)

    International Nuclear Information System (INIS)

    Herve, M.L.

    2006-03-01

    In a radiological accident, the assessment of the dose received by the victim is relevant information for the therapeutic strategy. Two complementary dosimetric techniques based on physical means are used in routine practice in the laboratory: EPR spectroscopy performed on materials removed from the victim or gathered from the vicinity of the victim and Monte Carlo calculations. EPR dosimetry, has been used successfully several times in cases of photon or electron overexposures. Accidental exposure may also occur with a neutron component. The aim of this work is to investigate the potentiality of EPR dosimetry for mixed photon and neutron field exposure with different organic materials (ascorbic acid, sorbitol, glucose, galactose, fructose, mannose, lactose and sucrose). The influence of irradiation parameters (dose, dose rate, photon energy) and of environmental parameters (temperature of heating, light exposure) on the EPR signal amplitude was studied. To assess the neutron sensitivity, the materials were exposed to a mixed radiation field of experimental reactors with different neutron to photon ratios. The relative neutron sensitivity was found to range from 10% to 43% according to the materials. Prior knowledge of the ratio between the dose in samples measured by EPR spectrometry and organ or whole body dose obtained by calculations previously performed for these different configurations, makes it possible to give a first estimation of the dose received by the victim in a short delay. The second aim of this work is to provide data relevant for a quick assessment of the dose distribution in case of accidental overexposure based on EPR measurements performed on one or several points of the body. The study consists in determining by calculation the relation between the dose to the organs and whole body and the dose to specific points of the body, like teeth, bones or samples located in the pockets of victim clothes, for different external exposures corresponding

  16. Design and testing of a 750MHz CW-EPR digital console for small animal imaging.

    Science.gov (United States)

    Sato-Akaba, Hideo; Emoto, Miho C; Hirata, Hiroshi; Fujii, Hirotada G

    2017-11-01

    This paper describes the development of a digital console for three-dimensional (3D) continuous wave electron paramagnetic resonance (CW-EPR) imaging of a small animal to improve the signal-to-noise ratio and lower the cost of the EPR imaging system. A RF generation board, an RF acquisition board and a digital signal processing (DSP) & control board were built for the digital EPR detection. Direct sampling of the reflected RF signal from a resonator (approximately 750MHz), which contains the EPR signal, was carried out using a band-pass subsampling method. A direct automatic control system to reduce the reflection from the resonator was proposed and implemented in the digital EPR detection scheme. All DSP tasks were carried out in field programmable gate array ICs. In vivo 3D imaging of nitroxyl radicals in a mouse's head was successfully performed. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Design and testing of a 750 MHz CW-EPR digital console for small animal imaging

    Science.gov (United States)

    Sato-Akaba, Hideo; Emoto, Miho C.; Hirata, Hiroshi; Fujii, Hirotada G.

    2017-11-01

    This paper describes the development of a digital console for three-dimensional (3D) continuous wave electron paramagnetic resonance (CW-EPR) imaging of a small animal to improve the signal-to-noise ratio and lower the cost of the EPR imaging system. A RF generation board, an RF acquisition board and a digital signal processing (DSP) & control board were built for the digital EPR detection. Direct sampling of the reflected RF signal from a resonator (approximately 750 MHz), which contains the EPR signal, was carried out using a band-pass subsampling method. A direct automatic control system to reduce the reflection from the resonator was proposed and implemented in the digital EPR detection scheme. All DSP tasks were carried out in field programmable gate array ICs. In vivo 3D imaging of nitroxyl radicals in a mouse's head was successfully performed.

  18. EPR spectral investigation of radiation-induced radicals of gallic acid

    International Nuclear Information System (INIS)

    Tuner, Hasan

    2017-01-01

    In the present work, spectroscopic features of the radiation-induced radicals of gallic acid compounds were investigated using electron paramagnetic resonance (EPR) spectroscopy. While un-irradiated samples presented no EPR signal, irradiated samples exhibited an EPR spectrum consisting of an intense resonance line at the center and weak lines on both sides. Detailed microwave saturation investigations were carried out to determine the origin of the experimental EPR lines. It is concluded that the two side lines of the triplet satellite originate from forbidden ''spin-flip'' transitions. The spectroscopic and structural features of the radiation-induced radicals were determined using EPR spectrum fittings. The experimental EPR spectra of the two gallic acid compounds were consistent with the calculated EPR spectroscopic features of the proposed radicals. It is concluded that the most probable radicals are the cyclohexadienyl-type, O(OH) 2 C 6 H 2 COOH radicals for both compounds. (orig.)

  19. EPR spectral investigation of radiation-induced radicals of gallic acid.

    Science.gov (United States)

    Tuner, Hasan

    2017-11-01

    In the present work, spectroscopic features of the radiation-induced radicals of gallic acid compounds were investigated using electron paramagnetic resonance (EPR) spectroscopy. While un-irradiated samples presented no EPR signal, irradiated samples exhibited an EPR spectrum consisting of an intense resonance line at the center and weak lines on both sides. Detailed microwave saturation investigations were carried out to determine the origin of the experimental EPR lines. It is concluded that the two side lines of the triplet satellite originate from forbidden "spin-flip" transitions. The spectroscopic and structural features of the radiation-induced radicals were determined using EPR spectrum fittings. The experimental EPR spectra of the two gallic acid compounds were consistent with the calculated EPR spectroscopic features of the proposed radicals. It is concluded that the most probable radicals are the cyclohexadienyl-type, [Formula: see text] radicals for both compounds.

  20. Inter-spin distance determination using L-band (1-2 GHz) non-adiabatic rapid sweep electron paramagnetic resonance (NARS EPR)

    Science.gov (United States)

    Kittell, Aaron W.; Hustedt, Eric J.; Hyde, James S.

    2014-01-01

    Site-directed spin-labeling electron paramagnetic resonance (SDSL EPR) provides insight into the local structure and motion of a spin probe strategically attached to a molecule. When a second spin is introduced to the system, macromolecular information can be obtained through measurement of inter-spin distances either by continuous wave (CW) or pulsed electron double resonance (ELDOR) techniques. If both methodologies are considered, inter-spin distances of 8 to 80 Å can be experimentally determined. However, there exists a region at the upper limit of the conventional X-band (9.5 GHz) CW technique and the lower limit of the four-pulse double electron-electron resonance (DEER) experiment where neither method is particularly reliable. The work presented here utilizes L-band (1.9 GHz) in combination with non-adiabatic rapid sweep (NARS) EPR to address this opportunity by increasing the upper limit of the CW technique. Because L-band linewidths are three to seven times narrower than those at X-band, dipolar broadenings that are small relative to the X-band inhomogeneous linewidth become observable, but the signal loss due to the frequency dependence of the Boltzmann factor, has made L-band especially challenging. NARS has been shown to increase sensitivity by a factor of five, and overcomes much of this loss, making L-band distance determination more feasible [1]. Two different systems are presented and distances of 18–30 Å have been experimentally determined at physiologically relevant temperatures. Measurements are in excellent agreement with a helical model and values determined by DEER. PMID:22750251

  1. Identification of gamma-irradiated fruit juices by EPR spectroscopy

    International Nuclear Information System (INIS)

    Aleksieva, K.I.; Dimov, K.G.; Yordanov, N.D.

    2014-01-01

    The results of electron paramagnetic resonance (EPR) study on commercially available juices from various fruits and different fruit contents: 25%, 40%, 50%, and 100%, homemade juices, nectars and concentrated fruit syrups, before and after gamma-irradiation are reported. In order to remove water from non- and irradiated samples all juices and nectars were filtered; the solid residue was washed with alcohol and dried at room temperature. Only concentrated fruit syrups were dried for 60 min at 40 °C in a standard laboratory oven. All samples under study show a singlet EPR line with g=2.0025 before irradiation with exception of concentrated fruit syrups, which are EPR silent. Irradiation of juice samples gives rise to complex EPR spectra which gradually transferred to “cellulose-like” EPR spectrum from 25% to 100% fruit content. Concentrated fruit syrups show typical “sugar-like“ spectra due to added saccharides. All EPR spectra are characteristic and can prove radiation treatment. The fading kinetics of radiation-induced EPR signals were studied for a period of 60 days after irradiation. - Highlights: • The EPR analysis of juices, nectars and syrups proves that the sample has been irradiated. • Two sample preparation procedures were used. • The stability of the radiation induced EPR signals was studied over 2 months. • Application of European standards can be extended for irradiated juices and syrups

  2. Investigation of radical locations in various sesame seeds by CW EPR and 9-GHz EPR imaging.

    Science.gov (United States)

    Nakagawa, K; Hara, H

    2015-01-01

    We investigated the location of radical in various sesame seeds using continuous-wave (CW) electron paramagnetic resonance (EPR) and 9-GHz EPR imaging. CW EPR detected persistent radicals (single line) for various sesame seeds. The EPR linewidth of black sesame seeds was narrower than that of the irradiated white sesame seeds. A very small signal was detected for the white sesame seeds. Two-dimensional (2D) imaging using a 9-GHz EPR imager showed that radical locations vary for various sesame seeds. The paramagnetic species in black sesame seeds were located on the seed coat (skin) and in the hilum region. The signal with the highest intensity was obtained from the hilum part. A very low-intensity image was observed for the white sesame seeds. In addition, the 2D imaging of the irradiated white sesame seeds showed that free radicals were located throughout the entire seed. For the first time, CW EPR and 9-GHz EPR imaging showed the exact location of radical species in various sesame seeds.

  3. Rapid-scan EPR imaging.

    Science.gov (United States)

    Eaton, Sandra S; Shi, Yilin; Woodcock, Lukas; Buchanan, Laura A; McPeak, Joseph; Quine, Richard W; Rinard, George A; Epel, Boris; Halpern, Howard J; Eaton, Gareth R

    2017-07-01

    In rapid-scan EPR the magnetic field or frequency is repeatedly scanned through the spectrum at rates that are much faster than in conventional continuous wave EPR. The signal is directly-detected with a mixer at the source frequency. Rapid-scan EPR is particularly advantageous when the scan rate through resonance is fast relative to electron spin relaxation rates. In such scans, there may be oscillations on the trailing edge of the spectrum. These oscillations can be removed by mathematical deconvolution to recover the slow-scan absorption spectrum. In cases of inhomogeneous broadening, the oscillations may interfere destructively to the extent that they are not visible. The deconvolution can be used even when it is not required, so spectra can be obtained in which some portions of the spectrum are in the rapid-scan regime and some are not. The technology developed for rapid-scan EPR can be applied generally so long as spectra are obtained in the linear response region. The detection of the full spectrum in each scan, the ability to use higher microwave power without saturation, and the noise filtering inherent in coherent averaging results in substantial improvement in signal-to-noise relative to conventional continuous wave spectroscopy, which is particularly advantageous for low-frequency EPR imaging. This overview describes the principles of rapid-scan EPR and the hardware used to generate the spectra. Examples are provided of its application to imaging of nitroxide radicals, diradicals, and spin-trapped radicals at a Larmor frequency of ca. 250MHz. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Active cancellation - A means to zero dead-time pulse EPR.

    Science.gov (United States)

    Franck, John M; Barnes, Ryan P; Keller, Timothy J; Kaufmann, Thomas; Han, Songi

    2015-12-01

    The necessary resonator employed in pulse electron paramagnetic resonance (EPR) rings after the excitation pulse and creates a finite detector dead-time that ultimately prevents the detection of signal from fast relaxing spin systems, hindering the application of pulse EPR to room temperature measurements of interesting chemical or biological systems. We employ a recently available high bandwidth arbitrary waveform generator (AWG) to produce a cancellation pulse that precisely destructively interferes with the resonant cavity ring-down. We find that we can faithfully detect EPR signal at all times immediately after, as well as during, the excitation pulse. This is a proof of concept study showcasing the capability of AWG pulses to precisely cancel out the resonator ring-down, and allow for the detection of EPR signal during the pulse itself, as well as the dead-time of the resonator. However, the applicability of this approach to conventional EPR experiments is not immediate, as it hinges on either (1) the availability of low-noise microwave sources and amplifiers to produce the necessary power for pulse EPR experiment or (2) the availability of very high conversion factor micro coil resonators that allow for pulse EPR experiments at modest microwave power. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Fast storage of nuclear quadrupole resonance signals

    International Nuclear Information System (INIS)

    Anferov, V.P.; Molchanov, S.V.; Levchun, O.D.

    1988-01-01

    Fast multichannel storage of nuclear quadrupole resonance (NQR) signals is described. Analog-to-digital converter, arithmetic-logical unit, internal memory device (IMD) selection-storage unit and control unit are the storage main units. The storage is based on 43 microcircuits and provides for record and storage of NQR-signals at the contributed operation with Mera-60 microcomputer. Time of analog-to-digital conversion and signal recording into IMD is ∼ 1 mks. Capacity of analog-to-digital converter constitutes 8-10 bits. IMD capacity is 4 K bitsx16. Number of storage channels is 4

  6. Phenolic composition and related antioxidant properties in differently colored lettuces: a study by electron paramagnetic resonance (EPR) kinetics.

    Science.gov (United States)

    Pérez-López, Usue; Pinzino, Calogero; Quartacci, Mike Frank; Ranieri, Annamaria; Sgherri, Cristina

    2014-12-10

    Differently colored lettuce (Lactuca sativa L.) cultivars (green, green/red, and red) were studied to correlate their phenolic composition with their antioxidant kinetic behavior. Electron paramagnetic resonance (EPR) was employed to monitor decay kinetics of 1,1-diphenyl-2-picrylhydrazyl (DPPH(•)), which allowed the identification of three differently paced antioxidants. The results showed that as long as lettuce had higher red pigmentation, the hydrophilic antioxidant capacity increased together with the contents in free and conjugated phenolic acids, free and conjugated flavonoids, and anthocyanins. EPR allowed the identification of slow-rate antioxidants in green and green/red cultivars, intermediate-rate antioxidants in green, green/red, and red cultivars, and fast-rate antioxidants in green/red and red cultivars. At present, the different kinetic behaviors cannot be attributed to a specific antioxidant, but it is suggested that the flavonoid quercetin accounted for the majority of the intermediate-rate antioxidants, whereas the anthocyanins accounted for the majority of the fast-rate antioxidants.

  7. Assessment of an alanine EPR dosimetry technique with enhanced precision and accuracy

    CERN Document Server

    Hayes, R B; Wieser, A; Romanyukha, A A; Hardy, B L; Barrus, J K

    2000-01-01

    Dose reconstruction in the course of a series of blind tests demonstrated that an accuracy of 10 mGy for low doses and 1% for high doses can be achieved using EPR spectroscopy. This was accomplished using a combination of methodologies including polynomial filtration of the EPR spectrum, dosimeter rotation during scanning, use of an EPR standard fixed into the resonator and subtraction of all nonradiogenic signals. Doses were reconstructed over the range of 0.01-1000 Gy using this compound spectral EPR analysis. This EPR technique, being equally applicable to fractionated doses (such as those delivered during multiple radiotherapy treatments), was verified to exhibit dose reciprocity. Irradiated alanine dosimeters which were stored exhibited compound spectral EPR signal fading of ca 3% over 9 months. All error estimates given in this paper are given at the 1 standard deviation level and unless otherwise specified do not account for uncertainties in source calibration.

  8. Assessment of an alanine EPR dosimetry technique with enhanced precision and accuracy

    International Nuclear Information System (INIS)

    Hayes, Robert B.; Haskell, E.H.; Wieser, Albrecht; Romanyukha, Alexander A.; Hardy, Byron L.; Barrus, Jeffrey K.

    2000-01-01

    Dose reconstruction in the course of a series of blind tests demonstrated that an accuracy of 10 mGy for low doses and 1% for high doses can be achieved using EPR spectroscopy. This was accomplished using a combination of methodologies including polynomial filtration of the EPR spectrum, dosimeter rotation during scanning, use of an EPR standard fixed into the resonator and subtraction of all nonradiogenic signals. Doses were reconstructed over the range of 0.01-1000 Gy using this compound spectral EPR analysis. This EPR technique, being equally applicable to fractionated doses (such as those delivered during multiple radiotherapy treatments), was verified to exhibit dose reciprocity. Irradiated alanine dosimeters which were stored exhibited compound spectral EPR signal fading of ca 3% over 9 months. All error estimates given in this paper are given at the 1 standard deviation level and unless otherwise specified do not account for uncertainties in source calibration

  9. POSSIBLE NATURE OF THE RADIATION-INDUCED SIGNAL IN NAILS: HIGH-FIELD EPR, CONFIRMING CHEMICAL SYNTHESIS, AND QUANTUM CHEMICAL CALCULATIONS.

    Science.gov (United States)

    Tipikin, Dmitriy S; Swarts, Steven G; Sidabras, Jason W; Trompier, François; Swartz, Harold M

    2016-12-01

    Exposure of finger- and toe-nails to ionizing radiation generates an Electron Paramagnetic Resonance (EPR) signal whose intensity is dose dependent and stable at room temperature for several days. The dependency of the radiation-induced signal (RIS) on the received dose may be used as the basis for retrospective dosimetry of an individual's fortuitous exposure to ionizing radiation. Two radiation-induced signals, a quasi-stable (RIS2) and stable signal (RIS5), have been identified in nails irradiated up to a dose of 50 Gy. Using X-band EPR, both RIS signals exhibit a singlet line shape with a line width around 1.0 mT and an apparent g-value of 2.0044. In this work, we seek information on the exact chemical nature of the radiation-induced free radicals underlying the signal. This knowledge may provide insights into the reason for the discrepancy in the stabilities of the two RIS signals and help develop strategies for stabilizing the radicals in nails or devising methods for restoring the radicals after decay. In this work an analysis of high field (94 GHz and 240 GHz) EPR spectra of the RIS using quantum chemical calculations, the oxidation-reduction properties and the pH dependence of the signal intensities are used to show that spectroscopic and chemical properties of the RIS are consistent with a semiquinone-type radical underlying the RIS. It has been suggested that semiquinone radicals formed on trace amounts of melanin in nails are the basis for the RIS signals. However, based on the quantum chemical calculations and chemical properties of the RIS, it is likely that the radicals underlying this signal are generated from the radiolysis of L-3,4-dihydroxyphenylalanine (DOPA) amino acids in the keratin proteins. These DOPA amino acids are likely formed from the exogenous oxidation of tyrosine in keratin by the oxygen from the air prior to irradiation. We show that these DOPA amino acids can work as radical traps, capturing the highly reactive and unstable sulfur

  10. POSSIBLE NATURE OF THE RADIATION-INDUCED SIGNAL IN NAILS: HIGH-FIELD EPR, CONFIRMING CHEMICAL SYNTHESIS, AND QUANTUM CHEMICAL CALCULATIONS

    Science.gov (United States)

    Tipikin, Dmitriy S.; Swarts, Steven G.; Sidabras, Jason W.; Trompier, François; Swartz, Harold M.

    2016-01-01

    Exposure of finger- and toe-nails to ionizing radiation generates an Electron Paramagnetic Resonance (EPR) signal whose intensity is dose dependent and stable at room temperature for several days. The dependency of the radiation-induced signal (RIS) on the received dose may be used as the basis for retrospective dosimetry of an individual's fortuitous exposure to ionizing radiation. Two radiation-induced signals, a quasi-stable (RIS2) and stable signal (RIS5), have been identified in nails irradiated up to a dose of 50 Gy. Using X-band EPR, both RIS signals exhibit a singlet line shape with a line width around 1.0 mT and an apparent g-value of 2.0044. In this work, we seek information on the exact chemical nature of the radiation-induced free radicals underlying the signal. This knowledge may provide insights into the reason for the discrepancy in the stabilities of the two RIS signals and help develop strategies for stabilizing the radicals in nails or devising methods for restoring the radicals after decay. In this work an analysis of high field (94 GHz and 240 GHz) EPR spectra of the RIS using quantum chemical calculations, the oxidation–reduction properties and the pH dependence of the signal intensities are used to show that spectroscopic and chemical properties of the RIS are consistent with a semiquinone-type radical underlying the RIS. It has been suggested that semiquinone radicals formed on trace amounts of melanin in nails are the basis for the RIS signals. However, based on the quantum chemical calculations and chemical properties of the RIS, it is likely that the radicals underlying this signal are generated from the radiolysis of L-3,4-dihydroxyphenylalanine (DOPA) amino acids in the keratin proteins. These DOPA amino acids are likely formed from the exogenous oxidation of tyrosine in keratin by the oxygen from the air prior to irradiation. We show that these DOPA amino acids can work as radical traps, capturing the highly reactive and unstable

  11. Radicals as EPR probes of magnetization of gadolinium stearate Langmuir-Blodgett film

    DEFF Research Database (Denmark)

    Koksharov, Y.A.; Bykov, I.V.; Malakho, A.P.

    2002-01-01

    In the present work we have applied the method of the EPR spin probes which allows performing simultaneously EPR and magnetization measurements to the investigation of magnetism of the Cid stearate Langmuir-Blodgett (LB) films. For this purpose we have prepared and studied by the EPR technique...... the Gd and Y stearate LB films. Placing the small BDPA crystal on the film surface we have found that for the Gd LB sample the effective g-value of the radical's resonance depends on the film orientation in respect to the external magnetic field direction. The relative shift of the EPR signal...

  12. Electronic paramagnetic resonance (EPR) of spices treated by gamma irradiation; Ressonancia paramagnetica eletronica (RPE) aplicada a analise de especiarias irradiadas (com radiacao gama)

    Energy Technology Data Exchange (ETDEWEB)

    Leal, Alexandre Soares; Rodrigues, Rogerio Rivail, E-mail: asleal@cdtn.b [Centro de Desenvolvimento de Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Serv. de Reator e Irradiacoes; Krambrock, Klaus; Guedes, Kassilio [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil)

    2004-07-15

    The treatment of food by ionizing radiation is a method that has been increased in many countries in substitution for the use of chemical products. The knowledge of safe and reliable techniques of detection of irradiated food is a factor that can contribute to the largest acceptance for the consuming market. This work presents the electron paramagnetic resonance (EPR) as method of detection of the irradiated spices rosemary and cilantro. The obtained results indicate that EPR can be used satisfactorily for that group of victuals in the identification of irradiated species and in the determination of the received dose. (author)

  13. Electron paramagnetic resonance radiation dosimetry: possible inorganic alternatives to the EPR/alanine dosimeter

    International Nuclear Information System (INIS)

    Keizer, P.N.; Morton, J.R.; Preston, K.F.

    1991-01-01

    The intensity of the EPR spectrum of γ-irradiated L-α-alanine has been accepted by the International Atomic Energy Agency as a secondary standard for high-dose (10-100 000 Gy) dosimetry. The alanine dosimeter is not without its disadvantages, however, and in this article alternative EPR dosimeters are explored. These include SO 3 - in irradiated K 2 CH 2 (SO 3 ) 2 and CO 2 - in irradiated sodium formate (NaHCO 2 ), both of which have some advantages over CH 3 CHCO 2 - in L-α-alanine. Using as a readout parameter the peak-to-peak excursion of the strongest line, these systems have a four-fold sensitivity advantage over alanine. The radicals SO 3 - and CO 2 - are, moreover, found in a wide variety of matrices, and it may be possible to find one in which they are even stronger. The need to discover a dosimeter material sensitive enough to function in the 'clinical' dose range (below 10 Gy) is emphasized. (author)

  14. IMPLANTABLE RESONATORS – A TECHNIQUE FOR REPEATED MEASUREMENT OF OXYGEN AT MULTIPLE DEEP SITES WITH IN VIVO EPR

    Science.gov (United States)

    Li, Hongbin; Hou, Huagang; Sucheta, Artur; Williams, Benjamin B.; Lariviere, Jean P.; Khan, Nadeem; Lesniewski, Piotr N.; Swartz, Harold M.

    2013-01-01

    EPR oximetry using implantable resonators allow measurements at much deeper sites than are possible with surface resonators (> 80 mm vs. 10 mm) and have greater sensitivity at any depth. We report here the development of an improvement of the technique that now enables us to obtain the information from multiple sites and at a variety of depths. The measurements from the various sites are resolved using a simple magnetic field gradient. In the rat brain multi-probe implanted resonators measured pO2 at several sites simultaneously for over 6 months to record under normoxic, hypoxic and hyperoxic conditions. This technique also facilitates measurements in moving parts of the animal such as the heart, because the orientation of the paramagnetic material relative to the sensitive small loop is not altered by the motion. The measured response is very fast, enabling measurements in real time of physiological and pathological changes such as experimental cardiac ischemia in the mouse heart. The technique also is quite useful for following changes in tumor pO2, including applications with simultaneous measurements in tumors and adjacent normal tissues. PMID:20204802

  15. Emergency EPR and OSL dosimetry with table vitamins and minerals.

    Science.gov (United States)

    Sholom, S; McKeever, S W S

    2016-12-01

    Several table vitamins, minerals and L-lysine amino acid have been preliminarily tested as potential emergency dosemeters using electron paramagnetic resonance (EPR) and optically stimulated luminescence (OSL) techniques. Radiation-induced EPR signals were detected in samples of vitamin B2 and L-lysine while samples of multivitamins of different brands as well as mineral Mg demonstrated prominent OSL signals after exposure to ionizing radiation doses. Basic dosimetric properties of the radiation-sensitive substances were studied, namely dose response, fading of the EPR or OSL signals and values of minimum measurable doses (MMDs). For EPR-sensitive samples, the EPR signal is converted into units of dose using a linear dose response and correcting for fading using the measured fading dependence. For OSL-sensitive materials, a multi-aliquot, enhanced-temperature protocol was developed to avoid the problem of sample sensitization and to minimize the influence of signal fading. The sample dose in this case is also evaluated using the dose response and fading curves. MMDs of the EPR-sensitive samples were below 2 Gy while those of the OSL-sensitive materials were below 500 mGy as long as the samples are analyzed within 1 week after exposure. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. A passive dual-circulator based transmit/receive switch for use with reflection resonators in pulse EPR

    Science.gov (United States)

    Subramanian, V. S.; Epel, Boris; Mailer, Colin; Halpern, Howard J.

    2009-01-01

    In order to protect the low noise amplifier (LNA) in the receive arm of a pulsed 250 MHz EPR bridge, it is necessary to install as much isolation as possible between the power exciting the spin system and the LNA when high power is present in the receive arm of the bridge, while allowing the voltage induced by the magnetization in the spin sample to be passed undistorted and undiminished to the LNA once power is reduced below the level that can cause a LNA damage. We discuss a combination of techniques to accomplish this involving the power-routing circulator in the bridge, a second circulator acting as an isolator with passive shunt PIN diodes immediately following the second circulator. The low resistance of the forward biased PIN diode passively generates an impedance mismatch at the second circulator output port during the high power excitation pulse and resonator ring down. The mismatch reflects the high power to the remaining port of the second circulator, dumping it into a system impedance matched load. Only when the power diminishes below the diode conduction threshold will the resistance of the PIN diode rise to a value much higher than the system impedance. This brings the device into conduction mode. We find that the present design passively limits the output power to 14 dBm independent of the input power. For high input power levels the isolation may exceed 60 dB. This level of isolation is sufficient to fully protect the LNA of pulse EPR bridge. PMID:20052312

  17. EPR Imaging at a Few Megahertz Using SQUID Detectors

    Science.gov (United States)

    Hahn, Inseob; Day, Peter; Penanen, Konstantin; Eom, Byeong Ho

    2010-01-01

    An apparatus being developed for electron paramagnetic resonance (EPR) imaging operates in the resonance-frequency range of about 1 to 2 MHz well below the microwave frequencies used in conventional EPR. Until now, in order to obtain sufficient signal-to-noise radios (SNRs) in conventional EPR, it has been necessary to place both detectors and objects to be imaged inside resonant microwave cavities. EPR imaging has much in common with magnetic resonance imaging (MRI), which is described briefly in the immediately preceding article. In EPR imaging as in MRI, one applies a magnetic pulse to make magnetic moments (in this case, of electrons) precess in an applied magnetic field having a known gradient. The magnetic moments precess at a resonance frequency proportional to the strength of the local magnetic field. One detects the decaying resonance-frequency magnetic- field component associated with the precession. Position is encoded by use of the known relationship between the resonance frequency and the position dependence of the magnetic field. EPR imaging has recently been recognized as an important tool for non-invasive, in vivo imaging of free radicals and reduction/oxidization metabolism. However, for in vivo EPR imaging of humans and large animals, the conventional approach is not suitable because (1) it is difficult to design and construct resonant cavities large enough and having the required shapes; (2) motion, including respiration and heartbeat, can alter the resonance frequency; and (3) most microwave energy is absorbed in the first few centimeters of tissue depth, thereby potentially endangering the subject and making it impossible to obtain adequate signal strength for imaging at greater depth. To obtain greater penetration depth, prevent injury to the subject, and avoid the difficulties associated with resonant cavities, it is necessary to use lower resonance frequencies. An additional advantage of using lower resonance frequencies is that one can use

  18. An EPR methodology for measuring the London penetration depth for the ceramic superconductors

    Science.gov (United States)

    Rakvin, B.; Mahl, T. A.; Dalal, N. S.

    1990-01-01

    The use is discussed of electron paramagnetic resonance (EPR) as a quick and easily accessible method for measuring the London penetration depth, lambda for the high T(sub c) superconductors. The method utilizes the broadening of the EPR signal, due to the emergence of the magnetic flux lattice, of a free radical adsorbed on the surface of the sample. The second moment, of the EPR signal below T(sub c) is fitted to the Brandt equation for a simple triangular lattice. The precision of this method compares quite favorably with those of the more standard methods such as micro sup(+)SR, Neutron scattering, and magnetic susceptibility.

  19. Software for evaluation of EPR-dosimetry performance

    International Nuclear Information System (INIS)

    Shishkina, E.A.; Timofeev, Yu.S.; Ivanov, D.V.

    2014-01-01

    Electron paramagnetic resonance (EPR) with tooth enamel is a method extensively used for retrospective external dosimetry. Different research groups apply different equipment, sample preparation procedures and spectrum processing algorithms for EPR dosimetry. A uniform algorithm for description and comparison of performances was designed and implemented in a new computer code. The aim of the paper is to introduce the new software 'EPR-dosimetry performance'. The computer code is a user-friendly tool for providing a full description of method-specific capabilities of EPR tooth dosimetry, from metrological characteristics to practical limitations in applications. The software designed for scientists and engineers has several applications, including support of method calibration by evaluation of calibration parameters, evaluation of critical value and detection limit for registration of radiation-induced signal amplitude, estimation of critical value and detection limit for dose evaluation, estimation of minimal detectable value for anthropogenic dose assessment and description of method uncertainty. (authors)

  20. Factors affecting the line-shape of the EPR signal of high-spin Fe(III) in soybean lipoxygenase-1

    NARCIS (Netherlands)

    Slappendel, S.; Aasa, R.; Malmström, B.G.; Verhagen, J.; Veldink, G.A.; Vliegenthart, J.F.G.

    1982-01-01

    The yellow form of soybean lipoxygenase-1 (linoleate:oxygen oxidoreductase, EC 1.13.11.12), obtained upon addition of one molar equivalent of acid (13--HPOD) to the native enzyme, shows a complex EPR signal around g 6 which results from contributions of different high-spin Fe(III) species with

  1. EPR and X-ray diffraction investigation of some Greek marbles and limestones

    International Nuclear Information System (INIS)

    Duliu, Octavian; Grecu, Maria Nicoleta; Cristea, Corina

    2009-01-01

    Twelve different marble and limestone samples collected from well-known Greek quarries have been investigated by X-ray diffraction and electron paramagnetic resonance (EPR). X-ray diffraction spectra permitted to determine both major (calcite and dolomite) and minor (quartz or magnesite) mineralogical components. EPR has been used to investigate the same samples unirradiated and after 10 kGy gamma-ray irradiation. The unirradiated samples display typical EPR spectra of Mn 2+ in calcite and dolomite as well as a superposition of these while some samples displayed EPR free radicals signals of centers (low field signal) and centers (high field signal). From X-ray diffraction and EPR spectra it was possible to extract numerical values of several numerical parameters such as dolomite to calcite ratio, EPR intensity parameter, and low field to high field EPR signals intensity ratio. These values as well as the correlation coefficients between the digital functions that described the low field Mn 2+ ions EPR line have been used as entry data for cluster analysis to quantify the resemblance and differences between analyzed samples. (authors)

  2. Use of rapid-scan EPR to improve detection sensitivity for spin-trapped radicals.

    Science.gov (United States)

    Mitchell, Deborah G; Rosen, Gerald M; Tseitlin, Mark; Symmes, Breanna; Eaton, Sandra S; Eaton, Gareth R

    2013-07-16

    The short lifetime of superoxide and the low rates of formation expected in vivo make detection by standard continuous wave (CW) electron paramagnetic resonance (EPR) challenging. The new rapid-scan EPR method offers improved sensitivity for these types of samples. In rapid-scan EPR, the magnetic field is scanned through resonance in a time that is short relative to electron spin relaxation times, and data are processed to obtain the absorption spectrum. To validate the application of rapid-scan EPR to spin trapping, superoxide was generated by the reaction of xanthine oxidase and hypoxanthine with rates of 0.1-6.0 μM/min and trapped with 5-tert-butoxycarbonyl-5-methyl-1-pyrroline-N-oxide (BMPO). Spin trapping with BMPO to form the BMPO-OOH adduct converts the very short-lived superoxide radical into a more stable spin adduct. There is good agreement between the hyperfine splitting parameters obtained for BMPO-OOH by CW and rapid-scan EPR. For the same signal acquisition time, the signal/noise ratio is >40 times higher for rapid-scan than for CW EPR. Rapid-scan EPR can detect superoxide produced by Enterococcus faecalis at rates that are too low for detection by CW EPR. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  3. Simultaneous electrical and mechanical resonance drive for large signal amplification of micro resonators

    KAUST Repository

    Hasan, M. H.

    2018-01-12

    Achieving large signal-noise ratio using low levels of excitation signal is key requirement for practical applications of micro and nano electromechanical resonators. In this work, we introduce the double electromechanical resonance drive concept to achieve an order-of-magnitude dynamic signal amplification in micro resonators. The concept relies on simultaneously activating the micro-resonator mechanical and electrical resonance frequencies. We report an input voltage amplification up to 15 times for a micro-resonator when its electrical resonance is tuned to match the mechanical resonance that leads to dynamic signal amplification in air (Quality factor enhancement). Furthermore, using a multi-frequency excitation technique, input voltage and vibrational amplification of up to 30 times were shown for the same micro-resonator while relaxing the need to match its mechanical and electrical resonances.

  4. Simultaneous electrical and mechanical resonance drive for large signal amplification of micro resonators

    KAUST Repository

    Hasan, M. H.; Alsaleem, F. M.; Jaber, Nizar; Hafiz, Md Abdullah Al; Younis, Mohammad I.

    2018-01-01

    Achieving large signal-noise ratio using low levels of excitation signal is key requirement for practical applications of micro and nano electromechanical resonators. In this work, we introduce the double electromechanical resonance drive concept to achieve an order-of-magnitude dynamic signal amplification in micro resonators. The concept relies on simultaneously activating the micro-resonator mechanical and electrical resonance frequencies. We report an input voltage amplification up to 15 times for a micro-resonator when its electrical resonance is tuned to match the mechanical resonance that leads to dynamic signal amplification in air (Quality factor enhancement). Furthermore, using a multi-frequency excitation technique, input voltage and vibrational amplification of up to 30 times were shown for the same micro-resonator while relaxing the need to match its mechanical and electrical resonances.

  5. Distinctive EPR signals provide an understanding of the affinity of bis-(3-hydroxy-4-pyridinonato) copper(II) complexes for hydrophobic environments.

    Science.gov (United States)

    Rangel, Maria; Leite, Andreia; Silva, André M N; Moniz, Tânia; Nunes, Ana; Amorim, M João; Queirós, Carla; Cunha-Silva, Luís; Gameiro, Paula; Burgess, John

    2014-07-07

    In this work we report the synthesis and characterization of a set of 3-hydroxy-4-pyridinone copper(ii) complexes with variable lipophilicity. EPR spectroscopy was used to characterize the structure of copper(ii) complexes in solution, and as a tool to gain insight into solvent interactions. EPR spectra of solutions of the [CuL2] complexes recorded in different solvents reveal the presence of two copper species whose ratio depends on the nature of the solvent. Investigation of EPR spectra in the pure solvents methanol, dimethylsulfoxide, dichloromethane and their 50% (v/v) mixtures with toluene allowed the characterization of two types of copper signals (gzz = 2.30 and gzz = 2.26) whose spin-Hamiltonian parameters are consistent with solvated and non-solvated square-planar copper(ii) complexes. Regarding the potential biological application of ligands and complexes and to get insight into the partition properties in water-membrane interfaces, EPR spectra were also obtained in water-saturated octanol, an aqueous solution buffered at pH = 7.4 and liposome suspensions, for three compounds representative of different hydro-lipophilic balances. Analysis of the EPR spectra obtained in liposomes allowed establishment of the location of the complexes in the water and lipid phases. In view of the results of this work we put forward the use of EPR spectroscopy to assess the affinity of copper(ii) complexes for a hydrophobic environment and also to obtain indirect information about the lipophilicity of the ligands and similar EPR silent complexes.

  6. Natural alpha recoil particle radiation and ionizing radiation sensitivities in quartz detected with EPR: implications for geochronometry

    International Nuclear Information System (INIS)

    Rink, W.J.; Odom, A.L.

    1991-01-01

    The electron paramagnetic resonance EPR signals in granitic quartz samples of known age are studied. Time-integrated alpha recoil activity and EPR signal intensity are more significantly correlated than sample age and EPR signal intensity. Neutron activation analysis for internal uranium and thorium in quartz are reported. Natural germanium EPR signals are observed in pegmatitic quartz samples and one granitic quartz. Pegmatitic quartz exhibits germanium EPR center growth competing strongly with E' center growth, apparently leading to depleted natural concentrations of E' centers. Calculations of lattice vacancy accumulation associated with alpha recoil damage are presented and compared with concentrations of paramagnetic oxygen vacancies in the quartz. Based on the results reported, the potential and problems associated with dating quartz are discussed, relating both to accumulated lattice damage and the additive dose methods. (author)

  7. Identification of gamma-irradiated fruit juices by EPR spectroscopy

    Science.gov (United States)

    Aleksieva, K. I.; Dimov, K. G.; Yordanov, N. D.

    2014-10-01

    The results of electron paramagnetic resonance (EPR) study on commercially available juices from various fruits and different fruit contents: 25%, 40%, 50%, and 100%, homemade juices, nectars and concentrated fruit syrups, before and after gamma-irradiation are reported. In order to remove water from non- and irradiated samples all juices and nectars were filtered; the solid residue was washed with alcohol and dried at room temperature. Only concentrated fruit syrups were dried for 60 min at 40 °C in a standard laboratory oven. All samples under study show a singlet EPR line with g=2.0025 before irradiation with exception of concentrated fruit syrups, which are EPR silent. Irradiation of juice samples gives rise to complex EPR spectra which gradually transferred to "cellulose-like" EPR spectrum from 25% to 100% fruit content. Concentrated fruit syrups show typical "sugar-like" spectra due to added saccharides. All EPR spectra are characteristic and can prove radiation treatment. The fading kinetics of radiation-induced EPR signals were studied for a period of 60 days after irradiation.

  8. Quantitative EPR A Practitioners Guide

    CERN Document Server

    Eaton, Gareth R; Barr, David P; Weber, Ralph T

    2010-01-01

    This is the first comprehensive yet practical guide for people who perform quantitative EPR measurements. No existing book provides this level of practical guidance to ensure the successful use of EPR. There is a growing need in both industrial and academic research to provide meaningful and accurate quantitative EPR results. This text discusses the various sample, instrument and software related aspects required for EPR quantitation. Specific topics include: choosing a reference standard, resonator considerations (Q, B1, Bm), power saturation characteristics, sample positioning, and finally, putting all the factors together to obtain an accurate spin concentration of a sample.

  9. Non-invasive in vivo evaluation of in situ forming PLGA implants by benchtop magnetic resonance imaging (BT-MRI) and EPR spectroscopy.

    Science.gov (United States)

    Kempe, Sabine; Metz, Hendrik; Pereira, Priscila G C; Mäder, Karsten

    2010-01-01

    In the present study, we used benchtop magnetic resonance imaging (BT-MRI) for non-invasive and continuous in vivo studies of in situ forming poly(lactide-co-glycolide) (PLGA) implants without the use of contrast agents. Polyethylene glycol (PEG) 400 was used as an alternative solvent to the clinically used NMP. In addition to BT-MRI, we applied electron paramagnetic resonance (EPR) spectroscopy to characterize implant formation and drug delivery processes in vitro and in vivo. We were able to follow key processes of implant formation by EPR and MRI. Because EPR spectra are sensitive to polarity and mobility, we were able to follow the kinetics of the solvent/non-solvent exchange and the PLGA precipitation. Due to the high water affinity of PEG 400, we observed a transient accumulation of water in the implant neighbourhood. Furthermore, we detected the encapsulation by BT-MRI of the implant as a response of the biological system to the polymer, followed by degradation over a period of two months. We could show that MRI in general has the potential to get new insights in the in vivo fate of in situ forming implants. The study also clearly shows that BT-MRI is a new viable and much less expensive alternative for superconducting MRI machines to monitor drug delivery processes in vivo in small mammals. Copyright 2009 Elsevier B.V. All rights reserved.

  10. Use of spin traps to detect superoxide production in living cells by electron paramagnetic resonance (EPR) spectroscopy.

    Science.gov (United States)

    Abbas, Kahina; Babić, Nikola; Peyrot, Fabienne

    2016-10-15

    Detection of superoxide produced by living cells has been an on-going challenge in biology for over forty years. Various methods have been proposed to address this issue, among which spin trapping with cyclic nitrones coupled to EPR spectroscopy, the gold standard for detection of radicals. This technique is based on the nucleophilic addition of superoxide to a diamagnetic cyclic nitrone, referred to as the spin trap, and the formation of a spin adduct, i.e. a persistent radical with a characteristic EPR spectrum. The first application of spin trapping to living cells dates back 1979. Since then, considerable improvements of the method have been achieved both in the structures of the spin traps, the EPR methodology, and the design of the experiments including appropriate controls. Here, we will concentrate on technical aspects of the spin trapping/EPR technique, delineating recent breakthroughs, inherent limitations, and potential artifacts. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Implementing a new EPR lineshape parameter for organic radicals in carbonaceous matter.

    Science.gov (United States)

    Bourbin, Mathilde; Du, Yann Le; Binet, Laurent; Gourier, Didier

    2013-07-17

    Electron Paramagnetic Resonance (EPR) is a non-destructive, non-invasive technique useful for the characterization of organic moieties in primitive carbonaceous matter related to the origin of life. The classical EPR parameters are the peak-to-peak amplitude, the linewidth and the g factor; however, such parameters turn out not to suffice to fully determine a single EPR line. In this paper, we give the definition and practical implementation of a new EPR parameter based on the signal shape that we call the R10 factor. This parameter was originally defined in the case of a single symmetric EPR line and used as a new datation method for organic matter in the field of exobiology. Combined to classical EPR parameters, the proposed shape parameter provides a full description of an EPR spectrum and opens the way to novel applications like datation. Such a parameter is a powerful tool for future EPR studies, not only of carbonaceous matter, but also of any substance which spectrum exhibits a single symmetric line. The paper is a literate program-written using Noweb within the Org-mode as provided by the Emacs editor- and it also describes the full data analysis pipeline that computes the R10 on a real EPR spectrum.

  12. Cerebral Oxygenation of the Cortex and Striatum following Normobaric Hyperoxia and Mild Hypoxia in Rats by EPR Oximetry using Multi-Probe Implantable Resonators

    Science.gov (United States)

    Hou, Huagang; Li, Hongbin; Dong, Ruhong; Mupparaju, Sriram; Khan, Nadeem; Swartz, Harold

    2013-01-01

    Multi-site electron paramagnetic resonance (EPR) oximetry, using multi-probe implantable resonators, was used to measure the partial pressure of oxygen (pO2) in the brains of rats following normobaric hyperoxia and mild hypoxia. The cerebral tissue pO2 was measured simultaneously in the cerebral cortex and striatum in the same rats before, during, and after normobaric hyperoxia and mild hypoxia challenges. The baseline mean tissue pO2 values (±SE) were not significantly different between the cortex and striatum. During 30 min of 100% O2 inhalation, a statistically significant increase in tissue pO2 of all four sites was observed, however, the tissue pO2 of the striatum area was significantly higher than in the forelimb area of the cortex. Brain pO2 significantly decreased from the baseline value during 15 min of 15% O2 challenge. No differences in the recovery of the cerebral cortex and striatum pO2 were observed when the rats were allowed to breathe 30% O2. It appears that EPR oximetry using implantable resonators can provide information on pO2 under the experimental conditions needed for such a study. The levels of pO2 that occurred in these experiments are readily resolvable by multi-site EPR oximetry with multi-probe resonators. In addition, the ability to simultaneously measure the pO2 in several areas of the brain provides important information that could potentially help differentiate the pO2 changes that can occur due to global or local mechanisms. PMID:21445770

  13. Evaluation of the original dose in irradiated dried fruit by EPR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    D' Oca, Maria Cristina, E-mail: mcristina.doca@unipa.it [Dipartimento Farmacochimico, Tossicologico e Biologico, Universita di Palermo, via Archirafi 32, 90123 Palermo (Italy); Bartolotta, Antonio [Dipartimento Farmacochimico, Tossicologico e Biologico, Universita di Palermo, via Archirafi 32, 90123 Palermo (Italy)

    2011-09-15

    The electron paramagnetic resonance spectroscopy (EPR) is one of the physical methods, recommended by the European Committee for Standardization, for the identification of irradiated food containing cellulose, such as dried fruit. In this work the applicability of EPR as identification method of irradiated pistachios, hazelnuts, peanuts, chestnuts, pumpkin seeds is evaluated; the time stability of the radiation induced signal is studied and the single aliquot additive dose method is used to evaluate the dose in the product.

  14. Evaluation of the original dose in irradiated dried fruit by EPR spectroscopy

    International Nuclear Information System (INIS)

    D'Oca, Maria Cristina; Bartolotta, Antonio

    2011-01-01

    The electron paramagnetic resonance spectroscopy (EPR) is one of the physical methods, recommended by the European Committee for Standardization, for the identification of irradiated food containing cellulose, such as dried fruit. In this work the applicability of EPR as identification method of irradiated pistachios, hazelnuts, peanuts, chestnuts, pumpkin seeds is evaluated; the time stability of the radiation induced signal is studied and the single aliquot additive dose method is used to evaluate the dose in the product.

  15. EPR Dosimetry in Irradiated Fingernails

    International Nuclear Information System (INIS)

    Spinella, M.R.; Dubner, D.L.; Bof, E.

    2010-01-01

    The Electron Paramagnetic Resonance (EPR) is being transformed in a complementary tool of biologically-based methods for evaluation of dose after accidental radiation exposure. Many efforts are being carried out in laboratories to evaluate the performance of different materials for its use in EPR doses measurements and for improving the current methods for spectrum analysis and calibration curves determinations. In our country the EPR techniques have been used in different areas with dosimetric (alanine) and non dosimetric purposes. Now we are performing the first studies to obtain properly dose response curves to be used for accidental dose assessments through irradiated fingernails. It is by now well known that the fingernails present two types of signals, a background one (BKS), originated in elastic and inelastic mechanical deformations and the radio induced one (RIS), object of interest (I). In this work we will present some of the previous studies performed to characterize the fingernail samples and we analyse the additive dose method for data obtained employing the technique of the substraction of the spectrum recorded at two different microwave powers in order to reduce the BKS signal. Fingernail samples collected from different donors were treated by soaking in water during 10 min and 5 min drying on paper towel and the BKS signals were studied previously its irradiation. The statistical analysis (R statistics) show a distribution with a Standard Deviation of 24% respects to its media. During these studies we also conserved in freezer for more than 6 months irradiated fingernails that, were periodically measured and the statistical analysis of the peak to peak amplitude show a normal distribution through the Quantile correlation test with a SD 11% respected to its median. (authors)

  16. Localization of dexamethasone within dendritic core-multishell (CMS) nanoparticles and skin penetration properties studied by multi-frequency electron paramagnetic resonance (EPR) spectroscopy.

    Science.gov (United States)

    Saeidpour, S; Lohan, S B; Anske, M; Unbehauen, M; Fleige, E; Haag, R; Meinke, M C; Bittl, R; Teutloff, C

    2017-07-01

    The skin and especially the stratum corneum (SC) act as a barrier and protect epidermal cells and thus the whole body against xenobiotica of the external environment. Topical skin treatment requires an efficient drug delivery system (DDS). Polymer-based nanocarriers represent novel transport vehicles for dermal application of drugs. In this study dendritic core-multishell (CMS) nanoparticles were investigated as promising candidates. CMS nanoparticles were loaded with a drug (analogue) and were applied to penetration studies of skin. We determined by dual-frequency electron paramagnetic resonance (EPR) how dexamethasone (Dx) labelled with 3-carboxy-2,2,5,5-tetramethyl-1-pyrrolidinyloxy (PCA) is associated with the CMS. The micro-environment of the drug loaded to CMS nanoparticles was investigated by pulsed high-field EPR at cryogenic temperature, making use of the fact that magnetic parameters (g-, A-matrices, and spin-lattice relaxation time) represent specific probes for the micro-environment. Additionally, the rotational correlation time of spin-labelled Dx was probed by continuous wave EPR at ambient temperature, which provides independent information on the drug environment. Furthermore, the penetration depth of Dx into the stratum corneum of porcine skin after different topical applications was investigated. The location of Dx in the CMS nanoparticles is revealed and the function of CMS as penetration enhancers for topical application is shown. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. A High Sensitivity EPR Technique for Alanine Dosimetry (invited paper)

    International Nuclear Information System (INIS)

    Haskell, E.H.; Hayes, R.B.; Kenner, G.H.

    1998-01-01

    Uncertainties of ± 5 mGy were achieved in the measurement of alanine dosemeters using optimised EPR parameters, instrumentation, spectral manipulation and subtraction techniques. Modulation amplitude and microwave power were adjusted to combine resonances of two neighbouring alanine signals. Instrumental variations were minimised by combining and subtracting pre- and post-measurement spectra of the empty EPR tube. A spectrum of the native signal of non-dosed alanine was generated from a single batch of dosemeters and subtracted from spectra of the irradiated dosemeters, also from the same batch. Field alignment was adjusted with the use of an in-cavity Mn ++ standard. A constant rotation goniometer was used to eliminate anisotropies in the EPR tube and alanine samples. Finally, digital filters were applied to the resulting spectra. (author)

  18. Electron paramagnetic resonance of radicals and metal complexes. 2. international conference of the Polish EPR Association. Warsaw 9-13 September 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The conference of Electron Paramagnetic Resonance of Radicals and Metal Complexes has been held in Warsaw from 9 to 13 September 1996. It was the Second International Conference of the Polish EPR Association. The very extensive group of systems containing paramagnetic species has been studied by means of ESR or other magnetic techniques like ENDOR, Spin Echo etc. By radiation or photochemically generated radicals have been stabilized in low temperatures or being detected by means of very fast pulsed techniques. The chemical reactions, reaction kinetics of radicals as well as spin interaction with matrices have been studied and discussed. Over 100 lectures and posters have been presented.

  19. Electron paramagnetic resonance of radicals and metal complexes. 2. international conference of the Polish EPR Association. Warsaw 9-13 September 1996

    International Nuclear Information System (INIS)

    1996-01-01

    The conference of Electron Paramagnetic Resonance of Radicals and Metal Complexes has been held in Warsaw from 9 to 13 September 1996. It was the Second International Conference of the Polish EPR Association. The very extensive group of systems containing paramagnetic species has been studied by means of ESR or other magnetic techniques like ENDOR, Spin Echo etc. By radiation or photochemically generated radicals have been stabilized in low temperatures or being detected by means of very fast pulsed techniques. The chemical reactions, reaction kinetics of radicals as well as spin interaction with matrices have been studied and discussed. Over 100 lectures and posters have been presented

  20. Electron paramagnetic resonance of radicals and metal complexes. 2. international conference of the Polish EPR Association. Warsaw 9-13 September 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The conference of Electron Paramagnetic Resonance of Radicals and Metal Complexes has been held in Warsaw from 9 to 13 September 1996. It was the Second International Conference of the Polish EPR Association. The very extensive group of systems containing paramagnetic species has been studied by means of ESR or other magnetic techniques like ENDOR, Spin Echo etc. By radiation or photochemically generated radicals have been stabilized in low temperatures or being detected by means of very fast pulsed techniques. The chemical reactions, reaction kinetics of radicals as well as spin interaction with matrices have been studied and discussed. Over 100 lectures and posters have been presented.

  1. EPR study of the free radicals in the spices and pigments turmeric and saffron

    International Nuclear Information System (INIS)

    Troup, G.J.; Hutton, D.R.; Hunter, C.A.; Hewitt, D.; Mulinacci, N.; Romani, A.; Giaccherini, K. Anon

    2000-01-01

    Full text: The spices Turmeric (curcuma longa) and Saffron (crocus sativus) have also been used as pigments. The EPR spectrum of each shows a readily detectable free radical signal. EPR spectra of the available pure chief active colorants in solid form also give free radical signals. Curcumin (turmeric) is a 'linear' symmetric phenolic, so is expected to do so. The peptide turmerin (commercially unavailable), containing sulphur, may also contribute to the ESR signal. Crocetin (saffron) is a 'linear' molecule, related to the beta-carotenes, which do not give free radical signals: but it does, presumably because of its particular resonant structure properties

  2. Dosimetry of an accident in mixed field (neutrons, photons) using the spectrometry by electronic paramagnetic resonance(EPR); Dosimetrie d'accident en champ mixte (neutrons, photons) utilisant la spectrometrie par resonance paramagnetique electronique (RPE)

    Energy Technology Data Exchange (ETDEWEB)

    Herve, M.L

    2006-03-15

    In a radiological accident, the assessment of the dose received by the victim is relevant information for the therapeutic strategy. Two complementary dosimetric techniques based on physical means are used in routine practice in the laboratory: EPR spectroscopy performed on materials removed from the victim or gathered from the vicinity of the victim and Monte Carlo calculations. EPR dosimetry, has been used successfully several times in cases of photon or electron overexposures. Accidental exposure may also occur with a neutron component. The aim of this work is to investigate the potentiality of EPR dosimetry for mixed photon and neutron field exposure with different organic materials (ascorbic acid, sorbitol, glucose, galactose, fructose, mannose, lactose and sucrose). The influence of irradiation parameters (dose, dose rate, photon energy) and of environmental parameters (temperature of heating, light exposure) on the EPR signal amplitude was studied. To assess the neutron sensitivity, the materials were exposed to a mixed radiation field of experimental reactors with different neutron to photon ratios. The relative neutron sensitivity was found to range from 10% to 43% according to the materials. Prior knowledge of the ratio between the dose in samples measured by EPR spectrometry and organ or whole body dose obtained by calculations previously performed for these different configurations, makes it possible to give a first estimation of the dose received by the victim in a short delay. The second aim of this work is to provide data relevant for a quick assessment of the dose distribution in case of accidental overexposure based on EPR measurements performed on one or several points of the body. The study consists in determining by calculation the relation between the dose to the organs and whole body and the dose to specific points of the body, like teeth, bones or samples located in the pockets of victim clothes, for different external exposures corresponding

  3. Determination of the Average Native Background and the Light-Induced EPR Signals and their Variation in the Teeth Enamel Based on Large-Scale Survey of the Population

    International Nuclear Information System (INIS)

    Ivannikov, Alexander I.; Khailov, Artem M.; Orlenko, Sergey P.; Skvortsov, Valeri G.; Stepanenko, Valeri F.; Zhumadilov, Kassym Sh.; Williams, Benjamin B.; Flood, Ann B.; Swartz, Harold M.

    2016-01-01

    The aim of the study is to determine the average intensity and variation of the native background signal amplitude (NSA) and of the solar light-induced signal amplitude (LSA) in electron paramagnetic resonance (EPR) spectra of tooth enamel for different kinds of teeth and different groups of people. These values are necessary for determination of the intensity of the radiation-induced signal amplitude (RSA) by subtraction of the expected NSA and LSA from the total signal amplitude measured in L-band for in vivo EPR dosimetry. Variation of these signals should be taken into account when estimating the uncertainty of the estimated RSA. A new analysis of several hundred EPR spectra that were measured earlier at X-band in a large-scale examination of the population of the Central Russia was performed. Based on this analysis, the average values and the variation (standard deviation, SD) of the amplitude of the NSA for the teeth from different positions, as well as LSA in outer enamel of the front teeth for different population groups, were determined. To convert data acquired at X-band to values corresponding to the conditions of measurement at L-band, the experimental dependencies of the intensities of the RSA, LSA and NSA on the m.w. power, measured at both X and L-band, were analysed. For the two central upper incisors, which are mainly used in in vivo dosimetry, the mean LSA annual rate induced only in the outer side enamel and its variation were obtained as 10 ± 2 (SD = 8) mGy y"-"1, the same for X- and L-bands (results are presented as the mean ± error of mean). Mean NSA in enamel and its variation for the upper incisors was calculated at 2.0 ± 0.2 (SD = 0.5) Gy, relative to the calibrated RSA dose-response to gamma radiation measured under non-power saturation conditions at X-band. Assuming the same value for L-band under non-power saturating conditions, then for in vivo measurements at L-band at 25 mW (power saturation conditions), a mean NSA and its

  4. Determination of the Average Native Background and the Light-Induced EPR Signals and their Variation in the Teeth Enamel Based on Large-Scale Survey of the Population.

    Science.gov (United States)

    Ivannikov, Alexander I; Khailov, Artem M; Orlenko, Sergey P; Skvortsov, Valeri G; Stepanenko, Valeri F; Zhumadilov, Kassym Sh; Williams, Benjamin B; Flood, Ann B; Swartz, Harold M

    2016-12-01

    The aim of the study is to determine the average intensity and variation of the native background signal amplitude (NSA) and of the solar light-induced signal amplitude (LSA) in electron paramagnetic resonance (EPR) spectra of tooth enamel for different kinds of teeth and different groups of people. These values are necessary for determination of the intensity of the radiation-induced signal amplitude (RSA) by subtraction of the expected NSA and LSA from the total signal amplitude measured in L-band for in vivo EPR dosimetry. Variation of these signals should be taken into account when estimating the uncertainty of the estimated RSA. A new analysis of several hundred EPR spectra that were measured earlier at X-band in a large-scale examination of the population of the Central Russia was performed. Based on this analysis, the average values and the variation (standard deviation, SD) of the amplitude of the NSA for the teeth from different positions, as well as LSA in outer enamel of the front teeth for different population groups, were determined. To convert data acquired at X-band to values corresponding to the conditions of measurement at L-band, the experimental dependencies of the intensities of the RSA, LSA and NSA on the m.w. power, measured at both X and L-band, were analysed. For the two central upper incisors, which are mainly used in in vivo dosimetry, the mean LSA annual rate induced only in the outer side enamel and its variation were obtained as 10 ± 2 (SD = 8) mGy y -1 , the same for X- and L-bands (results are presented as the mean ± error of mean). Mean NSA in enamel and its variation for the upper incisors was calculated at 2.0 ± 0.2 (SD = 0.5) Gy, relative to the calibrated RSA dose-response to gamma radiation measured under non-power saturation conditions at X-band. Assuming the same value for L-band under non-power saturating conditions, then for in vivo measurements at L-band at 25 mW (power saturation conditions), a mean NSA and its

  5. Linear signal processing using silicon micro-ring resonators

    DEFF Research Database (Denmark)

    Peucheret, Christophe; Ding, Yunhong; Ou, Haiyan

    2012-01-01

    We review our recent achievements on the use of silicon micro-ring resonators for linear optical signal processing applications, including modulation format conversion, phase-to-intensity modulation conversion and waveform shaping.......We review our recent achievements on the use of silicon micro-ring resonators for linear optical signal processing applications, including modulation format conversion, phase-to-intensity modulation conversion and waveform shaping....

  6. Using rapid scan EPR to improve the detection limit of quantitative EPR by more than one order of magnitude

    OpenAIRE

    Möser, J.; Lips, K.; Tseytlin, M.; Eaton, G.; Eaton, S.; Schnegg, A

    2017-01-01

    X band rapid scan EPR was implemented on a commercially available Bruker ELEXSYS E580 spectrometer. Room temperature rapid scan and continuous wave EPR spectra were recorded for amorphous silicon powder samples. By comparing the resulting signal intensities the feasibility of performing quantitative rapid scan EPR is demonstrated. For different hydrogenated amorphous silicon samples, rapid scan EPR results in signal to noise improvements by factors between 10 and 50. Rapid scan EPR is thus ca...

  7. EPR spectral investigation of radiation-induced radicals of gallic acid

    Energy Technology Data Exchange (ETDEWEB)

    Tuner, Hasan [Balikesir University, Department of Physics, Faculty of Art and Science, Balikesir (Turkey)

    2017-11-15

    In the present work, spectroscopic features of the radiation-induced radicals of gallic acid compounds were investigated using electron paramagnetic resonance (EPR) spectroscopy. While un-irradiated samples presented no EPR signal, irradiated samples exhibited an EPR spectrum consisting of an intense resonance line at the center and weak lines on both sides. Detailed microwave saturation investigations were carried out to determine the origin of the experimental EPR lines. It is concluded that the two side lines of the triplet satellite originate from forbidden ''spin-flip'' transitions. The spectroscopic and structural features of the radiation-induced radicals were determined using EPR spectrum fittings. The experimental EPR spectra of the two gallic acid compounds were consistent with the calculated EPR spectroscopic features of the proposed radicals. It is concluded that the most probable radicals are the cyclohexadienyl-type, O(OH){sub 2}C{sub 6}H{sub 2}COOH radicals for both compounds. (orig.)

  8. Response of resonant gravitational wave detectors to damped sinusoid signals

    International Nuclear Information System (INIS)

    Pai, A; Celsi, C; Pallottino, G V; D'Antonio, S; Astone, P

    2007-01-01

    Till date, the search for burst signals with resonant gravitational wave (GW) detectors has been done using the δ-function approximation for the signal, which was reasonable due to the very small bandwidth of these detectors. However, now with increased bandwidth (of the order of 10 or more Hz) and with the possibility of comparing results with interferometric GW detectors (broad-band), it is very important to exploit the resonant detectors' capability to detect also signals with specific wave shapes. As a first step, we present a study of the response of resonant GW detectors to damped sinusoids with given frequency and decay time and report on the development of a filter matched to these signals. This study is a preliminary step towards the comprehension of the detector response and of the filtering for signals such as the excitation of stellar quasi-normal modes

  9. Characterization of Melanin Radicals in Paraffin-embedded Malignant Melanoma and Nevus Pigmentosus Using X-band EPR and EPR Imaging.

    Science.gov (United States)

    Nakagawa, Kouichi; Minakawa, Satoko; Sawamura, Daisuke; Hara, Hideyuki

    2017-01-01

    Continuous wave electron paramagnetic resonance (CW EPR) and X-band (9 GHz) EPR imaging (EPRI) were used to nondestructively investigate the possible differentiation between malignant melanoma (MM) and nevus pigmentosus (NP) melanin radicals in paraffin-embedded specimens. The EPR spectra of both samples were analyzed using linewidth, spectral pattern, and X-band EPRI. The CW-EPR spectra of the MM showed an additional signal overlap. Eumelanin- and pheomelanin-related radicals were observed in the MM specimens. The EPR results revealed that the peak-to-peak linewidths (ΔH pp ) of paraffin-embedded MM and NP samples were 0.65 ± 0.01 and 0.69 ± 0.01 mT, respectively. The g-value was 2.005 for both samples. Moreover, the two-dimensional (2D) EPRI of the MM showed different signal intensities at the different tumor stages, unlike the NP, which displayed fewer variations in signal intensity. Thus, the present results suggest that EPR and 2D EPRI can be useful for characterization of the two melanin radicals in the MM and for determination of their size and concentration.

  10. The sensitivity analysis of tooth enamel to the absorbed dose for the application to EPR dosimetry

    International Nuclear Information System (INIS)

    Hong, Dae Seok; Lee, Kun Jai; Cho, Young Hwan

    2002-01-01

    Electron Paramagnetic Resonance (EPR) spectroscopy is one of the methods applicable to retrospective dosimetry. The retrospective dosimetry is a process that is a part of dose reconstruction for estimation of exposed dose occurred years before the estimation. Many techniques can be used to the retrospective dosimetry. As a physical method, EPR analysis of biological material measures the quantity of free radicals generated in the material from the interaction of radiation and material. Since the later 80s, in many countries, EPR dosimetry with tooth enamel has been studied and applied for the retrospective dosimetry. In the consideration of the biological materials for EPR dosimetry, human fingernail, hair, bone and tooth are generally considered. The tooth can be separated as enamel, dentine and cementum. Among the three parts, enamel shows the best sensitivity to the absorbed dose and is most widely used. In this study, the characteristics of tooth enamel for EPR dosimetry is examined and experimented. At the experiment, for easy separation, tooth was cut into 4 parts and then each part is treated by ultrasonic vibration in NaOH liquid to reduce mechanically induced noise in the corresponding signal. After the separation of the enamel from dentine, background EPR signal is measured and then radiation-induced EPR spectrum is estimated

  11. The EPR reactor

    International Nuclear Information System (INIS)

    Lacoste, A.C.; Dupuy, Ph.; Gupta, O.; Perez, J.R.; Emond, D.; Cererino, G.; Rousseau, J.M.; Jeffroy, F.; Evrard, J.M.; Seiler, J.M.; Azarian, G.; Chaumont, B.; Dubail, A.; Fischer, M.; Tiippana, P.; Hyvarinen, J.; Zaleski, C.P.; Meritet, S.; Iglesias, F.; Vincent, C.; Massart, S.; Graillat, G.; Esteve, B.; Mansillon, Y.; Gatinol, C.; Carre, F.

    2005-01-01

    This document reviews economical and environmental aspects of the EPR project. The following topics are discussed: role and point of view of the French Nuclear Safety Authority on EPR, control of design and manufacturing of EPR by the French Nuclear Safety Authority, assessment by IRSN of EPR safety, research and development in support of EPR, STUK safety review of EPR design, standpoint on EPR, the place of EPR in the French energy policy, the place of EPR in EDF strategy, EPR spearhead of nuclear rebirth, the public debate, the local stakes concerning the building of EPR in France at Flamanville (Manche) and the research on fourth generation reactors. (A.L.B.)

  12. ISS protocol for EPR tooth dosimetry

    International Nuclear Information System (INIS)

    Onori, S.; Aragno, D.; Fattibene, P.; Petetti, E.; Pressello, M.C.

    2000-01-01

    The accuracy in Electron Paramagnetic Resonance (EPR) dose reconstruction with tooth enamel is affected by sample preparation, dosimetric signal amplitude evaluation and unknown dose estimate. Worldwide efforts in the field of EPR dose reconstruction with tooth enamel are focused on the optimization of the three mentioned steps in dose assessment. In the present work, the protocol implemented at ISS in the framework of the European Community Nuclear Fission Safety project 'Dose Reconstruction' is presented. A combined mechanical-chemical procedure for ground enamel sample preparation is used. The signal intensity evaluation is carried out with powder spectra simulation program. Finally, the unknown dose is evaluated individually for each sample with the additive dose method. The unknown dose is obtained by subtracting a mean native dose from the back-extrapolated dose. As an example of the capability of the ISS protocol in unknown dose evaluation, the results obtained in the framework of the 2nd International Intercomparison on EPR tooth enamel dosimetry are reported

  13. Water-resistant alanine-EPR dosimeter alanpol

    International Nuclear Information System (INIS)

    Peimel-Stuglik, Zofia; Bryl-Sandelewska, Teresa; Mirkowski, Krzysztof; Sartowska, Bozena

    2009-01-01

    Alanpol-water-resistant alanine-electron paramagnetic resonance (EPR) dosimeter consisted of cheap DL-α-alanine (9.8-27%) suspended in polyethylene matrix was presented. The rods (O=2.8 mm) were extruded from a hot mixture of alanine and low-density polyethylene. No grinding or crushing was used for alanine preparation. An orientation of cylindrical crystals, up to 300 μm long in parallel to the rod axis was responsible for some differences in a shape of EPR signal. These differences had no negative consequences for dosimetric applications. Signal-to-dose dependence was linear up to 10 kGy. Standard deviation of dosimetric answer was up to ±1.8% and up to 2.4% for dosimeters with 9.8% and 27% of DL-α-alanine, respectively. Irradiation temperature coefficient for both dosimeters was equal 0.2%/ deg. C. Hydrophobic properties of polyethylene and small number of alanine crystals located on the surface of the rod led to high resistance of dosimeters to water and humidity. The 24 h soaking of irradiated dosimeters in liquid water-reduced EPR signals by 3-4% and by 2-3% for dosimeters with 27% and 9.8% of DL-α-alanine, respectively. Three month storage time of irradiated dosimeters in room conditions decreases EPR signal for ∼3%.

  14. Full cycle rapid scan EPR deconvolution algorithm.

    Science.gov (United States)

    Tseytlin, Mark

    2017-08-01

    Rapid scan electron paramagnetic resonance (RS EPR) is a continuous-wave (CW) method that combines narrowband excitation and broadband detection. Sinusoidal magnetic field scans that span the entire EPR spectrum cause electron spin excitations twice during the scan period. Periodic transient RS signals are digitized and time-averaged. Deconvolution of absorption spectrum from the measured full-cycle signal is an ill-posed problem that does not have a stable solution because the magnetic field passes the same EPR line twice per sinusoidal scan during up- and down-field passages. As a result, RS signals consist of two contributions that need to be separated and postprocessed individually. Deconvolution of either of the contributions is a well-posed problem that has a stable solution. The current version of the RS EPR algorithm solves the separation problem by cutting the full-scan signal into two half-period pieces. This imposes a constraint on the experiment; the EPR signal must completely decay by the end of each half-scan in order to not be truncated. The constraint limits the maximum scan frequency and, therefore, the RS signal-to-noise gain. Faster scans permit the use of higher excitation powers without saturating the spin system, translating into a higher EPR sensitivity. A stable, full-scan algorithm is described in this paper that does not require truncation of the periodic response. This algorithm utilizes the additive property of linear systems: the response to a sum of two inputs is equal the sum of responses to each of the inputs separately. Based on this property, the mathematical model for CW RS EPR can be replaced by that of a sum of two independent full-cycle pulsed field-modulated experiments. In each of these experiments, the excitation power equals to zero during either up- or down-field scan. The full-cycle algorithm permits approaching the upper theoretical scan frequency limit; the transient spin system response must decay within the scan

  15. In Vivo EPR Resolution Enhancement Using Techniques Known from Quantum Computing Spin Technology.

    Science.gov (United States)

    Rahimi, Robabeh; Halpern, Howard J; Takui, Takeji

    2017-01-01

    A crucial issue with in vivo biological/medical EPR is its low signal-to-noise ratio, giving rise to the low spectroscopic resolution. We propose quantum hyperpolarization techniques based on 'Heat Bath Algorithmic Cooling', allowing possible approaches for improving the resolution in magnetic resonance spectroscopy and imaging.

  16. Magnetic resonance signal moment determination using the Earth's magnetic field

    KAUST Repository

    Fridjonsson, Einar Orn; Creber, Sarah A.; Vrouwenvelder, Johannes S.; Johns, Michael L.

    2015-01-01

    We demonstrate a method to manipulate magnetic resonance data such that the moments of the signal spatial distribution are readily accessible. Usually, magnetic resonance imaging relies on data acquired in so-called k-space which is subsequently Fourier transformed to render an image. Here, via analysis of the complex signal in the vicinity of the centre of k-space we are able to access the first three moments of the signal spatial distribution, ultimately in multiple directions. This is demonstrated for biofouling of a reverse osmosis (RO) membrane module, rendering unique information and an early warning of the onset of fouling. The analysis is particularly applicable for the use of mobile magnetic resonance spectrometers; here we demonstrate it using an Earth's magnetic field system.

  17. Magnetic resonance signal moment determination using the Earth's magnetic field

    KAUST Repository

    Fridjonsson, Einar Orn

    2015-03-01

    We demonstrate a method to manipulate magnetic resonance data such that the moments of the signal spatial distribution are readily accessible. Usually, magnetic resonance imaging relies on data acquired in so-called k-space which is subsequently Fourier transformed to render an image. Here, via analysis of the complex signal in the vicinity of the centre of k-space we are able to access the first three moments of the signal spatial distribution, ultimately in multiple directions. This is demonstrated for biofouling of a reverse osmosis (RO) membrane module, rendering unique information and an early warning of the onset of fouling. The analysis is particularly applicable for the use of mobile magnetic resonance spectrometers; here we demonstrate it using an Earth\\'s magnetic field system.

  18. Variability of electron spin resonance (ESR) signal of γ -irradiated starches

    International Nuclear Information System (INIS)

    Silva, Gilberto D.; Rodrigues Junior, Orlando; Mastro, Nelida L. del

    2017-01-01

    Food preservation is one of the practical applications of radiation processing of materials. Starch is an abundant and cheap nutritious biopolymer and also is the material for appropriate food systems and for technical industries. Starch granules are partially crystalline structures composed mainly of two types of starch: amylose, an essentially linear polymer, and amylopectin, with 3-44% of branch points. Electron spin resonance (ESR) spectroscopy is a very powerful and sensitive method for the characterization of the electronic structures of materials with unpaired electrons. The aim of the present work was to monitor the disappearance of the short life and long-life free radicals formed during γ-irradiation of 3 different starches. Corn, potato and fermented cassava starches were irradiated in a "6"0Co source Gammacell 220 with 20 kGy, dose rate around 1 kGy h"-"1. EPR spectra were obtained at room temperature using a Bruker EMX plus model, X band equipment. The main type of ESR signal from irradiated starch is a singlet with a g-value of about 2.0. The fading of ESR signals was followed for 350 hours, and presents differences among the different starch type reflecting differences in molecular arrangements of starch crystalline and amorphous fractions, although ESR spectra seemed to be common for all starches. (author)

  19. Variability of electron spin resonance (ESR) signal of γ -irradiated starches

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Gilberto D.; Rodrigues Junior, Orlando; Mastro, Nelida L. del, E-mail: nlmastro@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2017-11-01

    Food preservation is one of the practical applications of radiation processing of materials. Starch is an abundant and cheap nutritious biopolymer and also is the material for appropriate food systems and for technical industries. Starch granules are partially crystalline structures composed mainly of two types of starch: amylose, an essentially linear polymer, and amylopectin, with 3-44% of branch points. Electron spin resonance (ESR) spectroscopy is a very powerful and sensitive method for the characterization of the electronic structures of materials with unpaired electrons. The aim of the present work was to monitor the disappearance of the short life and long-life free radicals formed during γ-irradiation of 3 different starches. Corn, potato and fermented cassava starches were irradiated in a {sup 60}Co source Gammacell 220 with 20 kGy, dose rate around 1 kGy h{sup -1}. EPR spectra were obtained at room temperature using a Bruker EMX plus model, X band equipment. The main type of ESR signal from irradiated starch is a singlet with a g-value of about 2.0. The fading of ESR signals was followed for 350 hours, and presents differences among the different starch type reflecting differences in molecular arrangements of starch crystalline and amorphous fractions, although ESR spectra seemed to be common for all starches. (author)

  20. Solid-support Electron Paramagnetic Resonance (EPR) Studies of Aβ40 Monomers Reveal a Structured State with Three Ordered Segments*

    Science.gov (United States)

    Gu, Lei; Ngo, Sam; Guo, Zhefeng

    2012-01-01

    Alzheimer disease is associated with the pathological accumulation of amyloid-β peptide (Aβ) in the brain. Soluble Aβ oligomers formed during early aggregation process are believed to be neurotoxins and causative agents in Alzheimer disease. Aβ monomer is the building block for amyloid assemblies. A comprehensive understanding of the structural features of Aβ monomer is crucial for delineating the mechanism of Aβ oligomerization. Here we investigated the structures of Aβ40 monomer using a solid-support approach, in which Aβ40 monomers are tethered on the solid support via an N-terminal His tag to prevent further aggregation. EPR spectra of tethered Aβ40 with spin labels at 18 different positions show that Aβ40 monomers adopt a completely disordered structure under denaturing conditions. Under native conditions, however, EPR spectra suggest that Aβ40 monomers adopt both a disordered state and a structured state. The structured state of Aβ40 monomer has three more ordered segments at 14–18, 29–30, and 38–40. Interactions between these segments may stabilize the structured state, which likely plays an important role in Aβ aggregation. PMID:22277652

  1. EPR persistence measurements of UV-induced melanin free radicals in whole skin

    International Nuclear Information System (INIS)

    Collins, B.; Poehler, T.O.; Bryden, W.A.

    1995-01-01

    Electron paramagnetic resonance is used to detect the formation of free radicals caused by exposure to ultraviolet radiation in chemically untreated rabbit skin. A fast jump in EPR signal level, occurring over a few seconds, is observed immediately after a skin sample is exposed to UV. This is followed by a slower increase toward an elevated steady-state signal over a period of hours as the skin is continuously exposed to a UV light source. Upon cessation of UV light exposure, EPR signal levels undergo an abrupt drop followed by a slower decay toward natural levels. Elevated free radical concentrations following UV exposure are found to persist for several hours in whole skin. These results are consistent with time resolved EPR measurements of photoinduced radicals in various natural melanins. (Author)

  2. Genesis of Karl Popper's EPR-like experiment and its resonance amongst the physics community in the 1980s

    Science.gov (United States)

    Del Santo, Flavio

    2018-05-01

    I present the reconstruction of the involvement of Karl Popper in the community of physicists concerned with foundations of quantum mechanics, in the 1980s. At that time Popper gave active contribution to the research in physics, of which the most significant is a new version of the EPR thought experiment, alleged to test different interpretations of quantum mechanics. The genesis of such an experiment is reconstructed in detail, and an unpublished letter by Popper is reproduced in the present paper to show that he formulated his thought experiment already two years before its first publication in 1982. The debate stimulated by the proposed experiment as well as Popper's role in the physics community throughout 1980s is here analysed in detail by means of personal correspondence and publications.

  3. Task-related signal decrease on functional magnetic resonance imaging

    International Nuclear Information System (INIS)

    Hara, Yoshie; Nakamura, Mitsugu; Tamaki, Norihiko; Tamura, Shogo; Kitamura, Junji

    2001-01-01

    An atypical pattern of signal change was identified on functional magnetic resonance (fMR) imaging in pathologic patients. Three normal volunteers and 34 patients with pathologic lesions near the primary motor cortex underwent fMR imaging with echo-planar imaging while performing a hand motor task. Signal intensities were evaluated with the z-score method, and the time course and changes of the signal intensity were calculated. Nine of the 34 patients with pathologic lesions displayed a significant task-related signal reduction in motor-related areas. They also presented a conventional task-related signal increase in other motor-related areas. The time courses of the increase and decrease were the inverse of each other. There was no significant difference between rates of signal increase and decrease. Our findings suggest that this atypical signal decrease is clinically significant, and that impaired vascular reactivity and altered oxygen metabolism could contribute to the task-related signal reduction. Brain areas showing such task-related signal decrease should be preserved at surgery. (author)

  4. Small-signal model for the series resonant converter

    Science.gov (United States)

    King, R. J.; Stuart, T. A.

    1985-01-01

    The results of a previous discrete-time model of the series resonant dc-dc converter are reviewed and from these a small signal dynamic model is derived. This model is valid for low frequencies and is based on the modulation of the diode conduction angle for control. The basic converter is modeled separately from its output filter to facilitate the use of these results for design purposes. Experimental results are presented.

  5. Spectra processing at tooth enamel dosimetry: Analytical description of EPR spectrum at different microwave power

    International Nuclear Information System (INIS)

    Tieliewuhan, E.; Ivannikov, A.; Zhumadilov, K.; Nalapko, M.; Tikunov, D.; Skvortsov, V.; Stepanenko, V.; Toyoda, S.; Tanaka, K.; Endo, S.; Hoshi, M.

    2006-01-01

    Variation of the electron paramagnetic resonance (EPR) spectrum of the human tooth enamel recorded at different microwave power is investigated. The analytical models describing the native and the radiation-induced signals in the enamel are proposed, which fit the experimental spectra in wide range of microwave power. These models are designed to use for processing the spectra of irradiated enamel at determination of the absorbed dose from the intensity of the radiation-induced signal

  6. Kinetic study of UV-irradiated amorphous sulfur by EPR spectroscopy

    International Nuclear Information System (INIS)

    El Mkami, H.; Smith, G.M.

    2005-01-01

    Electron paramagnetic resonance (EPR) spectroscopy is used to investigate UV-irradiation damage in amorphous sulfur by examining post-irradiation kinetics as a function of UV-exposure time. The kinetic study is described by first-order concurrent reactions where the sulfur, as reactant, undergoes two parallel processes leading to the formation of two distinct defects called S 1 * and S 2 *. The temperature dependence of the EPR intensities of the signals, related to these defects, is used in the kinetic study

  7. Electron Paramagnetic Resonance Spectrometry and Imaging in Melanomas: Comparison between Pigmented and Nonpigmented Human Malignant Melanomas

    Directory of Open Access Journals (Sweden)

    Quentin Godechal

    2013-06-01

    Full Text Available It has been known for a long time that the melanin pigments present in normal skin, hair, and most of malignant melanomas can be detected by electron paramagnetic resonance (EPR spectrometry. In this study, we used EPR imaging as a tool to map the concentration of melanin inside ex vivo human pigmented and nonpigmented melanomas and correlated this cartography with anatomopathology. We obtained accurate mappings of the melanin inside pigmented human melanoma samples. The signal intensity observed on the EPR images correlated with the concentration of melanin within the tumors, visible on the histologic sections. In contrast, no EPR signal coming from melanin was observed from nonpigmented melanomas, therefore demonstrating the absence of EPR-detectable pigments inside these particular cases of skin cancer and the importance of pigmentation for further EPR imaging studies on melanoma.

  8. EPR and IR spectral investigations on some leafy vegetables of Indian origin

    Science.gov (United States)

    Prasuna, C. P. Lakshmi; Chakradhar, R. P. S.; Rao, J. L.; Gopal, N. O.

    2009-09-01

    EPR spectral investigations have been carried out on four edible leafy vegetables of India, which are used as dietary component in day to day life. In Rumex vesicarius leaf sample, EPR spectral investigations at different temperatures indicate the presence of anti-ferromagnetically coupled Mn(IV)-Mn(IV) complexes. EPR spectra of Trigonella foenum graecum show the presence of Mn ions in multivalent state and Fe 3+ ions in rhombic symmetry. EPR spectra of Basella rubra indicate the presence of Mn(IV)-O-Mn(IV) type complexes. The EPR spectra of Basella rubra have been studied at different temperatures. It is found that the spin population for the resonance signal at g = 2.06 obeys the Boltzmann distribution law. The EPR spectra of Moringa oliefera leaves show the presence of Mn 2+ ions. Radiation induced changes in free radical of this sample have also been studied. The FT-IR spectra of Basella rubra and Moringa oliefera leaves show the evidences for the protein matrix bands and those corresponding to carboxylic C dbnd O bonds.

  9. Isolation of EPR spectra and estimation of spin-states in two-component mixtures of paramagnets.

    Science.gov (United States)

    Chabbra, Sonia; Smith, David M; Bode, Bela E

    2018-04-26

    The presence of multiple paramagnetic species can lead to overlapping electron paramagnetic resonance (EPR) signals. This complication can be a critical obstacle for the use of EPR to unravel mechanisms and aid the understanding of earth abundant metal catalysis. Furthermore, redox or spin-crossover processes can result in the simultaneous presence of metal centres in different oxidation or spin states. In this contribution, pulse EPR experiments on model systems containing discrete mixtures of Cr(i) and Cr(iii) or Cu(ii) and Mn(ii) complexes demonstrate the feasibility of the separation of the EPR spectra of these species by inversion recovery filters and the identification of the relevant spin states by transient nutation experiments. We demonstrate the isolation of component spectra and identification of spin states in a mixture of catalyst precursors. The usefulness of the approach is emphasised by monitoring the fate of the chromium species upon activation of an industrially used precatalyst system.

  10. Radiation sensitivity and EPR dosimetric potential of gallic acid and its esters

    Science.gov (United States)

    Tuner, Hasan; Oktay Bal, M.; Polat, Mustafa

    2015-02-01

    In the preset work the radiation sensitivities of Gallic Acid anhydrous and monohydrate, Octyl, Lauryl, and Ethyl Gallate (GA, GAm, OG, LG, and EG) were investigated in the intermediate (0.5-20 kGy) and low radiation (<10 Gy) dose range using Electron Paramagnetic Resonance (EPR) spectroscopy. While OG, LG, and EG are presented a singlet EPR spectra, their radiation sensitivity found to be very different in the intermediate dose range. At low radiation dose range (<10 Gy) only LG is found to be present a signal that easily distinguished from the noise signals. The intermediate and low dose range radiation sensitivities are compared using well known EPR dosimeter alanine. The radiation yields (G) of the interested material were found to be 1.34×10-2, 1.48×10-2, 4.14×10-2, and 6.03×10-2, 9.44×10-2 for EG, GA, GAm, OG, and LG, respectively at the intermediate dose range. It is found that the simple EPR spectra and the noticeable EPR signal of LG make it a promising dosimetric material to be used below 10 Gy of radiation dose.

  11. Using rapid-scan EPR to improve the detection limit of quantitative EPR by more than one order of magnitude.

    Science.gov (United States)

    Möser, J; Lips, K; Tseytlin, M; Eaton, G R; Eaton, S S; Schnegg, A

    2017-08-01

    X-band rapid-scan EPR was implemented on a commercially available Bruker ELEXSYS E580 spectrometer. Room temperature rapid-scan and continuous-wave EPR spectra were recorded for amorphous silicon powder samples. By comparing the resulting signal intensities the feasibility of performing quantitative rapid-scan EPR is demonstrated. For different hydrogenated amorphous silicon samples, rapid-scan EPR results in signal-to-noise improvements by factors between 10 and 50. Rapid-scan EPR is thus capable of improving the detection limit of quantitative EPR by at least one order of magnitude. In addition, we provide a recipe for setting up and calibrating a conventional pulsed and continuous-wave EPR spectrometer for rapid-scan EPR. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Homogeneity and EPR metrics for assessment of regular grids used in CW EPR powder simulations.

    Science.gov (United States)

    Crăciun, Cora

    2014-08-01

    CW EPR powder spectra may be approximated numerically using a spherical grid and a Voronoi tessellation-based cubature. For a given spin system, the quality of simulated EPR spectra depends on the grid type, size, and orientation in the molecular frame. In previous work, the grids used in CW EPR powder simulations have been compared mainly from geometric perspective. However, some grids with similar homogeneity degree generate different quality simulated spectra. This paper evaluates the grids from EPR perspective, by defining two metrics depending on the spin system characteristics and the grid Voronoi tessellation. The first metric determines if the grid points are EPR-centred in their Voronoi cells, based on the resonance magnetic field variations inside these cells. The second metric verifies if the adjacent Voronoi cells of the tessellation are EPR-overlapping, by computing the common range of their resonance magnetic field intervals. Beside a series of well known regular grids, the paper investigates a modified ZCW grid and a Fibonacci spherical code, which are new in the context of EPR simulations. For the investigated grids, the EPR metrics bring more information than the homogeneity quantities and are better related to the grids' EPR behaviour, for different spin system symmetries. The metrics' efficiency and limits are finally verified for grids generated from the initial ones, by using the original or magnetic field-constraint variants of the Spherical Centroidal Voronoi Tessellation method. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Homogeneity and EPR metrics for assessment of regular grids used in CW EPR powder simulations

    Science.gov (United States)

    Crăciun, Cora

    2014-08-01

    CW EPR powder spectra may be approximated numerically using a spherical grid and a Voronoi tessellation-based cubature. For a given spin system, the quality of simulated EPR spectra depends on the grid type, size, and orientation in the molecular frame. In previous work, the grids used in CW EPR powder simulations have been compared mainly from geometric perspective. However, some grids with similar homogeneity degree generate different quality simulated spectra. This paper evaluates the grids from EPR perspective, by defining two metrics depending on the spin system characteristics and the grid Voronoi tessellation. The first metric determines if the grid points are EPR-centred in their Voronoi cells, based on the resonance magnetic field variations inside these cells. The second metric verifies if the adjacent Voronoi cells of the tessellation are EPR-overlapping, by computing the common range of their resonance magnetic field intervals. Beside a series of well known regular grids, the paper investigates a modified ZCW grid and a Fibonacci spherical code, which are new in the context of EPR simulations. For the investigated grids, the EPR metrics bring more information than the homogeneity quantities and are better related to the grids’ EPR behaviour, for different spin system symmetries. The metrics’ efficiency and limits are finally verified for grids generated from the initial ones, by using the original or magnetic field-constraint variants of the Spherical Centroidal Voronoi Tessellation method.

  14. Radiation sensitivity and EPR dosimetric potential of gallic acid and its esters

    International Nuclear Information System (INIS)

    Tuner, Hasan; Oktay Bal, M.; Polat, Mustafa

    2015-01-01

    In the preset work the radiation sensitivities of Gallic Acid anhydrous and monohydrate, Octyl, Lauryl, and Ethyl Gallate (GA, GAm, OG, LG, and EG) were investigated in the intermediate (0.5–20 kGy) and low radiation (<10 Gy) dose range using Electron Paramagnetic Resonance (EPR) spectroscopy. While OG, LG, and EG are presented a singlet EPR spectra, their radiation sensitivity found to be very different in the intermediate dose range. At low radiation dose range (<10 Gy) only LG is found to be present a signal that easily distinguished from the noise signals. The intermediate and low dose range radiation sensitivities are compared using well known EPR dosimeter alanine. The radiation yields (G) of the interested material were found to be 1.34×10 −2 , 1.48×10 −2 , 4.14×10 −2 , and 6.03×10 −2 , 9.44×10 −2 for EG, GA, GAm, OG, and LG, respectively at the intermediate dose range. It is found that the simple EPR spectra and the noticeable EPR signal of LG make it a promising dosimetric material to be used below 10 Gy of radiation dose. - Highlights: • Radiation sensitivity of gallic acid and its esters were studied in intermediate and low radiation dose range using EPR. • While the irradiated samples of GA were presented complex EPR spectra the esters presented singlet ESR spectra. • Samples were compared to alanine in terms of the dosimetric point of view. • The radiation sensitivities of the investigated materials were very low at intermediate doses. • Lauryl ester of gallic acid was found to present a good sensitivity below 10 Gy

  15. EPR and Bell Locality

    OpenAIRE

    Norsen, Travis

    2004-01-01

    A new formulation of the EPR argument is presented, one which uses John Bell's mathematically precise local causality condition in place of the looser locality assumption which was used in the original EPR paper and on which Niels Bohr seems to have based his objection to the EPR argument. The new formulation of EPR bears a striking resemblance to Bell's derivation of his famous inequalities. The relation between these two arguments -- in particular, the role of EPR as part one of Bell's two-...

  16. Preparation and applicability of fresh fruit samples for the identification of radiation treatment by EPR

    Energy Technology Data Exchange (ETDEWEB)

    Yordanov, Nicola D. [Laboratory EPR, Institute of Catalysis, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria)], E-mail: ndyepr@bas.bg; Aleksieva, Katerina [Laboratory EPR, Institute of Catalysis, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria)

    2009-03-15

    The results of electron paramagnetic resonance (EPR) study on fresh fruits (whole pulp of pears, apples, peaches, apricots, avocado, kiwi and mango) before and after gamma-irradiation are reported using two drying procedures before EPR investigation. In order to remove water from non-irradiated and irradiated samples of the first batch, the pulp of fresh fruits is pressed, and the solid residue is washed with alcohol and dried at room temperature. The fruits of the second batch are pressed and dried in a standard laboratory oven at 40 deg. C. The results obtained with both drying procedures are compared. All samples under study show a singlet EPR line with g=2.0048{+-}0.0005 before irradiation. Irradiation gives rise to typical 'cellulose-like' EPR spectrum featuring one intensive line with g=2.0048{+-}0.0005 and two very weak satellite lines situated 3 mT at left and right of the central line. Only mango samples show a singlet line after irradiation. The fading kinetics of radiation-induced EPR signal is studied for a period of 50 days after irradiation. When the irradiated fruit samples are stored in their natural state and dried just before each EPR measurement, the satellite lines are measurable for less than 17 days of storage. Irradiated fruit samples, when stored dried, lose for 50 days ca. 40% of their radiation-induced radicals if treated with alcohol or ca. 70% if dried in an oven. The reported results unambiguously show that the presence of the satellite lines in the EPR spectra could be used for identification of radiation processing of fresh fruits, thus extending the validity of European Protocol EN 1787 (2000). Foodstuffs-Detection of Irradiated Food Containing Cellulose by EPR Spectroscopy. European Committee for Standardisation. Brussels for dry herbs.

  17. Preparation and applicability of fresh fruit samples for the identification of radiation treatment by EPR

    International Nuclear Information System (INIS)

    Yordanov, Nicola D.; Aleksieva, Katerina

    2009-01-01

    The results of electron paramagnetic resonance (EPR) study on fresh fruits (whole pulp of pears, apples, peaches, apricots, avocado, kiwi and mango) before and after gamma-irradiation are reported using two drying procedures before EPR investigation. In order to remove water from non-irradiated and irradiated samples of the first batch, the pulp of fresh fruits is pressed, and the solid residue is washed with alcohol and dried at room temperature. The fruits of the second batch are pressed and dried in a standard laboratory oven at 40 deg. C. The results obtained with both drying procedures are compared. All samples under study show a singlet EPR line with g=2.0048±0.0005 before irradiation. Irradiation gives rise to typical 'cellulose-like' EPR spectrum featuring one intensive line with g=2.0048±0.0005 and two very weak satellite lines situated 3 mT at left and right of the central line. Only mango samples show a singlet line after irradiation. The fading kinetics of radiation-induced EPR signal is studied for a period of 50 days after irradiation. When the irradiated fruit samples are stored in their natural state and dried just before each EPR measurement, the satellite lines are measurable for less than 17 days of storage. Irradiated fruit samples, when stored dried, lose for 50 days ca. 40% of their radiation-induced radicals if treated with alcohol or ca. 70% if dried in an oven. The reported results unambiguously show that the presence of the satellite lines in the EPR spectra could be used for identification of radiation processing of fresh fruits, thus extending the validity of European Protocol EN 1787 (2000). Foodstuffs-Detection of Irradiated Food Containing Cellulose by EPR Spectroscopy. European Committee for Standardisation. Brussels for dry herbs

  18. Preparation and applicability of fresh fruit samples for the identification of radiation treatment by EPR

    Science.gov (United States)

    Yordanov, Nicola D.; Aleksieva, Katerina

    2009-03-01

    The results of electron paramagnetic resonance (EPR) study on fresh fruits (whole pulp of pears, apples, peaches, apricots, avocado, kiwi and mango) before and after gamma-irradiation are reported using two drying procedures before EPR investigation. In order to remove water from non-irradiated and irradiated samples of the first batch, the pulp of fresh fruits is pressed, and the solid residue is washed with alcohol and dried at room temperature. The fruits of the second batch are pressed and dried in a standard laboratory oven at 40 °C. The results obtained with both drying procedures are compared. All samples under study show a singlet EPR line with g=2.0048±0.0005 before irradiation. Irradiation gives rise to typical "cellulose-like" EPR spectrum featuring one intensive line with g=2.0048±0.0005 and two very weak satellite lines situated 3 mT at left and right of the central line. Only mango samples show a singlet line after irradiation. The fading kinetics of radiation-induced EPR signal is studied for a period of 50 days after irradiation. When the irradiated fruit samples are stored in their natural state and dried just before each EPR measurement, the satellite lines are measurable for less than 17 days of storage. Irradiated fruit samples, when stored dried, lose for 50 days ca. 40% of their radiation-induced radicals if treated with alcohol or ca. 70% if dried in an oven. The reported results unambiguously show that the presence of the satellite lines in the EPR spectra could be used for identification of radiation processing of fresh fruits, thus extending the validity of European Protocol EN 1787 (2000). Foodstuffs—Detection of Irradiated Food Containing Cellulose by EPR Spectroscopy. European Committee for Standardisation. Brussels for dry herbs.

  19. Parametric roll resonance monitoring using signal-based detection

    DEFF Research Database (Denmark)

    Galeazzi, Roberto; Blanke, Mogens; Falkenberg, Thomas

    2015-01-01

    Extreme roll motion of ships can be caused by several phenomena, one of which is parametric roll resonance. Several incidents occurred unexpectedly around the millennium and caused vast fiscal losses on large container vessels. The phenomenon is now well understood and some consider parametric roll...... algorithms in real conditions, and to evaluate the frequency of parametric roll events on the selected vessels. Detection performance is scrutinised through the validation of the detected events using owners’ standard methods, and supported by available wave radar data. Further, a bivariate statistical...... analysis of the outcome of the signal-based detectors is performed to assess the real life false alarm probability. It is shown that detection robustness and very low false warning rates are obtained. The study concludes that small parametric roll events are occurring, and that the proposed signal...

  20. High-field EPR on membrane proteins - crossing the gap to NMR.

    Science.gov (United States)

    Möbius, Klaus; Lubitz, Wolfgang; Savitsky, Anton

    2013-11-01

    In this review on advanced EPR spectroscopy, which addresses both the EPR and NMR communities, considerable emphasis is put on delineating the complementarity of NMR and EPR concerning the measurement of molecular interactions in large biomolecules. From these interactions, detailed information can be revealed on structure and dynamics of macromolecules embedded in solution- or solid-state environments. New developments in pulsed microwave and sweepable cryomagnet technology as well as ultrafast electronics for signal data handling and processing have pushed to new horizons the limits of EPR spectroscopy and its multifrequency extensions concerning the sensitivity of detection, the selectivity with respect to interactions, and the resolution in frequency and time domains. One of the most important advances has been the extension of EPR to high magnetic fields and microwave frequencies, very much in analogy to what happens in NMR. This is exemplified by referring to ongoing efforts for signal enhancement in both NMR and EPR double-resonance techniques by exploiting dynamic nuclear or electron spin polarization via unpaired electron spins and their electron-nuclear or electron-electron interactions. Signal and resolution enhancements are particularly spectacular for double-resonance techniques such as ENDOR and PELDOR at high magnetic fields. They provide greatly improved orientational selection for disordered samples that approaches single-crystal resolution at canonical g-tensor orientations - even for molecules with small g-anisotropies. Exchange of experience between the EPR and NMR communities allows for handling polarization and resolution improvement strategies in an optimal manner. Consequently, a dramatic improvement of EPR detection sensitivity could be achieved, even for short-lived paramagnetic reaction intermediates. Unique structural and dynamic information is thus revealed that can hardly be obtained by any other analytical techniques. Micromolar

  1. EPR spectroscopic investigation of psoriatic finger nails.

    Science.gov (United States)

    Nakagawa, Kouichi; Minakawa, Satoko; Sawamura, Daisuke

    2013-11-01

    Nail lesions are common features of psoriasis and found in almost half of the patients. However, there is no feasible spectroscopic method evaluating changes and severity of nail psoriasis. EPR (electron paramagnetic resonance) might be feasible for evaluating nail conditions in the patients of psoriasis. Finger nails of five cases with nail psoriasis, (three females and two males) were examined. Nail samples were subjected to the EPR assay. The small piece of the finger nail (1.5 × 5 mm(2)) was incubated in ~50 μM 5-DSA (5-doxylstearic acid) aqueous solutions for about 60 min at 37°C. After rinsing and wiping off the excess 5-DSA solution, the nail samples were measured by EPR. EPR spectra were analyzed using the intensity ratio (Fast/Slow) of the two motions at the peaks of the lower magnetic field. We observed two distinguishable sites on the basis of the EPR results. In addition, the modern EPR calculation was performed to analyze the spectra obtained. The nail psoriasis-related region is 2~3 times higher than that of the control. The present EPR results show that there are two distinguishable sites in the nail. In the case of nail psoriasis, the fragile components are 2~3 times more than those of the control. Thus, the EPR method is thought to be a novel and reliable method of evaluating the nail psoriasis. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. EPR STUDIES OF THERMALLY STERILIZED VASELINUM ALBUM.

    Science.gov (United States)

    Ramos, Paweł; Pilawa, Barbara

    2015-01-01

    Electron paramagnetic resonance (EPR) spectroscopy was used for examination of free radicals in thermally treated vaselinum album (VA). Thermal treatment in hot air as sterilization process was tested. Conditions of thermal sterilization were chosen according to the pharmaceutical norms. Vaselinum album was heated at the following conditions (T--temperature, t--time): T = 160°C and t = 120 min, T = 170°C and t = 60 min and T = 180°C and t = 30 min. The aim of this work was to determine concentration and free radical properties of thermally sterilized VA. EPR analysis for VA was done 15 min after sterilization. EPR measurements were done at room temperature. EPR spectra were recorded in the range of microwave power of 2.2-70 mW. g-Factor, amplitudes (A) and line width (ΔBpp) of the spectra were determined. The shape of the EPR spectra was analyzed. Free radical concentration (N) in the heated samples was determined. EPR spectra were not obtained for the non heated VA. EPR spectra were detected for all thermally sterilized samples. The spectra revealed complex character, their asymmetry depends on microwave power. The lowest free radicals concentration was found for the VA sterilized at 180°C during 30 min. EPR spectroscopy is proposed as the method useful for optimization of sterilization process of drugs.

  3. Evaluation by EPR of potential antioxidant components of 60Co-irradiated varieties of soybean

    International Nuclear Information System (INIS)

    Oliveira, Marcos Ronaldo Ramos de

    2009-01-01

    Brazil is today the second main producer of soybean in the world with a planted ground of about 21 million hectares and an annual production of 60 million tons in 2008, being slight more than a fourth of the annual production. The presence of flavonoids, particularly isoflavones in soybean products has been related as important for human health. It has been suggested that flavonoids play a role in the protection of plants by screening vital cellular components from damaging UV radiation. Electron paramagnetic resonance (EPR) spectroscopy can measure free radicals produced by dissociation molecules resulting from irradiation. It has been successfully employed for the detection of some irradiated food products. Twenty one Brazilian soybean cultivars from two crops were gamma-irradiated with a 60 Co source and evaluated by EPR. Correlation coefficients were made among the central EPR signal (g = 2.0039) and the total and partial isoflavones contents. There was no correlation with total contents, though glicitein and acetyl-daidzin showed a negative correlation. Even 7 months after irradiation the intensity of central EPR signal were high enough to distinguish the irradiated samples. EPR measurements of separated parts of the grain were more efficient for that purpose, particularly from hilum and coat. The radiation did not change substantially the total isoflavone contents, although there were some evidences suggesting some conversion of glycosides to aglycones. (author)

  4. New developed cylindrical TM010 mode EPR cavity for X-band in vivo tooth dosimetry.

    Directory of Open Access Journals (Sweden)

    Guo Junwang

    Full Text Available EPR tooth in vivo dosimetry is an attractive approach for initial triage after unexpected nuclear events. An X-band cylindrical TM010 mode resonant cavity was developed for in vivo tooth dosimetry and used in EPR applications for the first time. The cavity had a trapezoidal measuring aperture at the exact position of the cavity's cylindrical wall where strong microwave magnetic field H1 concentrated and weak microwave electric field E1 distributed. Theoretical calculations and simulations were used to design and optimize the cavity parameters. The cavity features were evaluated by measuring DPPH sample, intact incisor samples embed in a gum model and the rhesus monkey teeth. The results showed that the cavity worked at designed frequency and had the ability to make EPR spectroscopy in relative high sensitivity. Sufficient modulation amplitude and microwave power could be applied into the aperture. Radiation induced EPR signal could be observed remarkably from 1 Gy irradiated intact incisor within only 30 seconds, which was among the best in scan time and detection limit. The in vivo spectroscopy was also realized by acquiring the radiation induced EPR signal from teeth of rhesus monkey whose teeth was irradiated by dose of 2 Gy. The results suggested that the cavity was sensitive to meet the demand to assess doses of significant level in short time. This cavity provided a very potential option for the development of X-band in vivo dosimetry.

  5. Investigating Pigment Radicals in Black Rice Using HPLC and Multi-EPR.

    Science.gov (United States)

    Nakagawa, Kouichi; Maeda, Hayato

    2017-01-01

    We investigated the location and distribution of paramagnetic species in black and white rice using electron paramagnetic resonance (EPR), X-band (9 GHz) EPR imaging (EPRI), and HPLC. EPR primarily detected two paramagnetic species in black rice, which were identified as a stable radical and Mn 2+ species, based on the g values and hyperfine components of the EPR signals. The signal from the stable radical appeared at g ≈ 2.00 and was relatively strong and stable. Subsequent noninvasive two-dimensional (2D) EPRI revealed that this stable radical was primarily located in the pigmented region of black rice, while very few radicals were observed in the rice interior. Pigments extracted from black rice were analyzed using HPLC; the major compound was found to be cyanidin-3-glucoside. EPR and HPLC results indicate that the stable radical was only found within the pigmented region of the rice, and that it could either be cyanidin-3-glucoside, or one of its oxidative decomposition products.

  6. EPR investigation of some traditional oriental irradiated spices

    International Nuclear Information System (INIS)

    Duliu, Octavian G.; Georgescu, Rodica; Ali, Shaban Ibrahim

    2007-01-01

    The 9.50 GHz electron paramagnetic resonance (EPR) spectra of unirradiated and 60 Co γ-ray irradiated cardamom (Elettaria cardamomum L. Maton, Zingiberaceae), ginger ((Zingiber officinale Rosc., Zingiberaceae), and saffron (Crocus sativus L., Iridaceae) have been investigated at room temperature. All unirradiated spices presented a weak resonance line with g-factors around free-electron ones. After γ-ray irradiation at an absorbed dose of up to 11.3 kGy, the presence of EPR spectra whose amplitude increase monotonously with the absorbed dose has been noticed with all spices. A 100 o C isothermal annealing of 11.3 kGy irradiated samples has shown a differential reduction of amplitude of various components that compose initial spectra, but even after 3.6 h of thermal treatment, the remaining amplitude represents no less then 30% of the initial ones. The same peculiarities have been noticed after 83 days storage at room temperature but after 340 days storage at ambient conditions only irradiated ginger displays a weak signal that differs from those of unirradiated sample. All these factors could be taken into account in establishing at which extent the EPR is suitable to evidence any irradiation treatment applied to these spices

  7. EPR investigation of some traditional oriental irradiated spices

    Energy Technology Data Exchange (ETDEWEB)

    Duliu, Octavian G. [University of Bucharest, Department of Atomic and Nuclear Physics, Magurele, C.P. MG-11, RO-077125 Bucharest (Romania)]. E-mail: duliu@pcnet.ro; Georgescu, Rodica [National Institute for Physics and Nuclear Engineering -Horia Hulubei, C.P. MG-6, RO-077125 Bucharest (Romania); Ali, Shaban Ibrahim [University of Bucharest, Department of Atomic and Nuclear Physics, Magurele, C.P. MG-11, RO-077125 Bucharest (Romania)

    2007-06-15

    The 9.50 GHz electron paramagnetic resonance (EPR) spectra of unirradiated and {sup 60}Co {gamma}-ray irradiated cardamom (Elettaria cardamomum L. Maton, Zingiberaceae), ginger ((Zingiber officinale Rosc., Zingiberaceae), and saffron (Crocus sativus L., Iridaceae) have been investigated at room temperature. All unirradiated spices presented a weak resonance line with g-factors around free-electron ones. After {gamma}-ray irradiation at an absorbed dose of up to 11.3 kGy, the presence of EPR spectra whose amplitude increase monotonously with the absorbed dose has been noticed with all spices. A 100 {sup o}C isothermal annealing of 11.3 kGy irradiated samples has shown a differential reduction of amplitude of various components that compose initial spectra, but even after 3.6 h of thermal treatment, the remaining amplitude represents no less then 30% of the initial ones. The same peculiarities have been noticed after 83 days storage at room temperature but after 340 days storage at ambient conditions only irradiated ginger displays a weak signal that differs from those of unirradiated sample. All these factors could be taken into account in establishing at which extent the EPR is suitable to evidence any irradiation treatment applied to these spices.

  8. EPR investigation of some traditional oriental irradiated spices

    Science.gov (United States)

    Duliu, Octavian G.; Georgescu, Rodica; Ali, Shaban Ibrahim

    2007-06-01

    The 9.50 GHz electron paramagnetic resonance (EPR) spectra of unirradiated and 60Co γ-ray irradiated cardamom ( Elettaria cardamomum L. Maton, Zingiberaceae), ginger (( Zingiber officinale Rosc., Zingiberaceae), and saffron ( Crocus sativus L., Iridaceae) have been investigated at room temperature. All unirradiated spices presented a weak resonance line with g-factors around free-electron ones. After γ-ray irradiation at an absorbed dose of up to 11.3 kGy, the presence of EPR spectra whose amplitude increase monotonously with the absorbed dose has been noticed with all spices. A 100 °C isothermal annealing of 11.3 kGy irradiated samples has shown a differential reduction of amplitude of various components that compose initial spectra, but even after 3.6 h of thermal treatment, the remaining amplitude represents no less then 30% of the initial ones. The same peculiarities have been noticed after 83 days storage at room temperature but after 340 days storage at ambient conditions only irradiated ginger displays a weak signal that differs from those of unirradiated sample. All these factors could be taken into account in establishing at which extent the EPR is suitable to evidence any irradiation treatment applied to these spices.

  9. Modeling the diffusion magnetic resonance imaging signal inside neurons

    International Nuclear Information System (INIS)

    Nguyen, D V; Li, J R; Grebenkov, D S; Le Bihan, D

    2014-01-01

    The Bloch-Torrey partial differential equation (PDE) describes the complex transverse water proton magnetization due to diffusion-encoding magnetic field gradient pulses. The integral of the solution of this PDE yields the diffusion magnetic resonance imaging (dMRI) signal. In a complex medium such as cerebral tissue, it is difficult to explicitly link the dMRI signal to biological parameters such as the cellular geometry or the cellular volume fraction. Studying the dMRI signal arising from a single neuron can provide insight into how the geometrical structure of neurons influences the measured signal. We formulate the Bloch-Torrey PDE inside a single neuron, under no water exchange condition with the extracellular space, and show how to reduce the 3D simulation in the full neuron to a 3D simulation around the soma and 1D simulations in the neurites. We show that this latter approach is computationally much faster than full 3D simulation and still gives accurate results over a wide range of diffusion times

  10. Various approaches in EPR identification of gamma-irradiated plant foodstuffs: A review.

    Science.gov (United States)

    Aleksieva, Katerina I; Yordanov, Nicola D

    2018-03-01

    Irradiation of food in the world is becoming a preferred method for their sterilization and extending their shelf life. For the purpose of trade with regard to the rights of consumers is necessary marking of irradiated foodstuffs, and the use of appropriate methods for unambiguous identification of radiation treatment. One-third of the current standards of the European Union to identify irradiated foods use the method of the Electron Paramagnetic Resonance (EPR) spectroscopy. On the other hand the current standards for irradiated foods of plant origin have some weaknesses that led to the development of new methodologies for the identification of irradiated food. New approaches for EPR identification of radiation treatment of herbs and spices when the specific signal is absent or disappeared after irradiation are discussed. Direct EPR measurements of dried fruits and vegetables and different pretreatments for fresh samples are reviewed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Detection and identification of nitrogen defects in nanodiamond as studied by EPR

    Energy Technology Data Exchange (ETDEWEB)

    Soltamova, A.A.; Ilyin, I.V. [Ioffe Physical Technical Institute, Politechnicheskaya, 26, St. Petersburg 194021 (Russian Federation); Baranov, P.G., E-mail: pavel.baranov@mail.ioffe.r [Ioffe Physical Technical Institute, Politechnicheskaya, 26, St. Petersburg 194021 (Russian Federation); Vul' , A.Ya.; Kidalov, S.V.; Shakhov, F.M. [Ioffe Physical Technical Institute, Politechnicheskaya, 26, St. Petersburg 194021 (Russian Federation); Mamin, G.V.; Orlinskii, S.B.; Silkin, N.I.; Salakhov, M.Kh. [Kazan State University, Federal Center of Shared Usage for Physicochemical Measurements, Kazan 420008 (Russian Federation)

    2009-12-15

    Electron paramagnetic resonance (EPR) and electron spin echo (ESE) at X-band and at high-frequency W-band (95 GHz) have been used to study defects in natural diamond nanocrystals, detonation nanodiamond (ND) with a size of approx4.5 nm and detonation ND after high-temperature, high-pressure sintering with a size of approx8.5 nm. Atomic nitrogen centers N{sup 0} and nitrogen pairs N{sub 2}{sup +} have been detected and identified and their structure has been unambiguously determined by means of the high frequency EPR and ESE in natural diamond nanocrystals. In detonation ND and detonation ND after sintering atomic nitrogen centers N{sup 0} have been discovered in nanodiamond core. In addition EPR signal of multi-vacancy centers with spin 3/2 seems to be observed in diamond core of detonation ND.

  12. Perspectives of shaped pulses for EPR spectroscopy

    Science.gov (United States)

    Spindler, Philipp E.; Schöps, Philipp; Kallies, Wolfgang; Glaser, Steffen J.; Prisner, Thomas F.

    2017-07-01

    This article describes current uses of shaped pulses, generated by an arbitrary waveform generator, in the field of EPR spectroscopy. We show applications of sech/tanh and WURST pulses to dipolar spectroscopy, including new pulse schemes and procedures, and discuss the more general concept of optimum-control-based pulses for applications in EPR spectroscopy. The article also describes a procedure to correct for experimental imperfections, mostly introduced by the microwave resonator, and discusses further potential applications and limitations of such pulses.

  13. Accelerated dynamic EPR imaging using fast acquisition and compressive recovery.

    Science.gov (United States)

    Ahmad, Rizwan; Samouilov, Alexandre; Zweier, Jay L

    2016-12-01

    Electron paramagnetic resonance (EPR) allows quantitative imaging of tissue redox status, which provides important information about ischemic syndromes, cancer and other pathologies. For continuous wave EPR imaging, however, poor signal-to-noise ratio and low acquisition efficiency limit its ability to image dynamic processes in vivo including tissue redox, where conditions can change rapidly. Here, we present a data acquisition and processing framework that couples fast acquisition with compressive sensing-inspired image recovery to enable EPR-based redox imaging with high spatial and temporal resolutions. The fast acquisition (FA) allows collecting more, albeit noisier, projections in a given scan time. The composite regularization based processing method, called spatio-temporal adaptive recovery (STAR), not only exploits sparsity in multiple representations of the spatio-temporal image but also adaptively adjusts the regularization strength for each representation based on its inherent level of the sparsity. As a result, STAR adjusts to the disparity in the level of sparsity across multiple representations, without introducing any tuning parameter. Our simulation and phantom imaging studies indicate that a combination of fast acquisition and STAR (FASTAR) enables high-fidelity recovery of volumetric image series, with each volumetric image employing less than 10 s of scan. In addition to image fidelity, the time constants derived from FASTAR also match closely to the ground truth even when a small number of projections are used for recovery. This development will enhance the capability of EPR to study fast dynamic processes that cannot be investigated using existing EPR imaging techniques. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Parallel image-acquisition in continuous-wave electron paramagnetic resonance imaging with a surface coil array: Proof-of-concept experiments

    Science.gov (United States)

    Enomoto, Ayano; Hirata, Hiroshi

    2014-02-01

    This article describes a feasibility study of parallel image-acquisition using a two-channel surface coil array in continuous-wave electron paramagnetic resonance (CW-EPR) imaging. Parallel EPR imaging was performed by multiplexing of EPR detection in the frequency domain. The parallel acquisition system consists of two surface coil resonators and radiofrequency (RF) bridges for EPR detection. To demonstrate the feasibility of this method of parallel image-acquisition with a surface coil array, three-dimensional EPR imaging was carried out using a tube phantom. Technical issues in the multiplexing method of EPR detection were also clarified. We found that degradation in the signal-to-noise ratio due to the interference of RF carriers is a key problem to be solved.

  15. EPR studies of chromium(V) intermediates generated via reduction of chromium(VI) by DOPA and related catecholamines

    DEFF Research Database (Denmark)

    Pattison, D I; Lay, P A; Davies, Michael Jonathan

    2000-01-01

    The reductions of K2Cr2O7 by catecholamines, DOPA, DOPA-beta,beta-d2, N-acetyl-DOPA, alpha-methyl-DOPA, dopamine, adrenaline, noradrenaline, catechol, 1,2-dihydroxybenzoic acid (DHBA), and 4-tert-butylcatechol (TBC), produce a number of Cr(V) electron paramagnetic resonance (EPR) signals. These s......The reductions of K2Cr2O7 by catecholamines, DOPA, DOPA-beta,beta-d2, N-acetyl-DOPA, alpha-methyl-DOPA, dopamine, adrenaline, noradrenaline, catechol, 1,2-dihydroxybenzoic acid (DHBA), and 4-tert-butylcatechol (TBC), produce a number of Cr(V) electron paramagnetic resonance (EPR) signals...... deuteration or enrichment with 15N), and simulation of the signals, show that the superhyperfine couplings originate from the side chain protons, confirming that the catecholamine ligands are cyclized. At pH 3.5, a major short-lived EPR signal is observed for many of the substrates at g(iso) approximately 1......) species with a sixth ligand (e.g. H2O). Addition of catalase or deoxygenation of the solutions did not affect the main EPR signals. When the substrates were in excess (pH > 4.5), primary and secondary (cyclized) semiquinones were also detected. Semiquinone stabilization by Zn(II) complexation yielded...

  16. Improved stochastic resonance algorithm for enhancement of signal-to-noise ratio of high-performance liquid chromatographic signal

    International Nuclear Information System (INIS)

    Xie Shaofei; Xiang Bingren; Deng Haishan; Xiang Suyun; Lu Jun

    2007-01-01

    Based on the theory of stochastic resonance, an improved stochastic resonance algorithm with a new criterion for optimizing system parameters to enhance signal-to-noise ratio (SNR) of HPLC/UV chromatographic signal for trace analysis was presented in this study. Compared with the conventional criterion in stochastic resonance, the proposed one can ensure satisfactory SNR as well as good peak shape of chromatographic peak in output signal. Application of the criterion to experimental weak signals of HPLC/UV was investigated and the results showed an excellent quantitative relationship between different concentrations and responses

  17. Electron paramagnetic resonance (EPR) of antiferromagnetic nanoparticles of La1-xSrxCrO3 (0.000 ≤ x ≤ 0.020) synthesized by combustion reaction

    International Nuclear Information System (INIS)

    Franco, Adolfo; Santana, Ricardo C.

    2010-01-01

    Nanocrystalline particles of La 1-x Sr x CrO 3 (0.000 ≤ x ≤ 0.020) compounds were synthesized in order to investigate the antiferromagnetic (AFM) to paramagnetic (PM) phase transition temperature, g-factor, line width and intensity by electron paramagnetic resonance (EPR). All samples were synthesized by combustion reaction method using strontium nitrate, lanthanum nitrate, chromium nitrate and urea as fuel without subsequent heat treatment. X-ray diffraction patterns of all systems showed broad peaks consistent with orthorhombic structure of LaCrO 3 . The absence of extra reflections in the diffraction patterns of as-prepared materials ensures the phase purity. The average crystallite sizes determined from the prominent (1 1 2) peak of the diffraction using Scherrer's equation was independent of the addition of Sr 2+ ions; being ca. 31-29 nm for x = 0.000 and 0.020, respectively. The EPR line width and intensity were found to be dependent on Sr 2+ addition and temperature. However, the AFM-PM transition temperature was found to be independent of strontium concentration, being ca. 296 K. In the PM phase, g-factor was nearly temperature independent with increasing of x. The EPR results indicated that the addition of Sr 2+ ions may induce creation of Cr 3+ -Cr 4+ clusters.

  18. EPR of uranium ions

    International Nuclear Information System (INIS)

    Ursu, I.; Lupei, V.

    1984-02-01

    A review of the electron paramagnetic resonance data on the uranium ions is given. After a general account of the electronic structure of the uranium free atoms and ions, the influence of the external fields (magnetic field, crystal fields) is discussed. The main information obtained from EPR studies on the uranium ions in crystals are emphasized: identification of the valence and of the ground electronic state, determination of the structure of the centers, crystal field effects, role of the intermediate coupling and of the J-mixing, role of the covalency, determination of the nuclear spin, maqnetic dipole moment and electric quadrupole moment of the odd isotopes of uranium. These data emphasize the fact that the actinide group has its own identity and this is accutely manifested at the beginning of the 5fsup(n) series encompassed by the uranium ions. (authors)

  19. Non-invasive determination of the irradiation dose in fingers using low-frequency EPR

    International Nuclear Information System (INIS)

    Zdravkova, M; Crokart, N; Trompier, F; Beghein, N; Gallez, B; Debuyst, R

    2004-01-01

    Several reports in the literature have described the effects of radiation in workers who exposed their fingers to intense radioactive sources. The radiation injuries occurring after local exposure to a high dose (20 to 100 Gy) could lead to the need for amputation. Follow-up of victims needs to be more rational with a precise knowledge of the irradiated area that risks tissue degradation and necrosis. It has been described previously that X-band electron paramagnetic resonance (EPR) spectroscopy could be used to assess the dose in irradiated amputated fingers. Here, we propose the use of low-frequency EPR spectroscopy to evaluate non-invasively the absorbed dose. Low-frequency microwaves are indeed less absorbed by water and penetrate more deeply into living material (∼10 mm in tissues using 1 GHz spectrometers). This work presents preliminary results obtained with baboon and human fingers compared with human dry phalanxes placed inside a surface-coil resonator. The EPR signal increased linearly with the dose. The ratio of the slopes of the dry bone to whole finger linear regression lines was around 5. The detection limit achievable with the present spectrometer and resonator is around 60 Gy, which is well within the range of accidentally exposed fingers. It is likely that the detection limit could be improved in the future, thanks to further technical spectrometer and resonator developments as well as to appropriate spectrum deconvolution into native and dosimetric signals

  20. Detection of Redox Imbalance in Normal Lymphocytes with Induced Mitochondrial Dysfunction - EPR Study.

    Science.gov (United States)

    Georgieva, Ekaterina; Zhelev, Zhivko; Aoki, Ichio; Bakalova, Rumiana; Higashi, Tatsuya

    2016-10-01

    The present study describes a new approach for direct imaging of redox status in live cells using paramagnetic spin-probes, which allows evaluation of the level of oxidative stress due to overproduction of superoxide. The method is based on redox cycling of cell/mitochondria-penetrating nitroxide radicals (e.g. mito-TEMPO) and their electron-paramagnetic resonance (EPR) contrast, which makes them useful molecular sensors for analysis of redox status and oxidative stress in cells and tissues. Oxidative stress was induced in normal human lymphocytes by treatment with 2-methoxyestradiol and rotenone (ME/Rot) at different concentrations. This combination provokes mitochondrial dysfunction, which is accompanied by overproduction of superoxide. The EPR measurements were performed in dynamics on X-Band spectrometer after addition of mito-TEMPO to cell suspensions. The intensity of the EPR signal in untreated cells decreased significantly, which indicates a conversion of paramagnetic mito-TEMPO to its non-contrast diamagnetic form (hydroxylamine - mito-TEMPOH) due to reduction. In ME/Rot-treated cells, the signal decreased more slowly and to a lower level with increasing the concentration of ME/Rot. These data indicate an induction of oxidative stress in the cells in a concentration-dependent manner. A very good positive correlation between the intensity of EPR signal of mito-TEMPO and the intracellular level of superoxide was found, analyzed by conventional dihydroethidium test (R=0.9143, pEPR imaging of the superoxide level in live cells, as well as for EPR imaging of mitochondrial dysfunction and metabolic activity, accompanied by superoxide imbalance. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  1. Retrospective dosimetry of nail by Electron Paramagnetic Resonance

    International Nuclear Information System (INIS)

    Giannoni, Ricardo A.; Rodrigues Junior, Orlando

    2015-01-01

    The purpose of this study is to characterize samples of human nails, subjected to irradiation of high doses through Technical Electron Paramagnetic Resonance (EPR). The goal is to establish a dose/response relationship in order to assess dose levels absorbed by individuals exposed in radiation accidents situations, retrospectively. Samples of human nails were irradiated with gamma radiation, and received a dose of 20 Gy. EPR measurements performed on samples before irradiation identified EPR signals associated with defects caused by the mechanical action of the sample collection. After irradiation other species of free radicals, associated with the action of gamma radiation, have been identified

  2. Physically-based biodosimetry using in vivo EPR of teeth in patients undergoing total body irradiation

    Science.gov (United States)

    Williams, Benjamin B.; Dong, Ruhong; Nicolalde, Roberto J.; Matthews, Thomas P.; Gladstone, David J.; Demidenko, Eugene; Zaki, Bassem I.; Salikhov, Ildar K.; Lesniewski, Piotr N.; Swartz, Harold M.

    2014-01-01

    Purpose The ability to estimate individual exposures to radiation following a large attack or incident has been identified as a necessity for rational and effective emergency medical response. In vivo electron paramagnetic resonance (EPR) spectroscopy of tooth enamel has been developed to meet this need. Materials and methods A novel transportable EPR spectrometer, developed to facilitate tooth dosimetry in an emergency response setting, was used to measure upper incisors in a model system, in unirradiated subjects, and in patients who had received total body doses of 2 Gy. Results A linear dose response was observed in the model system. A statistically significant increase in the intensity of the radiation-induced EPR signal was observed in irradiated versus unirradiated subjects, with an estimated standard error of dose prediction of 0.9 + 0.3 Gy. Conclusions These results demonstrate the current ability of in vivo EPR tooth dosimetry to distinguish between subjects who have not been irradiated and those who have received exposures that place them at risk for acute radiation syndrome. Procedural and technical developments to further increase the precision of dose estimation and ensure reliable operation in the emergency setting are underway. With these developments EPR tooth dosimetry is likely to be a valuable resource for triage following potential radiation exposure of a large population. PMID:21696339

  3. The Third International Intercomparison on EPR Tooth Dosimetry: Part 2, final analysis

    International Nuclear Information System (INIS)

    Wieser, A.; Debuyst, R.; Fattibene, P.; Meghzifene, A.; Onori, S.; Bayankin, S. N.; Brik, A.; Bugay, A.; Chumak, V.; Ciesielski, B.; Hoshi, M.; Imata, H.; Ivannikov, A.; Ivanov, D.; Junczewska, M.; Miyazawa, C.; Penkowski, M.; Pivovarov, S.; Romanyukha, A.; Romanyukha, L.; Schauer, D.; Scherbina, O.; Schultka, K.; Sholom, S.; Skvortsov, V.; Stepanenko, V.; Thomas, J. A.; Tielewuhan, E.; Toyoda, S.; Trompier, F.

    2006-01-01

    The objective of the Third International Intercomparison on EPR Tooth Dosimetry was to evaluate laboratories performing tooth enamel dosimetry <300 mGy. Final analysis of results included a correlation analysis between features of laboratory dose reconstruction protocols and dosimetry performance. Applicability of electron paramagnetic resonance (EPR) tooth dosimetry at low dose was shown at two applied dose levels of 79 and 176 mGy. Most (9 of 12) laboratories reported the dose to be within 50 mGy of the delivered dose of 79 mGy, and 10 of 12 laboratories reported the dose to be within 100 mGy of the delivered dose of 176 mGy. At the high-dose tested (704 mGy) agreement within 25% of the delivered dose was found in 10 laboratories. Features of EPR dose reconstruction protocols that affect dosimetry performance were found to be magnetic field modulation amplitude in EPR spectrum recording, EPR signal model in spectrum deconvolution and duration of latency period for tooth enamel samples after preparation. (authors)

  4. Scope and limitations of the TEMPO/EPR method for singlet oxygen detection: the misleading role of electron transfer.

    Science.gov (United States)

    Nardi, Giacomo; Manet, Ilse; Monti, Sandra; Miranda, Miguel A; Lhiaubet-Vallet, Virginie

    2014-12-01

    For many biological and biomedical studies, it is essential to detect the production of (1)O2 and quantify its production yield. Among the available methods, detection of the characteristic 1270-nm phosphorescence of singlet oxygen by time-resolved near-infrared (TRNIR) emission constitutes the most direct and unambiguous approach. An alternative indirect method is electron paramagnetic resonance (EPR) in combination with a singlet oxygen probe. This is based on the detection of the TEMPO free radical formed after oxidation of TEMP (2,2,6,6-tetramethylpiperidine) by singlet oxygen. Although the TEMPO/EPR method has been widely employed, it can produce misleading data. This is demonstrated by the present study, in which the quantum yields of singlet oxygen formation obtained by TRNIR emission and by the TEMPO/EPR method are compared for a set of well-known photosensitizers. The results reveal that the TEMPO/EPR method leads to significant overestimation of singlet oxygen yield when the singlet or triplet excited state of the photosensitizer is efficiently quenched by TEMP, acting as electron donor. In such case, generation of the TEMP(+) radical cation, followed by deprotonation and reaction with molecular oxygen, gives rise to an EPR-detectable TEMPO signal that is not associated with singlet oxygen production. This knowledge is essential for an appropriate and error-free application of the TEMPO/EPR method in chemical, biological, and medical studies. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Physiological and pathophysiological reactive oxygen species as probed by EPR spectroscopy: the underutilized research window on muscle ageing.

    Science.gov (United States)

    A Abdel-Rahman, Engy; Mahmoud, Ali M; Khalifa, Abdulrahman M; Ali, Sameh S

    2016-08-15

    Reactive oxygen and nitrogen species (ROS and RNS) play crucial roles in triggering, mediating and regulating physiological and pathophysiological signal transduction pathways within the cell. Within the cell, ROS efflux is firmly controlled both spatially and temporally, making the study of ROS dynamics a challenging task. Different approaches have been developed for ROS assessment; however, many of these assays are not capable of direct identification or determination of subcellular localization of different ROS. Here we highlight electron paramagnetic resonance (EPR) spectroscopy as a powerful technique that is uniquely capable of addressing questions on ROS dynamics in different biological specimens and cellular compartments. Due to their critical importance in muscle functions and dysfunction, we discuss in some detail spin trapping of various ROS and focus on EPR detection of nitric oxide before highlighting how EPR can be utilized to probe biophysical characteristics of the environment surrounding a given stable radical. Despite the demonstrated ability of EPR spectroscopy to provide unique information on the identity, quantity, dynamics and environment of radical species, its applications in the field of muscle physiology, fatiguing and ageing are disproportionately infrequent. While reviewing the limited examples of successful EPR applications in muscle biology we conclude that the field would greatly benefit from more studies exploring ROS sources and kinetics by spin trapping, protein dynamics by site-directed spin labelling, and membrane dynamics and global redox changes by spin probing EPR approaches. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  6. Identification and dose assessment of irradiated cardamom and cloves by EPR spectrometry

    International Nuclear Information System (INIS)

    Beshir, W.B.

    2014-01-01

    The use of electron paramagnetic resonance spectroscopy to accurately distinguish irradiated from unirradiated cardamom and cloves and assesses the absorbed dose to radiation processed cardamom and cloves are examined. The results were successful for identifying both irradiated and unirradiated cardamom and cloves. Additive reirradiation of cardamom and cloves produces reproducible dose–response functions, which can be used to assess the initial dose by back-extrapolation. Third degree polynomial function was used to fit the EPR signal/dose curves. It was found that this 3rd degree polynomial function provides satisfactory results without correction of decay for free radicals. The stability of the radiation induced EPR signal of irradiated cardamom and cloves were studied over a storage period of almost 8 months. The calculated G-value (The number of radicals per 100 eV of absorbed energy) for cardamom and cloves was found 0.07±0.01 and 0.055±0.01, respectively. - Highlights: • The EPR analysis of cardamom and cloves prove the sample has been irradiated or not. • Dose additive can be used for evaluation of the absorbed dose in cardamom and cloves. • The 3rd polynomial function can be used to fit the data and the estimated dose. • The stability of the radiation induced EPR signal of irradiated cardamom and cloves were studied over 2 months

  7. EPR of alanine irradiated by neutrons

    International Nuclear Information System (INIS)

    Pivovarov, S.P.; Seredavina, T.A.; Zhdanov, S.V.; Mul'gin, S.I.; Zhakparov, R.K.

    2001-01-01

    In the work the first results of EPR studies of alanine, irradiated with diverse doses at neutron cyclotron generator different conditions and on the critical reactor stand are presented. A dose linearity dependence of EPR signal is observing, the methods of γ-background contribution separation are discussed. Obtain results is giving the basis to recommendation of alanine as an effective detector irradiation. However it is demanded the farther study on clarification of radiation sensitivity value dependence on the neutron energy spectrum form

  8. Stochastic resonance in a single-mode laser driven by frequency modulated signal and coloured noises

    Institute of Scientific and Technical Information of China (English)

    Jin Guo-Xiang; Zhang Liang-Ying; Cao Li

    2009-01-01

    By adding frequency modulated signals to the intensity equation of gain-noise model of the single-mode laser driven by two coloured noises which are correlated, this paper uses the linear approximation method to calculate the power spectrum and signal-to-noise ratio (SNR) of the laser intensity. The results show that the SNR appears typical stochastic resonance with the variation of intensity of the pump noise and quantum noise. As the amplitude of a modulated signal has effects on the SNR, it shows suppression, monotone increasing, stochastic resonance, and multiple stochastic resonance with the variation of the frequency of a carrier signal and modulated signal.

  9. High-frequency EPR of surface impurities on nanodiamond

    Science.gov (United States)

    Peng, Zaili; Stepanov, Viktor; Takahashi, Susumu

    Diamond is a fascinating material, hosting nitrogen-vacancy (NV) defect centers with unique magnetic and optical properties. There have been many reports that suggest the existence of paramagnetic impurities near surface of various kinds of diamonds. Electron paramagnetic resonance (EPR) investigation of mechanically crushed nanodiamonds (NDs) as well as detonation NDs revealed g 2 like signals that are attributed to structural defects and dangling bonds near the diamond surface. In this presentation, we investigate paramagnetic impurities in various sizes of NDs using high-frequency (HF) continuous wave (cw) and pulsed EPR spectroscopy. Strong size dependence on the linewidth of HF cw EPR spectra reveals the existence of paramagnetic impurities in the vicinity of the diamond surface. We also study the size dependence of the spin-lattice and spin-spin relaxation times (T1 and T2) of single substitutional nitrogen defects in NDs Significant deviations from the temperature dependence of the phonon-assisted T1 process were observed in the ND samples, and were attributed to the contribution from the surface impurities. This work was supported by the Searle Scholars Program and the National Science Foundation (DMR-1508661 and CHE-1611134).

  10. EPR and NMR spectroscopy on spin-labeled proteins

    NARCIS (Netherlands)

    Finiguerra, Michelina Giuseppina

    2011-01-01

    Spin labeling and electron paramagnetic resonance (EPR) have been employed to study structure and dynamics of proteins. The surface polarity of four single cysteine mutants of the Zn-azurin in frozen solution were studied using 275 GHz EPR (J-band), with the advantage compared to 9 GHz (X-band) and

  11. Magnetic resonance of native defects of spin-Peierls magnetics CuGeO3

    International Nuclear Information System (INIS)

    Smirnov, A.I.; Glazkov, V.N.; Leonyuk, L.I.; Vetkin, A.G.; Eremina, R.M.

    1998-01-01

    Magnetic resonance within 9-75 GHz frequency range and 1.2-25 K temperature range was studied in pure monocrystalline spin-Peierls CuGwO 3 . Splitting of the magnetic resonance line is observed within temperature range below 5 K. Analysis of magnetic resonance spectra at various directions of magnetic field and under various temperatures enables to set off EPR-signals of spin-Peierls phase defects with S=1/2 and defects with S=1 from these components; g-factor corresponding to these EPR signals is similar one and close to values typical for Cu 2+ ion [ru

  12. A novel microfluidic rapid freeze-quench device for trapping reactions intermediates for high field EPR analysis.

    Science.gov (United States)

    Kaufmann, Royi; Yadid, Itamar; Goldfarb, Daniella

    2013-05-01

    Rapid freeze quench electron paramagnetic resonance (RFQ)-EPR is a method for trapping short lived intermediates in chemical reactions and subjecting them to EPR spectroscopy investigation for their characterization. Two (or more) reacting components are mixed at room temperature and after some delay the mixture is sprayed into a cold trap and transferred into the EPR tube. A major caveat in using commercial RFQ-EPR for high field EPR applications is the relatively large amount of sample needed for each time point, a major part of which is wasted as the dead volume of the instrument. The small sample volume (∼2μl) needed for high field EPR spectrometers, such as W-band (∼3.5T, 95GHz), that use cavities calls for the development of a microfluidic based RFQ-EPR apparatus. This is particularly important for biological applications because of the difficulties often encountered in producing large amounts of intrinsically paramagnetic proteins and spin labeled nucleic acid and proteins. Here we describe a dedicated microfluidic based RFQ-EPR apparatus suitable for small volume samples in the range of a few μl. The device is based on a previously published microfluidic mixer and features a new ejection mechanism and a novel cold trap that allows collection of a series of different time points in one continuous experiment. The reduction of a nitroxide radical with dithionite, employing the signal of Mn(2+) as an internal standard was used to demonstrate the performance of the microfluidic RFQ apparatus. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. EPR study on gamma-irradiated fruits dehydrated via osmosis

    Energy Technology Data Exchange (ETDEWEB)

    Yordanov, N.D. [Laboratory EPR, Institute of Catalysis, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria)]. E-mail: ndyepr@bas.bg; Aleksieva, K. [Laboratory EPR, Institute of Catalysis, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria)

    2007-06-15

    The shape and time stability of the electron paramagnetic resonance (EPR) spectra of non- and {gamma}-irradiated papaya, melon, cherry and fig samples dehydrated via osmosis are reported. It is shown that non-irradiated samples are generally EPR silent whereas {gamma}-irradiated exhibit 'sugar-like' EPR spectra. The recorded EPR spectra are monitored for a period of 7 months after irradiation (stored at low humidity and in the dark). The results suggest longer period of unambiguous identification of the radiation processing of osmose dehydrated fruits. Therefore, the Protocol EN 13708,2001 issued by CEN is fully applicable for the studied fruit samples.

  14. EPR study on gamma-irradiated fruits dehydrated via osmosis

    International Nuclear Information System (INIS)

    Yordanov, N.D.; Aleksieva, K.

    2007-01-01

    The shape and time stability of the electron paramagnetic resonance (EPR) spectra of non- and γ-irradiated papaya, melon, cherry and fig samples dehydrated via osmosis are reported. It is shown that non-irradiated samples are generally EPR silent whereas γ-irradiated exhibit 'sugar-like' EPR spectra. The recorded EPR spectra are monitored for a period of 7 months after irradiation (stored at low humidity and in the dark). The results suggest longer period of unambiguous identification of the radiation processing of osmose dehydrated fruits. Therefore, the Protocol EN 13708,2001 issued by CEN is fully applicable for the studied fruit samples

  15. EPR study on gamma-irradiated fruits dehydrated via osmosis

    Science.gov (United States)

    Yordanov, N. D.; Aleksieva, K.

    2007-06-01

    The shape and time stability of the electron paramagnetic resonance (EPR) spectra of non- and γ-irradiated papaya, melon, cherry and fig samples dehydrated via osmosis are reported. It is shown that non-irradiated samples are generally EPR silent whereas γ-irradiated exhibit "sugar-like" EPR spectra. The recorded EPR spectra are monitored for a period of 7 months after irradiation (stored at low humidity and in the dark). The results suggest longer period of unambiguous identification of the radiation processing of osmose dehydrated fruits. Therefore, the Protocol EN 13708,2001 issued by CEN is fully applicable for the studied fruit samples.

  16. A web-based database for EPR centers in semiconductors

    International Nuclear Information System (INIS)

    Umeda, T.; Hagiwara, S.; Katagiri, M.; Mizuochi, N.; Isoya, J.

    2006-01-01

    We develop a web-based database system for electron paramagnetic resonance (EPR) centers in semiconductors. This database is available to anyone at http://www.kc.tsukuba.ac.jp/div-media/epr/. It currently has more than 300 records of the spin-Hamiltonian parameters for major known EPR centers. One can upload own new records to the database or can use simulation tools powered by EPR-NMR(C). Here, we describe the features and objectives of this database, and mention some future plans

  17. Enamel dose calculation by electron paramagnetic resonance spectral simulation technique

    International Nuclear Information System (INIS)

    Dong Guofu; Cong Jianbo; Guo Linchao; Ning Jing; Xian Hong; Wang Changzhen; Wu Ke

    2011-01-01

    Objective: To optimize the enamel electron paramagnetic resonance (EPR) spectral processing by using the EPR spectral simulation method to improve the accuracy of enamel EPR dosimetry and reduce artificial error. Methods: The multi-component superimposed EPR powder spectral simulation software was developed to simulate EPR spectrum models of the background signal (BS) and the radiation- induced signal (RS) of irradiated enamel respectively. RS was extracted from the multi-component superimposed spectrum of irradiated enamel and its amplitude was calculated. The dose-response curve was then established for calculating the doses of a group of enamel samples. The result of estimated dose was compared with that calculated by traditional method. Results: BS was simulated as a powder spectrum of gaussian line shape with the following spectrum parameters: g=2.00 35 and Hpp=0.65-1.1 mT, RS signal was also simulated as a powder spectrum but with axi-symmetric spectrum characteristics. The spectrum parameters of RS were: g ⊥ =2.0018, g ‖ =1.9965, Hpp=0.335-0.4 mT. The amplitude of RS had a linear response to radiation dose with the regression equation as y=240.74x + 76 724 (R 2 =0.9947). The expectation of relative error of dose estimation was 0.13. Conclusions: EPR simulation method has improved somehow the accuracy and reliability of enamel EPR dose estimation. (authors)

  18. High-frequency EPR on high-spin transition-metal sites

    NARCIS (Netherlands)

    Mathies, Guinevere

    2012-01-01

    The electronic structure of transition-metal sites can be probed by electron-paramagnetic-resonance (EPR) spectroscopy. The study of high-spin transition-metal sites benefits from EPR spectroscopy at frequencies higher than the standard 9.5 GHz. However, high-frequency EPR is a developing field. In

  19. EPR Study of Free Radicals in Cotton Fiber for Its Potential Use as a Fortuitous Dosimeter in Radiological Accidents

    International Nuclear Information System (INIS)

    Sudprasert, W.; Insuan, P.; Khamkhrongmee, S.

    2014-01-01

    Electron paramagnetic resonance (EPR) spectroscopy was applied to characterize radiation- induced free radicals in cotton fiber in order to determine the possibility for using cotton as a fortuitous dosimeter in accidental exposures to radiation. Cotton fabrics were irradiated at 0.1, 0.5, 1, 2, 10, 50 and 500 Gy using a 60Co gamma source. The irradiated samples were then stored in the dark under controlled environmental conditions for 1, 15, 35 and 60 days. The EPR spectra were observed in samples using a Bruker EMX X-band spectrometer equipped with a TE102 rectangular cavity. The EPR signal intensities of irradiated samples were determined from peak-to-peak amplitudes of EPR spectra and compared to unirradiated samples. The following optimum parameters were used: modulation frequency,100 kHz; microwave frequency, 9.84 GHz; modulation amplitude, 1.8 mT; microwave power,1.0 mW; time constant, 665 ms; conversion time, 41 ms; and sweep time, 41.98 s. The EPR spectra of unirradiated samples show a singlet line with g = 2.006 due to stable organic radicals pre-existing in the cotton fibers, whereas those of irradiated samples show the same pattern with different signal intensities according to the doses. Irradiation increased the signal intensity in a dose dependent manner. The signal intensity exhibited an exponential decay with storage time from 1 to 60 days. Obviously, the degree of fading of EPR intensity did not depend on the absorbed dose from 0.1-50 Gy. The maximum fading was about 60% at 60 days storage of irradiated samples at all doses. However the post-irradiation signal appeared to be detectable up to 60 days after irradiation. The results indicate the potential of using cotton as a fortuitous dosimeter in radiological accidents.

  20. Computational and instrumental methods in EPR

    CERN Document Server

    Bender, Christopher J

    2006-01-01

    Computational and Instrumental Methods in EPR Prof. Bender, Fordham University Prof. Lawrence J. Berliner, University of Denver Electron magnetic resonance has been greatly facilitated by the introduction of advances in instrumentation and better computational tools, such as the increasingly widespread use of the density matrix formalism. This volume is devoted to both instrumentation and computation aspects of EPR, while addressing applications such as spin relaxation time measurements, the measurement of hyperfine interaction parameters, and the recovery of Mn(II) spin Hamiltonian parameters via spectral simulation. Key features: Microwave Amplitude Modulation Technique to Measure Spin-Lattice (T1) and Spin-Spin (T2) Relaxation Times Improvement in the Measurement of Spin-Lattice Relaxation Time in Electron Paramagnetic Resonance Quantitative Measurement of Magnetic Hyperfine Parameters and the Physical Organic Chemistry of Supramolecular Systems New Methods of Simulation of Mn(II) EPR Spectra: Single Cryst...

  1. Radiation dose estimation by tooth enamel EPR dosimetry for residents of Dolon and Bodene

    International Nuclear Information System (INIS)

    Zhumadilov, Kassym; Ivannikov, Alexander; Apsalikov, Kazbek N.

    2006-01-01

    The method of electron paramagnetic resonance (EPR) dosimetry was applied to the enamel of the teeth extracted from the residents of the Dolon and Bodene settlements of the Beskaragay district, which is the area adjacent to the radioactive fallout of the most contaminating nuclear test of 1949. The individual accidental radiation doses due to the fallout were obtained from the amplitude of the radiation induced EPR signal from the CO 2- radical using the calibration method, after determining the parameters of EPR measurements to obtain the best reproducibility of the signal intensities. It was shown that after subtracting the natural background dose from the total absorbed dose obtained by EPR the residents of Dolon and Bodene received accidental radiation doses up to 356 mGy with an average value of 74.1 ± 45.5 mGy before 1949 while the younger population received up to about 100 mGy with an average value of 11.5 ± 37.7 mGy. (author)

  2. EPR dosimetric properties of nano-barium sulfate

    International Nuclear Information System (INIS)

    Aboelezz, E.; Hassan, G.M.; Sharaf, M.A.; El-Khodary, A.

    2015-01-01

    Nano/micro BaSO 4 were prepared through the co-precipitation method to measure ionizing radiation doses using electron paramagnetic resonance (EPR). The nano-BaSO 4 sample was characterized using X-ray diffraction (XRD), and transmission electron microscopy (TEM) techniques. The dose response and fading properties of nano- and micro-phase BaSO 4 were compared in EPR spectra. The prepared nano- and micro-BaSO 4 samples have the same hole and electron centers, which may be attributed to SO 4 − and SO 3 − , respectively. The dosimetric signals for prepared nano- and micro-BaSO 4 have spectroscopic splitting factor (g) with values 2.0025±0.0006 and 2.0027±0.0006, respectively. The nanocrystalline sample has a linear γ-ray dose response over the range 0.4 Gy–1 kGy. The performance parameters which including detection limit and critical level calculated from weighted and unweighted least-squares fitting. The sensitivity of nano-BaSO 4 to γ-ray is one and a half times more than alanine. The lifetime and activation energy for nano-BaSO 4 were estimated by conducting a thermal stability study, and were 5.7±1.1×10 4 years and 0.73±0.14 eV, respectively. The combined and expanded uncertainties accompanying measurements were ±3.89% and ±7.78%, respectively. - Highlights: • Preparation of nano-BaSO 4 using the co-precipitation method. • Study of the dosimetric properties of nano-barium sulfate using the EPR technique. • Comparison between a new EPR dosimeter using nano-materials and standard alanine. • Calculation of the uncertainty budget for nano-BaSO 4

  3. Limits in EPR dosimetry for irradiated dried fruits discrimination

    International Nuclear Information System (INIS)

    Brasoveanu, Mirela M. E-mirela@alpha.infim.ro; Nemtanu, R.; Minea, R.; Grecu, V.V.

    2003-01-01

    Irradiation of food induces free radical species. EPR dosimetry in irradiated goods puts in evidence if these radicals are stable in environmental condition. Irradiation of dried fruits has been carried out. Their behaviour under irradiation was investigated and correlation between EPR signal and irradiation dose was determined. Electrons of 6 MeV (mean energy) and doses up to 10 kGy were used. EPR spectra were recorded with a Jeol spectrometer, JES-ME-3X tip, with a 100 kHz modulation. The dried fruits can be separated into categories depending on the EPR signal intensity. Strong signals are observed in those fruits in which possible crystalline-like phases exist. As the amount of crystallized sugar decreases, the EPR signals become weaker. Dependencies on irradiation dose give a linear correlation below 10 kGy. The spectra are compared to irradiated sugar and differences and similarities are discussed. (authors)

  4. Trichloroethylene Radicals: An EPR/SPIN Trapping Study

    National Research Council Canada - National Science Library

    Steel-Goodwin, Linda

    1995-01-01

    .... As part of the process to develop environmental and health effects criteria for base clean-up the initial radicals produced by TCE were studied by electron paramagnetic resonance spectroscopy (EPR...

  5. EPR and NMR detection of transient radicals and reaction products

    International Nuclear Information System (INIS)

    Trifunac, A.D.

    1981-01-01

    Magnetic resonance methods in radiation chemistry are illustrated. The most recent developments in pulsed EPR and NMR studies in pulse radiolysis are outlined with emphasis on the study of transient radicals and their reaction products. 12 figures

  6. The EPR detection of radiation treated foodstuffs

    International Nuclear Information System (INIS)

    Stachowicz, W.; Burlinska, G.; Michalik, J.; Ostrowski, K.; Dziedzic-Goclawska, A.

    1993-01-01

    The short paper by a Polish study group describes the results of the use of Electron Paramagnetic Resonance (EPR) Spectroscopy in the detection of irradiation to food. Pultry, fresh-water fish and sea fish as well as various fruits and yellow boletus are dealt with in some detail. (VHE) [de

  7. Effect of UV irradiation on Echinaceae purpureae interactions with free radicals examined by an X-band (9.3 GHz) EPR spectroscopy.

    Science.gov (United States)

    Ramos, Paweł; Pilawa, Barbara

    The effect of UVA (315-400 nm) irradiation on Echinaceae purpureae interactions with free radicals was examined by the use of electron paramagnetic resonance (EPR) spectroscopy. The changes of antioxidant properties of E. purpureae with time of UV irradiation from 10 to 110 min (10 min steps) were determined. DPPH as the paramagnetic reference was used in this study. Changes of EPR signals of the reference after interactions with nonirradiated and UV-irradiated E. purpureae were detected. Interactions of the tested E. purpureae samples caused decrease of the EPR signal of DPPH as the result of its antioxidant properties. The decrease of the amplitude of EPR line of DPPH was lower for interactions with UV-irradiated E. purpureae . EPR examination confirmed antioxidant properties of E. purpureae . The weaker antioxidant properties of E. purpureae after UV irradiation were pointed out. E. purpureae should be storage in the dark. The tests bring to light usefulness of electron paramagnetic resonance with microwave frequency of 9.3 GHz (an X-band) in examination of storage conditions of pharmacological herbs.

  8. Cascadability of Silicon Microring Resonators for40-Gbit/s OOK and DPSK Optical Signals

    DEFF Research Database (Denmark)

    Ozolins, Oskars; An, Yi; Lali-Dastjerdi, Zohreh

    2012-01-01

    The cascadability of a single silicon micro-ring resonator for CSRZ-OOK and CSRZ-DPSK signals is experimentally demonstrated at 40 Gbit/s for the first time. Error-free performance is obtained for both modulation formats after 5 cascaded resonators.......The cascadability of a single silicon micro-ring resonator for CSRZ-OOK and CSRZ-DPSK signals is experimentally demonstrated at 40 Gbit/s for the first time. Error-free performance is obtained for both modulation formats after 5 cascaded resonators....

  9. An Endogenous Electron Spin Resonance (ESR signal discriminates nevi from melanomas in human specimens: a step forward in its diagnostic application.

    Directory of Open Access Journals (Sweden)

    Eleonora Cesareo

    Full Text Available Given the specific melanin-associated paramagnetic features, the Electron Spin Resonance (ESR, called also Electron Paramagnetic Resonance, EPR analysis has been proposed as a potential tool for non-invasive melanoma diagnosis. However, studies comparing human melanoma tissues to the most appropriate physiological counterpart (nevi have not been performed, and ESR direct correlation with melanoma clinical features has never been investigated. ESR spectrum was obtained from melanoma and non-melanoma cell-cultures as well as mouse melanoma and non-melanoma tissues and an endogenous ESR signal (g = 2.005 was found in human melanoma cells and in primary melanoma tissues explanted from mice, while it was always absent in non-melanoma samples. These characteristics of the measured ESR signal strongly suggested its connection with melanin. Quantitative analyses were then performed on paraffin-embedded human melanoma and nevus sections, and validated on an independent larger validation set, for a total of 112 sections (52 melanomas, 60 nevi. The ESR signal was significantly higher in melanomas (p = 0.0002 and was significantly different between "Low Breslow's and "High Breslow's" depth melanomas (p<0.0001. A direct correlation between ESR signal and Breslow's depth, expressed in millimetres, was found (R = 0.57; p<0.0001. The eu/pheomelanin ratio was found to be significantly different in melanomas "Low Breslow's" vs melanomas "High Breslow's" depth and in nevi vs melanomas "High Breslow's depth". Finally, ROC analysis using ESR data discriminated melanomas sections from nevi sections with up to 90% accuracy and p<0.0002. In the present study we report for the first time that ESR signal in human paraffin-embedded nevi is significantly lower than signal in human melanomas suggesting that spectrum variations may be related to qualitative melanin differences specifically occurring in melanoma cells. We therefore conclude that this ESR signal

  10. EPR of exchange coupled systems

    CERN Document Server

    Bencini, Alessandro

    2012-01-01

    From chemistry to solid state physics to biology, the applications of Electron Paramagnetic Resonance (EPR) are relevant to many areas. This unified treatment is based on the spin Hamiltonian approach and makes extensive use of irreducible tensor techniques to analyze systems in which two or more spins are magnetically coupled. This edition contains a new Introduction by coauthor Dante Gatteschi, a pioneer and scholar of molecular magnetism.The first two chapters review the foundations of exchange interactions, followed by examinations of the spectra of pairs and clusters, relaxation in oligon

  11. EPR investigations on technetium compounds

    International Nuclear Information System (INIS)

    Abram, U.; Munze, R.; Kirmse, R.; Stach, J.

    1986-01-01

    Stimulated by the widespread use of the isotope /sup 99m/Tc in the field of nuclear medicine, there has been a substantial growth of interest in the chemistry of this man-made element. A particular need emerges for analytical methods allowing solution investigations of coordination compounds of technetium with low substance use. Considering these facts, Electron Paramagnetic Resonance Spectroscopy (EPR) appears to be a very suitable method because only very small amounts of the compounds are needed (lower than 1 mg). The resulting spectra give information regarding the valence state, symmetry and bonding properties of the compounds under study

  12. High-Frequency Electron Paramagnetic Resonance Spectroscopy of Nitroxide-Functionalized Nanodiamonds in Aqueous Solution.

    Science.gov (United States)

    Akiel, R D; Stepanov, V; Takahashi, S

    2017-06-01

    Nanodiamond (ND) is an attractive class of nanomaterial for fluorescent labeling, magnetic sensing of biological molecules, and targeted drug delivery. Many of those applications require tethering of target biological molecules on the ND surface. Even though many approaches have been developed to attach macromolecules to the ND surface, it remains challenging to characterize dynamics of tethered molecule. Here, we show high-frequency electron paramagnetic resonance (HF EPR) spectroscopy of nitroxide-functionalized NDs. Nitroxide radical is a commonly used spin label to investigate dynamics of biological molecules. In the investigation, we developed a sample holder to overcome water absorption of HF microwave. Then, we demonstrated HF EPR spectroscopy of nitroxide-functionalized NDs in aqueous solution and showed clear spectral distinction of ND and nitroxide EPR signals. Moreover, through EPR spectral analysis, we investigate dynamics of nitroxide radicals on the ND surface. The demonstration sheds light on the use of HF EPR spectroscopy to investigate biological molecule-functionalized nanoparticles.

  13. The investigation of lithium formate hydrate, sodium dithionate and N-methyl taurine as clinical EPR dosimeters

    International Nuclear Information System (INIS)

    Lelie, S.; Hole, E.O.; Duchateau, M.; Schroeyers, W.; Schreurs, S.; Verellen, D.

    2013-01-01

    Introduction: EPR-dosimetry using L-α-alanine is an established method for measuring high doses of ionizing radiation. However, since a minimum dose of approximately 4 Gy is required to achieve sufficient low uncertainties (1–2%) for clinical application, alternative dosimeter materials are being inquired. Lithium formate (LiFo) monohydrate has been studied by several groups and has revealed several promising properties in the low dose region (<4 Gy). The fading properties, however, are somewhat unpredictable, and depend on properties not yet fully uncovered. This paper reports the results from a study of lithium formate hydrate and N-methyl taurine as potential low dose EPR dosimeters. Methods and materials: Pellet shaped dosimeters of lithium formate monohydrate, lithium formate hydrate, sodium dithionate and N-methyl taurine were produced using a manual Weber press, L-α-alanine was obtained from Harwell dosimeters and irradiated using 60 kV and 6 MV X-ray beams, and Co-60 gamma-rays to a dose of 30 Gy and dose ranges of 0.5–100 Gy and 2–20 Gy respectively. The dosimeters were measured using an Electron Paramagnetic Resonance (EPR)-spectrometer. The detector responses for 6 MV and Co-60 radiation beams, the fading behaviors and signal shape in time were investigated. Results: Lithium formate monohydrate and lithium formate hydrate are apparently associated with near identical EPR-spectra (mainly one broad line), and the same spectrum arises for all radiation energies investigated. The shape of the EPR resonance remains constant with time, but the intensities decreases, and the fading is more prominent for the monohydrate than for the hydrate. The EPR resonance associated with N-methyl taurine is more complex than the resonance associated with LiFo and it changes with time, implying radical transitions and growth. Conclusions: The study showed that lithium formate hydrate is a strong candidate for EPR dosimetry with slightly better fading characteristics

  14. Medical application of EPR

    International Nuclear Information System (INIS)

    Eichhoff, Uwe; Hoefer, Peter

    2015-01-01

    Selected applications of continuous-wave EPR in medicine are reviewed. This includes detection of reactive oxygen and nitrogen species, pH measurements and oxymetry. Applications of EPR imaging are demonstrated on selected examples and future developments to faster imaging methods are discussed

  15. Retrospective individual dosimetry using EPR of tooth enamel

    International Nuclear Information System (INIS)

    Skvortzo, V.; Ivannikov, A.; Stepanenko, V.; Wieser, A.; Bougai, A.; Brick, A.; Chumak, V.; Radchuk, V.; Repin, V.; Kirilov, V.

    1996-01-01

    The results of joint investigations (in the framework of ECP-10 program) aimed on the improvement of the sensitivity and accuracy of the procedure of dose measurement using tooth enamel EPR spectroscopy are presented. It is shown, what the sensitivity of method may be increased using special physical-chemical procedure of the enamel samples treatment, which leads to the reducing of EPR signal of organic components in enamel. Tooth diseases may have an effect on radiation sensitivity of enamel. On the basis of statistical analysis of the results of more then 2000 tooth enamel samples measurements it was shown, what tooth enamel EPR spectroscopy gives opportunity to register contribution into total dose, which is caused by natural environmental radiation and by radioactive contamination. EPR response of enamel to ultraviolet exposure is investigated and possible influences to EPR dosimetry is discussed. The correction factors for EPR dosimetry in real radiation fields are estimated

  16. Retrospective dosimetry of nail by Electron Paramagnetic Resonance; Dosimetria retrospectiva de unha por Ressonancia Paramagnetica Eletronica

    Energy Technology Data Exchange (ETDEWEB)

    Giannoni, Ricardo A., E-mail: giannoni@ird.gov.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Rodrigues Junior, Orlando, E-mail: rodrijr@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    The purpose of this study is to characterize samples of human nails, subjected to irradiation of high doses through Technical Electron Paramagnetic Resonance (EPR). The goal is to establish a dose/response relationship in order to assess dose levels absorbed by individuals exposed in radiation accidents situations, retrospectively. Samples of human nails were irradiated with gamma radiation, and received a dose of 20 Gy. EPR measurements performed on samples before irradiation identified EPR signals associated with defects caused by the mechanical action of the sample collection. After irradiation other species of free radicals, associated with the action of gamma radiation, have been identified.

  17. EPR analysis of biomaterials

    International Nuclear Information System (INIS)

    Sukhodub, L.

    2001-01-01

    There is the review of electron spin resonance application for paramagnetic individual investigation in biomaterials. Especially the bone tissue and tooth enamel can be taken into account. The material composition (e.g. Mn 2+ and Cr 3+ ions) can be measured, also after irradiation (X, γ radiations) when paramagnetic signal appears as a result of physical radiation effects

  18. EPR Study of the Activation of Antioxidants in PP Irradiated with Gamma Rays

    International Nuclear Information System (INIS)

    Silva, P.

    2006-01-01

    The behavior of different formulations of Polypropylene (PP) with stabilizers such as buthyl-hydroxy-toluene (BHT), Chimasorb 944 (Hals) (CHIM), both from Ciba, and a copolymer of styrene-butadiene-styrene (SBS) were studied using electron paramagnetic resonance (EPR). In all the cases but the sample of PP-Hals, a characteristic specta for PP irradiated in air in the recently-irradiated condition was obtained. The lineshape of the signal was changed to that of a pure PP EPR signal as time elapsed and the alkyl radical concentration decreased up to its total disappearance. At that stage, the polyenil radical signal could be visualized better. The total free radical concentration decayed until approximately 800 hours in the PP-Hals and until around 2000 hours in all other cases. At those points, the total free radical concentrations began to increase in all the cases, except in the PP-BHT case. The lineshape was transformed into the lineshape of the Chimasorb radical in all the cases, except for the PP-BHT. In this last case, the EPR signal was not detectable. The BHT and the SBS diluted the free radical concentrations, being them smaller when they are present. The observed behavior in all the samples is consistent with the activation of the Chimasorb radical by gamma radiation

  19. Locations of radical species in black pepper seeds investigated by CW EPR and 9GHz EPR imaging.

    Science.gov (United States)

    Nakagawa, Kouichi; Epel, Boris

    2014-10-15

    In this study, noninvasive 9GHz electron paramagnetic resonance (EPR)-imaging and continuous wave (CW) EPR were used to investigate the locations of paramagnetic species in black pepper seeds without further irradiation. First, lithium phthalocyanine (LiPC) phantom was used to examine 9GHz EPR imaging capabilities. The 9GHz EPR-imager easily resolved the LiPC samples at a distance of ∼2mm. Then, commercially available black pepper seeds were measured. We observed signatures from three different radical species, which were assigned to stable organic radicals, Fe(3+), and Mn(2+) complexes. In addition, no EPR spectral change in the seed was observed after it was submerged in distilled H2O for 1h. The EPR and spectral-spatial EPR imaging results suggested that the three paramagnetic species were mostly located at the seed surface. Fewer radicals were found inside the seed. We demonstrated that the CW EPR and 9GHz EPR imaging were useful for the determination of the spatial distribution of paramagnetic species in various seeds. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Stochastic resonance in a time-delayed asymmetric bistable system with mixed periodic signal

    International Nuclear Information System (INIS)

    Yong-Feng, Guo; Wei, Xu; Liang, Wang

    2010-01-01

    This paper studies the phenomenon of stochastic resonance in an asymmetric bistable system with time-delayed feedback and mixed periodic signal by using the theory of signal-to-noise ratio in the adiabatic limit. A general approximate Fokker–Planck equation and the expression of the signal-to-noise ratio are derived through the small time delay approximation at both fundamental harmonics and mixed harmonics. The effects of the additive noise intensity Q, multiplicative noise intensity D, static asymmetry r and delay time τ on the signal-to-noise ratio are discussed. It is found that the higher mixed harmonics and the static asymmetry r can restrain stochastic resonance, and the delay time τ can enhance stochastic resonance. Moreover, the longer the delay time τ is, the larger the additive noise intensity Q and the multiplicative noise intensity D are, when the stochastic resonance appears. (general)

  1. How can EPR spectroscopy help to unravel molecular mechanisms of flavin-dependent photoreceptors?

    Directory of Open Access Journals (Sweden)

    Daniel eNohr

    2015-09-01

    Full Text Available Electron paramagnetic resonance (EPR spectroscopy is a well-established spectroscopic method for the examination of paramagnetic molecules. Proteins can contain paramagnetic moieties in form of stable cofactors, transiently formed intermediates, or spin labels artificially introduced to cysteine sites. The focus of this review is to evaluate potential scopes of application of EPR to the emerging field of optogenetics. The main objective for EPR spectroscopy in this context is to unravel the complex mechanisms of light-active proteins, from their primary photoreaction to downstream signal transduction. An overview of recent results from the family of flavin-containing, blue-light dependent photoreceptors is given. In detail, mechanistic similarities and differences are condensed from the three classes of flavoproteins, the cryptochromes, LOV (Light-oxygen-voltage, and BLUF (blue-light using FAD domains. Additionally, a concept that includes spin-labeled proteins and examination using modern pulsed EPR is introduced, which allows for a precise mapping of light-induced conformational changes.

  2. How can EPR spectroscopy help to unravel molecular mechanisms of flavin-dependent photoreceptors?

    Science.gov (United States)

    Nohr, Daniel; Rodriguez, Ryan; Weber, Stefan; Schleicher, Erik

    2015-01-01

    Electron paramagnetic resonance (EPR) spectroscopy is a well-established spectroscopic method for the examination of paramagnetic molecules. Proteins can contain paramagnetic moieties in form of stable cofactors, transiently formed intermediates, or spin labels artificially introduced to cysteine sites. The focus of this review is to evaluate potential scopes of application of EPR to the emerging field of optogenetics. The main objective for EPR spectroscopy in this context is to unravel the complex mechanisms of light-active proteins, from their primary photoreaction to downstream signal transduction. An overview of recent results from the family of flavin-containing, blue-light dependent photoreceptors is given. In detail, mechanistic similarities and differences are condensed from the three classes of flavoproteins, the cryptochromes, LOV (Light-oxygen-voltage), and BLUF (blue-light using FAD) domains. Additionally, a concept that includes spin-labeled proteins and examination using modern pulsed EPR is introduced, which allows for a precise mapping of light-induced conformational changes.

  3. The evaluation of new and isotopically labeled isoindoline nitroxides and an azaphenalene nitroxide for EPR oximetry

    Science.gov (United States)

    Khan, Nadeem; Blinco, James P.; Bottle, Steven E.; Hosokawa, Kazuyuki; Swartz, Harold M.; Micallef, Aaron S.

    2011-01-01

    Isoindoline nitroxides are potentially useful probes for viable biological systems, exhibiting low cytotoxicity, moderate rates of biological reduction and favorable Electron Paramagnetic Resonance (EPR) characteristics. We have evaluated the anionic (5-carboxy-1,1,3,3-tetramethylisoindolin-2-yloxyl; CTMIO), cationic (5-(N,N,N-trimethylammonio)-1,1,3,3-tetramethylisoindolin-2-yloxyl iodide, QATMIO) and neutral (1,1,3,3-tetramethylisoindolin-2-yloxyl; TMIO) nitroxides and their isotopically labeled analogues (2H12- and/or 2H12-15N-labeled) as potential EPR oximetry probes. An active ester analogue of CTMIO, designed to localize intracellularly, and the azaphenalene nitroxide 1,1,3,3-tetramethyl-2,3-dihydro-2-azaphenalen-2-yloxyl (TMAO) were also studied. While the EPR spectra of the unlabeled nitroxides exhibit high sensitivity to O2 concentration, deuteration resulted in a loss of superhyperfine features and a subsequent reduction in O2 sensitivity. Labeling the nitroxides with 15N increased the signal intensity and this may be useful in decreasing the detection limits for in vivo measurements. The active ester nitroxide showed approximately 6% intracellular localization and low cytotoxicity. The EPR spectra of TMAO nitroxide indicated an increased rigidity in the nitroxide ring, due to dibenzo-annulation. PMID:21665499

  4. Method for increasing nuclear magnetic resonance signals in living biological tissue

    International Nuclear Information System (INIS)

    Krongrad, A.

    1995-01-01

    A method of enhancing a magnetic resonance comprising the steps of administering a quantity of a selected magnetic isotope to a living biological tissue at a concentration greater than the naturally occurring concentration of such isotope and detecting magnetic resonance signal from the administered magnetic isotope in the living biological tissue. (author)

  5. In Vivo Imaging of Tissue Physiological Function using EPR Spectroscopy | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    Electron paramagnetic resonance (EPR) is a technique for studying chemical species that have one or more unpaired electrons.  The current invention describes Echo-based Single Point Imaging (ESPI), a novel EPR image formation strategy that allows in vivo imaging of physiological function.  The National Cancer Institute's Radiation Biology Branch is seeking statements of capability or interest from parties interested in in-licensing an in vivo imaging using Electron paramagnetic resonance (EPR) to measure active oxygen species.

  6. One-way EPR steering and genuine multipartite EPR steering

    Science.gov (United States)

    He, Qiongyi; Reid, Margaret D.

    2012-11-01

    We propose criteria and experimental strategies to realise the Einstein-Podolsky-Rosen (EPR) steering nonlocality. One-way steering can be obtained where there is asymmetry of thermal noise on each system. We also present EPR steering inequalities that act as signatures and suggest how to optimise EPR correlations in specific schemes so that the genuine multipartite EPR steering nonlocality (EPR paradox) can also possibly be realised. The results presented here also apply to the spatially separated macroscopic atomic ensembles.

  7. Testing and linearity calibration of films of phenol compounds exposed to thermal neutron field for EPR dosimetry.

    Science.gov (United States)

    Gallo, S; Panzeca, S; Longo, A; Altieri, S; Bentivoglio, A; Dondi, D; Marconi, R P; Protti, N; Zeffiro, A; Marrale, M

    2015-12-01

    This paper reports the preliminary results obtained by Electron Paramagnetic Resonance (EPR) measurements on films of IRGANOX® 1076 phenols with and without low content (5% by weight) of gadolinium oxide (Gd2O3) exposed in the thermal column of the Triga Mark II reactor of LENA (Laboratorio Energia Nucleare Applicata) of Pavia (Italy). Thanks to their size, the phenolic films here presented are good devices for the dosimetry of beams with high dose gradient and which require accurate knowledge of the precise dose delivered. The dependence of EPR signal as function of neutron dose was investigated in the fluence range between 10(11) cm(-2) and 10(14) cm(-2). Linearity of EPR response was found and the signal was compared with that of commercial alanine films. Our analysis showed that gadolinium oxide (5% by weight) can enhance the thermal neutron sensitivity more than 18 times. Irradiated dosimetric films of phenolic compound exhibited EPR signal fading of about 4% after 10 days from irradiation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. EPR: Evidence and fallacy.

    Science.gov (United States)

    Nichols, Joseph W; Bae, You Han

    2014-09-28

    The enhanced permeability and retention (EPR) of nanoparticles in tumors has long stood as one of the fundamental principles of cancer drug delivery, holding the promise of safe, simple and effective therapy. By allowing particles preferential access to tumors by virtue of size and longevity in circulation, EPR provided a neat rationale for the trend toward nano-sized drug carriers. Following the discovery of the phenomenon by Maeda in the mid-1980s, this rationale appeared to be well justified by the flood of evidence from preclinical studies and by the clinical success of Doxil. Clinical outcomes from nano-sized drug delivery systems, however, have indicated that EPR is not as reliable as previously thought. Drug carriers generally fail to provide superior efficacy to free drug systems when tested in clinical trials. A closer look reveals that EPR-dependent drug delivery is complicated by high tumor interstitial fluid pressure (IFP), irregular vascular distribution, and poor blood flow inside tumors. Furthermore, the animal tumor models used to study EPR differ from clinical tumors in several key aspects that seem to make EPR more pronounced than in human patients. On the basis of this evidence, we believe that EPR should only be invoked on a case-by-case basis, when clinical evidence suggests the tumor type is susceptible. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. EPR and development of quantum electronics

    International Nuclear Information System (INIS)

    Manenkov, A A

    2011-01-01

    A role of electron paramagnetic resonance in development of quantum electronics is discussed. Basic principles and history of masers are briefly described. Spin-levels of paramagnetic ions in crystals as a very suitable object for active media of solid-state masers (called as EPR-masers) and physical processes in EPR-masers (population inversion of energy states) are analyzed. This analysis demonstrates a significant role of relaxation processes in multi-level spin-systems for efficient maser action. In this context peculiarities of spin-lattice and spin-spin cross relaxation processes in multi-level systems are analyzed. Development of EPR-masers and their application in radioastronomy and far-space communication systems are briefly described.

  10. Non-stationarity of resonance signals from magnetospheric and ionospheric plasmas

    International Nuclear Information System (INIS)

    Higel, Bernard

    1975-01-01

    Rocket observations of resonance signals from ionospheric plasma were made during EIDI relaxation sounding experiments. It appeared that their amplitude, phase, and frequency characteristics are not stationary as a function of the receipt time. The measurement of these nonstationary signals increases the interest presented by resonance phenomena in spatial plasma diagnostics, but this measurement is not easy for frequency non-stationarities. A new method, entirely numerical, is proposed for automatic recognition of these signals. It will be used for the selecting and real-time processing of signals of the same type to be observed during relaxation sounding experiments on board of the futur GEOS satellite. In this method a statistical discrimination is done on the values taken by several parameters associated with the non-stationarities of the observed resonance signals [fr

  11. New Generation of self-calibrated SS/EPR dosimeters: Alanine/EPR dosimeters

    International Nuclear Information System (INIS)

    Yordanov, N.D.; Gancheva, V.

    1999-01-01

    A new type of solid state/EPR dosimeters is described. Principally, it contains radiation sensitive diamagnetic material, some quantity of EPR active, but radiation insensitive, substance (for example Mn 2+ /MgO) and a binding material. In the present case alanine is used as a radiation sensitive substance. With this dosimeter, the EPR spectra of alanine and Mn 2+ are simultaneously recorded and the calibration graph represents the ratio of alanine versus Mn 2+ EPR signal intensity as a function of absorbed dose. In this way the reproducibility of the results is expected to be improved significantly including their intercomparison among different laboratories. Homogeneity of the prepared dosimeters and their behaviour (fading of EPR signals with time, influence of different meteorological conditions) show satisfactory reproducibility and stability with time. Because two different EPR active samples are recorded simultaneously, the influence of some instrument setting parameters (microwave power, modulation amplitude and modulation frequency) on the ratio I alanine /I Mn is also investigated. (author)

  12. Moessbauer effect and electron paramagnetic resonance studies on yeast aconitase

    International Nuclear Information System (INIS)

    Suzuki, Takashi; Maeda, Yutaka; Sakai, Hiroshi; Fujimoto, Shigeru; Morita, Yuhei.

    1975-01-01

    The Moessbauer effect and electron paramagnetic resonance (EPR) of yeast aconitase [EC 4.2.1.3] purified from the cells of Candida lipolytica (ATCC 20114) were measured. Moessbauer spectra suggested that yeast acontitase mostly contained two high-spin Fe(III) ions in an antiferromagnetically coupled binuclear complex that resembled oxidized 2 Fe ferredoxins, together with a small amount of high-spin Fe(II). EPR spectra recorded no signal at 77 0 K, but showed a slightly asymmetric signal centered at g=2.0 at 4.2 0 K, presumably due to the small amount of Fe(II) Fe(III) pairs. (auth.)

  13. Effect of ion clouds micromotion on measured signal in Fourier transform ion cyclotron resonance: Computer simulation.

    Science.gov (United States)

    Vladimirov, Gleb; Kostyukevich, Yury; Kharybin, Oleg; Nikolaev, Eugene

    2017-08-01

    Particle-in-cell-based realistic simulation of Fourier transform ion cyclotron resonance experiments could be used to generate ion trajectories and a signal induced on the detection electrodes. It has been shown recently that there is a modulation of "reduced" cyclotron frequencies in ion cyclotron resonance signal caused by Coulomb interaction of ion clouds. In this work it was proposed to use this modulation in order to determine frequency difference between an ion of known m/z and all other ions generating signal in ion cyclotron resonance cell. It is shown that with an increase of number of ions in ion cyclotron resonance trap, the modulation index increases, which lead to a decrease in the accuracy of determination of peak intensities by super Fourier transform resolution methods such as filter diagonalization method.

  14. Aperiodic signals processing via parameter-tuning stochastic resonance in a photorefractive ring cavity

    Directory of Open Access Journals (Sweden)

    Xuefeng Li

    2014-04-01

    Full Text Available Based on solving numerically the generalized nonlinear Langevin equation describing the nonlinear dynamics of stochastic resonance by Fourth-order Runge-Kutta method, an aperiodic stochastic resonance based on an optical bistable system is numerically investigated. The numerical results show that a parameter-tuning stochastic resonance system can be realized by choosing the appropriate optical bistable parameters, which performs well in reconstructing aperiodic signals from a very high level of noise background. The influences of optical bistable parameters on the stochastic resonance effect are numerically analyzed via cross-correlation, and a maximum cross-correlation gain of 8 is obtained by optimizing optical bistable parameters. This provides a prospective method for reconstructing noise-hidden weak signals in all-optical signal processing systems.

  15. The EPR paradox revisited

    International Nuclear Information System (INIS)

    Cantrell, C.D.; Scully, M.O.

    1978-01-01

    Einstein, Podolsky and Rosen (EPR) argued in 1935 that quantum mechanics fails to give an adequate description of physical reality, and also cannot give a consistent wave-function description of certain phenomena. The authors show that a calculation based upon the reduced density matrix removes the formal inconsistency pointed out by EPR. The spirit of the present paper is that of a pedagogical review. (Auth.)

  16. EPR paradox revisited

    Energy Technology Data Exchange (ETDEWEB)

    Cantrell, C.D.; Scully, M.O.

    1978-07-01

    Einstein, Podolsky, and Rosen (EPR) argued in 1935 that quantum mechanics fails to give an adequate description of physical reality, and also cannot give a consistent wave-function description of certain phenomena. It is shown that a calculation based upon the reduced density matrix removes the formal inconsistency pointed out by EPR. The spirit of the present paper is that of a pedagogical review.

  17. Exploring on the Sensitivity Changes of the LC Resonance Magnetic Sensors Affected by Superposed Ringing Signals.

    Science.gov (United States)

    Lin, Tingting; Zhou, Kun; Yu, Sijia; Wang, Pengfei; Wan, Ling; Zhao, Jing

    2018-04-25

    LC resonance magnetic sensors are widely used in low-field nuclear magnetic resonance (LF-NMR) and surface nuclear magnetic resonance (SNMR) due to their high sensitivity, low cost and simple design. In magnetically shielded rooms, LC resonance magnetic sensors can exhibit sensitivities at the fT/√Hz level in the kHz range. However, since the equivalent magnetic field noise of this type of sensor is greatly affected by the environment, weak signals are often submerged in practical applications, resulting in relatively low signal-to-noise ratios (SNRs). To determine why noise increases in unshielded environments, we analysed the noise levels of an LC resonance magnetic sensor ( L ≠ 0) and a Hall sensor ( L ≈ 0) in different environments. The experiments and simulations indicated that the superposed ringing of the LC resonance magnetic sensors led to the observed increase in white noise level caused by environmental interference. Nevertheless, ringing is an inherent characteristic of LC resonance magnetic sensors. It cannot be eliminated when environmental interference exists. In response to this problem, we proposed a method that uses matching resistors with various values to adjust the quality factor Q of the LC resonance magnetic sensor in different measurement environments to obtain the best sensitivity. The LF-NMR experiment in the laboratory showed that the SNR is improved significantly when the LC resonance magnetic sensor with the best sensitivity is selected for signal acquisition in the light of the test environment. (When the matching resistance is 10 kΩ, the SNR is 3.46 times that of 510 Ω). This study improves LC resonance magnetic sensors for nuclear magnetic resonance (NMR) detection in a variety of environments.

  18. Chemical process to separate iron oxides particles in pottery sample for EPR dating

    Science.gov (United States)

    Watanabe, S.; Farias, T. M. B.; Gennari, R. F.; Ferraz, G. M.; Kunzli, R.; Chubaci, J. F. D.

    2008-12-01

    Ancient potteries usually are made of the local clay material, which contains relatively high concentration of iron. The powdered samples are usually quite black, due to magnetite, and, although they can be used for thermoluminescene (TL) dating, it is easiest to obtain better TL reading when clearest natural or pre-treated sample is used. For electron paramagnetic resonance (EPR) measurements, the huge signal due to iron spin-spin interaction, promotes an intense interference overlapping any other signal in this range. Sample dating is obtained by dividing the radiation dose, determined by the concentration of paramagnetic species generated by irradiation, by the natural dose so as a consequence, EPR dating cannot be used, since iron signal do not depend on radiation dose. In some cases, the density separation method using hydrated solution of sodium polytungstate [Na 6(H 2W 12O 40)·H 2O] becomes useful. However, the sodium polytungstate is very expensive in Brazil; hence an alternative method for eliminating this interference is proposed. A chemical process to eliminate about 90% of magnetite was developed. A sample of powdered ancient pottery was treated in a mixture (3:1:1) of HCl, HNO 3 and H 2O 2 for 4 h. After that, it was washed several times in distilled water to remove all acid matrixes. The original black sample becomes somewhat clearer. The resulting material was analyzed by plasma mass spectrometry (ICP-MS), with the result that the iron content is reduced by a factor of about 9. In EPR measurements a non-treated natural ceramic sample shows a broad spin-spin interaction signal, the chemically treated sample presents a narrow signal in g = 2.00 region, possibly due to a radical of (SiO 3) 3-, mixed with signal of remaining iron [M. Ikeya, New Applications of Electron Spin Resonance, World Scientific, Singapore, 1993, p. 285]. This signal increases in intensity under γ-irradiation. However, still due to iron influence, the additive method yielded too

  19. Analysis of Ultrasonic Resonance Signal in Multi-Layered Structure

    International Nuclear Information System (INIS)

    Kim, Jae Hoon; Kim, Dong Ryun

    2012-01-01

    Ultrasonic testing are far superior to other nondestructive tests for detecting the disbond interface which occurred in adhesive interface. However, a solid rocket motor consisting of a steel case, rubber insulation, liner, and propellant poses many difficulties for analyzing ultrasonic waves because of the superposition of reflected waves and large differences in acoustic impedance of various materials. Therefore, ultrasonic tests for detecting the disbond interface in solid rocket motor have been applied in very limited areas between the steel case and rubber insulation using an automatic C-scan system. The existing ultrasonic test cannot detect the disbond interface between the liner and propellant of a solid rocket motor because most of the ultrasonic waves are absorbed in the rubber material which has low acoustic impedance. This problem could be overcome by analyzing the resonance frequency from the frequency spectrum using the ultrasonic resonance method. In this paper, a new technique to detect the disbond interface between the liner and propellant using ultrasonic resonance characteristics is discussed in detail.

  20. Analysis of Ultrasonic Resonance Signal in Multi-Layered Structure

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Hoon [Dept. of Mechanical Design Engineering, Chungnam National University, Daejeon (Korea, Republic of); Kim, Dong Ryun [Agency for Defense Development, Daejeon (Korea, Republic of)

    2012-08-15

    Ultrasonic testing are far superior to other nondestructive tests for detecting the disbond interface which occurred in adhesive interface. However, a solid rocket motor consisting of a steel case, rubber insulation, liner, and propellant poses many difficulties for analyzing ultrasonic waves because of the superposition of reflected waves and large differences in acoustic impedance of various materials. Therefore, ultrasonic tests for detecting the disbond interface in solid rocket motor have been applied in very limited areas between the steel case and rubber insulation using an automatic C-scan system. The existing ultrasonic test cannot detect the disbond interface between the liner and propellant of a solid rocket motor because most of the ultrasonic waves are absorbed in the rubber material which has low acoustic impedance. This problem could be overcome by analyzing the resonance frequency from the frequency spectrum using the ultrasonic resonance method. In this paper, a new technique to detect the disbond interface between the liner and propellant using ultrasonic resonance characteristics is discussed in detail.

  1. Clinical EPR: Unique Opportunities and Some Challenges

    Science.gov (United States)

    Swartz, Harold M.; Williams, Benjamin B.; Zaki, Bassem I.; Hartford, Alan C.; Jarvis, Lesley A.; Chen, Eunice; Comi, Richard J.; Ernstoff, Marc S.; Hou, Huagang; Khan, Nadeem; Swarts, Steven G.; Flood, Ann B.; Kuppusamy, Periannan

    2014-01-01

    Electron paramagnetic resonance (EPR) spectroscopy has been well established as a viable technique for measurement of free radicals and oxygen in biological systems, from in vitro cellular systems to in vivo small animal models of disease. However, the use of EPR in human subjects in the clinical setting, although attractive for a variety of important applications such as oxygen measurement, is challenged with several factors including the need for instrumentation customized for human subjects, probe and regulatory constraints. This paper describes the rationale and development of the first clinical EPR systems for two important clinical applications, namely, measurement of tissue oxygen (oximetry), and radiation dose (dosimetry) in humans. The clinical spectrometers operate at 1.2 GHz frequency and use surface loop resonators capable of providing topical measurements up to 1 cm depth in tissues. Tissue pO2 measurements can be carried out noninvasively and repeatedly after placement of an oxygen-sensitive paramagnetic material (currently India ink) at the site of interest. Our EPR dosimetry system is capable of measuring radiation-induced free radicals in the tooth of irradiated human subjects to determine the exposure dose. These developments offer potential opportunities for clinical dosimetry and oximetry, which include guiding therapy for individual patients with tumors or vascular disease, by monitoring of tissue oxygenation. Further work is in progress to translate this unique technology to routine clinical practice. PMID:24439333

  2. Biophysical EPR Studies Applied to Membrane Proteins

    Science.gov (United States)

    Sahu, Indra D; Lorigan, Gary A

    2015-01-01

    Membrane proteins are very important in controlling bioenergetics, functional activity, and initializing signal pathways in a wide variety of complicated biological systems. They also represent approximately 50% of the potential drug targets. EPR spectroscopy is a very popular and powerful biophysical tool that is used to study the structural and dynamic properties of membrane proteins. In this article, a basic overview of the most commonly used EPR techniques and examples of recent applications to answer pertinent structural and dynamic related questions on membrane protein systems will be presented. PMID:26855825

  3. TL and EPR dating: some applications

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, S. [Institute of Physics, University of Sao Paulo, Sao Paulo (Brazil)

    2006-07-01

    The intensity of thermoluminescence light emitted by a crystal is a function of radiation dose. The number of defects or of radicals in a crystal or organic substances is also a function of radiation dose. Since such defects or radicals present EPR signals, the EPR intensity is also a function of radiation dose. These facts are basis for radiation dosimetry and can be applied in dating of archaeological potteries or other materials, as well as in dating geological substances such as sediments, caves speleothemes, animal teeth and bones. Recent investigation on sensitized quartz based dosimeters and dating calcite covering ancient wall painting to find early settlers in Brazil will be presented. (Author)

  4. Nitrogen ligation to manganese in the photosynthetic oxygen-evolving complex: Continuous-wave and pulsed EPR studies of Photosystem II particles containing 14N or 15N

    International Nuclear Information System (INIS)

    DeRose, V.J.; Yachandra, V.K.; McDermott, A.E.; Britt, R.D.; Sauer, K.; Klein, M.P.

    1991-01-01

    The possibility of nitrogen ligation to the Mn in the oxygen-evolving complex from photosystem II was investigated with electron paramagnetic resonance (EPR) and electron spin echo envelope modulation (ESEEM) spectroscopies using 14 N- and 15 N-labeled preparations. Oxygen-evolving preparations were isolated from a thermophilic cyanobacterium, Synechococcus sp., grown on a medium containing either 14 NO 3 - or 15 NO - 3 as the sole source of nitrogen. The substructure on the multiline EPR signal, which arises from Mn in the S 2 state of the enzyme, was measured with continuous-wave EPR. No changes were detected in the substructure peak positions upon substitution of 15 N for 14 N, indicating that this substructure is not due to superhyperfine coupling from nitrogen ligands. To detect potential nitrogen ligands with superhyperfine couplings of lesser magnitude than could be observed with conventional EPR methods, electron spin-echo envelope modulation experiments were also performed on the multiline EPR signal. The Fourier transform of the light-minus-dark time domain ESEEM data shows a peak at 4.8 MHz in 14 N samples which is absent upon substitution with 15 N. This gives unambiguous evidence for weak hyperfine coupling of nitrogen to the Mn of the oxygen-evolving complex. Possible origins of this nitrogen interaction are discussed

  5. Decomposition of spectra in EPR dosimetry using the matrix method

    International Nuclear Information System (INIS)

    Sholom, S.V.; Chumak, V.V.

    2003-01-01

    The matrix method of EPR spectra decomposition is developed and adapted for routine application in retrospective EPR dosimetry with teeth. According to this method, the initial EPR spectra are decomposed (using methods of matrix algebra) into several reference components (reference matrices) that are specific for each material. Proposed procedure has been tested on the example of tooth enamel. Reference spectra were a spectrum of an empty sample tube and three standard signals of enamel (two at g=2.0045, both for the native signal and one at g perpendicular =2.0018, g parallel =1.9973 for the dosimetric signal). Values of dosimetric signals obtained using the given method have been compared with data obtained by manual manipulation of spectra, and good coincidence was observed. This allows considering the proposed method as potent for application in routine EPR dosimetry

  6. In vivo EPR dosimetry of accidental exposures to radiation: experimental results indicating the feasibility of practical use in human subjects

    International Nuclear Information System (INIS)

    Miyake, Minoru; Liu, K.J.; Walczak, T.M.; Swartz, H.M.

    2000-01-01

    Low frequency electron paramagnetic resonance (EPR) provides the potential advantage of making accurate and sensitive measurements of absorbed radiation dose in teeth in situ, i.e. without removing the teeth from the potential victim. The potential limiting factors for making such measurements are: (1) whether low frequency EPR is sufficiently sensitive to detect radiation-induced signal in human teeth; (2) whether sufficient sensitivity can be maintained under in vivo conditions. In this manuscript, we summarize results indicating that this approach is feasible. Using 1.2 GHz EPR spectroscopy, we found that the lower limit for these measurements in isolated human teeth is 0.2 Gy or lower. Measurements of radiation-induced EPR signals in the teeth of living rats were achieved with sufficient sensitivity to indicate that, when taking into consideration the larger mass of human teeth, similar measurements in human teeth in situ would provide sensitivity in the dose range for potential accidental exposures. We estimate that the current lower limit for detecting radiation doses in human teeth in situ (in vivo) is 0.5-1.0 Gy; this would be sufficient for determining if a person has been exposed to potentially life threatening doses of ionizing radiation. The limiting factor for sensitivity appears to be background signals rather than signal/noise, and there are feasible means to overcome this problem and further increase sensitivity. The additional instrumental developments required to make an effective in vivo EPR dosimetric spectrometer for the measurements in teeth in human subjects in situ, seem quite achievable

  7. Stochastic resonance in multi-stable coupled systems driven by two driving signals

    Science.gov (United States)

    Xu, Pengfei; Jin, Yanfei

    2018-02-01

    The stochastic resonance (SR) in multi-stable coupled systems subjected to Gaussian white noises and two different driving signals is investigated in this paper. Using the adiabatic approximation and the perturbation method, the coupled systems with four-well potential are transformed into the master equations and the amplitude of the response is obtained. The signal-to-noise ratio (SNR) is calculated numerically to demonstrate the occurrence of SR. For the case of two driving signals with different amplitudes, the interwell resonance between two wells S1 and S3 emerges for strong coupling. The SR can appear in the subsystem with weaker signal amplitude or even without driving signal with the help of coupling. For the case of two driving signals with different frequencies, the effects of SR in two subsystems driven by high and low frequency signals are both weakened with an increase in coupling strength. The stochastic multi-resonance phenomenon is observed in the subsystem subjected to the low frequency signal. Moreover, an effective scheme for phase suppressing SR is proposed by using a relative phase between two driving signals.

  8. Quantum Measurement Backaction and Upconverting Microwave Signals with Mechanical Resonators

    Science.gov (United States)

    Peterson, R. W.

    The limits of optical measurement and control of mechanical motion are set by the quantum nature of light. The familiar shot noise limit can be avoided by increasing the optical power, but at high enough powers, the backaction of the randomly-arriving photons' radiation pressure can grow to become the dominant force on the system. This thesis will describe an experiment showing how backaction limits the laser cooling of macroscopic drumhead membranes, as well as work on how these membranes can be used to upconvert microwave signals to optical frequencies, potentially preserving the fragile quantum state of the upconverted signal.

  9. EPR study of free radicals in bread

    Science.gov (United States)

    Yordanov, Nicola D.; Mladenova, Ralitsa

    2004-05-01

    The features of the recorded EPR spectra of paramagnetic species formed in bread and rusk are reported. The appearance of free radicals in them is only connected with their thermal treatment since the starting materials (flour and grains) exhibit very weak EPR signal. The obtained EPR spectra are complex and indicate that: (i) the relative number of paramagnetic species depends on the temperature and treating time of the raw product; (ii) the g-values are strongly temperature dependent with a tendency to coincide at t≥220 °C. Because of the relatively low (150-220 °C) temperature of thermal treatment, the studied free radicals can be assumed to appear in the course of the browning (Maillard) reaction and not to the carbonization of the material.

  10. EPR Dosimetry for ageing effect in NPP

    International Nuclear Information System (INIS)

    Choi, Hoon; Lim, Young Ki; Kim, Jong Seog; Jung, Sun Chul

    2005-01-01

    As one of the retrospective dosimetry method, EPR spectroscopy has been studied by many research up to theses days. As a dosimeter for EPR spectroscopy, Alanine is already a well known dosimeter in the field of radiation therapy and dose assessment in radiological accident by its characteristics as good linearity in a wide range of energy level and extremely low signal fading on time. Through technical document of IAEA, the EPR dosimetry method using alanine sample was published in 2000 after research by coordinated project on management of ageing of in-containment I and C cables. Although alanine sample is regarded as a good EPR dosimeter like above ageing assessment field, actually the assessment of radiation should be done at least for two fuel cycles, because of its relatively low irradiation environment in almost all spots in power plant. So, for getting more accurate detection value of radiation, another material is tested for being put in simultaneously inside the power plant with alanine. The test result for lithium formate monohydrate (HCO 2 LiH 2 0) was presented below for checking its possibility for being applied as EPR dosimeter for this project

  11. Post-processing of EPR spectrum from dosimetric substances through filtering of Discrete Fourier Transform

    International Nuclear Information System (INIS)

    Vieira, Fabio P.B.; Bevilacqua, Joyce S.

    2014-01-01

    The use of electron paramagnetic resonance spectrometers - EPR - in radiation dosimetry is known for more than four decades. It is an important tool in the retrospective determination of doses absorbed. To estimate the dose absorbed by the sample, it is necessary to know the amplitude of the peak to peak signature of the substance in its EPR spectrum. This information can be compromised by the presence of spurious information: noise - of random and low intensity nature; and the behavior of the baseline - coming from the coupling between the resonator tube and the sample analyzed. Due to the intrinsic characteristics of the three main components of the signal, i.e. signature, noise, and baseline - the analysis in the frequency domain allows, through post-processing techniques to filter spurious information. In this work, an algorithm that retrieves the signature of a substance has been implemented. The Discrete Fourier Transform is applied to the signal and without user intervention, the noise is filtered. From the filtered signal, recovers the signature by Inverse Discrete Fourier Transform. The peak to peak amplitude, and the absorbed dose is calculated with an error of less than 1% for signals wherein the base line is linearized. Some more general cases are under investigation and with little user intervention, you can get the same error

  12. Biophysical dose measurement using electron paramagnetic resonance in rodent teeth

    International Nuclear Information System (INIS)

    Khan, R.F.H.; Rink, W.J.; Boreham, D.R.

    2003-01-01

    Electron paramagnetic resonance (EPR) dosimetry of human tooth enamel has been widely used in measuring radiation doses in various scenarios. However, there are situations that do not involve a human victim (e.g. tests for suspected environmental overexposures, measurements of doses to experimental animals in radiation biology research, or chronology of archaeological deposits). For such cases we have developed an EPR dosimetry technique making use of enamel of teeth extracted from mice. Tooth enamel from both previously irradiated and unirradiated mice was extracted and cleaned by processing in supersaturated KOH aqueous solution. Teeth from mice with no previous irradiation history exhibited a linear EPR response to the dose in the range from 0.8 to 5.5 Gy. The EPR dose reconstruction for a preliminarily irradiated batch resulted in the radiation dose of (1.4±0.2) Gy, which was in a good agreement with the estimated exposure of the teeth. The sensitivity of the EPR response of mouse enamel to gamma radiation was found to be half of that of human tooth enamel. The dosimetric EPR signal of mouse enamel is stable up at least to 42 days after exposure to radiation. Dose reconstruction was only possible with the enamel extracted from molars and premolars and could not be performed with incisors. Electron micrographs showed structural variations in the incisor enamel, possibly explaining the large interfering signal in the non-molar teeth

  13. A low noise photoelectric signal acquisition system applying in nuclear magnetic resonance gyroscope

    Science.gov (United States)

    Lu, Qilin; Zhang, Xian; Zhao, Xinghua; Yang, Dan; Zhou, Binquan; Hu, Zhaohui

    2017-10-01

    The nuclear magnetic resonance gyroscope serves as a new generation of strong support for the development of high-tech weapons, it solves the core problem that limits the development of the long-playing seamless navigation and positioning. In the NMR gyroscope, the output signal with atomic precession frequency is detected by the probe light, the final crucial photoelectric signal of the probe light directly decides the quality of the gyro signal. But the output signal has high sensitivity, resolution and measurement accuracy for the photoelectric detection system. In order to detect the measured signal better, this paper proposed a weak photoelectric signal rapid acquisition system, which has high SNR and the frequency of responded signal is up to 100 KHz to let the weak output signal with high frequency of the NMR gyroscope can be detected better.

  14. IN-VIVO RADIATION DOSIMETRY USING PORTABLE L BAND EPR: ON-SITE MEASUREMENT OF VOLUNTEERS IN FUKUSHIMA PREFECTURE, JAPAN

    Science.gov (United States)

    Miyake, Minoru; Nakai, Yasuhiro; Yamaguchi, Ichiro; Hirata, Hiroshi; Kunugita, Naoki; Williams, Benjamin B.; Swartz, Harold M.

    2016-01-01

    The aim of this study was to make direct measurements of the possible radiation-induced EPR signals in the teeth of volunteers who were residents in Fukushima within 80 km distance from the Fukushima Nuclear Power plant at the time of the disaster, and continued to live there for at least 3 month after the disaster. Thirty four volunteers were enrolled in this study. These measurements were made using a portable L-band EPR spectrometer, which was originally developed in the EPR Center at Dartmouth. All measurements were performed using surface loop resonators that have been specifically designed for the upper incisor teeth. Potentially these signals include not only radiation-induced signals induced by the incident but also background signals including those from prior radiation exposure from the environment and medical exposure. We demonstrated that it is feasible to transport the dosimeter to the measurement site and make valid measurements. The intensity of the signals that were obtained was not significantly above those seen in volunteers who had not had potential radiation exposures at Fukushima. PMID:27522046

  15. In-vivo radiation dosimetry using portable L band EPR: on-site measurement of volunteers in Fukushima Prefecture, Japan

    International Nuclear Information System (INIS)

    Miyake, Minoru; Nakai, Yasuhiro; Yamaguchi, Ichiro; Kunugita, Naoki; Hirata, Hiroshi; Williams, Benjamin B.; Swartz, Harold M.

    2016-01-01

    The aim of this study was to make direct measurements of the possible radiation-induced EPR signals in the teeth of volunteers who were residents in Fukushima within 80 km distance from the Fukushima Nuclear Power plant at the time of the disaster, and continued to live there for at least 3 month after the disaster. Thirty four volunteers were enrolled in this study. These measurements were made using a portable L-band EPR spectrometer, which was originally developed in the EPR Center at Dartmouth. All measurements were performed using surface loop resonators that have been specifically designed for the upper incisor teeth. Potentially these signals include not only radiation-induced signals induced by the incident but also background signals including those from prior radiation exposure from the environment and medical exposure. We demonstrated that it is feasible to transport the dosimeter to the measurement site and make valid measurements. The intensity of the signals that were obtained was not significantly above those seen in volunteers who had not had potential radiation exposures at Fukushima. (authors)

  16. Selective saturation method for EPR dosimetry with tooth enamel

    International Nuclear Information System (INIS)

    Ignatiev, E.A.; Romanyukha, A.A.; Koshta, A.A.; Wieser, A.

    1996-01-01

    The method of selective saturation is based on the difference in the microwave (mw) power dependence of the background and radiation induced EPR components of the tooth enamel spectrum. The subtraction of the EPR spectrum recorded at low mw power from that recorded at higher mw power provides a considerable reduction of the background component in the spectrum. The resolution of the EPR spectrum could be improved 10-fold, however simultaneously the signal-to-noise ratio was found to be reduced twice. A detailed comparative study of reference samples with known absorbed doses was performed to demonstrate the advantage of the method. The application of the selective saturation method for EPR dosimetry with tooth enamel reduced the lower limit of EPR dosimetry to about 100 mGy. (author)

  17. Pulsed-High Field/High-Frequency EPR Spectroscopy

    Science.gov (United States)

    Fuhs, Michael; Moebius, Klaus

    Pulsed high-field/high-frequency electron paramagnetic resonance (EPR) spectroscopy is used to disentangle many kinds of different effects often obscured in continuous wave (cw) EPR spectra at lower magnetic fields/microwave frequencies. While the high magnetic field increases the resolution of G tensors and of nuclear Larmor frequencies, the high frequencies allow for higher time resolution for molecular dynamics as well as for transient paramagnetic intermediates studied with time-resolved EPR. Pulsed EPR methods are used for example for relaxation-time studies, and pulsed Electron Nuclear DOuble Resonance (ENDOR) is used to resolve unresolved hyperfine structure hidden in inhomogeneous linewidths. In the present article we introduce the basic concepts and selected applications to structure and mobility studies on electron transfer systems, reaction centers of photosynthesis as well as biomimetic models. The article concludes with an introduction to stochastic EPR which makes use of an other concept for investigating resonance systems in order to increase the excitation bandwidth of pulsed EPR. The limited excitation bandwidth of pulses at high frequency is one of the main limitations which, so far, made Fourier transform methods hardly feasible.

  18. Retrospective individual dosimetry using luminescence and EPR after radiation accidents

    International Nuclear Information System (INIS)

    Goeksu, H.Y.; Wieser, A.; Ulanovsky, A.

    2007-01-01

    requires further investigation. Applicability of suggested procedure need to be tested under factory conditions using the latest material and card technology. Feasibility of production of such cards on an industrial scale is discussed. Alternatively individual dose after emergency situations can be reconstructed by assessment of absorbed dose in human tooth enamel by electron paramagnetic resonance (EPR) measurements. From absorbed dose in tooth enamel the effective dose and dose in organs can be reconstructed in consideration of photon energy response characteristic of teeth, and photon energy spectrum and geometry of the exposure field. In this project the applicability of EPR measurements with teeth was extended by reducing the detection threshold and computation of the photon energy response characteristic of deciduous teeth. It is shown that current limitation of EPR measurement with teeth at low absorbed dose is caused by incomplete consideration of the EPR spectrum of nonradiation induced (initial) radicals. By adding further components for simulation of the initial EPR spectrum in the dose evaluation procedure, the critical value for detection of absorbed dose in tooth enamel could be decreased to 19 mGy. Dose conversion coefficients for deciduous teeth in dependence of photon energy and exposure geometry were computed by Monte Carlo simulation using a mathematical child phantom. For use with luminescence measurements with chip cards and EPR measurements with teeth a software was established that allows conversion of the measured dose to integral free-in-air kerma, tissue dose or dose water in dependence on exposure scenario. (orig.)

  19. Camel molar tooth enamel response to gamma rays using EPR spectroscopy.

    Science.gov (United States)

    El-Faramawy, N A; El-Somany, I; Mansour, A; Maghraby, A M; Eissa, H; Wieser, A

    2018-03-01

    Tooth enamel samples from molar teeth of camel were prepared using a combined procedure of mechanical and chemical tooth treatment. Based on electron paramagnetic resonance (EPR) spectroscopy, the dose response of tooth enamel samples was examined and compared to that of human enamel. The EPR dose response of the tooth enamel samples was obtained through irradiation to gamma doses from 1 Gy up to 100 kGy. It was found that the radiation-induced EPR signal increased linearly with gamma dose for all studied tooth enamel samples, up to about 15 kGy. At higher doses, the dose response curve leveled off. The results revealed that the location of the native signal of camel tooth enamel was similar to that of enamel from human molars at 2.00644, but different from that of enamel from cows and goats. In addition, the peak-to-peak width (ΔH pp ) for human and camel molar teeth was similar. It was also found that the response of camel enamel to gamma radiation was 36% lower than that of human enamel. In conclusion, the results indicate the suitability of camel teeth for retrospective gamma dosimetry.

  20. Camel molar tooth enamel response to gamma rays using EPR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    El-Faramawy, N.A.; El-Somany, I. [Ain Shams University, Physics Department, Faculty of Science, Cairo (Egypt); Mansour, A. [National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo (Egypt); Maghraby, A.M.; Eissa, H. [National Institute of Standards (NIS), Ionizing Radiation Metrology Laboratory, Giza (Egypt); Wieser, A. [Helmholtz Zentrum Muenchen-German Research Center for Environmental Health, Department of Radiation Sciences, Institute of Radiation Protection, Neuherberg (Germany)

    2018-03-15

    Tooth enamel samples from molar teeth of camel were prepared using a combined procedure of mechanical and chemical tooth treatment. Based on electron paramagnetic resonance (EPR) spectroscopy, the dose response of tooth enamel samples was examined and compared to that of human enamel. The EPR dose response of the tooth enamel samples was obtained through irradiation to gamma doses from 1 Gy up to 100 kGy. It was found that the radiation-induced EPR signal increased linearly with gamma dose for all studied tooth enamel samples, up to about 15 kGy. At higher doses, the dose response curve leveled off. The results revealed that the location of the native signal of camel tooth enamel was similar to that of enamel from human molars at 2.00644, but different from that of enamel from cows and goats. In addition, the peak-to-peak width (ΔH{sub pp}) for human and camel molar teeth was similar. It was also found that the response of camel enamel to gamma radiation was 36% lower than that of human enamel. In conclusion, the results indicate the suitability of camel teeth for retrospective gamma dosimetry. (orig.)

  1. Control of stochastic resonance in bistable systems by using periodic signals

    International Nuclear Information System (INIS)

    Min, Lin; Li-Min, Fang; Yong-Jun, Zheng

    2009-01-01

    According to the characteristic structure of double wells in bistable systems, this paper analyses stochastic fluctuations in the single potential well and probability transitions between the two potential wells and proposes a method of controlling stochastic resonance by using a periodic signal. Results of theoretical analysis and numerical simulation show that the phenomenon of stochastic resonance happens when the time scales of the periodic signal and the noise-induced probability transitions between the two potential wells achieve stochastic synchronization. By adding a bistable system with a controllable periodic signal, fluctuations in the single potential well can be effectively controlled, thus affecting the probability transitions between the two potential wells. In this way, an effective control can be achieved which allows one to either enhance or realize stochastic resonance

  2. Biomolecular EPR spectroscopy

    CERN Document Server

    Hagen, Wilfred Raymond

    2008-01-01

    Comprehensive, Up-to-Date Coverage of Spectroscopy Theory and its Applications to Biological SystemsAlthough a multitude of books have been published about spectroscopy, most of them only occasionally refer to biological systems and the specific problems of biomolecular EPR (bioEPR). Biomolecular EPR Spectroscopy provides a practical introduction to bioEPR and demonstrates how this remarkable tool allows researchers to delve into the structural, functional, and analytical analysis of paramagnetic molecules found in the biochemistry of all species on the planet. A Must-Have Reference in an Intrinsically Multidisciplinary FieldThis authoritative reference seamlessly covers all important bioEPR applications, including low-spin and high-spin metalloproteins, spin traps and spin lables, interaction between active sites, and redox systems. It is loaded with practical tricks as well as do's and don'ts that are based on the author's 30 years of experience in the field. The book also comes with an unprecedented set of...

  3. EPR study on tomatoes before and after gamma-irradiation

    International Nuclear Information System (INIS)

    Aleksieva, K.; Georgieva, L.; Tzvetkova, E.; Yordanov, N.D.

    2009-01-01

    The results from the EPR studies on fresh, air-dried and lyophilized tomato samples before and after gamma-irradiation are reported. Before irradiation fresh and air-dried tomatoes exhibit one singlet EPR line characterized with common g-factor of 2.0048±0.0005, whereas freeze-dried tomato does not show any EPR spectrum. After irradiation, a typical 'cellulose-like' triplet EPR spectrum appears in all samples, attributed to cellulose free radicals, generated by gamma-irradiation. It consists of intense central line with g=2.0048±0.0005 and two weak satellite lines separated ca. 3 mT left and right of it. In air-dried and lyophilized tomatoes the 'cellulose-like' EPR spectrum is superimposed by an additional partly resolved carbohydrate spectrum. Fading measurements of the radiation-induced EPR signals indicate that the intensity of the EPR spectra of air-dried and freeze-dried tomato are reduced to about 50% after 50 days, whereas those of fresh irradiated tomatoes kept at 4 o C fade completely in 15 days. The reported results unambiguously show that the presence of two satellite lines in the EPR 'cellulose-like' spectra of tomato samples can be used for identification of radiation processing.

  4. EPR paradox revisited

    Energy Technology Data Exchange (ETDEWEB)

    Klippert, R. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)

    1999-07-01

    In a seminal paper from 1935 Einstein, Podolsky and Rosen produced one of the most powerful weapon against the unpredictability of the world ensured by quantum mechanics. The recent production of entangled states, with all its possible future applications in quantum computation, re-open the possibility of testing EPR states on physical grounds. The present intends to present a challenge to the wedding of classical (special) relativity with quantum mechanics, the so called relativistic quantum mechanics. Making use of the same apparatus devised in EPR, it is shown that non local quantum states are incompatible with either their possibility of being measured or else with Lorentz invariance (or even with both). (author)

  5. Optimal registration conditions for tooth EPR dosimetry at low accumulated dose

    International Nuclear Information System (INIS)

    Galtsev, V.E.; Galtseva, E.V.; Lebedev, Y.S.

    1997-01-01

    The spectrum registration under rapid passage conditions (the second harmonic phase quadrature of the absorption signal) allows one to enhance substantially the sensitivity of tooth enamel and bone EPR dosimetry at a low accumulated dose. In the present work the dependencies of the radiation and background signals on EPR spectrometer parameters are described and the optimal conditions in RPM for EPR dosimetry are obtained. (Author)

  6. Stochastic resonance in a stochastic bistable system with additive noises and square–wave signal

    International Nuclear Information System (INIS)

    Feng, Guo; Xiang-Dong, Luo; Shao-Fu, Li; Yu-Rong, Zhou

    2010-01-01

    This paper considers the stochastic resonance in a stochastic bistable system driven by a periodic square-wave signal and a static force as well as by additive white noise and dichotomous noise from the viewpoint of signal-to-noise ratio. It finds that the signal-to-noise ratio appears as stochastic resonance behaviour when it is plotted as a function of the noise strength of the white noise and dichotomous noise, as a function of the system parameters, or as a function of the static force. Moreover, the influence of the strength of the stochastic potential force and the correlation rate of the dichotomous noise on the signal-to-noise ratio is investigated. (general)

  7. Superhigh-frequency circuit for the EPR spectrometer with rectifier screening

    International Nuclear Information System (INIS)

    Zhizhchenko, G.A.; Tsvirko, L.V.

    1983-01-01

    The hamodyne SHF circuit of a 3-cm EPR spectrometer with a reflecting resonator is described. The optimum operating mode of SHF-rectifier at a constant phase difference is automatically assured in the circuit. The circuit employs a reflecting p-i-n- attenuator and a SHF-rectifier sereen which simplify the spectrometer tuming. The circuit is used in a miniature EPR radiospectrometer Minsk EPR-6-type

  8. X-band EPR setup with THz light excitation of Novosibirsk Free Electron Laser: Goals, means, useful extras

    Science.gov (United States)

    Veber, Sergey L.; Tumanov, Sergey V.; Fursova, Elena Yu.; Shevchenko, Oleg A.; Getmanov, Yaroslav V.; Scheglov, Mikhail A.; Kubarev, Vitaly V.; Shevchenko, Daria A.; Gorbachev, Iaroslav I.; Salikova, Tatiana V.; Kulipanov, Gennady N.; Ovcharenko, Victor I.; Fedin, Matvey V.

    2018-03-01

    Electron Paramagnetic Resonance (EPR) station at the Novosibirsk Free Electron Laser (NovoFEL) user facility is described. It is based on X-band (∼9 GHz) EPR spectrometer and operates in both Continuous Wave (CW) and Time-Resolved (TR) modes, each allowing detection of either direct or indirect influence of high-power NovoFEL light (THz and mid-IR) on the spin system under study. The optics components including two parabolic mirrors, shutters, optical chopper and multimodal waveguide allow the light of NovoFEL to be directly fed into the EPR resonator. Characteristics of the NovoFEL radiation, the transmission and polarization-retaining properties of the waveguide used in EPR experiments are presented. The types of proposed experiments accessible using this setup are sketched. In most practical cases the high-power radiation applied to the sample induces its rapid temperature increase (T-jump), which is best visible in TR mode. Although such influence is a by-product of THz radiation, this thermal effect is controllable and can deliberately be used to induce and measure transient signals of arbitrary samples. The advantage of tunable THz radiation is the absence of photo-induced processes in the sample and its high penetration ability, allowing fast heating of a large portion of virtually any sample and inducing intense transients. Such T-jump TR EPR spectroscopy with THz pulses has been previewed for the two test samples, being a useful supplement for the main goals of the created setup.

  9. X-band EPR setup with THz light excitation of Novosibirsk Free Electron Laser: Goals, means, useful extras.

    Science.gov (United States)

    Veber, Sergey L; Tumanov, Sergey V; Fursova, Elena Yu; Shevchenko, Oleg A; Getmanov, Yaroslav V; Scheglov, Mikhail A; Kubarev, Vitaly V; Shevchenko, Daria A; Gorbachev, Iaroslav I; Salikova, Tatiana V; Kulipanov, Gennady N; Ovcharenko, Victor I; Fedin, Matvey V

    2018-03-01

    Electron Paramagnetic Resonance (EPR) station at the Novosibirsk Free Electron Laser (NovoFEL) user facility is described. It is based on X-band (∼9 GHz) EPR spectrometer and operates in both Continuous Wave (CW) and Time-Resolved (TR) modes, each allowing detection of either direct or indirect influence of high-power NovoFEL light (THz and mid-IR) on the spin system under study. The optics components including two parabolic mirrors, shutters, optical chopper and multimodal waveguide allow the light of NovoFEL to be directly fed into the EPR resonator. Characteristics of the NovoFEL radiation, the transmission and polarization-retaining properties of the waveguide used in EPR experiments are presented. The types of proposed experiments accessible using this setup are sketched. In most practical cases the high-power radiation applied to the sample induces its rapid temperature increase (T-jump), which is best visible in TR mode. Although such influence is a by-product of THz radiation, this thermal effect is controllable and can deliberately be used to induce and measure transient signals of arbitrary samples. The advantage of tunable THz radiation is the absence of photo-induced processes in the sample and its high penetration ability, allowing fast heating of a large portion of virtually any sample and inducing intense transients. Such T-jump TR EPR spectroscopy with THz pulses has been previewed for the two test samples, being a useful supplement for the main goals of the created setup. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. 13C NMR and EPR spectroscopic evaluation of oil shale mined soil recuperation

    International Nuclear Information System (INIS)

    Santos, J.V. dos; Mangrich, A.S.; Pereira, B.F.; Pillon, C.N.; Bonagamba, T.J.

    2013-01-01

    In this work, native forest soil (NFS) organic matter (SOM) sample and SOM samples from a neighboring forest soil area of an oil shale mine which is being rehabilitated for thirty years (RFS) were analyzed. X-band electron paramagnetic resonance (EPR) and solid-state 13 C nuclear magnetic resonance (NMR) spectroscopies were used to evaluate the soil reclamation of the Brazilian oil shale mining process. Two-dimensional heterospectral correlation studies of the results obtained from EPRand 13 C NMR were used to obtain information about SOM structures and their interactions with residual paramagnetic metal ion. The signal of the residual metallic oxycation, VO 2+ correlated positively with uronic acid-type hydrophilic organic structures, determined from the 13 C NMR spectra, and correlated negatively with the organic free radical (OFR) signal associated with oxygen atoms (g = 2.0042). The hydrophobic aromatic structures correlate positively with the EPR OFR signal associated with carbon atoms (g = 2.0022). The data from the two spectroscopic magnetic techniques show that the used recuperation process is effective. (author)

  11. {sup 13}C NMR and EPR spectroscopic evaluation of oil shale mined soil recuperation

    Energy Technology Data Exchange (ETDEWEB)

    Santos, J.V. dos, E-mail: mangrich@ufpr.br [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil); Mangrich, A.S. [Instituto Nacional de Ciencia e Tecnologia: Energia e Ambiente, Salvador, BA (Brazil); Pereira, B.F. [EMBRAPA Clima Temperado, Pelotas, RS (Brazil); Pillon, C.N. [EMBRAPA Clima Temperado, Pelotas, RS (Brazil). Estacao Experimental Cascata; Novotny, E.H. [EMBRAPA Solos, Rio de Janeiro, RJ (Brazil); Bonagamba, T.J. [Universidade de Sao Paulo (USP), Sao Carlos, SP (Brazil). Instituto de Fisica; Abbt-Braun, G.; Frimmel, F.H. [Engler-Bunte-Institut, Universitaet Karlsruhe, TH (Germany)

    2013-02-15

    In this work, native forest soil (NFS) organic matter (SOM) sample and SOM samples from a neighboring forest soil area of an oil shale mine which is being rehabilitated for thirty years (RFS) were analyzed. X-band electron paramagnetic resonance (EPR) and solid-state {sup 13}C nuclear magnetic resonance (NMR) spectroscopies were used to evaluate the soil reclamation of the Brazilian oil shale mining process. Two-dimensional heterospectral correlation studies of the results obtained from EPRand {sup 13}C NMR were used to obtain information about SOM structures and their interactions with residual paramagnetic metal ion. The signal of the residual metallic oxycation, VO{sup 2+} correlated positively with uronic acid-type hydrophilic organic structures, determined from the {sup 13}C NMR spectra, and correlated negatively with the organic free radical (OFR) signal associated with oxygen atoms (g = 2.0042). The hydrophobic aromatic structures correlate positively with the EPR OFR signal associated with carbon atoms (g = 2.0022). The data from the two spectroscopic magnetic techniques show that the used recuperation process is effective. (author)

  12. EPR imaging and HPLC characterization of the pigment-based organic free radical in black soybean seeds.

    Science.gov (United States)

    Nakagawa, Kouichi; Maeda, Hayato

    2017-02-01

    We investigated the location and distribution of paramagnetic species in dry black, brown, and yellow (normal) soybean seeds using electron paramagnetic resonance (EPR), X-band (9 GHz) EPR imaging (EPRI), and HPLC. EPR primarily detected two paramagnetic species in black soybean. These two different radical species were assigned as stable organic radical and Mn 2+  species based on the g values and hyperfine structures. The signal from the stable radical was noted at g ≈ 2.00 and was relatively strong and stable. Subsequent noninvasive two-dimensional (2D) EPRI of the radical present in black soybean revealed that the stable radical was primarily located in the pigmented region of the soybean coat, with very few radicals observed in the soybean cotyledon (interior). Pigments extracted from black soybean were analyzed using HPLC. The major compound was found to be cyanidin-3-glucoside. Multi-EPR and HPLC results indicate that the stable radical was only found within the pigmented region of the soybean coat, and it could be cyanidin-3-glucoside or an oxidative decomposition product.

  13. EPR study of free radicals in non- and gamma-irradiated nutritive supplements containing anthocyanins concentrate from lyophilized red wine

    Energy Technology Data Exchange (ETDEWEB)

    Mladenova, Ralitsa B., E-mail: ralitsa@ic.bas.b [Institute of Catalysis, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria); Firzov, Cyril [Institute of Cryobiology and Food Technology, 1162 Sofia (Bulgaria); Yordanov, Nicola D. [Institute of Catalysis, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria)

    2010-09-15

    Nutritive supplements Enoviton, Enoviton C and Enoviton CE containing standardized anthocyanins from lyophilized red wine, vitamins (some of them) and excipients were investigated by EPR spectrometry before and after gamma-irradiation. Non-irradiated samples exhibit one singlet line with g=2.0039{+-}0.0002, most probably due to free radicals from anthocyanins. After irradiation with 10 kGy gamma-rays, tablets of Enoviton, Enoviton S and Enoviton SE, all exhibit complex EPR signals centered at a g-value of g=2.0034. The EPR spectrum of irradiated Enoviton is different from that of Enoviton S or Enoviton SE due to the overlap of the spectra of microcrystalline cellulose and the background singlet spectrum present in all tablets with the EPR resonance due to irradiated ascorbic acid (in Enoviton S and Enoviton SE). Gamma-induced free radicals exhibit long time stability-for a six months period the intensity of central peak decrease with 30-40%.

  14. EPR study of free radicals in non- and gamma-irradiated nutritive supplements containing anthocyanins concentrate from lyophilized red wine

    Science.gov (United States)

    Mladenova, Ralitsa B.; Firzov, Cyril; Yordanov, Nicola D.

    2010-09-01

    Nutritive supplements Enoviton, Enoviton C and Enoviton CE containing standardized anthocyanins from lyophilized red wine, vitamins (some of them) and excipients were investigated by EPR spectrometry before and after gamma-irradiation. Non-irradiated samples exhibit one singlet line with g=2.0039±0.0002, most probably due to free radicals from anthocyanins. After irradiation with 10 kGy gamma-rays, tablets of Еnoviton, Еnoviton С and Еnoviton СЕ, all exhibit complex EPR signals centered at a g-value of g=2.0034. The EPR spectrum of irradiated Enoviton is different from that of Еnoviton С or Еnoviton СЕ due to the overlap of the spectra of microcrystalline cellulose and the background singlet spectrum present in all tablets with the EPR resonance due to irradiated ascorbic acid (in Еnoviton С and Еnoviton СЕ). Gamma-induced free radicals exhibit long time stability—for a six months period the intensity of central peak decrease with 30-40%.

  15. Linear all-optical signal processing using silicon micro-ring resonators

    DEFF Research Database (Denmark)

    Ding, Yunhong; Ou, Haiyan; Xu, Jing

    2016-01-01

    Silicon micro-ring resonators (MRRs) are compact and versatile devices whose periodic frequency response can be exploited for a wide range of applications. In this paper, we review our recent work on linear all-optical signal processing applications using silicon MRRs as passive filters. We focus...

  16. Transmission Property of Directly Modulated Signals Enhanced by a Micro-ring Resonator

    DEFF Research Database (Denmark)

    An, Yi; Lorences Riesgo, Abel; Seoane, Jorge

    2012-01-01

    A silicon micro-ring resonator is used to enhance the modulation speed of a 10-Gbit/s directly modulated laser to 40 Gbit/s. The generated signal is transmitted error free over 4.5 km SSMF. Dispersion tolerance is also studied....

  17. Generation of a 640 Gbit/s NRZ OTDM signal using a silicon microring resonator

    DEFF Research Database (Denmark)

    Ding, Yunhong; Hu, Hao; Galili, Michael

    2011-01-01

    in a highly nonlinear fiber. Second, RZ-to-NRZ format conversion is achieved in a specially designed silicon microring resonator with FSR of 1280 GHz, Q value of 638, high extinction ratio and low coupling loss to optical fiber. A 640 Gbit/s NRZ OTDM signal with very clear eye-diagram and narrower bandwidth...

  18. EPR: the nuclear impasse

    International Nuclear Information System (INIS)

    Marillier, F.

    2008-01-01

    The questions relative to the climatic change constitute crucial challenges for the next ten years. In this context the author aims to show how the EPR project illustrates the nuclear french ''autism''. He presents and analyzes the international and environmental impacts of this obsolete technology, as a project useless and dangerous. (A.L.B.)

  19. EPR detection of foods preserved with ionizing radiation

    Science.gov (United States)

    Stachowicz, W.; Burlinska, G.; Michalik, J.

    1998-06-01

    The applicability of the epr technique for the detection of dried vegetables, mushrooms, some spices, flavour additives and some condiments preserved with ionizing radiation is discussed. The epr signals recorded after exposure to gamma rays and to beams of 10 MeV electrons from linac are stable, intense and specific enough as compared with those observed with nonirradiated samples and could be used for the detection of irradiation. However, stability of radiation induced epr signals produced in these foods depends on storage condition. No differences in shapes (spectral parameters) and intensities of the epr spectra recorded with samples exposed to the same doses of gamma rays ( 60Co) and 10 MeV electrons were observed

  20. EPR detection of foods preserved with ionizing radiation

    International Nuclear Information System (INIS)

    Stachowicz, W.; Burlinska, G.; Michalik, J.

    1998-01-01

    The applicability of the epr technique for the detection of dried vegetables, mushrooms, some spices, flavour additives and some condiments preserved with ionizing radiation is discussed. The epr signals recorded after exposure to gamma rays and to the beams of 10 MeV electrons from linac are stable, intense and specific enough as compared with those observed with nonirradiated samples and could be used for the detection of irradiation. However, stability of radiation induced epr signals produced in these foods depends on storage condition. No differences in shapes (spectral parameters) and intensities of the epr spectra recorded with samples exposed to the same doses of gamma rays ( 60 Co) and 10 MeV electrons were observed

  1. EPR detection of foods preserved with ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Stachowicz, W.; Burlinska, G.; Michalik, J

    1998-06-01

    The applicability of the epr technique for the detection of dried vegetables, mushrooms, some spices, flavour additives and some condiments preserved with ionizing radiation is discussed. The epr signals recorded after exposure to gamma rays and to the beams of 10 MeV electrons from linac are stable, intense and specific enough as compared with those observed with nonirradiated samples and could be used for the detection of irradiation. However, stability of radiation induced epr signals produced in these foods depends on storage condition. No differences in shapes (spectral parameters) and intensities of the epr spectra recorded with samples exposed to the same doses of gamma rays ({sup 60}Co) and 10 MeV electrons were observed.

  2. Contribution of Harold M. Swartz to In Vivo EPR and EPR Dosimetry.

    Science.gov (United States)

    Gallez, Bernard

    2016-12-01

    In 2015, we are celebrating half a century of research in the application of Electron Paramagnetic Resonance (EPR) as a biodosimetry tool to evaluate the dose received by irradiated people. During the EPR Biodose 2015 meeting, a special session was organized to acknowledge the pioneering contribution of Harold M. (Hal) Swartz in the field. The article summarizes his main contribution in physiology and medicine. Four emerging themes have been pursued continuously along his career since its beginning: (1) radiation biology; (2) oxygen and oxidation; (3) measuring physiology in vivo; and (4) application of these measurements in clinical medicine. The common feature among all these different subjects has been the use of magnetic resonance techniques, especially EPR. In this article, you will find an impressionist portrait of Hal Swartz with the description of the 'making of' this pioneer, a time-line perspective on his career with the creation of three National Institutes of Health-funded EPR centers, a topic-oriented perspective on his career with a description of his major contributions to Science, his role as a mentor and his influence on his academic children, his active role as founder of scientific societies and organizer of scientific meetings, and the well-deserved international recognition received so far. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Contribution of Harold M. Swartz to In Vivo EPR and EPR Dosimetry

    International Nuclear Information System (INIS)

    Gallez, Bernard

    2016-01-01

    In 2015, we are celebrating half a century of research in the application of Electron Paramagnetic Resonance (EPR) as a biodosimetry tool to evaluate the dose received by irradiated people. During the EPR Biodose 2015 meeting, a special session was organized to acknowledge the pioneering contribution of Harold M. (Hal) Swartz in the field. The article summarizes his main contribution in physiology and medicine. Four emerging themes have been pursued continuously along his career since its beginning: (1) radiation biology; (2) oxygen and oxidation; (3) measuring physiology in vivo; and (4) application of these measurements in clinical medicine. The common feature among all these different subjects has been the use of magnetic resonance techniques, especially EPR. In this article, you will find an impressionist portrait of Hal Swartz with the description of the 'making of' this pioneer, a time-line perspective on his career with the creation of three National Institutes of Health-funded EPR centers, a topic-oriented perspective on his career with a description of his major contributions to Science, his role as a mentor and his influence on his academic children, his active role as founder of scientific societies and organizer of scientific meetings, and the well-deserved international recognition received so far. (author)

  4. EPR of radiation defects in lithium-oxyfluoride glass ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Fedotovs, A; Rogulis, U; Sarakovskis, A; Dimitrocenko, L, E-mail: andris-f@navigator.l [Institute of Solid State Physics, University of Latvia, Kengaraga st. 8, LV-1063, Riga (Latvia)

    2010-11-01

    We studied oxyfluoride composites based on lithium silicate glasses with yttrium fluorides and rare-earth dopants. The electron paramagnetic resonance (EPR) has been used to obtain information about radiation induced defects in these materials. Spectra have been measured before and after X-ray irradiation at room temperature and at liquid nitrogen temperature. Fluoride crystallites within samples were created by means of thermal treatment at specific temperatures. EPR spectra of radiation induced defects in oxyfluoride glass ceramics, in which crystallites have not been yet created, show no explicit hfs interaction of fluorine nuclei. However, in glass ceramics, which already contains fluoride crystallites, the hfs characteristic to fluorine nuclei appears in the EPR spectra. EPR hyperfine structure could be explained within a model of an F-type centre in YF{sub 3} crystalline phase.

  5. EPR of radiation defects in lithium-oxyfluoride glass ceramics

    Science.gov (United States)

    Fedotovs, A.; Rogulis, U.; Sarakovskis, A.; Dimitrocenko, L.

    2010-11-01

    We studied oxyfluoride composites based on lithium silicate glasses with yttrium fluorides and rare-earth dopants. The electron paramagnetic resonance (EPR) has been used to obtain information about radiation induced defects in these materials. Spectra have been measured before and after X-ray irradiation at room temperature and at liquid nitrogen temperature. Fluoride crystallites within samples were created by means of thermal treatment at specific temperatures. EPR spectra of radiation induced defects in oxyfluoride glass ceramics, in which crystallites have not been yet created, show no explicit hfs interaction of fluorine nuclei. However, in glass ceramics, which already contains fluoride crystallites, the hfs characteristic to fluorine nuclei appears in the EPR spectra. EPR hyperfine structure could be explained within a model of an F-type centre in YF3 crystalline phase.

  6. SWNT probed by multi-frequency EPR and microwave absorption

    NARCIS (Netherlands)

    Corzilius, B.; Dinse, K.P.; Hata, K.; Haluska, M.; Skakalova, V.; Roth, S.

    2008-01-01

    In addition to g = 2.00 signals seen frequently in EPR spectra of SWNT, signals at g = 2.07 of SWNT prepared by CVD were detected, exhibiting a Pauli susceptibility temperature dependence. This Pauli magnetism in combination with the large g shift is taken as evidence that these signals originate

  7. Stochastic resonance is applied to quantitative analysis for weak chromatographic signal of glyburide in plasma

    International Nuclear Information System (INIS)

    Zhang Wei; Xiang Bingren; Wu Yanwei; Shang Erxin

    2005-01-01

    Based on the theory of stochastic resonance, a new method carried on the quantitive analysis to weak chromatographic signal of glyburide in plasma, which was embedded in the noise background and the signal-to-noise ratio (SNR) of HPLC-UV is enhanced remarkably. This method enhances the quantification limit to 1 ng ml -1 , which is the same as HPLC-MS, and makes it possible to detect the weak signal accurately by HPLC-UV, which was not suitable before. The results showed good recovery and linear range from 1 to 50 ng ml -1 of glyburide in plasma and the method can be used for quantitative analysis of glyburide

  8. Electron spin resonance signal from a tetra-interstitial defect in silicon

    CERN Document Server

    Mchedlidze, T

    2003-01-01

    The Si-B3 electron spin resonance (ESR) signal from agglomerates of self-interstitials was detected for the first time in hydrogen-doped float-zone-grown silicon samples subjected to annealing after electron irradiation. Previously this signal had been detected only in neutron- or proton-irradiated silicon samples. The absence of obscuring ESR peaks for the investigated samples at applied measurement conditions allowed an investigation of the hyperfine structure of the Si-B3 spectra. The analysis supports assignment of a tetra-interstitial defect as the origin of the signal.

  9. Gamma-Irradiated seafoods: identification and dosimetry by electron paramagnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Desrosiers, M.F.

    1989-01-01

    Electron paramagnetic resonance (EPR) spectroscopy was used to measure the production of free radicals induced by 60Co γ-rays in shrimp exoskeleton, mussel shells, and fish bones. The EPR spectrum for irradiated shrimp shell was dose dependent and appeared to be derived from more than one radical. The major component of the radiation-induced spectrum resulted from radical formation in chitin, assigned by comparison with irradiated N-acetyl-D-glucosamine. Other measurements include the total yield of radicals formed as a function of dose and the longevity of the radiation-induced EPR signal. Similar measurements were made for mussel shells and fish bones, and the results are compared and discussed. It was concluded that irradiated shrimp (with shell attached) could definitely be identified by this technique; however, precise determination of absorbed dose was less straightforward. Positive identification of irradiated fish bones was also clearly distinguishable, and dosimetry by EPR appeared to be feasible. (author)

  10. Saturation transfer EPR (ST-EPR) for dating biocarbonates containing large amount of Mn2+: separation of SO3- and CO2- lines and geochronology of Brazilian fish fossil

    International Nuclear Information System (INIS)

    Sastry, M.D.; Andrade, M.B.; Watanabe, Shigueo

    2003-01-01

    A method using saturation transfer EPR (ST-EPR) is shown to be feasible for detecting EPR signal of radiation-induced defects in biocarbonates containing large amount of Mn 2+ . The ST-EPR measurements conducted at room temperature on fish fossil of Brazilian origin, enabled the identification of CO 2 - and SO 3 - radical ions, by partially suppressing the intense signal from Mn 2+ when the signal are detected 90 deg. out of phase with magnetic field modulating signal and at high microwave power (50 mW). Using these signals the age of fish fossil is estimated to be (36±5) Ma

  11. Parametric Amplification Protocol for Frequency-Modulated Magnetic Resonance Force Microscopy Signals

    Science.gov (United States)

    Harrell, Lee; Moore, Eric; Lee, Sanggap; Hickman, Steven; Marohn, John

    2011-03-01

    We present data and theoretical signal and noise calculations for a protocol using parametric amplification to evade the inherent tradeoff between signal and detector frequency noise in force-gradient magnetic resonance force microscopy signals, which are manifested as a modulated frequency shift of a high- Q microcantilever. Substrate-induced frequency noise has a 1 / f frequency dependence, while detector noise exhibits an f2 dependence on modulation frequency f . Modulation of sample spins at a frequency that minimizes these two contributions typically results in a surface frequency noise power an order of magnitude or more above the thermal limit and may prove incompatible with sample spin relaxation times as well. We show that the frequency modulated force-gradient signal can be used to excite the fundamental resonant mode of the cantilever, resulting in an audio frequency amplitude signal that is readily detected with a low-noise fiber optic interferometer. This technique allows us to modulate the force-gradient signal at a sufficiently high frequency so that substrate-induced frequency noise is evaded without subjecting the signal to the normal f2 detector noise of conventional demodulation.

  12. X-ray absorption spectroscopy and EPR studies of oriented spinach thylakoid preparations

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, J.C. [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry]|[Lawrence Berkeley Lab., CA (United States). Structural Biology Div.

    1995-08-01

    In this study, oriented Photosystem II (PS II) particles from spinach chloroplasts are studied with electron paramagnetic resonance (EPR) and x-ray absorption spectroscopy (XAS) to determine more details of the structure of the oxygen evolving complex (OEC). The nature of halide binding to Mn is also studied with Cl K-edge and Mn EXAFS (extended x-ray absorption fine structure) of Mn-Cl model compounds, and with Mn EXAFS of oriented PS II in which Br has replaced Cl. Attention is focused on the following: photosynthesis and the oxygen evolving complex; determination of mosaic spread in oriented photosystem II particles from signal II EPR measurement; oriented EXAFS--studies of PS II in the S{sub 2} state; structural changes in PS II as a result of treatment with ammonia: EPR and XAS studies; studies of halide binding to Mn: Cl K-edge and Mn EXAFS of Mn-Cl model compounds and Mn EXAFS of oriented Br-treated photosystem II.

  13. Dental radiography: tooth enamel EPR dose assessment from Rando phantom measurements

    International Nuclear Information System (INIS)

    Aragno, D.; Fattibene, P.; Onori, S.

    2000-01-01

    Electron paramagnetic resonance dosimetry of tooth enamel is now established as a suitable method for individual dose reconstruction following radiation accidents. The accuracy of the method is limited by some confounding factors, among which is the dose received due to medical x-ray irradiation. In the present paper the EPR response of tooth enamel to endoral examination was experimentally evaluated using an anthropomorphic phantom. The dose to enamel for a single exposure of a typical dental examination performed with a new x-ray generation unit working at 65 kVp gave rise to a CO 2 -signal of intensity similar to that induced by a dose of about 2 mGy of 60 Co. EPR measurements were performed on the entire tooth with no attempt to separate buccal and lingual components. Also the dose to enamel for an orthopantomography exam was estimated. It was derived from TLD measurements as equivalent to 0.2 mGy of 60 Co. In view of application to risk assessment analysis, in the present work the value for the ratio of the reference dose at the phantom surface measured with TLD to the dose at the tooth measured with EPR was determined. (author)

  14. EPR dosimetric properties of 2-methylalanine pellet for radiation processing application

    International Nuclear Information System (INIS)

    Soliman, Y.S.; Ali, Laila I.; Moustafa, H.; Tadros, Soad M.

    2014-01-01

    The dosimetric characteristics of γ-radiation induced free radicals in 2-methylalanine (2MA) pellet dosimeter are investigated using electron paramagnetic resonance (EPR) in the high-dose range of 1–100 kGy. The EPR spectrum of γ-irradiated 2MA exhibits an isotropic EPR signal with seven lines. The dosimeter response is humidity independent in the range of 33–76% relative humidity. The manufactured dosimeter is typically adipose tissue equivalent in the energy level of 0.1–15 MeV. The overall uncertainty (2σ) of the dosimeter is less than 6.9%. - Highlights: • Preparation of 2-methyl alanine pellets for high-dose dosimetry (1–100 kGy). • The dosimeter response is humidity independent in 33–76% relative humidity range during irradiation. • The temperature coefficient equals 0.96%/°C in the range of 21–60 °C. • Overall uncertainty of the dosimeter not exceeds 6.9% at 2σ

  15. Epr, structural characteristics and intramolecular movements of some phenoxyl radicals in toluene

    OpenAIRE

    Nizameev, I.; Pudovkin, M.; Kadirov, M.

    2010-01-01

    The method of electron paramagnetic resonance (EPR) spectroscopy was used for studying magnetic and dynamic properties of phenoxyl radicals in toluene at 170-370 K. Characteristics of intramolecular motion and structure of phenoxyl radicals were determined from the temperature dependence of EPR spectra. For all the given compounds the activation energies of transitions between the conformers were calculated.

  16. Investigation on phase noise of the signal from a singly resonant optical parametric oscillator

    Science.gov (United States)

    Jinxia, Feng; Yuanji, Li; Kuanshou, Zhang

    2018-04-01

    The phase noise of the signal from a singly resonant optical parametric oscillator (SRO) is investigated theoretically and experimentally. An SRO based on periodically poled lithium niobate is built up that generates the signal with a maximum power of 5.2 W at 1.5 µm. The intensity noise of the signal reaches the shot noise level for frequencies above 5 MHz. The phase noise of the signal oscillates depending on the analysis frequency, and there are phase noise peaks above the shot noise level at the peak frequencies. To explain the phase noise feature of the signal, a semi-classical theoretical model of SROs including the guided acoustic wave Brillouin scattering effect within the nonlinear crystal is developed. The theoretical predictions are in good agreement with the experimental results.

  17. Histopathologic correlation of magnetic resonance imaging signal patterns in a spinal cord injury model.

    Science.gov (United States)

    Weirich, S D; Cotler, H B; Narayana, P A; Hazle, J D; Jackson, E F; Coupe, K J; McDonald, C L; Langford, L A; Harris, J H

    1990-07-01

    Magnetic resonance imaging (MRI) provides a noninvasive method of monitoring the pathologic response to spinal cord injury. Specific MR signal intensity patterns appear to correlate with degrees of improvement in the neurologic status in spinal cord injury patients. Histologic correlation of two types of MR signal intensity patterns are confirmed in the current study using a rat animal model. Adult male Sprague-Dawley rats underwent spinal cord trauma at the midthoracic level using a weight-dropping technique. After laminectomy, 5- and 10-gm brass weights were dropped from designated heights onto a 0.1-gm impounder placed on the exposed dura. Animals allowed to regain consciousness demonstrated variable recovery of hind limb paraplegia. Magnetic resonance images were obtained from 2 hours to 1 week after injury using a 2-tesla MRI/spectrometer. Sacrifice under anesthesia was performed by perfusive fixation; spinal columns were excised en bloc, embedded, sectioned, and observed with the compound light microscope. Magnetic resonance axial images obtained during the time sequence after injury demonstrate a distinct correlation between MR signal intensity patterns and the histologic appearance of the spinal cord. Magnetic resonance imaging delineates the pathologic processes resulting from acute spinal cord injury and can be used to differentiate the type of injury and prognosis.

  18. The design of photoelectric signal processing system for a nuclear magnetic resonance gyroscope based on FPGA

    Science.gov (United States)

    Zhang, Xian; Zhou, Binquan; Li, Hong; Zhao, Xinghua; Mu, Weiwei; Wu, Wenfeng

    2017-10-01

    Navigation technology is crucial to the national defense and military, which can realize the measurement of orientation, positioning, attitude and speed for moving object. Inertial navigation is not only autonomous, real-time, continuous, hidden, undisturbed but also no time-limited and environment-limited. The gyroscope is the core component of the inertial navigation system, whose precision and size are the bottleneck of the performance. However, nuclear magnetic resonance gyroscope is characteristic of the advantage of high precision and small size. Nuclear magnetic resonance gyroscope can meet the urgent needs of high-tech weapons and equipment development of new generation. This paper mainly designs a set of photoelectric signal processing system for nuclear magnetic resonance gyroscope based on FPGA, which process and control the information of detecting laser .The photoelectric signal with high frequency carrier is demodulated by in-phase and quadrature demodulation method. Finally, the processing system of photoelectric signal can compensate the residual magnetism of the shielding barrel and provide the information of nuclear magnetic resonance gyroscope angular velocity.

  19. Multisite EPR oximetry from multiple quadrature harmonics.

    Science.gov (United States)

    Ahmad, R; Som, S; Johnson, D H; Zweier, J L; Kuppusamy, P; Potter, L C

    2012-01-01

    Multisite continuous wave (CW) electron paramagnetic resonance (EPR) oximetry using multiple quadrature field modulation harmonics is presented. First, a recently developed digital receiver is used to extract multiple harmonics of field modulated projection data. Second, a forward model is presented that relates the projection data to unknown parameters, including linewidth at each site. Third, a maximum likelihood estimator of unknown parameters is reported using an iterative algorithm capable of jointly processing multiple quadrature harmonics. The data modeling and processing are applicable for parametric lineshapes under nonsaturating conditions. Joint processing of multiple harmonics leads to 2-3-fold acceleration of EPR data acquisition. For demonstration in two spatial dimensions, both simulations and phantom studies on an L-band system are reported. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. EPR in characterization of seeds paramagnetic species

    International Nuclear Information System (INIS)

    Luiz, A.P.C.; Mauro, M.F.F.L.; Portugal, K.O.; Barbana, V.M.; Guedes, C.L.B.; Mauro, E. di; Carneiro, C.E.A.; Zaia, D.A.M.; Prete, C.E.C.

    2011-01-01

    Full text. In Brazil, since 1970s, renewable fuel programs has been developed in order to replace petroleum. Today a program that has been discussed is the bio diesel, which intend to replace diesel fuel, fossil oil, to bio diesel, renewal fuel. As seeds are the basis for production of oil and consequently processed into bio diesel, the goal of this work is to characterize and compare paramagnetic species present in the seeds by Electron Paramagnetic Resonance (EPR). Samples used in this study were seeds of sorghum, barley, corn, peanuts, soy beans, cotton, wheat, oats, mustard, rice, sunflower and turnip. Some paramagnetic species present in soil was also investigated as goethite (FeOOH), hematite (Fe 2 O 3 ), magnetite (Fe 3 O 4 ), and ferrihydrite (Fe 5 HO 8 · 4H 2 O), since, these species present in appreciable quantities in the soil can be present in the seeds and analyzed for comparison. The characterization of these species is essential to understand the EPR seeds spectra. Each sample is placed in a thin quartz tube 4 mm in diameter, and it is inserted into the cavity of the spectrometer at room temperature, at low temperature (77 K) and variable temperature using liquid nitrogen flow and hot flow through a compressor air. It was used as standard Mg O:Mn 2+ , which is also inserted into the cavity. Shortly after the potency is regulated, frequency, amplitude and sweep the field. The spectroscopic analysis by EPR X-band (∼ 9:5GHz), were performed at the Fluorescence and Electron Paramagnetic Resonance Laboratory, Exact Sciences Center, State University of Londrina, Parana state, Brazil, through an EPR spectrometer JEOL brand (JES-PE-3X). In the EPR spectra, spectroscopic factor or g factor and line width were determined in paramagnetic species. Studies from several seeds with EPR technique detected in all of them presence of same complex of Fe 3+ present in the goethite at g ∼ 2, and in the seeds exist free radicals at g = 2:004, at room temperature

  1. EPR in characterization of seeds paramagnetic species

    Energy Technology Data Exchange (ETDEWEB)

    Luiz, A.P.C.; Mauro, M.F.F.L.; Portugal, K.O.; Barbana, V.M.; Guedes, C.L.B.; Mauro, E. di; Carneiro, C.E.A.; Zaia, D.A.M.; Prete, C.E.C. [Universidade Estadual de Londrina (UEL), PR (Brazil)

    2011-07-01

    Full text. In Brazil, since 1970s, renewable fuel programs has been developed in order to replace petroleum. Today a program that has been discussed is the bio diesel, which intend to replace diesel fuel, fossil oil, to bio diesel, renewal fuel. As seeds are the basis for production of oil and consequently processed into bio diesel, the goal of this work is to characterize and compare paramagnetic species present in the seeds by Electron Paramagnetic Resonance (EPR). Samples used in this study were seeds of sorghum, barley, corn, peanuts, soy beans, cotton, wheat, oats, mustard, rice, sunflower and turnip. Some paramagnetic species present in soil was also investigated as goethite (FeOOH), hematite (Fe{sub 2}O{sub 3}), magnetite (Fe{sub 3}O{sub 4}), and ferrihydrite (Fe{sub 5}HO{sub 8} {center_dot} 4H{sub 2}O), since, these species present in appreciable quantities in the soil can be present in the seeds and analyzed for comparison. The characterization of these species is essential to understand the EPR seeds spectra. Each sample is placed in a thin quartz tube 4 mm in diameter, and it is inserted into the cavity of the spectrometer at room temperature, at low temperature (77 K) and variable temperature using liquid nitrogen flow and hot flow through a compressor air. It was used as standard Mg O:Mn{sup 2+}, which is also inserted into the cavity. Shortly after the potency is regulated, frequency, amplitude and sweep the field. The spectroscopic analysis by EPR X-band ({approx} 9:5GHz), were performed at the Fluorescence and Electron Paramagnetic Resonance Laboratory, Exact Sciences Center, State University of Londrina, Parana state, Brazil, through an EPR spectrometer JEOL brand (JES-PE-3X). In the EPR spectra, spectroscopic factor or g factor and line width were determined in paramagnetic species. Studies from several seeds with EPR technique detected in all of them presence of same complex of Fe{sup 3+} present in the goethite at g {approx} 2, and in the seeds

  2. Robust high-resolution quantification of time signals encoded by in vivo magnetic resonance spectroscopy

    Science.gov (United States)

    Belkić, Dževad; Belkić, Karen

    2018-01-01

    This paper on molecular imaging emphasizes improving specificity of magnetic resonance spectroscopy (MRS) for early cancer diagnostics by high-resolution data analysis. Sensitivity of magnetic resonance imaging (MRI) is excellent, but specificity is insufficient. Specificity is improved with MRS by going beyond morphology to assess the biochemical content of tissue. This is contingent upon accurate data quantification of diagnostically relevant biomolecules. Quantification is spectral analysis which reconstructs chemical shifts, amplitudes and relaxation times of metabolites. Chemical shifts inform on electronic shielding of resonating nuclei bound to different molecular compounds. Oscillation amplitudes in time signals retrieve the abundance of MR sensitive nuclei whose number is proportional to metabolite concentrations. Transverse relaxation times, the reciprocal of decay probabilities of resonances, arise from spin-spin coupling and reflect local field inhomogeneities. In MRS single voxels are used. For volumetric coverage, multi-voxels are employed within a hybrid of MRS and MRI called magnetic resonance spectroscopic imaging (MRSI). Common to MRS and MRSI is encoding of time signals and subsequent spectral analysis. Encoded data do not provide direct clinical information. Spectral analysis of time signals can yield the quantitative information, of which metabolite concentrations are the most clinically important. This information is equivocal with standard data analysis through the non-parametric, low-resolution fast Fourier transform and post-processing via fitting. By applying the fast Padé transform (FPT) with high-resolution, noise suppression and exact quantification via quantum mechanical signal processing, advances are made, presented herein, focusing on four areas of critical public health importance: brain, prostate, breast and ovarian cancers.

  3. Attenuation of spin resonance signals in media with the multi-component system of collectivized electrons

    International Nuclear Information System (INIS)

    Vojtenko, V.A.

    1995-01-01

    Universal relaxation theory of spectral line form at electron scattering light with spin flip at scattering of neutrons and at electron paramagnetic resonance, is plotted. Signals of spin resonances are shown to be subjected to strong attenuation caused by mutual transformations of various current carriers in multicomponent spin systems contained in intermetallic actinides with heavy fermions, in HTSC-crystals, in indirect highly alloyed semiconductors, solid solutions and superlattices. Physical reasons of observation of light strong scattering with spin flip in intermetallic actinides with semi-width independent of the wave vector are discussed. 19 refs

  4. The 4th international comparison on EPR dosimetry with tooth enamel

    Energy Technology Data Exchange (ETDEWEB)

    Fattibene, P., E-mail: paola.fattibene@iss.it [Istituto Superiore di Sanita, Department of Technology and Health, Viale Regina Elena 299, I-00162 Rome (Italy); Wieser, A. [Helmholtz Zentrum Muenchen, Neuherberg D-85764 (Germany); Adolfsson, E. [Linkoeping University, SE-58185 Linkoeping (Sweden); Benevides, L.A. [Naval Dosimetry Center, Bethesda MD 20889-5600 (United States); Brai, M. [University of Palermo, I-90128 Palermo (Italy); Callens, F. [Ghent University, B-9000 Gent (Belgium); Chumak, V. [Research Center for Radiation Medicine AMS, 04050 Kiev (Ukraine); Ciesielski, B. [Medical University of Gdansk, 80-211 Gdansk (Poland); Della Monaca, S. [Istituto Superiore di Sanita, Department of Technology and Health, Viale Regina Elena 299, I-00162 Rome (Italy); Regina Elena Institute, I-00144 Rome (Italy); Emerich, K. [Medical University of Gdansk, 80-211 Gdansk (Poland); Department of Paediatric Dentistry, 80-208 Gdansk (Poland); Gustafsson, H. [Linkoeping University, SE-58185 Linkoeping (Sweden); Hirai, Y. [Radiation Effects Research Foundation, Minami-ku, Hiroshima 732-0815 (Japan); Hoshi, M. [Hiroshima University, Minami-ku, Hiroshima 734-8553 (Japan); Israelsson, A. [Linkoeping University, SE-58185 Linkoeping (Sweden); Ivannikov, A. [Medical Radiological Research Center, Obninsk, Kaluga region (Russian Federation); Ivanov, D. [Institute of Metal Physics, Yekaterinburg 620041 (Russian Federation); Kaminska, J. [Medical University of Gdansk, 80-211 Gdansk (Poland); Ke, Wu [Beijing Institute of Radiation Medicine, Beijing 100850 (China); Lund, E. [Linkoeping University, SE-58185 Linkoeping (Sweden); Marrale, M. [University of Palermo, I-90128 Palermo (Italy)

    2011-09-15

    This paper presents the results of the 4th International Comparison of in vitro electron paramagnetic resonance dosimetry with tooth enamel, where the performance parameters of tooth enamel dosimetry methods were compared among sixteen laboratories from all over the world. The participating laboratories were asked to determine a calibration curve with a set of tooth enamel powder samples provided by the organizers. Nine molar teeth extracted following medical indication from German donors and collected between 1997 and 2007 were prepared and irradiated at the Helmholtz Zentrum Muenchen. Five out of six samples were irradiated at 0.1, 0.2, 0.5, 1.0 and 1.5 Gy air kerma; and one unirradiated sample was kept as control. The doses delivered to the individual samples were unknown to the participants, who were asked to measure each sample nine times, and to report the EPR signal response, the mass of aliquots measured, and the parameters of EPR signal acquisition and signal evaluation. Critical dose and detection limit were calculated by the organizers on the basis of the calibration-curve parameters obtained at every laboratory. For calibration curves obtained by measuring every calibration sample three times, the mean value of the detection limit was 205 mGy, ranging from 56 to 649 mGy. The participants were also invited to provide the signal response and the nominal dose of their current dose calibration curve (wherever available), the critical dose and detection limit of which were also calculated by the organizers.

  5. Mechanical design parameters for detection of nuclear signals by magnetic resonance force microscopy

    International Nuclear Information System (INIS)

    Moore, G.J.; Hanlon, J.A.; Lamartine, B.; Hawley, M.; Solem, J.C.; Signer, S.; Jarmer, J.J.; Penttila, S.; Sillerud, L.O.; Pryputniewicz, R.J.

    1993-01-01

    Recent theoretical work has shown that mechanical detection of magnetic resonance from a single nuclear spin is in principle possible. This theory has recently been experimentally validated by the mechanical detection of electron spin resonance signals using microscale cantilevers. Currently we are extending this technology in an attempt to detect nuclear signals which are extending this technology in an attempt to detect nuclear signals which are three orders of magnitude lower in intensity than electron signals. In order to achieve the needed thousand-fold improvement in sensitivity we have undertaken the development of optimized mechanical cantilevers and highly polarized samples. Finite element modeling is used as a tool to simulate cantilever beam dynamics and to optimize the mechanical properties including Q, resonant frequency, amplitude of vibration and spring constant. Simulations are compared to experiments using heterodyne hologram interferometry. Nanofabrication of optimized cantilevers via ion milling will be directed by the outcome of these simulations and experiments. Highly polarized samples are developed using a three-fold approach: (1) high magnetic field strength (2.5T), (2) low temperature (1K), and (3) use of samples polarized by dynamic nuclear polarization. Our recent experiments have demonstrated nuclear polarizations in excess of 50% in molecules of toulene

  6. Factors influencing EPR dosimetry in fingernails

    International Nuclear Information System (INIS)

    Dubner, D.L.; Spinella, M.R.; Bof, E.

    2010-01-01

    The technique based on the detection of ionizing radiation induced radicals by EPR in tooth enamel is an established method for the dosimetry of exposed persons in radiological emergencies. Dosimetry based on EPR spectral analysis of fingernail clippings, currently under development, has the practical advantage of the easier sample collection. A limiting factor is that overlapping the radiation induced signal (RIS), fingernails have shown the presence of two mechanically induced signals, called MIS1 and MIS2, due to elastic and plastic deformation respectively, at the time of fingernails cutting. With a water treatment, MIS1 is eliminated while MIS2 is considerably reduced. The calibration curves needed for radiation accident dosimetry should have 'universal' characteristics, ie. Represent the variability that can be found in different individuals. Early studies were directed to the analysis of factors affecting the development of such universal calibration curves. The peak to peak amplitude of the signal before and after the water treatment as well as the effect of size and number of clippings were studied. Furthermore, the interpersonal and intrapersonal variability were analyzed. Taking into account these previous studies, the optimal conditions for measurement were determined and EPR spectra of samples irradiated at different doses were used for the developing of dose-response curves. This paper presents the analysis of the results.(authors) [es

  7. EPR (European Pressurized Reactor)

    International Nuclear Information System (INIS)

    2015-01-01

    This document presents the EPR (European Pressurized Reactor), a modernised version of PWRs which uses nuclear fission. It indicates to which category it belongs (third generation). It briefly describes its operation: recalls on nuclear fission, electricity production in a nuclear reactor. It presents and comments its characteristics: power, thermal efficiency, redundant systems for safety control, double protective enclosure, expected lifetime, use of MOX fuel, modular design. It discusses economic stakes (expected higher nuclear electricity competitiveness, but high construction costs), and safety challenges (design characteristics, critics by nuclear safety authorities about the safety data processing system). It presents the main involved actors (Areva, EDF) and competitors in the field of advanced reactors (Rosatom with its VVER 1200, General Electric with its ABWR and its ESBWR, Mitsubishi with its APWR, Westinghouse with its AP100) while outlining the importance of certifications and delays to obtain them. After having evoked key data on EPR fuel consumption, it indicates reactors under construction, evokes potential markets and perspectives

  8. Estimation of mean and median pO2 values for a composite EPR spectrum.

    Science.gov (United States)

    Ahmad, Rizwan; Vikram, Deepti S; Potter, Lee C; Kuppusamy, Periannan

    2008-06-01

    Electron paramagnetic resonance (EPR)-based oximetry is capable of quantifying oxygen content in samples. However, for a heterogeneous environment with multiple pO2 values, peak-to-peak linewidth of the composite EPR lineshape does not provide a reliable estimate of the overall pO2 in the sample. The estimate, depending on the heterogeneity, can be severely biased towards narrow components. To address this issue, we suggest a postprocessing method to recover the linewidth histogram which can be used in estimating meaningful parameters, such as the mean and median pO2 values. This information, although not as comprehensive as obtained by EPR spectral-spatial imaging, goes beyond what can be generally achieved with conventional EPR spectroscopy. Substantially shorter acquisition times, in comparison to EPR imaging, may prompt its use in clinically relevant models. For validation, simulation and EPR experiment data are presented.

  9. EPR, kvantemekanik og Bohr

    OpenAIRE

    Nielsen, Morten Klockmann

    2007-01-01

    Dette projekt omhandler området hvor filosofi og fysik smelter sammen. Kvantemekanikkens tilblivelse fik en hård medfart hvilket diskussionerne mellem især Albert Einstein og Niels Bohr vidner om. De var hovedpersoner i striden om hvordan kvantemekanikken skulle fortolkes, og diskussionen kulminerede i 1935 hvor Einstein sammen med kollegerne Podolsky og Rosen offentliggjorde en artikel med titlen “Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?” (EPR-artiklen)....

  10. EPR a strategic choice

    International Nuclear Information System (INIS)

    2003-01-01

    How can we answer to the increasing demand of electric power, resulting of the demographic evolution and needed to the economic development, without exhausting the fossil resources? The answers are function of the countries and imply an optimization of the production and the consumption. This document published by the Areva Group aims to show the advantages of the nuclear energy: economical and environmental advantages. A special chapter is devoted to the European Pressurized Reactor, EPR. (A.L.B.)

  11. EPR and TL correlation in some powdered Greek white marbles

    International Nuclear Information System (INIS)

    Baieetto, Vanessa; Villeneuve, Gerard; Guibert, Pierre; Schvoerer, Max

    2000-01-01

    Thermoluminescence of white powdered marble samples, chosen to display different EPR spectra, were studied. Two peaks at 280 deg. C and 360 deg. C can be observed among the TL glow curves while the EPR spectra exhibit two signals: the A signal with g perp =2.0038 and g par =2.0024 due to the SO - 3 centre and the B one with g 1 =2.0005; g 2 =2.0001; g 3 =1.9998 due to mechanical powder reduction (drilling). Owing to heating and simultaneous experiments, a correlation have been established: the 280 deg. C TL peak is associated to the A signal and thus to the SO - 3 centre and the 360 deg. C TL peak is caused by mechanical treatment corresponding to the B EPR signal

  12. EPR and TL correlation in some powdered Greek white marbles

    Energy Technology Data Exchange (ETDEWEB)

    Baieetto, Vanessa E-mail: crpaa@montaigne.u-bordeaux.fr; Villeneuve, Gerard; Guibert, Pierre; Schvoerer, Max

    2000-02-01

    Thermoluminescence of white powdered marble samples, chosen to display different EPR spectra, were studied. Two peaks at 280 deg. C and 360 deg. C can be observed among the TL glow curves while the EPR spectra exhibit two signals: the A signal with g{sub perp}=2.0038 and g{sub par} =2.0024 due to the SO{sup -}{sub 3} centre and the B one with g{sub 1}=2.0005; g{sub 2}=2.0001; g{sub 3}=1.9998 due to mechanical powder reduction (drilling). Owing to heating and simultaneous experiments, a correlation have been established: the 280 deg. C TL peak is associated to the A signal and thus to the SO{sup -}{sub 3} centre and the 360 deg. C TL peak is caused by mechanical treatment corresponding to the B EPR signal.

  13. EPR and TL correlation in some powdered Greek white marbles.

    Science.gov (United States)

    Baïetto, V; Villeneuve, G; Guibert, P; Schvoerer, M

    2000-02-01

    Thermoluminescence of white powdered marble samples, chosen to display different EPR spectra, were studied. Two peaks at 280 degrees C and 360 degrees C can be observed among the TL glow curves while the EPR spectra exhibit two signals: the A signal with g perpendicular = 2.0038 and g parallel = 2.0024 due to the SO3- centre and the B one with g1 = 2.0005; g2 = 2.0001; g3 = 1.9998 due to mechanical powder reduction (drilling). Owing to heating and simultaneous experiments, a correlation have been established: the 280 degrees C TL peak is associated to the A signal and thus to the SO3- centre and the 360 degrees C TL peak is caused by mechanical treatment corresponding to the B EPR signal.

  14. Development of a signal-extraction scheme for resonant sideband extraction

    International Nuclear Information System (INIS)

    Kokeyama, K; Kawazoe, F; Sugamoto, A; Somiya, K; Sato, S; Kawamura, S

    2008-01-01

    As a future plan, an advanced gravitational-wave detector will employ an optical configuration of resonant sideband extraction (RSE), achieved with an additional mirror at the signal-detection port of the power-recycled Fabry-Perot Michelson interferometer. To control the complex coupled cavity system, one of the most important design issues is how to extract the longitudinal control signals of the cavities. We have developed a new signal-extraction scheme which provides an appropriate sensing matrix. The new method uses two sets of sidebands: one of the sideband components satisfies the critical coupling condition for the RSE interferometer and reaches the signal-extraction port, and the other sideband is completely reflected by the Michelson interferometer. They provide a diagonalized sensing matrix and enable the RSE control to be robust

  15. EPR spectroscopy at DNP conditions

    International Nuclear Information System (INIS)

    Heckmann, J.; Goertz, St.; Meyer, W.; Radtke, E.; Reicherz, G.

    2004-01-01

    In terms of dynamic nuclear polarization (DNP) studies and systematic target material research it is crucial to know the EPR lineshape of the DNP relevant paramagnetic centers. Therefore in Bochum an EPR spectrometer has been implemented into the 4 He evaporation DNP facility in order to perform EPR studies at DNP conditions (B=2.5 T, T=1 K). The spectrometer hardware and performance as well as first results are presented

  16. Investigation of defects in In–Ga–Zn oxide thin film using electron spin resonance signals

    International Nuclear Information System (INIS)

    Nonaka, Yusuke; Kurosawa, Yoichi; Komatsu, Yoshihiro; Ishihara, Noritaka; Oota, Masashi; Nakashima, Motoki; Hirohashi, Takuya; Takahashi, Masahiro; Yamazaki, Shunpei; Obonai, Toshimitsu; Hosaka, Yasuharu; Koezuka, Junichi; Yamauchi, Jun

    2014-01-01

    In–Ga–Zn oxide (IGZO) is a next-generation semiconductor material seen as an alternative to silicon. Despite the importance of the controllability of characteristics and the reliability of devices, defects in IGZO have not been fully understood. We investigated defects in IGZO thin films using electron spin resonance (ESR) spectroscopy. In as-sputtered IGZO thin films, we observed an ESR signal which had a g-value of g = 2.010, and the signal was found to disappear under thermal treatment. Annealing in a reductive atmosphere, such as N 2 atmosphere, generated an ESR signal with g = 1.932 in IGZO thin films. The temperature dependence of the latter signal suggests that the signal is induced by delocalized unpaired electrons (i.e., conduction electrons). In fact, a comparison between the conductivity and ESR signal intensity revealed that the signal's intensity is related to the number of conduction electrons in the IGZO thin film. The signal's intensity did not increase with oxygen vacancy alone but also with increases in both oxygen vacancy and hydrogen concentration. In addition, first-principle calculation suggests that the conduction electrons in IGZO may be generated by defects that occur when hydrogen atoms are inserted into oxygen vacancies

  17. Investigation of defects in In–Ga–Zn oxide thin film using electron spin resonance signals

    Energy Technology Data Exchange (ETDEWEB)

    Nonaka, Yusuke; Kurosawa, Yoichi; Komatsu, Yoshihiro; Ishihara, Noritaka; Oota, Masashi; Nakashima, Motoki; Hirohashi, Takuya; Takahashi, Masahiro; Yamazaki, Shunpei [Semiconductor Energy Laboratory Co., Ltd., 398 Hase, Atsugi, Kanagawa 243-0036 (Japan); Obonai, Toshimitsu; Hosaka, Yasuharu; Koezuka, Junichi [Advanced Film Device, Inc., 161-2 Masuzuka, Tsuga-machi, Tochigi, Tochigi 328-0114 (Japan); Yamauchi, Jun [Semiconductor Energy Laboratory Co., Ltd., 398 Hase, Atsugi, Kanagawa 243-0036 (Japan); Emeritus Professor of Kyoto University, Oiwake-cho, Kitashirakawa, Kyoto 606-8502 (Japan)

    2014-04-28

    In–Ga–Zn oxide (IGZO) is a next-generation semiconductor material seen as an alternative to silicon. Despite the importance of the controllability of characteristics and the reliability of devices, defects in IGZO have not been fully understood. We investigated defects in IGZO thin films using electron spin resonance (ESR) spectroscopy. In as-sputtered IGZO thin films, we observed an ESR signal which had a g-value of g = 2.010, and the signal was found to disappear under thermal treatment. Annealing in a reductive atmosphere, such as N{sub 2} atmosphere, generated an ESR signal with g = 1.932 in IGZO thin films. The temperature dependence of the latter signal suggests that the signal is induced by delocalized unpaired electrons (i.e., conduction electrons). In fact, a comparison between the conductivity and ESR signal intensity revealed that the signal's intensity is related to the number of conduction electrons in the IGZO thin film. The signal's intensity did not increase with oxygen vacancy alone but also with increases in both oxygen vacancy and hydrogen concentration. In addition, first-principle calculation suggests that the conduction electrons in IGZO may be generated by defects that occur when hydrogen atoms are inserted into oxygen vacancies.

  18. Ultra-low power transmitter for encoding non-MR signals in Magnetic Resonance (MR) recordings

    DEFF Research Database (Denmark)

    Petersen, Jan Raagaard; Pedersen, Jan Ole; Zhurbenko, Vitaliy

    collection of data from non-MRI sensors. The transmitter consumes only 1.3mW while transmitting 2.7µW at 120MHz with high frequency stability. The presented design is useful in low power applications requiring high frequency stability and is intended for wireless transmission of non-MR signal recordings......Advancing Magnetic Resonance Imaging (MRI) technology requires integration of the MRI scanners with sensors and systems for monitoring various non-MRI signals. In this paper, we present design and integration of a low power AM radio transmitter into a 3T MRI scanner, which can be used for efficient...

  19. Using PEGylated magnetic nanoparticles to describe the EPR effect in tumor for predicting therapeutic efficacy of micelle drugs.

    Science.gov (United States)

    Chen, Ling; Zang, Fengchao; Wu, Haoan; Li, Jianzhong; Xie, Jun; Ma, Ming; Gu, Ning; Zhang, Yu

    2018-01-25

    Micelle drugs based on a polymeric platform offer great advantages over liposomal drugs for tumor treatment. Although nearly all of the nanomedicines approved in the clinical use can passively target to the tumor tissues on the basis of an enhanced permeability and retention (EPR) effect, the nanodrugs have shown heterogenous responses in the patients. This phenomenon may be traced back to the EPR effect of tumor, which is extremely variable in the individuals from extensive studies. Nevertheless, there is a lack of experimental data describing the EPR effect and predicting its impact on therapeutic efficacy of nanoagents. Herein, we developed 32 nm magnetic iron oxide nanoparticles (MION) as a T 2 -weighted contrast agent to describe the EPR effect of each tumor by in vivo magnetic resonance imaging (MRI). The MION were synthesized by a thermal decomposition method and modified with DSPE-PEG2000 for biological applications. The PEGylated MION (Fe 3 O 4 @PEG) exhibited high r 2 of 571 mM -1 s -1 and saturation magnetization (M s ) of 94 emu g -1 Fe as well as long stability and favorable biocompatibility through the in vitro studies. The enhancement intensities of the tumor tissue from the MR images were quantitatively measured as TNR (Tumor/Normal tissue signal Ratio) values, which were correlated with the delay of tumor growth after intravenous administration of the PLA-PEG/PTX micelle drug. The results demonstrated that the group with the smallest TNR values (TNR EPR effect in patients for accurate medication guidance of micelle drugs in the future treatment of tumors.

  20. EPR and Optical Characterization of Photorefractive Materials Used in Agile Laser Protection

    National Research Council Canada - National Science Library

    Halliburton, Larry

    2003-01-01

    .... The specific materials investigated were LiNbO3 and LiTaO3. The experimental techniques used to characterize these crystals were optical absorption, thermoluminescence, and electron paramagnetic resonance (EPR...

  1. EPR imaging of dose distributions aiming at applications in radiation therapy

    International Nuclear Information System (INIS)

    Lund, E.; Kolbun, N.; Adolfsson, E.; Gustafsson, H.

    2014-01-01

    A one-dimensional electron paramagnetic resonance (EPR) imaging method for visualisation of dose distributions in photon fields has been developed. Pressed pellets of potassium dithionate were homogeneously irradiated in a 60 Co radiation field to 600 Gy. The EPR analysis was performed with an X-Band (9.6 GHz) Bruker E540 EPR and EPR imaging spectrometer equipped with an E540 GC2X two-axis X-band gradient coil set with gradients along the y axis (along the sample tube) and z axis (along B 0 ) and an ER 4108TMHS resonator. Image reconstruction, including deconvolution, baseline corrections and corrections for the resonator sensitivity, was performed using an in-house-developed Matlab code for the purpose to have a transparent and complete algorithm for image reconstruction. With this method, it is possible to visualise a dose distribution with an accuracy of ∼5 % within ±5 mm from the centre of the resonator. (authors)

  2. Clinical significance of pontine high signals identified on magnetic resonance imaging

    International Nuclear Information System (INIS)

    Watanabe, Masaki; Takahashi, Akira; Arahata, Yutaka; Motegi, Yoshimasa; Furuse, Masahiro.

    1993-01-01

    Spin-echo magnetic resonance imaging (MRI) was evaluated to 530 cases in order to investigate the clinical significance of pontine high signals. The subjects comprised 109 cases of pontine infarction with high signal on T 2 -weighted image and low signal on T 1 -weighted image (PI group), 145 of pontine high signal with high signal on T 2 -weighted image but normal signal on T 1 -weighted image (PH group) and 276 of age-matched control without abnormality either on T 1 or T 2 -weighted images (AC group). Subjective complaints such as vertigo-dizziness were more frequent in the PH group than in the PI group. In both PI and groups, periventricular hyperintensity as well as subcortical high signals in the supratentorium were more severe than in the AC group. These degrees were higher in the PI group than in the PH group. In conclusion, PH as well as PI may result from diffuse arteriosclerosis and PH is considered to be an early finding of pontine ischemia. (author)

  3. Clinical significance of pontine high signals identified on magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Masaki; Takahashi, Akira (Nagoya Univ. (Japan). Faculty of Medicine); Arahata, Yutaka; Motegi, Yoshimasa; Furuse, Masahiro

    1993-07-01

    Spin-echo magnetic resonance imaging (MRI) was evaluated to 530 cases in order to investigate the clinical significance of pontine high signals. The subjects comprised 109 cases of pontine infarction with high signal on T[sub 2]-weighted image and low signal on T[sub 1]-weighted image (PI group), 145 of pontine high signal with high signal on T[sub 2]-weighted image but normal signal on T[sub 1]-weighted image (PH group) and 276 of age-matched control without abnormality either on T[sub 1] or T[sub 2]-weighted images (AC group). Subjective complaints such as vertigo-dizziness were more frequent in the PH group than in the PI group. In both PI and groups, periventricular hyperintensity as well as subcortical high signals in the supratentorium were more severe than in the AC group. These degrees were higher in the PI group than in the PH group. In conclusion, PH as well as PI may result from diffuse arteriosclerosis and PH is considered to be an early finding of pontine ischemia. (author).

  4. A fast method for ionized food identification: EPR

    International Nuclear Information System (INIS)

    Raffi, J.; Rubel, G.

    1990-01-01

    Electronic paramagnetic resonance allows the detection of ionized food only after dry storage, avoiding reaction of radicals with water. Dry and solid parts are used for analysis (bones for meat and fish, kernels for fruits). Dosimetry is possible by EPR spectrometry of alanine-L fixed on products treated in industrial irradiators [fr

  5. Noninvasive in vivo oximetric imaging by radiofrequency FT EPR

    NARCIS (Netherlands)

    Subramanian, S; Yamada, K; Irie, A; Murugesan, R; Cook, JA; Devasahayam, N; Van Dam, GM; Mitchell, JB; Krishna, MC

    A novel method, called relaxo-oximetry, for rapid spatially resolved in vivo measurements of oxygen concentration using time-domain radiofrequency (RF) electron paramagnetic resonance (EPR) is described. Time-domain data from triaryl methyl (TAM)-based single-electron contrast agents were processed

  6. Study of growth of polyaniline chain by EPR method

    Energy Technology Data Exchange (ETDEWEB)

    Kulikov, A V [Inst. of Chemical Physics, Chernogolovka (Russian Federation); Kogan, Ya L [Inst. of Chemical Physics, Chernogolovka (Russian Federation); Fokeeva, L S [Inst. of Chemical Physics, Chernogolovka (Russian Federation)

    1993-03-22

    Chemical aniline polymerization has been studied by the EPR method. After a long delay a weak EPR signal I is appeared and transformed rapidly into a strong Lorentzian line. Constants of spin exchange of signals I and II with paramagnetic probes Fe(CN)[sub 6][sup 3-], Co[sup 2+] and O[sub 2], freely diffusing in solution, have been determined. Effect of ferricyanide ions and urea, a breaker of hydrogen bonds, has been measured for signals I and II. Data obtained show the formation of an array of positive charges in PANI at early stage of doping. Constants of spin exchange depend on prehistory of samples. Averaging of EPR line widths of different paramagnetic centers in polyaniline was found. (orig.)

  7. Quantification of in vivo 1H magnetic resonance spectroscopy signals with baseline and lineshape estimation

    International Nuclear Information System (INIS)

    Osorio-Garcia, M I; Sima, D M; Van Huffel, S; Nielsen, F U; Dresselaers, T; Himmelreich, U; Van Leuven, F

    2011-01-01

    The in vivo quantification of magnetic resonance spectroscopy (MRS) signals is a method to estimate metabolite concentrations of living tissue. Obtaining reliable concentrations is still a challenge due to the experimental conditions affecting spectral quality. Additionally, lipids and macromolecules overlap with the metabolites of interest, affecting their reliable estimation. In this study, we propose to combine the self-deconvolution lineshape estimation method, which accounts for spectral shape distortions, with two different approaches for taking into account the macromolecular baseline contribution: (a) based on macromolecules and lipids measured in vivo using an inversion recovery technique, and (b) based on the simulation of macromolecular resonances using prior knowledge from a database of inversion recovery signals. The ultimate goal is to measure macromolecular and lipid data only once as described in (a) to create macromolecular and lipid profiles. These profiles then can be used as described in (b) for data measured under the same conditions. The method is evaluated on in vivo 1 H MRS signals at 9.4 T from mouse hippocampus. Results show that better metabolite fits are obtained when lineshape and baseline estimations are simultaneously performed and that baseline estimation based on prior knowledge from macromolecular measured signals can be reliably used to replace time-consuming individual macromolecular and lipid acquisitions

  8. Electron paramagnetic resonance and AC susceptibility studies of Mn and Gd doped 1:2:3 superconductors

    International Nuclear Information System (INIS)

    La Robina, M.A.

    1997-01-01

    For many years superconductivity was considered to be a low temperature phenomenon occurring below ∼ 25K. All this changed in April 1986 when J. G. Bednorz and K. A. Muller showed that the oxide La 2-x Ba x CuO 4 becomes a superconductor at ∼ 30K. Later in December 1986 the oxides La 2-x Sr x CuO 4 and La 2-x Ba x CuO 4 synthesised under high pressure, were shown to superconduct at ∼ 40K and ∼ 50K, respectively. Finally in February 1987, Chu synthesised the classic superconductor YBa 2 Cu 3 O 6.8 , the so-called 1:2:3 material, which has a critical temperature circa 92K. In this thesis, electron paramagnetic resonance (EPR) and susceptibility measurements are reported on various superconductors. In 1987 Bowden et al., showed that pure phase 1:2:3 samples are characterised by an absence of Cu EPR signals. This contrasts sharply with the Green phase material, Y 2 Ba 1 Cu 1 O 5 , which shows a very large EPR signal with a g eff of 2.08. In an attempt to induce EPR signals, Mn doped 1:2:3 samples have been synthesised and characterised with EPR , AC susceptibility, XRD and SEM measurements. It is shown that Mn EPR signals are not evident in the Mn doped samples with a g eff of 2.09. Also, below T c the EPR signals of the lightly doped Mn samples vanish. It is argued that this is due to fluxoids motion within the superconductor, which gives rise to very large non-reproducible signals. It is suggested that the signals originate from Cu, impurity contaminants and multiple phases produced when the 1:2:3 superconductor is doped with Manganese (author)

  9. EPR spin trapping of protein radicals

    DEFF Research Database (Denmark)

    Davies, Michael Jonathan; Hawkins, Clare Louise

    2004-01-01

    Electron paramagnetic resonance (EPR) spin trapping was originally developed to aid the detection of low-molecular-mass radicals formed in chemical systems. It has subsequently found widespread use in biology and medicine for the direct detection of radical species formed during oxidative stress...... tumbling radicals are often broad and relatively poor in distinctive features, a number of techniques have been developed that allow a wealth of information to be obtained about the nature, site, and reactions of such radicals. This article summarizes recent developments in this area and reviews selected...... examples of radical formation on proteins....

  10. Dosimetry of ionizing radiations by Electron paramagnetic resonance

    International Nuclear Information System (INIS)

    Azorin N, J.

    2005-01-01

    In this work, some historical and theoretical aspects about the Electron Paramagnetic Resonance (EPR), its characteristics, the resonance detection, the paramagnetic species, the radiation effects on inorganic and organic materials, the diagrams of the instrumentation for the EPR detection, the performance of an EPR spectrometer, the coherence among EPR and dosimetry and, practical applications as well as in the food science there are presented. (Author)

  11. Stochastic resonance in a bistable system subject to multi-time-delayed feedback and aperiodic signal

    International Nuclear Information System (INIS)

    Li Jianlong; Zeng Lingzao

    2010-01-01

    We discuss in detail the effects of the multi-time-delayed feedback driven by an aperiodic signal on the output of a stochastic resonance (SR) system. The effective potential function and dynamical probability density function (PDF) are derived. To measure the performance of the SR system in the presence of a binary random signal, the bit error rate (BER) defined by the dynamical PDF is employed, as is commonly used in digital communications. We find that the delay time, strength of the feedback, and number of time-delayed terms can change the effective potential function and the effective amplitude of the signal, and then affect the BER of the SR system. The numerical simulations strongly support the theoretical results. The goal of this investigation is to explore the effects of the multi-time-delayed feedback on SR and give a guidance to nonlinear systems in the application of information processing.

  12. Stochastic resonance for signal-modulated pump noise in a single-mode laser

    Institute of Scientific and Technical Information of China (English)

    Liangying Zhang; Li Cao; Fahui Zhu

    2006-01-01

    By adopting the gain-noise model of the single-mode laser in which with bias and periodical signals serve as inputs, combining with the effect of coloured pump noise, we use the linear approximation method to calculate the power spectrum and signal-to-noise ratio (SNR) of the laser intensity under the condition of pump noise and quantum noise cross-related in the form of δ function. It is found that with the change of pump noise correlation time, both SNR and the output power will occur stochastic resonance (SR). If the bias signal α is very small, changing the intensities of pump noise and quantum noise respectively does not lead to the appearance of SR in the SNR; while α increases to a certain number, SR appears.

  13. A Modified Adaptive Stochastic Resonance for Detecting Faint Signal in Sensors

    Directory of Open Access Journals (Sweden)

    Hengwei Li

    2007-02-01

    Full Text Available In this paper, an approach is presented to detect faint signals with strong noises in sensors by stochastic resonance (SR. We adopt the power spectrum as the evaluation tool of SR, which can be obtained by the fast Fourier transform (FFT. Furthermore, we introduce the adaptive filtering scheme to realize signal processing automatically. The key of the scheme is how to adjust the barrier height to satisfy the optimal condition of SR in the presence of any input. For the given input signal, we present an operable procedure to execute the adjustment scheme. An example utilizing one audio sensor to detect the fault information from the power supply is given. Simulation results show that th

  14. EPR design for maintenance

    International Nuclear Information System (INIS)

    Krugmann, U.

    1998-01-01

    Preventive maintenance is very important in achieving high plant availability. For the European Pressurized Reactor (EPR) preventive maintenance has been carefully addressed in the design stage. This is particularly necessary because of the traditionally different maintenance strategies employed in France and Germany. This paper emphasizes the following features introduced in the ERP design to minimize the duration of the refueling outage: (1) containment accessibility during power operation; (2) overall plant layout to facilitate inspections and maintenances within the containment; and (3) safety system design for enabling preventive maintenance during power operation. (author)

  15. Amplification of the Signal Intensity of Fluorescence-Based Fiber-Optic Biosensors Using a Fabry-Perot Resonator Structure

    Directory of Open Access Journals (Sweden)

    Meng-Chang Hsieh

    2015-02-01

    Full Text Available Fluorescent biosensors have been widely used in biomedical applications. To amplify the intensity of fluorescence signals, this study developed a novel structure for an evanescent wave fiber-optic biosensor by using a Fabry-Perot resonator structure. An excitation light was coupled into the optical fiber through a laser-drilled hole on the proximal end of the resonator. After entering the resonator, the excitation light was reflected back and forth inside the resonator, thereby amplifying the intensity of the light in the fiber. Subsequently, the light was used to excite the fluorescent molecules in the reactive region of the sensor. The experimental results showed that the biosensor signal was amplified eight-fold when the resonator reflector was formed using a 92% reflective coating. Furthermore, in a simulation, the biosensor signal could be amplified 20-fold by using a 99% reflector.

  16. AD Leonis: Radial Velocity Signal of Stellar Rotation or Spin–Orbit Resonance?

    Science.gov (United States)

    Tuomi, Mikko; Jones, Hugh R. A.; Barnes, John R.; Anglada-Escudé, Guillem; Butler, R. Paul; Kiraga, Marcin; Vogt, Steven S.

    2018-05-01

    AD Leonis is a nearby magnetically active M dwarf. We find Doppler variability with a period of 2.23 days, as well as photometric signals: (1) a short-period signal, which is similar to the radial velocity signal, albeit with considerable variability; and (2) a long-term activity cycle of 4070 ± 120 days. We examine the short-term photometric signal in the available All-Sky Automated Survey and Microvariability and Oscillations of STars (MOST) photometry and find that the signal is not consistently present and varies considerably as a function of time. This signal undergoes a phase change of roughly 0.8 rad when considering the first and second halves of the MOST data set, which are separated in median time by 3.38 days. In contrast, the Doppler signal is stable in the combined High-Accuracy Radial velocity Planet Searcher and High Resolution Echelle Spectrometer radial velocities for over 4700 days and does not appear to vary in time in amplitude, phase, period, or as a function of extracted wavelength. We consider a variety of starspot scenarios and find it challenging to simultaneously explain the rapidly varying photometric signal and the stable radial velocity signal as being caused by starspots corotating on the stellar surface. This suggests that the origin of the Doppler periodicity might be the gravitational tug of a planet orbiting the star in spin–orbit resonance. For such a scenario and no spin–orbit misalignment, the measured v\\sin i indicates an inclination angle of 15.°5 ± 2.°5 and a planetary companion mass of 0.237 ± 0.047 M Jup.

  17. Stochastic Resonance in an Underdamped System with Pinning Potential for Weak Signal Detection

    Directory of Open Access Journals (Sweden)

    Haibin Zhang

    2015-08-01

    Full Text Available Stochastic resonance (SR has been proved to be an effective approach for weak sensor signal detection. This study presents a new weak signal detection method based on a SR in an underdamped system, which consists of a pinning potential model. The model was firstly discovered from magnetic domain wall (DW in ferromagnetic strips. We analyze the principle of the proposed underdamped pinning SR (UPSR system, the detailed numerical simulation and system performance. We also propose the strategy of selecting the proper damping factor and other system parameters to match a weak signal, input noise and to generate the highest output signal-to-noise ratio (SNR. Finally, we have verified its effectiveness with both simulated and experimental input signals. Results indicate that the UPSR performs better in weak signal detection than the conventional SR (CSR with merits of higher output SNR, better anti-noise and frequency response capability. Besides, the system can be designed accurately and efficiently owing to the sensibility of parameters and potential diversity. The features also weaken the limitation of small parameters on SR system.

  18. Stochastic Resonance in an Underdamped System with Pinning Potential for Weak Signal Detection.

    Science.gov (United States)

    Zhang, Haibin; He, Qingbo; Kong, Fanrang

    2015-08-28

    Stochastic resonance (SR) has been proved to be an effective approach for weak sensor signal detection. This study presents a new weak signal detection method based on a SR in an underdamped system, which consists of a pinning potential model. The model was firstly discovered from magnetic domain wall (DW) in ferromagnetic strips. We analyze the principle of the proposed underdamped pinning SR (UPSR) system, the detailed numerical simulation and system performance. We also propose the strategy of selecting the proper damping factor and other system parameters to match a weak signal, input noise and to generate the highest output signal-to-noise ratio (SNR). Finally, we have verified its effectiveness with both simulated and experimental input signals. Results indicate that the UPSR performs better in weak signal detection than the conventional SR (CSR) with merits of higher output SNR, better anti-noise and frequency response capability. Besides, the system can be designed accurately and efficiently owing to the sensibility of parameters and potential diversity. The features also weaken the limitation of small parameters on SR system.

  19. Time-frequency peak filtering for random noise attenuation of magnetic resonance sounding signal

    Science.gov (United States)

    Lin, Tingting; Zhang, Yang; Yi, Xiaofeng; Fan, Tiehu; Wan, Ling

    2018-05-01

    When measuring in a geomagnetic field, the method of magnetic resonance sounding (MRS) is often limited because of the notably low signal-to-noise ratio (SNR). Most current studies focus on discarding spiky noise and power-line harmonic noise cancellation. However, the effects of random noise should not be underestimated. The common method for random noise attenuation is stacking, but collecting multiple recordings merely to suppress random noise is time-consuming. Moreover, stacking is insufficient to suppress high-level random noise. Here, we propose the use of time-frequency peak filtering for random noise attenuation, which is performed after the traditional de-spiking and power-line harmonic removal method. By encoding the noisy signal with frequency modulation and estimating the instantaneous frequency using the peak of the time-frequency representation of the encoded signal, the desired MRS signal can be acquired from only one stack. The performance of the proposed method is tested on synthetic envelope signals and field data from different surveys. Good estimations of the signal parameters are obtained at different SNRs. Moreover, an attempt to use the proposed method to handle a single recording provides better results compared to 16 stacks. Our results suggest that the number of stacks can be appropriately reduced to shorten the measurement time and improve the measurement efficiency.

  20. EPR study on non- and gamma-irradiated herbal pills

    International Nuclear Information System (INIS)

    Aleksieva, K.; Lagunov, O.; Dimov, K.; Yordanov, N.D.

    2011-01-01

    The results of EPR studies on herbal pills of marigold, hawthorn, yarrow, common balm, tutsan, nettle and thyme before and after gamma-irradiation are reported. Before irradiation all samples exhibit one weak singlet EPR line with a g-factor of 2.0048±0.0005. After irradiation herbal pills could be separated in two groups according to their EPR spectra. Radiation-induced free radicals in pills of marigold, yarrow, nettle, tutsan and thyme could be attributed mainly to saccharide excipients. Tablets of hawthorn and common balm show 'cellulose-like' EPR spectrum, superimposed on partly resolved carbohydrate spectrum, due to the active part (herb) and inulin, which is present in the pills as an excipient. Fading study of the radiation-induced EPR signals confirms that sugar radicals are more stable than cellulose species. The reported results show that the presence of characteristic EPR spectra of herbal pills due to excipients or active part can be used as unambiguous proof of radiation processing within 35 or more days after irradiation.

  1. EPR study on non- and gamma-irradiated herbal pills

    Energy Technology Data Exchange (ETDEWEB)

    Aleksieva, K., E-mail: katerina_bas@abv.b [Institute of Catalysis, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria); Lagunov, O. [Institute of Catalysis, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria); Dimov, K. [Institute of Cryobiology and Food Technologies, 1162 Sofia (Bulgaria); Yordanov, N.D. [Institute of Catalysis, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria)

    2011-06-15

    The results of EPR studies on herbal pills of marigold, hawthorn, yarrow, common balm, tutsan, nettle and thyme before and after gamma-irradiation are reported. Before irradiation all samples exhibit one weak singlet EPR line with a g-factor of 2.0048{+-}0.0005. After irradiation herbal pills could be separated in two groups according to their EPR spectra. Radiation-induced free radicals in pills of marigold, yarrow, nettle, tutsan and thyme could be attributed mainly to saccharide excipients. Tablets of hawthorn and common balm show 'cellulose-like' EPR spectrum, superimposed on partly resolved carbohydrate spectrum, due to the active part (herb) and inulin, which is present in the pills as an excipient. Fading study of the radiation-induced EPR signals confirms that sugar radicals are more stable than cellulose species. The reported results show that the presence of characteristic EPR spectra of herbal pills due to excipients or active part can be used as unambiguous proof of radiation processing within 35 or more days after irradiation.

  2. EPR study on non- and gamma-irradiated herbal pills

    Science.gov (United States)

    Aleksieva, K.; Lagunov, O.; Dimov, K.; Yordanov, N. D.

    2011-06-01

    The results of EPR studies on herbal pills of marigold, hawthorn, yarrow, common balm, tutsan, nettle and thyme before and after gamma-irradiation are reported. Before irradiation all samples exhibit one weak singlet EPR line with a g-factor of 2.0048±0.0005. After irradiation herbal pills could be separated in two groups according to their EPR spectra. Radiation-induced free radicals in pills of marigold, yarrow, nettle, tutsan and thyme could be attributed mainly to saccharide excipients. Tablets of hawthorn and common balm show "cellulose-like" EPR spectrum, superimposed on partly resolved carbohydrate spectrum, due to the active part (herb) and inulin, which is present in the pills as an excipient. Fading study of the radiation-induced EPR signals confirms that sugar radicals are more stable than cellulose species. The reported results show that the presence of characteristic EPR spectra of herbal pills due to excipients or active part can be used as unambiguous proof of radiation processing within 35 or more days after irradiation.

  3. The use of deciduous molars in EPR dose reconstruction

    International Nuclear Information System (INIS)

    El-faramawy, N.A.; Wieser, A.

    2005-01-01

    The use of deciduous teeth in EPR dose reconstruction has the unique potential to measure individual doses that were accumulated in the early childhood in the age up to 12 years. It was found previously that due to the small size of deciduous incisors, the available amount of enamel is not sufficient for EPR measurements. Therefore, dose assessment with deciduous incisors can only be done by measurement of whole teeth, including enamel and dentine. The measurement of whole teeth instead of enamel alone is possibly less reliable for dose reconstruction because the stability of CO 2 - radicals (that are an indicator for the absorbed dose) in biologically active dentine is not known. In the present study naturally loosed deciduous molars were investigated. The feasibility of separating enamel from small size molars was analysed. EPR spectrum parameters of whole molars and separated enamel only were evaluated before and after laboratory irradiation. The EPR signal amplitudes of the CO 2 - and native signals were determined by spectrum deconvolution, in dependence on radiation dose in the range 0.1 - 10 Gy. The fading at room temperature of native and CO 2 - EPR signals was analysed. The detection threshold for absorbed dose in enamel was determined.

  4. Feasibility of in vivo three-dimensional T 2* mapping using dicarboxy-PROXYL and CW-EPR-based single-point imaging.

    Science.gov (United States)

    Kubota, Harue; Komarov, Denis A; Yasui, Hironobu; Matsumoto, Shingo; Inanami, Osamu; Kirilyuk, Igor A; Khramtsov, Valery V; Hirata, Hiroshi

    2017-06-01

    The aim of this study was to demonstrate the feasibility of in vivo three-dimensional (3D) relaxation time T 2 * mapping of a dicarboxy-PROXYL radical using continuous-wave electron paramagnetic resonance (CW-EPR) imaging. Isotopically substituted dicarboxy-PROXYL radicals, 3,4-dicarboxy-2,2,5,5-tetra( 2 H 3 )methylpyrrolidin-(3,4- 2 H 2 )-(1- 15 N)-1-oxyl ( 2 H, 15 N-DCP) and 3,4-dicarboxy-2,2,5,5-tetra( 2 H 3 )methylpyrrolidin-(3,4- 2 H 2 )-1-oxyl ( 2 H-DCP), were used in the study. A clonogenic cell survival assay was performed with the 2 H-DCP radical using squamous cell carcinoma (SCC VII) cells. The time course of EPR signal intensities of intravenously injected 2 H, 15 N-DCP and 2 H-DCP radicals were determined in tumor-bearing hind legs of mice (C3H/HeJ, male, n = 5). CW-EPR-based single-point imaging (SPI) was performed for 3D T 2 * mapping. 2 H-DCP radical did not exhibit cytotoxicity at concentrations below 10 mM. The in vivo half-life of 2 H, 15 N-DCP in tumor tissues was 24.7 ± 2.9 min (mean ± standard deviation [SD], n = 5). The in vivo time course of the EPR signal intensity of the 2 H, 15 N-DCP radical showed a plateau of 10.2 ± 1.2 min (mean ± SD) where the EPR signal intensity remained at more than 90% of the maximum intensity. During the plateau, in vivo 3D T 2 * maps with 2 H, 15 N-DCP were obtained from tumor-bearing hind legs, with a total acquisition time of 7.5 min. EPR signals of 2 H, 15 N-DCP persisted long enough after bolus intravenous injection to conduct in vivo 3D T 2 * mapping with CW-EPR-based SPI.

  5. Toward 2D and 3D imaging of magnetic nanoparticles using EPR measurements.

    Science.gov (United States)

    Coene, A; Crevecoeur, G; Leliaert, J; Dupré, L

    2015-09-01

    Magnetic nanoparticles (MNPs) are an important asset in many biomedical applications. An effective working of these applications requires an accurate knowledge of the spatial MNP distribution. A promising, noninvasive, and sensitive technique to visualize MNP distributions in vivo is electron paramagnetic resonance (EPR). Currently only 1D MNP distributions can be reconstructed. In this paper, the authors propose extending 1D EPR toward 2D and 3D using computer simulations to allow accurate imaging of MNP distributions. To find the MNP distribution belonging to EPR measurements, an inverse problem needs to be solved. The solution of this inverse problem highly depends on the stability of the inverse problem. The authors adapt 1D EPR imaging to realize the imaging of multidimensional MNP distributions. Furthermore, the authors introduce partial volume excitation in which only parts of the volume are imaged to increase stability of the inverse solution and to speed up the measurements. The authors simulate EPR measurements of different 2D and 3D MNP distributions and solve the inverse problem. The stability is evaluated by calculating the condition measure and by comparing the actual MNP distribution to the reconstructed MNP distribution. Based on these simulations, the authors define requirements for the EPR system to cope with the added dimensions. Moreover, the authors investigate how EPR measurements should be conducted to improve the stability of the associated inverse problem and to increase reconstruction quality. The approach used in 1D EPR can only be employed for the reconstruction of small volumes in 2D and 3D EPRs due to numerical instability of the inverse solution. The authors performed EPR measurements of increasing cylindrical volumes and evaluated the condition measure. This showed that a reduction of the inherent symmetry in the EPR methodology is necessary. By reducing the symmetry of the EPR setup, quantitative images of larger volumes can be

  6. Toward 2D and 3D imaging of magnetic nanoparticles using EPR measurements

    International Nuclear Information System (INIS)

    Coene, A.; Crevecoeur, G.; Dupré, L.; Leliaert, J.

    2015-01-01

    Purpose: Magnetic nanoparticles (MNPs) are an important asset in many biomedical applications. An effective working of these applications requires an accurate knowledge of the spatial MNP distribution. A promising, noninvasive, and sensitive technique to visualize MNP distributions in vivo is electron paramagnetic resonance (EPR). Currently only 1D MNP distributions can be reconstructed. In this paper, the authors propose extending 1D EPR toward 2D and 3D using computer simulations to allow accurate imaging of MNP distributions. Methods: To find the MNP distribution belonging to EPR measurements, an inverse problem needs to be solved. The solution of this inverse problem highly depends on the stability of the inverse problem. The authors adapt 1D EPR imaging to realize the imaging of multidimensional MNP distributions. Furthermore, the authors introduce partial volume excitation in which only parts of the volume are imaged to increase stability of the inverse solution and to speed up the measurements. The authors simulate EPR measurements of different 2D and 3D MNP distributions and solve the inverse problem. The stability is evaluated by calculating the condition measure and by comparing the actual MNP distribution to the reconstructed MNP distribution. Based on these simulations, the authors define requirements for the EPR system to cope with the added dimensions. Moreover, the authors investigate how EPR measurements should be conducted to improve the stability of the associated inverse problem and to increase reconstruction quality. Results: The approach used in 1D EPR can only be employed for the reconstruction of small volumes in 2D and 3D EPRs due to numerical instability of the inverse solution. The authors performed EPR measurements of increasing cylindrical volumes and evaluated the condition measure. This showed that a reduction of the inherent symmetry in the EPR methodology is necessary. By reducing the symmetry of the EPR setup, quantitative images of

  7. A 5 tesla superconducting magnet and cryostats for an EPR/FMR spectrometer

    NARCIS (Netherlands)

    Reuvekamp, E.M.C.M.; Gerritsma, G.J.; ten Kate, Herman H.J.; van de Klundert, L.J.M.

    1988-01-01

    A description is given of the cryogenic part of an electron paramagnetic resonance (EPR)/ferromagnetic resonance (FMR) spectrometer using Ka-band (26.5-40 GHz) and U-band (40-60 GHz) frequencies for resonance measurements on large magnetic thin-films. The unit has two cryostats; the first has a

  8. Evaluation of adriamycin nephropathy by an in vivo electron paramagnetic resonance

    International Nuclear Information System (INIS)

    Oteki, Takaaki; Nagase, Sohji; Yokoyama, Hidekatsu; Ohya, Hiroaki; Akatsuka, Takao; Tada, Mika; Ueda, Atsushi; Hirayama, Aki; koyama, Akio

    2005-01-01

    A rat model for human minimal change nephropathy was obtained by the intravenous injection of adriamycin (ADR) at 5 mg/kg. By using an in vivo electron paramagnetic resonance (EPR) spectrometer operating at 700 MHz, the temporal changes in signal intensities of a nitroxide radical, 4-hydroxyl-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL), in the kidneys of rats with ADR nephropathy were investigated. The decay rate of the EPR signal intensity obtained in the kidney is indicative of the renal reducing ability. It was found that the reducing ability in the kidney declined on the 7th day after ADR administration and recovered after the 14th day. Impairment of the reducing ability occurred before the appearance of continuous urinary protein. The in vitro EPR study showed that this impairment of in vivo renal reducing ability is related to impairment of the reducing ability in the mitochondria

  9. The nature of the exchange coupling between high-spin Fe(III) heme o3 and CuBII in Escherichia coli quinol oxidase, cytochrome bo3: MCD and EPR studies.

    Science.gov (United States)

    Cheesman, Myles R; Oganesyan, Vasily S; Watmough, Nicholas J; Butler, Clive S; Thomson, Andrew J

    2004-04-07

    Fully oxidized cytochrome bo3 from Escherichia coli has been studied in its oxidized and several ligand-bound forms using electron paramagnetic resonance (EPR) and magnetic circular dichroism (MCD) spectroscopies. In each form, the spin-coupled high-spin Fe(III) heme o3 and CuB(II) ion at the active site give rise to similar fast-relaxing broad features in the dual-mode X-band EPR spectra. Simulations of dual-mode spectra are presented which show that this EPR can arise only from a dinuclear site in which the metal ions are weakly coupled by an anisotropic exchange interaction of J 1 cm-1. A variable-temperature and magnetic field (VTVF) MCD study is also presented for the cytochrome bo3 fluoride and azide derivatives. New methods are used to extract the contribution to the MCD of the spin-coupled active site in the presence of strong transitions from low-spin Fe(III) heme b. Analysis of the MCD data, independent of the EPR study, also shows that the spin-coupling within the active site is weak with J approximately 1 cm-1. These conclusions overturn a long-held view that such EPR signals in bovine cytochrome c oxidase arise from an S' = 2 ground state resulting from strong exchange coupling (J > 10(2) cm-1) within the active site.

  10. Comparative study of some new EPR dosimeters

    International Nuclear Information System (INIS)

    Alzimami, K.S.; Maghraby, Ahmed M.; Bradley, D.A.

    2014-01-01

    Investigations have been made of four new radiation dosimetry EPR candidates from the same family of materials: sulfamic acid, sulfanillic acid, homotaurine, and taurine. Mass energy attenuation coefficients, mass stopping power values and the time dependence of the radiation induced radicals are compared. Also investigated are the microwave saturation behavior and the effect of applied modulation amplitude on both peak-to-peak line width (W PP ) and peak-to-peak signal height (H PP ). The dosimeters are characterized by simple spectra and stable radiation-induced radicals over reasonable durations, especially in taurine dosimeters. Sulfamic acid dosimeters possessed the highest sensitivity followed by taurine and homotaurine and sulfanillic. - Highlights: ► Several EPR dosimeters were suggested based on SO 3 − radical. ► Taurine, homotaurine, sulfanilic, and sulfamic acid all possess simple EPR spectra. ► Dosimeters were compared to each other in terms of the dosimetric point of view. ► Energy dependence curves of the selected dosimeters were compared to eachother

  11. X- and Q-band EPR studies on fine powders of irradiated plants. New approach for detection of their radiation history by using Q-band EPR spectrometry

    International Nuclear Information System (INIS)

    Yordanov, Nicola D.; Aleksieva, Katerina

    2004-01-01

    X- and Q-band EPR studies after γ-irradiation of some dry spices and aromatic herbs are reported. Before irradiation all samples show only one singlet line in X-band EPR, whereas the Q-band EPR spectrum of the same samples is a superposition of two individual spectra--one corresponding to the above EPR signal, with an anisotropic spectrum, and a second one consisting of six lines due to the Mn 2+ naturally present in plants. The radiation induced EPR signal due to cellulose free radicals was not detected after γ-irradiation, but only the increase of the natural signal present before the irradiation. The fading kinetic of this EPR signal was monitored in three cases--when samples were kept in plastic bags without any special conditioning after irradiation, when samples were covered with paraffin before irradiation and when samples were dried at 60 deg. C for 1 h before irradiation. The studies show that stability of radiation induced EPR signals decreases in the order of: paraffin covered > heated before irradiation > kept at room conditions. The two EPR spectra in the Q-band--one with radiation dependent intensity and a second due to Mn 2+ , which is radiation independent allow identification of previous radiation treatment based on the fact that Mn 2+ quantity in the sample is constant whereas the quantity of radiation-induced free radicals is temperature dependent. It was found that for irradiated samples the ratio between EPR intensity of the free radicals and that of Mn 2+ before and after heating decreases with 50-60% whereas for non-irradiated samples it is ca. 10-15%

  12. EPR measurements of phenolic concentration in developing red grapeseeds - a pilot study

    International Nuclear Information System (INIS)

    Troup, G.J.; Kennedy, J.A.; Hutton, D.R.; Hewitt, D.; Hunter, C.A.; Pilbrow, J.R.; Ristic, R.; Iland, P.; Jones, G.P. Anon

    2000-01-01

    Full text: Phenolics, in the liquid (wine, Troup et al., Free Radicals Research, 1994, 20, 63 - 68) and solid state, give stable free radical signals detectable by EPR. Observations of EPR signals (partly due to phenolics) in developing red grapeseeds, as a function of time, have been made. The increasing, then decreasing of this signal as a function of time correlates well with the theory of phenolic concentration in developing grapeseeds recently proposed by Kennedy et al. (in press). This is a very significant application of EPR Spectroscopy in the Wine Industry, so far unfamiliar with its use

  13. Retrospective dosimetry using EPR and TL techniques: a status report

    International Nuclear Information System (INIS)

    Haskell, E.H.

    1996-01-01

    Methods of retrospective dosimetry, including luminescence and electron paramagnetic resonance spectroscopy (EPR), rely on measurement of accident dose absorbed by naturally occurring materials - ceramics in the case of both thermoluminescence (TL) and optically stimulated luminescence (OSL) and organic materials and bio- minerals in the case of EPR. Each of these methods relies on measurement of radiation defects resulting from accidental exposure. Since defects also result from natural sources of radiation over the lifetime of a sample, analysis is usually restricted to materials for which the natural dose may be determined and subtracted from the measured cumulative dose. Luminescence dating techniques rely heavily on an accurate assessment of cumulative dose from natural radiation sources, and dating research has provided us with the bulk of our knowledge in this area. Virtually all of the work on natural dose determination can be directly applied to retrospective techniques. With EPR techniques the cumulative dose from diagnostic x- rays is also of importance

  14. Retrospective dosimetry using EPR and TL techniques: a status report

    Energy Technology Data Exchange (ETDEWEB)

    Haskell, E.H.

    1996-12-31

    Methods of retrospective dosimetry, including luminescence and electron paramagnetic resonance spectroscopy (EPR), rely on measurement of accident dose absorbed by naturally occurring materials - ceramics in the case of both thermoluminescence (TL) and optically stimulated luminescence (OSL) and organic materials and bio- minerals in the case of EPR. Each of these methods relies on measurement of radiation defects resulting from accidental exposure. Since defects also result from natural sources of radiation over the lifetime of a sample, analysis is usually restricted to materials for which the natural dose may be determined and subtracted from the measured cumulative dose. Luminescence dating techniques rely heavily on an accurate assessment of cumulative dose from natural radiation sources, and dating research has provided us with the bulk of our knowledge in this area. Virtually all of the work on natural dose determination can be directly applied to retrospective techniques. With EPR techniques the cumulative dose from diagnostic x- rays is also of importance.

  15. EPR spectroscopic investigations in 15BaO-25Li2O-(60-x) B2O3-xFe2O3 glass system

    Science.gov (United States)

    Bhogi, Ashok; Kumar, R. Vijaya; Kistaiah, P.

    2018-05-01

    Glasses with composition 15BaO-25Li2O-(60-x) B2O3 -xFe2O3 (x = 0, 0.2, 0.4, 0.6, 0.8 and 1 mol %) were prepared by the conventional melt quenching technique. These glasses were characterized using X-ray diffraction (XRD). Electron paramagnetic resonance (EPR) investigations have been carried out as a function of iron ion concentration. The observed EPR spectra of Fe3+ ion exhibits resonance signals at g= 2.0, 4.3 and 8.0. The resonance signal at g= 4.3 is due to isolated Fe3+ ions in site with rhombic symmetry where as the g= 2.0 resonance signal is attributed to the Fe3+ ions coupled by exchange interaction in a distorted octahedral environment and the signal at g= 8.0 arises from axially distorted sites. The number of spins participating in resonance (N) and its paramagnetic susceptibilities (χ) have also been evaluated. The peak-to-peak line width ΔB for the resonance lines at g ≈ 4.3 and at g ≈ 2.0 is increasing as function of the iron ion content. The line intensity of the resonance centered at g ≈ 4.3 and at g ≈ 2.0 increases up to 0.8 mol% of Fe2O3 and for 1 mol% of Fe2O3 its value is found to decrease. The analysis of these results indicated that the conversion some of Fe3+ cations to Fe2+ ions beyond 0.8 mol%.

  16. Nanopolyaniline as immobilization template for signal enhancement of surface plasmon resonance biosensor - A preliminary study

    Science.gov (United States)

    Kamarun, Dzaraini; Abdul Azem, Nor Hazirah Kamel; Sarijo, Siti Halimah; Mohd, Ahmad Faiza; Abdullah @ Mohd Noor, Mashita

    2012-07-01

    A technique for the enhancement of Surface Plasmon Resonance (SPR) signal for sensing biomolecular interactions is described. Polyaniline (PANI) of particle size in the range of 1 to 15 nm was synthesized and used as the template for the immobilization of protein molecules. Biomolecular interactions of unbound and PANI-bound proteins with antibody molecules were SPR-monitored using a model system comprising of Bovine Serum Albumin (BSA) and anti BSA. A 7-fold increased in the signal was recorded from interactions of the PANI-bound BSA with anti BSA compared to the interactions of its unbound counterpart. This preliminary observation provides new avenue in immunosensor technology for improving the detection sensitivity of SPR biosensor; and thereby increasing the lower detection limit of biomolecules.

  17. Proton nuclear magnetic resonance imaging of regionally ischemic canine hearts: effects of paramagnetic proton signal enhancement

    International Nuclear Information System (INIS)

    Brady, T.J.; Goldman, M.R.; Pykett, I.L.; Buonanno, F.S.; Kistler, J.P.; Newhouse, J.H.; Burt, C.T.; Hinshaw, W.S.; Pohost, G.M.

    1982-01-01

    In a study to evaluate the potential of proton nuclear magnetic resonance (NMR) imaging with and without manganese contrast enhancement for detecting acute myocardial infarction, 12 dogs underwent 90-minute occlusion of the left circumflex coronary artery. Transverse-section NMR images of the excised, nonbeating heart were obtained at 1-cm intervals using the steady-state-free-precession (SSFP) technique. All NMR images revealed detailed structure of the heart. The three hearts without manganese showed no difference in intensity between the normal and the ischemic posterior regions, whereas those with manganese demonstrated a clearly demarcated zone of reduced signal intensity consistent with the ischemic zone. It is concluded that high-resolution tomograms of the excised canine myocardium can be obtained using proton NMR imaging. With the SSFP imaging technique, proton signal enhancement with manganese infusion is necessary to differentiate between ischemic and nonischemic myocardium after 90 minutes of coronary occlusion

  18. Quantitation of magnetic resonance spectroscopy signals: the jMRUI software package

    International Nuclear Information System (INIS)

    Stefan, D; Andrasescu, A; Cesare, F Di; Popa, E; Lazariev, A; Graveron-Demilly, D; Vescovo, E; Williams, S; Strbak, O; Starcuk, Z; Cabanas, M; Van Ormondt, D

    2009-01-01

    The software package jMRUI with Java-based graphical user interface enables user-friendly time-domain analysis of magnetic resonance spectroscopy (MRS) and spectroscopic imaging (MRSI) and HRMAS-NMR signals. Version 3.x has been distributed in more than 1200 groups or hospitals worldwide. The new version 4.x is a plug-in platform enabling the users to add their own algorithms. Moreover, it offers new functionalities compared to versions 3.x. The quantum-mechanical simulator based on NMR-SCOPE, the quantitation algorithm QUEST and the main MRSI functionalities are described. Quantitation results of signals obtained in vivo from a mouse and a human brain are given

  19. Coronary artery stent mimicking intracardiac thrombus on cardiac magnetic resonance imaging due to signal loss

    DEFF Research Database (Denmark)

    Qayyum, Abbas Ali; Vejlstrup, Niels Grove; Ahtarovski, Kiril Aleksov

    2012-01-01

    Since the introduction of percutaneous coronary intervention for coronary artery disease, thousands of patients have been treated with the implantation of coronary stents. Moreover, several of the patients with coronary stent undergo cardiac magnetic resonance (CMR) imaging every year. This case...... report is of a 77-year-old man who was previously treated with the implantation of a coronary stent in the left circumflex artery. He underwent CMR imaging, which revealed a process 14×21 mm in the left atrium. Cardiac contrast computed tomography did not demonstrate any cardiac pathology. While...... the signal loss on MRI associated with implanted metallic devices is known, we report a case where an implanted coronary stent in the left circumflex artery led to an intracardiac signal loss mimicking intracardiac thrombus/tumor....

  20. Chirp echo Fourier transform EPR-detected NMR.

    Science.gov (United States)

    Wili, Nino; Jeschke, Gunnar

    2018-04-01

    A new ultra-wide band (UWB) pulse EPR method is introduced for observing all nuclear frequencies of a paramagnetic center in a single shot. It is based on burning spectral holes with a high turning angle (HTA) pulse that excites forbidden transitions and subsequent detection of the hole pattern by a chirp echo. We term this method Chirp Echo Epr SpectroscopY (CHEESY)-detected NMR. The approach is a revival of FT EPR-detected NMR. It yields similar spectra and the same type of information as electron-electron double resonance (ELDOR)-detected NMR, but with a multiplex advantage. We apply CHEESY-detected NMR in Q band to nitroxides and correlate the hyperfine spectrum to the EPR spectrum by varying the frequency of the HTA pulse. Furthermore, a selective π pulse before the HTA pulse allows for detecting hyperfine sublevel correlations between transitions of one nucleus and for elucidating the coupling regime, the same information as revealed by the HYSCORE experiment. This is demonstrated on hexaaquamanganese(II). We expect that CHEESY-detected NMR is generally applicable to disordered systems and that our results further motivate the development of EPR spectrometers capable of coherent UWB excitation and detection, especially at higher fields and frequencies. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  1. Chirp echo Fourier transform EPR-detected NMR

    Science.gov (United States)

    Wili, Nino; Jeschke, Gunnar

    2018-04-01

    A new ultra-wide band (UWB) pulse EPR method is introduced for observing all nuclear frequencies of a paramagnetic center in a single shot. It is based on burning spectral holes with a high turning angle (HTA) pulse that excites forbidden transitions and subsequent detection of the hole pattern by a chirp echo. We term this method Chirp Echo Epr SpectroscopY (CHEESY)-detected NMR. The approach is a revival of FT EPR-detected NMR. It yields similar spectra and the same type of information as electron-electron double resonance (ELDOR)-detected NMR, but with a multiplex advantage. We apply CHEESY-detected NMR in Q band to nitroxides and correlate the hyperfine spectrum to the EPR spectrum by varying the frequency of the HTA pulse. Furthermore, a selective π pulse before the HTA pulse allows for detecting hyperfine sublevel correlations between transitions of one nucleus and for elucidating the coupling regime, the same information as revealed by the HYSCORE experiment. This is demonstrated on hexaaquamanganese(II). We expect that CHEESY-detected NMR is generally applicable to disordered systems and that our results further motivate the development of EPR spectrometers capable of coherent UWB excitation and detection, especially at higher fields and frequencies.

  2. Development of a new dosimeter of EPR based on lactose

    International Nuclear Information System (INIS)

    Cruz C, L.; Torijano C, E.; Azorin N, J.; Aguirre G, F.; Cruz Z, E.

    2014-08-01

    50 years have passed since was proposed using the amino acid alanine as dosimeter advantage the phenomenon of electron paramagnetic resonance (EPR); this dosimetric method has reached a highly competitive level regarding others dosimetry classic methods, for example the thermoluminescence or the use of Fricke dosimeters, to measure high dose of radiation. In this type of materials, the free radicals induced by the radiation are stable and their concentration is proportional to the absorbed dose may be determined by the amplitude pick to pick of the first derived of the EPR absorption spectrum. The obtained results studying the EPR response of lactose tablets elaborated in the Universidad Autonoma Metropolitana, Unidad Iztapalapa are presented. The tablets were irradiated with gamma radiation of 60 Co in the irradiator Gamma beam 651-Pt of the Instituto de Ciencias Nucleares de la Universidad Nacional Autonoma de Mexico to a dose rate of 8 kGy-h -1 and their EPR response in a EPR spectrometer e-scan Bruker. The obtained response in function of the dose was lineal in the interval of 1 at 10 kGy. The lactose sensibility was compared with the l-alanine, used as reference, and the result was consistently 0.25 of this. Due to the linearity shown in the interval of used dose and their low production cost, we conclude that the lactose is a promissory option for the dosimetry of high dose of radiation. (author)

  3. Microstrip resonators for electron paramagnetic resonance experiments

    Science.gov (United States)

    Torrezan, A. C.; Mayer Alegre, T. P.; Medeiros-Ribeiro, G.

    2009-07-01

    In this article we evaluate the performance of an electron paramagnetic resonance (EPR) setup using a microstrip resonator (MR). The design and characterization of the resonator are described and parameters of importance to EPR and spin manipulation are examined, including cavity quality factor, filling factor, and microwave magnetic field in the sample region. Simulated microwave electric and magnetic field distributions in the resonator are also presented and compared with qualitative measurements of the field distribution obtained by a perturbation technique. Based on EPR experiments carried out with a standard marker at room temperature and a MR resonating at 8.17 GHz, the minimum detectable number of spins was found to be 5×1010 spins/GHz1/2 despite the low MR unloaded quality factor Q0=60. The functionality of the EPR setup was further evaluated at low temperature, where the spin resonance of Cr dopants present in a GaAs wafer was detected at 2.3 K. The design and characterization of a more versatile MR targeting an improved EPR sensitivity and featuring an integrated biasing circuit for the study of samples that require an electrical contact are also discussed.

  4. Microstrip resonators for electron paramagnetic resonance experiments.

    Science.gov (United States)

    Torrezan, A C; Mayer Alegre, T P; Medeiros-Ribeiro, G

    2009-07-01

    In this article we evaluate the performance of an electron paramagnetic resonance (EPR) setup using a microstrip resonator (MR). The design and characterization of the resonator are described and parameters of importance to EPR and spin manipulation are examined, including cavity quality factor, filling factor, and microwave magnetic field in the sample region. Simulated microwave electric and magnetic field distributions in the resonator are also presented and compared with qualitative measurements of the field distribution obtained by a perturbation technique. Based on EPR experiments carried out with a standard marker at room temperature and a MR resonating at 8.17 GHz, the minimum detectable number of spins was found to be 5 x 10(10) spins/GHz(1/2) despite the low MR unloaded quality factor Q0=60. The functionality of the EPR setup was further evaluated at low temperature, where the spin resonance of Cr dopants present in a GaAs wafer was detected at 2.3 K. The design and characterization of a more versatile MR targeting an improved EPR sensitivity and featuring an integrated biasing circuit for the study of samples that require an electrical contact are also discussed.

  5. On the Correlation between EPR and Positron Annihilation Measurements on gamma-Irradiated Acetyl Methionine

    DEFF Research Database (Denmark)

    Eldrup, Morten Mostgaard; Lund-Thomsen, E.; Mogensen, O. E.

    1972-01-01

    The dose dependence of the relative EPR signal intensity and positron lifetime spectrum was measured for γ‐irradiated acetyl methionine in the dose range from 0 to 30 Mrad. Angular correlation measurements were performed for the doses 0 and 30 Mrad. The result of the irradiation was the creation...... of EPR centers and inhibition of positronium formation. For one sample, irradiated with a dose of 30 Mrad, EPR and positron lifetime spectra were followed over a period of 50 days after the irradiation. The inhibiting effect and the EPR signal intensity decreased with time. No simple correlation could...... be established between the number of EPR centers and the positron annihilation data, but other possible explanations are discussed....

  6. Integration of Resonant Coil for Wireless Power Transfer and Implantable Antenna for Signal Transfer

    Directory of Open Access Journals (Sweden)

    Dong-Wook Seo

    2016-01-01

    Full Text Available We propose the integration of the resonant coil for wireless power transfer (WPT and the implantable antenna for physiological signal transfer. The integration allows for a compact biomedical implantable system such as electrocardiogram (ECG recorder and pacemaker. While the resonant coils resonate at the frequency of 13.56 MHz for the WPT, the implantable antenna works in the medical implant communications service (MICS band of 402–405 MHz for wireless communications. They share the narrow substrate area of a bar-type shape; the coil has the current path on the outer part of the substrate and the meandered planar inverted-F antenna (PIFA occupies the inside of the coil. To verify the potentials of the proposed structure, a prototype is fabricated and tested in vitro. The power transfer efficiency (PTE of about 20% is obtained at a distance of 15 mm and the antenna gain of roughly −40 dBi is achieved.

  7. Resonance-Based Sparse Signal Decomposition and its Application in Mechanical Fault Diagnosis: A Review.

    Science.gov (United States)

    Huang, Wentao; Sun, Hongjian; Wang, Weijie

    2017-06-03

    Mechanical equipment is the heart of industry. For this reason, mechanical fault diagnosis has drawn considerable attention. In terms of the rich information hidden in fault vibration signals, the processing and analysis techniques of vibration signals have become a crucial research issue in the field of mechanical fault diagnosis. Based on the theory of sparse decomposition, Selesnick proposed a novel nonlinear signal processing method: resonance-based sparse signal decomposition (RSSD). Since being put forward, RSSD has become widely recognized, and many RSSD-based methods have been developed to guide mechanical fault diagnosis. This paper attempts to summarize and review the theoretical developments and application advances of RSSD in mechanical fault diagnosis, and to provide a more comprehensive reference for those interested in RSSD and mechanical fault diagnosis. Followed by a brief introduction of RSSD's theoretical foundation, based on different optimization directions, applications of RSSD in mechanical fault diagnosis are categorized into five aspects: original RSSD, parameter optimized RSSD, subband optimized RSSD, integrated optimized RSSD, and RSSD combined with other methods. On this basis, outstanding issues in current RSSD study are also pointed out, as well as corresponding instructional solutions. We hope this review will provide an insightful reference for researchers and readers who are interested in RSSD and mechanical fault diagnosis.

  8. A Dynamical System Exhibits High Signal-to-noise Ratio Gain by Stochastic Resonance

    Science.gov (United States)

    Makra, Peter; Gingl, Zoltan

    2003-05-01

    On the basis of mixed-signal simulations, we demonstrate that signal-to-noise ratio (SNR) gains much greater than unity can be obtained in the double-well potential through stochastic resonance (SR) with a symmetric periodic pulse train as deterministic and Gaussian white noise as random excitation. We also show that significant SNR improvement is possible in this system even for a sub-threshold sinusoid input if, instead of the commonly used narrow-band SNR, we apply an equally simple but much more realistic wide-band SNR definition. Using the latter result as an argument, we draw attention to the fact that the choice of the measure to reflect signal quality is critical with regard to the extent of signal improvement observed, and urge reconsideration of the practice prevalent in SR studies that most often the narrow-band SNR is used to characterise SR. Finally, we pose some questions concerning the possibilities of applying SNR improvement in practical set-ups.

  9. Lineshape estimation for magnetic resonance spectroscopy (MRS) signals: self-deconvolution revisited

    International Nuclear Information System (INIS)

    Sima, D M; Garcia, M I Osorio; Poullet, J; Van Huffel, S; Suvichakorn, A; Antoine, J-P; Van Ormondt, D

    2009-01-01

    Magnetic resonance spectroscopy (MRS) is an effective diagnostic technique for monitoring biochemical changes in an organism. The lineshape of MRS signals can deviate from the theoretical Lorentzian lineshape due to inhomogeneities of the magnetic field applied to patients and to tissue heterogeneity. We call this deviation a distortion and study the self-deconvolution method for automatic estimation of the unknown lineshape distortion. The method is embedded within a time-domain metabolite quantitation algorithm for short-echo-time MRS signals. Monte Carlo simulations are used to analyze whether estimation of the unknown lineshape can improve the overall quantitation result. We use a signal with eight metabolic components inspired by typical MRS signals from healthy human brain and allocate special attention to the step of denoising and spike removal in the self-deconvolution technique. To this end, we compare several modeling techniques, based on complex damped exponentials, splines and wavelets. Our results show that self-deconvolution performs well, provided that some unavoidable hyper-parameters of the denoising methods are well chosen. Comparison of the first and last iterations shows an improvement when considering iterations instead of a single step of self-deconvolution

  10. Biomechanics of the Peacock’s Display: How Feather Structure and Resonance Influence Multimodal Signaling

    Science.gov (United States)

    Dakin, Roslyn; McCrossan, Owen; Hare, James F.; Montgomerie, Robert; Amador Kane, Suzanne

    2016-01-01

    Courtship displays may serve as signals of the quality of motor performance, but little is known about the underlying biomechanics that determines both their signal content and costs. Peacocks (Pavo cristatus) perform a complex, multimodal “train-rattling” display in which they court females by vibrating the iridescent feathers in their elaborate train ornament. Here we study how feather biomechanics influences the performance of this display using a combination of field recordings and laboratory experiments. Using high-speed video, we find that train-rattling peacocks stridulate their tail feathers against the train at 25.6 Hz, on average, generating a broadband, pulsating mechanical sound at that frequency. Laboratory measurements demonstrate that arrays of peacock tail and train feathers have a broad resonant peak in their vibrational spectra at the range of frequencies used for train-rattling during the display, and the motion of feathers is just as expected for feathers shaking near resonance. This indicates that peacocks are able to drive feather vibrations energetically efficiently over a relatively broad range of frequencies, enabling them to modulate the feather vibration frequency of their displays. Using our field data, we show that peacocks with longer trains use slightly higher vibration frequencies on average, even though longer train feathers are heavier and have lower resonant frequencies. Based on these results, we propose hypotheses for future studies of the function and energetics of this display that ask why its dynamic elements might attract and maintain female attention. Finally, we demonstrate how the mechanical structure of the train feathers affects the peacock’s visual display by allowing the colorful iridescent eyespots–which strongly influence female mate choice–to remain nearly stationary against a dynamic iridescent background. PMID:27119380

  11. Biomechanics of the Peacock's Display: How Feather Structure and Resonance Influence Multimodal Signaling.

    Directory of Open Access Journals (Sweden)

    Roslyn Dakin

    Full Text Available Courtship displays may serve as signals of the quality of motor performance, but little is known about the underlying biomechanics that determines both their signal content and costs. Peacocks (Pavo cristatus perform a complex, multimodal "train-rattling" display in which they court females by vibrating the iridescent feathers in their elaborate train ornament. Here we study how feather biomechanics influences the performance of this display using a combination of field recordings and laboratory experiments. Using high-speed video, we find that train-rattling peacocks stridulate their tail feathers against the train at 25.6 Hz, on average, generating a broadband, pulsating mechanical sound at that frequency. Laboratory measurements demonstrate that arrays of peacock tail and train feathers have a broad resonant peak in their vibrational spectra at the range of frequencies used for train-rattling during the display, and the motion of feathers is just as expected for feathers shaking near resonance. This indicates that peacocks are able to drive feather vibrations energetically efficiently over a relatively broad range of frequencies, enabling them to modulate the feather vibration frequency of their displays. Using our field data, we show that peacocks with longer trains use slightly higher vibration frequencies on average, even though longer train feathers are heavier and have lower resonant frequencies. Based on these results, we propose hypotheses for future studies of the function and energetics of this display that ask why its dynamic elements might attract and maintain female attention. Finally, we demonstrate how the mechanical structure of the train feathers affects the peacock's visual display by allowing the colorful iridescent eyespots-which strongly influence female mate choice-to remain nearly stationary against a dynamic iridescent background.

  12. Biomechanics of the Peacock's Display: How Feather Structure and Resonance Influence Multimodal Signaling.

    Science.gov (United States)

    Dakin, Roslyn; McCrossan, Owen; Hare, James F; Montgomerie, Robert; Amador Kane, Suzanne

    2016-01-01

    Courtship displays may serve as signals of the quality of motor performance, but little is known about the underlying biomechanics that determines both their signal content and costs. Peacocks (Pavo cristatus) perform a complex, multimodal "train-rattling" display in which they court females by vibrating the iridescent feathers in their elaborate train ornament. Here we study how feather biomechanics influences the performance of this display using a combination of field recordings and laboratory experiments. Using high-speed video, we find that train-rattling peacocks stridulate their tail feathers against the train at 25.6 Hz, on average, generating a broadband, pulsating mechanical sound at that frequency. Laboratory measurements demonstrate that arrays of peacock tail and train feathers have a broad resonant peak in their vibrational spectra at the range of frequencies used for train-rattling during the display, and the motion of feathers is just as expected for feathers shaking near resonance. This indicates that peacocks are able to drive feather vibrations energetically efficiently over a relatively broad range of frequencies, enabling them to modulate the feather vibration frequency of their displays. Using our field data, we show that peacocks with longer trains use slightly higher vibration frequencies on average, even though longer train feathers are heavier and have lower resonant frequencies. Based on these results, we propose hypotheses for future studies of the function and energetics of this display that ask why its dynamic elements might attract and maintain female attention. Finally, we demonstrate how the mechanical structure of the train feathers affects the peacock's visual display by allowing the colorful iridescent eyespots-which strongly influence female mate choice-to remain nearly stationary against a dynamic iridescent background.

  13. EPR Flamanville 3, Site Management

    International Nuclear Information System (INIS)

    Menager, Antoine

    2014-01-01

    Antoine Menager, the EPR Flamanville 3 Site Manager described the organization and the management of the Flamanville site during the construction phase. He placed emphasis on Health and Safety, Environmental and Social Responsibility and on Nuclear Safety and Quality

  14. Radiation dosimetry in human bone using electron paramagnetic resonance

    International Nuclear Information System (INIS)

    Breen, S.L.

    1995-01-01

    Accurate measurements of dose in bone are required in order to improve the dosimetry of systemic radiotherapy for osseous metastases. Bone is an integrating dosimeter which records the radiation history of the skeleton. During irradiation, electrons become trapped in the crystalline component of bone mineral (hydroxyapatite). The traps are very stable; at room temperature, emptying of the traps occurs with a half-life of many years. The population of trapped unpaired electrons is proportional to the radiation dose administered to the bone and can be measured in excised bone samples using electron paramagnetic resonance (EPR). EPR spectra of synthetic hydroxyapatite, irradiated with Co-60, were obtained at room temperature and at 77 K. At room temperature, the radiation-induced signal, with a g-value of 2.001 ± 0.001 increased linearly with absorbed dose above a lower threshold of 3 Gy, up to doses of 200 Gy. In contrast with pure hydroxyapatite, EPR spectra of excised human bone showed a broad 'native' signal, due to the organic component of bone, which masks the dosimetrically important signal. This native signal is highly variable from sample to sample and precludes the use of EPR as an absolute dosimetry technique. However, after subtraction of the background signal, irradiated human bone showed a linear response with a lower limit of measurement similar to that of synthetic hydroxyapatite. Bone is an in vivo linear dosimeter which can be exploited to develop accurate estimates of the radiation dose delivered during systemic radiotherapy and teletherapy. However, improved sensitivity of the EPR dosimetry technique is necessary before it can be applied reliably in clinical situations. (author)

  15. Electrical transport and EPR investigations: A comparative study for ...

    Indian Academy of Sciences (India)

    did not have relatively such a high conductivity, skin depth was expected to be more than 1 μm. On the basis of g-values, line width, line shape behaviour and earlier observations by other researchers (Lux 1994;. Luthra et al 2003; Krinichnyi et al 2006), the EPR signal obtained has been assigned due to polarons (Bredas.

  16. Towards EPR (European pressurized reactor)

    International Nuclear Information System (INIS)

    Anon.

    2003-01-01

    According to the French industry minister, it is nonsense continuing delaying the construction of an EPR prototype because France needs it in order to renew timely its park of nuclear reactors. The renewing is expected to begin in 2020 and will be assured with third generation reactors like EPR. A quick launching of the EPR prototype is necessary to have it being in service by 2012, the feedback operating experience that will be accumulated over the 8 years that will follow will be necessary to optimize the industrial version and to have it ready by 2020. The EPR reactor has indisputable assets: modern, safer, more competitive and it will produce less wastes than present nuclear reactors. The construction cost of an EPR prototype is estimated to 3 milliard Euros and the nuclear industry operators propose to finance it completely. The EPR prototype does not jeopardize the ambitious French program about renewable energy sources, France is committed to produce 21% of its electricity from renewable energies by 2010 and 10 milliard Euros will be invested over this period on wind energy. Nuclear energy and alternative energies must be considered as 2 aspects of a diversified energy policy. (A.C.)

  17. Observation of Conducting Structures in Detonation Nanodiamond Powder by Electron Paramagnetic Resonance

    Science.gov (United States)

    Binh, Nguyen Thi Thanh; Dolmatov, V. Yu.; Lapchuk, N. M.

    2018-01-01

    We have used electron paramagnetic resonance (EPR) to study high-purity detonation nanodiamond (DND) powders at room temperature. In recording the EPR signal with g factor 2.00247 and line width 0.890 mT, with automatic frequency control locking the frequency of the microwave generator (klystron) to the frequency of the experimental cavity, we observed a change in the shape of the EPR signal from the DND powder due to formation of an anisotropic electrically conducting structure in the powder. The electrical conductivity of the DND sample is apparent in the Dysonian EPR lineshape (strongly asymmetric signal with g factor 2.00146 and line width 0.281 mT) together with an abrupt shift of the baseline at the time of resonant absorption, and in the decrease in the cavity Q due to nonresonant microwave absorption. The observed effect can be explained by transition of the DND powder from a dielectric state to a state with metallic conductivity, due to spin ordering in a preferred direction.

  18. Incidence and Evaluation of Incidental Abnormal Bone Marrow Signal on Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Gunjan L. Shah

    2014-01-01

    Full Text Available Purpose. The increased use of magnetic resonance imaging (MRI has resulted in reports of incidental abnormal bone marrow (BM signal. Our goal was to determine the evaluation of an incidental abnormal BM signal on MRI and the prevalence of a subsequent oncologic diagnosis. Methods. We conducted a retrospective cohort study of patients over age 18 undergoing MRI between May 2005 and October 2010 at Tufts Medical Center (TMC with follow-up through November 2013. The electronic medical record was queried to determine imaging site, reason for scan, evaluation following radiology report, and final diagnosis. Results. 49,678 MRIs were done with 110 patients meeting inclusion criteria. Twenty two percent underwent some evaluation, most commonly a complete blood count, serum protein electrophoresis, or bone scan. With median follow-up of 41 months, 6% of patients were diagnosed with malignancies including multiple myeloma, non-Hodgkins lymphoma, metastatic non-small cell lung cancer, and metastatic adenocarcinoma. One patient who had not undergone evaluation developed breast cancer 24 months after the MRI. Conclusions. Incidentally noted abnormal or heterogeneous bone marrow signal on MRI was not inconsequential and should prompt further evaluation.

  19. Development of a dosimeter for high doses assessment based on Alanine/EPR

    International Nuclear Information System (INIS)

    Galante, O.L.; Rodrigues, O. Jr.; Campos, L.L.

    2000-01-01

    The increasing use of radiation sources of high activity for industrial and medical applications becomes important the research and the development of detectors and dosimetric methods for quality control of the applied doses. This work presents the current stage of the research at IPEN/CNEN-SP that has as objective the development of a standard dosimetric system for high doses assessment based on the alanine as radiation detector and electron paramagnetic resonance (EPR) as measurement technique. The developed system consists of the cylindrical container built in polyethylene of high density and the detector element based on DL-alanine commercially available. For the detector preparation different binding materials such as paraffin and acetate polyvinyl solution (pva) and also the use of a polyethylene tube of low density with 3.2 mm of external diameter, 2 mm of internal diameter and 30 mm of length were tested to provide the easier preparation method and the most sensitive detector. For the alanine + paraffin detector it was used 80% of alanine and 20% of paraffin, for the alanine + pva detector it was used 70% of alanine and 30% of pva solution, and pure alanine was encapsulated, compacted and sealed in the case of the polyethylene tube. The obtained results with respect to handling, packing and construction easiness showed that the polyethylene tube presents all characteristics to obtain of a good detector element. The validation of the dosimetric system was carried out with gamma radiation of the cobalt-60 with doses in the range between 0.2 Gy to 200 kGy. Type tests such as fading, lowest detection limit, reproducibility and energy dependence of the sign EPR were performed. All measurements were carried out at room temperature using a spectrometer of electron paramagnetic resonance (EPR) Bruker model MXE. Taking into account the results obtained: linearity of the EPR signal between 10 Gy and 50 kGy, reproducibility better than 3%, low fading associated with

  20. CW EPR and 9 GHz EPR imaging investigation of stable paramagnetic species and their antioxidant activities in dry shiitake mushroom (Lentinus edodes).

    Science.gov (United States)

    Nakagawa, Kouichi; Hara, Hideyuki

    2016-01-01

    We investigated the antioxidant activities and locations of stable paramagnetic species in dry (or drying) shiitake mushroom (Lentinus edodes) using continuous wave (CW) electron paramagnetic resonance (EPR) and 9 GHz EPR imaging. CW 9 GHz EPR detected paramagnetic species (peak-to-peak linewidth (ΔHpp) = 0.57 mT) in the mushroom. Two-dimensional imaging of the sharp line using a 9 GHz EPR imager showed that the species were located in the cap and shortened stem portions of the mushroom. No other location of the species was found in the mushroom. However, radical locations and concentrations varied along the cap of the mushroom. The 9 GHz EPR imaging determined the exact location of stable paramagnetic species in the shiitake mushroom. Distilled water extracts of the pigmented cap surface and the inner cap of the mushroom showed similar antioxidant activities that reduced an aqueous solution of 0.1 mM 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl. The present results suggest that the antioxidant activities of the edible mushroom extracts are much weaker than those of ascorbic acid. Thus, CW EPR and EPR imaging revealed the location and distribution of stable paramagnetic species and the antioxidant activities in the shiitake mushroom for the first time.

  1. Investigation of Mn Implanted LiNbO3 applying electron paramagnetic resonance technique

    International Nuclear Information System (INIS)

    Darwish, A.; Ila, D.; Poker, D.B.; Hensley, D.K.

    1997-10-01

    The effect of ion implantation on the LiNbO 3 crystal is studied using electron paramagnetic resonance spectroscopy (EPR). EPR measurements on these crystals were performed as a function of ion species Mn and Fe and fluence at room temperature. Also the effect of the laser illumination on the EPR signal was determined by illuminating the crystal in situ and measuring the decay and growth of the EPR signal. LiNbO 3 :Mn 2+ at a depth of approximately 200 nm was formed by implantation of 2.5 x 10 14 Mncm 2 and 1 x 10 17 Mn/cm 2 at 2 MeV. The implanted samples were compared with bulk doped crystals. It was found that the decay and growth of Mn EPR for the implanted crystal is very small compared with the bulk doped LiNbO 3 :Mn crystal. This was found to be primarily due to the spin concentration on the crystals. On the other, hand the decay time of the high fluence is about 40% slower than the decay of the low fluence implanted crystal

  2. EPR by Areva. EPR the 1600+ MWe reactor

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    This brochure presents the GEN III+ EPR reactor designed by the Areva and Siemens consortium. The EPR reactor is a direct descendent of the well-proven N4 and KONVOI reactors, the most modern reactors in France and Germany. The EPR was designed by teams from KWU/Siemens and Framatome, EDF in France and the major German utilities, working in collaboration with both French and German safety authorities. The EPR integrates the results of decades of R and D programs, in particular those performed by the CEA (French Atomic Energy Commission) and the Karlsruhe Research Center in Germany. The EPR benefits from the experience of several thousand reactor-years of operation of pressurized water reactor technology. This experience has put 87 AREVA PWRs online throughout the world. Innovative Features: - An outer shell covering the reactor building, the spent fuel building and two of the four safeguard buildings provides protection against large commercial or military aircraft crash. - A heavy neutron reflector that surrounds the reactor core lowers uranium consumption. - An axial economizer inside the steam generator allows a high level of steam pressure and therefore high plant efficiency. - A core catcher allows passive collection and retention of the molten core should the reactor vessel fail in the highly unlikely event of a core melt. - A digital technology and a fully computerized control room with an operator friendly man-machine interface improve the reactor protection system.

  3. EPR by Areva. EPR the 1600+ MWe reactor

    International Nuclear Information System (INIS)

    2008-01-01

    This brochure presents the GEN III+ EPR reactor designed by the Areva and Siemens consortium. The EPR reactor is a direct descendent of the well-proven N4 and KONVOI reactors, the most modern reactors in France and Germany. The EPR was designed by teams from KWU/Siemens and Framatome, EDF in France and the major German utilities, working in collaboration with both French and German safety authorities. The EPR integrates the results of decades of R and D programs, in particular those performed by the CEA (French Atomic Energy Commission) and the Karlsruhe Research Center in Germany. The EPR benefits from the experience of several thousand reactor-years of operation of pressurized water reactor technology. This experience has put 87 AREVA PWRs online throughout the world. Innovative Features: - An outer shell covering the reactor building, the spent fuel building and two of the four safeguard buildings provides protection against large commercial or military aircraft crash. - A heavy neutron reflector that surrounds the reactor core lowers uranium consumption. - An axial economizer inside the steam generator allows a high level of steam pressure and therefore high plant efficiency. - A core catcher allows passive collection and retention of the molten core should the reactor vessel fail in the highly unlikely event of a core melt. - A digital technology and a fully computerized control room with an operator friendly man-machine interface improve the reactor protection system

  4. Measurement of rotational dynamics by the simultaneous nonlinear analysis of optical and EPR data.

    OpenAIRE

    Hustedt, E J; Cobb, C E; Beth, A H; Beechem, J M

    1993-01-01

    In the preceding companion article in this issue, an optical dye and a nitroxide radical were combined in a new dual function probe, 5-SLE. In this report, it is demonstrated that time-resolved optical anisotropy and electron paramagnetic resonance (EPR) data can be combined in a single analysis to measure rotational dynamics. Rigid-limit and rotational diffusion models for simulating nitroxide EPR data have been incorporated into a general non-linear least-squares procedure based on the Marq...

  5. Channel noise enhances signal detectability in a model of acoustic neuron through the stochastic resonance paradigm.

    Science.gov (United States)

    Liberti, M; Paffi, A; Maggio, F; De Angelis, A; Apollonio, F; d'Inzeo, G

    2009-01-01

    A number of experimental investigations have evidenced the extraordinary sensitivity of neuronal cells to weak input stimulations, including electromagnetic (EM) fields. Moreover, it has been shown that biological noise, due to random channels gating, acts as a tuning factor in neuronal processing, according to the stochastic resonant (SR) paradigm. In this work the attention is focused on noise arising from the stochastic gating of ionic channels in a model of Ranvier node of acoustic fibers. The small number of channels gives rise to a high noise level, which is able to cause a spike train generation even in the absence of stimulations. A SR behavior has been observed in the model for the detection of sinusoidal signals at frequencies typical of the speech.

  6. Probing two-field open inflation by resonant signals in correlation functions

    Energy Technology Data Exchange (ETDEWEB)

    Battefeld, Thorsten; Niemeyer, Jens C.; Vlaykov, Dimitar, E-mail: tbattefe@astro.physik.uni-goettingen.de, E-mail: niemeyer@astro.physik.uni-goettingen.de, E-mail: vlaykov@astro.physik.uni-goettingen.de [Institute for Astrophysics, University of Goettingen, Friedrich Hund Platz 1, D-37077 Goettingen (Germany)

    2013-05-01

    We derive oscillatory signals in correlation functions in two-field open inflation by means of the in-in formalism; such signatures are caused by resonances between oscillations in the tunnelling field and fluctuations in the inflaton during the curvature dominated, intermediate and subsequent inflationary regime. While amplitudes are model-dependent, we find distinct oscillations in the power and bi-spectrum that can act as a direct probe of the curvature dominated phase and thus, indirectly, strengthen the claim of the string landscape if they were observed. We comment on the prospects of detecting these tell-tale signs in current experiments, which is challenging, but not impossible. At the technical level, we pay special attention to the applicability conditions for truncating fluctuations to the light (inflaton) field and derive upper limits on the oscillation amplitude of the heavy field. A violation of these bounds requires a multi-field analysis at the perturbed level.

  7. A Linearized Large Signal Model of an LCL-Type Resonant Converter

    Directory of Open Access Journals (Sweden)

    Hong-Yu Li

    2015-03-01

    Full Text Available In this work, an LCL-type resonant dc/dc converter with a capacitive output filter is modeled in two stages. In the first high-frequency ac stage, all ac signals are decomposed into two orthogonal vectors in a synchronous rotating d–q frame using multi-frequency modeling. In the dc stage, all dc quantities are represented by their average values with average state-space modeling. A nonlinear two-stage model is then created by means of a non-linear link. By aligning the transformer voltage on the d-axis, the nonlinear link can be eliminated, and the whole converter can be modeled by a single set of linear state-space equations. Furthermore, a feedback control scheme can be formed according to the steady-state solutions. Simulation and experimental results have proven that the resulted model is good for fast simulation and state variable estimation.

  8. Free-radical probes for functional in vivo EPR imaging

    Science.gov (United States)

    Subramanian, S.; Krishna, M. C.

    2007-02-01

    Electron paramagnetic resonance imaging (EPRI) is one of the recent functional imaging modalities that can provide valuable in vivo physiological information on its own merit and aids as a complimentary imaging technique to MRI and PET of tissues especially with respect to in vivo pO II (oxygen partial pressure), redox status and pharmacology. EPR imaging mainly deals with the measurement of distribution and in vivo dynamics and redox changes using special nontoxic paramagnetic spin probes that can be infused into the object of investigation. These spin probes should be characterized by simple EPR spectra, preferably with narrow EPR lines. The line width should be reversibly sensitive to the concentration of in vivo pO II with a linear dependence. Several non-toxic paramagnetic probes, some particulate and insoluble and others water-soluble and infusible (by intravenous or intramuscular injection) have been developed which can be effectively used to quantitatively assess tissue redox status, and tumor hypoxia. Quantitative assessment of the redox status of tissue in vivo is important in investigating oxidative stress, and that of tissue pO II is very important in radiation oncology. Other areas in which EPR imaging and oxymetry may help are in the investigation of tumorangiogenesis, wound healing, oxygenation of tumor tissue by the ingestion of oxygen-rich gases, etc. The correct choice of the spin probe will depend on the modality of measurement (whether by CW or time-domain EPR imaging) and the particular physiology interrogated. Examples of the available spin probes and some EPR imaging applications employing them are presented.

  9. Clearance and Biodistribution of Liposomally Encapsulated Nitroxides: A Model for Targeted Delivery of Electron Paramagnetic Resonance Imaging Probes to Tumors

    Science.gov (United States)

    Burks, Scott R.; Legenzov, Eric A.; Rosen, Gerald M.

    2011-01-01

    Electron paramagnetic resonance (EPR) imaging using nitroxides as molecular probes is potentially a powerful tool for the detection and physiological characterization of micrometastatic lesions. Encapsulating nitroxides in anti-HER2 immunoliposomes at high concentrations to take advantage of the “self-quenching” phenomenon of nitroxides allows generation of robust EPR signals in HER2-overexpressing breast tumor cells with minimal background from indifferent tissues or circulating liposomes. We investigated the in vivo pharmacological properties of nitroxides encapsulated in sterically stabilized liposomes designed for long circulation times. We show that circulation times of nitroxides can be extended from hours to days; this increases the proportion of liposomes in circulation to enhance tumor targeting. Furthermore, nitroxides encapsulated in sterically stabilized anti-HER2 immunoliposomes can be delivered to HER2-overexpressing tumors at micromolar concentrations, which should be imageable by EPR. Lastly, after in vivo administration, liposomally encapsulated nitroxide signal also appears in the liver, spleen, and kidneys. Although these organs are spatially distinct and would not hinder tumor imaging in our model, understanding nitroxide signal retention in these organs is essential for further improvements in EPR imaging contrast between tumors and other tissues. These results lay the foundation to use liposomally delivered nitroxides and EPR imaging to visualize tumor cells in vivo. PMID:21737567

  10. Electron paramagnetic resonance investigation of polycrystalline CaCu3Ti4O12

    International Nuclear Information System (INIS)

    Mozzati, Maria Cristina; Azzoni, Carlo Bruno; Capsoni, Doretta; Bini, Marcella; Massarotti, Vincenzo

    2003-01-01

    Electron paramagnetic resonance (EPR) measurements on pure polycrystalline CaCu 3 Ti 4 O 12 have been performed and are discussed within a crystal-field approach. A symmetric signal centred at g = 2.15 is observed for T>25 K, with no evidence of hyperfine structure. At this temperature an antiferromagnetic transition is observed as confirmed by static magnetization data. Cu defective and 2% doped (V, Cr, Mn, La) samples were also prepared and considered, mainly to understand the nature of the observed paramagnetic centre. Substitutions in the octahedral sites, causing variations of the configuration in CuO 4 -TiO 6 -CuO 4 complexes, change the magnetic and EPR features. To justify the EPR response a strong copper-hole delocalization is suggested

  11. Electron paramagnetic resonance in Cu-doped ZnO

    Science.gov (United States)

    Buchheit, R.; Acosta-Humánez, F.; Almanza, O.

    2016-04-01

    In this work, ZnO and Cu-doped ZnO nanoparticles (Zn1-xCuxO, x = 3%), with a calcination temperature of 500∘C were synthesized using the sol-gel method. The particles were analyzed using atomic absorption spectroscopy (AAS), X-ray diffraction (XRD) and electron paramagnetic resonance (EPR) at X-band, measurement in a temperature range from 90 K to room temperature. AAS confirmed a good correspondence between the experimental doping concentration and the theoretical value. XRD reveals the presence of ZnO phase in hexagonal wurtzite structure and a nanoparticle size for the samples synthesized. EPR spectroscopy shows the presence of point defects in both samples with g-values of g = 1.959 for shallow donors and g = 2.004 for ionized vacancies. It is important when these materials are required have been used as catalysts, as suggested that it is not necessary prepare them at higher temperature. A simulation of the Cu EPR signal using an anisotropic spin Hamiltonian was performed and showed good coincidence with the experimental spectra. It was shown that Cu2+ ions enter interstitial octahedral sites of orthorhombic symmetry in the wurtzite crystal structure. Temperature dependence of the EPR linewidth and signal intensity shows a paramagnetic behavior of the sample in the measurement range. A Néel temperature TN = 78 ± 19 K was determined.

  12. Geographic Variations in the EPR Spectrum of Tooth Enamel

    International Nuclear Information System (INIS)

    Romanyukha, A.A.; Hayes, R.B.; Haskell, E.H.; Kenner, G.H.

    1999-01-01

    The presence of stable radiation-induced radicals in the mineral component of tooth enamel allows use of this material as a biological dosemeter. Estimation of the dose absorbed in tooth enamel can be done by EPR. Generally, for the purpose of dose reconstruction, the EPR spectrum of tooth enamel is interpreted in terms of two main components. The first is a broad background signal often called the native signal centered at a g value of 2.0045. The origin of this signal is not precisely known. The second main component in the tooth enamel spectrum is purely radiation induced and can be used for retrospective dosimetry. Internal structure of the native signal and variations of its amplitude and linewidth were investigated for the samples prepared from modern teeth obtained from different geographic locations (USA and Russia). Possible reasons for the variations observed are discussed as are the potential effects of the variations on the reliability of dose estimation. (author)

  13. An improved approach to identify irradiated spices using electronic nose, FTIR, and EPR spectroscopy.

    Science.gov (United States)

    Sanyal, Bhaskar; Ahn, Jae-Jun; Maeng, Jeong-Hwan; Kyung, Hyun-Kyu; Lim, Ha-Kyeong; Sharma, Arun; Kwon, Joong-Ho

    2014-09-01

    Changes in cumin and chili powder from India resulting from electron-beam irradiation were investigated using 3 analytical methods: electronic nose (E-nose), Fourier transform infrared (FTIR) spectroscopy, and electron paramagnetic resonance (EPR) spectroscopy. The spices had been exposed to 6 to 14 kGy doses recommended for microbial decontamination. E-nose measured a clear difference in flavor patterns of the irradiated spices in comparison with the nonirradiated samples. Principal component analysis further showed a dose-dependent variation. FTIR spectra of the samples showed strong absorption bands at 3425, 3007 to 2854, and 1746 cm(-1). However, both nonirradiated and irradiated spice samples had comparable patterns without any noteworthy changes in functional groups. EPR spectroscopy of the irradiated samples showed a radiation-specific triplet signal at g = 2.006 with a hyper-fine coupling constant of 3 mT confirming the results obtained with the E-nose technique. Thus, E-nose was found to be a potential tool to identify irradiated spices. © 2014 Institute of Food Technologists®

  14. EPR detection of free radicals in UV-irradiated skin: mouse versus human

    International Nuclear Information System (INIS)

    Jurkiewicz, B.A.; Buettner, G.R.

    1996-01-01

    Ultraviolet radiation produces free radicals in Skh-1 mouse skin, contributing to photoaging and carcinogenesis. If a mouse model is a general indicator of free radical processes in human skin photobiology, then radical production observed in mouse and human skin should be directly comparative. In this work we show that UV radiation (λ > 300 nm, 14 μW/cm 2 UVB; 3.5 mW/cm 2 UVA) increases the ascorbate free radical (Asc) electron paramagnetic resonance (EPR) signal in both Skh-1 mouse skin (45%) and human facial skin biopsies (340%). Visible light (λ > 400 nm; 0.23 mW/cm 2 UVA) also increased the Ascsignal in human skin samples (45%) but did not increase baseline mouse Asc, indicating that human skin is more susceptible to free radical formation and that a chromophore for visible light may be present. Using EPR spin-trapping techniques, UV radiation produced spin adducts consistent with trapping lipid alkyl radicals in mouse skin (α-[4-pyridyl 1-oxide]-N-tert-butyl nitrone/alkyl radical adduct; a N = 15.56 G and a H 2.70 G) and lipid alkoxyl radicals in human skin (5,5-dimethylpyrroline -1-oxide/alkoxyl radical adduct; a N = 14.54 G and a H = 16.0 G). Topical application of the iron chelator Desferal to human skin significantly decreases these radicals (∼50%), indicating a role for iron in lipid peroxidation. (Author)

  15. Medical reference dosimetry using EPR measurements of alanine

    DEFF Research Database (Denmark)

    Helt-Hansen, Jakob; Rosendal, F.; Kofoed, I.M.

    2009-01-01

    Background. Electron spin resonance (EPR) is used to determine the absorbed dose of alanine dosimeters exposed to clinical photon beams in a solid-water phantom. Alanine is potentially suitable for medical reference dosimetry, because of its near water equivalence over a wide energy spectrum, low...... methods the proposed algorithm can be applied without normalisation of phase shifts caused by changes in the g-value of the cavity. The study shows that alanine dosimetry is a suitable candidate for medical reference dosimetry especially for quality control applications.......Background. Electron spin resonance (EPR) is used to determine the absorbed dose of alanine dosimeters exposed to clinical photon beams in a solid-water phantom. Alanine is potentially suitable for medical reference dosimetry, because of its near water equivalence over a wide energy spectrum, low...

  16. Mathematical models for the diffusion magnetic resonance signal abnormality in patients with prion diseases

    Directory of Open Access Journals (Sweden)

    Matteo Figini

    2015-01-01

    Full Text Available In clinical practice signal hyperintensity in the cortex and/or in the striatum on magnetic resonance (MR diffusion-weighted images (DWIs is a marker of sporadic Creutzfeldt–Jakob Disease (sCJD. MR diagnostic accuracy is greater than 90%, but the biophysical mechanisms underpinning the signal abnormality are unknown. The aim of this prospective study is to combine an advanced DWI protocol with new mathematical models of the microstructural changes occurring in prion disease patients to investigate the cause of MR signal alterations. This underpins the later development of more sensitive and specific image-based biomarkers. DWI data with a wide a range of echo times and diffusion weightings were acquired in 15 patients with suspected diagnosis of prion disease and in 4 healthy age-matched subjects. Clinical diagnosis of sCJD was made in nine patients, genetic CJD in one, rapidly progressive encephalopathy in three, and Gerstmann–Sträussler–Scheinker syndrome in two. Data were analysed with two bi-compartment models that represent different hypotheses about the histopathological alterations responsible for the DWI signal hyperintensity. A ROI-based analysis was performed in 13 grey matter areas located in affected and apparently unaffected regions from patients and healthy subjects. We provide for the first time non-invasive estimate of the restricted compartment radius, designed to reflect vacuole size, which is a key discriminator of sCJD subtypes. The estimated vacuole size in DWI hyperintense cortex was in the range between 3 and 10 µm that is compatible with neuropathology measurements. In DWI hyperintense grey matter of sCJD patients the two bi-compartment models outperform the classic mono-exponential ADC model. Both new models show that T2 relaxation times significantly increase, fast and slow diffusivities reduce, and the fraction of the compartment with slow/restricted diffusion increases compared to unaffected grey matter of

  17. Anti-HER2 immunoliposomes for selective delivery of electron paramagnetic resonance imaging probes to HER2-overexpressing breast tumor cells

    Science.gov (United States)

    Burks, Scott R.; Macedo, Luciana F.; Barth, Eugene D.; Tkaczuk, Katherine H.; Martin, Stuart S.; Rosen, Gerald M.; Halpern, Howard J.; Brodie, Angela M.

    2014-01-01

    Electron paramagnetic resonance (EPR) imaging is an emerging modality that can detect and localize paramagnetic molecular probes (so-called spin probes) in vivo. We previously demonstrated that nitroxide spin probes can be encapsulated in liposomes at concentrations exceeding 100 mM, at which nitroxides exhibit a concentration-dependent quenching of their EPR signal that is analogous to the self-quenching of fluorescent molecules. Therefore, intact liposomes encapsulating high concentrations of nitroxides exhibit greatly attenuated EPR spectral signals, and endocytosis of such liposomes represents a cell-activated contrast-generating mechanism. After endocytosis, the encapsulated nitroxide is liberated and becomes greatly diluted in the intracellular milieu. This dequenches the nitroxides to generate a robust intracellular EPR signal. It is therefore possible to deliver a high concentration of nitroxides to cells while minimizing background signal from unendocytosed liposomes. We report here that intracellular EPR signal can be selectively generated in a specific cell type by exploiting its expression of Human Epidermal Growth Factor Receptor 2 (HER2). When targeted by anti-HER2 immunoliposomes encapsulating quenched nitroxides, Hc7 cells, which are novel HER2-overexpressing cells derived from the MCF7 breast tumor cell line, endocytose the liposomes copiously, in contrast to the parent MCF7 cells or control CV1 cells, which do not express HER2. HER2-dependent liposomal delivery enables Hc7 cells to accumulate 750 μM nitroxide intracellularly. Through the use of phantom models, we verify that this concentration of nitroxides is more than sufficient for EPR imaging, thus laying the foundation for using EPR imaging to visualize HER2-overexpressing Hc7 tumors in animals. PMID:20066490

  18. Chemistry of artemisinin: an EPR study and nucleobases interaction

    Energy Technology Data Exchange (ETDEWEB)

    Mustafa, Damra Elhaj [Department of Chemistry, Faculty of Education, University of Khartoum, Khartoum (Sudan)

    2000-10-01

    In the present, the radical transformations of artemisinin, a potent antimalarial drug have been examined using EPR and EPR spin trapping techniques. The effect of light on artemisinin has been investigated at 77 K as well as with the use of phenyl butyl nitrone (PBN) spin trapping agent. While no EPR signal was observed at 77 K, intense light irradiation of artemisinin/PBN gave EPR signal characteristic of radical transformation of the PBN. The reactions of artemisinin with iron (II), manganese (II), hemin and ferrocyanide ion have been investigated by spin trapping techniques. Artemisinin/iron (II) formed spin adducts with nitrosobenzene, nitroso-t-butane and PBN. The hypertine splittings of the spin adducts were a{sub N}=1.08 mT/a{sub N}=1.25 mT/a{sub N}=0.09 mT and a{sub N}=1.56 mT/a{sub N}=0.29 mT respectively. PBN trapping of artemether/iron (II) gave similar result to artemisinin/iron (II). These results are indicative of secondary carbon-centered radical formation. While artemisinin/hemin/PBN gave very weak EPR signal, ferrocyanide under the same condition gave no signal. Incubation of artemisinin with RNA at different reaction conditions, including irradiation with light, heat and mild acidic media, revealed no RNA damage when examined by agarose electrophoresis. However, artemisinin/iron (II) caused RNA damage in pH-dependant manner. In contrast, hemin did not show the same effect when it was used instead of iron (II). (Author)

  19. Chemistry of artemisinin: an EPR study and nucleobases interaction

    International Nuclear Information System (INIS)

    Mustafa, Damra Elhaj

    2000-10-01

    In the present, the radical transformations of artemisinin, a potent antimalarial drug have been examined using EPR and EPR spin trapping techniques. The effect of light on artemisinin has been investigated at 77 K as well as with the use of phenyl butyl nitrone (PBN) spin trapping agent. While no EPR signal was observed at 77 K, intense light irradiation of artemisinin/PBN gave EPR signal characteristic of radical transformation of the PBN. The reactions of artemisinin with iron (II), manganese (II), hemin and ferrocyanide ion have been investigated by spin trapping techniques. Artemisinin/iron (II) formed spin adducts with nitrosobenzene, nitroso-t-butane and PBN. The hypertine splittings of the spin adducts were a N =1.08 mT/a N =1.25 mT/a N =0.09 mT and a N =1.56 mT/a N =0.29 mT respectively. PBN trapping of artemether/iron (II) gave similar result to artemisinin/iron (II). These results are indicative of secondary carbon-centered radical formation. While artemisinin/hemin/PBN gave very weak EPR signal, ferrocyanide under the same condition gave no signal. Incubation of artemisinin with RNA at different reaction conditions, including irradiation with light, heat and mild acidic media, revealed no RNA damage when examined by agarose electrophoresis. However, artemisinin/iron (II) caused RNA damage in pH-dependant manner. In contrast, hemin did not show the same effect when it was used instead of iron (II). (Author)

  20. The EPR layout design

    International Nuclear Information System (INIS)

    Mast, U.; Le Carrer, P.Y.

    2001-01-01

    General: The European Pressurised Water Reactor (EPR) is a French - German development for the next generation of Pressurised Water Reactor. The new reactor design is based on the experiences of operation and design of nuclear power plants in both countries. The EPR fulfils enhanced safety standards, higher availability and a longer service life. Utilities aspects: For the Utilities one important requirement is the reduction of personnel exposure during maintenance and in-service inspection. The other significant requirement is of economic nature. The main points influencing costs, which have also impact on the layout, are: outage times, accessibility of the reactor building and the available maintenance and set down areas. The Utilities have also required to load the spent fuel assemblies into the shipping cask from the bottom of the fuel pool, because of the exclusion of the drop of the cask and in order to avoid contamination at the outer cask shell. Layout and safety aspects: All safety relevant Nuclear Island (NI) buildings are designed against design earthquake as well as explosion pressure wave. The protection against Airplane Crash (APC) is realised by civil and layout dispositions. The Reactor Building, the Safeguard Buildings division 2 and 3 and the Fuel Building are protected by concrete structures. The other safety relevant nuclear buildings are protected by geographical separation. Important safety requirements are the further reduction of the probability of severe accidents and the mitigation of such an accident on the plant area. For that, a spreading area for molten corium, a channel from the reactor pit to the spreading area and the In Containment Refuelling Water Storage Tank (IRWST) for flooding and initial cooling of the corium, were implemented in the design of the Reactor Building. Layout results: The following buildings are arranged on a common raft to protect them against design earthquake: Reactor Building (RB), Safeguard Buildings (SAB

  1. Characterization of the oleic acid/iron oxide nanoparticle interface by magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Masur, S., E-mail: sabrina.masur@uni-due.de; Zingsem, B.; Marzi, T.; Meckenstock, R.; Farle, M.

    2016-10-01

    The synthesis of colloidal nanoparticles involves surfactant molecules, which bind to the particle surface and stabilize nanoparticles against aggregation. In many cases these protecting shells also can be used for further functionalization. In this study, we investigated monodisperse single crystalline iron oxide core/shell nanoparticles (Fe{sub x}O{sub y}-NPs) in situ covered with an oleic acid layer which showed two electron spin resonance (ESR) signals. The nanoparticles with the ligands attached were characterized by transmission electron microscopy (TEM) and ferro- and paramagnetic resonance (FMR, EPR). Infrared spectroscopy confirmed the presence of the functional groups and revealed that the oleic acid (OA) is chemisorbed as a carboxylate on the iron oxide and is coordinated symmetrically to the oxide atoms. We show that the EPR signal of the OA ligand molecule can be used as a local probe to determine the temperature changes at the surface of the nanoparticle. - Highlights: • Monodisperse single crystalline iron oxide core/shell nanoparticles (Fe{sub x}O{sub y}-NPs) in situ covered with an oleic acid layer two electron spin resonance (ESR) signals. • We show that the EPR signal of the OA ligand molecule can be used as a local probe to determine the temperature changes at the surface of the nanoparticle.

  2. Accuracy of signal-to-noise ratio measurement method for magnetic resonance images

    International Nuclear Information System (INIS)

    Ogura, Akio; Miyai, Akira; Maeda, Fumie; Fukutake, Hiroyuki; Kikumoto, Rikiya

    2003-01-01

    The signal-to-noise ratio (SNR) of a magnetic resonance image is a common measure of imager performance. However, evaluations for the calculation of the SNR use various methods. A problem with measuring SNR is caused by the distortion of noise statistics in commonly used magnitude images. In this study, measurement accuracy was compared among four methods of evaluating SNR according to the size and position of regions of interest (ROIs). The results indicated that the method that used the difference between two images showed the best agreement with the theoretical value. In the method that used a single image, the SNR calculated by using a small size of ROI showed better agreement with the theoretical value because of noise bias and image artifacts. However, in the method that used the difference between two images, a large size of ROI was better in reducing statistical errors. In the same way, the methods that used air noise and air signal were better when applied to a large ROI. In addition, the image subtraction process used to calculate pixel-by-pixel differences in images may reach zero on a minus pixel value when using an image processor with the MRI system and apparatuses associated with it. A revised equation is presented for this case. It is important to understand the characteristics of each method and to choose a suitable method carefully according to the purpose of the study. (author)

  3. Imaging tooth enamel using zero echo time (ZTE) magnetic resonance imaging

    Science.gov (United States)

    Rychert, Kevin M.; Zhu, Gang; Kmiec, Maciej M.; Nemani, Venkata K.; Williams, Benjamin B.; Flood, Ann B.; Swartz, Harold M.; Gimi, Barjor

    2015-03-01

    In an event where many thousands of people may have been exposed to levels of radiation that are sufficient to cause the acute radiation syndrome, we need technology that can estimate the absorbed dose on an individual basis for triage and meaningful medical decision making. Such dose estimates may be achieved using in vivo electron paramagnetic resonance (EPR) tooth biodosimetry, which measures the number of persistent free radicals that are generated in tooth enamel following irradiation. However, the accuracy of dose estimates may be impacted by individual variations in teeth, especially the amount and distribution of enamel in the inhomogeneous sensitive volume of the resonator used to detect the radicals. In order to study the relationship between interpersonal variations in enamel and EPR-based dose estimates, it is desirable to estimate these parameters nondestructively and without adding radiation to the teeth. Magnetic Resonance Imaging (MRI) is capable of acquiring structural and biochemical information without imparting additional radiation, which may be beneficial for many EPR dosimetry studies. However, the extremely short T2 relaxation time in tooth structures precludes tooth imaging using conventional MRI methods. Therefore, we used zero echo time (ZTE) MRI to image teeth ex vivo to assess enamel volumes and spatial distributions. Using these data in combination with the data on the distribution of the transverse radio frequency magnetic field from electromagnetic simulations, we then can identify possible sources of variations in radiation-induced signals detectable by EPR. Unlike conventional MRI, ZTE applies spatial encoding gradients during the RF excitation pulse, thereby facilitating signal acquisition almost immediately after excitation, minimizing signal loss from short T2 relaxation times. ZTE successfully provided volumetric measures of tooth enamel that may be related to variations that impact EPR dosimetry and facilitate the development

  4. Analysis of Magnetic Resonance Image Signal Fluctuations Acquired During MR-Guided Radiotherapy.

    Science.gov (United States)

    Breto, Adrian L; Padgett, Kyle R; Ford, John C; Kwon, Deukwoo; Chang, Channing; Fuss, Martin; Stoyanova, Radka; Mellon, Eric A

    2018-03-28

    Magnetic resonance-guided radiotherapy (MRgRT) is a new and evolving treatment modality that allows unprecedented visualization of the tumor and surrounding anatomy. MRgRT includes daily 3D magnetic resonance imaging (MRI) for setup and rapidly repeated near real-time MRI scans during treatment for target tracking. One of the more exciting potential benefits of MRgRT is the ability to analyze serial MRIs to monitor treatment response or predict outcomes. A typical radiation treatment (RT) over the span of 10-15 minutes on the MRIdian system (ViewRay, Cleveland, OH) yields thousands of "cine" images, each acquired in 250 ms. This unique data allows for a glimpse in image intensity changes during RT delivery. In this report, we analyze cine images from a single fraction RT of a glioblastoma patient on the ViewRay platform in order to characterize the dynamic signal changes occurring during RT therapy. The individual frames in the cines were saved into DICOM format and read into an MIM image analysis platform (MIM Software, Cleveland, OH) as a time series. The three possible states of the three Cobalt-60 radiation sources-OFF, READY, and ON-were also recorded. An in-house Java plugin for MIM was created in order to perform principal component analysis (PCA) on each of the datasets. The analysis resulted in first PC, related to monotonous signal increase over the course of the treatment fraction. We found several distortion patterns in the data that we postulate result from the perturbation of the magnetic field due to the moving metal parts in the platform while treatment was being administered. The largest variations were detected when all Cobalt-60 sources were OFF. During this phase of the treatment, the gantry and multi-leaf collimators (MLCs) are moving. Conversely, when all Cobalt-60 sources were in the ON position, the image signal fluctuations were minimal, relating to very little mechanical motion. At this phase, the gantry, the MLCs, and sources are fixed

  5. Dosimetry of ionizing radiations by Electron paramagnetic resonance; Dosimetria de radiaciones ionizantes por resonancia paramagnetica electronica

    Energy Technology Data Exchange (ETDEWEB)

    Azorin N, J [UAM-I, Av. San Rafael Atlixco 186, 09340 Mexico D.F. (Mexico)

    2005-07-01

    In this work, some historical and theoretical aspects about the Electron Paramagnetic Resonance (EPR), its characteristics, the resonance detection, the paramagnetic species, the radiation effects on inorganic and organic materials, the diagrams of the instrumentation for the EPR detection, the performance of an EPR spectrometer, the coherence among EPR and dosimetry and, practical applications as well as in the food science there are presented. (Author)

  6. Resonance

    DEFF Research Database (Denmark)

    Petersen, Nils Holger

    2014-01-01

    A chapter in a book about terminology within the field of medievalism: the chapter discusses the resonance of medieval music and ritual in modern (classical) music culture and liturgical practice.......A chapter in a book about terminology within the field of medievalism: the chapter discusses the resonance of medieval music and ritual in modern (classical) music culture and liturgical practice....

  7. Complex on the base of the ISKRA 226.6 personal computer for nuclear quadrupole resonance signal processing

    International Nuclear Information System (INIS)

    Morgunov, V.G.; Kravchenko, Eh.A.

    1988-01-01

    Complex, designed to conduct investigations by means of nuclear quadrupole resonance (NQR) method, which includes radiospectrometer, multichannel spectrum analyzer and ISKRA 226.6 personal computer, is developed. Analog-to-digital converter (ADC) with buffer storage device, interface and microcomputer are used to process NQR-signals. ADS conversion time is no more, than 50 ns, linearity - 1%. Programs on Fourier analysis of NQR-signals and calculation of relaxation times are developed

  8. Magnetic resonance angiography signal intensity as a marker of hemodynamic impairment in intracranial arterial stenosis.

    Directory of Open Access Journals (Sweden)

    Xinyi Leng

    Full Text Available Intracranial arterial stenosis (ICAS is the predominant cause of ischemic stroke and transient ischemic attack in Asia. Change of signal intensities (SI across an ICAS on magnetic resonance angiography (MRA may reflect its hemodynamic severity.In-patients with a symptomatic single ICAS detected on 3D time-of-flight MRA were recruited from 2 hospitals. Baseline and 1-year follow-up data were collected. Signal intensity ratio (SIR [ =  (mean post-stenotic SI -mean background SI/(mean pre-stenotic SI - mean background SI] was evaluated on baseline MRA to represent change of SIs across an ICAS. Acute infarct volume was measured on baseline diffusion-weighted images (DWI. Relationships between SIR and baseline characteristics as well as 1y outcomes were evaluated.Thirty-six subjects (86.1% males, mean age 55.0 were recruited. Overall, mean SIR was 0.84±0.23. Mean SIRs were not significantly different between the 23 (63.9% anatomically severe stenoses and the 13 (36.1% anatomically moderate stenoses (0.80±0.23 versus 0.92±0.21, p = 0.126. SIR was significantly, linearly and negatively correlated to acute infarct volume on DWI (Spearman correlation coefficient -0.471, p = 0.011. Two patients (5.6% had recurrent ischemic strokes at 1y, not related to SIR values.Change of signal intensities across an ICAS on MRA may reflect its hemodynamic and functional severity. Future studies are warranted to further verify the relationships between this index and prognosis of patients with symptomatic ICAS.

  9. Analytic reconstruction of magnetic resonance imaging signal obtained from a periodic encoding field.

    Science.gov (United States)

    Rybicki, F J; Hrovat, M I; Patz, S

    2000-09-01

    We have proposed a two-dimensional PERiodic-Linear (PERL) magnetic encoding field geometry B(x,y) = g(y)y cos(q(x)x) and a magnetic resonance imaging pulse sequence which incorporates two fields to image a two-dimensional spin density: a standard linear gradient in the x dimension, and the PERL field. Because of its periodicity, the PERL field produces a signal where the phase of the two dimensions is functionally different. The x dimension is encoded linearly, but the y dimension appears as the argument of a sinusoidal phase term. Thus, the time-domain signal and image spin density are not related by a two-dimensional Fourier transform. They are related by a one-dimensional Fourier transform in the x dimension and a new Bessel function integral transform (the PERL transform) in the y dimension. The inverse of the PERL transform provides a reconstruction algorithm for the y dimension of the spin density from the signal space. To date, the inverse transform has been computed numerically by a Bessel function expansion over its basis functions. This numerical solution used a finite sum to approximate an infinite summation and thus introduced a truncation error. This work analytically determines the basis functions for the PERL transform and incorporates them into the reconstruction algorithm. The improved algorithm is demonstrated by (1) direct comparison between the numerically and analytically computed basis functions, and (2) reconstruction of a known spin density. The new solution for the basis functions also lends proof of the system function for the PERL transform under specific conditions.

  10. Fluorescence resonance energy transfer (FRET-based subcellular visualization of pathogen-induced host receptor signaling

    Directory of Open Access Journals (Sweden)

    Zimmermann Timo

    2009-11-01

    Full Text Available Abstract Background Bacteria-triggered signaling events in infected host cells are key elements in shaping the host response to pathogens. Within the eukaryotic cell, signaling complexes are spatially organized. However, the investigation of protein-protein interactions triggered by bacterial infection in the cellular context is technically challenging. Here, we provide a methodological approach to exploit fluorescence resonance energy transfer (FRET to visualize pathogen-initiated signaling events in human cells. Results Live-cell microscopy revealed the transient recruitment of the Src family tyrosine kinase Hck upon bacterial engagement of the receptor carcinoembryonic antigen-related cell adhesion molecule 3 (CEACAM3. In cells expressing a CEACAM3 variant lacking the cytoplasmic domain, the Src homology 2 (SH2 domain of Hck (Hck-SH2 was not recruited, even though bacteria still bound to the receptor. FRET measurements on the basis of whole cell lysates revealed intimate binding between Hck-SH2 (using enhanced yellow fluorescent protein (YPet-Hck-SH2 and the tyrosine-phosphorylated enhanced cyan fluorescent protein-labeled cytoplasmic domain of wild-type CEACAM3 (CEACAM3 WT-CyPet and a flow cytometry-based FRET approach verified this association in intact cells. Using confocal microscopy and acceptor photobleaching, FRET between Hck-SH2 and CEACAM3 was localized to the sites of bacteria-host cell contact. Conclusion These data demonstrate not only the intimate binding of the SH2 domain of Hck to the tyrosine-phosphorylated cytoplasmic domain of CEACAM3 in intact cells, but furthermore, FRET measurements allow the subcellular localization of this process during bacterial infection. FRET-based assays are valuable tools to resolve bacteria-induced protein-protein interactions in the context of the intact host cell.

  11. The EPR in a few words: all you need to know about the EPR nuclear reactor

    International Nuclear Information System (INIS)

    2009-01-01

    After a brief presentation of the EPR (European - or Evolutionary - Pressurized Reactor) type nuclear reactor, this paper, proposed by the collective group 'Stop EPR', develops the following points: EPR is as dangerous as other reactors; EPR flouts democracy; France's energy demand do not need the construction of EPRs; the construction of EPRs is not a factor of economical and social development; EPR should not be constructed neither in France nor elsewhere and the present building sites should be cancelled; the EPR will not help France to increase its energy independence and protect itself from oil price increases; choosing the EPR is incompatible with the large investments to be made in energy conservation and renewable energies; the EPR is not a solution to climate change; the VHV line corridor that will starts at Flamanville is not justified and poses risks to the environment and public health

  12. EPR: Some History and Clarification

    Science.gov (United States)

    Fine, Arthur

    2002-04-01

    Locality, separation and entanglement 1930s style. We’ll explore the background to the 1935 paper by Einstein, Podolsky and Rosen, how it was composed, the actual argument of the paper, the principles used, and how the paper was received by Schroedinger, and others.We’ll also look at Bohr’s response: the extent to which Bohr connects with what Einstein was after in EPR and the extent to EPR marks a shift in Bohr’s thinking about the quantum theory.

  13. Some ideas on the EPR

    International Nuclear Information System (INIS)

    2003-01-01

    Facing the debate and controversial between partisans and opponents of the European Pressurized Reactor construction, the SFP energy Group aims to offer some reflexions. In this framework the following topics are discussed: the french nuclear park and its replacement, the energy costs, the nuclear reactors profitability, the generation IV reactors. The paper examines then the EPR technology and its cost to conclude on the advantage of an EPR construction, in the case of an energy policy based on the nuclear. This last point seems to be the real challenge of the problem. (A.L.B.)

  14. EPR in B physics and elsewhere

    International Nuclear Information System (INIS)

    Lipkin, H.J.; Tel Aviv Univ.; Argonne National Lab., IL

    1997-01-01

    The application of Einstein-Podolsky-Rosen correlations in Υ(4s) → B anti B decays to research in CP violation is the first and probably only use of EPR as a technique for research in new physics. Elsewhere highly sophisticated EPR projects question EPR and test its predictions to look for violations of quantum mechanics, hidden variables, Bell''s inequalities, etc

  15. Antioxidant Capacity: Experimental Determination by EPR Spectroscopy and Mathematical Modeling.

    Science.gov (United States)

    Polak, Justyna; Bartoszek, Mariola; Chorążewski, Mirosław

    2015-07-22

    A new method of determining antioxidant capacity based on a mathematical model is presented in this paper. The model was fitted to 1000 data points of electron paramagnetic resonance (EPR) spectroscopy measurements of various food product samples such as tea, wine, juice, and herbs with Trolox equivalent antioxidant capacity (TEAC) values from 20 to 2000 μmol TE/100 mL. The proposed mathematical equation allows for a determination of TEAC of food products based on a single EPR spectroscopy measurement. The model was tested on the basis of 80 EPR spectroscopy measurements of herbs, tea, coffee, and juice samples. The proposed model works for both strong and weak antioxidants (TEAC values from 21 to 2347 μmol TE/100 mL). The determination coefficient between TEAC values obtained experimentally and TEAC values calculated with proposed mathematical equation was found to be R(2) = 0.98. Therefore, the proposed new method of TEAC determination based on a mathematical model is a good alternative to the standard EPR method due to its being fast, accurate, inexpensive, and simple to perform.

  16. Pulse EPR distance measurements to study multimers and multimerisation

    Science.gov (United States)

    Ackermann, Katrin; Bode, Bela E.

    2018-06-01

    Pulse dipolar electron paramagnetic resonance (PD-EPR) has become a powerful tool for structural biology determining distances on the nanometre scale. Recent advances in hardware, methodology, and data analysis have widened the scope to complex biological systems. PD-EPR can be applied to systems containing lowly populated conformers or displaying large intrinsic flexibility, making them all but intractable for cryo-electron microscopy and crystallography. Membrane protein applications are of particular interest due to the intrinsic difficulties for obtaining high-resolution structures of all relevant conformations. Many drug targets involved in critical cell functions are multimeric channels or transporters. Here, common approaches for introducing spin labels for PD-EPR cause the presence of more than two electron spins per multimeric complex. This requires careful experimental design to overcome detrimental multi-spin effects and to secure sufficient distance resolution in presence of multiple distances. In addition to obtaining mere distances, PD-EPR can also provide information on multimerisation degrees allowing to study binding equilibria and to determine dissociation constants.

  17. Advances in magnetic resonance 10

    CERN Document Server

    Waugh, John S

    2013-01-01

    Advances in Magnetic Resonance, Volume 10, presents a variety of contributions to the theory and practice of magnetic resonance. The book contains three chapters that examine superoperators in magnetic resonance; ultrasonically modulated paramagnetic resonance; and the utility of electron paramagnetic resonance (EPR) and electron-nuclear double-resonance (ENDOR) techniques for studying low-frequency modes of atomic fluctuations and their significance for understanding the mechanism of structural phase transitions in solids.

  18. Electron paramagnetic resonance biophysical radiation dosimetry with tooth enamel

    International Nuclear Information System (INIS)

    Khan, Rao F.H.

    2003-01-01

    This thesis deals with the advancements made in the field of Electron Paramagnetic Resonance (EPR) for biophysical dosimetry with tooth enamel for accident, emergency, and retrospective radiation dose reconstruction. A methodology has been developed to measure retrospective radiation exposures in human tooth enamel. This entails novel sample preparation procedures with minimum mechanical treatment to reduce the preparation induced uncertainties, establish optimum measurement conditions inside the EPR cavity, post-process the measured spectrum with functional simulation of dosimetric and other interfering signals, and reconstruct dose. By using this technique, retrospective gamma exposures as low as 80±30 mGy have been successfully deciphered. The notion of dose modifier was introduced in EPR biodosimetry for low dose measurements. It has been demonstrated that by using the modified zero added dose (MZAD) technique for low radiation exposures, doses in 100 mGy ranges can be easily reconstructed in teeth that were previously thought useless for EPR dosimetry. Also, the use of a dose modifier makes robust dose reconstruction possible for higher radiation exposures. The EPR dosimetry technique was also developed for tooth samples extracted from rodents, which represent small tooth sizing. EPR doses in the molars, extracted from the mice irradiated with whole body exposures, were reassessed and shown to be correct within the experimental uncertainty. The sensitivity of human tooth enamel for neutron irradiation, obtained from the 3 MV McMaster K.N. Van de Graaff accelerator, was also studied. For the first time this work has shown that the neutron sensitivity of the tooth enamel is approximately 1/10th of the equivalent gamma sensitivity. Parametric studies for neutron dose rate and neutron energy within the available range of the accelerator, showed no impact on the sensitivity of the tooth enamel. Therefore, tooth enamel can be used as a dosimeter for both neutrons

  19. Transient global amnesia: increased signal intensity in the right hippocampus on diffusion-weighted magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Matsui, M.; Sakamoto, S.; Ishii, K. [Division of Neuroimaging Research, Hyogo Institute for Aging Brain and Cognitive Disorders (Japan); Imamura, T.; Kazui, H.; Mori, E. [Division of Clinical Neurosciences, Hyogo Institute for Aging Brain and Cognitive Disorders, Hyogo (Japan)

    2002-03-01

    We report on a patient with pure transient global amnesia (TGA) whose magnetic resonance imaging (MRI) demonstrated a small region of increased signal intensity in the right hippocampus on diffusion-weighted imaging (DWI). DWI was sensitive and useful for evaluating the early stage of TGA and might help to explain the pathophysiology of TGA. (orig.)

  20. Transient global amnesia: increased signal intensity in the right hippocampus on diffusion-weighted magnetic resonance imaging

    International Nuclear Information System (INIS)

    Matsui, M.; Sakamoto, S.; Ishii, K.; Imamura, T.; Kazui, H.; Mori, E.

    2002-01-01

    We report on a patient with pure transient global amnesia (TGA) whose magnetic resonance imaging (MRI) demonstrated a small region of increased signal intensity in the right hippocampus on diffusion-weighted imaging (DWI). DWI was sensitive and useful for evaluating the early stage of TGA and might help to explain the pathophysiology of TGA. (orig.)

  1. EPR: the nuclear impasse; EPR: l'impasse nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Marillier, F [Association Ecologiste Greenpeace (France)

    2008-07-01

    The questions relative to the climatic change constitute crucial challenges for the next ten years. In this context the author aims to show how the EPR project illustrates the nuclear french ''autism''. He presents and analyzes the international and environmental impacts of this obsolete technology, as a project useless and dangerous. (A.L.B.)

  2. EPR: the nuclear impasse; EPR: l'impasse nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Marillier, F. [Association Ecologiste Greenpeace (France)

    2008-07-01

    The questions relative to the climatic change constitute crucial challenges for the next ten years. In this context the author aims to show how the EPR project illustrates the nuclear french ''autism''. He presents and analyzes the international and environmental impacts of this obsolete technology, as a project useless and dangerous. (A.L.B.)

  3. Four-channel surface coil array for sequential CW-EPR image acquisition

    Science.gov (United States)

    Enomoto, Ayano; Emoto, Miho; Fujii, Hirotada; Hirata, Hiroshi

    2013-09-01

    This article describes a four-channel surface coil array to increase the area of visualization for continuous-wave electron paramagnetic resonance (CW-EPR) imaging. A 776-MHz surface coil array was constructed with four independent surface coil resonators and three kinds of switches. Control circuits for switching the resonators were also built to sequentially perform EPR image acquisition for each resonator. The resonance frequencies of the resonators were shifted using PIN diode switches to decouple the inductively coupled coils. To investigate the area of visualization with the surface coil array, three-dimensional EPR imaging was performed using a glass cell phantom filled with a solution of nitroxyl radicals. The area of visualization obtained with the surface coil array was increased approximately 3.5-fold in comparison to that with a single surface coil resonator. Furthermore, to demonstrate the applicability of this surface coil array to animal imaging, three-dimensional EPR imaging was performed in a living mouse with an exogenously injected nitroxyl radical imaging agent.

  4. Enhanced accuracy of the microwave field strength measurement in a CW-EPR by pulsed modulation technique

    Science.gov (United States)

    Rakvin, B.; Carić, D.; Kveder, M.

    2018-02-01

    The microwave magnetic field strength, B1, in the cavity of a conventional continuous wave electron paramagnetic resonance, CW-EPR, spectrometer was measured by employing modulation sidebands, MS, in the EPR spectrum. MS spectrum in CW-EPR is produced by applying the modulation frequency, ωrf, which exceeds the linewidth, δB, given in frequency units. An amplitude-modulated CW-EPR, AM-CW-EPR, was selected as detection method. Theoretical description of AM-CW-EPR spectrum was modified by adding Bloch-Siegert-like shift obtained by taking into account the cumulative effect of the non-resonant interactions between the driving fields and the spin system. This approach enables to enhance the precision of B1 measurement. In order to increase the sensitivity of the method when saturation effects, due to higher intensity of B1, decrease the resolution of AM-CW-EPR spectrum, detection at the second harmonic of CW-EPR has been employed.

  5. Enhanced accuracy of the microwave field strength measurement in a CW-EPR by pulsed modulation technique.

    Science.gov (United States)

    Rakvin, B; Carić, D; Kveder, M

    2018-02-01

    The microwave magnetic field strength, B 1 , in the cavity of a conventional continuous wave electron paramagnetic resonance, CW-EPR, spectrometer was measured by employing modulation sidebands, MS, in the EPR spectrum. MS spectrum in CW-EPR is produced by applying the modulation frequency, ω rf , which exceeds the linewidth, δB, given in frequency units. An amplitude-modulated CW-EPR, AM-CW-EPR, was selected as detection method. Theoretical description of AM-CW-EPR spectrum was modified by adding Bloch-Siegert-like shift obtained by taking into account the cumulative effect of the non-resonant interactions between the driving fields and the spin system. This approach enables to enhance the precision of B 1 measurement. In order to increase the sensitivity of the method when saturation effects, due to higher intensity of B 1 , decrease the resolution of AM-CW-EPR spectrum, detection at the second harmonic of CW-EPR has been employed. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Electronic Structure of ZnO Quantum Dots studied by High-frequency EPR, ESE, ENDOR and ODMR Spectroscopy

    NARCIS (Netherlands)

    Baranov, P.G.; Romanov, N.G.; Bundakova, A.P.; de Mello-Donega, Celso; Schmidt, J.

    2016-01-01

    High-frequency electron paramagnetic resonance (EPR), electron spin echo (ESE), electron-nuclear double resonance (ENDOR) and optically detected magnetic resonance (ODMR) were applied for the investigation of the electronic properties of ZnO colloidal quantum dots (QDs) which consist of a ZnO

  7. THE VIEW FROM THE TRENCHES: PART 2–TECHNICAL CONSIDERATIONS FOR EPR SCREENING

    Science.gov (United States)

    Nicolalde, Roberto J.; Gougelet, Robert M.; Rea, Michael; Williams, Benjamin B.; Dong, Ruhong; Kmiec, Maciej M.; Lesniewski, Piotr N.; Swartz, Harold M.

    2014-01-01

    There is growing awareness of the need for methodologies that can be used retrospectively to provide the biodosimetry needed to carry out screening and triage immediately after an event in which large numbers of people have potentially received clinically significant doses of ionizing radiation. The general approach to developing such methodologies has been a technology centric one, often ignoring the system integrations considerations that are key to their effective use. In this study an integrative approach for the evaluation and development of a physical biodosimetry technology was applied based on in vivo electron paramagnetic resonance (EPR) dosimetry. The EPR measurements are based on physical changes in tissues whose magnitudes are not affected by the factors that can confound biologically-based assessments. In this study the use of a pilot simulation exercise to evaluate an experimental EPR system and gather stakeholders’ feedback early on in the development process is described. The exercise involved: ten non-irradiated participants, representatives from a local fire department; Department of Homeland Security certified exercise evaluators, EPR experts, physicians; and a human factors engineer. Stakeholders were in agreement that the EPR technology in its current state of development could be deployed for the screening of mass casualties. Furthermore, stakeholders’ recommendations will be prioritized and incorporated in future developments of the EPR technique. While the results of this exercise were aimed specifically at providing feedback for the development of EPR dosimetry for screening mass casualties, the methods and lessons learned are likely to be applicable to other biodosimetric methods. PMID:20065674

  8. Reporting of quantitative oxygen mapping in EPR imaging

    Science.gov (United States)

    Subramanian, Sankaran; Devasahayam, Nallathamby; McMillan, Alan; Matsumoto, Shingo; Munasinghe, Jeeva P.; Saito, Keita; Mitchell, James B.; Chandramouli, Gadisetti V. R.; Krishna, Murali C.

    2012-01-01

    Oxygen maps derived from electron paramagnetic resonance spectral-spatial imaging (EPRI) are based upon the relaxivity of molecular oxygen with paramagnetic spin probes. This technique can be combined with MRI to facilitate mapping of pO 2 values in specific anatomic locations with high precision. The co-registration procedure, which matches the physical and digital dimensions of EPR and MR images, may present the pO 2 map at the higher MRI resolution, exaggerating the spatial resolution of oxygen, making it difficult to precisely distinguish hypoxic regions from normoxic regions. The latter distinction is critical in monitoring the treatment of cancer by radiation and chemotherapy, since it is well-established that hypoxic regions are three or four times more resistant to treatment compared to normoxic regions. The aim of this article is to describe pO 2 maps based on the intrinsic resolution of EPRI. A spectral parameter that affects the intrinsic spatial resolution of EPRI is the full width at half maximum (FWHM) height of the gradient-free EPR absorption line in frequency-encoded imaging. In single point imaging too, the transverse relaxation times (T2∗) limit the resolution since the signal decays by exp(-tp/T2∗) where the delay time after excitation pulse, t p, is related to the resolution. Although the spin densities of two point objects may be resolved at this separation, it is inadequate to evaluate quantitative changes of pO 2 levels since the linewidths are proportionately affected by pO 2. A spatial separation of at least twice this resolution is necessary to correctly identify a change in pO 2 level. In addition, the pO 2 values are blurred by uncertainties arising from spectral dimensions. Blurring due to noise and low resolution modulates the pO 2 levels at the boundaries of hypoxic and normoxic regions resulting in higher apparent pO 2 levels in hypoxic regions. Therefore, specification of intrinsic resolution and pO 2 uncertainties are

  9. Study for applying microwave power saturation technique on fingernail/EPR dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Park, Byeong Ryong; Choi, Hoon; Nam, Hyun Ill; Lee, Byung Ill [Radiation Health Research Institute, Seoul (Korea, Republic of)

    2012-10-15

    There is growing recognition worldwide of the need to develop effective uses of dosimetry methods to assess unexpected exposure to radiation in the event of a large scale event. One of physically based dosimetry methods electron paramagnetic resonance (EPR) spectroscopy has been applied to perform retrospective radiation dosimetry using extracted samples of tooth enamel and nail(fingernail and toenail), following radiation accidents and exposures resulting from weapon use, testing, and production. Human fingernails are composed largely of a keratin, which consists of {alpha} helical peptide chains that are twisted into a left handed coil and strengthened by disulphide cross links. Ionizing radiation generates free radicals in the keratin matrix, and these radicals are stable over a relatively long period (days to weeks). Most importantly, the number of radicals is proportional to the magnitude of the dose over a wide dose range (0{approx}30 Gy). Also, dose can be estimated at four different locations on the human body, providing information on the homogeneity of the radiation exposure. And The results from EPR nail dosimetry are immediately available However, relatively large background signal (BKS) converted from mechanically induced signal (MIS) after cutting process of fingernail, normally overlaps with the radiation induced signal (RIS), make it difficult to estimate accurate dose accidental exposure. Therefore, estimation method using dose response curve was difficult to ensure reliability below 5 Gy. In this study, In order to overcome these disadvantages, we measured the reactions of RIS and BKS (MIS) according to the change of Microwave power level, and researched about the applicability of the Power saturation technique at low dose.

  10. EPR investigation of some desiccated Ascomycota and Basidiomycota gamma-irradiated mushrooms

    Energy Technology Data Exchange (ETDEWEB)

    Bercu, V., E-mail: vbercu@gmail.co [University of Bucharest, Department of Atomic and Nuclear Physics, P.O. Box MG-11, 077125 Magurele (Ilfov) (Romania); Negut, C.D., E-mail: dnegut@nipne.r [University of Bucharest, Department of Atomic and Nuclear Physics, P.O. Box MG-11, 077125 Magurele (Ilfov) (Romania); Horia Hulubei National Institute for Physics and Nuclear Engineering, P.O. Box MG-6, 077125 Magurele (Ilfov) (Romania); Duliu, O.G., E-mail: duliu@b.astral.r [University of Bucharest, Department of Atomic and Nuclear Physics, P.O. Box MG-11, 077125 Magurele (Ilfov) (Romania)

    2010-12-15

    The suitability of the EPR spectroscopy for detection of {gamma}-irradiation in five species of dried mushroom, currently used in gastronomy: yellow morel-Morchella esculenta, (L.) Pers. (Phylum Ascomycota), button mushroom-Agaricus bisporus (J.E.Lange), Agaricus haemorrhoidarius Fr., golden chantarelle-Cantharellus cibarius Fr., as well as oyster mushroom-Pleurotus ostreatus (Jacq. ex Fr.) (Phylum Basidiomycota) is presented and discussed. Although after irradiation at doses up to 11 kGy, all specimens presented well defined EPR spectra, only A. bisporus EPR signal was enough stable to make detection possible after 18 months.

  11. EPR investigation of some desiccated Ascomycota and Basidiomycota gamma-irradiated mushrooms

    Science.gov (United States)

    Bercu, V.; Negut, C. D.; Duliu, O. G.

    2010-12-01

    The suitability of the EPR spectroscopy for detection of γ-irradiation in five species of dried mushroom, currently used in gastronomy: yellow morel— Morchella esculenta, (L.) Pers. (Phylum Ascomycota), button mushroom— Agaricus bisporus (J.E.Lange), Agaricus haemorrhoidarius Fr., golden chantarelle— Cantharellus cibarius Fr., as well as oyster mushroom— Pleurotus ostreatus (Jacq. ex Fr.) (Phylum Basidiomycota) is presented and discussed. Although after irradiation at doses up to 11 kGy, all specimens presented well defined EPR spectra, only A. bisporus EPR signal was enough stable to make detection possible after 18 months.

  12. EPR investigation of some desiccated Ascomycota and Basidiomycota gamma-irradiated mushrooms

    International Nuclear Information System (INIS)

    Bercu, V.; Negut, C.D.; Duliu, O.G.

    2010-01-01

    The suitability of the EPR spectroscopy for detection of γ-irradiation in five species of dried mushroom, currently used in gastronomy: yellow morel-Morchella esculenta, (L.) Pers. (Phylum Ascomycota), button mushroom-Agaricus bisporus (J.E.Lange), Agaricus haemorrhoidarius Fr., golden chantarelle-Cantharellus cibarius Fr., as well as oyster mushroom-Pleurotus ostreatus (Jacq. ex Fr.) (Phylum Basidiomycota) is presented and discussed. Although after irradiation at doses up to 11 kGy, all specimens presented well defined EPR spectra, only A. bisporus EPR signal was enough stable to make detection possible after 18 months.

  13. Acute swelling of the limbs: magnetic resonance pictorial review of fascial and muscle signal changes

    Energy Technology Data Exchange (ETDEWEB)

    Revelon, Geraldine [Department of Radiology, Centre Hospitalo-Universitaire Henri Mondor, 51 Avenue du Marechal De Lattre De Tassigny, 94000 Creteil (France); Rahmouni, Alain [Department of Radiology, Centre Hospitalo-Universitaire Henri Mondor, 51 Avenue du Marechal De Lattre De Tassigny, 94000 Creteil (France); Jazaerli, Nedal [Department of Radiology, Centre Hospitalo-Universitaire Henri Mondor, 51 Avenue du Marechal De Lattre De Tassigny, 94000 Creteil (France); Godeau, Bertrand [Department of Internal Medicine, Centre Hospitalo-Universitaire Henri Mondor, 51 Avenue du Marechal De Lattre De Tassigny, 94000 Creteil (France); Chosidow, Olivier [Department of Dermatology, Centre Hospitalo-Universitaire Henri Mondor, 51 Avenue du Marechal De Lattre De Tassigny, 94000 Creteil (France); Authier, Jerome [Department of Pathology, Centre Hospitalo-Universitaire Henri Mondor, 51 Avenue du Marechal De Lattre De Tassigny, 94000 Creteil (France); Mathieu, Didier [Department of Radiology, Centre Hospitalo-Universitaire Henri Mondor, 51 Avenue du Marechal De Lattre De Tassigny, 94000 Creteil (France); Roujeau, Jean-Claude [Department of Dermatology, Centre Hospitalo-Universitaire Henri Mondor, 51 Avenue du Marechal De Lattre De Tassigny, 94000 Creteil (France); Vasile, Norbert [Department of Radiology, Centre Hospitalo-Universitaire Henri Mondor, 51 Avenue du Marechal De Lattre De Tassigny, 94000 Creteil (France)

    1999-04-01

    Objective: This pictorial review analyzes the magnetic resonance (MR) fascial/muscular changes in 69 patients referred as emergencies with acute swelling of the limbs (ASL) from various causes. Methods and material: A prospective MR imaging (MRI) study of 69 patients referred as emergencies for ASL was performed. Our population consisted of 45 patients with skin and soft-tissue infections (cellulitis and necrotizing fasciitis, and pyomyositis), six patients with soft-tissue inflammatory diseases (dermatomyositis, graft-versus-host disease), 11 patients with acute deep venous thrombosis, three patients with rhabdomyolysis, one patient with acute denervation and three other patients with rare diseases. Hematomas, tumorous or infectious bone involvement and soft-tissue tumors were excluded. All studies included spin echo T1-weighted images and spin echo T2-weighted images. Gadolinium-enhanced spin echo T1-weighted images were obtained when an abscess was suspected on T2-weighted images. Selective fat-saturated T1- and T2-weighted sequences were also used. MRI analysis was performed to obtain a compartmentalized anatomical approach according to the location of signal abnormalities in subcutaneous fat, superficial and deep fascia and muscle. Results: In all patients with ASL, MRI demonstrated soft-tissue abnormalities involving subcutaneous fat, superficial fascia, deep fascia, or muscle. Although MR findings were non-specific, MRI appears sensitive for detecting subtle fascial and muscle signal changes. Conclusions: In skin and soft-tissue infections, MRI can be helpful for therapeutic management by determining the depth of soft-tissue involvement, particularly within fasciae and muscles, which is partly related to the severity of cellulitis with severe systemic manifestations. MRI can also aid the surgeon in diagnosing abscesses. In inflammatory diseases, MRI can determine the best site for biopsy and also monitor therapeutic response.

  14. EPR correlations and EPW distributions

    International Nuclear Information System (INIS)

    Bell, J.S.

    1995-01-01

    In the case of two free spin-zero particles, the wave function originally considered by Einstein, Podolsky and Rosen to exemplify EPR correlations has a non-negative Wigner distribution. This distribution gives an explicitly local account of the correlations. For an irreducible non-locality, more elaborate wave functions are required, with Wigner distributions which are not non-negative. (author)

  15. EPR measurements in irradiated polyacetylene

    International Nuclear Information System (INIS)

    Hola, O.; Foeldesova, M.

    1990-01-01

    The influence of γ-irradiation on the paramagnetic properties of polyacetylene, and the dependence of the EPR spectra on the radiation dose in samples of irradiated polyacetylene were studied. The measurements show that no essential changes of the spin mobility occurred during irradiation. (author) 3 refs.; 2 figs

  16. EPR study of human hair

    Czech Academy of Sciences Publication Activity Database

    Křížová, Jana; Káfuňková, Eva; Stopka, Pavel

    2005-01-01

    Roč. 99, č. 14 (2005), s. 217-218 ISSN 0009-2770 R&D Projects: GA MZd(CZ) NL7567; GA MZd(CZ) NB7377 Institutional research plan: CEZ:AV0Z40320502 Keywords : EPR Subject RIV: CA - Inorganic Chemistry Impact factor: 0.445, year: 2005

  17. Time-resolved EPR study of singlet oxygen in the gas phase.

    Science.gov (United States)

    Ruzzi, Marco; Sartori, Elena; Moscatelli, Alberto; Khudyakov, Igor V; Turro, Nicholas J

    2013-06-27

    X-band EPR spectra of singlet O2((1)Δg) and triplet O2((3)Σg(-)) were observed in the gas phase under low molecular-oxygen pressures PO2 = 0.175-0.625 Torr, T = 293-323 K. O2((1)Δg) was produced by quenching of photogenerated triplet sensitizers naphthalene C8H10, perdeuterated naphthalene, and perfluoronaphthalene in the gas phase. The EPR spectrum of O2((1)Δg) was also observed under microwave discharge. Integrated intensities and line widths of individual components of the EPR spectrum of O2((3)Σg(-)) were used as internal standards for estimating the concentration of O2 species and PO2 in the EPR cavity. Time-resolved (TR) EPR experiments of C8H10 were the main focus of this Article. Pulsed irradiation of C8H10 in the presence of O2((3)Σg(-)) allowed us to determine the kinetics of formation and decay for each of the four components of the O2((1)Δg) EPR signal, which lasted for only a few seconds. We found that the kinetics of EPR-component decay fit nicely to a biexponential kinetics law. The TR EPR 2D spectrum of the third component of the O2((1)Δg) EPR spectrum was examined in experiments using C8H10. This spectrum vividly presents the time evolution of an EPR component. The largest EPR signal and the longest lifetime of O2((1)Δg), τ = 0.4 s, were observed at medium pressure PO2 = 0.4 Torr, T = 293 K. The mechanism of O2((1)Δg) decay in the presence of photosensitizers is discussed. EPR spectra of O2((1)Δg) evidence that the spin-rotational states of O2((1)Δg) are populated according to Boltzmann distribution in the studied time range of 10-100 ms. We believe that this is the first report dealing with the dependence of O2((1)Δg) EPR line width on PO2 and T.

  18. Photoexcitation electron paramagnetic resonance studies on nickel-related defects in diamond

    CERN Document Server

    Pereira, R N; Neves, A J; Sobolev, N A

    2003-01-01

    Measurements of the electron paramagnetic resonance (EPR) upon photoexcitation are reported on Ni defects in diamonds grown with Ni-containing solvent/catalysts. The temperature dependence of the W8 EPR spectrum photoquenching shows that the relaxation of substitutional Ni sub s sup - upon electron ionization is very small, corroborating the interpretation that the previously reported photoinduced effects with thresholds at 2.5 and 3.0 eV correspond to two complementary photoionization transitions involving Ni sub s. Photoinduced behaviour of the NIRIM1 EPR centre favours the interstitial Ni sub i sup + model for this defect and suggests that the Ni sub i sup 0 sup / sup + level is located at 1.98 +- 0.03 eV below the conduction band. In N-doped diamond, Ni sub i is more likely to appear in the neutral state, undetectable by EPR, whereas at substitutional sites Ni sub s sup - is revealed. Observation of a strong AB2 EPR signal photoquenching and simultaneous detection of different spectral dependencies of the...

  19. Resonance-like QGP signals displayed in general charge balance functions

    International Nuclear Information System (INIS)

    Pan, Yinghua; Zhang, Weining

    2014-01-01

    Experiment and lattice simulation show that the quark–gluon plasma (QGP) system displays strong interaction between constituents at temperature a few times the critical temperature T c . This QGP picture can be explained by assuming that the QGP matter above T c is rich in different kinds of bound states, namely resonance-like QGP (RQGP). The chemical composition of the QGP system produced in ultra-relativistic heavy-ion collisions can be investigated through a general charge balance function which describes two-wave quark production during expansion afterward. In this paper, we investigate the signals of this RQGP through general charge balance functions. We find that the quasiparticles in QGP contribute a little to the balance functions because of their heavy masses. The balance functions reduce to the situation discussed before where only one-wave charge production is involved if only the quasiparticles in QGP are considered. However, the baryonic bound states in QGP have a significant effect on the balance function B pp ¯(Δy), causing a dip in the pp¯ balance function at small Δy. The existence of the binary and baryonic bound states amplify the negative dip of the balance function B pK - (Δy) at Δy ∽ 1. (author)

  20. Signal intensity of lanthanum carbonate on magnetic resonance images: phantom study.

    Science.gov (United States)

    Nakamura, Shinichi; Awai, Kazuo; Komi, Masanori; Morita, Kosuke; Namimoto, Tomohiro; Yanaga, Yumi; Utsunomiya, Daisuke; Date, Shuji; Yamashita, Yasuyuki

    2011-06-01

    Lanthanum carbonate (LC) is used to treat hyperphosphatemia. The purpose of this study was to investigate the signal intensity (SI) of LC on magnetic resonance imaging (MRI) scans of phantoms. LC tablets were thoroughly ground and mixed with distilled water or edible agar (0.05, 0.25, 0.5, and 2.5 mg/ml) in plastic bottles. Four intact tablets were placed in plastic bottles that did or did not contain distilled water or agar. Two radiologists consensually evaluated T1- and T2-weighted images (WIs) obtained with 1.5- and 3.0-T MRI systems for the SI of unground and ground tablets. On T1- and T2WI, the SIs of the LC suspensions and the solvents alone were similar; the SIs of unground tablets alone and of the air were also similar. Unground tablets in phantoms filled with solvent exhibited lower SI than the solvent. Ground tablets in suspension were not visualized on MRI or computed tomography. These results remained unchanged regardless of differences in magnetic field strength or the solvent used. Ground LC had no contrast enhancement effect on T1WI; on T2WI it did not affect the SI of the solvent. Unground LC tablets may be visualized as a "filling defect" on MRI.

  1. Signal intensity of lanthanum carbonate on magnetic resonance images. Phantom study

    International Nuclear Information System (INIS)

    Nakamura, Shinichi; Awai, Kazuo; Namimoto, Tomohiro; Yanaga, Yumi; Utsunomiya, Daisuke; Date, Shuji; Yamashita, Yasuyuki; Komi, Masanori; Morita, Kosuke

    2011-01-01

    Lanthanum carbonate (LC) is used to treat hyperphosphatemia. The purpose of this study was to investigate the signal intensity (SI) of LC on magnetic resonance imaging (MRI) scans of phantoms. LC tablets were thoroughly ground and mixed with distilled water or edible agar (0.05, 0.25, 0.5, and 2.5 mg/ml) in plastic bottles. Four intact tablets were placed in plastic bottles that did or did not contain distilled water or agar. Two radiologists consensually evaluated T1- and T2-weighted images (WIs) obtained with 1.5- and 3.0-T MRI systems for the SI of unground and ground tablets. On T1- and T2WI, the SIs of the LC suspensions and the solvents alone were similar; the SIs of unground tablets alone and of the air were also similar. Unground tablets in phantoms filled with solvent exhibited lower SI than the solvent. Ground tablets in suspension were not visualized on MRI or computed tomography. These results remained unchanged regardless of differences in magnetic field strength or the solvent used. Ground LC had no contrast enhancement effect on T1WI; on T2WI it did not affect the SI of the solvent. Unground LC tablets may be visualized as a 'filling defect' on MRI. (author)

  2. Skew Projection of Echo-Detected EPR Spectra for Increased Sensitivity and Resolution

    Science.gov (United States)

    Bowman, Michael K.; Krzyaniak, Matthew D.; Cruce, Alex A.; Weber, Ralph T.

    2013-01-01

    The measurement of EPR spectra during pulsed EPR experiments is commonly accomplished by recording the integral of the electron spin echo as the applied magnetic field is stepped through the spectrum. This approach to echo-detected EPR spectral measurement (ED-EPR) limits sensitivity and spectral resolution and can cause gross distortions in the resulting spectra because some of the information present in the electron spin echo is discarded in such measurements. However, Fourier Transformation of echo shapes measured at a series of magnetic field values followed by skew projection onto either a magnetic field or resonance frequency axis can increase both spectral resolution and sensitivity without the need to trade one against the other. Examples of skew-projected spectra with single crystals, glasses and powders show resolution improvements as large as a factor of seven with sensitivity increases of as much as a factor of five. PMID:23644351

  3. EPR investigations of silicon carbide nanoparticles functionalized by acid doped polyaniline

    Science.gov (United States)

    Karray, Fekri; Kassiba, Abdelhadi

    2012-06-01

    Nanocomposites (SiC-PANI) based on silicon carbide nanoparticles (SiC) encapsulated in conducting polyaniline (PANI) are synthesized by direct polymerization of PANI on the nanoparticle surfaces. The conductivity of PANI and the nanocomposites was modulated by several doping levels of camphor sulfonic acid (CSA). Electron paramagnetic resonance (EPR) investigations were carried out on representative SiC-PANI samples over the temperature range [100-300 K]. The features of the EPR spectra were analyzed taking into account the paramagnetic species such as polarons with spin S=1/2 involved in two main environments realized in the composites as well as their thermal activation. A critical temperature range 200-225 K was revealed through crossover changes in the thermal behavior of the EPR spectral parameters. Insights on the electronic transport properties and their thermal evolutions were inferred from polarons species probed by EPR and the electrical conductivity in doped nanocomposites.

  4. EPR investigations of silicon carbide nanoparticles functionalized by acid doped polyaniline

    Energy Technology Data Exchange (ETDEWEB)

    Karray, Fekri [Laboratoire des materiaux Ceramiques Composites et Polymeres, Faculte des Sciences de Sfax, BP 802, 3018 Sfax (Tunisia); Kassiba, Abdelhadi, E-mail: kassiba@univ-lemans.fr [Institute of Molecules and Materials of Le Mans (I3M), UMR-CNRS 6283, Universite du Maine, 72085 Le Mans (France)

    2012-06-15

    Nanocomposites (SiC-PANI) based on silicon carbide nanoparticles (SiC) encapsulated in conducting polyaniline (PANI) are synthesized by direct polymerization of PANI on the nanoparticle surfaces. The conductivity of PANI and the nanocomposites was modulated by several doping levels of camphor sulfonic acid (CSA). Electron paramagnetic resonance (EPR) investigations were carried out on representative SiC-PANI samples over the temperature range [100-300 K]. The features of the EPR spectra were analyzed taking into account the paramagnetic species such as polarons with spin S=1/2 involved in two main environments realized in the composites as well as their thermal activation. A critical temperature range 200-225 K was revealed through crossover changes in the thermal behavior of the EPR spectral parameters. Insights on the electronic transport properties and their thermal evolutions were inferred from polarons species probed by EPR and the electrical conductivity in doped nanocomposites.

  5. EPR, mu-Raman and Crystallographic properties of spinel type ZnCr{sub 2}O{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Vargas-Hernandez, C; Almanza, O; Jurado, J F, E-mail: cvargash@unal.edu.c [Universidad Nacional de Colombia, Manizales-Colombia Laboratorio de Propiedades Opticas de Materiales-POM (Colombia)

    2009-05-01

    Structural, vibrational and electron paramagnetic resonance (EPR) analysis for compound ZnCr{sub 2}O{sub 4} are shown in this work. These types of materials are used in technological applications as humidity sensors and piezoelectric devices. The compound was obtained by mean of solid state reaction technique from binary precursors ZnO and Cr{sub 2}O{sub 3}. After three thermal treatments the sample structure was monitoring using X ray diffraction (XRD), the spinel cubic phase has been indexed within O{sup 7}{sub h}(Fd3m) spatial group. It is observed normal spinel phase. Micro-Raman analysis revealed bands for normal vibration modes of Zn and Cr atoms in tetrahedral and octahedral environments formed by oxygen atoms at approximately 400 and 900 cm{sup -1}, respectively. Bands around 941 cm{sup -1} are associated possibly to vacancies in the tetrahedral and octahedral sites due to interaction between Zn and Cr ions. EPR signal from 150 to 300 K isothermals indicates a transition between inverse spinel to normal spinel type in a central field around 3350 G. A signal at approximately 3400 G corresponding to the C'r{sup +3} in tetrahedral sites is observed near the central field.

  6. Use of EPR to Solve Biochemical Problems

    Science.gov (United States)

    Sahu, Indra D.; McCarrick, Robert M.; Lorigan, Gary A.

    2013-01-01

    EPR spectroscopy is a very powerful biophysical tool that can provide valuable structural and dynamic information on a wide variety of biological systems. The intent of this review is to provide a general overview for biochemists and biological researchers on the most commonly used EPR methods and how these techniques can be used to answer important biological questions. The topics discussed could easily fill one or more textbooks; thus, we present a brief background on several important biological EPR techniques and an overview of several interesting studies that have successfully used EPR to solve pertinent biological problems. The review consists of the following sections: an introduction to EPR techniques, spin labeling methods, and studies of naturally occurring organic radicals and EPR active transition metal systems which are presented as a series of case studies in which EPR spectroscopy has been used to greatly further our understanding of several important biological systems. PMID:23961941

  7. In Vivo pO2 Imaging of Tumors: Oxymetry with Very Low-Frequency Electron Paramagnetic Resonance.

    Science.gov (United States)

    Epel, Boris; Halpern, Howard J

    2015-01-01

    For over a century, it has been known that tumor hypoxia, regions of a tumor with low levels of oxygenation, are important contributors to tumor resistance to radiation therapy and failure of radiation treatment of cancer. Recently, using novel pulse electron paramagnetic resonance (EPR) oxygen imaging, near absolute images of the partial pressure of oxygen (pO2) in tumors of living animals have been obtained. We discuss here the means by which EPR signals can be obtained in living tissues and tumors. We review development of EPR methods to image the pO2 in tumors and the potential for the pO2 image acquisition in human subjects. © 2015 Elsevier Inc. All rights reserved.

  8. In vivo pO2 imaging of tumors: Oxymetry with very low frequency Electron Paramagnetic Resonance

    Science.gov (United States)

    Epel, Boris; Halpern, Howard J.

    2016-01-01

    For over a century it has been known that tumor hypoxia, regions of a tumor with low levels of oxygenation, are important contributors to tumor resistance to radiation therapy and failure of radiation treatment of cancer. Recently, using novel pulse electron paramagnetic resonance (EPR) oxygen imaging, near absolute images of the partial pressure of oxygen (pO2) in tumors of living animals have been obtained. We discuss here the means by which EPR signals can be obtained in living tissues and tumors. We review development of EPR methods to image the pO2 in tumors and the potential for the pO2 image acquisition in human subjects. PMID:26477263

  9. Electron paramagnetic resonance investigation of polycrystalline CaCu{sub 3}Ti{sub 4}O{sub 12}

    Energy Technology Data Exchange (ETDEWEB)

    Mozzati, Maria Cristina [INFM-Dipartimento di Fisica ' Alessandro Volta' , Universita di Pavia, via Bassi 6, I-27100 Pavia (Italy); Azzoni, Carlo Bruno [INFM-Dipartimento di Fisica ' Alessandro Volta' , Universita di Pavia, via Bassi 6, I-27100 Pavia (Italy); Capsoni, Doretta [Dipartimento di Chimica Fisica ' Mario Rolla' , Universita di Pavia and IENI-CNR, Sezione di Pavia, viale Taramelli 16, I-27100 Pavia (Italy); Bini, Marcella [Dipartimento di Chimica Fisica ' Mario Rolla' , Universita di Pavia and IENI-CNR, Sezione di Pavia, viale Taramelli 16, I-27100 Pavia (Italy); Massarotti, Vincenzo [Dipartimento di Chimica Fisica ' Mario Rolla' , Universita di Pavia and IENI-CNR, Sezione di Pavia, viale Taramelli 16, I-27100 Pavia (Italy)

    2003-11-05

    Electron paramagnetic resonance (EPR) measurements on pure polycrystalline CaCu{sub 3}Ti{sub 4}O{sub 12} have been performed and are discussed within a crystal-field approach. A symmetric signal centred at g = 2.15 is observed for T>25 K, with no evidence of hyperfine structure. At this temperature an antiferromagnetic transition is observed as confirmed by static magnetization data. Cu defective and 2% doped (V, Cr, Mn, La) samples were also prepared and considered, mainly to understand the nature of the observed paramagnetic centre. Substitutions in the octahedral sites, causing variations of the configuration in CuO{sub 4}-TiO{sub 6}-CuO{sub 4} complexes, change the magnetic and EPR features. To justify the EPR response a strong copper-hole delocalization is suggested.

  10. Moderate plasma treatment enhances the quality of optically detected magnetic resonance signals of nitrogen-vacancy centres in nanodiamonds

    Science.gov (United States)

    Sotoma, Shingo; Igarashi, Ryuji; Shirakawa, Masahiro

    2016-05-01

    We demonstrate that a moderate plasma treatment increases the quality of optically detected magnetic resonance (ODMR) signals from negatively charged nitrogen-vacancy centres in nanodiamonds (NDs). We measured the statistics of the ODMR spectra of 50-nm-size NDs before and after plasma treatment. We then evaluated each ODMR spectrum in terms of fluorescence and ODMR intensities, line width and signal-to-noise (SN) ratio. Our results showed that plasma treatment for more than 10 min contributes to higher-quality ODMR signals, i.e. signals that are brighter, stronger, sharper and have a higher SN ratio. We showed that such signal improvement is due to alteration of the surface chemical states of the NDs by the plasma treatment. Our study contributes to the advancement of biosensing applications using ODMR of NDs.

  11. Introduction lecture to magnetic resonance

    International Nuclear Information System (INIS)

    Conard, J.

    1980-01-01

    This lecture deals with all that is common either to electron paramagnetic resonance (E.P.R.) or to nuclear magnetic resonance (N.M.R.). It will present, in an as elementary form as possible, the main concepts used in magnetic resonance emphasizing some aspects, specific for interface science. (orig./BHO)

  12. Bioactivity characterization of 45S5 bioglass using TL, OSL and EPR: Comparison with the case of 58S sol-gel bioactive glass

    Energy Technology Data Exchange (ETDEWEB)

    Polymeris, G.S., E-mail: gspolymeris@ankara.edu.tr [Ankara University, Institute of Nuclear Sciences, 06100 Beşevler, Ankara (Turkey); Giannoulatou, V. [Ankara University, Institute of Nuclear Sciences, 06100 Beşevler, Ankara (Turkey); Solid State Section, Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Kyriakidou, A. [Solid State Section, Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Sfampa, I.K. [Nuclear Physics Laboratory, Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Theodorou, G.S. [Solid State Section, Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Şahiner, E.; Meriç, N. [Ankara University, Institute of Nuclear Sciences, 06100 Beşevler, Ankara (Turkey); Kitis, G. [Nuclear Physics Laboratory, Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Paraskevopoulos, K.M. [Solid State Section, Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece)

    2017-01-01

    The current work exploits the effective application of thermoluminescence (TL), optically stimulated luminescence (OSL) and the possibility of applying Electron Paramagnetic Resonance (EPR) for the discrimination between different bioactive responses in the case of the 45S5 bioactive glass (SiO{sub 2} 45, Na{sub 2}O 24.5, CaO 24.5, P{sub 2}O{sub 5} 6 in wt%), which was synthesized through melting process. These techniques are suggested mainly due to their low spectroscopic detection thresholds. The original 45S5 in grain size range of 20–40 μm was immersed in the Simulated Body Fluid (SBF) for various different immersion times ranging over one week. In this work the 110 °C TL peak, a specific OSL component and the EPR signal at g = 2.013 ascribed to oxygen hole center (OHC) are used due to their sensitivity to the different bioactive responses. For all luminescence and EPR components, the intensity plot versus immersion time yields sharp discontinuities, resulting in effective probes regarding the timescale for both the beginning as well as the end of the procedure of the crystalline HCAp formation respectively. On the contrary to the smooth decreasing pattern of both luminescence entities, the peak to peak amplitude of the EPR signal indicates an initial increase for the initial 16 min of immersion, followed by a further decrease throughout the immersion time duration. The discontinuities monitored for both sensitivity of TL, OSL and EPR, in conjunction with the discontinuities monitored for the sensitization of TL and OSL, when plotted versus immersion time, provide an individual time scale for each one of the chemical reactions involved in the five steps of the aforementioned procedure. According to the authors' best knowledge, scarce characterization techniques could provide this time scale frame, while it is the first time that such an application of OSL and EPR is attempted. Finally, the bioactive response of the 45S5 bioglass was compared with that

  13. CW EPR parameters reveal cytochrome P450 ligand binding modes.

    Science.gov (United States)

    Lockart, Molly M; Rodriguez, Carlo A; Atkins, William M; Bowman, Michael K

    2018-06-01

    Cytochrome P450 (CYP) monoxygenses utilize heme cofactors to catalyze oxidation reactions. They play a critical role in metabolism of many classes of drugs, are an attractive target for drug development, and mediate several prominent drug interactions. Many substrates and inhibitors alter the spin state of the ferric heme by displacing the heme's axial water ligand in the resting enzyme to yield a five-coordinate iron complex, or they replace the axial water to yield a nitrogen-ligated six-coordinate iron complex, which are traditionally assigned by UV-vis spectroscopy. However, crystal structures and recent pulsed electron paramagnetic resonance (EPR) studies find a few cases where molecules hydrogen bond to the axial water. The water-bridged drug-H 2 O-heme has UV-vis spectra similar to nitrogen-ligated, six-coordinate complexes, but are closer to "reverse type I" complexes described in older liteature. Here, pulsed and continuous wave (CW) EPR demonstrate that water-bridged complexes are remarkably common among a range of nitrogenous drugs or drug fragments that bind to CYP3A4 or CYP2C9. Principal component analysis reveals a distinct clustering of CW EPR spectral parameters for water-bridged complexes. CW EPR reveals heterogeneous mixtures of ligated states, including multiple directly-coordinated complexes and water-bridged complexes. These results suggest that water-bridged complexes are under-represented in CYP structural databases and can have energies similar to other ligation modes. The data indicates that water-bridged binding modes can be identified and distinguished from directly-coordinated binding by CW EPR. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. On the use of Locally Dense Basis Sets in the Calculation of EPR Hyperfine Couplings

    DEFF Research Database (Denmark)

    Hedegård, Erik D.; Sauer, Stephan P. A.; Milhøj, Birgitte O.

    2013-01-01

    The usage of locally dense basis sets in the calculation of Electron Paramagnetic Resonance (EPR) hyperne coupling constants is investigated at the level of Density Functional Theory (DFT) for two model systems of biologically important transition metal complexes: One for the active site in the c......The usage of locally dense basis sets in the calculation of Electron Paramagnetic Resonance (EPR) hyperne coupling constants is investigated at the level of Density Functional Theory (DFT) for two model systems of biologically important transition metal complexes: One for the active site...

  15. On the use of locally dense basis sets in the calculation of EPR hyperfine couplings

    DEFF Research Database (Denmark)

    Milhøj, Birgitte Olai; Hedegård, Erik D.; Sauer, Stephan P. A.

    2013-01-01

    The usage of locally dense basis sets in the calculation of Electron Paramagnetic Resonance (EPR) hyperne coupling constants is investigated at the level of Density Functional Theory (DFT) for two model systems of biologically important transition metal complexes: One for the active site in the c......The usage of locally dense basis sets in the calculation of Electron Paramagnetic Resonance (EPR) hyperne coupling constants is investigated at the level of Density Functional Theory (DFT) for two model systems of biologically important transition metal complexes: One for the active site...

  16. Study of dosimetric properties of acetylsalicylic acid in pharmaceutical preparations by EPR spectroscopy

    International Nuclear Information System (INIS)

    Juarez-Calderon, J.M.; Negron-Mendoza, A.; Ramos-Bernal, S.; Gomez-Vidales, V.

    2009-01-01

    Electron paramagnetic resonance (EPR) was used to investigate the dosimetric properties of two pharmaceutical preparations containing acetylsalicylic acid, Aspirin R and Cafiaspirin R . The EPR spectra of the irradiated samples were found to have an asymmetric absorption characterized by a major resonance at g = 2.0033. Dose response was investigated between dose ranges of 2 to 95 kGy for 60 Co-gamma rays. Fading characteristics and dependence on temperature irradiation were also studied. We suggest that commercial Aspirin R and Cafiaspirin R tablets can be used as dosimeters in the case of a short accident. (author)

  17. Study of dosimetric properties of acetylsalicylic acid in pharmaceutical preparations by EPR spectroscopy

    International Nuclear Information System (INIS)

    Juarez Calderon, J.M.; Negron Mendoza, A.; Ramos Bernal, S.; Gomez Vidales, V.

    2008-01-01

    Electron paramagnetic resonance (EPR) was used to investigate the dosimetric properties of two pharmaceutical preparations containing acetylsalicylic acid, Aspirin (trademark) and Cafiaspirin (trademark). The EPR spectra of the irradiated samples were found to have an asymmetric absorption characterized by a major resonance at g = 2.0033. Dose response was investigated between dose ranges of 2 to 40 kGy for 60 Co-gamma rays. Fading characteristics and dependence on temperature irradiation were also studied. We suggest that commercial Aspirin (trademark) and Cafiaspirin (trademark) tablets can be used as dosimeters for industrial processes. (author)

  18. A study on the retrospective dosimetry using electron paramagnetic resonance spectroscopy of tooth enamel

    International Nuclear Information System (INIS)

    Hong, Dae Seok

    2004-02-01

    Retrospective dosimetry is a process that is a part of dose reconstruction for estimation of exposed dose occurred years before the estimation. Dose reconstruction may be required in a variety of situations such as acute accidental exposure, suspected chronic overexposure and reassessment of occupational exposure. The techniques for retrospective can be classified as biological method and physical method. As a distinct physical technique for dose reconstruction, EPR (Electron Paramagnetic Resonance) or ESR (Electron Spin Resonance) dosimetry has been widely used. In EPR dosimetry, electrons generated by the interaction of material with radiation and trapped in lattice are measured by microwave absorption spectroscopy. Among the materials used for EPR dosimetry, tooth enamel has a high sensitivity for ionising radiation and since the tooth follows the carrier in all situations, it can act as a lifetime-dosimeter. And it is considered as one of the important biological samples. In many countries, there have been a lot of studies and practical applications on EPR dosimetry with tooth enamel. This technique has been applied for A-bomb survivors, Techa riverside population, Chernobyl cleanup workers and so on. Also there were two times of international comparison of the results of EPR dosimetry with tooth enamel in 1996 and 2000 respectively. But the experts have yet to reach a consensus on the best method. So, a lot of methods have been used for the separation of enamel from teeth and this may influence the dose evaluation. With the factors affecting EPR spectrum, this can effect on the results of dose reconstructed. In this study, factors affecting the EPR spectrum of tooth are experimented first. Anisotropy of radiation induced CO 2 - radical is negligible at low doses, but it become important at high doses. It can induce errors in dose estimation up to 40% at dose range of 5Gy. So, crushing process is essential in dose estimation. But, since sample grinding can

  19. Electronic Paramagnetic Resonance of irradiated nails: challenges for a dosimetry in radiation accidents

    International Nuclear Information System (INIS)

    Giannoni, Ricardo A.; Rodrigues Junior, Orlando

    2014-01-01

    The purpose of this work is to characterize samples of human nails exposed to high doses of radiation, applying the technique of Electron Paramagnetic Resonance (EPR). The objective is to establish a dose response study that allow determine the absorbed dose by exposed individuals in situations of radiological accidents, in a retrospective form. Samples of human nails were collected and afterward irradiated with gamma radiation, and received dose of 20 Gy. The EPR measurement performed on the samples, before irradiation, permitted the signal identification of the components associated with effects caused by the mechanical stress during the fingernail cutting, the so-called mechanically induced signal (MIS). After the irradiation, different species of free radicals were identified, the so-called radiation induced signal (RIS). (author)

  20. Retrospective radiation dosimetry using electron paramagnetic resonance in canine dental enamel

    International Nuclear Information System (INIS)

    Khan, Rao F.H.; Pekar, J.; Rink, W.J.; Boreham, D.R.

    2005-01-01

    Electron paramagnetic resonance (EPR) biodosimetry of human tooth enamel has been widely used for measuring radiation doses in various scenarios. We have now developed EPR dosimetry in tooth enamel extracted from canines. Molars and incisors from canines were cleaned by processing in supersaturated aqueous potassium hydroxide solution. The dosimetric signal in canine tooth enamel was found to increase linearly as a function of laboratory added dose from 0.44±0.02 to 4.42±0.22 Gy. The gamma radiation sensitivity of the canine molar enamel was found to be comparable to that of human tooth enamel. The dosimetric signal in canine enamel has been found to be stable up to at least 6 weeks after in vitro irradiation. A dosimetric signal variation of 10-25% was observed for canines ranging from in age 3 years to 16 year old

  1. The Chernobyl accident: EPR dosimetry on dental enamel of children

    International Nuclear Information System (INIS)

    Gualtieri, G.; Colacicchi, S.; Sgattoni, R.; Giannoni, M.

    2001-01-01

    The radiation dose on tooth enamel of children living close to Chernobyl has been evaluated by EPR. The sample preparation was reduced to a minimum of mechanical steps to remove a piece of enamel. A standard X-ray tube at low energy was used for additive irradiation. The filtration effect of facial soft tissue was taken into account. The radiation dose for a group of teeth slightly exceeds the annual dose, whereas for another group the dose very much exceeds the annual dose. Since the higher dose is found in teeth whose enamel have much lower EPR sensitivity to the radiation, it can be suggested that for these teeth the native signal could alter the evaluation of the smaller radiation signal

  2. On the computer simulation of the EPR-Bohm experiment

    International Nuclear Information System (INIS)

    McGoveran, D.O.; Noyes, H.P.; Manthey, M.J.

    1988-12-01

    We argue that supraluminal correlation without supraluminal signaling is a necessary consequence of any finite and discrete model for physics. Every day, the commercial and military practice of using encrypted communication based on correlated, pseudo-random signals illustrates this possibility. All that is needed are two levels of computational complexity which preclude using a smaller system to detect departures from ''randomness'' in the larger system. Hence the experimental realizations of the EPR-Bohm experiment leave open the question of whether the world of experience is ''random'' or pseudo-random. The latter possibility could be demonstrated experimentally if a complexity parameter related to the arm length and switching time in an Aspect-type realization of the EPR-Bohm experiment is sufficiently small compared to the number of reliable total counts which can be obtained in practice. 6 refs

  3. EPR-technical codes - a common basis for the EPR

    International Nuclear Information System (INIS)

    Zaiss, W.; Appell, B.

    1997-01-01

    The design and construction of Nuclear Power Plants implies a full set of codes and standards to define the construction rules of components and equipment. Rules are existing and are currently implemented, respectively in France and Germany (mainly RCCs and KTA safety standards). In the frame of the EPR-project, the common objective requires an essential industrial work programme between engineers from both countries to elaborate a common set of codes and regulations. These new industrial rules are called the ETCs (EPR Technical Codes). In the hierarchy the ETCs are - in case of France - on the common level of basic safety rules (RFS), design and construction rules (RCC) and - in Germany - belonging to RSK guidelines and KTA safety standards. A set of six ETCs will be elaborated to cover: safety and process, mechanical components, electrical equipment, instrumentation and control, civil works, fire protection. (orig.)

  4. The Flamanville 3 EPR reactor; Le reacteur EPR Flamanville 3

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    On April 10. 2007, the french government authorized EDF to create on the site of Flamanville ( La Manche) a nuclear base installation containing a pressurized water EPR type reactor. This nuclear reactor, conceived by AREVA NP and EDF, is the first copy of a generation susceptible to replace later, at least partly, the French nuclear reactors at present in operation.Within the framework of its mission of technical support of the Authority of Nuclear Safety ( A.S.N.), the I.R.S.N. widely contributed successively: to define the general objectives of safety assigned to this new generation of pressurized water nuclear reactors; to analyze the options of safety proposed by EDF for the EPR project; To deepen, upstream to the authorization of creation, the evaluation of the step of safety and the measures of conception retained by EDF that have to allow to respect the objectives of safety which were notified to it. (N.C.)

  5. Resonances

    DEFF Research Database (Denmark)

    an impetus or drive to that account: change, innovation, rupture, or discontinuity. Resonances: Historical Essays on Continuity and Change explores the historiographical question of the modes of interrelation between these motifs in historical narratives. The essays in the collection attempt to realize...

  6. A transferability study of the EPR-tooth-dosimetry technique

    International Nuclear Information System (INIS)

    Sholom, S.; Chumak, V.; Desrosiers, M.; Bouville, A.

    2006-01-01

    The transferability of a measurement protocol from one laboratory to another is an important feature of any mature, standardised protocol. The electron paramagnetic resonance (EPR)-tooth dosimetry technique that was developed in Scientific Center for Radiation Medicine, AMS (Ukraine) (SCRM) for routine dosimetry of Chernobyl liquidators has demonstrated consistent results in several inter-laboratory measurement comparisons. Transferability to the EPR dosimetry laboratory at the National Inst. of Standards and Technology (NIST) was examined. Several approaches were used to test the technique, including dose reconstruction of SCRM-NIST inter-comparison samples. The study has demonstrated full transferability of the technique and the possibility to reproduce results in a different laboratory environment. (authors)

  7. EPR of divalent manganese in non-Kramers hosts

    Energy Technology Data Exchange (ETDEWEB)

    Lech, J.; Slezak, A. [Institute of Physics, Technical University of Czestochowa, Czestochowa (Poland)

    1997-12-31

    Various interactions which lead to the observation of sharp EPR spectra of the high half-integer spin impurity Mn{sup 2+} (S=5/2) in paramagnetic hosts with integer spins S=1 and S=2 have been studied. Studies have been carried out on the basis of data extracted from experimental EPR spectra of Mn{sup 2+} in single crystal of divalent nickel Ni{sup 2+} (S=1) and Fe{sup 2+} (S=1) perchlorate hexahydrates. It has been shown that dipolar host-host and host-guest couplings broaden resonance lines of Mn{sup 2+}. Narrowing of the lines in the both crystals can be mainly attributed to the host-guest exchange interactions and quenching of the host spins. 19 refs, 3 figs, 1 tab.

  8. EPR dosimetry in a mixed neutron and gamma radiation field.

    Science.gov (United States)

    Trompier, F; Fattibene, P; Tikunov, D; Bartolotta, A; Carosi, A; Doca, M C

    2004-01-01

    Suitability of Electron Paramagnetic Resonance (EPR) spectroscopy for criticality dosimetry was evaluated for tooth enamel, mannose and alanine pellets during the 'international intercomparison of criticality dosimetry techniques' at the SILENE reactor held in Valduc in June 2002, France. These three materials were irradiated in neutron and gamma-ray fields of various relative intensities and spectral distributions in order to evaluate their neutron sensitivity. The neutron response was found to be around 10% for tooth enamel, 45% for mannose and between 40 and 90% for alanine pellets according their type. According to the IAEA recommendations on the early estimate of criticality accident absorbed dose, analyzed results show the EPR potentiality and complementarity with regular criticality techniques.

  9. EPR compared to international requirements (Mainly EUR)

    International Nuclear Information System (INIS)

    Broecker, B.

    1996-01-01

    A number of European Utilities have entered an agreement to write common requirements dedicated to future light water nuclear power plants to be built in Europe. The activities are known under the sign EUR (European Utilities Requirements). EPR, the future European Pressurized water Reactor, is the first installation of this type which will be operational from the year 2000 onwards, must fulfill the European requirements. EPR will serve as a test whether these requirements are realistic and well balanced. At the basic design stage of EPR, this paper concentrates on four main topics: the requirements which are new compared with existing reactors and which put a major challenge to the designer; the requirements today still open and the way they can be met by the EPR or not; the points for which already today the EPR special requirements exceed the EUR; the examples where the design of the EPR has given feedback which has led to a change of the EUR. EPR and EUR are different approaches to the reactor of the future. EUR is a set of requirements which leaves a flexibility to the designer while EPR is a real project which defines the technical solutions. EPR will fulfill the EUR and will at the same time serve as a test whether these requirements are realistic. EPR will also fulfill international requirements with minor changes. (J.S.). 7 figs

  10. Magnetic resonance imaging of the supraspinatus tendon: The significance of signal intensity alterations at the 'critical zone'

    International Nuclear Information System (INIS)

    Jones, A.O.

    1998-01-01

    A pictorial essay of normal and abnormal appearances of the supraspinatus tendon is presented. An increased signal intensity within the supraspinatus tendon on short TE sequences is not necessarily abnormal. Increased signal seen within the tendon on modern magnetic resonance imaging (MRI) units is often due to a phenomenon known as the 'magic angle' effect. Only when supraspinatus tendon signal intensity is greater than that of muscle on long TE (T2) sequences should it be considered to be abnormal. The physical basis for the magic angle effect is outlined and a pictorial essay demonstrating the practical implications of this effect is presented. A comparison is made to signal intensity changes seen with partial and complete tears of the supraspinatus tendon. Correlation is made with important morphologic features of partial or complete tears. Copyright (1998) Blackwell Science Pty Ltd

  11. VXIbus-based signal generator for resonant power supply system of the 3 GeV RCS

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fengqing; Watanabe, Yasuhiro; Koseki, Shoichiro; Tani, Norio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Adachi, Toshikazu; Someya, Hirohiko [High Energy Accelerator Reseach Organization, Tsukuba, Ibaraki (Japan)

    2002-03-01

    The 3 GeV Proton RCS of the JAERI-KEK Joint Project is a 25 Hz separate-function rapid cycling synchrotron under design. Bending magnets (BM) and quadrupole magnets (QM) are excited separately. The 3 GeV RCS requests above 10 families of magnets excited independently, far beyond 3 families in practical RCS's. Difficulty of field tracking between BM and QM is significantly increased. Magnet strings are grouped into resonant networks and excited resonantly with power supplies driven by a waveform pattern, typically a DC-biased sinusoidal signal. To achieve a close tracking between many families, the driving signal of each power supply should be adjusted in phase and amplitude flexibly and dynamically. This report proposes a signal generator based on VXIbus. The VXIbus, an extension of VMEbus (VME eXtensions for Instrument), provides an open architecture with shared process bus and timing. The VXIbus-based signal generator facilitates the timing synchronization and is easy to extend to many channels needed by the 3 GeV RCS. Experimental results of the signal generator are reported. (author)

  12. Hydrogen Analyses in the EPR

    International Nuclear Information System (INIS)

    Worapittayaporn, S.; Eyink, J.; Movahed, M.

    2008-01-01

    In severe accidents with core melting large amounts of hydrogen may be released into the containment. The EPR provides a combustible gas control system to prevent hydrogen combustion modes with the potential to challenge the containment integrity due to excessive pressure and temperature loads. This paper outlines the approach for the verification of the effectiveness and efficiency of this system. Specifically, the justification is a multi-step approach. It involves the deployment of integral codes, lumped parameter containment codes and CFD codes and the use of the sigma criterion, which provides the link to the broad experimental data base for flame acceleration (FA) and deflagration to detonation transition (DDT). The procedure is illustrated with an example. The performed analyses show that hydrogen combustion at any time does not lead to pressure or temperature loads that threaten the containment integrity of the EPR. (authors)

  13. Magnetic resonance imaging signal intensity of temporomandibular joint disk and posterior attachment in patients with internal derangement

    International Nuclear Information System (INIS)

    Jeong, Yeon Hwa; Cho, Bong Hae

    2001-01-01

    To analyze the possible association between magnetic resonance imaging signal intensity of temporomandibular joint disk and posterior attachment, and the type and extent of disk displacement, disk donfiguration, effusion and clinical signs in patients with internal derangement. Magnetic resonance images of the 132 temporomandibular joints of 66 patients with temporomandibular joint displacement were analyzed. The clinical findings were obtained by retrospective review of the patients' records. The type and extent of disk displacement, disk configuration and effusion were evaluated on the proton density MR images. The signal intensity from the anterior band, posterior band and posterior attachment were measured on MR images. The associations between the type and extent of disk displacement, disk configuration, effusion and clinical signs and the MR signal intensity of disk and posterior attachment were statistically analyzed by student's t-test. Of 132 joints, 87 (65.9%) showed anterior disk displacement with reduction (ADR) and 45 (34.1%) showed anterior disk displacement without reduction (ADnR). This signals from posterior attachments were lower in joints with ADnR than those of ADR (p<0.05). The results showed statistically significant (p<0.05) association between the type and extent of disk displacement and disk configuration, and decreased signal intensity of posterior attachment. There were no statistical associations between pain, noise and limited mouth opening, and signal intensity of disk and posterior attachment. The average signal from posterior attachment was lower in joints with ADnR than that of ADR. The type and extent of disk displacement and disk configuration appeared to be correlated with the signal intensity from posterior attachment

  14. Analysis of Gamma-irradiated Soybean Components by Electron Paramagnetic Resonance

    International Nuclear Information System (INIS)

    Oliveira, M.R. R. de; Quadrado, M.G.O.; Mastro, N.L. del

    2007-01-01

    Soybean (Glycine max) seeds contain besides oil and protein, important phytochemicals that have been shown in recent years to offer important health benefits. Soybean contains at least six classes of antioxidant compounds: flavonol, isoflavones, anthocyanins, proanthocyanidins, tocopherols, and poly carboxylic acids. An increasing number of studies have documented the significant value of many classes of these compounds, mainly isoflavones, not only as potent antioxidants, but also as antitumor agents and cardio protective compounds. Food irradiation is gaining increasing attention around the world but it is not a worldwide approved treatment yet. Electron paramagnetic resonance, EPR, is considered the most important technique to detect free-radicals on food. Results from a previous work showed that irradiated soybean could be detected by EPR only when higher doses were employed. This study was undertaken to investigate the radiation response of the diverse parts of the soy seed: hull or seed coat, cotyledons, hilum and hypocotyl axis or germ, from different soybean cultivars. Soybean samples were obtained from the National Soybean Research Center (Embrapa-Soja), Londrina, Brazil, separated in their components and gamma-irradiated in a Gamma cell 220 (AECL) with doses of 0.1 and 2.0 kGy at a dose rate of 2.9 kGy/h. EPR measurements were performed on an X-band spectrometer (ER 041 XG Microwave Bridge, Bruker). Both irradiation and EPR measurements were performed at room temperature (20-25 C). The results showed that the EPR signal intensity correlated with the ionizing radiation dose, although different cultivars presented differences in their radiation response. The main EPR peak corresponding to free radical presented differences in shape and intensity. The hull and the hilum presented signals higher and easier to be analyzed than the whole bean, indicating strong differences in radiation sensitivity of soybean components. (Author)

  15. SimLabel: a graphical user interface to simulate continuous wave EPR spectra from site-directed spin labeling experiments.

    Science.gov (United States)

    Etienne, E; Le Breton, N; Martinho, M; Mileo, E; Belle, V

    2017-08-01

    Site-directed spin labeling (SDSL) combined with continuous wave electron paramagnetic resonance (cw EPR) spectroscopy is a powerful technique to reveal, at the residue level, structural transitions in proteins. SDSL-EPR is based on the selective grafting of a paramagnetic label on the protein under study, followed by cw EPR analysis. To extract valuable quantitative information from SDSL-EPR spectra and thus give reliable interpretation on biological system dynamics, numerical simulations of the spectra are required. Such spectral simulations can be carried out by coding in MATLAB using functions from the EasySpin toolbox. For non-expert users of MATLAB, this could be a complex task or even impede the use of such simulation tool. We developed a graphical user interface called SimLabel dedicated to run cw EPR spectra simulations particularly coming from SDSL-EPR experiments. Simlabel provides an intuitive way to visualize, simulate, and fit such cw EPR spectra. An example of SDSL-EPR spectra simulation concerning the study of an intrinsically disordered region undergoing a local induced folding is described and discussed. We believe that this new tool will help the users to rapidly obtain reliable simulated spectra and hence facilitate the interpretation of their results. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  16. {sup 1}H and {sup 31}P magnetic resonance spectroscopic imaging of white matter signal hyperintensity areas in elderly subjects

    Energy Technology Data Exchange (ETDEWEB)

    Constans, J M [Department of Veterans Affairs Medical Center and University of California Magnetic Resonance Unit, San Francisco, CA (United States); [California Univ., San Francisco, CA (United States). Dept. of Radiology; Meyerhoff, D J [Department of Veterans Affairs Medical Center and University of California Magnetic Resonance Unit, San Francisco, CA (United States); [California Univ., San Francisco, CA (United States). Dept. of Radiology; Norman, D [California Univ., San Francisco, CA (United States). Dept. of Radiology; Fein, G [Department of Veterans Affairs Psychiatry Service, University of California, San Francisco, California (United States); [University of California, San Francisco, CA (United States). Dept. of Psychiatry; Weiner, M W [Department of Veterans Affairs Medical Center and University of California Magnetic Resonance Unit, San Francisco, CA (United States); [California Univ., San Francisco, CA (United States). Dept. of Radiology; [California Univ., San Francisco, CA (United States). Dept. of Medicine; [DVA Medical Center, Magnetic Resonance Spectroscopy Unit, San Francisco, CA (United States)

    1995-11-01

    White matter signal hyperintensities (WMSH) are commonly seen on MRI of elderly subjects. The purpose of this study was to characterize metabolic changes in the white matter of elderly subjects with extensive WMSH. We used water-suppressed proton ({sup 1}H) magnetic resonance spectroscopic imaging (MRSI) to compare six subjects with extensive WMSH with eight age-matched elderly subjects with minimal or absent WMSH, and phosphorus ({sup 31}P) MRSI to compare nine subjects with extensive WMSH and seven age-matched elderly subjects without extensive WMSH. Relative to region-matched tissue in elderly controls, extensive WMSH were associated with increased signal from choline-containing metabolites, no significant change of signal from N-acetylaspartate, and a trend to a decreased phosphomonoester (PME) resonance. These findings suggest that WMSH may be associated with an alteration of brain myelin phospholipids in the absence of axonal damage. There were no differences in energy phosphates, consistent with lack of ongoing brain ischemia. Within the group with extensive WMSH, PME resonance measures were significantly lower in WMSH than in contralateral normal-appearing white matter. These results provide information on pathophysiology of WMSH and a basis for comparison with WMSH in Alzheimer`s disease, vascular dementia, multiple sclerosis, and other diseases. (orig.). With 4 figs., 4 tabs.

  17. Investigation of resonant signals recorded at well J-11, Nevada Test Site

    International Nuclear Information System (INIS)

    Long, J.W.

    1981-07-01

    After the Farm event, gages measuring horizontal accelerations at the bottom of Well J-11 began resonating at about 3 to 5 hertz on each shot. This investigation of possible causes concludes that the material surrounding the well casing has fallen away, allowing the casing to move freely in horizontal directions and causing the undesirable resonance

  18. A large-signal dynamic simulation for the series resonant converter

    Science.gov (United States)

    King, R. J.; Stuart, T. A.

    1983-01-01

    A simple nonlinear discrete-time dynamic model for the series resonant dc-dc converter is derived using approximations appropriate to most power converters. This model is useful for the dynamic simulation of a series resonant converter using only a desktop calculator. The model is compared with a laboratory converter for a large transient event.

  19. Pharmaceutical applications of in vivo EPR

    International Nuclear Information System (INIS)

    Maeder, K.

    1998-01-01

    The aim of this article is to discuss the applications of in vivo EPR in the field of pharmacy. In addition to direct detection of free radical metabolites and measurement of oxygen, EPR can be used to characterize the mechanisms of drug release from biodegradable polymers. Unique information about drug concentration, the microenvironment (viscosity, polarity, pH) and biodistribution (by localized measurement or EPR Imaging) can be obtained. (author)

  20. EPR-based material modelling of soils

    Science.gov (United States)

    Faramarzi, Asaad; Alani, Amir M.

    2013-04-01

    In the past few decades, as a result of the rapid developments in computational software and hardware, alternative computer aided pattern recognition approaches have been introduced to modelling many engineering problems, including constitutive modelling of materials. The main idea behind pattern recognition systems is that they learn adaptively from experience and extract various discriminants, each appropriate for its purpose. In this work an approach is presented for developing material models for soils based on evolutionary polynomial regression (EPR). EPR is a recently developed hybrid data mining technique that searches for structured mathematical equations (representing the behaviour of a system) using genetic algorithm and the least squares method. Stress-strain data from triaxial tests are used to train and develop EPR-based material models for soil. The developed models are compared with some of the well-known conventional material models and it is shown that EPR-based models can provide a better prediction for the behaviour of soils. The main benefits of using EPR-based material models are that it provides a unified approach to constitutive modelling of all materials (i.e., all aspects of material behaviour can be implemented within a unified environment of an EPR model); it does not require any arbitrary choice of constitutive (mathematical) models. In EPR-based material models there are no material parameters to be identified. As the model is trained directly from experimental data therefore, EPR-based material models are the shortest route from experimental research (data) to numerical modelling. Another advantage of EPR-based constitutive model is that as more experimental data become available, the quality of the EPR prediction can be improved by learning from the additional data, and therefore, the EPR model can become more effective and robust. The developed EPR-based material models can be incorporated in finite element (FE) analysis.

  1. Probing Microenvironment in Ionic Liquids by Time-Resolved EPR of Photoexcited Triplets.

    Science.gov (United States)

    Ivanov, M Yu; Veber, S L; Prikhod'ko, S A; Adonin, N Yu; Bagryanskaya, E G; Fedin, M V

    2015-10-22

    Unusual physicochemical properties of ionic liquids (ILs) open vistas for a variety of new applications. Herewith, we investigate the influence of microviscosity and nanostructuring of ILs on spin dynamics of the dissolved photoexcited molecules. We use two most common ILs [Bmim]PF6 and [Bmim]BF4 (with its close analogue [C10mim]BF4) as solvents and photoexcited Zn tetraphenylporphyrin (ZnTPP) as a probe. Time-resolved electron paramagnetic resonance (TR EPR) is employed to investigate spectra and kinetics of spin-polarized triplet ZnTPP in the temperature range 100-270 K. TR EPR data clearly indicate the presence of two microenvironments of ZnTPP in frozen ILs at 100-200 K, being manifested in different spectral shapes and different spin relaxation rates. For one of these microenvironments TR EPR data is quite similar to those obtained in common frozen organic solvents (toluene, glycerol, N-methyl-2-pyrrolidone). However, the second one favors the remarkably slow relaxation of spin polarization, being much longer than in the case of common solvents. Additional experiments using continuous wave EPR and stable nitroxide as a probe confirmed the formation of heterogeneities upon freezing of ILs and complemented TR EPR results. Thus, TR EPR of photoexcited triplets can be effectively used for probing heterogeneities and nanostructuring in frozen ILs. In addition, the increase of polarization lifetime in frozen ILs is an interesting finding that might allow investigation of short-lived intermediates inaccessible otherwise.

  2. Pulsed EPR analysis of tooth enamel samples exposed to UV and {gamma}-radiations

    Energy Technology Data Exchange (ETDEWEB)

    Marrale, M., E-mail: marrale@unipa.it [Dipartimento di Fisica, Universita di Palermo, Viale delle Scienze, Edificio 18, 90128 Palermo (Italy); Gruppo V Sezione INFN, Catania, Italy and Unita CNISM, Palermo (Italy); Longo, A.; Brai, M. [Dipartimento di Fisica, Universita di Palermo, Viale delle Scienze, Edificio 18, 90128 Palermo (Italy); Gruppo V Sezione INFN, Catania (Italy) and Unita CNISM, Palermo (Italy); Barbon, A.; Brustolon, M. [Dipartimento di Scienze Chimiche, Universita degli Studi di Padova, Via Marzolo 1, 35131 Padova (Italy); Fattibene, P. [Istituto Superiore di Sanita, Viale Regina Elena 299, 00161 Rome (Italy)

    2011-09-15

    The electron paramagnetic resonance (EPR) spectroscopy is widely applied for retrospective dosimetric purposes by means of quantitative detection of radicals in tooth enamel and bone samples. In this work we report a study by cw and pulsed EPR on two samples of human tooth enamel respectively irradiated by UV (254 nm) and {gamma}-exposed. The continuous wave (cw) EPR spectra have shown the usual presence in both samples of two types of CO{sub 2}{sup -} radicals, with axial and orthorombic g tensors. We have obtained the electron spin echo detected EPR (ED-EPR) spectra at 80 K of the two samples, and we have shown that they are suitable to mark the difference between the effects produced by the different irradiations. At low temperature the contribution to the ED-EPR spectrum of the mobile radical with the axial g tensor is still present in the UV irradiated sample, but not in the {gamma}-irradiated one, where its dynamics is too slow to average the g tensor. We have moreover studied the two-pulse electron spin echo decay on varying the microwave power, a well established method for measuring the Instantaneous Diffusion. We have found that the spectral diffusion parameter is almost the same for both radiation types, whereas the Instantaneous Diffusion is significantly larger for {gamma}-exposed samples than for UV irradiated ones. This difference is due to a higher local microscopic concentration of free radicals for samples irradiated with {gamma} photons.

  3. Impact of resonance decays on critical point signals in net-proton fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Bluhm, Marcus; Schaefer, Thomas [North Carolina State University, Department of Physics, Raleigh, NC (United States); Nahrgang, Marlene [SUBATECH, UMR 6457, Universite de Nantes, Ecole des Mines de Nantes, IN2P3/CNRS, Nantes (France); Duke University, Department of Physics, Durham, NC (United States); Bass, Steffen A. [Duke University, Department of Physics, Durham, NC (United States)

    2017-04-15

    The non-monotonic beam energy dependence of the higher cumulants of net-proton fluctuations is a widely studied signature of the conjectured presence of a critical point in the QCD phase diagram. In this work we study the effect of resonance decays on critical fluctuations. We show that resonance effects reduce the signatures of critical fluctuations, but that for reasonable parameter choices critical effects in the net-proton cumulants survive. The relative role of resonance decays has a weak dependence on the order of the cumulants studied with a slightly stronger suppression of critical effects for higher-order cumulants. (orig.)

  4. Use of electron paramagnetic resonance dosimetry with tooth enamel for retrospective dose assessment. Report of a co-ordinated research project

    CERN Document Server

    2002-01-01

    Electron paramagnetic resonance (EPR) dosimetry is a physical method for the assessment of absorbed dose from ionising radiation. It is based on the measurement of stable radiation induced radicals in human calcified tissues (primarily in tooth enamel). EPR dosimetry with teeth is now firmly established in retrospective dosimetry. It is a powerful method for providing information on exposure to ionising radiation many years after the event, since the 'signal' is 'stored' in the tooth or the bone. This technique is of particular relevance to relatively low dose exposures or when the results of conventional dosimetry are not available (e.g. in accidental circumstances). The use of EPR dosimetry, as an essential tool for retrospective assessment of radiation exposure is an important part of radioepidemiological studies and also provides data to select appropriate countermeasures based on retrospective evaluation of individual doses. Despite well established regulations and protocols for maintaining radiation pro...

  5. Some recent multi-frequency electron paramagnetic resonance results on systems relevant for dosimetry and dating.

    Science.gov (United States)

    Callens, F; Vanhaelewyn, G; Matthys, P

    2002-04-01

    Electron Paramagnetic Resonance (EPR) applications like e.g. EPR dosimetry and dating, are usually performed at X-band frequencies because of practical reasons (cost, sample size, etc.). However, it is increasingly recognized that the radiation-induced EPR signals are strongly composite, what might affect dose/age estimates. A few recent examples from both the dosimetry and dating field, illustrating the problems, will be presented. The involved spectra are mainly due to carbonate-derived radicals (CO2-, CO3(3-), etc.). Measurements at higher microwave frequencies are often recommended to improve the insight into the spectra and/or the practical signal quantification. Recent results at Q- and W-band frequencies will show that a multi-frequency approach indeed opens many interesting perspectives in this field but also that each frequency may have specific (dis)advantages depending on the EPR probe and application involved. The discussion will concern carbonate-containing apatite single crystals, shells, modern and fossil tooth enamel.

  6. Effects of iodinated contrast agent, xylocaine and gadolinium concentration on the signal emitted in magnetic resonance arthrography: a samples study

    Directory of Open Access Journals (Sweden)

    Yvana Lopes Pinheiro da Silva

    2015-04-01

    Full Text Available Objective: To investigate the effects of dilution of paramagnetic contrast agent with iodinated contrast and xylocaine on the signal intensity during magnetic resonance arthrography, and to improve the paramagnetic contrast agent concentration utilized in this imaging modality. Materials and Methods: Samples specially prepared for the study with three different concentrations of paramagnetic contrast agent diluted in saline, iodinated contrast agent and xylocaine were imaged with fast spin echo T1-weighted sequences with fat saturation. The samples were placed into flasks and graphical analysis of the signal intensity was performed as a function of the paramagnetic contrast concentration. Results: As compared with samples of equal concentrations diluted only with saline, the authors have observed an average signal intensity decrease of 20.67% for iodinated contrast agent, and of 28.34% for xylocaine. However, the increased gadolinium concentration in the samples caused decrease in signal intensity with all the dilutions. Conclusion: Minimizing the use of iodinated contrast media and xylocaine and/or the use of a gadolinium concentration of 2.5 mmol/L diluted in saline will improve the sensitivity of magnetic resonance arthrography.

  7. A field-sweep/field-lock system for superconducting magnets--Application to high-field EPR.

    Science.gov (United States)

    Maly, Thorsten; Bryant, Jeff; Ruben, David; Griffin, Robert G

    2006-12-01

    We describe a field-lock/field-sweep system for the use in superconducting magnets. The system is based on a commercially available field mapping unit and a custom designed broad-band 1H NMR probe. The NMR signal of a small water sample is used in a feedback loop to set and control the magnetic field to high accuracy. The current instrumental configuration allows field sweeps of +/-0.4 T and a resolution of up to 10(-5) T (0.1 G) and the performance of the system is demonstrated in a high-field electron paramagnetic resonance (EPR) application. The system should also be of utility in other experiments requiring precise and reproducible sweeps of the magnetic field such as DNP, ENDOR or PELDOR.

  8. A Field-Sweep/Field-Lock System for Superconducting Magnets-Application to High-Field EPR

    Science.gov (United States)

    Maly, Thorsten; Bryant, Jeff; Ruben, David; Griffin, Robert G.

    2007-01-01

    We describe a field-lock/field-sweep system for the use in superconducting magnets. The system is based on a commercially available field mapping unit and a custom designed broad-band 1H-NMR probe. The NMR signal of a small water sample is used in a feedback loop to set and control the magnetic field to high accuracy. The current instrumental configuration allows field sweeps of ± 0.4 T and a resolution of up to 10-5 T (0.1 G) and the performance of the system is demonstrated in a high-field electron paramagnetic resonance (EPR) application. The system should also be of utility in other experiments requiring precise and reproducible sweeps of the magnetic field such as DNP, ENDOR or PELDOR. PMID:17027306

  9. Comparison of EPR response of alanine and Gd₂O₃-alanine dosimeters exposed to TRIGA Mainz reactor.

    Science.gov (United States)

    Marrale, M; Schmitz, T; Gallo, S; Hampel, G; Longo, A; Panzeca, S; Tranchina, L

    2015-12-01

    In this work we report some preliminary results regarding the analysis of electron paramagnetic resonance (EPR) response of alanine pellets and alanine pellets added with gadolinium used for dosimetry at the TRIGA research reactor in Mainz, Germany. Two set-ups were evaluated: irradiation inside PMMA phantom and irradiation inside boric acid phantom. We observed that the presence of Gd2O3 inside alanine pellets increases the EPR signal by a factor of 3.45 and 1.24 in case of PMMA and boric acid phantoms, respectively. We can conclude that in the case of neutron beam with a predominant thermal neutron component the addition of gadolinium oxide can significantly improve neutron sensitivity of alanine pellets. Monte Carlo (MC) simulations of both response of alanine and Gd-added alanine pellets with FLUKA code were performed and a good agreement was achieved for pure alanine dosimeters. For Gd2O3-alanine deviations between MC simulations and experimental data were observed and discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. All-optical clock recovery of NRZ-DPSK signals using optical resonator-type filters

    DEFF Research Database (Denmark)

    Peucheret, Christophe; Seoane, Jorge; Ji, Hua

    2009-01-01

    It is shown how introducing a limited rise time to the driving signal enables all-optical clock recovery of NRZ-DPSK signals generated using a phase modulator. A Fabry-Perot filter is used to generate the optical clock.......It is shown how introducing a limited rise time to the driving signal enables all-optical clock recovery of NRZ-DPSK signals generated using a phase modulator. A Fabry-Perot filter is used to generate the optical clock....

  11. EPR investigation of some irradiated traditional oriental spices

    International Nuclear Information System (INIS)

    Duliu, Octavian G.; Ali, Ibrahim Shaban; Georgescu, Rodica

    2005-01-01

    The X-band EPR spectra of unirradiated and 60 Co gamma ray irradiated cardamom (Elettaria cardamomum L. Maton, Zingiberaceae), ginger ((Zingiber officinale Rosc., Zingiberaceae), saffron (Crocus sativus L., Iridaceae), and curry have been investigated at room temperature. All unirradiated spices presented a weak resonance line with g-factors around free-electron ones, most probably due to the presence of semiquinones, previously reported to have paramagnetic properties. After gamma ray irradiation at absorbed dose up to 11.3 kGy we have noticed in all spices the presence of complex EPR spectra consisting of a superposition of at last two different paramagnetic species whose amplitude increase monotonously with the absorbed dose. A 100 deg. C isothermal annealing of 11.3 kGy irradiated samples has shown a differential reduction of amplitude of various components that form the initial spectra, but even after 5 h of thermal treatment, the remaining amplitude represents no less than 40% from the initial ones, testifying for a good thermal stability. The presences of initial EPR spectra as well as the remaining amplitude after isothermal annealing are very useful in identifying any irradiation treatment applied to this category of species. (authors)

  12. Peptide-membrane Interactions by Spin-labeling EPR

    Science.gov (United States)

    Smirnova, Tatyana I.; Smirnov, Alex I.

    2016-01-01

    Site-directed spin labeling (SDSL) in combination with Electron Paramagnetic Resonance (EPR) spectroscopy is a well-established method that has recently grown in popularity as an experimental technique, with multiple applications in protein and peptide science. The growth is driven by development of labeling strategies, as well as by considerable technical advances in the field, that are paralleled by an increased availability of EPR instrumentation. While the method requires an introduction of a paramagnetic probe at a well-defined position in a peptide sequence, it has been shown to be minimally destructive to the peptide structure and energetics of the peptide-membrane interactions. In this chapter, we describe basic approaches for using SDSL EPR spectroscopy to study interactions between small peptides and biological membranes or membrane mimetic systems. We focus on experimental approaches to quantify peptide-membrane binding, topology of bound peptides, and characterize peptide aggregation. Sample preparation protocols including spin-labeling methods and preparation of membrane mimetic systems are also described. PMID:26477253

  13. ENDOR-Induced EPR of Disordered Systems: Application to X-Irradiated Alanine.

    Science.gov (United States)

    Kusakovskij, Jevgenij; Maes, Kwinten; Callens, Freddy; Vrielinck, Henk

    2018-02-15

    The electron paramagnetic resonance (EPR) spectra of radiation-induced radicals in organic solids are generally composed of multiple components that largely overlap due to their similar weak g anisotropy and a large number of hyperfine (HF) interactions. Such properties make these systems difficult to study using standard cw EPR spectroscopy even in single crystals. Electron-nuclear double-resonance (ENDOR) spectroscopy is a powerful and widely used complementary technique. In particular, ENDOR-induced EPR (EIE) experiments are useful for separating the overlapping contributions. In the present work, these techniques were employed to study the EPR spectrum of stable radicals in X-irradiated alanine, which is widely used in dosimetric applications. The principal values of all major proton HF interactions of the dominant radicals were determined by analyzing the magnetic field dependence of the ENDOR spectrum at 50 K, where the rotation of methyl groups is frozen. Accurate simulations of the EPR spectrum were performed after the major components were separated using an EIE analysis. As a result, new evidence in favor of the model of the second dominant radical was obtained.

  14. EPR Studies of Spin-Spin Exchange Processes: A Physical Chemistry Experiment.

    Science.gov (United States)

    Eastman, Michael P.

    1982-01-01

    Theoretical background, experimental procedures, and analysis of experimental results are provided for an undergraduate physical chemistry experiment on electron paramagnetic resonance (EPR) linewidths. Source of line broadening observed in a spin-spin exchange process between radicals formed in aqueous solutions of potassium peroxylamine…

  15. Effect of ferroelastic domain pattern changes on the EPR spectra in TDM

    Science.gov (United States)

    Zapart, W.; Zapart, M. B.

    2011-09-01

    This article presents polarized light microscopy studies of the ferroelastic domain structure and the analysis of electron paramagnetic resonance spectra of Cr3+ admixture ions in trigonal double molybdates. The correlation has been found between abnormal EPR lineshape and domain structure in ferroelastic phases of these crystals.

  16. EPR spectroscopy can help with paint pigment provenance

    International Nuclear Information System (INIS)

    Troup, G.J.; Hutton, D.R.

    2000-01-01

    Full text: The microwave magnetic spectroscopic technique EPR can be used to determine the presence of paramagnetic impurities in paint pigments, and the purity of composition regarding the main colourant. Hence EPR can help determine provenance of pigments, just as it can for gemstones. Specimens of Lapis Lazuli (synthetic, Afghanistan, Chile, Greenland) showed quite recognisably different spectra, at room temperature, in a Varian E-12 X-band spectrometer (9.1 GHz frequency). Similarly, specimens of yellow ochre, two imported into Australia, one North Australian, another 95% pure Goethite, showed recognisably different spectra. The North Australian one uniquely gave a known radiation damage signal from quartz, perhaps to be expected, given the abundance of radioactive ores in the region. Further samples have been obtained and the results from these will be reported

  17. Resonance detection of EEG signals using two-layer wavelet analysis

    International Nuclear Information System (INIS)

    Abdallah, H. M; Odeh, F.S.

    2000-01-01

    This paper presents the hybrid quadrature mirror filter (HQMF) algorithm applied to the electroencephalogram (EEG) signal during mental activity. The information contents of this signal, i.e., its medical diagnosis, lie in its power spectral density (PSD). The HQMF algorithm is a modified technique that is based on the shape and the details of the signal. If applied efficiently, the HQMF algorithm will produce much better results than conventional wavelet methods in detecting (diagnosing) the information of the EEG signal from its PSD. This technique is applicable not only to EEG signals, but is highly recommended to compression analysis and de noising techniques. (authors). 16 refs., 9 figs

  18. Incidental magnetic resonance imaging signal changes in the extensor carpi radialis brevis origin are more common with age.

    Science.gov (United States)

    van Leeuwen, Wouter F; Janssen, Stein J; Ring, David; Chen, Neal

    2016-07-01

    Patients with enthesopathy of the extensor carpi radialis brevis (ECRB) demonstrate signal changes on magnetic resonance imaging (MRI). It is likely that these MRI changes persist for many years or may be permanent, regardless of symptoms, and represent an estimation of disease prevalence. We tested the hypothesis that the prevalence of incidental signal changes in the ECRB origin increases with age. We searched MRI reports of 3374 patients who underwent an MRI scan, including the elbow, for signal changes in the ECRB origin. Medical records were reviewed for symptoms consistent with ECRB enthesopathy. Prevalences of incidental and symptomatic signal changes were calculated and stratified by age. We used multivariate logistic regression analysis to test whether age, sex, and race were independently associated with ECRB enthesopathy and calculated odds ratios. Signal changes in ECRB origin were identified on MRI scans of 369 of 3374 patients (11%) without a clinical suspicion of tennis elbow. The prevalence increased from 5.7% in patients aged between 18 and 30 years up to 16% in patients aged 71 years and older. Older age (odds ratio, 1.04; P elbow MRI scans. Increased MRI signal in the ECRB origin is common in symptomatic and in asymptomatic elbows. Our findings support the concept that ECRB enthesopathy is a highly prevalent, self-limited process that seems to affect a minimum of 1 in approximately every 7 people. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  19. Dating by electron paramagnetic resonance

    International Nuclear Information System (INIS)

    Poupeau, G.; Rossi, A.M.

    1984-01-01

    Some natural materials behave like dosimeters in front of the ionizing particle flux coming from environmental radioactivity and the cosmic radiation. This property is used for the dating by Electron Paramagnetic Resonance (EPR). Before presenting the basic principles of the EPR analysis and the dating method which uses such a phenomenous, it is reviewed several types of application currently in course of development. (L.C.) [pt

  20. EPR project construction cost control

    International Nuclear Information System (INIS)

    Duflo, D.; Pouget-Abadie, X.; Dufour, A.; Kauffmann, G.

    2001-01-01

    The EPR project is now managed by EDF in cooperation with the German Utilities. The main engineering activities for this period are related to the preparation of construction project management, deepening of some safety issues, definition of the project technical reference. The EPR project concerns the so-called reference unit, that is an isolated first-off unit, with unit electrical power of about 1500 MW. The construction costs evaluated are those of the nuclear island, the conventional island, site facilities, installation work and the administrative buildings. The EPR project construction cost evaluation method applies to all the equipment installed and commissioned. It requires the availability of a preliminary project detailed enough to identify the bill of quantities. To these quantities are then assigned updated unit prices that are based either on cost bases for similar and recent facilities or taken from request for quotation for similar equipment or result from gains due to contractual conditions benefiting from simplifications in the functional and technical specifications. The input and output data are managed in a model that respects the breakdown on which the evaluation method is based. The structural organization of this method reflects a functional breakdown on the one hand (nuclear island, conventional island, common site elements) and on the other hand a breakdown according to equipment or activity (civil engineering, mechanics, electricity, instrumentation and control). This paper discusses the principle and the method of construction cost evaluation carried out, the cost data base and input and output parameters as well as results and oncoming cost analysis tasks. (author)

  1. EPR and DNP Properties of Certain Novel Single Electron Contrast Agents Intended for Oximetric Imaging

    DEFF Research Database (Denmark)

    Ardenkjær-Larsen, J. H.; Laursen, I; Leunbach, I.

    1998-01-01

    Parameters of relevance to oximetry with Overhauser magnetic resonance imaging (OMRI) have been measured for three single electron contrast agents of the triphenylmethyl type. The single electron contrast agents are stable and water soluble. Magnetic resonance properties of the agents have been...... examined with electron paramagnetic resonance (EPR), nuclear magnetic resonance (NMR), and dynamic nuclear polarization (DNP) at 9.5 mT in water, isotonic saline, plasma, and blood at 23 and 37°C. The relaxivities of the agents are about 0.2–0.4 mM−1s−1and the DNP enhancements extrapolate close...... to the dipolar limit. The agents have a single, narrow EPR line, which is analyzed as a Voigt function. The linewidth is measured as a function of the agent concentration and the oxygen concentration. The concentration broadenings are about 1–3 μT/mM and the Lorentzian linewidths at infinite dilution are less...

  2. Accuracy and effectiveness of self-gating signals in free-breathing three-dimensional cardiac cine magnetic resonance imaging

    International Nuclear Information System (INIS)

    Li Shuo; Gao Song; Wang Lei; Zhu Yan-Chun; Yang Jie; Xie Yao-Qin; Fu Nan; Wang Yi

    2016-01-01

    Conventional multiple breath-hold two-dimensional (2D) balanced steady-state free precession (SSFP) presents many difficulties in cardiac cine magnetic resonance imaging (MRI). Recently, a self-gated free-breathing three-dimensional (3D) SSFP technique has been proposed as an alternative in many studies. However, the accuracy and effectiveness of self-gating signals have been barely studied before. Since self-gating signals are crucially important in image reconstruction, a systematic study of self-gating signals and comparison with external monitored signals are needed.Previously developed self-gated free-breathing 3D SSFP techniques are used on twenty-eight healthy volunteers. Both electrocardiographic (ECG) and respiratory bellow signals are also acquired during the scan as external signals. Self-gating signal and external signal are compared by trigger and gating window. Gating window is proposed to evaluate the accuracy and effectiveness of respiratory self-gating signal. Relative deviation of the trigger and root-mean-square-deviation of the cycle duration are calculated. A two-tailed paired t-test is used to identify the difference between self-gating and external signals. A Wilcoxon signed rank test is used to identify the difference between peak and valley self-gating triggers.The results demonstrate an excellent correlation ( P = 0, R > 0.99) between self-gating and external triggers. Wilcoxon signed rank test shows that there is no significant difference between peak and valley self-gating triggers for both cardiac ( H = 0, P > 0.10) and respiratory ( H = 0, P > 0.44) motions. The difference between self-gating and externally monitored signals is not significant (two-tailed paired-sample t-test: H = 0, P > 0.90).The self-gating signals could demonstrate cardiac and respiratory motion accurately and effectively as ECG and respiratory bellow. The difference between the two methods is not significant and can be explained. Furthermore, few ECG trigger errors

  3. A technique to measure the absorbed dose in human tooth enamel using EPR method

    International Nuclear Information System (INIS)

    Lanjanian, H.; Ziaie, F.; Modarresi, M.; Nikzad, M.; Shahvar, A.; Durrani, S.A.

    2008-01-01

    The EPR spectrum of irradiated tooth enamel contains a multitude of signals that are divided into two categories of radiation-induced and radiation insensitive (native) signals. At lower doses the broad native signal obscures the radiation-induced signal. In this work attempt has been made to find a method to measure the radiation-induced signal other than peak-to-peak signal amplitude measurement. For this reason software was programmed to extract the data from EPR system. The average amplitude of the radiation-induced EPR signal which is defined between the known g-values can also be calculated using the software. The result of this calculations were considered as the EPR response for the tooth enamel samples irradiated from 100 to 500 mGy and was drawn as the calibration curve. The resulted data as compared to the peak-to-peak amplitude measurement method seems to be more reproducible and shows a better variation against the dose values

  4. Nanosecond time-resolved EPR in pulse radiolysis via the spin echo method

    International Nuclear Information System (INIS)

    Trifunac, A.D.; Norris, J.R.; Lawler, R.G.

    1979-01-01

    The design and operation of a time-resolved electron spin echo spectrometer suitable for detecting transient radicals produced by 3 MeV electron radiolysis is described. Two modes of operation are available: Field swept mode which generates a normal EPR spectrum and kinetic mode in which the time dependence of a single EPR line is monitored. Techniques which may be used to minimize the effects of nonideal microwave pulses and overlapping sample tube signals are described. The principal advantages of the spin echo method over other time-resolved EPR methods are: (1) Improved time resolution (presently approx.30--50 nsec) allows monitoring of fast changes in EPR signals of transient radicals, (2) Lower susceptibility to interference between the EPR signal and the electron beam pulse at short times, and (3) Lack of dependence of transient signals on microwave field amplitude or static field inhomogeneity at short times. The performance of the instrument is illustrated using CIDEP from acetate radical formed in pulsed radiolysis of aqueous solutions of potassium acetate. The relaxation time and CIDEP enhancement factor obtained for this radical using the spin echo method compare favorably with previous determinations using direct detection EPR. Radical decay rates yield estimates of initial radical concentrations of 10 -4 10 -3 M per electron pulse. The Bloch equations are solved to give an expression for the echo signal for samples exhibiting CIDEP using arbitrary microwave pulse widths and distributions of Larmor frequencies. Conditions are discussed under which the time-dependent signal would be distorted by deviations from an ideal nonselective 90 0 --tau--180 0 pulse sequence

  5. Overview of LBB implementation for the EPR

    International Nuclear Information System (INIS)

    Cauquelin, C.

    1997-01-01

    This paper presents an overview of the use of leak-before-break (LBB) analysis for EPR reactors. EPR is an evolutionary Nuclear Island of the 4 loop x 1500 Mwe class currently in the design phase. Application of LBB to the main coolant lines and resulting design impacts are summarized. Background information on LBB analysis in France and Germany is also presented

  6. Overview of LBB implementation for the EPR

    Energy Technology Data Exchange (ETDEWEB)

    Cauquelin, C.

    1997-04-01

    This paper presents an overview of the use of leak-before-break (LBB) analysis for EPR reactors. EPR is an evolutionary Nuclear Island of the 4 loop x 1500 Mwe class currently in the design phase. Application of LBB to the main coolant lines and resulting design impacts are summarized. Background information on LBB analysis in France and Germany is also presented.

  7. Validation of brain-derived signals in near-infrared spectroscopy through multivoxel analysis of concurrent functional magnetic resonance imaging.

    Science.gov (United States)

    Moriguchi, Yoshiya; Noda, Takamasa; Nakayashiki, Kosei; Takata, Yohei; Setoyama, Shiori; Kawasaki, Shingo; Kunisato, Yoshihiko; Mishima, Kazuo; Nakagome, Kazuyuki; Hanakawa, Takashi

    2017-10-01

    Near-infrared spectroscopy (NIRS) is a convenient and safe brain-mapping tool. However, its inevitable confounding with hemodynamic responses outside the brain, especially in the frontotemporal head, has questioned its validity. Some researchers attempted to validate NIRS signals through concurrent measurements with functional magnetic resonance imaging (fMRI), but, counterintuitively, NIRS signals rarely correlate with local fMRI signals in NIRS channels, although both mapping techniques should measure the same hemoglobin concentration. Here, we tested a novel hypothesis that different voxels within the scalp and the brain tissues might have substantially different hemoglobin absorption rates of near-infrared light, which might differentially contribute to NIRS signals across channels. Therefore, we newly applied a multivariate approach, a partial least squares regression, to explain NIRS signals with multivoxel information from fMRI within the brain and soft tissues in the head. We concurrently obtained fMRI and NIRS signals in 9 healthy human subjects engaging in an n-back task. The multivariate fMRI model was quite successfully able to predict the NIRS signals by cross-validation (interclass correlation coefficient = ∼0.85). This result confirmed that fMRI and NIRS surely measure the same hemoglobin concentration. Additional application of Monte-Carlo permutation tests confirmed that the model surely reflects temporal and spatial hemodynamic information, not random noise. After this thorough validation, we calculated the ratios of the contributions of the brain and soft-tissue hemodynamics to the NIRS signals, and found that the contribution ratios were quite different across different NIRS channels in reality, presumably because of the structural complexity of the frontotemporal regions. Hum Brain Mapp 38:5274-5291, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  8. EPR meeting international safety standards with margin

    International Nuclear Information System (INIS)

    Mazurkiewicz, S.M.; Brauns, J.; Blombach, J.

    2005-01-01

    The EPR provides technology that offers a solution to the market's need for safe, economic power. The EPR was originally developed through a joint effort between Framatome ANP and Siemens by incorporating the best technological features from the French and German nuclear reactor fleets into a cost-competitive product capable of international licensing. As such, the EPR is a global product with commercial units currently being built in Finland at the Olkiluoto site, and planned for France, at the Flamanville site. Framatome ANP has recently proposed four EPR units to China in response to a request for vendor bids. In addition, Framatome ANP has announced their intent to pursue design certification with the United States Nuclear Regulatory Commission (NRC). This paper discusses how EPR's innovative safety philosophy ensures compliance with international safety standards for advanced light-water reactors (ALWRs). (author)

  9. EPR meeting international safety standards with margin

    International Nuclear Information System (INIS)

    Mazurkiewicz, S.M.; Brauns, J.; Blombach, J.

    2005-01-01

    The EPR provides technology that offers a solution to the market's need for safe, economic power. The EPR was originally developed through a joint effort between Framatome ANP and Siemens by incorporating the best technological features from the French and German nuclear reactor fleets into a cost-competitive product capable of international licensing. As such, the EPR is a global product with commercial units currently being built in Finland at the Olkiluoto site, and planned for France, at the Flamanville site. Framatome ANP has recently proposed four EPR units to China in response to a request for vendor bids. In addition, Framatome ANP has announced their intent to pursue design certification in with the United States Nuclear Regulatory Commission (NRC). This paper discusses how EPR's innovative safety philosophy ensures compliance with international safety standards for advanced light-water reactors (ALWRs). (author)

  10. Alanine-EPR as a transfer standard dosimetry system for low energy X radiation

    International Nuclear Information System (INIS)

    Khoury, H.J.; Silva, E.J. da; Mehta, K.; Barros, V.S. de; Asfora, V.K.; Guzzo, P.L.; Parker, A.G.

    2015-01-01

    The purpose of this paper is to evaluate the use of alanine-EPR as a transfer standard dosimetry system for low energy X radiation, such as that in RS-2400, which operates in the range from 25 to 150 kV and 2 to 45 mA. Two types of alanine dosimeters were investigated. One is a commercial alanine pellets from Aérial-Centre de Ressources Technologiques, France and one was prepared in our laboratory (LMRI-DEN/UFPE). The EPR spectra of the irradiated dosimeters were recorded in the Nuclear Energy Department of UFPE, using a Bruker EMX10 EPR spectrometer operating in the X-band. The alanine-EPR dosimetry system was calibrated in the range of 20–220 Gy in this X-ray field, against an ionization chamber calibrated at the relevant X-ray energy with traceability to PTB. The results showed that both alanine dosimeters presented a linear dose response the same sensitivity, when the EPR signal was normalized to alanine mass. The total uncertainty in the measured dose was estimated to be about 3%. The results indicate that it is possible to use the alanine-EPR dosimetry system for validation of a low-energy X ray irradiator, such as RS-2400.

  11. Electron Paramagnetic Resonance Imaging

    Indian Academy of Sciences (India)

    Twentieth century bore witness to remarkable scientists whohave advanced our understanding of the brain. Among them,EPR (Electron Paramagnetic Resonance) imaging is particularlyuseful in monitoring hypoxic zones in tumors which arehighly resistant to radiation and chemotherapeutic treatment.This first part of the ...

  12. A microwave resonator for limiting depth sensitivity for electron paramagnetic resonance spectroscopy of surfaces.

    Science.gov (United States)

    Sidabras, Jason W; Varanasi, Shiv K; Mett, Richard R; Swarts, Steven G; Swartz, Harold M; Hyde, James S

    2014-10-01

    A microwave Surface Resonator Array (SRA) structure is described for use in Electron Paramagnetic Resonance (EPR) spectroscopy. The SRA has a series of anti-parallel transmission line modes that provides a region of sensitivity equal to the cross-sectional area times its depth sensitivity, which is approximately half the distance between the transmission line centers. It is shown that the quarter-wave twin-lead transmission line can be a useful element for design of microwave resonators at frequencies as high as 10 GHz. The SRA geometry is presented as a novel resonator for use in surface spectroscopy where the region of interest is either surrounded by lossy material, or the spectroscopist wishes to minimize signal from surrounding materials. One such application is in vivo spectroscopy of human finger-nails at X-band (9.5 GHz) to measure ionizing radiation dosages. In order to reduce losses associated with tissues beneath the nail that yield no EPR signal, the SRA structure is designed to limit depth sensitivity to the thickness of the fingernail. Another application, due to the resonator geometry and limited depth penetration, is surface spectroscopy in coating or material science. To test this application, a spectrum of 1.44 μM of Mg(2+) doped polystyrene 1.1 mm thick on an aluminum surface is obtained. Modeling, design, and simulations were performed using Wolfram Mathematica (Champaign, IL; v. 9.0) and Ansys High Frequency Structure Simulator (HFSS; Canonsburg, PA; v. 15.0). A micro-strip coupling circuit is designed to suppress unwanted modes and provide a balanced impedance transformation to a 50 Ω coaxial input. Agreement between simulated and experimental results is shown.

  13. A microwave resonator for limiting depth sensitivity for electron paramagnetic resonance spectroscopy of surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Sidabras, Jason W.; Varanasi, Shiv K.; Hyde, James S. [Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53211 (United States); Mett, Richard R. [Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53211 (United States); Department of Physics and Chemistry, Milwaukee School of Engineering, Milwaukee, Wisconsin 53202 (United States); Swarts, Steven G. [Department of Radiation Oncology, University of Florida, Gainesville, Florida, 32610 (United States); Swartz, Harold M. [Department of Radiology, Geisel Medical School at Dartmouth, Hanover, New Hampshire 03755 (United States)

    2014-10-15

    A microwave Surface Resonator Array (SRA) structure is described for use in Electron Paramagnetic Resonance (EPR) spectroscopy. The SRA has a series of anti-parallel transmission line modes that provides a region of sensitivity equal to the cross-sectional area times its depth sensitivity, which is approximately half the distance between the transmission line centers. It is shown that the quarter-wave twin-lead transmission line can be a useful element for design of microwave resonators at frequencies as high as 10 GHz. The SRA geometry is presented as a novel resonator for use in surface spectroscopy where the region of interest is either surrounded by lossy material, or the spectroscopist wishes to minimize signal from surrounding materials. One such application is in vivo spectroscopy of human finger-nails at X-band (9.5 GHz) to measure ionizing radiation dosages. In order to reduce losses associated with tissues beneath the nail that yield no EPR signal, the SRA structure is designed to limit depth sensitivity to the thickness of the fingernail. Another application, due to the resonator geometry and limited depth penetration, is surface spectroscopy in coating or material science. To test this application, a spectrum of 1.44 μM of Mg{sup 2+} doped polystyrene 1.1 mm thick on an aluminum surface is obtained. Modeling, design, and simulations were performed using Wolfram Mathematica (Champaign, IL; v. 9.0) and Ansys High Frequency Structure Simulator (HFSS; Canonsburg, PA; v. 15.0). A micro-strip coupling circuit is designed to suppress unwanted modes and provide a balanced impedance transformation to a 50 Ω coaxial input. Agreement between simulated and experimental results is shown.

  14. EPR and rheological study of hybrid interfaces in gold-clay-epoxy nanocomposites.

    Science.gov (United States)

    Angelov, Verislav; Velichkova, Hristiana; Ivanov, Evgeni; Kotsilkova, Rumiana; Delville, Marie-Hélène; Cangiotti, Michela; Fattori, Alberto; Ottaviani, Maria Francesca

    2014-11-11

    With the aim to obtain new materials with special properties to be used in various industrial and biomedical applications, ternary "gold-clay-epoxy" nanocomposites and their nanodispersions were prepared using clay decorated with gold nanoparticles (AuNPs), at different gold contents. Nanocomposites structure was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Rheology and electron paramagnetic resonance (EPR) techniques were used in order to evaluate the molecular dynamics in the nanodispersions, as well as dynamics at interfaces in the nanocomposites. The percolation threshold (i.e., the filler content related to the formation of long-range connectivity of particles in the dispersed media) of the gold nanoparticles was determined to be ϕp = 0.6 wt % at a fixed clay content of 3 wt %. The flow activation energy and the relaxation time spectrum illustrated the presence of interfacial interactions in the ternary nanodispersions around and above the percolation threshold of AuNPs; these interfacial interactions suppressed the global molecular dynamics. It was found that below ϕp the free epoxy polymer chains ratio dominated over the chains attracted on the gold surfaces; thus, the rheological behavior was not significantly changed by the presence of AuNPs. While, around and above ϕp, the amount of the bonded epoxy polymer chains on the gold surface was much higher than that of the free chains; thus, a substantial increase in the flow activation energy and shift in the spectra to higher relaxation times appeared. The EPR signals of the nanocomposites depended on the gold nanoparticle contents and the preparation procedure thus providing a fingerprint of the different nanostructures. The EPR results from spin probes indicated that the main effect of the gold nanoparticles above ϕp, was to form a more homogeneous, viscous and polar clay-epoxy mixture at the nanoparticle surface. The knowledge

  15. EPR dosimetry of teeth in past and future accidents: a prospective look at a retrospective method

    Energy Technology Data Exchange (ETDEWEB)

    Haskell, E.H.; Kenner, G.H.; Hayes, R.B. [Utah Univ., Salt Lake City, UT (United States). Center for Applied Dosimetry; Chumak, V.; Shalom, S. [All-Union Scientific Centre of Radiation Medicine, Kiev (Ukraine)

    1996-01-01

    Electron paramagnetic resonance spectroscopy (EPR) of tooth enamel is a relatively new technique for retrospective dosimetry that in the past two years has seen increasing effort towards its development and evaluation. Efforts have centered on determining the accuracy which may be achieved with current measurement techniques as well as the minimum doses detectable. The study was focused on evaluating some factors which influence the accuracy of EPR dosimetry of enamel. Reported are studies on sample intercomparisions, instrumental considerations, and effects of dental x-rays, environmental sunlight and ultraviolet radiation.

  16. EPR dosimetry of teeth in past and future accidents: a prospective look at a retrospective method

    International Nuclear Information System (INIS)

    Haskell, E.H.; Kenner, G.H.; Hayes, R.B.

    1996-01-01

    Electron paramagnetic resonance spectroscopy (EPR) of tooth enamel is a relatively new technique for retrospective dosimetry that in the past two years has seen increasing effort towards its development and evaluation. Efforts have centered on determining the accuracy which may be achieved with current measurement techniques as well as the minimum doses detectable. The study was focused on evaluating some factors which influence the accuracy of EPR dosimetry of enamel. Reported are studies on sample intercomparisions, instrumental considerations, and effects of dental x-rays, environmental sunlight and ultraviolet radiation

  17. Concurrent Longitudinal EPR Monitoring of Tissue Oxygenation, Acidosis, and Reducing Capacity in Mouse Xenograft Tumor Models.

    Science.gov (United States)

    Bobko, Andrey A; Evans, Jason; Denko, Nicholas C; Khramtsov, Valery V

    2017-06-01

    Tissue oxygenation, extracellular acidity, and tissue reducing capacity are among crucial parameters of tumor microenvironment (TME) of significant importance for tumor pathophysiology. In this paper, we demonstrate the complementary application of particulate lithium octa-n-butoxy-naphthalocyanine and soluble nitroxide paramagnetic probes for monitoring of these TME parameters using electron paramagnetic resonance (EPR) technique. Two different types of therapeutic interventions were studied: hypothermia and systemic administration of metabolically active drug. In summary, the results demonstrate the utility of EPR technique for non-invasive concurrent longitudinal monitoring of physiologically relevant chemical parameters of TME in mouse xenograft tumor models, including that under therapeutic intervention.

  18. Validating and analyzing EPR hyperfine coupling constants with density functional theory

    DEFF Research Database (Denmark)

    Hedegård, Erik D.; Kongsted, Jacob; Sauer, Stephan P. A.

    2013-01-01

    Electron Paramagnetic Resonance (EPR) is a central spectroscopic technique for compounds with non-zero spin. The effective parameters from the EPR spin-Hamiltonian can today be calculated from rst principles using quantum chemical methods. We focus here on the hyperne coupling tensor, A, which....... Unfortunately both organometallic and traditional coordination complexes show a completely different behavior, where the core contributions to AKiso either are comparable (“class 2”) or far exceed (“class 3”) the contributions from the frontier orbitals. Agreement with experiment can for these complexes only...

  19. Detection by EPR method of radiation treatment in dried fruits containing crystalline sugar

    International Nuclear Information System (INIS)

    Lehner, K.; Stachowicz, W.

    2006-01-01

    The results of EPR (electron paramagnetic resonance) measurements are presented on the detection ability and stability of radiation induced sugar-born radicals in the samples of dried (dehydrated) fruits available in the market and related to doses of 0.5, 1 and 3 kGy, respectively. The experiments have been conducted during 12 months of storage. Measurements were done with an EPR - 10 MINI spectrometer in X band (frequency of microwaves 9.5 GHz), St. Petersburg Instruments Ltd. The aim of the work was to prove the reliability of acceptability of the method in routine control of irradiated food. (author)

  20. EPR dosimetry - present and future

    International Nuclear Information System (INIS)

    Regulla, D.F.

    1999-01-01

    In the past, IAEA has played a central role in stipulating research and development in EPR high-dose standardisation as well as co-ordinating and organising international dose intercomparison programs, within the Member States of the United Nations from the mid-seventies till today. The future tasks of EPR dosimetry seem to tend towards different subjects such as biomarkers, biological radiation effects, post-accident dose reconstruction in the environment, and retrospective human dosimetry. The latter may be considered a promising tool for epidemiology on the way to re-define radiation risk of man for chronicle radiation exposures, based on e.g. South Ural civil population and radiation workers. There are on-going international activities in the field of standardising high-level dosimetry by the American Standards on Testing and Materials (ASTM), and the International Organisation of Standards (ISO) as well as those of the International Commission on Radiation Units and Measurements (ICRU) considering the establishment of relevant recommendations concerning industrial radiation processing, but also human dose reconstruction. (author)