WorldWideScience

Sample records for resonance anions electron

  1. Structure Determination of Anionic Metal Clusters via Infrared Resonance Enhanced Multiple Photon Electron Detachment Spectroscopy

    NARCIS (Netherlands)

    Haertelt, M.; Lapoutre, V. J. F.; Bakker, J. M.; Redlich, B.; Harding, D. J.; Fielicke, A.; Meijer, G.

    2011-01-01

    We report vibrational spectra of anionic metal clusters, measured via electron detachment following resonant absorption of multiple infrared photons. To facilitate the sequential absorption of the required large number of photons, the cluster beam interacts with the infrared radiation inside the

  2. First observation of alkyne radical anions by electron spin resonance spectroscopy: Hexyne/n-hexane mixed crystals

    International Nuclear Information System (INIS)

    Matsuura, K.; Muto, H.

    1991-01-01

    The radical anions of alkynes have been first observed by electron spin resonance spectroscopy following alkene anions previously studied. Hexyne radical anions were formed in 1-, 2-, or 3-hexyne/n--hexane mixed crystals irradiated at 4.2 or 77 K. The characters of the anions were as follows; (a) the α-proton hyperfine coupling is very large (∼4.5 mT for the 1-hexyne anion), (b) the β-proton couplings are very small (∼1.0 mT for C--H β proton with the conformational angle of 0 degree), and (c) the radicals show a negative g shift (2.0014). From these observations, it was found that the anions have a nonlinear(bent) molecule structure in the anticonfiguration (trans C--C≡C--C) with the bend angle ∼60 degree, and that the unpaired electron orbital is approximately composed of the anticombination of the sp 2 hybrid orbitals of the C≡C carbon atoms. A discussion based on complete neglect of differential overlap (CNDO) molecular orbital (MO) calculations was given for the observed negative g shift, which was shown to be characteristic of the alkyne anions which have a high-lying unpaired electron orbital and an antibonding 2p--2p π carbon orbital just above it on the upper energy side

  3. The strong influence of the solvent on the electron spin resonance spectra of semiquinone radical anions

    DEFF Research Database (Denmark)

    Spanget-Larsen, Jens

    2013-01-01

    ). The proton hyperfine constants predicted for the chrysazin semiquinone radical anion were highly sensitive to the assumed dielectric constant ε of the solvent continuum, inverting the relative magnitudes of the hyperfine constants and thereby leading to agreement with the observed data published by Stegmann...

  4. Free radicals in an adamantane matrix. XIII. Electron paramagnetic resonance study of sigma* - π* orbital crossover in fluorinated pyridine anions

    International Nuclear Information System (INIS)

    Yim, M.B.; DiGregorio, S.; Wood, D.E.

    1977-01-01

    Pentafluoropyridine,2,3,4,6-tetrafluoropyridine, 2,6-difluoropyridine, and 2-fluoropyridine anion radicals were produced by x irradiation of an adamantane matrix which was doubly doped with the aromatic precursors and Me 3 NBH 3 and their EPR spectra obtained. The large fluorine hyperfine splitting constants (hfsc) of penta- and 2,3,4,6-tetrafluoropyridine anions and the small fluorine hfsc's of 2,6-di- and 2-fluoropyridine anions suggest that the former two are sigma radicals while the latter two are π radicals. The sigma*-π* orbital crossover phenomenon observed in these fluorinated pyridine anions is explained in terms of the combined effects of stabilization of sigma* orbitals and destabilization of π* orbitals. The EPR results show that nitrogen has a negligible contribution to the unpaired electron sigma* orbitals. INDO calculations were performed for the various states and the results compared with experiment

  5. Electron spin resonance and optical studies on the radiolysis of carbon tetrachloride. II. Structure and reaction of CClṡ-4 radical anion in tetramethylsilane low-temperature solids

    Science.gov (United States)

    Muto, Hachizo; Nunome, Keichi

    1991-04-01

    An electron spin resonance (ESR) and optical study of carbon tetrachloride radical anion has been made to provide for a better understanding of the radiolysis of CCl4, following CClṡ+4 cation previously studied. It was found that the anion was metastably trapped in tetramethylsilane (TMS) matrices γ irradiated at 4 or 77 K. The g tensor and the hyperfine coupling tensors of all atoms of the radical were determined from ESR spectral simulation by using 12 CCl4 and the 13C enriched compound: g∥=2.004-5, g1=2.015,(A∥,A⊥) =(24.3,18.3) mT for 13C, (0.9, 0.2) mT for one 35Cl atom, and (A1,A2=A3)=(1.98,0.45) mT for the other three equivalent 35Cl atoms. From these parameters and a consideration on the g anisotropy combined with the optical data, the anion was found to have a predissociating molecular structure (CCl3ṡṡṡCl) ˙- with C3v symmetry, where the unpaired electron occupies A*1γ antibonding orbital. The carbon atom has a large spin density and near sp3 hybridization: ρp=0.62, ρs=0.18, ρp/ρs=3.4, and three Cl atoms and the other Cl atom have the spin densities ρp=0.10 and ρp=0.05, respectively. The species had two optical absorptions at λmax=265 and 370 nm which were assigned to the Eγ-A*1γ and A1γ-A*1γ electronic transitions, respectively. The anion converted to CCl ṡ3 radical by warming to ˜150 K in the TMS matrix. The present results have given unequivocal ESR and optical spectroscopic evidence and support for the assignment of the 370 nm band reported in the radiolyses of organic solutions containing CCl4.

  6. Electron paramagnetic resonance

    CERN Document Server

    Al'tshuler, S A

    2013-01-01

    Electron Paramagnetic Resonance is a comprehensive text on the field of electron paramagnetic resonance, covering both the theoretical background and the results of experiment. This book is composed of eight chapters that cover theoretical materials and experimental data on ionic crystals, since these are the materials that have been most extensively studied by the methods of paramagnetic resonance. The opening chapters provide an introduction to the basic principles of electron paramagnetic resonance and the methods of its measurement. The next chapters are devoted to the theory of spectra an

  7. Electron Paramagnetic Resonance Spectroscopy

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 11. Electron Paramagnetic Resonance Spectroscopy: Biological Applications. B G Hegde. General Article Volume 20 Issue 11 November 2015 pp 1017-1032. Fulltext. Click here to view fulltext PDF. Permanent link:

  8. Electron Paramagnetic Resonance Imaging

    Indian Academy of Sciences (India)

    Twentieth century bore witness to remarkable scientists whohave advanced our understanding of the brain. Among them,EPR (Electron Paramagnetic Resonance) imaging is particularlyuseful in monitoring hypoxic zones in tumors which arehighly resistant to radiation and chemotherapeutic treatment.This first part of the ...

  9. On the effect of image states on resonant neutralization of hydrogen anions near metal surfaces

    International Nuclear Information System (INIS)

    Chakraborty, Himadri S.; Niederhausen, Thomas; Thumm, Uwe

    2005-01-01

    We directly assess the role of image state electronic structures on the ion-survival by comparing the resonant charge transfer dynamics of hydrogen anions near Pd(1 1 1), Pd(1 0 0), and Ag(1 1 1) surfaces. Our simulations show that image states that are degenerate with the metal conduction band favor the recapture of electrons by outgoing ions. In sharp contrast, localized image states that occur inside the band gap hinder the recapture process and thus enhance the ion-neutralization probability

  10. (100) faceted anion voids in electron irradiated fluorite

    International Nuclear Information System (INIS)

    Johnson, E.

    1979-01-01

    High fluence electron irradiation of fluorite crystals in the temperature range 150 to 320 K results in formation of a simple cubic anion void superlattice. Above 320 K the damage structure changes to a random distribution of large [001] faceted anion voids. This voidage behaviour, similar to that observed in a range of irradiated metals, is discussed in terms points defect rather than conventional colour centre terminology. (Auth.)

  11. Electron spin resonance

    International Nuclear Information System (INIS)

    Wasson, J.R.; Salinas, J.E.

    1980-01-01

    Published literature concerning electron spin resonance (ESR) from July 1977 to July 1979 is reviewed. The 108 literature sources cited were chosen from literally thousands and are intended to serve as a guide to the current literature and to provide an eclectic selection of publications cited for their contributions to the advance and/or applications of ESR spectroscopy. 40 of the sources are reviews, and a table is included to indicate the topic(s) mainly covered in each review. Other divisions of the material reviewed are apparatus and spectral analysis, analytical applications, and selected paramagnetic materials

  12. Introducing various ligands into superhalogen anions reduces their electronic stabilities

    Science.gov (United States)

    Smuczyńska, Sylwia; Skurski, Piotr

    2008-02-01

    The vertical electron detachment energies (VDE) of six NaX2- anions (where X = F, Cl, Br) were calculated at the OVGF level with the 6-311++G(3df) basis sets. In all the cases studied the VDE exceeds the electron affinity of chlorine atom and thus those species were classified as superhalogen anions. The largest vertical binding energy was found for the NaF2- system (6.644 eV). The strong VDE dependence on the ligand type, ligand-central atom distance, and the character of the highest occupied molecular orbital (HOMO) was observed and discussed.

  13. Benzonitrile: Electron affinity, excited states, and anion solvation

    Science.gov (United States)

    Dixon, Andrew R.; Khuseynov, Dmitry; Sanov, Andrei

    2015-10-01

    We report a negative-ion photoelectron imaging study of benzonitrile and several of its hydrated, oxygenated, and homo-molecularly solvated cluster anions. The photodetachment from the unsolvated benzonitrile anion to the X ˜ 1 A 1 state of the neutral peaks at 58 ± 5 meV. This value is assigned as the vertical detachment energy (VDE) of the valence anion and the upper bound of adiabatic electron affinity (EA) of benzonitrile. The EA of the lowest excited electronic state of benzonitrile, a ˜ 3 A 1 , is determined as 3.41 ± 0.01 eV, corresponding to a 3.35 eV lower bound for the singlet-triplet splitting. The next excited state, the open-shell singlet A ˜ 1 A 1 , is found about an electron-volt above the triplet, with a VDE of 4.45 ± 0.01 eV. These results are in good agreement with ab initio calculations for neutral benzonitrile and its valence anion but do not preclude the existence of a dipole-bound state of similar energy and geometry. The step-wise and cumulative solvation energies of benzonitrile anions by several types of species were determined, including homo-molecular solvation by benzonitrile, hydration by 1-3 waters, oxygenation by 1-3 oxygen molecules, and mixed solvation by various combinations of O2, H2O, and benzonitrile. The plausible structures of the dimer anion of benzonitrile were examined using density functional theory and compared to the experimental observations. It is predicted that the dimer anion favors a stacked geometry capitalizing on the π-π interactions between the two partially charged benzonitrile moieties.

  14. Transverse electron resonance accelerator

    International Nuclear Information System (INIS)

    Osonka, P.L.

    1985-01-01

    Transverse (to the velocity, v-bar, of the particles to be accelerated) electron oscillations are generated in high (e.g. solid) density plasms by either an electromagnetic wave or by the field of charged particles traveling parallel to v-bar. The generating field oscillates with frequency ω = ω/sub p/, where ω/sub p/ is the plasma frequency. The plasma is confined to a sequence of microstructures with typical dimensions of d≅2πc/ω/sub p/, allowing the generating fields to penetrate. Since ω/sub p/ is now high, the time scales, T, are correspondingly reduced. The microstructures are allowed to explode after t = T, until then they are confined by ion inertia. As a result of resonance, the electric field, E, inside the microstructures can exceed the generating field E/sub L/. The generating force is proportional to E/sub L/ (as opposed to E 2 /sub L/). Phase matching of particles is possible by appropriate spacing of the microstructures or by a gas medium. The generating beam travels outside the plasma, filamentation is not a problem. The mechanism is relatively insensitive to the exact shape and position of the microstructures. This device contains features of various earlier proposed acceleration mechanisms and may be considered as the limiting case of several of those for small d, T and high E

  15. Transverse electron resonance accelerator

    International Nuclear Information System (INIS)

    Csonka, P.L.

    1985-01-01

    Transverse (to the velocity, v, of the particles to be accelerated) electron oscillations are generated in high (e.g. solid) density plasmas by either an electromagnetic wave or by the field of charged particles traveling parallel to v. The generating field oscillates with frequency ω = ω/sub p/, where ω/sub p/ is the plasma frequency. The plasma is confined to a sequence of microstructures with typical dimensions of d approx. = 2πc/ω/sub p/, allowing the generating fields to penetrate. Since ω/sub p/ is now high, the time scales, T, are correspondingly reduced. The microstructures are allowed to explode after t = T, until then they are confined by ion inertia. As a result of resonance, the electric field, E, inside the microstructures can exceed the generating field E/sub L/. The generating force is proportional to E/sub L/ (as opposed to E/sub L/ 2 ). Phase matching of particles is possible by appropriate spacing of the microstructures or by a gas medium. The generating beam travels outside the plasma, filamentation is not a problem. The mechanism is relatively insensitive to the exact shape and position of the microstructures. This device contains features of various earlier proposed acceleration mechanisms and may be considered as the limiting case of several of those for small d, T and high E

  16. Microstrip resonators for electron paramagnetic resonance experiments

    Science.gov (United States)

    Torrezan, A. C.; Mayer Alegre, T. P.; Medeiros-Ribeiro, G.

    2009-07-01

    In this article we evaluate the performance of an electron paramagnetic resonance (EPR) setup using a microstrip resonator (MR). The design and characterization of the resonator are described and parameters of importance to EPR and spin manipulation are examined, including cavity quality factor, filling factor, and microwave magnetic field in the sample region. Simulated microwave electric and magnetic field distributions in the resonator are also presented and compared with qualitative measurements of the field distribution obtained by a perturbation technique. Based on EPR experiments carried out with a standard marker at room temperature and a MR resonating at 8.17 GHz, the minimum detectable number of spins was found to be 5×1010 spins/GHz1/2 despite the low MR unloaded quality factor Q0=60. The functionality of the EPR setup was further evaluated at low temperature, where the spin resonance of Cr dopants present in a GaAs wafer was detected at 2.3 K. The design and characterization of a more versatile MR targeting an improved EPR sensitivity and featuring an integrated biasing circuit for the study of samples that require an electrical contact are also discussed.

  17. Microstrip resonators for electron paramagnetic resonance experiments.

    Science.gov (United States)

    Torrezan, A C; Mayer Alegre, T P; Medeiros-Ribeiro, G

    2009-07-01

    In this article we evaluate the performance of an electron paramagnetic resonance (EPR) setup using a microstrip resonator (MR). The design and characterization of the resonator are described and parameters of importance to EPR and spin manipulation are examined, including cavity quality factor, filling factor, and microwave magnetic field in the sample region. Simulated microwave electric and magnetic field distributions in the resonator are also presented and compared with qualitative measurements of the field distribution obtained by a perturbation technique. Based on EPR experiments carried out with a standard marker at room temperature and a MR resonating at 8.17 GHz, the minimum detectable number of spins was found to be 5 x 10(10) spins/GHz(1/2) despite the low MR unloaded quality factor Q0=60. The functionality of the EPR setup was further evaluated at low temperature, where the spin resonance of Cr dopants present in a GaAs wafer was detected at 2.3 K. The design and characterization of a more versatile MR targeting an improved EPR sensitivity and featuring an integrated biasing circuit for the study of samples that require an electrical contact are also discussed.

  18. Electron Cyclotron Resonances in Electron Cloud Dynamics

    International Nuclear Information System (INIS)

    Celata, Christine; Celata, C.M.; Furman, Miguel A.; Vay, J.-L.; Yu, Jennifer W.

    2008-01-01

    We report a previously unknown resonance for electron cloud dynamics. The 2D simulation code 'POSINST' was used to study the electron cloud buildup at different z positions in the International Linear Collider positron damping ring wiggler. An electron equilibrium density enhancement of up to a factor of 3 was found at magnetic field values for which the bunch frequency is an integral multiple of the electron cyclotron frequency. At low magnetic fields the effects of the resonance are prominent, but when B exceeds ∼(2 pi mec/(elb)), with lb = bunch length, effects of the resonance disappear. Thus short bunches and low B fields are required for observing the effect. The reason for the B field dependence, an explanation of the dynamics, and the results of the 2D simulations and of a single-particle tracking code used to elucidate details of the dynamics are discussed

  19. Vibrational Fano resonances in the photodetachment of dipole-bound anions

    International Nuclear Information System (INIS)

    Edwards, Stephen T; Tully, John C; Johnson, Mark A

    2012-01-01

    A simple model for the photodetachment of dipole-bound anions is proposed where non-adiabatic coupling of vibrational states leads to a Fano resonance in the spectrum. It is found that the shape of the photodetachment spectrum depends significantly on the parameter representing molecular polarizability. The model is also applied to a Fano profile observed in the photodetachment of small water cluster anions.

  20. Low-energy electron-induced dissociation in condensed-phase L-cysteine I: Desorption of anions from chemisorbed films

    International Nuclear Information System (INIS)

    Alizadeh, E; Rowntree, P A; Massey, S; Sanche, L

    2015-01-01

    Among amino acids, cysteine has been widely studied, becoming a standard for molecular self-assembly experiments, because its mercapto group (-SH) allows the formation of self-assembled monolayers (SAMs) on metal surfaces. Dissociative electron attachment (DEA) on L-cysteine SAMs is investigated utilizing a time-of-flight mass spectrometer coupled with a low-energy electron gun. The results show that electrons with kinetic energies of 3 to 15 eV attach to L-cysteine producing anionic fragments of different masses (e.g., H - , O - , OH - , S - , SH - ) via dissociation of intermediate transient anions. The anion yield functions exhibited purely resonant behaviour with electron energies below 15 eV, indicating that the formation of transient anions is the predominant mechanism of production of anionic fragments from L-cysteine dissociation. (paper)

  1. Anion

    Directory of Open Access Journals (Sweden)

    A. Vadivel Murugan

    2003-01-01

    . Its characterization is investigated by Fourier Transform Infrared Spectroscopy (FT-IR and Scanning Electron Microscopy (SEM. The hybrid material presents predominantly high electronic conductivities of around 2.0 and 7.0 S cm-1 at 300 and 400K respectively.

  2. Positron Spur Reactions with Excess Electrons and Anions in Liquid Organic Mixtures of Electron Acceptors

    DEFF Research Database (Denmark)

    Lévay, B.; Mogensen, O. E.

    1980-01-01

    By means of the positron lifetime technique we have measured positronium (Ps) yields in mixtures of nonpolar liquids with various electron scavengers which bind the electron fairly weakly (1–2 eV) in stable anions. The results are discussed with reference to recent excess electron works, and new...... experiments on anions and excess electrons are proposed. The minimum of the Ps yield versus CS2 concentration curves caused by partly delocalization of electrons on several scavenger molecules, which was observed previously in saturated aliphatic hydrocarbons occurred also in the saturated cyclic hydrocarbon...... cyclohexane, but did not appear in the aromatic benzene. This might be explained by the weak electron acceptor property of aromatics. In the Ps yield versus SF6 concentration curve in hexane a similar minimum appeared as in the CS2 case, probably by the same reason. By adding 0.8 M CS2 to the system...

  3. Resonance Raman Spectra of the Transient Cl2 and Br2 Radical Anions

    DEFF Research Database (Denmark)

    Wilbrandt, Robert Walter; Jensen, Niels-Henrik; Sillesen, Alfred Hegaard

    1984-01-01

    The resonance Raman spectra of the short-lived radical anions ClImage 2− and BrImage − in aqueous solution are reported. The observed wavenumbers of 279 cm−1 for ClImage − and 177 cm−1 for BrImage − are about 10% higher than those published for the corresponding species isolated in solid argon ma...

  4. Dating by electron paramagnetic resonance

    International Nuclear Information System (INIS)

    Poupeau, G.; Rossi, A.M.

    1984-01-01

    Some natural materials behave like dosimeters in front of the ionizing particle flux coming from environmental radioactivity and the cosmic radiation. This property is used for the dating by Electron Paramagnetic Resonance (EPR). Before presenting the basic principles of the EPR analysis and the dating method which uses such a phenomenous, it is reviewed several types of application currently in course of development. (L.C.) [pt

  5. Resonant tunneling of electrons in quantum wires

    International Nuclear Information System (INIS)

    Krive, I.V.; Shekhter, R.I.; Jonson, M.; Krive, I.V.

    2010-01-01

    We considered resonant electron tunneling in various nanostructures including single wall carbon nanotubes, molecular transistors and quantum wires formed in two-dimensional electron gas. The review starts with a textbook description of resonant tunneling of noninteracting electrons through a double-barrier structure. The effects of electron-electron interaction in sequential and resonant electron tunneling are studied by using Luttinger liquid model of electron transport in quantum wires. The experimental aspects of the problem (fabrication of quantum wires and transport measurements) are also considered. The influence of vibrational and electromechanical effects on resonant electron tunneling in molecular transistors is discussed.

  6. Resonance Raman Spectrum of the Transient (SCN)2 Free Radical Anion

    DEFF Research Database (Denmark)

    Wilbrandt, Robert Walter; Jensen, N. H.; Pagsberg, Palle Bjørn

    1979-01-01

    The resonance Raman spectrum of the transient species (λmax = 475 nm, τ½ = 1.6 μs) formed by pulse radiolysis of aqueous solutions of thiocyanate, SCN2−, is reported. The spectrum is discussed in terms of the previous assignment of this transient to the radical anion, (SCN)−2. The observed...... vibrational frequencies of the radical anion are consistent with substantial weakening of the S---S and the Ctriple bond; length as m-dashN bonds are compared with neutral thiocyanogen....

  7. Electron Shell as a Resonator

    International Nuclear Information System (INIS)

    Karpeshin, F. F.

    2002-01-01

    Main principles of the resonance effect arising in the electron shells in interaction of the nuclei with electromagnetic radiation are analyzed and presented in the historical aspect. Principles of NEET are considered from a more general position, as compared to how this is usually presented. Characteristic features of NEET and its reverse, TEEN, as internal conversion processes are analyzed, and ways are offered of inducing them by laser radiation. The ambivalent role of the Pauli exclusion principles in NEET and TEEN processes is investigated.

  8. Experimental evidence for interactions between anions and electron-deficient aromatic rings.

    Science.gov (United States)

    Berryman, Orion B; Johnson, Darren W

    2009-06-14

    This feature article summarizes our research aimed at using electron-deficient aromatic rings to bind anions in the context of complementary research in this active field. Particular attention is paid to the different types of interactions exhibited between anions and electron-deficient arenes in solution. The 120+ references cited in this article underscore the flurry of recent activity by numerous researchers in this field, which was relatively nascent when our efforts began in 2005. While the interaction of anions with electron-deficient aromatic rings has recently garnered much attention by supramolecular chemists, the observation of these interactions is not a recent discovery. Therefore, we begin with a historical perspective on early examples of anions interacting with electron-deficient arenes. An introduction to recent (and not so recent) computational investigations concerning anions and electron-deficient aromatic rings as well as a brief structural survey of crystalline examples of this interaction are provided. Finally, the limited solution-based observations of anions interacting with electron-deficient aromatic rings are summarized to introduce our current investigations in this area. We highlight three different systems from our lab where anion-arene interactions have been investigated. First, we show that tandem hydrogen bonds and anion-arene interactions augment halide binding in solution. Second, a crystallographic and computational study highlights the multiple types of interactions possible between anions and electron-deficient arenes. Third, we summarize the first example of a class of designed receptors that emphasize the different types of anion-arene interactions possible in solution.

  9. Electronic spectra of anions intercalated in layered double hydroxides

    Indian Academy of Sciences (India)

    groups of the layers and interlayer water through the termi- nal atom symmetry ... results in a reaction with the metal hydroxide layers lead- ing to the ..... List of band positions observed for potassium salts of anion and LDH samples. Salts.

  10. Anion Photoelectron Spectroscopy of the Homogenous 2-Hydroxypyridine Dimer Electron Induced Proton Transfer System

    Science.gov (United States)

    Vlk, Alexandra; Stokes, Sarah; Wang, Yi; Hicks, Zachary; Zhang, Xinxing; Blando, Nicolas; Frock, Andrew; Marquez, Sara; Bowen, Kit; Bowen Lab JHU Team

    Anion photoelectron spectroscopic (PES) and density functional theory (DFT) studies on the dimer anion of (2-hydroxypyridine)2-are reported. The experimentally measured vertical detachment energy (VDE) of 1.21eV compares well with the theoretically predicted values. The 2-hydroxypyridine anionic dimer system was investigated because of its resemblance to the nitrogenous heterocyclic pyrimidine nucleobases. Experimental and theoretical results show electron induced proton transfer (EIPT) in both the lactim and lactam homogeneous dimers. Upon electron attachment, the anion can serve as the intermediate between the two neutral dimers. A possible double proton transfer process can occur from the neutral (2-hydroxypyridine)2 to (2-pyridone)2 through the dimer anion. This potentially suggests an electron catalyzed double proton transfer mechanism of tautomerization. Research supported by the NSF Grant No. CHE-1360692.

  11. Mechanism of action of anions on the electron transport chain in thylakoid membranes of higher plants.

    Science.gov (United States)

    Singh-Rawal, Pooja; Zsiros, Ottó; Bharti, Sudhakar; Garab, Gyozo; Jajoo, Anjana

    2011-04-01

    With an aim to improve our understanding of the mechanisms behind specific anion effects in biological membranes, we have studied the effects of sodium salts of anions of varying valency in thylakoid membranes. Rates of electron transport of PS II and PS I, 77K fluorescence emission and excitation spectra, cyclic electron flow around PS I and circular dichroism (CD) spectra were measured in thylakoid membranes in order to elucidate a general mechanism of action of inorganic anions on photosynthetic electron transport chain. Re-distribution of absorbed excitation energy has been observed as a signature effect of inorganic anions. In the presence of anions, such as nitrite, sulphate and phosphate, distribution of absorbed excitation energy was found to be more in favor of Photosystem I (PS I). The amount of energy distributed towards PS I depended on the valency of the anion. In this paper, we propose for the first time that energy re-distribution and its valence dependence may not be the effect of anions per se. The entry of negative charge (anion) is accompanied by influx of positive charge (protons) to maintain a balance of charge across the thylakoid membranes. As reflected by the CD spectra, the observed energy re-distribution could be a result of structural rearrangements of the protein complexes of PS II caused by changes in the ionic environment of the thylakoid lumen.

  12. Electron cyclotron resonance plasma photos

    Energy Technology Data Exchange (ETDEWEB)

    Racz, R.; Palinkas, J. [Institute of Nuclear Research (ATOMKI), H-4026 Debrecen, Bem ter 18/c (Hungary); University of Debrecen, H-4010 Debrecen, Egyetem ter 1 (Hungary); Biri, S. [Institute of Nuclear Research (ATOMKI), H-4026 Debrecen, Bem ter 18/c (Hungary)

    2010-02-15

    In order to observe and study systematically the plasma of electron cyclotron resonance (ECR) ion sources (ECRIS) we made a high number of high-resolution visible light plasma photos and movies in the ATOMKI ECRIS Laboratory. This required building the ECR ion source into an open ECR plasma device, temporarily. An 8MP digital camera was used to record photos of plasmas made from Ne, Ar, and Kr gases and from their mixtures. We studied and recorded the effect of ion source setting parameters (gas pressure, gas composition, magnetic field, and microwave power) to the shape, color, and structure of the plasma. The analysis of the photo series gave us many qualitative and numerous valuable physical information on the nature of ECR plasmas.

  13. Electron paramagnetic resonance (EPR) biodosimetry

    International Nuclear Information System (INIS)

    Desrosiers, Marc; Schauer, David A.

    2001-01-01

    Radiation-induced electron paramagnetic resonance (EPR) signals were first reported by Gordy et al. [Proc. Natl. Acad. Sci. USA 41 (1955) 983]. The application of EPR spectroscopy to ionizing radiation dosimetry was later proposed by Brady et al. [Health Phys. 15 (1968) 43]. Since that time EPR dosimetry has been applied to accident and epidemiologic dose reconstruction, radiation therapy, food irradiation, quality assurance programs and archaeological dating. Materials that have been studied include bone, tooth enamel, alanine and quartz. This review paper presents the fundamentals and applications of EPR biodosimetry. Detailed information regarding sample collection and preparation, EPR measurements, dose reconstruction, and data analysis and interpretation will be reviewed for tooth enamel. Examples of EPR biodosimetry application in accidental overexposures, radiopharmaceutical dose assessment and retrospective epidemiologic studies will also be presented

  14. Electron cyclotron resonance plasma photos

    International Nuclear Information System (INIS)

    Racz, R.; Palinkas, J.; Biri, S.

    2010-01-01

    In order to observe and study systematically the plasma of electron cyclotron resonance (ECR) ion sources (ECRIS) we made a high number of high-resolution visible light plasma photos and movies in the ATOMKI ECRIS Laboratory. This required building the ECR ion source into an open ECR plasma device, temporarily. An 8MP digital camera was used to record photos of plasmas made from Ne, Ar, and Kr gases and from their mixtures. We studied and recorded the effect of ion source setting parameters (gas pressure, gas composition, magnetic field, and microwave power) to the shape, color, and structure of the plasma. The analysis of the photo series gave us many qualitative and numerous valuable physical information on the nature of ECR plasmas.

  15. Hybrid simulation of electron cyclotron resonance heating

    Energy Technology Data Exchange (ETDEWEB)

    Ropponen, T. [Department of Physics, University of Jyvaeskylae, P.O. Box 35, FI-40014 (Finland)], E-mail: tommi.ropponen@phys.jyu.fi; Tarvainen, O. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Suominen, P. [CERN Geneve 23, CH-1211 (Switzerland); Koponen, T.K. [Department of Physics, University of Jyvaeskylae, Nanoscience Center, P.O. Box 35, FI-40014 (Finland); Kalvas, T.; Koivisto, H. [Department of Physics, University of Jyvaeskylae, P.O. Box 35, FI-40014 (Finland)

    2008-03-11

    Electron Cyclotron Resonance (ECR) heating is a fundamentally important aspect in understanding the physics of Electron Cyclotron Resonance Ion Sources (ECRIS). Absorption of the radio frequency (RF) microwave power by electron heating in the resonance zone depends on many parameters including frequency and electric field strength of the microwave, magnetic field structure and electron and ion density profiles. ECR absorption has been studied in the past by e.g. modelling electric field behaviour in the resonance zone and its near proximity. This paper introduces a new ECR heating code that implements damping of the microwave power in the vicinity of the resonance zone, utilizes electron density profiles and uses right hand circularly polarized (RHCP) electromagnetic waves to simulate electron heating in ECRIS plasma.

  16. Theoretical foundations of electron spin resonance

    CERN Document Server

    Harriman, John E

    2013-01-01

    Theoretical Foundations of Electron Spin Resonance deals with the theoretical approach to electron paramagnetic resonance. The book discusses electron spin resonance in applications related to polyatomic, probably organic, free radicals in condensed phases. The book also focuses on essentially static phenomena, that is, the description and determination of stationary-state energy levels. The author reviews the Dirac theory of the electron in which a four-component wave function is responsible for the behavior of the electron. The author then connects this theory with the nonrelativistic wave f

  17. Cyclotron resonance for electrons over helium in resonator

    CERN Document Server

    Shikin, V B

    2002-01-01

    The problem on the cyclotron resonance (CR) for electrons on the helium film, positioned in the resonator lower part, is solved. It is shown, that it relates to one of the examples of the known problem on the oscillations of the coupled oscillators system. The coupling constant between these oscillators constituting the variable function of the problem parameters. It is minimal in the zero magnetic field and reaches its maximum under the resonance conditions, when the cyclotron frequency coincides with one of the resonator modes. The CR details of the Uhf CR-energy absorption coupled by the electrons + resonator system, are calculated. The applications of the obtained results to the available CR experiments for electrons over helium

  18. Long-range intramolecular electron transfer in aromatic radical anions and binuclear transition metal complexes

    DEFF Research Database (Denmark)

    Kuznetsov, A. M.; Ulstrup, Jens

    1981-01-01

    Intramolecular electron transfer (ET) over distances up to about 10 Å between states in which the electron is localized on donor and acceptor groups by interaction with molecular or external solvent nuclear motion occurs, in particular, in two classes of systems. The excess electron in anionic ra...

  19. Electron transfer by excited benzoquinone anions: slow rates for two-electron transitions.

    Science.gov (United States)

    Zamadar, Matibur; Cook, Andrew R; Lewandowska-Andralojc, Anna; Holroyd, Richard; Jiang, Yan; Bikalis, Jin; Miller, John R

    2013-09-05

    Electron transfer (ET) rate constants from the lowest excited state of the radical anion of benzoquinone, BQ(-•)*, were measured in THF solution. Rate constants for bimolecular electron transfer reactions typically reach the diffusion-controlled limit when the free-energy change, ΔG°, reaches -0.3 eV. The rate constants for ET from BQ(-•)* are one-to-two decades smaller at this energy and do not reach the diffusion-controlled limit until -ΔG° is 1.5-2.0 eV. The rates are so slow probably because a second electron must also undergo a transition to make use of the energy of the excited state. Similarly, ET, from solvated electrons to neutral BQ to form the lowest excited state, is slow, while fast ET is observed at a higher excited state, which can be populated in a transition involving only one electron. A simple picture based on perturbation theory can roughly account for the control of electron transfer by the need for transition of a second electron. The picture also explains how extra driving force (-ΔG°) can restore fast rates of electron transfer.

  20. Probing Intermolecular Electron Delocalization in Dimer Radical Anions by Vibrational Spectroscopy

    International Nuclear Information System (INIS)

    Mani, Tomoyasu; Brookhaven National Laboratory; Grills, David C.

    2017-01-01

    Delocalization of charges is one of the factors controlling charge transport in conjugated molecules. It is considered to play an important role in the performance of a wide range of molecular technologies, including organic solar cells and organic electronics. Dimerization reactions are well-suited as a model to investigate intermolecular spatial delocalization of charges. And while dimerization reactions of radical cations are well investigated, studies on radical anions are still scarce. Upon dimerization of radical anions with neutral counterparts, an electron is considered to delocalize over the two molecules. By using time-resolved infrared (TRIR) detection coupled with pulse radiolysis, we show that radical anions of 4-n-hexyl-4'-cyanobiphenyl (6CB) undergo such dimerization reactions, with an electron equally delocalized over the two molecules. We have recently demonstrated that nitrile ν(C≡N) vibrations respond to the degree of electron localization of nitrile-substituted anions: we can quantify the changes in the electronic charges from the neutral to the anion states in the nitriles by monitoring the ν(C≡N) IR shifts. In the first part of this article, we show that the sensitivity of the ν(C≡N) IR shifts does not depend on solvent polarity. In the second part, we describe how probing the shifts of the nitrile IR vibrational band unambiguously confirms the formation of dimer radical anions, with K dim = 3 × 10 4 M –1 . IR findings are corroborated by electronic absorption spectroscopy and electronic structure calculations. We find that the presence of a hexyl chain and the formation of π–π interactions are both crucial for dimerization of radical anions of 6CB with neutral 6CB. Our study provides clear evidence of spatial delocalization of electrons over two molecular fragments.

  1. Topology of the Adiabatic Potential Energy Surfaces for theResonance States of the Water Anion

    Energy Technology Data Exchange (ETDEWEB)

    Haxton, Daniel J.; Rescigno, Thomas N.; McCurdy, C. William

    2005-04-15

    The potential energy surfaces corresponding to the long-lived fixed-nuclei electron scattering resonances of H{sub 2}O relevant to the dissociative electron attachment process are examined using a combination of ab initio scattering and bound-state calculations. These surfaces have a rich topology, characterized by three main features: a conical intersection between the {sup 2}A{sub 1} and {sup 2}B{sub 2} Feshbach resonance states; charge-transfer behavior in the OH ({sup 2}{Pi}) + H{sup -} asymptote of the {sup 2}B{sub 1} and {sup 2}A{sub 1} resonances; and an inherent double-valuedness of the surface for the {sup 2}B{sub 2} state the C{sub 2v} geometry, arising from a branch-point degeneracy with a {sup 2}B{sub 2} shape resonance. In total, eight individual seams of degeneracy among these resonances are located.

  2. Enhancement of encaged electron concentration by Sr(2+) doping and improvement of Gd(3+) emission through controlling encaged anions in conductive C12A7 phosphors.

    Science.gov (United States)

    Zhang, Meng; Liu, Yuxue; Zhu, Hancheng; Yan, Duanting; Yang, Jian; Zhang, Xinyang; Liu, Chunguang; Xu, Changshan

    2016-07-28

    Conductive C12A7:0.1%Gd(3+),y%Sr(2+) powders with different Sr(2+) doping concentrations have been prepared in a H2 atmosphere by a solid state method in combination with subsequent UV-irradiation. The encaged electron concentration could be modulated through tuning Sr(2+) doping and its maximum value reaches 2.3 × 10(19) cm(-3). This is attributed to the competition between enhanced uptake and the release of the encaged anions during their formation and diffusion processes and the suppression of encaged electrons generation due to the increased encaged OH(-) anions and the decreased encaged O(2-) anions. Although there exists encaged electrons and different encaged anions (O(2-), H(-) and OH(-)) in C12A7 conductive powders prepared through the hydrogen route, a dominant local environment around Gd(3+) could be observed using electron spin resonance (ESR) detection. It can be ascribed to the stronger coupling of the encaged OH(-) to the framework of C12A7 than those of the encaged electrons, O(2-) and H(-) anions. In addition, emission of Gd(3+) ions is enhanced under UV or low voltage electron beam excitation and a new local environment around Gd(3+) ions appears through the thermal annealing in air because of the decrease of the encaged OH(-) anions and the increase of the encaged O(2-) anions. Our results suggested that Sr(2+) doping in combination with thermal annealing in air is an effective strategy for increasing the conductive performance and enhancing the emission of rare earth ions doped into C12A7 conductive phosphors for low-voltage field emission displays (FEDs).

  3. Resonances in Electron Impact on Atomic Oxygen

    International Nuclear Information System (INIS)

    Yang, Wang; Ya-Jun, Zhou; Li-Guang, Jiao; Ratnavelu, Kuru

    2008-01-01

    The momentum-space coupled-channels-optical (CCO) method is used to study the resonances in electron-oxygen collision in the energy region of 9–12eV. Present results have shown agreement with the available experimental and theoretical results, and new positions of resonances are found by the comparison of total cross sections. (fundamental areas of phenomenology (including applications))

  4. Electron detachment energies in high-symmetry alkali halide solvated-electron anions

    Science.gov (United States)

    Anusiewicz, Iwona; Berdys, Joanna; Simons, Jack; Skurski, Piotr

    2003-07-01

    We decompose the vertical electron detachment energies (VDEs) in solvated-electron clusters of alkali halides in terms of (i) an electrostatic contribution that correlates with the dipole moment (μ) of the individual alkali halide molecule and (ii) a relaxation component that is related to the polarizability (α) of the alkali halide molecule. Detailed numerical ab initio results for twelve species (MX)n- (M=Li,Na; X=F,Cl,Br; n=2,3) are used to construct an interpolation model that relates the clusters' VDEs to their μ and α values as well as a cluster size parameter r that we show is closely related to the alkali cation's ionic radius. The interpolation formula is then tested by applying it to predict the VDEs of four systems [i.e., (KF)2-, (KF)3-, (KCl)2-, and (KCl)3-] that were not used in determining the parameters of the model. The average difference between the model's predicted VDEs and the ab initio calculated electron binding energies is less than 4% (for the twelve species studied). It is concluded that one can easily estimate the VDE of a given high-symmetry solvated electron system by employing the model put forth here if the α, μ and cation ionic radii are known. Alternatively, if VDEs are measured for an alkali halide cluster and the α and μ values are known, one can estimate the r parameter, which, in turn, determines the "size" of the cluster anion.

  5. Extreme electron correlation effects on the electric properties of atomic anions

    International Nuclear Information System (INIS)

    Canuto, S.

    1994-01-01

    The contribution of the electron correlation effects to the calculated dipole polarizability and hyper-polarizability of the first-row atomic anions is calculated and analyzed. It is shown that the total correlation contribution to the dipole hyperpolarizability is extremely large with the Hartree-Fock model accounting for only a small fraction of the accurate result. The linear and, more pronounced, the nonlinear response of atomic anions to the application of an electric field emphatically shows the effects of the correlated motion of the electrons

  6. Electron-cyclotron-resonant-heated electron distribution functions

    International Nuclear Information System (INIS)

    Matsuda, Y.; Nevins, W.M.; Cohen, R.H.

    1981-01-01

    Recent studies at Lawrence Livermore National Laboratory (LLNL) with a bounce-averaged Fokker-Planck code indicate that the energetic electron tail formed by electron-cyclotron resonant heating (ECRH) at the second harmonic is not Maxwellian. We present the results of our bounce-averaged Fokker-Planck code along with some simple analytic models of hot-electron distribution functions

  7. Pygmy resonances probed with electron scattering

    International Nuclear Information System (INIS)

    Bertulani, C.A.

    2007-01-01

    Pygmy resonances in light nuclei excited in electron scattering are discussed. These collective modes will be explored in future electron-ion colliders such as ELISe/FAIR (spokesperson: Haik Simon - GSI). Response functions for direct breakup are explored with few-body and hydrodynamical models, including the dependence upon final state interactions

  8. Cyclotron Resonances in Electron Cloud Dynamics

    International Nuclear Information System (INIS)

    Celata, C.M.; Furman, M.A.; Vay, J.L.; Grote, D.P.; Ng, J.T.; Pivi, M.F.; Wang, L.F.

    2009-01-01

    A new set of resonances for electron cloud dynamics in the presence of a magnetic field has been found. For short beam bunch lengths and low magnetic fields where l b c , (l b = bunch duration, ω c = non-relativistic cyclotron frequency) resonances between the bunch frequency and harmonics of the cyclotron frequency cause an increase in the electron cloud density in narrow ranges of magnetic field near the resonances. For ILC parameters the increase in the density is up to a factor ∼ 3, and the spatial distribution of the electrons is broader near resonances, lacking the well-defined density 'stripes' of multipactoring found for non-resonant cases. Simulations with the 2D computer code POSINST, as well as a single-particle tracking code, were used to elucidate the physics of the dynamics. The resonances are expected to affect the electron cloud dynamics in the fringe fields of conventional lattice magnets and in wigglers, where the magnetic fields are low. Results of the simulations, the reason for the bunch-length dependence, and details of the dynamics will be discussed

  9. Probing electron density of H-bonding between cation-anion of imidazolium-based ionic liquids with different anions by vibrational spectroscopy.

    Science.gov (United States)

    Gao, Yan; Zhang, Liqun; Wang, Yong; Li, Haoran

    2010-03-04

    Attenuated total reflection infrared spectroscopy and density functional theory calculation have been employed to study the spectral properties of imidazolium-based ionic liquids (ILs) with different anions. ILs based on 1-butyl-3-methylimidazolium cation with different anions, OH(-), CF(3)CO(2)(-), HSO(4)(-), H(2)PO(4)(-), Cl(-), PF(6)(-), and BF(4)(-), are investigated in the present work. It has been shown that the C(2)-H stretching vibration of the imidazolium ring is closely related to the electron density of H-bonding between the two closest cations and anions for pure ILs. The electron density of H-bonding between cation and anion with different anions decreases in the order [OH](-) > [H(2)PO(4)](-) > [HSO(4)](-) > [CF(3)CO(2)](-) > [Cl](-) > [BF(4)](-) > [PF(6)](-). For aqueous ILs, with increasing water content, the aromatic C-H stretching vibration of the imidazolium cation showed systematic blue-shifts. Especially for BmimOH, the nu(C(2))(-H) undergoes a drastic blue-shift by 58 cm(-1), suggesting that the formation of the strong hydrogen bonds O-H...O may greatly weaken the electron density of H-bonding between the cation and anion of ILs.

  10. Confinement and electron correlation effects in photoionization of atoms in endohedral anions: Ne-Cz-60

    International Nuclear Information System (INIS)

    Dolmatov, V K; Craven, G T; Keating, D

    2010-01-01

    Trends in resonances, termed confinement resonances, in photoionization of atoms A in endohedral fullerene anions A-C z- 60 are theoretically studied and exemplified by the photoionization of Ne in Ne-C z- 60 . Remarkably, above a particular nl ionization threshold of Ne in neutral Ne-C 60 (I z=0 nl ), confinement resonances in corresponding partial photoionization cross sections σ nl of Ne in any charged Ne-C z- 60 are not affected by a variation in the charge z of the carbon cage, as a general phenomenon. At lower photon energies, ω z=0 nl , the corresponding photoionization cross sections of charged Ne-C z- 60 (i.e., those with z ≠ 0) develop additional, strong, z-dependent resonances, termed Coulomb confinement resonances, as a general occurrence. Furthermore, near the innermost 1s ionization threshold, the 2p photoionization cross section σ 2p of the outermost 2p subshell of thus confined Ne is found to inherit the confinement resonance structure of the 1s photoionization spectrum, via interchannel coupling. As a result, new confinement resonances emerge in the 2p photoionization cross section of the confined Ne atom at photoelectron energies which exceed the 2p threshold by about a thousand eV, i.e., far above where conventional wisdom said they would exist. Thus, the general possibility for confinement resonances to resurrect in photoionization spectra of encapsulated atoms far above thresholds is revealed, as an interesting novel general phenomenon.

  11. Novel Luminescent Multilayer Films Containing π-Conjugated Anionic Polymer with Electronic Microenvironment

    Directory of Open Access Journals (Sweden)

    Tianlei Wang

    2016-09-01

    Full Text Available Layered double hydroxides (LDHs, luminescent π-conjugated anionic polymer and montmorillonite (MMT were orderly assembled into luminescent multilayer films via layer-by-layer self-assembly method. The electronic microenvironment (EME, the structure of which is like a traditional capacitor, can be constructed by exfoliated LDHs or MMT nanosheets. In addition, the rigid inorganic laminated configuration can offer stable surroundings between the interlayers. As a result, we conclude that EME can extend the luminescent lifespans of multilayer films substantially, due to affecting relaxation times of π-conjugated anionic polymer. Consequently, because of the remarkable impact on better photoemission behaviors of luminescent π-conjugated anionic polymer, EME assembled by LDHs or MMT nanosheets have had high hopes attached to them. They are expected to have the potential for designing, constructing, and investigating novel light-emitting thin films.

  12. Shape resonances in low-energy-electron collisions with halopyrimidines

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, Alessandra Souza; Bettega, Márcio H. F., E-mail: bettega@fisica.ufpr.br [Departamento de Física, Universidade Federal do Paraná, Caixa Postal 19044, 81531-990 Curitiba, Paraná (Brazil)

    2013-12-07

    We report calculated cross sections for elastic collisions of low-energy electrons with halopyrimidines, namely, 2-chloro, 2-bromo, and 5-bromopyrimidine. We employed the Schwinger multichannel method with pseudopotentials to compute the cross sections in the static-exchange and static-exchange plus polarization levels of approximation for energies up to 10 eV. We found four shape resonances for each molecule: three of π* nature localized on the ring and one of σ* nature localized along the carbon–halogen bond. We compared the calculated positions of the resonances with the electron transmission spectroscopy data measured by Modelli et al. [J. Phys. Chem. A 115, 10775 (2011)]. In general the agreement between theory and experiment is good. In particular, our results show the existence of a π* temporary anion state of A{sub 2} symmetry for all three halopyrimidines, in agreement with the dissociative electron attachment spectra also reported by Modelli et al. [J. Phys. Chem. A 115, 10775 (2011)].

  13. Electron cyclotron resonance multiply charged ion sources

    International Nuclear Information System (INIS)

    Geller, R.

    1975-01-01

    Three ion sources, that deliver multiply charged ion beams are described. All of them are E.C.R. ion sources and are characterized by the fact that the electrons are emitted by the plasma itself and are accelerated to the adequate energy through electron cyclotron resonance (E.C.R.). They can work without interruption during several months in a quasi-continuous regime. (Duty cycle: [fr

  14. Numerical methods in electron magnetic resonance

    International Nuclear Information System (INIS)

    Soernes, A.R.

    1998-01-01

    The focal point of the thesis is the development and use of numerical methods in the analysis, simulation and interpretation of Electron Magnetic Resonance experiments on free radicals in solids to uncover the structure, the dynamics and the environment of the system

  15. Numerical methods in electron magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Soernes, A.R

    1998-07-01

    The focal point of the thesis is the development and use of numerical methods in the analysis, simulation and interpretation of Electron Magnetic Resonance experiments on free radicals in solids to uncover the structure, the dynamics and the environment of the system.

  16. Theoretical study of the electron paramagnetic resonance ...

    Indian Academy of Sciences (India)

    conveniently investigated by means of electron paramagnetic resonance (EPR). In ... ion Ir2+ can experience the Jahn–Teller effect by means of vibration interaction, ... Similarly, k. (and k ) are the orbital reduction factors arising from the anisotropic interactions of the orbital angular momentum operator. From the cluster ...

  17. A superheterodyne spectrometer for electronic paramagnetic. Resonance

    International Nuclear Information System (INIS)

    Laffon, J.L.

    1963-12-01

    After a few generalities about electron paramagnetic resonance, a consideration of different experimental techniques authorises the choice of a particular type of apparatus. An EPR superheterodyne spectrometer built in the laboratory and having a novel circuit is described in detail. With this apparatus, many experimental results have been obtained and some of these are described as example. (author) [fr

  18. Resonance electron attachment to plant hormones and its likely connection with biochemical processes

    Energy Technology Data Exchange (ETDEWEB)

    Pshenichnyuk, Stanislav A., E-mail: sapsh@anrb.ru [Institute of Molecule and Crystal Physics, Ufa Research Centre, Russian Academy of Sciences, Prospekt Oktyabrya 151, 450075 Ufa (Russian Federation); Modelli, Alberto [Dipartimento di Chimica “G. Ciamician”, Università di Bologna, via Selmi 2, 40126 Bologna, Italy and Centro Interdipartimentale di Ricerca in Scienze Ambientali, via S. Alberto 163, 48123 Ravenna (Italy)

    2014-01-21

    Gas-phase formation of temporary negative ion states via resonance attachment of low-energy (0–6 eV) electrons into vacant molecular orbitals of salicylic acid (I) and its derivatives 3-hydroxy- (II) and 4-hydroxybenzoic acid (III), 5-cloro salicylic acid (IV) and methyl salicylate (V) was investigated for the first time by electron transmission spectroscopy. The description of their empty-level structures was supported by density functional theory and Hartree-Fock calculations, using empirically calibrated linear equations to scale the calculated virtual orbital energies. Dissociative electron attachment spectroscopy (DEAS) was used to measure the fragment anion yields generated through dissociative decay channels of the parent molecular anions of compounds I–V, detected with a mass filter as a function of the incident electron energy in the 0–14 eV energy range. The most intense negative fragment produced by DEA to isomers I–III is the dehydrogenated molecular anion [M–H]{sup −}, mainly formed at incident electron energies around 1 eV. The vertical and adiabatic electron affinities were evaluated at the B3LYP/6-31+G(d) level as the anion/neutral total energy difference. The same theoretical method was also used for evaluation of the thermodynamic energy thresholds for production of the negative fragments observed in the DEA spectra. The gas-phase DEAS data can provide support for biochemical reaction mechanisms in vivo.

  19. Resonance electron attachment to plant hormones and its likely connection with biochemical processes

    International Nuclear Information System (INIS)

    Pshenichnyuk, Stanislav A.; Modelli, Alberto

    2014-01-01

    Gas-phase formation of temporary negative ion states via resonance attachment of low-energy (0–6 eV) electrons into vacant molecular orbitals of salicylic acid (I) and its derivatives 3-hydroxy- (II) and 4-hydroxybenzoic acid (III), 5-cloro salicylic acid (IV) and methyl salicylate (V) was investigated for the first time by electron transmission spectroscopy. The description of their empty-level structures was supported by density functional theory and Hartree-Fock calculations, using empirically calibrated linear equations to scale the calculated virtual orbital energies. Dissociative electron attachment spectroscopy (DEAS) was used to measure the fragment anion yields generated through dissociative decay channels of the parent molecular anions of compounds I–V, detected with a mass filter as a function of the incident electron energy in the 0–14 eV energy range. The most intense negative fragment produced by DEA to isomers I–III is the dehydrogenated molecular anion [M–H] − , mainly formed at incident electron energies around 1 eV. The vertical and adiabatic electron affinities were evaluated at the B3LYP/6-31+G(d) level as the anion/neutral total energy difference. The same theoretical method was also used for evaluation of the thermodynamic energy thresholds for production of the negative fragments observed in the DEA spectra. The gas-phase DEAS data can provide support for biochemical reaction mechanisms in vivo

  20. Dissociative electron attachment to methyl chloride: A quasi-diatomic potential curve for the fragmentation of the metastable CH3Cl- anion

    International Nuclear Information System (INIS)

    Mach, P.; Urban, J.; Staemmler, V.

    2009-01-01

    Potential energy curves have been calculated for the dissociation of the neutral CH 3 Cl molecule and its negative ion into CH 3 + Cl and CH 3 +Cl - , respectively. The neutral molecule and the anion could be treated by means of standard wave function based quantum chemical ab initio methods for C-Cl distances larger than about 2.4 A, where CH 3 Cl - is a stable anion. In the present calculation MP3 and CCSD(T) were employed. At shorter C-Cl distances the CH 3 Cl - anion is only metastable and cannot be treated by such methods. We have applied a stabilization scheme, first proposed by Nestmann and Peyerimhoff, to stabilize the metastable anion by adding extra positive charges to the molecule. By this trick it was possible to generate the resonance energy E res and width Γ as functions of the C-Cl distance in the resonance regime between 1.5 and 2.5 A. The calculated values for the threshold energy E thresh and the exothermicity ΔE 0 of the DEA (dissociative electron attachment) process are in very good agreement with experiment; the vertical attachment energy (VAE) is smaller than its experimental counterpart

  1. Thermochemistry and electronic structure of small boron clusters (B(n), n = 5-13) and their anions.

    Science.gov (United States)

    Truong, Ba Tai; Grant, Daniel J; Nguyen, Minh Tho; Dixon, David A

    2010-01-21

    Thermochemical parameters of a set of small-sized neutral (B(n)) and anionic (B(n)(-)) boron clusters, with n = 5-13, were determined using coupled-cluster theory CCSD(T) calculations with the aug-cc-pVnZ (n = D, T, and Q) basis sets extrapolated to the complete basis set limit (CBS) plus addition corrections and/or G3B3 calculations. Enthalpies of formation, adiabatic electron affinities (EA), vertical (VDE), and adiabatic (ADE) detachment energies were evaluated. Our calculated EAs are in good agreement with recent experiments (values in eV): B(5) (CBS, 2.29; G3B3, 2.48; exptl., 2.33 +/- 0.02), B(6) (CBS, 2.59; G3B3, 3.23; exptl., 3.01 +/- 0.04), B(7) (CBS, 2.62; G3B3, 2.67; exptl., 2.55 +/- 0.05), B(8) (CBS, 3.02; G3B3, 3.11; exptl., 3.02 +/- 0.02), B(9) (G3B3, 3.03; exptl., 3.39 +/- 0.06), B(10) (G3B3, 2.85; exptl., 2.88 +/- 0.09), B(11) (G3B4, 3.48;, exptl., 3.43 +/- 0.01), B(12) (G3B3, 2.33; exptl., 2.21 +/- 0.04), and B(13) (G3B3, 3.62; exptl., 3.78 +/- 0.02). The difference between the calculated adiabatic electron affinity and the adiabatic detachment energy for B(6) is due to the fact that the geometry of the anion is not that of the ground-state neutral. The calculated adiabatic detachment energies to the (3)A(u), C(2h) and (1)A(g), D(2h) excited states of B(6), which have geometries similar to the (1)A(g), D(2h) state of B(6)(-), are 2.93 and 3.06 eV, in excellent agreement with experiment. The VDEs were also well reproduced by the calculations. Partitioning of the electron localization functions into pi and sigma components allows probing of the partial and local delocalization in global nonaromatic systems. The larger clusters appear to exhibit multiple aromaticity. The binding energies per atom vary in a parallel manner for both neutral and anionic series and approach the experimental value for the heat of atomization of B. The resonance energies and the normalized resonance energies are convenient indices to quantify the stabilization of a cluster

  2. Electron paramagnetic resonance of transition ions

    CERN Document Server

    Abragam, Anatole

    1970-01-01

    This book is a reissue of a classic Oxford text, and provides a comprehensive treatment of electron paramagnetic resonance of ions of the transition groups. The emphasis is on basic principles, with numerous references to publications containing further experimental results and more detailed developments of the theory. An introductory survey gives a general understanding, and a general survey presents such topics as the classical and quantum resonance equations, thespin-Hamiltonian, Endor, spin-spin and spin-lattice interactions, together with an outline of the known behaviour of ions of each

  3. Electron spin resonance scanning tunneling microscope

    International Nuclear Information System (INIS)

    Guo Yang; Li Jianmei; Lu Xinghua

    2015-01-01

    It is highly expected that the future informatics will be based on the spins of individual electrons. The development of elementary information unit will eventually leads to novel single-molecule or single-atom devices based on electron spins; the quantum computer in the future can be constructed with single electron spins as the basic quantum bits. However, it is still a great challenge in detection and manipulation of a single electron spin, as well as its coherence and entanglement. As an ideal experimental tool for such tasks, the development of electron spin resonance scanning tunneling microscope (ESR-STM) has attracted great attention for decades. This paper briefly introduces the basic concept of ESR-STM. The development history of this instrument and recent progresses are reviewed. The underlying mechanism is explored and summarized. The challenges and possible solutions are discussed. Finally, the prospect of future direction and applications are presented. (authors)

  4. Heated electron distributions from resonant absorption

    International Nuclear Information System (INIS)

    DeGroot, J.S.; Tull, J.E.

    1975-01-01

    A simplified model of resonant absorption of obliquely incident laser light has been developed. Using a 1.5 dimensional electrostatic simulation computer code, it is shown that the inclusion of ion motion is critically important in determining the heated electron distributions from resonant absorption. The electromagnetic wave drives up an electron plasma wave. For long density scale lengths (Lapprox. =10 3 lambda/subD//sube/), the phase velocity of this wave is very large (ω/kapproximately-greater-than10V/sub th/) so that if heating does occur, a suprathermal tail of very energetic electrons is produced. However, the pressure due to this wave steepens the density profile until the density gradient scale length near the critical density (where the local plasma frequency equals the laser frequency) is of order 20lambda/subD//sube/. The electrostatic wave is thus forced to have a much lower phase velocity (ω/kapprox. =2.5V/sub th/). In this case, more electrons are heated to much lower velocities. The heated electron distributions are exponential in velocity space. Using a simple theory it is shown that this property of profile steepening applies to most of a typical laser fusion pulse. This steepening raises the threshold for parametric instabilities near the critical surface. Thus, the extensive suprathermal electron distributions typically produced by these parametric instabilities can be drastically reduced

  5. Electron spin resonance identification of irradiated fruits

    International Nuclear Information System (INIS)

    Raffi, J.J.; Agnel, J.-P.L.

    1989-01-01

    The electron spin resonance spectrum of achenes, pips, stalks and stones from irradiated fruits (stawberry, raspberry, red currant, bilberry, apple, pear, fig, french prune, kiwi, water-melon and cherry) always displays, just after γ-treatment, a weak triplet (a H ∼30 G) due to a cellulose radical; its left line (lower field) can be used as an identification test of irradiation, at least for strawberries, raspberries, red currants or bilberries irradiated in order to improve their storage time. (author)

  6. The application of electron paramagnetic resonance in biomedical research

    International Nuclear Information System (INIS)

    Qu Ximei; Wang Liqin; Zhang Wenyi; Liu Zhongchao; Cui Songye; Feng Xin; Jiaoling

    2013-01-01

    Electron paramagnetic resonance technique has been found more than half a century, for free radicals detection application, it has been applied to various research studies, and promotes the development of the biomedicine. This article summarized the various free radicals measurement by the electron paramagnetic resonance in biology tissue, and the application of the spin labeling and electron paramagnetic resonance imaging technology in biomedicine. (authors)

  7. Wave packet formulation of the boomerang model for resonant electron--molecule scattering

    International Nuclear Information System (INIS)

    McCurdy, C.W.; Turner, J.L.

    1983-01-01

    A time-dependent formulation of the boomerang model for resonant electron--molecule scattering is presented in terms of a wave packet propagating on the complex potential surface of the metastable anion. The results of calculations using efficient semiclassical techniques for propagating the wave packet are found to be in excellent agreement with full quantum-mechanical calculations of vibrational excitation cross sections in e - --N 2 scattering. The application of the wave packet formulation as a computational and conceptual approach to the problem of resonant collisions with polyatomic molecules is discussed in the light of recent wave packet calculations on polyatomic photodissociation and Raman spectra

  8. Electronic relaxations of radiative defects of the anion sublattice in cesium bromide crystals and exoemission of electrons

    CERN Document Server

    Galyij, P V

    2002-01-01

    The paper presents the results of investigations of thermostimulated exoelectron emission (TSEE) from CsBr crystal, excited by moderate doses (D <= 10 sup 4 Gy) of ultraviolet (h nu <= 7 eV) that selectively creates anion excitons and radiative defects in the anion sublattice. Having used the previously established connection between thermoactivated processes such as thermostimulated exoemission, electroconductivity, and luminescence in the irradiated crystal lattice, the concentrations of exoemission-active centers (EAC) and kinetics parameters of TSEE are calculated. The EAC concentration calculated on a base of the bulk, thermoactivated-recombinational, and band-gap Auger-like exoemission mechanisms, are in satisfactory agreement with the concentration of electron color centers in the irradiated crystals.

  9. Electron paramagnetic resonance (EPR) in medical dosimetry

    International Nuclear Information System (INIS)

    Schauer, David A.; Iwasaki, Akinori; Romanyukha, Alexander A.; Swartz, Harold M.; Onori, Sandro

    2006-01-01

    This paper describes the fundamentals of electron paramagnetic resonance (EPR) and its application to retrospective measurements of clinically significant doses of ionizing radiation. X-band is the most widely used in EPR dosimetry because it represents a good compromise between sensitivity, sample size and water content in the sample. Higher frequency bands (e.g., W and Q) provide higher sensitivity, but they are also greatly influenced by water content. L and S bands can be used for EPR measurements in samples with high water content but they are less sensitive than X-band. Quality control for therapeutic radiation facilities using X-band EPR spectrometry of alanine is also presented

  10. Electron spin resonance dosimetric properties of bone

    International Nuclear Information System (INIS)

    Caracelli, I.; Terrile, M.C.; Mascarenhas, S.

    1986-01-01

    The characteristics of electron spin resonance (ESR) dosimetry using bovine bone samples are described. The number of paramagnetic centers created by gamma radiation in the inorganic bone matrix was measured as a function of absorbed dose. The minimum detectable dose was 0.5 Gy for 60Co gamma rays. The response was linear up to the maximum dose studied (30 Gy) and independent of dose rate up to the maximum dose rate used (1.67 Gy min-1). For different bone samples the reproducibility was 5%. This method may be valuable for nuclear accident dosimetry

  11. Fe electron transfer and atom exchange in goethite: influence of Al-substitution and anion sorption.

    Science.gov (United States)

    Latta, Drew E; Bachman, Jonathan E; Scherer, Michelle M

    2012-10-02

    The reaction of Fe(II) with Fe(III) oxides and hydroxides is complex and includes sorption of Fe(II) to the oxide, electron transfer between sorbed Fe(II) and structural Fe(III), reductive dissolution coupled to Fe atom exchange, and, in some cases mineral phase transformation. Much of the work investigating electron transfer and atom exchange between aqueous Fe(II) and Fe(III) oxides has been done under relatively simple aqueous conditions in organic buffers to control pH and background electrolytes to control ionic strength. Here, we investigate whether electron transfer is influenced by cation substitution of Al(III) in goethite and the presence of anions such as phosphate, carbonate, silicate, and natural organic matter. Results from (57)Fe Mössbauer spectroscopy indicate that both Al-substitution (up to 9%) and the presence of common anions (PO(4)(3-), CO(3)(2-), SiO(4)(4-), and humic acid) does not inhibit electron transfer between aqueous Fe(II) and Fe(III) in goethite under the conditions we studied. In contrast, sorption of a long-chain phospholipid completely shuts down electron transfer. Using an enriched isotope tracer method, we found that Al-substitution in goethite (10%), does, however, significantly decrease the extent of atom exchange between Fe(II) and goethite (from 43 to 12%) over a month's time. Phosphate, somewhat surprisingly, appears to have little effect on the rate and extent of atom exchange between aqueous Fe(II) and goethite. Our results show that electron transfer between aqueous Fe(II) and solid Fe(III) in goethite can occur under wide range of geochemical conditions, but that the extent of redox-driven Fe atom exchange may be dependent on the presence of substituting cations such as Al.

  12. In search for an optimal methodology to calculate the valence electron affinities of temporary anions.

    Science.gov (United States)

    Puiatti, Marcelo; Vera, D Mariano A; Pierini, Adriana B

    2009-10-28

    Recently, we have proposed an approach for finding the valence anion ground state, based on the stabilization exerted by a polar solvent; the methodology used standard DFT methods and relatively inexpensive basis sets and yielded correct electron affinity (EA) values by gradually decreasing the dielectric constant of the medium. In order to address the overall performance of the new methodology, to find the best conditions for stabilizing the valence state and to evaluate its scope and limitations, we gathered a pool of 60 molecules, 25 of them bearing the conventional valence state as the ground anion and 35 for which the lowest anion state found holds the extra electron in a diffuse orbital around the molecule (non valence state). The results obtained by testing this representative set suggest a very good performance for most species having an experimental EA less negative than -3.0 eV; the correlation at the B3LYP/6-311+G(2df,p) level being y = 1.01x + 0.06, with a correlation index of 0.985. As an alternative, the time dependent DFT (TD-DFT) approach was also tested with both B3LYP and PBE0 functionals. The methodology we proposed shows a comparable or better accuracy with respect to TD-DFT, although the TD-DFT approach with the PBE0 functional is suggested as a suitable estimate for species with the most negative EAs (ca.-2.5 to -3.5 eV), for which stabilization strategies can hardly reach the valence state. As an application, a pool of 8 compounds of key biological interest with EAs which remain unknown or unclear were predicted using the new methodology.

  13. Quantum tunneling resonant electron transfer process in Lorentzian plasmas

    International Nuclear Information System (INIS)

    Hong, Woo-Pyo; Jung, Young-Dae

    2014-01-01

    The quantum tunneling resonant electron transfer process between a positive ion and a neutral atom collision is investigated in nonthermal generalized Lorentzian plasmas. The result shows that the nonthermal effect enhances the resonant electron transfer cross section in Lorentzian plasmas. It is found that the nonthermal effect on the classical resonant electron transfer cross section is more significant than that on the quantum tunneling resonant charge transfer cross section. It is shown that the nonthermal effect on the resonant electron transfer cross section decreases with an increase of the Debye length. In addition, the nonthermal effect on the quantum tunneling resonant electron transfer cross section decreases with increasing collision energy. The variation of nonthermal and plasma shielding effects on the quantum tunneling resonant electron transfer process is also discussed

  14. Carbonate radical anion-induced electron transfer in bovine serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Ravi [Chemistry Group, Bhabha Atomic Research Centre, Mumbai 400 085 (India)]. E-mail: rjudrin@yahoo.com; Mukherjee, T. [Chemistry Group, Bhabha Atomic Research Centre, Mumbai 400 085 (India)

    2006-07-15

    Reaction of native and thermally denatured bovine serum albumin (BSA) with carbonate radical anion (CO{sub 3}{sup -} radical) has been studied using pulse radiolysis technique. Scavenging of CO{sub 3}{sup -} radical by native BSA and consequent electron transfer from tyrosine to tryptophan radical has been observed to occur with almost same rate constant (k{approx}1.7x10{sup 8} dm{sup 3} mol{sup -1} s{sup -1}) at pH 8.8. Effect of structural changes, due to thermal denaturation, on scavenging of CO{sub 3}{sup -} radical and the electron transfer process have been studied and discussed in this paper.

  15. Non-iterative triple excitations in equation-of-motion coupled-cluster theory for electron attachment with applications to bound and temporary anions

    Science.gov (United States)

    Jagau, Thomas-C.

    2018-01-01

    The impact of residual electron correlation beyond the equation-of-motion coupled-cluster singles and doubles (EOM-CCSD) approximation on positions and widths of electronic resonances is investigated. To establish a method that accomplishes this task in an economical manner, several approaches proposed for the approximate treatment of triple excitations are reviewed with respect to their performance in the electron attachment (EA) variant of EOM-CC theory. The recently introduced EOM-CCSD(T)(a)* method [D. A. Matthews and J. F. Stanton, J. Chem. Phys. 145, 124102 (2016)], which includes non-iterative corrections to the reference and the target states, reliably reproduces vertical attachment energies from EOM-EA-CC calculations with single, double, and full triple excitations in contrast to schemes in which non-iterative corrections are applied only to the target states. Applications of EOM-EA-CCSD(T)(a)* augmented by a complex absorbing potential (CAP) to several temporary anions illustrate that shape resonances are well described by EOM-EA-CCSD, but that residual electron correlation often makes a non-negligible impact on their positions and widths. The positions of Feshbach resonances, on the other hand, are significantly improved when going from CAP-EOM-EA-CCSD to CAP-EOM-EA-CCSD(T)(a)*, but the correct energetic order of the relevant electronic states is still not achieved.

  16. Study of γ-irradiated lithographic polymers by electron spin resonance and electron nuclear double resonance

    International Nuclear Information System (INIS)

    Schlick, S.; Kevan, L.

    1982-01-01

    The room temperature gamma irradiation degradation of the lithographic polymers, poly(methylmethacrylate) (PMMA), poly(methyl-α-chloroacrylate) (PMCA), poly(methyl-α-fluoroacrylate) (PMFA), and poly(methylacrylonitrile) (PMCN), have been studied by electron spin resonance and electron nuclear double resonance (ENDOR) to assess their molecular degradation processes of relevance to electron beam lithography. Two classes of radicals are found, chain radicals and chain scission radicals. PMMA and PMCA mainly form chain scission radicals consistent with degradation while for PMCN the resolution is poorer, and this is only probable. PMFA forms mainly chain radicals consistent with predominant crosslinking. The total radical yield is greatest in PMCA and PMCN. ENDOR is used to assess the compactness of the radiation degradation region for PMMA and PMCA and hence the potential resolution of the resist; this appears to be about the same for these methacrylate polymers

  17. Resonant electron attachment to mixed hydrogen/oxygen and deuterium/oxygen clusters

    Science.gov (United States)

    Renzler, Michael; Kranabetter, Lorenz; Barwa, Erik; Grubwieser, Lukas; Scheier, Paul; Ellis, Andrew M.

    2017-11-01

    Low energy electron attachment to mixed (H2)x/(O2)y clusters and their deuterated analogs has been investigated for the first time. These experiments were carried out using liquid helium nanodroplets to form the clusters, and the effect of the added electron was then monitored via mass spectrometry. There are some important differences between electron attachment to the pure clusters and to the mixed clusters. A particularly notable feature is the formation of HO2- and H2O- ions from an electron-induced chemical reaction between the two dopants. The chemistry leading to these anions appears to be driven by electron resonances associated with H2 rather than O2. The electron resonances for H2 can lead to dissociative electron attachment (DEA), just as for the free H2 molecule. However, there is evidence that the resonance in H2 can also lead to rapid electron transfer to O2, which then induces DEA of the O2. This kind of excitation transfer has not, as far as we are aware, been reported previously.

  18. Characterization of electron cyclotron resonance hydrogen plasmas

    International Nuclear Information System (INIS)

    Outten, C.A.

    1990-01-01

    Electron cyclotron resonance (ECR) plasmas yield low energy and high ion density plasmas. The characteristics downstream of an ECR hydrogen plasma were investigated as a function of microwave power and magnetic field. A fast-injection Langmuir probe and a carbon resistance probe were used to determine plasma potential (V p ), electron density (N e ), electron temperature (T e ), ion energy (T i ), and ion fluence. Langmuir probe results showed that at 17 cm downstream from the ECR chamber the plasma characteristics are approximately constant across the center 7 cm of the plasma for 50 Watts of absorbed power. These results gave V p = 30 ± 5 eV, N e = 1 x 10 8 cm -3 , and T e = 10--13 eV. In good agreement with the Langmuir probe results, carbon resistance probes have shown that T i ≤ 50 eV. Also, based on hydrogen chemical sputtering of carbon, the hydrogen (ion and energetic neutrals) fluence rate was determined to be 1 x 10 16 /cm 2 -sec. at a pressure of 1 x 10 -4 Torr and for 50 Watts of absorbed power. 19 refs

  19. Resonance enhancement of neutrinoless double electron capture

    International Nuclear Information System (INIS)

    Krivoruchenko, M.I.; Simkovic, Fedor; Frekers, Dieter; Faessler, Amand

    2011-01-01

    The process of neutrinoless double electron (0νECEC) capture is revisited for those cases where the two participating atoms are nearly degenerate in mass. The theoretical framework is the formalism of an oscillation of two atoms with different total lepton number (and parity), one of which can be in an excited state so that mass degeneracy is realized. In such a case and assuming light Majorana neutrinos, the two atoms will be in a mixed configuration with respect to the weak interaction. A resonant enhancement of transitions between such pairs of atoms will occur, which could be detected by the subsequent electromagnetic de-excitation of the excited state of the daughter atom and nucleus. Available data of atomic masses, as well as nuclear and atomic excitations are used to select the most likely candidates for the resonant transitions. Assuming an effective mass for the Majorana neutrino of 1 eV, some half-lives are predicted to be as low as 10 22 years in the unitary limit. It is argued that, in order to obtain more accurate predictions for the 0νECEC half-lives, precision mass measurements of the atoms involved are necessary, which can readily be accomplished by today's high precision Penning traps. Further advancements also require a better understanding of high-lying excited states of the final nuclei (i.e. excitation energy, angular momentum and parity) and the calculation of the nuclear matrix elements.

  20. Electronic resonances in broadband stimulated Raman spectroscopy

    Science.gov (United States)

    Batignani, G.; Pontecorvo, E.; Giovannetti, G.; Ferrante, C.; Fumero, G.; Scopigno, T.

    2016-01-01

    Spontaneous Raman spectroscopy is a formidable tool to probe molecular vibrations. Under electronic resonance conditions, the cross section can be selectively enhanced enabling structural sensitivity to specific chromophores and reaction centers. The addition of an ultrashort, broadband femtosecond pulse to the excitation field allows for coherent stimulation of diverse molecular vibrations. Within such a scheme, vibrational spectra are engraved onto a highly directional field, and can be heterodyne detected overwhelming fluorescence and other incoherent signals. At variance with spontaneous resonance Raman, however, interpreting the spectral information is not straightforward, due to the manifold of field interactions concurring to the third order nonlinear response. Taking as an example vibrational spectra of heme proteins excited in the Soret band, we introduce a general approach to extract the stimulated Raman excitation profiles from complex spectral lineshapes. Specifically, by a quantum treatment of the matter through density matrix description of the third order nonlinear polarization, we identify the contributions which generate the Raman bands, by taking into account for the cross section of each process.

  1. Whole acute toxicity removal from industrial and domestic effluents treated by electron beam radiation: emphasis on anionic surfactants

    International Nuclear Information System (INIS)

    Moraes, M.C.F.; Romanelli, M.F; Sena, H.C.; Pasqualini da Silva, G.; Sampa, M.H.O.; Borrely, S.I.

    2004-01-01

    Electron beam radiation has been applied to improve real industrial and domestic effluents received by Suzano wastewater treatment plant. Radiation efficacy has been evaluated as toxicity reduction, using two biological assays. Three sites were sampled and submitted for toxicity assays, anionic surfactant determination and electron beam irradiation. This paper shows the reduction of acute toxicity for both test-organisms, the marine bacteria Vibrio fischeri and the crustacean Daphnia similis. The raw toxic effluents exibitted from 0.6 ppm up to 11.67 ppm for anionic surfactant before being treated by the electron beam. Radiation processing resulted in reduction of the acute toxicity as well as surfactant removal. The final biological effluent was in general less toxic than other sites but the presence of anionic surfactants was evidenced

  2. Whole acute toxicity removal from industrial and domestic effluents treated by electron beam radiation: emphasis on anionic surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Moraes, M.C.F. E-mail: mariacristinafm@uol.com.br; Romanelli, M.F; Sena, H.C.; Pasqualini da Silva, G.; Sampa, M.H.O.; Borrely, S.I

    2004-10-01

    Electron beam radiation has been applied to improve real industrial and domestic effluents received by Suzano wastewater treatment plant. Radiation efficacy has been evaluated as toxicity reduction, using two biological assays. Three sites were sampled and submitted for toxicity assays, anionic surfactant determination and electron beam irradiation. This paper shows the reduction of acute toxicity for both test-organisms, the marine bacteria Vibrio fischeri and the crustacean Daphnia similis. The raw toxic effluents exibitted from 0.6 ppm up to 11.67 ppm for anionic surfactant before being treated by the electron beam. Radiation processing resulted in reduction of the acute toxicity as well as surfactant removal. The final biological effluent was in general less toxic than other sites but the presence of anionic surfactants was evidenced.

  3. Automated electronic tongue based on potentiometric sensors for the determination of a trinary anionic surfactant mixture.

    Science.gov (United States)

    Cortina, Montserrat; Ecker, Christina; Calvo, Daniel; del Valle, Manuel

    2008-01-22

    An automated electronic tongue consisting of an array of potentiometric sensors and an artificial neural network (ANN) has been developed to resolve mixtures of anionic surfactants. The sensor array was formed by five different flow-through sensors for anionic surfactants, based on poly(vinyl chloride) membranes having cross-sensitivity features. Feedforward multilayer neural networks were used to predict surfactant concentrations. As a great amount of information is required for the correct modelling of the sensors response, a sequential injection analysis (SIA) system was used to automatically provide it. Dodecylsulfate (DS(-)), dodecylbenzenesulfonate (DBS(-)) and alpha-alkene sulfonate (ALF(-)) formed the three-analyte study case resolved in this work. Their concentrations varied from 0.2 to 4mM for ALF(-) and DBS(-) and from 0.2 to 5mM for DS(-). Good prediction ability was obtained with correlation coefficients better than 0.933 when the obtained values were compared with those expected for a set of 16 external test samples not used for training.

  4. Strongly driven electron spins using a Ku band stripline electron paramagnetic resonance resonator

    Science.gov (United States)

    Yap, Yung Szen; Yamamoto, Hiroshi; Tabuchi, Yutaka; Negoro, Makoto; Kagawa, Akinori; Kitagawa, Masahiro

    2013-07-01

    This article details our work to obtain strong excitation for electron paramagnetic resonance (EPR) experiments by improving the resonator's efficiency. The advantages and application of strong excitation are discussed. Two 17 GHz transmission-type, stripline resonators were designed, simulated and fabricated. Scattering parameter measurements were carried out and quality factor were measured to be around 160 and 85. Simulation results of the microwave's magnetic field distribution are also presented. To determine the excitation field at the sample, nutation experiments were carried out and power dependence were measured using two organic samples at room temperature. The highest recorded Rabi frequency was rated at 210 MHz with an input power of about 1 W, which corresponds to a π/2 pulse of about 1.2 ns.

  5. Gas phase structures and charge localization in small aluminum oxide anions: Infrared photodissociation spectroscopy and electronic structure calculations

    Energy Technology Data Exchange (ETDEWEB)

    Song, Xiaowei; Fagiani, Matias R. [Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin (Germany); Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstrasse 2, D-04103 Leipzig (Germany); Gewinner, Sandy; Schöllkopf, Wieland [Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin (Germany); Asmis, Knut R., E-mail: knut.asmis@uni-leipzig.de, E-mail: js@chemie.hu-berlin.de [Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstrasse 2, D-04103 Leipzig (Germany); Bischoff, Florian A.; Berger, Fabian; Sauer, Joachim, E-mail: knut.asmis@uni-leipzig.de, E-mail: js@chemie.hu-berlin.de [Institut für Chemie, Humboldt-Universität zu Berlin, Unter den Linden 6, D-10099 Berlin (Germany)

    2016-06-28

    We use cryogenic ion trap vibrational spectroscopy in combination with quantum chemical calculations to study the structure of mono- and dialuminum oxide anions. The infrared photodissociation spectra of D{sub 2}-tagged AlO{sub 1-4}{sup −} and Al{sub 2}O{sub 3-6}{sup −} are measured in the region from 400 to 1200 cm{sup −1}. Structures are assigned based on a comparison to simulated harmonic and anharmonic IR spectra derived from electronic structure calculations. The monoaluminum anions contain an even number of electrons and exhibit an electronic closed-shell ground state. The Al{sub 2}O{sub 3-6}{sup −} anions are oxygen-centered radicals. As a result of a delicate balance between localization and delocalization of the unpaired electron, only the BHLYP functional is able to qualitatively describe the observed IR spectra of all species with the exception of AlO{sub 3}{sup −}. Terminal Al–O stretching modes are found between 1140 and 960 cm{sup −1}. Superoxo and peroxo stretching modes are found at higher (1120-1010 cm{sup −1}) and lower energies (850-570 cm{sup −1}), respectively. Four modes in-between 910 and 530 cm{sup −1} represent the IR fingerprint of the common structural motif of dialuminum oxide anions, an asymmetric four-member Al–(O){sub 2}–Al ring.

  6. Electron paramagnetic resonance dosimetry using synthetic hydroxyapatite

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kwon; Kim, Hwi Young; Ye, Sung Joon [Seoul National University, Seoul (Korea, Republic of); Hirata, Hiroshi [Hokkaido University, Sapporo (Japan); Park, Jong Min [Seoul National University Hospital, Seoul (Korea, Republic of)

    2014-11-15

    The victims exposed doses under 3.5-4.0 Gy have chance to survive if treated urgently. To determine the priority of treatment among a large number of victims, the triage – distinguishing patients who need an urgent treatment from who may not be urgent – is necessary based on radiation biodosimetry. A current gold standard for radiation biodosimetry is the chromosomal assay using human lymphocytes. But this method requires too much time and skilled labors to cover the mass victims in radiation emergencies. Electron paramagnetic resonance (EPR) has been known for its capability of quantifying radicals in matters. EPR dosimetry is based on the measurement of stable radiation-induced radicals in tooth enamel. Hydroxyapatite (HAP) (Ca10(PO4)6(OH)2) contained in tooth enamel is a major probe for radiation dose reconstruction. This HAP dosimetry study was performed using a novel EPR spectrometer in Hokkaido University, Japan. The EPR dose-response curve was made using HAP samples. The blind test using 250 cGy samples showed the feasibility of EPR dosimetry for the triage purpose.

  7. Photoelectron spectrum of valence anions of uracil and first-principles calculations of excess electron binding energies.

    Science.gov (United States)

    Bachorz, Rafał A; Klopper, Wim; Gutowski, Maciej; Li, Xiang; Bowen, Kit H

    2008-08-07

    The photoelectron spectrum (PES) of the uracil anion is reported and discussed from the perspective of quantum chemical calculations of the vertical detachment energies (VDEs) of the anions of various tautomers of uracil. The PES peak maximum is found at an electron binding energy of 2.4 eV, and the width of the main feature suggests that the parent anions are in a valence rather than a dipole-bound state. The canonical tautomer as well as four tautomers that result from proton transfer from an NH group to a C atom were investigated computationally. At the Hartree-Fock and second-order Moller-Plesset perturbation theory levels, the adiabatic electron affinity (AEA) and the VDE have been converged to the limit of a complete basis set to within +/-1 meV. Post-MP2 electron-correlation effects have been determined at the coupled-cluster level of theory including single, double, and noniterative triple excitations. The quantum chemical calculations suggest that the most stable valence anion of uracil is the anion of a tautomer that results from a proton transfer from N1H to C5. It is characterized by an AEA of 135 meV and a VDE of 1.38 eV. The peak maximum is as much as 1 eV larger, however, and the photoelectron intensity is only very weak at 1.38 eV. The PES does not lend support either to the valence anion of the canonical tautomer, which is the second most stable anion, and whose VDE is computed at about 0.60 eV. Agreement between the peak maximum and the computed VDE is only found for the third most stable tautomer, which shows an AEA of approximately -0.1 eV and a VDE of 2.58 eV. This tautomer results from a proton transfer from N3H to C5. The results illustrate that the characteristics of biomolecular anions are highly dependent on their tautomeric form. If indeed the third most stable anion is observed in the experiment, then it remains an open question why and how this species is formed under the given conditions.

  8. Electron spin resonance (ESR), electron nuclear double resonance (ENDOR) and general triple resonance of irradiated biocarbonates

    International Nuclear Information System (INIS)

    Schramm, D.U.; Rossi, A.M.

    1996-01-01

    Several irradiated bicarbonates were studied by magnetic resonance techniques. Seven paramagnetic species, attributed to CO 2 - , SO 2 - and SO 3 - were identified. Comparison between radiation induced defects in bioaragonites and aragonite single-crystals show that isotropic and orthorhombic CO 2 - centers with broad line spectra are not produced in the latter samples. Vibrational and rotational properties of isotropic CO 2 - centers were studied from low temperature Q-band spectras. Vibrational frequency is determined from the 13 CO 2 - hyperfine spectrum and yielded ν 1.54 x 10 13 s -1 . The correlation time for isotropic CO 2 - , τc) = 1.2 x 10 -11 s (T = 300 K0, is typical of radicals rotating in liquids. ENDOR and General Triple spectroscopy show that orthorhombic CO 2 - centres are surrounded by water molecules located in the second nearest CO 2 2- sites at 5.14, 5.35 and 6.02 A. Water molecules replacing carbonates or as liquid inclusion of growth solution in local crystal imperfections may be responsible for the variety of orthorhombic and isotropic CO 2 - species, respectively. (author)

  9. Photoinduced electron transfer between anionic fluorophores and methyl viologen in homogeneous and microheterogeneous media

    Energy Technology Data Exchange (ETDEWEB)

    Burai, Tarak Nath; Panda, Debashis; Iyer, E Siva Subramaniam [Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076 (India); Datta, Anindya, E-mail: anindya@chem.iitb.ac.in [Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076 (India)

    2012-11-15

    The rate and extent of photoinduced electron transfer change significantly as a result of confinement in nanovolumes. Study of such processes is an active area of research in physical chemistry. The effect is most interesting when the molecules that participate in PET are charged. In the present article, the modulation of PET has been studied for two anionic fluorophores: Lucifer Yellow CH and chlorin p{sub 6} with Methylviologen dication. PET, manifested in the quenching of fluorescence of the fluorophores, has been modulated by incorporating the molecules in organized assemblies like micelles, reverse micelles and supramolecular hosts. The dynamics of the process has been monitored in the femtosecond to nanosecond timescale. The modulation of the electron transfer has been found to be occurring mainly due to the disruption of contact ion pairs formed between the fluorophores and the quencher. - Highlights: Black-Right-Pointing-Pointer Modulation of PET of biologically active fluorophores and Methyl viologen. Black-Right-Pointing-Pointer Static and Dynamic Quenching present. Black-Right-Pointing-Pointer PET enhanced upon encapsulation, studied through Fluorescence upconversion experiments. Black-Right-Pointing-Pointer Rotational anisotropy has significant contribution in quenching.

  10. Photoinduced electron transfer between anionic fluorophores and methyl viologen in homogeneous and microheterogeneous media

    International Nuclear Information System (INIS)

    Burai, Tarak Nath; Panda, Debashis; Iyer, E Siva Subramaniam; Datta, Anindya

    2012-01-01

    The rate and extent of photoinduced electron transfer change significantly as a result of confinement in nanovolumes. Study of such processes is an active area of research in physical chemistry. The effect is most interesting when the molecules that participate in PET are charged. In the present article, the modulation of PET has been studied for two anionic fluorophores: Lucifer Yellow CH and chlorin p 6 with Methylviologen dication. PET, manifested in the quenching of fluorescence of the fluorophores, has been modulated by incorporating the molecules in organized assemblies like micelles, reverse micelles and supramolecular hosts. The dynamics of the process has been monitored in the femtosecond to nanosecond timescale. The modulation of the electron transfer has been found to be occurring mainly due to the disruption of contact ion pairs formed between the fluorophores and the quencher. - Highlights: ► Modulation of PET of biologically active fluorophores and Methyl viologen. ► Static and Dynamic Quenching present. ► PET enhanced upon encapsulation, studied through Fluorescence upconversion experiments. ► Rotational anisotropy has significant contribution in quenching.

  11. Negative ion photoelectron spectroscopy of solvated electron cluster anions, (H2O)n- and (NH3)n-

    International Nuclear Information System (INIS)

    Lee, G.H.; Arnold, S.T.; Eaton, J.G; Sarkas, H.W.; Bowen, K.H.; Ludewigt, C.; Haberland, H.

    1991-01-01

    The photodetachment spectra of (H 2 O) - n=2-69 and (NH 3 ) - n=41-1100 have been recorded, and vertical detachment energies (VDEs) were obtained from the spectra. For both systems, the cluster anion VDEs increase smoothly with increasing sizes and most species plot linearly with n -1/3 , extrapolating to a VDE (n = ∞) value which is very close to the photoelectric threshold energy for the corresponding condensed phase solvated electron system. The linear extrapolation of this data to the analogous condensed phase property suggests that these cluster anions are gas phase counterparts to solvated electrons, i.e. they are embryonic forms of hydrated and ammoniated electrons which mature with increasing cluster size toward condensed phase solvated electrons. (orig.)

  12. Negative ion photoelectron spectroscopy of solvated electron cluster anions, (H2O){/n -} and (NH3){/n -}

    Science.gov (United States)

    Lee, G. H.; Arnold, S. T.; Eaton, J. G.; Sarkas, H. W.; Bowen, K. H.; Ludewigt, C.; Haberland, H.

    1991-03-01

    The photodetachment spectra of (H2O){/n =2-69/-} and (NH3){/n =41-1100/-} have been recorded, and vertical detachment energies (VDEs) were obtained from the spectra. For both systems, the cluster anion VDEs increase smoothly with increasing sizes and most species plot linearly with n -1/3, extrapolating to a VDE ( n=∞) value which is very close to the photoelectric threshold energy for the corresponding condensed phase solvated electron system. The linear extrapolation of this data to the analogous condensed phase property suggests that these cluster anions are gas phase counterparts to solvated electrons, i.e. they are embryonic forms of hydrated and ammoniated electrons which mature with increasing cluster size toward condensed phase solvated electrons.

  13. Absorption of resonant electromagnetic radiation in electron-atom collisions

    International Nuclear Information System (INIS)

    Arslanbekov, T.U.; Pazdzerskii, V.A.; Usachenko, V.I.

    1986-01-01

    Nonrelativistic quantum theory is used to study the possibility of amplification of electromagnetic radiation in forced braking scattering of an electron beam on atoms. The interaction of the atom with the electromagnetic field is considered in the resonant approximation. Cases of large and small detuning from resonance are considered. It is shown that for any orientation of the electron beam relative to the field polarization vector, absorption of radiation occurs, with the major contribution being produced by atomic electrons

  14. Electron cyclotron resonance plasmas and electron cyclotron resonance ion sources: Physics and technology (invited)

    International Nuclear Information System (INIS)

    Girard, A.; Hitz, D.; Melin, G.; Serebrennikov, K.

    2004-01-01

    Electron cyclotron resonance (ECR) ion sources are scientific instruments particularly useful for physics: they are extensively used in atomic, nuclear, and high energy physics, for the production of multicharged beams. Moreover, these sources are also of fundamental interest for plasma physics, because of the very particular properties of the ECR plasma. This article describes the state of the art on the physics of the ECR plasma related to multiply charged ion sources. In Sec. I, we describe the general aspects of ECR ion sources. Physics related to the electrons is presented in Sec. II: we discuss there the problems of heating and confinement. In Sec. III, the problem of ion production and confinement is presented. A numerical code is presented, and some particular and important effects, specific to ECR ion sources, are shown in Sec. IV. Eventually, in Sec. V, technological aspects of ECR are presented and different types of sources are shown

  15. Contribution to the study of electron paramagnetic resonance and relaxation

    International Nuclear Information System (INIS)

    Theobald, Jean-Gerard

    1962-01-01

    This research thesis reports an experimental work which comprises the development of a very practical and very sensitive electron paramagnetic resonance spectrometer, and the use of this equipment for the study of irradiated substances and carbons. By studying electronic resonance signals by fast modulation of the magnetic field, the author studied phenomena of quick passage in electronic resonance, and showed that the study of these phenomena requires observation systems with a particularly large bandwidth. He reports the measurement of the line width of packs of spins of inhomogeneous lines by two different methods [fr

  16. Chemical Reactions Triggered Using Electrons Photodetached from "Clean" Distributions of Anions Deposited in Cryogenic Matrices via Counterion Codeposition.

    Science.gov (United States)

    Ludwig, Ryan M; Moore, David T

    2014-09-04

    Application of matrix isolation spectroscopy to ionic species is typically complicated by the presence of neutral contaminants during matrix deposition. Herein we demonstrate that simultaneous deposition of balanced currents of counterions with mass-selected ions of interest generates "clean" distributions of matrix-isolated metal carbonyl anions, where the only bands appearing in the CO-stretching region of the vibrational spectrum arise from ions. (Neutrals are initially absent.) Photodetachment by mild irradiation with visible light leads to complete conversion of the anions into their corresponding neutral species. The photodetached electrons, in turn, initiate covalent chemistry, inducing C-C bond formation following electron-capture by CO van der Waals dimers to produce trans-OCCO(-). The initial clean distribution of ions enables clear connections to be drawn between the spectral changes occurring at each experimental step, thus demonstrating the potential of the counterion codeposition technique to facilitate detailed studies of chemistry involving ions and electron transfer in cryogenic matrices.

  17. Electronic structures and water reactivity of mixed metal sulfide cluster anions

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Arjun; Raghavachari, Krishnan [Department of Chemistry, Indiana University, Bloomington, Indiana 47405 (United States)

    2014-08-21

    The electronic structures and chemical reactivity of the mixed metal sulfide cluster anion (MoWS{sub 4}{sup −}) have been investigated with density functional theory. Our study reveals the presence of two almost isoenergetic structural isomers, both containing two bridging sulfur atoms in a quartet state. However, the arrangement of the terminal sulfur atoms is different in the two isomers. In one isomer, the two metals are in the same oxidation state (each attached to one terminal S). In the second isomer, the two metals are in different oxidation states (with W in the higher oxidation state attached to both terminal S). The reactivity of water with the two lowest energy isomers has also been studied, with an emphasis on pathways leading to H{sub 2} release. The reactive behavior of the two isomers is different though the overall barriers in both systems are small. The origin of the differences are analyzed and discussed. The reaction pathways and barriers are compared with the corresponding behavior of monometallic sulfides (Mo{sub 2}S{sub 4}{sup −} and W{sub 2}S{sub 4}{sup −}) as well as mixed metal oxides (MoWO{sub 4}{sup −})

  18. Zwitterion radicals and anion radicals from electron transfer and solvent condensation with the fingerprint developing agent ninhydrin.

    Science.gov (United States)

    Schertz, T D; Reiter, R C; Stevenson, C D

    2001-11-16

    Ninhydrin (the fingerprint developing agent) spontaneously dehydrates in liquid ammonia and in hexamethylphosphoramide (HMPA) to form indantrione, which has a sufficiently large solution electron affinity to extract an electron from the solvent (HMPA) to produce the indantrione anion radical. In liquid NH(3), the presence of trace amounts of amide ion causes the spontaneous formation of an anion radical condensation product, wherein the no. 2 carbon (originally a carbonyl carbon) becomes substituted with -NH(2) and -OH groups. In HMPA, the indantrione anion radical spontaneously forms condensation products with the HMPA to produce a variety of zwitterionic radicals, wherein the no. 2 carbon becomes directly attached to a nitrogen of the HMPA. The mechanisms for the formation of the zwitterionic paramagnetic condensation products are analogous to that observed in the reaction of ninhydrin with amino acids to yield Ruhemann's Purple, the contrast product in fingerprint development. The formation of anion and zwitterionic radical condensation products from ninhydrin and nitrogen-containing solvents may represent an example of a host of analogous polyketone-solvent reactions.

  19. Electron paramagnetic resonance dosimetry in fingernails

    International Nuclear Information System (INIS)

    Romanyukha, Alex; Benevides, Luis A.; Reyes, Ricardo; Trompier, Francois; Clairand, Isabelle; Swartz, Harold M.

    2008-01-01

    Full text: Based on the capabilities of new instrumentation and the experience gained in the use of teeth for 'after-the-fact' dosimetry, we have undertaken a systematic electron paramagnetic resonance (EPR) study of irradiated fingernails. There have been only a modest number of previous studies of radiation-induced signals in fingernails. While these have given us some promising aspects, overall results have been inconsistent. The most significant problem of EPR fingernail dosimetry is the presence of two signals of non-radiation origin that overlap the radiation-induced signal (RIS), making it almost impossible to do dose measurements below 5 Gy. Historically, these two non-radiation components were named mechanically-induced signal (MIS) and background signal (BKS). In order to investigate them in detail, three different methods of MIS and BKS mutual isolation have been developed and implemented. Having applied these methods, we were able to understand that fingernail tissue, after cut, can be modeled as a deformed sponge, where the MIS and BKS are associated with the stress from elastic and plastic deformations respectively. A sponge has a unique mechanism of mechanical stress absorption, which is necessary for fingernails in order to perform its everyday function of protecting the fingertips from hits and trauma. Like a sponge, fingernails are also known to be an effective water absorber. When a sponge is saturated with water, it tends to restore to its original shape, and when it looses water, it becomes deformed again. The same happens to fingernail tissue. Our suggested interpretation of the mechanical deformation in fingernails gives also a way to distinguish between the MIS and RIS. Obtained results show that the MIS in irradiated fingernails can be almost completely eliminated without a significant change to the RIS by soaking the sample for 10 minutes in water. This is an ongoing study but even at its present state of development, it has shown that it

  20. Resonant depolarization in electron storage rings equipped with ''siberia snakes''

    International Nuclear Information System (INIS)

    Buon, J.

    1984-11-01

    Resonant depolarization induced by field errors and quantum emissions in an electron ring equipped with two ''siberian snakes'' is investigated with a first order perturbation calculation. It is shown that this depolarization is not reduced by the snakes when the operating energy is set out of the depolarization resonances [fr

  1. Electron spin resonance investigations on polycarbonate irradiated with U ions

    Energy Technology Data Exchange (ETDEWEB)

    Chipara, M.I.; Reyes-Romero, J

    2001-12-01

    Electron spin resonance investigations on polycarbonate irradiated with uranium ions are reported. The dependence of the resonance line parameters (line intensity, line width, double integral) on penetration depth and dose is studied. The nature of free radicals induced in polycarbonate by the incident ions is discussed in relation with the track structure. The presence of severe exchange interactions among free radicals is noticed.

  2. Electron plasma waves and plasma resonances

    International Nuclear Information System (INIS)

    Franklin, R N; Braithwaite, N St J

    2009-01-01

    In 1929 Tonks and Langmuir predicted of the existence of electron plasma waves in an infinite, uniform plasma. The more realistic laboratory environment of non-uniform and bounded plasmas frustrated early experiments. Meanwhile Landau predicted that electron plasma waves in a uniform collisionless plasma would appear to be damped. Subsequent experimental work verified this and revealed the curious phenomenon of plasma wave echoes. Electron plasma wave theory, extended to finite plasmas, has been confirmed by various experiments. Nonlinear phenomena, such as particle trapping, emerge at large amplitude. The use of electron plasma waves to determine electron density and electron temperature has not proved as convenient as other methods.

  3. Resonant inelastic collisions of electrons with diatomic molecules

    International Nuclear Information System (INIS)

    Houfek, Karel

    2012-01-01

    In this contribution we give a review of applications of the nonlocal resonance theory which has been successfully used for treating the nuclear dynamics of low-energy electron collisions with diatomic molecules over several decades. We give examples and brief explanations of various structures observed in the cross sections of vibrational excitation and dissociative electron attachment to diatomic molecules such as threshold peaks, boomerang oscillations below the dissociative attachment threshold, or outer-well resonances.

  4. Resonant inelastic collisions of electrons with diatomic molecules

    Energy Technology Data Exchange (ETDEWEB)

    Houfek, Karel, E-mail: karel.houfek@gmail.com [Institute of Theoretical Physics, Faculty of Mathematics and Physics, Charles University, V Holesovickach 2, 180 00 Prague 8 (Czech Republic)

    2012-05-15

    In this contribution we give a review of applications of the nonlocal resonance theory which has been successfully used for treating the nuclear dynamics of low-energy electron collisions with diatomic molecules over several decades. We give examples and brief explanations of various structures observed in the cross sections of vibrational excitation and dissociative electron attachment to diatomic molecules such as threshold peaks, boomerang oscillations below the dissociative attachment threshold, or outer-well resonances.

  5. Electronically excited negative ion resonant states in chloroethylenes

    Energy Technology Data Exchange (ETDEWEB)

    Khvostenko, O.G., E-mail: khv@mail.ru; Lukin, V.G.; Tuimedov, G.M.; Khatymova, L.Z.; Kinzyabulatov, R.R.; Tseplin, E.E.

    2015-02-15

    Highlights: • Several novel dissociative negative ion channels were revealed in chloroethylenes. • The electronically excited resonant states were recorded in all chloroethylenes under study. • The states were assigned to the inter-shell types, but not to the core-excited Feshbach one. - Abstract: The negative ion mass spectra of the resonant electron capture by molecules of 1,1-dichloroethylene, 1,2-dichloroethylene-cis, 1,2-dichloroethylene-trans, trichloroethylene and tetrachloroethylene have been recorded in the 0–12 eV range of the captured electron energy using static magnetic sector mass spectrometer modified for operation in the resonant electron capture regime. As a result, several novel low-intensive dissociation channels were revealed in the compounds under study. Additionally, the negative ion resonant states were recorded at approximately 3–12 eV, mostly for the first time. These resonant states were assigned to the electronically excited resonances of the inter-shell type by comparing their energies with those of the parent neutral molecules triplet and singlet electronically excited states known from the energy-loss spectra obtained by previous studies.

  6. The theory of coherent resonance tunneling of interacting electrons

    International Nuclear Information System (INIS)

    Elesin, V. F.

    2001-01-01

    Analytical solutions of the Schrödinger equation for a two-barrier structure (resonance-tunnel diode) with open boundary conditions are found within the model of coherent tunneling of interacting electrons. Simple expressions for resonance current are derived which enable one to analyze the current-voltage characteristics, the conditions of emergence of hysteresis, and singularities of the latter depending on the parameters of resonance-tunnel diode. It is demonstrated that the hysteresis is realized if the current exceeds some critical value proportional to the square of resonance level width.

  7. The 2Πg shape resonance of acetylene anion: an investigation with the RAC method

    Czech Academy of Sciences Publication Activity Database

    Čurík, Roman; Paidarová, Ivana; Horáček, Michal

    2016-01-01

    Roč. 70, č. 7 (2016), č. článku 146. ISSN 1434-6060 R&D Projects: GA MŠk LD14088 Grant - others:COST(XE) CM1301 Institutional support: RVO:61388955 Keywords : ANALYTICAL CONTINUATION * ELECTRON-SCATTERING * COUPLING-CONSTANT Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.288, year: 2016

  8. Study of electron transition energies between anions and cations in spinel ferrites using differential UV–vis absorption spectra

    International Nuclear Information System (INIS)

    Xue, L.C.; Wu, L.Q.; Li, S.Q.; Li, Z.Z.; Tang, G.D.; Qi, W.H.; Ge, X.S.; Ding, L.L.

    2016-01-01

    It is very important to determine electron transition energies (E_t_r) between anions and different cations in order to understand the electrical transport and magnetic properties of a material. Many authors have analyzed UV–vis absorption spectra using the curve (αhν)"2 vs E, where α is the absorption coefficient and E(=hν) is the photon energy. Such an approach can give only two band gap energies for spinel ferrites. In this paper, using differential UV–vis absorption spectra, dα/dE vs E, we have obtained electron transition energies (E_t_r) between the anions and cations, Fe"2"+ and Fe"3"+ at the (A) and [B] sites and Ni"2"+ at the [B] sites for the (A)[B]_2O_4 spinel ferrite samples Co_xNi_0_._7_−_xFe_2_._3O_4 (0.0≤x≤0.3), Cr_xNi_0_._7Fe_2_._3_−_xO_4 (0.0≤x≤0.3) and Fe_3O_4. We suggest that the differential UV–vis absorption spectra should be accepted as a general analysis method for determining electron transition energies between anions and cations.

  9. Electron waves and resonances in bounded plasmas

    CERN Document Server

    Vandenplas, Paul E

    1968-01-01

    General theoretical methods and experimental techniques ; the uniform plasma slab-condenser system ; the hollow cylindrical plasma ; scattering of a plane electromagnetic wave by a plasma column in steady magnetic fields (cold plasma approximation) ; hot non-uniform plasma column ; metallic and dielectric resonance probes, plasma-dielectric coated antenna, general considerations.

  10. Nonlinear bounce resonances between magnetosonic waves and equatorially mirroring electrons

    Science.gov (United States)

    Chen, Lunjin; Maldonado, Armando; Bortnik, Jacob; Thorne, Richard M.; Li, Jinxing; Dai, Lei; Zhan, Xiaoya

    2015-08-01

    Equatorially mirroring energetic electrons pose an interesting scientific problem, since they generally cannot resonate with any known plasma waves and hence cannot be scattered down to lower pitch angles. Observationally it is well known that the flux of these equatorial particles does not simply continue to build up indefinitely, and so a mechanism must necessarily exist that transports these particles from an equatorial pitch angle of 90° down to lower values. However, this mechanism has not been uniquely identified yet. Here we investigate the mechanism of bounce resonance with equatorial noise (or fast magnetosonic waves). A test particle simulation is used to examine the effects of monochromatic magnetosonic waves on the equatorially mirroring energetic electrons, with a special interest in characterizing the effectiveness of bounce resonances. Our analysis shows that bounce resonances can occur at the first three harmonics of the bounce frequency (nωb, n = 1, 2, and 3) and can effectively reduce the equatorial pitch angle to values where resonant scattering by whistler mode waves becomes possible. We demonstrate that the nature of bounce resonance is nonlinear, and we propose a nonlinear oscillation model for characterizing bounce resonances using two key parameters, effective wave amplitude à and normalized wave number k~z. The threshold for higher harmonic resonance is more strict, favoring higher à and k~z, and the change in equatorial pitch angle is strongly controlled by k~z. We also investigate the dependence of bounce resonance effects on various physical parameters, including wave amplitude, frequency, wave normal angle and initial phase, plasma density, and electron energy. It is found that the effect of bounce resonance is sensitive to the wave normal angle. We suggest that the bounce resonant interaction might lead to an observed pitch angle distribution with a minimum at 90°.

  11. Anionic and cationic redox and interfaces in batteries: Advances from soft X-ray absorption spectroscopy to resonant inelastic scattering

    Science.gov (United States)

    Yang, Wanli; Devereaux, Thomas P.

    2018-06-01

    Recent advances in battery science and technology have triggered both the challenges and opportunities on studying the materials and interfaces in batteries. Here, we review the recent demonstrations of soft X-ray spectroscopy for studying the interfaces and electrode materials. The focus of this review is on the recently developed mapping of resonant inelastic X-ray scattering (mRIXS) as a powerful probe of battery chemistry with superior sensitivity. Six different channels of soft X-ray absorption spectroscopy (sXAS) are introduced for different experimental purposes. Although conventional sXAS channels remain effective tools for quantitative analysis of the transition-metal states and surface chemistry, we elaborate the limitations of sXAS in both cationic and anionic redox studies. Particularly, based on experimental findings in various electrodes, we show that sXAS is unreliable for studying oxygen redox. We then demonstrate the mRIXS as a reliable technique for fingerprinting oxygen redox and summarize several crucial observations. We conclude that mRIXS is the tool-of-choice to study both the practical issue on reversibility of oxygen redox and the fundamental nature of bulk oxygen states. We hope this review clarifies the popular misunderstanding on oxygen sXAS results of oxide electrodes, and establishes a reliable technique for detecting oxygen redox through mRIXS.

  12. Microwave power coupling with electron cyclotron resonance ...

    Indian Academy of Sciences (India)

    600 W microwave power with an average electron density of ∼ 6 × 1011 cm. −3 ... the angular frequency of the cyclotron motion, e is the electron charge, m is the mass of .... is also suitable for ECR plasma-based applications like high-quality ...

  13. Role of anion doping on electronic structure and magnetism of GdN by first principles calculations

    KAUST Repository

    Zhang, Xuejing; Mi, Wenbo; Guo, Zaibing; Cheng, Yingchun; Chen, Guifeng; Bai, Haili

    2014-01-01

    We have investigated the electronic structure and magnetism of anion doped GdN1-yXy (X = B, C, O, F, P, S and As) systems by first-principles calculations based on density functional theory. GdN 1-yXy systems doped by O, C, F, P, and S atoms are more stable than those doped by B and As atoms because of relatively high binding energies. The anion doping and the N defect states modify the density of states at the Fermi level, resulting in a decrease in spin polarization and a slight increase in the magnetic moment at the Gd and N sites. © 2014 The Royal Society of Chemistry.

  14. Electron scattering resonances and dissociative attachment in polyatomic molecules

    International Nuclear Information System (INIS)

    Olthoff, J.K.

    1985-01-01

    A relatively new technique, electron transmission spectroscopic, is now being used to investigate the unoccupied valence molecular orbitals of many chemical compounds. Electron-transmission spectroscopy measures the energy of negative ion states that arise from electron capture into unoccupied molecular orbitals. Additional information about the unoccupied orbitals may be obtained if the negative ion decays by way of dissociation. Determination of the identity, kinetic energy, and production rates of stable ion fragments supplies information about the shape and position of the potential energy curves which describe the electronic states of the molecule and the anion. Used together, photoelectron, electron transmission, and dissociation data can produce a complete picture of a molecule's valence electronic structure. For this work, a time-of-flight mass spectrometer was attached to an electron transmission spectrometer to observe negative ion fragments due to dissociative attachment. The mass spectrometer measures the identify and kinetic energy of stable negative ions as a function of incident electron energy. Electron transmission spectra and ion production data were acquired for many compounds in four chemical categories

  15. Resonant inelastic scattering of quasifree electrons on ions

    International Nuclear Information System (INIS)

    Grabbe, S.

    1994-01-01

    Several studies of resonant-transfer excitation (RTE) have been reported in ion-atom collisions where the doubly excited autoionizing states are produced. Such a complex collision can be approximated as the scattering of quasifree electrons of the target from the projectile ion. Most of the investigations have been restricted to the deexcitation of the autoionizing states to the ground state by Auger electron emission. It has been shown that there is a strong interference between the elastic scattering amplitude and the resonance amplitude. The authors present here the cases where the corresponding interference is between the inelastic scattering and the resonance process. Recent work on 3 ell 3 ell ' resonances that decay predominantly to n=2 states will be presented for C 5+ -molecular hydrogen collisions

  16. Dosimetry of ionizing radiations by Electron paramagnetic resonance

    International Nuclear Information System (INIS)

    Azorin N, J.

    2005-01-01

    In this work, some historical and theoretical aspects about the Electron Paramagnetic Resonance (EPR), its characteristics, the resonance detection, the paramagnetic species, the radiation effects on inorganic and organic materials, the diagrams of the instrumentation for the EPR detection, the performance of an EPR spectrometer, the coherence among EPR and dosimetry and, practical applications as well as in the food science there are presented. (Author)

  17. Electron Cyclotron Resonance Heating of a High-Density Plasma

    DEFF Research Database (Denmark)

    Hansen, F. Ramskov

    1986-01-01

    Various schemes for electron cyclotron resonance heating of tokamak plasmas with the ratio of electron plasma frequency to electron cyclotron frequency, "»pe/^ce* larger than 1 on axis, are investigated. In particular, a mode conversion scheme is investigated using ordinary waves at the fundamental...... of the electron cyclotron frequency. These are injected obliquely from the outside of the tokamak near an optimal angle to the magnetic field lines. This method involves two mode conversions. The ordinary waves are converted into extraordinary waves near the plasma cut-off layer. The extraordinary waves...... are subsequently converted into electrostatic electron Bernstein waves at the upper hybrid resonance layer, and the Bernstein waves are completely absorbed close to the plasma centre. Results are presented from ray-tracinq calculations in full three-dimensional geometry using the dispersion function for a hot non...

  18. Stochasticity of the energy absorption in the electron cyclotron resonance

    International Nuclear Information System (INIS)

    Gutierrez T, C.; Hernandez A, O.

    1998-01-01

    The energy absorption mechanism in cyclotron resonance of the electrons is a present problem, since it could be considered from the stochastic point of view or this related with a non-homogeneous but periodical of plasma spatial structure. In this work using the Bogoliubov average method for a multi periodical system in presence of resonances, the drift equations were obtained in presence of a RF field for the case of electron cyclotron resonance until first order terms with respect to inverse of its cyclotron frequency. The absorbed energy equation is obtained on part of electrons in a simple model and by drift method. It is showed the stochastic character of the energy absorption. (Author)

  19. Electron-cyclotron-resonance ion sources (review)

    International Nuclear Information System (INIS)

    Golovanivskii, K.S.; Dougar-Jabon, V.D.

    1992-01-01

    The physical principles are described and a brief survey of the present state is given of ion sources based on electron-cyclotron heating of plasma in a mirror trap. The characteristics of ECR sources of positive and negative ions used chiefly in accelerator technology are presented. 20 refs., 10 figs., 3 tabs

  20. Resonance fluorescence and electron spin in semiconductor quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yong

    2009-11-18

    The work presented in this dissertation contains the first observation of spin-resolved resonance fluorescence from a single quantum dot and its application of direct measurement of electron spin dynamics. The Mollow triplet and the Mollow quintuplet, which are the hallmarks of resonance fluorescence, are presented as the non-spin-resolved and spin-resolved resonance fluorescence spectrum, respectively. The negligible laser background contribution, the near pure radiative broadened spectrum and the anti-bunching photon statistics imply the sideband photons are background-free and near transform-limited single photons. This demonstration is a promising step towards the heralded single photon generation and electron spin readout. Instead of resolving spectrum, an alternative spin-readout scheme by counting resonance fluorescence photons under moderate laser power is demonstrated. The measurements of n-shot time-resolved resonance fluorescence readout are carried out to reveal electron spin dynamics of the measurement induced back action and the spin relaxation. Hyperfine interaction and heavy-light hole mixing are identified as the relevant mechanisms for the back action and phonon-assistant spin-orbit interaction dominates the spin relaxation. After a detailed discussion on charge-spin configurations in coupled quantum dots system, the single-shot readout on electron spin are proposed. (orig.)

  1. Resonance fluorescence and electron spin in semiconductor quantum dots

    International Nuclear Information System (INIS)

    Zhao, Yong

    2009-01-01

    The work presented in this dissertation contains the first observation of spin-resolved resonance fluorescence from a single quantum dot and its application of direct measurement of electron spin dynamics. The Mollow triplet and the Mollow quintuplet, which are the hallmarks of resonance fluorescence, are presented as the non-spin-resolved and spin-resolved resonance fluorescence spectrum, respectively. The negligible laser background contribution, the near pure radiative broadened spectrum and the anti-bunching photon statistics imply the sideband photons are background-free and near transform-limited single photons. This demonstration is a promising step towards the heralded single photon generation and electron spin readout. Instead of resolving spectrum, an alternative spin-readout scheme by counting resonance fluorescence photons under moderate laser power is demonstrated. The measurements of n-shot time-resolved resonance fluorescence readout are carried out to reveal electron spin dynamics of the measurement induced back action and the spin relaxation. Hyperfine interaction and heavy-light hole mixing are identified as the relevant mechanisms for the back action and phonon-assistant spin-orbit interaction dominates the spin relaxation. After a detailed discussion on charge-spin configurations in coupled quantum dots system, the single-shot readout on electron spin are proposed. (orig.)

  2. Electron spin resonance studies of the mechanism of radiation damage to DNA

    International Nuclear Information System (INIS)

    Cullis, P.M.; Symons, M.C.R.

    1986-01-01

    Electron spin resonance spectroscopy has only been used successfully on dry DNA at room temperature or on aqueous DNA at low temperatures. Under these conditions the direct damage results in electron-loss, which initially is indiscriminate, but rapidly ends up as G dot + , which is stable up to ca. 210 0 K. Electrons are trapped at T, giving T dot - anions, which are converted into dot TH in the 130 to 208 0 K range. Above these temperatures, both centers decay without the clear appearance of other intermediate radicals. Arguments are given against the concept that holes and/or electrons are extensively mobile within DNA molecules, and also against the concept that the ionic species studied by ESR spectroscopy recombine to give G and T to a major extent. In the presence of oxygen, O 2 - ions were detected and the primary yield of T dot - was reduced. However, both primry centers were lost at relatively low temperatures, with the concomitant formation of RO 2 dot radicals. The fate of these and the O 2 dot - anions could not be determined by ESR spectroscopy. In the presence of hydrogen peroxide or iodoacetamide, electrons were effectively scavenged, giving dot OH and H 2 C dot ONH 2 radicals and a reduced yield of T dot - . These active radicals were rapidly converted into new alkyl-type radicals, thought to be primarily formed by hydrogen atom abstraction. The ESR signals due to these radicals were lost at temperatures below those characteristic of the primary centers. This shows that these may well have been converted into such alkyl radical centers by hydrogen atom transfer despite our inability to detect them. 17 refs., 7 figs

  3. Electron cyclotron resonance heating and current drive

    Energy Technology Data Exchange (ETDEWEB)

    Fidone, I.; Castejon, F.

    1992-07-01

    A brief summary of the theory and experiments on electron- cyclotron heating and current drive is presented. The general relativistic formulation of wave propagation and linear absorption is considered in some detail. The O-mode and the X-mode for normal and oblique propagation are investigated and illustrated by several examples. The experimental verification of the theory in T-10 and D- III-D is briefly discussed. Quasilinear evolution of the momentum distribution and related applications as, for instance, non linear wave, damping and current drive, are also considered for special cases of wave frequencies, polarization and propagation. In the concluding section we present the general formulation of the wave damping and current drive in the absence of electron trapping for arbitrary values of the wave frequency. (Author) 13 refs.

  4. Electron - cyclotron resonance heating and current drive

    International Nuclear Information System (INIS)

    Fidone, I.; Castejon, F.

    1992-01-01

    A brief summary of the theory and experiments on electron- cyclotron heating and current drive is presented. The general relativistic formulation of wave propagation and linear absorption is considered in some detail. The O-mode and the X-mode for normal and oblique propagation are investigated and illustrated by several examples. The experimental verification of the theory in T-10 and D- III-D is briefly discussed. Quasilinear evolution of the momentum distribution and related applications as, for instance, non linear wave, damping and current drive, are also considered for special cases of wave frequencies, polarization and propagation. In the concluding section we present the general formulation of the wave damping and current drive in the absence of electron trapping for arbitrary values of the wave frequency. (Author) 13 refs

  5. Path-integral approach to resonant electron-molecule scattering

    International Nuclear Information System (INIS)

    Winterstetter, M.; Domcke, W.

    1993-01-01

    A path-integral formulation of resonant electron-molecule scattering is developed within the framework of the projection-operator formalism of scattering theory. The formation and decay of resonances is treated in real time as a quantum-mechanical electronic-tunneling process, modified by the coupling of the electronic motion with the nuclear degrees of freedom. It is shown that the electronic continuum can be summed over in the path-integral formulation, resulting formally in the path integral for an effective two-state system with coupling to vibrations. The harmonic-oscillator approximation is adopted for the vibrational motion in the present work. Approximation methods are introduced which render the numerical evaluation of the sum over paths feasible for up to ∼10 3 elementary time slices. The theory is numerically realized for simple but nontrivial models representing the 2 Π g d-wave shape resonance in e - +N 2 collisions and the 2 Σ u + p-wave shape resonance in e - +H 2 collisions, respectively. The accuracy of the path-integral results is assessed by comparison with exact numerical reference data for these models. The essential virtue of the path-integral approach is the fact that the computational effort scales at most linearly with the number of vibrational degrees of freedom. The path-integral method is thus well suited to treat electron collisions with polyatomic molecules and molecular aggregates

  6. Resonant electron capture by aspartame and aspartic acid molecules.

    Science.gov (United States)

    Muftakhov, M V; Shchukin, P V

    2016-12-30

    The processes for dissociative electron capture are the key mechanisms for decomposition of biomolecules, proteins in particular, under interaction with low-energy electrons. Molecules of aspartic acid and aspartame, i.e. modified dipeptides, were studied herein to define the impact of the side functional groups on peptide chain decomposition in resonant electron-molecular reactions. The processes of formation and decomposition of negative ions of both aspartame and aspartic acid were studied by mass spectrometry of negative ions under resonant electron capture. The obtained mass spectra were interpreted under thermochemical analysis by quantum chemical calculations. Main channels of negative molecular ions fragmentation were found and characteristic fragment ions were identified. The СООН fragment of the side chain in aspartic acid is shown to play a key role like the carboxyl group in amino acids and aliphatic oligopeptides. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  7. Radical intermediates involved in the bleaching of the carotenoid crocin. Hydroxyl radicals, superoxide anions and hydrated electrons

    International Nuclear Information System (INIS)

    Bors, W.; Saran, M.; Michel, C.

    1982-01-01

    The participation of the primary radicals in the bleaching of aqueous solutions of the carotenoid crocin by ionizing radiation was investigated, employing both X-radiolysis and pulse radiolysis. The pulse-radiolytic data demonstrated a very rapid diffusion-controlled attack by both hydroxyl radicals (radicalsOH) and hydrated electrons (e - sub(aq)), while superoxide anions (O 2 - ) did not react at all. The site of the initial reaction of these radicals was not limited to the polyene chromophore. Slower secondary reactions involving crocin alkyl or peroxy radicals contribute mainly to the overall bleaching, in particular during steady-state irradiation. (author)

  8. Wave propagation through an electron cyclotron resonance layer

    International Nuclear Information System (INIS)

    Westerhof, E.

    1997-01-01

    The propagation of a wave beam through an electron cyclotron resonance layer is analysed in two-dimensional slab geometry in order to assess the deviation from cold plasma propagation due to resonant, warm plasma changes in wave dispersion. For quasi-perpendicular propagation, N ' 'parallel to'' ≅ v t /c, an O-mode beam is shown to exhibit a strong wiggle in the trajectory of the centre of the beam when passing through the fundamental electron cyclotron resonance. The effects are largest for low temperatures and close to perpendicular propagation. Predictions from standard dielectric wave energy fluxes are inconsistent with the trajectory of the beam. Qualitatively identical results are obtained for the X-mode second harmonic. In contrast, the X-mode at the fundamental resonance shows significant deviations form cold plasma propagation only for strongly oblique propagation and/or high temperatures. On the basis of the obtained results a practical suggestion is made for ray tracing near electron cyclotron resonance. (Author)

  9. Introduction to Spin Label Electron Paramagnetic Resonance Spectroscopy of Proteins

    Science.gov (United States)

    Melanson, Michelle; Sood, Abha; Torok, Fanni; Torok, Marianna

    2013-01-01

    An undergraduate laboratory exercise is described to demonstrate the biochemical applications of electron paramagnetic resonance (EPR) spectroscopy. The beta93 cysteine residue of hemoglobin is labeled by the covalent binding of 3-maleimido-proxyl (5-MSL) and 2,2,5,5-tetramethyl-1-oxyl-3-methyl methanethiosulfonate (MTSL), respectively. The excess…

  10. Some examples of utilization of electron paramagnetic resonance in biology

    International Nuclear Information System (INIS)

    Bemski, G.

    1982-10-01

    A short outline of the fundamentals of electron paramagnetic resonance (EPR) is presented and is followed by examples of the application of EPR to biology. These include use of spin labels, as well as of ENDOR principally to problems of heme proteins, photosynthesis and lipids. (Author) [pt

  11. Electron paramagnetic resonance: A new method of quaternary dating

    International Nuclear Information System (INIS)

    Poupeau, G.; Rossi, A.; Teles, M.M.; Danon, J.

    1984-01-01

    Significant progress has occurred in the last years in quaternary geochronology. One of this is the emergence of a new dating approach, the Electron Spin Resonance Method. The aim of this paper is to briefly review the method and discuss some aspects of the work at CBPF. (Author) [pt

  12. Electron scattering from CO in the 2Pi resonance region

    International Nuclear Information System (INIS)

    Buckman, S.J.; Lohmann, B.

    1986-01-01

    The total cross section for electron scattering from CO in the energy range 0.5--5 eV has been measured with use of a time-of-flight spectrometer. This energy region encompasses the 2 π shape resonance, and a comparison is made with other experimental and theoretical results with regard to the magnitude and position of this structure

  13. Electron paramagnetic resonance: a new method of quaternary dating

    International Nuclear Information System (INIS)

    Poupeau, G.; Rossi, A.; Universidade Federal Rural do Rio de Janeiro; Telles, M.; Danon, J.

    1984-01-01

    Significant progress has occurred in the last years in quaternary geochronology. One of this is the emergence of a new dating approach, the Electron Spin Resonance Method. The aim of this paper is to briefly review the method and discuss some aspects of the work at CBPF. (Author) [pt

  14. Electron spin resonance dating of fault gouge from Desamangalam

    Indian Academy of Sciences (India)

    The preliminary results from the electron spin resonance (ESR) dating on the quartz grains from the fault gouge indicate that the last major faulting in this site occurred 430 ± 43 ka ago. The experiments on different grain sizes of quartz from the gouge showed consistent decrease in age to a plateau of low values, indicating ...

  15. Electron beam imaging and spectroscopy of plasmonic nanoantenna resonances

    NARCIS (Netherlands)

    Vesseur, P.C.

    2011-01-01

    Nanoantennas are metal structures that provide strong optical coupling between a nanoscale volume and the far field. This coupling is mediated by surface plasmons, oscillations of the free electrons in the metal. Increasing the control over the resonant plasmonic field distribution opens up a wide

  16. New Insights in Catalytic Sites: Characterization of Spectroscopy and Reactivity of Metal Oxide Clusters with Anion Slow Electron Velocity-Map Imaging

    Science.gov (United States)

    2016-06-08

    SEVI experiment, 16 ions were produced by expanding an appropriate gas mixture into vacuum with a pulsed solenoid valve. Anions were created from... laser ablation. They pass through an rf ion guide and are mass- selected in a quadrupole mass spectrometer. They are then injected into an rf...selected anions are dissociated by the absorption of multiple photons from a tunable infrared free electron laser . 33 This work is motivated by the

  17. Electron cyclotron resonance microwave ion sources for thin film processing

    International Nuclear Information System (INIS)

    Berry, L.A.; Gorbatkin, S.M.

    1990-01-01

    Plasmas created by microwave absorption at the electron cyclotron resonance (ECR) are increasingly used for a variety of plasma processes, including both etching and deposition. ECR sources efficiently couple energy to electrons and use magnetic confinement to maximize the probability of an electron creating an ion or free radical in pressure regimes where the mean free path for ionization is comparable to the ECR source dimensions. The general operating principles of ECR sources are discussed with special emphasis on their use for thin film etching. Data on source performance during Cl base etching of Si using an ECR system are presented. 32 refs., 5 figs

  18. The Production of Polycyclic Aromatic Hydrocarbon Anions in Inert Gas Matrices Doped with Alkali Metals. Electronic Absorption Spectra of the Pentacene Anion (C22H14(-))

    Science.gov (United States)

    Halasinski, Thomas M.; Hudgins, Douglas M.; Salama, Farid; Allamandola, Louis J.; Mead, Susan (Technical Monitor)

    1999-01-01

    The absorption spectra of pentacene (C22H14) and its radical cation (C22H14(+)) and anion (C22H14(-)) isolated in inert-gas matrices of Ne, Ar, and Kr are reported from the ultraviolet to the near-infrared. The associated vibronic band systems and their spectroscopic assignments are discussed together with the physical and chemical conditions governing ion (and counterion) production in the solid matrix. In particular, the formation of isolated pentacene anions is found to be optimized in matrices doped with alkali metal (Na and K).

  19. Ab initio investigation of sulfur monofluoride and its singly charged cation and anion in their ground electronic state

    International Nuclear Information System (INIS)

    Li Song; Chen Shan-Jun; Chen Yan; Chen Peng

    2016-01-01

    The SF radical and its singly charged cation and anion, SF + and SF − , have been investigated on the MRCI/aug-cc-pVXZ (X = Q, 5, 6) levels of theory with Davidson correction. Both the core–valence correlation and the relativistic effect are considered. The extrapolating to the complete basis set (CBS) limit is adopted to remove the basis set truncation error. Geometrical parameters, potential energy curves (PECs), vibrational energy levels, spectroscopic constants, ionization potentials, and electron affinities of the ground electronic state for all these species are obtained. The information with respect to molecular characteristics of the SF n (n = −1, 0, +1) systems derived in this work will help to extend our knowledge and to guide further experimental or theoretical researches. (paper)

  20. Ferromagnetic resonance characterization of nano-FePt by electron spin resonance

    CSIR Research Space (South Africa)

    Nkosi, SS

    2013-01-01

    Full Text Available Electron spin resonance (ESR) measurements at room temperature and X-band microwave frequency were performed on highly crystalline FePt system thin films. Fairly high DC static magnetic field absorption of about 300 mT was observed in these films...

  1. Spin asymmetry in resonant electron-hydrogen elastic scattering

    International Nuclear Information System (INIS)

    McCarthy, I.E.; Shang, Bo.

    1993-02-01

    Differential cross sections and asymmetries at 90 deg. and 30 deg are calculated for electron-hydrogen elastic scattering over the energies of the lowest 1 S and 3 P resonances using a nine-state coupled-channels calculation with and without continuum effects, which are represented by an equivalent-local polarization potential. The polarization potential improves agreement with experiment in general for the spin-averaged cross sections. It is suggested that continuum effects would be critically tested by asymmetry measurement at 30 deg over the 1 S resonance. 7 refs., 4 figs

  2. Synthesis Properties and Electron Spin Resonance Properties of Titanic Materials

    International Nuclear Information System (INIS)

    Cho, Jung Min; Lee, Jun; Kim, Tak Hee; Sun, Min Ho; Jang, Young Bae; Cho, Sung June

    2009-01-01

    Titanic materials were synthesized by hydrothermal method of TiO 2 anatase in 10M LiOH, 10M NaOH, and 14M KOH at 130 deg. C for 30 hours. Alkaline media were removed from the synthesized products using 0.1N HCl aqueous solution. The as-prepared samples were characterized by scanning electron microscope, transmission electron microscope, X-ray diffraction, Brunauer-Emmett-Teller isotherm, and electron spin resonance. Different shapes of synthesized products were observed through the typical electron microscope and indicated that the formation of the different morphologies depends on the treatment conditions of highly alkaline media. Many micropores were observed in the cubic or octahedral type of TiO 2 samples through the typical electron microscope and Langmuir adsorption-desorption isotherm of liquid nitrogen at 77 deg. K. Electron spin resonance studies have also been carried out to verify the existence of paramagnetic sites such as oxygen vacancies on the titania samples. The effect of alkali metal ions on the morphologies and physicochemical properties of nanoscale titania are discussed.

  3. Broadband electron spin resonance experiments using superconducting coplanar waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Clauss, Conrad; Bogani, Lapo; Scheffler, Marc; Dressel, Martin [1. Physikalisches Institut, Universitaet Stuttgart (Germany); Bothner, Daniel; Koelle, Dieter; Kleiner, Reinhold [Physikalisches Institut - Experimentalphysik II and Center for Collective Quantum Phenomena in LISA+, Universitaet Tuebingen (Germany)

    2012-07-01

    In recent years superconducting coplanar devices operating at microwave/GHz frequencies are employed in more and more experimental studies. Here, we present electron spin resonance (ESR) experiments using a superconducting coplanar waveguide to provide the RF field to drive the spin flips. In contrast to conventional ESR studies this allows broadband frequency as well as magnetic field swept observation of the spin resonance. We show experimental data of the spin resonance of the organic radical NitPhoMe (2-(4'-methoxyphenyl)-4,4,5,5-tetra-methylimidazoline-1-oxyl-3-oxide) for frequencies in the range of 1 GHz to 40 GHz and corresponding magnetic fields up to 1.4 T (for g=2). In addition we show the temperature dependence of the ESR signals for temperatures up to 30 K, which is well above the critical temperature of the niobium superconductor.

  4. FERMILAB SWITCHYARD RESONANT BEAM POSITION MONITOR ELECTRONICS UPGRADE RESULTS

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, T. [Fermilab; Diamond, J. [Fermilab; Liu, N. [Fermilab; Prieto, P. S. [Fermilab; Slimmer, D. [Fermilab; Watts, A. [Fermilab

    2016-10-12

    The readout electronics for the resonant beam position monitors (BPMs) in the Fermilab Switchyard (SY) have been upgraded, utilizing a low noise amplifier transition board and Fermilab designed digitizer boards. The stripline BPMs are estimated to have an average signal output of between -110 dBm and -80 dBm, with an estimated peak output of -70 dBm. The external resonant circuit is tuned to the SY machine frequency of 53.10348 MHz. Both the digitizer and transition boards have variable gain in order to accommodate the large dynamic range and irregularity of the resonant extraction spill. These BPMs will aid in auto-tuning of the SY beamline as well as enabling operators to monitor beam position through the spill.

  5. Tunable coupled nanomechanical resonators for single-electron transport

    International Nuclear Information System (INIS)

    Scheible, Dominik V; Erbe, Artur; Blick, Robert H

    2002-01-01

    Nano-electromechanical systems (NEMS) are ideal for sensor applications and ultra-sensitive force detection, since their mechanical degree of freedom at the nanometre scale can be combined with semiconductor nano-electronics. We present a system of coupled nanomechanical beam resonators in silicon which is mechanically fully Q-tunable ∼700-6000. This kind of resonator can also be employed as a mechanical charge shuttle via an insulated metallic island at the tip of an oscillating cantilever. Application of our NEMS as an electromechanical single-electron transistor (emSET) is introduced and experimental results are discussed. Three animation clips demonstrate the manufacturing process of the NEMS, the Q-tuning experiment and the concept of the emSET

  6. Stochastic heating in the cyclotron resonance of electrons

    International Nuclear Information System (INIS)

    Gutierrez T, C.; Hernandez A, O.

    1999-01-01

    The study of the different schemes of plasma heating by radiofrequency waves is a very actual problem related with the plasma heating in different machines and the particle acceleration mechanisms. In this work, it is obtained the expression for the temporal evolution of the energy absorbed in the cyclotron resonance of electrons where it is showed the stochastic character of the energy absorption. It is obtained the stochastic criteria in a magnetic configuration of an Ecr type plasma source. (Author)

  7. Resonance electronic Raman scattering in rare earth crystals

    International Nuclear Information System (INIS)

    Williams, G.M.

    1988-01-01

    The intensities of Raman scattering transitions between electronic energy levels of trivalent rare earth ions doped into transparent crystals were measured and compared to theory. A particle emphasis was placed on the examination of the effect of intermediate state resonances on the Raman scattering intensities. Two specific systems were studied: Ce 3+ (4f 1 ) in single crystals of LuPO 4 and Er 3+ (4f 11 ) in single crystals of ErPO 4 . 134 refs., 92 figs., 33 tabs

  8. Proton location in metal hydrides using electron spin resonance

    International Nuclear Information System (INIS)

    Venturini, E.L.

    1979-01-01

    Electron spin resonance (ESR) of dilute paramagnetic ions establishes the site symmetry of these ions. In the case of metal hydrides the site symmetry is determined by the number and location of neighboring protons. Typical ESR spectra for trivalent erbium in scandium and yttrium hydrides are presented and analyzed, and this technique is shown to be a versatile microscopic probe of the location, net charge and occupation probability of nearby protons

  9. Electron-nuclear magnetic resonance in the inverted state

    International Nuclear Information System (INIS)

    Ignatchenko, V.A.; Tsifrinovich, V.I.

    1975-01-01

    The paper considers the susceptibility of the electron-nucleus system of a ferromagnet when nuclear magnetization is inverted with respect to the hyperfine field direction. The inverted state is a situation in which nuclear magnetization is turned through π relative to its equilibrium orientation, whereas electron magnetization is in an equilibrium state with respect to an external magnetic field. The consideration is carried out for a thin plate magnetized in its plane. Amplification of a weak radiofrequency signal can be attained under the fulfilment of an additional inequality relating the interaction frequency with electron and nuclear relaxation parameters. The gain may exceed the gain for an inverted nuclear system in magnetically disordered substances. In the range of strong interaction between the frequencies of ferromagnetic (FMR) and nuclear magnetic (NMR) resonances the electron-nuclear magnetic resonance (ENMR) spectrum possesses a fine structure which is inverse to that obtained for the ENMR spectrum in a normal state. The inverted state ENMR line shape is analysed in detail for the case of so weak HF fields that the relaxation conditions may be regarded as stationary. The initial (linear) stages of a forced transient process arising in an electron-nuclear system under the effect of a strong HF field are briefly analysed

  10. Electron inelastic scattering by compound nuclei and giant multipole resonances

    International Nuclear Information System (INIS)

    Dzhavadov, A.V.; Mukhtarov, A.I.; Mirabutalybov, M.M.

    1980-01-01

    Multipole giant resonances in heavy nuclei have been investigated with the application of the Danos-Greiner dynamic collective theory to the Tassi model. The monopole giant resonance has been studied in 158 Gd, 166 Er, 184 W, 232 Th and 238 V nuclei at the incident electron energy E=200 MeV. Dependences of the form factor square of electron scattering by a 166 Er nucleus on the scattering angle obtained in the distorted-wave high-energy approximation (DWHEA) are presented. Giant dipole and quadrupole resonances in 60 Ni and 90 Zr nuclei have been studied. A comparison has been made of theoretical results obtained in the DWHEA for the dependence of the form factor square on the effective momentum transfer with the experimental data. The analysis of the obtained results led to the following conclusions. To draw a conclusion about the validity of one or another nuclear model and methods for calculating form factors, it is necessary to investigate, both theoretically and experimentally, electron scattering at great angles (THETA>=70 deg). To obtain a good agreement it is necessary to take account of the actual proton and neutron distributions in the ground state and their dynamic properties in an excited state [ru

  11. Vibrational structures in electron-CO2 scattering below the 2Πu shape resonance

    International Nuclear Information System (INIS)

    Allan, Michael

    2002-01-01

    Structures of vibrational origin were discovered in vibrationally inelastic electron-CO 2 cross sections in the energy range 0.4-0.9 eV, well below the 2 Π u shape resonance. They appear in the excitation of higher vibrational levels, in particular the highest members of the Fermi polyads of the type (n, 2m, 0) with n+m=2-4. The lowest two structures, at 0.445 and 0.525 eV, are narrow; higher-lying structures are broader and boomerang-like. The structures are absent when the antisymmetric stretch is co-excited. The structures are interpreted in terms of a wavepacket of the nuclei reflected from a potential surface of the CO 2 - anion in a bent and stretched geometry. A state emerging from the virtual state upon bending and stretching and the state resulting from bending the 2 Π u shape resonance are discussed as possibly being responsible for the structures. (author). Letter-to-the-editor

  12. Sensitivity and spatial resolution for electron-spin-resonance detection by magnetic resonance force microscopy

    International Nuclear Information System (INIS)

    Zhang, Z.; Roukes, M.L.; Hammel, P.C.

    1996-01-01

    The signal intensity of electron spin resonance in magnetic resonance force microscopy (MRFM) experiments employing periodic saturation of the electron spin magnetization is determined by four parameters: the rf field H 1 , the modulation level of the bias field H m , the spin relaxation time τ 1 , and the magnetic size R(∂H/∂z) of the sample. Calculations of the MRFM spectra obtained from a 2,2-diphenyl-1-picrylhydrazyl particle have been performed for various conditions. The results are compared with experimental data and excellent agreement is found. The systematic variation of the signal intensity as a function of H 1 and H m provides a powerful tool to characterize the MRFM apparatus. copyright 1996 American Institute of Physics

  13. Paramagnetic resonance and electronic conduction in organic semiconductors

    International Nuclear Information System (INIS)

    Nechtschein, M.

    1963-01-01

    As some organic bodies simultaneously display semi-conducting properties and a paramagnetism, this report addresses the study of conduction in organic bodies. The author first briefly recalls how relationships between conductibility and Electron Paramagnetic Resonance (EPR) can be noticed in a specific case (mineral and metallic semiconductors). He discusses published results related to paramagnetism and conductibility in organic bodies. He reviews various categories of organic bodies in which both properties are simultaneously present. He notably addresses radical molecular crystals, non-radical molecular crystals, charge transfer complexes, pyrolyzed coals, and pseudo-ferromagnetic organic structures. He discusses the issue of relationships between conduction (charge transfer by electrons) and ERP (which reveals the existence of non-paired electrons which provide free spins)

  14. Permanent magnet electron cyclotron resonance plasma source with remote window

    International Nuclear Information System (INIS)

    Berry, L.A.; Gorbatkin, S.M.

    1995-01-01

    An electron cyclotron resonance (ECR) plasma has been used in conjunction with a solid metal sputter target for Cu deposition over 200 mm diameters. The goal is to develop a deposition system and process suitable for filling submicron, high-aspect ratio ULSI features. The system uses a permanent magnet for creation of the magnetic field necessary for ECR, and is significantly more compact than systems equipped with electromagnets. A custom launcher design allows remote microwave injection with the microwave entrance window shielded from the copper flux. When microwaves are introduced at an angle with respect to the plasma, high electron densities can be produced with a plasma frequency significantly greater than the electron cyclotron frequency. Copper deposition rates of 1000 A/min have been achieved

  15. Enhanced confinement in electron cyclotron resonance ion source plasma.

    Science.gov (United States)

    Schachter, L; Stiebing, K E; Dobrescu, S

    2010-02-01

    Power loss by plasma-wall interactions may become a limitation for the performance of ECR and fusion plasma devices. Based on our research to optimize the performance of electron cyclotron resonance ion source (ECRIS) devices by the use of metal-dielectric (MD) structures, the development of the method presented here, allows to significantly improve the confinement of plasma electrons and hence to reduce losses. Dedicated measurements were performed at the Frankfurt 14 GHz ECRIS using argon and helium as working gas and high temperature resistive material for the MD structures. The analyzed charge state distributions and bremsstrahlung radiation spectra (corrected for background) also clearly verify the anticipated increase in the plasma-electron density and hence demonstrate the advantage by the MD-method.

  16. Convergent j-matrix calculation of electron-helium resonances

    International Nuclear Information System (INIS)

    Konovalov, D.A.; McCarthy, I.E.

    1994-12-01

    Resonance structures in n=2 and n=3 electron-helium excitation cross sections are calculated using the J-matrix method. The number of close-coupled helium bound and continuum states is taken to convergence, e.g. about 100 channels are coupled for each total spin and angular momentum. It is found that the present J-matrix results are in good shape agreement with recent 29-state R-matrix calculations. However the J-matrix absolute cross sections are slightly lower due to the influence of continuum channels included in the present method. Experiment and theory agree on the positions of n=2 and n=3 resonances. 22 refs., 1 tab.; 3 figs

  17. Electronic modulation of infrared radiation in graphene plasmonic resonators.

    Science.gov (United States)

    Brar, Victor W; Sherrott, Michelle C; Jang, Min Seok; Kim, Seyoon; Kim, Laura; Choi, Mansoo; Sweatlock, Luke A; Atwater, Harry A

    2015-05-07

    All matter at finite temperatures emits electromagnetic radiation due to the thermally induced motion of particles and quasiparticles. Dynamic control of this radiation could enable the design of novel infrared sources; however, the spectral characteristics of the radiated power are dictated by the electromagnetic energy density and emissivity, which are ordinarily fixed properties of the material and temperature. Here we experimentally demonstrate tunable electronic control of blackbody emission from graphene plasmonic resonators on a silicon nitride substrate. It is shown that the graphene resonators produce antenna-coupled blackbody radiation, which manifests as narrow spectral emission peaks in the mid-infrared. By continuously varying the nanoresonator carrier density, the frequency and intensity of these spectral features can be modulated via an electrostatic gate. This work opens the door for future devices that may control blackbody radiation at timescales beyond the limits of conventional thermo-optic modulation.

  18. Plasma production for electron acceleration by resonant plasma wave

    International Nuclear Information System (INIS)

    Anania, M.P.; Biagioni, A.; Chiadroni, E.; Cianchi, A.; Croia, M.; Curcio, A.; Di Giovenale, D.; Di Pirro, G.P.; Filippi, F.; Ghigo, A.; Lollo, V.; Pella, S.; Pompili, R.; Romeo, S.; Ferrario, M.

    2016-01-01

    Plasma wakefield acceleration is the most promising acceleration technique known nowadays, able to provide very high accelerating fields (10–100 GV/m), enabling acceleration of electrons to GeV energy in few centimeter. However, the quality of the electron bunches accelerated with this technique is still not comparable with that of conventional accelerators (large energy spread, low repetition rate, and large emittance); radiofrequency-based accelerators, in fact, are limited in accelerating field (10–100 MV/m) requiring therefore hundred of meters of distances to reach the GeV energies, but can provide very bright electron bunches. To combine high brightness electron bunches from conventional accelerators and high accelerating fields reachable with plasmas could be a good compromise allowing to further accelerate high brightness electron bunches coming from LINAC while preserving electron beam quality. Following the idea of plasma wave resonant excitation driven by a train of short bunches, we have started to study the requirements in terms of plasma for SPARC-LAB (Ferrario et al., 2013 [1]). In particular here we focus on hydrogen plasma discharge, and in particular on the theoretical and numerical estimates of the ionization process which are very useful to design the discharge circuit and to evaluate the current needed to be supplied to the gas in order to have full ionization. Eventually, the current supplied to the gas simulated will be compared to that measured experimentally.

  19. Plasma production for electron acceleration by resonant plasma wave

    Energy Technology Data Exchange (ETDEWEB)

    Anania, M.P., E-mail: maria.pia.anania@lnf.infn.it [INFN - LNF, via Enrico Fermi, 40, 00044 Frascati (Italy); Biagioni, A.; Chiadroni, E. [INFN - LNF, via Enrico Fermi, 40, 00044 Frascati (Italy); Cianchi, A. [University of Rome Tor Vergata - INFN, via della Ricerca Scientifica, 1, 00133 Roma (Italy); INFN, Via della Ricerca Scientifica, 1, 00133 Roma (Italy); Croia, M.; Curcio, A. [INFN - LNF, via Enrico Fermi, 40, 00044 Frascati (Italy); University of Rome La Sapienza, Piazzale Aldo Moro, 2, 00185 Roma (Italy); Di Giovenale, D.; Di Pirro, G.P. [INFN - LNF, via Enrico Fermi, 40, 00044 Frascati (Italy); Filippi, F. [University of Rome La Sapienza, Piazzale Aldo Moro, 2, 00185 Roma (Italy); Ghigo, A.; Lollo, V.; Pella, S.; Pompili, R. [INFN - LNF, via Enrico Fermi, 40, 00044 Frascati (Italy); Romeo, S. [INFN - LNF, via Enrico Fermi, 40, 00044 Frascati (Italy); University of Rome La Sapienza, Piazzale Aldo Moro, 2, 00185 Roma (Italy); Ferrario, M. [INFN - LNF, via Enrico Fermi, 40, 00044 Frascati (Italy)

    2016-09-01

    Plasma wakefield acceleration is the most promising acceleration technique known nowadays, able to provide very high accelerating fields (10–100 GV/m), enabling acceleration of electrons to GeV energy in few centimeter. However, the quality of the electron bunches accelerated with this technique is still not comparable with that of conventional accelerators (large energy spread, low repetition rate, and large emittance); radiofrequency-based accelerators, in fact, are limited in accelerating field (10–100 MV/m) requiring therefore hundred of meters of distances to reach the GeV energies, but can provide very bright electron bunches. To combine high brightness electron bunches from conventional accelerators and high accelerating fields reachable with plasmas could be a good compromise allowing to further accelerate high brightness electron bunches coming from LINAC while preserving electron beam quality. Following the idea of plasma wave resonant excitation driven by a train of short bunches, we have started to study the requirements in terms of plasma for SPARC-LAB (Ferrario et al., 2013 [1]). In particular here we focus on hydrogen plasma discharge, and in particular on the theoretical and numerical estimates of the ionization process which are very useful to design the discharge circuit and to evaluate the current needed to be supplied to the gas in order to have full ionization. Eventually, the current supplied to the gas simulated will be compared to that measured experimentally.

  20. New possibilities for using laser polarimetry technology to study electron paramagnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Aleksandrov, E V; Zapasskii, V S

    1982-01-01

    Optical methods of recording electron paramagnetic resonance which arose in the early 50's as applied to the problem of recording the magnetic resonance of excited atoms is at the present time widely used in studying the electron paramagnetic resonance of the ground and excited states of free atoms and paramagnetic centers in condensed media. At the present time attention is devoted to the additional possibilities of optical methods of electron paramagnetic resonance which are realized using laser sources.

  1. Photodetachment of Isolated Bicarbonate Anion: Electron Binding Energy of HCO3-

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xue B.; Xantheas, Sotiris S.

    2011-04-29

    We report the first direct photodetachment photoelectron spectroscopy of HCO3 in the gas phase under low temperature conditions. The observed photoelectron spectra are complicated due to excitations of manifolds in both vibrational and electronic states. A long and single vibrational progression with a frequency of 530 ± 20 cm-1 is partially resolved in the threshold of the T=20 K, 266 nm spectrum. The adiabatic electron detachment energy (ADE) of HCO3, or in other words the electron affinity (EA) of neutral HCO3, is experimentally determined from the (0-0) transition to be 3.680 ± 0.015 eV. High-level ab initio calculations at the CCSD(T) level of theory produce an anharmonic frequency of 546 cm-1 for HCO3 and a value of 3.62 eV for the (0,0) transition, both in excellent agreement with the experimentally determined values.

  2. Electron and nuclear magnetic resonances in compounds and metallic hydrides

    International Nuclear Information System (INIS)

    Brasil Filho, N.

    1985-11-01

    Proton pulsed Nuclear Magnetic Resonance measurements were performed on the metallic hydrides ZrCr 2 H x (x = 2, 3, 4) and ZrV 2 H y (y = 2, 3, 4, 5) as a function of temperature between 180 and 400K. The ultimate aim was the investigation of the relaxation mechanisms in these systems by means of the measurement of both the proton ( 1 H) spin-lattice (T 1 ) and spin-spin (T 2 ) relaxation times and to use these data to obtain information about the diffusive motion of the hydrogen atoms. The diffusional activation energies, the jump frequencies and the Korringa constant, C k , related with the conduction electron contribution to the 1 H relaxation were determined for the above hydrides as a function of hydrogen concentration. Our results were analysed in terms of the relaxation models described by Bloembergen, Purcell and Pound (BPP model) and by Torrey. The Korringa type relaxation due to the conduction electrons in metallic systems was also used to interpret the experimental results. We also present the Electron Paramagnetic Ressonance (EPR) study of Gd 3+ , Nd 3+ and Er 3+ ions as impurities in several AB 3 intermetallic compounds where A = LA, Ce, Y, Sc, Th, Zr and B = Rh, Ir, Pt. The results were analysed in terms of the multiband model previously suggested to explain the behaviour of the resonance parameter in AB 2 Laves Phase compounds. (author) [pt

  3. Low-energy electron-induced dissociation in condensed-phase L-cysteine II: a comparative study on anion desorption from chemisorbed and physisorbed films

    International Nuclear Information System (INIS)

    Alizadeh, E.; Rowntree, P.A.; Massey, S.; Sanche, L.

    2016-01-01

    In recent years it has become apparent that dissociative attachment of low energy electrons (DEA) is important for the description of radiation damage to biologically relevant molecules and living cells. Due to its multifunctional structure, cysteine is becoming an ideal model molecule for investigating the complex interactions of proteins with metallic surfaces such as gold nanoparticles. We report herein the results of low-energy electron induced degradation of L-cysteine films, chemisorbed on a gold substrate via the thiol group or physisorbed into a clean gold surface. The data were recorded under ultra-high vacuum conditions at room temperature. Anion yields desorbed from these films by the impact of 0.5 to 19 eV electrons provide clear evidence of the efficient decomposition of this amino acid via dissociative electron attachment (i.e., from dissociation of intermediate transient anions located between 5 and 14 eV). The peaks in the desorbed-anion yield functions, associated with DEA, are superimposed on a continuously rising signal attributed to dipolar dissociation. Similar to the results previously observed from physisorbed films, light anionic species, with masses lower than 35 amu, have been detected. In addition, we measured for first time fragments at 14 amu (CH_2"-) and 15 amu (CH_3"-) desorbing from physisorbed films, as well as heavier fragments of mass 45 and 46 amu desorbing from chemisorbed films

  4. Dissociative electron attachment and anion-induced dimerization in pyruvic acid

    Czech Academy of Sciences Publication Activity Database

    Zawadzki, Mateusz; Ranković, Miloš; Kočišek, Jaroslav; Fedor, Juraj

    2018-01-01

    Roč. 20, č. 10 (2018), s. 6838-6844 ISSN 1463-9076 R&D Projects: GA ČR GA17-04844S; GA ČR GJ16-10995Y Institutional support: RVO:61388955 Keywords : pyruvic acid * electron attachment * dimerization Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 4.123, year: 2016

  5. Electron exchange reaction in anion exchangers as observed in uranium isotope separation

    International Nuclear Information System (INIS)

    Obanawa, Heiichiro; Takeda, Kunihiko; Seko, Maomi

    1991-01-01

    The mechanism of electron exchange in an ion exchanger, as occurring between U 4+ and UO 2 2+ in uranium isotope separation, was investigated. The height of the separation unit (H q ) in the presence of metal ion catalysts, as obtained from the separation experiments, was found to be almost coincident with the theoretical value of H q as calculated on the basis of the intrasolution acceleration mechanism of the metal ion, suggesting that the electron exchange mechanism in the ion-exchanger is essentially the same as that in the solution when metal ion catalysts are present. Separation experiments with no metal ion catalyst, on the other hand, showed the electron exchange reaction in the ion exchanger to be substantially higher than that in the solution, suggesting an acceleration of the electron exchange reaction by the ion-exchanger which is due to the close existence of higher order Cl - complexes of UO 2 2+ and U 4+ in the vicinity of the ion-exchange group. (author)

  6. Handbook of multifrequency electron paramagnetic resonance data and techniques

    CERN Document Server

    Misra, Sushil K

    2014-01-01

    This handbook is aimed to deliver an up-to-date account of some of the recently developed experimental and theoretical methods in EPR, as well as a complete up-to-date listing of the experimentally determined values of multifrequency transition-ion spin Hamiltonian parameters by Sushil Misra, reported in the past 20 years, extending such a listing published by him in the Handbook on Electron Spin Resonance, volume 2. This extensive data tabulation makes up roughly 60% of the book`s content. It is complemented by the first full compilation of hyperfine splittings and g-factors for aminoxyl (nit

  7. Moessbauer effect and electron paramagnetic resonance studies on yeast aconitase

    International Nuclear Information System (INIS)

    Suzuki, Takashi; Maeda, Yutaka; Sakai, Hiroshi; Fujimoto, Shigeru; Morita, Yuhei.

    1975-01-01

    The Moessbauer effect and electron paramagnetic resonance (EPR) of yeast aconitase [EC 4.2.1.3] purified from the cells of Candida lipolytica (ATCC 20114) were measured. Moessbauer spectra suggested that yeast acontitase mostly contained two high-spin Fe(III) ions in an antiferromagnetically coupled binuclear complex that resembled oxidized 2 Fe ferredoxins, together with a small amount of high-spin Fe(II). EPR spectra recorded no signal at 77 0 K, but showed a slightly asymmetric signal centered at g=2.0 at 4.2 0 K, presumably due to the small amount of Fe(II) Fe(III) pairs. (auth.)

  8. Electronically Tunable Fully Integrated Fractional-Order Resonator

    KAUST Repository

    Tsirimokou, Georgia

    2017-03-20

    A fully integrated implementation of a parallel fractional-order resonator which employs together a fractional order capacitor and a fractional-order inductor is proposed in this paper. The design utilizes current-controlled Operational Transconductance Amplifiers as building blocks, designed and fabricated in AMS 0:35m CMOS process, and based on a second-order approximation of a fractional-order differentiator/ integrator magnitude optimized in the range 10Hz–700Hz. An attractive benefit of the proposed scheme is its electronic tuning capability.

  9. K-band single-chip electron spin resonance detector.

    Science.gov (United States)

    Anders, Jens; Angerhofer, Alexander; Boero, Giovanni

    2012-04-01

    We report on the design, fabrication, and characterization of an integrated detector for electron spin resonance spectroscopy operating at 27 GHz. The microsystem, consisting of an LC-oscillator and a frequency division module, is integrated onto a single silicon chip using a conventional complementary metal-oxide-semiconductor technology. The achieved room temperature spin sensitivity is about 10(8)spins/G Hz(1/2), with a sensitive volume of about (100 μm)(3). Operation at 77K is also demonstrated. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Retrospective dosimetry of nail by Electron Paramagnetic Resonance

    International Nuclear Information System (INIS)

    Giannoni, Ricardo A.; Rodrigues Junior, Orlando

    2015-01-01

    The purpose of this study is to characterize samples of human nails, subjected to irradiation of high doses through Technical Electron Paramagnetic Resonance (EPR). The goal is to establish a dose/response relationship in order to assess dose levels absorbed by individuals exposed in radiation accidents situations, retrospectively. Samples of human nails were irradiated with gamma radiation, and received a dose of 20 Gy. EPR measurements performed on samples before irradiation identified EPR signals associated with defects caused by the mechanical action of the sample collection. After irradiation other species of free radicals, associated with the action of gamma radiation, have been identified

  11. Electronically Tunable Fully Integrated Fractional-Order Resonator

    KAUST Repository

    Tsirimokou, Georgia; Psychalinos, Costas; Elwakil, Ahmed S.; Salama, Khaled N.

    2017-01-01

    A fully integrated implementation of a parallel fractional-order resonator which employs together a fractional order capacitor and a fractional-order inductor is proposed in this paper. The design utilizes current-controlled Operational Transconductance Amplifiers as building blocks, designed and fabricated in AMS 0:35m CMOS process, and based on a second-order approximation of a fractional-order differentiator/ integrator magnitude optimized in the range 10Hz–700Hz. An attractive benefit of the proposed scheme is its electronic tuning capability.

  12. Ab initio investigation of sulfur monofluoride and its singly charged cation and anion in their ground electronic state

    Science.gov (United States)

    Song, Li; Shan-Jun, Chen; Yan, Chen; Peng, Chen

    2016-03-01

    The SF radical and its singly charged cation and anion, SF+ and SF-, have been investigated on the MRCI/aug-cc-pVXZ (X = Q, 5, 6) levels of theory with Davidson correction. Both the core-valence correlation and the relativistic effect are considered. The extrapolating to the complete basis set (CBS) limit is adopted to remove the basis set truncation error. Geometrical parameters, potential energy curves (PECs), vibrational energy levels, spectroscopic constants, ionization potentials, and electron affinities of the ground electronic state for all these species are obtained. The information with respect to molecular characteristics of the SFn (n = -1, 0, +1) systems derived in this work will help to extend our knowledge and to guide further experimental or theoretical researches. Project supported by the National Natural Science Foundation of China (Grant Nos. 11304023 and 11447172), the Young and Middle-Aged Talent of Education Burea of Hubei Province, China (Grant No. Q20151307), and the Yangtze Youth Talents Fund of Yangtze University, China (Grant No. 2015cqr21).

  13. Effect of lone-electron-pair cations on the orientation of crystallographic shear planes in anion-deficient perovskites.

    Science.gov (United States)

    Batuk, Dmitry; Batuk, Maria; Abakumov, Artem M; Tsirlin, Alexander A; McCammon, Catherine; Dubrovinsky, Leonid; Hadermann, Joke

    2013-09-03

    Factors affecting the structure and orientation of the crystallographic shear (CS) planes in anion-deficient perovskites were investigated using the (Pb(1-z)Sr(z))(1-x)Fe(1+x)O(3-y) perovskites as a model system. The isovalent substitution of Sr(2+) for Pb(2+) highlights the influence of the A cation electronic structure because these cations exhibit very close ionic radii. Two compositional ranges have been identified in the system: 0.05 ≤ z ≤ 0.2, where the CS plane orientation gradually varies but stays close to (203)p, and 0.3 ≤ z ≤ 0.45 with (101)p CS planes. The incommensurately modulated structure of Pb0.792Sr0.168Fe1.040O2.529 was refined from neutron powder diffraction data using the (3 + 1)D approach (space group X2/m(α0γ), X = (1/2, 1/2, 1/2, 1/2), a = 3.9512(1) Å, b = 3.9483(1) Å, c = 3.9165(1) Å, β = 93.268(2)°, q = 0.0879(1)a* + 0.1276(1)c*, RF = 0.023, RP = 0.029, and T = 900 K). A comparison of the compounds with different CS planes indicates that the orientation of the CS planes is governed mainly by the stereochemical activity of the lone-electron-pair cations inside the perovskite blocks.

  14. A superheterodyne spectrometer for electronic paramagnetic. Resonance; Spectrometre superheterodyne de resonance paramagnetique electronique

    Energy Technology Data Exchange (ETDEWEB)

    Laffon, J L [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1963-12-15

    After a few generalities about electron paramagnetic resonance, a consideration of different experimental techniques authorises the choice of a particular type of apparatus. An EPR superheterodyne spectrometer built in the laboratory and having a novel circuit is described in detail. With this apparatus, many experimental results have been obtained and some of these are described as example. (author) [French] Apres quelques generalites sur le phenomene de resonance paramagnetique electronique, une synthese des differentes techniques experimentales, permet de fixer le choix d'un type d'appareillage. Un spectrometre de RPE superheterodyne realise en laboratoire et comportant un circuit original est expose dans le detail. Cet appareil a permis de nombreux resultats experimentaux dont quelques-uns sont decrits a titre d'exemple. (auteur)

  15. The Electron Cyclotron Resonance Light Source Assembly of PTB - ELISA

    CERN Document Server

    Gruebling, P; Ulm, G

    1999-01-01

    In the radiometry laboratory of the Physikalisch-Technische,Bundesanstalt at the Berlin electron storage ring BESSY I, radiation sources for radiometric applications in industry and basic research in the vacuum ultraviolet (VUV) spectral range are developed, characterized and calibrated. Established sources such as deuterium lamps, Penning and hollow cathode discharge sources have limited spectral ranges and in particular their stability and life time suffers from the erosion of the cathode material. To overcome these limitations we have developed a radiation source based on the principle of the electron cyclotron resonance ion source. ELISA is a 10 GHz monomode source with a compact design featuring a tunable cavity and axially positionable permanent magnets. The radiation emission of the source can be detected simultaneously in the VUV and X-ray spectral range via a toroidal grating monochromator and a Si(Li)-detector. The special design of the source allows spectroscopic investigations of the plasma in dep...

  16. Plasma heating by radiofrequency in the electron cyclotron resonance (ECR)

    International Nuclear Information System (INIS)

    Cunha Raposo, C. da; Aihara, S.; Universidade Estadual de Campinas

    1982-01-01

    The characteristics of the experimental set-up mounted in the Physical Institute of UFF (Brazil) to produce the gas ionization by radio-frequency are shown and its behaviour when confined by a mirror-geometry magnetic field is studied. The diagnostic is made by a langmuir probe and a prisme spectrogaph is used in order to verify the nature of the ionized helium gas and the degree of purity through its spectral lines. The argon ionization by R.f. is produced in the 'LISA' machine obtain a plasma column of approximatelly 60 cm length and with the Langmuir probe the study of the profile distribution of the plasma parameters such as: electron temperature and density and floating potencial in function of the magnetic field variation is made. The main focus is given to the fundamental electron cyclotron resonance (ECR). A new expression on the ion saturation current (I sub(is)) produced by radiofrequency is developed. (L.C.) [pt

  17. High-dose dosimetry using electron spin resonance (ESR) spectroscopy

    International Nuclear Information System (INIS)

    Kojima, Takuji; Tanaka, Ryuichi

    1992-01-01

    An electron spin resonance (ESR) dosimeter capable of measuring large doses of radiation in radiotherapy and radiation processing is outlined. In particular, an alanine/ESR dosimeter is discussed, focusing on the development of elements, the development of the ESR dosimetric system, the application of alanine/ESR dosimeter, and basic researches. Rod elements for gamma radiation and x radiation and film elements for electron beams are described in detail. The following recent applications of the alanine/ESR dosimeter are introduced: using as a transfer dosimeter, applying to various types of radiation, diagnosing the deterioration of radiological materials and equipments, and applying to ESR imaging. The future subjects to be solved in the alanine/ESR dosimetric system are referred to as follows: (1) improvement of highly accurate elements suitable for the measurement of various types of radiation, (2) establishment of sensitive calibration method of the ESR equipment itself, and (3) calibration and standardization of radiation doses. (K.N.) 65 refs

  18. Electron energy-loss spectroscopy of branched gap plasmon resonators

    DEFF Research Database (Denmark)

    Raza, Søren; Esfandyarpour, Majid; Koh, Ai Leen

    2016-01-01

    The miniaturization of integrated optical circuits below the diffraction limit for high-speed manipulation of information is one of the cornerstones in plasmonics research. By coupling to surface plasmons supported on nanostructured metallic surfaces, light can be confined to the nanoscale......, enabling the potential interface to electronic circuits. In particular, gap surface plasmons propagating in an air gap sandwiched between metal layers have shown extraordinary mode confinement with significant propagation length. In this work, we unveil the optical properties of gap surface plasmons...... in silver nanoslot structures with widths of only 25 nm. We fabricate linear, branched and cross-shaped nanoslot waveguide components, which all support resonances due to interference of counter-propagating gap plasmons. By exploiting the superior spatial resolution of a scanning transmission electron...

  19. Nonlinear dynamics of resonant electrons interacting with coherent Langmuir waves

    Science.gov (United States)

    Tobita, Miwa; Omura, Yoshiharu

    2018-03-01

    We study the nonlinear dynamics of resonant particles interacting with coherent waves in space plasmas. Magnetospheric plasma waves such as whistler-mode chorus, electromagnetic ion cyclotron waves, and hiss emissions contain coherent wave structures with various discrete frequencies. Although these waves are electromagnetic, their interaction with resonant particles can be approximated by equations of motion for a charged particle in a one-dimensional electrostatic wave. The equations are expressed in the form of nonlinear pendulum equations. We perform test particle simulations of electrons in an electrostatic model with Langmuir waves and a non-oscillatory electric field. We solve equations of motion and study the dynamics of particles with different values of inhomogeneity factor S defined as a ratio of the non-oscillatory electric field intensity to the wave amplitude. The simulation results demonstrate deceleration/acceleration, thermalization, and trapping of particles through resonance with a single wave, two waves, and multiple waves. For two-wave and multiple-wave cases, we describe the wave-particle interaction as either coherent or incoherent based on the probability of nonlinear trapping.

  20. Applications of electron spin resonance to some problems of radiation chemistry

    International Nuclear Information System (INIS)

    Chachaty, C.

    1969-01-01

    The electron spin resonance (E.S.R.) spectra of gamma irradiated polar organic glasses, at 77 K, shows a single line centered at g ∼ 2, attributed to solvated electrons. The radicals produced on scavenging this species by electron acceptors, such as aromatic hydrocarbons, nitro-compounds and azines have been studied by E.S.R. In most cases, the radicals from these solutes, the spectra of which are observed after elimination by warming of the radicals from the matrices, are produced by protonation of the anions formed by scavenging of electrons at 77 K. Thus, in the case of glassy solutions of nitro-compounds, the radicals R NO 2 H are formed. They are characterized by a N = 15 G (nitrobenzene) or a N = 28 G (nitro-alkane). These radicals are also generated by U.V, photolysis at room temperature of solutions of nitro-compounds in alcohols and are shown to be the precursors of nitroxide radicals R - N - R (with N - O) observed simultaneously. Gamma irradiation of solutions of pyridine and of the three diazines, in alcohol glasses at 77 K, produces the radical formed by hydrogen addition to these compounds. The value of the coupling constant of the additional proton (7-10 G) indicates that it is bound to a nitrogen in the sp 2 hydridation state. One has shown, taking pyridine as an example, that the addition to a carbon gives a much greater value of the coupling constant, of the order of 50-60 G. (author) [fr

  1. Characterization of functional LB films using electron spin resonance spectroscopy

    International Nuclear Information System (INIS)

    Kuroda, Shin-ichi

    1995-01-01

    The role of ESR spectroscopy in the characterization of functional LB films is discussed. Unpaired electrons in LB films are associated with isolated radical molecules produced by charge transfer, paramagnetic metallic ions such as Cu 2+ , strongly interacting spins in the mixed valence states in charge-transfer salts, and so on. These spins often manifest the functions of materials. They can also act as microscopic probes in the ESR analysis devoted for the elucidation of characteristic properties of LB films. In structural studies, ESR is of particular importance in the analysis of molecular orientation of LB films. ESR can unambiguously determine the orientation of molecules through g-value anisotropy: different g value, different resonance field. Two types of new control methods of molecular orientation in LB films originated from the ESR analysis: study of in-plane orientation in dye LB films which led to the discovery of flow-orientation effect, and observation of drastic change of orientation of Cu-porphyrin in LB films using the trigger molecule, n-hexatriacontane. In the studies of electronic properties, hyperfine interactions between electron and nuclear spins provide information about molecular orbitals and local structures. Stable isotopes have been successfully applied to the stable radicals in merocyanine LB films to identify hyperfine couplings. In conducting LB films composed of charge-transfer salts, quasi-one-dimensional antiferromagnetism in semiconducting films and spin resonance of conduction electrons in metallic films are observed. Results provide microscopic evidence for the development of columnar structures of constituent molecules. Development of new functional LB films may provide more cases where ESR spectroscopy will clarify the nature of such films. (author)

  2. Low-energy electron-induced dissociation in condensed-phase L-cysteine II: a comparative study on anion desorption from chemisorbed and physisorbed films

    Science.gov (United States)

    Alizadeh, Elahe; Massey, Sylvain; Sanche, Léon; Rowntree, Paul A.

    2016-04-01

    Due to its multifunctional structure, cysteine is becoming an ideal model molecule for investigating the complex interactions of proteins with metallic surfaces such as gold nanoparticles. We report herein the results of low-energy electron induced degradation of L-cysteine films, chemisorbed on a gold substrate via the thiol group or physisorbed into a clean gold surface. The data were recorded under ultra-high vacuum conditions at room temperature. Anion yields desorbed from these films by the impact of 0.5 to 19 eV electrons provide clear evidence of the efficient decomposition of this amino acid via dissociative electron attachment (i.e., from dissociation of intermediate transient anions located between 5 and 14 eV). The peaks in the desorbed-anion yield functions, associated with DEA, are superimposed on a continuously rising signal attributed to dipolar dissociation. Similar to the results previously observed from physisorbed films, light anionic species, with masses lower than 35 amu, have been detected. In addition, we measured for first time fragments at 14 amu (CH2-) and 15 amu (CH3-) desorbing from physisorbed films, as well as heavier fragments of mass 45 and 46 amu desorbing from chemisorbed films. Contribution to the Topical Issue "Low-Energy Interactions related to Atmospheric and Extreme Conditions", edited by S. Ptasinska, M. Smialek-Telega, A. Milosavljevic, B. Sivaraman.

  3. A microwave resonator for limiting depth sensitivity for electron paramagnetic resonance spectroscopy of surfaces.

    Science.gov (United States)

    Sidabras, Jason W; Varanasi, Shiv K; Mett, Richard R; Swarts, Steven G; Swartz, Harold M; Hyde, James S

    2014-10-01

    A microwave Surface Resonator Array (SRA) structure is described for use in Electron Paramagnetic Resonance (EPR) spectroscopy. The SRA has a series of anti-parallel transmission line modes that provides a region of sensitivity equal to the cross-sectional area times its depth sensitivity, which is approximately half the distance between the transmission line centers. It is shown that the quarter-wave twin-lead transmission line can be a useful element for design of microwave resonators at frequencies as high as 10 GHz. The SRA geometry is presented as a novel resonator for use in surface spectroscopy where the region of interest is either surrounded by lossy material, or the spectroscopist wishes to minimize signal from surrounding materials. One such application is in vivo spectroscopy of human finger-nails at X-band (9.5 GHz) to measure ionizing radiation dosages. In order to reduce losses associated with tissues beneath the nail that yield no EPR signal, the SRA structure is designed to limit depth sensitivity to the thickness of the fingernail. Another application, due to the resonator geometry and limited depth penetration, is surface spectroscopy in coating or material science. To test this application, a spectrum of 1.44 μM of Mg(2+) doped polystyrene 1.1 mm thick on an aluminum surface is obtained. Modeling, design, and simulations were performed using Wolfram Mathematica (Champaign, IL; v. 9.0) and Ansys High Frequency Structure Simulator (HFSS; Canonsburg, PA; v. 15.0). A micro-strip coupling circuit is designed to suppress unwanted modes and provide a balanced impedance transformation to a 50 Ω coaxial input. Agreement between simulated and experimental results is shown.

  4. A microwave resonator for limiting depth sensitivity for electron paramagnetic resonance spectroscopy of surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Sidabras, Jason W.; Varanasi, Shiv K.; Hyde, James S. [Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53211 (United States); Mett, Richard R. [Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53211 (United States); Department of Physics and Chemistry, Milwaukee School of Engineering, Milwaukee, Wisconsin 53202 (United States); Swarts, Steven G. [Department of Radiation Oncology, University of Florida, Gainesville, Florida, 32610 (United States); Swartz, Harold M. [Department of Radiology, Geisel Medical School at Dartmouth, Hanover, New Hampshire 03755 (United States)

    2014-10-15

    A microwave Surface Resonator Array (SRA) structure is described for use in Electron Paramagnetic Resonance (EPR) spectroscopy. The SRA has a series of anti-parallel transmission line modes that provides a region of sensitivity equal to the cross-sectional area times its depth sensitivity, which is approximately half the distance between the transmission line centers. It is shown that the quarter-wave twin-lead transmission line can be a useful element for design of microwave resonators at frequencies as high as 10 GHz. The SRA geometry is presented as a novel resonator for use in surface spectroscopy where the region of interest is either surrounded by lossy material, or the spectroscopist wishes to minimize signal from surrounding materials. One such application is in vivo spectroscopy of human finger-nails at X-band (9.5 GHz) to measure ionizing radiation dosages. In order to reduce losses associated with tissues beneath the nail that yield no EPR signal, the SRA structure is designed to limit depth sensitivity to the thickness of the fingernail. Another application, due to the resonator geometry and limited depth penetration, is surface spectroscopy in coating or material science. To test this application, a spectrum of 1.44 μM of Mg{sup 2+} doped polystyrene 1.1 mm thick on an aluminum surface is obtained. Modeling, design, and simulations were performed using Wolfram Mathematica (Champaign, IL; v. 9.0) and Ansys High Frequency Structure Simulator (HFSS; Canonsburg, PA; v. 15.0). A micro-strip coupling circuit is designed to suppress unwanted modes and provide a balanced impedance transformation to a 50 Ω coaxial input. Agreement between simulated and experimental results is shown.

  5. Magnetic resonance studies on the copper site of dopamine β-monooxygenase in the presence of cyanide and azide anions

    International Nuclear Information System (INIS)

    Obata, A.; Tanaka, H.; Kawazura, H.

    1987-01-01

    In order to elucidate the coordination state of water molecules in the Cu(II) site of dopamine [(3,4-dihydroxyphenyl)ethylamine] β-monooxygenase, measurements of the paramagnetic 1 H nuclear magnetic relaxation rate of solvent water in the enzyme solution containing cyanide or azide as an exogenous ligand were carried out to obtain the values of intrinsic paramagnetic relaxation rate decrements R/sub p/ 1 and R/sub p/ 2 for the ligand-enzyme 1:1 and 2:1 complexes, respectively. R/sub p/ 1 (percent) values were 53 (pH 5.5) and 52 (pH 7.0) for cyanide and 38 (pH 5.5) and 32 (pH 7.0) for azide, while R/sub p/ 2 (percent) values were 98 (pH 5.5) and 96 (pH 7.0) for azide. Although no R/sub p/ 2 values for cyanide were obtained because of its reducing power at the Cu(II) site, the R/sub p/ 1 and R/sub p/ 2 values obtained above prove that the Cu(II) center has two coordinated water molecules that are exchangeable for exogenous ligands at either pH. Supporting evidence was provided by electron paramagnetic resonance (EPR) titration, in which the enzyme solution containing cyanide-enzyme (1:1) complex in an equal proportion to uncomplexed enzyme gave an observed paramagnetic relaxation rate decrement, R/sub p/, of 23%. Another characteristic of the R/sub p/ 1 and R/sub p/ 2 values was their invariability with respect to pH, indicating that the three-dimensional structure of the Cu(II) site is pH-invariant within the range examined. Binding constants of ligand to enzyme K/sub b/ 1 and K/sub b/ 2 for 1:1 and 2:1 complex formation, respectively, were also determined through an analysis of the R/sub p/ values; it was found that K/sub b/ 1 was larger than K/sub b/ 2 irrespective of pH. On the basis of these results, together with the axial-symmetric EPR parameters of the 1:1 complexes, a possible coordination geometry of the two water molecules in the Cu(II) site of the enzyme is suggested

  6. Probing quantum coherence in single-atom electron spin resonance

    Science.gov (United States)

    Willke, Philip; Paul, William; Natterer, Fabian D.; Yang, Kai; Bae, Yujeong; Choi, Taeyoung; Fernández-Rossier, Joaquin; Heinrich, Andreas J.; Lutz, Christoper P.

    2018-01-01

    Spin resonance of individual spin centers allows applications ranging from quantum information technology to atomic-scale magnetometry. To protect the quantum properties of a spin, control over its local environment, including energy relaxation and decoherence processes, is crucial. However, in most existing architectures, the environment remains fixed by the crystal structure and electrical contacts. Recently, spin-polarized scanning tunneling microscopy (STM), in combination with electron spin resonance (ESR), allowed the study of single adatoms and inter-atomic coupling with an unprecedented combination of spatial and energy resolution. We elucidate and control the interplay of an Fe single spin with its atomic-scale environment by precisely tuning the phase coherence time T2 using the STM tip as a variable electrode. We find that the decoherence rate is the sum of two main contributions. The first scales linearly with tunnel current and shows that, on average, every tunneling electron causes one dephasing event. The second, effective even without current, arises from thermally activated spin-flip processes of tip spins. Understanding these interactions allows us to maximize T2 and improve the energy resolution. It also allows us to maximize the amplitude of the ESR signal, which supports measurements even at elevated temperatures as high as 4 K. Thus, ESR-STM allows control of quantum coherence in individual, electrically accessible spins. PMID:29464211

  7. Highly selective and sensitive phosphate anion sensors based on AlGaN/GaN high electron mobility transistors functionalized by ion imprinted polymer.

    Science.gov (United States)

    Jia, Xiuling; Chen, Dunjun; Bin, Liu; Lu, Hai; Zhang, Rong; Zheng, Youdou

    2016-06-09

    A novel ion-imprinted electrochemical sensor based on AlGaN/GaN high electron mobility transistors (HEMTs) was developed to detect trace amounts of phosphate anion. This sensor combined the advantages of the ion sensitivity of AlGaN/GaN HEMTs and specific recognition of ion imprinted polymers. The current response showed that the fabricated sensor is highly sensitive and selective to phosphate anions. The current change exhibited approximate linear dependence for phosphate concentration from 0.02 mg L(-1) to 2 mg L(-1), the sensitivity and detection limit of the sensor is 3.191 μA/mg L(-1) and 1.97 μg L(-1), respectively. The results indicated that this AlGaN/GaN HEMT-based electrochemical sensor has the potential applications on phosphate anion detection.

  8. Ionic liquid based on α-amino acid anion and N7,N9-dimethylguaninium cation ([dMG][AA]): theoretical study on the structure and electronic properties.

    Science.gov (United States)

    Shakourian-Fard, Mehdi; Fattahi, Alireza; Bayat, Ahmad

    2012-06-07

    The interactions between five amino acid based anions ([AA](-) (AA = Gly, Phe, His, Try, and Tyr)) and N7,N9-dimethylguaninium cation ([dMG](+)) have been investigated by the hybrid density functional theory method B3LYP together with the basis set 6-311++G(d,p). The calculated interaction energy was found to decrease in magnitude with increasing side-chain length in the amino acid anion. The interaction between the [dMG](+) cation and [AA](-) anion in the most stable configurations of ion pairs is a hydrogen bonding interaction. These hydrogen bonds (H bonds) were analyzed by the quantum theory of atoms in molecules (QTAIM) and natural bond orbital (NBO) analysis. Finally, several correlations between electron densities in bond critical points of hydrogen bonds and interaction energy as well as vibrational frequencies in the most stable configurations of ion pairs have been checked.

  9. Resonant spin Hall effect in two dimensional electron gas

    Science.gov (United States)

    Shen, Shun-Qing

    2005-03-01

    Remarkable phenomena have been observed in 2DEG over last two decades, most notably, the discovery of integer and fractional quantum Hall effect. The study of spin transport provides a good opportunity to explore spin physics in two-dimensional electron gas (2DEG) with spin-orbit coupling and other interaction. It is already known that the spin-orbit coupling leads to a zero-field spin splitting, and competes with the Zeeman spin splitting if the system is subjected to a magnetic field perpendicular to the plane of 2DEG. The result can be detected as beating of the Shubnikov-de Haas oscillation. Very recently the speaker and his collaborators studied transport properties of a two-dimensional electron system with Rashba spin-orbit coupling in a perpendicular magnetic field. The spin-orbit coupling competes with the Zeeman splitting to generate additional degeneracies between different Landau levels at certain magnetic fields. It is predicted theoretically that this degeneracy, if occurring at the Fermi level, gives rise to a resonant spin Hall conductance, whose height is divergent as 1/T and whose weight is divergent as -lnT at low temperatures. The charge Hall conductance changes by 2e^2/h instead of e^2/h as the magnetic field changes through the resonant point. The speaker will address the resonance condition, symmetries in the spin-orbit coupling, the singularity of magnetic susceptibility, nonlinear electric field effect, the edge effect and the disorder effect due to impurities. This work was supported by the Research Grants Council of Hong Kong under Grant No.: HKU 7088/01P. *S. Q. Shen, M. Ma, X. C. Xie, and F. C. Zhang, Phys. Rev. Lett. 92, 256603 (2004) *S. Q. Shen, Y. J. Bao, M. Ma, X. C. Xie, and F. C. Zhang, cond-mat/0410169

  10. Importance of poly(ethylene oxide)-modification and chloride anion for the electron transfer reaction of cytochrome c in 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide

    International Nuclear Information System (INIS)

    Ohno, Hiroyuki; Suzuki, Chiiko; Fujita, Kyoko

    2006-01-01

    Horse heart cytochrome c (cyt c) was chemically modified with poly(ethylene oxide) (PEO) to dissolve it in room temperature ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([emim][TFSI]). The redox response of the modified cyt c, hereafter PEO-cyt c, was analyzed in [emim][TFSI]. PEO modification to the surface of cyt c, which exceeded 60% of the total mass of the PEO-cyt c, was an effective method to solubilize the cyt c. In spite of the high ion density and sufficient ionic conductivity of [emim][TFSI], no redox response of pure PEO-cyt c was detected. However, a reversible redox response of PEO-cyt c was observed after adding a simple electrolyte such as KCl to [emim][TFSI]. The redox response of PEO-cyt c was sensitive to the anion radius of the added salt, and the chloride anion was found to be the best anion species to produce a redox response of PEO-cyt c in [emim][TFSI]. However, above a certain salt concentration, the resulting increase in solution viscosity would suppress the redox reaction. The results strongly indicate that the chloride anions, because of their mobility in the polypeptide matrix, compensate the charge change of heme during the electron transfer reaction. Larger anions did not show such an effect due to sterical restrictions on the migration through the protein shell to the heme pocket of cyt c

  11. Selectivity of alkyl radical formation from branched alkanes studied by electron spin resonance and electron spin echo spectroscopy

    International Nuclear Information System (INIS)

    Tsuneki, Ichikawa; Hiroshi, Yoshida

    1992-01-01

    Alkyl radicals generated from branched alkanes by γ radiation are being measuring by electron spin resonance and electron spin echo spectroscopy. This research is being conducted to determine the mechanism of selective alkyl radical formation in low-temperature solids

  12. Acceleration of electrons at wakefield excitation by a sequence of relativistic electron bunches in dielectric resonator

    International Nuclear Information System (INIS)

    Kiselev, V.A.; Linnik, A.F.; Mirnyj, V.I.; Onishchenko, I.N.; Uskov, V.V.

    2009-01-01

    Method is proposed to divide a regular sequence of electron bunches into parts of bunches driving wakefield and witness bunches, which should be accelerated. It allows to avoid the necessity of additional electron accelerator for witness bunches producing and the necessity of precision short time techniques of injection phase adjusting. The idea concludes to the frequency detuning between bunches repetition frequency and the frequency of the fundamental mode of excited wakefield. Experiments were carried out on the linear resonant accelerator 'Almaz-2', which injected in the dielectric resonator a sequence of 6000 short bunches of relativistic electrons with energy 4.5 MeV, charge 0.16 nC and duration 60 psec each, the repetition interval 360 ps. Frequency detuning was entered by change of frequency of the master generator of the klystron within the limits of one percent so that the phase taper on the length of bunches sequence achieved 2π. Energy spectra of electrons of bunches sequence, which have been propagated through the dielectric resonator are measured and analyzed

  13. Effect of resonant-to-bulk electron momentum transfer on the efficiency of electron-cyclotron current-drive

    International Nuclear Information System (INIS)

    Matsuda, Y.; Smith, G.R.; Cohen, R.H.

    1989-01-01

    Efficiency of current drive by electron cyclotron waves is investigated numerically by a bounce-averaged Fokker-Planck code to ellucidate the effects of momentum transfer from resonant to bulk-electrons, finite bulk temperature relative to the energy of resonant electrons, and trapped electrons. Comparisons are made with existing theories to assess their validity and quantitative difference between theory and code results. Difference of nearly a factor of 2 was found in efficiency between some theory and code results. (author)

  14. Electron paramagnetic resonance field-modulation eddy-current analysis of silver-plated graphite resonators

    Science.gov (United States)

    Mett, Richard R.; Anderson, James R.; Sidabras, Jason W.; Hyde, James S.

    2005-09-01

    Magnetic field modulation is often introduced into a cylindrical TE011 electron paramagnetic resonance (EPR) cavity through silver plating over a nonconductive substrate. The plating thickness must be many times the skin depth of the rf and smaller than the skin depth of the modulation. We derive a parameter that quantifies the modulation field penetration and find that it also depends on resonator dimensions. Design criteria based on this parameter are presented graphically. This parameter is then used to predict the behavior of eddy currents in substrates of moderate conductivity, such as graphite. The conductivity of the graphite permits improved plating uniformity and permits use of electric discharge machining (EDM) techniques to make the resonator. EDM offers precision tolerances of 0.005 mm and is suitable for small, complicated shapes that are difficult to machine by other methods. Analytic predictions of the modulation penetration are compared with the results of finite-element simulations. Simulated magnetic field modulation uniformity and penetration are shown for several elemental coils and structures including the plated graphite TE011 cavity. Fabrication and experimental testing of the structure are discussed. Spatial inhomogeneity of the modulation phase is also investigated by computer simulation. We find that the modulation phase is uniform to within 1% over the TE011 cavity. Structures of lower symmetry have increased phase nonuniformity.

  15. Electron Spin Resonance Studies of Carbonic Anhydrase: Transition Metal Ions and Spin-Labeled Sulfonamides*

    Science.gov (United States)

    Taylor, June S.; Mushak, Paul; Coleman, Joseph E.

    1970-01-01

    Electron spin resonance (esr) spectra of Cu(II) and Co(II) carbonic anhydrase, and a spin-labeled sulfonamide complex of the Zn(II) enzyme, are reported. The coordination geometry of Cu(II) bound in the enzyme appears to have approximately axial symmetry. Esr spectra of enzyme complexes with metal-binding anions also show axial symmetry and greater covalency, in the order ethoxzolamide cyanide complex suggests the presence of two, and probably three, equivalent nitrogen ligands from the protein. Esr spectra of the Co(II) enzyme and its complexes show two types of Co(II) environment, one typical of the native enzyme and the 1:1 CN- complex, and one typical of a 2:1 CN- complex. Co(II) in the 2:1 complex appears to be low-spin and probably has a coordination number of 5. Binding of a spin-labeled sulfonamide to the active center immobilizes the free radical. The similarity of the esr spectra of spin-labeled Zn(II) and Co(II) carbonic anhydrases suggests that the conformation at the active center is similar in the two metal derivatives. PMID:4320976

  16. Determination of azide in biological fluids by use of electron paramagnetic resonance

    International Nuclear Information System (INIS)

    Minakata, Kayoko; Suzuki, Osamu

    2005-01-01

    A simple and sensitive method has been developed for the determination of azide ion (N 3 - ) in biological fluids and beverages. The procedure was based on the formation of a ternary complex Cu(N 3 ) 2 (4-methylpyridine) x in benzene, followed by its detection by electron paramagnetic resonance. The complex in benzene showed a characteristic four-peak hyperfine structure with a g-value of 2.115 at room temperature. Cu 2+ reacted with N 3 - most strongly among common metals found in biological fluids. Several anions and metal ions in biological fluids did not interfere with the determination of N 3 - in the presence of large amounts of Cu 2+ and oxidants. In the present method, N 3 - at the concentration from 5 μM to 2 mM in 100 μl solution could be determined with the detection limit of 20 ng. The recoveries were more than 95% for N 3 - added to 100 μl of blood, urine, milk and beverages at 200 μM. Our method is recommendable because it takes less than 10 min to determine N 3 - and the produced complex is quite stable

  17. On resonance processes in near threshold excitation of resonance lines of Zn+ ion at electron-ion collisions

    International Nuclear Information System (INIS)

    Imre, A.I.; Gomonaj, A.N.; Vukstich, V.S.; Nemet, A.N.

    1998-01-01

    The results of spectroscopic investigation of resonances in excitation of near threshold region of separate components of resonance doublet 4p 2 P 1/2,3/2 0 of Zn + ion by electron impact are given in the present work. The physical basis of their production nature is suggested

  18. Perspective: Electrospray photoelectron spectroscopy: From multiply-charged anions to ultracold anions

    International Nuclear Information System (INIS)

    Wang, Lai-Sheng

    2015-01-01

    Electrospray ionization (ESI) has become an essential tool in chemical physics and physical chemistry for the production of novel molecular ions from solution samples for a variety of spectroscopic experiments. ESI was used to produce free multiply-charged anions (MCAs) for photoelectron spectroscopy (PES) in the late 1990 s, allowing many interesting properties of this class of exotic species to be investigated. Free MCAs are characterized by strong intramolecular Coulomb repulsions, which create a repulsive Coulomb barrier (RCB) for electron emission. The RCB endows many fascinating properties to MCAs, giving rise to meta-stable anions with negative electron binding energies. Recent development in the PES of MCAs includes photoelectron imaging to examine the influence of the RCB on the electron emission dynamics, pump-probe experiments to examine electron tunneling through the RCB, and isomer-specific experiments by coupling PES with ion mobility for biological MCAs. The development of a cryogenically cooled Paul trap has led to much better resolved PE spectra for MCAs by creating vibrationally cold anions from the room temperature ESI source. Recent advances in coupling the cryogenic Paul trap with PE imaging have allowed high-resolution PE spectra to be obtained for singly charged anions produced by ESI. In particular, the observation of dipole-bound excited states has made it possible to conduct vibrational autodetachment spectroscopy and resonant PES, which yield much richer vibrational spectroscopic information for dipolar free radicals than traditional PES

  19. THz Electron Paramagnetic Resonance / THz Spectroscopy at BESSY II

    Directory of Open Access Journals (Sweden)

    Karsten Holldack

    2016-02-01

    Full Text Available The THz beamline at BESSY II employs high power broadband femto- to picosecond long THz pulses for magneto-optical THz and FIR studies. A newly designed set-up exploits the unique properties of ultrashort THz pulses generated by laser-energy modulation of electron bunches in the storage ring or alternatively from compressed electron bunches. Experiments from 0.15 to 5 THz (~ 5 – 150 cm-1 may be conducted at a user station equipped with a fully evacuated high resolution FTIR spectrometer (0.0063 cm-1, lHe cooled bolometer detectors, a THz TDS set-up and different sample environments, including a superconducting high field magnet (+11 T - 11T with variable temperature insert (1.5 K – 300 K, a sample cryostat and a THz attenuated total reflection chamber.  Main applications are Frequency Domain Fourier transform THz-Electron Paramagnetic Resonance (FD-FT THz-EPR, THz-FTIR spectroscopy and optical pump - THz probe time domain spectroscopy (TDS, with sub-ps time resolution.

  20. Quantification of entanglement entropies for doubly excited resonance states in two-electron atomic systems

    International Nuclear Information System (INIS)

    Ho, Yew Kam; Lin, Chien-Hao

    2015-01-01

    In this work, we study the quantum entanglement for doubly excited resonance states in two-electron atomic systems such as the H - and Ps - ions and the He atom by using highly correlated Hylleraas type functions The resonance states are determined by calculation of density of resonance states with the stabilization method. The spatial (electron-electron orbital) entanglement entropies (linear and von Neumann) for the low-lying doubly excited states are quantified using the Schmidt-Slater decomposition method. (paper)

  1. High-pressure electron-resonance studies of electronic, magnetic, and structural phase transitions. Progress report

    International Nuclear Information System (INIS)

    Pifer, J.H.; Croft, M.C.

    1983-01-01

    Research is described in development of a high-pressure electron-resonance probe capable of operating down to 1.5 0 K temperatures. The apparatus has been used to measure the EPR of a sample of DPPH at room temperature and zero pressure. EPR has been used to measure valence field instabilities in alloy systems. Studies have been done on metal-insulator transitions at high pressure, and are briefly described

  2. Magnetic nanoparticle imaging using multiple electron paramagnetic resonance activation sequences

    International Nuclear Information System (INIS)

    Coene, A.; Dupré, L.; Crevecoeur, G.

    2015-01-01

    Magnetic nanoparticles play an important role in several biomedical applications such as hyperthermia, drug targeting, and disease detection. To realize an effective working of these applications, the spatial distribution of the particles needs to be accurately known, in a non-invasive way. Electron Paramagnetic Resonance (EPR) is a promising and sensitive measurement technique for recovering these distributions. In the conventional approach, EPR is applied with a homogeneous magnetic field. In this paper, we employ different heterogeneous magnetic fields that allow to stabilize the solution of the associated inverse problem and to obtain localized spatial information. A comparison is made between the two approaches and our novel adaptation shows an average increase in reconstruction quality by 5% and is 12 times more robust towards noise. Furthermore, our approach allows to speed up the EPR measurements while still obtaining reconstructions with an improved accuracy and noise robustness compared to homogeneous EPR

  3. Electron magnetic resonance investigation of chromium diffusion in yttria powders

    Energy Technology Data Exchange (ETDEWEB)

    Biasi, R.S. de, E-mail: rsbiasi@ime.eb.b [Secao de Engenharia Mecanica e de Materiais, Instituto Militar de Engenharia, Pr. General Tiburcio, 80, 22290-270 Rio de Janeiro, RJ (Brazil); Grillo, M.L.N., E-mail: mluciag@uerj.b [Instituto de Fisica, Universidade do Estado do Rio de Janeiro, 20550-013 Rio de Janeiro, RJ (Brazil)

    2010-03-01

    The electron magnetic resonance (EMR) technique was used to investigate the diffusion of chromium in yttria (Y{sub 2}O{sub 3}) powders. The EMR absorption intensity was measured for several annealing times and three different temperatures of isothermal annealing: 1273, 1323 and 1373 K. The activation temperature for diffusion, calculated from the experimental data using a theoretical model based on the Fick equation, was found to be E{sub A}=342+-5 kJ mol{sup -1}. This value is larger than the activation energy for the diffusion of chromium in rutile (TiO{sub 2}), periclase (MgO) and cobalt monoxide (CoO) and smaller than the activation energy for the diffusion of chromium in chrysoberyl (BeAl{sub 2}O{sub 4}).

  4. Electron spin resonance intercomparison studies on irradiated foodstuffs

    International Nuclear Information System (INIS)

    Raffi, J.

    1992-01-01

    The results of intercomparison studies organized by the Community Bureau of Reference on the use of electron spin resonance spectroscopy for the identification of irradiated food are presented. A qualitative intercomparison was carried out using beef and trout bones, sardine scales, pistachio nut shells, dried grapes and papaya. A quantitative intercomparison involving the use of poultry bones was also organized. There was no difficulty in identifying meat bones, dried grapes and papaya. In the case of fish bones there is a need for further kinetic studies using different fish species. The identification of pistachio nut shells is more complicated and further research is needed prior to the organization of a further intercomparison. Laboratories were able to distinguish between chicken bones irradiated in the range 1 to 3 KGy or 7 to 10 KGy although there was a partial overlap between the results from different laboratories

  5. Semiclassical theory of resonance inelastic electron-molecule collisions

    International Nuclear Information System (INIS)

    Kazanskij, A.K.

    1986-01-01

    Semiclassical approach to the theory of resonance electron-molecule collisions, unlocal with respect to interatomic distance was developed. Two problems were considered: modified adiabatic approach for sigle-pole approximation of R-matrix and Fano-Feshbach-Bardsley theory. It is shown that these problems are similar in semiclassical approximation. A simple equation system with coefficients expressed in quadratures was obtained. It enables to determine amplitudes of all processes (including dissociation adhesion, association ejection, free-free and free-bound transitions) in energetic representation with respect to nucleus vibrations in molecule with allowance for both descrete and continuous spectra of nucleus motion in molecule. Quantitative investigation of the system results to the notion of dynamic energy curve of intermediate state, generalizing the motion of such curve in boomerang theory

  6. Electron spin resonance intercomparison studies on irradiated foodstuffs

    Energy Technology Data Exchange (ETDEWEB)

    Raffi, J [CEA Centre d` Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (FR)

    1992-07-01

    The results of intercomparison studies organized by the Community Bureau of Reference on the use of electron spin resonance spectroscopy for the identification of irradiated food are presented. A qualitative intercomparison was carried out using beef and trout bones, sardine scales, pistachio nut shells, dried grapes and papaya. A quantitative intercomparison involving the use of poultry bones was also organized. There was no difficulty in identifying meat bones, dried grapes and papaya. In the case of fish bones there is a need for further kinetic studies using different fish species. The identification of pistachio nut shells is more complicated and further research is needed prior to the organization of a further intercomparison. Laboratories were able to distinguish between chicken bones irradiated in the range 1 to 3 KGy or 7 to 10 KGy although there was a partial overlap between the results from different laboratories.

  7. Identification of irradiated chicken meat using electron spin resonance spectroscopy

    International Nuclear Information System (INIS)

    Chawla, S.P.; Thomas, Paul

    2004-01-01

    Studies were carried out on detection of irradiation treatment in chicken using electron spin resonance (ESR) spectroscopy. The effect of gamma- irradiation treatment on radiation induced signal in different types of chicken namely, broiler, deshi and layers was studied. Irradiation treatment induced a characteristic ESR signal that was not detected in non-irradiated samples. The shape of the signal was not affected by type of the bone. The intensity of radiation induced ESR signal was affected by factors such as absorbed radiation dose, bone type irradiation temperature, post-irradiation storage, post-irradiation cooking and age of the bird. Deep-frying resulted in the formation of a symmetric signal that had a different shape and was weaker than the radiation induced signal. This technique can be effectively used to detect irradiation treatment in bone-in chicken meat even if stored and/or subjected to various traditional cooking procedures. (author)

  8. Introduction to ECR [electron cyclotron resonance] sources in electrostatic machines

    International Nuclear Information System (INIS)

    Olsen, D.K.

    1989-01-01

    Electron Cyclotron Resonance (ECR) ion source technology has developed rapidly since the original pioneering work of R. Geller and his group at Grenoble in the early 1970s. These ion sources are capable of producing intense beams of highly charged positive ions and are used extensively for cyclotron injection, linac injection, and atomic physics research. In this paper, the possible use of ECR heavy-ion sources in the terminals of electrostatic machines is discussed. The basic concepts of ECR sources are reviewed in the next section using the ORNL source as a model. The possible advantages of ECR sources over conventional negative ion injection and foil stripping are discussed in Section III. The last section describes the possible installation of an ECR source in a large machine such as the HHIRF 25-MV Pelletron. 6 refs., 4 figs., 1 tab

  9. Numerical model of electron cyclotron resonance ion source

    Directory of Open Access Journals (Sweden)

    V. Mironov

    2015-12-01

    Full Text Available Important features of the electron cyclotron resonance ion source (ECRIS operation are accurately reproduced with a numerical code. The code uses the particle-in-cell technique to model the dynamics of ions in ECRIS plasma. It is shown that a gas dynamical ion confinement mechanism is sufficient to provide the ion production rates in ECRIS close to the experimentally observed values. Extracted ion currents are calculated and compared to the experiment for a few sources. Changes in the simulated extracted ion currents are obtained with varying the gas flow into the source chamber and the microwave power. Empirical scaling laws for ECRIS design are studied and the underlying physical effects are discussed.

  10. Electron Spin Resonance Measurement with Microinductor on Chip

    Directory of Open Access Journals (Sweden)

    Akio Kitagawa

    2011-01-01

    Full Text Available The detection of radicals on a chip is demonstrated. The proposed method is based on electron spin resonance (ESR spectroscopy and the measurement of high-frequency impedance of the microinductor fabricated on the chip. The measurement was by using a frequency sweep of approximately 100 MHz. The ESR spectra of di(phenyl-(2,4,6-trinitrophenyliminoazanium (DPPH dropped on the microinductor which is fabricated with CMOS 350-nm technology were observed at room temperature. The volume of the DPPH ethanol solution was 2 μL, and the number of spins on the micro-inductor was estimated at about 1014. The sensitivity is not higher than that of the standard ESR spectrometers. However, the result indicates the feasibility of a near field radical sensor in which the microinductor as a probe head and ESR signal processing circuit are integrated.

  11. KEKCB electron cyclotron resonance charge breeder at TRIAC

    International Nuclear Information System (INIS)

    Imai, N.; Jeong, S. C.; Oyaizu, M.; Arai, S.; Fuchi, Y.; Hirayama, Y.; Ishiyama, H.; Miyatake, H.; Tanaka, M. H.; Okada, M.; Watanabe, Y. X.; Ichikawa, S.; Kabumoto, H.; Osa, A.; Otokawa, Y.; Sato, T. K.

    2008-01-01

    The KEKCB is an electron cyclotron resonance (ECR) ion source for converting singly charged ions to multicharged ones at Tokai Radioactive Ion Accelerator Complex. By using the KEKCB, singly charged gaseous and nongaseous ions were converted to multicharged ones of A/q≅7 with efficiencies of 7% and 2%, respectively. The conversion efficiency was found to be independent of the lifetime of the radioactive nuclei having lifetimes of the order of one second. Three collimators located at the entrance and the exit of the KEKCB defined the beam axis and facilitated beam injection. Grinding and washing the surfaces of aluminum electrode and plasma chamber dramatically reduced impurities originating from the ECR plasma of the KEKCB

  12. Proceedings of eighth joint workshop on electron cyclotron emission and electron cyclotron resonance heating. Vol. 1

    International Nuclear Information System (INIS)

    1993-03-01

    The theory of electron cyclotron resonance phenomena is highly developed. The main theoretical tools are well established, generally accepted and able to give a satisfactory description of the main results obtained in electron cyclotron emission, absorption and current drive experiments. In this workshop some advanced theoretical and numerical tools have been presented (e.g., 3-D Fokker-Planck codes, treatment of the r.f. beam as a whole, description of non-linear and finite-beam effects) together with the proposal for new scenarios for ECE and ECA measurements (e.g., for diagnosing suprathermal populations and their radial transport). (orig.)

  13. Proceedings of eighth joint workshop on electron cyclotron emission and electron cyclotron resonance heating. Vol. 2

    International Nuclear Information System (INIS)

    1993-03-01

    The theory of electron cyclotron resonance phenomena is highly developed. The main theoretical tools are well established, generally accepted and able to give a satisfactory description of the main results obtained in electron cyclotron emission, absorption and current drive experiments. In this workshop some advanced theoretical and numerical tools have been presented (e.g., 3-D Fokker-Planck codes, treatment of the r.f. beam as a whole, description of non-linear and finite-beam effects) together with the proposal for new scenarios for ECE and ECA measurements (e.g., for diagnosing suprathermal populations and their radial transport). (orig.)

  14. The resonance between runaway electrons and magnetic ripple in HT-7 Tokamak

    International Nuclear Information System (INIS)

    Zhou Ruijie; Hu Liqun; Lu Hongwei; Lin Shiyao; Zhong Guoqiang; Xu Ping; Zhang Jizong

    2011-01-01

    For suppressing the energy of runaway electrons in tokamak plasma, we analyzed the X-ray energy spectra by runaway electrons in different discharges of the HT-7 tokamak experiment performed in the autumn of 2009. The resonant phenomenon between runaway electrons and magnetic ripple was found. Although, the energy of runaway electrons in the plasma core can be as high as several tens of MeV, but when they are transported to the edge, the electron energy are limited to a certain range by resonance with the magnetic ripple of different harmonic numbers. The runaway electrons under high loop voltage resonate with low step magnetic perturbations, with high energy gain; whereas the runaway electrons under low loop voltage resonate with high level magnetic perturbations, with low energy gain. Using this mechanism, the energy of runaway electrons can be restricted to a low level, and this will significantly mitigate the damage effect on the equipment caused by runaway electrons. (authors)

  15. Investigations of structure, bonding, and reactions of radiation-induced free radicals in the solid state using electron spin resonance spectroscopy

    International Nuclear Information System (INIS)

    Hudson, R.L.

    1978-01-01

    Electron spin resonance spectroscopy (ESR) has been used to study the structure, bonding, and reactions of several types of free radicals produced by γ irradiation of solids at 77K. Well-defined spectral patterns and the use of photolysis and annealing treatments assisted the analyses and interpretations. The radical anion BF 3 - was generated and identified unequivocally in a matrix of tetramethylsilane at 77K. Both the ESR data and theoretical calculations support a pyramidal structure with a bond angle of about 110 0 . The present experiments showed that BF 3 - has ESR parameters consistent with those of the isoelectronic radicals CF 3 , NF 3 + , and F 2 NO. γ irradiation of polycrystalline trimethyl borate at 77K gave an ESR spectrum which was assigned to the dimer radical anion [(MeO) 3 B.B(OMe) 3 ] - . Radical anions of dialkyl carbonates were observed for the first time and found to undergo a β-scission reaction to produce alkyl radicals. This free radical reaction is unusual in that it proceeds both thermally and photochemically. For the dimethyl carbonate radical anion, 13 C parameters were obtained from a 13 C enriched sample. The photolysis of trapped radicals in γ irradiated carboxylic esters, RC(O)OR', was studied by ESR spectroscopy and two different reactions were characterized. Two hypervalent silicon radical anions were prepared and examined in SI(OCH 3 ) 4 . The results of the present work thus represent the first complete sets of data on the silicon 3s and 3p spin densities for such species. The first PL 3 - radical anion was prepared by the γ irradiation of crystalline trimethylphosphite, and identified through its photolysis reactions and from the results of radiation chemical experiments

  16. Electronic energy transfer through non-adiabatic vibrational-electronic resonance. I. Theory for a dimer

    Science.gov (United States)

    Tiwari, Vivek; Peters, William K.; Jonas, David M.

    2017-10-01

    Non-adiabatic vibrational-electronic resonance in the excited electronic states of natural photosynthetic antennas drastically alters the adiabatic framework, in which electronic energy transfer has been conventionally studied, and suggests the possibility of exploiting non-adiabatic dynamics for directed energy transfer. Here, a generalized dimer model incorporates asymmetries between pigments, coupling to the environment, and the doubly excited state relevant for nonlinear spectroscopy. For this generalized dimer model, the vibrational tuning vector that drives energy transfer is derived and connected to decoherence between singly excited states. A correlation vector is connected to decoherence between the ground state and the doubly excited state. Optical decoherence between the ground and singly excited states involves linear combinations of the correlation and tuning vectors. Excitonic coupling modifies the tuning vector. The correlation and tuning vectors are not always orthogonal, and both can be asymmetric under pigment exchange, which affects energy transfer. For equal pigment vibrational frequencies, the nonadiabatic tuning vector becomes an anti-correlated delocalized linear combination of intramolecular vibrations of the two pigments, and the nonadiabatic energy transfer dynamics become separable. With exchange symmetry, the correlation and tuning vectors become delocalized intramolecular vibrations that are symmetric and antisymmetric under pigment exchange. Diabatic criteria for vibrational-excitonic resonance demonstrate that anti-correlated vibrations increase the range and speed of vibronically resonant energy transfer (the Golden Rule rate is a factor of 2 faster). A partial trace analysis shows that vibronic decoherence for a vibrational-excitonic resonance between two excitons is slower than their purely excitonic decoherence.

  17. Self-consistent modeling of electron cyclotron resonance ion sources

    International Nuclear Information System (INIS)

    Girard, A.; Hitz, D.; Melin, G.; Serebrennikov, K.; Lecot, C.

    2004-01-01

    In order to predict the performances of electron cyclotron resonance ion source (ECRIS), it is necessary to perfectly model the different parts of these sources: (i) magnetic configuration; (ii) plasma characteristics; (iii) extraction system. The magnetic configuration is easily calculated via commercial codes; different codes also simulate the ion extraction, either in two dimension, or even in three dimension (to take into account the shape of the plasma at the extraction influenced by the hexapole). However the characteristics of the plasma are not always mastered. This article describes the self-consistent modeling of ECRIS: we have developed a code which takes into account the most important construction parameters: the size of the plasma (length, diameter), the mirror ratio and axial magnetic profile, whether a biased probe is installed or not. These input parameters are used to feed a self-consistent code, which calculates the characteristics of the plasma: electron density and energy, charge state distribution, plasma potential. The code is briefly described, and some of its most interesting results are presented. Comparisons are made between the calculations and the results obtained experimentally

  18. Self-consistent modeling of electron cyclotron resonance ion sources

    Science.gov (United States)

    Girard, A.; Hitz, D.; Melin, G.; Serebrennikov, K.; Lécot, C.

    2004-05-01

    In order to predict the performances of electron cyclotron resonance ion source (ECRIS), it is necessary to perfectly model the different parts of these sources: (i) magnetic configuration; (ii) plasma characteristics; (iii) extraction system. The magnetic configuration is easily calculated via commercial codes; different codes also simulate the ion extraction, either in two dimension, or even in three dimension (to take into account the shape of the plasma at the extraction influenced by the hexapole). However the characteristics of the plasma are not always mastered. This article describes the self-consistent modeling of ECRIS: we have developed a code which takes into account the most important construction parameters: the size of the plasma (length, diameter), the mirror ratio and axial magnetic profile, whether a biased probe is installed or not. These input parameters are used to feed a self-consistent code, which calculates the characteristics of the plasma: electron density and energy, charge state distribution, plasma potential. The code is briefly described, and some of its most interesting results are presented. Comparisons are made between the calculations and the results obtained experimentally.

  19. Electron Spin Resonance (ESR) studies of returned comet nucleus samples

    International Nuclear Information System (INIS)

    Tsay, Fundow; Kim, S.S.; Liang, R.H.

    1989-01-01

    The most important objective of the Comet Nucleus Sample Returm Mission is to return samples which could reflect formation conditions and evolutionary processes in the early solar nebula. It is expected that the returned samples will consist of fine-grained silicate materials mixed with ices composed of simple molecules such as H 2 O, NH 3 , CH 4 as well as organics and/or more complex compounds. Because of the exposure to ionizing radiation from cosmic-ray, gamma-ray, and solar wind protons at low temperature, free radicals are expected to be formed and trapped in the solid ice matrices. The kind of trapped radical species together with their concentration and thermal stability can be used as a dosimeter as well as a geothermometer to determine thermal and radiation histories as well as outgassing and other possible alternation effects since the nucleus material was formed. Since free radicals that are known to contain unpaired electrons are all paramagnetic in nature, they can be readily detected and characterized in their native form by the Electron Spin Resonance (ESR) method. In fact, ESR has been shown to be a non-destructive, highly sensitive tool for the detection and characterization of paramagnetic, ferromagnetic, and radiation damage centers in terrestrial and extraterrestrial geological samples. The potential use of ESR as an effective method in the study of returned comet nucleus samples, in particular, in the analysis of fine-grained solid state icy samples is discussed

  20. ATLAS 10 GHz electron cyclotron resonance ion source upgrade project

    CERN Document Server

    Moehs, D P; Pardo, R C; Xie, D

    2000-01-01

    A major upgrade of the first ATLAS 10 GHz electron cyclotron resonance (ECR) ion source, which began operations in 1987, is in the planning and procurement phase. The new design will convert the old two-stage source into a single-stage source with an electron donor disk and high gradient magnetic field that preserves radial access for solid material feeds and pumping of the plasma chamber. The new magnetic-field profile allows for the possibility of a second ECR zone at a frequency of 14 GHz. An open hexapole configuration, using a high-energy-product Nd-Fe-B magnet material, having an inner diameter of 8.8 cm and pole gaps of 2.4 cm, has been adopted. Models indicate that the field strengths at the chamber wall, 4 cm in radius, will be 9.3 kG along the magnet poles and 5.6 kG along the pole gaps. The individual magnet bars will be housed in austenitic stainless steel, allowing the magnet housing within the aluminum plasma chamber to be used as a water channel for direct cooling of the magnets. Eight solenoid...

  1. Biophysical dose measurement using electron paramagnetic resonance in rodent teeth

    International Nuclear Information System (INIS)

    Khan, R.F.H.; Rink, W.J.; Boreham, D.R.

    2003-01-01

    Electron paramagnetic resonance (EPR) dosimetry of human tooth enamel has been widely used in measuring radiation doses in various scenarios. However, there are situations that do not involve a human victim (e.g. tests for suspected environmental overexposures, measurements of doses to experimental animals in radiation biology research, or chronology of archaeological deposits). For such cases we have developed an EPR dosimetry technique making use of enamel of teeth extracted from mice. Tooth enamel from both previously irradiated and unirradiated mice was extracted and cleaned by processing in supersaturated KOH aqueous solution. Teeth from mice with no previous irradiation history exhibited a linear EPR response to the dose in the range from 0.8 to 5.5 Gy. The EPR dose reconstruction for a preliminarily irradiated batch resulted in the radiation dose of (1.4±0.2) Gy, which was in a good agreement with the estimated exposure of the teeth. The sensitivity of the EPR response of mouse enamel to gamma radiation was found to be half of that of human tooth enamel. The dosimetric EPR signal of mouse enamel is stable up at least to 42 days after exposure to radiation. Dose reconstruction was only possible with the enamel extracted from molars and premolars and could not be performed with incisors. Electron micrographs showed structural variations in the incisor enamel, possibly explaining the large interfering signal in the non-molar teeth

  2. Electron-impact excitation of the In+ ion resonance line

    International Nuclear Information System (INIS)

    Gomonai, A.; OvcharenkO, E.; Imre, A.; Hutych, Yu.

    2004-01-01

    Full text: Study of the electron-impact excitation of the In + ion is important not only for atomic structure research, but also for applications to astrophysics, analytical techniques and fusion research, as well as for new applications of this ion such as a component of solid state laser media and as a source for an optical frequency standart. The energy dependence of the electron-impact excitation of the In + ion resonance line was studied by spectroscopic method using the crossed-beam technique in the energy range from the threshold up to 300 eV for the following process: e + In + (4d 10 5s 2 ) 1 S 0 e' + In + (4d 10 5s5p) 1 P 0 1 e' + In + (4d 10 5s 2 ) 1 S 0 +h (1) Process (1) includes the direct electron-impact excitation of the 5s5p 1 P 0 1 state from the ground 5s 2 1 S 0 state, as well as the contribution of the cascade transitions and resonance processes: In + (4d 10 5s nln 1 l 1 , 4d 10 5p 2 nl, 4d 9 5s 2 nln 1 l 1 ) In + (4d 10 5s 2 ) 1 S 0 + e' (2) The peculiarity of this investigation is the presence of low lying metastable states and high temperature (T1250K) of atomic vapour. The ions produced in the ion source on the heated tantalum surface were extracted, focused and accelerated by a system of ion optical lenses into a beam (E i = 700eV, I i (11.4)10 -6 A), separated from neutral atoms by means of a 90 deg electrostatic selector and crossed at the right angle by the ribbon electron beam (E e = (7300)eV, Ie = (610)10 -5 A, 0 1/2 (0.40.5)eV) in the collision region (at P 10 -8 Torr) [1]. Radiation observed at 90 deg with respect to the beam intersection plane was spectrally separated by a 70 deg vacuum monochromator (d/dl = 1.7nm/mm) based on the Seya- Namioka scheme and detected by a photomultiplier. The measurements and experimental data processing were realised by means of a PC. The drop of the energy dependence of the excitation cross section obey the E -1 lnE rule specific for the optically allow transitions. A distinct structure in the energy

  3. Radiation dosimetry in human bone using electron paramagnetic resonance

    International Nuclear Information System (INIS)

    Breen, S.L.

    1995-01-01

    Accurate measurements of dose in bone are required in order to improve the dosimetry of systemic radiotherapy for osseous metastases. Bone is an integrating dosimeter which records the radiation history of the skeleton. During irradiation, electrons become trapped in the crystalline component of bone mineral (hydroxyapatite). The traps are very stable; at room temperature, emptying of the traps occurs with a half-life of many years. The population of trapped unpaired electrons is proportional to the radiation dose administered to the bone and can be measured in excised bone samples using electron paramagnetic resonance (EPR). EPR spectra of synthetic hydroxyapatite, irradiated with Co-60, were obtained at room temperature and at 77 K. At room temperature, the radiation-induced signal, with a g-value of 2.001 ± 0.001 increased linearly with absorbed dose above a lower threshold of 3 Gy, up to doses of 200 Gy. In contrast with pure hydroxyapatite, EPR spectra of excised human bone showed a broad 'native' signal, due to the organic component of bone, which masks the dosimetrically important signal. This native signal is highly variable from sample to sample and precludes the use of EPR as an absolute dosimetry technique. However, after subtraction of the background signal, irradiated human bone showed a linear response with a lower limit of measurement similar to that of synthetic hydroxyapatite. Bone is an in vivo linear dosimeter which can be exploited to develop accurate estimates of the radiation dose delivered during systemic radiotherapy and teletherapy. However, improved sensitivity of the EPR dosimetry technique is necessary before it can be applied reliably in clinical situations. (author)

  4. Electron paramagnetic resonance (EPR) in characterization of rocks and minerals

    Energy Technology Data Exchange (ETDEWEB)

    Valezi, D.F.; Mauro, E. di [Universidade Estadual de Londrina (UEL), PR (Brazil). Centro de Ciencias Exatas. Lab. de Fluorescencia e Ressonaancia Paramagnetica Eletronica (LAFLURPE); Zaia, D.A.M.; Carneiro, C.E.A. [Universidade Estadual de Londrina (UEL), PR (Brazil). Centro de Ciencias Exatas. Dept. de Quimica; Costa, A.C.S. da [Universidade Estadual de Maringa (UEM), PR (Brazil). Centro de Ciencias Agrarias. Dept. de Agronomia

    2011-07-01

    Full text. his work is based on the study of several stones and minerals from the Parana state, Brazil. They were analyzed by the Electron Paramagnetic Resonance (EPR) technique. The measurements were made on a spectrometer JEOL (JES-PE-3X), operating on X-band and at room temperature, with the exception of the mineral Goethite, which was measured with temperature variation. In all the samples were determined spectroscopic factors (or g factor) and line widths of paramagnetic species. A great number of the samples showed in their spectra, the presence of iron complexes. Phyllite and shale showed a resonance signal with approximately g = 2, and line width with about 1000 Gauss, which indicates the presence of the hematite mineral hematite in these rocks. Shale and coal samples showed the presence of free radical, it was identified as a very intense signal, centered at about g = 2.003. Phyllite sample showed in its spectra a resonance signal between the third and fourth line of the g marker (Mg O:Mn{sup 2+}) used in the measurements, and also a signal at g = 4.3, these characteristics may indicate the presence of Kaolinite in the sample. Limestone showed a signal with line width of about 600 Gauss, centered around g = 2, this signal is probably due to a mixture of ferrihydrite and some other compound, besides the presence of manganese, displaying a spectra with its six peculiar lines, due to hyperfine splitting. The two different types of limestone presented a overlap of two distinct spectra lines for the manganese, in the first limestone sample, rich in calcite, the existence of these different spectra is a result of the manganese substitution in a single site with different orientations of the calcite; the other limestone sample, this one abundant in dolomite, the existence of these different spectra is the result of the manganese substitution in different dolomite sites, taking the place of calcium and or of the magnesium. Now, we are focusing our research in the

  5. Electron paramagnetic resonance of intrinsic point defects in GaAs following plastic deformation

    International Nuclear Information System (INIS)

    Benakki-Stiet, S.

    1988-01-01

    Defects generated in GaAs by a plastic deformation were studied to see if these defects, particularly anionic antisites associated with the deep donor EL2, were the same as those presented in the raw growth material, or the same as those which can be created in a high concentration by electron or neutron irradiation. Results show that there are different types of anionic antisites, so the subset associated with EL2 was identified. The apparent correlation between EL2 and dislocation density is discussed [fr

  6. A line-of-sight electron cyclotron emission receiver for electron cyclotron resonance heating feedback control of tearing modes

    DEFF Research Database (Denmark)

    Oosterbeek, J.W.; Bürger, A.; Westerhof, E.

    2008-01-01

    An electron cyclotron emission (ECE) receiver inside the electron cyclotron resonance heating (ECRH) transmission line has been brought into operation. The ECE is extracted by placing a quartz plate acting as a Fabry-Perot interferometer under an angle inside the electron cyclotron wave (ECW) bea...

  7. Energy transport in mirror machine LISA at electron cyclotron resonance

    International Nuclear Information System (INIS)

    Cunha Rapozo, C. da; Serbeto, A.; Torres-Silva, H.

    1993-01-01

    It is shown that a classical transport calculation is adequate to predict the steady state temperature of the RF produced plasma in LISA machine for both large and small resonant volumes. Temperature anisotropy ranging from 55 to 305 was found which was larger for small resonant volume, and the temperature relaxation was larger at large resonant one. This agrees with the fact that there is a Coulomb relaxation ν c which is proportional to T e -3/2 . It is also shown that the fitting parameter alpha is larger for large resonant volume than for small resonant one. (L.C.J.A.)

  8. Many-electron effect in the resonant Auger electron spectroscopy spectra of adsorbates

    International Nuclear Information System (INIS)

    Ohno, Masahide

    2007-01-01

    It is shown by a many-body theory that a resonantly excited core hole state in a chemisorbed molecule such as CO/Ni, CO/Pd, and CO/Pt relaxes to a fully relaxed one, i.e., the ionized core hole state of the smallest binding energy observed by photoelectron spectroscopy, before the core hole decays so that the resonant Auger electron spectroscopy (RAES) spectrum shows the normal Auger decay spectrum. It is shown by a many-body theory that the Auger peaks on the higher kinetic energy (K.E.) side in the RAES or AES spectrum, i.e., so called back-bonding peaks, are the two-hole states consisting of a valence hole and a hole in the adsorbate-substrate hybrid states below the substrate Fermi level. The latter hole is the change in the density of the hybrid states occupied by the screening electron from the core hole state to the valence-hole state. The difference between the back-bonding peak energy and the single valence-hole energy provides an important information about the change in the density of the hybrid states occupied by the screening electron from the core hole state to the valence-hole state. The difference between the RAES spectrum measured at the resonance energy and the AES spectrum measured at far above the ionization limit shows the competition between relaxation and decay of shakeup satellites such as the charge transfer (CT) shakeup. The relaxation rate of the CT shakeup state can be determined by Auger-photoelectron coincidence spectroscopy (APECS)

  9. Electron paramagnetic resonance detection of carotenoid triplet states

    International Nuclear Information System (INIS)

    Frank, H.A.; Bolt, J.D.; deCosta, S.M.; Sauer, K.

    1980-01-01

    Triplet states of carotenoids have been detected by X-band electron paramagnetic resonance (EPR) and are reported here for the first time. The systems in which carotenoid triplets are observed include cells of photosynthetic bacteria, isolated bacteriochlorophyll-protein complexes, and detergent micelles which contain β-carotene. It is well known that if electron transfer is blocked following the initial acceptor in the bacterial photochemical reaction center, back reaction of the primary radical pair produces a bacteriochlorophyll dimer triplet. Previous optical studies have shown that in reaction centers containing carotenoids the bacteriochlorophyll dimer triplet sensitizes the carotenoid triplet. We have observed this carotenoid triplet state by EPR in reaction centers of Rhodopseudomonas sphaeroides, strain 2.4.1 (wild type), which contain the carotenoid spheroidene. The zero-field splitting parameters of the triplet spectrum are /D/ = 0.0290 +- 0.0005 cm -1 and /E/ = 0.0044 +-0.0006 cm -1 , in contrast with the parameters of the bacteriochlorophyll dimer triplet, which are /D/ = 0.0189 +- 0.0004 cm -1 and /E/ = 0.0032 +- 0.004 cm -1 . Bacteriochlorophyll in a light harvesting protein complex from Rps. sphaeroides, wild type, also sensitizes carotenoid triplet formation. In whole cells the EPR spectra vary with temperature between 100 and 10 K. Carotenoid triplets also have been observed by EPR in whole cells of Rps. sphaeroides and cells of Rhodospirillum rubrum which contain the carotenoid spirilloxanthin. Attempts to observe the triplet state EPR spectrum of β-carotene in numerous organic solvents failed. However, in nonionic detergent micelles and in phospholipid bilayer vesicles β-carotene gives a triplet state spectrum with /D/ = 0.0333 +- 0.0010 cm -1 and /E/ = 0.0037 +- 0.0010 cm -1 . 6 figures, 1 table

  10. Application of electron paramagnetic resonance to identify irradiated soybean

    International Nuclear Information System (INIS)

    Bhaskar, S.; Behere, Arun; Sharma, Arun

    2006-01-01

    Full text: Electron paramagnetic resonance spectroscopy was applied to study free radicals in soy bean seed after gamma irradiation and to establish the potential of these radiation induced free radicals as the indicator of the radiation treatment. The radiation doses administered to the samples were 1 to 30 kGy. A stable doublet signal was detected at g = 2.0279 with hyperfine coupling constant of 2.8 mT, produced only by radiolysis. This signal can be used to identify irradiated soy bean seed samples. With the increase of the radiation dose the central line intensity and the intensities of the satellite lines showed almost a linear rise having linear correlation factors of 0.99724 and 0.99996, respectively. Thermal treatment at 373 deg K in air was studied. No line specific to thermolysis was observed. The spectrometer was operated with power 0.253 mW, microwave frequency 9.74 GHz, modulation frequency 100 kHz and scan range 10 mT. To study the stability of the signal, EPR spectra were obtained from the irradiated skin part of soy bean seeds samples following 1 and 90 days of storage after radiation treatment. The two satellite lines of g left = 2.0279 and g right 1.99529 were detected in all samples. This suggests that the signal is associated with a stable radical and therefore, the detection of a particular free radical as a marker of irradiation is proposed

  11. Electron magnetic resonance of gadolinium-doped calcium fluoride

    Energy Technology Data Exchange (ETDEWEB)

    Biasi, R.S. de, E-mail: rsbiasi@ime.eb.br [Secao de Engenharia Mecanica e de Materiais, Instituto Militar de Engenharia, 22290-270 Rio de Janeiro, RJ (Brazil); Grillo, M.L.N., E-mail: mluciag@uerj.br [Instituto de Fisica, Universidade do Estado do Rio de Janeiro, 20550-013 Rio de Janeiro, RJ (Brazil)

    2012-06-15

    Electron magnetic resonance (EMR) spectra of gadolinium-doped calcium fluoride have been studied at room temperature for Gd concentrations between 0.01 and 2.00 mol%. Gd{sup 3+} ions in sites with two different symmetries were observed. One of the sites, with cubic symmetry, is unstable at room temperature and decays with a time constant of 2.2 day{sup -1}. The other site, with tetragonal symmetry, is stable and is attributed to Gd{sup 3+} ions in substitutional sites next to a charge-compensating F{sup -} interstitial ion. The linewidth and intensity of the EMR spectrum with tetragonal symmetry increase with increasing Gd concentration. A theoretical calculation based on the concentration dependence of the EMR linewidth yields an effective range of the exchange interaction between Gd{sup 3+} ions in CaF{sub 2} of 0.774 nm, of the same order as that of Gd{sup 3+} ions in other cubic ionic compounds.

  12. Molecular electronics--resonant transport through single molecules.

    Science.gov (United States)

    Lörtscher, Emanuel; Riel, Heike

    2010-01-01

    The mechanically controllable break-junction technique (MCBJ) enables us to investigate charge transport through an individually contacted and addressed molecule in ultra-high vacuum (UHV) environment at variable temperature ranging from room temperature down to 4 K. Using a statistical measurement and analysis approach, we acquire current-voltage (I-V) characteristics during the repeated formation, manipulation, and breaking of a molecular junction. At low temperatures, voltages accessing the first molecular orbitals in resonance can be applied, providing spectroscopic information about the junction's energy landscape, in particular about the molecular level alignment in respect to the Fermi energy of the electrodes. Thereby, we can investigate the non-linear transport properties of various types of functional molecules and explore their potential use as functional building blocks for future nano-electronics. An example will be given by the reversible and controllable switching between two distinct conductive states of a single molecule. As a proof-of-principle for functional molecular devices, a single-molecule memory element will be demonstrated.

  13. Dose evaluation due to electron spin resonance method

    International Nuclear Information System (INIS)

    Nakajima, Toshiyuki

    1989-01-01

    Radiation dosimeter has been developed with free radical created in sucrose. Free radical was observed with using the electron spin resonance (ESR) equipment. The ESR absorption due to free radical in sucrose appeared at the magnetic field between the third and fourth ESR ones of Mn +2 standard sample. Sucrose as radiation dosimeter can linearly measure the dose from 5 x 10 -3 Gy to 10 5 Gy. If the new model of the ESR equipment is used and ESR observation is carried out at lower temperature such as liquid nitrogen or liquid helium temperature, the sucrose ESR dosimeter will be detectable about 5 x 10 -4 Gy or less. Fading of the free radicals in the irradiated sucrose was scarcely obtained about six months after irradiation and in the irradiated sucrose stored at 55deg C and 100deg C for one hour or more also scarcely observed. It is concluded from these radiation property that sucrose is useful for the accidental or emergency dosimeter for the inhabitants. (author)

  14. Electron spin resonance study of radicals in irradiated polyethylene

    International Nuclear Information System (INIS)

    Fujimura, Takashi

    1979-02-01

    In order to elucidate radiation effect in polyethylene, the nature and behavior of radicals produced in polyethylene and the model compound of polyethylene irradiated at 77 0 K were studied by using electron spin resonance. The structure of radical pairs, which are composed of two radicals produced very closely each other, was investigated in drawn polyethylene and the single crystal of n-eicosane. The radical pairs of intrachain type and interchain type were found in polyethylene and n-eicosane respectively. It was suggested that these two types of radical pairs are the precursors of double bonds and crosslinks respectively. The thermal decay reactions of radicals themselves produced in irradiated polyethylene were investigated. It was made clear that the short range distances between two radicals play an important role in the decay reaction of alkyl radicals at low temperatures. The trapping regions of radicals were studied and it was clarified that allyl radicals, which are produced by the reaction of alkyl radicals with double bonds, are trapped both in the crystalline and non-crystalline regions. (author)

  15. Effects of water on fingernail electron paramagnetic resonance dosimetry.

    Science.gov (United States)

    Zhang, Tengda; Zhao, Zhixin; Zhang, Haiying; Zhai, Hezheng; Ruan, Shuzhou; Jiao, Ling; Zhang, Wenyi

    2016-09-01

    Electron paramagnetic resonance (EPR) is a promising biodosimetric method, and fingernails are sensitive biomaterials to ionizing radiation. Therefore, kinetic energy released per unit mass (kerma) can be estimated by measuring the level of free radicals within fingernails, using EPR. However, to date this dosimetry has been deficient and insufficiently accurate. In the sampling processes and measurements, water plays a significant role. This paper discusses many effects of water on fingernail EPR dosimetry, including disturbance to EPR measurements and two different effects on the production of free radicals. Water that is unable to contact free radicals can promote the production of free radicals due to indirect ionizing effects. Therefore, varying water content within fingernails can lead to varying growth rates in the free radical concentration after irradiation-these two variables have a linear relationship, with a slope of 1.8143. Thus, EPR dosimetry needs to be adjusted according to the water content of the fingernails of an individual. When the free radicals are exposed to water, the eliminating effect will appear. Therefore, soaking fingernail pieces in water before irradiation, as many researchers have previously done, can cause estimation errors. In addition, nails need to be dehydrated before making accurately quantitative EPR measurements. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  16. Using an electron paramagnetic resonance method for testing motor oils

    Energy Technology Data Exchange (ETDEWEB)

    Krais, S; Tkac, T

    1982-01-01

    Using an ER-9 spectrometer from the Karl Zeiss company, the relative effectiveness is studied of antioxidation additives. Motor oils of the E group, M6AD, 465, M6AD, 466, M6AD 467, 15 W/40, S-3/2 M/4, R-950, which contain the antioxidation additive were tested in Petter AV-1 motors at a temperature of 50 degrees for 120 hours and Petter AVB at a temperature of 90 degrees for 53 hours. To measure the concentration of free radicals of the antioxidation additives one part of 2,2-diphenyl-1-picrylhydrazine (I), which forms stable dimagnetic products with the radicals of the antioxidation additives was introduced into each three parts of the oil. The reduction in the intensity of the signal of I was the measure of the radical concentration. The spectrum was taken for 1 to 2 minutes. The graphs of the dependence of the electron paramagnetic resonance on the test time and the concentration of I are built. The beginning and end of the induction period of oxidation of the oils and the change in the hourly activity of the PP was recorded.

  17. Electron paramagnetic resonance in Cu-doped ZnO

    Science.gov (United States)

    Buchheit, R.; Acosta-Humánez, F.; Almanza, O.

    2016-04-01

    In this work, ZnO and Cu-doped ZnO nanoparticles (Zn1-xCuxO, x = 3%), with a calcination temperature of 500∘C were synthesized using the sol-gel method. The particles were analyzed using atomic absorption spectroscopy (AAS), X-ray diffraction (XRD) and electron paramagnetic resonance (EPR) at X-band, measurement in a temperature range from 90 K to room temperature. AAS confirmed a good correspondence between the experimental doping concentration and the theoretical value. XRD reveals the presence of ZnO phase in hexagonal wurtzite structure and a nanoparticle size for the samples synthesized. EPR spectroscopy shows the presence of point defects in both samples with g-values of g = 1.959 for shallow donors and g = 2.004 for ionized vacancies. It is important when these materials are required have been used as catalysts, as suggested that it is not necessary prepare them at higher temperature. A simulation of the Cu EPR signal using an anisotropic spin Hamiltonian was performed and showed good coincidence with the experimental spectra. It was shown that Cu2+ ions enter interstitial octahedral sites of orthorhombic symmetry in the wurtzite crystal structure. Temperature dependence of the EPR linewidth and signal intensity shows a paramagnetic behavior of the sample in the measurement range. A Néel temperature TN = 78 ± 19 K was determined.

  18. Cation Binding to Xanthorhodopsin: Electron Paramagnetic Resonance and Magnetic Studies.

    Science.gov (United States)

    Smolensky Koganov, Elena; Leitus, Gregory; Rozin, Rinat; Weiner, Lev; Friedman, Noga; Sheves, Mordechai

    2017-05-04

    Xanthorhodopsin (xR) is a member of the retinal protein family and acts as a proton pump in the cell membranes of the extremely halophilic eubacterium Salinibacter ruber. In addition to the retinal chromophore, xR contains a carotenoid, which acts as a light-harvesting antenna as it transfers 40% of the quanta it absorbs to the retinal. Our previous studies have shown that the CD and absorption spectra of xR are dramatically affected due to the protonation of two different residues. It is still unclear whether xR can bind cations. Electron paramagnetic resonance (EPR) spectroscopy used in the present study revealed that xR can bind divalent cations, such as Mn 2+ and Ca 2+ , to deionized xR (DI-xR). We also demonstrate that xR can bind 1 equiv of Mn 2+ to a high-affinity binding site followed by binding of ∼40 equiv in cooperative manner and ∼100 equiv of Mn 2+ that are weakly bound. SQUID magnetic studies suggest that the high cooperative binding of Mn 2+ cations to xR is due to the formation of Mn 2+ clusters. Our data demonstrate that Ca 2+ cations bind to DI-xR with a lower affinity than Mn 2+ , supporting the assumption that binding of Mn 2+ occurs through cluster formation, because Ca 2+ cations cannot form clusters in contrast to Mn 2+ .

  19. Data acquisition system for electronic paramagnetic resonance spectrophotometer

    International Nuclear Information System (INIS)

    Pena Eguiluz, R.

    1992-01-01

    In the Atomic and Molecular Physics Laboratory at the Physics Department of the Instituto Nacional de Investigaciones Nucleares (ININ), there is in operation an electronic paramagnetic resonance spectrometer (EPR). This equipment is utilized for determine, the distribution of the absorbed energy intensity for a sample of paramagnetic substance by means of the study and analysis of its emission lines spectrum. The useful information is provided as a graphic result showing the spectrum corresponding to the analyzed sample. In similar devices like this, the researchers problem, trying to get the important information, is a hard and imprecise work, thus, this process of find the ordinate magnitudes of a approximately two hundred points, equal spaced in the spectrum, is carried out completely by hand. After this, the information is captured and processed in a personal computer. As a solution for this problem, an interface in both aspects, hardware and software adaptable to a personal computer, was designed and constructed. This interface is able to: a) To get and digitized the analogical signal, that represents the corresponding spectrum curve. b) It stores the digitized information in files and c) It displays in graphic mode the stored data, and then these are normalized in order to be transferred to a statistics and analytical software packets (Author)

  20. Semiconductor GaAs: electronic paramagnetic resonance new data

    International Nuclear Information System (INIS)

    Benchiguer, T.

    1994-04-01

    The topic of this study was to put to the fore, thanks to our electron spin resonance experiments, one charge transfer process, which was optically induced between the deep donor As + G a and the different acceptors, which were present in the material. We described these processes through a theoretical model, which we named charge transfer model. With this latter, we were able to trace a graph network, representing the As + G a concentration kinetics. Then we verified the compatibility of our model with one transport experiment. One experimental verification of our model were delivered, thanks to neutronic transmutation doping. The following stage was the study of defects, induced by thermal strains, to which the crystal was submitted during the cooling phase. At last we wanted to get round the non solved super hyperfine structure problem for GaAs by studying another III-V material for which she was resolved, namely gallium phosphide. (MML). 150 refs., 72 figs., 16 tabs., 3 annexes

  1. Enamel dose calculation by electron paramagnetic resonance spectral simulation technique

    International Nuclear Information System (INIS)

    Dong Guofu; Cong Jianbo; Guo Linchao; Ning Jing; Xian Hong; Wang Changzhen; Wu Ke

    2011-01-01

    Objective: To optimize the enamel electron paramagnetic resonance (EPR) spectral processing by using the EPR spectral simulation method to improve the accuracy of enamel EPR dosimetry and reduce artificial error. Methods: The multi-component superimposed EPR powder spectral simulation software was developed to simulate EPR spectrum models of the background signal (BS) and the radiation- induced signal (RS) of irradiated enamel respectively. RS was extracted from the multi-component superimposed spectrum of irradiated enamel and its amplitude was calculated. The dose-response curve was then established for calculating the doses of a group of enamel samples. The result of estimated dose was compared with that calculated by traditional method. Results: BS was simulated as a powder spectrum of gaussian line shape with the following spectrum parameters: g=2.00 35 and Hpp=0.65-1.1 mT, RS signal was also simulated as a powder spectrum but with axi-symmetric spectrum characteristics. The spectrum parameters of RS were: g ⊥ =2.0018, g ‖ =1.9965, Hpp=0.335-0.4 mT. The amplitude of RS had a linear response to radiation dose with the regression equation as y=240.74x + 76 724 (R 2 =0.9947). The expectation of relative error of dose estimation was 0.13. Conclusions: EPR simulation method has improved somehow the accuracy and reliability of enamel EPR dose estimation. (authors)

  2. Mechanical detection of electron spin resonance beyond 1 THz

    International Nuclear Information System (INIS)

    Takahashi, Hideyuki; Ohmichi, Eiji; Ohta, Hitoshi

    2015-01-01

    We report the cantilever detection of electron spin resonance (ESR) in the terahertz (THz) region. This technique mechanically detects ESR as a change in magnetic torque that acts on the cantilever. The ESR absorption of a tiny single crystal of Co Tutton salt, Co(NH 4 ) 2 (SO 4 ) 2 ⋅6H 2 O, was observed in frequencies of up to 1.1 THz using a backward travelling wave oscillator as a THz-wave source. This is the highest frequency of mechanical detection of ESR till date. The spectral resolution was evaluated with the ratio of the peak separation to the sum of the half-width at half maximum of two absorption peaks. The highest resolution value of 8.59 ± 0.53 was achieved at 685 GHz, while 2.47 ± 0.01 at 80 GHz. This technique will not only broaden the scope of ESR spectroscopy application but also lead to high-spectral-resolution ESR imaging

  3. EPR studies of the vitamin K 1 semiquinone radical anion. Comparison to the electron acceptor A 1 in green plant photosystem I

    Science.gov (United States)

    Thurnauer, Marion C.; Brown, James W.; Gast, P.; Feezel, Laura L.

    Suggestions that the electron acceptor, A 1, in Photosystem I is a quinone have come from both optical and epr experiments. Vitamin K 1 (phylloquinone) is present in the PSI complex with a stoichiometry of two molecules per reaction center. In order to determine if A 1 can be identified with vitamin K 1, X-band and Q-band epr properties of the vitamin K 1 radical anion in frozen alcohol solutions are examined. The results are compared to the epr properties that have been observed for the reduced A 1 acceptor in vivo. The g-values obtained for the vitamin K 1 radical anion are consistent with identifying A 1 with vitamin K 1.

  4. Resonant cell of a double nuclear electron resonance spectrometer for performance in a 120-350 Gs magnetic field

    International Nuclear Information System (INIS)

    Baldin, V.I.; Stepanov, A.P.

    1976-01-01

    Spectrometer double-frequency resonance cell construction of a double nuclear electron resonance for operation in 120-350 Gs magnetic fields is described. The cell has been developed from a special decimeter resonator with a concentrated capacitance. The electric and magnetic components of a high frequency field are efficiently divided in the separator. Therefore, the insertion of a measuring coil and a sample in the maximum of the magnetic component of the field does not practically affect the distribution and parameters of the high-frequency field. The double-frequency resonance cell proposed provides for a higher accuracy of measuring amplifications of the nuclear magnetic resonance signals when there is the overhauzer effect for 120-350 Gs magnetic fields

  5. Properties of solvated electrons, alkali anions and other species in metal solutions and kinetics of cation and electron exchange reactions. Final report

    International Nuclear Information System (INIS)

    Dye, J.L.

    1979-01-01

    The properties of solutions of alkali metals in amine solvents were studied by optical, ETR, NMR and electrochemical methods. Complexation of the alkali cations by crown ethers and cryptands permitted the preparation of concentrated solutions of alkali metals in amine and ether solvents. Extensive alkali metal NMR studies of the exchange of M + with crown-ethers and cryptands and of the alkali metal anion, M - , were made. The first crystalline salt of an alkali metal anion, Na + Cryptand [2.2.2]Na - was synthesized and characterized and led to the preparation of other alkali metal anion salts. This research provided the foundation for continuing studies of crystalline alkalide salts

  6. Ytterbium doped silicon clusters YbSi{sub n} (n = 4–10) and their anions: Structures, thermochemistry, and electron affinities

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Xiaohong [School of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051 (China); Hao, Dongsheng [School of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051 (China); School of Mining and Technology, Inner Mongolia University of Technology, Hohhot 010051 (China); Yang, Jucai, E-mail: yangjc@imut.edu.cn [School of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051 (China); School of Energy and Power Engineering, Inner Mongolia University of Technology, Hohhot 010051 (China)

    2015-11-05

    Highlights: • The ground-state structure of YbSi{sub n} and its anion is substitutional structure. • The four DFT AEAs are in excellent agreement with the experimental data. • Theoretical AEA of 2.33 eV of YbSi{sub 9} is more reasonable than the experimental 2.60 eV. • Hardness analysis reveals that doping Yb to Si{sub n} raises photochemical sensitivity. • Relative stabilities of YbSi{sub n} and their anions are examined. - Abstract: The structures, electron affinities, dissociation energies, hardness, and dipole moments of YbSi{sub n} (n = 4–10) and their anions were examined using B3LYP, TPSSh, PBE and wB97X methods. The lowest-energy structures can be regarded as replacing a Si of the ground-state structure of Si{sub n+1} with a Yb atom. The theoretical adiabatic electron affinities (AEAs) of YbSi{sub n} are in excellent agreement with experimental data. The average absolute errors from experiment are by 0.08, 0.07, 0.05 and 0.08 eV at the B3LYP, the TPSSh, the PBE and the wB97X levels, respectively. Theoretical AEAs of 2.33 ± 0.05 eV for YbSi{sub 9} are more reliable than the experimental value of 2.60 ± 0.05 eV. The hardness analysis reveals that doping Yb atom to Si{sub n} (n = 4–10) clusters raises the photochemical sensitivity. The dissociation energies of Yb atom from YbSi{sub n} and their anions were calculated to examine relative stabilities.

  7. Electron spin resonance of gamma, electron, neutron and fission fragments irradiated K2SO4

    International Nuclear Information System (INIS)

    Kamali, J.; Walton, G.N.

    1985-01-01

    The electron spin resonance (ESR) of K 2 SO 4 irradiated by γ, electron, neutron and fission fragments has been investigated. The ESR spectra are attributed mainly to the formation of SO 3 - , SO 4 - , SO 2 - , and O 3 - radical ions. The most intense radical ion observed was due to the SO 3 - , and the other radicals were relatively much lower in intensity. Thermal annealing showed a significant decrease in the concentration of radical ions. The concentration of SO 3 - was measured in γ-irradiated K 2 SO 4 and K 2 SO 4 containing fission fragments. In fission fragments irradiated K 2 SO 4 , the G-value observed for SO 3 - radical formation was about eight times higher than that of γ-irradiated K 2 SO 4 . This was attributed to the high LET (Linear Energy Transfer) of the fission fragments. (author)

  8. Resonant influence of a longitudinal hypersonic field on the radiation from channeled electrons

    International Nuclear Information System (INIS)

    Grigoryan, L.Sh.; Mkrtchyan, A.R.; Mkrtchyan, A.H.; Khachatryan, H.F.; Prade, H.; Wagner, W.; Piestrup, M.A.

    2001-01-01

    The wave function of a planar/axially channeled electron with energy 10 MeV≤E<<1 GeV under the influence of a longitudinal hypersonic wave excited in a single crystal is calculated. Conditions for the resonant influence of the hypersonic wave on the quantum state of the channeled electron are deduced. Expressions for the wave function that are applicable in the case of resonance are obtained. Angular and spectral distributions of the radiation intensity from the planar/axially channeled electron are also calculated. The possibility of significant amplification of channeling radiation by a hypersonic wave is substantiated. It is found that the hypersound can excite inverse radiative transitions through which the transversal energy of the channeled electron is increased. These transitions have a resonant nature and can lead to a considerable intensification of the electron channeling radiation. In the case of axial channeling, the resonance radiation is sustained also by direct radiative transitions of the electron

  9. Unobstructed electron transfer on porous polyelectrolyte nanostructures and its characterization by electrochemical surface plasmon resonance

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Bryce W.; Linman, Matthew J.; Linley, Kamara S.; Hare, Christopher D. [Department of Chemistry, University of California, Riverside, CA 92521 (United States); Cheng Quan, E-mail: quan.cheng@ucr.ed [Department of Chemistry, University of California, Riverside, CA 92521 (United States)

    2010-06-01

    Thin organic films with desirable redox properties have long been sought in biosensor research. We report here the development of a polymer thin film interface with well-defined hierarchical nanostructure and electrochemical behavior, and its characterization by electrochemical surface plasmon resonance (ESPR) spectroscopy. The nano-architecture build-up is monitored in real time with SPR, while the redox response is characterized by cyclic voltammetry in the same flow cell. The multilayer assembly is built on a self-assembled monolayer (SAM) of 1:1 (molar ratio) 11-ferrocenyl-1-undecanethiolate (FUT) and mercaptoundecanoic acid (MUA), and constructed using a layer-by-layer deposition of cationic poly(allylamine hydrochloride) (PAH) and anionic poly(sodium 4-styrenesulfonate) (PSS). Electron transfer (ET) on the mixed surface and the effect of the layer structures on ET are systematically studied. Under careful control, multiple layers can be deposited onto the 1:1 FUT/MUA SAM that presents unobstructed redox chemistry, indicating a highly ordered, extensively porous structure obtained under this condition. The use of SPR to trace the minute change during the electrochemical process offers neat characterization of local environment at the interface, in particular double layer region, allowing for better control over the redox functionality of the multilayers. The 1:1 SAM has a surface coverage of 4.1 +- 0.3 x 10{sup -10} mol cm{sup -2} for ferrocene molecules and demonstrates unperturbed electrochemistry activity even in the presence of a 13 nm polymer film adhered to the electrode surface. This thin layer possesses some desirable properties similar to those on a SAM while presenting approx15 nm exceedingly porous structure for high loading capacity. The high porosity allows perchlorate to freely partition into the film, leading to high current density that is useful for sensitive electrochemical measurements.

  10. Effect of resonant-to-bulk electron momentum transfer on the efficiency of electron-cyclotron current drive

    International Nuclear Information System (INIS)

    Matsuda, Y.; Smith, G.R.; Cohen, R.H.

    1988-01-01

    Efficiency of current drive by electron-cyclotron waves is investigated numerically by a bounce-average Fokker-Planck code to elucidate the effects of momentum transfer from resonant to bulk electrons, finite bulk temperature relative to the energy of resonant electrons, and trapped electrons. Comparisons are made with existing theories to assess their validity and quantitative difference between theory and code results. Difference of nearly a factor of 2 was found in efficiency between some theory and code results. 4 refs., 4 figs

  11. Electron-electron correlation, resonant photoemission and X-ray emission spectra

    International Nuclear Information System (INIS)

    Parlebas, J.C.; Kotani, Akio; Tanaka, Satoshi.

    1991-01-01

    In this short review paper we essentially focus on the high energy spectroscopies which involve second order quantum processes, i.e., resonance photoemission, Auger and X-ray emission spectroscopies, denoted respectively by RXPS, AES and XES. First, we summarize the main 3p-RXPS and AES results obtained in Cu and Ni metals; especially we recall that the satellite near the 3p-threshold in the spectra, which arises from a d-hole pair bound state, needs a careful treatment of the electron-electron correlation. Then we analyze the RXPS spectra in a few Ce compounds (CeO 2 , Ce 2 O 3 and CeF 3 ) involving 3d or 4d core levels and we interpret the spectra consistently with the other spectroscopies, such as core XPS and XAS which are first order quantum processes. Finally within the same one-impurity model and basically with the same sets of parameters, we review a theory for the Ce 5p→3d XES, as well as for the corresponding RXES, where (1) the incident X-ray is tuned to resonate with the 3d→4f transition and (2) the X-ray emission due to the 5p→3d transition is actually observed. The paper ends with a general discussion. (author) 77 refs

  12. Tuner and radiation shield for planar electron paramagnetic resonance microresonators

    International Nuclear Information System (INIS)

    Narkowicz, Ryszard; Suter, Dieter

    2015-01-01

    Planar microresonators provide a large boost of sensitivity for small samples. They can be manufactured lithographically to a wide range of target parameters. The coupler between the resonator and the microwave feedline can be integrated into this design. To optimize the coupling and to compensate manufacturing tolerances, it is sometimes desirable to have a tuning element available that can be adjusted when the resonator is connected to the spectrometer. This paper presents a simple design that allows one to bring undercoupled resonators into the condition for critical coupling. In addition, it also reduces radiation losses and thereby increases the quality factor and the sensitivity of the resonator

  13. Electron Spin Resonance Experiments on a Single Electron in Silicon Implanted with Phosphorous

    Science.gov (United States)

    Luhman, Dwight R.; Nguyen, K.; Tracy, L. A.; Carr, S.; Borchardt, J.; Bishop, N.; Ten Eyck, G.; Pluym, T.; Wendt, J.; Lilly, M. P.; Carroll, M. S.

    2015-03-01

    In this talk we will discuss the results of our ongoing experiments involving electron spin resonance (ESR) on a single electron in a natural silicon sample. The sample consists of an SET, defined by lithographic polysilicon gates, coupled to nearby phosphorous donors. The SET is used to detect charge transitions and readout the spin of the electron being investigated with ESR. The measurements were done with the sample at dilution refrigerator temperatures in the presence of a 1.3 T magnetic field. We will present data demonstrating Rabi oscillations of a single electron in this system as well as measurements of the coherence time, T2. We will also discuss our results using these and various other pulsing schemes in the context of a donor-SET system. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.

  14. Wakefield excitation in plasma resonator by a sequence of relativistic electron bunches

    International Nuclear Information System (INIS)

    Kiselev, V.A.; Linnik, A.F.; Mirny, V.I.; Onishchenko, I.N.; Uskov, V.V.

    2008-01-01

    Wakefield excitation in a plasma resonator by a sequence of relativistic electron bunches with the purpose to increase excited field amplitude in comparison to waveguide case is experimentally investigated. A sequence of short electron bunches is produced by the linear resonant accelerator. Plasma resonator is formed at the beam-plasma discharge in rectangular metal waveguide filled with gas and closed by metal foil at entrance and movable short-circuited plunger at exit. Measurements of wakefield amplitude are performed showing considerably higher wakefield amplitude for resonator case

  15. Modified multipole structure for electron cyclotron resonance ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Suominen, P.

    2006-07-01

    Highly-charged heavy-ion beams are usually produced with Electron Cyclotron Resonance Ion Sources (ECRIS) where the microwave heated plasma is confined in a strong magnetic field. The magnetic field is divided into an axial part (produced by solenoid magnets) and to a radial part (produced by multipole magnet). Experiments have shown that the radial magnetic field component plays a crucial role in the production of highly-charged ions. However, in several modern ECRIS the radial magnetic field strength is below the optimum value, mainly due to the limits in permanent magnet technology. Unfortunately, methods to increase the radial magnetic field strength while still using permanent magnets are often limited. In this thesis work new techniques to improve the radial magnetic field have been studied by simulations and experiments. Due to the computer simulations performed a remarkable radial magnetic field improvement was reached with a relatively simple and cost-effective idea called the Modified MultiPole Structure (MMPS). The MMPS differs strongly from former studies as here the magnetic field is increased only locally without affecting the plasma size. It was not known how this would affect the properties of the plasma and production of highly-charged heavy ions. Consequently, the idea had to be studied experimentally and a new MMPS plasma chamber prototype was designed and constructed for the JYFL 6.4 GHz ECRIS. The new construction is versatile and made it possible to perform several new types of measurements. These showed that the MMPS works well and is especially applicable to increase very high charge-state ion production. Typically the ion current increases by a factor of 2 - 3 in the case of highly charged ions such as Ar16+. (orig.)

  16. Modified multipole structure for electron cyclotron resonance ion sources

    International Nuclear Information System (INIS)

    Suominen, P.

    2006-01-01

    Highly-charged heavy-ion beams are usually produced with Electron Cyclotron Resonance Ion Sources (ECRIS) where the microwave heated plasma is confined in a strong magnetic field. The magnetic field is divided into an axial part (produced by solenoid magnets) and to a radial part (produced by multipole magnet). Experiments have shown that the radial magnetic field component plays a crucial role in the production of highly-charged ions. However, in several modern ECRIS the radial magnetic field strength is below the optimum value, mainly due to the limits in permanent magnet technology. Unfortunately, methods to increase the radial magnetic field strength while still using permanent magnets are often limited. In this thesis work new techniques to improve the radial magnetic field have been studied by simulations and experiments. Due to the computer simulations performed a remarkable radial magnetic field improvement was reached with a relatively simple and cost-effective idea called the Modified MultiPole Structure (MMPS). The MMPS differs strongly from former studies as here the magnetic field is increased only locally without affecting the plasma size. It was not known how this would affect the properties of the plasma and production of highly-charged heavy ions. Consequently, the idea had to be studied experimentally and a new MMPS plasma chamber prototype was designed and constructed for the JYFL 6.4 GHz ECRIS. The new construction is versatile and made it possible to perform several new types of measurements. These showed that the MMPS works well and is especially applicable to increase very high charge-state ion production. Typically the ion current increases by a factor of 2 - 3 in the case of highly charged ions such as Ar 16+ . (orig.)

  17. Electron paramagnetic resonance biophysical radiation dosimetry with tooth enamel

    International Nuclear Information System (INIS)

    Khan, Rao F.H.

    2003-01-01

    This thesis deals with the advancements made in the field of Electron Paramagnetic Resonance (EPR) for biophysical dosimetry with tooth enamel for accident, emergency, and retrospective radiation dose reconstruction. A methodology has been developed to measure retrospective radiation exposures in human tooth enamel. This entails novel sample preparation procedures with minimum mechanical treatment to reduce the preparation induced uncertainties, establish optimum measurement conditions inside the EPR cavity, post-process the measured spectrum with functional simulation of dosimetric and other interfering signals, and reconstruct dose. By using this technique, retrospective gamma exposures as low as 80±30 mGy have been successfully deciphered. The notion of dose modifier was introduced in EPR biodosimetry for low dose measurements. It has been demonstrated that by using the modified zero added dose (MZAD) technique for low radiation exposures, doses in 100 mGy ranges can be easily reconstructed in teeth that were previously thought useless for EPR dosimetry. Also, the use of a dose modifier makes robust dose reconstruction possible for higher radiation exposures. The EPR dosimetry technique was also developed for tooth samples extracted from rodents, which represent small tooth sizing. EPR doses in the molars, extracted from the mice irradiated with whole body exposures, were reassessed and shown to be correct within the experimental uncertainty. The sensitivity of human tooth enamel for neutron irradiation, obtained from the 3 MV McMaster K.N. Van de Graaff accelerator, was also studied. For the first time this work has shown that the neutron sensitivity of the tooth enamel is approximately 1/10th of the equivalent gamma sensitivity. Parametric studies for neutron dose rate and neutron energy within the available range of the accelerator, showed no impact on the sensitivity of the tooth enamel. Therefore, tooth enamel can be used as a dosimeter for both neutrons

  18. Doubly excited 3Pe resonance states of two-electron positive ions in Debye plasmas

    International Nuclear Information System (INIS)

    Hu, Xiao-Qing; Wang, Yang; Kar, Sabyasachi; Jiang, Zishi; Jiang, Pinghui

    2015-01-01

    We investigate the doubly excited 3 P e resonance states of two-electron positive ions Li + , Be 2+ , B 3+ , and C 4+ by employing correlated exponential wave functions. In the framework of the stabilization method, we calculate two series (3pnp and 3dnd) of 3 P e resonances below the N = 3 threshold. The 3 P e resonance parameters (resonance energies and widths) are reported for the first time as a function of the screening parameter. For free-atomic cases, comparisons are made with the reported results and few resonance states are reported for the first time

  19. Progressive and resonant wave helices application to electron paramagnetic resonance; Helices a ondes progressives et resonnantes application a la resonance paramagnetique electronique

    Energy Technology Data Exchange (ETDEWEB)

    Volino, F [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1969-07-01

    We show that helices can be used as resonant systems. Their properties are theoretically and experimentally studied. We describe resonant helices for electron paramagnetic resonance in X-band and develop a comparison between their sensitivity and the sensitivity of a normal resonant cavity. For cylindrical samples less than 3 mm diameter, the helix is more sensitive and can produce more intense microwave magnetic fields. (author) [French] Il est montre que les helices peuvent etre utilisees comme systeme resonnant. Leurs proprietes sont discutees theoriquement et experimentalement. Des helices resonnantes en bande X pour la resonance paramagnetique electronique sont decrites et leur sensibilite est comparee a celle des cavites resonnantes. Pour des echantillons cylindriques de moins de 3 mm de diametre, l'helice est plus sensible et peut produire des champs magnetiques hyper fins plus intenses. (auteur)

  20. Progressive and resonant wave helices application to electron paramagnetic resonance; Helices a ondes progressives et resonnantes application a la resonance paramagnetique electronique

    Energy Technology Data Exchange (ETDEWEB)

    Volino, F. [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1969-07-01

    We show that helices can be used as resonant systems. Their properties are theoretically and experimentally studied. We describe resonant helices for electron paramagnetic resonance in X-band and develop a comparison between their sensitivity and the sensitivity of a normal resonant cavity. For cylindrical samples less than 3 mm diameter, the helix is more sensitive and can produce more intense microwave magnetic fields. (author) [French] Il est montre que les helices peuvent etre utilisees comme systeme resonnant. Leurs proprietes sont discutees theoriquement et experimentalement. Des helices resonnantes en bande X pour la resonance paramagnetique electronique sont decrites et leur sensibilite est comparee a celle des cavites resonnantes. Pour des echantillons cylindriques de moins de 3 mm de diametre, l'helice est plus sensible et peut produire des champs magnetiques hyper fins plus intenses. (auteur)

  1. Detection and characterisation of radicals using electron paramagnetic resonance (EPR) spin trapping and related methods

    DEFF Research Database (Denmark)

    Davies, Michael Jonathan

    2016-01-01

    Electron paramagnetic resonance (EPR) spectroscopy (also known as electron spin resonance, ESR, or electron magnetic resonance, EMR, spectroscopy) is often described as the “gold standard” for the detection and characterisation of radicals in chemical, biological and medical systems. The article...... reviews aspects of EPR spectroscopy and discusses how this methodology and related techniques can be used to obtain useful information from biological systems. Consideration is given to the direct detection of radicals, the use of spin traps and the detection of nitric oxide, and the advantages...

  2. Applications of electron spin resonance to some problems of radiation chemistry; Applications de la resonance paramagnetique electronique a quelques problemes de chimie sous rayonnements

    Energy Technology Data Exchange (ETDEWEB)

    Chachaty, C [Commissariat a l' Energie Atomique Saclay (France). Centre d' Etudes Nucleaires

    1968-06-01

    The electron spin resonance (E.S.R.) spectra of gamma irradiated polar organic glasses, at 77 K, shows a single line centered at g {approx} 2, attributed to solvated electrons. The radicals produced on scavenging this species by electron acceptors, such as aromatic hydrocarbons, nitro-compounds and azines have been studied by E.S.R. In most cases, the radicals from these solutes, the spectra of which are observed after elimination by warming of the radicals from the matrices, are produced by protonation of the anions formed by scavenging of electrons at 77 K. Thus, in the case of glassy solutions of nitro-compounds, the radicals R NO{sub 2}H are formed. They are characterized by a{sub N} = 15 G (nitrobenzene) or a{sub N} = 28 G (nitro-alkane). These radicals are also generated by U.V, photolysis at room temperature of solutions of nitro-compounds in alcohols and are shown to be the precursors of nitroxide radicals R - N - R (with N - O) observed simultaneously. Gamma irradiation of solutions of pyridine and of the three diazines, in alcohol glasses at 77 K, produces the radical formed by hydrogen addition to these compounds. The value of the coupling constant of the additional proton (7-10 G) indicates that it is bound to a nitrogen in the sp{sup 2} hydridation state. One has shown, taking pyridine as an example, that the addition to a carbon gives a much greater value of the coupling constant, of the order of 50-60 G. (author) [French] Les spectres de resonance paramagnetique electronique (R.P.E.) obtenus apres irradiation gamma, a 77 K, de verres organiques polaires tels que les alcools, comportent une bande unique centree a g {approx} 2, attribuable aux electrons solvates. On etudie par R.P.E. les radicaux provenant de leur capture par des solutes ayant une affinite electronique, en particulier les hydrocarbures aromatiques, les composes nitres et les azines. En general, les radicaux provenant de ces solutes, dont on observe les spectres apres elimination

  3. Empirical fit to inelastic electron-deuteron and electron-neutron resonance region transverse cross sections

    International Nuclear Information System (INIS)

    Bosted, P. E.; Christy, M. E.

    2008-01-01

    An empirical fit is described to measurements of inclusive inelastic electron-deuteron cross sections in the kinematic range of four-momentum transfer 0≤Q 2 2 and final state invariant mass 1.1 p of longitudinal to transverse cross sections for the proton, and the assumption R p =R n . The underlying fit parameters describe the average cross section for a free proton and a free neutron, with a plane-wave impulse approximation used to fit to the deuteron data. Additional fit parameters are used to fill in the dip between the quasi-elastic peak and the Δ(1232) resonance. The mean deviation of data from the fit is 3%, with less than 4% of the data points deviating from the fit by more than 10%

  4. Radiosterilization dosimetry by electron-spin resonance spectroscopy. Cefotetan

    International Nuclear Information System (INIS)

    Basly, J.P.; Longy, I.; Bernard, M.

    1998-01-01

    As an alternative to heat and gas exposure sterilization, ionizing radiation is gaining interest as a sterilization process for medicinal products. Nevertheless, essentially for economic profit, unauthorized and uncontrolled use of radiation processes may be expected. In this context, it is necessary to find methods of distinguishing between irradiated and nonirradiated pharmaceuticals. In the absence of suitable detection methods, our attention was focused on electron-spin resonance (ESR) spectrometry. A third generation cephalosporin, cefotetan, was chosen as a model; this antibiotic is a potential candidate for radiation treatment due to its thermosensitivity. While the ESR spectra of a nonirradiated sample presents no signal, a nonsymmetrical signal, dependent on the irradiation dose, is found in irradiated samples. The number of free radicals was estimated by comparing the second integral from radiosterilized samples and a diphenylpicryl hydrazyl reference. Estimation of the number of free radicals gives 7x10 17 radicals g -1 at 20kGy (1.1x10 16 radicals in 15mg). From this result, the G-value (number of radicals (100eV) -1 ) could be estimated as 0.6. Decay of radicals upon storage were modeled using a bi-exponential function. The limit of detection of free radicals after irradiation at 25kGy is up to two years. This result agrees with those obtained on other cephalosporins. Aside from qualitative detection, ESR spectrometry can be used for dose estimation. Linear regression is applicable for doses lower than 20kGy. Since the radiation dose selected must always be based upon the bioburden of the products and the degree of sterility required (EN 552 and ANSI/AAMI/ISO 11137), 25kGy could no longer be accepted as a 'routine' dose for sterilizing a pharmaceutical. Doses in the 5-20kGy range could be investigated and linear regression appeared to be the least expensive route to follow. The best results for the integration of the curves were obtained with

  5. Studies of electron cyclotron resonance ion source plasma physics

    International Nuclear Information System (INIS)

    Tarvainen, O.

    2005-01-01

    This thesis consists of an introduction to the plasma physics of electron cyclotron resonance ion sources (ECRIS) and a review of the results obtained by the author and co-workers including discussion of related work by others. The thesis begins with a theoretical discussion dealing with plasma physics relevant for the production of highly charged ions in ECR ion source plasmas. This is followed by an overview of different techniques, such as gas mixing and double frequency heating, that can be used to improve the performance of this type of ion source. The experimental part of the work consists of studies related to ECRIS plasma physics. The effect of the gas mixing technique on the production efficiency of different ion beams was studied with both gaseous and solid materials. It was observed that gas mixing improves the confinement of the heavier element while the confinement of the lighter element is reduced. When the effect of gas mixing on MIVOC-plasmas was studied with several mixing gases it was observed that applying this technique can reduce the inevitable carbon contamination by a significant factor. In order to understand the different plasma processes taking place in ECRIS plasmas, a series of plasma potential and emittance measurements was carried out. An instrument, which can be used to measure the plasma potential in a single measurement without disturbing the plasma, was developed for this work. Studying the plasma potential of ECR ion sources is important not only because it helps to understand different plasma processes, but also because the information can be used as an input parameter for beam transport simulations and ion source extraction design. The experiments performed have revealed clear dependencies of the plasma potential on certain source parameters such as the amount of carbon contamination accumulated on the walls of the plasma chamber during a MIVOC-run. It was also observed that gas mixing affects not only the production efficiency

  6. On the gyro resonance electron-whistler interaction in transition layers of near-earth plasma

    International Nuclear Information System (INIS)

    Erokhin, N.S.; Zol'nikova, N.N.; Mikhajlovskaya, L.A.

    1996-01-01

    Gyro resonance interaction of electrons with low amplitude triggered whistler in the transition layers of the ionospheric and magnetospheric plasma that correspond to the blurred jumps of the magnetic field and plasma concentration was studied

  7. Electron cyclotron emission measurements during 28 GHz electron cyclotron resonance heating in Wendelstein WVII-A stellarator

    International Nuclear Information System (INIS)

    Hartfuss, H.J.; Gasparino, U.; Tutter, M.; Brakel, R.; Cattanei, G.; Dorst, D.; Elsner, A.; Engelhardt, K.; Erckmann, V.; Grieger, G.; Grigull, P.; Hacker, H.; Jaeckel, H.; Jaenicke, R.; Junker, J.; Kick, M.; Kroiss, H.; Kuehner, G.; Maassberg, H.; Mahn, C.; Mueller, G.; Ohlendorf, W.; Rau, F.; Renner, H.; Ringler, H.; Sardei, F.; Weller, A.; Wobig, H.; Wuersching, E.; Zippe, M.; Kasparek, W.; Mueller, G.A.; Raeuchle, E.; Schueller, P.G.; Schwoerer, K.; Thumm, M.

    1987-11-01

    Electron cyclotron emission measurements have been carried out on electron cyclotron resonance heated plasmas in the WENDELSTEIN VII-A Stellarator. Blackbody radiation from the thermalized plasma main body as well as radiation from a small amount of weakly relativistic suprathermal electrons has been detected. In addition sideband emission has been observed near the second harmonic of the heating line source. Harmonic generation and parametric wave decay at the upper hybrid layer may be a reasonable explanation. (orig.)

  8. Observation of magnetic resonances in electron clouds in a positron storage ring

    International Nuclear Information System (INIS)

    Pivi, M.T.F.; Ng, J.S.T.; Cooper, F.; Kharakh, D.; King, F.; Kirby, R.E.; Kuekan, B.; Spencer, C.M.; Raubenheimer, T.O.; Wang, L.F.

    2010-01-01

    The first experimental observation of magnetic resonances in electron clouds is reported. The resonance was observed as a modulation in cloud intensity for uncoated as well as TiN-coated aluminum surfaces in the positron storage ring of the PEP-II collider at SLAC. Electron clouds frequently arise in accelerators of positively charged particles, and severely impact the machines' performance. The TiN coating was found to be an effective remedy, reducing the cloud intensity by three orders of magnitude.

  9. Electrically-detected electron paramagnetic resonance of point centers in 6H-SiC nanostructures

    Czech Academy of Sciences Publication Activity Database

    Bagraev, N.T.; Gets, D.S.; Kalabukhova, E.N.; Klyachkin, L.E.; Malyarenko, A.M.; Mashkov, V.A.; Savchenko, Dariia; Shanina, B.D.

    2014-01-01

    Roč. 48, č. 11 (2014), s. 1467-1480 ISSN 1063-7826 R&D Projects: GA MŠk(CZ) LM2011029 Grant - others:SAFMAT(XE) CZ.2.16/3.1.00/22132 Institutional support: RVO:68378271 Keywords : electron paramagnetic resonance * electrically- detected electron paramagnetic resonance * 6H -SiC nanostructures * nitrogen-vacancy defect * point defect Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.739, year: 2014

  10. Electronic energy transfer through non-adiabatic vibrational-electronic resonance. II. 1D spectra for a dimer

    Science.gov (United States)

    Tiwari, Vivek; Jonas, David M.

    2018-02-01

    Vibrational-electronic resonance in photosynthetic pigment-protein complexes invalidates Förster's adiabatic framework for interpreting spectra and energy transfer, thus complicating determination of how the surrounding protein affects pigment properties. This paper considers the combined effects of vibrational-electronic resonance and inhomogeneous variations in the electronic excitation energies of pigments at different sites on absorption, emission, circular dichroism, and hole-burning spectra for a non-degenerate homodimer. The non-degenerate homodimer has identical pigments in different sites that generate differences in electronic energies, with parameters loosely based on bacteriochlorophyll a pigments in the Fenna-Matthews-Olson antenna protein. To explain the intensity borrowing, the excited state vibrational-electronic eigenvectors are discussed in terms of the vibrational basis localized on the individual pigments, as well as the correlated/anti-correlated vibrational basis delocalized over both pigments. Compared to those in the isolated pigment, vibrational satellites for the correlated vibration have the same frequency and precisely a factor of 2 intensity reduction through vibrational delocalization in both absorption and emission. Vibrational satellites for anti-correlated vibrations have their relaxed emission intensity reduced by over a factor 2 through vibrational and excitonic delocalization. In absorption, anti-correlated vibrational satellites borrow excitonic intensity but can be broadened away by the combination of vibronic resonance and site inhomogeneity; in parallel, their vibronically resonant excitonic partners are also broadened away. These considerations are consistent with photosynthetic antenna hole-burning spectra, where sharp vibrational and excitonic satellites are absent. Vibrational-excitonic resonance barely alters the inhomogeneously broadened linear absorption, emission, and circular dichroism spectra from those for a

  11. Electronic emission and electron spin resonance of irradiated clothes: (cottons, synthetic clothes)

    International Nuclear Information System (INIS)

    El Ajouz Rima, H.

    1984-10-01

    This thesis is devoted to a new method of dosimetry applicable to accidental irradiations. It is based on the use of cotton and synthetic fabric clothes as detectors. It enables absorbed doses and body dose distributions to be estimated after an accidental irradiation. A bibliography on textile fibres used for clothing is presented in the first chapter: origin, structure, industrial treatments, effects of heat, light, ionizing radiations. In the second chapter, electronic emission generated by double stimulation (thermal and optic) is described. This phenomenon reveals changes in the surface state of cotton. Exo-emission was chosen because of its high sensitivity in dosimetry. The third chapter is devoted to the application of electron paramagnetic resonance to the dosimetry of irradiated fabrics. After a brief description of the spectrometer used, the results obtained with commercial cotton fabrics and with a special fabric realized by the Institut Textile de France are described some of these fabrics were subjected to special treatments either before or after irradiation. Synthetic fabrics (polyesters and polypropylene) have also been studied. (author)

  12. Stochastic Resonance in Electron Transfer Oscillations of Extended Viologen

    Czech Academy of Sciences Publication Activity Database

    Hromadová, Magdaléna; Valášek, Michal; Fanelli, N.; Randriamahazaka, N.; Pospíšil, Lubomír

    2014-01-01

    Roč. 118, č. 17 (2014), s. 9066-9072 ISSN 1932-7447 R&D Projects: GA ČR GA13-19213S; GA ČR(CZ) GA14-05180S Grant - others:Rada Programu interní porpory projektů mezinárodní spolupráce AV ČR M200401202 Program:M Institutional support: RVO:61388955 ; RVO:61388963 Keywords : Circuit resonance * Harmonic analysis * Magnetic resonance Subject RIV: CG - Electrochemistry Impact factor: 4.772, year: 2014

  13. On the local theory of resonant inelastic collisions of slow electrons with carbon dioxide

    International Nuclear Information System (INIS)

    Kazansky, A.K.; Sergeeva, L.Yu.

    1994-01-01

    A method of calculating the cross sections of inelastic vibronic transitions in collisions of slow electrons with polyatomic molecules in the framework of the local theory (the 'boomerang' model) is proposed. The method is based on the study of the time evolution of the initial vibronic wavefunction; the evolution is governed by the (complex valued) Hamiltonian of the intermediate anion state. The method has been applied to the consideration of inelastic electron collisions with the CO 2 molecule in the two-mode approximation (symmetrical stretching and bending). The results obtained demonstrate the importance of the two-mode description for the system which can undergo the Renner transition. (Author)

  14. Electron cloud density measurements in accelerator beam-pipe using resonant microwave excitation

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, John P., E-mail: jps13@cornell.edu [CLASSE, Cornell University, Ithaca, NY 14853 (United States); Carlson, Benjamin T. [Carnegie Mellon University, Pittsburgh, PA 15213 (United States); Duggins, Danielle O. [Gordon College, Wenham, MA 01984 (United States); Hammond, Kenneth C. [Columbia University, New York, NY 10027 (United States); De Santis, Stefano [LBNL, Berkeley, CA 94720 (United States); Tencate, Alister J. [Idaho State University, Pocatello, ID 83209 (United States)

    2014-08-01

    An accelerator beam can generate low energy electrons in the beam-pipe, generally called electron cloud, that can produce instabilities in a positively charged beam. One method of measuring the electron cloud density is by coupling microwaves into and out of the beam-pipe and observing the response of the microwaves to the presence of the electron cloud. In the original technique, microwaves are transmitted through a section of beam-pipe and a change in EC density produces a change in the phase of the transmitted signal. This paper describes a variation on this technique in which the beam-pipe is resonantly excited with microwaves and the electron cloud density calculated from the change that it produces in the resonant frequency of the beam-pipe. The resonant technique has the advantage that measurements can be localized to sections of beam-pipe that are a meter or less in length with a greatly improved signal to noise ratio.

  15. Electron paramagnetic resonance study on n-type electron-irradiated 3C-SiC

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson, P; Rabia, K; Son, N T; Janzen, E [Department of Physics, Chemistry and Biology, Linkoeping University, SE-581 83 Linkoeping (Sweden); Ohshima, T; Morishita, N; Itoh, H [Japan Atomic Energy Research Institute, Takasaki 370-1292 (Japan); Isoya, J [University of Tsukuba, Tsukuba 305-8550 (Japan)], E-mail: paca@ifm.liu.se

    2008-03-15

    Electron Paramagnetic Resonance (EPR) was used to study defects in n-type 3C-SiC films irradiated by 3-MeV electrons at room temperature with a dose of 2x10{sup 18} cm{sup -2}. After electron irradiation, two new EPR spectra with an effective spin S = 1, labeled L5 and L6, were observed. The L5 center has C{sub 3v} symmetry with g = 2.004 and a fine-structure parameter D = 436.5x10{sup -4} cm{sup -1}. The L5 spectrum was only detected under light illumination and it could not be detected after annealing at {approx}550{sup 0}C. The principal z-axis of the D tensor is parallel to the <111>-directions, indicating the location of spins along the Si-C bonds. Judging from the symmetry and the fact that the signal was detected under illumination in n-type material, the L5 center may be related to the divacancy in the neutral charge state. The L6 center has a C{sub 2v}-symmetry with an isotropic g-value of g = 2.003 and the fine structure parameters D = 547.7x10{sup -4} cm{sup -1} and E = 56.2x10{sup -4} cm{sup -1}. The L6 center disappeared after annealing at a rather low temperature ({approx}200 deg. C), which is substantially lower than the known annealing temperatures for vacancy-related defects in 3C-SiC. This highly mobile defect may be related to carbon interstitials.

  16. Monte Carlo simulation of electron behavior in an electron cyclotron resonance microwave discharge sustained by circular TM11 mode fields

    International Nuclear Information System (INIS)

    Kuo, S.C.; Kuo, S.P.

    1996-01-01

    Electron behavior in an electron cyclotron resonance microwave discharge sustained by TM 11 mode fields of a cylindrical waveguide has been investigated via a Monte Carlo simulation. The time averaged, spatially dependent electron energy distribution is computed self-consistently. At low pressures (∼0.5 mTorr), the temperature of the tail portion of the electron energy distribution exceeds 40 eV, and the sheath potential is about -250 V. These results, which are about twice as high as the previous results for TM 01 mode fields [S. C. Kuo, E. E. Kunhardt, and S. P. Kuo, J. Appl. Phys. 73, 4197 (1993)], suggest that TM 11 mode fields have a stronger electron cyclotron resonance effect than TM 01 mode fields in a cylindrical waveguide. copyright 1996 American Institute of Physics

  17. Probing microhydration effect on the electronic structure of the GFP chromophore anion: Photoelectron spectroscopy and theoretical investigations

    Energy Technology Data Exchange (ETDEWEB)

    Bhaskaran-Nair, Kiran; Shelton, William A. [Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803 (United States); Center for Computation and Technology, Louisiana State University, Baton Rouge, Louisiana 70803 (United States); Valiev, Marat; Kowalski, Karol, E-mail: karol.kowalski@pnnl.gov [William R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, K8-91, P.O. Box 999, Richland, Washington 99352 (United States); Deng, S. H. M.; Wang, Xue-Bin, E-mail: xuebin.wang@pnnl.gov [Physical Sciences Division, Pacific Northwest National Laboratory, K8-88, P.O. Box 999, Richland, Washington 99352 (United States)

    2015-12-14

    The photophysics of the Green Fluorescent Protein (GFP) chromophore is critically dependent on its local structure and on its environment. Despite extensive experimental and computational studies, there remain many open questions regarding the key fundamental variables that govern this process. One outstanding problem is the role of autoionization as a possible relaxation pathway of the excited state under different environmental conditions. This issue is considered in our work through combined experimental and theoretical studies of microsolvated clusters of the deprotonated p-hydroxybenzylidene-2,3-dimethylimidazolinone anion (HBDI{sup −}), an analog of the GFP chromophore. Through selective generation of microsolvated structures of predetermined size and subsequent analysis of experimental photoelectron spectra by high level ab initio methods, we are able to precisely identify the structure of the system, establish the accuracy of theoretical data, and provide reliable description of auto-ionization process as a function of hydrogen-bonding environment. Our study clearly illustrates the first few water molecules progressively stabilize the excited state of the chromophore anion against the autodetached neutral state, which should be an important trait for crystallographic water molecules in GFPs that has not been fully explored to date.

  18. Effect of Structure on Charge Distribution in the Isatin Anions in Aprotic Environment: Spectral Study

    Directory of Open Access Journals (Sweden)

    Pavol Tisovský

    2017-11-01

    Full Text Available Five isatin anions were prepared by deprotonation of initial isatins in aprotic solvents using basic fluoride and acetate anions (F− and CH3COO−. The F− basicity is sufficient to deprotonate isatin NH hydrogen from all the studied compounds. This process is reversible. In the presence of proton donor solvents, the anions form the corresponding isatins. The isatin hydrogen acidity depends on the overall structure of the isatin derivatives. The anions were characterized by ultraviolet–visible (UV–Vis, Fourier transform infrared (FTIR and nuclear magnetic resonance (NMR spectroscopy. Interestingly, the anions form aggregates at concentrations above 10−3 mol·dm−3. Further, the effect of cations on the UV–Vis spectra of the studied anions was studied. Charge transfer and its distribution in the anion depends on the radius and the cation electron configuration. The alkali metal cations, tetrabutylammonium (TBA+, Mg2+ and Ag+, interact with the C-2 carbonyl oxygen of the isatin anion. The interaction has a coulombic character. On the other hand, Cd2+, Zn2+, Hg2+, Co2+, and Cu+ cations form a coordinate bond with the isatin nitrogen.

  19. Electron beam asymmetry measurements from exclusive pi0 electroproduction in the Delta(1232) resonance region

    Energy Technology Data Exchange (ETDEWEB)

    K. Joo

    2003-05-01

    The polarized longitudinal-transverse structure function sigma_LT'in the p(e,e'p)pi^0 reaction has been measured for the first time in the Delta(1232) resonance region for invariant mass W = 1.1 - 1.3 GeV and at four-momentum transfer Q^2 = 0.40 and 0.65 GeV^2. Data were taken at the Thomas Jefferson National Accelerator Facility with the CEBAF Large Acceptance Spectrometer (CLAS) using longitudinally polarized electrons at an energy of 1.515 GeV. This newly measured sigma_LT' provides new and unique information on the interference between resonant and non-resonant amplitudes in the Delta(1232) resonance region. The comparison to recent phenomenological calculations shows sensitivity to the description of non-resonant amplitudes and higher resonances.

  20. Phase transitions in trajectories of a superconducting single-electron transistor coupled to a resonator.

    Science.gov (United States)

    Genway, Sam; Garrahan, Juan P; Lesanovsky, Igor; Armour, Andrew D

    2012-05-01

    Recent progress in the study of dynamical phase transitions has been made with a large-deviation approach to study trajectories of stochastic jumps using a thermodynamic formalism. We study this method applied to an open quantum system consisting of a superconducting single-electron transistor, near the Josephson quasiparticle resonance, coupled to a resonator. We find that the dynamical behavior shown in rare trajectories can be rich even when the mean dynamical activity is small, and thus the formalism gives insights into the form of fluctuations. The structure of the dynamical phase diagram found from the quantum-jump trajectories of the resonator is studied, and we see that sharp transitions in the dynamical activity may be related to the appearance and disappearance of bistabilities in the state of the resonator as system parameters are changed. We also demonstrate that for a fast resonator, the trajectories of quasiparticles are similar to the resonator trajectories.

  1. Characterization of an anion antisite defect as a deep double donor in InP

    International Nuclear Information System (INIS)

    Ando, K.; Katsui, A.; Jeon, D.Y.; Watkins, G.D.; Gislason, H.P.

    1989-01-01

    A study of optically detected magnetic resonance (ODMR) on the anion antisite defect in electron irradiated InP has been made by monitoring the magnetic circular dichroism (MCD), combined with DLTS experiment. Comparison of the ODMR and DLTS results reveals that the intrinsic anion antisite defect acts as a deep double-donor in the gap. The first ionization (D o /D 1+ ) process occurs both in thermal and optical excitation as a mid-gap electron trap, detected by DLTS and DLOS experiment. (author) 12 refs., 6 figs

  2. Mulliken-Hush elucidation of the encounter (precursor) complex in intermolecular electron transfer via self-exchange of tetracyanoethylene anion-radical

    International Nuclear Information System (INIS)

    Rosokha, S.V.; Newton, M.D.; Head-Gordon, M.; Kochi, J.K.

    2006-01-01

    The paramagnetic [1:1] encounter complex (TCNE) 2 -dot is established as the important precursor in the kinetics and mechanism of electron-transfer for the self-exchange between tetracyanoethylene acceptor (TCNE) and its radical-anion as the donor. Spectroscopic observation of the dimeric complex (TCNE) 2 -dot by its intervalence absorption band at the solvent-dependent wavelength of λ IV ∼1500nm facilitates the application of Mulliken-Hush theory which reveals the significant electronic interaction extant between the pair of cofacial TCNE moieties with the sizable coupling of H DA =1000cm -1 . The transient existence of such an encounter complex provides the critical link in the electron-transfer kinetics by lowering the classical Marcus reorganization barrier by the amount of H DA in this strongly adiabatic system. Ab initio quantum-mechanical methods as applied to independent theoretical computations of both the reorganization energy (λ) and the electronic coupling element (H DA ) confirm the essential correctness of the Mulliken-Hush formalism for fast electron transfer via strongly coupled donor/acceptor encounter complexes

  3. Broadening of Plasmonic Resonance Due to Electron Collisions with Nanoparticle Boundary: а Quantum Mechanical Consideration

    DEFF Research Database (Denmark)

    Uskov, Alexander; Protsenko, Igor E.; Mortensen, N. Asger

    2014-01-01

    We present a quantum mechanical approach to calculate broadening of plasmonic resonances in metallic nanostructures due to collisions of electrons with the surface of the structure. The approach is applicable if the characteristic size of the structure is much larger than the de Broglie electron...

  4. Ultrafast electron field emission from gold resonant antennas studied by two terahertz pulse experiments

    DEFF Research Database (Denmark)

    Iwaszczuk, Krzysztof; Zalkovskij, Maksim; Strikwerda, Andrew C.

    2015-01-01

    Summary form only given. Ultrafast electron field emission from gold resonant antennas induced by strong terahertz (THz) transient is investigated using two THz pulse experiments. It is shown that UV emission from nitrogen plasma generated by liberated electrons is a good indication of the local...

  5. Profile modification and hot electron temperature from resonant absorption at modest intensity

    International Nuclear Information System (INIS)

    Albritton, J.R.; Langdon, A.B.

    1980-01-01

    Resonant absorption is investigated in expanding plasmas. The momentum deposition associated with the ejection of hot electrons toward low density via wavebreaking readily exceeds that of the incident laser radiation and results in significant modification of the density profile at critical. New scaling of hot electron temperature with laser and plasma parameters is presented

  6. Measurement of single electron and nuclear spin states based on optically detected magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Berman, Gennady P [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Bishop, Alan R [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Chernobrod, Boris M [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Hawley, Marilyn E [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Brown, Geoffrey W [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Tsifrinovich, Vladimir I [Polytechnic University, Brooklyn, NY 11201 (United States)

    2006-05-15

    A novel approach for measurement of single electron and nuclear spin states is suggested. Our approach is based on optically detected magnetic resonance in a nano-probe located at the apex of an AFM tip. The method provides single electron spin sensitivity with nano-scale spatial resolution.

  7. Measurement of single electron and nuclear spin states based on optically detected magnetic resonance

    International Nuclear Information System (INIS)

    Berman, Gennady P; Bishop, Alan R; Chernobrod, Boris M; Hawley, Marilyn E; Brown, Geoffrey W; Tsifrinovich, Vladimir I

    2006-01-01

    A novel approach for measurement of single electron and nuclear spin states is suggested. Our approach is based on optically detected magnetic resonance in a nano-probe located at the apex of an AFM tip. The method provides single electron spin sensitivity with nano-scale spatial resolution

  8. Adiabatic theory of nonlinear electron cyclotron resonance heating

    International Nuclear Information System (INIS)

    Kotel'nikov, I.A.; Stupakov, G.V.

    1989-01-01

    Plasma heating at electron frequency by an ordinary wave propagating at right angle to unidirectional magnetic field is treated. Injected microwave power is assumed to be so large that relativistic change of electron gyrofrequency during one flight thorugh the wave beam is much greater than inverse time of flight. The electron motion in the wave field is described using Hamiltonian formalism in adiabatic approximation. It is shown that energy coupling from the wave to electrons is due to a bifurcation of electron trajectory which results in a jumpm of the adiabatic invariant. The probability of bifurcational transition from one trajectory to another is calculated analytically and is used for the estimation of the beam power absorbed in plasma. 6 refs.; 2 figs

  9. Mode converter for electron cyclotron resonance heating of toroidal plasmas

    International Nuclear Information System (INIS)

    Motley, R.W.; Hsuan, H.; Glanz, J.

    1980-09-01

    A method is proposed for improving the efficiency of cyclotron resonance heating of a toroidal plasma by ordinary mode radiation from the outside of the torus. Radiation not absorbed in the first pass is reflected from the inside of the torus by a corrugated surface which rotates the polarization by 90 0 , so that a secondary source of extraordinary waves is created in the high field, accessible region of the plasma

  10. Dissociative resonance electron capture in methylmercaptane and methylmercaptane-d3

    International Nuclear Information System (INIS)

    Sugiura, Toshio; Arakawa, Kazuo.

    1975-01-01

    The formation of negative ions by electron impact of methylmercaptane and methylmercaptane-3 3 has been investigated as a function of the electron energy. Appearance potentials, energies of resonance peaks, full widths of half maxima in resonance peak and relative formation cross sections have been determined about the negative ions of H - , D - , CH 3 S - , CD 3 S - , SH - , S - , CH 2 - , CD 2 - , Ch - and CD - . The dissociation energy of S-H bond and an electron affinity of CH 3 S radical have been determined as 4.7 +- 0.1 and 3.18 +- 0.2 eV, respectively. (auth.)

  11. Electron emission induced by resonant coherent ion-surface interaction at grazing incidence

    International Nuclear Information System (INIS)

    Garcia de Abajo, F.J.; Ponce, V.H.; Echenique, P.M.

    1992-01-01

    A new spectroscopy based on the resonant coherently induced electron loss to the continuum in ion-surface scattering under grazing incidence is proposed. A series of peaks, corresponding to the energy differences determined by the resonant interaction with the rows of atoms in the surface, is predicted to appear in the energy distribution of electrons emitted from electronic states bound to the probe. Calculations for MeV He + ions scattered at a W(001) surface along the left-angle 100 right-angle direction with a glancing angle of 0--2 mrad show a total yield close to 1

  12. Surface plasmon enhanced interfacial electron transfer and resonance Raman, surface-enhanced resonance Raman studies of cytochrome C mutants

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Junwei [Iowa State Univ., Ames, IA (United States)

    1999-11-08

    Surface plasmon resonance was utilized to enhance the electron transfer at silver/solution interfaces. Photoelectrochemical reductions of nitrite, nitrate, and CO2 were studied on electrochemically roughened silver electrode surfaces. The dependence of the photocurrent on photon energy, applied potential and concentration of nitrite demonstrates that the photoelectrochemical reduction proceeds via photoemission process followed by the capture of hydrated electrons. The excitation of plasmon resonances in nanosized metal structures resulted in the enhancement of the photoemission process. In the case of photoelectrocatalytic reduction of CO2, large photoelectrocatalytic effect for the reduction of CO2 was observed in the presence of surface adsorbed methylviologen, which functions as a mediator for the photoexcited electron transfer from silver metal to CO2 in solution. Photoinduced reduction of microperoxidase-11 adsorbed on roughened silver electrode was also observed and attributed to the direct photoejection of free electrons of silver metal. Surface plasmon assisted electron transfer at nanostructured silver particle surfaces was further determined by EPR method.

  13. Theoretical study of X⁻ · 1 · YF (1 = triazine, X = Cl, Br and I, Y = H, Cl, Br, I, PH₂ and AsH₂): noncovalently electron-withdrawing effects on anion-arene interactions.

    Science.gov (United States)

    Chen, Yishan; Yao, Lifeng

    2014-01-01

    The ternary complexes X(-) · 1 · YF (1 = triazine, X = Cl, Br and I, Y = H, Cl, Br, I, PH2 and AsH2) have been investigated by MP2 calculations to understand the noncovalently electron-withdrawing effects on anion-arene interactions. The results indicate that in binary complexes (1 · X(-)), both weak σ-type and anion-π complexes can be formed for Cl(-) and Br(-), but only anion-π complex can be formed for I(-). Moreover, the hydrogen-bonding complex is the global minimum for all three halides in binary complexes. However, in ternary complexes, anion-π complex become unstable and only σ complex can retain in many cases for Cl(-) and Br(-). Anion-π complex keeps stable only when YF = HF. In contrast with binary complexes, σ complex become the global minimum for Cl(-) and Br(-) in ternary complexes. These changes in binding mode and strength are consistent with the results of covalently electron-withdrawing effects. However, in contrast with the covalently electron-withdrawing substituents, Cl(-) and Br(-) can attack the aromatic carbon atom to form a strong σ complex when the noncovalently electron-withdrawing effect is induced by halogen bonding. The binding behavior for I(-) is different from that for Cl(-) and Br(-) in two aspects. First, the anion-π complex for I(-) can also keep stable when the noncovalent interaction is halogen bonding. Second, the anion-π complex for I(-) is the global minimum when it can retain as a stable structure.

  14. Model of charge-state distributions for electron cyclotron resonance ion source plasmas

    Directory of Open Access Journals (Sweden)

    D. H. Edgell

    1999-12-01

    Full Text Available A computer model for the ion charge-state distribution (CSD in an electron cyclotron resonance ion source (ECRIS plasma is presented that incorporates non-Maxwellian distribution functions, multiple atomic species, and ion confinement due to the ambipolar potential well that arises from confinement of the electron cyclotron resonance (ECR heated electrons. Atomic processes incorporated into the model include multiple ionization and multiple charge exchange with rate coefficients calculated for non-Maxwellian electron distributions. The electron distribution function is calculated using a Fokker-Planck code with an ECR heating term. This eliminates the electron temperature as an arbitrary user input. The model produces results that are a good match to CSD data from the ANL-ECRII ECRIS. Extending the model to 1D axial will also allow the model to determine the plasma and electrostatic potential profiles, further eliminating arbitrary user input to the model.

  15. Electron cyclotron resonance heating in a short cylindrical plasma ...

    Indian Academy of Sciences (India)

    The power mode conversion efficiency is estimated to be ... has also found application in electron cyclotron current drive (ECCD) in fusion ... (few GHz) of microwave sources, a small linear ECR plasma system can also serve ..... References.

  16. Flexible structured high-frequency film bulk acoustic resonator for flexible wireless electronics

    International Nuclear Information System (INIS)

    Zhou, Changjian; Shu, Yi; Yang, Yi; Ren, Tian-Ling; Jin, Hao; Dong, Shu-Rong; Chan, Mansun

    2015-01-01

    Flexible electronics have inspired many novel and very important applications in recent years and various flexible electronic devices such as diodes, transistors, circuits, sensors, and radiofrequency (RF) passive devices including antennas and inductors have been reported. However, the lack of a high-performance RF resonator is one of the key bottlenecks to implement flexible wireless electronics. In this study, for the first time, a novel ultra-flexible structured film bulk acoustic resonator (FBAR) is proposed. The flexible FBAR is fabricated on a flexible polyimide substrate using piezoelectric thin film aluminum nitride (AlN) for acoustic wave excitation. Both the shear wave and longitudinal wave can be excited under the surface interdigital electrodes configuration we proposed. In the case of the thickness extension mode, a flexible resonator with a working frequency as high as of 5.2325 GHz has been realized. The resonators stay fully functional under bending status and after repeated bending and re-flattening operations. This flexible high-frequency resonator will serve as a key building block for the future flexible wireless electronics, greatly expanding the application scope of flexible electronics. (paper)

  17. A photoelectron imaging and quantum chemistry study of the deprotonated indole anion.

    Science.gov (United States)

    Parkes, Michael A; Crellin, Jonathan; Henley, Alice; Fielding, Helen H

    2018-05-29

    Indole is an important molecular motif in many biological molecules and exists in its deprotonated anionic form in the cyan fluorescent protein, an analogue of green fluorescent protein. However, the electronic structure of the deprotonated indole anion has been relatively unexplored. Here, we use a combination of anion photoelectron velocity-map imaging measurements and quantum chemistry calculations to probe the electronic structure of the deprotonated indole anion. We report vertical detachment energies (VDEs) of 2.45 ± 0.05 eV and 3.20 ± 0.05 eV, respectively. The value for D0 is in agreement with recent high-resolution measurements whereas the value for D1 is a new measurement. We find that the first electronically excited singlet state of the anion, S1(ππ*), lies above the VDE and has shape resonance character with respect to the D0 detachment continuum and Feshbach resonance character with respect to the D1 continuum.

  18. Observation of electrons from the 1P0 resonance of D-

    International Nuclear Information System (INIS)

    Duncan, M.M.; Menendez, M.G.

    1989-01-01

    We have measured the electron energy spectra near 0 0 produced in collisions of D - with Ar. Using a 400-keV D - beam and with good experimental energy and angular resolution we have found structure in the ejected electron energy spectra which is due to the decay of the 1 P 0 shape resonance. The doubly differential cross sections (DDCS's) have been measured as a function of angle and it was found that this structure disappeared for laboratory angles greater than 1 0 as expected. A resonance contribution to the DDCS's was extracted at θ/sub L/ = 0 0 , transformed to the projectile frame, and fit with a Breit-Wigner shape. Our resonant energy is in reasonable agreement with other experiments. We also find a small asymmetry in the two resonant structures in the laboratory measurements at θ/sub L/ = 0 0

  19. Optical Analysis of Grazing Incidence Ring Resonators for Free-Electron Lasers

    Science.gov (United States)

    Gabardi, David Richard

    1990-08-01

    The design of resonators for free-electron lasers (FELs) which are to operate in the soft x-ray/vacuum ultraviolet (XUV) region of the spectrum is complicated by the fact that, in this wavelength regime, normal incidence mirrors, which would otherwise be used for the construction of the resonators, generally have insufficient reflectivities for this purpose. However, the use of grazing incidence mirrors in XUV resonators offers the possibility of (1) providing sufficient reflectivity, (2) a lessening of the mirrors' thermal loads due to the projection of the laser beam onto an oblique surface, and (3) the preservation of the FEL's tunability. In this work, the behavior of resonators employing grazing incidence mirrors in ring type configurations is explored. In particular, two designs, each utilizing four off-axis conic mirrors and a number of flats, are examined. In order to specify the location, orientation, and surface parameters for the mirrors in these resonators, a design algorithm has been developed based upon the properties of Gaussian beam propagation. Two computer simulation methods are used to perform a vacuum stability analysis of the two resonator designs. The first method uses paraxial ray trace techniques with the resonators' thin lens analogues while the second uses the diffraction-based computer simulation code GLAD (General Laser Analysis and Design). The effects of mirror tilts and deviations in the mirror surface parameters are investigated for a number of resonators designed to propagate laser beams of various Rayleigh ranges. It will be shown that resonator stability decreases as the laser wavelength for which the resonator was designed is made smaller. In addition, resonator stability will also be seen to decrease as the amount of magnification the laser beam receives as it travels around the resonator is increased.

  20. Dosimetry of ionizing radiations by Electron paramagnetic resonance; Dosimetria de radiaciones ionizantes por resonancia paramagnetica electronica

    Energy Technology Data Exchange (ETDEWEB)

    Azorin N, J [UAM-I, Av. San Rafael Atlixco 186, 09340 Mexico D.F. (Mexico)

    2005-07-01

    In this work, some historical and theoretical aspects about the Electron Paramagnetic Resonance (EPR), its characteristics, the resonance detection, the paramagnetic species, the radiation effects on inorganic and organic materials, the diagrams of the instrumentation for the EPR detection, the performance of an EPR spectrometer, the coherence among EPR and dosimetry and, practical applications as well as in the food science there are presented. (Author)

  1. Three-wave interaction during electron cyclotron resonance heating and current drive

    DEFF Research Database (Denmark)

    Nielsen, Stefan Kragh; Jacobsen, Asger Schou; Hansen, Søren Kjer

    2016-01-01

    Non-linear wave-wave interactions in fusion plasmas, such as the parametric decay instability (PDI) of gyrotron radiation, can potentially hamper the use of microwave diagnostics. Here we report on anomalous scattering in the ASDEX Upgrade tokamak during electron cyclotron resonance heating...... experiments. The observations can be linked to parametric decay of the gyrotron radiation at the second harmonic upper hybrid resonance layer....

  2. Resonance tunneling electron-vibrational spectroscopy of polyoxometalates.

    Science.gov (United States)

    Dalidchik, F I; Kovalevskii, S A; Balashov, E M

    2017-05-21

    The tunneling spectra of the ordered monolayer films of decamolybdodicobaltate (DMDC) compounds deposited from aqueous solutions on HOPG were measured by scanning tunnel microscopy in air. The DMDC spectra, as well as the tunneling spectra of other polyoxometalates (POMs), exhibit well-defined negative differential resistances (NDRs). The mechanism of formation of these spectral features was established from the collection of revealed NDR dependences on the external varying parameters and found to be common to all systems exhibiting Wannier-Stark localization. A model of biresonance tunneling was developed to provide an explanation for the totality of experimental data, both the literature and original, on the tunneling POM probing. A variant of the tunneling electron-vibrational POM spectroscopy was proposed allowing the determination of the three basic energy parameters-energy gaps between the occupied and unoccupied states, frequencies of the vibrational transitions accompanying biresonance electron-tunneling processes, and electron-vibrational interaction constants on the monomolecular level.

  3. Theoretical and experimental study of the electron distribution function in the plasma of an electron cyclotron resonance ion source

    International Nuclear Information System (INIS)

    Girard, A.; Perret, C.; Bourg, F.; Khodja, H.; Melin, G.; Lecot, C.

    1997-01-01

    Electron Cyclotron Resonance Ion Sources (ECRIS) are mirror machines which can deliver important fluxes of Highly Charged Ions (HCI). These performances are strongly correlated with hot electrons sustained by an RF wave. This paper presents an analysis of the EDF in an ECR source. In the first part of the paper a one-dimensional Fokker-Planck code for the Electron Distribution Function is presented: this code includes a quasilinear diffusion operator for the RF wave, a collision term and a source term due to electron impact ionization. The present status of this code is presented. In the second part of the paper experiments related to the measurement of the EDF are presented: electron density, diamagnetism, electron endloss current have been measured at the Quadrumafios ECRIS. With these results it is possible to give a precise description of the EDF. (author)

  4. Nuclear-excited Feshbach resonances in the electron scattering from hydrogen halides

    International Nuclear Information System (INIS)

    Knoth, G.; Gote, M.; Radle, M.; Jung, K.; Ehrhardt, H.

    1989-01-01

    The energy dependences of the differential cross sections for the electron impact excitation of the higher vibrational levels (v=2 and v=3) of HF and HCl have been measured. Besides the threshold peak a resonance structure has been observed in the v=3 excitation functions of HF below the cusp structure at the opening of the v=4 channel. This resonance structure is the first experimental proof for the existence of the nuclear-excited Feshbach resonances which are interpreted to be the origin of the threshold peaks in the vibrational excitation channels

  5. Banded Structures in Electron Pitch Angle Diffusion Coefficients from Resonant Wave Particle Interactions

    Science.gov (United States)

    Tripathi, A. K.; Singhal, R. P.; Khazanov, G. V.; Avanov, L. A.

    2016-01-01

    Electron pitch angle (D (alpha)) and momentum (D(pp)) diffusion coefficients have been calculated due to resonant interactions with electrostatic electron cyclotron harmonic (ECH) and whistler mode chorus waves. Calculations have been performed at two spatial locations L = 4.6 and 6.8 for electron energies 10 keV. Landau (n = 0) resonance and cyclotron harmonic resonances n = +/-1, +/-2,...+/-5 have been included in the calculations. It is found that diffusion coefficient versus pitch angle (alpha) profiles show large dips and oscillations or banded structures. The structures are more pronounced for ECH and lower band chorus (LBC) and particularly at location 4.6. Calculations of diffusion coefficients have also been performed for individual resonances. It is noticed that the main contribution of ECH waves in pitch angle diffusion coefficient is due to resonances n = +1 and n = +2. A major contribution to momentum diffusion coefficients appears from n = +2. However, the banded structures in D alpha and Dpp coefficients appear only in the profile of diffusion coefficients for n = +2. The contribution of other resonances to diffusion coefficients is found to be, in general, quite small or even negligible. For LBC and upper band chorus waves, the banded structures appear only in Landau resonance. The Dpp diffusion coefficient for ECH waves is one to two orders smaller than D alpha coefficients. For chorus waves, Dpp coefficients are about an order of magnitude smaller than D alpha coefficients for the case n does not = 0. In case of Landau resonance, the values of Dpp coefficient are generally larger than the values of D alpha coefficients particularly at lower energies. As an aid to the interpretation of results, we have also determined the resonant frequencies. For ECH waves, resonant frequencies have been estimated for wave normal angle 89 deg and harmonic resonances n = +1, +2, and +3, whereas for whistler mode waves, the frequencies have been calculated for angle

  6. Banded Structures in Electron Pitch Angle Diffusion Coefficients from Resonant Wave-Particle Interactions

    Science.gov (United States)

    Tripathi, A. K.; Singhal, R. P.; Khazanov, G. V.; Avanov, L. A.

    2016-01-01

    Electron pitch angle (D(sub (alpha alpha))) and momentum (D(sub pp)) diffusion coefficients have been calculated due to resonant interactions with electrostatic electron cyclotron harmonic (ECH) and whistler mode chorus waves. Calculations have been performed at two spatial locations L=4.6 and 6.8 for electron energies less than or equal to 10 keV. Landau (n=0) resonance and cyclotron harmonic resonances n= +/- 1, +/-2, ... +/-5 have been included in the calculations. It is found that diffusion coefficient versus pitch angle (alpha) profiles show large dips and oscillations or banded structures. The structures are more pronounced for ECH and lower band chorus (LBC) and particularly at location 4.6. Calculations of diffusion coefficients have also been performed for individual resonances. It is noticed that the main contribution of ECH waves in pitch angle diffusion coefficient is due to resonances n=+1 and n=+2. A major contribution to momentum diffusion coefficients appears from n=+2. However, the banded structures in D(sub alpha alpha) and D(sub pp) coefficients appear only in the profile of diffusion coefficients for n=+2. The contribution of other resonances to diffusion coefficients is found to be, in general, quite small or even negligible. For LBC and upper band chorus waves, the banded structures appear only in Landau resonance. The D(sub pp) diffusion coefficient for ECH waves is one to two orders smaller than D(sub alpha alpha) coefficients. For chorus waves, D(sub pp) coefficients are about an order of magnitude smaller than D(sub alpha alpha) coefficients for the case n does not equal 0. In case of Landau resonance, the values of D(sub pp) coefficient are generally larger than the values of D(sub alpha alpha) coefficients particularly at lower energies. As an aid to the interpretation of results, we have also determined the resonant frequencies. For ECH waves, resonant frequencies have been estimated for wave normal angle 89 deg and harmonic resonances

  7. Electron scattering by an atom in the field of resonant laser radiation

    International Nuclear Information System (INIS)

    Agre, M.; Rapoport, L.

    1982-01-01

    The collision of an electron with an atom in the field of intense electromagnetic radiation that is at resonance with two atomic multiplets is investigated theoretically. Expressions are obtained for the amplitudes of the elastic and inelastic scattering with emission (absorption) of photons. The case of a ground state at resonance with a doublet is considered in detail. It is shown that photon absorption takes place predominantly in the case of resonance in inelastic transitions from a state of the lower multiplet, and photon emission takes place in transitions from a state of the upper multiplet

  8. Paramagnetic resonance and electronic conduction in organic semiconductors; Resonance paramagnetique et conduction electroniques dans les semi-conducteurs organiques

    Energy Technology Data Exchange (ETDEWEB)

    Nechtschein, M. [Commissariat a l' energie atomique et aux energies alternatives - CEA, Laboratoire de Resonance Magnetique (France)

    1963-07-01

    As some organic bodies simultaneously display semi-conducting properties and a paramagnetism, this report addresses the study of conduction in organic bodies. The author first briefly recalls how relationships between conductibility and Electron Paramagnetic Resonance (EPR) can be noticed in a specific case (mineral and metallic semiconductors). He discusses published results related to paramagnetism and conductibility in organic bodies. He reviews various categories of organic bodies in which both properties are simultaneously present. He notably addresses radical molecular crystals, non-radical molecular crystals, charge transfer complexes, pyrolyzed coals, and pseudo-ferromagnetic organic structures. He discusses the issue of relationships between conduction (charge transfer by electrons) and ERP (which reveals the existence of non-paired electrons which provide free spins)

  9. Electron paramagnetic resonance and electron-nuclear double-resonance study of Ti sup 3 sup + centres in KTiOPO sub 4

    CERN Document Server

    Setzler, S D; Fernelius, N C; Scripsick, M P; Edwards, G J; Halliburton, L E

    2003-01-01

    Electron paramagnetic resonance and electron-nuclear double resonance have been used to characterize four Ti sup 3 sup + centres in undoped crystals of potassium titanyl phosphate (KTiOPO sub 4 or KTP). These 3d sup 1 defects (S = 1/2) are produced by ionizing radiation (either 60 kV x-rays or 355 nm photons from a tripled Nd:YAG laser), and form when the regular Ti sup 4 sup + ions in the crystal trap an electron. Two of these trapped-electron centres are only observed in hydrothermally grown KTP and the other two are dominant in flux-grown KTP. Both of the Ti sup 3 sup + centres in hydrothermally grown crystals have a neighbouring proton (i.e. an OH sup - molecule). In the flux-grown crystals, one of the Ti sup 3 sup + centres is adjacent to an oxygen vacancy and the other centre is tentatively attributed to a self-trapped electron (i.e. a Ti sup 3 sup + centre with no stabilizing entity nearby). The g matrix and phosphorus hyperfine matrices are determined for all four Ti sup 3 sup + centres, and the proto...

  10. Electron paramagnetic resonance and electron-nuclear double-resonance study of Ti{sup 3+} centres in KTiOPO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Setzler, S D [BAE Systems, Nashua, NH 03061 (United States); Stevens, K T [Northrop Grumman, Space Technology, Synoptics, Charlotte, NC 28273 (United States); Fernelius, N C [Air Force Research Laboratory, Materials and Manufacturing Directorate, AFRL/MLPSO, Wright-Patterson AFB, OH 45433 (United States); Scripsick, M P [Nova Phase, Newton, NJ 07860 (United States); Edwards, G J [Department of Physics, West Virginia University, Morgantown, WV 26506 (United States); Halliburton, L E [Department of Physics, West Virginia University, Morgantown, WV 26506 (United States)

    2003-06-18

    Electron paramagnetic resonance and electron-nuclear double resonance have been used to characterize four Ti{sup 3+} centres in undoped crystals of potassium titanyl phosphate (KTiOPO{sub 4} or KTP). These 3d{sup 1} defects (S = 1/2) are produced by ionizing radiation (either 60 kV x-rays or 355 nm photons from a tripled Nd:YAG laser), and form when the regular Ti{sup 4+} ions in the crystal trap an electron. Two of these trapped-electron centres are only observed in hydrothermally grown KTP and the other two are dominant in flux-grown KTP. Both of the Ti{sup 3+} centres in hydrothermally grown crystals have a neighbouring proton (i.e. an OH{sup -} molecule). In the flux-grown crystals, one of the Ti{sup 3+} centres is adjacent to an oxygen vacancy and the other centre is tentatively attributed to a self-trapped electron (i.e. a Ti{sup 3+} centre with no stabilizing entity nearby). The g matrix and phosphorus hyperfine matrices are determined for all four Ti{sup 3+} centres, and the proton hyperfine matrix is determined for the two centres associated with OH{sup -} ions. These Ti{sup 3+} centres contribute to the formation of the grey tracks often observed in KTP crystals used to generate the second harmonic of high-power, near-infrared lasers.

  11. Electron scattering from H2+: Resonances in the Π symmetries

    International Nuclear Information System (INIS)

    Collins, L.A.; Schneider, B.I.; Noble, C.J.

    1992-01-01

    We present the results of calculations for e - +H 2 + scattering in the region below the first excited state. We employ three distinct and independent methods, close-coupling linear algebraic, effective-optical-potential linear algebraic, and R matrix, to examine the collision at the highest level of sophistication and to provide a valuable check on the results of a single technique. For the 1 Π u and 3 Π u symmetries, we find strong interference effects between various autoionizing series, leading to significant variations of the resonance width with internuclear separation R. Such variations may have profound effects on such processes as photoionization, dissociation, and recombination. For the 1 Π g and 3 Π g symmetries, we observe monotonic behavior of the width with R and find no evidence of strong interference effects or rapid changes

  12. Ca2+ and Mg2+-enhanced reduction of arsenazo III to its anion free radical metabolite and generation of superoxide anion by an outer mitochondrial membrane azoreductase.

    Science.gov (United States)

    Moreno, S N; Mason, R P; Docampo, R

    1984-12-10

    At the concentrations usually employed as a Ca2+ indicator, arsenazo III underwent a one-electron reduction by rat liver mitochondria to produce an azo anion radical as demonstrated by electron-spin resonance spectroscopy. Either NADH or NADPH could serve as a source of reducing equivalents for the production of this free radical by intact rat liver mitochondria. Under aerobic conditions, addition of arsenazo III to rat liver mitochondria produced an increase in electron flow from NAD(P)H to molecular oxygen, generating superoxide anion. NAD(P)H generated from endogenous mitochondrial NAD(P)+ by intramitochondrial reactions could not be used for the NAD(P)H azoreductase reaction unless the mitochondria were solubilized by detergent or anaerobiosis. In addition, NAD(P)H azoreductase activity was higher in the crude outer mitochondrial membrane fraction than in mitoplasts and intact mitochondria. The steady-state concentration of the azo anion radical and the arsenazo III-stimulated cyanide-insensitive oxygen consumption were enhanced by calcium and magnesium, suggesting that, in addition to an enhanced azo anion radical-stabilization by complexation with the metal ions, enhanced reduction of arsenazo III also occurred. Accordingly, addition of cations to crude outer mitochondrial membrane preparations increased arsenazo III-stimulated cyanide-insensitive O2 consumption, H2O2 formation, and NAD(P)H oxidation. Antipyrylazo III was much less effective than arsenazo III in increasing superoxide anion formation by rat liver mitochondria and gave a much weaker electron spin resonance spectrum of an azo anion radical. These results provide direct evidence of an azoreductase activity associated with the outer mitochondrial membrane and of a stimulation of arsenazo III reduction by cations.

  13. Dissociative electron attachment to vibrationally excited H2 molecules involving the 2Σg+ resonant Rydberg electronic state

    International Nuclear Information System (INIS)

    Celiberto, R.; Janev, R.K.; Wadehra, J.M.; Tennyson, J.

    2012-01-01

    Graphical abstract: Dissociative electron attachment cross sections as a function of the incident electron energy and for the initial vibration levels v i = 0–5, 10 of the H 2 molecule. Highlights: ► We calculated electron–hydrogen dissociative attachment cross sections and rates coefficients. ► Collision processes occurring through a resonant Rydberg state are considered. ► Cross sections and rates were obtained for vibrationally excited hydrogen molecules. ► The cross sections exhibit pronounced oscillatory structures. ► A comparison with the process involving the electron–hydrogen resonant ground state is discussed. - Abstract: Dissociative electron attachment cross sections (DEA) on vibrationally excited H 2 molecule taking place via the 2 Σ g + Rydberg-excited resonant state are studied using the local complex potential (LCP) model for resonant collisions. The cross sections are calculated for all initial vibrational levels (v i = 0–14) of the neutral molecule. In contrast to the previously noted dramatic increase in the DEA cross sections with increasing v i , when the process proceeds via the X 2 Σ u + shape resonance of H 2 , for the 2 Σ g + Rydberg resonance the cross sections increase only gradually up to v i = 3 and then decrease. Moreover, the cross sections for v i ⩾ 6 exhibit pronounced oscillatory structures. A discussion of the origin of the observed behavior of calculated cross sections is given. The DEA rate coefficients for all v i levels are also calculated in the 0.5–1000 eV temperature range.

  14. An efficient digital phase sensitive detector for use in electron spin resonance spectroscopy

    International Nuclear Information System (INIS)

    Vistnes, A.I; Wormald, D.I.; Isachsen, S.

    1983-10-01

    A digital sensitive detector for a modified Bruker electron spin resonance spectrometer, equipped with an Aspect 2000 minicomputer, is described. Magnetic field modulation is derived from a clock in the computer, which makes it possible to perform the data acquisition fully synchronously with the modulation. The resulting high phase accuracy makes it possible to compress the data to a single modulation period before the Fourier transformation. Both the in-phase and the phase-quadrature signals (of the first or second harmonic) are recorded simultaneously. The system makes the data processing, including the Fourier transformation, approximately 1000 times faster than previously reported digital phase sensitive detector systems for electron spin resonance spectrometers

  15. Attenuation of spin resonance signals in media with the multi-component system of collectivized electrons

    International Nuclear Information System (INIS)

    Vojtenko, V.A.

    1995-01-01

    Universal relaxation theory of spectral line form at electron scattering light with spin flip at scattering of neutrons and at electron paramagnetic resonance, is plotted. Signals of spin resonances are shown to be subjected to strong attenuation caused by mutual transformations of various current carriers in multicomponent spin systems contained in intermetallic actinides with heavy fermions, in HTSC-crystals, in indirect highly alloyed semiconductors, solid solutions and superlattices. Physical reasons of observation of light strong scattering with spin flip in intermetallic actinides with semi-width independent of the wave vector are discussed. 19 refs

  16. Resonant Ion Pair Formation in Electron Collisions with Ground State Molecular Ions

    International Nuclear Information System (INIS)

    Zong, W.; Dunn, G.H.; Djuric, N.; Greene, C.H.; Neau, A.; Zong, W.; Larsson, M.; Al-Khalili, A.; Neau, A.; Derkatch, A.M.; Vikor, L.; Shi, W.; Rosen, S.; Le Padellec, A.; Danared, H.; Ugglas, M. af

    1999-01-01

    Resonant ion pair formation from collisions of electrons with ground state diatomic molecular ions has been observed and absolute cross sections measured. The cross section for HD + is characterized by an abrupt threshold at 1.9thinspthinspeV and 14 resolved peaks in the range of energies 0≤E≤14 eV . The dominant mechanism responsible for the structures appears to be resonant capture and stabilization, modified by two-channel quantum interference. Data on HF + show structure correlated with photoionization of HF and with dissociative recombination of electrons with this ion. copyright 1999 The American Physical Society

  17. Investigations of a new nanostructured Si-material by spectral response and electron paramagnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Kuznicki, Z.T.; Ley, M. [Laboratoire PHASE, CNRS UPR 292, 23 rue du Loess, F-67037 Strasbourg cedex 2 (France); Turek, P.; Bernard, M. [Institut Charles Sadron, CNRS UPR 22, 6 rue Boussingault, F-67083 Strasbourg cedex (France)

    2002-08-01

    Electron spin resonance (or electron paramagnetic resonance) was applied to analyze multi-interface solar cells with an active amorphized substructure inserted in the emitter. The nanostructure was realized by P ion implantation followed by an adequate thermal treatment to yield very sharp a-Si/c-Si heterointerfaces. The authors have investigated especially the substructure and the transition zones between the two Si phases, which is particularly interesting because of the stress induced by the density difference of the two Si phases. (Abstract Copyright[2002], Wiley Periodicals, Inc.)

  18. Resonant tunneling and persistent current of a non-interacting and weakly interacting one-dimensional electron gas

    International Nuclear Information System (INIS)

    Krive, I.V.; Sandstroem, P.

    1997-01-01

    The persistent current for a one-dimensional ring with two tunneling barriers is considered in the limit of weakly interacting electrons. In addition to small off-resonance current, there are two kinds of resonant behaviour; (i) a current independent of the barrier transparency (true resonance) and (ii) a current analogous to the one for a ring with only single barrier (''semi''-resonance). For a given barrier transparency the realization of this or that type of resonant behaviour depends both on the geometrical factor (the ratio of interbarrier distance to a ring circumference) and on the strength of electron-electron interaction. It is shown that repulsive interaction favours the ''semi''-resonance behaviour. For a small barrier transparency the ''semi''-resonance peaks are easily washed out by temperature whereas the true resonance peaks survive. (author). 22 refs, 2 figs

  19. Electron paramagnetic resonance of the ns1 centers in crystals

    International Nuclear Information System (INIS)

    Nistor, S.V.; Ursu, I.

    1993-05-01

    The results of the EPR studies concerning the paramagnetic centers with ns 1 (N=n>2) outer electronic configuration contained in crystals are reviewed. Such centers, with 2 S 1/2 ground state, are produced by electron trapping at impurities of the IB and IIB group or by hole trapping at impurities of the IIIB and IV group of elements. The production and structural properties of such centers consisting of ns 1 ions (atoms) at various sites in the crystal lattice with different configurations of neighbouring defects are discussed in connection with their EPR characteristics. Tables containing the spin Hamiltonian parameters of all ns 1 centers reported in the literature until the end of year 1992 are given. (author). 146 refs, 14 tabs

  20. Electron-cyclotron resonance heating and current drive

    International Nuclear Information System (INIS)

    Filone, I.

    1992-01-01

    A brief summary of the theory and experiments on electron-cyclotron heating and current drive is presented. the general relativistic formulation of wave propagation and linear absorption is considered in some detail. The O-mode and the X-mode for normal and oblique propagation are investigated and illustrated by several examples. The experimental verification of the theory in T-10 and D-III-D is briefly discussed. Quasilinear evolution of the momentum distribution and related applications as, for instance, non linear wave damping and current drive, are also considered for special cases of wave frequencies, polarization and propagation. In the concluding section we present the general formulation of the wave damping and current drive in the absence of electron trapping for arbitrary values of the wave frequency. (author) 8 fig. 13 ref

  1. Superlattice structure of Ce{sup 3+}-doped BaMgF{sub 4} fluoride crystals - x-ray diffraction, electron spin-resonance, and optical investigations

    Energy Technology Data Exchange (ETDEWEB)

    Yamaga, M.; Hattori, K. [Department of Electrical and Electronic Engineering, Faculty of Engineering, Gifu University, Gifu (Japan); Kodama, N. [Department of Materials Science and Engineering, Faculty of Engineering and Resource Science, Akita University, Akita (Japan); Ishizawa, N. [Materials and Structures Laboratory, Tokyo Institute of Technology, Yokohama (Japan); Honda, M. [Faculty of Science, Naruto University of Education, Naruto (Japan); Shimamura, K.; Fukuda, T. [Institute for Materials Research, Tohoku University, Sendai (Japan)

    2001-09-14

    The x-ray diffraction patterns for Ce{sup 3+}-doped BaMgF{sub 4} (BMF) crystals suggest the existence of superlattice structure. The superlattice model is consistent with the characterization of the 4f{sup 1} ground state of Ce{sup 3+} as a probe ion using the electron spin-resonance (ESR) technique. The distinct Ce{sup 3+} luminescence spectra with different peak energies and lifetimes also support the superlattice model. Although the detailed superlattice structure could not be analysed using the diffraction spots, a model has been proposed, taking into account the eight Ce{sup 3+} polyhedra with different anion coordinations in the unit cell of the BMF crystal obtained from the ESR experiments. (author)

  2. The influence of microscopic disorder on electron paramagnetic resonance spectra of Eu2+ ions in Pb1-xGexTe

    International Nuclear Information System (INIS)

    Radzynski, T; Lusakowski, A; Swiatek, K; Story, T

    2009-01-01

    In mixed crystals, because of the different ionic radii of cations or anions and the randomness in the placement of ions of different kinds, the crystal lattice is locally deformed. Such local deformations have significant influence on the ground state splitting of magnetic ions. Because this ground state splitting is responsible for the position of the electron paramagnetic resonance (EPR) lines, microscopic disorder is one of the factors which lead to the broadening of the lines, and eventually to their disappearance. This paper is devoted to semi-quantitative analysis of the influence of microscopic disorder on EPR spectra. The theory is compared against measurements performed on mono-crystalline Pb 1-x Ge x Te epitaxial layers containing Eu 2+ ions for different germanium and europium contents. With increasing germanium content we observe gradual disappearance of the EPR lines, although macroscopically, on the basis of x-ray diffraction analysis, each layer might have been considered as a perfect crystal.

  3. Positron annihilation and electron spin resonance studies of defects in electron-irradiated 3C-SiC

    International Nuclear Information System (INIS)

    Itoh, Hisayoshi; Yoshikawa, Masahito; Tanigawa, Shoichiro; Nashiyama, Isamu; Misawa, Shunji; Okumura, Hajime; Yoshida, Sadafumi.

    1992-01-01

    Defects induced by 1 MeV electron-irradiation in cubic silicon carbide (3C-SiC) epitaxially grown by chemical vapor deposition have been studied with positron annihilation and electron spin resonance (ESR). Doppler broadened energy spectra of annihilation γ-rays obtained by using variable-energy positron beams showed the formation of vacancy-type defects in 3C-SiC by the electron-irradiation. An ESR spectrum labeled Tl, which has an isotropic g-value of 2.0029 ± 0.001, was observed in electron-irradiated 3C-SiC. The Tl spectrum is interpreted by hyperfine interactions of paramagnetic electrons with 13 C at four carbon sites and 29 Si at twelve silicon sites, indicating that the Tl center arises from a point defect at a silicon site. Both the results can be accounted for by the introduction of isolated Si vacancies by the irradiation. (author)

  4. Study of loading by beam of dual-resonator structure of linear electron accelerator

    International Nuclear Information System (INIS)

    Milovanov, O.S.; Smirnov, I.A.

    1988-01-01

    Loading by the beam of the accelerating structure of an Argus dual-resonator linear electron accelerator with a kinetic energy of ∼ 1 MeV and a pulsed beam current of up to 0.5 A is studied experimentally. It is shown that the conditions for stable single-frequency operation of the magnetron are disrupted and the acceleration process is cut off at certain electron-beam currents. Experimental curves of the maximum beam current and maximum electron efficiency of the Argus linear electron accelerator as functions of rf power are given

  5. Electron spin resonance studies of gamma irradiated saccharides. Etudes par resonance paramagnetique electronique de saccharides soumis a un rayonnement gamma

    Energy Technology Data Exchange (ETDEWEB)

    Raffi, J.; Thiery, C.; Battesti, C.; Agnel, J.P.; Triolet, J.; Vincent, P. (CEA Centre d' Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Physiologie Vegetale et Ecosystemes)

    1993-04-01

    The radiolysis mechanism of several saccharides was studied in order to understand the radiolysis mechanism of starches. Electron Spin Resonance first performed in powder state did not allow determination of the chemical structure of the induced radicals. The spin-trapping method combined with HPLC however, followed by ESR spectra analysis with the 'Voyons' simulation program was applied to the study of glucose, glucose oligomers and disaccharides. We were thus able to further our understanding of the radiolysis mechanism of starches. 2 tabs., 4 figs.

  6. The Strength of Chaos: Accurate Simulation of Resonant Electron Scattering by Many-Electron Ions and Atoms in the Presence of Quantum Chaos

    Science.gov (United States)

    2017-01-20

    AFRL-AFOSR-JP-TR-2017-0012 The Strength of Chaos : accurate simulation of resonant electron scattering by many-electron ions and atoms in the presence...of quantum chaos Igor Bray CURTIN UNIVERSITY OF TECHNOLOGY Final Report 01/20/2017 DISTRIBUTION A: Distribution approved for public release. AF...SUBTITLE The Strength of Chaos : accurate simulation of resonant electron scattering by many- electron ions and atoms in the presence of quantum chaos

  7. Detection of single electron spin resonance in a double quantum dota)

    Science.gov (United States)

    Koppens, F. H. L.; Buizert, C.; Vink, I. T.; Nowack, K. C.; Meunier, T.; Kouwenhoven, L. P.; Vandersypen, L. M. K.

    2007-04-01

    Spin-dependent transport measurements through a double quantum dot are a valuable tool for detecting both the coherent evolution of the spin state of a single electron, as well as the hybridization of two-electron spin states. In this article, we discuss a model that describes the transport cycle in this regime, including the effects of an oscillating magnetic field (causing electron spin resonance) and the effective nuclear fields on the spin states in the two dots. We numerically calculate the current flow due to the induced spin flips via electron spin resonance, and we study the detector efficiency for a range of parameters. The experimental data are compared with the model and we find a reasonable agreement.

  8. Electron paramagnetic resonance study on the ionizing radiation induced defects of the tooth enamel hydroxyapatite

    International Nuclear Information System (INIS)

    Oliveira, Liana Macedo de

    1995-01-01

    Hydroxyapatite is the main constituent of calcified tissues. Defects induced by ionizing radiations in this biomineral can present high stability and then, these are used as biological markers in radiological accidents, irradiated food identifying and geological and archaeological dating. In this work, paramagnetic centers induced on the enamel of the teeth by environmental ionizing radiation, are investigated by electron paramagnetic resonance (EPR). Decay thermal kinetic presents high complexity and shows the formation of different electron ligation energy centers and structures

  9. Spin degrees of freedom in electron nucleon scattering in the resonance region

    International Nuclear Information System (INIS)

    Burkert, V.D.

    1987-01-01

    Some aspects of using polarized electrons and/or polarized targets in electron-nucleon scattering experiments are discussed. Polarization measurements can be used to extend the knowledge of nucleon form-factor measurements to higher Q 2 and are indispensable for a model-independent extraction of the helicity amplitudes of exclusive meson production. Measurements of polarization asymmetries may also help in revealing the excitation of weaker resonances

  10. The electron spin resonance study of heavily nitrogen doped 6H SiC crystals

    Czech Academy of Sciences Publication Activity Database

    Savchenko, Dariia

    2015-01-01

    Roč. 117, č. 4 (2015), "045708-1"-"045708-6" ISSN 0021-8979 R&D Projects: GA ČR GP13-06697P; GA MŠk(CZ) LM2011029 Grant - others:SAFMAT(XE) CZ.2.16/3.1.00/22132 Institutional support: RVO:68378271 Keywords : electron spin resonance * conduction electrons * 6H SiC * insulator-metal transition Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.101, year: 2015

  11. Giant magnetic quadrupole resonance studied with 180 deg. electron scattering

    CERN Document Server

    Neumann-Cosel, P V

    1999-01-01

    The nuclei sup 4 sup 8 Ca and sup 9 sup 0 Zr were investigated in 180 deg. high-resolution inelastic electron scattering for momentum transfers q approx =0.35-0.8 fm sup - sup 1. Complete M2 strength distributions could be extracted in both nuclei up to excitation energies of about 15 MeV utilizing a fluctuation analysis technique. Second-RPA calculations successfully describe the experimentally observed strong fragmentation of the M2 mode. The quenching of the spin part is found to be comparable to the M1 case, contrary to previous claims suggesting a stronger reduction. A quantitative reproduction of the data requires the presence of appreciable orbital strength which can be interpreted as a torsional elastic vibration (the so-called twist mode).

  12. Electron cloud density analysis using microwave cavity resonance

    International Nuclear Information System (INIS)

    Shin, Y-M; Thangaraj, J C; Tan, C-Y; Zwaska, R

    2013-01-01

    We report on a method to detect an electron cloud in proton accelerators through the measurement of the phase shift of microwaves undergoing controlled reflections with an accelerator vacuum vessel. Previous phase shift measurement suffered from interference signals due to uncontrolled reflections from beamline components, leading to an unlocalized region of measurement and indeterminate normalization. The method in this paper introduces controlled reflectors about the area of interest to localize the measurement and allow normalization. This paper describes analyses of the method via theoretical calculations, electromagnetic modeling, and experimental measurements with a bench-top prototype. Dielectric thickness, location and spatial profile were varied and the effect on phase shift is described. The effect of end cap aperture length on phase shift measurement is also reported. A factor of ten enhancement in phase shift is observed at certain frequencies.

  13. Results of RIKEN superconducting electron cyclotron resonance ion source with 28 GHz.

    Science.gov (United States)

    Higurashi, Y; Ohnishi, J; Nakagawa, T; Haba, H; Tamura, M; Aihara, T; Fujimaki, M; Komiyama, M; Uchiyama, A; Kamigaito, O

    2012-02-01

    We measured the beam intensity of highly charged heavy ions and x-ray heat load for RIKEN superconducting electron cyclotron resonance ion source with 28 GHz microwaves under the various conditions. The beam intensity of Xe(20+) became maximum at B(min) ∼ 0.65 T, which was ∼65% of the magnetic field strength of electron cyclotron resonance (B(ECR)) for 28 GHz microwaves. We observed that the heat load of x-ray increased with decreasing gas pressure and field gradient at resonance zone. It seems that the beam intensity of highly charged heavy ions with 28 GHz is higher than that with 18 GHz at same RF power.

  14. Conductance oscillation in graphene-nanoribbon-based electronic Fabry-Perot resonators

    International Nuclear Information System (INIS)

    Zhang Yong; Han Mei; Shen Linjiang

    2010-01-01

    By using the tight-binding approximation and the Green's function method, the quantum conductance of the Fabry-Perot-like electronic resonators composed of zigzag and metallic armchair edge graphene nanoribbons (GNRs) was studied numerically. Obtained results show that due to Fabry-Perot-like electronic interference, the conductance of the GNR resonators oscillates periodically with the Fermi energy. The effects of disorders and coupling between the electrodes and the GNR on conductance oscillations were explored. It is found that the conductance oscillations appear at the strong coupling and become resonant peaks as the coupling is very weak. It is also found that the strong disorders in the GNR can smear the conductance oscillation periods. In other words, the weak coupling and the strong disorders all can blur the conductance oscillations, making them unclearly distinguished.

  15. Giant resonance phenomena in the electron impact ionization of heavy atoms and ions

    International Nuclear Information System (INIS)

    Younger, S.M.

    1986-01-01

    Heavy atoms and ions offer an interesting opportunity to study atomic physics in a region where the atomic structure is dominated by the interelectronic interactions. One illustration of this is the profound term dependence of atomic orbitals for certain configurations of heavy atoms and ions. The appearance of giant scattering resonances in the cross sections for ionization of heavy atoms by electron impact is a manifestation of resonance behavior. Such resonant structures arise from the double well nature of the scattering potential and have recently been identified in the cross sections for the electron impact ionization of several xenon-like ions. The results of calculations showing effects for a variety of other ions are summarized. 7 refs., 4 figs

  16. Parent state swapping of resonances in electron-hydrogen molecule scattering

    International Nuclear Information System (INIS)

    Stibbe, D.T.

    1997-01-01

    Ab initio R-matrix scattering calculations are presented for electron-H 2 as a function of H 2 bond length. It is found that 2 Σ u + and 2Π u resonances in the 10 eV region appear to be associated with multiple 'parent' target states and that the resonances can swap parents as a function of internuclear separation. It is shown how these phenomena provide an explanation for the inconsistencies in previous assignments of resonances in this region and other anomalies such as pronounced isotopic effects. It is suggested that this parent swapping behaviour is likely to be a common feature of electron-impact excitation of other molecules and is particularly important for any models that include nuclear motion. (author)

  17. Quantum chemical study of the geometrical and electronic structures of ScSi{sub 3}{sup −/0} clusters and assignment of the anion photoelectron spectra

    Energy Technology Data Exchange (ETDEWEB)

    Tran, Quoc Tri; Tran, Van Tan, E-mail: tvtan@dthu.edu.vn [Theoretical and Physical Chemistry Division, Dong Thap University, 783-Pham Huu Lau, Cao Lanh City, Ward 6, Dong Thap (Viet Nam)

    2016-06-07

    The geometrical and electronic structures of ScSi{sub 3}{sup −/0} clusters have been studied with the B3LYP, CCSD(T), and CASPT2 methods. The ground state of the anionic cluster was evaluated to be the {sup 1}A{sub 1} of rhombic η{sup 2}-(Si{sub 3})Sc{sup −} isomer, whereas that of the neutral cluster was computed to be the {sup 2}A{sub 1} of the same isomer. All features in the 266 and 193 nm photoelectron spectra of ScSi{sub 3}{sup −} cluster were interpreted by the one- and two-electron detachments from the {sup 1}A{sub 1} of rhombic η{sup 2}-(Si{sub 3})Sc{sup −} isomer. The Franck-Condon factor simulation results show that the first broad band starting at 1.78 eV in the spectra comprises several vibrational progression peaks of two totally symmetric modes with the corresponding frequencies of 296 and 354 cm{sup −1}.

  18. Anion dynamics in the first 10 milliseconds of an argon-acetylene radio-frequency plasma

    International Nuclear Information System (INIS)

    Van de Wetering, F M J H; Beckers, J; Kroesen, G M W

    2012-01-01

    The time evolution of the smallest anions (C 2 H - and H 2 CC - ), just after plasma ignition, is studied by means of microwave cavity resonance spectroscopy (MCRS) in concert with laser-induced photodetachment under varying gas pressure and temperature in an argon-acetylene radio-frequency (13.56 MHz) plasma. These anions act as an initiator for spontaneous dust particle formation in these plasmas. With an intense 355 nm Nd:YAG laser pulse directed through the discharge, electrons are detached only from these anions present in the laser path. This results in a sudden increase in the electron density in the plasma, which can accurately and with sub-microsecond time resolution be measured with MCRS. By adjusting the time after plasma ignition at which the laser is fired through the discharge, the time evolution of the anion density can be studied. We have operated in the linear regime: the photodetachment signal is proportional to the laser intensity. This allowed us to study the trends of the photodetachment signal as a function of the operational parameters of the plasma. The density of the smallest anions steadily increases in the first few milliseconds after plasma ignition, after which it reaches a steady state. While keeping the gas density constant, increasing the gas temperature in the range 30-120 °C limits the number of smallest anions and saturates at a temperature of about 90 °C. A reaction pathway is proposed to explain the observed trends.

  19. Application of electron spin resonance for evaluation of the level of ...

    Indian Academy of Sciences (India)

    Abstract. In order to identify and quantify free radicals in the tissues of patients with normal physiological and pathological states of births, we developed a method to evaluate the amount of free radicals in myometrium of subplacental area and from body of uterus, using electron spin resonance spectroscopy. Analysis of the ...

  20. Status of the PHOENIX electron cyclotron resonance charge breeder at ISOLDE, CERN.

    Science.gov (United States)

    Barton, Charles; Cederkall, Joakim; Delahaye, Pierre; Kester, Oliver; Lamy, Thierry; Marie-Jeanne, Mélanie

    2008-02-01

    We report here on the last progresses made with the PHOENIX electron cyclotron resonance charge breeder test bench at ISOLDE. Recently, an experiment was performed to test the trapping of (61)Fe daughter nuclides from the decay of (61)Mn nuclides. Preliminary results are given.

  1. Nuclear magnetic resonance studies of the binding of nitroaromatic electron acceptors to lecithin

    International Nuclear Information System (INIS)

    Sidorowicz, A.

    1980-01-01

    It was found from the chemical shifts measurements of carbon-13 and proton resonances, that the phosphate group of lecithin forms charge-transfer complex with 2,4,6-trinitrophenol, but not with s-trinitrobenzene. The conclusion is, that hydrogen bond formed between phenolic OH proton and phosphate group of lecithin facilitates electron transfer process. (orig.)

  2. A point of view about identification of irradiated foods by electron spin resonance

    International Nuclear Information System (INIS)

    Saint-Lebe, L.; Raffi, J.

    1986-11-01

    Principles and conditions required for using electron spin resonance (ESR) in identifying irradiated foods are first put forth. After a literature review, examples of irradiated cereals and French prunes are described in order to derive general conclusions concerning the future of ESR in this field

  3. Resonance effects in projectile-electron loss in relativistic collisions with excited atoms

    International Nuclear Information System (INIS)

    Voitkiv, A B

    2005-01-01

    The theory of electron loss from projectile-ions in relativistic ion-atom collisions is extended to the case of collisions with excited atoms. The main feature of such collisions is a resonance which can emerge between electron transitions in the ion and atom. The resonance becomes possible due to the Doppler effect and has a well-defined impact energy threshold. In the resonance case, the ion-atom interaction is transmitted by the radiation field and the range of this interaction becomes extremely long. Because of this the presence of other atoms in the target medium and the size of the space occupied by the medium have to be taken into account and it turns out that microscopic loss cross sections may be strongly dependent on such macroscopic parameters as the target density, temperature and size. We consider both the total and differential loss cross sections and show that the resonance can have a strong impact on the angular and energy distributions of electrons emitted from the projectiles and the total number of electron loss events

  4. Techniques and mechanisms applied in electron cyclotron resonance sources for highly charged ions

    NARCIS (Netherlands)

    Drentje, AG

    Electron cyclotron resonance ion sources are delivering beams of highly charged ions for a wide range of applications in many laboratories. For more than two decades, the development of these ion sources has been to a large extent an intuitive and experimental enterprise. Much effort has been spent

  5. Contribution of electron paramagnetic resonance to the studies of hemoglobin: the nitrosylhemoglobin system

    International Nuclear Information System (INIS)

    Bemski, G.

    1995-03-01

    Since the initial work of Ingram Electron Paramagnetic Resonance contributed considerably to research in hemoglobins. Now, 40 years later some of the results of the application of EPR to nitrosyl hemoglobin (HbNO), are reviewed as an example of the diversity of information which this technique can provide are reviewed. (author). 34 refs, 7 figs

  6. Measurements of the spectral location of the structured target resonance for ultrarelativistic electrons

    NARCIS (Netherlands)

    Andersen, K.; Ketel, T.J.

    2014-01-01

    When an ultrarelativistic electron traverses two closely spaced foils, a radiation spectrum 'resonance' appears, arising from the photon formation length extending from one foil, across the gap and into the second foil. Several theoretical approaches yield quite different answers to the spectral

  7. Nuclear magnetic resonance and the question of 5F electron localization in the actinides

    International Nuclear Information System (INIS)

    Fradin, F.Y.

    1976-01-01

    Nuclear magnetic resonance results are presented for a number of NaCl-type compounds and cubic Laves-phase type compounds of uranium, neptunium, and plutonium. Special emphasis is placed on the Knight shift and spin-lattice relaxation time measurements and their interpretation in terms of localized or itinerant pictures of the 5Line integral electrons

  8. Study of the arrangement of crystallites in γ-irradiated human enamel by electron paramagnetic resonance

    International Nuclear Information System (INIS)

    Cevc, P.; Schara, M.; Ravnik, C.; Skaleric, U.

    1976-01-01

    The arrangement of tooth enamel microcrystals has been studied on CO 3 3- bound electrons by paramagnetic resonance. It was found that noncarious human maxillary central incisors have a greater degree of alignment of tooth enamel microcrystals than the carious ones. The outermost surface layer of enamel showed a greater crystallite degree of alignment than other parts

  9. Identification and Quantification of Copper Sites in Zeolites by Electron Paramagnetic Resonance Spectroscopy

    DEFF Research Database (Denmark)

    Godiksen, Anita; Vennestrøm, Peter N. R.; Rasmussen, Søren Birk

    2017-01-01

    Recent quantitative electron paramagnetic resonance spectroscopy (EPR) data on different copper species present in copper exchanged CHA zeolites are presented and put into context with the literature on other copper zeolites. Results presented herein were obtained using ex situ and in situ EPR...

  10. Electron Paramagnetic Resonance and X-ray Diffraction of Boron- and Phosphorus-Doped Nanodiamonds

    Science.gov (United States)

    Binh, Nguyen Thi Thanh; Dolmatov, V. Yu.; Lapchuk, N. M.; Shymanski, V. I.

    2017-11-01

    Powders of boron- and phosphorus-doped detonation nanodiamonds and sintered pellets of non-doped nanodiamond powders were studied using electron paramagnetic resonance and x-ray diffraction. Doping of detonation nanodiamond crystals with boron and phosphorus was demonstrated to be possible. These methods could be used to diagnose diamond nanocrystals doped during shock-wave synthesis.

  11. Status of the PHOENIX electron cyclotron resonance charge breeder at ISOLDE, CERN

    International Nuclear Information System (INIS)

    Barton, Charles; Cederkall, Joakim; Delahaye, Pierre; Kester, Oliver; Lamy, Thierry; Marie-Jeanne, Melanie

    2008-01-01

    We report here on the last progresses made with the PHOENIX electron cyclotron resonance charge breeder test bench at ISOLDE. Recently, an experiment was performed to test the trapping of 61 Fe daughter nuclides from the decay of 61 Mn nuclides. Preliminary results are given

  12. Production of accelerated electrons near an electron source in the plasma resonance region

    International Nuclear Information System (INIS)

    Fedorov, V.A.

    1989-01-01

    Conditions of generation of plasma electrons accelerated and their characteristics in the vicinity of an electron source are determined. The electron source isolated electrically with infinitely conducting surface, being in unrestricted collisionless plasma ω 0 >>ν, where ω 0 - plasma frequency of nonperturbated plasma, ν - frequency of plasma electron collisions with other plasma particles, is considered. Spherically symmetric injection of electrons, which rates are simulated by ω frequency, occurs from the source surface. When describing phenomena in the vicinity of the electron source, one proceeds from the quasihydrodynamic equation set

  13. Stochastic heating in the cyclotron resonance of electrons; Calentamiento estocastico en la resonancia ciclotronica de los electrones

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez T, C.; Hernandez A, O. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1999-07-01

    The study of the different schemes of plasma heating by radiofrequency waves is a very actual problem related with the plasma heating in different machines and the particle acceleration mechanisms. In this work, it is obtained the expression for the temporal evolution of the energy absorbed in the cyclotron resonance of electrons where it is showed the stochastic character of the energy absorption. It is obtained the stochastic criteria in a magnetic configuration of an Ecr type plasma source. (Author)

  14. Exploration on anion ordering, optical properties and electronic structure in K3WO3F3 elpasolite

    International Nuclear Information System (INIS)

    Atuchin, V.V.; Isaenko, L.I.; Kesler, V.G.; Lin, Z.S.; Molokeev, M.S.; Yelisseyev, A.P.; Zhurkov, S.A.

    2012-01-01

    Room-temperature modification of potassium oxyfluorotungstate, G2-K 3 WO 3 F 3 , has been prepared by low-temperature chemical route and single crystal growth. Wide optical transparency range of 0.3–9.4 μm and forbidden band gap E g =4.32 eV have been obtained for G2-K 3 WO 3 F 3 crystal. Meanwhile, its electronic structure has been calculated with the first-principles calculations. The good agreement between the theorectical and experimental results have been achieved. Furthermore, G2-K 3 WO 3 F 3 is predicted to possess the relatively large nonlinear optical coefficients. - Graphical abstract: Using the cm-size K 3 WO 3 F 3 crystal (left upper), the transmission spectrum (right upper) and XPS valence electronic states (left lower) were measured, agreed with the ab initio results (right lower). Highlights: ► The cm-size G2-K 3 WO 3 F 3 single crystals are obtained. ► Optical absorption edge and transmission range are defined for G2-K 3 WO 3 F 3 crystal. ► Crystal structures of all known K 3 WO 3 F 3 polymorph modifications are determined. ► Experimental electronic structure is consistent with the first-principles result. ► G2-K 3 WO 3 F 3 is predicted as a crystal with large NLO coefficients.

  15. Electron paramagnetic resonance and electron-nuclear double resonance study of the neutral copper acceptor in ZnGeP sub 2 crystals

    CERN Document Server

    Stevens, K T; Setzler, S D; Schünemann, P G; Pollak, T M

    2003-01-01

    Electron paramagnetic resonance (EPR) and electron-nuclear double resonance have been used to characterize the neutral copper acceptor in ZnGeP sub 2 crystals. The copper substitutes for zinc and behaves as a conventional acceptor (i.e. the 3d electrons do not play a dominant role). Because of a high degree of compensation from native donors, the copper acceptors in our samples were initially in the nonparamagnetic singly ionized state (Cu sub Z sub n sup -). The paramagnetic neutral state (Cu sub Z sub n sup 0) was observed when the crystals were exposed to 632.8 nm or 1064 nm laser light while being held at a temperature below 50 K. The g matrix of the neutral copper acceptor is axial g sub p sub a sub r = 2.049 and g sub p sub e sub r sub p = 2.030), with the unique principal direction parallel to the tetragonal c axis of the crystal. The hyperfine and nuclear quadrupole matrices also exhibit c-axis symmetry (A sub p sub a sub r = 87.6 MHz, A sub p sub e sub r sub p = 34.8 MHz and P = 0.87 MHz for sup 6 su...

  16. Hysteresis loops of spin-dependent electronic current in a paramagnetic resonant tunnelling diode

    International Nuclear Information System (INIS)

    Wójcik, P; Spisak, B J; Wołoszyn, M; Adamowski, J

    2012-01-01

    Nonlinear properties of the spin-dependent electronic transport through a semiconductor resonant tunnelling diode with a paramagnetic quantum well are considered. The spin-dependent Wigner–Poisson model of the electronic transport and the two-current Mott’s formula for the independent spin channels are applied to determine the current–voltage curves of the nanodevice. Two types of the electronic current hysteresis loops are found in the current–voltage characteristics for both the spin components of the electronic current. The physical interpretation of these two types of the electronic current hysteresis loops is given based on the analysis of the spin-dependent electron densities and the potential energy profiles. The differences between the current–voltage characteristics for both the spin components of the electronic current allow us to explore the changes of the spin polarization of the current for different electric fields and determine the influence of the electronic current hysteresis on the spin polarization of the current flowing through the paramagnetic resonant tunnelling diode. (paper)

  17. Computer simulations of upper-hybrid and electron cyclotron resonance heating

    International Nuclear Information System (INIS)

    Lin, A.T.; Lin, C.C.

    1983-01-01

    A 2 1/2 -dimensional relativistic electromagnetic particle code is used to investigate the dynamic behavior of electron heating around the electron cyclotron and upper-hybrid layers when an extraordinary wave is obliquely launched from the high-field side into a magnetized plasma. With a large angle of incidence most of the radiation wave energy converts into electrostatic electron Bernstein waves at the upper-hybrid layer. These mode-converted waves propagate back to the cyclotron layer and deposit their energy in the electrons through resonant interactions dominated first by the Doppler broadening and later by the relativistic mass correction. The line shape for both mechanisms has been observed in the simulations. At a later stage, the relativistic resonance effects shift the peak of the temperature profile to the high-field side. The heating ultimately causes the extraordinary wave to be substantially absorbed by the high-energy electrons. The steep temperature gradient created by the electron cyclotron heating eventually reflects a substantial part of the incident wave energy. The diamagnetic effects due to the gradient of the mode-converted Bernstein wave pressure enhance the spreading of the electron heating from the original electron cyclotron layer

  18. A nuclear magnetic resonance and electron spin resonance study on the dynamics of pentacoordinated organophosphorus compounds

    International Nuclear Information System (INIS)

    Keijzer, A.E.H. de.

    1988-01-01

    In this thesis the role of the steric and electronic effects on the fundamental dynamic behaviour of pentacoordinated phosporus compounds is further elaborated. In chapter 2 a variable temperature 13 C NMR study, performed on a series of monocyclic oxyphosphoranes, is presented. The investigations were carried out to determine the influence of the conformational transmission effect on the barriers to pseudorotation in pentacoordinated phosphorus compounds. Chapter 3 also comprises a variable temperature 13 C NMR study on pentacoordinated phosphorus compounds. In this chapter, however, an additional high-resolution 1 H NMR study on the conformational equilibria around the P-O-C-C-O fragments is included. These studies were performed in order to determine whether the enhancement of the reorganization rates around phosphorus is brought about by accelerated pseudorotation or by the involvement of hexacoordinated zwitterionic phosphorus intermediates. In chapter 4, a 31 P NMR study on the solvolysis rate of several phosphinate esters is described. This study was performed in order to determine the influence of the conformational transmission effect on the solvolysis rate of phosphate esters. A number of phosphates is examined in which, during the course of the solvolysis reaction, the conformational transmission effect is bound to be present or absent respectively. Moreover, it is discussed in which way the concept of conformational transmission induced differences in solvolysis rates can be used as a probe to examine the reactions of biologically important phosphate esters. In chapters 5 and 6 ESR studies on the influence of steric and electronic factors on phosphoranyl formation in solution, and on the intramolecular electron transfer in phosphoranyl radicals are presented. (author). 121 refs.; 33 figs.; 17 figs

  19. Probing structure, thermochemistry, electron affinity, and magnetic moment of thulium-doped silicon clusters TmSi n (n = 3-10) and their anions with density functional theory.

    Science.gov (United States)

    Huang, Xintao; Yang, Jucai

    2017-12-26

    The most stable structures and electronic properties of TmSi n (n = 3-10) clusters and their anions have been probed by using the ABCluster global search technique combined with the PBE, TPSSh, and B3LYP density functional methods. The results revealed that the most stable structures of neutral TmSi n and their anions can be regarded as substituting a Si atom of the ground state structure of Si n + 1 with a Tm atom. The reliable AEAs, VDEs and simulated PES of TmSi n (n = 3-10) are presented. Calculations of HOMO-LUMO gap revealed that introducing Tm atom to Si cluster can improve photochemical reactivity of the cluster. The NPA analyses indicated that the 4f electron of Tm atom in TmSi n (n = 3-10) and their anions do not participate in bonding. The total magnetic moments of TmSi n are mainly provided by the 4f electrons of Tm atom. The dissociation energy of Tm atom from the most stable structure of TmSi n and their anions has been calculated to examine relative stability.

  20. Observation of strongly forbidden solid effect dynamic nuclear polarization transitions via electron-electron double resonance detected NMR

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Albert A.; Corzilius, Björn; Haze, Olesya; Swager, Timothy M.; Griffin, Robert G., E-mail: rgg@mit.edu [Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2013-12-07

    We present electron paramagnetic resonance experiments for which solid effect dynamic nuclear polarization transitions were observed indirectly via polarization loss on the electron. This use of indirect observation allows characterization of the dynamic nuclear polarization (DNP) process close to the electron. Frequency profiles of the electron-detected solid effect obtained using trityl radical showed intense saturation of the electron at the usual solid effect condition, which involves a single electron and nucleus. However, higher order solid effect transitions involving two, three, or four nuclei were also observed with surprising intensity, although these transitions did not lead to bulk nuclear polarization—suggesting that higher order transitions are important primarily in the transfer of polarization to nuclei nearby the electron. Similar results were obtained for the SA-BDPA radical where strong electron-nuclear couplings produced splittings in the spectrum of the indirectly observed solid effect conditions. Observation of high order solid effect transitions supports recent studies of the solid effect, and suggests that a multi-spin solid effect mechanism may play a major role in polarization transfer via DNP.

  1. The temperature dependence of quantum spin pumping generated using electron spin resonance with three-magnon splittings

    International Nuclear Information System (INIS)

    Nakata, Kouki

    2013-01-01

    On the basis of the Schwinger–Keldysh formalism, we have closely investigated the temperature dependence of quantum spin pumping generated using electron spin resonance. We have clarified that three-magnon splittings excite non-zero modes of magnons and characterize the temperature dependence of quantum spin pumping generated using electron spin resonance. (paper)

  2. Accelerating anodic biofilms formation and electron transfer in microbial fuel cells: Role of anionic biosurfactants and mechanism.

    Science.gov (United States)

    Zhang, Yunshu; Jiang, Junqiu; Zhao, Qingliang; Gao, YunZhi; Wang, Kun; Ding, Jing; Yu, Hang; Yao, Yue

    2017-10-01

    Anodic electron transfer is the predominant electricity generation process of MFCs. To accelerate anodic biofilms formation and electron transfer, 40mg/L, 80mg/L, and 120mg/L of rhamnolipid biosurfactants were added to the anolyte, resulting in an increased abiotic capacitance from 15.12F/m 2 (control) to 16.54F/m 2 , 18.00F/m 2 , and 19.39F/m 2 , respectively. Anodic biofilm formation was facilitated after dosing 40mg/L of rhamnolipids on the 7th day after inoculation, resulting in an increased anodic biofilm coverage from 0.43% to 42.51%, and an increased maximum power density from 6.92±1.18W/m 3 to 9.93±0.88W/m 3 . Furthermore, the adsorption of rhamnolipids on the anode caused the Frumkin effect, leading to a decrease of equilibrium potential from -0.43V to -0.56V, and an increase of exchange current density from 5.09×10 -3 A/m 2 to 8.72×10 -3 A/m 2 . However, electron transfer was blocked when the rhamnolipid concentration was further increased to 80mg/L, and 120mg/L. Analysis of the anodic bacterial communities revealed that rhamnolipids facilitated the enrichment of exoelectrogen, increasing the total proportion from 65% to 81%. Additionally, biosurfactants were found to have significant impacts on the composition of exoelectrogens. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Influence of the shear flow on electron cyclotron resonance plasma confinement in an axisymmetric magnetic mirror trap of the electron cyclotron resonance ion source

    International Nuclear Information System (INIS)

    Izotov, I. V.; Razin, S. V.; Sidorov, A. V.; Skalyga, V. A.; Zorin, V. G.; Bagryansky, P. A.; Beklemishev, A. D.; Prikhodko, V. V.

    2012-01-01

    Influence of shear flows of the dense plasma created under conditions of the electron cyclotron resonance (ECR) gas breakdown on the plasma confinement in the axisymmetric mirror trap (''vortex'' confinement) was studied experimentally and theoretically. A limiter with bias potential was set inside the mirror trap for plasma rotation. The limiter construction and the optimal value of the potential were chosen according to the results of the preliminary theoretical analysis. This method of ''vortex'' confinement realization in an axisymmetric mirror trap for non-equilibrium heavy-ion plasmas seems to be promising for creation of ECR multicharged ion sources with high magnetic fields, more than 1 T.

  4. Influence of the shear flow on electron cyclotron resonance plasma confinement in an axisymmetric magnetic mirror trap of the electron cyclotron resonance ion source.

    Science.gov (United States)

    Izotov, I V; Razin, S V; Sidorov, A V; Skalyga, V A; Zorin, V G; Bagryansky, P A; Beklemishev, A D; Prikhodko, V V

    2012-02-01

    Influence of shear flows of the dense plasma created under conditions of the electron cyclotron resonance (ECR) gas breakdown on the plasma confinement in the axisymmetric mirror trap ("vortex" confinement) was studied experimentally and theoretically. A limiter with bias potential was set inside the mirror trap for plasma rotation. The limiter construction and the optimal value of the potential were chosen according to the results of the preliminary theoretical analysis. This method of "vortex" confinement realization in an axisymmetric mirror trap for non-equilibrium heavy-ion plasmas seems to be promising for creation of ECR multicharged ion sources with high magnetic fields, more than 1 T.

  5. Suppression of cyclotron instability in Electron Cyclotron Resonance ion sources by two-frequency heating

    International Nuclear Information System (INIS)

    Skalyga, V.; Izotov, I.; Mansfeld, D.; Kalvas, T.; Koivisto, H.; Komppula, J.; Kronholm, R.; Laulainen, J.; Tarvainen, O.

    2015-01-01

    Multiple frequency heating is one of the most effective techniques to improve the performance of Electron Cyclotron Resonance (ECR) ion sources. The method increases the beam current and average charge state of the extracted ions and enhances the temporal stability of the ion beams. It is demonstrated in this paper that the stabilizing effect of two-frequency heating is connected with the suppression of electron cyclotron instability. Experimental data show that the interaction between the secondary microwave radiation and the hot electron component of ECR ion source plasmas plays a crucial role in mitigation of the instabilities

  6. Results on the interaction of an intense bunched electron beam with resonant cavities at 35 GHz

    CERN Document Server

    Gardelle, J; Rullier, J L; Vermare, C; Wuensch, Walter; Lidia, S M; Westenskow, G A; Donohue, J T; Meurdesoif, Y; Lekston, J M; MacKay, W W

    1999-01-01

    The Two-Beam Accelerator (TBA) concept is currently being investigated both at Lawrence Berkeley National Laboratory (LBNL) and at CERN. As part of this program, a 7 MeV, 1-kA electron beam produced by the PIVAIR accelerator at CESTA has been used to power a free electron laser (FEL) amplifier at 35 GHz. At the FEL exit, the bunched electron beam is transported and focused into a resonant cavity built by the CLIC group at CERN. The power and frequency of the microwave output generated when the bunched beam traverses two different cavities are measured. (7 refs).

  7. Dry cleaning of fluorocarbon residues by low-power electron cyclotron resonance hydrogen plasma

    CERN Document Server

    Lim, S H; Yuh, H K; Yoon Eui Joon; Lee, S I

    1988-01-01

    A low-power ( 50 W) electron cyclotron resonance hydrogen plasma cleaning process was demonstrated for the removal of fluorocarbon residue layers formed by reactive ion etching of silicon dioxide. The absence of residue layers was confirmed by in-situ reflection high energy electron diffraction and cross-sectional high resolution transmission electron microscopy. The ECR hydrogen plasma cleaning was applied to contact cleaning of a contact string structure, resulting in comparable contact resistance arising during by a conventional contact cleaning procedure. Ion-assisted chemical reaction involving reactive atomic hydrogen species generated in the plasma is attributed for the removal of fluorocarbon residue layers.

  8. The Quadrumafios electron cyclotron resonance ion source: presentation and analysis of the results

    International Nuclear Information System (INIS)

    Girard, A.; Briand, P.; Gaudart, G.; Klein, J.P.; Bourg, F.; Debernardi, J.; Mathonnet, J.M.; Melin, G.; Su, Y.

    1993-01-01

    The Quadrumafios electron cyclotron resonance ion source (ECRIS) has been especially designed to permit physical studies of the plasma; this paper describes the source itself (which has been operated at 10 GHz in a first step), its preliminary performances, and the different diagnostics involved, which mainly concern the electron population (ECE, X rays, diamagnetism, microwave interferometer, and electron analyser). The results are presented and discussed: there is of course a close relationship between the parameters of the plasma and the performances of the source; this point will be discussed in the article. (authors). 5 refs., 9 figs

  9. Connections between molecular photoionization and electron-molecule scattering with emphasis on shape resonances

    International Nuclear Information System (INIS)

    Dehmer, J.L.; Dill, D.

    1979-01-01

    Most of our detailed information on the spectroscopy and dynamics of the electronic continuum of molecules is based on the complementary probes - photoionization and electron scattering. Though usually studied separately, it is most useful to appreciate the connections between these two processes since our understanding of one is often the key to interpreting or even generating new results in the other. We approach this subject in two steps. First, we very briefly outline the well-established connections, e.g., the Bethe-Born theory and comparisons of isoelectronic systems. Then we focus on a point of contact - the role of shape resonances in molecular photoionization and electron-molecule scattering - for which a substantial amount of new information has become available. Specific topics include mapping of resonances from the neutral (hν + molecule) to the negative ion (e + molecule) system, angular distributions, and interaction with vibration

  10. Observation of vacuum-enhanced electron spin resonance of optically levitated nanodiamonds

    Science.gov (United States)

    Li, Tongcang; Hoang, Thai; Ahn, Jonghoon; Bang, Jaehoon

    Electron spins of diamond nitrogen-vacancy (NV) centers are important quantum resources for nanoscale sensing and quantum information. Combining such NV spin systems with levitated optomechanical resonators will provide a hybrid quantum system for many novel applications. Here we optically levitate a nanodiamond and demonstrate electron spin control of its built-in NV centers in low vacuum. We observe that the strength of electron spin resonance (ESR) is enhanced when the air pressure is reduced. To better understand this novel system, we also investigate the effects of trap power and measure the absolute internal temperature of levitated nanodiamonds with ESR after calibration of the strain effect. Our results show that optical levitation of nanodiamonds in vacuum not only can improve the mechanical quality of its oscillation, but also enhance the ESR contrast, which pave the way towards a novel levitated spin-optomechanical system for studying macroscopic quantum mechanics. The results also indicate potential applications of NV centers in gas sensing.

  11. The electronic conductance of polypyrrole (PPy molecular wires and emergence of Fano resonance phenomena

    Directory of Open Access Journals (Sweden)

    M Mardaani

    2012-06-01

    Full Text Available In this paper, we studied the electronic conductance of a polypyrrole polymer, which is embedded between two semi-infinite simple chains by using Green’s function technique in tight-binding approach. We first reduced the center polymer to a one dimensional chain with renormalized onsite and hopping energies by renormalization method. Then, we calculated the system conductivity as a function of incoming electron energy, polymer length and contact hopping terms. The results showed that by increasing polymer length and decreasing contact hopping energies, the conductance decreases in the gap regions. This means that for larger gaps, the electron tunneling happens with more difficulty. Moreover, at the resonance area, due to the existence of nitrogen atom in the polymer cyclic structure, the Fano resonance will emerge. Furthermore, the polymer can behave like a metallic chain by variation of the value of nitrogen on-site term.

  12. Photo-driven electron transfer from the highly reducing excited state of naphthalene diimide radical anion to a CO 2 reduction catalyst within a molecular triad

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Jose F. [Department of Chemistry and Argonne-Northwestern Solar Energy Research (ANSER) Center; Northwestern University; Evanston; USA; La Porte, Nathan T. [Department of Chemistry and Argonne-Northwestern Solar Energy Research (ANSER) Center; Northwestern University; Evanston; USA; Mauck, Catherine M. [Department of Chemistry and Argonne-Northwestern Solar Energy Research (ANSER) Center; Northwestern University; Evanston; USA; Wasielewski, Michael R. [Department of Chemistry and Argonne-Northwestern Solar Energy Research (ANSER) Center; Northwestern University; Evanston; USA

    2017-01-01

    The naphthalene-1,4:5,8-bis(dicarboximide) radical anion (NDI-˙), which is easily produced by mild chemical or electrochemical reduction (-0.5 Vvs.SCE), can be photoexcited at wavelengths as long as 785 nm, and has an excited state (NDI-˙*) oxidation potential of -2.1 Vvs.SCE, making it a very attractive choice for artificial photosynthetic systems that require powerful photoreductants, such as CO2 reduction catalysts. However, once an electron is transferred from NDI-˙* to an acceptor directly bound to it, a combination of strong electronic coupling and favorable free energy change frequently make the back electron transfer rapid. To mitigate this effect, we have designed a molecular triad system comprising an NDI-˙ chromophoric donor, a 9,10-diphenylanthracene (DPA) intermediate acceptor, and a Re(dmb)(CO)3carbon dioxide reduction catalyst, where dmb is 4,4'-dimethyl-2,2'-bipyridine, as the terminal acceptor. Photoexcitation of NDI-˙ to NDI-˙* is followed by ultrafast reduction of DPA to DPA-˙, which then rapidly reduces the metal complex. The overall time constant for the forward electron transfer to reduce the metal complex is τ = 20.8 ps, while the time constant for back-electron transfer is six orders of magnitude longer, τ = 43.4 μs. Achieving long-lived, highly reduced states of these metal complexes is a necessary condition for their use as catalysts. The extremely long lifetime of the reduced metal complex is attributed to careful tuning of the redox potentials of the chromophore and intermediate acceptor. The NDI-˙–DPA fragment presents many attractive features for incorporation into other photoinduced electron transfer assemblies directed at the long-lived photosensitization of difficult-to-reduce catalytic centers.

  13. Resonance effects in elastic cross sections for electron scattering on pyrimidine: Experiment and theory.

    Science.gov (United States)

    Regeta, Khrystyna; Allan, Michael; Winstead, Carl; McKoy, Vincent; Mašín, Zdeněk; Gorfinkiel, Jimena D

    2016-01-14

    We measured differential cross sections for elastic (rotationally integrated) electron scattering on pyrimidine, both as a function of angle up to 180(∘) at electron energies of 1, 5, 10, and 20 eV and as a function of electron energy in the range 0.1-14 eV. The experimental results are compared to the results of the fixed-nuclei Schwinger variational and R-matrix theoretical methods, which reproduce satisfactorily the magnitudes and shapes of the experimental cross sections. The emphasis of the present work is on recording detailed excitation functions revealing resonances in the excitation process. Resonant structures are observed at 0.2, 0.7, and 4.35 eV and calculations for different symmetries confirm their assignment as the X̃(2)A2, Ã(2)B1, and B̃(2)B1 shape resonances. As a consequence of superposition of coherent resonant amplitudes with background scattering the B̃(2)B1 shape resonance appears as a peak, a dip, or a step function in the cross sections recorded as a function of energy at different scattering angles and this effect is satisfactorily reproduced by theory. The dip and peak contributions at different scattering angles partially compensate, making the resonance nearly invisible in the integral cross section. Vibrationally integrated cross sections were also measured at 1, 5, 10 and 20 eV and the question of whether the fixed-nuclei cross sections should be compared to vibrationally elastic or vibrationally integrated cross section is discussed.

  14. Investigation of electron-atom/molecule scattering resonances: Two complex multiconfigurational self-consistent field approaches

    Energy Technology Data Exchange (ETDEWEB)

    Samanta, Kousik [Department of Chemistry, Rice University, Houston, TX 77005 (United States); Yeager, Danny L. [Department of Chemistry, Texas A and M University, College Station, TX 77843 (United States)

    2015-01-22

    Resonances are temporarily bound states which lie in the continuum part of the Hamiltonian. If the electronic coordinates of the Hamiltonian are scaled (“dilated”) by a complex parameter, η = αe{sup iθ} (α, θ real), then its complex eigenvalues represent the scattering states (resonant and non-resonant) while the eigenvalues corresponding to the bound states and the ionization and the excitation thresholds remain real and unmodified. These make the study of these transient species amenable to the bound state methods. We developed a quadratically convergent multiconfigurational self-consistent field method (MCSCF), a well-established bound-state technique, combined with a dilated Hamiltonian to investigate resonances. This is made possible by the adoption of a second quantization algebra suitable for a set of “complex conjugate biorthonormal” spin orbitals and a modified step-length constraining algorithm to control the walk on the complex energy hypersurface while searching for the stationary point using a multidimensional Newton-Raphson scheme. We present our computational results for the {sup 2}PBe{sup −} shape resonances using two different computationally efficient methods that utilize complex scaled MCSCF (i.e., CMCSCF). These two methods are to straightforwardly use CMCSCF energy differences and to obtain energy differences using an approximation to the complex multiconfigurational electron propagator. It is found that, differing from previous computational studies by others, there are actually two {sup 2}PBe{sup −} shape resonances very close in energy. In addition, N{sub 2} resonances are examined using one of these methods.

  15. Magnetic forces and localized resonances in electron transfer through quantum rings.

    Science.gov (United States)

    Poniedziałek, M R; Szafran, B

    2010-11-24

    We study the current flow through semiconductor quantum rings. In high magnetic fields the current is usually injected into the arm of the ring preferred by classical magnetic forces. However, for narrow magnetic field intervals that appear periodically on the magnetic field scale the current is injected into the other arm of the ring. We indicate that the appearance of the anomalous-non-classical-current circulation results from Fano interference involving localized resonant states. The identification of the Fano interference is based on the comparison of the solution of the scattering problem with the results of the stabilization method. The latter employs the bound-state type calculations and allows us to extract both the energy of metastable states localized within the ring and the width of resonances by analysis of the energy spectrum of a finite size system as a function of its length. The Fano resonances involving states of anomalous current circulation become extremely narrow on both the magnetic field and energy scales. This is consistent with the orientation of the Lorentz force that tends to keep the electron within the ring and thus increases the lifetime of the electron localization within the ring. Absence of periodic Fano resonances in electron transfer probability through a quantum ring containing an elastic scatterer is also explained.

  16. Electron scattering from gas phase cis-diamminedichloroplatinum(II): Quantum analysis of resonance dynamics

    Science.gov (United States)

    Carey, Ralph; Lucchese, Robert R.; Gianturco, F. A.

    2013-05-01

    We present scattering calculations of electron collisions with the platinum-containing compound cis-diamminedichloroplatinum (CDDP), commonly known as cisplatin, between 0.5 eV and 6 eV, and the corresponding isolated Pt atom from 0.1 eV to 10 eV. We find evidence of resonances in e--CDDP scattering, using an ab initio description of the target. We computed scattering matrix elements from equations incorporating exchange and polarization effects through the use of the static-exchange plus density functional correlation potential. Additionally, we made use of a purely local adiabatic model potential that allows Siegert eigenstates to be calculated, thereby allowing inspection of the possible resonant scattering wave functions. The total cross section for electron scattering from (5d10) 1S Pt displays a large magnitude, monotonic decay from the initial collision energies, with no apparent resonance scattering features in any scattering symmetry. By contrast, the e--CDDP scattering cross section shows a small feature near 3.8 eV, which results from a narrow, well localized resonance of b2 symmetry. These findings are then related to the possible electron-mediated mechanism of the action of CDDP on DNA replication as suggested by recent experiments.

  17. Electron velocity-space diffusion in a micro-unstable ECRH [electron cyclotron resonance heated] mirror plasma

    International Nuclear Information System (INIS)

    Hokin, S.A.

    1987-09-01

    An experimental study of the velocity-space diffusion of electrons in an electron cyclotron resonance heated (ECRH) mirror plasma, in the presence of micro-unstable whistler rf emission, is presented. It is found that the dominant loss mechanism for hot electrons is endloss produced by rf diffusion into the mirror loss cone. In a standard case with 4.5 kW of ECRH power, this loss limits the stored energy to 120 J with an energy confinement time of 40 ms. The energy confinement time associated with collisional scattering is 350 ms in this case. Whistler microinstability rf produces up to 25% of the rf-induced loss. The hot electron temperature is not limited by loss of adiabaticity, but by rf-induced loss of high energy electrons, and decreases with increasing rf power in strong diffusion regimes. Collisional loss is in agreement with standard scattering theory. No super-adiabatic effects are clearly seen. Experiments in which the vacuum chamber walls are lined with microwave absorber reveal that single pass absorption is limited to less than 60%, whereas experiments with reflecting walls exhibit up to 90% absorption. Stronger diffusion is seen in the latter, with a hot electron heating rate which is twice that of the absorber experiments. This increase in diffusion can be produced by two distinct aspects of wall-reflected rf: the broader spatial rf profile, which enlarges the resonant region in velocity space, or a reduction in super-adiabatic effects due to randomization of the electron gyrophase. Since no other aspects of super-adiabaticity are observed, the first mechanism appears more likely. 39 refs., 54 figs

  18. Resonances in a two-dimensional electron waveguide with a single δ-function scatterer

    International Nuclear Information System (INIS)

    Boese, Daniel; Lischka, Markus; Reichl, L. E.

    2000-01-01

    We study the conductance properties of a straight two-dimensional electron waveguide with an s-like scatterer modeled by a single δ-function potential with a finite number of modes. Even such a simple system exhibits interesting resonance phenomena. These resonances are explained in terms of quasibound states both by using a direct solution of the Schroedinger equation and by studying the Green's function of the system. Using the Green's function we calculate the survival probability as well as the power absorption, and show the influence of the quasibound states on these two quantities. (c) 2000 The American Physical Society

  19. Bio-Nano ECRIS: An electron cyclotron resonance ion source for new materials production

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, T. [Bio-Nano Electronics Research Centre, Toyo University, 2100, Kujirai, Kawagoe, Saitama 350-8585 (Japan); Minezaki, H. [Graduate School of Engineering, Toyo University, 2100, Kujirai, Kawagoe, Saitama 350-8585 (Japan); Tanaka, K.; Asaji, T. [Tateyama Machine Co., Ltd., 30 Shimonoban, Toyama, Toyama 930-1305 (Japan); Muramatsu, M.; Kitagawa, A. [National Institute of Radiological Sciences (NIRS), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Kato, Y. [Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan); Biri, S. [Institute of Nuclear Research (ATOMKI), H-4026 Debrecen, Bem Ter 18/c (Hungary); Yoshida, Y. [Bio-Nano Electronics Research Centre, Toyo University, 2100, Kujirai, Kawagoe, Saitama 350-8585 (Japan); Graduate School of Engineering, Toyo University, 2100, Kujirai, Kawagoe, Saitama 350-8585 (Japan)

    2010-02-15

    We developed an electron cyclotron resonance ion source (ECRIS) for new materials production on nanoscale. Our main target is the endohedral fullerenes, which have potential in medical care, biotechnology, and nanotechnology. In particular, iron-encapsulated fullerene can be applied as a contrast material for magnetic resonance imaging or microwave heat therapy. Thus, our new ECRIS is named the Bio-Nano ECRIS. In this article, the recent progress of the development of the Bio-Nano ECRIS is reported: (i) iron ion beam production using induction heating oven and (ii) optimization of singly charged C{sub 60} ion beam production.

  20. Tearing modes induced by perpendicular electron cyclotron resonance heating in the KSTAR tokamak

    Science.gov (United States)

    Lee, H. H.; Lee, S. G.; Seol, J.; Aydemir, A. Y.; Bae, C.; Yoo, J. W.; Na, Y. S.; Kim, H. S.; Woo, M. H.; Kim, J.; Joung, M.; You, K. I.; Park, B. H.

    2014-10-01

    This paper reports on experimental evidence that shows perpendicular electron cyclotron resonance heating (ECRH) can trigger classical tearing modes when deposited near a rational flux surface. The complex evolution of an m = 2 island is followed during current ramp-up in KSTAR plasmas, from its initial onset as the rational surface enters the ECRH resonance layer to its eventual lock on the wall after the rational surface leaves the layer. Stability analysis coupled to a transport calculation of the current profile with ECRH shows that the perpendicular ECRH may play a significant role in triggering and destabilizing classical m = 2 tearing modes, in agreement with our experimental observation.

  1. Detection by electron spin resonance of young cock irradiated with 60 Co

    International Nuclear Information System (INIS)

    Villavicencio, A.L.C.H.; Duarte, C.L.; Mastro, N.L. del.

    1992-01-01

    The Electron Spin Resonance was used to measuring the production of free radicals induced by ionizing radiation in young cock bones on doses of 3,5 and 7,0 K Gy. It was studied the design decay by 30 days after the irradiation in environment temperature. The results show that the measures by resonance in bones can be used for detecting if the flesh sample that has bone was irradiated or not. The measures show the possibility of use post-irradiation dosimetry in food producst. (C.G.C.)

  2. Resonant structure of the 3d electron's angular distribution in a free Mn+Ion

    International Nuclear Information System (INIS)

    Amusia, M.Y.; Dolmatov, V.K.

    1995-01-01

    The 3d-electron angular anisotropy parameter of the free Mn + ion is calculated using the open-quotes spin-polarizedclose quotes random-phase approximation with exchange. Strong resonance structure is discovered, which is due to interference with the powerful 3p → 3d discrete excitation. The effect of the 3p → 4s transition is also noticeable. The ordering of these respective resonances with phonon energy increase proved to be opposite in angular anisotropy parameter to that in 3d-photoionization cross section. A paper describing these results was published

  3. Experiments on resonator concept of plasma wakefield accelerator driven by a train of relativistic electron bunches

    International Nuclear Information System (INIS)

    Kiselev, V.A.; Linnik, A.F.; Mirny, V. I; Onishchenko, I.N.; Uskov, V.V.

    2008-01-01

    The experimental installation was elaborated to increase plasma wakefield amplitude by means of using plasma resonator that allows all bunches of the train to participate in wakefield build-up contrary to waveguide case, in which due to group velocity effect only a part of the bunches participates. Experiments on plasma producing with resonant density, at which a coincidence of the plasma frequency and bunch repetition frequency is provided, are carried out. The first results of the measurements of beam energy loss on plasma wakefield excitation and energy gain by accelerated electrons are presented

  4. Influence of the electron cyclotron resonance plasma confinement on reducing the bremsstrahlung production of an electron cyclotron resonance ion source with metal-dielectric structures.

    Science.gov (United States)

    Schachter, L; Stiebing, K E; Dobrescu, S

    2009-01-01

    The influence of metal-dielectric (MD) layers (MD structures) inserted into the plasma chamber of an electron cyclotron resonance ion source (ECRIS) onto the production of electron bremsstrahlung radiation has been studied in a series of dedicated experiments at the 14 GHz ECRIS of the Institut für Kernphysik der Universität Frankfurt. The IKF-ECRIS was equipped with a MD liner, covering the inner walls of the plasma chamber, and a MD electrode, covering the plasma-facing side of the extraction electrode. On the basis of similar extracted currents of highly charged ions, significantly reduced yields of bremsstrahlung radiation for the "MD source" as compared to the standard (stainless steel) source have been measured and can be explained by the significantly better plasma confinement in a MD source as compared to an "all stainless steel" ECRIS.

  5. Influence of the electron cyclotron resonance plasma confinement on reducing the bremsstrahlung production of an electron cyclotron resonance ion source with metal-dielectric structures

    International Nuclear Information System (INIS)

    Schachter, L.; Dobrescu, S.; Stiebing, K. E.

    2009-01-01

    The influence of metal-dielectric (MD) layers (MD structures) inserted into the plasma chamber of an electron cyclotron resonance ion source (ECRIS) onto the production of electron bremsstrahlung radiation has been studied in a series of dedicated experiments at the 14 GHz ECRIS of the Institut fuer Kernphysik der Universitaet Frankfurt. The IKF-ECRIS was equipped with a MD liner, covering the inner walls of the plasma chamber, and a MD electrode, covering the plasma-facing side of the extraction electrode. On the basis of similar extracted currents of highly charged ions, significantly reduced yields of bremsstrahlung radiation for the 'MD source' as compared to the standard (stainless steel) source have been measured and can be explained by the significantly better plasma confinement in a MD source as compared to an ''all stainless steel'' ECRIS.

  6. In Vivo Application of Proton-Electron Double-Resonance Imaging

    Science.gov (United States)

    Kishimoto, Shun; Krishna, Murali C.; Khramtsov, Valery V.; Utsumi, Hideo

    2018-01-01

    Abstract Significance: Proton-electron double-resonance imaging (PEDRI) employs electron paramagnetic resonance irradiation with low-field magnetic resonance imaging so that the electron spin polarization is transferred to nearby protons, resulting in higher signals. PEDRI provides information about free radical distribution and, indirectly, about the local microenvironment such as partial pressure of oxygen (pO2), tissue permeability, redox status, and acid-base balance. Recent Advances: Local acid-base balance can be imaged by exploiting the different resonance frequency of radical probes between R and RH+ forms. Redox status can also be imaged by using the loss of radical-related signal after reduction. These methods require optimized radical probes and pulse sequences. Critical Issues: High-power radio frequency irradiation is needed for optimum signal enhancement, which may be harmful to living tissue by unwanted heat deposition. Free radical probes differ depending on the purpose of PEDRI. Some probes are less effective for enhancing signal than others, which can reduce image quality. It is so far not possible to image endogenous radicals by PEDRI because low concentrations and broad line widths of the radicals lead to negligible signal enhancement. Future Directions: PEDRI has similarities with electron paramagnetic resonance imaging (EPRI) because both techniques observe the EPR signal, directly in the case of EPRI and indirectly with PEDRI. PEDRI provides information that is vital to research on homeostasis, development of diseases, or treatment responses in vivo. It is expected that the development of new EPR techniques will give insights into novel PEDRI applications and vice versa. Antioxid. Redox Signal. 28, 1345–1364. PMID:28990406

  7. Influence of Bernstein modes on the efficiency of electron cyclotron resonance x-ray source

    International Nuclear Information System (INIS)

    Andreev, V. V.; Nikitin, G.V.; Savanovich, V.Yu.; Umnov, A.M.; Elizarov, L.I.; Serebrennikov, K.S.; Vostrikova, E.A.

    2006-01-01

    The article considers the factors influencing the temperature of hot electron component in an electron cyclotron resonance (ECR) x-ray source. In such sources the electron heating occurs often due to extraordinary electromagnetic wave propagating perpendicularly to the magnetic field. In this case the possibility of the absorption of Bernstein modes is regarded as an additional mechanism of electron heating. The Bernstein modes in an ECR x-ray source can arise due to either linear transformation or parametric instability of external transversal wave. The article briefly reviews also the further experiments which will be carried out to study the influence of Bernstein modes on the increase of hot electron temperature and consequently of x-ray emission

  8. Theory of Correlated Pairs of Electrons Oscillating in Resonant Quantum States to Reach the Critical Temperature in a Metal

    OpenAIRE

    Aroche, Raúl Riera; Rosas-Cabrera, Rodrigo Arturo; Burgos, Rodrigo Arturo Rosas; Betancourt-Riera, René; Betancourt-Riera, Ricardo

    2017-01-01

    The formation of Correlated Electron Pairs Oscillating around the Fermi level in Resonant Quantum States (CEPO-RQS), when a metal is cooled to its critical temperature T=Tc, is studied. The necessary conditions for the existence of CEPO-RQS are analyzed. The participation of electron-electron interaction screened by an electron dielectric constant of the form proposed by Thomas Fermi is considered and a physical meaning for the electron-phonon-electron interaction in the formation of the CEPO...

  9. Cyclotron Acceleration of Relativistic Electrons through Landau Resonance with Obliquely Propagating Whistler Mode Chorus Emissions

    Science.gov (United States)

    Omura, Y.; Hsieh, Y. K.; Foster, J. C.; Erickson, P. J.; Kletzing, C.; Baker, D. N.

    2017-12-01

    A recent test particle simulation of obliquely propagating whistler mode wave-particle interaction [Hsieh and Omura, 2017] shows that the perpendicular wave electric field can play a significant role in trapping and accelerating relativistic electrons through Landau resonance. A further theoretical and numerical investigation verifies that there occurs nonlinear wave trapping of relativistic electrons by the nonlinear Lorentz force of the perpendicular wave magnetic field. An electron moving with a parallel velocity equal to the parallel phase velocity of an obliquely propagating wave basically see a stationary wave phase. Since the electron position is displaced from its gyrocenter by a distance ρ*sin(φ), where ρ is the gyroradius and φ is the gyrophase, the wave phase is modulated with the gyromotion, and the stationary wave fields as seen by the electron are expanded as series of Bessel functions Jn with phase variations n*φ. The J1 components of the wave electric and magnetic fields rotate in the right-hand direction with the gyrofrequency, and they can be in resonance with the electron undergoing the gyromotion, resulting in effective electron acceleration and pitch angle scattering. We have performed a subpacket analysis of chorus waveforms observed by the Van Allen Probes [Foster et al., 2017], and calculated the energy gain by the cyclotron acceleration through Landau resonance. We compare the efficiencies of accelerations by cyclotron and Landau resonances in typical events of rapid electron acceleration observed by the Van Allen Probes.References:[1] Hsieh, Y.-K., and Y. Omura (2017), Nonlinear dynamics of electrons interacting with oblique whistler mode chorus in the magnetosphere, J. Geophys. Res. Space Physics, 122, 675-694, doi:10.1002/2016JA023255.[2] Foster, J. C., P. J. Erickson, Y. Omura, D. N. Baker, C. A. Kletzing, and S. G. Claudepierre (2017), Van Allen Probes observations of prompt MeV radiation belt electron acceleration in nonlinear

  10. Nonlinear Right-Hand Polarized Wave in Plasma in the Electron Cyclotron Resonance Region

    Science.gov (United States)

    Krasovitskiy, V. B.; Turikov, V. A.

    2018-05-01

    The propagation of a nonlinear right-hand polarized wave along an external magnetic field in subcritical plasma in the electron cyclotron resonance region is studied using numerical simulations. It is shown that a small-amplitude plasma wave excited in low-density plasma is unstable against modulation instability with a modulation period equal to the wavelength of the excited wave. The modulation amplitude in this case increases with decreasing detuning from the resonance frequency. The simulations have shown that, for large-amplitude waves of the laser frequency range propagating in plasma in a superstrong magnetic field, the maximum amplitude of the excited longitudinal electric field increases with the increasing external magnetic field and can reach 30% of the initial amplitude of the electric field in the laser wave. In this case, the energy of plasma electrons begins to substantially increase already at magnetic fields significantly lower than the resonance value. The laser energy transferred to plasma electrons in a strong external magnetic field is found to increase severalfold compared to that in isotropic plasma. It is shown that this mechanism of laser radiation absorption depends only slightly on the electron temperature.

  11. Electron acceleration at Jupiter: input from cyclotron-resonant interaction with whistler-mode chorus waves

    Directory of Open Access Journals (Sweden)

    E. E. Woodfield

    2013-10-01

    Full Text Available Jupiter has the most intense radiation belts of all the outer planets. It is not yet known how electrons can be accelerated to energies of 10 MeV or more. It has been suggested that cyclotron-resonant wave-particle interactions by chorus waves could accelerate electrons to a few MeV near the orbit of Io. Here we use the chorus wave intensities observed by the Galileo spacecraft to calculate the changes in electron flux as a result of pitch angle and energy diffusion. We show that, when the bandwidth of the waves and its variation with L are taken into account, pitch angle and energy diffusion due to chorus waves is a factor of 8 larger at L-shells greater than 10 than previously shown. We have used the latitudinal wave intensity profile from Galileo data to model the time evolution of the electron flux using the British Antarctic Survey Radiation Belt (BAS model. This profile confines intense chorus waves near the magnetic equator with a peak intensity at ∼5° latitude. Electron fluxes in the BAS model increase by an order of magnitude for energies around 3 MeV. Extending our results to L = 14 shows that cyclotron-resonant interactions with chorus waves are equally important for electron acceleration beyond L = 10. These results suggest that there is significant electron acceleration by cyclotron-resonant interactions at Jupiter contributing to the creation of Jupiter's radiation belts and also increasing the range of L-shells over which this mechanism should be considered.

  12. Application of the Electron paramagnetic resonance to the ionizing radiation dosimetry

    International Nuclear Information System (INIS)

    Urena N, F.

    2000-01-01

    The Electron Paramagnetic Resonance (EPR) is defined as the resonant absorption of electromagnetic energy in paramagnetic substances by the spin transition of a non-pairing electron between different energy levels in presence of a magnetic field. (Slighter, 1989). One of the more important characteristic of EPR is that the electron spin levels are subdivided by the electron interaction with the magnetic dipoles of the nearby nucleus giving occasion for a spectral structure called hyperfine structure. In this kind of interactions two limit cases are distinguished: 1. when the non-pairing electron is located in a central ion surrounded of atoms belonging to coordinate molecules. 2. When a non-pairing electron interactioning in the same form with a number of equivalent nucleus, which is common in organic radicals, these will give as result spectra. Some EPR spectrometer can be used to dosimetric purposes by free radicals via. In this work, it is presented the application of EPR to dosimetry of ionizing radiations by free radicals via which allows to determinations of high doses. (Author)

  13. Synthesis Properties and Electron Spin Resonance Properties of Titanic Materials (abstract)

    Science.gov (United States)

    Cho, Jung Min; Lee, Jun; Kim, Tak Hee; Sun, Min Ho; Jang, Young Bae; Cho, Sung June

    2009-04-01

    Titanic materials were synthesized by hydrothermal method of TiO2 anatase in 10M LiOH, 10M NaOH, and 14M KOH at 130° C for 30 hours. Alkaline media were removed from the synthesized products using 0.1N HCl aqueous solution. The as-prepared samples were characterized by scanning electron microscope, transmission electron microscope, X-ray diffraction, Brunauer-Emmett-Teller isotherm, and electron spin resonance. Different shapes of synthesized products were observed through the typical electron microscope and indicated that the formation of the different morphologies depends on the treatment conditions of highly alkaline media. Many micropores were observed in the cubic or octahedral type of TiO2 samples through the typical electron microscope and Langmuir adsorption-desorption isotherm of liquid nitrogen at 77° K. Electron spin resonance studies have also been carried out to verify the existence of paramagnetic sites such as oxygen vacancies on the titania samples. The effect of alkali metal ions on the morphologies and physicochemical properties of nanoscale titania are discussed.

  14. Resonant Scattering of Relativistic Outer Zone Electrons by Plasmaspheric Plume Electromagnetic Ion Cyclotron Waves

    International Nuclear Information System (INIS)

    Zhen-Peng, Su; Hui-Nan, Zheng

    2009-01-01

    The bounce-averaged Fokker–Planck equation is solved to study the relativistic electron phase space density (PSD) evolution in the outer radiation belt due to resonant interactions with plasmaspheric plume electromagnetic ion cyclotron (EMIC) waves. It is found that the PSDs of relativistic electrons can be depleted by 1–3 orders of magnitude in 5h, supporting the previous finding that resonant interactions with EMIC waves may account for the frequently observed relativistic electron flux dropouts in the outer radiation belt during the main phase of a storm. The significant precipitation loss of ∼MeV electrons is primarily induced by the EMIC waves in H + and He + bands. The rapid remove of highly relativistic electrons (> 5 MeV) is mainly driven by the EMIC waves in O + band at lower pitch-angles, as well as the EMIC waves in H + and He + bands at larger pitch-angles. Moreover, a stronger depletion of relativistic electrons is found to occur over a wider pitch angle range when EMIC waves are centering relatively higher in the band

  15. Determination of anisotropy constants of protein encapsulated iron oxide nanoparticles by electron magnetic resonance

    International Nuclear Information System (INIS)

    Li Hongyan; Klem, Michael T.; Sebby, Karl B.; Singel, David J.; Young, Mark; Douglas, Trevor; Idzerda, Yves U.

    2009-01-01

    Angle-dependent electron magnetic resonance was performed on 4.9, 8.0, and 19 nm iron oxide nanoparticles encapsulated within protein capsids and suspended in water. Measurements were taken at liquid nitrogen temperature after cooling in a 1 T field to partially align the particles. The angle dependence of the shifts in the resonance field for the iron oxide nanoparticles (synthesized within Listeria-Dps, horse spleen ferritin, and cowpea chlorotic mottle virus) all show evidence of a uniaxial anisotropy. Using a Boltzmann distribution for the particles' easy-axis direction, we are able to use the resonance field shifts to extract a value for the anisotropy energy, showing that the anisotropy energy density increases with decreasing particle size. This suggests that surface anisotropy plays a significant role in magnetic nanoparticles of this size

  16. Determination of anisotropy constants of protein encapsulated iron oxide nanoparticles by electron magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Li Hongyan [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Center for Bio-Inspired Nanomaterials, Montana State University, Bozeman, MT 59717 (United States); Klem, Michael T.; Sebby, Karl B.; Singel, David J. [Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717 (United States); Center for Bio-Inspired Nanomaterials, Montana State University, Bozeman, MT 59717 (United States); Young, Mark [Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717 (United States); Center for Bio-Inspired Nanomaterials, Montana State University, Bozeman, MT 59717 (United States); Douglas, Trevor [Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717 (United States); Center for Bio-Inspired Nanomaterials, Montana State University, Bozeman, MT 59717 (United States); Idzerda, Yves U. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Center for Bio-Inspired Nanomaterials, Montana State University, Bozeman, MT 59717 (United States)], E-mail: Idzerda@montana.edu

    2009-02-15

    Angle-dependent electron magnetic resonance was performed on 4.9, 8.0, and 19 nm iron oxide nanoparticles encapsulated within protein capsids and suspended in water. Measurements were taken at liquid nitrogen temperature after cooling in a 1 T field to partially align the particles. The angle dependence of the shifts in the resonance field for the iron oxide nanoparticles (synthesized within Listeria-Dps, horse spleen ferritin, and cowpea chlorotic mottle virus) all show evidence of a uniaxial anisotropy. Using a Boltzmann distribution for the particles' easy-axis direction, we are able to use the resonance field shifts to extract a value for the anisotropy energy, showing that the anisotropy energy density increases with decreasing particle size. This suggests that surface anisotropy plays a significant role in magnetic nanoparticles of this size.

  17. 14 GHz longitudinally detected electron spin resonance using microHall sensors

    Science.gov (United States)

    Bouterfas, M.; Mouaziz, S.; Popovic, R. S.

    2017-09-01

    In this work we developed a home-made LOngitudinally Detected Electron Spin Resonance (LODESR) spectrometer based on a microsize Hall sensor. A coplanar waveguide (CPW)-resonator is used to induce microwave-excitation on the sample at 14 GHz. We used InSb cross-shaped Hall devices with active areas of (10 μm × 10 μm) and (5 μm × 5 μm) . Signal intensities of the longitudinal magnetization component of DPPH and YIG samples of volumes about (10 μm) 3 and (5 μm) 3 , are measured under amplitude and frequency modulated microwave magnetic field generated by the CPW-resonator. At room temperature, 109spins /G √Hz sensitivity is achieved for 0.2mT linewidth, a result which is still better than most of inductive detected LODESR sensitivities.

  18. Resonant dissociation in N2 by electron impact: a source of heating in the thermosphere and auroras

    International Nuclear Information System (INIS)

    Spence, D.; Burrow, P.D.

    1979-01-01

    An electron impact resonant dissociation process, leading to superthermal atom production in molecular nitrogen is described. The maximum cross section for this process is found to be 2.5 x 10 -18 cm 2 at 10 eV. Measurements of scattered electrons indicate a value of -65 to -90 MeV for the electron affinity of N. The possible role of resonant dissociation as a source of heating in the thermosphere and in auroras is discussed

  19. One-Port Electronic Detection Strategies for Improving Sensitivity in Piezoelectric Resonant Sensor Measurements

    Directory of Open Access Journals (Sweden)

    Zhongxu Hu

    2016-10-01

    Full Text Available This paper describes a one-port mechanical resonance detection scheme utilized on a piezoelectric thin film driven silicon circular diaphragm resonator and discusses the limitations to such an approach in degenerate mode mass detection sensors. The sensor utilizes degenerated vibration modes of a radial symmetrical microstructure thereby providing both a sense and reference mode allowing for minimization of environmental effects on performance. The circular diaphragm resonator was fabricated with thickness of 4.5 µm and diameter of 140 µm. A PZT thin film of 0.75 µm was patterned on the top surface for the purposes of excitation and vibration sensing. The device showed a resonant frequency of 5.8 MHz for the (1, 1 mode. An electronic interface circuit was designed to cancel out the large static and parasitic capacitance allowing for electrical detection of the mechanical vibration thereby enabling the frequency split between the sense and reference mode to be measured accurately. The extracted motional current, proportional to the vibration velocity, was fed back to the drive to effectively increase the Q factor, and therefore device sensitivity, by more than a factor of 8. A software phase-locked loop was implemented to automatically track the resonant frequencies to allow for faster and accurate resonance detection. Results showed that by utilizing the absolute mode frequencies as an indication of sensor temperature, the variation in sensor temperature due to the heating from the drive electronics was accounted for and led to an ultimate measurement sensitivity of 2.3 Hz.

  20. One-Port Electronic Detection Strategies for Improving Sensitivity in Piezoelectric Resonant Sensor Measurements

    Science.gov (United States)

    Hu, Zhongxu; Hedley, John; Keegan, Neil; Spoors, Julia; Gallacher, Barry; McNeil, Calum

    2016-01-01

    This paper describes a one-port mechanical resonance detection scheme utilized on a piezoelectric thin film driven silicon circular diaphragm resonator and discusses the limitations to such an approach in degenerate mode mass detection sensors. The sensor utilizes degenerated vibration modes of a radial symmetrical microstructure thereby providing both a sense and reference mode allowing for minimization of environmental effects on performance. The circular diaphragm resonator was fabricated with thickness of 4.5 µm and diameter of 140 µm. A PZT thin film of 0.75 µm was patterned on the top surface for the purposes of excitation and vibration sensing. The device showed a resonant frequency of 5.8 MHz for the (1, 1) mode. An electronic interface circuit was designed to cancel out the large static and parasitic capacitance allowing for electrical detection of the mechanical vibration thereby enabling the frequency split between the sense and reference mode to be measured accurately. The extracted motional current, proportional to the vibration velocity, was fed back to the drive to effectively increase the Q factor, and therefore device sensitivity, by more than a factor of 8. A software phase-locked loop was implemented to automatically track the resonant frequencies to allow for faster and accurate resonance detection. Results showed that by utilizing the absolute mode frequencies as an indication of sensor temperature, the variation in sensor temperature due to the heating from the drive electronics was accounted for and led to an ultimate measurement sensitivity of 2.3 Hz. PMID:27792154

  1. Effects of the electron-electron interaction in the spin resonance in 2D systems with Dresselhaus spin-orbit coupling

    International Nuclear Information System (INIS)

    Krishtopenko, S. S.

    2015-01-01

    The effect of the electron-electron interaction on the spin-resonance frequency in two-dimensional electron systems with Dresselhaus spin-orbit coupling is investigated. The oscillatory dependence of many-body corrections on the magnetic field is demonstrated. It is shown that the consideration of many-body interaction leads to a decrease or an increase in the spin-resonance frequency, depending on the sign of the g factor. It is found that the term cubic in quasimomentum in Dresselhaus spin-orbit coupling partially decreases exchange corrections to the spin resonance energy in a two-dimensional system

  2. Effects of the electron-electron interaction in the spin resonance in 2D systems with Dresselhaus spin-orbit coupling

    Energy Technology Data Exchange (ETDEWEB)

    Krishtopenko, S. S., E-mail: sergey.krishtopenko@mail.ru [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation)

    2015-02-15

    The effect of the electron-electron interaction on the spin-resonance frequency in two-dimensional electron systems with Dresselhaus spin-orbit coupling is investigated. The oscillatory dependence of many-body corrections on the magnetic field is demonstrated. It is shown that the consideration of many-body interaction leads to a decrease or an increase in the spin-resonance frequency, depending on the sign of the g factor. It is found that the term cubic in quasimomentum in Dresselhaus spin-orbit coupling partially decreases exchange corrections to the spin resonance energy in a two-dimensional system.

  3. Photoinduced electron transfer for an eosin-tyrosine conjugate. Activity of the tyrosinate anion in long-range electron transfer in a protein-like polymer matrix

    Energy Technology Data Exchange (ETDEWEB)

    Jones, G. II; Feng, Z.; Oh, C. [Boston Univ., MA (United States)

    1995-03-23

    The Xanthene dye eosin Y has been modified via a thiohydantoin link to the amine terminus of the amino acid L-tyrosine. Photochemical electron transfer involving the singlet state of the dye and the attached phenol-containing residue led to a reduction in eosin fluorescence quantum yield and lifetime for aqueous solutions at elevated pH. The conjugate provided an electron transfer product of relatively long lifetime (1 {mu}s range) observed by flash photolysis of solutions at pH 12.0, conditions under which the tyrosine moiety is ionized. The effects of binding of the conjugate in the polymer poly(vinylpyrrolidone) (PVP) on the rates of electron transfer of species of different charge type were examined. 30 refs., 5 figs., 1 tab.

  4. Empty-electronic-state evolution for Sc and electron dynamics at the 3p-3d giant dipole resonance

    International Nuclear Information System (INIS)

    Hu, Y.; Wagener, T.J.; Gao, Y.; Weaver, J.H.

    1989-01-01

    Inverse photoemission has been used to study the developing electronic states of an early transition metal, Sc, during thin-film growth and to investigate the effects of these states on the 3p-3d giant dipole resonance. Energy- and coverage-dependent intensity variations of the empty Sc states show that the 3d maximum moves 1.1 eV toward the Fermi level as the thickness of the Sc film increases from 1 to 300 A as measured with an incident electron energy of 41.25 eV, an effect attributed to metallic band formation via hybridization of atomic 4s and 3d states. Incident-energy-dependent intensity variations for these empty Sc features show resonant photon emission for incident electron energies above the 3p threshold, with maxima at 43 and 44 eV for 300- and 5-A-thick films, respectively. Considerations of hybridization-induced energy shifts of the empty Sc 3d states demonstrate that the radiative energy changes very little with Sc coverages. These studies indicate coupling of decay channels involving the inverse photoemission continuum and the recombination of the atomic 3p-3d giant dipole transition, the energy of the latter being determined by atomic 3p-3d excitation processes

  5. Resonance

    DEFF Research Database (Denmark)

    Petersen, Nils Holger

    2014-01-01

    A chapter in a book about terminology within the field of medievalism: the chapter discusses the resonance of medieval music and ritual in modern (classical) music culture and liturgical practice.......A chapter in a book about terminology within the field of medievalism: the chapter discusses the resonance of medieval music and ritual in modern (classical) music culture and liturgical practice....

  6. Electron spin resonance and its application to heat treated carbonaceous materials

    International Nuclear Information System (INIS)

    Emmerich, Francisco Guilherme

    1993-01-01

    This work presents the basic characteristics of the electron spin resonance technique, also called paramagnetic resonance, being discussed its application to heat treated carbonaceous materials. In the low heat treatment temperature (HTT) range (below 700 deg C) the organic free radical are the predominant unpaired spin center, which play a key role in the process of carbonization and meso phase formation. At higher temperatures, it is possible to make correlations between the low H T T range and the high HTT range (above 130 deg C), where the predominant unpaired spin center are the free charge carriers (free electrons) of the graphite like crystallites of the material, which are formed by the carbonization process. (author)

  7. Radiation-induced electron paramagnetic resonance signal and soybean isoflavones content

    International Nuclear Information System (INIS)

    Oliveira, Marcos R.R. de; Mandarino, José M.G.; Mastro, Nelida L. del

    2012-01-01

    Electron Paramagnetic Resonance (EPR) is a well-known spectroscopic technique that detects paramagnetic centers and can detect free radicals with high sensitivity. In food, free radicals can be generated by several commonly used industrial processes, such as radiosterilization or heat treatment. EPR spectroscopy is used to detect radioinduced free radicals in food. In this work the relation between EPR signal induced by gamma irradiation treatment and soybean isoflavones content was investigated. Present results did not show correlation between total isoflavones content and the EPR signal. Nevertheless, some isoflavone contents had a negative correlation with the radiation-induced EPR signal. - Highlights: ► Electron Paramagnetic Resonance (EPR) detects free radicals. ► Ionizing radiation as free radicals inducer. ► Total soybean isoflvones do not correlate with radiation-induced EPR intensity but a soybean glucosyl glucoside isoflavone does.

  8. Thermally stimulated luminescence and electron paramagnetic resonance studies on uranium doped calcium phosphate

    CERN Document Server

    Natarajan, V; Veeraraghavan, R; Sastry, M D

    2003-01-01

    Thermally stimulated luminescence (TSL) and electron paramagnetic resonance (EPR) studies on uranium doped calcium phosphate yielded mechanistic information on the observed glow peaks at 365, 410 and 450 K. TSL spectral studies of the glow peaks showed that UO sub 2 sup 2 sup + acts as the luminescent center. Electron paramagnetic resonance studies on gamma-irradiated samples revealed that the predominant radiation induced centers are H sup 0 , PO sub 4 sup 2 sup - , PO sub 3 sup 2 sup - and O sup - ion. Studies on the temperature dependence studies of the EPR spectra of samples annealed to different temperatures indicate the role of H sup 0 and PO sub 4 sup 2 sup - ions in the main glow peak at 410 K.

  9. Optical rotation and electron spin resonance of an electro-optically active polythiophene

    International Nuclear Information System (INIS)

    Goto, Hiromasa

    2010-01-01

    Graphical abstract: The electro-chiroptical polythiophene displays optical rotation at wavelengths corresponding to the doping band observable in the absorption spectra. The formation of polarons on the main-chain is confirmed by electron spin resonance measurements. - Abstract: A chiroptical polythiophene, is synthesized by electrolytic polymerization in a cholesteric liquid crystal electrolyte solution. The polymer displays a fingerprint texture similar to that of the cholesteric electrolyte solution. Upon electrochemical doping, the polymer displays optical rotation at wavelengths corresponding to the doping band observable in the absorption spectra. The formation of polarons on the main-chain is confirmed by electron spin resonance measurements. The results demonstrate the intermolecular chirality of polarons in this π-conjugated polymer, indicating continuum delocalized polarons are in a three-dimensional helical environment.

  10. Studies on a Q/A selector for the SECRAL electron cyclotron resonance ion source.

    Science.gov (United States)

    Yang, Y; Sun, L T; Feng, Y C; Fang, X; Lu, W; Zhang, W H; Cao, Y; Zhang, X Z; Zhao, H W

    2014-08-01

    Electron cyclotron resonance ion sources are widely used in heavy ion accelerators in the world because they are capable of producing high current beams of highly charged ions. However, the design of the Q/A selector system for these devices is challenging, because it must have a sufficient ion resolution while controlling the beam emittance growth. Moreover, this system has to be matched for a wide range of ion beam species with different intensities. In this paper, research on the Q/A selector system at the SECRAL (Superconducting Electron Cyclotron Resonance ion source with Advanced design in Lanzhou) platform both in experiment and simulation is presented. Based on this study, a new Q/A selector system has been designed for SECRAL II. The features of the new design including beam simulations are also presented.

  11. Bi-directional magnetic resonance based wireless power transfer for electronic devices

    International Nuclear Information System (INIS)

    Kar, Durga P.; Nayak, Praveen P.; Bhuyan, Satyanarayan; Mishra, Debasish

    2015-01-01

    In order to power or charge electronic devices wirelessly, a bi-directional wireless power transfer method has been proposed and experimentally investigated. In the proposed design, two receiving coils are used on both sides of a transmitting coil along its central axis to receive the power wirelessly from the generated magnetic fields through strongly coupled magnetic resonance. It has been observed experimentally that the maximum power transfer occurs at the operating resonant frequency for optimum electric load connected across the receiving coils on both side. The optimum wireless power transfer efficiency is 88% for the bi-directional power transfer technique compared 84% in the one side receiver system. By adopting the developed bi-directional power transfer method, two electronic devices can be powered up or charged simultaneously instead of a single device through usual one side receiver system without affecting the optimum power transfer efficiency

  12. Electronic paramagnetic resonance in the Mn In X (X:Te,S) diluted magnetic semiconductor system

    International Nuclear Information System (INIS)

    Vincent, Bernardo; Betancourt, Luis; Sagredo, Vicente; Alcala, Rafael

    1996-01-01

    Semiconductor compounds wit the II-III-VI stoichiometry are very interesting materials since they present very good semiconducting characteristics and, along with strong magnetic properties, these II Mn In VI compounds have a great potential as opt and magneto-electronic devices. Among the possible magnetic properties of the materials is the presence of the spin-glass phase. Electron paramagnetic resonance is one of the techniques used to confirm this phase. The chosen crystals were chosen by chemical vapor transport. The absorption lines of these two families with 0.1 x 1 were all Lorentzian in shape and centred at g=2. A large broadening of the resonance line width was observed when lowering the temperature to below 80 K. This behaviour was fitted to the known existing models, and good values of the calculated parameters were obtained (author)

  13. Bi-directional magnetic resonance based wireless power transfer for electronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Kar, Durga P.; Nayak, Praveen P.; Bhuyan, Satyanarayan; Mishra, Debasish [Department of Electronics and Instrumentation Engineering, Institute of Technical Education and Research, Siksha ‘O’ Anushandhan University, Bhubaneswar 751030 (India)

    2015-09-28

    In order to power or charge electronic devices wirelessly, a bi-directional wireless power transfer method has been proposed and experimentally investigated. In the proposed design, two receiving coils are used on both sides of a transmitting coil along its central axis to receive the power wirelessly from the generated magnetic fields through strongly coupled magnetic resonance. It has been observed experimentally that the maximum power transfer occurs at the operating resonant frequency for optimum electric load connected across the receiving coils on both side. The optimum wireless power transfer efficiency is 88% for the bi-directional power transfer technique compared 84% in the one side receiver system. By adopting the developed bi-directional power transfer method, two electronic devices can be powered up or charged simultaneously instead of a single device through usual one side receiver system without affecting the optimum power transfer efficiency.

  14. Dynamical Processes in Open Quantum Systems from a TDDFT Perspective: Resonances and Electron Photoemission.

    Science.gov (United States)

    Larsen, Ask Hjorth; De Giovannini, Umberto; Rubio, Angel

    2016-01-01

    We present a review of different computational methods to describe time-dependent phenomena in open quantum systems and their extension to a density-functional framework. We focus the discussion on electron emission processes in atoms and molecules addressing excited-state lifetimes and dissipative processes. Initially we analyze the concept of an electronic resonance, a central concept in spectroscopy associated with a metastable state from which an electron eventually escapes (electronic lifetime). Resonances play a fundamental role in many time-dependent molecular phenomena but can be rationalized from a time-independent context in terms of scattering states. We introduce the method of complex scaling, which is used to capture resonant states as localized states in the spirit of usual bound-state methods, and work on its extension to static and time-dependent density-functional theory. In a time-dependent setting, complex scaling can be used to describe excitations in the continuum as well as wave packet dynamics leading to electron emission. This process can also be treated by using open boundary conditions which allow time-dependent simulations of emission processes without artificial reflections at the boundaries (i.e., borders of the simulation box). We compare in detail different schemes to implement open boundaries, namely transparent boundaries using Green functions, and absorbing boundaries in the form of complex absorbing potentials and mask functions. The last two are regularly used together with time-dependent density-functional theory to describe the electron emission dynamics of atoms and molecules. Finally, we discuss approaches to the calculation of energy and angle-resolved time-dependent pump-probe photoelectron spectroscopy of molecular systems.

  15. Electron spin resonance studies of iron-group impurities in beryllium fluoride glasses

    Energy Technology Data Exchange (ETDEWEB)

    Griscom, D L; Stapelbroek, M [Naval Research Lab., Washington, DC (USA); Weber, M J [California Univ., Livermore (USA). Lawrence Livermore National Lab.

    1980-11-01

    Electron spin resonance investigations have been carried out on unirradiated BeF/sub 2/ glasses. Two relatively intense resonances were observed in a water-free distilled glass known to contain 49 ppM Ni, 13 ppM Mn, and < 20 ppM Fe. One of these was the paramagnetic resonance spectrum of Mn/sup 2 +/. Analysis of the observed /sup 19/F superhyperfine structure demonstrated this manganese to occupy distorted octahedral sites in the glass network. The second resonance was shown by temperature and frequency dependence studies, coupled with computer line shape analysis, to be a ferromagnetic resonance signal due to precipitated ferrite phases. The data suggest that these ferrites are somewhat heterogeneous and most likely comprize magnetite-like phases similar to NiFe/sub 2/O/sub 4/. An optical extinction curve rising into the ultraviolet with an approximate lambda/sup -4/ dependence is tentatively ascribed to light scattering by ferrite particles approximately 1000 Angstroems in diameter.

  16. Electron paramagnetic resonance spectrum of fresh fruits processed by gamma-rays

    International Nuclear Information System (INIS)

    Jesus, E.F.O. de; Lopes, R.T.

    1999-01-01

    Pulp of irradiated kiwi fruits, after extraction by ethyl alcohol of part of the water and sugars, has been analyzed by electron paramagnetic resonance in order to study the possibility of identifying irradiated fruits. The results allow to confirm that for a period of approximately 12 weeks a triplet with a coupling isotropic constant of 3.05 mT, intensity ratio 1:2:1 and a factor g=2,0026 is visible in irradiated fruits

  17. Evaluation by electronic paramagnetic resonance of the number of free radicals produced in irradiated rat bone

    International Nuclear Information System (INIS)

    Marble, G.; Valderas, R.

    1966-01-01

    The number of long half-life free radicals created by gamma irradiation in the bones of the rat has been determined from the electrons paramagnetic resonance spectrum. This number decreases slowly with time (calculated half life: 24 days). It is proportional to the dose of gamma radiation given to the rat. The method could find interesting applications in the field of biological dosimetry. (authors) [fr

  18. Planar channeled relativistic electrons and positrons in the field of resonant hypersonic wave

    International Nuclear Information System (INIS)

    Grigoryan, L.Sh.; Mkrtchyan, A.H.; Khachatryan, H.F.; Tonoyan, V.U.; Wagner, W.

    2003-01-01

    The wave function of a planar channeled relativistic particle (electron, positron) in a single crystal excited by longitudinal hypersonic vibrations (HVs) is determined. The obtained expression is valid for periodic (not necessarily harmonic) HV of desired profile and single crystals with an arbitrary periodic continuous potential. A revised formula for the wave number of HV that exert resonance influence on the state of a channeled particle was deduced to allow for non-linear effects due to the influence of HV

  19. Electron spin resonance of paramagnetic defects and related charge carrier traps in complex oxide scintillators

    Czech Academy of Sciences Publication Activity Database

    Laguta, Valentyn; Nikl, Martin

    2013-01-01

    Roč. 250, č. 2 (2013), s. 254-260 ISSN 0370-1972 R&D Projects: GA MŠk(CZ) LM2011029; GA ČR GAP204/12/0805; GA AV ČR IAA100100810 Grant - others:SAFMAT(XE) CZ.2.16/3.1.00/22132 Institutional support: RVO:68378271 Keywords : scintillators * point defects * electron spin resonance * polarons Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.605, year: 2013

  20. Nanoparticle sizing: a comparative study using atomic force microscopy, transmission electron microscopy, and ferromagnetic resonance

    International Nuclear Information System (INIS)

    Lacava, L.M.; Lacava, B.M.; Azevedo, R.B.; Lacava, Z.G.M.; Buske, N.; Tronconi, A.L.; Morais, P.C.

    2001-01-01

    Atomic force microscopy (AFM), transmission electron microscopy (TEM), and ferromagnetic resonance (FMR) were used to unfold the nanoparticle size of a ferrofluid sample. Compared to TEM, the AFM method showed a nanoparticle diameter (D m ) reduction of 20% and standard deviation (σ) increase of 15%. The differences in D m and σ were associated with the AFM tip and the nanoparticle concentration on the substrate

  1. Modeling and analysis of harmonic resonance in a power electronics based AC power system

    DEFF Research Database (Denmark)

    Wang, Xiongfei; Blaabjerg, Frede; Chen, Zhe

    2013-01-01

    The dynamic interactions among the interconnected power converters may bring in harmonic resonance in a power electronics based power system. This paper addresses this issue in a power system dominated by multiple current- and voltage-controlled inverters with LCL- and LC-filters. The impedance...... stability criterion. To validate the theoretical analysis, the time domain simulations and experimental tests on a three-inverter-based system are presented....

  2. Electron spin resonance study of the demagnetization fields of the ferromagnetic and paramagnetic films

    Directory of Open Access Journals (Sweden)

    I.I. Gimazov, Yu.I. Talanov

    2015-12-01

    Full Text Available The results of the electron spin resonance study of the La1-xCaxMnO3 manganite and the diphenyl-picrylhydrazyl thin films for the magnetic field parallel and perpendicular to plane of the films are presented. The temperature dependence of the demagnetizing field is obtained. The parameters of the Curie-Weiss law are estimated for the paramagnetic thin film.

  3. Electron paramagnetic resonance investigations of carbon-doped β rhombohedral boron

    International Nuclear Information System (INIS)

    Gercke, U.; Siems, C.-D.

    1979-01-01

    Electron paramagnetic resonance (EPR) measurements at 9 and 35 GHz on polycrystalline β rhombohedral boron with various carbon contents resulted in partly resolved absorption spectra. At 300 K the spin density ratio of two lines (called D and E) showed a linear increase with the carbon content. This ratio is temperature dependent. The lines D and E are photo-EPR active with different quantum efficiencies at various temperatures. (Auth.)

  4. A numerical model of the mirror electron cyclotron resonance MECR source

    International Nuclear Information System (INIS)

    Hellblom, G.

    1986-03-01

    Results from numerical modeling of a new type of ion source are presented. The plasma in this source is produced by electron cyclotron resonance in a strong conversion magnetic field. Experiments have shown that a well-defined plasma column, extended along the magnetic field (z-axis) can be produced. The electron temperature and the densities of the various plasma particles have been found to have a strong z-position dependence. With the numerical model, a simulation of the evolution of the composition of the plasma as a function of z is made. A qualitative agreement with experimental data can be obtained for certain parameter regimes. (author)

  5. Electron spin resonance from NV centers in diamonds levitating in an ion trap

    International Nuclear Information System (INIS)

    Delord, T; Nicolas, L; Schwab, L; Hétet, G

    2017-01-01

    We report observations of the electron spin resonance (ESR) of nitrogen vacancy centers in diamonds that are levitating in an ion trap. Using a needle Paul trap operating under ambient conditions, we demonstrate efficient microwave driving of the electronic spin and show that the spin properties of deposited diamond particles measured by the ESR are retained in the Paul trap. We also exploit the ESR signal to show angle stability of single trapped mono-crystals, a necessary step towards spin-controlled levitating macroscopic objects. (paper)

  6. Resonant ion-pair formation in the recombination of NO+ with electrons: Cross-section determination

    International Nuclear Information System (INIS)

    Le Padellec, A.; Djuric, N.; Al-Khalili, A.; Danared, H.; Derkatch, A. M.; Neau, A.; Popovic, D. B.; Rosen, S.; Semaniak, J.; Thomas, R.

    2001-01-01

    Resonant ion-pair formation from the collisions of NO + ions with electrons was studied using the heavy-ion storage ring CRYRING at the Manne Siegbahn Laboratory of Stockholm University. The total cross section is measured for the formation of N + +O - for electron energies 8--18 eV, and the results are compared with ion-pair formation in photoionization work. A peak in the cross section is observed at 12.5 eV, with a magnitude of 8.5 x 10 -19 cm 2 . An attempt to extract the cross section for the reverse process of associative ionization is made

  7. Quasilinear theory of the ordinary-mode electron-cyclotron resonance in plasmas

    International Nuclear Information System (INIS)

    Arunasalam, V.; Efthimion, P.C.; Hosea, J.C.; Hsuan, H.; Taylor, G.

    1983-11-01

    A coupled set of equations, one describing the time evolution of the ordinary-mode wave energy and the other describing the time evolution of the electron distribution function is presented. The wave damping is mainly determined by T/sub parallel/ while the radiative equilibrium is mainly an equipartition with T/sub perpendicular/. The time rate of change of T/sub perpendicular/, T/sub parallel/, particle (N 0 ), and current (J/sub parellel/) densities are examined for finite k/sub parallel/ electron-cyclotron-resonance heating of plasmas

  8. Electron spin resonance signal from a tetra-interstitial defect in silicon

    CERN Document Server

    Mchedlidze, T

    2003-01-01

    The Si-B3 electron spin resonance (ESR) signal from agglomerates of self-interstitials was detected for the first time in hydrogen-doped float-zone-grown silicon samples subjected to annealing after electron irradiation. Previously this signal had been detected only in neutron- or proton-irradiated silicon samples. The absence of obscuring ESR peaks for the investigated samples at applied measurement conditions allowed an investigation of the hyperfine structure of the Si-B3 spectra. The analysis supports assignment of a tetra-interstitial defect as the origin of the signal.

  9. Higher-order resonant electronic recombination as a manifestation of configuration interaction

    International Nuclear Information System (INIS)

    Beilmann, C; Amaro, P; Tashenov, S; Bekker, H; Harman, Z; Crespo López-Urrutia, J R

    2013-01-01

    Theoretical and experimental investigations of higher-order electron–ion recombination resonances including inter-shell excitations are presented for L-shell ions of Kr with the aim of examining details of atomic structure calculations. The particular importance of electron–electron interaction and configuration mixing effects for these recombination processes enables their use for detailed tests of electron correlation effects. A test of the required level of considered mixing configurations is presented and further experiments involving higher-order recombination channels are motivated. (paper)

  10. Hollow density profile on electron cyclotron resonance heating JFT-2M plasma

    International Nuclear Information System (INIS)

    Yamauchi, Toshihiko; Hoshino, Katsumichi; Kawashima, Hisato; Ogawa, Toshihide; Kawakami, Tomohide; Shiina, Tomio; Ishige, Youichi

    1998-01-01

    The first hollow electron density profile in the central region on the JAERI Fusion Torus-2M (JFT-2M) is measured during electron cyclotron resonance heating (ECRH) with a TV Thomson scattering system (TVTS). The peripheral region is not hollow but is accumulated due to pump-out from the central region. The hollowness increases with time but is saturated at ∼40 ms and maintains a constant hollow ratio. The hollowness is strongly related to the steep temperature gradient of the heated zone. (author)

  11. ECRH [electron-cyclotron resonance heating]-heated distributions in thermal-barrier tandem mirrors

    International Nuclear Information System (INIS)

    Cohen, R.H.; LoDestro, L.L.

    1987-01-01

    The distribution function is calculated for electrons subjected to strong electron-cyclotron resonance heating (ECRH) at the plug and barrier in a tandem-mirror thermal-barrier cell. When ECRH diffusion locally dominates over collisions and a boundary condition (associated with electrons passing to the center cell) imposes variations on the distribution function rapid compared to the variation of the ECRH and collisional diffusion coefficients, the kinetic equation can be reduced approximately to Laplace's equation. For the typical case where velocity space is divided into distinct regions in which plug and barrier ECRH dominate, the solution in each region can be expressed in terms of the plasma dispersion function or exponential integrals, according to whether the passing electrons are dominated by collisions or ECRH, respectively. The analytic results agree well with Fokker-Planck code results, in terms of both velocity-space structure and values of moments. 10 refs., 4 figs

  12. Diffuse Surface Scattering in the Plasmonic Resonances of Ultralow Electron Density Nanospheres.

    Science.gov (United States)

    Monreal, R Carmina; Antosiewicz, Tomasz J; Apell, S Peter

    2015-05-21

    Localized surface plasmon resonances (LSPRs) have recently been identified in extremely diluted electron systems obtained by doping semiconductor quantum dots. Here, we investigate the role that different surface effects, namely, electronic spill-out and diffuse surface scattering, play in the optical properties of these ultralow electron density nanosystems. Diffuse scattering originates from imperfections or roughness at a microscopic scale on the surface. Using an electromagnetic theory that describes this mechanism in conjunction with a dielectric function including the quantum size effect, we find that the LSPRs show an oscillatory behavior in both position and width for large particles and a strong blue shift in energy and an increased width for smaller radii, consistent with recent experimental results for photodoped ZnO nanocrystals. We thus show that the commonly ignored process of diffuse surface scattering is a more important mechanism affecting the plasmonic properties of ultralow electron density nanoparticles than the spill-out effect.

  13. Resonant third-harmonic generation of a short-pulse laser from electron-hole plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Kant, Niti [Department of Physics, Lovely Professional University, Phagwara, Punjab 144 402 (India); Nandan Gupta, Devki [Department of Physics and Astrophysics, University of Delhi, Delhi 110 007 (India); Suk, Hyyong [Advanced Photonics Research Institute (APRI) and Graduate Program of Photonics and Applied Physics, Gwangju Institute of Science and Technology, Gwangju 500 712 (Korea, Republic of)

    2012-01-15

    In semiconductors, free carriers are created in pairs in inter-band transitions and consist of an electron and its corresponding hole. At very high carrier densities, carrier-carrier collisions dominate over carrier-lattice collisions and carriers begin to behave collectively to form plasma. Here, we apply a short-pulse laser to generate third-harmonic radiation from a semiconductor plasma (electron-hole plasma) in the presence of a transverse wiggler magnetic-field. The process of third-harmonic generation of an intense short-pulse laser is resonantly enhanced by the magnetic wiggler, i.e., wiggler magnetic field provides the necessary momentum to third-harmonic photons. In addition, a high-power laser radiation, propagating through a semiconductor imparts an oscillatory velocity to the electrons and exerts a ponderomotive force on electrons at the third-harmonic frequency of the laser. This oscillatory velocity produces a third-harmonic longitudinal current. And due to the beating of the longitudinal electron velocity and the wiggler magnetic field, a transverse third-harmonic current is produced that drives third-harmonic electromagnetic radiation. It is finally observed that for a specific wiggler wave number value, the phase-matching conditions for the process are satisfied, leading to resonant enhancement in the energy conversion efficiency.

  14. Resonant third-harmonic generation of a short-pulse laser from electron-hole plasmas

    International Nuclear Information System (INIS)

    Kant, Niti; Nandan Gupta, Devki; Suk, Hyyong

    2012-01-01

    In semiconductors, free carriers are created in pairs in inter-band transitions and consist of an electron and its corresponding hole. At very high carrier densities, carrier-carrier collisions dominate over carrier-lattice collisions and carriers begin to behave collectively to form plasma. Here, we apply a short-pulse laser to generate third-harmonic radiation from a semiconductor plasma (electron-hole plasma) in the presence of a transverse wiggler magnetic-field. The process of third-harmonic generation of an intense short-pulse laser is resonantly enhanced by the magnetic wiggler, i.e., wiggler magnetic field provides the necessary momentum to third-harmonic photons. In addition, a high-power laser radiation, propagating through a semiconductor imparts an oscillatory velocity to the electrons and exerts a ponderomotive force on electrons at the third-harmonic frequency of the laser. This oscillatory velocity produces a third-harmonic longitudinal current. And due to the beating of the longitudinal electron velocity and the wiggler magnetic field, a transverse third-harmonic current is produced that drives third-harmonic electromagnetic radiation. It is finally observed that for a specific wiggler wave number value, the phase-matching conditions for the process are satisfied, leading to resonant enhancement in the energy conversion efficiency.

  15. UV resonance Raman finds peptide bond-Arg side chain electronic interactions.

    Science.gov (United States)

    Sharma, Bhavya; Asher, Sanford A

    2011-05-12

    We measured the UV resonance Raman excitation profiles and Raman depolarization ratios of the arginine (Arg) vibrations of the amino acid monomer as well as Arg in the 21-residue predominantly alanine peptide AAAAA(AAARA)(3)A (AP) between 194 and 218 nm. Excitation within the π → π* peptide bond electronic transitions result in UVRR spectra dominated by amide peptide bond vibrations. The Raman cross sections and excitation profiles indicate that the Arg side chain electronic transitions mix with the AP peptide bond electronic transitions. The Arg Raman bands in AP exhibit Raman excitation profiles similar to those of the amide bands in AP which are conformation specific. These Arg excitation profiles distinctly differ from the Arg monomer. The Raman depolarization ratios of Arg in monomeric solution are quite simple with ρ = 0.33 indicating enhancement by a single electronic transition. In contrast, we see very complex depolarization ratios of Arg in AP that indicate that the Arg residues are resonance enhanced by multiple electronic transitions.

  16. Electron emission induced by resonant coherent interaction in ion-surface scattering at grazing incidence

    International Nuclear Information System (INIS)

    Garcia de Abajo, F.J.; Ponce, V.H.; Echenique, P.M.

    1994-01-01

    The resonant coherent interaction of an ion with an oriented crystal surface, under grazing-incidence conditions with respect to a special direction of the crystal, gives rise to electron loss to the continuum from electronic bound states of the ion. The calculations presented below predict large probabilities for electron emission due to this mechanism. The electrons are emitted with well defined energies, expressed in terms of the condition of resonance. Furthermore, the emission takes place around certain preferential directions, which are determined by both the latter condition and the symmetry of the surface lattice. Our calculations for MeV He + ions scattered at a W(001) surface along the left-angle 100 right-angle direction with glancing angle of 0--2 mrad indicate a yield of emission close to 1. Using heavier projectiles, one obtains smaller yields, but still large enough to be measurable in some cases (e.g., ∼0.9 for 53 MeV B 4+ and an angle of incidence of 1 mrad). Besides, the initial bound state is energy shifted due to the interaction with both the crystal potential and the velocity-dependent image potential. This results in a slight shift of the peaks of emission, which suggests a possible spectroscopy for analyzing the dynamical interaction of electronic bound states with solid surfaces

  17. Electron spin resonance probed competing states in NiMnInSi Heusler alloy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y.S. [Center for Condensed Matter Sciences, National Taiwan University, Taipei 10617, Taiwan (China); Lin, J.G., E-mail: jglin@ntu.edu.tw [Center for Condensed Matter Sciences, National Taiwan University, Taipei 10617, Taiwan (China); Titov, I.S.; Granovsky, A.B. [Faculty of Physics, Lomonosov Moscow State University, Vorob' evy Gory, 11999l Moscow (Russian Federation)

    2016-06-01

    Shape memory Heusler alloy Ni{sub 50}Mn{sub 35}In{sub 12}Si{sub 3} is investigated with electron spin resonance (ESR) technique in a temperature range of 200–300 K. ESR is a dynamic probe allowing us to separate the responses from various magnetic phases, thus to study the complex phase transitions. The sample shows three transition temperatures: T{sub c}{sup A} (271 K), T{sub M} (247 K) and T{sub c}{sup M} (212 K), where T{sub c}{sup A} is the Curie temperature of austenitic phase, T{sub M} and T{sub c}{sup M} are the temperatures of magnetostructural martensitic transition and the Curie temperature of martensitic phase, respectively. Furthermore, ESR data reveals the coexistence of two magnetic modes in whole temperature range of 200–300 K. Particularly in martensitic phase, two magnetic modes are attributed to two different kinds of lattice deformation, the slip and twinning deformations. - Highlights: • Electron spin resonance study on magnetocaloric Heusler alloy within 200–300 K. • Magnetic phase separation below and above the structural transition temperature. • Phase competing is in association with different types of lattice distortions. • Electron spin resonance results are complementary to the magnetization data.

  18. Tests of a grazing-incidence ring resonator free-electron laser

    International Nuclear Information System (INIS)

    Dowell, D.H.; Laucks, M.L.; Lowrey, A.R.; Adamski, J.L.; Pistoresi, D.J.; Shoffstall, D.R.; Bentz, M.P.; Burns, R.H.; Guha, J.; Sun, K.; Tomita, W.

    1991-01-01

    This paper reports on the Boeing free-electron laser (FEL) optical cavity that has been changed from a simple concentric cavity using two spherical mirrors to a larger grazing-incidence ring resonator. The new resonator consists of two mirror telescopes located at each end of the wiggler with a round-trip path length of approximately 133 m. Each telescope is a grazing-incidence hyperboloid followed by a normal-incidence paraboloid. Initial tests showed that poorly positioned ring focus and unreliable pointing alignment resulted in reduced and structured FEL output. (First lasing operation occurred on March 23 and 24, 1990.) Later efforts concentrated on improving the resonator alignment techniques and lowering the single-pass losses. FEL performance and reliability have significantly improved due to better ring alignment. The alignment procedure and recent lasing results are described. The effect the electron beam has on lasing is also discussed. Measurements are presented showing how FEL temporal output and wavelength are sensitive to electron beam energy variations

  19. Design study of electron cyclotron resonance-ion plasma accelerator for heavy ion cancer therapy

    International Nuclear Information System (INIS)

    Inoue, T.; Sugimoto, S.; Sasai, K.; Hattori, T.

    2014-01-01

    Electron Cyclotron Resonance-Ion Plasma Accelerator (ECR-IPAC) device, which theoretically can accelerate multiple charged ions to several hundred MeV with short acceleration length, has been proposed. The acceleration mechanism is based on the combination of two physical principles, plasma electron ion adiabatic ejection (PLEIADE) and Gyromagnetic Autoresonance (GYRAC). In this study, we have designed the proof of principle machine ECR-IPAC device and simulated the electromagnetic field distribution generating in the resonance cavity. ECR-IPAC device consisted of three parts, ECR ion source section, GYRAC section, and PLEIADE section. ECR ion source section and PLEIADE section were designed using several multi-turn solenoid coils and sextupole magnets, and GYRAC section was designed using 10 turns coil. The structure of ECR-IPAC device was the cylindrical shape, and the total length was 1024 mm and the maximum diameter was 580 mm. The magnetic field distribution, which maintains the stable acceleration of plasma, was generated on the acceleration center axis throughout three sections. In addition, the electric field for efficient acceleration of electrons was generated in the resonance cavity by supplying microwave of 2.45 GHz

  20. Resonant spin-flavor conversion of supernova neutrinos: Dependence on electron mole fraction

    International Nuclear Information System (INIS)

    Yoshida, Takashi; Takamura, Akira; Kimura, Keiichi; Yokomakura, Hidekazu; Kawagoe, Shio; Kajino, Toshitaka

    2009-01-01

    Detailed dependence of resonant spin-flavor (RSF) conversion of supernova neutrinos on electron mole fraction Y e is investigated. Supernova explosion forms a hot-bubble and neutrino-driven wind region of which electron mole fraction exceeds 0.5 in several seconds after the core collapse. When a higher resonance of the RSF conversion is located in the innermost region, flavor change of the neutrinos strongly depends on the sign of 1-2Y e . At an adiabatic high RSF resonance the flavor conversion of ν e ↔ν μ,τ occurs in Y e e >0.5 and inverted mass hierarchy. In other cases of Y e values and mass hierarchies, the conversion of ν e ↔ν μ,τ occurs. The final ν e spectrum is evaluated in the cases of Y e e >0.5 taking account of the RSF conversion. Based on the obtained result, time variation of the event number ratios of low ν e energy to high ν e energy is discussed. In normal mass hierarchy, an enhancement of the event ratio should be seen in the period when the electron fraction in the innermost region exceeds 0.5. In inverted mass hierarchy, on the other hand, a dip of the event ratio should be observed. Therefore, the time variation of the event number ratio is useful to investigate the effect of the RSF conversion.

  1. Effect of electron-electron interaction on cyclotron resonance in high-mobility InAs/AlSb quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Krishtopenko, S. S., E-mail: sergey.krishtopenko@mail.ru; Gavrilenko, V. I. [Institute for Physics of Microstructures, Russian Academy of Sciences, 603950 Nizhny Novgorod, GSP-105 (Russian Federation); Lobachevsky State University, 23 Prospekt Gagarina, 603950 Nizhny Novgorod (Russian Federation); Ikonnikov, A. V. [Institute for Physics of Microstructures, Russian Academy of Sciences, 603950 Nizhny Novgorod, GSP-105 (Russian Federation); Orlita, M. [Laboratoire National des Champs Magnétiques Intenses (LNCMI-G), CNRS, 25 rue des Martyrs, B.P. 166, 38042 Grenoble (France); Sadofyev, Yu. G. [P.N. Lebedev Physical Institute, Russian Academy of Sciences, Moscow 119991, GSP-1, 53 Leninskiy Prospect (Russian Federation); Goiran, M. [Laboratoire National des Champs Magnétiques Intenses (LNCMI-T), CNRS, 143 Avenue de Rangueil, 31400 Toulouse (France); Teppe, F.; Knap, W. [Laboratoire Charles Coulomb (L2C), UMR CNRS 5221, GIS-TERALAB, Universite Montpellier II, 34095 Montpellier (France)

    2015-03-21

    We report observation of electron-electron (e-e) interaction effect on cyclotron resonance (CR) in InAs/AlSb quantum well heterostructures. High mobility values allow us to observe strongly pronounced triple splitting of CR line at noninteger filling factors of Landau levels ν. At magnetic fields, corresponding to ν > 4, experimental values of CR energies are in good agreement with single-electron calculations on the basis of eight-band k ⋅ p Hamiltonian. In the range of filling factors 3 < ν < 4 pronounced, splitting of CR line, exceeding significantly the difference in single-electron CR energies, is discovered. The strength of the splitting increases when occupation of the partially filled Landau level tends to a half, being in qualitative agreement with previous prediction by MacDonald and Kallin [Phys. Rev. B 40, 5795 (1989)]. We demonstrate that such behaviour of CR modes can be quantitatively described if one takes into account both electron correlations and the mixing between conduction and valence bands in the calculations of matrix elements of e-e interaction.

  2. Long-term evolution of electron distribution function due to nonlinear resonant interaction with whistler mode waves

    Science.gov (United States)

    Artemyev, Anton V.; Neishtadt, Anatoly I.; Vasiliev, Alexei A.

    2018-04-01

    Accurately modelling and forecasting of the dynamics of the Earth's radiation belts with the available computer resources represents an important challenge that still requires significant advances in the theoretical plasma physics field of wave-particle resonant interaction. Energetic electron acceleration or scattering into the Earth's atmosphere are essentially controlled by their resonances with electromagnetic whistler mode waves. The quasi-linear diffusion equation describes well this resonant interaction for low intensity waves. During the last decade, however, spacecraft observations in the radiation belts have revealed a large number of whistler mode waves with sufficiently high intensity to interact with electrons in the nonlinear regime. A kinetic equation including such nonlinear wave-particle interactions and describing the long-term evolution of the electron distribution is the focus of the present paper. Using the Hamiltonian theory of resonant phenomena, we describe individual electron resonance with an intense coherent whistler mode wave. The derived characteristics of such a resonance are incorporated into a generalized kinetic equation which includes non-local transport in energy space. This transport is produced by resonant electron trapping and nonlinear acceleration. We describe the methods allowing the construction of nonlinear resonant terms in the kinetic equation and discuss possible applications of this equation.

  3. Interband optical absorption in the Wannier-Stark ladder under the electron-LO-phonon resonance condition

    International Nuclear Information System (INIS)

    Govorov, A.O.

    1993-08-01

    Interband optical absorption in the Wannier-Stark ladder in the presence of the electron-LO-phonon resonance is investigated theoretically. The electron-LO-phonon resonance occurs when the energy spacing between adjacent Stark-ladder levels coincides with the LO-phonon energy. We propose a model describing the polaron effect in a superlattice. Calculations show that the absorption line shape is strongly modified due to the polaron effect under the electron-LO-phonon resonance condition. We consider optical phenomena in a normal magnetic field that leads to enhancement of polaron effects. (author). 17 refs, 5 figs

  4. Lowest auto-detachment state of the water anion

    International Nuclear Information System (INIS)

    Houfek, K.; Cizek, M.

    2016-01-01

    Because of the abundance of water in living tissue the reactive low-energy electron collisions with the water molecule represent an important step in the radiation damage of cells. In this paper, the potential energy surface of the ground state of the water anion H_2O"- is carefully mapped using multireference configuration interaction (MRCI) calculations for a large range of molecular geometries. Particular attention is paid to a consistent description of both the O"-+H_2 and OH"-+H asymptotes and to a relative position of the anion energy to the ground state energy of the neutral molecule. The auto-detachment region, where the anion state crosses to the electronic continuum is identified. The local minimum in the direction of the O"- + H_2 channel previously reported by Werner et al. [J. Chem. Phys. 87, 2913 (1987)] is found to be slightly off the linear geometry and is separated by a saddle from the auto-detachment region. The auto-detachment region is directly accessible from the OH"-+H asymptote. For the molecular geometries in the auto-detachment region and in its vicinity we also performed fixed-nuclei electron-molecule scattering calculations using the R-matrix method. Tuning of consistency of a description of the correlation energy in both the multireference CI and R-matrix calculations is discussed. Two models of the correlation energy within the R-matrix method that are consistent with the quantum chemistry calculations are found. Both models yield scattering quantities in a close agreement. The results of this work will allow a consistent formulation of the nonlocal resonance model of the water anion in a future publication

  5. Formation of interstellar anions

    Science.gov (United States)

    Senent, Maria Luisa

    2012-05-01

    Formation of interstellar anions: M.L. Senent. The recent detection of negative charged species in the ISM1 has instigated enthusiasm for anions in the astrophysical community2. Many of these species are new and entail characterization. How they are formed in astrophysical sources is a question of major relevance. The anion presence in ISM was first predicted theoretically on the basis of electron affinities and on the negative linear chain molecular stabilities. Although very early, they were considered in astrochemical models3-4, their discovery is so recent because their abundances seem to be relatively low. These have to be understood in terms of molecular stabilities, reaction probabilities and radiative and collisional excitations. Then, we present our theoretical work on even carbon chains type Cn and CnH (n=2,4,6) focused to the understanding of anion abundances. We use highly correlated ab initio methods. We performed spectroscopic studies of various isomers that can play important roles as intermediates5-8. In previous papers9-10, we compared C2H and C2H- collisional rates responsible for observed line intensities. Actually, we study hydrogen attachment (Cn +H → CnH and Cn- +H → CnH-) and associative detachment processes (Cn- +H → CnH +e-) for 2, 4 and 6 carbon atom chains11. [1] M.C.McCarthy, C.A.Gottlieb, H.Gupta, P.Thaddeus, Astrophys.J, 652, L141 (2006) [2] V.M.Bierbaum, J.Cernicharo, R.Bachiller, eds., 2011, pp 383-389. [3] A. Dalgarno, R.A. Mc Cray, Astrophys.J,, 181, 95 (1973) [4] E. Herbst E., Nature, 289, 656 (1981); [5] H.Massó, M.L.Senent, P.Rosmus, M.Hochlaf, J.Chem.Phys., 124, 234304 (2006) [6] M.L.Senent, M.Hochlaf, Astrophys. J. , 708, 1452(2010) [7] H.Massó, M.L.Senent, J.Phys.Chem.A, 113, 12404 (2009) [8] D. Hammoutene, M.Hochlaf, M.L.Senent, submitted. [9] A. Spielfiedel, N. Feautrier, F. Najar, D. ben Abdallah, F. Dayou, M.L. Senent, F. Lique, Mon.Not.R.Astron.Soc., 421, 1891 (2012) [10] F.Dumouchel, A, Spielfieldel , M

  6. Electron precipitation and VLF emissions associated with cyclotron resonance interactions near the plasmapause

    International Nuclear Information System (INIS)

    Foster, J.C.; Rosenberg, T.J.

    1976-01-01

    Correlated bursts of bremsstrahlung X rays and VLF emissions were recorded for approx.25 min at Siple Station, Antarctica, on January 2, 1971. The burst occurred quasi-periodically with spectral power predominantly in the period range 4--12 s. A typical VLF burst consisted of 3--5 rising elements of approx.0.1-s duration separated by approx.0.15 s and was confined to the frequency range 1.5--3.8 kHz. Evidence is presented to show that the bursts were triggered by the low-frequency tail of whistlers propagating from the northern hemisphere. The interpretation of the observations in terms of an equatorial cyclotron resonance interaction occurring at the outer edge of the plasmapause on the L=4.2 field line, offered initially by Rosenberg et al. (1971), is given further support by the more extensive analysis presented here of the electron energy-wave frequency relationship in the bursts and the propagation times for the resonant waves and electrons. It is inferred from the X ray data that the equatorial flux of trapped electrons was probably anisotropic and near the stable trapping limit at the time of this event. It is suggested that an important effect of the trigger signal is the increase of the anisotropy of the resonant electrons. Wave growth rates calculated in the random phase approximation for electron pitch angle distributions that might apply in this event can explain certain features of the VLF and precipitation data during and between the bursts

  7. Electron spin resonance for the detection of long-range spin nematic order

    Science.gov (United States)

    Furuya, Shunsuke C.; Momoi, Tsutomu

    2018-03-01

    Spin nematic phase is a quantum magnetic phase characterized by a quadrupolar order parameter. Since the quadrupole operators are directly coupled to neither the magnetic field nor the neutron, currently, it is an important issue to develop a method for detecting the long-range spin nematic order. In this paper, we propose that electron spin resonance (ESR) measurements enable us to detect the long-range spin nematic order. We show that the frequency of the paramagnetic resonance peak in the ESR spectrum is shifted by the ferroquadrupolar order parameter together with other quantities. The ferroquadrupolar order parameter is extractable from the angular dependence of the frequency shift. In contrast, the antiferroquadrupolar order parameter is usually invisible in the frequency shift. Instead, the long-range antiferroquadrupolar order yields a characteristic resonance peak in the ESR spectrum, which we call a magnon-pair resonance peak. This resonance corresponds to the excitation of the bound magnon pair at the wave vector k =0 . Reflecting the condensation of bound magnon pairs, the field dependence of the magnon-pair resonance frequency shows a singular upturn at the saturation field. Moreover, the intensity of the magnon-pair resonance peak shows a characteristic angular dependence and it vanishes when the magnetic field is parallel to one of the axes that diagonalize the weak anisotropic interactions. We confirm these general properties of the magnon-pair resonance peak in the spin nematic phase by studying an S =1 bilinear-biquadratic model on the square lattice in the linear flavor-wave approximation. In addition, we argue applications to the S =1/2 frustrated ferromagnets and also the S =1/2 orthogonal dimer spin system SrCu2(BO3)2, both of which are candidate materials of spin nematics. Our theory for the antiferroquadrupolar ordered phase is consistent with many features of the magnon-pair resonance peak experimentally observed in the low

  8. Electron paramagnetic resonance of K3Rh(CN)6 irradiated with electrons in KCl

    International Nuclear Information System (INIS)

    Vugman, N.V.

    1970-07-01

    Using a simple theory, it was estimated the electronic density of the diamagnetic complex Rh (CN) 3- 6 in a KCl lattice. The g// and g1 values were determined by EPR, and the experimental results fit the theoretical calculations. (M.W.O.) [pt

  9. Saturation of drift instabilities by ExB advection of resonant electrons

    International Nuclear Information System (INIS)

    Dimits, A.M.

    1990-01-01

    Saturation of the collisionless and weakly collisional drift instabilities by nonlinear ExB advection of resonant electrons is considered. The nonlinear ExB advection of the resonant electrons around the O points and X points of the potential shuts off the linear phase shift between the electron density and the potential, and hence the linear growth, and produces residual oscillations at the ExB-trapping frequency. Two analytical solutions of a three-mode model of Lee et al. [Phys. Fluids 27, 2652 (1984)], which describes the saturation of drift waves by this mechanism, are found. The first is an exact solution in the form of a steadily propagating wave of constant amplitude, and is relevant when electron pitch-angle scattering is present. The second is an approximate time-dependent analytical solution, obtained using the method of O'Neil [Phys. Fluids 8, 2255 (1965)], and is relevant to the collisionless case. The predictions that follow from this solution for the saturation level and for the amplitude oscillation frequency are in excellent agreement with the direct numerical solutions of the three-mode system

  10. Resonant Auger electron-photoion coincidence study of the fragmentation dynamics of an acrylonitrile molecule

    Energy Technology Data Exchange (ETDEWEB)

    Kooser, K; Ha, D T; Granroth, S; Itaelae, E; Nommiste, E; Kukk, E [Department of Physics, University of Turku, FIN-20014 Turku (Finland); Partanen, L; Aksela, H, E-mail: kunkoo@utu.f [Department of Physics, University of Oulu, Box 3000, FIN-90014 Oulu (Finland)

    2010-12-14

    Monochromatic synchrotron radiation was used to promote K-shell electrons of nitrogen and carbon from the cyano group (C {identical_to} N) of gaseous acrylonitrile (C{sub 2}H{sub 3}-CN) to the unoccupied antibonding {pi}*{sub C} {sub {identical_to} N} orbital. Photofragmentation of acrylonitrile molecules following selective resonant core excitations of carbon and nitrogen core electrons to the {pi}*{sub C} {sub {identical_to} N} orbital was investigated using the electron-energy-resolved photoelecton-photoion coincidence technique. The fragment ion mass spectra were recorded in coincidence with the resonant Auger electrons, emitted in the decay process of the core-excited states. Singly and triply deuterated samples were used for fragment identification. The results showed the initial core-hole localization to be of minor importance in determining the dissociation pattern of the molecular cation. The participator and spectator Auger transitions produce entirely different fragmentation patterns and the latter indicates that complex nuclear rearrangements take place. It is suggested that the calculated kinetic energy releases are caused by the existence of metastable states, which appear with the opening of the spectator Auger channels.

  11. ECR [electron cyclotron resonance] discharges maintained by radiation in the millimeter wavelength range

    International Nuclear Information System (INIS)

    Bykov, Yu.V.; Golubev, S.V.; Eremeev, A.G.; Zorin, V.G.

    1990-01-01

    It is well known that plasmas formed by microwave breakdown of gases under electron cyclotron resonance (ECR) conditions can serve as an efficient source for ion beams. The major disadvantage of this type of source is relatively low ion beam currents which generally do not exceed 1 A (for an electron density of ∼10 12 cm -3 in the discharge). Raising the current density in the ion beams requires a higher plasma density, which can be obtained by using higher frequencies. Thus, a study has recently been made of the parameters of the plasma formed by ECR breakdown in a linear confinement system employing pulsed radiation at a frequency of 60 GHz. The maximum electron densities obtained in the experiment were 2·10 13 cm -3 at a gas pressure of 3·10 -4 torr. In this paper the authors describe some experiments on the creation of plasmas by means of quasi-cw electromagnetic radiation at a frequency of 100 GHz under electron cyclotron resonance conditions

  12. Theoretical and experimental study on electron interactions with chlorobenzene: Shape resonances and differential cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, Alessandra Souza [Departamento de Física, Universidade Federal do Paraná, CP 19044, 81531-990 Curitiba, Paraná (Brazil); Laboratório de Colisões Atómicas e Moleculares, CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Varella, Márcio T. do N. [Instituto de Física, Universidade de São Paulo, Rua do Matão 1731, 05508-090 São Paulo, SP (Brazil); Sanchez, Sergio d’A.; Bettega, Márcio H. F., E-mail: bettega@fisica.ufpr.br [Departamento de Física, Universidade Federal do Paraná, CP 19044, 81531-990 Curitiba, Paraná (Brazil); Ameixa, João; Limão-Vieira, Paulo; Ferreira da Silva, Filipe [Laboratório de Colisões Atómicas e Moleculares, CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Blanco, Francisco [Departamento de Física Atómica, Molecular y Nuclear, Facultad de Ciencias Físicas, Universidad Complutense de Madrid, E-28040 Madrid (Spain); and others

    2016-08-28

    In this work, we report theoretical and experimental cross sections for elastic scattering of electrons by chlorobenzene (ClB). The theoretical integral and differential cross sections (DCSs) were obtained with the Schwinger multichannel method implemented with pseudopotentials (SMCPP) and the independent atom method with screening corrected additivity rule (IAM-SCAR). The calculations with the SMCPP method were done in the static-exchange (SE) approximation, for energies above 12 eV, and in the static-exchange plus polarization approximation, for energies up to 12 eV. The calculations with the IAM-SCAR method covered energies up to 500 eV. The experimental differential cross sections were obtained in the high resolution electron energy loss spectrometer VG-SEELS 400, in Lisbon, for electron energies from 8.0 eV to 50 eV and angular range from 7{sup ∘} to 110{sup ∘}. From the present theoretical integral cross section (ICS) we discuss the low-energy shape-resonances present in chlorobenzene and compare our computed resonance spectra with available electron transmission spectroscopy data present in the literature. Since there is no other work in the literature reporting differential cross sections for this molecule, we compare our theoretical and experimental DCSs with experimental data available for the parent molecule benzene.

  13. Electron cyclotron resonance discharge as a source for hydrogen and deuterium ions production

    Energy Technology Data Exchange (ETDEWEB)

    Chacon Velasco, A.J. [Universidad de Pamplona, Pamplona (Colombia); Dougar-Jabon, V.D. [Universidad Industrial de Santander, Bucaramanga (Colombia)

    2004-07-01

    In this report, we describe characteristics of a ring-structure hydrogen plasma heated in electron cyclotron resonance conditions and confined in a mirror magnetic trap and discuss the relative efficiency of secondary electrons and thermo-electrons in negative hydrogen and deuterium ion production. The obtained data and calculations of the balance equations for possible reactions demonstrate that the negative ion production is realized in two stages. First, the hydrogen and deuterium molecules are excited in collisions with the plasma electrons to high-laying Rydberg or vibrational levels in the plasma volume. The second stage leads to the negative ion production through the process of dissociative attachment of low energy electrons. The low energy electrons are originated due to a bombardment of the plasma electrode by ions of one of the driven rings and thermo-emission from heated tungsten filaments. Experiments seem to indicate that the negative ion generation occurs predominantly in the limited volume filled with thermo-electrons. Estimation of the negative ion generation rate shows that the main channel of H{sup -} and D{sup -} ion production involves the process of high Rydberg state excitation. (authors)

  14. Electron cyclotron resonance discharge as a source for hydrogen and deuterium ions production

    International Nuclear Information System (INIS)

    Chacon Velasco, A.J.; Dougar-Jabon, V.D.

    2004-01-01

    In this report, we describe characteristics of a ring-structure hydrogen plasma heated in electron cyclotron resonance conditions and confined in a mirror magnetic trap and discuss the relative efficiency of secondary electrons and thermo-electrons in negative hydrogen and deuterium ion production. The obtained data and calculations of the balance equations for possible reactions demonstrate that the negative ion production is realized in two stages. First, the hydrogen and deuterium molecules are excited in collisions with the plasma electrons to high-laying Rydberg or vibrational levels in the plasma volume. The second stage leads to the negative ion production through the process of dissociative attachment of low energy electrons. The low energy electrons are originated due to a bombardment of the plasma electrode by ions of one of the driven rings and thermo-emission from heated tungsten filaments. Experiments seem to indicate that the negative ion generation occurs predominantly in the limited volume filled with thermo-electrons. Estimation of the negative ion generation rate shows that the main channel of H - and D - ion production involves the process of high Rydberg state excitation. (authors)

  15. New insights in low-energy electron-fullerene interactions

    Science.gov (United States)

    Msezane, Alfred Z.; Felfli, Zineb

    2018-03-01

    The robust Regge-pole methodology has been used to probe for long-lived metastable anionic formation in Cn (n = 20, 24, 26, 28, 44, 70, 92 and 112) through the calculated electron elastic scattering total cross sections (TCSs). All the TCSs are found to be characterized by Ramsauer-Townsend minima, shape resonances and dramatically sharp resonances manifesting metastable anionic formation during the collisions. The energy positions of the anionic ground states resonances are found to match the measured electron affinities (EAs). We also investigated the size-effect through the correlation and polarization induced metastable resonances as the fullerene size varied from C20 through C112. The C20 TCSs exhibit atomic behavior while the C112 TCSs demonstrate strong departure from atomic behavior attributed to the size effect. Surprisingly C24 is found to have the largest EA among the investigated fullerenes making it suitable for use in organic solar cells and nanocatalysis.

  16. Strong quadrupole interaction in electron paramagnetic resonance. Study of the indium hexacyanide (III) in KCl irradiated with electrons

    International Nuclear Information System (INIS)

    Vugman, N.V.

    1973-08-01

    The radiation effects in ]Ir III (CN) 6 ] 3- diamagnetic complexe inserted in the KCl lattice and irradiated with electrons of 2MeV by electron spin resonance (ESR) are analysed. Formulas for g and A tensors in the ligand field approximation, are derivated to calculate non coupling electron density in the metal. The X polarization field of inner shells is positive, indicating a 6s function mixture in the non coupling electron molecular orbital. The observed hyperfine structure is assigned to 4 equivalent nitrogen and one non equivalent nitrogen. This hypothesis is verified by experience of isotope substitution with 15 N. The s and p spin density in ligands are calculated and discussed in terms of molecular obitals. The effects of strong quadrupole interaction into the EPR spectra of ]Ir II (CN) 5 ] 3- complex are analysed by MAGNSPEC computer program to diagonalize the Spin Hamiltonian of the system. Empiric rules for EPR espectrum interpretation with strong quadrupole interaction. A review of EPR technique and a review of main concepts of crystal-field and ligand field theories, are also presented. (M.C.K.) [pt

  17. Electronic decay cascades in media initiated by resonant absorption of X-ray photons

    Energy Technology Data Exchange (ETDEWEB)

    Miteva, Tsveta

    2015-07-16

    The resonant-Auger - interatomic Coulombic decay (RA-ICD) cascade was recently proposed as a very efficient means of controlling the generation site and energies of slow ICD electrons. The control mechanism was verified in a series of experiments where both the energy of the photons producing the initial core excitation, and the neighbouring species were varied. The aim of this thesis is to provide a detailed theoretical investigation of the RA-ICD cascade in rare-gas dimers and give a first insight into the course of the cascade in aqueous medium. The potential energy curves (PECs) of ionisation satellites are key ingredients in the theoretical description of electronic decay cascades. In the first chapter, we conducted a study on the PECs of the ionisation satellites of the ArHe dimer with a view to modelling such PECs in heavier dimers. Our results show that the complex valence structure in the rare-gas atom leads to the mixing of different electronic configurations of the dimer, which prevents one from assigning a single dicationic parent state to some of the ionisation satellites. In the second part of the thesis, we present and analyse the ICD-electron and kinetic-energy-release (KER) spectra following different resonant core excitations of Ar in the rare-gas dimers Ar{sub 2} and ArKr. We demonstrate that the manifold of ICD states populated in the resonant Auger process consists of fast- and slow-decaying ionisation satellites, and that the accurate description of nuclear dynamics in the latter ICD states is crucial for obtaining theoretical electron and KER spectra in good agreement with the experiment. We also show that by varying the neighbouring atom one can tune the energies of the emitted ICD electrons and even control the ICD yield. Finally, as a first step towards the investigation of the RA-ICD cascade in aqueous medium, we present and discuss the X-Ray absorption spectra of microsolvated clusters of Na{sup +} and Mg{sup 2+} at the metal 1s

  18. Comparative study between different nitrosyls hemoproteins using electron paramagnetic resonance; Estudo comparativo entre diferentes nitrosil hemoproteinas por ressonancia paramagnetica eletronica

    Energy Technology Data Exchange (ETDEWEB)

    Caracelli, Ignez

    1988-12-31

    Using the Electron Paramagnetic Resonance (EPR) technique, the properties of several nitrosyl hemoproteins were investigated as a function of temperature, pH and nitric oxide (NO) concentration. (author). 59 refs., 53 figs., 6 tabs.

  19. Time dependence, complex scaling, and the calculation of resonances in many-electron systems

    International Nuclear Information System (INIS)

    Nicolaides, C.A.; Beck, D.R.

    1978-01-01

    The theory deals with certain aspects of the formal properties of atomic and molecular highly excited nonstationary states and the problem of calculating their wave functions, energies, and widths. The conceptual framework is a decay theory based on the consistent definition and calculation of the t = 0 localized state, vertical bar psi 0 >. Given this framework, the following topics are treated: The variational calculation of psi 0 and E 0 using a previously published theory that generalized the projection operator approach to many-electron systems. The exact definition of the resonance energy. The possibility of bound states in the continuum. The relation of psi 0 to the resonance (Gamow) function psi and of the Hamiltonian to the rotated Hamiltonian H(theta) based on the notion of perturbation of boundary conditions in the asymptotic region. The variational calculation of real and complex energies employing matrix elements of H and H 2 with square-integrable and resonance functions. The mathematical structure of the time evolution of vertical bar psi 0 > and the possibility of observing nonexponential decays in certain autoionizing states that are very close to the ionization threshold. A many-body theory of atomic and molecular resonances that employs the coordinate rotation method. 107 references

  20. High-Precision Displacement Sensing of Monolithic Piezoelectric Disk Resonators Using a Single-Electron Transistor

    Science.gov (United States)

    Li, J.; Santos, J. T.; Sillanpää, M. A.

    2018-02-01

    A single-electron transistor (SET) can be used as an extremely sensitive charge detector. Mechanical displacements can be converted into charge, and hence, SETs can become sensitive detectors of mechanical oscillations. For studying small-energy oscillations, an important approach to realize the mechanical resonators is to use piezoelectric materials. Besides coupling to traditional electric circuitry, the strain-generated piezoelectric charge allows for measuring ultrasmall oscillations via SET detection. Here, we explore the usage of SETs to detect the shear-mode oscillations of a 6-mm-diameter quartz disk resonator with a resonance frequency around 9 MHz. We measure the mechanical oscillations using either a conventional DC SET, or use the SET as a homodyne or heterodyne mixer, or finally, as a radio-frequency single-electron transistor (RF-SET). The RF-SET readout is shown to be the most sensitive method, allowing us to measure mechanical displacement amplitudes below 10^{-13} m. We conclude that a detection based on a SET offers a potential to reach the sensitivity at the quantum limit of the mechanical vibrations.

  1. Excited-state structure and electronic dephasing time of Nile blue from absolute resonance Raman intensities

    Science.gov (United States)

    Lawless, Mary K.; Mathies, Richard A.

    1992-06-01

    Absolute resonance Raman cross sections are measured for Nile blue 690 perchlorate dissolved in ethylene glycol with excitation at 514, 531, and 568 nm. These values and the absorption spectrum are modeled using a time-dependent wave packet formalism. The excited-state equilibrium geometry changes are quantitated for 40 resonance Raman active modes, seven of which (590, 1141, 1351, 1429, 1492, 1544, and 1640 cm-1 ) carry 70% of the total resonance Raman intensity. This demonstrates that in addition to the prominent 590 and 1640 cm-1 modes, a large number of vibrational degrees of freedom are Franck-Condon coupled to the electronic transition. After exposure of the explicit vibrational progressions, the residual absorption linewidth is separated into its homogeneous [350 cm-1 half-width at half-maximum (HWHM)] and inhomogeneous (313 cm-1 HWHM) components through an analysis of the absolute Raman cross sections. The value of the electronic dephasing time derived from this study (25 fs) compares well to previously published results. These data should be valuable in multimode modeling of femtosecond experiments on Nile blue.

  2. Field emission studies of silver nanoparticles synthesized by electron cyclotron resonance plasma

    International Nuclear Information System (INIS)

    Purohit, Vishwas; Mazumder, Baishakhi; Bhise, A.B.; Poddar, Pankaj; Joag, D.S.; Bhoraskar, S.V.

    2011-01-01

    Field emission has been studied for silver nanoparticles (25-200 nm), deposited within a cylindrical silver target in an electron cyclotron resonance (ECR) plasma. Particle size distribution was controlled by optimum biasing voltages between the chamber and the target. Presence of non-oxidized silver was confirmed from the X-Ray diffraction analysis; however, thin protective layer of oxide was identified from the selective area electron diffraction pattern obtained with transmission electron microscopy. The silver nanoparticles were seen to exhibit hilly pointed like structures when viewed under the atomic force microscopy (AFM). The emissive properties of these particles were investigated by field emission microscopy. It is found that this technique of deposition is ideal for formation of nanoparticles films on different substrate geometries with size controllability as well as its application to emission devices.

  3. Resonance estimates for single spin asymmetries in elastic electron-nucleon scattering

    International Nuclear Information System (INIS)

    Barbara Pasquini; Marc Vanderhaeghen

    2004-01-01

    We discuss the target and beam normal spin asymmetries in elastic electron-nucleon scattering which depend on the imaginary part of two-photon exchange processes between electron and nucleon. We express this imaginary part as a phase space integral over the doubly virtual Compton scattering tensor on the nucleon. We use unitarity to model the doubly virtual Compton scattering tensor in the resonance region in terms of γ* N → π N electroabsorption amplitudes. Taking those amplitudes from a phenomenological analysis of pion electroproduction observables, we present results for beam and target normal single spin asymmetries for elastic electron-nucleon scattering for beam energies below 1 GeV and in the 1-3 GeV region, where several experiments are performed or are in progress

  4. Field and frequency modulated sub-THz electron spin resonance spectrometer

    Directory of Open Access Journals (Sweden)

    Christian Caspers

    2016-05-01

    Full Text Available 260-GHz radiation is used for a quasi-optical electron spin resonance (ESR spectrometer which features both field and frequency modulation. Free space propagation is used to implement Martin-Puplett interferometry with quasi-optical isolation, mirror beam focusing, and electronic polarization control. Computer-aided design and polarization pathway simulation lead to the design of a compact interferometer, featuring lateral dimensions less than a foot and high mechanical stability, with all components rated for power levels of several Watts suitable for gyrotron radiation. Benchmark results were obtained with ESR standards (BDPA, DPPH using field modulation. Original high-field ESR of 4f electrons in Sm3+-doped Ceria was detected using frequency modulation. Distinct combinations of field and modulation frequency reach a signal-to-noise ratio of 35 dB in spectra of BDPA, corresponding to a detection limit of about 1014 spins.

  5. Electron Cloud Cyclotron Resonances in the Presence of a Short-bunch-length Relativistic Beam

    International Nuclear Information System (INIS)

    Celata, Christine; Celata, C.M.; Furman, Miguel A.; Vay, J.-L.; Wu, Jennifer W.

    2008-01-01

    Computer simulations using the 2D code 'POSINST' were used to study the formation of the electron cloud in the wiggler section of the positron damping ring of the International Linear Collider. In order to simulate an x-y slice of the wiggler (i.e., a slice perpendicular to the beam velocity), each simulation assumed a constant vertical magnetic field. At values of the magnetic field where the cyclotron frequency was an integral multiple of the bunch frequency, and where the field strength was less than approximately 0.6 T, equilibrium average electron densities were up to three times the density found at other neighboring field values. Effects of this resonance between the bunch and cyclotron frequency are expected to be non-negligible when the beam bunch length is much less than the product of the electron cyclotron period and the beam

  6. Many-electron effect in the Si K-LL resonant Auger-electron spectroscopy spectra of the Si delta layer in GaAs

    International Nuclear Information System (INIS)

    Ohno, Masahide

    2006-01-01

    The Si K-LL resonant Auger-electron spectroscopy (RAES) spectra of silicon delta dopped layers in GaAs with very thin capping layers show both normal Auger decay and resonant Auger decay, when the core-level electron is excited to the conduction band. The resonant Auger peak kinetic energy (KE) shows no dispersion with photon energy, except when excited by the highest energy photons [M.D. Jackson, J.M.C. Thornton, D. Lewis, A. Robinson, M. Fahy, A. Aviary, P. Weightman, Phys. Rev. B71 (2005) 075313]. The RAES spectra are analyzed using a many-body theory. The presence of resonant Auger decay and no dispersion of resonant Auger peak KE with photon energy is explained in terms of the relaxation of a metastable excited core-hole state to a stable one on the time scale of core-hole decay. The excited electron in the conduction band either delocalizes rapidly leaving the ionized Si to decay by a normal Auger decay or drops to a state localized in the Si delta layer before the core-hole decays so that the RAES spectrum has both normal Auger decay and resonant Auger decay. As a result of the relaxation, the resonant Auger peak KE does not show any dispersion with photon energy. The variations with photon energy of the normal or resonant Auger peak intensity, KE, and width are explained in a consistent manner by a many-body theory

  7. Anion exchange membrane

    Science.gov (United States)

    Verkade, John G; Wadhwa, Kuldeep; Kong, Xueqian; Schmidt-Rohr, Klaus

    2013-05-07

    An anion exchange membrane and fuel cell incorporating the anion exchange membrane are detailed in which proazaphosphatrane and azaphosphatrane cations are covalently bonded to a sulfonated fluoropolymer support along with anionic counterions. A positive charge is dispersed in the aforementioned cations which are buried in the support to reduce the cation-anion interactions and increase the mobility of hydroxide ions, for example, across the membrane. The anion exchange membrane has the ability to operate at high temperatures and in highly alkaline environments with high conductivity and low resistance.

  8. Molecules for materials: germanium hydride neutrals and anions. Molecular structures, electron affinities, and thermochemistry of GeHn/GeHn- (n = 0-4) and Ge2Hn/Ge2Hn(-) (n = 0-6).

    Science.gov (United States)

    Li, Qian-Shu; Lü, Rui-Hua; Xie, Yaoming; Schaefer, Henry F

    2002-12-01

    The GeH(n) (n = 0-4) and Ge(2)H(n) (n = 0-6) systems have been studied systematically by five different density functional methods. The basis sets employed are of double-zeta plus polarization quality with additional s- and p-type diffuse functions, labeled DZP++. For each compound plausible energetically low-lying structures were optimized. The methods used have been calibrated against a comprehensive tabulation of experimental electron affinities (Chemical Reviews 102, 231, 2002). The geometries predicted in this work include yet unknown anionic species, such as Ge(2)H(-), Ge(2)H(2)(-), Ge(2)H(3)(-), Ge(2)H(4)(-), and Ge(2)H(5)(-). In general, the BHLYP method predicts the geometries closest to the few available experimental structures. A number of structures rather different from the analogous well-characterized hydrocarbon radicals and anions are predicted. For example, a vinylidene-like GeGeH(2) (-) structure is the global minimum of Ge(2)H(2) (-). For neutral Ge(2)H(4), a methylcarbene-like HGë-GeH(3) is neally degenerate with the trans-bent H(2)Ge=GeH(2) structure. For the Ge(2)H(4) (-) anion, the methylcarbene-like system is the global minimum. The three different neutral-anion energy differences reported in this research are: the adiabatic electron affinity (EA(ad)), the vertical electron affinity (EA(vert)), and the vertical detachment energy (VDE). For this family of molecules the B3LYP method appears to predict the most reliable electron affinities. The adiabatic electron affinities after the ZPVE correction are predicted to be 2.02 (Ge(2)), 2.05 (Ge(2)H), 1.25 (Ge(2)H(2)), 2.09 (Ge(2)H(3)), 1.71 (Ge(2)H(4)), 2.17 (Ge(2)H(5)), and -0.02 (Ge(2)H(6)) eV. We also reported the dissociation energies for the GeH(n) (n = 1-4) and Ge(2)H(n) (n = 1-6) systems, as well as those for their anionic counterparts. Our theoretical predictions provide strong motivation for the further experimental study of these important germanium hydrides. Copyright 2002 Wiley

  9. Field-swept pulsed electron paramagnetic resonance of Cr3+-doped ZBLAN fluoride glass

    International Nuclear Information System (INIS)

    Drew, S.C.; Pilbrow, J.R.; Newman, P.J.; MacFarlane, D.R.

    2001-01-01

    Field-swept pulsed electron paramagnetic resonance (EPR) spectra of a ZBLAN fluoride glass doped with a low concentration of Cr 3+ are obtained using echo-detected EPR and hole-burning free induction decay detection. We review the utility of the pulsed EPR technique in generating field-swept EPR spectra, as well as some of the distorting effects that are peculiar to the pulsed detection method. The application of this technique to Cr 3+ -doped ZBLAN reveals that much of the broad resonance extending from g eff =5.1 to g eff =1.97, characteristic of X-band continuous wave EPR of Cr 3+ in glasses, is absent. We attribute this largely to the variation in nutation frequencies across the spectrum that result from sites possessing large fine structure interactions. The description of the spin dynamics of such sites is complicated and we discuss some possible approaches to the simulation of the pulsed EPR spectra. (author)

  10. Ferromagnetic resonance response of electron-beam patterned arrays of ferromagnetic nanoparticles

    Science.gov (United States)

    Jung, Sukkoo; Watkins, Byron; Feller, Jeffrey; Ketterson, John; Chandrasekhar, Venkat

    2001-03-01

    We report on the fabrication and the dynamic magnetic properties of periodic permalloy dot arrays. Electron-beam lithography and e-gun evaporation have been used to make the arrays with the aspect ratio of 2 (dot diameter : 40 nm, height : 80 nm) and periods of 100 - 200 nm. The magnetic properties of the arrays and their interactions have been investigated by ferromagnetic resonance (FMR), magnetic force microscopy (MFM), and SQUID magnetometry. The measured FMR data show that the position and magnitude of resonant absorption peaks strongly depend on the angle between magnetic field and the lattice structure. The results of dot arrays with various kinds of structural parameters will be presented. Supported by Army Research Office, DAAD19-99-1-0334/P001

  11. Broadband electron spin resonance from 500 MHz to 40 GHz using superconducting coplanar waveguides

    Science.gov (United States)

    Clauss, Conrad; Bothner, Daniel; Koelle, Dieter; Kleiner, Reinhold; Bogani, Lapo; Scheffler, Marc; Dressel, Martin

    2013-04-01

    We present non-conventional electron spin resonance (ESR) experiments based on microfabricated superconducting Nb thin film waveguides. A very broad frequency range, from 0.5 to 40 GHz, becomes accessible at low temperatures down to 1.6 K and in magnetic fields up to 1.4 T. This allows for an accurate inspection of the ESR absorption position in the frequency domain, in contrast to the more common observation as a function of magnetic field. We demonstrate the applicability of frequency-swept ESR on Cr3+ atoms in ruby as well as on organic radicals of the nitronyl-nitroxide family. Measurements between 1.6 and 30 K reveal a small frequency shift of the ESR and a resonance broadening below the critical temperature of Nb, which we both attribute to a modification of the magnetic field configuration due to the appearance of shielding supercurrents in the waveguide.

  12. 3-Coil resonance-based wireless power transfer system for implantable electronic

    KAUST Repository

    Yi, Ying

    2013-05-01

    This paper presents a 3-coil resonance-based wireless power transfer (R-WPT) system using a single layer of inductor coil windings, in a pancake configuration, in order to obtain a compact system for implantable electronic applications. A theoretical analysis and experimental measurements in terms of quality factor Q and power transfer efficiency (PTE), was done. Our proposed 3-coil scheme can achieve a high PTE with a resonance frequency of 2.46 MHz over a transfer distance of up to 30 mm, by using two 15-mm radius implant coils. The achieved experimental PTE is more than 85%at a 5 mm separation distance, and about 50% PTE at a distance of 20 mm. © 2013 IEEE.

  13. Tearing modes induced by perpendicular electron cyclotron resonance heating in the KSTAR tokamak

    International Nuclear Information System (INIS)

    Lee, H.H.; Lee, S.G.; Seol, J.; Aydemir, A.Y.; Bae, C.; Woo, M.H.; Kim, J.; Joung, M.; You, K.I.; Park, B.H.; Yoo, J.W.; Na, Y.S.; Kim, H.S.

    2014-01-01

    This paper reports on experimental evidence that shows perpendicular electron cyclotron resonance heating (ECRH) can trigger classical tearing modes when deposited near a rational flux surface. The complex evolution of an m = 2 island is followed during current ramp-up in KSTAR plasmas, from its initial onset as the rational surface enters the ECRH resonance layer to its eventual lock on the wall after the rational surface leaves the layer. Stability analysis coupled to a transport calculation of the current profile with ECRH shows that the perpendicular ECRH may play a significant role in triggering and destabilizing classical m = 2 tearing modes, in agreement with our experimental observation. (paper)

  14. 3-Coil resonance-based wireless power transfer system for implantable electronic

    KAUST Repository

    Yi, Ying; Buttner, Ulrich; Fan, Yiqiang; Foulds, Ian G.

    2013-01-01

    This paper presents a 3-coil resonance-based wireless power transfer (R-WPT) system using a single layer of inductor coil windings, in a pancake configuration, in order to obtain a compact system for implantable electronic applications. A theoretical analysis and experimental measurements in terms of quality factor Q and power transfer efficiency (PTE), was done. Our proposed 3-coil scheme can achieve a high PTE with a resonance frequency of 2.46 MHz over a transfer distance of up to 30 mm, by using two 15-mm radius implant coils. The achieved experimental PTE is more than 85%at a 5 mm separation distance, and about 50% PTE at a distance of 20 mm. © 2013 IEEE.

  15. Inelastic electron scattering, fine structure of M1 giant resonances and Gamow-Teller states

    International Nuclear Information System (INIS)

    Richter, A.

    1983-01-01

    Recent progress in obtaining detailed fine structure distributions of magnetic giant resonances in nuclei using high resolution inelastic electron scattering at low energy is discussed. Specific examples chosen are the medium heavy nuclei 40 42 44 48 Ca in which M1 excitations are due to neutron spin-flip transitions and the N=28 isotones 50 Ti, 52 Cr and 54 Fe where in addition also proton excitations contribute to the measured M1 strength. It is found that the M1 strength is very fragmented and considerably quenched in comparison to predictions of shell model calculations in a model space that includes up to 2p-2h excitations. Finally, the old problem of M1 strength in 208 Pb is revisited and the results of a form factor measurement of a recently discovered low lying Jsup(π)=1 + state by nuclear resonance fluorescence are presented. (Auth.)

  16. Studying metal impurities (Mn2+, Cu2+, Fe3+) in calcium phosphates by electron paramagnetic resonance

    Science.gov (United States)

    Iskhakova, K.; Murzakhanov, F.; Mamin, G.; Putlyaev, V.; Klimashina, E.; Fadeeva, I.; Fomin, A.; Barinov, S.; Maltsev, A.; Bakhteev, S.; Yusupov, R.; Gafurov, M.; Orlinskii, S.

    2018-05-01

    Calcium phosphates (CaP) are exploited in many fields of science, including geology, chemistry, biology and medicine due to their abundance in the nature and presence in the living organism. Various analytical and biochemical methods are used for controlling their chemical content, structure, morphology, etc. Unfortunately, magnetic resonance techniques are usually not even considered as necessary tools for CaP inspection. Some aspects of application of the commercially realized electron paramagnetic resonance (EPR) approaches for characterization of CaP powders and ceramics (including the nanosized materails) such as hydroxyapatite and tricalcium phosphates of biogenic and synthetic origins containing intrinsic impurities or intentional dopants are demonstrated. The key features and advantages of the EPR techniques for CaP based materials characterization that could compliment the data obtained with the recognized analytical methods are pointed out.

  17. Plasma potentials and performance of the advanced electron cyclotron resonance ion source

    International Nuclear Information System (INIS)

    Xie, Z.Q.; Lyneis, C.M.

    1994-01-01

    The mean plasma potential was measured on the LBL advanced electron cyclotron resonance (AECR) ion source for a variety of conditions. The mean potentials for plasmas of oxygen, argon, and argon mixed with oxygen in the AECR were determined. These plasma potentials are positive with respect to the plasma chamber wall and are on the order of tens of volts. Electrons injected into the plasma by an electron gun or from an aluminum oxide wall coating with a very high secondary electron emission reduce the plasma potential as does gas mixing. A lower plasma potential in the AECR source coincides with enhanced production of high charged state ions indicating longer ion confinement times. The effect of the extra electrons from external injection or wall coatings is to lower the average plasma potential and to increase the n e τ i of the ECR plasma. With sufficient extra electrons, the need for gas mixing can be eliminated or reduced to a lower level, so the source can operate at lower neutral pressures. A reduction of the neutral pressure decreases charge exchange between ions and neutrals and enhances the production of high charge state ions. An aluminum oxide coating results in the lowest plasma potential among the three methods discussed and the best source performance

  18. Anions in Cometary Comae

    Science.gov (United States)

    Charnley, Steven B.

    2011-01-01

    The presence of negative ions (anions) in cometary comae is known from Giotto mass spectrometry of IP/Halley. The anions 0-, OH-, C-, CH- and CN- have been detected, as well as unidentified anions with masses 22-65 and 85-110 amu (Chaizy et al. 1991). Organic molecular anions are known to have a significant impact on the charge balance of interstellar clouds and circumstellar envelopes and have been shown to act as catalysts for the gas-phase synthesis of larger hydrocarbon molecules in the ISM, but their importance in cometary comae has not yet been explored. We present details of the first attempt to model the chemistry of anions in cometary comae. Based on the combined chemical and hydro dynamical model of Rodgers & Charnley (2002), we investigate the role of large carbon-chain anions in cometary coma chemistry. We calculate the effects of these anions on coma thermodynamics, charge balance and examine their impact on molecule formation.

  19. Photoelectron spectroscopy of the 6-azauracil anion.

    Science.gov (United States)

    Chen, Jing; Buonaugurio, Angela; Dolgounitcheva, Olga; Zakrzewski, V G; Bowen, Kit H; Ortiz, J V

    2013-02-14

    We report the photoelectron spectrum of the 6-azauracil anion. The spectrum is dominated by a broad band exhibiting a maximum at an electron binding energy (EBE) of 1.2 eV. This spectral pattern is indicative of a valence anion. Our calculations were carried out using ab initio electron propagator and other many-body methods. Comparison of the anion and corresponding neutral of 6-azauracil with those of uracil shows that substituting a nitrogen atom for C-H at the C6 position of uracil gives rise to significant changes in the electronic structure of 6-azauracil versus that of uracil. The adiabatic electron affinity (AEA) of the canonical 6-azauracil tautomer is substantially larger than that of canonical uracil. Among the five tautomeric, 6-azauracil anions studied computationally, the canonical structure was found to be the most stable. The vertical detachment energies (VDE) of the canonical, valence-bound anion of 6-azauracil and its closest "very-rare" tautomer have been calculated. Electron propagator calculations on the canonical anion yield a VDE value that is in close agreement with the experimentally determined VDE value of 1.2 eV. The AEA value of 6-azauracil, assessed at the CCSD(T) level of theory to be 0.5 eV, corresponds with the EBE value of the onset of the experimental spectrum.

  20. Resonance-enhanced electron-impact excitation of Cu-like gold

    Science.gov (United States)

    Xia, L.; Zhang, C. Y.; Si, R.; Guo, X. L.; Chen, Z. B.; Yan, J.; Li, S.; Chen, C. Y.; Wang, K.

    2017-09-01

    Employing the independent-process and isolated-resonance approximations using distorted-waves (IPIRDW), we have performed a series of calculations of the resonance-enhanced electron-impact excitations (EIE) among 27 singly excited levels from the n ≤ 6 configurations of Cu-like gold (Au, Z = 79). Resonance excitation (RE) contributions from both the n = 4 → 4 - 7 and n = 3 → 4 core excitations have been considered. Our results demonstrate that RE contributions are significant and enhance the effective collision strengths (ϒ) of certain excitations by up to an order of magnitude at low temperature (106.1 K), and are still important at relatively high temperature (107.5 K). Results from test calculations of the resonance-enhanced EIE processes among 16 levels from the n ≤ 5 configurations using both the Dirac R-matrix (DRM) and IPIRDW approaches agree very well with each other. This means that the close-coupling effects are not important for this ion, and thus warrants the reliability of present resonance-enhanced EIE data among the 27 levels. The results from the collisional-radiative model (CRM) show that, at 3000 eV, near where Cu-like Au is most abundant, RE contributions have important effects (up to 25%) on the density diagnostic line intensity ratios, which are sensitive near 1020 cm-3. The present work is the first EIE research including RE contributions for Cu-like Au. Our EIE data are more accurate than previous results due to our consideration of RE contributions, and the data should be helpful for modeling and diagnosing a variety of plasmas.

  1. Investigation of resonant polarization radiation of relativistic electrons in gratings at small angles

    International Nuclear Information System (INIS)

    Aleinik, A.N.; Chefonov, O.V.; Kalinin, B.N.; Naumenko, G.A.; Potylitsyn, A.P.; Saruev, G.A.; Sharafutdinov, A.F.

    2003-01-01

    The resonant optical polarization radiation (ROPR) in the Smith-Purcell geometry and the one from the inclined grating at the Tomsk synchrotron and 6-MeV microtron have been investigated. The polarization radiation was observed at 4.2 deg. from the 200 MeV electron beam and at 5 deg. from the 6.2 MeV electron beam. Two methods of measurement of ROPR maxima in these two cases have been used. In the first case (the experiment on synchrotron) we have fixed the wavelength of radiation using an optical filter; the orientation dependence of this radiation was measured. In this dependence we have observed two peaks of radiation from electrons in gold foil grating of 0.1 mm period. The first large peak is a zeroth order peak in direction of specular reflection, and the second one is the first-order peak of resonant polarization radiation. In the experiment on microtron the spectra of ROPR from aluminum foil strip grating of 0.2 mm period in the Smith-Purcell geometry were measured, and the peak of the first-order Smith-Purcell radiation in these spectra was observed. The comparison of data obtained with the simulation results has been performed

  2. Many-electron effect in the resonant L23-M23V Auger-electron spectrum of Ti metal

    International Nuclear Information System (INIS)

    Ohno, Masahide

    2006-01-01

    Above the L23 absorption edge the L 23 -M 23 V resonant Auger-electron spectroscopy (RAES) spectrum of Ti metal shows a normal L 23 -M 23 V Auger decay spectrum at a constant kinetic energy (K.E.). Here LX and MY are the atomic shells Lx and My, respectively. Apart from a weak spectral feature of the L2-M23V Auger transition appearing around the L2 edge, the RAES spectra of Ti meal show a very little difference between the L2 and L3 regions [P. Le Fevre, J. Danger, H. Magnan, D. Chandesris, J. Jupille, S. Bourgeois, M.-A. Arrio, R. Gotter, A. Verdini, A. Morgante, Phys. Rev. B69 (2004) 155421]. It is shown that the time scale of relaxation of the resonantly excited L23-hole state to the L23-electron ionized state is much shorter than that of the L23-hole decay so that the L 23 -M 23 V RAES spectrum of Ti metal resembles much the normal L 23 -M 23 V Auger decay spectrum. The relaxation of the resonantly excited L23-hole state to the fully relaxed L23-hole state before the L23-hole decays, explains the extra width which is the primary cause of the discrepancy between the experimental high resolution near edge X-ray absorption spectroscopy (XAS) spectrum of Ti metal and the one calculated by the particle-hole Green's function including the Coulomb exchange interaction between the 2p hole and the 3d electron. The time scale of relaxation of the L3V two-hole state created by the L2-L3V Coster-Kronig (CK) decay to the single L3-hole state is much shorter than that of the L3-hole decay so that the L2-L3V-L3-M23V CK preceded Auger decay spectrum resembles much the L3-M23V Auger decay one

  3. Empirical Fit to Inelastic Electron-Deuteron and Electron-Neutron Resonance Region Transverse Cross Sections

    International Nuclear Information System (INIS)

    Peter Bosted; M. E. Christy

    2007-01-01

    An empirical fit is described to measurements of inclusive inelastic electron-deuteron cross sections in the kinematic range of four-momentum transfer 0 (le) Q 2 2 and final state invariant mass 1.2 p of longitudinal to transverse cross sections for the proton, and the assumption R p =R n . The underlying fit parameters describe the average cross section for proton and neutron, with a plane-wave impulse approximation (PWIA) used to fit to the deuteron data. Pseudo-data from MAID 2007 were used to constrain the average nucleon cross sections for W<1.2 GeV. The mean deviation of data from the fit is 3%, with less than 5% of the data points deviating from the fit by more than 10%

  4. Resonances

    DEFF Research Database (Denmark)

    an impetus or drive to that account: change, innovation, rupture, or discontinuity. Resonances: Historical Essays on Continuity and Change explores the historiographical question of the modes of interrelation between these motifs in historical narratives. The essays in the collection attempt to realize...

  5. Summary of EC-17: the 17th Joint Workshop on Electron Cyclotron Emission and Electron Cyclotron Resonance Heating (Deurne, The Netherlands, 7-10 May 2012)

    NARCIS (Netherlands)

    Westerhof, E.; Austin, M. E.; Kubo, S.; Lin-Liu, Y. R.; Plaum, B.

    2013-01-01

    An overview is given of the papers presented at the 17th Joint Workshop on Electron Cyclotron Emission (ECE) and Electron Cyclotron Resonance Heating (ECRH). The meeting covered all aspects of the research field ranging from theory to enabling technologies. From the workshop, advanced control by

  6. M series resonant x-ray lines of barium for near threshold electron excitation

    International Nuclear Information System (INIS)

    Morgon, D.V.

    1992-01-01

    An investigation of the M series resonant x-ray emission lines of barium for near threshold electron excitation was undertaken with a vacuum double crystal spectrometer equipped with potassium acid phthalate crystals. X-ray continuum isochromats were obtained for barium samples using the double crystal spectrometer as a monochrometer set to pass 532 eV photons. The rotatable anode allowed the samples to be observed by either the double crystal spectrometer or a soft x-ray appearance potential spectrometer, which was used for monitoring the surface of the varium sample for contamination, and to provide a cross-check for the double crystal spectrometer data. Barium M series characteristic x-ray spectra for 2.0 keV electron excitation were obtained for a variety of samples, and it was discovered that the fluorescent and resonant x-ray emission line energies remained virtually the same, regardless of the chemical condition of the sample. The continuum resonance effect was observed for near-threshold energy electron excitation, but it was significantly weaker than the same effect observed previously for lanthanum or cerium. The electron excitation energy and intensity of this effect were strongly dependent on the chemical condition of the barium sample. X-ray continuum isochromats were observed for pure and contaminated barium samples at a photon energy of 532 eV. For pure metallic barium, a peak associated with 4f electronic states was observed at an energy of about 10.2 eV above the Fermi level. When the sample was exposed to 1.5 x 10 4 Langmuir of air, the 4f structure became more sharply peaked, and shifted to an energy of about 12.0 eV above the Fermi level. A continuum isochromat of barium oxide was also observed. Chemical shifts in barium M IV and M V appearance potential spectra are therefore caused soley by shifts in the energy position of the empty 4f electronic states relative to the Fermi level

  7. Electron paramagnetic resonance of atomic hydrogen (H0) centers in pink tourmaline from Brazil

    International Nuclear Information System (INIS)

    Camargo, M.B.

    1985-01-01

    A model for explaining the atom of hydrogen (H 0 ) in pink tourmaline irradiated with gamma rays is presented. The concentration of H 0 was evaluated and the H 0 lines using the electron paramagnetic resonance were analysed. The g factor and the hyperfine interaction constant were measured with accuracy and determined by matrix diagonalization of spin hamiltonian in vetor space of four dimensions, followed by an iterative calculation with quick convergence the local electric field produced by charges in the lattice was calculated and compared with the value obtained experimentally. (M.C.K.) [pt

  8. Circular waveguide systems for electron-cyclotron-resonant heating of the tandem mirror experiment-upgrade

    International Nuclear Information System (INIS)

    Felker, B.; Calderon, M.O.; Chargin, A.K.

    1983-01-01

    Extensive use of electron cyclotron resonant heating (ECRH) in the Tandem Mirror Experiment-Upgrade (TMX-U) requires continuous development of components to improve efficiency, increase reliability, and deliver power to new locations with respect to the plasma. We have used rectangular waveguide components on the experiment and have developed, tested, and installed circular waveguide components. We replaced the rectangular with the circular components because of the greater transmission efficiency and power-handling capability of the circular ones. Design, fabrication, and testing of all components are complete for all systems. In this paper we describe the design criteria for the system

  9. Fullerene-rare gas mixed plasmas in an electron cyclotron resonance ion source

    Energy Technology Data Exchange (ETDEWEB)

    Asaji, T., E-mail: asaji@oshima-k.ac.jp; Ohba, T. [Oshima National College of Maritime Technology, 1091-1 Komatsu, Suo-oshima, Oshima, Yamaguchi 742-2193 (Japan); Uchida, T.; Yoshida, Y. [Bio-Nano Electronics Research Centre, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585 (Japan); Minezaki, H.; Ishihara, S. [Graduate School of Engineering, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585 (Japan); Racz, R.; Biri, S. [Institute of Nuclear Research (ATOMKI), H-4026 Debrecen, Bem Tér 18/c (Hungary); Muramatsu, M.; Kitagawa, A. [National Institute of Radiological Sciences (NIRS), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Kato, Y. [Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan)

    2014-02-15

    A synthesis technology of endohedral fullerenes such as Fe@C{sub 60} has developed with an electron cyclotron resonance (ECR) ion source. The production of N@C{sub 60} was reported. However, the yield was quite low, since most fullerene molecules were broken in the ECR plasma. We have adopted gas-mixing techniques in order to cool the plasma and then reduce fullerene dissociation. Mass spectra of ion beams extracted from fullerene-He, Ar or Xe mixed plasmas were observed with a Faraday cup. From the results, the He gas mixing technique is effective against fullerene destruction.

  10. Electron spin resonance (ESR) studies on irradiated cocoa beans and niger seeds

    International Nuclear Information System (INIS)

    Mangaonkar, S.R.; Natarajan, V.; Sastry, M.D.; Desai, S.R.P.; Kulkarni, P.R.

    1997-01-01

    Electron spin resonance (ESR) spectra of irradiated (10kGy) and unirradiated cocoa beans and niger seeds have been compared. Unirradiated cocoa beans failed to give any ESR signal, whereas after irradiation (10kGy) an ESR signal at g = 2.0042 was observed. However, ESR signals are given by both irradiated and unirradiated niger seeds. The intensity of signal was found to be dose-dependent up to 10kGy for both seeds. The signals were stable up to 180 days in both cases. The results indicate the possibility of using ESR for distinguishing between irradiated and unirradiated cocoa beans but not for niger seeds

  11. Circuits and systems for CW and pulsed high-field electron spin resonance

    OpenAIRE

    David Robert, Bolton

    2006-01-01

    This thesis is concerned with the design and realisation of components for a new state of the art 94GHz Electron Spin Resonance (ESR) spectrometer capable of operating in both pulsed and CW modes. The complete spectrometer is designed to provide phase coherent 1kW peak power sub-nanosecond π/2 pulses having variable duration and repetition rate. The mm-wave response of a paramagnetic sample to these pulses is detected with a superheterodyne detector. Such a system would offer a step change in...

  12. Al-doped MgB_2 materials studied using electron paramagnetic resonance and Raman spectroscopy

    International Nuclear Information System (INIS)

    Bateni, Ali; Somer, Mehmet; Erdem, Emre; Repp, Sergej; Weber, Stefan

    2016-01-01

    Undoped and aluminum (Al) doped magnesium diboride (MgB_2) samples were synthesized using a high-temperature solid-state synthesis method. The microscopic defect structures of Al-doped MgB_2 samples were systematically investigated using X-ray powder diffraction, Raman spectroscopy, and electron paramagnetic resonance. It was found that Mg-vacancies are responsible for defect-induced peculiarities in MgB_2. Above a certain level of Al doping, enhanced conductive properties of MgB_2 disappear due to filling of vacancies or trapping of Al in Mg-related vacancy sites.

  13. Theory of Electric-Field Effects on Electron-Spin-Resonance Hyperfine Couplings

    International Nuclear Information System (INIS)

    Karna, S.P.

    1997-01-01

    A quantum mechanical theory of the effects of a uniform electric field on electron-spin-resonance hyperfine couplings is presented. The electric-field effects are described in terms of perturbation coefficients which can be used to probe the local symmetry as well as the strength of the electric field at paramagnetic sites in a solid. Results are presented for the first-order perturbation coefficients describing the Bloembergen effect (linear electric-field effect on hyperfine coupling tensor) for the O atom and the OH radical. copyright 1997 The American Physical Society

  14. Laser-excited Fluorescence And Electron-spin Resonance Of Er3+ In Polycrystalline Alcl3

    OpenAIRE

    Ceotto G.; Pires M.A.; Sanjurjo J.A.; Rettori C.; Barberis G.E.

    1990-01-01

    The green fluorescence transitions among the levels corresponding to the 4S3/2 and 4I15/2 configurations of Er3+ diluted in AlCl3 have been measured using laser excitation. The data allow us to determine the crystalline-field splittings of these levels and, in turn, the spin-Hamiltonian parameters. The electron-paramagnetic-resonance spectrum observed at low temperatures is in good agreement with that expected from these parameters. © 1990 The American Physical Society.

  15. Absolute cross sections from the ''boomerang model'' for resonant electron-molecule scattering

    International Nuclear Information System (INIS)

    Dube, L.; Herzenberg, A.

    1979-01-01

    The boomerang model is used to calculate absolute cross sections near the 2 Pi/sub g/ shape resonance in e-N 2 scattering. The calculated cross sections are shown to satisfy detailed balancing. The exchange of electrons is taken into account. A parametrized complex-potential curve for the intermediate N 2 /sup ts-/ ion is determined from a small part of the experimental data, and then used to calculate other properties. The calculations are in good agreement with the absolute cross sections for vibrational excitation from the ground state, the absolute cross section v = 1 → 2, and the absolute total cross section

  16. Comparative investigation on electron spin resonance dosimetry of tooth enamel of cow and human

    International Nuclear Information System (INIS)

    Jiao Ling; Zhang Wenyi; Ding Yanqiu; Kou Mingying

    2010-01-01

    The enamel samples from cow teeth and human teeth were irradiated with 137 Cs γ ray. Their electron spin resonance (ESR) spectra pre and post-irradiation were weaker than those of human. Mass of each sample is 100 mg, the dosimetric signal intensity of cow enamel increased with the radiation dose; the averaged radiation response of cow samples was (34.4±2.0) Gy -1 , very close to the average response of human tooth samples (36.3±2.9) Gy -1 . Therefore cow teeth can be used for retrospective radiation dosimetry when human teeth are unavailable. (authors)

  17. Design optimization and fatigue testing of an electronically-driven mechanically-resonant cantilever spring mechanism

    International Nuclear Information System (INIS)

    Kheng, Lim Boon; Kean, Koay Loke; Gitano-Briggs, Horizon

    2010-01-01

    A light scanning device consisting of an electronically-driven mechanically-resonant cantilever spring-mirror system has been developed for innovative lighting applications. The repeated flexing of the cantilever spring during operation can lead to premature fatigue failure. A model was created to optimize the spring design. The optimized spring design can reduce stress by approximately one-third from the initial design. Fatigue testing showed that the optimized spring design can operate continuously for over 1 month without failure. Analysis of failures indicates surface cracks near the root of the spring are responsible for the failures.

  18. Er3+ impurities in KTiOPO4 studied by electron paramagnetic resonance

    International Nuclear Information System (INIS)

    Bravo, D; MartIn, A; Carvajal, J J; Aguilo, M; DIaz, F; Lopez, F J

    2006-01-01

    An electron paramagnetic resonance (EPR) study of Er 3+ ions in single crystals of KTiOPO 4 (KTP) is presented. The EPR spectra show the existence of eight different Er 3+ centres. The g-matrix has been determined for all eight centres from the analysis of the angular dependences of the spectrum in three planes of the crystal. This study provides strong evidence about incorporation of erbium in the low-symmetry K + sites of KTP. Possible reasons for the appearance of such a large number of Er 3+ centres are discussed

  19. Development of an 18 GHz superconducting electron cyclotron resonance ion source at RCNP.

    Science.gov (United States)

    Yorita, Tetsuhiko; Hatanaka, Kichiji; Fukuda, Mitsuhiro; Kibayashi, Mitsuru; Morinobu, Shunpei; Okamura, Hiroyuki; Tamii, Atsushi

    2008-02-01

    An 18 GHz superconducting electron cyclotron resonance ion source has recently been developed and installed in order to extend the variety and the intensity of ions at the RCNP coupled cyclotron facility. Production of several ions such as O, N, Ar, Kr, etc., is now under development and some of them have already been used for user experiments. For example, highly charged heavy ion beams like (86)Kr(21+,23+) and intense (16)O(5+,6+) and (15)N(6+) ion beams have been provided for experiments. The metal ion from volatile compounds method for boron ions has been developed as well.

  20. Status of the Bio-Nano electron cyclotron resonance ion source at Toyo University

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, T., E-mail: uchida-t@toyo.jp [Bio-Nano Electronics Research Centre, Toyo University, Kawagoe 350-8585 (Japan); Minezaki, H.; Ishihara, S. [Graduate School of Engineering, Toyo University, Kawagoe 350-8585 (Japan); Muramatsu, M.; Kitagawa, A.; Drentje, A. G. [National Institute of Radiological Sciences (NIRS), Chiba 263-8555 (Japan); Rácz, R.; Biri, S. [Institute for Nuclear Research (ATOMKI), H-4026 Debrecen (Hungary); Asaji, T. [Oshima National College of Maritime Technology, Yamaguchi 742-2193 (Japan); Kato, Y. [Graduate School of Engineering, Osaka University, Suita 565-0871 (Japan); Yoshida, Y. [Bio-Nano Electronics Research Centre, Toyo University, Kawagoe 350-8585 (Japan); Graduate School of Engineering, Toyo University, Kawagoe 350-8585 (Japan)

    2014-02-15

    In the paper, the material science experiments, carried out recently using the Bio-Nano electron cyclotron resonance ion source (ECRIS) at Toyo University, are reported. We have investigated several methods to synthesize endohedral C{sub 60} using ion-ion and ion-molecule collision reaction in the ECRIS. Because of the simplicity of the configuration, we can install a large choice of additional equipment in the ECRIS. The Bio-Nano ECRIS is suitable not only to test the materials production but also to test technical developments to improve or understand the performance of an ECRIS.