WorldWideScience

Sample records for resolved pulsed field

  1. Frequency-resolved measurement of the orbital angular momentum spectrum of femtosecond ultra-broadband optical-vortex pulses based on field reconstruction

    International Nuclear Information System (INIS)

    Yamane, Keisaku; Yang, Zhili; Toda, Yasunori; Morita, Ryuji

    2014-01-01

    We propose a high-precision method for measuring the orbital angular momentum (OAM) spectrum of ultra-broadband optical-vortex (OV) pulses from fork-like interferograms between OV pulses and a reference plane-wave pulse. It is based on spatial reconstruction of the electric fields of the pulses to be measured from the frequency-resolved interference pattern. Our method is demonstrated experimentally by obtaining the OAM spectra for different spectral components of the OV pulses, enabling us to characterize the frequency dispersion of the topological charge of the OAM spectrum by a simple experimental setup. Retrieval is carried out in quasi-real time, allowing us to investigate OAM spectra dynamically. Furthermore, we determine the relative phases (including the sign) of the topological-charge-resolved electric-field amplitudes, which are significant for evaluating OVs or OV pulses with arbitrarily superposed modes. (paper)

  2. Pulse-resolved radiotherapy dosimetry using fiber-coupled organic scintillators

    DEFF Research Database (Denmark)

    Beierholm, Anders Ravnsborg

    scintillators and can be perceived as a well characterized, independent alternative to the methods that are in clinical use today. The dosimeter itself does not require a voltage supply, and is composed of water equivalent materials. The dosimeter can be fabricated with a sensitive volume smaller than a cubic...... millimeter, which is small enough to resolve the small radiation fields encountered in modern radiotherapy. The fast readout of the dosimeter enables measurements on the same time scale as the pulsed radiation delivery from the medical linear accelerators used for treatment. The dosimetry system, comprising...... for both standard and small fields. This thesis concludes that the new pulse-resolved dosimetry system holds great potential for modern radiotherapy applications, such as stereotactic radiotherapy and intensity-modulated radiotherapy....

  3. Electric field measurements in a nanosecond pulse discharge in atmospheric air

    International Nuclear Information System (INIS)

    Simeni Simeni, Marien; Frederickson, Kraig; Lempert, Walter R; Adamovich, Igor V; Goldberg, Benjamin M; Zhang, Cheng

    2017-01-01

    The paper presents the results of temporally and spatially resolved electric field measurements in a nanosecond pulse discharge in atmospheric air, sustained between a razor edge high-voltage electrode and a plane grounded electrode covered by a thin dielectric plate. The electric field is measured by picosecond four-wave mixing in a collinear phase-matching geometry, with time resolution of approximately 2 ns, using an absolute calibration provided by measurements of a known electrostatic electric field. The results demonstrate electric field offset on the discharge center plane before the discharge pulse due to surface charge accumulation on the dielectric from the weaker, opposite polarity pre-pulse. During the discharge pulse, the electric field follows the applied voltage until ‘forward’ breakdown occurs, after which the field in the plasma is significantly reduced due to charge separation. When the applied voltage is reduced, the field in the plasma reverses direction and increases again, until the weak ‘reverse’ breakdown occurs, producing a secondary transient reduction in the electric field. After the pulse, the field is gradually reduced on a microsecond time scale, likely due to residual surface charge neutralization by transport of opposite polarity charges from the plasma. Spatially resolved electric field measurements show that the discharge develops as a surface ionization wave. Significant surface charge accumulation on the dielectric surface is detected near the end of the discharge pulse. Spatially resolved measurements of electric field vector components demonstrate that the vertical electric field in the surface ionization wave peaks ahead of the horizontal electric field. Behind the wave, the vertical field remains low, near the detection limit, while the horizontal field is gradually reduced to near the detection limit at the discharge center plane. These results are consistent with time-resolved measurements of electric field

  4. Pulsed-High Field/High-Frequency EPR Spectroscopy

    Science.gov (United States)

    Fuhs, Michael; Moebius, Klaus

    Pulsed high-field/high-frequency electron paramagnetic resonance (EPR) spectroscopy is used to disentangle many kinds of different effects often obscured in continuous wave (cw) EPR spectra at lower magnetic fields/microwave frequencies. While the high magnetic field increases the resolution of G tensors and of nuclear Larmor frequencies, the high frequencies allow for higher time resolution for molecular dynamics as well as for transient paramagnetic intermediates studied with time-resolved EPR. Pulsed EPR methods are used for example for relaxation-time studies, and pulsed Electron Nuclear DOuble Resonance (ENDOR) is used to resolve unresolved hyperfine structure hidden in inhomogeneous linewidths. In the present article we introduce the basic concepts and selected applications to structure and mobility studies on electron transfer systems, reaction centers of photosynthesis as well as biomimetic models. The article concludes with an introduction to stochastic EPR which makes use of an other concept for investigating resonance systems in order to increase the excitation bandwidth of pulsed EPR. The limited excitation bandwidth of pulses at high frequency is one of the main limitations which, so far, made Fourier transform methods hardly feasible.

  5. Nanosecond time-resolved EPR in pulse radiolysis via the spin echo method

    International Nuclear Information System (INIS)

    Trifunac, A.D.; Norris, J.R.; Lawler, R.G.

    1979-01-01

    The design and operation of a time-resolved electron spin echo spectrometer suitable for detecting transient radicals produced by 3 MeV electron radiolysis is described. Two modes of operation are available: Field swept mode which generates a normal EPR spectrum and kinetic mode in which the time dependence of a single EPR line is monitored. Techniques which may be used to minimize the effects of nonideal microwave pulses and overlapping sample tube signals are described. The principal advantages of the spin echo method over other time-resolved EPR methods are: (1) Improved time resolution (presently approx.30--50 nsec) allows monitoring of fast changes in EPR signals of transient radicals, (2) Lower susceptibility to interference between the EPR signal and the electron beam pulse at short times, and (3) Lack of dependence of transient signals on microwave field amplitude or static field inhomogeneity at short times. The performance of the instrument is illustrated using CIDEP from acetate radical formed in pulsed radiolysis of aqueous solutions of potassium acetate. The relaxation time and CIDEP enhancement factor obtained for this radical using the spin echo method compare favorably with previous determinations using direct detection EPR. Radical decay rates yield estimates of initial radical concentrations of 10 -4 10 -3 M per electron pulse. The Bloch equations are solved to give an expression for the echo signal for samples exhibiting CIDEP using arbitrary microwave pulse widths and distributions of Larmor frequencies. Conditions are discussed under which the time-dependent signal would be distorted by deviations from an ideal nonselective 90 0 --tau--180 0 pulse sequence

  6. The time resolved measurement of ultrashort terahertz-band electric fields without an ultrashort probe

    International Nuclear Information System (INIS)

    Walsh, D. A.; Snedden, E. W.; Jamison, S. P.

    2015-01-01

    The time-resolved detection of ultrashort pulsed THz-band electric field temporal profiles without an ultrashort laser probe is demonstrated. A non-linear interaction between a narrow-bandwidth optical probe and the THz pulse transposes the THz spectral intensity and phase information to the optical region, thereby generating an optical pulse whose temporal electric field envelope replicates the temporal profile of the real THz electric field. This optical envelope is characterised via an autocorrelation based FROG (frequency resolved optical gating) measurement, hence revealing the THz temporal profile. The combination of a narrow-bandwidth, long duration, optical probe, and self-referenced FROG makes the technique inherently immune to timing jitter between the optical probe and THz pulse and may find particular application where the THz field is not initially generated via ultrashort laser methods, such as the measurement of longitudinal electron bunch profiles in particle accelerators

  7. Pulse-resolved radiotherapy dosimetry using fiber-coupled organic scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Ravnsborg Beierholm, A.

    2011-05-15

    This PhD project pertains to the development and adaptation of a dosimetry system that can be used to verify the delivery of radiation in modern radiotherapy modalities involving small radiation fields and dynamic radiation delivery. The dosimetry system is based on fibre-coupled organic scintillators and can be perceived as a well characterized, independent alternative to the methods that are in clinical use today. The dosimeter itself does not require a voltage supply, and is composed of water equivalent materials. The dosimeter can be fabricated with a sensitive volume smaller than a cubic millimeter, which is small enough to resolve the small radiation fields encountered in modern radiotherapy. The fast readout of the dosimeter enables measurements on the same time scale as the pulsed radiation delivery from the medical linear accelerators used for treatment. The dosimetry system, comprising fiber-coupled organic scintillators and data acquisition hardware, was developed at the Radiation Research Division at Risoe DTU and tested using clinical x-ray beams at hospitals in Denmark and abroad. Measurements of output factors and percentage depth dose were performed and compared with reference values and Monte Carlo simulations for static square radiation fields for standard (4 cm x 4 cm to 20 cm x 20 cm) and small (down to 0.6 cm x 0.6 cm) field sizes. The accuracy of most of the obtained measurements was good, agreeing with reference and simulated dose values to within 2 % standard deviation for both standard and small fields. This thesis concludes that the new pulse-resolved dosimetry system holds great potential for modern radiotherapy applications, such as stereotactic radiotherapy and intensity-modulated radiotherapy. (Author)

  8. Pulse-resolved radiotherapy dosimetry using fiber-coupled organic scintillators

    International Nuclear Information System (INIS)

    Ravnsborg Beierholm, A.

    2011-05-01

    This PhD project pertains to the development and adaptation of a dosimetry system that can be used to verify the delivery of radiation in modern radiotherapy modalities involving small radiation fields and dynamic radiation delivery. The dosimetry system is based on fibre-coupled organic scintillators and can be perceived as a well characterized, independent alternative to the methods that are in clinical use today. The dosimeter itself does not require a voltage supply, and is composed of water equivalent materials. The dosimeter can be fabricated with a sensitive volume smaller than a cubic millimeter, which is small enough to resolve the small radiation fields encountered in modern radiotherapy. The fast readout of the dosimeter enables measurements on the same time scale as the pulsed radiation delivery from the medical linear accelerators used for treatment. The dosimetry system, comprising fiber-coupled organic scintillators and data acquisition hardware, was developed at the Radiation Research Division at Risoe DTU and tested using clinical x-ray beams at hospitals in Denmark and abroad. Measurements of output factors and percentage depth dose were performed and compared with reference values and Monte Carlo simulations for static square radiation fields for standard (4 cm x 4 cm to 20 cm x 20 cm) and small (down to 0.6 cm x 0.6 cm) field sizes. The accuracy of most of the obtained measurements was good, agreeing with reference and simulated dose values to within 2 % standard deviation for both standard and small fields. This thesis concludes that the new pulse-resolved dosimetry system holds great potential for modern radiotherapy applications, such as stereotactic radiotherapy and intensity-modulated radiotherapy. (Author)

  9. Sub-nanosecond time-resolved near-field scanning magneto-optical microscope.

    Science.gov (United States)

    Rudge, J; Xu, H; Kolthammer, J; Hong, Y K; Choi, B C

    2015-02-01

    We report on the development of a new magnetic microscope, time-resolved near-field scanning magneto-optical microscope, which combines a near-field scanning optical microscope and magneto-optical contrast. By taking advantage of the high temporal resolution of time-resolved Kerr microscope and the sub-wavelength spatial resolution of a near-field microscope, we achieved a temporal resolution of ∼50 ps and a spatial resolution of microscope, the magnetic field pulse induced gyrotropic vortex dynamics occurring in 1 μm diameter, 20 nm thick CoFeB circular disks has been investigated. The microscope provides sub-wavelength resolution magnetic images of the gyrotropic motion of the vortex core at a resonance frequency of ∼240 MHz.

  10. Pulse Retrieval Algorithm for Interferometric Frequency-Resolved Optical Gating Based on Differential Evolution

    OpenAIRE

    Hyyti, Janne; Escoto, Esmerando; Steinmeyer, Günter

    2017-01-01

    A novel algorithm for the ultrashort laser pulse characterization method of interferometric frequency-resolved optical gating (iFROG) is presented. Based on a genetic method, namely differential evolution, the algorithm can exploit all available information of an iFROG measurement to retrieve the complex electric field of a pulse. The retrieval is subjected to a series of numerical tests to prove robustness of the algorithm against experimental artifacts and noise. These tests show that the i...

  11. Electric fields in plasmas under pulsed currents

    International Nuclear Information System (INIS)

    Tsigutkin, K.; Doron, R.; Stambulchik, E.; Bernshtam, V.; Maron, Y.; Fruchtman, A.; Commisso, R. J.

    2007-01-01

    Electric fields in a plasma that conducts a high-current pulse are measured as a function of time and space. The experiment is performed using a coaxial configuration, in which a current rising to 160 kA in 100 ns is conducted through a plasma that prefills the region between two coaxial electrodes. The electric field is determined using laser spectroscopy and line-shape analysis. Plasma doping allows for three-dimensional spatially resolved measurements. The measured peak magnitude and propagation velocity of the electric field is found to match those of the Hall electric field, inferred from the magnetic-field front propagation measured previously

  12. Pulse retrieval algorithm for interferometric frequency-resolved optical gating based on differential evolution.

    Science.gov (United States)

    Hyyti, Janne; Escoto, Esmerando; Steinmeyer, Günter

    2017-10-01

    A novel algorithm for the ultrashort laser pulse characterization method of interferometric frequency-resolved optical gating (iFROG) is presented. Based on a genetic method, namely, differential evolution, the algorithm can exploit all available information of an iFROG measurement to retrieve the complex electric field of a pulse. The retrieval is subjected to a series of numerical tests to prove the robustness of the algorithm against experimental artifacts and noise. These tests show that the integrated error-correction mechanisms of the iFROG method can be successfully used to remove the effect from timing errors and spectrally varying efficiency in the detection. Moreover, the accuracy and noise resilience of the new algorithm are shown to outperform retrieval based on the generalized projections algorithm, which is widely used as the standard method in FROG retrieval. The differential evolution algorithm is further validated with experimental data, measured with unamplified three-cycle pulses from a mode-locked Ti:sapphire laser. Additionally introducing group delay dispersion in the beam path, the retrieval results show excellent agreement with independent measurements with a commercial pulse measurement device based on spectral phase interferometry for direct electric-field retrieval. Further experimental tests with strongly attenuated pulses indicate resilience of differential-evolution-based retrieval against massive measurement noise.

  13. Improved ultrashort pulse-retrieval algorithm for frequency-resolved optical gating

    International Nuclear Information System (INIS)

    DeLong, K.W.; Trebino, R.

    1994-01-01

    We report on significant improvements in the pulse-retrieval algorithm used to reconstruct the amplitude and the phase of ultrashort optical pulses from the experimental frequency-resolved optical gating trace data in the polarization-gate geometry. These improvements involve the use of an intensity constraint, an overcorrection technique, and a multidimensional minimization scheme. While the previously published, basic algorithm converged for most common ultrashort pulses, it failed to retrieve pulses with significant intensity substructure. The improved composite algorithm successfully converges for such pulses. It can now retrieve essentially all pulses of practical interest. We present examples of complex waveforms that were retrieved by the improved algorithm

  14. Pulsed-field gel electrophoresis of bacterial chromosomes.

    Science.gov (United States)

    Mawer, Julia S P; Leach, David R F

    2013-01-01

    The separation of fragments of DNA by agarose gel electrophoresis is integral to laboratory life. Nevertheless, standard agarose gel electrophoresis cannot resolve fragments bigger than 50 kb. Pulsed-field gel electrophoresis is a technique that has been developed to overcome the limitations of standard agarose gel electrophoresis. Entire linear eukaryotic chromosomes, or large fragments of a chromosome that have been generated by the action of rare-cutting restriction endonucleases, can be separated using this technique. As a result, pulsed-field gel electrophoresis has many applications, from karyotype analysis of microbial genomes, to the analysis of chromosomal strand breaks and their repair intermediates, to the study of DNA replication and the identification of origins of replication. This chapter presents a detailed protocol for the preparation of Escherichia coli chromosomal DNA that has been embedded in agarose plugs, digested with the rare-cutting endonuclease NotI, and separated by contour-clamped homogeneous field electrophoresis. The principles in this protocol can be applied to the separation of all fragments of DNA whose size range is between 40 kb and 1 Mb.

  15. Frequency-resolved pump-probe characterization of femtosecond infrared pulses

    NARCIS (Netherlands)

    Yeremenko, S.; Baltuška, A.; Haan, F. de; Pshenichnikov, M.S.; Wiersma, D.A.

    2002-01-01

    A novel method for ultrashort IR pulse characterization is presented. The technique utilizes a frequency-resolved pump-probe geometry that is common in applications of ultrafast spectroscopy, without any modifications of the setup. The experimental demonstration of the method was carried out to

  16. Programming for time resolved spectrum in pulse radiolysis experiments

    International Nuclear Information System (INIS)

    Betty, C.A.; Panajkar, M.S.; Shirke, N.D.

    1993-01-01

    A user friendly program in Pascal has been developed for data acquisition and subsequent processing of time resolved spectra of transient species produced in pulse radiolysis experiments. The salient features of the program are (i) thiocyanate dosimetry and (ii) spectrum acquisition. The thiocyanate dosimetry is carried out to normalize experimental conditions to a standard value as determined by computing absorbance of the transient signal CNS -2 that is produced from thiocyanate solution by a 7 MeV electron pulse. Spectrum acquisition allows the acquisition of the time resolved data at 20 different times points and subsequent display of the plots of absorbance vs. wavelength for the desired time points during the experiment. It is also possible to plot single time point spectrum as well as superimposed spectra for different time points. Printing, editing and merging facilities are also provided. (author). 2 refs., 7 figs

  17. Ultrashort-pulse measurement using noninstantaneous nonlinearities: Raman effects in frequency-resolved optical gating

    International Nuclear Information System (INIS)

    DeLong, K.W.; Ladera, C.L.; Trebino, R.; Kohler, B.; Wilson, K.R.

    1995-01-01

    Ultrashort-pulse-characterization techniques generally require instantaneously responding media. We show that this is not the case for frequency-resolved optical gating (FROG). We include, as an example, the noninstantaneous Raman response of fused silica, which can cause errors in the retrieved pulse width of as much as 8% for a 25-fs pulse in polarization-gate FROG. We present a modified pulse-retrieval algorithm that deconvolves such slow effects and use it to retrieve pulses of any width. In experiments with 45-fs pulses this algorithm achieved better convergence and yielded a shorter pulse than previous FROG algorithms

  18. Time resolved Thomson scattering diagnostic of pulsed gas metal arc welding (GMAW) process

    International Nuclear Information System (INIS)

    Kühn-Kauffeldt, M; Schein, J; Marquès, J L

    2014-01-01

    In this work a Thomson scattering diagnostic technique was applied to obtain time resolved electron temperature and density values during a gas metal arc welding (GMAW) process. The investigated GMAW process was run with aluminum wire (AlMg 4,5 Mn) with 1.2 mm diameter as a wire electrode, argon as a shielding gas and peak currents in the range of 400 A. Time resolved measurements could be achieved by triggering the laser pulse at shifted time positions with respect to the current pulse driving the process. Time evaluation of resulting electron temperatures and densities is used to investigate the state of the plasma in different phases of the current pulse and to determine the influence of the metal vapor and droplets on the plasma properties

  19. Electric field measurements in a nanosecond pulse discharge by picosecond CARS/4-wave mixing

    Science.gov (United States)

    Goldberg, Ben; Shkurenkov, Ivan; Adamovich, Igor; Lempert, Walter

    2014-10-01

    Time-resolved electric field measurements in hydrogen by picosecond CARS/4-wave mixing are presented. Measurements are carried out in a high voltage nanosecond pulse discharge in hydrogen in plane-to-plane geometry, at pressures of up to several hundred Torr, and with a time resolution of 0.2 ns. Absolute calibration of the diagnostics is done using a sub-breakdown high voltage pulse of 12 kV/cm. A diffuse discharge is obtained by applying a peak high voltage pulse of 40 kV/cm between the electrodes. It is found that breakdown occurs at a lower field, 15--20 kV/cm, after which the field in the plasma is reduced rapidly due to plasma self shielding The experimental results are compared with kinetic modeling calculations, showing good agreement between the measured and the predicted electric field.

  20. Is pulsed electric field still effective for RNA separation in capillary electrophoresis?

    Science.gov (United States)

    Li, Zhenqing; Dou, Xiaoming; Ni, Yi; Chen, Qinmiao; Cheng, Shuyi; Yamaguchi, Yoshinori

    2012-03-16

    Pulsed field capillary electrophoresis (PFCE) is a predominant technique to cope with difficulties in resolving large DNA strands, yet it is still unclear whether pulsed electric field is effective for the separation of higher mass RNA. In this paper we focused on the role of pulsed electric field in large RNA fragments analysis by comparing RNA separation performance in PFCE with that in constant field CE. Separation performance in terms of migration mobility, plate numbers, resolution, and selectivity has been tested for the analysis of RNA from 0.1 to 10.0 kilo nucleotide (knt) under different electrophoretic conditions. Denaturation, important to obtain uniform and identifiable peaks, was accomplished by heating the sample in 4.0M urea prior to analysis and the presence of 4.0M urea in the electrophoresis buffer. Results demonstrate that unlike DNA in PFCE, the pulsed electric field mainly affects the separation performance of RNA between 0.4 and 2.0 knt. The migration mobility of long RNA fragments is not a strong function of modulation depth and pulsed frequency. Moreover, the logarithm of RNA mobility is almost inversely proportional to the logarithm of molecule size up to 6.0 knt with correlation coefficient higher than 0.99 in all the polymer concentrations measured here. Resonance frequency of RNA in PFCE was also observed. While these initial experiments show no distinct advantages of using PFCE for RNA separation, they do take further step toward characterizing the migration behavior of RNA under pulsed field conditions. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Phase-resolved pulse propagation through metallic photonic crystal slabs: plasmonic slow light

    Science.gov (United States)

    Schönhardt, Anja; Nau, Dietmar; Bauer, Christina; Christ, André; Gräbeldinger, Hedi; Giessen, Harald

    2017-03-01

    We characterized the electromagnetic field of ultra-short laser pulses after propagation through metallic photonic crystal structures featuring photonic and plasmonic resonances. The complete pulse information, i.e. the envelope and phase of the electromagnetic field, was measured using the technique of cross-correlation frequency resolved optical gating. In good agreement, measurements and scattering matrix simulations show a dispersive behaviour of the spectral phase at the position of the resonances. Asymmetric Fano-type resonances go along with asymmetric phase characteristics. Furthermore, the spectral phase is used to calculate the dispersion of the sample and possible applications in dispersion compensation are investigated. Group refractive indices of 700 and 70 and group delay dispersion values of 90 000 fs2 and 5000 fs2 are achieved in transverse electric and transverse magnetic polarization, respectively. The behaviour of extinction and spectral phase can be understood from an intuitive model using the complex transmission amplitude. An associated depiction in the complex plane is a useful approach in this context. This method promises to be valuable also in photonic crystal and filter design, for example, with regards to the symmetrization of the resonances. This article is part of the themed issue 'New horizons for nanophotonics'.

  2. Field transients of coherent terahertz synchrotron radiation accessed via time-resolving and correlation techniques

    Energy Technology Data Exchange (ETDEWEB)

    Pohl, A.; Hübers, H.-W. [Humboldt-Universität zu Berlin, Institute of Physics, Newtonstraße 15, 12489 Berlin (Germany); Institute of Optical Sensor Systems, German Aerospace Center (DLR), Rutherfordstrasse 29, 12489 Berlin (Germany); Semenov, A. [Institute of Optical Sensor Systems, German Aerospace Center (DLR), Rutherfordstrasse 29, 12489 Berlin (Germany); Hoehl, A.; Ulm, G. [Physikalisch-Technische Bundesanstalt (PTB), Abbestraße 2-12, 10587 Berlin (Germany); Ries, M.; Wüstefeld, G. [Helmholz-Zentrum Berlin, Albert-Einstein-Str. 15, 12489 Berlin (Germany); Ilin, K.; Thoma, P.; Siegel, M. [Institute of Micro- and Nanoelectronic Systems, Karlsruhe Institute of Technology (KIT), Hertzstrasse 16, 76187 Karlsruhe (Germany)

    2016-03-21

    Decaying oscillations of the electric field in repetitive pulses of coherent synchrotron radiation in the terahertz frequency range was evaluated by means of time-resolving and correlation techniques. Comparative analysis of real-time voltage transients of the electrical response and interferograms, which were obtained with an ultrafast zero-bias Schottky diode detector and a Martin-Puplett interferometer, delivers close values of the pulse duration. Consistent results were obtained via the correlation technique with a pair of Golay Cell detectors and a pair of resonant polarisation-sensitive superconducting detectors integrated on one chip. The duration of terahertz synchrotron pulses does not closely correlate with the duration of single-cycle electric field expected for the varying size of electron bunches. We largely attribute the difference to the charge density oscillations in electron bunches and to the low-frequency spectral cut-off imposed by both the synchrotron beamline and the coupling optics of our detectors.

  3. Time-resolved investigation of an asymmetric bipolar pulsed magnetron deposition discharge: Influence of pressure

    NARCIS (Netherlands)

    Dunger, Th.; Welzel, Th.; Welzel, S.; Richter, F.

    2005-01-01

    A bipolar pulsed magnetron deposition discharge has been studied with pulse frequencies of 100 and 150 kHz, respectively. The discharge was operated in an argon/oxygen mixture at different total pressures with a circular magnesium target as cathode. Time-resolved Langmuir double probe measurements

  4. Generation of pulsed far-infrared radiation and its application for far-infrared time-resolved spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, Yasuhiro [Tohoku Univ., Sendai (Japan). Faculty of Engineering

    1996-07-01

    So-called time-resolved spectroscopy technique has been used from old time as the means for studying the dynamic optical property, light-induced reaction and so on of matters. As an example, there is the method called pump and probe, and here, the wavelength of this probe light is the problem. If the object energy region is limited to about 0.1 eV, fast time-resolved spectroscopy is feasible relatively easily. However, energy region is extended to low energy region, the light source which is available as the pulsed probe light having sufficient intensity is limited. In this paper, the attempt of time-resolved spectroscopy utilizing coherent radiation, which has ended in failure, and the laser pulse-induced far-infrared radiation which can be utilized as new far-infrared probe light are reported. The reason why far-infrared radiation is used is explained. The attempt of time-resolved spectroscopy using NaCl crystals is reported on the equipment, the method of measuring absorption spectra and the results. Laser pulse-induced far-infrared radiation and the method of generating it are described. The multi-channel detector for far-infrared radiation which was made for trial is shown. (K.I.)

  5. Electric field measurements in a dielectric barrier nanosecond pulse discharge with sub-nanosecond time resolution

    International Nuclear Information System (INIS)

    Goldberg, Benjamin M; Shkurenkov, Ivan; Adamovich, Igor V; Lempert, Walter R; O’Byrne, Sean

    2015-01-01

    The paper presents the results of time-resolved electric field measurements in a nanosecond discharge between two plane electrodes covered by dielectric plates, using picosecond four-wave mixing diagnostics. For absolute calibration, the IR signal was measured in hydrogen at a pressure of 440 Torr, for electrostatic electric field ranging from 0 to 8 kV cm −1 . The calibration curve (i.e. the square root of IR signal intensity versus electric field) was shown to be linear. By measuring the intensities of the pump, Stokes, and IR signal beam for each laser shot during the time sweep across the high-voltage pulse, temporal evolution of the electric field in the nanosecond pulse discharge was determined with sub-nanosecond time resolution. The results are compared to kinetic modeling predictions, showing good agreement, including non-zero electric field offset before the main high voltage pulse, breakdown moment, and reduction of electric field in the plasma after breakdown. The difference between the experimental results and model predictions is likely due to non-1D structure of the discharge. Comparison with the kinetic modeling predictions shows that electric field in the nanosecond pulse discharge is controlled primarily by electron impact excitation and charge accumulation on the dielectric surfaces. (paper)

  6. Measurement of electroosmotic and electrophoretic velocities using pulsed and sinusoidal electric fields.

    Science.gov (United States)

    Sadek, Samir H; Pimenta, Francisco; Pinho, Fernando T; Alves, Manuel A

    2017-04-01

    In this work, we explore two methods to simultaneously measure the electroosmotic mobility in microchannels and the electrophoretic mobility of micron-sized tracer particles. The first method is based on imposing a pulsed electric field, which allows to isolate electrophoresis and electroosmosis at the startup and shutdown of the pulse, respectively. In the second method, a sinusoidal electric field is generated and the mobilities are found by minimizing the difference between the measured velocity of tracer particles and the velocity computed from an analytical expression. Both methods produced consistent results using polydimethylsiloxane microchannels and polystyrene micro-particles, provided that the temporal resolution of the particle tracking velocimetry technique used to compute the velocity of the tracer particles is fast enough to resolve the diffusion time-scale based on the characteristic channel length scale. Additionally, we present results with the pulse method for viscoelastic fluids, which show a more complex transient response with significant velocity overshoots and undershoots after the start and the end of the applied electric pulse, respectively. © 2016 The Authors. Electrophoresis published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Characterization of Ultrafast Laser Pulses using a Low-dispersion Frequency Resolved Optical Grating Spectrometer

    Science.gov (United States)

    Whitelock, Hope; Bishop, Michael; Khosravi, Soroush; Obaid, Razib; Berrah, Nora

    2016-05-01

    A low dispersion frequency-resolved optical gating (FROG) spectrometer was designed to characterize ultrashort (non-colinear optical parametric amplifier. This instrument splits a laser pulse into two replicas with a 90:10 intensity ratio using a thin pellicle beam-splitter and then recombines the pulses in a birefringent medium. The instrument detects a wavelength-sensitive change in polarization of the weak probe pulse in the presence of the stronger pump pulse inside the birefringent medium. Scanning the time delay between the two pulses and acquiring spectra allows for characterization of the frequency and time content of ultrafast laser pulses, that is needed for interpretation of experimental results obtained from these ultrafast laser systems. Funded by the DoE-BES, Grant No. DE-SC0012376.

  8. Genetic heterogeneity of Campylobacter concisus determined by pulsed field gel electrophoresis-based macrorestriction profiling

    DEFF Research Database (Denmark)

    Matsheka, M.I.; Elisha, B.G.; Lastovica, A.L.

    2002-01-01

    1 for pulsed field gel electrophoresis-based genotyping. Subsequently, 53 strains of C concisus, principally from cases of diarrhoea in children, were examined. Fifty-one distinct patterns were obtained, indicating the high discriminatory potential of the method. Patterns comprised between one...... comprised of several genomospecies. The pulsed field gel electrophoresis typing method described here has considerable potential for molecular epidemiological studies of C concisus and may be a useful adjunctive method for helping to resolve key taxonomic issues for this species....... and 14 restriction fragments, with type and reference strains of two well-defined genomospecies of oral and faecal origin containing six and 12 fragments respectively. Our results show that C concisus is genetically diverse and suggest the species as currently defined to be a taxonomic continuum...

  9. A portable high-field pulsed-magnet system for single-crystal x-ray scattering studies

    International Nuclear Information System (INIS)

    Islam, Zahirul; Lang, Jonathan C.; Ruff, Jacob P. C.; Ross, Kathryn A.; Gaulin, Bruce D.; Nojiri, Hiroyuki; Matsuda, Yasuhiro H.; Qu Zhe

    2009-01-01

    We present a portable pulsed-magnet system for x-ray studies of materials in high magnetic fields (up to 30 T). The apparatus consists of a split-pair of minicoils cooled on a closed-cycle cryostat, which is used for x-ray diffraction studies with applied field normal to the scattering plane. A second independent closed-cycle cryostat is used for cooling the sample to near liquid helium temperatures. Pulsed magnetic fields (∼1 ms in total duration) are generated by discharging a configurable capacitor bank into the magnet coils. Time-resolved scattering data are collected using a combination of a fast single-photon counting detector, a multichannel scaler, and a high-resolution digital storage oscilloscope. The capabilities of this instrument are used to study a geometrically frustrated system revealing strong magnetostrictive effects in the spin-liquid state.

  10. Pulsed electric fields

    Science.gov (United States)

    The concept of pulsed electric fields (PEF) was first proposed in 1967 to change the behavior or microorganisms. The electric field phenomenon was identified as membrane rupture theory in the 1980s. Increasing the membrane permeability led to the application of PEF assisted extraction of cellular co...

  11. NMR in pulsed magnetic field

    KAUST Repository

    Abou-Hamad, Edy; Bontemps, P.; Rikken, Geert L J A

    2011-01-01

    Nuclear magnetic resonance (NMR) experiments in pulsed magnetic fields up to 30.4 T focused on 1H and 93Nb nuclei are reported. Here we discuss the advantage and limitation of pulsed field NMR and why this technique is able to become a promising research tool. © 2011 Elsevier Inc. All Rights Reserved.

  12. NMR in pulsed magnetic field

    KAUST Repository

    Abou-Hamad, Edy

    2011-09-01

    Nuclear magnetic resonance (NMR) experiments in pulsed magnetic fields up to 30.4 T focused on 1H and 93Nb nuclei are reported. Here we discuss the advantage and limitation of pulsed field NMR and why this technique is able to become a promising research tool. © 2011 Elsevier Inc. All Rights Reserved.

  13. Cryosurgery with Pulsed Electric Fields

    Science.gov (United States)

    Daniels, Charlotte S.; Rubinsky, Boris

    2011-01-01

    This study explores the hypothesis that combining the minimally invasive surgical techniques of cryosurgery and pulsed electric fields will eliminate some of the major disadvantages of these techniques while retaining their advantages. Cryosurgery, tissue ablation by freezing, is a well-established minimally invasive surgical technique. One disadvantage of cryosurgery concerns the mechanism of cell death; cells at high subzero temperature on the outer rim of the frozen lesion can survive. Pulsed electric fields (PEF) are another minimally invasive surgical technique in which high strength and very rapid electric pulses are delivered across cells to permeabilize the cell membrane for applications such as gene delivery, electrochemotherapy and irreversible electroporation. The very short time scale of the electric pulses is disadvantageous because it does not facilitate real time control over the procedure. We hypothesize that applying the electric pulses during the cryosurgical procedure in such a way that the electric field vector is parallel to the heat flux vector will have the effect of confining the electric fields to the frozen/cold region of tissue, thereby ablating the cells that survive freezing while facilitating controlled use of the PEF in the cold confined region. A finite element analysis of the electric field and heat conduction equations during simultaneous tissue treatment with cryosurgery and PEF (cryosurgery/PEF) was used to study the effect of tissue freezing on electric fields. The study yielded motivating results. Because of decreased electrical conductivity in the frozen/cooled tissue, it experienced temperature induced magnified electric fields in comparison to PEF delivered to the unfrozen tissue control. This suggests that freezing/cooling confines and magnifies the electric fields to those regions; a targeting capability unattainable in traditional PEF. This analysis shows how temperature induced magnified and focused PEFs could be used to

  14. Cryosurgery with pulsed electric fields.

    Directory of Open Access Journals (Sweden)

    Charlotte S Daniels

    Full Text Available This study explores the hypothesis that combining the minimally invasive surgical techniques of cryosurgery and pulsed electric fields will eliminate some of the major disadvantages of these techniques while retaining their advantages. Cryosurgery, tissue ablation by freezing, is a well-established minimally invasive surgical technique. One disadvantage of cryosurgery concerns the mechanism of cell death; cells at high subzero temperature on the outer rim of the frozen lesion can survive. Pulsed electric fields (PEF are another minimally invasive surgical technique in which high strength and very rapid electric pulses are delivered across cells to permeabilize the cell membrane for applications such as gene delivery, electrochemotherapy and irreversible electroporation. The very short time scale of the electric pulses is disadvantageous because it does not facilitate real time control over the procedure. We hypothesize that applying the electric pulses during the cryosurgical procedure in such a way that the electric field vector is parallel to the heat flux vector will have the effect of confining the electric fields to the frozen/cold region of tissue, thereby ablating the cells that survive freezing while facilitating controlled use of the PEF in the cold confined region. A finite element analysis of the electric field and heat conduction equations during simultaneous tissue treatment with cryosurgery and PEF (cryosurgery/PEF was used to study the effect of tissue freezing on electric fields. The study yielded motivating results. Because of decreased electrical conductivity in the frozen/cooled tissue, it experienced temperature induced magnified electric fields in comparison to PEF delivered to the unfrozen tissue control. This suggests that freezing/cooling confines and magnifies the electric fields to those regions; a targeting capability unattainable in traditional PEF. This analysis shows how temperature induced magnified and focused

  15. Pulsed-laser atom-probe field-ion microscopy

    International Nuclear Information System (INIS)

    Kellogg, G.L.; Tsong, T.T.

    1980-01-01

    A time-of-flight atom-probe field-ion microscope has been developed which uses nanosecond laser pulses to field evaporate surface species. The ability to operate an atom-probe without using high-voltage pulses is advantageous for several reasons. The spread in energy arising from the desorption of surface species prior to the voltage pulse attaining its maximum amplitude is eliminated, resulting in increased mass resolution. Semiconductor and insulator samples, for which the electrical resistivity is too high to transmit a short-duration voltage pulse, can be examined using pulsed-laser assisted field desorption. Since the electric field at the surface can be significantly smaller, the dissociation of molecular adsorbates by the field can be reduced or eliminated, permitting well-defined studies of surface chemical reactions. In addition to atom-probe operation, pulsed-laser heating of field emitters can be used to study surface diffusion of adatoms and vacancies over a wide range of temperatures. Examples demonstrating each of these advantages are presented, including the first pulsed-laser atom-probe (PLAP) mass spectra for both metals (W, Mo, Rh) and semiconductors (Si). Molecular hydrogen, which desorbs exclusively as atomic hydrogen in the conventional atom probe, is shown to desorb undissociatively in the PLAP. Field-ion microscope observations of the diffusion and dissociation of atomic clusters, the migration of adatoms, and the formation of vacancies resulting from heating with a 7-ns laser pulse are also presented

  16. Portable double-sided pulsed laser heating system for time-resolved geoscience and materials science applications.

    Science.gov (United States)

    Aprilis, G; Strohm, C; Kupenko, I; Linhardt, S; Laskin, A; Vasiukov, D M; Cerantola, V; Koemets, E G; McCammon, C; Kurnosov, A; Chumakov, A I; Rüffer, R; Dubrovinskaia, N; Dubrovinsky, L

    2017-08-01

    A portable double-sided pulsed laser heating system for diamond anvil cells has been developed that is able to stably produce laser pulses as short as a few microseconds with repetition frequencies up to 100 kHz. In situ temperature determination is possible by collecting and fitting the thermal radiation spectrum for a specific wavelength range (particularly, between 650 nm and 850 nm) to the Planck radiation function. Surface temperature information can also be time-resolved by using a gated detector that is synchronized with the laser pulse modulation and space-resolved with the implementation of a multi-point thermal radiation collection technique. The system can be easily coupled with equipment at synchrotron facilities, particularly for nuclear resonance spectroscopy experiments. Examples of applications include investigations of high-pressure high-temperature behavior of iron oxides, both in house and at the European Synchrotron Radiation Facility using the synchrotron Mössbauer source and nuclear inelastic scattering.

  17. Time-resolved measurements with intense ultrashort laser pulses: a 'molecular movie' in real time

    International Nuclear Information System (INIS)

    Rudenko, A; Ergler, Th; Feuerstein, B; Zrost, K; Schroeter, C D; Moshammer, R; Ullrich, J

    2007-01-01

    We report on the high-resolution multidimensional real-time mapping of H 2 + and D 2 + nuclear wave packets performed employing time-resolved three-dimensional Coulomb explosion imaging with intense laser pulses. Exploiting a combination of a 'reaction microscope' spectrometer and a pump-probe setup with two intense 6-7 fs laser pulses, we simultaneously visualize both vibrational and rotational motion of the molecule, and obtain a sequence of snapshots of the squared ro-vibrational wave function with time-step resolution of ∼ 0.3 fs, allowing us to reconstruct a real-time movie of the ultrafast molecular motion. We observe fast dephasing, or 'collapse' of the vibrational wave packet and its subsequent revival, as well as signatures of rotational excitation. For D 2 + we resolve also the fractional revivals resulting from the interference between the counter-propagating parts of the wave packet

  18. Time resolved high frequency spectrum of Br2 molecules using pulsed photoacoustic technique.

    Science.gov (United States)

    Yehya, Fahem; Chaudhary, A K

    2013-11-01

    The paper reports the time resolved spectral distribution of higher order acoustic modes generated in Br2 molecules using pulsed Photoacoustic (PA) technique. New time resolved vibrational spectrum of Br2 molecules are recorded using a single 532nm, pulses of 7ns duration at 10Hz repetition rate obtained from Q-switched Nd:YAG laser. Frank-Condon principle based assignments confirms the presence of 12 numbers of (ν″-ν') vibrational transitions covered by a single 532+2nm pulse profile. Inclusions of higher order zeroth modes in Bassel's function expansion series shows the probability of overlapping of different types of acoustic modes in the designed PA cells. These modes appear in the form of clusters which occupies higher frequency range. The study of decay behavior of PA signal with respect to time confirms the photolysis of Br2 at 532nm wavelength. In addition, the shifting and clustering effect of cavity eigen modes in Br2 molecules have been studied between 1 and 10ms time scale. The estimated Q-factor of PA cell (l=16cm, R=1.4cm) is 145±4 at 27kHz frequency. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Pulsed magnetic field generation suited for low-field unilateral nuclear magnetic resonance systems

    Science.gov (United States)

    Gaunkar, Neelam Prabhu; Selvaraj, Jayaprakash; Theh, Wei-Shen; Weber, Robert; Mina, Mani

    2018-05-01

    Pulsed magnetic fields can be used to provide instantaneous localized magnetic field variations. In presence of static fields, pulsed field variations are often used to apply torques and in-effect to measure behavior of magnetic moments in different states. In this work, the design and experimental performance of a pulsed magnetic field generator suited for low static field nuclear magnetic resonance (NMR) applications is presented. One of the challenges of low bias field NMR measurements is low signal to noise ratio due to the comparable nature of the bias field and the pulsed field. Therefore, a circuit is designed to apply pulsed currents through an inductive load, leading to generation of pulsed magnetic fields which can temporarily overpower the effect of the bias field on magnetic moments. The designed circuit will be tuned to operate at the precession frequency of 1H (protons) placed in a bias field produced by permanent magnets. The designed circuit parameters may be tuned to operate under different bias conditions. Therefore, low field NMR measurements can be performed for different bias fields. Circuit simulations were used to determine design parameters, corresponding experimental measurements will be presented in this work.

  20. Spin-resolved photoelectron spectroscopy using femtosecond extreme ultraviolet light pulses from high-order harmonic generation

    Energy Technology Data Exchange (ETDEWEB)

    Plötzing, M.; Adam, R., E-mail: r.adam@fz-juelich.de; Weier, C.; Plucinski, L.; Schneider, C. M. [Forschungszentrum Jülich GmbH, Peter Grünberg Institut (PGI-6), 52425 Jülich (Germany); Eich, S.; Emmerich, S.; Rollinger, M.; Aeschlimann, M. [University of Kaiserslautern and Research Center OPTIMAS, 67663 Kaiserslautern (Germany); Mathias, S. [Georg-August-Universität Göttingen, I. Physikalisches Institut, 37077 Göttingen (Germany)

    2016-04-15

    The fundamental mechanism responsible for optically induced magnetization dynamics in ferromagnetic thin films has been under intense debate since almost two decades. Currently, numerous competing theoretical models are in strong need for a decisive experimental confirmation such as monitoring the triggered changes in the spin-dependent band structure on ultrashort time scales. Our approach explores the possibility of observing femtosecond band structure dynamics by giving access to extended parts of the Brillouin zone in a simultaneously time-, energy- and spin-resolved photoemission experiment. For this purpose, our setup uses a state-of-the-art, highly efficient spin detector and ultrashort, extreme ultraviolet light pulses created by laser-based high-order harmonic generation. In this paper, we present the setup and first spin-resolved spectra obtained with our experiment within an acquisition time short enough to allow pump-probe studies. Further, we characterize the influence of the excitation with femtosecond extreme ultraviolet pulses by comparing the results with data acquired using a continuous wave light source with similar photon energy. In addition, changes in the spectra induced by vacuum space-charge effects due to both the extreme ultraviolet probe- and near-infrared pump-pulses are studied by analyzing the resulting spectral distortions. The combination of energy resolution and electron count rate achieved in our setup confirms its suitability for spin-resolved studies of the band structure on ultrashort time scales.

  1. Eddy currents in pulsed field measurements

    International Nuclear Information System (INIS)

    Kuepferling, M.; Groessinger, R.; Wimmer, A.; Taraba, M.; Scholz, W.

    2002-01-01

    Full text: One problem of pulsed field magnetometry is an error in magnetization, which appears in measurements of conducting samples. This error is due to eddy currents induced by a time varying field. To allow predictions how eddy currents exert influence on the hysteresis loop, systematic experimental and theoretical studies of pulsed field measurements of metallic samples were performed. The theoretical studies include analytical calculations as well as numerical ones using a 2D finite element software. In the measurements three physical parameters have been varied: i) the conductivity of the sample by using two different materials, in this case technical Cu and Al ii) size and shape of the sample by using cylinders, spheres and cuboids iii) the pulse duration of the external field by changing the capacitor battery from 8mF ( =9.1ms) to 24mF ( =15.7ms). The time dependence of the external field corresponds with a pulsed damped harmonic oscillation with a maximum value of 5.2T. The samples were studied in the as cast state (after machining) as well as after heat treatment. Theoretical calculations showed not only good agreement with the absolute values of the measured eddy current m agnetization , they also gave an explanation of the shape of the eddy current hysteresis and the dependence of the eddy current 'magnetization' on parameters as pulse duration of the external field and conductivity of the sample. (author)

  2. Moderate and high intensity pulsed electric fields

    OpenAIRE

    Timmermans, Rian Adriana Hendrika

    2018-01-01

    Pulsed Electric Field (PEF) processing has gained a lot of interest the last decades as mild processing technology as alternative to thermal pasteurisation, and is suitable for preservation of liquid food products such as fruit juices. PEF conditions typically applied at industrial scale for pasteurisation are high intensity pulsed electric fields aiming for minimal heat load, with an electric field strength (E) in the range of 15 − 20 kV/cm and pulse width (τ) between 2 − 20 μs. Alternativel...

  3. Pulsed field gel electrophoresis a practical guide

    CERN Document Server

    Birren, Bruce

    1993-01-01

    Pulsed Field Gel Electrophoresis: A Practical Guide is the first laboratory manual to describe the theory and practice of this technique. Based on the authors' experience developing pulsed field gel instruments and teaching procedures, this book provides everything a researcher or student needs to know in order to understand and carry out pulsed field gel experiments. Clear, well-tested protocols assume only that users have a basic familiarity with molecular biology. Thorough coverage of useful data, theory, and applications ensures that this book is also a lasting resource for more adv

  4. Local eddy current measurements in pulsed fields

    Energy Technology Data Exchange (ETDEWEB)

    Espina-Hernandez, J.H. [SEPI-Electronica, ESIME-IPN, UPALM Edif. ' Z' . Zacatenco, Mexico DF 07738 (Mexico)], E-mail: jhespina@gmail.com; Groessinger, R. [Institute of Solid State Physics, Vienna University of Technology, Wiedner Hauptstrasse 8-10, A-1040 Vienna (Austria); Hallen, J.M. [Departamento de Ingenieria Metalurgica, IPN-ESIQIE, UPALM Edif. 7, Zacatenco, Mexico DF 07738 (Mexico)

    2008-07-15

    This work presents new eddy current measurements in pulsed fields. A commercial point pick-up coil is used to detect the induction signal along the radius of Cu and Al samples with cylindrical shape and diameters between 5 and 35 mm. Local eddy current measurements were performed on the surface of conducting materials due to the small dimensions of the coil. A simple electrical circuit, used as a model, is proposed to describe the local eddy current effect in pulsed fields. The proposed model allows to calculate the phase shift angle between the signal proportional to eddy currents and the applied external field in a pulsed field magnetometer.

  5. Proceedings of Pulsed Magnet Design and Measurement Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Shaftan, T.; Heese, R.; Ozaki,S.

    2010-01-19

    The goals of the Workshop are to assess the design of pulsed system at the NSLS-II and establish mitigation strategies for critical issues during development. The focus of the Workshop is on resolving questions related to the set-up of the pulsed magnet laboratory, on measuring the pulsed magnet's current waveforms and fields, and on achieving tight tolerances on the magnet's alignment and field quality.

  6. Pulsed electric field inactivation in a microreactor

    NARCIS (Netherlands)

    Fox, M.B.

    2006-01-01

    Pulsed electric fields (PEF) is a novel, non-thermal pasteurization method which uses short, high electric field pulses to inactivate microorganisms. The advantage of a pasteurization method like PEF compared to regular heat pasteurization is that the taste, flavour, texture and nutritional value

  7. Pulsed transport critical currents of Bi2212 tapes in pulsed magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Rogacki, K [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Wroclaw (Poland); Gilewski, A; Klamut, J [International Laboratory of High Magnetic Fields and Low Temperatures, Polish Academy of Sciences, Wroclaw (Poland); Newson, M; Jones, H [Clarendon Laboratory, University of Oxford, Oxford (United Kingdom); Glowacki, B A [IRC in Superconductivity and Department of Materials Science, University of Cambridge, Cambridge (United Kingdom)

    2002-07-01

    If high-T{sub C} superconductors are ever to be used in high-field applications, it is vital that the critical surfaces can be mapped under high-field conditions. However, the latest superconductors have high currents even at fields over 20 T, making accurate measurements very difficult due to the thermal and mechanical problems. In this paper, we compare measurements on BSCCO-2212 tape using a number of different methods, particularly an innovative pulsed transport current and pulsed field mode. We show how the analysis of the voltage signal from BSCCO-2212 tape in pulsed conditions may be used to extract the critical current in quasi-stationary conditions. The effect of a metallic substrate on the results is also briefly discussed. (author)

  8. Strong and superstrong pulsed magnetic fields generation

    CERN Document Server

    Shneerson, German A; Krivosheev, Sergey I

    2014-01-01

    Strong pulsed magnetic fields are important for several fields in physics and engineering, such as power generation and accelerator facilities. Basic aspects of the generation of strong and superstrong pulsed magnetic fields technique are given, including the physics and hydrodynamics of the conductors interacting with the field as well as an account of the significant progress in generation of strong magnetic fields using the magnetic accumulation technique. Results of computer simulations as well as a survey of available field technology are completing the volume.

  9. Time-resolved processes in a pulsed electrical discharge in argon bubbles in water

    Science.gov (United States)

    Gershman, S.; Belkind, A.

    2010-12-01

    A phenomenological picture of a pulsed electrical discharge in gas bubbles in water is produced by combining electrical, spectroscopic, and imaging characterization methods. The discharge is generated by applying 1 μ s pulses of 5 to 20 kV between a needle and a disk electrode submerged in water. An Ar gas bubble surrounds the tip of the needle electrode. Imaging, electrical characteristics, and time-resolved optical emission spectroscopic data suggest a fast streamer propagation mechanism and the formation of a plasma channel in the bubble. Comparing the electrical and imaging data for consecutive pulses applied to the bubble at a frequency of 1 Hz indicates that each discharge proceeds as an entirely new process with no memory of the previous discharge aside from the presence of long-lived chemical species, such as ozone and oxygen. Imaging and electrical data show the presence of two discharge events during each applied voltage pulse, a forward discharge near the beginning of the applied pulse depositing charge on the surface of the bubble and a reverse discharge removing the accumulated charge from the water/gas interface when the applied voltage is turned off. The pd value of ~ 300-500 torr cm, the 1 μs long pulse duration, low repetition rate, and unidirectional character of the applied voltage pulses make the discharge process here unique compared to the traditional corona or dielectric barrier discharges.

  10. Time resolved optical emission spectroscopy of cross-beam pulsed laser ablation on graphite targets

    International Nuclear Information System (INIS)

    Sangines, R.; Sanchez Ake, C.; Sobral, H.; Villagran-Muniz, M.

    2007-01-01

    Cross-beam pulsed laser ablation with two delayed lasers is performed on two perpendicular graphite targets. The time delay between lasers is varied by up to 5 μs, and physical changes on the second plasma, due to the interaction with the first generated one, are determined by time resolved optical emission spectroscopy

  11. A high pulsed power supply system designed for pulsed high magnetic field

    International Nuclear Information System (INIS)

    Liu Kefu; Wang Shaorong; Zhong Heqing; Xu Yan; Pan Yuan

    2008-01-01

    This paper introduces the design of high pulsed power supply system for producing pulsed high magnetic field up to 70 T. This system consists of 58 sets of 55 μF of capacitor bank which provides 1.0 MJ energy storage. A set of vacuum closing switch is chosen as main switch for energy discharge into magnetic coil. A crowbar circuit with high power diodes in series with resistor is used to absorb the redundant energy and adjust pulse width. The resistance of magnetic coil changing with current is deduced by energy balance equations. A capacitor-charging power supply using a series-resonant, constant on-time variable frequency control, and zero-current switching charges the capacitor bank in one minute time with high efficiency. The pulsed power supply provides adjustable current and pulse width with 30 kA peak and 30 ms maximum. The primary experiments demonstrate the system reliability. This work provides an engineering guidance for future development of pulsed high magnetic field. (authors)

  12. Magnetization reversal in ultrashort magnetic field pulses

    International Nuclear Information System (INIS)

    Bauer, M.; Lopusnik, R.; Fassbender, J.; Hillebrands, B.

    2000-01-01

    We report the switching properties of a thin magnetic film subject to an ultrashort, laterally localized magnetic field pulse, obtained by numerical investigations. The magnetization distribution in the film is calculated on a grid assuming Stoner-like coherent rotation within the grid square size. Perpendicularly and in-plane magnetized films exhibit a magnetization reversal due to a 4 ps magnetic field pulse. Outside the central region the pulse duration is short compared to the precession period. In this area the evolution of the magnetization during the field pulse does not depend strongly on magnetic damping and/or pulse shape. However, the final magnetization distribution is affected by the magnetic damping. Although the pulse duration is short compared to the precession period, the time needed for the relaxation of the magnetization to the equilibrium state is rather large. The influence of the different magnetic anisotropy contributions and the magnetic damping parameter enters into the magnetization reversal process. Comparing the case of perpendicular anisotropy with different kinds of in-plane anisotropies, a principal difference is found due to the symmetry of the shape anisotropy with respect to the anisotropy in question

  13. Nanosecond field emitted and photo-field emitted current pulses from ZrC tips

    International Nuclear Information System (INIS)

    Ganter, R.; Bakker, R.J.; Gough, C.; Paraliev, M.; Pedrozzi, M.; Le Pimpec, F.; Rivkin, L.; Wrulich, A.

    2006-01-01

    In order to find electron sources with low thermal emittance, cathodes based on single tip field emitter are investigated. Maximum peak current, measured from single tip in ZrC with a typical apex radius around 1 μm, are presented. Voltage pulses of 2 ns duration and up to 50 kV amplitude lead to field emission current up to 470 mA from one ZrC tip. Combination of high applied electric field with laser illumination gives the possibility to modulate the emission with laser pulses. Nanoseconds current pulses have been emitted with laser pulses at 1064 nm illuminating a ZrC tip under high-DC electric field. The dependence of photo-field emitted current with the applied voltage can be explained by the Schottky effect

  14. Nanosecond field emitted and photo-field emitted current pulses from ZrC tips

    Energy Technology Data Exchange (ETDEWEB)

    Ganter, R. [Paul Scherrer Institut, Villigen, CH 5232 (Switzerland)]. E-mail: romain.ganter@psi.ch; Bakker, R.J. [Paul Scherrer Institut, Villigen, CH 5232 (Switzerland); Gough, C. [Paul Scherrer Institut, Villigen, CH 5232 (Switzerland); Paraliev, M. [Paul Scherrer Institut, Villigen, CH 5232 (Switzerland); Pedrozzi, M. [Paul Scherrer Institut, Villigen, CH 5232 (Switzerland); Le Pimpec, F. [Paul Scherrer Institut, Villigen, CH 5232 (Switzerland); Rivkin, L. [Paul Scherrer Institut, Villigen, CH 5232 (Switzerland); Wrulich, A. [Paul Scherrer Institut, Villigen, CH 5232 (Switzerland)

    2006-09-15

    In order to find electron sources with low thermal emittance, cathodes based on single tip field emitter are investigated. Maximum peak current, measured from single tip in ZrC with a typical apex radius around 1 {mu}m, are presented. Voltage pulses of 2 ns duration and up to 50 kV amplitude lead to field emission current up to 470 mA from one ZrC tip. Combination of high applied electric field with laser illumination gives the possibility to modulate the emission with laser pulses. Nanoseconds current pulses have been emitted with laser pulses at 1064 nm illuminating a ZrC tip under high-DC electric field. The dependence of photo-field emitted current with the applied voltage can be explained by the Schottky effect.

  15. Time-resolved plasma spectroscopy of thin foils heated by a relativistic-intensity short-pulse laser

    International Nuclear Information System (INIS)

    Audebert, P.; Gauthier, J.-C.; Shepherd, R.; Fournier, K.B.; Price, D.; Lee, R.W.; Springer, P.; Peyrusse, O.; Klein, L.

    2002-01-01

    Time-resolved K-shell x-ray spectra are recorded from sub-100 nm aluminum foils irradiated by 150-fs laser pulses at relativistic intensities of Iλ 2 =2x10 18 W μm 2 /cm 2 . The thermal penetration depth is greater than the foil thickness in these targets so that uniform heating takes place at constant density before hydrodynamic motion occurs. The high-contrast, high-intensity laser pulse, broad spectral band, and short time resolution utilized in this experiment permit a simplified interpretation of the dynamical evolution of the radiating matter. The observed spectrum displays two distinct phases. At early time, ≤500 fs after detecting target emission, a broad quasicontinuous spectral feature with strong satellite emission from multiply excited levels is seen. At a later time, the He-like resonance line emission is dominant. The time-integrated data is in accord with previous studies with time resolution greater than 1 ps. The early time satellite emission is shown to be a signature of an initial large area, high density, low-temperature plasma created in the foil by fast electrons accelerated by the intense radiation field in the laser spot. We conclude that, because of this early time phenomenon and contrary to previous predictions, a short, high-intensity laser pulse incident on a thin foil does not create a uniform hot and dense plasma. The heating mechanism has been studied as a function of foil thickness, laser pulse length, and intensity. In addition, the spectra are found to be in broad agreement with a hydrodynamic expansion code postprocessed by a collisional-radiative model based on superconfiguration average rates and on the unresolved transition array formalism

  16. Optimisation of applied field pulses for microwave assisted magnetic recording

    Directory of Open Access Journals (Sweden)

    Simon John Greaves

    2017-05-01

    Full Text Available Grains in a recording medium experience field pulses from a write head during recording. In general, a short head field rise time and a square pulse shape have been viewed as optimal. This work investigates the optimum field pulse shape for microwave assisted magnetic recording on single layer and ECC media. A square pulse was found to give the best recording performance on single layer media, but an initially negative field pulse increasing at a constant rate was more suitable for ECC media.

  17. Magnetic field effects on ultrafast lattice compression dynamics of Si(111) crystal when excited by linearly-polarized femtosecond laser pulses

    Science.gov (United States)

    Hatanaka, Koji; Odaka, Hideho; Ono, Kimitoshi; Fukumura, Hiroshi

    2007-03-01

    Time-resolved X-ray diffraction measurements of Si (111) single crystal are performed when excited by linearly-polarized femtosecond laser pulses (780 nm, 260 fs, negatively-chirped, 1 kHz) under a magnetic field (0.47 T). Laser fluence on the sample surface is 40 mJ/cm^2, which is enough lower than the ablation threshold at 200 mJ/cm^2. Probing X-ray pulses of iron characteristic X-ray lines at 0.193604 and 0.193998 nm are generated by focusing femtosecond laser pulses onto audio-cassette tapes in air. Linearly-polarized femtosecond laser pulse irradiation onto Si(111) crystal surface induces transient lattice compression in the picosecond time range, which is confirmed by transient angle shift of X-ray diffraction to higher angles. Little difference of compression dynamics is observed when the laser polarization is changed from p to s-pol. without a magnetic field. On the other hand, under a magnetic field, the lattice compression dynamics changes when the laser is p-polarized which is vertical to the magnetic field vector. These results may be assigned to photo-carrier formation and energy-band distortion.

  18. Trapped magnetic field measurements on HTS bulk by peak controlled pulsed field magnetization

    International Nuclear Information System (INIS)

    Ida, Tetsuya; Watasaki, Masahiro; Kimura, Yosuke; Miki, Motohiro; Izumi, Mitsuru

    2010-01-01

    For the past several years, we have studied the high-temperature superconducting (HTS) synchronous motor assembled with melt-textured Gd-Ba-Cu-O bulk magnets. If the single pulse field magnetizes a bulk effectively, size of electrical motor will become small for the strong magnetic field of the HTS magnets without reducing output power of motor. In the previous study, we showed that the HTS bulk was magnetized to excellent cone-shape magnetic field distribution by using the waveform control pulse magnetization (WCPM) method. The WCPM technique made possible the active control of the waveform on which magnetic flux motion depended. We generated the pulse waveform with controlled risetime for HTS bulk magnetization to suppress the magnetic flux motion which decreases magnetization efficiency. The pulsed maximum magnetic flux density with slow risetime is not beyond the maximum magnetic flux density which is trapped by the static field magnetization. But, as for applying the pulse which has fast risetime, the magnetic flux which exceed greatly the threshold penetrates the bulk and causes the disorder of the trapped magnetic distribution. This fact suggests the possibility that the threshold at pulsed magnetization influences the dynamic magnetic flux motion. In this study, Gd-Ba-Cu-O bulk is magnetized by the controlled arbitrary trapezoidal shape pulse, of which the maximum magnetic flux density is controlled not to exceed the threshold. We will present the trapped magnetic characteristics and the technique to generate the controlled pulsed field.

  19. Numerical modeling of Harmonic Imaging and Pulse Inversion fields

    Science.gov (United States)

    Humphrey, Victor F.; Duncan, Tracy M.; Duck, Francis

    2003-10-01

    Tissue Harmonic Imaging (THI) and Pulse Inversion (PI) Harmonic Imaging exploit the harmonics generated as a result of nonlinear propagation through tissue to improve the performance of imaging systems. A 3D finite difference model, that solves the KZK equation in the frequency domain, is used to investigate the finite amplitude fields produced by rectangular transducers driven with short pulses and their inverses, in water and homogeneous tissue. This enables the characteristic of the fields and the effective PI field to be calculated. The suppression of the fundamental field in PI is monitored, and the suppression of side lobes and a reduction in the effective beamwidth for each field are calculated. In addition, the differences between the pulse and inverse pulse spectra resulting from the use of very short pulses are noted, and the differences in the location of the fundamental and second harmonic spectral peaks observed.

  20. Attosecond pulse trains generated using two color laser fields

    International Nuclear Information System (INIS)

    Mauritsson, J.; Louisiana State University, Baton Rouge, LA; Johnsson, P.; Gustafsson, E.; L'Hullier, A.; Schafer, K.J.; Gaarde, M.B.

    2006-01-01

    Complete test of publication follows. We present the generation of attosecond pulse trains from a superposition of an infrared (IR) laser field and its second harmonic. Our attosecond pulses are synthesized by selecting a number of synchronized harmonics generated in argon. By adding the second harmonic to the driving field the inversion symmetry of generation process is broken and both odd and even harmonics are generated. Consecutive half cycles in the two color field differ beyond the simple sign change that occurs in a one color field and have very different shapes and amplitudes. This sub-cycle structure of the field, which governs the generation of the attosecond pulses, depends strongly on the relative phase and intensity of the two fields, thereby providing additional control over the generation process. The generation of attosecond pulses is frequently described using the semi-classical three step model where an electron is: (1) ionized through tunneling ionization during one half cycle; (2) reaccelerated back towards the ion core by the next half cycle; where it (3) recombines with the ground-state releasing the access energy in a short burst of light. In the two color field the symmetry between the ionizing and reaccelerating field is broken, which leads to two possible scenarios: the electron can either be ionized during a strong half cycle and reaccelerated by a weaker field or vice versa. The periodicity is a full IR cycle in both cases and hence two trains of attosecond pulses are generated which are offset from each other. The generation efficiency, however, is very different for the two cases since it is determined mainly by the electric field strength at the time of tunneling and one of the trains will therefore dominate the other. We investigate experimentally both the spectral and temporal structure of the generated attosecond pulse trains as a function of the relative phase between the two driving fields. We find that for a wide range of

  1. Rapid high-resolution spin- and angle-resolved photoemission spectroscopy with pulsed laser source and time-of-flight spectrometer

    Science.gov (United States)

    Gotlieb, K.; Hussain, Z.; Bostwick, A.; Lanzara, A.; Jozwiak, C.

    2013-09-01

    A high-efficiency spin- and angle-resolved photoemission spectroscopy (spin-ARPES) spectrometer is coupled with a laboratory-based laser for rapid high-resolution measurements. The spectrometer combines time-of-flight (TOF) energy measurements with low-energy exchange scattering spin polarimetry for high detection efficiencies. Samples are irradiated with fourth harmonic photons generated from a cavity-dumped Ti:sapphire laser that provides high photon flux in a narrow bandwidth, with a pulse timing structure ideally matched to the needs of the TOF spectrometer. The overall efficiency of the combined system results in near-EF spin-resolved ARPES measurements with an unprecedented combination of energy resolution and acquisition speed. This allows high-resolution spin measurements with a large number of data points spanning multiple dimensions of interest (energy, momentum, photon polarization, etc.) and thus enables experiments not otherwise possible. The system is demonstrated with spin-resolved energy and momentum mapping of the L-gap Au(111) surface states, a prototypical Rashba system. The successful integration of the spectrometer with the pulsed laser system demonstrates its potential for simultaneous spin- and time-resolved ARPES with pump-probe based measurements.

  2. Experimental research on time-resolved evolution of cathode plasma expansion velocity in a long pulsed magnetically insulated coaxial diode

    Science.gov (United States)

    Zhu, Danni; Zhang, Jun; Zhong, Huihuang; Ge, Xingjun; Gao, Jingming

    2018-02-01

    Unlike planar diodes, separate research of the axial and radial plasma expansion velocities is difficult for magnetically insulated coaxial diodes. Time-resolved electrical diagnostic which is based on the voltage-ampere characteristics has been employed to study the temporal evolution of the axial and radial cathode plasma expansion velocities in a long pulsed magnetically insulated coaxial diode. Different from a planar diode with a "U" shaped profile of temporal velocity evolution, the temporal evolution trend of the axial expansion velocity is proved to be a "V" shaped profile. Apart from the suppression on the radial expansion velocity, the strong magnetic field is also conducive to slowing down the axial expansion velocity. Compared with the ordinary graphite cathode, the carbon velvet and graphite composite cathode showed superior characteristics as judged by the low plasma expansion velocity and long-term electrical stability as a promising result for applications where long-pulsed and reliable operation at high power is required.

  3. Pulsed Electromagnetic Field Assisted in vitro Electroporation: A Pilot Study

    Science.gov (United States)

    Novickij, Vitalij; Grainys, Audrius; Lastauskienė, Eglė; Kananavičiūtė, Rūta; Pamedytytė, Dovilė; Kalėdienė, Lilija; Novickij, Jurij; Miklavčič, Damijan

    2016-09-01

    Electroporation is a phenomenon occurring due to exposure of cells to Pulsed Electric Fields (PEF) which leads to increase of membrane permeability. Electroporation is used in medicine, biotechnology, and food processing. Recently, as an alternative to electroporation by PEF, Pulsed ElectroMagnetic Fields (PEMF) application causing similar biological effects was suggested. Since induced electric field in PEMF however is 2-3 magnitudes lower than in PEF electroporation, the membrane permeabilization mechanism remains hypothetical. We have designed pilot experiments where Saccharomyces cerevisiae and Candida lusitaniae cells were subjected to single 100-250 μs electrical pulse of 800 V with and without concomitant delivery of magnetic pulse (3, 6 and 9 T). As expected, after the PEF pulses only the number of Propidium Iodide (PI) fluorescent cells has increased, indicative of membrane permeabilization. We further show that single sub-millisecond magnetic field pulse did not cause detectable poration of yeast. Concomitant exposure of cells to pulsed electric (PEF) and magnetic field (PMF) however resulted in the increased number PI fluorescent cells and reduced viability. Our results show increased membrane permeability by PEF when combined with magnetic field pulse, which can explain electroporation at considerably lower electric field strengths induced by PEMF compared to classical electroporation.

  4. Depth-resolved incoherent and coherent wide-field high-content imaging (Conference Presentation)

    Science.gov (United States)

    So, Peter T.

    2016-03-01

    Recent advances in depth-resolved wide-field imaging technique has enabled many high throughput applications in biology and medicine. Depth resolved imaging of incoherent signals can be readily accomplished with structured light illumination or nonlinear temporal focusing. The integration of these high throughput systems with novel spectroscopic resolving elements further enable high-content information extraction. We will introduce a novel near common-path interferometer and demonstrate its uses in toxicology and cancer biology applications. The extension of incoherent depth-resolved wide-field imaging to coherent modality is non-trivial. Here, we will cover recent advances in wide-field 3D resolved mapping of refractive index, absorbance, and vibronic components in biological specimens.

  5. Electron acceleration by laser produced wake field: Pulse shape effect

    Science.gov (United States)

    Malik, Hitendra K.; Kumar, Sandeep; Nishida, Yasushi

    2007-12-01

    Analytical expressions are obtained for the longitudinal field (wake field: Ex), density perturbations ( ne') and the potential ( ϕ) behind a laser pulse propagating in a plasma with the pulse duration of the electron plasma period. A feasibility study on the wake field is carried out with Gaussian-like (GL) pulse, rectangular-triangular (RT) pulse and rectangular-Gaussian (RG) pulse considering one-dimensional weakly nonlinear theory ( ne'/n0≪1), and the maximum energy gain acquired by an electron is calculated for all these three types of the laser pulse shapes. A comparative study infers that the RT pulse yields the best results: In its case maximum electron energy gain is 33.5 MeV for a 30 fs pulse duration whereas in case of GL (RG) pulse of the same duration the gain is 28.6 (28.8)MeV at the laser frequency of 1.6 PHz and the intensity of 3.0 × 10 18 W/m 2. The field of the wake and hence the energy gain get enhanced for the higher laser frequency, larger pulse duration and higher laser intensity for all types of the pulses.

  6. [Mechanism of ablation with nanosecond pulsed electric field].

    Science.gov (United States)

    Cen, Chao; Chen, Xin-hua; Zheng, Shu-sen

    2015-11-01

    Nanosecond pulsed electric field ablation has been widely applied in clinical cancer treatment, while its molecular mechanism is still unclear. Researchers have revealed that nanosecond pulsed electric field generates nanopores in plasma membrane, leading to a rapid influx of Ca²⁺; it has specific effect on intracellular organelle membranes, resulting in endoplasmic reticulum injuries and mitochondrial membrane potential changes. In addition, it may also change cellular morphology through damage of cytoskeleton. This article reviews the recent research advances on the molecular mechanism of cell membrane and organelle changes induced by nanosecond pulsed electric field ablation.

  7. Studies of exposure of rabbits to electromagnetic pulsed fields

    International Nuclear Information System (INIS)

    Cleary, S.F.; Nickless, F.; Liu, L.M.; Hoffman, R.

    1980-01-01

    Dutch rabbits were acutely exposed to electromagnetic pulsed (EMP) fields (pulse duration 0.4 mus, field strengths of 1--2 kV/cm and pulse repetition rates in the range of 10 to 38 Hz) for periods of up to two hours. The dependent variables investigated were pentobarbital-induced sleeping time and serum chemistry (including serum triglycerides, creatine phosphokinase (CPK) isoenzymes, and sodium and potassium). Core temperature measured immediately pre-exposure and postexposure revealed no exposure-related alterations. Over the range of field strengths and pulse durations investigated no consistent, statistically significant alterations were found in the end-points investigated

  8. Interactions of pulsed electric fields with living organisms

    International Nuclear Information System (INIS)

    Vezinet, R.; Joly, J.C.; Meyer, O.; Gilbert, C.; Fourrier-Lamer, A.; Silve, A.; Mir, L.M.; Rols, M.P.; Chopinet, L.; Teissie, J.; Roux, D.

    2013-01-01

    Biologists are more and more involved in the study of the interactions of electromagnetic fields with human body for therapeutics and health applications. In this article we present 4 studies. The first study concerns the interaction between the electromagnetic field and the biochemical reaction of the hydrolysis of the acetylcholine, a primary neurotransmitter of the human body. It has been shown that a progressive slowing-down of the reaction appears when the pulse repetition frequency increases. The second study is dedicated to the effects of electromagnetic pulses at the cell membrane level. We know that electromagnetic pulses can alter the permeability of the cell membrane. We have used rectangular electromagnetic pulses to allow chemicals to enter the cell. In the case of cancer treatment the efficiency of a chemicals like bleomycin can be largely increased. The third study is dedicated to the use of 2 electromagnetic pulses of different duration to optimize gene transfer into the cell nucleus. The last study focuses on the analysis of plant reactions when facing electromagnetic pulses. An experiment performed on a sunflower shows that despite high electric fields no electro-physiological response of the plant has been measured when the sunflower was submitted to electromagnetic pulses

  9. Subcycle interference dynamics of time-resolved photoelectron holography with midinfrared laser pulses

    International Nuclear Information System (INIS)

    Bian Xuebin; Yuan, Kai-Jun; Bandrauk, Andre D.; Huismans, Y.; Smirnova, O.; Vrakking, M. J. J.

    2011-01-01

    Time-resolved photoelectron holography from atoms using midinfrared laser pulses is investigated by solving the corresponding time-dependent Schroedinger equation (TDSE) and a classical model, respectively. The numerical simulation of the photoelectron angular distribution of Xe irradiated with a low-frequency free-electron laser source agrees well with the experimental results. Different types of subcycle interferometric structures are predicted by the classical model. Furthermore with the TDSE model it is demonstrated that the holographic pattern is sensitive to the shape of the atomic orbitals. This is a step toward imaging by means of photoelectron holography.

  10. Maximum repulsed magnetization of a bulk superconductor with low pulsed field

    International Nuclear Information System (INIS)

    Tsuchimoto, M.; Kamijo, H.; Fujimoto, H.

    2005-01-01

    Pulsed field magnetization of a bulk high-T c superconductor (HTS) is important technique especially for practical applications of a bulk superconducting magnet. Full magnetization is not obtained for low pulsed field and trapped field is decreased by reversed current in the HTS. The trapped field distribution by repulsed magnetization was previously reported in experiments with temperature control. In this study, repulsed magnetization technique with the low pulsed field is numerically analyzed under assumption of variable shielding current by the temperature control. The shielding current densities are discussed to obtain maximum trapped field by two times of low pulsed field magnetizations

  11. Time-resolved large-scale volumetric pressure fields of an impinging jet from dense Lagrangian particle tracking

    Science.gov (United States)

    Huhn, F.; Schanz, D.; Manovski, P.; Gesemann, S.; Schröder, A.

    2018-05-01

    Time-resolved volumetric pressure fields are reconstructed from Lagrangian particle tracking with high seeding concentration using the Shake-The-Box algorithm in a perpendicular impinging jet flow with exit velocity U=4 m/s (Re˜ 36,000) and nozzle-plate spacing H/D=5. Helium-filled soap bubbles are used as tracer particles which are illuminated with pulsed LED arrays. A large measurement volume has been covered (cloud of tracked particles in a volume of 54 L, ˜ 180,000 particles). The reconstructed pressure field has been validated against microphone recordings at the wall with high correlation coefficients up to 0.88. In a reduced measurement volume (13 L), dense Lagrangian particle tracking is shown to be feasable up to the maximal possible jet velocity of U=16 m/s.

  12. Effect of rising time of rectangular pulse on inactivation of staphylococcus aureus by pulsed electric field

    Science.gov (United States)

    Zhang, Ruobing; Liang, Dapeng; Zheng, Nanchen; Xiao, Jianfu; Mo, Mengbin; Li, Jing

    2013-03-01

    Pulsed electric field (PEF) is a novel non-thermal food processing technology that involves the electric discharge of high voltage short pulses through the food product. In PEF study, rectangular pulses are most commonly used for inactivating microorganisms. However, little information is available on the inactivation effect of rising time of rectangular pulse. In this paper, inactivation effects, electric field strength, treatment time and conductivity on staphylococcus aureus inactivation were investigated when the pulse rising time is reduced from 2.5 μs to 200 ns. Experimental results showed that inactivation effect of PEF increased with electric field strength, solution conductivity and treatment time. Rising time of the rectangular pulse had a significant effect on the inactivation of staphylococcus aureus. Rectangular pulses with a rising time of 200 ns had a better inactivation effect than that with 2 μs. In addition, temperature increase of the solution treated by pulses with 200 ns rising time was lower than that with 2 μs. In order to obtain a given inactivation effect, treatment time required for the rectangular pulse with 200 ns rise time was shorter than that with 2 μs.

  13. Effect of rising time of rectangular pulse on inactivation of staphylococcus aureus by pulsed electric field

    International Nuclear Information System (INIS)

    Zhang, Ruobing; Liang, Dapeng; Xiao, Jianfu; Mo, Mengbin; Li, Jing; Zheng, Nanchen

    2013-01-01

    Pulsed electric field (PEF) is a novel non-thermal food processing technology that involves the electric discharge of high voltage short pulses through the food product. In PEF study, rectangular pulses are most commonly used for inactivating microorganisms. However, little information is available on the inactivation effect of rising time of rectangular pulse. In this paper, inactivation effects, electric field strength, treatment time and conductivity on staphylococcus aureus inactivation were investigated when the pulse rising time is reduced from 2.5 μs to 200 ns. Experimental results showed that inactivation effect of PEF increased with electric field strength, solution conductivity and treatment time. Rising time of the rectangular pulse had a significant effect on the inactivation of staphylococcus aureus. Rectangular pulses with a rising time of 200 ns had a better inactivation effect than that with 2 μs. In addition, temperature increase of the solution treated by pulses with 200 ns rising time was lower than that with 2 μs. In order to obtain a given inactivation effect, treatment time required for the rectangular pulse with 200 ns rise time was shorter than that with 2 μs.

  14. Time-resolved studies. Ch. 9

    International Nuclear Information System (INIS)

    Mills, Dennis M.; Argonne National Lab., IL

    1991-01-01

    Synchrotron radiation, with its unique properties, offers a tool to extend X-ray measurements from the static to the time-resolved regime. The most straight-forward application of synchrotron radiation to the study of transient phenomena is directly through the possibility of decreased data-collection times via the enormous increase in flux over that of a laboratory X-ray system. Even further increases in intensity can be obtained through the use of novel X-ray optical devices. Wide-bandpass monochromators, e.g., that utilize the continuous spectral distribution of synchrotron radiation, can increase flux on the sample several orders of magnitude over conventional X-ray optical systems thereby allowing a further shortening of the data-collection time. Another approach that uses the continuous spectral nature of synchrotron radiation to decrease data-collection times is the 'parallel data collection' method. Using this technique, intensities as a function of X-ray energy are recorded simultaneously for all energies rather than sequentially recording data at each energy, allowing for a dramatic decrease in data-collection time. Perhaps the most exciting advances in time-resolved X-ray studies will be made by those methods that exploit the pulsed nature of the radiation emitted from storage rings. Pulsed techniques have had an enormous impact in the study of the temporal evolution of transient phenomena. The extension from continuous to modulated sources for use in time-resolved work has been carried over in a host of fields that use both pulsed particle and pulsed electro-magnetic beams. In this chapter the new experimental techniques are reviewed and illustrated with some experiments. (author). 98 refs.; 20 figs.; 5 tabs

  15. Electrosensitization Increases Antitumor Effectiveness of Nanosecond Pulsed Electric Fields In Vivo

    OpenAIRE

    Muratori, Claudia; Pakhomov, Andrei G.; Heller, Loree; Casciola, Maura; Gianulis, Elena; Grigoryev, Sergey; Xiao, Shu; Pakhomova, O. N.

    2017-01-01

    Nanosecond pulsed electric fields are emerging as a new modality for tissue and tumor ablation. We previously reported that cells exposed to pulsed electric fields develop hypersensitivity to subsequent pulsed electric field applications. This phenomenon, named electrosensitization, is evoked by splitting the pulsed electric field treatment in fractions (split-dose treatments) and causes in vitro a 2- to 3-fold increase in cytotoxicity. The aim of this study was to show the benefit of split-d...

  16. Electrosensitization Increases Antitumor Effectiveness of Nanosecond Pulsed Electric Fields In Vivo.

    Science.gov (United States)

    Muratori, Claudia; Pakhomov, Andrei G; Heller, Loree; Casciola, Maura; Gianulis, Elena; Grigoryev, Sergey; Xiao, Shu; Pakhomova, O N

    2017-01-01

    Nanosecond pulsed electric fields are emerging as a new modality for tissue and tumor ablation. We previously reported that cells exposed to pulsed electric fields develop hypersensitivity to subsequent pulsed electric field applications. This phenomenon, named electrosensitization, is evoked by splitting the pulsed electric field treatment in fractions (split-dose treatments) and causes in vitro a 2- to 3-fold increase in cytotoxicity. The aim of this study was to show the benefit of split-dose treatments for in vivo tumor ablation by nanosecond pulsed electric field. KLN 205 squamous carcinoma cells were embedded in an agarose gel or grown subcutaneously as tumors in mice. Nanosecond pulsed electric field ablations were produced using a 2-needle probe with a 6.5-mm interelectrode distance. In agarose gel, splitting a pulsed electric field dose of 300, 300-ns pulses (20 Hz, 4.4-6.4 kV) in 2 equal fractions increased cell death up to 3-fold compared to single-train treatments. We then compared the antitumor effectiveness of these treatments in vivo. At 24 hours after treatment, sensitizing tumors by a split-dose pulsed electric field exposure (150 + 150, 300-ns pulses, 20 Hz, 6.4 kV) caused a 4- and 2-fold tumor volume reduction as compared to sham and single-train treatments, respectively. Tumor volume reduction that exceeds 75% was 43% for split-dose-treated animals compared to only 12% for single-dose treatments. The difference between the 2 experimental groups remained statistically significant for at least 1 week after the treatment. The results show that electrosensitization occurs in vivo and can be exploited to assist in vivo cancer ablation.

  17. Time-resolved spectroscopy in synchrotron radiation

    International Nuclear Information System (INIS)

    Rehn, V.; Stanford Univ., CA

    1980-01-01

    Synchrotron radiation (SR) from large-diameter storage rings has intrinsic time structure which facilitates time-resolved measurements form milliseconds to picoseconds and possibly below. The scientific importance of time-resolved measurements is steadily increasing as more and better techniques are discovered and applied to a wider variety of scientific problems. This paper presents a discussion of the importance of various parameters of the SR facility in providing for time-resolved spectroscopy experiments, including the role of beam-line optical design parameters. Special emphasis is placed on the requirements of extremely fast time-resolved experiments with which the effects of atomic vibrational or relaxation motion may be studied. Before discussing the state-of-the-art timing experiments, we review several types of time-resolved measurements which have now become routine: nanosecond-range fluorescence decay times, time-resolved emission and excitation spectroscopies, and various time-of-flight applications. These techniques all depend on a short SR pulse length and a long interpulse period, such as is provided by a large-diameter ring operating in a single-bunch mode. In most cases, the pulse shape and even the stability of the pulse shape is relatively unimportant as long as the pulse length is smaller than the risetime of the detection apparatus, typically 1 to 2 ns. For time resolution smaller than 1 ns, the requirements on the pulse shape become more stringent. (orig./FKS)

  18. The effect of pulsed electric fields on carotenoids bioaccessibility

    NARCIS (Netherlands)

    Bot, Francesca; Verkerk, Ruud; Mastwijk, Hennie; Anese, Monica; Fogliano, Vincenzo; Capuano, Edoardo

    2018-01-01

    Tomato fractions were subjected to pulsed electric fields treatment combined or not with heating. Results showed that pulsed electric fields and heating applied in combination or individually induced permeabilization of cell membranes in the tomato fractions. However, no changes in β-carotene and

  19. Pulsed field losses and intentional quenches of superconducting coils

    International Nuclear Information System (INIS)

    Kim, S.H.

    1983-01-01

    Pulsed field losses of several 5-20 kJ coils have been measured under triangular field variations. The conductors, developed as potential subcables of 25-50 kA cables, consist of Cu wires and NbTi strands with or without CuNi barriers. Losses of soft-soldered subcables are compared with those of well-compacted cables. The coils were quenched intentionally by pulsing the coils above the critical current to observe loss variations due to possible conductor damage. The method of measurements, and effects of soldering and compactness of the conductors on the pulsed field losses will be presented

  20. Femtosecond time-resolved impulsive stimulated Raman spectroscopy using sub-7-fs pulses: Apparatus and applications

    Energy Technology Data Exchange (ETDEWEB)

    Kuramochi, Hikaru [Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198 (Japan); Takeuchi, Satoshi; Tahara, Tahei, E-mail: tahei@riken.jp [Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198 (Japan); Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako 351-0198 (Japan)

    2016-04-15

    We describe details of the setup for time-resolved impulsive stimulated Raman spectroscopy (TR-ISRS). In this method, snapshot molecular vibrational spectra of the photoreaction transients are captured via time-domain Raman probing using ultrashort pulses. Our instrument features transform-limited sub-7-fs pulses to impulsively excite and probe coherent nuclear wavepacket motions, allowing us to observe vibrational fingerprints of transient species from the terahertz to 3000-cm{sup −1} region with high sensitivity. Key optical components for the best spectroscopic performance are discussed. The TR-ISRS measurements for the excited states of diphenylacetylene in cyclohexane are demonstrated, highlighting the capability of our setup to track femtosecond dynamics of all the Raman-active fundamental molecular vibrations.

  1. Skin Rejuvenation with Non-Invasive Pulsed Electric Fields

    Science.gov (United States)

    Golberg, Alexander; Khan, Saiqa; Belov, Vasily; Quinn, Kyle P.; Albadawi, Hassan; Felix Broelsch, G.; Watkins, Michael T.; Georgakoudi, Irene; Papisov, Mikhail; Mihm, Martin C., Jr.; Austen, William G., Jr.; Yarmush, Martin L.

    2015-05-01

    Degenerative skin diseases affect one third of individuals over the age of sixty. Current therapies use various physical and chemical methods to rejuvenate skin; but since the therapies affect many tissue components including cells and extracellular matrix, they may also induce significant side effects, such as scarring. Here we report on a new, non-invasive, non-thermal technique to rejuvenate skin with pulsed electric fields. The fields destroy cells while simultaneously completely preserving the extracellular matrix architecture and releasing multiple growth factors locally that induce new cells and tissue growth. We have identified the specific pulsed electric field parameters in rats that lead to prominent proliferation of the epidermis, formation of microvasculature, and secretion of new collagen at treated areas without scarring. Our results suggest that pulsed electric fields can improve skin function and thus can potentially serve as a novel non-invasive skin therapy for multiple degenerative skin diseases.

  2. Electromagnetic field, excited by monodirected X-radiation pulse

    International Nuclear Information System (INIS)

    Zhemerov, A.V.; Metelkin, E.V.

    1994-01-01

    Parameters of electromagnetic field, generated in the atmosphere by monodirected pulse source of X radiation located at the altitude of approximately several kilometers have been estimated by the method of delayed potentials. The source radiation is directed towards the Earth surface. The conclusion was made that restricted areas of approximately 1 km with considerable pulse electromagnetic fields can be created on the Earth surface

  3. Eradication of multidrug-resistant pseudomonas biofilm with pulsed electric fields.

    Science.gov (United States)

    Khan, Saiqa I; Blumrosen, Gaddi; Vecchio, Daniela; Golberg, Alexander; McCormack, Michael C; Yarmush, Martin L; Hamblin, Michael R; Austen, William G

    2016-03-01

    Biofilm formation is a significant problem, accounting for over eighty percent of microbial infections in the body. Biofilm eradication is problematic due to increased resistance to antibiotics and antimicrobials as compared to planktonic cells. The purpose of this study was to investigate the effect of Pulsed Electric Fields (PEF) on biofilm-infected mesh. Prolene mesh was infected with bioluminescent Pseudomonas aeruginosa and treated with PEF using a concentric electrode system to derive, in a single experiment, the critical electric field strength needed to kill bacteria. The effect of the electric field strength and the number of pulses (with a fixed pulse length duration and frequency) on bacterial eradication was investigated. For all experiments, biofilm formation and disruption were confirmed with bioluminescent imaging and Scanning Electron Microscopy (SEM). Computation and statistical methods were used to analyze treatment efficiency and to compare it to existing theoretical models. In all experiments 1500 V are applied through a central electrode, with pulse duration of 50 μs, and pulse delivery frequency of 2 Hz. We found that the critical electric field strength (Ecr) needed to eradicate 100-80% of bacteria in the treated area was 121 ± 14 V/mm when 300 pulses were applied, and 235 ± 6.1 V/mm when 150 pulses were applied. The area at which 100-80% of bacteria were eradicated was 50.5 ± 9.9 mm(2) for 300 pulses, and 13.4 ± 0.65 mm(2) for 150 pulses. 80% threshold eradication was not achieved with 100 pulses. The results indicate that increased efficacy of treatment is due to increased number of pulses delivered. In addition, we that showed the bacterial death rate as a function of the electrical field follows the statistical Weibull model for 150 and 300 pulses. We hypothesize that in the clinical setting, combining systemic antibacterial therapy with PEF will yield a synergistic effect leading to improved

  4. Temporally asymmetric laser pulse for magnetic-field generation in plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mamta; Gopal, Krishna; Gupta, Devki Nandan, E-mail: dngupta@physics.du.ac.in

    2016-04-01

    Of particular interest in this article, the case study of an asymmetric laser pulse interaction with a plasma for magnetic field enhancement has been investigated. The strong ponderomotive force due to the short leading edge of the propagating laser pulse drives a large nonlinear current, producing a stronger quasistatic magnetic field. An analytical expression for the magnetic field is derived and the strength of the magnetic field is estimated for the current laser-plasma parameters. The theoretical results are validated through the particle-in-cell (PIC) simulations and are in very close agreement with the simulation based estimations. This kind of magnetic field can be useful in the plasma based accelerators as well as in the laser-fusion based experiments. - Highlights: • We employ an asymmetric laser pulse to enhance the magnetic field strength in a plasma. • Short leading front of the pulse drives a strong ponderomotive force. • An analytical expression for the magnetic field is derived. • The strength of the magnetic field is estimated for the current laser–plasma parameters.

  5. Temporally asymmetric laser pulse for magnetic-field generation in plasmas

    International Nuclear Information System (INIS)

    Singh, Mamta; Gopal, Krishna; Gupta, Devki Nandan

    2016-01-01

    Of particular interest in this article, the case study of an asymmetric laser pulse interaction with a plasma for magnetic field enhancement has been investigated. The strong ponderomotive force due to the short leading edge of the propagating laser pulse drives a large nonlinear current, producing a stronger quasistatic magnetic field. An analytical expression for the magnetic field is derived and the strength of the magnetic field is estimated for the current laser-plasma parameters. The theoretical results are validated through the particle-in-cell (PIC) simulations and are in very close agreement with the simulation based estimations. This kind of magnetic field can be useful in the plasma based accelerators as well as in the laser-fusion based experiments. - Highlights: • We employ an asymmetric laser pulse to enhance the magnetic field strength in a plasma. • Short leading front of the pulse drives a strong ponderomotive force. • An analytical expression for the magnetic field is derived. • The strength of the magnetic field is estimated for the current laser–plasma parameters.

  6. Skin Rejuvenation with Non-Invasive Pulsed Electric Fields

    Science.gov (United States)

    Golberg, Alexander; Khan, Saiqa; Belov, Vasily; Quinn, Kyle P.; Albadawi, Hassan; Felix Broelsch, G.; Watkins, Michael T.; Georgakoudi, Irene; Papisov, Mikhail; Mihm Jr., Martin C.; Austen Jr., William G.; Yarmush, Martin L.

    2015-01-01

    Degenerative skin diseases affect one third of individuals over the age of sixty. Current therapies use various physical and chemical methods to rejuvenate skin; but since the therapies affect many tissue components including cells and extracellular matrix, they may also induce significant side effects, such as scarring. Here we report on a new, non-invasive, non-thermal technique to rejuvenate skin with pulsed electric fields. The fields destroy cells while simultaneously completely preserving the extracellular matrix architecture and releasing multiple growth factors locally that induce new cells and tissue growth. We have identified the specific pulsed electric field parameters in rats that lead to prominent proliferation of the epidermis, formation of microvasculature, and secretion of new collagen at treated areas without scarring. Our results suggest that pulsed electric fields can improve skin function and thus can potentially serve as a novel non-invasive skin therapy for multiple degenerative skin diseases. PMID:25965851

  7. Time-resolved studies of ultrarapid solidification of highly undercooled molten silicon formed by pulsed laser irradiation

    International Nuclear Information System (INIS)

    Lowndes, D.H.; Jellison, G.E. Jr.; Wood, R.F.; Carpenter, R.

    1984-01-01

    This paper reports new results of nanosecond-resolution time-resolved optical reflectivity measurements, during pulsed excimer (KrF, 248 nm) laser irradiation of Si-implanted amorphous (a) silicon layers, which, together with model calculations and post-irradiation TEM measurements, have allowed us to study both the transformation of a-Si to a highly undercooled liquid (l) phase and the subsequent ultrarapid solidification process

  8. DIFFUSION OF THE PULSED ELECTROMAGNETIC FIELD INTO THE MULTI-LAYER CORE OF INDUCTOR AT PULSED DEVICES

    Directory of Open Access Journals (Sweden)

    Volodymyr T. Chemerys

    2008-02-01

    Full Text Available  The problem of the pulsed magnetic field distribution in the cross section of the inductor core at the induction accelerator of electron beam is under consideration in this paper. Owing to multi-layer structure of the core package it has the magnetic and electric anisotropy with different speed of the field diffusion along the sheets of magnetic and across the sheets. At the pulse duration less than one microsecond the essential non-uniformity of the field along both axes of the core cross section can be found. This effect reduces the efficiency of the ferromagnetic material using with corresponding loss of the accelerator efficiency. The main conclusion of the paper consists of the necessity to check the field diffusion characteristics in the process of inductor design to be sure that the pulsed field is able to fill the cross section of the core during the pulse switching. The magnetic characteristics of the anisotropic core have been investigated in the paper by one-dimensional and two-dimensional simulation in the quasi-stationary approximation using the traditional equation of the field diffusion.

  9. Pulsed critical current measurements of NbTi in perpendicular and parallel pulsed magnetic fields using the new Cryo-BI-Pulse System

    International Nuclear Information System (INIS)

    Stehr, V; Tan, K S; Hopkins, S C; Glowacki, B A; Keyser, A De; Bockstal, L Van; Deschagt, J

    2006-01-01

    Rapid transport current versus high magnetic field characterisation of high-irreversibility type II superconductors is important to maximise their critical parameters. HTS conductors are already used to produce insert coils that increase the fields of conventional magnets made from NbTi (Nb, Ta) 3 Sn and Nb 3 Al wires. There is fundamental interest in the study of HTS tapes and wires in magnetic fields higher than 21T, the current limit of superconducting magnets producing a DC field. Such fields can be obtained by using pulse techniques. High critical currents cannot be routinely measured with a continuous current applied at liquid helium, hydrogen or neon temperatures because of thermal and mechanical effects. A newly developed pulsed magnetic field and pulsed current system which allows rapid J c (B, T) measurements of the whole range of superconducting materials was tested with a multifilamentary NbTi wire in perpendicular and parallel orientations

  10. NO kinetics in pulsed low-pressure nitrogen plasmas studied by time resolved quantum cascade laser absorption spectroscopy

    NARCIS (Netherlands)

    Welzel, S.; Guaitella, O.; Lazzaroni, C.; Pintassilgo, C.; Rousseau, A.; Röpcke, J.

    2011-01-01

    Time-resolved quantum cascade laser absorption spectroscopy at 1897 cm-1 (5.27 µm) has been applied to study the NO(X) kinetics on the micro- and millisecond time scale in pulsed low-pressure N2/NO dc discharges. Experiments have been performed under flowing and static gas conditions to infer the

  11. Wide-field time-resolved luminescence imaging and spectroscopy to decipher obliterated documents in forensic science

    Science.gov (United States)

    Suzuki, Mototsugu; Akiba, Norimitsu; Kurosawa, Kenji; Kuroki, Kenro; Akao, Yoshinori; Higashikawa, Yoshiyasu

    2016-01-01

    We applied a wide-field time-resolved luminescence (TRL) method with a pulsed laser and a gated intensified charge coupled device (ICCD) for deciphering obliterated documents for use in forensic science. The TRL method can nondestructively measure the dynamics of luminescence, including fluorescence and phosphorescence lifetimes, which prove to be useful parameters for image detection. First, we measured the TRL spectra of four brands of black porous-tip pen inks on paper to estimate their luminescence lifetimes. Next, we acquired the TRL images of 12 obliterated documents at various delay times and gate times of the ICCD. The obliterated contents were revealed in the TRL images because of the difference in the luminescence lifetimes of the inks. This method requires no pretreatment, is nondestructive, and has the advantage of wide-field imaging, which makes it is easy to control the gate timing. This demonstration proves that TRL imaging and spectroscopy are powerful tools for forensic document examination.

  12. Angular Spectrum Simulation of Pulsed Ultrasound Fields

    DEFF Research Database (Denmark)

    Du, Yigang; Jensen, Henrik; Jensen, Jørgen Arendt

    2009-01-01

    frequencies must be performed. Combining it with Field II, the generation of non-linear simulation for any geometry with any excitation array transducer becomes feasible. The purpose of this paper is to make a general pulsed simulation software using the modified ASA. Linear and phased array transducers......The optimization of non-linear ultrasound imaging should in a first step be based on simulation, as this makes parameter studies considerably easier than making transducer prototypes. Such a simulation program should be capable of simulating non-linear pulsed fields for arbitrary transducer...... geometries for any kind of focusing and apodization. The Angular Spectrum Approach (ASA) is capable of simulating monochromatic non-linear acoustic wave propagation. However, for ultrasound imaging the time response of each specific point in space is required, and a pulsed ASA simulation with multi temporal...

  13. Development of an electron momentum spectrometer for time-resolved experiments employing nanosecond pulsed electron beam

    Science.gov (United States)

    Tang, Yaguo; Shan, Xu; Liu, Zhaohui; Niu, Shanshan; Wang, Enliang; Chen, Xiangjun

    2018-03-01

    The low count rate of (e, 2e) electron momentum spectroscopy (EMS) has long been a major limitation of its application to the investigation of molecular dynamics. Here we report a new EMS apparatus developed for time-resolved experiments in the nanosecond time scale, in which a double toroidal energy analyzer is utilized to improve the sensitivity of the spectrometer and a nanosecond pulsed electron gun with a repetition rate of 10 kHz is used to obtain an average beam current up to nA. Meanwhile, a picosecond ultraviolet laser with a repetition rate of 5 kHz is introduced to pump the sample target. The time zero is determined by photoionizing the target using a pump laser and monitoring the change of the electron beam current with time delay between the laser pulse and electron pulse, which is influenced by the plasma induced by the photoionization. The performance of the spectrometer is demonstrated by the EMS measurement on argon using a pulsed electron beam, illustrating the potential abilities of the apparatus for investigating the molecular dynamics in excited states when employing the pump-probe scheme.

  14. Pulsed-laser time-resolved thermal mirror technique in low-absorbance homogeneous linear elastic materials.

    Science.gov (United States)

    Lukasievicz, Gustavo V B; Astrath, Nelson G C; Malacarne, Luis C; Herculano, Leandro S; Zanuto, Vitor S; Baesso, Mauro L; Bialkowski, Stephen E

    2013-10-01

    A theoretical model for a time-resolved photothermal mirror technique using pulsed-laser excitation was developed for low absorption samples. Analytical solutions to the temperature and thermoelastic deformation equations are found for three characteristic pulse profiles and are compared to finite element analysis methods results for finite samples. An analytical expression for the intensity of the center of a continuous probe laser at the detector plane is derived using the Fresnel diffraction theory, which allows modeling of experimental results. Experiments are performed in optical glasses, and the models are fitted to the data. The parameters of the fit are in good agreement with previous literature data for absorption, thermal diffusion, and thermal expansion of the materials tested. The combined modeling and experimental techniques are shown to be useful for quantitative determination of the physical properties of low absorption homogeneous linear elastic material samples.

  15. Reaction-time-resolved measurements of laser-induced fluorescence in a shock tube with a single laser pulse

    Science.gov (United States)

    Zabeti, S.; Fikri, M.; Schulz, C.

    2017-11-01

    Shock tubes allow for the study of ultra-fast gas-phase reactions on the microsecond time scale. Because the repetition rate of the experiments is low, it is crucial to gain as much information as possible from each individual measurement. While reaction-time-resolved species concentration and temperature measurements with fast absorption methods are established, conventional laser-induced fluorescence (LIF) measurements with pulsed lasers provide data only at a single reaction time. Therefore, fluorescence methods have rarely been used in shock-tube diagnostics. In this paper, a novel experimental concept is presented that allows reaction-time-resolved LIF measurements with one single laser pulse using a test section that is equipped with several optical ports. After the passage of the shock wave, the reactive mixture is excited along the center of the tube with a 266-nm laser beam directed through a window in the end wall of the shock tube. The emitted LIF signal is collected through elongated sidewall windows and focused onto the entrance slit of an imaging spectrometer coupled to an intensified CCD camera. The one-dimensional spatial resolution of the measurement translates into a reaction-time-resolved measurement while the species information can be gained from the spectral axis of the detected two-dimensional image. Anisole pyrolysis was selected as the benchmark reaction to demonstrate the new apparatus.

  16. Strain sensors for high field pulse magnets

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Christian [Los Alamos National Laboratory; Zheng, Yan [Los Alamos National Laboratory; Easton, Daniel [Los Alamos National Laboratory; Farinholt, Kevin M [Los Alamos National Laboratory; Park, Gyuhae [Los Alamos National Laboratory

    2009-01-01

    In this paper we present an investigation into several strain sensing technologies that are being considered to monitor mechanical deformation within the steel reinforcement shells used in high field pulsed magnets. Such systems generally operate at cryogenic temperatures to mitigate heating issues that are inherent in the coils of nondestructive, high field pulsed magnets. The objective of this preliminary study is to characterize the performance of various strain sensing technologies at liquid nitrogen temperatures (-196 C). Four sensor types are considered in this investigation: fiber Bragg gratings (FBG), resistive foil strain gauges (RFSG), piezoelectric polymers (PVDF), and piezoceramics (PZT). Three operational conditions are considered for each sensor: bond integrity, sensitivity as a function of temperature, and thermal cycling effects. Several experiments were conducted as part of this study, investigating adhesion with various substrate materials (stainless steel, aluminum, and carbon fiber), sensitivity to static (FBG and RFSG) and dynamic (RFSG, PVDF and PZT) load conditions, and sensor diagnostics using PZT sensors. This work has been conducted in collaboration with the National High Magnetic Field Laboratory (NHMFL), and the results of this study will be used to identify the set of sensing technologies that would be best suited for integration within high field pulsed magnets at the NHMFL facility.

  17. Time- and energy resolved photoemission electron microscopy-imaging of photoelectron time-of-flight analysis by means of pulsed excitations

    International Nuclear Information System (INIS)

    Oelsner, Andreas; Rohmer, Martin; Schneider, Christian; Bayer, Daniela; Schoenhense, Gerd; Aeschlimann, Martin

    2010-01-01

    The present work enlightens the developments in time- and energy resolved photoemission electron microscopy over the past few years. We describe basic principles of the technique and demonstrate different applications. An energy- and time-filtering photoemission electron microscopy (PEEM) for real-time spectroscopic imaging can be realized either by a retarding field or hemispherical energy analyzer or by using time-of-flight optics with a delay line detector. The latter method has the advantage of no data loss at all as all randomly incoming particles are measured not only by position but also by time. This is of particular interest for pump-probe experiments in the femtosecond and attosecond time scale where space charge processes drastically limit the maximum number of photoemitted electrons per laser pulse. This work focuses particularly on time-of-flight analysis using a novel delay line detector. Time and energy resolved PEEM instruments with delay line detectors enable 4D imaging (x, y, Δt, E Kin ) on a true counting basis. This allows a broad range of applications from real-time observation of dynamic phenomena at surfaces to fs time-of-flight spectro-microscopy and even aberration correction. By now, these time-of-flight analysis instruments achieve intrinsic time resolutions of 108 ps absolute and 13.5 ps relative. Very high permanent measurement speeds of more than 4 million events per second in random detection regimes have been realized using a standard USB2.0 interface. By means of this performance, the time-resolved PEEM technique enables to display evolutions of spatially resolved (<25 nm) and temporal sliced images life on any modern computer. The method allows dynamics investigations of variable electrical, magnetic, and optical near fields at surfaces and great prospects in dynamical adaptive photoelectron optics. For dynamical processes in the ps time scale such as magnetic domain wall movements, the time resolution of the delay line detectors

  18. LUPIN, a new instrument for pulsed neutron fields

    Energy Technology Data Exchange (ETDEWEB)

    Caresana, M. [Politecnico di Milano, Department of Energy, Via Ponzio 34/3, 20133 Milan (Italy); Ferrarini, M. [Politecnico di Milano, Department of Energy, Via Ponzio 34/3, 20133 Milan (Italy); CNAO, Via Privata Campeggi, 27100 Pavia (Italy); Manessi, G.P., E-mail: giacomo.paolo.manessi@cern.ch [CERN, 1211 Geneva 23 (Switzerland); University of Liverpool, Department of Physics, L69 7ZE Liverpool (United Kingdom); Silari, M. [CERN, 1211 Geneva 23 (Switzerland); Varoli, V. [Politecnico di Milano, Department of Energy, Via Ponzio 34/3, 20133 Milan (Italy)

    2013-06-01

    A number of studies focused in the last decades on the development of survey meters to be used in pulsed radiation fields. This is a topic attracting widespread interest for applications such as radiation protection and beam diagnostics in accelerators. This paper describes a new instrument specifically conceived for applications in pulsed neutron fields (PNF). The detector, called LUPIN, is a rem counter type instrument consisting of a {sup 3}He proportional counter placed inside a spherical moderator. It works in current mode with a front-end electronics consisting of a current–voltage logarithmic amplifier, whose output signal is acquired with an ADC and processed on a PC. This alternative signal processing allows the instrument to be used in PNF without being affected by saturation effects. Moreover, it has a measurement capability ranging over many orders of burst intensity. Despite the fact that it works in current mode, it can measure a single neutron interaction. The LUPIN was first calibrated in CERN's calibration laboratory with a PuBe source. Measurements were carried out under various experimental conditions at the Helmholtz-Zentrum in Berlin, in the stray field at various locations of the CERN Proton Synchrotron complex and around a radiotherapy linear accelerator at the S. Raffaele hospital in Milan. The detector can withstand single bursts with values of H⁎(10) up to 16 nSv/burst without showing any saturation effect. It efficiently works in pulsed stray fields, where a conventional rem-counter underestimates by a factor of 2. It is also able to reject the very intense and pulsed photon contribution that often accompanies the neutron field with good reliability. -- Highlights: ► LUPIN is a new detector specifically conceived to work in neutron pulsed fields. ► The detector is a rem counter type instrument working in current mode. ► The performances of the detectors were studied under various experimental conditions. ► The detector

  19. Acetic acid denaturing pulsed field capillary electrophoresis for RNA separation.

    Science.gov (United States)

    Li, Zhenqing; Dou, Xiaoming; Ni, Yi; Sumitomo, Keiko; Yamaguchi, Yoshinori

    2010-10-01

    Based on our previous work of in-capillary denaturing polymer electrophoresis, we present a study of RNA molecular separation up to 6.0 kilo nucleotide by pulsed field CE. This is the first systematic investigation of electrophoresis of a larger molecular mass RNA in linear hydroxyethylcellulose (HEC) under pulsed field conditions. The parameters that may influence the separation performance, e.g. gel polymer concentration, modulation depth and pulse frequency, are analyzed in terms of resolution and mobility. For denaturing and separating RNA in the capillary simultaneously, 2 M acetic acid was added into the HEC polymer to serve as separation buffer. Result shows that (i) in pulsed field conditions, RNA separation can be achieved in a wide range of concentration of HEC polymer, and RNA fragments between 0.3 and 0.6 kilo nucleotide are sensitive to the polymer concentration; (ii) under certain pulsed field conditions, RNA fragments move linearly as the modulation depth increases; (iii) 12.5 Hz is the resonance frequency for RNA reorientation time and applied frequency.

  20. Time resolved techniques: An overview

    International Nuclear Information System (INIS)

    Larson, B.C.; Tischler, J.Z.

    1990-06-01

    Synchrotron sources provide exceptional opportunities for carrying out time-resolved x-ray diffraction investigations. The high intensity, high angular resolution, and continuously tunable energy spectrum of synchrotron x-ray beams lend themselves directly to carrying out sophisticated time-resolved x-ray scattering measurements on a wide range of materials and phenomena. When these attributes are coupled with the pulsed time-structure of synchrotron sources, entirely new time-resolved scattering possibilities are opened. Synchrotron beams typically consist of sub-nanosecond pulses of x-rays separated in time by a few tens of nanoseconds to a few hundred nanoseconds so that these beams appear as continuous x-ray sources for investigations of phenomena on time scales ranging from hours down to microseconds. Studies requiring time-resolution ranging from microseconds to fractions of a nanosecond can be carried out in a triggering mode by stimulating the phenomena under investigation in coincidence with the x-ray pulses. Time resolution on the picosecond scale can, in principle, be achieved through the use of streak camera techniques in which the time structure of the individual x-ray pulses are viewed as quasi-continuous sources with ∼100--200 picoseconds duration. Techniques for carrying out time-resolved scattering measurements on time scales varying from picoseconds to kiloseconds at present and proposed synchrotron sources are discussed and examples of time-resolved studies are cited. 17 refs., 8 figs

  1. Nanosecond pulsed electric field ablation of hepatocellular carcinoma.

    Science.gov (United States)

    Beebe, Stephen J; Chen, Xinhua; Liu, Jie A; Schoenbach, Karl H

    2011-01-01

    Hepatocellular carcinoma often evades effective therapy and recurrences are frequent. Recently, nanosecond pulsed electric field (nsPEF) ablation using pulse power technology has emerged as a local-regional, non-thermal, and non-drug therapy for skin cancers. In the studies reported here we use nsPEFs to ablate murine, rat and human HCCs in vitro and an ectopic murine Hepa 1-6 HCC in vivo. Using pulses with 60 or 300 ns and electric fields as high as 60 kV/cm, murine Hepa 1-6, rat N1S1 and human HepG2 HCC are readily eliminated with changes in caspase-3 activity. Interestingly caspase activities increase in the mouse and human model and decrease in the rat model as electric field strengths are increased. In vivo, while sham treated control mice survived an average of 15 days after injection and before humane euthanasia, Hepa 1-6 tumors were eliminated for longer than 50 days with 3 treatments using one hundred pulses with 100 ns at 55 kV/cm. Survival was 40% in mice treated with 30 ns pulses at 55 kV/cm. This study demonstrates that nsPEF ablation is not limited to effectively treating skin cancers and provides a rationale for treating orthotopic hepatocellular carcinoma in pre-clinical applications and ultimately in clinical trials.

  2. Ionization and recombination in attosecond electric field pulses

    International Nuclear Information System (INIS)

    Dimitrovski, Darko; Solov'ev, Eugene A.; Briggs, John S.

    2005-01-01

    Based on the results of a previous communication [Dimitrovski et al., Phys. Rev. Lett. 93, 083003 (2004)], we study ionization and excitation of a hydrogenic atom from the ground and first excited states in short electric field pulses of several cycles. A process of ionization and recombination which occurs periodically in time is identified, for both small and extremely large peak electric field strengths. In the limit of large electric peak fields closed-form analytic expressions for the population of the initial state after single- and few-cycle pulses are derived. These formulas, strictly valid for asymptotically large momentum transfer from the field, give excellent agreement with fully numerical calculations for all momentum transfers

  3. The New High Magnetic Field Laboratory at Dresden: a Pulsed-Field Laboratory at an IR Free-Electron-Laser

    International Nuclear Information System (INIS)

    Pobell, F.; Bianchi, A. D.; Herrmannsdoerfer, T.; Krug, H.; Zherlitsyn, S.; Zvyagin, S.; Wosnitza, J.

    2006-01-01

    We report on the construction of a new high magnetic field user laboratory which will offer pulsed-field coils in the range (60 T, 500 ms, 40 mm) to (100 T, 10 ms, 20 mm) for maximum field, pulse time, and bore diameter of the coils. These coils will be energized by a modular 50 MJ/24 kV capacitor bank. Besides many other experimental techniques, as unique possibilities NMR in pulsed fields as well as infrared spectroscopy at 5 to 150 μm will be available by connecting the pulsed field laboratory to a nearby free-electron-laser facility

  4. Development of advanced radiation monitors for pulsed neutron fields

    CERN Document Server

    AUTHOR|(CDS)2081895

    The need of radiation detectors capable of efficiently measuring in pulsed neutron fields is attracting widespread interest since the 60s. The efforts of the scientific community substantially increased in the last decade due to the increasing number of applications in which this radiation field is encountered. This is a major issue especially at particle accelerator facilities, where pulsed neutron fields are present because of beam losses at targets, collimators and beam dumps, and where the correct assessment of the intensity of the neutron fields is fundamental for radiation protection monitoring. LUPIN is a neutron detector that combines an innovative acquisition electronics based on logarithmic amplification of the collected current signal and a special technique used to derive the total number of detected neutron interactions, which has been specifically conceived to work in pulsed neutron fields. Due to its special working principle, it is capable of overcoming the typical saturation issues encountere...

  5. Angle-resolved photoemission spectroscopy with 9-eV photon-energy pulses generated in a gas-filled hollow-core photonic crystal fiber

    Science.gov (United States)

    Bromberger, H.; Ermolov, A.; Belli, F.; Liu, H.; Calegari, F.; Chávez-Cervantes, M.; Li, M. T.; Lin, C. T.; Abdolvand, A.; Russell, P. St. J.; Cavalleri, A.; Travers, J. C.; Gierz, I.

    2015-08-01

    A recently developed source of ultraviolet radiation, based on optical soliton propagation in a gas-filled hollow-core photonic crystal fiber, is applied here to angle-resolved photoemission spectroscopy (ARPES). Near-infrared femtosecond pulses of only few μJ energy generate vacuum ultraviolet radiation between 5.5 and 9 eV inside the gas-filled fiber. These pulses are used to measure the band structure of the topological insulator Bi2Se3 with a signal to noise ratio comparable to that obtained with high order harmonics from a gas jet. The two-order-of-magnitude gain in efficiency promises time-resolved ARPES measurements at repetition rates of hundreds of kHz or even MHz, with photon energies that cover the first Brillouin zone of most materials.

  6. Gauge invariance in the theoretical description of time-resolved angle-resolved pump/probe photoemission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Freericks, J. K.; Krishnamurthy, H. R.; Sentef, M. A.; Devereaux, T. P.

    2015-10-01

    Nonequilibrium calculations in the presence of an electric field are usually performed in a gauge, and need to be transformed to reveal the gauge-invariant observables. In this work, we discuss the issue of gauge invariance in the context of time-resolved angle-resolved pump/probe photoemission. If the probe is applied while the pump is still on, one must ensure that the calculations of the observed photocurrent are gauge invariant. We also discuss the requirement of the photoemission signal to be positive and the relationship of this constraint to gauge invariance. We end by discussing some technical details related to the perturbative derivation of the photoemission spectra, which involve processes where the pump pulse photoexcites electrons due to nonequilibrium effects.

  7. Measurements of Electric Field in a Nanosecond Pulse Discharge by 4-WAVE Mixing

    Science.gov (United States)

    Baratte, Edmond; Adamovich, Igor V.; Simeni Simeni, Marien; Frederickson, Kraig

    2017-06-01

    Picosecond four-wave mixing is used to measure temporally and Picosecond four-wave mixing is used to measure temporally and spatially resolved electric field in a nanosecond pulse dielectric discharge sustained in room air and in an atmospheric pressure hydrogen diffusion flame. Measurements of the electric field, and more precisely the reduced electric field (E/N) in the plasma is critical for determination rate coefficients of electron impact processes in the plasma, as well as for quantifying energy partition in the electric discharge among different molecular energy modes. The four-wave mixing measurements are performed using a collinear phase matching geometry, with nitrogen used as the probe species, at temporal resolution of about 2 ns . Absolute calibration is performed by measurement of a known electrostatic electric field. In the present experiments, the discharge is sustained between two stainless steel plate electrodes, each placed in a quartz sleeve, which greatly improves plasma uniformity. Our previous measurements of electric field in a nanosecond pulse dielectric barrier discharge by picosecond 4-wave mixing have been done in air at room temperature, in a discharge sustained between a razor edge high-voltage electrode and a plane grounded electrode (a quartz plate or a layer of distilled water). Electric field measurements in a flame, which is a high-temperature environment, are more challenging because the four-wave mixing signal is proportional to the to square root of the difference betwen the populations of N2 ground vibrational level (v=0) and first excited vibrational level (v=1). At high temperatures, the total number density is reduced, thus reducing absolute vibrational level populations of N2. Also, the signal is reduced further due to a wider distribution of N2 molecules over multiple rotational levels at higher temperatures, while the present four-wave mixing diagnostics is using spectrally narrow output of a ps laser and a high

  8. Pulsed beams as field probes for precision measurement

    International Nuclear Information System (INIS)

    Hudson, J. J.; Ashworth, H. T.; Kara, D. M.; Tarbutt, M. R.; Sauer, B. E.; Hinds, E. A.

    2007-01-01

    We describe a technique for mapping the spatial variation of static electric, static magnetic, and rf magnetic fields using a pulsed atomic or molecular beam. The method is demonstrated using a beam designed to measure the electric dipole moment of the electron. We present maps of the interaction region, showing sensitivity to (i) electric field variation of 1.5 V/cm at 3.3 kV/cm with a spatial resolution of 15 mm; (ii) magnetic field variation of 5 nT with 25 mm resolution; (iii) radio-frequency magnetic field amplitude with 15 mm resolution. This diagnostic technique is very powerful in the context of high-precision atomic and molecular physics experiments, where pulsed beams have not hitherto found widespread application

  9. Investigation on stresses of superconductors under pulsed magnetic fields based on multiphysics model

    International Nuclear Information System (INIS)

    Yang, Xiaobin; Li, Xiuhong; He, Yafeng; Wang, Xiaojun; Xu, Bo

    2017-01-01

    Highlights: • The differential equation including temperature and magnetic field was derived for a long cylindrical superconductor. • Thermal stress and electromagnetic stress were studied at the same time under pulse field magnetizing. • The distributions of the magnetic field, the temperature and stresses are studied and compared for two pulse fields of the different duration. • The Role thermal stress and electromagnetic stress play in the process of pulse field magnetizing is discussed. - Abstract: A multiphysics model for the numerical computation of stresses, trapped field and temperature distribution of a infinite long superconducting cylinder is proposed, based on which the stresses, including the thermal stresses and mechanical stresses due to Lorentz force, and trapped fields in the superconductor subjected to pulsed magnetic fields are analyzed. By comparing the results under pulsed magnetic fields with different pulse durations, it is found that the both the mechanical stress due to the electromagnetic force and the thermal stress due to temperature gradient contribute to the total stress level in the superconductor. For pulsed magnetic field with short durations, the thermal stress is the dominant contribution to the total stress, because the heat generated by AC-loss builds up significant temperature gradient in such short durations. However, for a pulsed field with a long duration the gradient of temperature and flux, as well as the maximal tensile stress, are much smaller. And the results of this paper is meaningful for the design and manufacture of superconducting permanent magnets.

  10. Investigation on stresses of superconductors under pulsed magnetic fields based on multiphysics model

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaobin, E-mail: yangxb@lzu.edu.cn; Li, Xiuhong; He, Yafeng; Wang, Xiaojun; Xu, Bo

    2017-04-15

    Highlights: • The differential equation including temperature and magnetic field was derived for a long cylindrical superconductor. • Thermal stress and electromagnetic stress were studied at the same time under pulse field magnetizing. • The distributions of the magnetic field, the temperature and stresses are studied and compared for two pulse fields of the different duration. • The Role thermal stress and electromagnetic stress play in the process of pulse field magnetizing is discussed. - Abstract: A multiphysics model for the numerical computation of stresses, trapped field and temperature distribution of a infinite long superconducting cylinder is proposed, based on which the stresses, including the thermal stresses and mechanical stresses due to Lorentz force, and trapped fields in the superconductor subjected to pulsed magnetic fields are analyzed. By comparing the results under pulsed magnetic fields with different pulse durations, it is found that the both the mechanical stress due to the electromagnetic force and the thermal stress due to temperature gradient contribute to the total stress level in the superconductor. For pulsed magnetic field with short durations, the thermal stress is the dominant contribution to the total stress, because the heat generated by AC-loss builds up significant temperature gradient in such short durations. However, for a pulsed field with a long duration the gradient of temperature and flux, as well as the maximal tensile stress, are much smaller. And the results of this paper is meaningful for the design and manufacture of superconducting permanent magnets.

  11. The effect of applied electric field on pulsed radio frequency and pulsed direct current plasma jet array

    International Nuclear Information System (INIS)

    Hu, J. T.; Liu, X. Y.; Liu, J. H.; Xiong, Z. L.; Liu, D. W.; Lu, X. P.; Iza, F.; Kong, M. G.

    2012-01-01

    Here we compare the plasma plume propagation characteristics of a 3-channel pulsed RF plasma jet array and those of the same device operated by a pulsed dc source. For the pulsed-RF jet array, numerous long life time ions and metastables accumulated in the plasma channel make the plasma plume respond quickly to applied electric field. Its structure similar as “plasma bullet” is an anode glow indeed. For the pulsed dc plasma jet array, the strong electric field in the vicinity of the tube is the reason for the growing plasma bullet in the launching period. The repulsive forces between the growing plasma bullets result in the divergence of the pulsed dc plasma jet array. Finally, the comparison of 309 nm and 777 nm emissions between these two jet arrays suggests the high chemical activity of pulsed RF plasma jet array.

  12. High-intensity pulsed electric field variables affecting Staphylococcus aureus inoculated in milk.

    Science.gov (United States)

    Sobrino-López, A; Raybaudi-Massilia, R; Martín-Belloso, O

    2006-10-01

    Staphylococcus aureus is an important milk-related pathogen that is inactivated by high-intensity pulsed electric fields (HIPEF). In this study, inactivation of Staph. aureus suspended in milk by HIPEF was studied using a response surface methodology, in which electric field intensity, pulse number, pulse width, pulse polarity, and the fat content of milk were the controlled variables. It was found that the fat content of milk did not significantly affect the microbial inactivation of Staph. aureus. A maximum value of 4.5 log reductions was obtained by applying 150 bipolar pulses of 8 mus each at 35 kV/cm. Bipolar pulses were more effective than those applied in the monopolar mode. An increase in electric field intensity, pulse number, or pulse width resulted in a drop in the survival fraction of Staph. aureus. Pulse widths close to 6.7 micros lead to greater microbial death with a minimum number of applied pulses. At a constant treatment time, a greater number of shorter pulses achieved better inactivation than those treatments performed at a lower number of longer pulses. The combined action of pulse number and electric field intensity followed a similar pattern, indicating that the same fraction of microbial death can be reached with different combinations of the variables. The behavior and relationship among the electrical variables suggest that the energy input of HIPEF processing might be optimized without decreasing the microbial death.

  13. On the theory of time-resolved x-ray diffraction

    DEFF Research Database (Denmark)

    Henriksen, Niels Engholm; Møller, Klaus Braagaard

    2008-01-01

    We derive the basic theoretical formulation for X-ray diffraction with pulsed fields, using a fully quantized description of light and matter. Relevant time scales are discussed for coherent as well as incoherent X-ray pulses, and we provide expressions to be used for calculation...... of the experimental diffraction signal for both types of X-ray sources. We present a simple analysis of time-resolved X-ray scattering for direct bond breaking in diatomic molecules. This essentially analytical approach highlights the relation between the signal and the time-dependent quantum distribution...

  14. Pulsed electric field sensor based on original waveform measurement

    International Nuclear Information System (INIS)

    Ma Liang; Wu Wei; Cheng Yinhui; Zhou Hui; Li Baozhong; Li Jinxi; Zhu Meng

    2010-01-01

    The paper introduces the differential and original waveform measurement principles for pulsed E-field, and develops an pulsed E-field sensor based on original waveform measurement along with its theoretical correction model. The sensor consists of antenna, integrator, amplifier and driver, optic-electric/electric-optic conversion module and transmission module. The time-domain calibration in TEM cell indicates that, its risetime response is shorter than 1.0 ns, and the output pulse width at 90% of the maximum amplitude is wider than 10.0 μs. The output amplitude of the sensor is linear to the electric field intensity in a dynamic range of 20 dB. The measurement capability can be extended to 10 V/m or 50 kV/m by changing the system's antenna and other relative modules. (authors)

  15. Design of Electric Field Sensors for Measurement of Electromagnetic Pulse

    Directory of Open Access Journals (Sweden)

    Hui ZHANG

    2014-01-01

    Full Text Available In this paper, a D-dot electric field sensor and a fiber-optic transmission electric field sensor are developed for measurement of electromagnetic pulse. The D-dot sensor is a differential model sensor without source and has a simple structure. The fiber-optic transmission sensor is in the type of small dipole antenna, which uses its outside shielding layer as a pair of antennas. Design of the sensor circuit and the test system are introduced in this paper. A calibration system for these pulsed field sensors is established and the test results verified the ability of the developed sensors for measurement of the standard electromagnetic pulse field (the half peak width is 25 ns and the rising time is 2.5 ns.

  16. Strong-field ionization with twisted laser pulses

    Science.gov (United States)

    Paufler, Willi; Böning, Birger; Fritzsche, Stephan

    2018-04-01

    We apply quantum trajectory Monte Carlo computations in order to model strong-field ionization of atoms by twisted Bessel pulses and calculate photoelectron momentum distributions (PEMD). Since Bessel beams can be considered as an infinite superposition of circularly polarized plane waves with the same helicity, whose wave vectors lie on a cone, we compared the PEMD of such Bessel pulses to those of a circularly polarized pulse. We focus on the momentum distributions in propagation direction of the pulse and show how these momentum distributions are affected by experimental accessible parameters, such as the opening angle of the beam or the impact parameter of the atom with regard to the beam axis. In particular, we show that we can find higher momenta of the photoelectrons, if the opening angle is increased.

  17. The effect of pulsed electric fields on carotenoids bioaccessibility: The role of tomato matrix.

    Science.gov (United States)

    Bot, Francesca; Verkerk, Ruud; Mastwijk, Hennie; Anese, Monica; Fogliano, Vincenzo; Capuano, Edoardo

    2018-02-01

    Tomato fractions were subjected to pulsed electric fields treatment combined or not with heating. Results showed that pulsed electric fields and heating applied in combination or individually induced permeabilization of cell membranes in the tomato fractions. However, no changes in β-carotene and lycopene bioaccessibility were found upon combined and individual pulsed electric fields and heating, except in the following cases: (i) in tissue, a significant decrease in lycopene bioaccessibility upon combined pulsed electric fields and heating and heating only was observed; (ii) in chromoplasts, both β-carotene and lycopene bioaccessibility significantly decreased upon combined pulsed electric fields and heating and pulsed electric fields only. The reduction in carotenoids bioaccessibility was attributed to modification in chromoplasts membrane and carotenoids-protein complexes. Differences in the effects of pulsed electric fields on bioaccessibility among different tomato fractions were related to tomato structure complexity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Angle-resolved photoemission spectroscopy with 9-eV photon-energy pulses generated in a gas-filled hollow-core photonic crystal fiber

    Energy Technology Data Exchange (ETDEWEB)

    Bromberger, H., E-mail: Hubertus.Bromberger@mpsd.mpg.de; Liu, H.; Chávez-Cervantes, M.; Gierz, I. [Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg (Germany); Ermolov, A.; Belli, F.; Abdolvand, A.; Russell, P. St. J.; Travers, J. C. [Max Planck Institute for the Science of Light, Günther-Scharowsky-Str. 1, 91058 Erlangen (Germany); Calegari, F. [Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg (Germany); Institute for Photonics and Nanotechnologies, IFN-CNR, Piazza Leonardo da Vinci 32, I-20133 Milano (Italy); Li, M. T.; Lin, C. T. [Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart (Germany); Cavalleri, A. [Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg (Germany); Clarendon Laboratory, Department of Physics, University of Oxford, Parks Rd. Oxford OX1 3PU (United Kingdom)

    2015-08-31

    A recently developed source of ultraviolet radiation, based on optical soliton propagation in a gas-filled hollow-core photonic crystal fiber, is applied here to angle-resolved photoemission spectroscopy (ARPES). Near-infrared femtosecond pulses of only few μJ energy generate vacuum ultraviolet radiation between 5.5 and 9 eV inside the gas-filled fiber. These pulses are used to measure the band structure of the topological insulator Bi{sub 2}Se{sub 3} with a signal to noise ratio comparable to that obtained with high order harmonics from a gas jet. The two-order-of-magnitude gain in efficiency promises time-resolved ARPES measurements at repetition rates of hundreds of kHz or even MHz, with photon energies that cover the first Brillouin zone of most materials.

  19. Angle-resolved photoemission spectroscopy with 9-eV photon-energy pulses generated in a gas-filled hollow-core photonic crystal fiber

    International Nuclear Information System (INIS)

    Bromberger, H.; Liu, H.; Chávez-Cervantes, M.; Gierz, I.; Ermolov, A.; Belli, F.; Abdolvand, A.; Russell, P. St. J.; Travers, J. C.; Calegari, F.; Li, M. T.; Lin, C. T.; Cavalleri, A.

    2015-01-01

    A recently developed source of ultraviolet radiation, based on optical soliton propagation in a gas-filled hollow-core photonic crystal fiber, is applied here to angle-resolved photoemission spectroscopy (ARPES). Near-infrared femtosecond pulses of only few μJ energy generate vacuum ultraviolet radiation between 5.5 and 9 eV inside the gas-filled fiber. These pulses are used to measure the band structure of the topological insulator Bi 2 Se 3 with a signal to noise ratio comparable to that obtained with high order harmonics from a gas jet. The two-order-of-magnitude gain in efficiency promises time-resolved ARPES measurements at repetition rates of hundreds of kHz or even MHz, with photon energies that cover the first Brillouin zone of most materials

  20. Development of a coincidence circuit with nanosecond resolving time for NaI(Tl) scintillator pulses

    International Nuclear Information System (INIS)

    Ripon, R.; Coussot, G.

    1969-01-01

    The principle and the details of a slow-fast type coincidence circuit for pulses delivered by Nal(Tl) scintillators are presented. Thanks to a voluntary limitation of the analysis band (150 keV to 1 MeV) an excellent stability is obtained with respect to thermal drifts. The resolving time which has been adopted, 4 ns with 100 per cent efficiency, is quite sufficient for the projected experiment but does not represent the optimum performance of which the circuit is capable [fr

  1. Effect of parallel magnetic field on repetitively unipolar nanosecond pulsed dielectric barrier discharge under different pulse repetition frequencies

    Science.gov (United States)

    Liu, Yidi; Yan, Huijie; Guo, Hongfei; Fan, Zhihui; Wang, Yuying; Wu, Yun; Ren, Chunsheng

    2018-03-01

    A magnetic field, with the direction parallel to the electric field, is applied to the repetitively unipolar positive nanosecond pulsed dielectric barrier discharge. The effect of the parallel magnetic field on the plasma generated between two parallel-plate electrodes in quiescent air is experimentally studied under different pulse repetition frequencies (PRFs). It is indicated that only the current pulse in the rising front of the voltage pulse occurs, and the value of the current is increased by the parallel magnetic field under different PRFs. The discharge uniformity is improved with the decrease in PRF, and this phenomenon is also observed in the discharge with the parallel magnetic field. By using the line-ratio technique of optical emission spectra, it is found that the average electron density and electron temperature under the considered PRFs are both increased when the parallel magnetic field is applied. The incremental degree of average electron density is basically the same under the considered PRFs, while the incremental degree of electron temperature under the higher-PRFs is larger than that under the lower-PRFs. All the above phenomena are explained by the effect of parallel magnetic field on diffusion and dissipation of electrons.

  2. Comparison of pulsed corona plasma and pulsed electric fields for the decontamination of water containing Legionella pneumophila as model organism.

    Science.gov (United States)

    Banaschik, Robert; Burchhardt, Gerhard; Zocher, Katja; Hammerschmidt, Sven; Kolb, Juergen F; Weltmann, Klaus-Dieter

    2016-12-01

    Pulsed corona plasma and pulsed electric fields were assessed for their capacity to kill Legionella pneumophila in water. Electrical parameters such as in particular dissipated energy were equal for both treatments. This was accomplished by changing the polarity of the applied high voltage pulses in a coaxial electrode geometry resulting in the generation of corona plasma or an electric field. For corona plasma, generated by high voltage pulses with peak voltages of +80kV, Legionella were completely killed, corresponding to a log-reduction of 5.4 (CFU/ml) after a treatment time of 12.5min. For the application of pulsed electric fields from peak voltages of -80kV a survival of log 2.54 (CFU/ml) was still detectable after this treatment time. Scanning electron microscopy images of L. pneumophila showed rupture of cells after plasma treatment. In contrast, the morphology of bacteria seems to be intact after application of pulsed electric fields. The more efficient killing for the same energy input observed for pulsed corona plasma is likely due to induced chemical processes and the generation of reactive species as indicated by the evolution of hydrogen peroxide. This suggests that the higher efficacy and efficiency of pulsed corona plasma is primarily associated with the combined effect of the applied electric fields and the promoted reaction chemistry. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Temporally resolved imaging on quenching and re-ignition of nanosecond underwater discharge

    Directory of Open Access Journals (Sweden)

    Yong Yang

    2012-12-01

    Full Text Available This paper presents the temporally resolved images of plasma discharge in de-ionized water. The discharge was produced by high voltage pulses with 0.3 ns rise time and 10 ns duration. The temporal resolution of the imaging system was one nanosecond. A unique three-stage process, including a fast ignition at the leading edge of the pulse, quenching at the plateau of the pulse, and self re-ignition at the trailing edge of the pulse, was observed in a single pulse cycle. The maximum measured propagation velocity of the plasma discharge was about 1000 km/s. The possibility of direct ionization in water under high reduced electric field conditions was discussed.

  4. Review of the Dynamics of Coalescence and Demulsification by High-Voltage Pulsed Electric Fields

    Directory of Open Access Journals (Sweden)

    Ye Peng

    2016-01-01

    Full Text Available The coalescence of droplets in oil can be implemented rapidly by high-voltage pulse electric field, which is an effective demulsification dehydration technological method. At present, it is widely believed that the main reason of pulse electric field promoting droplets coalescence is the dipole coalescence and oscillation coalescence in pulse electric field, and the optimal coalescence pulse electric field parameters exist. Around the above content, the dynamics of high-voltage pulse electric field promoting the coalescence of emulsified droplets is studied by researchers domestically and abroad. By review, the progress of high-voltage pulse electric field demulsification technology can get a better understanding, which has an effect of throwing a sprat to catch a whale on promoting the industrial application.

  5. The characterisation of magnetic pigment dispersions using pulsed magnetic fields

    International Nuclear Information System (INIS)

    Blackwell, J.J.; O'Grady, K.; Nelson, N.K.; Sharrock, M.P.

    2003-01-01

    In this work, we describe the application of pulsed field magnetometry techniques for the characterisation of magnetic pigment dispersions. Magnetic pigment dispersions are important technological materials as in one form they are the material which are used to coat base film in order to make magnetic recording tape. It is these materials that have been evaluated. In this work, we describe the use of two pulsed field magnetometers, one being a low-field instrument with a maximum field of 750 Oe and the other a high-field instrument with a maximum field of 4.1 kOe. Using inductive sensing, the magnetisation is monitored in real time as the pulse is applied. We find that using these techniques we can successfully monitor the progress of the dispersion process, the effects of different resin systems and the effect of different processing conditions. We find that our results are consistent with rheological and other measurements

  6. The characterisation of magnetic pigment dispersions using pulsed magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Blackwell, J.J.; O' Grady, K. E-mail: kog1@york.ac.uk; Nelson, N.K.; Sharrock, M.P

    2003-10-01

    In this work, we describe the application of pulsed field magnetometry techniques for the characterisation of magnetic pigment dispersions. Magnetic pigment dispersions are important technological materials as in one form they are the material which are used to coat base film in order to make magnetic recording tape. It is these materials that have been evaluated. In this work, we describe the use of two pulsed field magnetometers, one being a low-field instrument with a maximum field of 750 Oe and the other a high-field instrument with a maximum field of 4.1 kOe. Using inductive sensing, the magnetisation is monitored in real time as the pulse is applied. We find that using these techniques we can successfully monitor the progress of the dispersion process, the effects of different resin systems and the effect of different processing conditions. We find that our results are consistent with rheological and other measurements.

  7. Comparative investigation of three dose rate meters for their viability in pulsed radiation fields

    International Nuclear Information System (INIS)

    Gotz, M; Karsch, L; Pawelke, J

    2015-01-01

    Pulsed radiation fields, characterized by microsecond pulse duration and correspondingly high pulse dose rates, are increasingly used in therapeutic, diagnostic and research applications. Yet, dose rate meters which are used to monitor radiation protection areas or to inspect radiation shielding are mostly designed, characterized and tested for continuous fields and show severe deficiencies in highly pulsed fields. Despite general awareness of the problem, knowledge of the specific limitations of individual instruments is very limited, complicating reliable measurements. We present here the results of testing three commercial dose rate meters, the RamION ionization chamber, the LB 1236-H proportional counter and the 6150AD-b scintillation counter, for their response in pulsed radiation fields of varied pulse dose and duration. Of these three the RamION proved reliable, operating in a pulsed radiation field within its specifications, while the other two instruments were only able to measure very limited pulse doses and pulse dose rates reliably. (paper)

  8. Transient Features in Nanosecond Pulsed Electric Fields Differentially Modulate Mitochondria and Viability

    Science.gov (United States)

    Beebe, Stephen J.; Chen, Yeong-Jer; Sain, Nova M.; Schoenbach, Karl H.; Xiao, Shu

    2012-01-01

    It is hypothesized that high frequency components of nanosecond pulsed electric fields (nsPEFs), determined by transient pulse features, are important for maximizing electric field interactions with intracellular structures. For monopolar square wave pulses, these transient features are determined by the rapid rise and fall of the pulsed electric fields. To determine effects on mitochondria membranes and plasma membranes, N1-S1 hepatocellular carcinoma cells were exposed to single 600 ns pulses with varying electric fields (0–80 kV/cm) and short (15 ns) or long (150 ns) rise and fall times. Plasma membrane effects were evaluated using Fluo-4 to determine calcium influx, the only measurable source of increases in intracellular calcium. Mitochondria membrane effects were evaluated using tetramethylrhodamine ethyl ester (TMRE) to determine mitochondria membrane potentials (ΔΨm). Single pulses with short rise and fall times caused electric field-dependent increases in calcium influx, dissipation of ΔΨm and cell death. Pulses with long rise and fall times exhibited electric field-dependent increases in calcium influx, but diminished effects on dissipation of ΔΨm and viability. Results indicate that high frequency components have significant differential impact on mitochondria membranes, which determines cell death, but lesser variances on plasma membranes, which allows calcium influxes, a primary determinant for dissipation of ΔΨm and cell death. PMID:23284682

  9. Investigation of an angular spectrum approach for pulsed ultrasound fields

    DEFF Research Database (Denmark)

    Du, Yigang; Jensen, Henrik; Jensen, Jørgen Arendt

    2013-01-01

    An Angular Spectrum Approach (ASA)is formulated and employed to simulate linear pulsed ultra sound fields for high bandwidth signals. Ageometrically focused piston transducer is used as the acoustic source. Signals are cross-correlated to findthe true sound speed during the measurement to make...... the simulated and measured pulses in phase for comparisons. The calculated sound speed in the measurement is varied between 1487.45 m/s and 1487.75 m/s by using different initial values in the ASA simulation. Results from the pulsed ASA simulation susing both Field II simulated and hydrophone measured acoustic....... Optim al parameters for the ASA are found in the simulation .The RMS error of the ASA simulation is reduced from 10.9% to 2.4% for the optimal parameters when comparing to Field II simulation s. The comparison between the ASA calculated and measured pulses are illustrated and the corresponding RMS error...

  10. 40-Tesla pulsed-field cryomagnet for single crystal neutron diffraction

    Science.gov (United States)

    Duc, F.; Tonon, X.; Billette, J.; Rollet, B.; Knafo, W.; Bourdarot, F.; Béard, J.; Mantegazza, F.; Longuet, B.; Lorenzo, J. E.; Lelièvre-Berna, E.; Frings, P.; Regnault, L.-P.

    2018-05-01

    We present the first long-duration and high duty cycle 40-T pulsed-field cryomagnet addressed to single crystal neutron diffraction experiments at temperatures down to 2 K. The magnet produces a horizontal field in a bi-conical geometry, ±15° and ±30° upstream and downstream of the sample, respectively. Using a 1.15 MJ mobile generator, magnetic field pulses of 100 ms length are generated in the magnet, with a rise time of 23 ms and a repetition rate of 6-7 pulses per hour at 40 T. The setup was validated for neutron diffraction on the CEA-CRG three-axis spectrometer IN22 at the Institut Laue Langevin.

  11. Pulsed zero field NMR of solids and liquid crystals

    International Nuclear Information System (INIS)

    Thayer, A.M.

    1987-02-01

    This work describes the development and applications to solids and liquid crystals of zero field nuclear magnetic resonance (NMR) experiments with pulsed dc magnetic fields. Zero field NMR experiments are one approach for obtaining high resolution spectra of amorphous and polycrystalline materials which normally (in high field) display broad featureless spectra. The behavior of the spin system can be coherently manipulated and probed in zero field with dc magnetic field pulses which are employed in a similar manner to radiofrequency pulses in high field NMR experiments. Nematic phases of liquid crystalline systems are studied in order to observe the effects of the removal of an applied magnetic field on sample alignment and molecular order parameters. In nematic phases with positive and negative magnetic susceptibility anisotropies, a comparison between the forms of the spin interactions in high and low fields is made. High resolution zero field NMR spectra of unaligned smectic samples are also obtained and reflect the symmetry of the liquid crystalline environment. These experiments are a sensitive measure of the motionally induced asymmetry in biaxial phases. Homonuclear and heteronuclear solute spin systems are compared in the nematic and smectic phases. Nonaxially symmetric dipolar couplings are reported for several systems. The effects of residual fields in the presence of a non-zero asymmetry parameter are discussed theoretically and presented experimentally. Computer programs for simulations of these and other experimental results are also reported. 179 refs., 75 figs

  12. Time-resolved pump-probe experiments at the LCLS

    Energy Technology Data Exchange (ETDEWEB)

    Glownia, James; /SLAC /Stanford U., Appl. Phys. Dept.; Cryan, J.; /SLAC /Stanford U., Phys. Dept.; Andreasson, J.; /Uppsala U.; Belkacem, A.; /LBNL, Berkeley; Berrah, N.; /Western Michigan U.; Blaga, C.L.; /Ohio State U.; Bostedt, C.; Bozek, J.; /SLAC; DiMauro, L.F.; /Ohio State U.; Fang, L.; /Western Michigan U.; Frisch, J.; /SLAC; Gessner, O.; /LBNL; Guhr, M.; /SLAC; Hajdu, J.; /Uppsala U.; Hertlein, M.P.; /LBNL; Hoener, M.; /Western Michigan U. /LBNL; Huang, G.; Kornilov, O.; /LBNL; Marangos, J.P.; /Imperial Coll., London; March, A.M.; /Argonne; McFarland, B.K.; /SLAC /Stanford U., Phys. Dept. /SLAC /IRAMIS, Saclay /Stanford U., Phys. Dept. /Georgia Tech /Argonne /Kansas State U. /SLAC /Stanford U., Phys. Dept. /SLAC /Stanford U., Appl. Phys. Dept. /Stanford U., Appl. Phys. Dept. /SLAC /LBNL /Argonne /SLAC /SLAC /Stanford U., Appl. Phys. Dept. /Stanford U., Phys. Dept.

    2011-08-12

    The first time-resolved x-ray/optical pump-probe experiments at the SLAC Linac Coherent Light Source (LCLS) used a combination of feedback methods and post-analysis binning techniques to synchronize an ultrafast optical laser to the linac-based x-ray laser. Transient molecular nitrogen alignment revival features were resolved in time-dependent x-ray-induced fragmentation spectra. These alignment features were used to find the temporal overlap of the pump and probe pulses. The strong-field dissociation of x-ray generated quasi-bound molecular dications was used to establish the residual timing jitter. This analysis shows that the relative arrival time of the Ti:Sapphire laser and the x-ray pulses had a distribution with a standard deviation of approximately 120 fs. The largest contribution to the jitter noise spectrum was the locking of the laser oscillator to the reference RF of the accelerator, which suggests that simple technical improvements could reduce the jitter to better than 50 fs.

  13. Optimization And Single-Shot Characterization Of Ultrashort Thz Pulses From A Laser Wakefield Accelerator

    International Nuclear Information System (INIS)

    Plateau, G.R.; Matlis, N.H.; van Tilborg, J.; Geddes, C.G.R.; Toth, Cs.; Schroeder, C.B.; Leemans, W.P.

    2009-01-01

    We present spatiotemporal characterization of μJ-class ultrashort THz pulses generated from a laser wakefield accelerator (LWFA). Accelerated electrons, resulting from the interaction of a high-intensity laser pulse with a plasma, emit high-intensity THz pulses as coherent transition radiation. Such high peak-power THz pulses, suitable for high-field (MV/cm) pump-probe experiments, also provide a non-invasive bunch-length diagnostic and thus feedback for the accelerator. The characterization of the THz pulses includes energy measurement using a Golay cell, 2D sign-resolved electro-optic measurement and single-shot spatiotemporal electric-field distribution retrieval using a new technique, coined temporal electric-field cross-Correlation (TEX). All three techniques corroborate THz pulses of ∼ 5 μJ, with peak fields of 100's of kV/cm and ∼ 0.4 ps rms duration.

  14. Continuous single pulse resolved measurement of beam diameters at 200 kHz using optical transmission filters

    Science.gov (United States)

    Fruechtenicht, Johannes; Letsch, Andreas; Voss, Andreas; Abdou Ahmed, Marwan; Graf, Thomas

    2012-02-01

    We present a novel laser beam measurement setup which allows the determination of the beam diameter for each single pulse of a pulsed laser beam at repetition rates of up to 200 kHz. This is useful for online process-parameter control e.g. in micromachining or for laser source characterization. Basically, the developed instrument combines spatial transmission filters specially designed for instantaneous optical determination of the second order moments of the lateral intensity distribution of the light beam and photodiodes coupled to customized electronics. The acquisition is computer-based, enabling real-time operation for online monitoring or control. It also allows data storage for a later analysis and visualization of the measurement results. The single-pulse resolved beam diameter can be measured and recorded without any interruption for an unlimited number of pulses. It is only limited by the capacity of the data storage means. In our setup a standard PC and hard-disk provided 2 hours uninterrupted operation and recording of varying beam diameters at 200 kHz. This is about three orders of magnitude faster than other systems. To calibrate our device we performed experiments in cw and pulsed regimes and the obtained results were compared to those obtained with a commercial camera based system. Only minor deviations of the beam diameter values between the two instruments were observed, proving the reliability of our approach.

  15. Long-pulse magnetic field facility at Zaragoza

    International Nuclear Information System (INIS)

    Algarabel, P A; Moral, A del; Martin, C; Serrate, D; Tokarz, W

    2006-01-01

    The long-pulse magnetic field facility of the Laboratorio de Magnetismo - Instituto de Ciencia de Materiales de Aragon (Universidad de Zaragoza-CSIC) produces magnetic fields up to 31, with a pulse duration of 2.2s. Experimental set-ups for measurements of magnetization, magnetostriction and magnetoresistance are available. The temperature can be controlled between 1.4 and 335 K, being the inner bore of the He cryostat of 22.5 mm. Magnetization is measured using the mutual induction technique, the magnetostriction is determined with the strain-gage and the capacitive cantilever methods, and the magnetoresistance is measured by means of the aclock-in technique in the 4-probes geometry. An overview of the facility will be presented and the presently available experimental techniques will be discussed

  16. Effect of counter electric field during the irradiation of pulsed x-ray on the after-pulses of GM counter

    International Nuclear Information System (INIS)

    Igarashi, Ryuji; Narita, Yuichi; Ozawa, Yasutomo.

    1979-01-01

    The authors once made it clear by using pulsed radiation that the number of spurious discharge generation in organic gas-quenching type GM counters depends on the intensity of incident radiation. This spurious discharge is peculiar to the organic gas-quenching type GM counters, which the authors named after-pulses. The present study has been carried out to find the experimental conditions to verify the delayed generation mechanism of such after-pulses in bipolar GM tubes and the conditions to give the maximum number of after-pulses generation. For this purpose, a large low electric field region, whose field intensity is variable, should be provided in the tubes. Since it has been generally impossible in the bipolar GM tubes, the provision of that region transiently has been tried. The effect of the intensity of electric field in GM tubes during irradiation on the generation of after-pulses has been investigated by changing radiation intensity, anode voltage, and irradiated position. Consideration of the results has revealed that the number of after-pulse generation can be increased by forming transient low electric field region in the bipolar GM counters of organic gas-quenching type. It was the new knowledge that the transient anode voltage to maximize the after-pulse generating factor was several tens of negative voltage even if the conditions were varied. It seems that this fact depends upon the voltage giving the conditions to maximize the probability of forming after-pulse factors. (Wakatsuki, Y.)

  17. Large-angle magnetization dynamics investigated by vector-resolved magnetization-induced optical second-harmonic generation

    NARCIS (Netherlands)

    Gerrits, T.; Silva, T.J.; Nibarger, J.P.; Rasing, T.H.M.

    2004-01-01

    We examine the relationship between nonlinear magnetic responses and the change in the Gilbert damping parameter alpha for patterned and unpatterned thin Permalloy films when subjected to pulsed magnetic fields. An improved magnetization-vector-resolved technique utilizing magnetization-induced

  18. Ultrafast Electric Field Pulse Control of Giant Temperature Change in Ferroelectrics

    Science.gov (United States)

    Qi, Y.; Liu, S.; Lindenberg, A. M.; Rappe, A. M.

    2018-01-01

    There is a surge of interest in developing environmentally friendly solid-state-based cooling technology. Here, we point out that a fast cooling rate (≈1011 K /s ) can be achieved by driving solid crystals to a high-temperature phase with a properly designed electric field pulse. Specifically, we predict that an ultrafast electric field pulse can cause a giant temperature decrease up to 32 K in PbTiO3 occurring on few picosecond time scales. We explain the underlying physics of this giant electric field pulse-induced temperature change with the concept of internal energy redistribution: the electric field does work on a ferroelectric crystal and redistributes its internal energy, and the way the kinetic energy is redistributed determines the temperature change and strongly depends on the electric field temporal profile. This concept is supported by our all-atom molecular dynamics simulations of PbTiO3 and BaTiO3 . Moreover, this internal energy redistribution concept can also be applied to understand electrocaloric effect. We further propose new strategies for inducing giant cooling effect with ultrafast electric field pulse. This Letter offers a general framework to understand electric-field-induced temperature change and highlights the opportunities of electric field engineering for controlled design of fast and efficient cooling technology.

  19. Measuring the electric field of few-cycle laser pulses by attosecond cross correlation

    International Nuclear Information System (INIS)

    Bandrauk, Andre D.; Chelkowski, Szczepan; Shon, Nguyen Hong

    2002-01-01

    A new technique for directly measuring the electric field of linearly polarized few-cycle laser pulses is proposed. Based on the solution of the time-dependent Schroedinger equation (TDSE) for an H atom in the combined field of infrared (IR) femtosecond (fs) and ultraviolet (UV) attosecond (as) laser pulses we show that, as a function of the time delay between two pulses, the difference (or equivalently, asymmetry) of photoelectron signals in opposite directions (along the polarization vector of laser pulses) reproduces very well the profile of the electric field (or vector potential) in the IR pulse. Such ionization asymmetry can be used for directly measuring the carrier-envelope phase difference (i.e., the relative phase of the carrier frequency with respect to the pulse envelope) of the IR fs laser pulse

  20. Rydberg atoms ionization by microwave field and electromagnetic pulses

    International Nuclear Information System (INIS)

    Kaulakys, B.; Vilutis, G.

    1995-01-01

    A simple theory of the Rydberg atoms ionization by electromagnetic pulses and microwave field is presented. The analysis is based on the scale transformation which reduces the number of parameters and reveals the functional dependencies of the processes. It is shown that the observed ionization of Rydberg atoms by subpicosecond electromagnetic pulses scale classically. The threshold electric field required to ionise a Rydberg state may be simply evaluated in the photonic basis approach for the quantum dynamics or from the multiphoton ionization theory

  1. Time-resolved probing of electron thermal conduction in femtosecond-laser-pulse-produced plasmas

    International Nuclear Information System (INIS)

    Vue, B.T.V.

    1993-06-01

    We present time-resolved measurements of reflectivity, transmissivity and frequency shifts of probe light interacting with the rear of a disk-like plasma produced by irradiation of a transparent solid target with 0.1ps FWHM laser pulses at peak intensity 5 x 10 l4 W/CM 2 . Experimental results show a large increase in reflection, revealing rapid formation of a steep gradient and overdense surface plasma layer during the first picosecond after irradiation. Frequency shifts due to a moving ionization created by thermal conduction into the solid target are recorded. Calculations using a nonlinear thermal heat wave model show good agreement with the measured frequency shifts, further confining the strong thermal transport effect

  2. Microsecond-scale electric field pulses in cloud lightning discharges

    Science.gov (United States)

    Villanueva, Y.; Rakov, V. A.; Uman, M. A.; Brook, M.

    1994-01-01

    From wideband electric field records acquired using a 12-bit digitizing system with a 500-ns sampling interval, microsecond-scale pulses in different stages of cloud flashes in Florida and New Mexico are analyzed. Pulse occurrence statistics and waveshape characteristics are presented. The larger pulses tend to occur early in the flash, confirming the results of Bils et al. (1988) and in contrast with the three-stage representation of cloud-discharge electric fields suggested by Kitagawa and Brook (1960). Possible explanations for the discrepancy are discussed. The tendency for the larger pulses to occur early in the cloud flash suggests that they are related to the initial in-cloud channel formation processes and contradicts the common view found in the atmospheric radio-noise literature that the main sources of VLF/LF electromagnetic radiation in cloud flashes are the K processes which occur in the final, or J type, part of the cloud discharge.

  3. Electric field measurements in nanosecond pulse discharges in air over liquid water surface

    Science.gov (United States)

    Simeni Simeni, Marien; Baratte, Edmond; Zhang, Cheng; Frederickson, Kraig; Adamovich, Igor V.

    2018-01-01

    Electric field in nanosecond pulse discharges in ambient air is measured by picosecond four-wave mixing, with absolute calibration by a known electrostatic field. The measurements are done in two geometries, (a) the discharge between two parallel cylinder electrodes placed inside quartz tubes, and (b) the discharge between a razor edge electrode and distilled water surface. In the first case, breakdown field exceeds DC breakdown threshold by approximately a factor of four, 140 ± 10 kV cm-1. In the second case, electric field is measured for both positive and negative pulse polarities, with pulse durations of ˜10 ns and ˜100 ns, respectively. In the short duration, positive polarity pulse, breakdown occurs at 85 kV cm-1, after which the electric field decreases over several ns due to charge separation in the plasma, with no field reversal detected when the applied voltage is reduced. In a long duration, negative polarity pulse, breakdown occurs at a lower electric field, 30 kV cm-1, after which the field decays over several tens of ns and reverses direction when the applied voltage is reduced at the end of the pulse. For both pulse polarities, electric field after the pulse decays on a microsecond time scale, due to residual surface charge neutralization by transport of opposite polarity charges from the plasma. Measurements 1 mm away from the discharge center plane, ˜100 μm from the water surface, show that during the voltage rise, horizontal field component (Ex ) lags in time behind the vertical component (Ey ). After breakdown, Ey is reduced to near zero and reverses direction. Further away from the water surface (≈0.9 mm), Ex is much higher compared to Ey during the entire voltage pulse. The results provide insight into air plasma kinetics and charge transport processes near plasma-liquid interface, over a wide range of time scales.

  4. An explanation for parallel electric field pulses observed over thunderstorms

    Science.gov (United States)

    Kelley, M. C.; Barnum, B. H.

    2009-10-01

    Every electric field instrument flown on sounding rockets over a thunderstorm has detected pulses of electric fields parallel to the Earth's magnetic field associated with every strike. This paper describes the ionospheric signatures found during a flight from Wallops Island, Virginia, on 2 September 1995. The electric field results in a drifting Maxwellian corresponding to energies up to 1 eV. The distribution function relaxes because of elastic and inelastic collisions, resulting in electron heating up to 4000-5000 K and potentially observable red line emissions and enhanced ISR electron temperatures. The field strength scales with the current in cloud-to-ground strikes and falls off as r -1 with distance. Pulses of both polarities are found, although most electric fields are downward, parallel to the magnetic field. The pulse may be the reaction of ambient plasma to a current pulse carried at the whistler packet's highest group velocity. The charge source required to produce the electric field is very likely electrons of a few keV traveling at the packet velocity. We conjecture that the current source is the divergence of the current flowing at mesospheric heights, the phenomenon called an elve. The whistler packet's effective radiated power is as high as 25 mW at ionospheric heights, comparable to some ionospheric heater transmissions. Comparing the Poynting flux at the base of the ionosphere with flux an equal distance away along the ground, some 30 db are lost in the mesosphere. Another 10 db are lost in the transition from free space to the whistler mode.

  5. Long-pulse magnetic field facility at Zaragoza

    Science.gov (United States)

    Algarabel, P. A.; del Moral, A.; Martín, C.; Serrate, D.; Tokarz, W.

    2006-11-01

    The long-pulse magnetic field facility of the Laboratorio de Magnetismo - Instituto de Ciencia de Materiales de Aragón (Universidad de Zaragoza-CSIC) produces magnetic fields up to 31, with a pulse duration of 2.2s. Experimental set-ups for measurements of magnetization, magnetostriction and magnetoresistance are available. The temperature can be controlled between 1.4 and 335 K, being the inner bore of the He cryostat of 22.5 mm. Magnetization is measured using the mutual induction technique, the magnetostriction is determined with the strain-gage and the capacitive cantilever methods, and the magnetoresistance is measured by means of the aclock-in technique in the 4-probes geometry. An overview of the facility will be presented and the presently available experimental techniques will be discussed.

  6. Energy-resolved attosecond interferometric photoemission from Ag(111) and Au(111) surfaces

    Science.gov (United States)

    Ambrosio, M. J.; Thumm, U.

    2018-04-01

    Photoelectron emission from solid surfaces induced by attosecond pulse trains into the electric field of delayed phase-coherent infrared (IR) pulses allows the surface-specific observation of energy-resolved electronic phase accumulations and photoemission delays. We quantum-mechanically modeled interferometric photoemission spectra from the (111) surfaces of Au and Ag, including background contributions from secondary electrons and direct emission by the IR pulse, and adjusted parameters of our model to energy-resolved photoelectron spectra recently measured at a synchrotron light source by Roth et al. [J. Electron Spectrosc. 224, 84 (2018), 10.1016/j.elspec.2017.05.008]. Our calculated spectra and photoelectron phase shifts are in fair agreement with the experimental data of Locher et al. [Optica 2, 405 (2015), 10.1364/OPTICA.2.000405]. Our model's not reproducing the measured energy-dependent oscillations of the Ag(111) photoemission phases may be interpreted as evidence for subtle band-structure effects on the final-state photoelectron-surface interaction not accounted for in our simulation.

  7. Angle-resolved photoemission spectroscopy with 9-eV photon-energy pulses generated in a gas-filled hollow-core photonic crystal fiber

    OpenAIRE

    Bromberger, H.; Ermolov, A.; Belli, F.; Liu, H.; Calegari, F.; Chavez-Cervantes, M.; Li, M. T.; Lin, C. T.; Abdolvand, A.; Russell, P. St. J.; Cavalleri, A.; Travers, J. C.; Gierz, I.

    2015-01-01

    A recently developed source of ultraviolet radiation, based on optical soliton propagation in a gas-filled hollow-core photonic crystal fiber, is applied here to angle-resolved photoemission spectroscopy (ARPES). Near-infrared femtosecond pulses of only few {\\mu}J energy generate vacuum ultraviolet (VUV) radiation between 5.5 and 9 eV inside the gas-filled fiber. These pulses are used to measure the band structure of the topological insulator Bi2Se3 with a signal to noise ratio comparable to ...

  8. Effects of pulsed electric field on ULQ and RFP plasmas

    International Nuclear Information System (INIS)

    Watanabe, M.; Saito, K.; Suzuki, T.

    1997-01-01

    Dynamo activity and self-organization processes are investigated using the application of pulsed poloidal and toroidal electric fields on ULQ and RFP plasmas. Synchronized to the application of the pulsed electric fields, the remarkable responses of the several plasma parameters are observed. The plasma has a preferential magnetic field structure, and the external perturbation activates fluctuation to maintain the structure through dynamo effect. This process changes the total dissipation with the variation of magnetic helicity in the system, showing that self organization accompanies an enhanced dissipation. (author)

  9. Pulsed radiofrequency microwave fields around a quadrupole particle accelerator: measurement and safety evaluation

    International Nuclear Information System (INIS)

    Sachdev, R.N.; Swarup, G.; Rajan, K.K.; Joseph, L.

    1996-01-01

    Pulsed radiofrequency microwave radiation (RFMR) fields occur during the use of high power microwaves in plasma heating in fusion research, plasma and solid state diagnostics, particle accelerators and colliders, pump sources in lasers, material processing as well as in high power radars. This paper describes the experimental work done at Trombay for measurement of pulsed RFMR fields in the working area of a radiofrequency quadrupole (RFQ) accelerator with the use of a meter calibrated in continuous field and interprets the observed fields in the light of existing protection criteria for pulsed RFMR fields. (author)

  10. Process Control of Pre-Sowing Seed Treatment by Pulsed Electric Field

    Directory of Open Access Journals (Sweden)

    Starodubtseva Galina Petrovna

    2018-03-01

    Full Text Available Presented paper investigates the application of a line voltage changer to an installation for pre-sowing seed treatment by pulsed electric field (PEF in order to increase the sowing quality of seeds and to suppress pathogenic microflora. The installation comprises an AC voltage regulator, a high voltage source, a voltage inverter, a working chamber for seed treatment, a control unit, and current and voltage sensors. The proposed installation differs from the existing apparatuses as it automatically provides the transformation of the pulsed electric field parameters by constant monitoring of power processes in a layer of treated seeds and feedback sending to the control unit. Seed treatment efficiency depends on the dose being determined by the parameters of electric field, namely, intensity in the seed layer, pulse duration, pulse repetition frequency, and seed treatment time. The parameters of rational treatment were determined, and the minimum treatment dose was calculated on the basis of results from the laboratory tests on the effect of pulsed electric field on sowing qualities of winter wheat seeds. It was experimentally confirmed that the proposed installation provides automatic transformation of electric field parameters depending on the changes taking place in the seed layer on the example of seeds with different moisture content maintaining the necessary treatment dose, ensuring the stability and repeatability of results.

  11. Electro-optic sampling of THz pulses at the CTR source at FLASH

    Energy Technology Data Exchange (ETDEWEB)

    Wunderlich, Steffen

    2012-06-15

    Several applications in material science, non-linear optics and solid-state physics require short pulses with a high pulse energy of radiation in the far-infrared and in the terahertz (THz) regime in particular. As described in the following, coherent transition radiation generated by high-relativistic electron bunches at FLASH provides broadband single-cycle pulses of sub-picosecond length. The pulses are characterized using the quantitative and time-resolved technique of electro-optic sampling showing peak field strengths in the order of 1 MV/cm.

  12. Electro-optic sampling of THz pulses at the CTR source at FLASH

    International Nuclear Information System (INIS)

    Wunderlich, Steffen

    2012-06-01

    Several applications in material science, non-linear optics and solid-state physics require short pulses with a high pulse energy of radiation in the far-infrared and in the terahertz (THz) regime in particular. As described in the following, coherent transition radiation generated by high-relativistic electron bunches at FLASH provides broadband single-cycle pulses of sub-picosecond length. The pulses are characterized using the quantitative and time-resolved technique of electro-optic sampling showing peak field strengths in the order of 1 MV/cm.

  13. Superconductors for fusion magnets tested under pulsed field in SULTAN

    International Nuclear Information System (INIS)

    Bruzzone, P.; Bottura, L.; Katheder, H.; Blau, B.; Rohleder, I.; Vecsey, G.

    1995-01-01

    The SULTAN III test facility has been upgraded with a pair of pulsed field coils to carry out AC losses and stability experiments under full operating loads on large size, fusion conductors for ITER. A fast data aquisition system records the conductor behaviour under fast field transient. The commissioning results of the pulsed coils and instrumentation are critically discussed and the test capability of the set up is assessed. (orig.)

  14. Few-cycle isolated attosecond pulses

    International Nuclear Information System (INIS)

    Sansone, G.; Benedetti, E.; Calegari, F.; Stagira, S.; Vozzi, C.; Silvestri De, S.; Nisoli, M.

    2006-01-01

    Complete test of publication follows. In the last few years the field of attosecond science has shown impressive and rapid progress, mainly due to the introduction of novel experimental methods for the characterization of extreme ultraviolet (XUV) pulses and attosecond electron wave packets. This development has been also triggered by significant improvements in the control of the electric field of the driving infrared pulses. Particularly interesting for the applications is the generation of isolated attosecond XUV pulses using few-cycle driving pulses. In this case significant progresses have been achieved thanks to the stabilization of the carrier-envelope phase (CEP) of amplified light pulses. In this work we demonstrate that the polarization gating (PG) method with few-cycle phase-stabilized driving pulses allows one to generate few-cycle isolated attosecond pulses tunable on a very broad spectral region. The PG method is based on temporal modulation of the ellipticity of a light pulse, which confines the XUV emission in the temporal gate where the polarization is close to linear. The time-dependent polarization of phase-stabilized sub-6-fs pulses, generated by the hollow fiber technique, has been obtained using two birefringent plates. It is possible to create a linear polarization gate, whose position is imposed by the intensity profile of the pulse whilst the emission time is linked to the CEP of the electric field. The pulses have been analyzed by using a flat-field spectrometer. Continuous XUV spectra, corresponding to the production of isolated attosecond pulses, have been generated for particular CEP values. Upon changing the rotation of the first plate it was possible to tune the XUV emission in a broad spectra range. We have then achieved a complete temporal characterization of the generated isolated attosecond pulses using frequency-resolved optical gating for complete reconstruction of attosecond bursts (FROG CRAB). The measured parabolic phase

  15. Transient field behavior in an electromagnetic pulse from neutral-beam reflection

    International Nuclear Information System (INIS)

    Strobel, G.L.

    1990-01-01

    A neutral beam of electrons and positrons catches up to an electromagnetic pulse moving in a medium with refractive index n. The neutral beam is reflected and deposits some of its energy in a current region in the tail of the pulse. The location, size, and shape of the transient-induced electric fields in the current region are modeled using current densities from uniform averaged fields. The electric field in the current region is predicted to rise linearly with time, with a doubling time determined by the beam parameters and the initial local electromagnetic field. A coordinate frame comoving with the pulse is used to determine the extent of and conditions within the current region. In this comoving frame the Lorentz-transformed electric field is zero, but there is an enhanced Lorentz-transformed magnetic field. The extent of the current region is found from the radius of the semicircular charged-particle orbits in the comoving frame

  16. Application of superconductivity to pulse fields

    International Nuclear Information System (INIS)

    Saito, Shigeo; Suzawa, Chizuru; Ohkura, Kengo; Nagata, Masayuki; Kawashima, Masao

    1984-01-01

    Numerous attempts to apply the superconductive phenomena of zero electrical resistivity to AC (pulsed) magnets in addition to conventional DC magnet fields are being made in the areas of poloidal coils of nuclear fusion, energy storage, rotary machines, and induction for stabilization of electric power systems. In pulsed superconductive magnets, the stability of the superconductivity and the generation of heat due to AC loss are serious problems. Based on the knowledge obtained through the development of various types of superconductors, magnets, cryostats, and other superconductive-related products, Cu-Ni/Cu/Nb-Ti mixed-matrix fine multifilamentary superconductor wire and the stable, low AC loss superconductors used therein, magnets, and FRP cryostats are developed and manufactured. (author)

  17. Test research of consistency for amplitude calibration coefficients of pulsed electric field sensor

    International Nuclear Information System (INIS)

    Meng Cui; Guo Xiaoqiang; Chen Xiangyue; Nie Xin; Mao Congguang; Xiang Hui; Cheng Jianping

    2007-01-01

    The amplitude calibration of an electric field sensor is important in the measurement of electromagnetic pulse. In this paper, an arbitrary waveform generator (AWG) is used to generate multi-waveform electric field in the TEM cell and the dipole antenna pulsed electric field sensor is calibrated. In the frequency band of the sensor, the calibrated amplitude coefficients with different waveforms are identical. The coefficient derived from the TEM cell calibration system suits to the measurement of unknown electric field pulse within the frequency band. (authors)

  18. Clinical update of pulsed electromagnetic fields on osteoporosis

    Institute of Scientific and Technical Information of China (English)

    HUANG Li-qun; HE Hong-chen; HE Cheng-qi; CHEN Jian; YANG Lin

    2008-01-01

    Objective To understand the effects of low-frequency pulsed electromagnetic fields (PEMFs) on chronic bony pain,bone mineral density (BMD), bone strength and biochemical markers of bone metabolism in the patients of osteoporosis.Data sources Using the key words "pulsed electromagnetic fields" and "osteoporosis", we searched the PubMed for related studies published in English from January 1996 to December 2007. We also searched the China National Knowledge Infrastructure (CNKI) for studies published in Chinese from January 1996 to December 2007.Study selection Inclusion criteria: (1) all articles which referred to the effects of low-frequency pulsed magnetic fields on osteoporosis either in primary osteoporosis or secondary osteoporosis; (2) either observational studies or randomized controlled studies. Exclusion criteria: (1) articles on experimental studies about osteoporosis; (2) repetitive studies; (3)case reports; (4) meta analysis.Results Totally 111 related articles were collected, 101 of them were published in Chinese, 10 were in English.Thirty-four were included and the remaining 84 were excluded.Conclusions Low-frequency PEMFs relieves the pain of primary osteoporosis quickly and efficiently, enhances bone formation and increases BMD of secondary osteoporosis. But the effects of PEMFs on bone mineral density of primary osteoporosis and bone resorption were controversial.

  19. Observation of enhanced field-free molecular alignment by two laser pulses

    DEFF Research Database (Denmark)

    Bisgaard, Christer; Poulsen, Mikael Dahlerup; Peronne, Emmanuel

    2004-01-01

    We show experimentally that field-free alignment of iodobenzene molecules, induced by a single, intense, linearly polarized 1.4-ps-long laser pulse, can be strongly enhanced by dividing the pulse into two optimally synchronized pulses of the same duration. For a given total energy of the two...

  20. Generation of an isolated sub-30 attosecond pulse in a two-color laser field and a static electric field

    International Nuclear Information System (INIS)

    Zhang Gang-Tai; Zhang Mei-Guang; Bai Ting-Ting

    2012-01-01

    We theoretically investigate high-order harmonic generation (HHG) from a helium ion model in a two-color laser field, which is synthesized by a fundamental pulse and its second harmonic pulse. It is shown that a supercontinuum spectrum can be generated in the two-color field. However, the spectral intensity is very low, limiting the application of the generated attosecond (as) pulse. By adding a static electric field to the synthesized two-color field, not only is the ionization yield of electrons contributing to the harmonic emission remarkably increased, but also the quantum paths of the HHG can be significantly modulated. As a result, the extension and enhancement of the supercontinuum spectrum are achieved, producing an intense isolated 26-as pulse with a bandwidth of about 170.5 eV. In particular, we also analyse the influence of the laser parameters on the ultrabroad supercontinuum spectrum and isolated sub-30-as pulse generation. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  1. The effects of pulsed low-level EM fields on memory processes

    International Nuclear Information System (INIS)

    Maier, R.; Greter, S.E.; Schaller, G.; Hommel, G.

    2004-01-01

    This pilot study examined the effects of pulsed electromagnetic fields on the organism in humans. Using a psychophysiological test, the changes in memory performance were tested in 33 volunteers both at rest and upon exposure to pulsed fields (GSM standard). To evaluate the cognition performance, we applied a psycho-physiological test paradigm (auditory discrimination task) based on the ''Order Threshold''. The investigation took place in an acoustically-shielded room, and the volunteers were requested to relax on a stretcher. The exposure to electromagnetic fields took place during this relaxation time (30 minutes). Measurements were performed before and after the exposure phase, and compared to a reference situation of change in vigilance. Exposure to pulsed fields resulted in reduced mental-regeneration performance in 21 of the 33 test participants, as reflected by an increase of order threshold. (orig.)

  2. Magnetic Field Effect on Ultrashort Two-dimensional Optical Pulse Propagation in Silicon Nanotubes

    Science.gov (United States)

    Konobeeva, N. N.; Evdokimov, R. A.; Belonenko, M. B.

    2018-05-01

    The paper deals with the magnetic field effect which provides a stable propagation of ultrashort pulses in silicon nanotubes from the viewpoint of their waveform. The equation is derived for the electromagnetic field observed in silicon nanotubes with a glance to the magnetic field for two-dimensional optical pulses. The analysis is given to the dependence between the waveform of ultrashort optical pulses and the magnetic flux passing through the cross-sectional area of the nanotube.

  3. Compact cryogenic Kerr microscope for time-resolved studies of electron spin transport in microstructures

    NARCIS (Netherlands)

    Rizo, P. J.; Pugzlys, A.; Liu, J.; Reuter, D.; Wieck, A. D.; van der Wal, C. H.; van Loosdrecht, P. H. M.; Pugžlys, A.

    2008-01-01

    A compact cryogenic Kerr microscope for operation in the small volume of high-field magnets is described. It is suited for measurements both in Voigt and Faraday configurations. Coupled with a pulsed laser source, the microscope is used to measure the time-resolved Kerr rotation response of

  4. Multiphoton atomic ionization in the field of a very short laser pulse

    International Nuclear Information System (INIS)

    Popov, V.S.

    2001-01-01

    Closed analytic expressions are derived for the probability of multiphoton atomic and ionic ionization in a variable electric field E(t), which are applicable for arbitrary Keldysh parameters γ. Dependencies of the ionization probability and photoelectron pulse spectrum on the shape of a very short laser pulse are analyzed. Examples of pulse fields of various forms, including a modulated light pulse with a Gaussian or Lorentz envelope, are considered in detail. The interference effect in the photoelectron energy spectrum during atomic ionization by a periodic field of a general form is examined. The range of applicability of the adiabatic approximation in the multiphoton ionization theory is discussed. The imaginary time method is used in the calculations, which allows the probability of particle tunneling through oscillating barriers to be effectively calculated

  5. Moderate and high intensity pulsed electric fields

    NARCIS (Netherlands)

    Timmermans, Rian Adriana Hendrika

    2018-01-01

    Pulsed Electric Field (PEF) processing has gained a lot of interest the last decades as mild processing technology as alternative to thermal pasteurisation, and is suitable for preservation of liquid food products such as fruit juices. PEF conditions typically applied at industrial scale for

  6. Resolved magnetic-field structure and variability near the event horizon of Sagittarius A.

    Science.gov (United States)

    Johnson, Michael D; Fish, Vincent L; Doeleman, Sheperd S; Marrone, Daniel P; Plambeck, Richard L; Wardle, John F C; Akiyama, Kazunori; Asada, Keiichi; Beaudoin, Christopher; Blackburn, Lindy; Blundell, Ray; Bower, Geoffrey C; Brinkerink, Christiaan; Broderick, Avery E; Cappallo, Roger; Chael, Andrew A; Crew, Geoffrey B; Dexter, Jason; Dexter, Matt; Freund, Robert; Friberg, Per; Gold, Roman; Gurwell, Mark A; Ho, Paul T P; Honma, Mareki; Inoue, Makoto; Kosowsky, Michael; Krichbaum, Thomas P; Lamb, James; Loeb, Abraham; Lu, Ru-Sen; MacMahon, David; McKinney, Jonathan C; Moran, James M; Narayan, Ramesh; Primiani, Rurik A; Psaltis, Dimitrios; Rogers, Alan E E; Rosenfeld, Katherine; SooHoo, Jason; Tilanus, Remo P J; Titus, Michael; Vertatschitsch, Laura; Weintroub, Jonathan; Wright, Melvyn; Young, Ken H; Zensus, J Anton; Ziurys, Lucy M

    2015-12-04

    Near a black hole, differential rotation of a magnetized accretion disk is thought to produce an instability that amplifies weak magnetic fields, driving accretion and outflow. These magnetic fields would naturally give rise to the observed synchrotron emission in galaxy cores and to the formation of relativistic jets, but no observations to date have been able to resolve the expected horizon-scale magnetic-field structure. We report interferometric observations at 1.3-millimeter wavelength that spatially resolve the linearly polarized emission from the Galactic Center supermassive black hole, Sagittarius A*. We have found evidence for partially ordered magnetic fields near the event horizon, on scales of ~6 Schwarzschild radii, and we have detected and localized the intrahour variability associated with these fields. Copyright © 2015, American Association for the Advancement of Science.

  7. Fresh water disinfection by pulsed low electric field

    International Nuclear Information System (INIS)

    Zheng, C; Xu, Y; Liu, Z; Yan, K

    2013-01-01

    In this paper, we describe a pulsed low electric field process for water disinfection. Electric intensity of 0.6–1.7 kV cm −1 is applied. Experiments are performed with a 1.2 L axis-cylinder reactor. A bipolar pulsed power source with pulsed width of 25 μs and frequency of 100–3000 Hz is used. Water conductivity of 3–200 μs cm −1 is investigated, which can significantly affect pulsed voltage-current waveforms and injected energy. Energy per pulse rises with increased water conductivity. The initial E. Coli density and water conductivity are two major factors influencing the disinfection. No disinfection effect is performed with deionized water of 3 μs cm −1 . When water conductivity is 25 μs cm −1 and bacteria density is 10 4 –10 6 cfu ml −1 , significant disinfection effect is observed. More than 99% of the cells can be disinfected with an energy density of less than 70 J ml −1 , while water temperature is below 30 °C.

  8. Angular spectrum approach for fast simulation of pulsed non-linear ultrasound fields

    DEFF Research Database (Denmark)

    Du, Yigang; Jensen, Henrik; Jensen, Jørgen Arendt

    2011-01-01

    The paper presents an Angular Spectrum Approach (ASA) for simulating pulsed non-linear ultrasound fields. The source of the ASA is generated by Field II, which can simulate array transducers of any arbitrary geometry and focusing. The non-linear ultrasound simulation program - Abersim, is used...... as the reference. A linear array transducer with 64 active elements is simulated by both Field II and Abersim. The excitation is a 2-cycle sine wave with a frequency of 5 MHz. The second harmonic field in the time domain is simulated using ASA. Pulse inversion is used in the Abersim simulation to remove...... the fundamental and keep the second harmonic field, since Abersim simulates non-linear fields with all harmonic components. ASA and Abersim are compared for the pulsed fundamental and second harmonic fields in the time domain at depths of 30 mm, 40 mm (focal depth) and 60 mm. Full widths at -6 dB (FWHM) are f0...

  9. Apparatus to examine pulsed parallel field losses in large conductors

    International Nuclear Information System (INIS)

    Miller, J.R.; Shen, S.S.

    1977-01-01

    Conductors in tokamak toroidal field coils will be exposed to pulsed fields both parallel and perpendicular to the current direction. These conductors will likely be quite high capacity (10 to 20 kA) and therefore probably will be built up out of smaller units. We have previously published measurements of losses in conductors exposed to a pulsed parallel field, but those experiments necessarily used monolithic conductors of relatively small cross section because the pulse coil, a torus that surrounded the test conductor, was itself small. Here we describe an apparatus that is conceptually similar but has been scaled up to accept conductors of much larger cross section and current capacity. The apparatus consists basically of a superconducting torus that contains a movable spool to allow test samples to be wound inside without unwinding the torus. Details of apparatus design and capabilities are described and preliminary results from tests of the apparatus and from loss measurements using it are reported

  10. Pulsed Electric Field treatment of packaged food

    NARCIS (Netherlands)

    Roodenburg, B.

    2011-01-01

    Food manufacturers are looking for new preservation techniques that don’t influence the fresh-like characteristics of products. Non-thermal pasteurisation of food with Pulsed Electric Fields (often referred to as PEF) is an emerging technology, where the change of the food is less than with thermal

  11. Direct measurement of the pulse duration and frequency chirp of seeded XUV free electron laser pulses

    Science.gov (United States)

    Azima, Armin; Bödewadt, Jörn; Becker, Oliver; Düsterer, Stefan; Ekanayake, Nagitha; Ivanov, Rosen; Kazemi, Mehdi M.; Lamberto Lazzarino, Leslie; Lechner, Christoph; Maltezopoulos, Theophilos; Manschwetus, Bastian; Miltchev, Velizar; Müller, Jost; Plath, Tim; Przystawik, Andreas; Wieland, Marek; Assmann, Ralph; Hartl, Ingmar; Laarmann, Tim; Rossbach, Jörg; Wurth, Wilfried; Drescher, Markus

    2018-01-01

    We report on a direct time-domain measurement of the temporal properties of a seeded free-electron laser pulse in the extreme ultraviolet spectral range. Utilizing the oscillating electromagnetic field of terahertz radiation, a single-shot THz streak-camera was applied for measuring the duration as well as spectral phase of the generated intense XUV pulses. The experiment was conducted at FLASH, the free electron laser user facility at DESY in Hamburg, Germany. In contrast to indirect methods, this approach directly resolves and visualizes the frequency chirp of a seeded free-electron laser (FEL) pulse. The reported diagnostic capability is a prerequisite to tailor amplitude, phase and frequency distributions of FEL beams on demand. In particular, it opens up a new window of opportunities for advanced coherent spectroscopic studies making use of the high degree of temporal coherence expected from a seeded FEL pulse.

  12. Letter Report on 500 nA Pulsed Current from Field Ionization Source

    International Nuclear Information System (INIS)

    Ellsworth, Jennifer L.

    2013-01-01

    We recently produced a milestone 500 nA of pulsed current using 40 Ir field ionizer electrodes in our ion source. In conclusion, we have produced the milestone pulsed current of 500 nA using 40 electrochemically etched iridium tips in a field ionization source. The pulsed current output is repeatable and scales as expected with gas fill pressure and bias voltage. We expect these current will be sufficient to produce neutral yields of 1 · 10 7 DT n/s.

  13. Time-resolved investigations of the non-thermal ablation process of graphite induced by femtosecond laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Kalupka, C., E-mail: christian.kalupka@llt.rwth-aachen.de; Finger, J. [Chair for Laser Technology LLT, RWTH Aachen University, Aachen 52074 (Germany); Reininghaus, M. [Chair for Laser Technology LLT, RWTH Aachen University, Aachen 52074 (Germany); Fraunhofer Institute for Laser Technology ILT, Steinbachstraße 15, Aachen 52074 (Germany)

    2016-04-21

    We report on the in-situ analysis of the ablation dynamics of the, so-called, laser induced non-thermal ablation process of graphite. A highly oriented pyrolytic graphite is excited by femtosecond laser pulses with fluences below the classic thermal ablation threshold. The ablation dynamics are investigated by axial pump-probe reflection measurements, transversal pump-probe shadowgraphy, and time-resolved transversal emission photography. The combination of the applied analysis methods allows for a continuous and detailed time-resolved observation of the non-thermal ablation dynamics from several picoseconds up to 180 ns. Formation of large, μm-sized particles takes place within the first 3.5 ns after irradiation. The following propagation of ablation products and the shock wave front are tracked by transversal shadowgraphy up to 16 ns. The comparison of ablation dynamics of different fluences by emission photography reveals thermal ablation products even for non-thermal fluences.

  14. A new model for volume recombination in plane-parallel chambers in pulsed fields of high dose-per-pulse.

    Science.gov (United States)

    Gotz, M; Karsch, L; Pawelke, J

    2017-11-01

    In order to describe the volume recombination in a pulsed radiation field of high dose-per-pulse this study presents a numerical solution of a 1D transport model of the liberated charges in a plane-parallel ionization chamber. In addition, measurements were performed on an Advanced Markus ionization chamber in a pulsed electron beam to obtain suitable data to test the calculation. The experiment used radiation pulses of 4 μs duration and variable dose-per-pulse values up to about 1 Gy, as well as pulses of variable duration up to 308 [Formula: see text] at constant dose-per-pulse values between 85 mGy and 400 mGy. Those experimental data were compared to the developed numerical model and existing descriptions of volume recombination. At low collection voltages the observed dose-per-pulse dependence of volume recombination can be approximated by the existing theory using effective parameters. However, at high collection voltages large discrepancies are observed. The developed numerical model shows much better agreement with the observations and is able to replicate the observed behavior over the entire range of dose-per-pulse values and collection voltages. Using the developed numerical model, the differences between observation and existing theory are shown to be the result of a large fraction of the charge being collected as free electrons and the resultant distortion of the electric field inside the chamber. Furthermore, the numerical solution is able to calculate recombination losses for arbitrary pulse durations in good agreement with the experimental data, an aspect not covered by current theory. Overall, the presented numerical solution of the charge transport model should provide a more flexible tool to describe volume recombination for high dose-per-pulse values as well as for arbitrary pulse durations and repetition rates.

  15. Low-intensity pulsed ultrasound (LIPUS) and pulsed electromagnetic field (PEMF) treatments affect degeneration of cultured articular cartilage explants

    NARCIS (Netherlands)

    Tan, Lijun; Ren, Yijin; van Kooten, Theo G.; Grijpma, Dirk W.; Kuijer, Roelof

    PURPOSE: Articular cartilage has some capacity for self-repair. Clinically used low-intensity pulsed ultrasound (LIPUS) and pulsed electromagnetic field (PEMF) treatments were compared in their potency to prevent degeneration using an explant model of porcine cartilage. METHODS: Explants of porcine

  16. Low-intensity pulsed ultrasound (LIPUS) and pulsed electromagnetic field (PEMF) treatments affect degeneration of cultured articular cartilage explants

    NARCIS (Netherlands)

    Tan, Lijun; Tan, Lijun; Ren, Yijin; van Kooten, Theo G.; Grijpma, Dirk W.; Kuijer, Roel

    2015-01-01

    Purpose: Articular cartilage has some capacity for self-repair. Clinically used low-intensity pulsed ultrasound (LIPUS) and pulsed electromagnetic field (PEMF) treatments were compared in their potency to prevent degeneration using an explant model of porcine cartilage. Methods: Explants of porcine

  17. Projectile-power-compressed magnetic-field pulse generator

    International Nuclear Information System (INIS)

    Barlett, R.H.; Takemori, H.T.; Chase, J.B.

    1983-01-01

    Design considerations and experimental results are presented of a compressed magnetic field pulsed energy source. A 100-mm-diameter, gun-fired projectile of approx. 2MJ kinetic energy was the input energy source. An initial magnetic field was trapped and compressed by the projectile. With a shorted load, a magajoule in a nanohenry was the design goal, i.e., 50 percent energy transformation from kinetic to magnetic. Five percent conversion was the highest recorded before gauge failure

  18. Pulse-burst PIV in a high-speed wind tunnel

    International Nuclear Information System (INIS)

    Beresh, Steven; Kearney, Sean; Wagner, Justin; Guildenbecher, Daniel; Henfling, John; Spillers, Russell; Pruett, Brian; Jiang, Naibo; Slipchenko, Mikhail; Mance, Jason; Roy, Sukesh

    2015-01-01

    Time-resolved particle image velocimetry (TR-PIV) has been achieved in a high-speed wind tunnel, providing velocity field movies of compressible turbulence events. The requirements of high-speed flows demand greater energy at faster pulse rates than possible with the TR-PIV systems developed for low-speed flows. This has been realized using a pulse-burst laser to obtain movies at up to 50 kHz, with higher speeds possible at the cost of spatial resolution. The constraints imposed by use of a pulse-burst laser are limited burst duration of 10.2 ms and a low duty cycle for data acquisition. Pulse-burst PIV has been demonstrated in a supersonic jet exhausting into a transonic crossflow and in transonic flow over a rectangular cavity. The velocity field sequences reveal the passage of turbulent structures and can be used to find velocity power spectra at every point in the field, providing spatial distributions of acoustic modes. The present work represents the first use of TR-PIV in a high-speed ground-test facility. (paper)

  19. Pulsed Magnetic Field Improves the Transport of Iron Oxide Nanoparticles through Cell Barriers

    Science.gov (United States)

    Min, Kyoung Ah; Shin, Meong Cheol; Yu, Faquan; Yang, Meizhu; David, Allan E.; Yang, Victor C.; Rosania, Gus R.

    2013-01-01

    Understanding how a magnetic field affects the interaction of magnetic nanoparticles (MNPs) with cells is fundamental to any potential downstream applications of MNPs as gene and drug delivery vehicles. Here, we present a quantitative analysis of how a pulsed magnetic field influences the manner in which MNPs interact with, and penetrate across a cell monolayer. Relative to a constant magnetic field, the rate of MNP uptake and transport across cell monolayers was enhanced by a pulsed magnetic field. MNP transport across cells was significantly inhibited at low temperature under both constant and pulsed magnetic field conditions, consistent with an active mechanism (i.e. endocytosis) mediating MNP transport. Microscopic observations and biochemical analysis indicated that, in a constant magnetic field, transport of MNPs across the cells was inhibited due to the formation of large (>2 μm) magnetically-induced MNP aggregates, which exceeded the size of endocytic vesicles. Thus, a pulsed magnetic field enhances the cellular uptake and transport of MNPs across cell barriers relative to a constant magnetic field by promoting accumulation while minimizing magnetically-induced MNP aggregates at the cell surface. PMID:23373613

  20. Time-resolved investigations of the fragmentation dynamic of H2 (D2) in and with ultra-short laser pulses

    International Nuclear Information System (INIS)

    Ergler, T.

    2006-01-01

    In course of this work pump-probe experiments aimed to study ultrafast nuclear motion in H 2 (D 2 ) fragmentation by intense 6-25 fs laser pulses have been carried out. In order to perform time-resolved measurements, a Mach-Zehnder interferometer providing two identical synchronized laser pulses with the time-delay variable from 0 to 3000 fs with 300 as accuracy and long-term stability has been built. The laser pulses at the intensities of up to 10 15 W/cm 2 were focused onto a H 2 (D 2 ) molecular beam leading to the ionization or dissociation of the molecules, and the momenta of all charged reactions fragments were measured with a reaction microscope. With 6-7 fs pulses it was possible to probe the time evolution of the bound H + 2 (D + 2 ) nuclear wave packet created by the first (pump) laser pulse, fragmenting the molecule with the second (probe) pulse. A fast delocalization, or ''collapse'', and subsequent ''revival'' of the vibrational wave packet have been observed. In addition, the signatures of the ground state vibrational excitation in neutral D 2 molecule have been found, and the dominance of a new, purely quantum mechanical wave packet preparation mechanism (the so-called ''Lochfrass'') has been proved. In the experiments with 25 fs pulses the theoretically predicted enhancement of the ionization probability for the dissociating H + 2 molecular ion at large internuclear distances has been detected for the first time. (orig.)

  1. Rotationally resolved pulsed-field ionization photoelectron bands for O{sub 2}{sup +}(A {sup 2}{pi}{sub u},v{sup +}=0-12) in the energy range of 17.0-18.2 eV

    Energy Technology Data Exchange (ETDEWEB)

    Song, Y. [Ames Laboratory, U.S. Department of Energy and Department of Chemistry, Iowa State University, Ames, Iowa 50011 (United States); Evans, M. [Ames Laboratory, U.S. Department of Energy and Department of Chemistry, Iowa State University, Ames, Iowa 50011 (United States); Ng, C. Y. [Ames Laboratory, U.S. Department of Energy and Department of Chemistry, Iowa State University, Ames, Iowa 50011 (United States); Hsu, C.-W. [Chemical Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Jarvis, G. K. [Chemical Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2000-01-15

    We have obtained rotationally resolved pulsed-field ionization photoelectron (PFI-PE) spectra for O{sub 2} in the energy range of 17.05-18.13 eV, covering the ionization transitions O{sub 2}{sup +}(A {sup 2}{pi}{sub u},v{sup +}=0-12,N{sup +})(<-)O{sub 2}(X {sup 3}{sigma}{sub g}{sup -},v{sup ''}=0,N{sup ''}). Although these O{sub 2}{sup +}(A {sup 2}{pi}{sub u},v{sup +}) PFI-PE bands have significant overlaps with vibrational bands for O{sub 2}{sup +}(a {sup 4}{pi}{sub u}) and O{sub 2}{sup +}(X {sup 2}{pi}{sub g}), we have identified all the O{sub 2}{sup +}(A {sup 2}{pi}{sub u},v{sup +}=0-12) bands by simulation of spectra obtained using supersonically cooled O{sub 2} samples with rotational temperatures {approx_equal}20 and 220 K. While these v{sup +}=0-12 PFI-PE bands represent the first rotationally resolved photoelectron data for O{sub 2}{sup +}(A {sup 2}{pi}{sub u}), the PFI-PE bands for O{sub 2}{sup +}(A {sup 2}{pi}{sub u},v{sup +}=9 and 10) are the first rotationally resolved spectroscopic data for these levels. The simulation also allows the determination of accurate ionization energies, vibrational constants, and rotational constants for O{sub 2}{sup +}(A {sup 2}{pi}{sub u},v{sup +}=0-12). The analysis of the PFI-PE spectra supports the conclusion of the previous emission study that the O{sub 2}{sup +}(A {sup 2}{pi}{sub u},v{sup +}=9 and 10) states are strongly perturbed by a nearby electronic state. (c) 2000 American Institute of Physics.

  2. Wake-Field Wave Resonant Excitation in Magnetized Plasmas by Electromagnetic Pulse

    International Nuclear Information System (INIS)

    Milant'ev, V.P.; Turikov, V.A.

    2006-01-01

    In this paper the space charge wave excitation process at electromagnetic pulse propagation along external magnetic field in vicinity of electron cyclotron resonance. In hydrodynamic approach it is obtained an equation for plasma density under ponderomotive force action. With help of this equation we investigated a wake-field wave amplitude dependence from resonance detuning. The numerical simulation using a PIC method electromagnetic pulse propagation process in the resonant conditions was done

  3. Time-resolved magnetic imaging in an aberration-corrected, energy-filtered photoemission electron microscope

    International Nuclear Information System (INIS)

    Nickel, F.; Gottlob, D.M.; Krug, I.P.; Doganay, H.; Cramm, S.; Kaiser, A.M.; Lin, G.; Makarov, D.; Schmidt, O.G.

    2013-01-01

    We report on the implementation and usage of a synchrotron-based time-resolving operation mode in an aberration-corrected, energy-filtered photoemission electron microscope. The setup consists of a new type of sample holder, which enables fast magnetization reversal of the sample by sub-ns pulses of up to 10 mT. Within the sample holder current pulses are generated by a fast avalanche photo diode and transformed into magnetic fields by means of a microstrip line. For more efficient use of the synchrotron time structure, we developed an electrostatic deflection gating mechanism capable of beam blanking within a few nanoseconds. This allows us to operate the setup in the hybrid bunch mode of the storage ring facility, selecting one or several bright singular light pulses which are temporally well-separated from the normal high-intensity multibunch pulse pattern. - Highlights: • A new time-resolving operation mode in photoemission electron microscopy is shown. • Our setup works within an energy-filtered, aberration-corrected PEEM. • A new gating system for bunch selection using synchrotron radiation is developed. • An alternative magnetic excitation system is developed. • First tr-imaging using an energy-filtered, aberration-corrected PEEM is shown

  4. Time-resolved terahertz spectroscopy of semiconductor nanostructures

    DEFF Research Database (Denmark)

    Porte, Henrik

    This thesis describes time-resolved terahertz spectroscopy measurements on various semiconductor nanostructures. The aim is to study the carrier dynamics in these nanostructures on a picosecond timescale. In a typical experiment carriers are excited with a visible or near-infrared pulse and by me......This thesis describes time-resolved terahertz spectroscopy measurements on various semiconductor nanostructures. The aim is to study the carrier dynamics in these nanostructures on a picosecond timescale. In a typical experiment carriers are excited with a visible or near-infrared pulse...... and by measuring the transmission of a terahertz probe pulse, the photoconductivity of the excited sample can be obtained. By changing the relative arrival time at the sample between the pump and the probe pulse, the photoconductivity dynamics can be studied on a picosecond timescale. The rst studied semiconductor...

  5. Reduction of field emission in superconducting cavities with high power pulsed RF

    International Nuclear Information System (INIS)

    Graber, J.; Crawford, C.; Kirchgessner, J.; Padamsee, H.; Rubin, D.; Schmueser, P.

    1994-01-01

    A systematic study is presented of the effects of pulsed high power RF processing (HPP) as a method of reducing field emission (FE) in superconducting radio frequency (SRF) cavities to reach higher accelerating gradients for future particle accelerators. The processing apparatus was built to provide up to 150 kW peak RF power to 3 GHz cavities, for pulse lengths from 200 μs to 1 ms. Single-cell and nine-cell cavities were tested extensively. The thermal conductivity of the niobium for these cavities was made as high as possible to ensure stability against thermal breakdown of superconductivity. HPP proves to be a highly successful method of reducing FE loading in nine-cell SRF cavities. Attainable continuous wave (CW) fields increase by as much as 80% from their pre-HPP limits. The CW accelerating field achieved with nine-cell cavities improved from 8-15 MV/m with HPP to 14-20 MV/m. The benefits are stable with subsequent exposure to dust-free air. More importantly, HPP also proves effective against new field emission subsequently introduced by cold and warm vacuum ''accidents'' which admitted ''dirty'' air into the cavities. Clear correlations are obtained linking FE reduction with the maximum surface electric field attained during processing. In single cells the maximums reached were E peak =72 MV/m and H peak =1660 Oe. Thermal breakdown, initiated by accompanying high surface magnetic fields is the dominant limitation on the attainable fields for pulsed processing, as well as for final CW and long pulse operation. To prove that the surface magnetic field rather than the surface electric fields is the limitation to HPP effectiveness, a special two-cell cavity with a reduced magnetic to electric field ratio is successfully tested. During HPP, pulsed fields reach E peak =113 MV/m (H peak =1600 Oe) and subsequent CW low power measurement reached E peak =100 MV/m, the highest CW field ever measured in a superconducting accelerator cavity. ((orig.))

  6. Pulsed-field Gel Electrophoresis for Salmonella Infection Surveillance, Texas, USA, 2007

    Centers for Disease Control (CDC) Podcasts

    This podcast describes monitoring of the use of pulsed-field gel electrophoresis for Salmonella surveillance in Houston, Texas. CDC microbiologist Peter Gerner-Smidt discusses the importance of the PulseNet national database in surveillance of food-borne infections.

  7. Time-resolved resonance Raman spectroscopy of radiation-chemical processes

    International Nuclear Information System (INIS)

    Tripathi, G.N.R.

    1983-01-01

    A tunable pulsed laser Raman spectrometer for time resolved Raman studies of radiation-chemical processes is described. This apparatus utilizes the state of art optical multichannel detection and analysis techniques for data acquisition and electron pulse radiolysis for initiating the reactions. By using this technique the resonance Raman spectra of intermediates with absorption spectra in the 248-900 nm region, and mean lifetimes > 30 ns can be examined. This apparatus can be used to time resolve the vibrational spectral overlap between transients absorbing in the same region, and to follow their decay kinetics by monitoring the well resolved Raman peaks. For kinetic measurements at millisecond time scale, the Raman technique is preferable over optical absorption method where low frequency noise is quite bothersome. A time resolved Raman study of the pulse radiolytic oxidation of aqueous tetrafluorohydroquinone and p-methoxyphenol is briefly discussed. 15 references, 5 figures

  8. A new pulsed electric field microreactor: comparison between the laboratory and microtechnology scale

    NARCIS (Netherlands)

    Fox, M.B.; Fox, Martijn; Esveld, Erik; Lüttge, Regina; Boom, Remko

    This paper presents a new microreactor dedicated for pulsed electric field treatment (PEF), which is a pasteurization method that inactivates microorganisms with short electric pulses. The PEF microreactor consists of a flow-through channel with a constriction where the electric field is focussed.

  9. Toward 6 log10 pulsed electric field inactivation with conductive plastic packaging material

    NARCIS (Netherlands)

    Roodenburg, B.; Haan, S.W.H. de; Ferreira, J.A.; Coronel, P.; Wouters, P.C.; Hatt, V.

    2013-01-01

    Generally, high grade products such as pulsed electric field (PEF) treated fruit juices are packaged after their preservative treatment. However, PEF treatment after packaging could avoid recontamination of the product and becomes feasible when electric field pulses of sufficient magnitude can be

  10. A new pulsed electric field microreactor: comparison between the laboratory and microtechnology scale

    NARCIS (Netherlands)

    Fox, M.B.; Esveld, D.C.; Luttge, R.; Boom, R.M.

    2005-01-01

    This paper presents a new microreactor dedicated for pulsed electric field treatment (PEF), which is a pasteurization method that inactivates microorganisms with short electric pulses. The PEF microreactor consists of a flow-through channel with a constriction where the electric field is focussed.

  11. Miniature coils for producing pulsed inplane magnetic fields for nanospintronics

    Energy Technology Data Exchange (ETDEWEB)

    Pawliszak, Łukasz; Zgirski, Maciej [Institute of Physics, Polish Academy of Sciences, al.Lotnikow 32/46, PL 02-668 Warszawa (Poland); Tekielak, Maria [Faculty of Physics, University of Białystok, ul.Lipowa 41, PL 15-424 Białystok (Poland)

    2015-03-15

    Nanospintronic and related research often requires the application of quickly rising magnetic field pulses in the plane of the studied planar structure. We have designed and fabricated sub-millimeter-sized coils capable of delivering pulses of the magnetic field up to ∼500 Oe in the plane of the sample with the rise time of the order of 10 ns. The placement of the sample above the coil allows for easy access to its surface with manipulators or light beams for, e.g., Kerr microscopy. We use the fabricated coil to drive magnetic domain walls in 1 μm wide permalloy wires and measure magnetic domain wall velocity as a function of the applied magnetic field.

  12. Development of Field Angle Resolved Specific Heat Measurement System for Unconventional Superconductors

    International Nuclear Information System (INIS)

    Kitamura, Yasuhiro; Matsubara, Takeshi; Machida, Yo; Izawa, Koichi; Onuki, Yoshichika; Salce, Bernard; Flouquet, Jacques

    2015-01-01

    We developed a measurement system for field angle resolved specific heat under multiple extreme conditions at low temperature down to 50 mK, in magnetic field up to 7 T, and under high pressure up to 10 GPa. We demonstrated the performance of our developed system by measuring field angle dependence of specific heat of pressure induced unconventional superconductor CeIrSi 3

  13. Pulsed electric fields for pasteurization: defining processing conditions

    Science.gov (United States)

    Application of pulsed electric fields (PEF) technology in food pasteurization has been extensively studied. Optimal PEF treatment conditions for maximum microbial inactivation depend on multiple factors including PEF processing conditions, production parameters and product properties. In order for...

  14. Effect of pulsed electric fields on microbial inactivation and physico-chemical properties of whole porcine blood.

    Science.gov (United States)

    Boulaaba, Annika; Egen, Nathalie; Klein, Günter

    2014-04-01

    The objective of this study was to determine the lethal effectiveness of pulsed electric fields on the inactivation of the porcine blood endogenous microflora. Furthermore, the impact of pulsed electric field application on physico-chemical and sensory properties in this medium should be proved. Blood samples from a commercial abattoir in Germany were processed by a continuous pilot plant-pulsed electric field system at electric field strength of 11 kV/cm for treatment times of 163 and 209 µs. The applied pulse frequencies of 134 and 175 Hz correspond to an energy input of 91 and 114 kJ/kg, respectively. In these conditions, the effectiveness of pulsed electric field processing on microbial inactivation was limited: 1.35 log10 CFU/mL reduction of total aerobic plate count (p pulsed electric field-treated blood samples. Pulsed electric field processing leads to a complete hemolysis of the red blood cells, in addition significant decreased L* (lightness), a* (redness) and b* (yellowness) values (p < 0.0001) were observed. Furthermore, changes in the sensory attributes color (changed from red to dark brown) and odor (changed from fresh to musty and tangy) were noticed.

  15. SU-C-201-03: Ionization Chamber Collection Efficiency in Pulsed Radiation Fields of High Pulse Dose

    Energy Technology Data Exchange (ETDEWEB)

    Gotz, M; Karsch, L [Oncoray - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universitaet Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden (Germany); Pawelke, J [Oncoray - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universitaet Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden (Germany); Helmholtz-Zentrum Dresden - Rossendorf, Dresden (Germany)

    2016-06-15

    Purpose: To investigate the reduction of collection efficiency of ionization chambers (IC) by volume recombination and its correction in pulsed fields of very high pulse dose. Methods: Measurements of the collection efficiency of a plane-parallel advanced Markus IC (PTW 34045, 1mm electrode spacing, 300V nominal voltage) were obtained for collection voltages of 100V and 300V by irradiation with a pulsed electron beam (20MeV) of varied pulse dose up to approximately 600mGy (0.8nC liberated charge). A reference measurement was performed with a Faraday cup behind the chamber. It was calibrated for the liberated charge in the IC by a linear fit of IC measurement to reference measurement at low pulse doses. The results were compared to the commonly used two voltage approximation (TVA) and to established theories for volume recombination, with and without considering a fraction of free electrons. In addition, an equation system describing the charge transport and reactions in the chamber was solved numerically. Results: At 100V collection voltage and moderate pulse doses the established theories accurately predict the observed collection efficiency, but at extreme pulse doses a fraction of free electrons needs to be considered. At 300V the observed collection efficiency deviates distinctly from that predicted by any of the established theories, even at low pulse doses. However, the numeric solution of the equation system is able to reproduce the measured collection efficiency across the entire dose range of both voltages with a single set of parameters. Conclusion: At high electric fields (3000V/cm here) the existing theoretical descriptions of collection efficiency, including the TVA, are inadequate to predict pulse dose dependency. Even at low pulse doses they might underestimate collection efficiency. The presented, more accurate numeric solution, which considers additional effects like electric shielding by the charges, might provide a valuable tool for future

  16. SU-C-201-03: Ionization Chamber Collection Efficiency in Pulsed Radiation Fields of High Pulse Dose

    International Nuclear Information System (INIS)

    Gotz, M; Karsch, L; Pawelke, J

    2016-01-01

    Purpose: To investigate the reduction of collection efficiency of ionization chambers (IC) by volume recombination and its correction in pulsed fields of very high pulse dose. Methods: Measurements of the collection efficiency of a plane-parallel advanced Markus IC (PTW 34045, 1mm electrode spacing, 300V nominal voltage) were obtained for collection voltages of 100V and 300V by irradiation with a pulsed electron beam (20MeV) of varied pulse dose up to approximately 600mGy (0.8nC liberated charge). A reference measurement was performed with a Faraday cup behind the chamber. It was calibrated for the liberated charge in the IC by a linear fit of IC measurement to reference measurement at low pulse doses. The results were compared to the commonly used two voltage approximation (TVA) and to established theories for volume recombination, with and without considering a fraction of free electrons. In addition, an equation system describing the charge transport and reactions in the chamber was solved numerically. Results: At 100V collection voltage and moderate pulse doses the established theories accurately predict the observed collection efficiency, but at extreme pulse doses a fraction of free electrons needs to be considered. At 300V the observed collection efficiency deviates distinctly from that predicted by any of the established theories, even at low pulse doses. However, the numeric solution of the equation system is able to reproduce the measured collection efficiency across the entire dose range of both voltages with a single set of parameters. Conclusion: At high electric fields (3000V/cm here) the existing theoretical descriptions of collection efficiency, including the TVA, are inadequate to predict pulse dose dependency. Even at low pulse doses they might underestimate collection efficiency. The presented, more accurate numeric solution, which considers additional effects like electric shielding by the charges, might provide a valuable tool for future

  17. Strong-field QED processes in short laser pulses. One- and two-photon Compton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Seipt, Daniel

    2012-12-20

    The purpose of this thesis is to advance the understanding of strong-field QED processes in short laser pulses. The processes of non-linear one-photon and two-photon Compton scattering are studied, that is the scattering of photons in the interaction of relativistic electrons with ultra-short high-intensity laser pulses. These investigations are done in view of the present and next generation of ultra-high intensity optical lasers which are supposed to achieve unprecedented intensities of the order of 10{sup 24} W/cm{sup 2} and beyond, with pulse lengths in the order of some femtoseconds. The ultra-high laser intensity requires a non-perturbative description of the interaction of charged particles with the laser field to allow for multi-photon interactions, which is beyond the usual perturbative expansion of QED organized in powers of the fine structure constant. This is achieved in strong-field QED by employing the Furry picture and non-perturbative solutions of the Dirac equation in the presence of a background laser field as initial and final state wave functions, as well as the laser dressed Dirac-Volkov propagator. The primary objective is a realistic description of scattering processes with regard to the finite laser pulse duration beyond the common approximation of infinite plane waves, which is made necessary by the ultra-short pulse length of modern high-intensity lasers. Non-linear finite size effects are identified, which are a result of the interplay between the ultra-high intensity and the ultra-short pulse length. In particular, the frequency spectra and azimuthal photon emission spectra are studied emphasizing the differences between pulsed and infinite laser fields. The proper description of the finite temporal duration of the laser pulse leads to a regularization of unphysical infinities (due to the infinite plane-wave description) of the laser-dressed Dirac-Volkov propagator and in the second-order strong-field process of two-photon Compton

  18. Modeling ultrashort electromagnetic pulses with a generalized Kadomtsev-Petviashvili equation

    Science.gov (United States)

    Hofstrand, A.; Moloney, J. V.

    2018-03-01

    In this paper we derive a properly scaled model for the nonlinear propagation of intense, ultrashort, mid-infrared electromagnetic pulses (10-100 femtoseconds) through an arbitrary dispersive medium. The derivation results in a generalized Kadomtsev-Petviashvili (gKP) equation. In contrast to envelope-based models such as the Nonlinear Schrödinger (NLS) equation, the gKP equation describes the dynamics of the field's actual carrier wave. It is important to resolve these dynamics when modeling ultrashort pulses. We proceed by giving an original proof of sufficient conditions on the initial pulse for a singularity to form in the field after a finite propagation distance. The model is then numerically simulated in 2D using a spectral-solver with initial data and physical parameters highlighting our theoretical results.

  19. Kinetics of the reaction F+NO+M->FNO+M studied by pulse radiolysis combined with time-resolved IR and UV spectroscopy

    DEFF Research Database (Denmark)

    Pagsberg, Palle Bjørn; Sillesen, A.; Jodkowski, J.T.

    1996-01-01

    The title reaction was initiated by pulse radiolysis of SF6/NO gas mixtures, and the formation of FNO was studied by time-resolved IR and UV spectroscopy. At SF6 pressures of 10-320 mbar at 298 K, the formation of FNO was studied by infrared diode laser spectroscopy at 1857.324 cm(-1). Comparative...

  20. Validation of a pulsed electric field process to pasteurize strawberry puree

    Science.gov (United States)

    An inexpensive data acquisition method was developed to validate the exact number and shape of the pulses applied during pulsed electric fields (PEF) processing. The novel validation method was evaluated in conjunction with developing a pasteurization PEF process for strawberry puree. Both buffered...

  1. Short-circuited coil in a solenoid circuit of a pulse magnetic field

    International Nuclear Information System (INIS)

    Kivshik, A.F.; Dubrovin, V.Yu.

    1976-01-01

    A short-circuited coil at the end of a long pulse solenoid attenuates the dissipation field by 3-5 times. A plug-configuration field is set up in the middle portion of the pulse solenoid incorporating the short-circuited coils. Shunting of the coils with the induction current by resistor Rsub(shunt) provides for the adjustment of the plug ratio γ

  2. Experimental Study of SO2 Removal by Pulsed DBD Along with the Application of Magnetic Field

    International Nuclear Information System (INIS)

    Rong Mingzhe; Liu Dingxin; Wang Xiaohua; Wang Junhua

    2007-01-01

    Dielectric barrier discharge (DBD) for SO 2 removal from indoor air is investigated. In order to improve the removal efficiency, two novel methods are combined in this paper, namely by applying a pulsed driving voltage with nanosecond rising time and applying a magnetic field. For SO 2 removal efficiency, different matches of electric field and magnetic field are discussed. And nanosecond rising edge pulsed power supply and microsecond rising edge pulsed power supply are compared. It can be concluded that a pulsed DBD with nanosecond rising edge should be adopted, and electrical field and magnetic field should be applied in an appropriate match

  3. Electric field simulation and measurement of a pulse line ion accelerator

    International Nuclear Information System (INIS)

    Shen Xiaokang; Zhang Zimin; Cao Shuchun; Zhao Hongwei; Zhao Quantang; Liu Ming; Jing Yi; Wang Bo; Shen Xiaoli

    2012-01-01

    An oil dielectric helical pulse line to demonstrate the principles of a Pulse Line Ion Accelerator (PLIA) has been designed and fabricated. The simulation of the axial electric field of an accelerator with CST code has been completed and the simulation results show complete agreement with the theoretical calculations. To fully understand the real value of the electric field excited from the helical line in PLIA, an optical electric integrated electric field measurement system was adopted. The measurement result shows that the real magnitude of axial electric field is smaller than that calculated, probably due to the actual pitch of the resister column which is much less than that of helix. (authors)

  4. Pulse GaAs field transistor amplifier with subnanosecond time transient

    International Nuclear Information System (INIS)

    Sidnev, A.N.

    1987-01-01

    Pulse amplifier on fast field effect GaAs transistors with Schottky barrier is described. The amplifier contains four cascades, the first three of which are made on combined transistors on the common-drain circuit. The last cascade is made on high-power field effect GaAs transistor for coordination with 50 ohm load. The amplifier operates within the range of input signals from 0.5 up to 100 mV with repetition frequency up to 16 Hz, The gain of the amplifier is ≅ 20 dB. The setting time at output pulses amplitude up to 1 V constitutes ∼ 0.2 ns

  5. Energy and dose characteristics of ion bombardment during pulsed laser deposition of thin films under pulsed electric field

    International Nuclear Information System (INIS)

    Fominski, V.Yu.; Nevolin, V.N.; Smurov, I.

    2004-01-01

    Experiments on pulsed laser deposition of Fe films on Si substrates were performed with the aim to analyze the role of factors determining the formation of an energy spectrum and a dose of ions bombarding the film in strong pulsed electric fields. The amplitude of the high-voltage pulse (-40 kV) applied to the substrate and the laser fluence at the Fe target were fixed during the deposition. Owing to the high laser fluence (8 J/cm 2 ) at a relatively low power (20 mJ), the ionization of the laser plume was high, but the Fe vapor pressure near the substrate was low enough to avoid arcing. Electric signals from a target exposed to laser radiation were measured under different conditions (at different delay times) of application of electric pulses. The Si(100) substrates were analyzed using Rutherford ion backscattering/channeling spectrometry. The ion implantation dose occurred to be the highest if the high-voltage pulse was applied at a moment of time when the ion component of the plume approached the substrate. In this case, the implanted ions had the highest energy determined by the amplitude of the electric pulse. An advance or delay in applying a high-voltage pulse caused the ion dose and energy to decrease. A physical model incorporating three possible modes of ion implantation was proposed for the interpretation of the experimental results. If a laser plume was formed in the external field, ions were accelerated from the front of the dense plasma, and the ion current depended on the gas-dynamic expansion of the plume. The application of a high-voltage pulse, at the instant when the front approached the substrate, maintained the mode that was characteristic of the traditional plasma immersion ion implantation, and the ion current was governed by the dynamics of the plasma sheath in the substrate-to-target gap. In the case of an extremely late application of a high-voltage pulse, ions retained in the entire volume of the experimental chamber (as a result of the

  6. Resolvent convergence in norm for Dirac operator with Aharonov-Bohm field

    International Nuclear Information System (INIS)

    Tamura, Hideo

    2003-01-01

    We consider the Hamiltonian for relativistic particles moving in the Aharonov-Bohm magnetic field in two dimensions. The field has δ-like singularity at the origin, and the Hamiltonian is not necessarily essentially self-adjoint. The self-adjoint realization requires one parameter family of boundary conditions at the origin. We approximate the point-like field by smooth ones and study the problem of norm resolvent convergence to see which boundary condition is physically reasonable among admissible boundary conditions. We also study the effect of perturbations by scalar potentials. Roughly speaking, the obtained result is that the limit self-adjoint realization is different even for small perturbation of scalar potentials according to the values of magnetic fluxes. It changes at half-integer fluxes. The method is based on the resolvent analysis at low energy on magnetic Schroedinger operators with resonance at zero energy and the resonance plays an important role from a mathematical point of view. However it has been neglected in earlier physical works. The emphasis here is placed on this natural aspect

  7. Temperature field analysis of single layer TiO2 film components induced by long-pulse and short-pulse lasers

    International Nuclear Information System (INIS)

    Wang Bin; Zhang Hongchao; Qin Yuan; Wang Xi; Ni Xiaowu; Shen Zhonghua; Lu Jian

    2011-01-01

    To study the differences between the damaging of thin film components induced by long-pulse and short-pulse lasers, a model of single layer TiO 2 film components with platinum high-absorptance inclusions was established. The temperature rises of TiO 2 films with inclusions of different sizes and different depths induced by a 1 ms long-pulse and a 10 ns short-pulse lasers were analyzed based on temperature field theory. The results show that there is a radius range of inclusions that corresponds to high temperature rises. Short-pulse lasers are more sensitive to high-absorptance inclusions and long-pulse lasers are more easily damage the substrate. The first-damage decision method is drawn from calculations.

  8. Single attosecond pulse generation in an orthogonally polarized two-color laser field combined with a static electric field

    International Nuclear Information System (INIS)

    Xia Changlong; Zhang Gangtai; Wu Jie; Liu Xueshen

    2010-01-01

    We investigate theoretic high-order harmonic generation and single attosecond pulse generation in an orthogonally polarized two-color laser field, which is synthesized by a mid-infrared (IR) pulse (12.5 fs, 2000 nm) in the y component and a much weaker (12 fs, 800 nm) pulse in the x component. We find that the width of the harmonic plateau can be extended when a static electric field is added in the y component. We also investigate emission time of harmonics in terms of a time-frequency analysis to illustrate the physical mechanism of high-order harmonic generation. We calculate the ionization rate using the Ammosov-Delone-Krainov model and interpret the variation of harmonic intensity for different static electric field strengths. When the ratio of strengths of the static and the y-component laser fields is 0.1, a continuous harmonic spectrum is formed from 220 to 420 eV. By superposing a properly selected range of the harmonic spectrum from 300 to 350 eV, an isolated attosecond pulse with a duration of about 75 as is obtained, which is near linearly polarized.

  9. Passive notch circuit for pulsed-off compression fields

    International Nuclear Information System (INIS)

    Nunnally, W.C.

    1976-06-01

    The operation and simulated results of a passive notch circuit used to pulse off the field in a multiturn, fusion-power system, compression coil are presented. The notch circuit permits initial plasma preparation at field zero, adiabatic compression as the field returns to its initial value, and long field decay time for plasma confinement. The major advantages and disadvantages of the notch circuit are compared with those of a standard capacitor power supply system. The major advantages are that: (1) slow-rising fields can be used for adiabatic compression, (2) solid-state switches can be used because of the inherent current and voltage waveforms, and (3) long field decay times are easier to attain than with single-turn coils

  10. Effects of pulsed electrical field processing on microbial survival, quality change and nutritional characteristics of blueberries

    Science.gov (United States)

    Whole fresh blueberries were treated using a parallel pulsed electric field (PEF) treatment chamber and a sanitizer solution (60 ppm peracetic acid [PAA]) as PEF treatment medium with square wave bipolar pulses at 2 kV/cm electric field strength, 1us pulse width, and 100 pulses per second for 2, 4, ...

  11. Pulsed electric fields (PEF applications on wine production: A review

    Directory of Open Access Journals (Sweden)

    Ozturk Burcu

    2017-01-01

    Full Text Available Novel techniques have been searched in the last decades as a result of increasing demand for high quality food products. Non-thermal processing technologies, such as pulsed electric fields (PEF have been improved to achieve inhibition of deleterious effects on quality-related compounds. The working principle of PEF is based on the application of pulses of high voltage (typically above 20 kV/cm up to 70 kV/cm to liquid foods placed between two electrodes. Pulsed electric fields technique has also been studied in winemaking process. Certain positive influences of PEF on vinification have been reported as elimination of pathogenic microorganisms, reduction of maceration time, increase in phenolic compounds extraction , acceleration of wine aging and inactivation of oxidative enzymes. The aim of this review is to summarize the potential applications of PEF in winemaking and to express its effects on quality of wine.

  12. Metal release in a stainless steel Pulsed Electric Field (PEF) system Part I. Effect of different pulse shapes; theory and experimental method

    NARCIS (Netherlands)

    Roodenburg, B.; Morren, J.; Berg, H.E.; Haan, S.W.H.de

    2005-01-01

    Liquid pumpable food is mostly pasteurised by heat treatment. In the last decennia there is an increasing interest in so-called Pulsed Electric Field (PEF) treatment. During this treatment food is pumped between two metal electrodes and exposed to short high electric field pulses, typical 2-4 kV

  13. Production of pulsed electric fields using capacitively coupled electrodes

    Science.gov (United States)

    Kendall, B. R. F.; Schwab, F. A. S.

    1980-01-01

    It is shown that pulsed electric fields can be produced over extended volumes by taking advantage of the internal capacitances in a stacked array of electrodes. The design, construction, and performance of practical arrays are discussed. The prototype arrays involved fields of 100-1000 V/cm extending over several centimeters. Scaling to larger physical dimensions is straightforward.

  14. [Negative air ions generated by plants upon pulsed electric field stimulation applied to soil].

    Science.gov (United States)

    Wu, Ren-ye; Deng, Chuan-yuan; Yang, Zhi-jian; Weng, Hai-yong; Zhu, Tie-jun-rong; Zheng, Jin-gui

    2015-02-01

    This paper investigated the capacity of plants (Schlumbergera truncata, Aloe vera var. chinensis, Chlorophytum comosum, Schlumbergera bridgesii, Gymnocalycium mihanovichii var. friedrichii, Aspidistra elatior, Cymbidium kanran, Echinocactus grusonii, Agave americana var. marginata, Asparagus setaceus) to generate negative air ions (NAI) under pulsed electric field stimulation. The results showed that single plant generated low amounts of NAI in natural condition. The capacity of C. comosum and G. mihanovichii var. friedrichii generated most NAI among the above ten species, with a daily average of 43 ion · cm(-3). The least one was A. americana var. marginata with the value of 19 ion · cm(-3). When proper pulsed electric field stimulation was applied to soil, the NAI of ten plant species were greatly improved. The effect of pulsed electric field u3 (average voltage over the pulse period was 2.0 x 10(4) V, pulse frequency was 1 Hz, and pulse duration was 50 ms) was the greatest. The mean NAI concentration of C. kanran was the highest 1454967 ion · cm(-3), which was 48498.9 times as much as that in natural condition. The lowest one was S. truncata with the value of 34567 ion · cm(-3), which was 843.1 times as much as that in natural condition. The capacity of the same plants to generate negative air ion varied extremely under different intensity pulsed electric fields.

  15. Polyphenol extraction from fresh tea leaves by pulsed electric field : a study of mechanisms

    NARCIS (Netherlands)

    Zderic, Aleksandra; Zondervan, Edwin

    2016-01-01

    The major interest in pulsed electric field treatment of biological tissues is derived from its non-thermal application: increasing cell permeability. This application has an important implication in extraction of complex organic molecules. In this work, pulsed electric field treatment is

  16. Temperature field analysis of single layer TiO2 film components induced by long-pulse and short-pulse lasers.

    Science.gov (United States)

    Wang, Bin; Zhang, Hongchao; Qin, Yuan; Wang, Xi; Ni, Xiaowu; Shen, Zhonghua; Lu, Jian

    2011-07-10

    To study the differences between the damaging of thin film components induced by long-pulse and short-pulse lasers, a model of single layer TiO(2) film components with platinum high-absorptance inclusions was established. The temperature rises of TiO(2) films with inclusions of different sizes and different depths induced by a 1 ms long-pulse and a 10 ns short-pulse lasers were analyzed based on temperature field theory. The results show that there is a radius range of inclusions that corresponds to high temperature rises. Short-pulse lasers are more sensitive to high-absorptance inclusions and long-pulse lasers are more easily damage the substrate. The first-damage decision method is drawn from calculations. © 2011 Optical Society of America

  17. Ultra-fast Movies Resolve Ultra-short Pulse Laser Ablation and Bump Formation on Thin Molybdenum Films

    Science.gov (United States)

    Domke, Matthias; Rapp, Stephan; Huber, Heinz

    For the monolithic serial interconnection of CIS thin film solar cells, 470 nm molybdenum films on glass substrates must be separated galvanically. The single pulse ablation with a 660 fs laser at a wavelength of 1053 nm is investigated in a fluence regime from 0.5 to 5.0 J/cm2. At fluences above 2.0 J/cm2 bump and jet formation can be observed that could be used for creating microstructures. For the investigation of the underlying mechanisms of the laser ablation process itself as well as of the bump or jet formation, pump probe microscopy is utilized to resolve the transient ablation behavior.

  18. The LNCMP: a pulsed-field user-facility in Toulouse

    International Nuclear Information System (INIS)

    2004-01-01

    Since summer 2002 the 'Laboratoire National des Champs Magnetiques Pulses' is operated as an international user facility providing access to pulsed magnetic fields up to 76 T. The laboratory disposes of 10 magnet stations equipped with long-pulse magnets operating in the 35-60 T range. A short-pulse system reaching 76 T was recently installed in the framework of the European ARMS-project. The experimental infrastructure includes various low-temperature systems ranging from ordinary flow-type cryostats to dilution refrigerators reaching 50 mK. A system permitting transport measurements under hydrostatic pressure and at low temperatures has recently been successfully tested. Experimental techniques include magnetization, transport, luminescence, IR-spectroscopy and the magneto-optical Kerr-effect. The LNCMP pursues an extensive in-house research program focusing on technological (reinforced wire, coil design, coil aging) as well as scientific aspects (magnetism, strongly correlated fermions, disordered systems and others)

  19. Rapid characterization of superconducting wires and tapes in strong pulsed magnetic fields

    International Nuclear Information System (INIS)

    Bockstal, L. van; Keyser, A. de; Deschagt, J.; Hopkins, S.C.; Glowacki, B.A.

    2007-01-01

    A new measurement system for rapid characterization of superconducting wires and tapes is developed. The CryoPulse-BI is a system to provide a direct measurement of critical material parameters for superconducting materials when high long pulsed magnetic fields and strong currents are applied. In the experiments, synchronized magnetic fields up to 30 T and current pulses up to 5 kA are generated with adjustable timing. Varying the magnetic field strength, the current through the sample and the BI timing allows for a thorough characterization of the sample and the determination of critical currents. The rapid cycle time of the experiments yields a rapid and thorough determination of the critical parameters. The method has been tested on low T c as well as high T c materials with the field parallel or perpendicular to the current. The discussion covers the current state of the art including a comparison of our results to classical DC characterization measurements

  20. Giant lipid vesicles under electric field pulses assessed by non invasive imaging.

    Science.gov (United States)

    Mauroy, Chloé; Portet, Thomas; Winterhalder, Martin; Bellard, Elisabeth; Blache, Marie-Claire; Teissié, Justin; Zumbusch, Andreas; Rols, Marie-Pierre

    2012-10-01

    We present experimental results regarding the effects of electric pulses on giant unilamellar vesicles (GUVs). We have used phase contrast and coherent anti-Stokes Raman scattering (CARS) microscopy as relevant optical approaches to gain insight into membrane changes under electropermeabilization. No addition of exogenous molecules (lipid analogue, fluorescent dye) was needed. Therefore, experiments were performed on pure lipid systems avoiding possible artefacts linked to their use. Structural membrane changes were assessed by loss of contrast inside the GUVs due to sucrose and glucose mixing. Our observations, performed at the single vesicle level, indicate these changes are under the control of the number of pulses and field intensity. Larger number of pulses enhances membrane alterations. A threshold value of the field intensity must be applied to allow exchange of molecules between GUVs and the external medium. This threshold depends on the size of the vesicles, the larger GUVs being affected at lower electric field strengths than the smaller ones. Our experimental data are well described by a simple model in which molecule entry is driven by direct exchange. The CARS microscopic study of the effect of pulse duration confirms that pulses, in the ms time range, induce loss of lipids and membrane deformations facing the electrodes. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Temperature measurements in small holes drilled in superconducting bulk during pulsed field magnetization

    Science.gov (United States)

    Fujishiro, H.; Naito, T.; Furuta, D.; Kakehata, K.

    2010-11-01

    The time dependence of the temperatures T(z, t) has been measured along the thickness direction z in several drilled holes in a superconducting bulk during pulsed field magnetization (PFM) and the heat generation and heat transfer in the bulk have been discussed. In the previous paper [H. Fujishiro, S. Kawaguchi, K. Kakehata, A. Fujiwara, T. Tateiwa, T. Oka, Supercond. Sci. Technol. 19 (2006) S540], we calculated the T(z, t) profiles in the bulk by solving a three-dimensional heat-diffusion equation to reproduce the measured T(t) on the bulk surface; the heat generation took place adiabatically and the calculated T(z, t) was isothermal along the z direction. In this study, the measured T(z, t) at the top surface was higher than that at the bottom surface just after the pulse field application at t < 0.5 s, and then became isothermal with increasing time. These results suggest that the magnetic flux intrudes inhomogeneously into the bulk from the edge of the top surface and the periphery at the early stage. The inhomogeneous magnetic flux intrusion and the flux trap during PFM change depending on the strength of the pulsed field and the pulse number in the successive pulse field application.

  2. Comparison of membrane electroporation and protein denature in response to pulsed electric field with different durations.

    Science.gov (United States)

    Huang, Feiran; Fang, Zhihui; Mast, Jason; Chen, Wei

    2013-05-01

    In this paper, we compared the minimum potential differences in the electroporation of membrane lipid bilayers and the denaturation of membrane proteins in response to an intensive pulsed electric field with various pulse durations. Single skeletal muscle fibers were exposed to a pulsed external electric field. The field-induced changes in the membrane integrity (leakage current) and the Na channel currents were monitored to identify the minimum electric field needed to damage the membrane lipid bilayer and the membrane proteins, respectively. We found that in response to a relatively long pulsed electric shock (longer than the membrane intrinsic time constant), a lower membrane potential was needed to electroporate the cell membrane than for denaturing the membrane proteins, while for a short pulse a higher membrane potential was needed. In other words, phospholipid bilayers are more sensitive to the electric field than the membrane proteins for a long pulsed shock, while for a short pulse the proteins become more vulnerable. We can predict that for a short or ultrashort pulsed electric shock, the minimum membrane potential required to start to denature the protein functions in the cell plasma membrane is lower than that which starts to reduce the membrane integrity. Copyright © 2013 Wiley Periodicals, Inc.

  3. Pulsed electric field processing for fruit and vegetables

    Science.gov (United States)

    This month’s column reviews the theory and current applications of pulsed electric field (PEF) processing for fruits and vegetables to improve their safety and quality. This month’s column coauthor, Stefan Toepfl, is advanced research manager at the German Institute of Food Technologies and professo...

  4. A Pulsed Electric Field (PEF) bench static system to study bacteria inactivation

    International Nuclear Information System (INIS)

    Cortese, Pietro; Dellacasa, Giuseppe; Gemme, Roberto; Bonetta, Sara; Bonetta, Silvia; Carraro, Elisabetta; Motta, Francesca; Paganoni, Marco; Pizzichemi, Marco

    2011-01-01

    Pulsed Electric Fields (PEF) technology is a promising non-thermal processing method for inactivation of microorganisms. A small PEF bench system able to treat a 0.4 ml static liquid volume has been built and tested at the laboratories of the Universita del Piemonte Orientale in Alessandria, Italy. The technique used to produce the required fields consists of charging high voltage cables of various lengths and subsequently discharge them on a cylindrical cell. The pulse intensity can be adjusted to reach a maximum electric field in the cell of about 35 kV/cm and the pulse frequency can reach 10 Hz. We describe the PEF system in some detail and, as a benchmark of its performances, we report preliminary results obtained on Escherichia coli (ATCC 25922) at 10 9 Cfu/ml concentration suspended in a McIlvaine buffer (pH 7.2).

  5. Femtosecond Time-resolved Optical Polarigraphy (FTOP)

    International Nuclear Information System (INIS)

    Aoshima, S.; Fujimoto, M.; Hosoda, M.; Tsuchiya, Y.

    2000-01-01

    A novel time-resolved imaging technique named FTOP (Femtosecond Time-resolved Optical Polarigraphy) for visualizing the ultrafast propagation dynamics of intense light pulses in a medium has been proposed and demonstrated. Femtosecond snapshot images can be created with a high spatial resolution by imaging only the polarization components of the probe pulse; these polarization components change due to the instantaneous birefringence induced by the pump pulse in the medium. Ultrafast temporal changes in the two-dimensional spatial distribution of the optical pulse intensity were clearly visualized in consecutive images by changing the delay between the pump and probe. We observe that several filaments appear and then come together before the vacuum focus due to nonlinear effects in air. We also prove that filamentation dynamics such as the formation position and the propagation behavior are complex and are strongly affected by the pump energy. The results collected clearly show that this method FTOP succeeds for the first time in directly visualizing the ultrafast dynamics of the self-modulated nonlinear propagation of light. (author)

  6. Pulsed Field Waveforms for Magnetization of HTS Gd-Ba-Cu-O Bulk Magnets

    International Nuclear Information System (INIS)

    Ida, T; Matsuzaki, H; Morita, E; Sakashita, H; Harada, T; Ogata, H; Kimura, Y; Miki, M; Kitano, M; Izumi, M

    2006-01-01

    Progress in pulse magnetization technique for high-temperature superconductor bulks of melt-textured RE-Ba-Cu-O with large diameter is important for the realization of power applications. We studied the pulsed power source and pulsed field waveforms to enhance to improve the magnetization properties for Gd-Ba-Cu-O bulk. The risetime and duration of pulse waveform effectively varied distribution of magnetic flux

  7. Time resolved study of the emission enhancement mechanisms in orthogonal double-pulse laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sanginés, R., E-mail: roberto.sangines@ccadet.unam.mx; Sobral, H.

    2013-10-01

    The evolution of laser induced ablation plume on aluminum targets has been investigated in orthogonal pre-ablation double pulse scheme at atmospheric pressure from the earliest stages of plasma evolution. Time-resolved emission spectra from neutrals, singly- and doubly-ionized species obtained with the double pulse experiment have been compared with those from the single pulse configuration. Signal-to-noise enhancement reaches values of up to 15 depending on the analyzed species; and the lower the charge state the later its maximum signal-to-noise ratio is reached. Ablation plume dynamics was monitored from 10 ns after the plasma onset via shadowgraphy and fast-photography with narrow interference filters to follow the evolution of individual species. Results show that ionic species from the target are located at the plasma core while nitrogen from the background air is found at the plume peripheral. Initially both configurations exhibit similar ablation plume sizes and their expansions were successfully fitted with the strong explosion model for the first 500 ns. At later times a good agreement was obtained by using the drag model, which predicts that the plume expansion eventually stops due to interaction with the background gas particles. The emission enhancement measured in the double pulse scheme is discussed in terms of the models describing the plume dynamics. - Highlights: • Production of 2 + ions at the earliest stages of plasma evolution • The higher the charge state the inner the location within the ablation plume. • The expansion rate of the second (ablation) plume was measured. • Shock and drag models successfully fit the ablation shock front expansion.

  8. PIC simulations of post-pulse field reversal and secondary ionization in nanosecond argon discharges

    Science.gov (United States)

    Kim, H. Y.; Gołkowski, M.; Gołkowski, C.; Stoltz, P.; Cohen, M. B.; Walker, M.

    2018-05-01

    Post-pulse electric field reversal and secondary ionization are investigated with a full kinetic treatment in argon discharges between planar electrodes on nanosecond time scales. The secondary ionization, which occurs at the falling edge of the voltage pulse, is induced by charge separation in the bulk plasma region. This process is driven by a reverse in the electric field from the cathode sheath to the formerly driven anode. Under the influence of the reverse electric field, electrons in the bulk plasma and sheath regions are accelerated toward the cathode. The electron movement manifests itself as a strong electron current generating high electron energies with significant electron dissipated power. Accelerated electrons collide with Ar molecules and an increased ionization rate is achieved even though the driving voltage is no longer applied. With this secondary ionization, in a single pulse (SP), the maximum electron density achieved is 1.5 times higher and takes a shorter time to reach using 1 kV 2 ns pulse as compared to a 1 kV direct current voltage at 1 Torr. A bipolar dual pulse excitation can increase maximum density another 50%–70% above a SP excitation and in half the time of RF sinusoidal excitation of the same period. The first field reversal is most prominent but subsequent field reversals also occur and correspond to electron temperature increases. Targeted pulse designs can be used to condition plasma density as required for fast discharge applications.

  9. Interactions of Low-Frequency, Pulsed Electromagnetic Fields with Living Tissue: Biochemical Responses and Clinical Results

    DEFF Research Database (Denmark)

    Rahbek, Ulrik L.; Tritsaris, Katerina; Dissing, Steen

    2005-01-01

    In recent years many studies have demonstrated stimulatory effects of pulsed electromagnetic fields (PEMF) on biological tissue. However, controversies have also surrounded the research often due to the lack of knowledge of the different physical consequences of static versus pulsed electromagnetic......, are still lacking. Despite the apparent success of the PEMF technology very little is known regarding the coupling between pulsed electrical fields and biochemical events leading to cellular responses. Insight into this research area is therefore of great importance. In this review we describe the physical...... properties of PEMF-induced electrical fields and explain the typical set up for coils and pulse patterns. Furthermore, we discuss possible models that can account for mechanisms by which induced electric fields are able to enhance cellular signaling. We have emphasized the currently well-documented effects...

  10. Proposals of electronic-vibrational energy relaxation studies by using laser pulses synchronized with IR-SR pulses

    International Nuclear Information System (INIS)

    Nakagawa, Hideyuki

    2000-01-01

    Synchrotron radiation is expected to be the sharp infrared light source for the advanced experiments on IR and FIR spectroscopy in wide research fields. Especially, synchronized use of SR with VIS and/or UV laser light is to be a promising technique for the research on the dynamical properties of the photo-excited states in condensed materials. Some proposals are attempted for high resolution IR spectroscopy to elucidate fine interaction of molecular ions in crystalline solids with their environmental field and for time-resolved IR spectroscopic studies on the electronic and vibrational energy relaxation by using laser pulses synchronized with IR-SR pulses. Several experimental results are presented in relevance to the subjects; on high-resolution FTIR spectra of cyanide ions and metal cyanide complexes in cadmium halide crystals, on the energy up-conversion process among the vibrational levels of cyanide ions in alkali halide crystals, and on the electronic-to-vibrational energy conversion process in metal cyanide complexes. (author)

  11. Enhancement of intermediate-field two-photon absorption by rationally shaped femtosecond pulses

    International Nuclear Information System (INIS)

    Chuntonov, Lev; Rybak, Leonid; Gandman, Andrey; Amitay, Zohar

    2008-01-01

    We extend the powerful frequency-domain analysis of femtosecond two-photon absorption to the intermediate-field regime of considerable absorption yields, where additionally to the weak-field nonresonant two-photon transitions also four-photon transitions play a role. Consequently, we rationally find that the absorption is enhanced over the transform-limited pulse by any shaped pulse having a spectral phase that is antisymmetric around one-half of the transition frequency and a spectrum that is asymmetric around it (red or blue detuned according to the system). The enhancement increases as the field strength increases. The theoretical results for Na are verified experimentally

  12. Determination of quenching coefficients by time resolved emission spectroscopy

    International Nuclear Information System (INIS)

    Gans, T.; Schulz-von der Gathen, V.; Doebele, H.F.

    2001-01-01

    Capacitively coupled RF discharges (CCRF discharges) at 13.56 MHz in hydrogen exhibit a field reversal phase of about 10 ns during which an intense electron current provides collisional excitation, within the sheath region. After this strongly dominant short pulsed electron impact excitation, it is possible to determine quenching coefficients from the lifetime of the fluorescence at various pressures by time resolved OES even for high energy levels and without any restrictions of optical selection rules. This novel technique allows the measurement of quenching coefficients for atomic and molecular emission lines of hydrogen itself, as well as for emission lines of small admixtures (e.g. noble gases) to the hydrogen discharge, since with a fast gate-able ICCD camera operating at 13.56 MHz it is possible to measure even faint emission lines temporally resolved

  13. Determination of quenching coefficients by time resolved emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gans, T.; Schulz-von der Gathen, V.; Doebele, H.F. [Essen Univ. (Gesamthochschule) (Germany). Inst. fuer Laser- und Plasmaphysik

    2001-07-01

    Capacitively coupled RF discharges (CCRF discharges) at 13.56 MHz in hydrogen exhibit a field reversal phase of about 10 ns during which an intense electron current provides collisional excitation, within the sheath region. After this strongly dominant short pulsed electron impact excitation, it is possible to determine quenching coefficients from the lifetime of the fluorescence at various pressures by time resolved OES even for high energy levels and without any restrictions of optical selection rules. This novel technique allows the measurement of quenching coefficients for atomic and molecular emission lines of hydrogen itself, as well as for emission lines of small admixtures (e.g. noble gases) to the hydrogen discharge, since with a fast gate-able ICCD camera operating at 13.56 MHz it is possible to measure even faint emission lines temporally resolved.

  14. Time-resolved SFG study of formate on a Ni( 1 1 1 ) surface under irradiation of picosecond laser pulses

    Science.gov (United States)

    Noguchi, H.; Okada, T.; Onda, K.; Kano, S. S.; Wada, A.; Domen, K.

    2003-03-01

    Time-resolved sum-frequency generation spectroscopy was carried out on a deuterated formate (DCOO) adsorbed on Ni(1 1 1) surface to investigate the surface reaction dynamics under instantaneous surface temperature jump induced by the irradiation by picosecond laser pulses. The irradiation of pump pulse (800 nm) caused the rapid intensity decrease of both CD and OCO stretching modes of bridged formate on Ni(1 1 1). Different temporal behaviors of intensity recovery between these two vibrational modes were observed, i.e., CD stretching mode recovered faster than OCO. This is the first result to show that the dynamics of adsorbates on metals strongly depends on the observed vibrational mode. From the results of temperature and pump fluence dependence, we concluded that the observed intensity change was not due to the decomposition or desorption, but was induced by a non-thermal process.

  15. A proposal to pulse the Bevatron/Bevalac main guide field magnet with SCR power supplies

    International Nuclear Information System (INIS)

    Frias, B.; Alonso, J.; Dwinell, R.; Lothrop, F.

    1989-01-01

    The Bevatron/Bevalac Main Guide Field Power Supply was originally designed to provide a 15,250 Volt DC. at sign 8400 Ampere peak magnet pulse. Protons were accelerated to 6.2 Gev. The 128 Megawatt (MW) pulse required two large motor-generator (MG) sets with 67 ton flywheels to store 680 Megajoules of energy. Ignitron rectifiers are used to rectify the generator outputs. Acceleration of heavy ions results in an operating schedule with a broad range of peak fields. The maximum field of 12.5 kilogauss requires a peak pulse of 80 MW. Acceleration of ions to 1.0 kilogauss requires an 8 MW peak pulse. One MG set can provide pulses below 45 MW. Peak pulses of less than 15 MW are now a large block of the operating schedule. A proposal has been made to replace the existing MG system with eight SCR power supplies for low field operation. The SCR supplies will be powered directly from the Lawrence Berkeley Laboratory's 12.3 KV. power distribution system. This paper describes the many advantages of the plan. 4 refs., 3 figs., 3 tabs

  16. Development of a pulse magnet of a superconducting storage ring and degradation of the pulse magnetic field by the vacuum chamber

    International Nuclear Information System (INIS)

    Tsukishima, Chihiro; Nakata, Shuhei

    1993-01-01

    A pulse magnet and its modulator are developed for a superconducting storage ring commissioning at Mitsubishi Electric Corp. The magnet is a window flame type one and uses a ceramic chamber with thin metallic coating for the vacuum shielding. The modulator generates a pulse current of 5.5 kA and the magnetic field is up to 1,300 G. The rise time of the field should be less than 300 ns in order to obtain enough injection efficiency to the storage ring. The shielding effects of the pulse magnetic field by the vacuum chamber are estimated using a three dimensional transient analysis program. The program solves the magnetic charge on the yoke surface of the magnet using the boundary element method and the eddy currents on the vacuum chamber using the network circuits method. The degradation of the magnetic field is measured by the search coil for different coating thickness to check the calculations results, and the results show good agreement with the calculation results. The calculation and the measurement results show the thickness should be less than 10 nm when the pulse width of the field is 600 ns. The dependence of the ununiformity of the coating thickness on the shielding effects is also estimated and the requirements for the uniformity are not so strict when the thickness is less than 10 nm. (author)

  17. Spin dynamics in micron-sized magnetic elements using time-resolved XMCD-PEEM

    International Nuclear Information System (INIS)

    Fukumoto, K.; Kinoshita, T.

    2011-01-01

    Ultrafast dynamics of magnetic spin structures in ultrasmall ferromagnets is now a prominent topic concerning the next generation of memory devices. In particular, the unique dynamics of vortex spin structures in disk-shaped magnets has attracted much attention. To understand the mechanism and to explore even more unique features, we constructed a time-resolved X-ray magnetic circular dichroism (XMCD) with a photoelectron emission microscopy (PEEM) system onto the soft X-ray beamline BL25SU in SPring-8. We observed oscillatory motions of vortex cores after magnetic field pulses as reported in other articles. The time evolution of spin structures the fast magnetic field pulse was also successfully observed. We found that for disks with a larger radius, displacement of the vortex core was not linear with the field amplitude, and there was a delay of the core motion. At the same time, deformation of the vortex structures was observed. (author)

  18. Noninvasive detection of inhomogeneities in turbid media with time-resolved log-slope analysis

    International Nuclear Information System (INIS)

    Wan, S.K.; Guo Zhixiong; Kumar, Sunil; Aber, Janice; Garetz, B.A.

    2004-01-01

    Detecting foreign objects embedded in turbid media using noninvasive optical tomography techniques is of great importance in many practical applications, such as in biomedical imaging and diagnosis, safety inspection on aircrafts and submarines, and LIDAR techniques. In this paper we develop a novel optical tomography approach based on slope analysis of time-resolved back-scattered signals collected at the medium boundaries where the light source is an ultrafast, short-pulse laser. As the optical field induced by the laser-pulse propagates, the detected temporal signals are influenced by the optical properties of the medium traversed. The detected temporal signatures therefore contain information that can indicate the presence of an inhomogeneity as well as its size and location relative to the laser source and detection systems. The log-slope analysis of the time-resolved back-scattered intensity is shown to be an effective method for extracting the information contained in the signal. The technique is validated by experimental results and by Monte Carlo simulations

  19. Time-resolved magnetic field effects in exciplex systems under X-irradiation

    International Nuclear Information System (INIS)

    Anishchik, S.V.; Lavrik, N.L.

    1988-01-01

    The presence of exciplex systems after X-irradiation of pyrene and N,N-diethylaniline in methanol as well as the influence of the applied magnetic field on exciplex fluorescence was registered using a time-resolving method. The experimental results confirmed the hypothesis on exciplex emergence in the system under study. (author)

  20. Tumour Cell Membrane Poration and Ablation by Pulsed Low-Intensity Electric Field with Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Lijun Wang

    2015-03-01

    Full Text Available Electroporation is a physical method to increase permeabilization of cell membrane by electrical pulses. Carbon nanotubes (CNTs can potentially act like “lighting rods” or exhibit direct physical force on cell membrane under alternating electromagnetic fields thus reducing the required field strength. A cell poration/ablation system was built for exploring these effects of CNTs in which two-electrode sets were constructed and two perpendicular electric fields could be generated sequentially. By applying this system to breast cancer cells in the presence of multi-walled CNTs (MWCNTs, the effective pulse amplitude was reduced to 50 V/cm (main field/15 V/cm (alignment field at the optimized pulse frequency (5 Hz of 500 pulses. Under these conditions instant cell membrane permeabilization was increased to 38.62%, 2.77-fold higher than that without CNTs. Moreover, we also observed irreversible electroporation occurred under these conditions, such that only 39.23% of the cells were viable 24 h post treatment, in contrast to 87.01% cell viability without presence of CNTs. These results indicate that CNT-enhanced electroporation has the potential for tumour cell ablation by significantly lower electric fields than that in conventional electroporation therapy thus avoiding potential risks associated with the use of high intensity electric pulses.

  1. Pulsed-field gel electrophoresis typing of Staphylococcus aureus isolates

    Science.gov (United States)

    Pulsed-field gel electrophoresis (PFGE) is the most applied and effective genetic typing method for epidemiological studies and investigation of foodborne outbreaks caused by different pathogens, including Staphylococcus aureus. The technique relies on analysis of large DNA fragments generated by th...

  2. Time-resolved spectroscopy using a chopper wheel as a fast shutter

    International Nuclear Information System (INIS)

    Wang, Shicong; Wendt, Amy E.; Boffard, John B.; Lin, Chun C.

    2015-01-01

    Widely available, small form-factor, fiber-coupled spectrometers typically have a minimum exposure time measured in milliseconds, and thus cannot be used directly for time-resolved measurements at the microsecond level. Spectroscopy at these faster time scales is typically done with an intensified charge coupled device (CCD) system where the image intensifier acts as a “fast” electronic shutter for the slower CCD array. In this paper, we describe simple modifications to a commercially available chopper wheel system to allow it to be used as a “fast” mechanical shutter for gating a fiber-coupled spectrometer to achieve microsecond-scale time-resolved optical measurements of a periodically pulsed light source. With the chopper wheel synchronized to the pulsing of the light source, the time resolution can be set to a small fraction of the pulse period by using a chopper wheel with narrow slots separated by wide spokes. Different methods of synchronizing the chopper wheel and pulsing of the light sources are explored. The capability of the chopper wheel system is illustrated with time-resolved measurements of pulsed plasmas

  3. Generation of strong pulsed magnetic fields using a compact, short pulse generator

    Science.gov (United States)

    Yanuka, D.; Efimov, S.; Nitishinskiy, M.; Rososhek, A.; Krasik, Ya. E.

    2016-04-01

    The generation of strong magnetic fields (˜50 T) using single- or multi-turn coils immersed in water was studied. A pulse generator with stored energy of ˜3.6 kJ, discharge current amplitude of ˜220 kA, and rise time of ˜1.5 μs was used in these experiments. Using the advantage of water that it has a large Verdet constant, the magnetic field was measured using the non-disturbing method of Faraday rotation of a polarized collimated laser beam. This approach does not require the use of magnetic probes, which are sensitive to electromagnetic noise and damaged in each shot. It also avoids the possible formation of plasma by either a flashover along the conductor or gas breakdown inside the coil caused by an induced electric field. In addition, it was shown that this approach can be used successfully to investigate the interesting phenomenon of magnetic field enhanced diffusion into a conductor.

  4. Hypercapnic normalization of BOLD fMRI: comparison across field strengths and pulse sequences

    DEFF Research Database (Denmark)

    Cohen, Eric R.; Rostrup, Egill; Sidaros, Karam

    2004-01-01

    to be more accurately localized and quantified based on changes in venous blood oxygenation alone. The normalized BOLD signal induced by the motor task was consistent across different magnetic fields and pulse sequences, and corresponded well with cerebral blood flow measurements. Our data suggest...... size, as well as experimental, such as pulse sequence and static magnetic field strength (B(0)). Thus, it is difficult to compare task-induced fMRI signals across subjects, field strengths, and pulse sequences. This problem can be overcome by normalizing the neural activity-induced BOLD fMRI response...... for global stimulation, subjects breathed a 5% CO(2) gas mixture. Under all conditions, voxels containing primarily large veins and those containing primarily active tissue (i.e., capillaries and small veins) showed distinguishable behavior after hypercapnic normalization. This allowed functional activity...

  5. Dynamic View on Nanostructures: A Technique for Time Resolved Optical Luminescence Using Synchrotron Light Pulses at SRC, APS, and CLS

    International Nuclear Information System (INIS)

    Heigl, F.; Jurgensen, A.; Zhou, X.-T.; Lam, S.; Murphy, M.; Ko, J.Y.P.; Sham, T.K.; Rosenberg, R.A.; Gordon, R.; Brewe, D.; Regier, T.; Armelao, L.

    2007-01-01

    We present an experimental technique using the time structure of synchrotron radiation to study time resolved X-ray excited optical luminescence. In particular we are taking advantage of the bunched distribution of electrons in a synchrotron storage ring, giving short x-ray pulses (10-10 2 picoseconds) which are separated by non-radiating gaps on the nano- to tens of nanosecond scale - sufficiently wide to study a broad range of optical decay channels observed in advanced nanostructured materials.

  6. Pulsed-field Gel Electrophoresis for Salmonella Infection Surveillance, Texas, USA, 2007

    Centers for Disease Control (CDC) Podcasts

    2010-06-14

    This podcast describes monitoring of the use of pulsed-field gel electrophoresis for Salmonella surveillance in Houston, Texas. CDC microbiologist Peter Gerner-Smidt discusses the importance of the PulseNet national database in surveillance of food-borne infections.  Created: 6/14/2010 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 6/14/2010.

  7. The Effects of Transcranial Pulsed Electromagnetic Field stimulation on quality of life in Parkinson's Disease

    DEFF Research Database (Denmark)

    Morberg, Bo Mohr; Malling, Anne Sofie; Jensen, Bente Rona

    2018-01-01

    BACKGROUND: Pulsed electromagnetic fields induce a protective and anti-inflammatory effect in the nervous system primarily due to growth factor up regulation that possibly abates neurodegeneration in Parkinson's disease. This study investigated treatment effects of transcranial pulsed......:3 to either active (n=49) or placebo treatment (n=48). Treatment with transcranial pulsed electromagnetic fields entailed one daily 30-minute home treatment for eight consecutive weeks. The 39-item Parkinson's Disease Questionnaire was assessed at baseline and at endpoint. Profiling adverse events a special...... PDQ-39 dimensions no between group differences were found. There were no between group difference in adverse events. Treatment compliance was 97.9%. CONCLUSION: Treatment with transcranial pulsed electromagnetic fields improved mobility and ADL scores for clinical effect size only in the active group...

  8. Sludge pre-treatment with pulsed electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Kopplow, O.; Barjenbruch, M.; Heinz, V.

    2003-07-01

    The anaerobic stabilization process depends - among others - on the bio-availability of organic carbon. Through pre-treatment of the sludge which leads to the destruction of micro-organisms and to the setting-free of cell content substances (disintegration), the carbon can be microbially converted better and faster. Moreover, effects on the digestion are likely. However, only little experience is available in the sludge treatment with pulsed electric fields. Laboratory-scale digestion tests have been run to analyse the influence of pulsed electric fields on the properties of sludge, anaerobic degradation, sludge water reload and foaming of digesters. The results will be compared with those of other disintegration methods (high pressure homogenise, thermal treatment). The effect of pre-treatment on the sludge is shown by the COD release. Degrees of disintegration have been achieved up to 20%. The specific energy input was high. The energy consumption has been decreased by initial improvements (pre-heating to 55{sup o}C). The filament bacteria were partially destroyed. The foam reduction in the digesters was marginal. The anaerobic degradation performance has been improved in every case. The degradation rate of organic matter increased about 9%. Due to the increase of degradation, there is a higher reload of the sludge-water with COD and nitrogen compounds. (author)

  9. Effect of pulsed electric field treatment on hot-boned muscles of different potential tenderness.

    Science.gov (United States)

    Suwandy, Via; Carne, Alan; van de Ven, Remy; Bekhit, Alaa El-Din A; Hopkins, David L

    2015-07-01

    In this study, the effect of pulsed electric field (PEF) treatment and ageing on the quality of beef M. longissimus lumborum (LL) and M. semimembranosus (SM) muscles was evaluated, including the tenderness, water loss and post-mortem proteolysis. Muscles were obtained from 12 steers (6 steers for each muscle), removed from the carcasses 4 hour postmortem and were treated with pulsed electric field within 2h. Six different pulsed electric field intensities (voltages of 5 and 10 kV × frequencies of 20, 50 and 90 Hz) plus a control were applied to each muscle to determine the optimum treatment conditions. Beef LL was found to get tougher with increasing treatment frequency whereas beef SM muscle was found to have up to 21.6% reduction in the shear force with pulsed electric field treatment. Post-mortem proteolysis showed an increase in both troponin and desmin degradation in beef LL treated with low intensity PEF treatment (20 Hz) compared to non-treated control samples. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Quantum dynamics of an electric charge in an oscillating pulsed magnetic field

    International Nuclear Information System (INIS)

    Oliveira, I.S.; Guimaraes, A.P.; Silva, X.A. da

    1996-11-01

    The motion of a charged particle under the action of a time-dependent oscillating magnetic field has been investigated. For one and two magnetic pulses were obtained analytical expressions for the free current decay and current echo in agreement with a recently proposed classical description of electrical current in fields E and B. When the resonance condition is achieved, the axis of quantization is turned over by 90 degrees. The results suggest a magnetic pulsed resonant method to separate charged particles in a beam. (author). 12 refs

  11. Full-field wrist pulse signal acquisition and analysis by 3D Digital Image Correlation

    Science.gov (United States)

    Xue, Yuan; Su, Yong; Zhang, Chi; Xu, Xiaohai; Gao, Zeren; Wu, Shangquan; Zhang, Qingchuan; Wu, Xiaoping

    2017-11-01

    Pulse diagnosis is an essential part in four basic diagnostic methods (inspection, listening, inquiring and palpation) in traditional Chinese medicine, which depends on longtime training and rich experience, so computerized pulse acquisition has been proposed and studied to ensure the objectivity. To imitate the process that doctors using three fingertips with different pressures to feel fluctuations in certain areas containing three acupoints, we established a five dimensional pulse signal acquisition system adopting a non-contacting optical metrology method, 3D digital image correlation, to record the full-field displacements of skin fluctuations under different pressures. The system realizes real-time full-field vibration mode observation with 10 FPS. The maximum sample frequency is 472 Hz for detailed post-processing. After acquisition, the signals are analyzed according to the amplitude, pressure, and pulse wave velocity. The proposed system provides a novel optical approach for digitalizing pulse diagnosis and massive pulse signal data acquisition for various types of patients.

  12. Optimized extraction of polysaccharides from corn silk by pulsed electric field and response surface quadratic design.

    Science.gov (United States)

    Zhao, Wenzhu; Yu, Zhipeng; Liu, Jingbo; Yu, Yiding; Yin, Yongguang; Lin, Songyi; Chen, Feng

    2011-09-01

    Corn silk is a traditional Chinese herbal medicine, which has been widely used for treatment of some diseases. In this study the effects of pulsed electric field on the extraction of polysaccharides from corn silk were investigated. Polysaccharides in corn silk were extracted by pulsed electric field and optimized by response surface methodology (RSM), based on a Box-Behnken design (BBD). Three independent variables, including electric field intensity (kV cm(-1) ), ratio of liquid to raw material and pulse duration (µs), were investigated. The experimental data were fitted to a second-order polynomial equation and also profiled into the corresponding 3-D contour plots. Optimal extraction conditions were as follows: electric field intensity 30 kV cm(-1) , ratio of liquid to raw material 50, and pulse duration 6 µs. Under these condition, the experimental yield of extracted polysaccharides was 7.31% ± 0.15%, matching well with the predicted value. The results showed that a pulsed electric field could be applied to extract value-added products from foods and/or agricultural matrix. Copyright © 2011 Society of Chemical Industry.

  13. Inactivation of Listeria innocua in liquid whole egg by pulsed electric fields and nisin.

    Science.gov (United States)

    Calderón-Miranda, M L; Barbosa-Cánovas, G V; Swanson, B G

    1999-10-01

    Consumer demand for fresh-like products with little or no degradation of nutritional and organoleptic properties has led to the study of new technologies in food preservation. Pulsed electric fields (PEF) is a nonthermal preservation method used to inactivate microorganisms mainly in liquid foods. Microorganisms in the presence of PEF suffer cell membrane damage. Nisin is a natural antimicrobial known to disrupt cell membrane integrity. Thus the combination of PEF and nisin represents a hurdle for the survival of Listeria innocua in liquid whole egg (LWE). L. innocua suspended in LWE was subjected to two different treatments: PEF and PEF followed by exposure to nisin. The selected frequency and pulse duration for PEF was 3.5 Hz and 2 micros, respectively. Electric field intensities of 30, 40 and 50 kV/cm were used. The number of pulses applied to the LWE was 10.6, 21.3 and 32. The highest extent of microbial inactivation with PEF was 3.5 log cycles (U) for an electric field intensity of 50 kV/cm and 32 pulses. Treatment of LWE by PEF was conducted at low temperatures, 36 degrees C being the highest. Exposure of L. innocua to nisin following the PEF treatment exhibited an additive effect on the inactivation of the microorganism. Moreover, a synergistic effect was observed as the electric field intensity, number of pulses and nisin concentration increased. L. innocua exposed to 10 IU nisin/ml after PEF exhibited a decrease in population of 4.1 U for an electric field intensity of 50 kV/cm and 32 pulses. Exposure of L. innocua to 100 IU nisin/ml following PEF resulted in 5.5 U for an electric field intensity of 50 kV/cm and 32 pulses. The model developed for the inactivation of L. innocua by PEF and followed by exposure to nisin proved to be accurate (p = 0.05) when used to model the inactivation of the microorganism by PEF in LWE with 1.2 or 37 IU nisin/ml. The presence of 37 IU nisin/ml in LWE during the PEF treatment for an electric field intensity of 50 kV/cm and

  14. Pulsed Electric Field treatment of packaged food

    OpenAIRE

    Roodenburg, B.

    2011-01-01

    Food manufacturers are looking for new preservation techniques that don’t influence the fresh-like characteristics of products. Non-thermal pasteurisation of food with Pulsed Electric Fields (often referred to as PEF) is an emerging technology, where the change of the food is less than with thermal pasteurisation. With this method, pasteurisation is realised by electroporation of bacterial membranes, which prolong the shelf-life of the product. Existing PEF treatment is based on the applicati...

  15. Combination of microsecond and nanosecond pulsed electric field treatments for inactivation of Escherichia coli in water samples.

    Science.gov (United States)

    Žgalin, Maj Kobe; Hodžić, Duša; Reberšek, Matej; Kandušer, Maša

    2012-10-01

    Inactivation of microorganisms with pulsed electric fields is one of the nonthermal methods most commonly used in biotechnological applications such as liquid food pasteurization and water treatment. In this study, the effects of microsecond and nanosecond pulses on inactivation of Escherichia coli in distilled water were investigated. Bacterial colonies were counted on agar plates, and the count was expressed as colony-forming units per milliliter of bacterial suspension. Inactivation of bacterial cells was shown as the reduction of colony-forming units per milliliter of treated samples compared to untreated control. According to our results, when using microsecond pulses the level of inactivation increases with application of more intense electric field strengths and with number of pulses delivered. Almost 2-log reductions in bacterial counts were achieved at a field strength of 30 kV/cm with eight pulses and a 4.5-log reduction was observed at the same field strength using 48 pulses. Extending the duration of microsecond pulses from 100 to 250 μs showed no improvement in inactivation. Nanosecond pulses alone did not have any detectable effect on inactivation of E. coli regardless of the treatment time, but a significant 3-log reduction was achieved in combination with microsecond pulses.

  16. Self-diffusion measurements in heterogeneous systems using NMR pulsed field gradient technique

    International Nuclear Information System (INIS)

    Heink, W.; Kaerger, J.; Walter, A.

    1978-01-01

    The experimental pecularities of the NMR pulsed field gradient technique are critical surveyed in its application to zeolite adsorbate adsorbent systems. After a presentation of the different transport parameters accessible by this technique, the consequences of the existence of inner field gradients being inherent to heterogeneous systems are analyzed. Experimental conditions and consequences of an application of pulsed field gradients of high intensity which are necessary for the measurement of small intracrystalline self-diffusion coefficients, are discussed. Gradient pulses of 0.15 Tcm -1 with pulse widths of 2 ms maximum and relative deviations of less than 0.01 per mille can be realized. Since for a number of adsorbate adsorbent systems a distinct dependence of the intracrystalline self-diffusion coeffcients on adsorbate concentration is observed, determination of zeolite pore fiiling factor is of considerable importance for the interpretation of the diffusivities obtained. It is demonstrated that also this information can be obtained by NMR technique in a straightforward way with a mean error of less than 5 to 10 %. Applying this new method and using an optimum experimental device as described, pore filling factor dependences of the self-diffusion coefficients of alkanes in NaX zeolites can be followed over more than two orders of magnitude. (author)

  17. Overcoming Antimicrobial Resistance in Bacteria Using Bioactive Magnetic Nanoparticles and Pulsed Electromagnetic Fields

    Directory of Open Access Journals (Sweden)

    Vitalij Novickij

    2018-01-01

    Full Text Available Nisin is a known bacteriocin, which exhibits a wide spectrum of antimicrobial activity, while commonly being inefficient against Gram-negative bacteria. In this work, we present a proof of concept of novel antimicrobial methodology using targeted magnetic nisin-loaded nano-carriers [iron oxide nanoparticles (NPs (11–13 nm capped with citric, ascorbic, and gallic acids], which are activated by high pulsed electric and electromagnetic fields allowing to overcome the nisin-resistance of bacteria. As a cell model the Gram-positive bacteria Bacillus subtilis and Gram-negative Escherichia coli were used. We have applied 10 and 30 kV cm-1 electric field pulses (100 μs × 8 separately and in combination with two pulsed magnetic field protocols: (1 high dB/dt 3.3 T × 50 and (2 10 mT, 100 kHz, 2 min protocol to induce additional permeabilization and local magnetic hyperthermia. We have shown that the high dB/dt pulsed magnetic fields increase the antimicrobial efficiency of nisin NPs similar to electroporation or magnetic hyperthermia methods and a synergistic treatment is also possible. The results of our work are promising for the development of new methods for treatment of the drug-resistant foodborne pathogens to minimize the risks of invasive infections.

  18. Pulsed electric field (PEF)research at USDA, ARS, ERRC

    Science.gov (United States)

    This article summarizes the effects of pulsed electric fields on the microbiological safety and quality aspects of various liquid food matrices, obtained at USDA, ARS, Eastern Regional Research Center under CRIS Project No. 1935-41420-013-00D, Processing Intervention Technologies for Enhancing the S...

  19. Dynamics of Al/Fe{sub 2}O{sub 3} MIC combustion from short single-pulse photothermal initiation and time-resolved spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Stiegman, Albert E.; Park, Chi-Dong; Mileham, Melissa; Van de Burgt, Lambertus J. [Department of Chemistry and Biochemistry, Florida State University Tallahassee, FL (United States); Kramer, Michael P. [AFRL/MNME Eglin AFB, FL (United States)

    2009-08-15

    Time-resolved spectroscopy was used to study the dynamics of the photothermal ignition of Al/Fe{sub 2}O{sub 3} metastable intermolecular composites after single short-pulse laser initiation. The dynamics were recorded in several time domains from nanosecond to microsecond to quantify the dynamics from initial laser excitation to combustion. Time-averaged spectral data were also collected for the overall emission occurring during combustion. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  20. Pulsed field magnetization strategies and the field poles composition in a bulk-type superconducting motor

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhen, E-mail: zhen.huang@sjtu.edu.cn [Academy of Information Technology and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Ruiz, H.S., E-mail: dr.harold.ruiz@le.ac.uk [Department of Engineering, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Coombs, T.A., E-mail: tac1000@cam.ac.uk [Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA (United Kingdom)

    2017-03-15

    Highlights: • Different compositions of the magnetic poles have been obtained depending on the relative orientation of the magnetizing coil and the surfaces of the columns of bulks that conform a magnetic pole. • Two bidimensional models accounting for the electromagnetic response of the top and lateral cross sections of three columns of HTS bulks subjected to multiple pulsed magnetic fields have been created. • An extended PFM strategy has been proposed by considering the magnetization of at least three successive columns of HTS bulks per pole. In the extended PFM strategy the area of each one of the poles can be seen increased by a factor of 200%-400% - Abstract: High temperature superconducting (HTS) bulks offer the potential of trapping and maintaining much higher magnetic loading level compared with the conventional permanent magnets used in rotary machines, although the effective magnetization of multiple HTS bulks with different relative orientations over the surface of cylindrical rotors creates new challenges. In this paper, we present the design and numerical validation of the Pulse Field Magnetization (PFM) strategy considered for the magnetization of the four-pole synchronous fully superconducting motor developed at the University of Cambridge. In a first instance, singular columns of up to five HTS bulks aligned over the height of the rotor were subjected to up to three magnetic pulses of 1.5 T peak, and the experimental results have been simulated by considering the electrical and thermal properties of the system in a 2D approach. The entire active surface of the rotor is covered by HTS bulks of approximately the same dimensions, resulting in an uneven distribution of pole areas with at least one of the poles formed by up to 3 columns of magnetized bulks, with relatively the same peaks of trapped magnetic field. Thus, in order to effectively use the entire area of the superconducting rotor, multiple pulsed fields per column have been applied

  1. Pulsed field magnetization strategies and the field poles composition in a bulk-type superconducting motor

    International Nuclear Information System (INIS)

    Huang, Zhen; Ruiz, H.S.; Coombs, T.A.

    2017-01-01

    Highlights: • Different compositions of the magnetic poles have been obtained depending on the relative orientation of the magnetizing coil and the surfaces of the columns of bulks that conform a magnetic pole. • Two bidimensional models accounting for the electromagnetic response of the top and lateral cross sections of three columns of HTS bulks subjected to multiple pulsed magnetic fields have been created. • An extended PFM strategy has been proposed by considering the magnetization of at least three successive columns of HTS bulks per pole. In the extended PFM strategy the area of each one of the poles can be seen increased by a factor of 200%-400% - Abstract: High temperature superconducting (HTS) bulks offer the potential of trapping and maintaining much higher magnetic loading level compared with the conventional permanent magnets used in rotary machines, although the effective magnetization of multiple HTS bulks with different relative orientations over the surface of cylindrical rotors creates new challenges. In this paper, we present the design and numerical validation of the Pulse Field Magnetization (PFM) strategy considered for the magnetization of the four-pole synchronous fully superconducting motor developed at the University of Cambridge. In a first instance, singular columns of up to five HTS bulks aligned over the height of the rotor were subjected to up to three magnetic pulses of 1.5 T peak, and the experimental results have been simulated by considering the electrical and thermal properties of the system in a 2D approach. The entire active surface of the rotor is covered by HTS bulks of approximately the same dimensions, resulting in an uneven distribution of pole areas with at least one of the poles formed by up to 3 columns of magnetized bulks, with relatively the same peaks of trapped magnetic field. Thus, in order to effectively use the entire area of the superconducting rotor, multiple pulsed fields per column have been applied

  2. Micromechanical ``Trampoline'' Magnetometers for Use in Pulsed Magnetic Fields Exceeding 60 Tesla

    Science.gov (United States)

    Balakirev, F. F.; Boebinger, G. S.; Aksyuk, V.; Gammel, P. L.; Haddon, R. C.; Bishop, D. J.

    1998-03-01

    We present the design, construction, and operation of a novel magnetometer for use in intense pulsed magnetic fields. The magnetometer consists of a silicon micromachined "trampoline" to which the sample is attached. The small size of the device (typically 400 microns on a side) gives a fast mechanical response (10,000 to 50,000 Hz) and extremely high sensitivity (10-11 Am^2, corresponding to 10-13 Am^2/Hz^(1/2)). The device is robust against electrical and mechanical noise and requires no special vibration isolation from the pulsed magnet. As a demonstration, we present data taken in a 60 tesla pulsed magnetic field which show clear de Haas-van Alphen oscillations in a one microgram sample of the organic superconductor K-(BEDT-TTF)_2Cu(NCS)_2.

  3. Strong-field Breit–Wheeler pair production in two consecutive laser pulses with variable time delay

    Directory of Open Access Journals (Sweden)

    Martin J.A. Jansen

    2017-03-01

    Full Text Available Photoproduction of electron–positron pairs by the strong-field Breit–Wheeler process in an intense laser field is studied. The laser field is assumed to consist of two consecutive short pulses, with a variable time delay in between. By numerical calculations within the framework of scalar quantum electrodynamics, we demonstrate that the time delay exerts a strong impact on the pair-creation probability. For the case when both pulses are identical, the effect is traced back to the relative quantum phase of the interfering S-matrix amplitudes and explained within a simplified analytical model. Conversely, when the two laser pulses differ from each other, the pair-creation probability depends not only on the time delay but, in general, also on the temporal order of the pulses.

  4. Comparison of low-intensity pulsed ultrasound and pulsed electromagnetic field treatments on OPG and RANKL expression in human osteoblast-like cells

    NARCIS (Netherlands)

    Borsje, Manon A.; Ren, Yijin; de Haan-Visser, H. Willy; Kuijer, Roel

    OBJECTIVE: To compare two clinically applied treatments to stimulate bone healing-low-intensity pulsed ultrasound (LIPUS) and pulsed electromagnetic field (PEMF)-for their effects on RANKL and OPG expression in osteoblast-like cells in vitro. MATERIALS AND METHODS: LIPUS or PEMF was applied to

  5. Resolving the 180-degree ambiguity in vector magnetic field measurements: The 'minimum' energy solution

    Science.gov (United States)

    Metcalf, Thomas R.

    1994-01-01

    I present a robust algorithm that resolves the 180-deg ambiguity in measurements of the solar vector magnetic field. The technique simultaneously minimizes both the divergence of the magnetic field and the electric current density using a simulated annealing algorithm. This results in the field orientation with approximately minimum free energy. The technique is well-founded physically and is simple to implement.

  6. The Sterilization Effect of Cooperative Treatment of High Voltage Electrostatic Field and Variable Frequency Pulsed Electromagnetic Field on Heterotrophic Bacteria in Circulating Cooling Water

    Science.gov (United States)

    Gao, Xuetong; Liu, Zhian; Zhao, Judong

    2018-01-01

    Compared to other treatment of industrial circulating cooling water in the field of industrial water treatment, high-voltage electrostatic field and variable frequency pulsed electromagnetic field co-sterilization technology, an advanced technology, is widely used because of its special characteristics--low energy consumption, nonpoisonous and environmentally friendly. In order to get a better cooling water sterilization effect under the premise of not polluting the environment, some experiments about sterilization of heterotrophic bacteria in industrial circulating cooling water by cooperative treatment of high voltage electrostatic field and variable frequency pulsed electromagnetic field were carried out. The comparison experiment on the sterilization effect of high-voltage electrostatic field and variable frequency pulsed electromagnetic field co-sterilization on heterotrophic bacteria in industrial circulating cooling water was carried out by change electric field strength and pulse frequency. The results show that the bactericidal rate is selective to the frequency and output voltage, and the heterotrophic bacterium can only kill under the condition of sweep frequency range and output voltage. When the voltage of the high voltage power supply is 4000V, the pulse frequency is 1000Hz and the water temperature is 30°C, the sterilization rate is 48.7%, the sterilization rate is over 90%. Results of this study have important guiding significance for future application of magnetic field sterilization.

  7. An assessment of potential applications with pulsed electric field in wines

    Directory of Open Access Journals (Sweden)

    Drosou Foteini

    2017-01-01

    Full Text Available Pulsed electric fields (PEF is a non-thermal processing technology that uses instantaneous, pulses of high voltage for a short period in the range of milliseconds to microseconds; the application of high intensity electric field on toasted wood chips leads to a quick diffusion of extractable molecules. Currently most PEF studies, in the field of oenology, have been focusing on the application of PEF as a pretreatment of grape musts by examining the microbial inactivation and the enhancement of polyphenol extraction. In this study a post-treatment of wine is introduced as method to enhance the wood flavor in the wine with a green noninvasive technology. Major phenolic aldehydes that have been identified as the characteristic compounds of oak volatile compounds were selected as markers and were analyzed instrumentally to compare the influence of PEF processing to non-treated samples. PEF treated samples brought about higher concentrations of the examined oak compounds in the samples treated with PEF, which may explain the advantages of its application. The modulation of the intensity of the electric field and the period of pulses influenced the concentrations of the volatile phenols that were leached out. Differences found between the assayed treatments indicate that PEF application could be a potential practice for a rapid extraction of volatile compounds from oak.

  8. Electric field induced needle-pulsed arc discharge carbon nanotube production apparatus: Circuitry and mechanical design

    Energy Technology Data Exchange (ETDEWEB)

    Kia, Kaveh Kazemi [Department of Electrical and Computer Engineering, Islamic Azad University of Bonab, Bonab (Iran, Islamic Republic of); Bonabi, Fahimeh [Department of Engineering, Islamic Azad University of Bonab, Bonab (Iran, Islamic Republic of)

    2012-12-15

    A simple and low cost apparatus is reported to produce multiwall carbon nanotubes and carbon nano-onions by a low power short pulsed arc discharge reactor. The electric circuitry and the mechanical design details and a micro-filtering assembly are described. The pulsed-plasma is generated and applied between two graphite electrodes. The pulse width is 0.3 {mu}s. A strong dc electric field is established along side the electrodes. The repetitive discharges occur in less than 1 mm distance between a sharp tip graphite rod as anode, and a tubular graphite as cathode. A hydrocarbon vapor, as carbon source, is introduced through the graphite nozzle in the cathode assembly. The pressure of the chamber is controlled by a vacuum pump. A magnetic field, perpendicular to the plasma path, is provided. The results show that the synergetic use of a pulsed-current and a dc power supply enables us to synthesize carbon nanoparticles with short pulsed plasma. The simplicity and inexpensiveness of this plan is noticeable. Pulsed nature of plasma provides some extra degrees of freedom that make the production more controllable. Effects of some design parameters such as electric field, pulse frequency, and cathode shape are discussed. The products are examined using scanning probe microscopy techniques.

  9. Electric field induced needle-pulsed arc discharge carbon nanotube production apparatus: circuitry and mechanical design.

    Science.gov (United States)

    Kia, Kaveh Kazemi; Bonabi, Fahimeh

    2012-12-01

    A simple and low cost apparatus is reported to produce multiwall carbon nanotubes and carbon nano-onions by a low power short pulsed arc discharge reactor. The electric circuitry and the mechanical design details and a micro-filtering assembly are described. The pulsed-plasma is generated and applied between two graphite electrodes. The pulse width is 0.3 μs. A strong dc electric field is established along side the electrodes. The repetitive discharges occur in less than 1 mm distance between a sharp tip graphite rod as anode, and a tubular graphite as cathode. A hydrocarbon vapor, as carbon source, is introduced through the graphite nozzle in the cathode assembly. The pressure of the chamber is controlled by a vacuum pump. A magnetic field, perpendicular to the plasma path, is provided. The results show that the synergetic use of a pulsed-current and a dc power supply enables us to synthesize carbon nanoparticles with short pulsed plasma. The simplicity and inexpensiveness of this plan is noticeable. Pulsed nature of plasma provides some extra degrees of freedom that make the production more controllable. Effects of some design parameters such as electric field, pulse frequency, and cathode shape are discussed. The products are examined using scanning probe microscopy techniques.

  10. Exploring the effects of pulsed electric field processing parameters on polyacetylene extraction from carrot slices.

    Science.gov (United States)

    Aguiló-Aguayo, Ingrid; Abreu, Corina; Hossain, Mohammad B; Altisent, Rosa; Brunton, Nigel; Viñas, Inmaculada; Rai, Dilip K

    2015-03-02

    The effects of various pulsed electric field (PEF) parameters on the extraction of polyacetylenes from carrot slices were investigated. Optimised conditions with regard to electric field strength (1-4 kV/cm), number of pulses (100-1500), pulse frequency (10-200 Hz) and pulse width (10-30 μs) were identified using response surface methodology (RSM) to maximise the extraction of falcarinol (FaOH), falcarindiol (FaDOH) and falcarindiol-3-acetate (FaDOAc) from carrot slices. Data obtained from RSM and experiments fitted significantly (p pulses of 10 μs at 10 Hz. The predicted values from the developed quadratic polynomial equation were in close agreement with the actual experimental values with low average mean deviations (E%) ranging from 0.68% to 3.58%.

  11. Influence of pulsed electric field on defectoscopic characteristics of electro- x-ray radiography

    International Nuclear Information System (INIS)

    Gusev, E.A.; Lomonosov, V.V.; Sosnin, F.R.

    1988-01-01

    A new method to increase electric resistance of semiconductor plates in the process of electro-X-ray radiography, which is based on influence of a pulsed electric field on the plate semiconductor layer is suggested. The effect of a pulsed field with the intensity E=10 6 V/cm, frequency of 50 Hz and front length of 1 ns has increased electric resistance of the semiconductor layer and improved flaw detection in the process of electroradiography

  12. [Low-frequency pulsed electromagnetic fields promotes rat osteoblast differentiation in vitro through cAMP/PKA signal pathway].

    Science.gov (United States)

    Fang, Qing-Qing; Li, Zhi-Zhong; Zhou, Jian; Shi, Wen-Gui; Yan, Juan-Li; Xie, Yan-Fang; Chen, Ke-Ming

    2016-11-20

    To study whether low-frequency pulsed electromagnetic fields promotes the differentiation of cultured rat osteoblasts through the cAMP/PKA signal pathway. Rat calvarial osteoblasts isolated by enzyme digestion were exposed to 50 Hz 0.6 mT low-frequency pulsed electromagnetic field for varying lengths of time, and the concentration of cAMP and levels of phosphorylated PKA in the cells were assayed. In cells treated with DDA to inhibit the activity of adenylate cyclase, the changes of ALP activity and transcription of osteogenic gene were detected after exposure to low-frequency pulsed electromagnetic field. The changes of osteogenic gene transcription and protein expression were tested in the osteoblasts pretreated with KT5720 in response to low-frequency pulsed electromagnetic field exposure. The intracellular cAMP concentration in the cells increased significantly at 20 min during exposure to low-frequency pulsed electromagnetic field, began to decrease at 40 min during the exposure, and increased again after a 2-h exposure; the same pattern of variation was also observed in p-PKA level. Application of DDA and KT5720 pretreatment both suppressed the increase in ALP activity and osteogenic gene transcription induced by electromagnetic field exposure. Low- frequency pulsed electromagnetic field exposure improves the differentiation of cultured rat osteoblasts by activating cAMP/PKA signal pathway.

  13. Magnetic field effects on spectrally resolved lifetime of on-line oxygen monitoring using magneto-optic probes

    Science.gov (United States)

    Mermut, O.; Gallant, P.; Le Bouch, N.; Leclair, S.; Noiseux, I.; Vernon, M.; Morin, J.-F.; Diamond, K.; Patterson, M. S.; Samkoe, K.; Pogue, B.

    2009-02-01

    Multimodal agents that serve as both probes for contrast and light-activated effectors of cellular processes in diseased tissue were developed. These agents were introduced into multicellular tumor spheroids (3D tissue models) and in the chorioallantoic membrane (CAM) of a chicken embryo. The luminescence decay was examined using a novel technique involving a spectrally-resolved fluorescence lifetime apparatus integrated with a weak electromagnet. A spectrallyresolved lifetime setup was used to identify magneto-optic species sensitive to magnetic field effects and distinguish from background emissions. We demonstrate that the applied magnetic fields can alter reaction rates and product distribution of some dyes detected by time- and spectrally-resolved luminescence changes. We will discuss the use of exogenous magneto-optical probes taken up in tumors to both induce phototoxicity, a process that is governed by complex and dynamically evolving mechanisms involving reactive oxygen species, and monitor treatment progress. The magnetic field enhancement, measured over a range of weak fields (0-300 mT) is correlated to oxygenation and may be used to monitor dynamic changes occurring due to oxygen consumption over the course of photodynamic therapy. Such online measurements provide the possibility to derive real-time information about response to treatment via monitoring magnetic field enhancement/suppression of the time-resolved, spectrally-resolved luminescence of the probe at the site of the treatment directly. Magnetic perturbation of lifetime can serve as a status reporter, providing optical feedback of oxygen-mediated treatments in situ and allowing for real-time adjustment of a phototherapy treatment plan.

  14. Quantifying pulsed electric field-induced membrane nanoporation in single cells.

    Science.gov (United States)

    Moen, Erick K; Ibey, Bennett L; Beier, Hope T; Armani, Andrea M

    2016-11-01

    Plasma membrane disruption can trigger a host of cellular activities. One commonly observed type of disruption is pore formation. Molecular dynamic (MD) simulations of simplified lipid membrane structures predict that controllably disrupting the membrane via nano-scale poration may be possible with nanosecond pulsed electric fields (nsPEF). Until recently, researchers hoping to verify this hypothesis experimentally have been limited to measuring the relatively slow process of fluorescent markers diffusing across the membrane, which is indirect evidence of nanoporation that could be channel-mediated. Leveraging recent advances in nonlinear optical microscopy, we elucidate the role of pulse parameters in nsPEF-induced membrane permeabilization in live cells. Unlike previous techniques, it is able to directly observe loss of membrane order at the onset of the pulse. We also develop a complementary theoretical model that relates increasing membrane permeabilization to membrane pore density. Due to the significantly improved spatial and temporal resolution possible with our imaging method, we are able to directly compare our experimental and theoretical results. Their agreement provides substantial evidence that nanoporation does occur and that its development is dictated by the electric field distribution. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Fast simulation of non-linear pulsed ultrasound fields using an angular spectrum approach

    DEFF Research Database (Denmark)

    Du, Yigang; Jensen, Jørgen Arendt

    2013-01-01

    A fast non-linear pulsed ultrasound field simulation is presented. It is implemented based on an angular spectrum approach (ASA), which analytically solves the non-linear wave equation. The ASA solution to the Westervelt equation is derived in detail. The calculation speed is significantly...... increased compared to a numerical solution using an operator splitting method (OSM). The ASA has been modified and extended to pulsed non-linear ultrasound fields in combination with Field II, where any array transducer with arbitrary geometry, excitation, focusing and apodization can be simulated...... with a center frequency of 5 MHz. The speed is increased approximately by a factor of 140 and the calculation time is 12 min with a standard PC, when simulating the second harmonic pulse at the focal point. For the second harmonic point spread function the full width error is 1.5% at 6 dB and 6.4% at 12 d...

  16. Dynamic pulsed-field-gradient NMR

    CERN Document Server

    Sørland, Geir Humborstad

    2014-01-01

    Dealing with the basics, theory and applications of dynamic pulsed-field-gradient NMR NMR (PFG NMR), this book describes the essential theory behind diffusion in heterogeneous media that can be combined with NMR measurements to extract important information of the system being investigated. This information could be the surface to volume ratio, droplet size distribution in emulsions, brine profiles, fat content in food stuff, permeability/connectivity in porous materials and medical applications currently being developed. Besides theory and applications it will provide the readers with background knowledge on the experimental set-ups, and most important, deal with the pitfalls that are numerously present in work with PFG-NMR. How to analyze the NMR data and some important basic knowledge on the hardware will be explained, too.

  17. Energy coupling to the plasma in repetitive nanosecond pulse discharges

    International Nuclear Information System (INIS)

    Adamovich, Igor V.; Nishihara, Munetake; Choi, Inchul; Uddi, Mruthunjaya; Lempert, Walter R.

    2009-01-01

    A new analytic quasi-one-dimensional model of energy coupling to nanosecond pulse discharge plasmas in plane-to-plane geometry has been developed. The use of a one-dimensional approach is based on images of repetitively pulsed nanosecond discharge plasmas in dry air demonstrating that the plasma remains diffuse and uniform on a nanosecond time scale over a wide range of pressures. The model provides analytic expressions for the time-dependent electric field and electron density in the plasma, electric field in the sheath, sheath boundary location, and coupled pulse energy. The analytic model predictions are in very good agreement with numerical calculations. The model demonstrates that (i) the energy coupled to the plasma during an individual nanosecond discharge pulse is controlled primarily by the capacitance of the dielectric layers and by the breakdown voltage and (ii) the pulse energy coupled to the plasma during a burst of nanosecond pulses decreases as a function of the pulse number in the burst. This occurs primarily because of plasma temperature rise and resultant reduction in breakdown voltage, such that the coupled pulse energy varies approximately proportionally to the number density. Analytic expression for coupled pulse energy scaling has been incorporated into the air plasma chemistry model, validated previously by comparing with atomic oxygen number density measurements in nanosecond pulse discharges. The results of kinetic modeling using the modified air plasma chemistry model are compared with time-resolved temperature measurements in a repetitively pulsed nanosecond discharge in air, by emission spectroscopy, and purely rotational coherent anti-Stokes Raman spectroscopy showing good agreement.

  18. Circuit-field coupled finite element analysis method for an electromagnetic acoustic transducer under pulsed voltage excitation

    International Nuclear Information System (INIS)

    Hao Kuan-Sheng; Huang Song-Ling; Zhao Wei; Wang Shen

    2011-01-01

    This paper presents an analytical method for electromagnetic acoustic transducers (EMATs) under voltage excitation and considers the non-uniform distribution of the biased magnetic field. A complete model of EMATs including the non-uniform biased magnetic field, a pulsed eddy current field and the acoustic field is built up. The pulsed voltage excitation is transformed to the frequency domain by fast Fourier transformation (FFT). In terms of the time harmonic field equations of the EMAT system, the impedances of the coils under different frequencies are calculated according to the circuit-field coupling method and Poynting's theorem. Then the currents under different frequencies are calculated according to Ohm's law and the pulsed current excitation is obtained by inverse fast Fourier transformation (IFFT). Lastly, the sequentially coupled finite element method (FEM) is used to calculate the Lorentz force in the EMATs under the current excitation. An actual EMAT with a two-layer two-bundle printed circuit board (PCB) coil, a rectangular permanent magnet and an aluminium specimen is analysed. The coil impedances and the pulsed current are calculated and compared with the experimental results. Their agreement verified the validity of the proposed method. Furthermore, the influences of lift-off distances and the non-uniform static magnetic field on the Lorentz force under pulsed voltage excitation are studied. (interdisciplinary physics and related areas of science and technology)

  19. Time-resolved VUV spectroscopy in the EXTRAP-T2 reversed field pinch

    International Nuclear Information System (INIS)

    Hedqvist, A.; Rachlew-Kaellne, E.

    1998-01-01

    Time-resolved VUV spectroscopy has been used to investigate the effects of impurities in a reversed field pinch operating with a resistive shell. Results of electron temperature, impurity ion densities, particle confinement time and Z eff together with a description of the interpretation and the equipment are presented. (author)

  20. Pulsed electromagnetic field radiation from a narrow slot antenna with a dielectric layer

    NARCIS (Netherlands)

    Štumpf, M.; De Hoop, A.T.; Lager, I.E.

    2010-01-01

    Analytic time domain expressions are derived for the pulsed electromagnetic field radiated by a narrow slot antenna with a dielectric layer in a two?dimensional model configuration. In any finite time window of observation, exact pulse shapes for the propagated, reflected, and refracted wave

  1. S. cerevisiae fermentation activity after moderate pulsed electric field pre-treatments.

    Science.gov (United States)

    Mattar, Jessy R; Turk, Mohammad F; Nonus, Maurice; Lebovka, Nikolai I; El Zakhem, Henri; Vorobiev, Eugene

    2015-06-01

    The batch fermentation process, inoculated by Pulsed Electric Field (PEF) treated wine yeasts (Saccharomyces cerevisiae Actiflore F33), was studied. PEF treatment was applied to the aqueous yeast suspensions ([Y] = 0.012 g/L) at the electric field strengths of E = 100 and 6000 V/cm using the same treatment protocol (number of pulses n = 1000, pulse duration ti = 100 μs, and pulse repetition time Δt = 100 ms). Electrical conductivity was increasing during and after the PEF treatment, which reflected cell electroporation. Then, fermentation was run for 150 h in an incubator (30 °C) with synchronic agitation. Electro-stimulation was revealing itself by the improvement of fermentation characteristics, and thus increased yeast metabolism. At the end of the lag phase (t = 40 h), fructose consumption in samples with electrically activated inoculum exceeded that of the control samples by ≈ 2.33 times for E = 100 V/cm and by ≈ 3.98 for E = 6000 V/cm. At the end of the log phase (120 h of fermentation), ≈ 30% mass reduction was reached in samples with PEF-treated inocula (E = 6000 V/cm), whereas the same mass reduction of the control sample required approximately 20 extra hours of fermentation. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. The effect of high voltage pulsed electric field on water molecular

    Science.gov (United States)

    Fan, Xuejie; Bai, Yaxiang; Ren, Ziying

    2017-10-01

    In order to study the mechanism of high voltage pulsed electric field pre-treatment on the food drying technology. In this paper, water was treated with high pulse electric field (HPEF) in different frequency, and different voltage, then, the viscosity coefficient and the surface tension coefficient of the water were measured. The results showed that indicated that the viscosity coefficient and the surface tension coefficient of the treated water can be decreased, and while HPEF pre-treatment was applied for 22.5kV at a frequency of 50Hz and 70 Hz, the surface tension and the viscosity coefficient of the pre-treatment treatment were reduced 13.1% and 7.5%, respectively.

  3. Pulsed electric field increases reproduction.

    Science.gov (United States)

    Panagopoulos, Dimitris J

    2016-01-01

    Purpose To study the effect of pulsed electric field - applied in corona discharge photography - on Drosophila melanogaster reproduction, possible induction of DNA fragmentation, and morphological alterations in the gonads. Materials and methods Animals were exposed to different field intensities (100, 200, 300, and 400 kV/m) during the first 2-5 days of their adult lives, and the effect on reproductive capacity was assessed. DNA fragmentation during early- and mid-oogenesis was investigated by application of the TUNEL (Terminal deoxynucleotide transferase dUTP Nick End Labeling) assay. Sections of follicles after fixation and embedding in resins were observed for possible morphological/developmental abnormalities. Results The field increased reproduction by up to 30% by increasing reproductive capacity in both sexes. The effect increased with increasing field intensities. The rate of increase diminished at the strongest intensities. Slight induction of DNA fragmentation was observed exclusively in the nurse (predominantly) and follicle cells, and exclusively at the two most sensitive developmental stages, i.e., germarium and predominantly stage 7-8. Sections of follicles from exposed females at stages of early and mid-oogennesis other than germarium and stages 7-8 did not reveal abnormalities. Conclusions (1) The specific type of electric field may represent a mild stress factor, inducing DNA fragmentation and cell death in a small percentage of gametes, triggering the reaction of the animal's reproductive system to increase the rate of gametogenesis in order to compensate the loss of a small number of gametes. (2) The nurse cells are the most sensitive from all three types of egg chamber cells. (3) The mid-oogenesis checkpoint (stage 7-8) is more sensitive to this field than the early oogenesis one (germarium) in contrast to microwave exposure. (4) Possible therapeutic applications, or applications in increasing fertility, should be investigated.

  4. Design and implementation of a fs-resolved transmission electron microscope based on thermionic gun technology

    Energy Technology Data Exchange (ETDEWEB)

    Piazza, L., E-mail: luca.piazza@epfl.ch [Laboratory for Ultrafast Microscopy and Electron Scattering (LUMES), ICMP, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland); Masiel, D.J. [Integrated Dynamic Electron Solutions, Inc., 455 Bolero Drive, Danville, CA 94526 (United States); LaGrange, T.; Reed, B.W. [Condensed Matter and Materials Division Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, P.O. Box 808, L-356, Livermore, CA 94550 (United States); Barwick, B. [Department of Physics, Trinity College, 300 Summit St., Hartford, CT 06106 (United States); Carbone, Fabrizio [Laboratory for Ultrafast Microscopy and Electron Scattering (LUMES), ICMP, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland)

    2013-09-23

    Highlights: • We present the implementation of a femtosecond-resolved ultrafast TEM. • This is the first ultrafast TEM based on a thermionic gun geometry. • An additional condenser lens has been used to maximize the electron count. • We achieved a time resolution of about 300 fs and an energy resolution of 1 eV. - Abstract: In this paper, the design and implementation of a femtosecond-resolved ultrafast transmission electron microscope is presented, based on a thermionic gun geometry. Utilizing an additional magnetic lens between the electron acceleration and the nominal condenser lens system, a larger percentage of the electrons created at the cathode are delivered to the specimen without degrading temporal, spatial and energy resolution significantly, while at the same time maintaining the femtosecond temporal resolution. Using the photon-induced near field electron microscopy effect (PINEM) on silver nanowires the cross-correlation between the light and electron pulses was measured, showing the impact of the gun settings and initiating laser pulse duration on the electron bunch properties. Tuneable electron pulses between 300 fs and several ps can be obtained, and an overall energy resolution around 1 eV was achieved.

  5. Effects on functional groups and zeta potential of SAP1pulsed electric field technology.

    Science.gov (United States)

    Liang, Rong; Li, Xuenan; Lin, Songyi; Wang, Jia

    2017-01-01

    SAP 1 pulsed electric field (PEF) technology. The effects of electric field intensity and pulse frequency on SAP 1 electric field intensity 15 kV cm -1 , pulse frequency 1600 Hz and flow velocity 2.93 mL min -1 ). Furthermore, the PEF-treated SAP 1 < MW < 3kDa under optimal conditions lacked the characteristic absorbance of N-H, C = C and the amide band and the zeta potential was reduced to -18.0 mV. Overall, the results of the present study suggest that the improvement of antioxidant activity of SAP 1 < MW < 3kDa is a result of the contribution of the functional groups and the change in zeta potential when treated with PEF. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  6. Development of a short pulsed corona discharge ionization source for ion mobility spectrometry

    International Nuclear Information System (INIS)

    An Yuan; Aliaga-Rossel, R.; Choi, Peter; Gilles, Jean-Paul

    2005-01-01

    The development of a pulsed corona discharge ionization source and its use in ion mobility spectrometry (IMS) is presented. In a point-plane electrode geometry, an electrical pulse up to 12 kV, 150 ns rise time and 500 ns pulse width was used to generate a corona discharge in air. A single positive high voltage pulse was able to generate about 1.6x10 10 ions at energy consumption of 22 μJ. Since the temporal distribution of ions is in a pulsed form, the possibility of removal the ion gate has been investigated. By purposely arranging the interface between discharge field and drift field, nearly 10 7 positive ions were drawn into the drift region with absence of the ion gate after every single discharge. The positive spectrum of acetone dimer (working at room temperature) was obtained with a resolving power of 20 by using this configuration. The advantages of this new scheme are the low power consumption compared with the dc method as well as the simplicity of the IMS cell structure

  7. The Study for Shortening the Process Time at Soy Food Production by using the Pulsed Electric Field

    Science.gov (United States)

    Saito, Tsukasa; Jinushi, Makoto; Minamitani, Yasushi

    We investigated method to osmose water and seasoner to dried soybeans fast by pulsed electric field, in order to make soybeans a processed food fast. By applying the pulsed electric field to the dried soybeans in water, osmosis time of water to the soybean became approximately half. Then the emission of the discharge was observed on dried soybean. The color of coffee permeated more into the soybean treated than no-treated by the pulsed electric field.

  8. Time-Resolved Magnetic Field Effects Distinguish Loose Ion Pairs from Exciplexes

    Science.gov (United States)

    2013-01-01

    We describe the experimental investigation of time-resolved magnetic field effects in exciplex-forming organic donor–acceptor systems. In these systems, the photoexcited acceptor state is predominantly deactivated by bimolecular electron transfer reactions (yielding radical ion pairs) or by direct exciplex formation. The delayed fluorescence emitted by the exciplex is magnetosensitive if the reaction pathway involves loose radical ion pair states. This magnetic field effect results from the coherent interconversion between the electronic singlet and triplet radical ion pair states as described by the radical pair mechanism. By monitoring the changes in the exciplex luminescence intensity when applying external magnetic fields, details of the reaction mechanism can be elucidated. In this work we present results obtained with the fluorophore-quencher pair 9,10-dimethylanthracene/N,N-dimethylaniline (DMA) in solvents of systematically varied permittivity. A simple theoretical model is introduced that allows discriminating the initial state of quenching, viz., the loose ion pair and the exciplex, based on the time-resolved magnetic field effect. The approach is validated by applying it to the isotopologous fluorophore-quencher pairs pyrene/DMA and pyrene-d10/DMA. We detect that both the exciplex and the radical ion pair are formed during the initial quenching stage. Upon increasing the solvent polarity, the relative importance of the distant electron transfer quenching increases. However, even in comparably polar media, the exciplex pathway remains remarkably significant. We discuss our results in relation to recent findings on the involvement of exciplexes in photoinduced electron transfer reactions. PMID:24041160

  9. Flux motion in Y-Ba-Cu-O bulk superconductors during pulse field magnetization

    International Nuclear Information System (INIS)

    Yoshizawa, K; Nariki, S; Sakai, N; Murakami, M; Hirabayasi, I; Takizawa, T

    2004-01-01

    We have studied the relationship between the magnetization and temperature change in Y-Ba-Cu-O bulk superconductor during pulse field magnetization (PFM). The flux motion was monitored using both Hall sensors and pick-up coils that are placed on a surface of a Y-Ba-Cu-O disc having dimensions of 15 mm in diameter and 0.95 mm in thickness. The peak value of the field was varied from 0.2 to 0.8 T. The effect of the static bias field was also studied in the range of 0-3 T. The temperature of the sample surface was measured using a resistance temperature sensor. The temperature increased with the magnitude of the applied pulsed magnetic field, and the amount of temperature rise decreased with increasing static bias field

  10. Reduction of protease activity in milk by continuous flow high-intensity pulsed electric field treatments.

    Science.gov (United States)

    Bendicho, S; Barbosa-Cánovas, G V; Martín, O

    2003-03-01

    High-intensity pulsed electric field (HIPEF) is a non-thermal food processing technology that is currently being investigated to inactivate microorganisms and certain enzymes, involving a limited increase of food temperature. Promising results have been obtained on the inactivation of microbial enzymes in milk when suspended in simulated milk ultrafiltrate. The aim of this study was to evaluate the effectiveness of continuous HIPEF equipment on inactivating a protease from Bacillus subtilis inoculated in milk. Samples were subjected to HIPEF treatments of up to 866 micros of squared wave pulses at field strengths from 19.7 to 35.5 kV/cm, using a treatment chamber that consisted of eight colinear chambers connected in series. Moreover, the effects of different parameters such as pulse width (4 and 7 micros), pulse repetition rates (67, 89, and 111 Hz), and milk composition (skim and whole milk) were tested. Protease activity decreased with increased treatment time or field strength and pulse repetition rate. Regarding pulse width, no differences were observed between 4 and 7 micros pulses when total treatment time was considered. On the other hand, it was observed that milk composition affected the results since higher inactivation levels were reached in skim than in whole milk. The maximum inactivation (81%) was attained in skim milk after an 866-micros treatment at 35.5 kV/cm and 111 Hz.

  11. Field-swept pulsed electron paramagnetic resonance of Cr3+-doped ZBLAN fluoride glass

    International Nuclear Information System (INIS)

    Drew, S.C.; Pilbrow, J.R.; Newman, P.J.; MacFarlane, D.R.

    2001-01-01

    Field-swept pulsed electron paramagnetic resonance (EPR) spectra of a ZBLAN fluoride glass doped with a low concentration of Cr 3+ are obtained using echo-detected EPR and hole-burning free induction decay detection. We review the utility of the pulsed EPR technique in generating field-swept EPR spectra, as well as some of the distorting effects that are peculiar to the pulsed detection method. The application of this technique to Cr 3+ -doped ZBLAN reveals that much of the broad resonance extending from g eff =5.1 to g eff =1.97, characteristic of X-band continuous wave EPR of Cr 3+ in glasses, is absent. We attribute this largely to the variation in nutation frequencies across the spectrum that result from sites possessing large fine structure interactions. The description of the spin dynamics of such sites is complicated and we discuss some possible approaches to the simulation of the pulsed EPR spectra. (author)

  12. Photodetachment of H- by a short laser pulse in crossed static electric and magnetic fields

    International Nuclear Information System (INIS)

    Peng Liangyou; Wang Qiaoling; Starace, Anthony F.

    2006-01-01

    We present a detailed quantum mechanical treatment of the photodetachment of H - by a short laser pulse in the presence of crossed static electric and magnetic fields. An exact analytic formula is presented for the final state electron wave function (describing an electron in both static electric and magnetic fields and a short laser pulse of arbitrary intensity). In the limit of a weak laser pulse, final state electron wave packet motion is examined and related to the closed classical electron orbits in crossed static fields predicted by Peters and Delos [Phys. Rev. A 47, 3020 (1993)]. Owing to these closed orbit trajectories, we show that the detachment probability can be modulated, depending on the time delay between two laser pulses and their relative phase, thereby providing a means to partially control the photodetachment process. In the limit of a long, weak pulse (i.e., a monochromatic radiation field) our results reduce to those of others; however, for this case we analyze the photodetachment cross section numerically over a much larger range of electron kinetic energy (i.e., up to 500 cm -1 ) than in previous studies and relate the detailed structures both analytically and numerically to the above-mentioned, closed classical periodic orbits

  13. Atlas Pulsed Power System: a Driver for Multi-Megagauss Fields

    International Nuclear Information System (INIS)

    Cochrane, J.C.; Bartsch, R.R.; Bennett, G.A.; Bowman, D.W.; Davis, H.A.; Ekdahl, C.A.; Gribble, R.F.; Kimerly, H.J.; Nielsen, K.E.; Parsons, W.M.; Paul, J.D.; Scudder, D.W.; Trainor, R.J.; Thompson, M.C.; Watt, R.G.

    1998-01-01

    Atlas is a pulsed power machine designed for hydrodynamic experiments for the Los Alamos High Energy Density Physics Experimental program. It is presently under construction and should be operational in late 2000. Atlas will store 23 MJ at an erected voltage of 240 kV. This will produce a current of 30 MA into a static load and as much as 32 MA into a dynamic load. The current pulse will have a rise time of approximately5micros and will produce a magnetic field driving the impactor liner of several hundred Tesla at the target radius of one to two centimeters. The collision can produce shock pressures of approximately15 megabars. Design of the pulsed power system will be presented along with data obtained from the Atlas prototype Marx module

  14. Thermal pulse measurements of space charge distributions under an applied electric field in thin films

    International Nuclear Information System (INIS)

    Zheng, Feihu; An, Zhenlian; Zhang, Yewen; Liu, Chuandong; Lin, Chen; Lei, Qingquan

    2013-01-01

    The thermal pulse method is a powerful method to measure space charge and polarization distributions in thin dielectric films, but a complicated calibration procedure is necessary to obtain the real distribution. In addition, charge dynamic behaviour under an applied electric field cannot be observed by the classical thermal pulse method. In this work, an improved thermal pulse measuring system with a supplemental circuit for applying high voltage is proposed to realize the mapping of charge distribution in thin dielectric films under an applied field. The influence of the modified measuring system on the amplitude and phase of the thermal pulse response current are evaluated. Based on the new measuring system, an easy calibration approach is presented with some practical examples. The newly developed system can observe space charge evolution under an applied field, which would be very helpful in understanding space charge behaviour in thin films. (paper)

  15. Influence of Pulsed Electric Fields and Mitochondria-Cytoskeleton Interactions on Cell Respiration.

    Science.gov (United States)

    Goswami, Ishan; Perry, Justin B; Allen, Mitchell E; Brown, David A; von Spakovsky, Michael R; Verbridge, Scott S

    2018-06-19

    Pulsed electric fields with microsecond pulse width (μsPEFs) are used clinically; namely, irreversible electroporation/Nanoknife is used for soft tissue tumor ablation. The μsPEF pulse parameters used in irreversible electroporation (0.5-1 kV/cm, 80-100 pulses, ∼100 μs each, 1 Hz frequency) may cause an internal field to develop within the cell because of the disruption of the outer cell membrane and subsequent penetration of the electric field. An internal field may disrupt voltage-sensitive mitochondria, although the research literature has been relatively unclear regarding whether such disruptions occur with μsPEFs. This investigation reports the influence of clinically used μsPEF parameters on mitochondrial respiration in live cells. Using a high-throughput Agilent Seahorse machine, it was observed that μsPEF exposure comprising 80 pulses with amplitudes of 600 or 700 V/cm did not alter mitochondrial respiration in 4T1 cells measured after overnight postexposure recovery. To record alterations in mitochondrial function immediately after μsPEF exposure, high-resolution respirometry was used to measure the electron transport chain state via responses to glutamate-malate and ADP and mitochondrial membrane potential via response to carbonyl cyanide-p-trifluoromethoxyphenylhydrazone. In addition to measuring immediate mitochondrial responses to μsPEF exposure, measurements were also made on cells permeabilized using digitonin and those with compromised cytoskeleton due to actin depolymerization via treatment with the drug latrunculin B. The former treatment was used as a control to tease out the effects of plasma membrane permeabilization, whereas the latter was used to investigate indirect effects on the mitochondria that may occur if μsPEFs impact the cytoskeleton on which the mitochondria are anchored. Based on the results, it was concluded that within the pulse parameters tested, μsPEFs alone do not hinder mitochondrial physiology but can be used

  16. Determination of Optical-Field Ionization Dynamics in Plasmas through the Direct Measurement of the Optical Phase Change

    International Nuclear Information System (INIS)

    Taylor, A.J.; Omenetto, G.; Rodriguez, G.; Siders, C.W.; Siders, J.L.W.; Downer, C.

    1999-01-01

    This is the final report of a three-year Laboratory Directed Research and Development (LDRD) Project at Los Alamos National Laboratory (LANL). The detailed dynamics of an atom in a strong laser field is rich in both interesting physics and potential applications. The goal of this project was to develop a technique for characterizing high-field laser-plasma interactions with femtosecond resolution based on the direct measurement of the phase change of an optical pulse. The authors developed the technique of Multi-pulse Interferometric Frequency Resolved Optical Gating (MI-FROG), which recovers (to all orders) the phase difference between pumped and unpumped probe pulses, enabling the determination of sub-pulsewidth time-resolved phase and frequency shifts impressed by a pump pulse on a weak probe pulse. Using MI-FROG, the authors obtained the first quantitative measurements of high-field ionization rates in noble gases and diatomic molecules. They obtained agreement between the measured ionization rates an d those calculated for the noble gases and diatomic nitrogen and hydrogen using a one-dimensional fluid model and rates derived from tunneling theory. However, much higher rates are measured for diatomic oxygen than predicted by tunneling theory calculations

  17. Pasteurization of strawberry puree using a pilot plant pulsed electric fields (PEF) system

    Science.gov (United States)

    The processing of strawberry puree by pulsed electric fields (PEF) in a pilot plant system has never been evaluated. In addition, a method does not exist to validate the exact number and shape of the pulses applied during PEF processing. Both buffered peptone water (BPW) and fresh strawberry puree (...

  18. Pulsed magnetic field excitation sensitivity of match-type electric blasting caps

    Science.gov (United States)

    Parson, Jonathan; Dickens, James; Walter, John; Neuber, Andreas A.

    2010-10-01

    This paper presents a study on energy deposition and electromagnetic compatibility of match-type electroexplosive devices (EEDs), which recently have found more usage in pulsed power environments with high electromagnetic interference (EMI) background. The sensitivity of these devices makes them dangerous to intended and unintended radiation produced by devices commonly used in pulsed power environments. Match-type EEDs have been found to be susceptible to such low levels of energy (7-8 mJ) that safe operation of these EEDs is vital when in use near devices that produce high levels of pulsed EMI. The scope of this paper is to provide an investigation that incorporates results of similar studies to provide detonation characteristics of these EEDs. The three topics included in this study are sensitivity testing, modeling of the thermodynamic heat propagation, and electromagnetic compatibility from pulsed electromagnetic radiation. The thermodynamic joule heating of the primary explosive has been modeled by a solution to the 1D heat equation. A simple pulsed generator, Marx generator with an inductive load, was used for the electromagnetic compatibility assessment of the coupled field between the pulse generator and shorted EED. The results of the electromagnetic compatibility assessment relate the resistive, inductive, and capacitive components of the pulse generator to the area of the shorted EED.

  19. Time-resolved VUV spectroscopy in the EXTRAP-T2 reversed field pinch

    Science.gov (United States)

    Hedqvist, Anders; Rachlew-Källne, Elisabeth

    1998-09-01

    Time-resolved VUV spectroscopy has been used to investigate the effects of impurities in a reversed field pinch operating with a resistive shell. Results of electron temperature, impurity ion densities, particle confinement time and 0741-3335/40/9/004/img1 together with a description of the interpretation and the equipment are presented.

  20. Inactivation of Listeria innocua in skim milk by pulsed electric fields and nisin.

    Science.gov (United States)

    Calderón-Miranda, M L; Barbosa-Cánovas, G V; Swanson, B G

    1999-10-01

    Pulsed electric fields (PEF) is an emerging nonthermal processing technology used to inactivate microorganisms in liquid foods such as milk. PEF results in loss of cell membrane functionality that leads to inactivation of the microorganism. There are many processes that aid in the stability and safety of foods. The combination of different preservation factors, such as nisin and PEF, to control microorganisms should be explored. The objective of this research was to study the inactivation of Listeria innocua suspended in skim milk by PEF as well as the sensitization of PEF treated L. innocua to nisin. The selected electric field intensity was 30, 40 and 50 kV/cm and the number of pulses applied was 10.6, 21.3 and 32. The sensitization exhibited by PEF treated L. innocua to nisin was assessed for 10 or 100 IU nisin/ml. A progressive decrease in the population of L. innocua was observed for the selected field intensities, with the greatest reduction being 2 1/2 log cycles (U). The exposure of L. innocua to nisin after PEF had an additive effect on the inactivation of the microorganism as that exhibited by the PEF alone. As the electric field, number of pulses and nisin concentration increased, synergism was observed in the inactivation of L. innocua as a result of exposure to nisin after PEF. The reduction of L. innocua accomplished by exposure to 10 IU nisin/ml after 32 pulsed electric fields was 2, 2.7, and 3.4 U for an electric field intensity of 30, 40, and 50 kV/cm, respectively. Population of L. innocua subjected to 100 IU nisin/ml after PEF was 2.8-3.8 U for the selected electric field intensities and 32 pulses. The designed model for the inactivation of L. innocua as a result of the PEF followed by exposure to nisin proved to be accurate in the prediction of the inactivation of L. innocua in skim milk containing 1.2 or 37 IU nisin/ml. Inactivation of L. innocua in skim milk containing 37 IU nisin/ml resulted in a decrease in population of 3.7 U.

  1. Studies of nonlinear femtosecond pulse propagation in bulk materials

    Science.gov (United States)

    Eaton, Hilary Kaye

    2000-10-01

    Femtosecond pulse lasers are finding widespread application in a variety of fields including medical research, optical switching and communications, plasma formation, high harmonic generation, and wavepacket formation and control. As the number of applications for femtosecond pulses increases, so does the need to fully understand the linear and nonlinear processes involved in propagating these pulses through materials under various conditions. Recent advances in pulse measurement techniques, such as frequency-resolved optical gating (FROG), allow measurement of the full electric field of the pulse and have made detailed investigations of short- pulse propagation effects feasible. In this thesis, I present detailed experimental studies of my work involving nonlinear propagation of femtosecond pulses in bulk media. Studies of plane-wave propagation in fused silica extend the SHG form of FROG from a simple pulse diagnostic to a useful method of interrogating the nonlinear response of a material. Studies of nonlinear propagation are also performed in a regime where temporal pulse splitting occurs. Experimental results are compared with a three- dimensional nonlinear Schrödinger equation. This comparison fuels the development of a more complete model for pulse splitting. Experiments are also performed at peak input powers above those at which pulse splitting is observed. At these higher intensities, a broadband continuum is generated. This work presents a detailed study of continuum behavior and power loss as well as the first near-field spatial- spectral measurements of the generated continuum light. Nonlinear plane-wave propagation of short pulses in liquids is also investigated, and a non-instantaneous nonlinearity with a surprisingly short response time of 10 fs is observed in methanol. Experiments in water confirm that this effect in methanol is indeed real. Possible explanations for the observed effect are discussed and several are experimentally rejected. This

  2. Heat pulse probe measurements of soil water evaporation in a corn field

    Science.gov (United States)

    Latent heat fluxes from cropped fields consist of soil water evaporation and plant transpiration. It is difficult to accurately separate evapotranspiration into evaporation and transpiration. Heat pulse probes have been used to measure bare field subsurface soil water evaporation, however, the appl...

  3. Pulsed-Field Magnetization Properties of Bulk Superconductors by Employment of Vortex-Type Coils

    Science.gov (United States)

    Deng, Z.; Shinohara, N.; Miki, M.; Felder, B.; Tsuzuki, K.; Watasaki, M.; Kawabe, S.; Taguchi, R.; Izumi, M.

    Vortex-type magnetizing coils are gaining more and more attention to activate bulk superconductors in pulsed-field magnetization (PFM) studies, compared with solenoid-type ones. Following existing reports, we present experimental results of the different penetration patterns of magnetic flux between the two kinds of coils. It was found that the magnetic flux will primarily penetrate inside the bulk from the upper and lower surfaces by using vortex coils, rather than from the periphery in the case of solenoid coils. Moreover, the bulk submitted to a small pulsed-field excitation exhibits a similar field profile as the excitation field (convex or concave shape); a phenomenon named field memory effect. The use of vortex- or solenoid-type coils in PFM will pose an influence on the initial flux penetration patterns during the flux trapping processes, but both coils can finally excite the best conical trapped field shape of the bulk.

  4. Time-resolved single-shot terahertz time-domain spectroscopy for ultrafast irreversible processes

    Science.gov (United States)

    Zhai, Zhao-Hui; Zhong, Sen-Cheng; Li, Jun; Zhu, Li-Guo; Meng, Kun; Li, Jiang; Liu, Qiao; Peng, Qi-Xian; Li, Ze-Ren; Zhao, Jian-Heng

    2016-09-01

    Pulsed terahertz spectroscopy is suitable for spectroscopic diagnostics of ultrafast events. However, the study of irreversible or single shot ultrafast events requires ability to record transient properties at multiple time delays, i.e., time resolved at single shot level, which is not available currently. Here by angular multiplexing use of femtosecond laser pulses, we developed and demonstrated a time resolved, transient terahertz time domain spectroscopy technique, where burst mode THz pulses were generated and then detected in a single shot measurement manner. The burst mode THz pulses contain 2 sub-THz pulses, and the time gap between them is adjustable up to 1 ns with picosecond accuracy, thus it can be used to probe the single shot event at two different time delays. The system can detect the sub-THz pulses at 0.1 THz-2.5 THz range with signal to noise ratio (SNR) of ˜400 and spectrum resolution of 0.05 THz. System design was described here, and optimizations of single shot measurement of THz pulses were discussed in detail. Methods to improve SNR were also discussed in detail. A system application was demonstrated where pulsed THz signals at different time delays of the ultrafast process were successfully acquired within single shot measurement. This time resolved transient terahertz time domain spectroscopy technique provides a new diagnostic tool for irreversible or single shot ultrafast events where dynamic information can be extracted at terahertz range within one-shot experiment.

  5. Effect of high-hydrostatic pressure and moderate-intensity pulsed electric field on plum.

    Science.gov (United States)

    García-Parra, J; González-Cebrino, F; Delgado-Adámez, J; Cava, R; Martín-Belloso, O; Élez-Martínez, P; Ramírez, R

    2018-03-01

    Moderate intensity pulse electric fields were applied in plum with the aim to increase bioactive compounds content of the fruit, while high-hydrostatic pressure was applied to preserve the purées. High-hydrostatic pressure treatment was compared with an equivalent thermal treatment. The addition of ascorbic acid during purée manufacture was also evaluated. The main objective of this study was to assess the effects on microorganisms, polyphenoloxidase, color and bioactive compounds of high-hydrostatic pressure, or thermal-processed plum purées made of moderate intensity pulse electric field-treated or no-moderate intensity pulse electric field-treated plums, after processing during storage. The application of moderate intensity pulse electric field to plums slightly increased the levels of anthocyanins and the antioxidant activity of purées. The application of Hydrostatic-high pressure (HHP) increased the levels of bioactive compounds in purées, while the thermal treatment preserved better the color during storage. The addition of ascorbic acid during the manufacture of plum purée was an important factor for the final quality of purées. The color and the bioactive compounds content were better preserved in purées with ascorbic acid. The no inactivation of polyphenoloxidase enzyme with treatments applied in this study affected the stability purées. Probably more intense treatments conditions (high-hydrostatic pressure and thermal treatment) would be necessary to reach better quality and shelf life during storage.

  6. Time-resolved photoelectron spectroscopy of IR-driven electron dynamics in a charge transfer model system.

    Science.gov (United States)

    Falge, Mirjam; Fröbel, Friedrich Georg; Engel, Volker; Gräfe, Stefanie

    2017-08-02

    If the adiabatic approximation is valid, electrons smoothly adapt to molecular geometry changes. In contrast, as a characteristic of diabatic dynamics, the electron density does not follow the nuclear motion. Recently, we have shown that the asymmetry in time-resolved photoelectron spectra serves as a tool to distinguish between these dynamics [Falge et al., J. Phys. Chem. Lett., 2012, 3, 2617]. Here, we investigate the influence of an additional, moderately intense infrared (IR) laser field, as often applied in attosecond time-resolved experiments, on such asymmetries. This is done using a simple model for coupled electronic-nuclear motion. We calculate time-resolved photoelectron spectra and their asymmetries and demonstrate that the spectra directly map the bound electron-nuclear dynamics. From the asymmetries, we can trace the IR field-induced population transfer and both the field-driven and intrinsic (non-)adiabatic dynamics. This holds true when considering superposition states accompanied by electronic coherences. The latter are observable in the asymmetries for sufficiently short XUV pulses to coherently probe the coupled states. It is thus documented that the asymmetry is a measure for phases in bound electron wave packets and non-adiabatic dynamics.

  7. High Dynamic Velocity Range Particle Image Velocimetry Using Multiple Pulse Separation Imaging

    Directory of Open Access Journals (Sweden)

    Tadhg S. O’Donovan

    2010-12-01

    Full Text Available The dynamic velocity range of particle image velocimetry (PIV is determined by the maximum and minimum resolvable particle displacement. Various techniques have extended the dynamic range, however flows with a wide velocity range (e.g., impinging jets still challenge PIV algorithms. A new technique is presented to increase the dynamic velocity range by over an order of magnitude. The multiple pulse separation (MPS technique (i records series of double-frame exposures with different pulse separations, (ii processes the fields using conventional multi-grid algorithms, and (iii yields a composite velocity field with a locally optimized pulse separation. A robust criterion determines the local optimum pulse separation, accounting for correlation strength and measurement uncertainty. Validation experiments are performed in an impinging jet flow, using laser-Doppler velocimetry as reference measurement. The precision of mean flow and turbulence quantities is significantly improved compared to conventional PIV, due to the increase in dynamic range. In a wide range of applications, MPS PIV is a robust approach to increase the dynamic velocity range without restricting the vector evaluation methods.

  8. High dynamic velocity range particle image velocimetry using multiple pulse separation imaging.

    Science.gov (United States)

    Persoons, Tim; O'Donovan, Tadhg S

    2011-01-01

    The dynamic velocity range of particle image velocimetry (PIV) is determined by the maximum and minimum resolvable particle displacement. Various techniques have extended the dynamic range, however flows with a wide velocity range (e.g., impinging jets) still challenge PIV algorithms. A new technique is presented to increase the dynamic velocity range by over an order of magnitude. The multiple pulse separation (MPS) technique (i) records series of double-frame exposures with different pulse separations, (ii) processes the fields using conventional multi-grid algorithms, and (iii) yields a composite velocity field with a locally optimized pulse separation. A robust criterion determines the local optimum pulse separation, accounting for correlation strength and measurement uncertainty. Validation experiments are performed in an impinging jet flow, using laser-Doppler velocimetry as reference measurement. The precision of mean flow and turbulence quantities is significantly improved compared to conventional PIV, due to the increase in dynamic range. In a wide range of applications, MPS PIV is a robust approach to increase the dynamic velocity range without restricting the vector evaluation methods.

  9. Theoretical study of the femtosecond-resolved photoelectron spectrum of the NO molecule

    International Nuclear Information System (INIS)

    Meng Qingtian; Yang Guanghui; Sun Hailin; Han Keli; Lou Nanquan

    2003-01-01

    The effect of laser fields on the NO interaction potentials is obtained by the calculation of time-resolved photoelectron spectrum (TRPES) using the time-dependent wave-packet method. The calculation not only shows that the overlap of the pump-probe pulses makes some NO molecular 'invisible' states visible, but also that the coupling strength and the positions of relevant curves change on increasing the laser intensity. These changed potentials affect their dynamical behavior and influence the shape and position of each peak in TRPES. That the coupling strength of relevant potentials can be changed by the field-matter interaction is consistent with our ab initio calculations

  10. Chandra Phase-resolved Spectroscopy of the High Magnetic Field Pulsar B1509−58

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Chin-Ping; Ng, C.-Y. [Department of Physics, The University of Hong Kong, Pokfulam Road (Hong Kong); Takata, J. [School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei (China); Shannon, R. M. [International Centre for Radio Astronomy Research, Curtin University, Bentley, WA 6102 (Australia); Johnston, S., E-mail: cphu@hku.hk, E-mail: ncy@bohr.physics.hku.hk [CSIRO Astronomy and Space Science, Australia Telescope National Facility, Box 76, Epping, NSW 1710 (Australia)

    2017-04-01

    We report on a timing and spectral analysis of the young, high magnetic field rotation-powered pulsar (RPP) B1509−58 using Chandra continuous-clocking mode observation. The pulsar’s X-ray light curve can be fit by the two Gaussian components and the pulsed fraction shows moderate energy dependence over the Chandra band. The pulsed X-ray spectrum is well described by a power law with a photon index 1.16(4), which is harder than the values measured with RXTE /PCA and NuSTAR . This result supports the log-parabolic model for the broadband X-ray spectrum. With the unprecedented angular resolution of Chandra , we clearly identified off-pulse X-ray emission from the pulsar, and its spectrum is best fit by a power law plus blackbody model. The latter component has a temperature of ∼0.14 keV with a bolometric luminosity comparable to the luminosities of other young and high magnetic field RPPs, and it lies between the temperature of magnetars and typical RPPs. In addition, we found that the nonthermal X-ray emission of PSR B1509−58 is significantly softer in the off-pulse phase than in the pulsed phase, with the photon index varying between 1.0 and 1.8 and anticorrelated with the flux. This is similar to the behavior of three other young pulsars. We interpreted it as different contributions of pair-creation processes at different altitudes from the neutron star surface according to the outer-gap model.

  11. Superintense fields from multiple ultrashort laser pulses retroreflected in circular geometry

    Science.gov (United States)

    Ooi, C. H. Raymond

    2010-02-01

    Laser field with superintensity beyond 1029 W/cm2 can be generated by coherent superposition of multiple 100 fs laser pulses in circular geometry setup upon retroreflection by a ring mirror. We have found the criteria for attaining such intensities using broadband ring mirror within the practical damage threshold and paraxial focusing regime. Simple expressions for the intensity enhancement factor are obtained, providing insight for achieving unlimited laser intensity. Higher intensities can be achieved by using few-cycle laser pulses.

  12. Inactivation of microorganisms within collagen gel biomatrices using pulsed electric field treatment.

    Science.gov (United States)

    Griffiths, Sarah; Maclean, Michelle; Anderson, John G; MacGregor, Scott J; Grant, M Helen

    2012-02-01

    Pulsed electric field (PEF) treatment was examined as a potential decontamination method for tissue engineering biomatrices by determining the susceptibility of a range of microorganisms whilst within a collagen gel. High intensity pulsed electric fields were applied to collagen gel biomatrices containing either Escherichia coli, Pseudomonas aeruginosa, Staphylococcus epidermidis, Candida albicans, Saccharomyces cerevisiae or the spores of Aspergillus niger. The results established varying degrees of microbial PEF susceptibility. When high initial cell densities (10(6)-10(7) CFU ml(-1)) were PEF treated with 100 pulses at 45 kV cm(-1), the greatest log reduction was achieved with S. cerevisiae (~6.5 log(10) CFU ml(-1)) and the lowest reduction achieved with S. epidermidis (~0.5 log(10) CFU ml(-1)). The results demonstrate that inactivation is influenced by the intrinsic properties of the microorganism treated. Further investigations are required to optimise the microbial inactivation kinetics associated with PEF treatment of collagen gel biomatrices.

  13. Determination of electric field threshold for electrofusion of erythrocyte ghosts. Comparison of pulse-first and contact-first protocols.

    OpenAIRE

    Wu, Y; Montes, J G; Sjodin, R A

    1992-01-01

    Rabbit erythrocyte ghosts were fused by means of electric pulses to determine the electrofusion thresholds for these membranes. Two protocols were used to investigate fusion events: contact-first, and pulse-first. Electrical capacitance discharge (CD) pulses were used to induce fusion. Plots of fusion yield vs peak field strength yielded curves that intersected the field strength axis at positive values (pseudothresholds) which depended on the protocol and decay half time of the pulses. It wa...

  14. Contribution to time resolved X-ray fluence and differential spectra measurement method improvement in 5-200 KeV range. Application to pulsed emission sources

    International Nuclear Information System (INIS)

    Vie, M.

    1983-09-01

    Two types of sensors have been developed to measure locally the time-resolved fluence and differential energetic spectrum of pulsed X-ray in the energy range 5 to 200 keV. Rise time of these sensors is very short (10 ns) in order to permit time-resolved measurements. Fluence sensors have been developed by putting filters in front of detector in order to make sensor response independent of X-ray energy and proportional to X-ray fluence. The energetic differential spectrum was calculated by way of a method similar to the ROSS method but using filters separated within a pair defining adjacent spectral width. A detailed analysis of uncertainties affecting calculated fluence and spectrum has been done [fr

  15. Effects of Pulsed Electromagnetic Field on Differentiation of HUES-17 Human Embryonic Stem Cell Line

    Directory of Open Access Journals (Sweden)

    Yi-Lin Wu

    2014-08-01

    Full Text Available Electromagnetic fields are considered to potentially affect embryonic development, but the mechanism is still unknown. In this study, human embryonic stem cell (hESC line HUES-17 was applied to explore the mechanism of exposure on embryonic development to pulsed electromagnetic field (PEMF for 400 pulses at different electric field intensities and the differentiation of HUES-17 cells was observed after PEMF exposure. The expression of alkaline phosphatase (AP, stage-specific embryonic antigen-3 (SSEA-3, SSEA-4 and the mRNA level and protein level of Oct4, Sox2 and Nanog in HUES-17 cells remained unchanged after PEMF exposure at the electric field intensities of 50, 100, 200 or 400 kV/m. Four hundred pulses PEMF exposure at the electric field intensities of 50, 100, 200 or 400 kV/m did not affect the differentiation of HUES-17 cells. The reason why electromagnetic fields affect embryonic development may be due to other mechanisms rather than affecting the differentiation of embryonic stem cells.

  16. Quality stability and sensory attributes of apple juice processed by thermosonication, pulsed electric field and thermal processing.

    Science.gov (United States)

    Sulaiman, Alifdalino; Farid, Mohammed; Silva, Filipa Vm

    2017-04-01

    Worldwide, apple juice is the second most popular juice, after orange juice. It is susceptible to enzymatic browning spoilage by polyphenoloxidase, an endogenous enzyme. In this study, Royal Gala apple juice was treated by thermosonication (TS: 1.3 W/mL, 58 ℃, 10 min), pulsed electric field (PEF: 24.8 kV/cm, 60 pulses, 169 µs treatment time, 53.8 ℃) and heat (75 ℃, 20 min) and stored at 3.0 ℃ and 20.0 ℃ for 30 days. A sensory analysis was carried out after processing. The polyphenoloxidase activity, antioxidant activity and total color difference of the apple juice were determined before and after processing and during storage. The sensory analysis revealed that thermosonication and pulsed electric field juices tasted differently from the thermally treated juice. Apart from the pulsed electric field apple juice stored at room temperature, the processed juice was stable during storage, since the pH and soluble solids remained constant and fermentation was not observed. Polyphenoloxidase did not reactivate during storage. Along storage, the juices' antioxidant activity decreased and total color difference increased (up to 6.8). While the antioxidant activity increased from 86 to 103% with thermosonication and was retained after pulsed electric field, thermal processing reduced it to 67%. The processing increased the total color difference slightly. No differences in the total color difference of the juices processed by the three methods were registered after storage. Thermosonication and pulsed electric field could possibly be a better alternative to thermal preservation of apple juice, but refrigerated storage is recommended for pulsed electric field apple juice.

  17. Time-resolved Femtosecond Photon Echo Probes Bimodal Solvent Dynamics

    NARCIS (Netherlands)

    Pshenichnikov, M.S; Duppen, K.; Wiersma, D. A.

    1995-01-01

    We report on time-resolved femtosecond photon echo experiments of a dye molecule in a polar solution. The photon echo is time resolved by mixing the echo with a femtosecond gate pulse in a nonlinear crystal. It is shown that the temporal profile of the photon echo allows separation of the

  18. Femtosecond Time-Resolved Resonance-Enhanced CARS of Gaseous Iodine at Room Temperature

    International Nuclear Information System (INIS)

    He Ping; Fan Rong-Wei; Xia Yuan-Qin; Yu Xin; Chen De-Ying; Yao Yong

    2011-01-01

    Time-resolved resonance-enhanced coherent anti-Stokes Raman scattering (CARS) is applied to investigate molecular dynamics in gaseous iodine. 40 fs laser pulses are applied to create and monitor the high vibrational states of iodine at room temperature (corresponding to a vapor pressure as low as about 35 Pa) by femtosecond time-resolved CARS. Depending on the time delay between the probe pulse and the pump/Stokes pulse pairs, the high vibrational states both on the electronically ground states and the excited states can be detected as oscillations in the CARS transient signal. It is proved that the femtosecond time-resolved CARS technique is a promising candidate for investigating the molecular dynamics of a low concentration system and can be applied to environmental and atmospheric monitoring measurements. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  19. NMR magnetic field controller for pulsed nuclear magnetic resonance experiments

    International Nuclear Information System (INIS)

    Scheler, G.; Anacker, M.

    1975-01-01

    A nuclear magnetic resonance controller for magnetic fields, which can also be used for pulsed NMR investigations, is described. A longtime stability of 10 -7 is achieved. The control signal is generated by a modified time sharing circuit with resonance at the first side band of the 2 H signal. An exact calibration of the magnetic field is achieved by the variation of the H 1 - or of the time-sharing frequency. (author)

  20. The Effect of a Pulsed Magnetic Field on Domain Wall Resistance in Magnetic Nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Majidi, R; Tehranchi, M M; Tabrizi, K Ghafoori [Department of Physics, G.C., Shahid Beheshti University, Evin, 19838-63113, Tehran (Iran, Islamic Republic of); Phirouznia, A, E-mail: Teranchi@cc.sbu.ac.ir [Department of Physics, Azarbaijan University of Tarbiat Moallem, 53714-161 Tabriz (Iran, Islamic Republic of)

    2011-04-01

    The effect of a pulsed magnetic field on domain wall magnetoresistance for an ideal one-dimensional magnetic nanowire with a domain wall has been investigated. The analysis has been based on the Boltzmann transport equation, within the relaxation time approximation. The results indicate that the domain wall resistance increase when enhancing the magnetic field. The evaluation of local magnetization has been considered in the presence of a pulsed magnetic field. The time evaluation of the magnetization also has an effect on the domain wall resistance. The resistance depends on the contribution of the Zeeman and exchange interactions.

  1. The Effect of a Pulsed Magnetic Field on Domain Wall Resistance in Magnetic Nanowires

    International Nuclear Information System (INIS)

    Majidi, R; Tehranchi, M M; Tabrizi, K Ghafoori; Phirouznia, A

    2011-01-01

    The effect of a pulsed magnetic field on domain wall magnetoresistance for an ideal one-dimensional magnetic nanowire with a domain wall has been investigated. The analysis has been based on the Boltzmann transport equation, within the relaxation time approximation. The results indicate that the domain wall resistance increase when enhancing the magnetic field. The evaluation of local magnetization has been considered in the presence of a pulsed magnetic field. The time evaluation of the magnetization also has an effect on the domain wall resistance. The resistance depends on the contribution of the Zeeman and exchange interactions.

  2. Advances in high-order harmonic generation sources for time-resolved investigations

    Energy Technology Data Exchange (ETDEWEB)

    Reduzzi, Maurizio [Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Institute of Photonics and Nanotechnologies, CNR-IFN, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Carpeggiani, Paolo [Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Kühn, Sergei [ELI-ALPS, ELI-Hu Kft., Dugonics ter 13, H-6720 Szeged (Hungary); Calegari, Francesca [Institute of Photonics and Nanotechnologies, CNR-IFN, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Nisoli, Mauro; Stagira, Salvatore [Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Institute of Photonics and Nanotechnologies, CNR-IFN, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Vozzi, Caterina [Institute of Photonics and Nanotechnologies, CNR-IFN, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Dombi, Peter [ELI-ALPS, ELI-Hu Kft., Dugonics ter 13, H-6720 Szeged (Hungary); Wigner Research Center for Physics, 1121 Budapest (Hungary); Kahaly, Subhendu [ELI-ALPS, ELI-Hu Kft., Dugonics ter 13, H-6720 Szeged (Hungary); Tzallas, Paris; Charalambidis, Dimitris [ELI-ALPS, ELI-Hu Kft., Dugonics ter 13, H-6720 Szeged (Hungary); Foundation for Research and Technology – Hellas, Institute of Electronic Structure and Lasers, P.O. Box 1527, GR-711 10 Heraklion, Crete (Greece); Varju, Katalin [ELI-ALPS, ELI-Hu Kft., Dugonics ter 13, H-6720 Szeged (Hungary); Department of Optics and Quantum Electronics, University of Szeged, Dóm tér 9, 6720 Szeged (Hungary); Osvay, Karoly [ELI-ALPS, ELI-Hu Kft., Dugonics ter 13, H-6720 Szeged (Hungary); and others

    2015-10-15

    We review the main research directions ongoing in the development of extreme ultraviolet sources based on high-harmonic generation for the synthesization and application of trains and isolated attosecond pulses to time-resolved spectroscopy. A few experimental and theoretical works will be discussed in connection to well-established attosecond techniques. In this context, we present the unique possibilities offered for time-resolved investigations on the attosecond timescale by the new Extreme Light Infrastructure Attosecond Light Pulse Source, which is currently under construction.

  3. Advances in high-order harmonic generation sources for time-resolved investigations

    International Nuclear Information System (INIS)

    Reduzzi, Maurizio; Carpeggiani, Paolo; Kühn, Sergei; Calegari, Francesca; Nisoli, Mauro; Stagira, Salvatore; Vozzi, Caterina; Dombi, Peter; Kahaly, Subhendu; Tzallas, Paris; Charalambidis, Dimitris; Varju, Katalin; Osvay, Karoly

    2015-01-01

    We review the main research directions ongoing in the development of extreme ultraviolet sources based on high-harmonic generation for the synthesization and application of trains and isolated attosecond pulses to time-resolved spectroscopy. A few experimental and theoretical works will be discussed in connection to well-established attosecond techniques. In this context, we present the unique possibilities offered for time-resolved investigations on the attosecond timescale by the new Extreme Light Infrastructure Attosecond Light Pulse Source, which is currently under construction.

  4. The separated electric and magnetic field responses of luminescent bacteria exposed to pulsed microwave irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Catrin F., E-mail: williamscf@cardiff.ac.uk [School of Engineering, Cardiff University, Queen' s Buildings, Newport Road, Cardiff, CF24 3AA Wales (United Kingdom); School of Biosciences, Cardiff University, Main Building, Cathays Park, Cardiff, CF10 3AT Wales (United Kingdom); Geroni, Gilles M.; Pirog, Antoine; Lees, Jonathan; Porch, Adrian [School of Engineering, Cardiff University, Queen' s Buildings, Newport Road, Cardiff, CF24 3AA Wales (United Kingdom); Lloyd, David [School of Biosciences, Cardiff University, Main Building, Cathays Park, Cardiff, CF10 3AT Wales (United Kingdom)

    2016-08-29

    Electromagnetic fields (EMFs) are ubiquitous in the digital world we inhabit, with microwave and millimetre wave sources of non-ionizing radiation employed extensively in electronics and communications, e.g., in mobile phones and Wi-Fi. Indeed, the advent of 5G systems and the “internet of things” is likely to lead to massive densification of wireless networks. Whilst the thermal effects of EMFs on biological systems are well characterised, their putative non-thermal effects remain a controversial subject. Here, we use the bioluminescent marine bacterium, Vibrio fischeri, to monitor the effects of pulsed microwave electromagnetic fields, of nominal frequency 2.5 GHz, on light emission. Separated electric and magnetic field effects were investigated using a resonant microwave cavity, within which the maxima of each field are separated. For pulsed electric field exposure, the bacteria gave reproducible responses and recovery in light emission. At the lowest pulsed duty cycle (1.25%) and after short durations (100 ms) of exposure to the electric field at power levels of 4.5 W rms, we observed an initial stimulation of bioluminescence, whereas successive microwave pulses became inhibitory. Much of this behaviour is due to thermal effects, as the bacterial light output is very sensitive to the local temperature. Conversely, magnetic field exposure gave no measurable short-term responses even at the highest power levels of 32 W rms. Thus, we were able to detect, de-convolute, and evaluate independently the effects of separated electric and magnetic fields on exposure of a luminescent biological system to microwave irradiation.

  5. The separated electric and magnetic field responses of luminescent bacteria exposed to pulsed microwave irradiation

    Science.gov (United States)

    Williams, Catrin F.; Geroni, Gilles M.; Pirog, Antoine; Lloyd, David; Lees, Jonathan; Porch, Adrian

    2016-08-01

    Electromagnetic fields (EMFs) are ubiquitous in the digital world we inhabit, with microwave and millimetre wave sources of non-ionizing radiation employed extensively in electronics and communications, e.g., in mobile phones and Wi-Fi. Indeed, the advent of 5G systems and the "internet of things" is likely to lead to massive densification of wireless networks. Whilst the thermal effects of EMFs on biological systems are well characterised, their putative non-thermal effects remain a controversial subject. Here, we use the bioluminescent marine bacterium, Vibrio fischeri, to monitor the effects of pulsed microwave electromagnetic fields, of nominal frequency 2.5 GHz, on light emission. Separated electric and magnetic field effects were investigated using a resonant microwave cavity, within which the maxima of each field are separated. For pulsed electric field exposure, the bacteria gave reproducible responses and recovery in light emission. At the lowest pulsed duty cycle (1.25%) and after short durations (100 ms) of exposure to the electric field at power levels of 4.5 W rms, we observed an initial stimulation of bioluminescence, whereas successive microwave pulses became inhibitory. Much of this behaviour is due to thermal effects, as the bacterial light output is very sensitive to the local temperature. Conversely, magnetic field exposure gave no measurable short-term responses even at the highest power levels of 32 W rms. Thus, we were able to detect, de-convolute, and evaluate independently the effects of separated electric and magnetic fields on exposure of a luminescent biological system to microwave irradiation.

  6. The separated electric and magnetic field responses of luminescent bacteria exposed to pulsed microwave irradiation

    International Nuclear Information System (INIS)

    Williams, Catrin F.; Geroni, Gilles M.; Pirog, Antoine; Lees, Jonathan; Porch, Adrian; Lloyd, David

    2016-01-01

    Electromagnetic fields (EMFs) are ubiquitous in the digital world we inhabit, with microwave and millimetre wave sources of non-ionizing radiation employed extensively in electronics and communications, e.g., in mobile phones and Wi-Fi. Indeed, the advent of 5G systems and the “internet of things” is likely to lead to massive densification of wireless networks. Whilst the thermal effects of EMFs on biological systems are well characterised, their putative non-thermal effects remain a controversial subject. Here, we use the bioluminescent marine bacterium, Vibrio fischeri, to monitor the effects of pulsed microwave electromagnetic fields, of nominal frequency 2.5 GHz, on light emission. Separated electric and magnetic field effects were investigated using a resonant microwave cavity, within which the maxima of each field are separated. For pulsed electric field exposure, the bacteria gave reproducible responses and recovery in light emission. At the lowest pulsed duty cycle (1.25%) and after short durations (100 ms) of exposure to the electric field at power levels of 4.5 W rms, we observed an initial stimulation of bioluminescence, whereas successive microwave pulses became inhibitory. Much of this behaviour is due to thermal effects, as the bacterial light output is very sensitive to the local temperature. Conversely, magnetic field exposure gave no measurable short-term responses even at the highest power levels of 32 W rms. Thus, we were able to detect, de-convolute, and evaluate independently the effects of separated electric and magnetic fields on exposure of a luminescent biological system to microwave irradiation.

  7. Ultra-fast facial topometry using pulsed holography

    Science.gov (United States)

    Thelen, Andrea; Frey, Susanne; Hirsch, Sven; Ladrière, Natalie; Hering, Peter

    2006-02-01

    For planning, simulation and documentation of interventions in maxillofacial surgery high resolving soft tissue information of the human face in upright position is needed. This information can be gained by holographic methods, which allow a recording of the whole face in an extremely short time period, so that no movement artefacts occur. The hologram is recorded with a single laser pulse of 25 ns duration and stored in photosensitive material. After automated wet-chemical processing, the hologram is optically reconstructed with a cw-laser. During the optical reconstruction, a light field, which is a one-to-one three-dimensional representation of the recorded face, emerges at its original position and is digitized into a set of two-dimensional projections. Digital image processing leads to merging of these projections into a three-dimensional computer model. Besides the topometric information, a high resolving pixel precise texture is also extracted from the holographic reconstruction and used for the texturing of the computer models. The use of mirrors allows the simultaneous recording of three different views of the face with one laser pulse. The three different views of the face can be combined easily, because they are simultaneously recorded. Thus a recording range of approximately 270 degrees is achieved. In addition to the medical application, high resolving and textured computer models of faces are of tremendous importance for facial reconstruction in anthropology, forensic science and archaeology.

  8. Spin-resolved tunneling studies of the exchange field in EuS/Al bilayers.

    Science.gov (United States)

    Xiong, Y M; Stadler, S; Adams, P W; Catelani, G

    2011-06-17

    We use spin-resolved electron tunneling to study the exchange field in the Al component of EuS/Al bilayers, in both the superconducting and normal-state phases of the Al. Contrary to expectation, we show that the exchange field H(ex) is a nonlinear function of applied field, even in applied fields that are well beyond the EuS coercive field. Furthermore, the magnitude H(ex) is unaffected by the superconducting phase. In addition, H(ex) decreases significantly with increasing temperature in the temperature range of 0.1-1 K. We discuss these results in the context of recent theories of generalized spin-dependent boundary conditions at a superconductor-ferromagnet interface.

  9. Generation of attosecond electron beams in relativistic ionization by short laser pulses

    Science.gov (United States)

    Cajiao Vélez, F.; Kamiński, J. Z.; Krajewska, K.

    2018-03-01

    Ionization by relativistically intense short laser pulses is studied in the framework of strong-field quantum electrodynamics. Distinctive patterns are found in the energy probability distributions of photoelectrons, which are sensitive to the properties of a driving laser field. It is demonstrated that these electrons are generated in the form of solitary attosecond wave packets. This is particularly important in light of various applications of attosecond electron beams such as in ultrafast electron diffraction and crystallography, or in time-resolved electron microscopy of physical, chemical, and biological processes. We also show that, for intense laser pulses, high-energy ionization takes place in narrow regions surrounding the momentum spiral, the exact form of which is determined by the shape of a driving pulse. The self-intersections of the spiral define the momenta for which the interference patterns in the energy distributions of photoelectrons are observed. Furthermore, these interference regions lead to the synthesis of single-electron wave packets characterized by coherent double-hump structures.

  10. Pulsed currents carried by whistlers. IV. Electric fields and radiation excited by an electrode

    International Nuclear Information System (INIS)

    Stenzel, R.L.; Urrutia, J.M.; Rousculp, C.L.

    1995-01-01

    Electromagnetic properties of current pulses carried by whistler wave packets are obtained from a basic laboratory experiment. While the magnetic field and current density are described in the preceding companion paper (Part III), the present analysis starts with the electric field. The inductive and space charge electric field contributions are separately calculated in Fourier space from the measured magnetic field and Ohm's law along B 0 . Inverse Fourier transformation yields the total electric field in space and time, separated into rotational and divergent contributions. The space-charge density in whistler wave packets is obtained. The cross-field tensor conductivity is determined. The frozen-in condition is nearly satisfied, E+v e xB congruent 0. The dissipation is obtained from Poynting's theorem. The waves are collisionally damped; Landau damping is negligible. A radiation resistance for the electrode is determined. Analogous to Poynting's theorem, the transport of helicity is analyzed. Current helicity is generated by a flow of helicity between pulses traveling in opposite directions which carry opposite signs of helicity. Helicity is dissipated by collisions. These observations complete a detailed description of whistler/current pulses which can occur in various laboratory and space plasmas. copyright 1995 American Institute of Physics

  11. Pulse electromagnetic fields enhance extracellular electron transfer in magnetic bioelectrochemical systems.

    Science.gov (United States)

    Zhou, Huihui; Liu, Bingfeng; Wang, Qisong; Sun, Jianmin; Xie, Guojun; Ren, Nanqi; Ren, Zhiyong Jason; Xing, Defeng

    2017-01-01

    Microbial extracellular electron transfer (EET) is essential in driving the microbial interspecies interaction and redox reactions in bioelectrochemical systems (BESs). Magnetite (Fe 3 O 4 ) and magnetic fields (MFs) were recently reported to promote microbial EET, but the mechanisms of MFs stimulation of EET and current generation in BESs are not known. This study investigates the behavior of current generation and EET in a state-of-the-art pulse electromagnetic field (PEMF)-assisted magnetic BES (PEMF-MBES), which was equipped with magnetic carbon particle (Fe 3 O 4 @N-mC)-coated electrodes. Illumina Miseq sequencing of 16S rRNA gene amplicons was also conducted to reveal the changes of microbial communities and interactions on the anode in response to magnetic field. PEMF had significant influences on current generation. When reactors were operated in microbial fuel cell (MFC) mode with pulse electromagnetic field (PEMF-MMFCs), power densities increased by 25.3-36.0% compared with no PEMF control MFCs (PEMF-OFF-MMFCs). More interestingly, when PEMF was removed, the power density dropped by 25.7%, while when PEMF was reintroduced, the value was restored to the previous level. Illumina sequencing of 16S rRNA gene amplicon and principal component analysis (PCA) based on operational taxonomic units (OTUs) indicate that PEMFs led to the shifts in microbial community and changes in species evenness that decreased biofilm microbial diversity. Geobacter spp. were found dominant in all anode biofilms, but the relative abundance in PEMF-MMFCs (86.1-90.0%) was higher than in PEMF-OFF-MMFCs (82.5-82.7%), indicating that the magnetic field enriched Geobacter on the anode. The current generation of Geobacter -inoculated microbial electrolysis cells (MECs) presented the same change regularity, the accordingly increase or decrease corresponding with switch of PEMF, which confirmed the reversible stimulation of PEMFs on microbial electron transfer. The pulse electromagnetic

  12. A novel application of pulsed electric field (PEF) processing for improving glutathione (GSH) antioxidant activity.

    Science.gov (United States)

    Wang, Jia; Wang, Ke; Wang, Ying; Lin, Songyi; Zhao, Ping; Jones, Gregory

    2014-10-15

    Glutathione (GSH) was treated by pulsed electric field (PEF) processing to investigate its effect on antioxidant activity. The antioxidant activity of GSH was evaluated using 2,2-diphenyl-1-picrylhydrazy (DPPH) radical inhibition. A Box-Behnken design (BBD) with three independent variables, which were concentration, electric field intensity and pulse frequency was used to establish the regression equation of second-order response surface. Optimal conditions were as follows: GSH concentration 8.86mg/mL, electric field intensity 9.74kV/cm and pulse frequency 2549.08Hz. The DPPH radical inhibition increased from 81.83% to 97.40%. Near-infrared spectroscopy (NIR) and mid-infrared spectroscopy (MIR) were used to analyse the change of structure and functional groups of GSH. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Liquid Atomization Induced by Pulse Laser Reflection underneath Liquid Surface

    Science.gov (United States)

    Utsunomiya, Yuji; Kajiwara, Takashi; Nishiyama, Takashi; Nagayama, Kunihito; Kubota, Shiro; Nakahara, Motonao

    2009-05-01

    We observed a novel effect of pulse laser reflection at the interface between transparent materials with different refractive indices. The electric field intensity doubles when a laser beam is completely reflected from a material with a higher refractive index to a material with a lower index. This effect appreciably reduces pulse laser ablation threshold of transparent materials. We performed experiments to observe the entire ablation process for laser incidence on the water-air interface using pulse laser shadowgraphy with high-resolution film; the minimum laser fluence for laser ablation at the water-air interface was approximately 12-16 J/cm2. We confirmed that this laser ablation occurs only when the laser beam is incident on the water-air interface from water. Many slender liquid ligaments extend like a milk crown and seem to be atomized at the tip. Their detailed structures can be resolved only by pulse laser photography using high-resolution film.

  14. Spatially and time-resolved magnetization dynamics driven by spin-orbit torques

    Science.gov (United States)

    Baumgartner, Manuel; Garello, Kevin; Mendil, Johannes; Avci, Can Onur; Grimaldi, Eva; Murer, Christoph; Feng, Junxiao; Gabureac, Mihai; Stamm, Christian; Acremann, Yves; Finizio, Simone; Wintz, Sebastian; Raabe, Jörg; Gambardella, Pietro

    2017-10-01

    Current-induced spin-orbit torques are one of the most effective ways to manipulate the magnetization in spintronic devices, and hold promise for fast switching applications in non-volatile memory and logic units. Here, we report the direct observation of spin-orbit-torque-driven magnetization dynamics in Pt/Co/AlOx dots during current pulse injection. Time-resolved X-ray images with 25 nm spatial and 100 ps temporal resolution reveal that switching is achieved within the duration of a subnanosecond current pulse by the fast nucleation of an inverted domain at the edge of the dot and propagation of a tilted domain wall across the dot. The nucleation point is deterministic and alternates between the four dot quadrants depending on the sign of the magnetization, current and external field. Our measurements reveal how the magnetic symmetry is broken by the concerted action of the damping-like and field-like spin-orbit torques and the Dzyaloshinskii-Moriya interaction, and show that reproducible switching events can be obtained for over 1012 reversal cycles.

  15. Diagnostics of underwater electrical wire explosion through a time- and space-resolved hard x-ray source.

    Science.gov (United States)

    Sheftman, D; Shafer, D; Efimov, S; Gruzinsky, K; Gleizer, S; Krasik, Ya E

    2012-10-01

    A time- and space-resolved hard x-ray source was developed as a diagnostic tool for imaging underwater exploding wires. A ~4 ns width pulse of hard x-rays with energies of up to 100 keV was obtained from the discharge in a vacuum diode consisting of point-shaped tungsten electrodes. To improve contrast and image quality, an external pulsed magnetic field produced by Helmholtz coils was used. High resolution x-ray images of an underwater exploding wire were obtained using a sensitive x-ray CCD detector, and were compared to optical fast framing images. Future developments and application of this diagnostic technique are discussed.

  16. Pre-breakdown processes in a dielectric fluid in inhomogeneous pulsed electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Shneider, Mikhail N., E-mail: m.n.shneider@gmail.com [Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544 (United States); Pekker, Mikhail [MMSolution, 6808 Walker Street, Philadelphia, Pennsylvania 19135 (United States)

    2015-06-14

    We consider the development of pre-breakdown cavitation nanopores appearing in the dielectric fluid under the influence of the electrostrictive stresses in the inhomogeneous pulsed electric field. It is shown that three characteristic regions can be distinguished near the needle electrode. In the first region, where the electric field gradient is greatest, the cavitation nanopores, occurring during the voltage nanosecond pulse, may grow to the size at which an electron accelerated by the field inside the pores can acquire enough energy for excitation and ionization of the liquid on the opposite pore wall, i.e., the breakdown conditions are satisfied. In the second region, the negative pressure caused by the electrostriction is large enough for the cavitation initiation (which can be registered by optical methods), but, during the voltage pulse, the pores do not reach the size at which the potential difference across their borders becomes sufficient for ionization or excitation of water molecules. And, in the third, the development of cavitation is impossible, due to an insufficient level of the negative pressure: in this area, the spontaneously occurring micropores do not grow and collapse under the influence of surface tension forces. This paper discusses the expansion dynamics of the cavitation pores and their most probable shape.

  17. Time-resolved analysis of nonlinear optical limiting for laser synthesized carbon nanoparticles

    Science.gov (United States)

    Chen, G. X.; Hong, M. H.

    2010-11-01

    Nonlinear optical limiting materials have attracted much research interest in recent years. Carbon nanoparticles suspended in liquids show a strong nonlinear optical limiting function. It is important to investigate the nonlinear optical limiting process of carbon nanoparticles for further improving their nonlinear optical limiting performance. In this study, carbon nanoparticles were prepared by laser ablation of a carbon target in tetrahydrofuran (THF). Optical limiting properties of the samples were studied with 532-nm laser light, which is in the most sensitive wavelength band for human eyes. The shape of the laser pulse plays an important role for initializing the nonlinear optical limiting effect. Time-resolved analysis of laser pulses discovered 3 fluence stages of optical limiting. Theoretical simulation indicates that the optical limiting is initialized by a near-field optical enhancement effect.

  18. Photon-Counting Arrays for Time-Resolved Imaging

    Directory of Open Access Journals (Sweden)

    I. Michel Antolovic

    2016-06-01

    Full Text Available The paper presents a camera comprising 512 × 128 pixels capable of single-photon detection and gating with a maximum frame rate of 156 kfps. The photon capture is performed through a gated single-photon avalanche diode that generates a digital pulse upon photon detection and through a digital one-bit counter. Gray levels are obtained through multiple counting and accumulation, while time-resolved imaging is achieved through a 4-ns gating window controlled with subnanosecond accuracy by a field-programmable gate array. The sensor, which is equipped with microlenses to enhance its effective fill factor, was electro-optically characterized in terms of sensitivity and uniformity. Several examples of capture of fast events are shown to demonstrate the suitability of the approach.

  19. Time-resolved materials science opportunities using synchrotron x-ray sources

    International Nuclear Information System (INIS)

    Larson, B.C.; Tischler, J.Z.

    1995-06-01

    The high brightness, high intensity, and pulsed time-structure of synchrotron sources provide new opportunities for time-resolved x-ray diffraction investigations. With third generation synchrotron sources coming on line, high brilliance and high brightness are now available in x-ray beams with the highest flux. In addition to the high average flux, the instantaneous flux available in synchrotron beams is greatly enhanced by the pulsed time structure, which consists of short bursts of x-rays that are separated by ∼tens to hundreds of nanoseconds. Time-resolved one- and two-dimensional position sensitive detection techniques that take advantage of synchrotron radiation for materials science x-ray diffraction investigations are presented, and time resolved materials science applications are discussed in terms of recent diffraction and spectroscopy results and materials research opportunities

  20. Modification of Pulsed Electric Field Conditions Results in Distinct Activation Profiles of Platelet-Rich Plasma.

    Science.gov (United States)

    Frelinger, Andrew L; Gerrits, Anja J; Garner, Allen L; Torres, Andrew S; Caiafa, Antonio; Morton, Christine A; Berny-Lang, Michelle A; Carmichael, Sabrina L; Neculaes, V Bogdan; Michelson, Alan D

    2016-01-01

    Activated autologous platelet-rich plasma (PRP) used in therapeutic wound healing applications is poorly characterized and standardized. Using pulsed electric fields (PEF) to activate platelets may reduce variability and eliminate complications associated with the use of bovine thrombin. We previously reported that exposing PRP to sub-microsecond duration, high electric field (SMHEF) pulses generates a greater number of platelet-derived microparticles, increased expression of prothrombotic platelet surfaces, and differential release of growth factors compared to thrombin. Moreover, the platelet releasate produced by SMHEF pulses induced greater cell proliferation than plasma. To determine whether sub-microsecond duration, low electric field (SMLEF) bipolar pulses results in differential activation of PRP compared to SMHEF, with respect to profiles of activation markers, growth factor release, and cell proliferation capacity. PRP activation by SMLEF bipolar pulses was compared to SMHEF pulses and bovine thrombin. PRP was prepared using the Harvest SmartPreP2 System from acid citrate dextrose anticoagulated healthy donor blood. PEF activation by either SMHEF or SMLEF pulses was performed using a standard electroporation cuvette preloaded with CaCl2 and a prototype instrument designed to take into account the electrical properties of PRP. Flow cytometry was used to assess platelet surface P-selectin expression, and annexin V binding. Platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF), endothelial growth factor (EGF) and platelet factor 4 (PF4), and were measured by ELISA. The ability of supernatants to stimulate proliferation of human epithelial cells in culture was also evaluated. Controls included vehicle-treated, unactivated PRP and PRP with 10 mM CaCl2 activated with 1 U/mL bovine thrombin. PRP activated with SMLEF bipolar pulses or thrombin had similar light scatter profiles, consistent with the presence of platelet

  1. Modification of Pulsed Electric Field Conditions Results in Distinct Activation Profiles of Platelet-Rich Plasma.

    Directory of Open Access Journals (Sweden)

    Andrew L Frelinger

    Full Text Available Activated autologous platelet-rich plasma (PRP used in therapeutic wound healing applications is poorly characterized and standardized. Using pulsed electric fields (PEF to activate platelets may reduce variability and eliminate complications associated with the use of bovine thrombin. We previously reported that exposing PRP to sub-microsecond duration, high electric field (SMHEF pulses generates a greater number of platelet-derived microparticles, increased expression of prothrombotic platelet surfaces, and differential release of growth factors compared to thrombin. Moreover, the platelet releasate produced by SMHEF pulses induced greater cell proliferation than plasma.To determine whether sub-microsecond duration, low electric field (SMLEF bipolar pulses results in differential activation of PRP compared to SMHEF, with respect to profiles of activation markers, growth factor release, and cell proliferation capacity.PRP activation by SMLEF bipolar pulses was compared to SMHEF pulses and bovine thrombin. PRP was prepared using the Harvest SmartPreP2 System from acid citrate dextrose anticoagulated healthy donor blood. PEF activation by either SMHEF or SMLEF pulses was performed using a standard electroporation cuvette preloaded with CaCl2 and a prototype instrument designed to take into account the electrical properties of PRP. Flow cytometry was used to assess platelet surface P-selectin expression, and annexin V binding. Platelet-derived growth factor (PDGF, vascular endothelial growth factor (VEGF, endothelial growth factor (EGF and platelet factor 4 (PF4, and were measured by ELISA. The ability of supernatants to stimulate proliferation of human epithelial cells in culture was also evaluated. Controls included vehicle-treated, unactivated PRP and PRP with 10 mM CaCl2 activated with 1 U/mL bovine thrombin.PRP activated with SMLEF bipolar pulses or thrombin had similar light scatter profiles, consistent with the presence of platelet

  2. Nonlinear propagation of strong-field THz pulses in doped semiconductors

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Hvam, Jørn Märcher; Hoffmann, Matthias C.

    2012-01-01

    We report on nonlinear propagation of single-cycle THz pulses with peak electric fields reaching 300 kV/cm in n-type semiconductors at room temperature. Dramatic THz saturable absorption effects are observed in GaAs, GaP, and Ge, which are caused by the nonlinear electron transport in THz fields....... The semiconductor conductivity, and hence the THz absorption, is modulated due to the acceleration of carriers in strong THz fields, leading to an increase of the effective mass of the electron population, as the electrons are redistributed from the low-momentum, low-effective-mass states to the high-momentum, high...

  3. Effect of pulsed electric field and pasteurisation treatments on the rheological properties of mango nectar (Mangifera indica

    Directory of Open Access Journals (Sweden)

    S. S. Manjunatha

    2015-01-01

    Full Text Available The rheological behaviour of pulsed electric field (PEF processed and thermally pasteurised mango nectar (Mangifera indica was evaluated using controlled stress rheometer. The mango nectar was subjected to pulsed electric field (PEF as well as thermal processing. The rheological parameter shear stress was measured up to the shear rate of 750 s-1 using co-axial cylinder attachment at wide range of temperatures from 10 to 70 °C. The investigation showed that pulsed electric field (PEF processed and thermally pasteurised mango nectar behaved like a pseudo plastic (shear thinning fluid and obeyed Herschel-Bulkley model (0.9780 0.893, p < 0.05 and flow activation energy (Ea was significantly (p < 0.05 affected by processing conditions. The results indicated that the pulsed electric field (PEF and thermal processing condition has affected the rheological properties of mango nectar. The combined equation relating to shear stress (τ with temperature and shear rate of mango nectar was established.

  4. Time-resolved crystallography using the Hadamard Transform

    Science.gov (United States)

    Yorke, Briony A.; Beddard, Godfrey S.; Owen, Robin L.; Pearson, Arwen R.

    2014-01-01

    A new method for performing time-resolved X-ray crystallographic experiments based on the Hadamard Transform is proposed and demonstrated. The time-resolution is defined by the underlying periodicity of the probe pulse sequence and the signal to noise is greatly improved compared to the fastest experiments depending on a single pulse. This approach is general and equally applicable to any spectroscopic or imaging measurement where the probe can be encoded. PMID:25282611

  5. Effects on DPPH inhibition of egg-white protein polypeptides treated by pulsed electric field technology.

    Science.gov (United States)

    Wang, Ke; Wang, Jia; Liu, Bolong; Lin, Songyi; Zhao, Ping; Liu, Jingbo; Jones, Gregory; Huang, Hsiang-Chi

    2013-05-01

    Egg-white protein polypeptides are potentially used as a functional ingredient in food products. In this study, the effects on DPPH inhibition of egg-white protein polypeptides ranging from 10 to 30 kDa treated by pulsed electric field (PEF) technology were investigated. 2, 2-Diphenyl-1-picrylhydrazyl (DPPH) inhibition (%) was used to evaluate the antioxidant activity of polypeptides. In order to develop and optimize a pulsed electric field (PEF) mathematical model for improving the antioxidant activity, we have investigated three variables, including concentration (6, 8 and 10 mg mL(-1)), electric field intensity (10, 20 and 30 kV cm(-1)) and pulse frequency (2000, 2350 and 2700 Hz) and subsequently optimized them by response surface methodology (RSM). The concentration (8 mg mL(-1)), electric field intensity (10 kV cm(-1)) and pulse frequency (2000 Hz) were found to be the optimal conditions under which the DPPH inhibition increased 28.44%, compared to the sample without PEF treatment. Both near-infrared spectroscopy (NIR) and mid-infrared spectroscopy (MIR) were used to analyze the change of functional groups. The results showed that PEF technology could improve the antioxidant activity of antioxidant polypeptides from egg-white protein under the optimized conditions. © 2012 Society of Chemical Industry.

  6. Histopathology of normal skin and melanomas after nanosecond pulsed electric field treatment

    Science.gov (United States)

    Chen, Xinhua; Swanson, R. James; Kolb, Juergen F.; Nuccitelli, Richard; Schoenbach, Karl H.

    2011-01-01

    Nanosecond pulsed electric fields (nsPEFs) can affect the intracellular structures of cells in vitro. This study shows the direct effects of nsPEFs on tumor growth, tumor volume, and histological characteristics of normal skin and B16-F10 melanoma in SKH-1 mice. A melanoma model was set up by injecting B16-F10 into female SKH-1 mice. After a 100-pulse treatment with an nsPEF (40-kV/cm field strength; 300-ns duration; 30-ns rise time; 2-Hz repetition rate), tumor growth and histology were studied using transillumination, light microscopy with hematoxylin and eosin stain and transmission electron microscopy. Melanin and iron within the melanoma tumor were also detected with specific stains. After nsPEF treatment, tumor development was inhibited with decreased volumes post-nsPEF treatment compared with control tumors (Pelectric fields surrounding the needle electrodes. PMID:19730404

  7. Field and laboratory simulations of storm water pulses: Behavioural avoidance by marine epifauna

    International Nuclear Information System (INIS)

    Roberts, David A.; Johnston, Emma L.; Mueller, Stefanie; Poore, Alistair G.B.

    2008-01-01

    Epifaunal communities associated with macroalgae were exposed to storm water pulses using a custom made irrigation system. Treatments included Millipore freshwater, freshwater spiked with trace metals and seawater controls to allow for the relative importance of freshwater inundation, trace metals and increased flow to be determined. Experimental pulses created conditions similar to those that occur following real storm water events. Brief storm water pulses reduced the abundance of amphipods and gastropods. Freshwater was the causative agent as there were no additional effects of trace metals on the assemblages. Laboratory assays indicated that neither direct nor latent mortality was likely following experimental pulses and that epifauna readily avoid storm water. Indirect effects upon epifauna through salinity-induced changes to algal habitats were not found in field recolonisation experiments. Results demonstrate the importance of examining the effects of pulsed contaminants under realistic exposure conditions and the need to consider ecologically relevant endpoints. - Brief storm water pulses trigger avoidance response in mobile epifauna due to the inundation of freshwater

  8. A time-resolved image sensor for tubeless streak cameras

    Science.gov (United States)

    Yasutomi, Keita; Han, SangMan; Seo, Min-Woong; Takasawa, Taishi; Kagawa, Keiichiro; Kawahito, Shoji

    2014-03-01

    This paper presents a time-resolved CMOS image sensor with draining-only modulation (DOM) pixels for tube-less streak cameras. Although the conventional streak camera has high time resolution, the device requires high voltage and bulky system due to the structure with a vacuum tube. The proposed time-resolved imager with a simple optics realize a streak camera without any vacuum tubes. The proposed image sensor has DOM pixels, a delay-based pulse generator, and a readout circuitry. The delay-based pulse generator in combination with an in-pixel logic allows us to create and to provide a short gating clock to the pixel array. A prototype time-resolved CMOS image sensor with the proposed pixel is designed and implemented using 0.11um CMOS image sensor technology. The image array has 30(Vertical) x 128(Memory length) pixels with the pixel pitch of 22.4um. .

  9. Time Resolved Digital PIV Measurements of Flow Field Cyclic Variation in an Optical IC Engine

    Energy Technology Data Exchange (ETDEWEB)

    Jarvis, S; Justham, T; Clarke, A; Garner, C P; Hargrave, G K; Halliwell, N A [Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire, LE11 3TU (United Kingdom)

    2006-07-15

    Time resolved digital particle image velocimetry (DPIV) experimental data is presented for the in-cylinder flow field development of a motored four stroke spark ignition (SI) optical internal combustion (IC) engine. A high speed DPIV system was employed to quantify the velocity field development during the intake and compression stroke at an engine speed of 1500 rpm. The results map the spatial and temporal development of the in-cylinder flow field structure allowing comparison between traditional ensemble average and cycle average flow field structures. Conclusions are drawn with respect to engine flow field cyclic variations.

  10. Time Resolved Digital PIV Measurements of Flow Field Cyclic Variation in an Optical IC Engine

    International Nuclear Information System (INIS)

    Jarvis, S; Justham, T; Clarke, A; Garner, C P; Hargrave, G K; Halliwell, N A

    2006-01-01

    Time resolved digital particle image velocimetry (DPIV) experimental data is presented for the in-cylinder flow field development of a motored four stroke spark ignition (SI) optical internal combustion (IC) engine. A high speed DPIV system was employed to quantify the velocity field development during the intake and compression stroke at an engine speed of 1500 rpm. The results map the spatial and temporal development of the in-cylinder flow field structure allowing comparison between traditional ensemble average and cycle average flow field structures. Conclusions are drawn with respect to engine flow field cyclic variations

  11. Time Resolved Digital PIV Measurements of Flow Field Cyclic Variation in an Optical IC Engine

    Science.gov (United States)

    Jarvis, S.; Justham, T.; Clarke, A.; Garner, C. P.; Hargrave, G. K.; Halliwell, N. A.

    2006-07-01

    Time resolved digital particle image velocimetry (DPIV) experimental data is presented for the in-cylinder flow field development of a motored four stroke spark ignition (SI) optical internal combustion (IC) engine. A high speed DPIV system was employed to quantify the velocity field development during the intake and compression stroke at an engine speed of 1500 rpm. The results map the spatial and temporal development of the in-cylinder flow field structure allowing comparison between traditional ensemble average and cycle average flow field structures. Conclusions are drawn with respect to engine flow field cyclic variations.

  12. Resolving the contribution of the uncoupled phycobilisomes to cyanobacterial pulse-amplitude modulated (PAM) fluorometry signals.

    Science.gov (United States)

    Acuña, Alonso M; Snellenburg, Joris J; Gwizdala, Michal; Kirilovsky, Diana; van Grondelle, Rienk; van Stokkum, Ivo H M

    2016-01-01

    Pulse-amplitude modulated (PAM) fluorometry is extensively used to characterize photosynthetic organisms on the slow time-scale (1-1000 s). The saturation pulse method allows determination of the quantum yields of maximal (F(M)) and minimal fluorescence (F(0)), parameters related to the activity of the photosynthetic apparatus. Also, when the sample undergoes a certain light treatment during the measurement, the fluorescence quantum yields of the unquenched and the quenched states can be determined. In the case of cyanobacteria, however, the recorded fluorescence does not exclusively stem from the chlorophyll a in photosystem II (PSII). The phycobilins, the pigments of the cyanobacterial light-harvesting complexes, the phycobilisomes (PB), also contribute to the PAM signal, and therefore, F(0) and F(M) are no longer related to PSII only. We present a functional model that takes into account the presence of several fluorescent species whose concentrations can be resolved provided their fluorescence quantum yields are known. Data analysis of PAM measurements on in vivo cells of our model organism Synechocystis PCC6803 is discussed. Three different components are found necessary to fit the data: uncoupled PB (PB(free)), PB-PSII complexes, and free PSI. The free PSII contribution was negligible. The PB(free) contribution substantially increased in the mutants that lack the core terminal emitter subunits allophycocyanin D or allophycocyanin F. A positive correlation was found between the amount of PB(free) and the rate constants describing the binding of the activated orange carotenoid protein to PB, responsible for non-photochemical quenching.

  13. Use of a ring chromosome and pulsed-field gels to study recombinational repair

    International Nuclear Information System (INIS)

    Game, J.C.; Arabi, S.; Mortimer, R.K.

    1989-01-01

    In wild type yeast, it is known that x-ray induced DNA double-strand breaks (dsb) are repaired, leading to recovery of high molecular-weight molecules on gradients or pulsed-field gels. There is genetic evidence that some or all of this repair occurs via recombinational mechanisms involving sister-chromatid exchange (SCE) and (in diploids) inter-homologue recombination. However, this evidence is indirect and qualitative. The authors of this paper are attempting to use pulsed-field gels to detect and measure recombinational repair at the physical level in yeast strains with a circular homologue of Chr. III. The authors have previously used such strains to study meiotic recombination. The authors have shown that double-size circular molecules can be detected in log-phase haploid yeast cells carrying a ring chromosome, when such cells are exposed to x-rays and allowed time for subsequent repair. Large circular molecules will not enter our pulsed-field gels, but treatment of the DNA samples with radiation prior to running the gels will linearize a fraction of such molecules with a single dsb. Such linearized molecules will run as a band whose position indicates the size of the original unbroken circles

  14. Amplifiable DNA from Gram-negative and Gram-positive bacteria by a low strength pulsed electric field method

    Science.gov (United States)

    Vitzthum, Frank; Geiger, Georg; Bisswanger, Hans; Elkine, Bentsian; Brunner, Herwig; Bernhagen, Jürgen

    2000-01-01

    An efficient electric field-based procedure for cell disruption and DNA isolation is described. Isoosmotic suspensions of Gram-negative and Gram-positive bacteria were treated with pulsed electric fields of Pulses had an exponential decay waveform with a time constant of 3.4 µs. DNA yield was linearly dependent on time or pulse number, with several thousand pulses needed. Electrochemical side-effects and electrophoresis were minimal. The lysates contained non-fragmented DNA which was readily amplifiable by PCR. As the method was not limited to samples of high specific resistance, it should be applicable to physiological fluids and be useful for genomic and DNA diagnostic applications. PMID:10734214

  15. Time resolved studies of H2+ dissociation with phase-stabilized laser pulses

    International Nuclear Information System (INIS)

    Fischer, Bettina

    2010-01-01

    In the course of this thesis, experimental studies on the dissociation of H 2 + (H 2 + →p+H) in ultrashort laser pulses with a stabilized carrier-envelope phase (CEP) were carried out. In single-pulse measurements, the ability to control the emission direction of low energetic protons, i.e. the localization of the bound electron at one of the nuclei after dissociation, by the CEP was demonstrated. The coincident detection of the emitted protons and electrons and the measurement of their three-dimensional momentum vectors with a reaction microscope allowed to clarify the localization mechanism. Further control was achieved by a pump-control scheme with two timedelayed CEP-stabilized laser pulses. Here the neutral H 2 molecule was ionized in the first pulse and dissociation was induced by the second pulse. Electron localization was shown to depend on the properties of the bound nuclear wave packet in H 2 + at the time the control pulse is applied, demonstrating the ability to use the shape and dynamics of the nuclear wave packet as control parameters. Wave packet simulations were performed reproducing qualitatively the experimental results of the single and the two-pulse measurements. For both control schemes, intuitive models are presented, which qualitatively explain the main features of the obtained results. (orig.)

  16. Time-resolved absorption measurements on OMEGA

    International Nuclear Information System (INIS)

    Jaanimagi, P.A.; DaSilva, L.; Delettrez, J.; Gregory, G.G.; Richardson, M.C.

    1986-01-01

    Time-resolved measurements of the incident laser light that is scattered and/or refracted from targets irradiated by the 24 uv-beam OMEGA laser at LLE, have provided some interesting features related to time-resolved absorption. The decrease in laser absorption characteristic of irradiating a target that implodes during the laser pulse has been observed. The increase in absorption expected as the critical density surface moves from a low to a high Z material in the target has also been noted. The detailed interpretation of these results is made through comparisons with simulation using the code LILAC, as well as with streak data from time-resolved x-ray imaging and spectroscopy. In addition, time and space-resolved imaging of the scattered light yields information on laser irradiation uniformity conditions on the target. The report consists of viewgraphs

  17. Pulsed high field magnets. An efficient way of shaping laser accelerated proton beams for application

    Energy Technology Data Exchange (ETDEWEB)

    Kroll, Florian; Schramm, Ulrich [Helmholtz-Zentrum Dresden - Rossendorf, 01328 Dresden (Germany); Technische Universitaet Dresden, 01062 Dresden (Germany); Bagnoud, Vincent; Blazevic, Abel; Busold, Simon [GSI Helmholtzzentrum fuer Schwerionenforschung, 64291 Darmstadt (Germany); Helmholtz Institut Jena, 07734 Jena (Germany); Brabetz, Christian; Schumacher, Dennis [GSI Helmholtzzentrum fuer Schwerionenforschung, 64291 Darmstadt (Germany); Deppert, Oliver; Jahn, Diana; Roth, Markus [Technische Universitaet Darmstadt, 64289 Darmstadt (Germany); Karsch, Leonhard; Masood, Umar [OncoRay-National Center for Radiation Research in Oncology, TU Dresden, 01307 Dresden (Germany); Kraft, Stephan [Helmholtz-Zentrum Dresden - Rossendorf, 01328 Dresden (Germany)

    2015-07-01

    Compact laser-driven proton accelerators are a potential alternative to complex, expensive conventional accelerators, enabling unique beam properties, like ultra-high pulse dose. Nevertheless, they still require substantial development in reliable beam generation and transport. We present experimental studies on capture, shape and transport of laser and conventionally accelerated protons via pulsed high-field magnets. These magnets, common research tools in the fields of solid state physics, have been adapted to meet the demands of laser acceleration experiments.Our work distinctively shows that pulsed magnet technology makes laser acceleration more suitable for application and can facilitate compact and efficient accelerators, e.g. for material research as well as medical and biological purposes.

  18. A full-field transmission x-ray microscope for time-resolved imaging of magnetic nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Ewald, J.; Nisius, T.; Abbati, G.; Baumbach, S.; Overbuschmann, J.; Wilhein, T. [Institute for X-Optics (IXO), Hochschule Koblenz, Joseph-Rovan-Allee 2, 53424 Remagen (Germany); Wessels, P.; Wieland, M.; Drescher, M. [The Hamburg Centre for Ultrafast Imaging (CUI), University of Hamburg, Luruper Chaussee 149, 22761 Hamburg (Germany); Institut für Experimentalphysik, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg (Germany); Vogel, A. [Institut für Angewandte Physik, University of Hamburg, Jungiusstraße 11, 20355 Hamburg (Germany); Viefhaus, J. [Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, 22607 Hamburg (Germany); Meier, G. [The Hamburg Centre for Ultrafast Imaging (CUI), University of Hamburg, Luruper Chaussee 149, 22761 Hamburg (Germany); Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg (Germany)

    2016-01-28

    Sub-nanosecond magnetization dynamics of small permalloy (Ni{sub 80}Fe{sub 20}) elements has been investigated with a new full-field transmission microscope at the soft X-ray beamline P04 of the high brilliance synchrotron radiation source PETRA III. The soft X-ray microscope generates a flat-top illumination field of 20 μm diameter using a grating condenser. A tilted nanostructured magnetic sample can be excited by a picosecond electric current pulse via a coplanar waveguide. The transmitted light of the sample plane is directly imaged by a micro zone plate with < 65 nm resolution onto a 2D gateable X-ray detector to select one particular bunch in the storage ring that probes the time evolution of the dynamic information successively via XMCD spectromicroscopy in a pump-probe scheme. In the experiments it was possible to generate a homogeneously magnetized state in patterned magnetic layers by a strong magnetic Oersted field pulse of 200 ps duration and directly observe the recovery to the initial flux-closure vortex patterns.

  19. [Fluorescence polarization used to investigate the cell membrane fluidity of Saccharomyces cerevisiae treated by pulsed electric field].

    Science.gov (United States)

    Zhang, Ying; Zeng, Xin-An; Wen, Qi-Biao; Li, Lin

    2008-01-01

    To know the lethal mechanism of microorganisms under pulsed electric field treatment, the relationship between the inactivation of Saccharomyces cerevisiae (CICC1308) cell and the permeability and fluidity changes of its cell membrane treated by pulsed electric field (0-25 kV x cm(-1), 0-266 ms) was investigated. With 1,6-diphenyl-1,3,5-hexatriene (DPH) used as a probe, the cell membrane fluidity of Saccharomyces cerevisiae treated by pulsed electric field was expressed by fluorescence polarization. Results showed that the cell membrane fluidity decreases when the electric flied strength is up to 5 kV x cm(-1), and decreases with the increase in electric field strength and treatment time. The plate counting method and ultraviolet spectrophotometer were used to determine the cell viability and to investigate the cell membrane permeability, respectively, treated by pulsed electric field. Results showed that the lethal ratio and the content of protein and nucleic acid leaked from intracellular plasma increased with the increase in the electric field strength and the extension of treatment time. Even in a quite lower electric field of 5 kV x cm(-1) with a tiny microorganism lethal level, the increase in UV absorption value and the decrease in fluidity were significant. It was demonstrated that the cell membrane fluidity decreases with the increase in lethal ratio and cell membrane permeability. The viscosity of cell membrane increases with the decrease in fluidity. These phenomena indicated that cell membrane is one of the most key sites during the pulsed electric field treatment, and the increased membrane permeability and the decreased cell membrane fluidity contribute to the cell death.

  20. Charge and spin current oscillations in a tunnel junction induced by magnetic field pulses

    Energy Technology Data Exchange (ETDEWEB)

    Dartora, C.A., E-mail: cadartora@eletrica.ufpr.br [Electrical Engineering Department, Federal University of Parana (UFPR), C.P. 19011 Curitiba, 81.531-970 PR (Brazil); Nobrega, K.Z., E-mail: bzuza1@yahoo.com.br [Federal Institute of Education, Science and Technolgy of Maranhão (IFMA), Av. Marechal Castelo Branco, 789, São Luís, 65.076-091 MA (Brazil); Cabrera, G.G., E-mail: cabrera@ifi.unicamp.br [Instituto de Física ‘Gleb Wataghin’, Universidade Estadual de Campinas (UNICAMP), C.P. 6165, Campinas 13.083-970 SP (Brazil)

    2016-08-15

    Usually, charge and spin transport properties in tunnel junctions are studied in the DC bias regime and/or in the adiabatic regime of time-varying magnetic fields. In this letter, the temporal dynamics of charge and spin currents in a tunnel junction induced by pulsed magnetic fields is considered. At low bias voltages, energy and momentum of the conduction electrons are nearly conserved in the tunneling process, leading to the description of the junction as a spin-1/2 fermionic system coupled to time-varying magnetic fields. Under the influence of pulsed magnetic fields, charge and spin current can flow across the tunnel junction, displaying oscillatory behavior, even in the absence of DC bias voltage. A type of spin capacitance function, in close analogy to electric capacitance, is predicted.

  1. Z a Fast Pulsed Power Generator for Ultra-High Magnetic Field Generation

    Science.gov (United States)

    Spielman, R. B.; Stygar, W. A.; Struve, K. W.; Asay, J. R.; Hall, C. A.; Bernard, M. A.; Bailey, J. E.; McDaniel, D. H.

    2004-11-01

    Advances in fast, pulsed-power technologies have resulted in the development of very high current drivers that have current rise times ~100 ns. The largest such pulsed power driver today is the new Z accelerator located at Sandia National Laboratories in Albuquerque, New Mexico. Z can deliver more than 20 MA with a time-to-peak of 105 ns to low inductance (~1 nH) loads. Such large drivers are capable of directly generating magnetic fields approaching 3 kT in small, 1 cm3 volumes. In addition to direct field generation, Z can be used to compress an applied, axial seed field with a plasma. Flux compression schemes are not new and are, in fact, the basis of all explosive flux-compression generators, but we propose the use of plasma armatures rather than solid, conducting armatures. We present experimental results from the Z accelerator in which magnetic fields of ~2 kT are generated and measured with several diagnostics. Issues such as energy loss in solid conductors and dynamic response of current-carrying conductors to very large magnetic fields are reviewed in context with Z experiments. We describe planned flux-compression experiments that are expected to create the highest-magnitude uniform-field volumes yet attained in the laboratory.

  2. Electric field measurements in moving ionization fronts during plasma breakdown

    NARCIS (Netherlands)

    Wagenaars, E.; Bowden, M.D.; Kroesen, G.M.W.

    2006-01-01

    We have performed time-resolved, direct measurements of electric field strengths in moving ionization fronts during the breakdown phase of a pulsed plasma. Plasma breakdown, or plasma ignition, is a highly transient process marking the transition from a gas to a plasma. Some aspects of plasma

  3. Enhanced self-magnetic field by atomic polarization in partially stripped plasma produced by a short and intense laser pulse

    International Nuclear Information System (INIS)

    Hu Qianglin; Liu Shibing; Jiang, Y.J.; Zhang Jie

    2005-01-01

    The enhancement and redistribution of a self-generated quasistatic magnetic field, due to the presence of the polarization field induced by partially ionized atoms, are analytically revealed when a linearly polarized intense and short pulse laser propagates in a partially stripped plasma with higher density. In particular, the shorter wavelength of the laser pulse can evidently intensify the amplitude of the magnetic field. These enhancement and redistribution of the magnetic field are considered physically as a result of the competition of the electrostatic field (electron-ion separation) associated with the plasma wave, the atomic polarization field, and the pondoromotive potential associated with the laser field. This competition leads to the generation of a positive, large amplitude magnetic field in the zone of the pulse center, which forms a significant difference in partially and fully stripped plasmas. The numerical result shows further that the magnetic field is resonantly modulated by the plasma wave when the pulse length is the integer times the plasma wavelength. This apparently implies that the further enhancement and restructure of the large amplitude self-magnetic field can evidently impede the acceleration and stable transfer of the hot-electron beam

  4. High speed pulsed magnetic fields measurements, using the Faraday effect

    International Nuclear Information System (INIS)

    Dillet, A.

    1964-12-01

    For these measures, the information used is the light polarization plane rotation induced by the magnetic field in a glass probe. This rotation is detected using a polarizer-analyzer couple. The detector is a photomultiplier used with high-current and pulsed light. In a distributed magnet (gap: 6 x 3 x 3 cm) magnetic fields to measure are 300 gauss, lasting 0.1 μs, with rise times ≤ 35 ns, repetition rate: 1/s. An oscilloscope is used to view the magnetic field from the P.M. plate signal. The value of the field is computed from a previous static calibration. Magnetic fields from 50 to 2000 gauss (with the probe now used) can be measured to about 20 gauss ± 5 per cent, with a frequency range of 30 MHz. (author) [fr

  5. The effect of high voltage, high frequency pulsed electric field on slain ovine cortical bone.

    Science.gov (United States)

    Asgarifar, Hajarossadat; Oloyede, Adekunle; Zare, Firuz

    2014-04-01

    High power, high frequency pulsed electric fields known as pulsed power (PP) has been applied recently in biology and medicine. However, little attention has been paid to investigate the application of pulse power in musculoskeletal system and its possible effect on functional behavior and biomechanical properties of bone tissue. This paper presents the first research investigating whether or not PP can be applied safely on bone tissue as a stimuli and what will be the possible effect of these signals on the characteristics of cortical bone by comparing the mechanical properties of this type of bone pre and post expose to PP and in comparison with the control samples. A positive buck-boost converter was applied to generate adjustable high voltage, high frequency pulses (up to 500 V and 10 kHz). The functional behavior of bone in response to pulse power excitation was elucidated by applying compressive loading until failure. The stiffness, failure stress (strength) and the total fracture energy (bone toughness) were determined as a measure of the main bone characteristics. Furthermore, an ultrasonic technique was applied to determine and comprise bone elasticity before and after pulse power stimulation. The elastic property of cortical bone samples appeared to remain unchanged following exposure to pulse power excitation for all three orthogonal directions obtained from ultrasonic technique and similarly from the compression test. Nevertheless, the compressive strength and toughness of bone samples were increased when they were exposed to 66 h of high power pulsed electromagnetic field compared to the control samples. As the toughness and the strength of the cortical bone tissue are directly associated with the quality and integrity of the collagen matrix whereas its stiffness is primarily related to bone mineral content these overall results may address that although, the pulse power stimulation can influence the arrangement or the quality of the collagen network

  6. Modal description of longitudinal space-charge fields in pulse-driven free-electron devices

    Directory of Open Access Journals (Sweden)

    Yu. Lurie

    2010-05-01

    Full Text Available In pulsed-beam free-electron devices, longitudinal space-charge fields result in collective effects leading to an expansion of short electron bunches along their trajectory. This effect restricts an application of intense ultrashort electron pulses in free-electron radiation sources. A careful theoretical treatment is required in order to achieve an accurate description of the self-fields and the resulted electron beam dynamics. In this paper, longitudinal space-charge fields are considered in the framework of a three-dimensional, space-frequency approach. The model is based on the expansion of the total electromagnetic field (including self-fields in terms of transverse eigenmodes of the (cold cavity, in which the field is excited and propagates. The electromagnetic field, originally obtained in the model as a solution of the wave equation, is shown to satisfy also Gauss’s law. We applied the theory to derive an analytical expression for the longitudinal electric field of a pointlike charge, moving along a waveguide at a constant velocity. This enables consideration and study of the role played by different terms of the resulted expressions, such as components arising from forward and backward waves, propagating waves, and under cutoff frequencies, and so on. Possible simplifications in evaluation of longitudinal space-charge fields are discussed.

  7. Development of soft x-ray time-resolved photoemission spectroscopy system with a two-dimensional angle-resolved time-of-flight analyzer at SPring-8 BL07LSU

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Manami; Yamamoto, Susumu; Nakamura, Fumitaka; Yukawa, Ryu; Fukushima, Akiko; Harasawa, Ayumi; Kakizaki, Akito; Matsuda, Iwao [Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Chiba 277-8581 (Japan); Kousa, Yuka; Kondoh, Hiroshi [Department of Chemistry, Keio University, Yokohama 223-8522 (Japan); Tanaka, Yoshihito [RIKEN/SPring-8 Center, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan)

    2012-02-15

    We have developed a soft x-ray time-resolved photoemission spectroscopy system using synchrotron radiation (SR) at SPring-8 BL07LSU and an ultrashort pulse laser system. Two-dimensional angle-resolved measurements were performed with a time-of-flight-type analyzer. The photoemission spectroscopy system is synchronized to light pulses of SR and laser using a time control unit. The performance of the instrument is demonstrated by mapping the band structure of a Si(111) crystal over the surface Brillouin zones and observing relaxation of the surface photo-voltage effect using the pump (laser) and probe (SR) method.

  8. Dynamical cancellation of pulse-induced transients in a metallic shielded room for ultra-low-field magnetic resonance imaging

    International Nuclear Information System (INIS)

    Zevenhoven, Koos C. J.; Ilmoniemi, Risto J.; Dong, Hui; Clarke, John

    2015-01-01

    Pulse-induced transients such as eddy currents can cause problems in measurement techniques where a signal is acquired after an applied preparatory pulse. In ultra-low-field magnetic resonance imaging, performed in magnetic fields typically of the order of 100 μT, the signal-to-noise ratio is enhanced in part by prepolarizing the proton spins with a pulse of much larger magnetic field and in part by detecting the signal with a Superconducting QUantum Interference Device (SQUID). The pulse turn-off, however, can induce large eddy currents in the shielded room, producing an inhomogeneous magnetic-field transient that both seriously distorts the spin dynamics and exceeds the range of the SQUID readout. It is essential to reduce this transient substantially before image acquisition. We introduce dynamical cancellation (DynaCan), a technique in which a precisely designed current waveform is applied to a separate coil during the later part and turn off of the polarizing pulse. This waveform, which bears no resemblance to the polarizing pulse, is designed to drive the eddy currents to zero at the precise moment that the polarizing field becomes zero. We present the theory used to optimize the waveform using a detailed computational model with corrections from measured magnetic-field transients. SQUID-based measurements with DynaCan demonstrate a cancellation of 99%. Dynamical cancellation has the great advantage that, for a given system, the cancellation accuracy can be optimized in software. This technique can be applied to both metal and high-permeability alloy shielded rooms, and even to transients other than eddy currents

  9. Modeling high-intensity pulsed electric field inactivation of a lipase from Pseudomonas fluorescens.

    Science.gov (United States)

    Soliva-Fortuny, R; Bendicho-Porta, S; Martín-Belloso, O

    2006-11-01

    The inactivation kinetics of a lipase from Pseudomonas fluorescens (EC 3.1.1.3.) were studied in a simulated skim milk ultrafiltrate treated with high-intensity pulsed electric fields. Samples were subjected to electric field intensities ranging from 16.4 to 27.4 kV/cm for up to 314.5 micros, thus achieving a maximum inactivation of 62.1%. The suitability of describing experimental data using mechanistic first-order kinetics and an empirical model based on the Weibull distribution function is discussed. In addition, different mathematical expressions relating the residual activity values to field strength and treatment time are supplied. A first-order fractional conversion model predicted residual activity with good accuracy (A(f) = 1.018). A mechanistic insight of the model kinetics was that experimental values were the consequence of different structural organizations of the enzyme, with uneven resistance to the pulsed electric field treatments. The Weibull model was also useful in predicting the energy density necessary to achieve lipase inactivation.

  10. Effect of pulsed electric field on the rheological and colour properties of soy milk.

    Science.gov (United States)

    Xiang, Bob Y; Simpson, Marian V; Ngadi, Michael O; Simpson, Benjamin K

    2011-12-01

    The effects of pulsed electric field (PEF) treatments on rheological and colour properties of soy milk were evaluated. Flow behaviour, viscosity and rheological parameters of PEF-treated soy milk were monitored using a controlled stress rheometer. For PEF treatments, electric field intensity of 18, 20 and 22 kV cm(-1) and number of pulses of 25, 50, 75 and 100 were used. For the measurements of rheological properties of soy milk shear rates between 0 and 200 s(-1) was used. The rheological behaviour of control and the PEF-treated soy milk were described using a power law model. The PEF treatments affected the rheological properties of soy milk. Apparent viscosity of soy milk increased from 6.62 to 7.46 (10(-3) Pa s) with increase in electric field intensity from 18 to 22 kV cm(-1) and increase in the number of pulses from 0 to 100. The consistency index (K) of soy milk also changed with PEF treatments. Lightness (L*), red/greenness (a*) and yellowness/blueness (b*) of soy milk were affected by PEF treatments.

  11. Numerical simulations of time-resolved quantum electronics

    International Nuclear Information System (INIS)

    Gaury, Benoit; Weston, Joseph; Santin, Matthieu; Houzet, Manuel; Groth, Christoph; Waintal, Xavier

    2014-01-01

    Numerical simulation has become a major tool in quantum electronics both for fundamental and applied purposes. While for a long time those simulations focused on stationary properties (e.g. DC currents), the recent experimental trend toward GHz frequencies and beyond has triggered a new interest for handling time-dependent perturbations. As the experimental frequencies get higher, it becomes possible to conceive experiments which are both time-resolved and fast enough to probe the internal quantum dynamics of the system. This paper discusses the technical aspects–mathematical and numerical–associated with the numerical simulations of such a setup in the time domain (i.e. beyond the single-frequency AC limit). After a short review of the state of the art, we develop a theoretical framework for the calculation of time-resolved observables in a general multiterminal system subject to an arbitrary time-dependent perturbation (oscillating electrostatic gates, voltage pulses, time-varying magnetic fields, etc.) The approach is mathematically equivalent to (i) the time-dependent scattering formalism, (ii) the time-resolved non-equilibrium Green’s function (NEGF) formalism and (iii) the partition-free approach. The central object of our theory is a wave function that obeys a simple Schrödinger equation with an additional source term that accounts for the electrons injected from the electrodes. The time-resolved observables (current, density, etc.) and the (inelastic) scattering matrix are simply expressed in terms of this wave function. We use our approach to develop a numerical technique for simulating time-resolved quantum transport. We find that the use of this wave function is advantageous for numerical simulations resulting in a speed up of many orders of magnitude with respect to the direct integration of NEGF equations. Our technique allows one to simulate realistic situations beyond simple models, a subject that was until now beyond the simulation

  12. Photoelectron emission from LiF surfaces by ultrashort electromagnetic pulses

    International Nuclear Information System (INIS)

    Acuna, M. A.; Gravielle, M. S.

    2011-01-01

    Energy- and angle-resolved electron emission spectra produced by incidence of ultrashort electromagnetic pulses on a LiF(001) surface are studied by employing a distorted-wave method named the crystal surface-Volkov (CSV) approximation. The theory makes use of the Volkov phase to describe the action of the external electric field on the emitted electron, while the electron-surface interaction is represented within the tight-binding model. The CSV approach is applied to investigate the effects introduced by the crystal lattice when the electric field is oriented parallel to the surface plane. These effects are essentially governed by the vector potential of the external field, while the influence of the crystal orientation was found to be negligible.

  13. Time- and wavelength-resolved luminescence evaluation of several types of scintillators using streak camera system equipped with pulsed X-ray source

    Energy Technology Data Exchange (ETDEWEB)

    Furuya, Yuki, E-mail: f.yuki@mail.tagen.tohoku.ac.j [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Yanagida, Takayuki; Fujimoto, Yutaka; Yokota, Yuui; Kamada, Kei [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Kawaguchi, Noriaki [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Research and Development Division, Tokuyama., Co. Ltd., ICR-Building, Minamiyoshinari, Aoba-ku, Sendai (Japan); Ishizu, Sumito [Research and Development Division, Tokuyama., Co. Ltd., ICR-Building, Minamiyoshinari, Aoba-ku, Sendai (Japan); Uchiyama, Koro; Mori, Kuniyoshi [Hamamatsu Photonics K.K., 325-6, Sunayama-cho, Naka-ku, Hamamatsu, Shizuoka 430-8587 (Japan); Kitano, Ken [Vacuum and Optical Instruments, 2-18-18 Shimomaruko, Ota, Tokyo 146-0092 (Japan); Nikl, Martin [Institute of Physics ASCR, Cukrovarnicka 10, Prague 6, 162-53 (Czech Republic); Yoshikawa, Akira [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); NICHe, Tohoku University, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai 980-8579 (Japan)

    2011-04-01

    To design new scintillating materials, it is very important to understand detailed information about the events, which occurred during the excitation and emission processes under the ionizing radiation excitation. We developed a streak camera system equipped with picosecond pulsed X-ray source to observe time- and wavelength-resolved scintillation events. In this report, we test the performance of this new system using several types of scintillators including bulk oxide/halide crystals, transparent ceramics, plastics and powders. For all samples, the results were consistent with those reported previously. The results demonstrated that the developed system is suitable for evaluation of the scintillation properties.

  14. Depth-resolved ballistic imaging in a low-depth-of-field optical Kerr gated imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Yipeng; Tan, Wenjiang, E-mail: tanwenjiang@mail.xjtu.edu.cn; Si, Jinhai; Ren, YuHu; Xu, Shichao; Hou, Xun [Key Laboratory for Physical Electronics and Devices of the Ministry of Education and Shaanxi Key Lab of Information Photonic Technique, School of Electronics and Information Engineering, Xi' an Jiaotong University, Xianning-xilu 28, Xi' an 710049 (China); Tong, Junyi [Departments of Applied Physics, Xi' an University of Technology, Xi' an 710048 (China)

    2016-09-07

    We demonstrate depth-resolved imaging in a ballistic imaging system, in which a heterodyned femtosecond optical Kerr gate is introduced to extract useful imaging photons for detecting an object hidden in turbid media and a compound lens is proposed to ensure both the depth-resolved imaging capability and the long working distance. Two objects of about 15-μm widths hidden in a polystyrene-sphere suspension have been successfully imaged with approximately 600-μm depth resolution. Modulation-transfer-function curves with the object in and away from the object plane have also been measured to confirm the depth-resolved imaging capability of the low-depth-of-field (low-DOF) ballistic imaging system. This imaging approach shows potential for application in research of the internal structure of highly scattering fuel spray.

  15. Salmonella enterica pulsed-field gel electrophoresis clusters, Minnesota, USA, 2001-2007.

    Science.gov (United States)

    Rounds, Joshua M; Hedberg, Craig W; Meyer, Stephanie; Boxrud, David J; Smith, Kirk E

    2010-11-01

    We determined characteristics of Salmonella enterica pulsed-field gel electrophoresis clusters that predict their being solved (i.e., that result in identification of a confirmed outbreak). Clusters were investigated by the Minnesota Department of Health by using a dynamic iterative model. During 2001-2007, a total of 43 (12.5%) of 344 clusters were solved. Clusters of ≥4 isolates were more likely to be solved than clusters of 2 isolates. Clusters in which the first 3 case isolates were received at the Minnesota Department of Health within 7 days were more likely to be solved than were clusters in which the first 3 case isolates were received over a period >14 days. If resources do not permit investigation of all S. enterica pulsed-field gel electrophoresis clusters, investigation of clusters of ≥4 cases and clusters in which the first 3 case isolates were received at a public health laboratory within 7 days may improve outbreak investigations.

  16. Optical field emission from resonant gold nanorods driven by femtosecond mid-infrared pulses

    Energy Technology Data Exchange (ETDEWEB)

    Kusa, F. [Department of Applied Physics, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei Tokyo 184-8588 (Japan); Institute of Industrial Science, the University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505 (Japan); Echternkamp, K. E.; Herink, G.; Ropers, C. [4th Physical Institute – Solids and Nanostructures, University of Göttingen, 37077 Göttingen (Germany); Ashihara, S., E-mail: ashihara@iis.u-tokyo.ac.jp [Institute of Industrial Science, the University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505 (Japan)

    2015-07-15

    We demonstrate strong-field photoelectron emission from gold nanorods driven by femtosecond mid-infrared optical pulses. The maximum photoelectron yield is reached at the localized surface plasmon resonance, indicating that the photoemission is governed by the resonantly-enhanced optical near-field. The wavelength- and field-dependent photoemission yield allows for a noninvasive determination of local field enhancements, and we obtain intensity enhancement factors close to 1300, in good agreement with finite-difference time domain computations.

  17. Towards higher stability of resonant absorption measurements in pulsed plasmas.

    Science.gov (United States)

    Britun, Nikolay; Michiels, Matthieu; Snyders, Rony

    2015-12-01

    Possible ways to increase the reliability of time-resolved particle density measurements in pulsed gaseous discharges using resonant absorption spectroscopy are proposed. A special synchronization, called "dynamic source triggering," between a gated detector and two pulsed discharges, one representing the discharge of interest and another being used as a reference source, is developed. An internal digital delay generator in the intensified charge coupled device camera, used at the same time as a detector, is utilized for this purpose. According to the proposed scheme, the light pulses from the reference source follow the gates of detector, passing through the discharge of interest only when necessary. This allows for the utilization of short-pulse plasmas as reference sources, which is critical for time-resolved absorption analysis of strongly emitting pulsed discharges. In addition to dynamic source triggering, the reliability of absorption measurements can be further increased using simultaneous detection of spectra relevant for absorption method, which is also demonstrated in this work. The proposed methods are illustrated by the time-resolved measurements of the metal atom density in a high-power impulse magnetron sputtering (HiPIMS) discharge, using either a hollow cathode lamp or another HiPIMS discharge as a pulsed reference source.

  18. Towards higher stability of resonant absorption measurements in pulsed plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Britun, Nikolay, E-mail: nikolay.britun@umons.ac.be [Chimie des Interactions Plasma Surface (ChIPS), CIRMAP, Université de Mons, 23 Place du Parc, B-7000 Mons (Belgium); Michiels, Matthieu [Materia Nova Research Center, Parc Initialis, B-7000 Mons (Belgium); Snyders, Rony [Chimie des Interactions Plasma Surface (ChIPS), CIRMAP, Université de Mons, 23 Place du Parc, B-7000 Mons (Belgium); Materia Nova Research Center, Parc Initialis, B-7000 Mons (Belgium)

    2015-12-15

    Possible ways to increase the reliability of time-resolved particle density measurements in pulsed gaseous discharges using resonant absorption spectroscopy are proposed. A special synchronization, called “dynamic source triggering,” between a gated detector and two pulsed discharges, one representing the discharge of interest and another being used as a reference source, is developed. An internal digital delay generator in the intensified charge coupled device camera, used at the same time as a detector, is utilized for this purpose. According to the proposed scheme, the light pulses from the reference source follow the gates of detector, passing through the discharge of interest only when necessary. This allows for the utilization of short-pulse plasmas as reference sources, which is critical for time-resolved absorption analysis of strongly emitting pulsed discharges. In addition to dynamic source triggering, the reliability of absorption measurements can be further increased using simultaneous detection of spectra relevant for absorption method, which is also demonstrated in this work. The proposed methods are illustrated by the time-resolved measurements of the metal atom density in a high-power impulse magnetron sputtering (HiPIMS) discharge, using either a hollow cathode lamp or another HiPIMS discharge as a pulsed reference source.

  19. RESOLVE's Field Demonstration on Mauna Kea, Hawaii 2010

    Science.gov (United States)

    Captain, Janine; Quinn, Jacqueline; Moss, Thomas; Weis, Kyle

    2010-01-01

    In cooperation with the Canadian Space Agency, and the Northern Centre for Advanced Technology, Inc., NASA has undertaken the In-Situ Resource Utilization (ISRU) project called RESOLVE (Regolith and Environment Science & Oxygen and Lunar Volatile Extraction). This project is an Earth-based lunar precursor demonstration of a system that could be sent to explore permanently shadowed polar lunar craters, where it would drill into regolith, quantify the volatiles that are present, and extract oxygen by hydrogen reduction of iron oxides. The resulting water could be electrolyzed into oxygen to support exploration and hydrogen, which would be recycled through the process. The RESOLVE chemical processing system was mounted on a Canadian Space Agency mobility chasis and successfully demonstrated on Hawaii's Mauna Kea volcano in February 2010. The RESOLVE unit is the initial prototype of a robotic prospecting mission to the Moon. RESOLVE is designed to go to the poles of the Moon to "ground truth" the form and concentration of the hydrogen/water/hydroxyl that has been seen from orbit (M3, Lunar Prospector and LRO) and to test technologies to extract oxygen from the lunar regolith. RESOLVE has the ability to capture a one-meter core sample of lunar regolith and heat it to determine the volatiles that may be released and then demonstrate the production of oxygen from minerals found in the regolith. The RESOLVE project, which is led by KSC, is a multi-center and multi-organizational effort that includes representatives from KSC, JSC, GRC, the Canadian Space Agency, and the Northern Center for Advanced Technology (NORCAT). This paper details the results obtained from four days of lunar analog testing that included gas chromatograph analysis for volatile components, remote control of chemistry and drilling operations via satalite communications, and real-time water quantification using a novel capacitance measurement technique.

  20. Generation of a strong attosecond pulse train with an orthogonally polarized two-color laser field

    International Nuclear Information System (INIS)

    Kim, Chul Min; Kim, I Jong; Nam, Chang Hee

    2005-01-01

    We theoretically investigate the high-order harmonic generation from a neon atom irradiated by an intense two-color femtosecond laser pulse, in which the fundamental field and its second harmonic are linearly polarized and orthogonal to each other. In contrast to usual high-harmonic generation with linearly polarized fundamental field alone, a very strong and clean high-harmonic spectrum, consisting of both odd and even orders of harmonics, can be generated in the orthogonally polarized two-color laser field with proper selection of the relative phase between the fundamental and second-harmonic fields. In time domain, this results in a strong and regular attosecond pulse train. The origin of these behaviors is elucidated by analyzing semiclassical electron paths and by simulating high-harmonic generation quantum mechanically

  1. Nine-channel mid-power bipolar pulse generator based on a field programmable gate array

    Energy Technology Data Exchange (ETDEWEB)

    Haylock, Ben, E-mail: benjamin.haylock2@griffithuni.edu.au; Lenzini, Francesco; Kasture, Sachin; Fisher, Paul; Lobino, Mirko [Centre for Quantum Dynamics, Griffith University, Brisbane (Australia); Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane (Australia); Streed, Erik W. [Centre for Quantum Dynamics, Griffith University, Brisbane (Australia); Institute for Glycomics, Griffith University, Gold Coast (Australia)

    2016-05-15

    Many channel arbitrary pulse sequence generation is required for the electro-optic reconfiguration of optical waveguide networks in Lithium Niobate. Here we describe a scalable solution to the requirement for mid-power bipolar parallel outputs, based on pulse patterns generated by an externally clocked field programmable gate array. Positive and negative pulses can be generated at repetition rates up to 80 MHz with pulse width adjustable in increments of 1.6 ns across nine independent outputs. Each channel can provide 1.5 W of RF power and can be synchronised with the operation of other components in an optical network such as light sources and detectors through an external clock with adjustable delay.

  2. Light field driven streak-camera for single-shot measurements of the temporal profile of XUV-pulses from a free-electron laser; Lichtfeld getriebene Streak-Kamera zur Einzelschuss Zeitstrukturmessung der XUV-Pulse eines Freie-Elektronen Lasers

    Energy Technology Data Exchange (ETDEWEB)

    Fruehling, Ulrike

    2009-10-15

    The Free Electron Laser in Hamburg (FLASH) is a source for highly intense ultra short extreme ultraviolet (XUV) light pulses with pulse durations of a few femtoseconds. Due to the stochastic nature of the light generation scheme based on self amplified spontaneous emission (SASE), the duration and temporal profile of the XUV pulses fluctuate from shot to shot. In this thesis, a THz-field driven streak-camera capable of single pulse measurements of the XUV pulse-profile has been realized. In a first XUV-THz pump-probe experiment at FLASH, the XUV-pulses are overlapped in a gas target with synchronized THz-pulses generated by a new THz-undulator. The electromagnetic field of the THz light accelerates photoelectrons produced by the XUV-pulses with the resulting change of the photoelectron momenta depending on the phase of the THz field at the time of ionisation. This technique is intensively used in attosecond metrology where near infrared streaking fields are employed for the temporal characterisation of attosecond XUV-Pulses. Here, it is adapted for the analysis of pulse durations in the few femtosecond range by choosing a hundred times longer far infrared streaking wavelengths. Thus, the gap between conventional streak cameras with typical resolutions of hundreds of femtoseconds and techniques with attosecond resolution is filled. Using the THz-streak camera, the time dependent electric field of the THz-pulses was sampled in great detail while on the other hand the duration and even details of the time structure of the XUV-pulses were characterized. (orig.)

  3. Exploring the Effects of Pulsed Electric Field Processing Parameters on Polyacetylene Extraction from Carrot Slices

    Directory of Open Access Journals (Sweden)

    Ingrid Aguiló-Aguayo

    2015-03-01

    Full Text Available The effects of various pulsed electric field (PEF parameters on the extraction of polyacetylenes from carrot slices were investigated. Optimised conditions with regard to electric field strength (1–4 kV/cm, number of pulses (100–1500, pulse frequency (10–200 Hz and pulse width (10–30 μs were identified using response surface methodology (RSM to maximise the extraction of falcarinol (FaOH, falcarindiol (FaDOH and falcarindiol-3-acetate (FaDOAc from carrot slices. Data obtained from RSM and experiments fitted significantly (p < 0.0001 the proposed second-order response functions with high regression coefficients (R2 ranging from 0.82 to 0.75. Maximal FaOH (188%, FaDOH (164.9% and FaDOAc (166.8% levels relative to untreated samples were obtained from carrot slices after applying PEF treatments at 4 kV/cm with 100 number of pulses of 10 μs at 10 Hz. The predicted values from the developed quadratic polynomial equation were in close agreement with the actual experimental values with low average mean deviations (E% ranging from 0.68% to 3.58%.

  4. Extremely short light pulses: generation; diagnostics, and application in attosecond spectroscopy

    International Nuclear Information System (INIS)

    Iakovlev, V.

    2003-06-01

    The scope of the thesis includes the design of chirped mirrors, as well as theoretical investigations in the fields of high-harmonic generation and laser-dressed Auger decay, the unifying aspect being the presence of extremely short light pulses and physical processes taking place on a femtosecond scale. The main results of the research are the following: 1) It was shown that efficient global optimization of chirped mirrors is possible with an adapted version of the memetic algorithm (also known as hybrid genetic algorithm). 2) The analysis of high-harmonic spectra generated by a few-cycle laser pulse can reveal the electric field of the pulse in the vicinity of its envelope peak. The method developed for this purpose can also be regarded as a method to measure the carrier-envelope phase of laser pulses, which is more robust and has a larger range of applicability compared to the simple analysis of the cut-off region of high-harmonic spectra. 3) A quantum theory of time-resolved Auger spectroscopy was developed. Based on the essential states method, closed-form expressions for probability amplitudes were derived. The theory lays the foundation for the interpretation of experiments that probe electronic motion during atomic excitation, deexcitation, and ionization. (author)

  5. Experimental study of the counting loss in an ionization chamber in pulsed radiation fields

    International Nuclear Information System (INIS)

    Goncalez, O.L.; Yanagihara, L.S.; Veissid, V.L.C.P.; Herdade, S.B.; Teixeira, A.N.

    1983-01-01

    The behavior of an ionization chamber gamma ray monitor in a pulsed radiation field at a linear electron accelerator facility was studied experiementally. A loss of sensitivity was observed as expected due to the pulsed nature of the radiation. By fitting the experiemental data to semi-empirical expressions, parameters for the correction of the counting efficiency were obtained. (Author) [pt

  6. Simultaneous time-space resolved reflectivity and interferometric measurements of dielectrics excited with femtosecond laser pulses

    Science.gov (United States)

    Garcia-Lechuga, M.; Haahr-Lillevang, L.; Siegel, J.; Balling, P.; Guizard, S.; Solis, J.

    2017-06-01

    Simultaneous time-and-space resolved reflectivity and interferometric measurements over a temporal span of 300 ps have been performed in fused silica and sapphire samples excited with 800 nm, 120 fs laser pulses at energies slightly and well above the ablation threshold. The experimental results have been simulated in the frame of a multiple-rate equation model including light propagation. The comparison of the temporal evolution of the reflectivity and the interferometric measurements at 400 nm clearly shows that the two techniques interrogate different material volumes during the course of the process. While the former is sensitive to the evolution of the plasma density in a very thin ablating layer at the surface, the second yields an averaged plasma density over a larger volume. It is shown that self-trapped excitons do not appreciably contribute to carrier relaxation in fused silica at fluences above the ablation threshold, most likely due to Coulomb screening effects at large excited carrier densities. For both materials, at fluences well above the ablation threshold, the maximum measured plasma reflectivity shows a saturation behavior consistent with a scattering rate proportional to the plasma density in this fluence regime. Moreover, for both materials and for pulse energies above the ablation threshold and delays in the few tens of picoseconds range, a simultaneous "low reflectivity" and "low transmission" behavior is observed. Although this behavior has been identified in the past as a signature of femtosecond laser-induced ablation, its origin is alternatively discussed in terms of the optical properties of a material undergoing strong isochoric heating, before having time to substantially expand or exchange energy with the surrounding media.

  7. Ultrashort X-ray pulse science

    Energy Technology Data Exchange (ETDEWEB)

    Chin, Alan Hap [Univ. of California, Berkeley, CA (US). Dept. of Physics; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    1998-05-01

    A variety of phenomena involves atomic motion on the femtosecond time-scale. These phenomena have been studied using ultrashort optical pulses, which indirectly probe atomic positions through changes in optical properties. Because x-rays can more directly probe atomic positions, ultrashort x-ray pulses are better suited for the study of ultrafast structural dynamics. One approach towards generating ultrashort x-ray pulses is by 90° Thomson scattering between terawatt laser pulses and relativistic electrons. Using this technique, the author generated ~ 300 fs, 30 keV (0.4 Å) x-ray pulses. These x-ray pulses are absolutely synchronized with ultrashort laser pulses, allowing femtosecond optical pump/x-ray probe experiments to be performed. Using the right-angle Thomson scattering x-ray source, the author performed time-resolved x-ray diffraction studies of laser-perturbated InSb. These experiments revealed a delayed onset of lattice expansion. This delay is due to the energy relaxation from a dense electron-hole plasma to the lattice. The dense electron-hole plasma first undergoes Auger recombination, which reduces the carrier concentration while maintaining energy content. Longitudinal-optic (LO) phonon emission then couples energy to the lattice. LO phonon decay into acoustic phonons, and acoustic phonon propagation then causes the growth of a thermally expanded layer. Source characterization is instrumental in utilizing ultrashort x-ray pulses in time-resolved x-ray spectroscopies. By measurement of the electron beam diameter at the generation point, the pulse duration of the Thomson scattered x-rays is determined. Analysis of the Thomson scattered x-ray beam properties also provides a novel means of electron bunch characterization. Although the pulse duration is inferred for the Thomson scattering x-ray source, direct measurement is required for other x-ray pulse sources. A method based on the laser-assisted photoelectric effect (LAPE) has been demonstrated as a

  8. Ultrashort X-ray pulse science

    International Nuclear Information System (INIS)

    Chin, A.H.; Lawrence Berkeley National Lab., CA

    1998-01-01

    A variety of phenomena involves atomic motion on the femtosecond time-scale. These phenomena have been studied using ultrashort optical pulses, which indirectly probe atomic positions through changes in optical properties. Because x-rays can more directly probe atomic positions, ultrashort x-ray pulses are better suited for the study of ultrafast structural dynamics. One approach towards generating ultrashort x-ray pulses is by 90 o Thomson scattering between terawatt laser pulses and relativistic electrons. Using this technique, the author generated ∼ 300 fs, 30 keV (0.4 (angstrom)) x-ray pulses. These x-ray pulses are absolutely synchronized with ultrashort laser pulses, allowing femtosecond optical pump/x-ray probe experiments to be performed. Using the right-angle Thomson scattering x-ray source, the author performed time-resolved x-ray diffraction studies of laser-perturbated InSb. These experiments revealed a delayed onset of lattice expansion. This delay is due to the energy relaxation from a dense electron-hole plasma to the lattice. The dense electron-hole plasma first undergoes Auger recombination, which reduces the carrier concentration while maintaining energy content. Longitudinal-optic (LO) phonon emission then couples energy to the lattice. LO phonon decay into acoustic phonons, and acoustic phonon propagation then causes the growth of a thermally expanded layer. Source characterization is instrumental in utilizing ultrashort x-ray pulses in time-resolved x-ray spectroscopies. By measurement of the electron beam diameter at the generation point, the pulse duration of the Thomson scattered x-rays is determined. Analysis of the Thomson scattered x-ray beam properties also provides a novel means of electron bunch characterization. Although the pulse duration is inferred for the Thomson scattering x-ray source, direct measurement is required for other x-ray pulse sources. A method based on the laser-assisted photoelectric effect (LAPE) has been

  9. Adiabatic sweep pulses for earth's field NMR with a surface coil

    Science.gov (United States)

    Conradi, Mark S.; Altobelli, Stephen A.; Sowko, Nicholas J.; Conradi, Susan H.; Fukushima, Eiichi

    2018-03-01

    Adiabatic NMR sweep pulses are described for inversion and excitation in very low magnetic fields B0 and with broad distribution of excitation field amplitude B1. Two aspects distinguish the low field case: (1) when B1 is comparable to or greater than B0, the rotating field approximation fails and (2) inversion sweeps cannot extend to values well below the Larmor frequency because they would approach or pass through zero frequency. Three approaches to inversion are described. The first is a conventional tangent frequency sweep down to the Larmor frequency, a 180° phase shift, and a sweep back up to the starting frequency. The other two are combined frequency and amplitude sweeps covering a narrower frequency range; one is a symmetric sweep from above to below the Larmor frequency and the other uses a smooth decrease of B1 immediately before and after the 180° phase shift. These two AM/FM sweeps show excellent inversion efficiencies over a wide range of B1, a factor of 30 or more. We also demonstrate an excitation sweep that works well in the presence of the same wide range of B1. We show that the primary effect of the counter-rotating field (i.e., at low B0) is that the magnetization suffers large, periodic deviations from where it would be at large B0. Thus, successful sweep pulses must avoid any sharp features in the amplitude, phase, or frequency.

  10. [Effect of pulse magnetic field on distribution of neuronal action potential].

    Science.gov (United States)

    Zheng, Yu; Cai, Di; Wang, Jin-Hai; Li, Gang; Lin, Ling

    2014-08-25

    The biological effect on the organism generated by magnetic field is widely studied. The present study was aimed to observe the change of sodium channel under magnetic field in neurons. Cortical neurons of Kunming mice were isolated, subjected to 15 Hz, 1 mT pulse magnetic stimulation, and then the currents of neurons were recorded by whole-cell patch clamp. The results showed that, under magnetic stimulation, the activation process of Na(+) channel was delayed, and the inactivation process was accelerated. Given the classic three-layer model, the polarization diagram of cell membrane potential distribution under pulse magnetic field was simulated, and it was found that the membrane potential induced was associated with the frequency and intensity of magnetic field. Also the effect of magnetic field-induced current on action potential was simulated by Hodgkin-Huxley (H-H) model. The result showed that the generation of action potential was delayed, and frequency and the amplitudes were decreased when working current was between -1.32 μA and 0 μA. When the working current was higher than 0 μA, the generation frequency of action potential was increased, and the change of amplitudes was not obvious, and when the working current was lower than -1.32 μA, the time of rising edge and amplitudes of action potential were decreased drastically, and the action potential was unable to generate. These results suggest that the magnetic field simulation can affect the distribution frequency and amplitude of action potential of neuron via sodium channel mediation.

  11. Effect of pulsed electric field on the germination of barley seeds

    DEFF Research Database (Denmark)

    Dymek, Katarzyna; Dejmek, Petr; Panarese, Valentina

    2012-01-01

    This study explores metabolic responses of germinating barley seeds upon the application of pulsed electric fields (PEF). Malting barley seeds were steeped in aerated water for 24 h and PEF-treated at varying voltages (0 (control), 110, 160, 240, 320, 400 and 480 V). The seeds were then allowed...

  12. Enhancing Food Processing by Pulsed and High Voltage Electric Fields: Principles and Applications.

    Science.gov (United States)

    Wang, Qijun; Li, Yifei; Sun, Da-Wen; Zhu, Zhiwei

    2018-02-02

    Improvements in living standards result in a growing demand for food with high quality attributes including freshness, nutrition and safety. However, current industrial processing methods rely on traditional thermal and chemical methods, such as sterilization and solvent extraction, which could induce negative effects on food quality and safety. The electric fields (EFs) involving pulsed electric fields (PEFs) and high voltage electric fields (HVEFs) have been studied and developed for assisting and enhancing various food processes. In this review, the principles and applications of pulsed and high voltage electric fields are described in details for a range of food processes, including microbial inactivation, component extraction, and winemaking, thawing and drying, freezing and enzymatic inactivation. Moreover, the advantages and limitations of electric field related technologies are discussed to foresee future developments in the food industry. This review demonstrates that electric field technology has a great potential to enhance food processing by supplementing or replacing the conventional methods employed in different food manufacturing processes. Successful industrial applications of electric field treatments have been achieved in some areas such as microbial inactivation and extraction. However, investigations of HVEFs are still in an early stage and translating the technology into industrial applications need further research efforts.

  13. Preliminary Optical And Electric Field Pulse Statistics From Storm Overflights During The Altus Cumulus Electrification Study

    Science.gov (United States)

    Mach, D. A.; Blakeslee, R. J.; Bailey, J. C.; Farrell, W. M.; Goldberg, R. A.; Desch, M. D.; Houser, J. G.

    2003-01-01

    The Altus Cumulus Electrification Study (ACES) was conducted during the month of August, 2002 in an area near Key West, Florida. One of the goals of this uninhabited aerial vehicle (UAV) study was to collect high resolution optical pulse and electric field data from thunderstorms. During the month long campaign, we acquired 5294 lightning generated optical pulses with associated electric field changes. Most of these observations were made while close to the top of the storms. We found filtered mean and median 10-10% optical pulse widths of 875 and 830 microns respectively while the 50-50% mean and median optical pulse widths are 422 and 365 microns respectively. These values are similar to previous results as are the 10-90% mean and median rise times of 327 and 265 microns. The peak electrical to optical pulse delay mean and median were 209 and 145 microns which is longer than one would expect from theoretical results. The results of the pulse analysis will contribute to further validation of the Optical Transient Detector (OTD) and the Lightning Imaging Sensor (LIS) satellites. Pre-launch estimates of the flash detection efficiency were based on a small sample of optical pulse measurements associated with less than 350 lightning discharges collected by NASA U-2 aircraft in the early 1980s. Preliminary analyses of the ACES measurements show that we have greatly increased the number of optical pulses available for validation of the LIS and other orbital lightning optical sensors. Since the Altus was often close to the cloud tops, many of the optical pulses are from low-energy pulses. From these low-energy pulses, we can determine the fraction of optical lightning pulses below the thresholds of LIS, OTD, and any future satellite-based optical sensors such as the geostationary Lightning Mapping Sensor.

  14. Modelling and comparison of trapped fields in (RE)BCO bulk superconductors for activation using pulsed field magnetization

    Science.gov (United States)

    Ainslie, M. D.; Fujishiro, H.; Ujiie, T.; Zou, J.; Dennis, A. R.; Shi, Y.-H.; Cardwell, D. A.

    2014-06-01

    The ability to generate a permanent, stable magnetic field unsupported by an electromotive force is fundamental to a variety of engineering applications. Bulk high temperature superconducting (HTS) materials can trap magnetic fields of magnitude over ten times higher than the maximum field produced by conventional magnets, which is limited practically to rather less than 2 T. In this paper, two large c-axis oriented, single-grain YBCO and GdBCO bulk superconductors are magnetized by the pulsed field magnetization (PFM) technique at temperatures of 40 and 65 K and the characteristics of the resulting trapped field profile are investigated with a view of magnetizing such samples as trapped field magnets (TFMs) in situ inside a trapped flux-type superconducting electric machine. A comparison is made between the temperatures at which the pulsed magnetic field is applied and the results have strong implications for the optimum operating temperature for TFMs in trapped flux-type superconducting electric machines. The effects of inhomogeneities, which occur during the growth process of single-grain bulk superconductors, on the trapped field and maximum temperature rise in the sample are modelled numerically using a 3D finite-element model based on the H-formulation and implemented in Comsol Multiphysics 4.3a. The results agree qualitatively with the observed experimental results, in that inhomogeneities act to distort the trapped field profile and reduce the magnitude of the trapped field due to localized heating within the sample and preferential movement and pinning of flux lines around the growth section regions (GSRs) and growth sector boundaries (GSBs), respectively. The modelling framework will allow further investigation of various inhomogeneities that arise during the processing of (RE)BCO bulk superconductors, including inhomogeneous Jc distributions and the presence of current-limiting grain boundaries and cracks, and it can be used to assist optimization of

  15. C-phycocyanin extraction assisted by pulsed electric field from Artrosphira platensis.

    Science.gov (United States)

    Martínez, Juan Manuel; Luengo, Elisa; Saldaña, Guillermo; Álvarez, Ignacio; Raso, Javier

    2017-09-01

    This paper assesses the application of pulsed electric fields (PEF) to the fresh biomass of Artrhospira platensis in order to enhance the extraction of C-phycocyanin into aqueous media. Electroporation of A. platensis depended on both electric field strength and treatment duration. The minimum electric field intensity for detecting C-phycocyanin in the extraction medium was 15kV/cm after the application of a treatment time 150μs (50 pulses of 3μs). However higher electric field strength were required when shorter treatment times were applied. Response surface methodology was used in order to investigate the influence of electric field strength (15-25kV/cm), treatment time (60-150μs), and temperature of application of PEF (10-40°C) on C-phycocyanin extraction yield (PEY). The increment of the temperature PEF treatment reduced the electric field strength and the treatment time required to obtain a given PEY and, consequently decreased the total specific energy delivered by the treatment. For example, the increment of temperature from 10°C to 40°C permitted to reduce the electric field strength required to extract 100mg/g d w of C-phycocyanin from 25 to 18kV/cm, and the specific energy input from 106.7 to 67.5kJ/Kg. Results obtained in this investigation demonstrated PEF's potential for selectively extraction C-phycocyanin from fresh A. platensis biomass. The purity of the C-phycocyanin extract obtained from the electroporated cells was higher than that obtained using other techniques based on the cell complete destruction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Effects of spin-polarized current on pulse field-induced precessional magnetization reversal

    Directory of Open Access Journals (Sweden)

    Guang-fu Zhang

    2012-12-01

    Full Text Available We investigate effects of a small DC spin-polarized current on the pulse field-induced precessional magnetization reversal in a thin elliptic magnetic element by micromagnetic simulations. We find that the spin-polarized current not only broadens the time window of the pulse duration, in which a successful precessional reversal is achievable, but also significantly suppresses the magnetization ringing after the reversal. The pulse time window as well as the decay rate of the ringing increase with increasing the current density. When a spin-polarized current with 5 MA/cm2 is applied, the time window increases from 80 ps to 112 ps, and the relaxation time of the ringing decreases from 1.1 ns to 0.32 ns. Our results provide useful information to achieve magnetic nanodevices based on precessional switching.

  17. High-resolution nuclear magnetic resonance measurements in inhomogeneous magnetic fields: A fast two-dimensional J-resolved experiment

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yuqing; Cai, Shuhui; Yang, Yu; Sun, Huijun; Lin, Yanqin, E-mail: linyq@xmu.edu.cn, E-mail: chenz@xmu.edu.cn; Chen, Zhong, E-mail: linyq@xmu.edu.cn, E-mail: chenz@xmu.edu.cn [Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005 (China); Lin, Yung-Ya [Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095 (United States)

    2016-03-14

    High spectral resolution in nuclear magnetic resonance (NMR) is a prerequisite for achieving accurate information relevant to molecular structures and composition assignments. The continuous development of superconducting magnets guarantees strong and homogeneous static magnetic fields for satisfactory spectral resolution. However, there exist circumstances, such as measurements on biological tissues and heterogeneous chemical samples, where the field homogeneity is degraded and spectral line broadening seems inevitable. Here we propose an NMR method, named intermolecular zero-quantum coherence J-resolved spectroscopy (iZQC-JRES), to face the challenge of field inhomogeneity and obtain desired high-resolution two-dimensional J-resolved spectra with fast acquisition. Theoretical analyses for this method are given according to the intermolecular multiple-quantum coherence treatment. Experiments on (a) a simple chemical solution and (b) an aqueous solution of mixed metabolites under externally deshimmed fields, and on (c) a table grape sample with intrinsic field inhomogeneity from magnetic susceptibility variations demonstrate the feasibility and applicability of the iZQC-JRES method. The application of this method to inhomogeneous chemical and biological samples, maybe in vivo samples, appears promising.

  18. Time-resolved pulse propagation in a strongly scattering material

    NARCIS (Netherlands)

    Johnson, Patrick M.; Imhof, Arnout; Bret, B.P.J.; Gomez Rivas, J.; Gomez Rivas, Jaime; Lagendijk, Aart

    2003-01-01

    Light transport in macroporous gallium phosphide, perhaps the strongest nonabsorbing scatterer of visible light, is studied using phase-sensitive femtosecond pulse interferometry. Phase statistics are measured at optical wavelengths in both reflection and transmission and compared with theory. The

  19. Evidence that pulsed electric field treatment enhances the cell wall porosity of yeast cells.

    Science.gov (United States)

    Ganeva, Valentina; Galutzov, Bojidar; Teissie, Justin

    2014-02-01

    The application of rectangular electric pulses, with 0.1-2 ms duration and field intensity of 2.5-4.5 kV/cm, to yeast suspension mediates liberation of cytoplasmic proteins without cell lysis. The aim of this study was to evaluate the effect of pulsed electric field with similar parameters on cell wall porosity of different yeast species. We found that electrically treated cells become more susceptible to lyticase digestion. In dependence on the strain and the electrical conditions, cell lysis was obtained at 2-8 times lower enzyme concentration in comparison with control untreated cells. The increase of the maximal lysis rate was between two and nine times. Furthermore, when applied at low concentration (1 U/ml), the lyticase enhanced the rate of protein liberation from electropermeabilized cells without provoking cell lysis. Significant differences in the cell surface of control and electrically treated cells were revealed by scanning electron microscopy. Data presented in this study allow us to conclude that electric field pulses provoke not only plasma membrane permeabilization, but also changes in the cell wall structure, leading to increased wall porosity.

  20. Decoding the dynamics of cellular metabolism and the action of 3-bromopyruvate and 2-deoxyglucose using pulsed stable isotope-resolved metabolomics.

    Science.gov (United States)

    Pietzke, Matthias; Zasada, Christin; Mudrich, Susann; Kempa, Stefan

    2014-01-01

    Cellular metabolism is highly dynamic and continuously adjusts to the physiological program of the cell. The regulation of metabolism appears at all biological levels: (post-) transcriptional, (post-) translational, and allosteric. This regulatory information is expressed in the metabolome, but in a complex manner. To decode such complex information, new methods are needed in order to facilitate dynamic metabolic characterization at high resolution. Here, we describe pulsed stable isotope-resolved metabolomics (pSIRM) as a tool for the dynamic metabolic characterization of cellular metabolism. We have adapted gas chromatography-coupled mass spectrometric methods for metabolomic profiling and stable isotope-resolved metabolomics. In addition, we have improved robustness and reproducibility and implemented a strategy for the absolute quantification of metabolites. By way of examples, we have applied this methodology to characterize central carbon metabolism of a panel of cancer cell lines and to determine the mode of metabolic inhibition of glycolytic inhibitors in times ranging from minutes to hours. Using pSIRM, we observed that 2-deoxyglucose is a metabolic inhibitor, but does not directly act on the glycolytic cascade.

  1. Controlling Charge and Current Neutralization of an Ion Beam Pulse in a Background Plasma by Application of a Solenoidal Magnetic Field I: Weak Magnetic Field Limit

    Energy Technology Data Exchange (ETDEWEB)

    Kaganovich, I. D., Startsev, E. A., Sefkow, A. B., Davidson, R. C.

    2008-10-10

    Propagation of an intense charged particle beam pulse through a background plasma is a common problem in astrophysics and plasma applications. The plasma can effectively neutralize the charge and current of the beam pulse, and thus provides a convenient medium for beam transport. The application of a small solenoidal magnetic field can drastically change the self-magnetic and self- electric fields of the beam pulse, thus allowing effective control of the beam transport through the background plasma. An analytic model is developed to describe the self-magnetic field of a finite- length ion beam pulse propagating in a cold background plasma in a solenoidal magnetic field. The analytic studies show that the solenoidal magnetic field starts to infuence the self-electric and self-magnetic fields when ωce > ωpeβb, where ωce = eβ/mec is the electron gyrofrequency, ωpe is the electron plasma frequency, and βb = Vb/c is the ion beam velocity relative to the speed of light. This condition typically holds for relatively small magnetic fields (about 100G). Analytical formulas are derived for the effective radial force acting on the beam ions, which can be used to minimize beam pinching. The results of analytic theory have been verified by comparison with the simulation results obtained from two particle-in-cell codes, which show good agreement.

  2. Controlling Charge and Current Neutralization of an Ion Beam Pulse in a Background Plasma by Application of a Solenoidal Magnetic Field I: Weak Magnetic Field Limit

    International Nuclear Information System (INIS)

    Kaganovich, I. D.; Startsev, E. A.; Sefkow, A. B.; Davidson, R. C.

    2008-01-01

    Propagation of an intense charged particle beam pulse through a background plasma is a common problem in astrophysics and plasma applications. The plasma can effectively neutralize the charge and current of the beam pulse, and thus provides a convenient medium for beam transport. The application of a small solenoidal magnetic field can drastically change the self-magnetic and self- electric fields of the beam pulse, thus allowing effective control of the beam transport through the background plasma. An analytic model is developed to describe the self-magnetic field of a finite-length ion beam pulse propagating in a cold background plasma in a solenoidal magnetic field. The analytic studies show that the solenoidal magnetic field starts to influence the self-electric and self-magnetic fields when ω ce ∼> ω pe β b , where ω ce = eB/m e c is the electron gyrofrequency, ω pe is the electron plasma frequency, and β b = V b /c is the ion beam velocity relative to the speed of light. This condition typically holds for relatively small magnetic fields (about 100G). Analytical formulas are derived for the effective radial force acting on the beam ions, which can be used to minimize beam pinching. The results of analytic theory have been verified by comparison with the simulation results obtained from two particle-in-cell codes, which show good agreement

  3. Automatic NMR field-frequency lock-pulsed phase locked loop approach.

    Science.gov (United States)

    Kan, S; Gonord, P; Fan, M; Sauzade, M; Courtieu, J

    1978-06-01

    A self-contained deuterium frequency-field lock scheme for a high-resolution NMR spectrometer is described. It is based on phase locked loop techniques in which the free induction decay signal behaves as a voltage-controlled oscillator. By pulsing the spins at an offset frequency of a few hundred hertz and using a digital phase-frequency discriminator this method not only eliminates the usual phase, rf power, offset adjustments needed in conventional lock systems but also possesses the automatic pull-in characteristics that dispense with the use of field sweeps to locate the NMR line prior to closure of the lock loop.

  4. Interference Processes During Reradiation of Attosecond Pulses of Electromagnetic Field by Graphene

    Science.gov (United States)

    Makarov, D. N.; Matveev, V. I.; Makarova, K. A.

    2018-05-01

    Interference spectra during reradiation of attosecond pulses of electromagnetic field by graphene sheets are considered. Analytical expressions for calculations of spectral distributions are derived. As an example, the interference spectra of a graphene sheet and a flat rectangular lattice are compared.

  5. Pulsed power research at the institute of fluid physics

    International Nuclear Information System (INIS)

    Deng Jianjun; Shi Jinshui; Cao Kefeng; Xie Weiping; Zhang Linwen; Wang Meng

    2009-01-01

    The Institute of Fluid Physics was the earliest institution in China to engage in pulsed power research, covering areas such as the development of high power switches, linear induction accelerators, facilities for Z-pinch studies, pulsed X-ray machines, explosive magnetic compression technology, rep-rate pulsed power generation, time resolved diagnostic technology, and so on. The newly built Dragon-I facility (20 MeV, 2.5kA, 80 ns), currently the most advanced linear induction accelerator in the world, is described. The status of the Primary Test Stand (PTS, 8-10 MA, 130ns) for Z-pinch studies that is still under construction is also reported. The PTS consists of 24 modules based on the Marx generator-water PFL (pulse forming line) technology. The single module prototype has been tested successfully. Other progress on the rep-rate pulsed power generator, linear transfer driver, and time resolved diagnostic technology is also presented. (authors)

  6. Time-resolved UV spectroscopy on ammonia excited by a pulsed CO2 laser

    International Nuclear Information System (INIS)

    Holbach, H.

    1980-07-01

    This work investigates the excitation of ammonia by a pulsed CO 2 laser, in particular the processes associated with collisions with argon. It was prompted by two previous observations: the previously reported infrared multiphoton dissociation of NH 3 under nearly collisionless conditions, and the ill understood excitation mechanism of apparently nonresonant low vibrational levels in the presence of Ar. Based on recent spectroscopic data, all vibrational-rotational levels were determined which are simultaneously excited by different CO 2 laser lines. Transitions between the 1 + and 2 - vibrational levels were also taken into account. The linewidth in these calculations was dominated by power broadening, which generates a half width at half maximum of 0.36 cm -1 at the typical power density of 10 MW/cm 2 . In order to reproduce published experimental absorption data, it proved necessary to take account all transitions within a distance of 20 cm -1 from the laser line. This fact implies in most cases the simultaneous population of a large number of vibrational-rotational levels. The population of levels by absorption or by subsequent collisional processes was probed by time-resolved absorption measurement of vibrational bands and their rotational envelope in the near UV. Time resolution (5...10) was sufficient to observe rotational relaxation within individual vibrational levels. Characteristic differences were found for the various excitation lines. (orig.) [de

  7. Dynamics of ultra-short electromagnetic pulses in the system of chiral carbon nanotube waveguides in the presence of external alternating electric field

    Energy Technology Data Exchange (ETDEWEB)

    Konobeeva, N.N., E-mail: yana_nn@inbox.ru [Volgograd State University, University Avenue 100, Volgograd 400062 (Russian Federation); Belonenko, M.B. [Volgograd Institute of Business, Uzhno-ukrainskaya str., Volgograd 400048 (Russian Federation)

    2014-04-01

    The paper addresses the propagation of ultra-short optical pulses in chiral carbon nanotubes in the presence of external alternating electric field. Following the assumption that the considered optical pulses are represented in the form of discrete solitons, we analyze the wave equation for the electromagnetic field and consider the dynamics of pulses in external field, their initial amplitudes and frequencies.

  8. Fields of an ultrashort tightly focused radially polarized laser pulse in a linear response plasma

    Science.gov (United States)

    Salamin, Yousef I.

    2017-10-01

    Analytical expressions for the fields of a radially polarized, ultrashort, and tightly focused laser pulse propagating in a linear-response plasma are derived and discussed. The fields are obtained from solving the inhomogeneous wave equations for the vector and scalar potentials, linked by the Lorenz gauge, in a plasma background. First, the scalar potential is eliminated using the gauge condition, then the vector potential is synthesized from Fourier components of an initial uniform distribution of wavenumbers, and the inverse Fourier transformation is carried out term-by-term in a truncated series (finite sum). The zeroth-order term in, for example, the axial electric field component is shown to model a pulse much better than its widely used paraxial approximation counterpart. Some of the propagation characteristics of the fields are discussed and all fields are shown to have manifested the expected limits for propagation in a vacuum.

  9. High impact ionization rate in silicon by sub-picosecond THz electric field pulses (Conference Presentation)

    DEFF Research Database (Denmark)

    Tarekegne, Abebe Tilahun; Iwaszczuk, Krzysztof; Hirori, Hideki

    2017-01-01

    Summary form only given. Metallic antenna arrays fabricated on high resistivity silicon are used to localize and enhance the incident THz field resulting in high electric field pulses with peak electric field strength reaching several MV/cm on the silicon surface near the antenna tips. In such high...... electric field strengths high density of carriers are generated in silicon through impact ionization process. The high density of generated carriers induces a change of refractive index in silicon. By measuring the change of reflectivity of tightly focused 800 nm light, the local density of free carriers...... near the antenna tips is measured. Using the NIR probing technique, we observed that the density of carriers increases by over 8 orders of magnitude in a time duration of approximately 500 fs with an incident THz pulse of peak electric field strength 700 kV/cm. This shows that a single impact...

  10. Optimising the inactivation of grape juice spoilage organisms by pulse electric fields.

    Science.gov (United States)

    Marsellés-Fontanet, A Robert; Puig, Anna; Olmos, Paola; Mínguez-Sanz, Santiago; Martín-Belloso, Olga

    2009-04-15

    The effect of some pulsed electric field (PEF) processing parameters (electric field strength, pulse frequency and treatment time), on a mixture of microorganisms (Kloeckera apiculata, Saccharomyces cerevisiae, Lactobacillus plantarum, Lactobacillus hilgardii and Gluconobacter oxydans) typically present in grape juice and wine were evaluated. An experimental design based on response surface methodology (RSM) was used and results were also compared with those of a factorially designed experiment. The relationship between the levels of inactivation of microorganisms and the energy applied to the grape juice was analysed. Yeast and bacteria were inactivated by the PEF treatments, with reductions that ranged from 2.24 to 3.94 log units. All PEF parameters affected microbial inactivation. Optimal inactivation of the mixture of spoilage microorganisms was predicted by the RSM models at 35.0 kV cm(-1) with 303 Hz pulse width for 1 ms. Inactivation was greater for yeasts than for bacteria, as was predicted by the RSM. The maximum efficacy of the PEF treatment for inactivation of microorganisms in grape juice was observed around 1500 MJ L(-1) for all the microorganisms investigated. The RSM could be used in the fruit juice industry to optimise the inactivation of spoilage microorganisms by PEF.

  11. Effect of oxygen vacancy induced by pulsed magnetic field on the room-temperature ferromagnetic Ni-doped ZnO synthesized by hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Min [Shanghai University, Laboratory for Microstructures, School of Materials Science and Engineering, 149 Yanchang Road, 200072 Shanghai (China); Li, Ying, E-mail: liying62@shu.edu.cn [Shanghai University, Laboratory for Microstructures, School of Materials Science and Engineering, 149 Yanchang Road, 200072 Shanghai (China); Tariq, Muhammad; Hu, Yemin; Li, Wenxian; Zhu, Mingyuan; Jin, Hongmin [Shanghai University, Laboratory for Microstructures, School of Materials Science and Engineering, 149 Yanchang Road, 200072 Shanghai (China); Li, Yibing [School of Chemistry, The University of New South Wales, Sydney, NSW, 2052 (Australia)

    2016-08-05

    Room temperature ferromagnetic 2% Ni doped ZnO rods were synthesized by high pulsed magnetic field-assisted hydrothermal method. A detailed study on the effect of high pulsed magnetic field on morphology, structural and magnetic properties of the ZnO rods has been carried out systematically by varying the intensity of field from 0 to 4 T. X-ray diffraction, Energy-dispersive spectroscopy measurements, and Raman spectra analysis suggest that all the samples have hexagonal wurtzite structure without detectable impurity. Field emission scanning electron microscopy images indicate that the particle size of samples decrease with increasing intensity of field. High resolution transmission electron microscopy observation ensures that the Ni ions addition do not change the wurtzite host matrix. X-ray photoelectron spectroscopy confirms the incorporation of Ni elements as divalent state and the dominant presence of oxygen vacancies in samples fabricated under 4 T pulsed magnetic field. Hysteresis loops demonstrate that the saturation magnetization increased regularly with the mounting magnetic field. On the framework of bound magnetic polaron model, the rising content of oxygen vacancies, as donor defect, lead to the stronger ferromagnetism in samples with pulsed magnetic field. Our findings provide a new insight for tuning the defect density by precisely controlling the intensity of field in order to get the desired magnetic behavior at room temperature. - Graphical abstract: This figure shows the magnetization versus magnetic field curves for 2%Ni doped ZnO as prepared with 0, 1, 2, 3 and 4 T pulsed magnetic field at 290 K. For 0 T sample, no ferromagnetic response is observed. But all the samples synthesized with field were well-defined hysteresis loops. The saturation magnetization estimated from the hysteresis loop come out to be ∼0.0024, 0.0023, 0.0036 and 0.0061 emu/g for 1 T, 2 T, 3 T and 4 T samples, respectively. As shown in the curves, the room

  12. Pulsed electromagnetic field: an organic compatible method to promote plant growth and yield in two corn types.

    Science.gov (United States)

    Bilalis, Dimitrios J; Katsenios, Nikolaos; Efthimiadou, Aspasia; Karkanis, Anestis

    2012-12-01

    Pre-sowing treatment of pulsed electromagnetic fields was used in corn seeds, in both indoor and outdoor conditions, in order to investigate the effect on plant growth and yield. The results of this research showed that pulsed electromagnetic fields can enhance plant characteristics, both under controlled environmental conditions and uncontrolled field conditions. The two varieties responded differently in the duration of magnetic field. Seeds were treated for 0, 15, 30, and 45 min with pulsed electromagnetic field (MF-0, MF-15, MF-30, and MF-45). Common corn variety performed better results in MF-30 treatment, while sweet corn variety performed better in MF-45 treatment. Magnetic field improved germination percentage, vigor, chlorophyll content, leaf area, plant fresh and dry weight, and finally yields. In the very interesting measurement of yield, seeds that have been exposed to magnetic field for 30 and 45 min have been found to perform the best results with no statistical differences among them. Another interesting finding was in root dry weight measurements, where magnetic field has a negative impact in MF-30 treatment in both hybrids, however without affecting other measurements. Enhancements on plant characteristics with economic impact on producer's income could be the future of a modern, organic, and sustainable agriculture.

  13. Dynamic generation and coherent control of beating stationary light pulses by a microwave coupling field in five-level cold atoms

    Science.gov (United States)

    Bao, Qian-Qian; Zhang, Yan; Cui, Cui-Li; Meng, Shao-Ying; Fang, You-Wei; Tian, Xue-Dong

    2018-04-01

    We propose an efficient scheme for generating and controlling beating stationary light pulses in a five-level atomic sample driven into electromagnetically induced transparency condition. This scheme relies on an asymmetrical procedure of light storage and retrieval tuned by two counter-propagating control fields where an additional coupling field, such as the microwave field, is introduced in the retrieval stage. A quantum probe field, incident upon such an atomic sample, is first transformed into spin coherence excitation of the atoms and then retrieved as beating stationary light pulses exhibiting a series of maxima and minima in intensity due to the alternative constructive and destructive interference. It is convenient to control the beating stationary light pulses just by manipulating the intensity and detuning of the additional microwave field. This interesting phenomenon involves in fact the coherent manipulation of dark-state polaritons and could be explored to achieve the efficient temporal splitting of stationary light pulses and accurate measurement of the microwave intensity.

  14. Diffraction and microscopy with attosecond electron pulse trains

    Science.gov (United States)

    Morimoto, Yuya; Baum, Peter

    2018-03-01

    Attosecond spectroscopy1-7 can resolve electronic processes directly in time, but a movie-like space-time recording is impeded by the too long wavelength ( 100 times larger than atomic distances) or the source-sample entanglement in re-collision techniques8-11. Here we advance attosecond metrology to picometre wavelength and sub-atomic resolution by using free-space electrons instead of higher-harmonic photons1-7 or re-colliding wavepackets8-11. A beam of 70-keV electrons at 4.5-pm de Broglie wavelength is modulated by the electric field of laser cycles into a sequence of electron pulses with sub-optical-cycle duration. Time-resolved diffraction from crystalline silicon reveals a propagates in space and time. This unification of attosecond science with electron microscopy and diffraction enables space-time imaging of light-driven processes in the entire range of sample morphologies that electron microscopy can access.

  15. Pulsed field studies of magnetotransport in semiconductor heterostructures

    International Nuclear Information System (INIS)

    Dalton, K.S.H.

    1999-01-01

    High field magnetotransport in two classes of semiconductor heterostructures has been studied: parallel transport in InAs/(Ga,In)Sb double heterojunctions and superlattices at low temperatures (300 mK-4.2 K), and vertical transport in GaAs/AlAs short-period superlattices at 150-300 K. The experiments mainly used the Oxford pulsed magnet (∼45 T, ∼15 ms pulses). The development of the data acquisition system and experimental techniques for magnetotransport are described, including corrections to the data, required because of the rapidly changing magnetic field. Previous studies of magnetotransport in InAs/GaSb double heterojunctions are reviewed: this electron-hole system shows compensated quantum Hall plateaux, with ρ xy dips accompanied by 'anomalous' peaks in σ xx . New data show a peak between ν=1 plateaux; this behaviour and the temperature dependence of the 'anomalous' σ xx peaks are explained by considering the movement of the Fermi level amongst anticrossing electron- and hole-like levels. InAs/(Ga,In)Sb superlattices with electron:hole density ratios close to 1 exhibit large oscillations in the resistivity (maxima typically ∼20-30 x higher than minima) and conductivity components. Deep minima in ρ xy alternate with low-integer plateaux. The magnetotransport in various ideal structures is considered, to explain the experimental results. The growth of a novel structure has allowed clearer observation of the behaviour of ρ xx (giant maxima) and ρ xy (zeroes or maxima) when the contributions from each well to σ xx and σ xy approach zero. Measurements of the high field magnetotransport peak positions show that the band overlap is increased by growing 'InSb' rather than 'GaAs' interfaces (∼20% increase), increasing the indium in the (Ga,In)Sb (∼30% increase per 10% In), or growing along [111] instead of [001] (∼30% increase). Magnetophonon resonance in short-period GaAs/AlAs superlattices causes strong, electric field-dependent vertical

  16. Pulsed high-magnetic-field experiments: New insights into the magnetocaloric effect in Ni-Mn-In Heusler alloys

    International Nuclear Information System (INIS)

    Salazar Mejía, C.; Nayak, A. K.; Felser, C.; Nicklas, M.; Ghorbani Zavareh, M.; Wosnitza, J.; Skourski, Y.

    2015-01-01

    The present pulsed high-magnetic-field study on Ni 50 Mn 35 In 15 gives an extra insight into the thermodynamics of the martensitic transformation in Heusler shape-memory alloys. The transformation-entropy change, ΔS, was estimated from field-dependent magnetization experiments in pulsed high magnetic fields and by heat-capacity measurements in static fields. We found a decrease of ΔS with decreasing temperature. This behavior can be understood by considering the different signs of the lattice and magnetic contributions to the total entropy. Our results further imply that the magnetocaloric effect will decrease with decreasing temperature and, furthermore, the martensitic transition is not induced anymore by changing the temperature in high magnetic fields

  17. Healing of damaged metal by a pulsed high-energy electromagnetic field

    Science.gov (United States)

    Kukudzhanov, K. V.; Levitin, A. L.

    2018-04-01

    The processes of defect (intergranular micro-cracks) transformation are investigated for metal samples in a high-energy short-pulsed electromagnetic field. This investigation is based on a numerical coupled model of the impact of high-energy electromagnetic field on the pre-damaged thermal elastic-plastic material with defects. The model takes into account the melting and evaporation of the metal and the dependence of its physical and mechanical properties on the temperature. The system of equations is solved numerically by finite element method with an adaptive mesh using the arbitrary Euler–Lagrange method. The calculations show that the welding of the crack and the healing of micro-defects under treatment by short pulses of the current takes place. For the macroscopic description of the healing process, the healing and damage parameters of the material are introduced. The healing of micro-cracks improves the material healing parameter and reduces its damage. The micro-crack shapes practically do not affect the time-dependence of the healing and damage under the treatment by the current pulses. These changes are affected only by the value of the initial damage of the material and the initial length of the micro-crack. The time-dependence of the healing and the damage is practically the same for all different shapes of micro-defects, provided that the initial lengths of micro-cracks and the initial damages are the same for these different shapes of defects.

  18. Loudness of tone pulses in a free field

    DEFF Research Database (Denmark)

    Poulsen, Torben

    1981-01-01

    Investigations of temporal loudness summation of tone pulses have been performed. The investigations comprised equal loudness determinations between pairs of tone pulses with a duration ratio of 1:2, and threshold determinations of the same tone pulses. Pulse durations ranged from 5 to 640 ms...

  19. Audibility of high harmonics in a periodic pulse

    NARCIS (Netherlands)

    Duifhuis, H.

    1970-01-01

    A periodic pulse consisting of sufficiently narrow pulses has a frequency spectrum which contains all harmonics with equal amplitude. Owing to the limited resolving power of the hearing organ, only the low harmonics can be perceived separately. The high harmonics are heard together as one complex

  20. Ap stars with resolved magnetically split lines: Magnetic field determinations from Stokes I and V spectra⋆

    Science.gov (United States)

    Mathys, G.

    2017-05-01

    Context. Some Ap stars that have a strong enough magnetic field and a sufficiently low v sini show spectral lines resolved into their magnetically split components. Aims: We present the results of a systematic study of the magnetic fields and other properties of those stars. Methods: This study is based on 271 new measurements of the mean magnetic field modulus ⟨ B ⟩ of 43 stars, 231 determinations of the mean longitudinal magnetic field ⟨ Bz ⟩ and of the crossover ⟨ Xz ⟩ of 34 stars, and 229 determinations of the mean quadratic magnetic field ⟨ Bq ⟩ of 33 stars. Those data were used to derive new values or meaningful lower limits of the rotation periods Prot of 21 stars. Variation curves of the mean field modulus were characterised for 25 stars, the variations of the longitudinal field were characterised for 16 stars, and the variations of the crossover and of the quadratic field were characterised for 8 stars. Our data are complemented by magnetic measurements from the literature for 41 additional stars with magnetically resolved lines. Phase coverage is sufficient to define the curve of variation of ⟨ B ⟩ for 2 of these stars. Published data were also used to characterise the ⟨ Bz ⟩ curves of variation for 10 more stars. Furthermore, we present 1297 radial velocity measurements of the 43 Ap stars in our sample that have magnetically resolved lines. Nine of these stars are spectroscopic binaries for which new orbital elements were derived. Results: The existence of a cut-off at the low end of the distribution of the phase-averaged mean magnetic field moduli ⟨ B ⟩ av of the Ap stars with resolved magnetically split lines, at about 2.8 kG, is confirmed. This reflects the probable existence of a gap in the distribution of the magnetic field strengths in slowly rotating Ap stars, below which there is a separate population of stars with fields weaker than 2 kG. In more than half of the stars with magnetically resolved lines that have a

  1. Dynamic Test Method Based on Strong Electromagnetic Pulse for Electromagnetic Shielding Materials with Field-Induced Insulator-Conductor Phase Transition

    Science.gov (United States)

    Wang, Yun; Zhao, Min; Wang, Qingguo

    2018-01-01

    In order to measure the pulse shielding performance of materials with the characteristic of field-induced insulator-conductor phase transition when materials are used for electromagnetic shielding, a dynamic test method was proposed based on a coaxial fixture. Experiment system was built by square pulse source, coaxial cable, coaxial fixture, attenuator, and oscilloscope and insulating components. S11 parameter of the test system was obtained, which suggested that the working frequency ranges from 300 KHz to 7.36 GHz. Insulating performance is good enough to avoid discharge between conductors when material samples is exposed in the strong electromagnetic pulse field up to 831 kV/m. This method is suitable for materials with annular shape, certain thickness and the characteristic of field-induced insulator-conductor phase transition to get their shielding performances of strong electromagnetic pulse.

  2. Pulse timing for cataclysmic variables

    International Nuclear Information System (INIS)

    Chester, T.J.

    1979-01-01

    It is shown that present pulse timing measurements of cataclysmic variables can be explained by models of accretion disks in these systems, and thus such measurements can constrain disk models. The model for DQ Her correctly predicts the amplitude variation of the continuum pulsation and can also perhaps explain the asymmetric amplitude of the pulsed lambda4686 emission line. Several other predictions can be made from the model. In particular, if pulse timing measurements that resolve emission lines both in wavelength and in binary phase can be made, the projected orbital radius of the white dwarf could be deduced

  3. Pulsed electron beam generation with fast repetitive double pulse system

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Surender Kumar; Deb, Pankaj; Shyam, Anurag, E-mail: surender80@gmail.com [Energetics and Electromagnetics Division, Bhabha Atomic Research Centre, Visakhapatnam (India); Sharma, Archana [Accelerator and Pulse Power Division, Bhabha Atomic Research Centre, Mumbai (India)

    2014-07-01

    Longer duration high voltage pulse (∼ 100 kV, 260 ns) is generated and reported using helical pulse forming line in compact geometry. The transmission line characteristics of the helical pulse forming line are also used to develop fast repetition double pulse system with very short inter pulse interval. It overcomes the limitations caused due to circuit parameters, power supplies and load characteristics for fast repetitive high voltage pulse generation. The high voltage double pulse of 100 kV, 100 ns with an inter pulse repetition interval of 30 ns is applied across the vacuum field emission diode for pulsed electron beam generation. The electron beam is generated from cathode material by application of negative high voltage (> 100 kV) across the diode by explosive electron emission process. The vacuum field emission diode is made of 40 mm diameter graphite cathode and SS mesh anode. The anode cathode gap was 6 mm and the drift tube diameter was 10 cm. The initial experimental results of pulsed electron beam generation with fast repetitive double pulse system are reported and discussed. (author)

  4. Intra- and intercycle interference of angle-resolved electron emission in laser-assisted XUV atomic ionization

    Science.gov (United States)

    Gramajo, A. A.; Della Picca, R.; López, S. D.; Arbó, D. G.

    2018-03-01

    A theoretical study of ionization of the hydrogen atom due to an XUV pulse in the presence of an infrared (IR) laser is presented. Well-established theories are usually used to describe the laser-assisted photoelectron effect: the well-known soft-photon approximation firstly posed by Maquet et al (2007 J. Mod. Opt. 54 1847) and Kazansky’s theory in (2010 Phys. Rev. A 82, 033420). However, these theories completely fail to predict the electron emission perpendicularly to the polarization direction. Making use of a semiclassical model (SCM), we study the angle-resolved energy distribution of PEs for the case that both fields are linearly polarized in the same direction. We thoroughly analyze and characterize two different emission regions in the angle-energy domain: (i) the parallel-like region with contribution of two classical trajectories per optical cycle and (ii) the perpendicular-like region with contribution of four classical trajectories per optical cycle. We show that our SCM is able to assess the interference patterns of the angle-resolved PE spectrum in the two different mentioned regions. Electron trajectories stemming from different optical laser cycles give rise to angle-independent intercycle interferences known as sidebands. These sidebands are modulated by an angle-dependent coarse-grained structure coming from the intracycle interference of the electron trajectories born during the same optical cycle. We show the accuracy of our SCM as a function of the time delay between the IR and the XUV pulses and also as a function of the laser intensity by comparing the semiclassical predictions of the angle-resolved PE spectrum with the continuum-distorted wave strong field approximation and the ab initio solution of the time-dependent Schrödinger equation.

  5. Quantum ring states in magnetic field and delayed half-cycle pulses

    Indian Academy of Sciences (India)

    2016-07-19

    Jul 19, 2016 ... A very important aspect of the present work is the persistent current generation in a quantum ring in the presence ... quantum effects and their energy spectra are discrete. They are in many .... small with respect to its rotational time period, hence .... of delayed half-cycle pulse pair of the electric field. E0 = 1.0 ...

  6. Time resolved emission spectroscopy investigations of pulsed laser ablated plasmas of ZrO2 and Al2O3

    International Nuclear Information System (INIS)

    Hadoko, A D; Lee, P S; Lee, P; Mohanty, S R; Rawat, R S

    2006-01-01

    With the rising trend of synthesizing ultra thin films and/or quantum-confined materials using laser ablation, optimization of deposition parameters plays an essential role in obtaining desired film characteristics. This paper presents the initial step of plasma optimization study by examining temporal distribution of the plasma formation by pulsed laser ablation of materials. The emitted spectra of ZrO 2 and Al 2 O 3 are obtained ∼3mm above the ablated target to derive the ablated plasma characteristics. The plasma temperature is estimated to be at around 2.35 eV, with electron density of 1.14 x 10 16 (cm -3 ). Emission spectra with different gate delay time (40-270 ns) are captured to study the time resolved plume characteristics. Transitory elemental species are identified

  7. Inactivation of Listeria monocytogenes in milk by pulsed electric field.

    Science.gov (United States)

    Reina, L D; Jin, Z T; Zhang, Q H; Yousef, A E

    1998-09-01

    Pasteurized whole, 2%, and skim milk were inoculated with Listeria monocytogenes Scott A and treated with high-voltage pulsed electric field (PEF). The effects of milk composition (fat content) and PEF parameters (electric field strength, treatment time, and treatment temperature) on the inactivation of the bacterium were studied. No significant differences were observed in the inactivation of L. monocytogenes Scott A in three types of milk by PEF treatment. With treatment at 25 degrees C, 1- to 3-log reductions of L. monocytogenes were observed. PEF lethal effect was a function of field strength and treatment time. Higher field strength or longer treatment time resulted in a greater reduction of viable cells. A 4-log reduction of the bacterium was obtained by increasing the treatment temperature to 50 degrees C. Results indicate that the use of a high-voltage PEF is a promising technology for inactivation of foodborne pathogens.

  8. DNA double-strand break measurement in mammalian cells by pulsed-field gel electrophoresis: an approach using restriction enzymes and gene probing

    International Nuclear Information System (INIS)

    Loebrich, M.; Ikpeme, S.; Kiefer, J.

    1994-01-01

    DNA samples prepared from human SP 3 cells, which had not been exposed to various doses of X-ray, were treated with NotI restriction endonuclease before being run in a contour-clamped homogeneous electrophoresis system. The restriction enzyme cuts the DNA at defined positions delivering DNA sizes which can be resolved by pulsed-field gel electrophoresis (PFGE). In order to investigate only one of the DNA fragments, a human lactoferrin cDNA, pHL-41, was hybridized to the DNA separated by PFGE. As a result, only the DNA fragment which contains the hybridized gene was detected resulting in a one-band pattern. The decrease of this band was found to be exponential with increasing radiation dose. From the slope, a double-strand break induction rate of (6.3±0.7) x 10 -3 /Mbp/Gy was deduced for 80 kV X-rays. (Author)

  9. Using hydrocarbon as a carbon source for synthesis of carbon nanotube by electric field induced needle-pulsed plasma

    International Nuclear Information System (INIS)

    Kazemi Kia, Kaveh; Bonabi, Fahimeh

    2013-01-01

    In this work different hydrocarbons are used as the carbon source, in the production of carbon nanotubes (CNTs) and nano onions. An electric field induced needle pulse arc-discharge reactor is used. The influence of starting carbon on the synthesis of CNTs is investigated. The production efficiency is compared for Acetone, Isopropanol and Naphthalene as simple hydrocarbons. The hydrocarbons are preheated and then pretreated by electric field before being exposed to plasma. The hydrocarbon vapor is injected into plasma through a graphite spout in the cathode assembly. The pulsed plasma takes place between two graphite rods while a strong electric field has been already established alongside the electrodes. The pulse width is 0.3 μs. Mechanism of precursor decomposition is discussed by describing three forms of energy that are utilized to disintegrate the precursor molecules: thermal energy, electric field and kinetic energy of plasma. Molecular polarity of a hydrocarbon is one of the reasons for choosing carbon raw material as a precursor in an electric field induced low power pulsed-plasma. The results show that in order to obtain high quality carbon nanotubes, Acetone is preferred to Isopropanol and Naphthalene. Scanning probe microscopy techniques are used to investigate the products. - Highlights: • We synthesized CNTs (carbon nano tubes) by needle pulsed plasma. • We use different hydrocarbons as carbon source in the production of CNTs. • We investigated the influence of starting carbon on the synthesis of CNTs. • Thermal energy, electric field and kinetic energy are used to break carbon bonds. • Polar hydrocarbon molecules are more efficient than nonpolar ones in production

  10. Cost analysis of commercial pasteurization of orange juice by pulsed electric fields

    Science.gov (United States)

    The cost of pulsed electric field (PEF) pasteurization of orange juice was estimated. The cost analysis was based on processing conditions that met the US FDA (5 log reduction) requirement for fruit juice pasteurization and that achieved a 2 month microbial shelf-life. PEF-treated samples processed ...

  11. Effects of an external magnetic field in pulsed laser deposition

    Science.gov (United States)

    García, T.; de Posada, E.; Villagrán, M.; Ll, J. L. Sánchez; Bartolo-Pérez, P.; Peña, J. L.

    2008-12-01

    Thin films were grown by pulsed laser deposition, PLD, on Si (1 0 0) substrates by the ablation of a sintered ceramic SrFe 12O 19 target with and without the presence of a nonhomogeneous magnetic field of μ0H = 0.4 T perpendicular to substrate plane and parallel to the plasma expansion axis. The field was produced by a rectangular-shaped Nd-Fe-B permanent magnet and the substrate was just placed on the magnet surface (Aurora method). An appreciable increment of optical emission due to the presence of the magnetic field was observed, but no film composition change or thickness increment was obtained. It suggests that the increment of the optical emission is due mainly to the electron confinement rather than confinement of ionic species.

  12. Effects of an external magnetic field in pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, T. [Universidad Autonoma de la Ciudad de Mexico (UACM), Prolongacion San Isidro 151, Col. San Lorenzo Tezonco, C.P. 09790, Mexico DF (Mexico)], E-mail: tupacgarcia@yahoo.com; Posada, E. de [CINVESTAV-IPN Unidad Merida, Applied Physics Department, A.P. 73, Cordemex, C.P. 97130 Merida, Yuc. (Mexico); Villagran, M. [CCADET, Universidad Nacional Autonoma de Mexico (UNAM), A.P. 70-186, C.P. 04510, Mexico DF (Mexico); Ll, J.L. Sanchez [Laboratorio de Magnetismo, Facultad de Fisica-IMRE, Universidad de La Habana, La Habana 10400 (Cuba); Bartolo-Perez, P.; Pena, J.L. [CINVESTAV-IPN Unidad Merida, Applied Physics Department, A.P. 73, Cordemex, C.P. 97130 Merida, Yuc. (Mexico)

    2008-12-30

    Thin films were grown by pulsed laser deposition, PLD, on Si (1 0 0) substrates by the ablation of a sintered ceramic SrFe{sub 12}O{sub 19} target with and without the presence of a nonhomogeneous magnetic field of {mu}{sub 0}H = 0.4 T perpendicular to substrate plane and parallel to the plasma expansion axis. The field was produced by a rectangular-shaped Nd-Fe-B permanent magnet and the substrate was just placed on the magnet surface (Aurora method). An appreciable increment of optical emission due to the presence of the magnetic field was observed, but no film composition change or thickness increment was obtained. It suggests that the increment of the optical emission is due mainly to the electron confinement rather than confinement of ionic species.

  13. A high voltage pulse generator based on silicon-controlled rectifier for field-reversed configuration experiment.

    Science.gov (United States)

    Lin, Munan; Liu, Ming; Zhu, Guanghui; Wang, Yanpeng; Shi, Peiyun; Sun, Xuan

    2017-08-01

    A high voltage pulse generator based on a silicon-controlled rectifier has been designed and implemented for a field reversed configuration experiment. A critical damping circuit is used in the generator to produce the desired pulse waveform. Depending on the load, the rise time of the output trigger signal can be less than 1 μs, and the peak amplitudes of trigger voltage and current are up to 8 kV and 85 A in a single output. The output voltage can be easily adjusted by changing the voltage on a capacitor of the generator. In addition, the generator integrates an electrically floating heater circuit so it is capable of triggering either pseudosparks (TDI-type hydrogen thyratron) or ignitrons. Details of the circuits and their implementation are described in the paper. The trigger generator has successfully controlled the discharging sequence of the pulsed power supply for a field reversed configuration experiment.

  14. Self-guiding of high-intensity laser pulses for laser wake field acceleration

    International Nuclear Information System (INIS)

    Umstader, D.; Liu, X.

    1992-01-01

    A means of self-guiding an ultrashort and high-intensity laser pulse is demonstrated both experimentally and numerically. Its relevance to the laser wake field accelerator concept is discussed. Self-focusing and multiple foci formation are observed when a high peak power (P>100 GW), 1 μm, subpicosecond laser is focused onto various gases (air or hydrogen). It appears to result from the combined effects of self-focusing by the gas, and de-focusing both by diffraction and the plasma formed in the central high-intensity region. Quasi-stationary computer simulations show the same multiple foci behavior as the experiments. The results suggest much larger nonlinear electronic susceptibilities of a gas near or undergoing ionization in the high field of the laser pulse. Although self-guiding of a laser beam by this mechanism appears to significantly extend its high-intensity focal region, small-scale self-focusing due to beam non-uniformity is currently a limitation

  15. Experimental installation for excitation of semiconductors and dielectrics by picosecond pulsed electron beam and electric field

    International Nuclear Information System (INIS)

    Nasibov, A.S.; Berezhnoj, K.V.; Shapkin, P.V.; Reutova, A.G.; Shunajlov, S.A.; Yalandin, M.I.

    2009-01-01

    The experimental facility for shaping high-voltage pulses with amplitudes of 30-250 kV and durations of 100-500 ps and electron beams with a current density of up to 1000 A/cm -2 is described. The facility was built using the principle of energy compression of a pulse from a nanosecond high-voltage generator accompanied by the subsequent pulse sharpening and cutting. The setup is equipped with two test coaxial chambers for radiation excitation in semiconductor crystals by an electron beam or an electric field in air at atmospheric pressure and T = 300 K. Generation of laser radiation in the visible range under field and electron pumping was attained in ZnSSe, ZnSe, ZnCdS, and CdS (462, 480, 515, and 525 nm, respectively). Under the exposure to an electric field (up to 10 6 V x cm -1 ), the laser generation region is as large as 300-500 μm. The radiation divergence was within 5 Deg C. The maximum integral radiation power (6 kW at λ = 480 nm) was obtained under field pumping of a zinc selenide sample with a single dielectric mirror [ru

  16. The Electrode Modality Development in Pulsed Electric Field Treatment Facilitates Biocellular Mechanism Study and Improves Cancer Ablation Efficacy

    OpenAIRE

    Cen, Chao; Chen, Xinhua

    2017-01-01

    Pulsed electric field treatment is now widely used in diverse biological and medical applications: gene delivery, electrochemotherapy, and cancer therapy. This minimally invasive technique has several advantages over traditional ablation techniques, such as nonthermal elimination and blood vessel spare effect. Different electrodes are subsequently developed for a specific treatment purpose. Here, we provide a systematic review of electrode modality development in pulsed electric field treatme...

  17. Spatially-resolved measurement of optically stimulated luminescence and time-resolved luminescence

    International Nuclear Information System (INIS)

    Bailiff, I.K.; Mikhailik, V.B.

    2003-01-01

    Spatially-resolved measurements of optically stimulated luminescence (OSL) were performed using a two-dimensional scanning system designed for use with planar samples. The scanning system employs a focused laser beam to stimulate a selected area of the sample, which is moved under the beam by a motorised stage. Exposure of the sample is controlled by an electronic shutter. Mapping of the distribution of OSL using a continuous wave laser source was obtained with sub-millimeter resolution for samples of sliced brick, synthetic single crystal quartz, concrete and dental ceramic. These revealed sporadic emission in the case of brick or concrete and significant spatial variation of emission for quartz and dental ceramic slices. Determinations of absorbed dose were performed for quartz grains within a slice of modern brick. Reconfiguration of the scanner with a pulsed laser source enabled quartz and feldspathic minerals within a ceramic sample to be thinner region. about 6 nm from the extrapolation of themeasuring the time-resolved luminescence spectrum

  18. Pulse radiolysis of liquid water using picosecond electron pulses produced by a table-top terawatt laser system

    International Nuclear Information System (INIS)

    Saleh, Ned; Flippo, Kirk; Nemoto, Koshichi; Umstadter, Donald; Crowell, Robert A.; Jonah, Charles D.; Trifunac, Alexander D.

    2000-01-01

    A laser based electron generator is shown, for the first time, to produce sufficient charge to conduct time resolved investigations of radiation induced chemical events. Electron pulses generated by focussing terawatt laser pulses into a supersonic helium gas jet are used to ionize liquid water. The decay of the hydrated electrons produced by the ionizing electron pulses is monitored with 0.3 μs time resolution. Hydrated electron concentrations as high as 22 μM were generated. The results show that terawatt lasers offer both an alternative to linear accelerators and a means to achieve subpicosecond time resolution for pulse radiolysis studies. (c) 2000 American Institute of Physics

  19. Separation of large DNA molecules by applying pulsed electric field to size exclusion chromatography-based microchip

    Science.gov (United States)

    Azuma, Naoki; Itoh, Shintaro; Fukuzawa, Kenji; Zhang, Hedong

    2018-02-01

    Through electrophoresis driven by a pulsed electric field, we succeeded in separating large DNA molecules with an electrophoretic microchip based on size exclusion chromatography (SEC), which was proposed in our previous study. The conditions of the pulsed electric field required to achieve the separation were determined by numerical analyses using our originally proposed separation model. From the numerical results, we succeeded in separating large DNA molecules (λ DNA and T4 DNA) within 1600 s, which was approximately half of that achieved under a direct electric field in our previous study. Our SEC-based electrophoresis microchip will be one of the effective tools to meet the growing demand of faster and more convenient separation of large DNA molecules, especially in the field of epidemiological research of infectious diseases.

  20. Inactivation of Escherichia coli, Saccharomyces cerevisiae, and Lactobacillus brevis in Low-fat Milk by Pulsed Electric Field Treatment: A Pilot-scale Study

    OpenAIRE

    Lee, Gun Joon; Han, Bok Kung; Choi, Hyuk Joon; Kang, Shin Ho; Baick, Seung Chun; Lee, Dong-Un

    2015-01-01

    We investigated the effects of a pulsed electric field (PEF) treatment on microbial inactivation and the physical properties of low-fat milk. Milk inoculated with Escherichia coli, Saccharomyces cerevisiae, or Lactobacillus brevis was supplied to a pilot-scale PEF treatment system at a flow rate of 30 L/h. Pulses with an electric field strength of 10 kV/cm and a pulse width of 30 ?s were applied to the milk with total pulse energies of 50-250 kJ/L achieved by varying the pulse frequency. The ...

  1. Pulsed Electron Source with Grid Plasma Cathode and Longitudinal Magnetic Field for Modification of Material and Product Surfaces

    Science.gov (United States)

    Devyatkov, V. N.; Koval, N. N.

    2018-01-01

    The description and the main characteristics of the pulsed electron source "SOLO" developed on the basis of the plasma cathode with grid stabilization of the emission plasma boundary are presented. The emission plasma is generated by a low-pressure arc discharge, and that allows to form the dense low-energy electron beam with a wide range of independently adjustable parameters of beam current pulses (pulse duration of 20-250 μs, pulse repetition rate of 1-10 s-1, amplitude of beam current pulses of 20-300 A, and energy of beam electrons of 5-25 keV). The special features of generation of emission plasma by constricted low-pressure arc discharge in the grid plasma cathode partially dipped into a non-uniform magnetic field and of formation and transportation of the electron beam in a longitudinal magnetic field are considered. The application area of the electron source and technologies realized with its help are specified.

  2. The Electrode Modality Development in Pulsed Electric Field Treatment Facilitates Biocellular Mechanism Study and Improves Cancer Ablation Efficacy.

    Science.gov (United States)

    Cen, Chao; Chen, Xinhua

    2017-01-01

    Pulsed electric field treatment is now widely used in diverse biological and medical applications: gene delivery, electrochemotherapy, and cancer therapy. This minimally invasive technique has several advantages over traditional ablation techniques, such as nonthermal elimination and blood vessel spare effect. Different electrodes are subsequently developed for a specific treatment purpose. Here, we provide a systematic review of electrode modality development in pulsed electric field treatment. For electrodes invented for experiment in vitro, sheet electrode and electrode cuvette, electrodes with high-speed fluorescence imaging system, electrodes with patch-clamp, and electrodes with confocal laser scanning microscopy are introduced. For electrodes invented for experiment in vivo, monopolar electrodes, five-needle array electrodes, single-needle bipolar electrode, parallel plate electrodes, and suction electrode are introduced. The pulsed electric field provides a promising treatment for cancer.

  3. A simple approach to spectrally resolved fluorescence and bright field microscopy over select regions of interest.

    Science.gov (United States)

    Dahlberg, Peter D; Boughter, Christopher T; Faruk, Nabil F; Hong, Lu; Koh, Young Hoon; Reyer, Matthew A; Shaiber, Alon; Sherani, Aiman; Zhang, Jiacheng; Jureller, Justin E; Hammond, Adam T

    2016-11-01

    A standard wide field inverted microscope was converted to a spatially selective spectrally resolved microscope through the addition of a polarizing beam splitter, a pair of polarizers, an amplitude-mode liquid crystal-spatial light modulator, and a USB spectrometer. The instrument is capable of simultaneously imaging and acquiring spectra over user defined regions of interest. The microscope can also be operated in a bright-field mode to acquire absorption spectra of micron scale objects. The utility of the instrument is demonstrated on three different samples. First, the instrument is used to resolve three differently labeled fluorescent beads in vitro. Second, the instrument is used to recover time dependent bleaching dynamics that have distinct spectral changes in the cyanobacteria, Synechococcus leopoliensis UTEX 625. Lastly, the technique is used to acquire the absorption spectra of CH 3 NH 3 PbBr 3 perovskites and measure differences between nanocrystal films and micron scale crystals.

  4. A simple approach to spectrally resolved fluorescence and bright field microscopy over select regions of interest

    Science.gov (United States)

    Dahlberg, Peter D.; Boughter, Christopher T.; Faruk, Nabil F.; Hong, Lu; Koh, Young Hoon; Reyer, Matthew A.; Shaiber, Alon; Sherani, Aiman; Zhang, Jiacheng; Jureller, Justin E.; Hammond, Adam T.

    2016-11-01

    A standard wide field inverted microscope was converted to a spatially selective spectrally resolved microscope through the addition of a polarizing beam splitter, a pair of polarizers, an amplitude-mode liquid crystal-spatial light modulator, and a USB spectrometer. The instrument is capable of simultaneously imaging and acquiring spectra over user defined regions of interest. The microscope can also be operated in a bright-field mode to acquire absorption spectra of micron scale objects. The utility of the instrument is demonstrated on three different samples. First, the instrument is used to resolve three differently labeled fluorescent beads in vitro. Second, the instrument is used to recover time dependent bleaching dynamics that have distinct spectral changes in the cyanobacteria, Synechococcus leopoliensis UTEX 625. Lastly, the technique is used to acquire the absorption spectra of CH3NH3PbBr3 perovskites and measure differences between nanocrystal films and micron scale crystals.

  5. Space charge effects and aberrations on electron pulse compression in a spherical electrostatic capacitor.

    Science.gov (United States)

    Yu, Lei; Li, Haibo; Wan, Weishi; Wei, Zheng; Grzelakowski, Krzysztof P; Tromp, Rudolf M; Tang, Wen-Xin

    2017-12-01

    The effects of space charge, aberrations and relativity on temporal compression are investigated for a compact spherical electrostatic capacitor (α-SDA). By employing the three-dimensional (3D) field simulation and the 3D space charge model based on numerical General Particle Tracer and SIMION, we map the compression efficiency for a wide range of initial beam size and single-pulse electron number and determine the optimum conditions of electron pulses for the most effective compression. The results demonstrate that both space charge effects and aberrations prevent the compression of electron pulses into the sub-ps region if the electron number and the beam size are not properly optimized. Our results suggest that α-SDA is an effective compression approach for electron pulses under the optimum conditions. It may serve as a potential key component in designing future time-resolved electron sources for electron diffraction and spectroscopy experiments. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Trial Application of Pulse-Field Magnetization to Magnetically Levitated Conveyor System

    Directory of Open Access Journals (Sweden)

    Yoshihito Miyatake

    2012-01-01

    Full Text Available Magnetically levitated conveyor system using superconductors is discussed. The system is composed of a levitated conveyor, magnetic rails, a linear induction motor, and some power supplies. In the paper, pulse-field magnetization is applied to the system. Then, the levitation height and the dynamics of the conveyor are controlled. The static and dynamic characteristics of the levitated conveyor are discussed.

  7. Time-resolved spectroscopy of laser-induced breakdown in water

    Science.gov (United States)

    Thomas, Robert J.; Hammer, Daniel X.; Noojin, Gary D.; Stolarski, David J.; Rockwell, Benjamin A.; Roach, William P.

    1996-05-01

    Laser pulses of 60-ps and 80-ps at a wavelength of 532-nm and 1064-nm respectively were used to produce laser induced breakdown in triple-distilled water. The resulting luminescent flash from the plasma was captured with an imaging spectrograph coupled to a streak camera with a 5-ps time resolution. The wavelength range was 350 to 900-nm. We present the resulting experimental data which gives plasma duration and time-resolved spectral information. Plasma temperature is also computed from the data. All parameters are presented at a pulse energy of 1-mJ and are compared with time-integrated spectra at the same pulse duration and at 5 to 7-ns pulse duration in a similar energy range.

  8. Continuous raw skim milk processing by pulsed electric field at non-lethal temperature: effect on microbial inactivation and functional properties

    OpenAIRE

    Floury , Juliane; Grosset , Noël; Leconte , Nadine; Pasco , Maryvonne; Madec , Marie-Noëlle; Jeantet , Romain

    2006-01-01

    International audience; Pulsed electric field (PEF) is an emerging non-thermal processing technology used to inactivate microorganisms in liquid foods such as milk. The objective of this research was to study the effectiveness of continuous PEF equipment (square wave pulses) on total microorganisms of raw skim milk and on Salmonella enteritidis inactivation under moderate temperatures (T < 50 °C). Processing parameters (electric field and pulse width) were chosen as follows: 45 kV*cm-1/500 ns...

  9. Time resolved X-ray micro-diffraction measurements of the dynamic local layer response to electric field in antiferroelectric liquid crystals

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Yumiko; Iida, Atuso E-mail: atsuo.iida@kek.jp; Takanishi, Yoichi; Ogasawara, Toyokazu; Takezoe, Hideo

    2001-07-21

    The time-resolved synchrotron X-ray microbeam diffraction experiment has been carried out to reveal the local layer response to the electric field in the antiferroelectric liquid crystal. The X-ray microbeam of a few {mu}m spatial resolution was obtained with Kirkpatrick-Baez optics. The time-resolved small angle diffraction experiment was performed with a time resolution ranging from 10 {mu}s to a few ms. The reversible local layer change between the horizontal chevron and the quasi-bookshelf structure was confirmed by the triangular wave form. The transient layer response for the step form electric field was observed. The layer response closely related with an electric field induced antiferroelectric to ferroelectric phase transition.

  10. Time resolved X-ray micro-diffraction measurements of the dynamic local layer response to electric field in antiferroelectric liquid crystals

    International Nuclear Information System (INIS)

    Takahashi, Yumiko; Iida, Atuso; Takanishi, Yoichi; Ogasawara, Toyokazu; Takezoe, Hideo

    2001-01-01

    The time-resolved synchrotron X-ray microbeam diffraction experiment has been carried out to reveal the local layer response to the electric field in the antiferroelectric liquid crystal. The X-ray microbeam of a few μm spatial resolution was obtained with Kirkpatrick-Baez optics. The time-resolved small angle diffraction experiment was performed with a time resolution ranging from 10 μs to a few ms. The reversible local layer change between the horizontal chevron and the quasi-bookshelf structure was confirmed by the triangular wave form. The transient layer response for the step form electric field was observed. The layer response closely related with an electric field induced antiferroelectric to ferroelectric phase transition

  11. Shaping of pulses in optical grating-based laser systems for optimal control of electrons in laser plasma wake-field accelerator

    International Nuclear Information System (INIS)

    Toth, Cs.; Faure, J.; Geddes, C.G.R.; Tilborg, J. van; Leemans, W.P.

    2003-01-01

    In typical chirped pulse amplification (CPA) laser systems, scanning the grating separation in the optical compressor causes the well know generation of linear chirp of frequency vs. time in a laser pulse, as well as a modification of all the higher order phase terms. By setting the compressor angle slightly different from the optimum value to generate the shortest pulse, a typical scan around this value will produce significant changes to the pulse shape. Such pulse shape changes can lead to significant differences in the interaction with plasmas such as used in laser wake-field accelerators. Strong electron yield dependence on laser pulse shape in laser plasma wake-field electron acceleration experiments have been observed in the L'OASIS Lab of LBNL [1]. These experiments show the importance of pulse skewness parameter, S, defined here on the basis of the ratio of the ''head-width-half-max'' (HWHM) and the ''tail-width-halfmax'' (TWHM), respectively

  12. Relationship between time-resolved and non-time-resolved Beer-Lambert law in turbid media.

    Science.gov (United States)

    Nomura, Y; Hazeki, O; Tamura, M

    1997-06-01

    The time-resolved Beer-Lambert law proposed for oxygen monitoring using pulsed light was extended to the non-time-resolved case in a scattered medium such as living tissues with continuous illumination. The time-resolved Beer-Lambert law was valid for the phantom model and living tissues in the visible and near-infrared regions. The absolute concentration and oxygen saturation of haemoglobin in rat brain and thigh muscle could be determined. The temporal profile of rat brain was reproduced by Monte Carlo simulation. When the temporal profiles of rat brain under different oxygenation states were integrated with time, the absorbance difference was linearly related to changes in the absorption coefficient. When the simulated profiles were integrated, there was a linear relationship within the absorption coefficient which was predicted for fractional inspiratory oxygen concentration from 10 to 100% and, in the case beyond the range of the absorption coefficient, the deviation from linearity was slight. We concluded that an optical pathlength which is independent of changes in the absorption coefficient is a good approximation for near-infrared oxygen monitoring.

  13. Tracing the plasma interactions for pulsed reactive crossed-beam laser ablation

    Science.gov (United States)

    Chen, Jikun; Stender, Dieter; Pichler, Markus; Döbeli, Max; Pergolesi, Daniele; Schneider, Christof W.; Wokaun, Alexander; Lippert, Thomas

    2015-10-01

    Pulsed reactive crossed-beam laser ablation is an effective technique to govern the chemical activity of plasma species and background molecules during pulsed laser deposition. Instead of using a constant background pressure, a gas pulse with a reactive gas, synchronized with the laser beam, is injected into vacuum or a low background pressure near the ablated area of the target. It intercepts the initially generated plasma plume, thereby enhancing the physicochemical interactions between the gaseous environment and the plasma species. For this study, kinetic energy resolved mass-spectrometry and time-resolved plasma imaging were used to study the physicochemical processes occurring during the reactive crossed beam laser ablation of a partially 18O substituted La0.6Sr0.4MnO3 target using oxygen as gas pulse. The characteristics of the ablated plasma are compared with those observed during pulsed laser deposition in different oxygen background pressures.

  14. Determining the field emitter temperature during laser irradiation in the pulsed laser atom probe

    International Nuclear Information System (INIS)

    Kellogg, G.L.

    1981-01-01

    Three methods are discussed for determining the field emitter temperature during laser irradiation in the recently developed Pulsed Laser Atom Probe. A procedure based on the reduction of the lattice evaporation field with increasing emitter temperature is found to be the most convenient and reliable method between 60 and 500 K. Calibration curves (plots of the evaporation field versus temperature) are presented for dc and pulsed field evaporation of W, Mo, and Rh. These results show directly the important influence of the evaporation rate on the temperature dependence of the evaporation field. The possibility of a temperature calibration based on the ionic charge state distribution of field evaporated lattice atoms is also discussed. The shift in the charge state distributions which occurs when the emitter temperature is increased and the applied field strength is decreased at a constant rate of evaporation is shown to be due to the changing field and not the changing temperature. Nevertheless, the emitter temperature can be deduced from the charge state distribution for a specified evaporation rate. Charge state distributions as a function of field strength and temperature are presented for the same three materials. Finally, a preliminary experiment is reported which shows that the emitter temperature can be determined from field ion microscope observations of single atom surface diffusion over low index crystal planes. This last calibration procedure is shown to be very useful at higher temperatures (>600 K) where the other two methods become unreliable

  15. Time-resolved ultraviolet near-field scanning optical microscope for characterizing photoluminescence lifetime of light-emitting devices.

    Science.gov (United States)

    Park, Kyoung-Duck; Jeong, Hyun; Kim, Yong Hwan; Yim, Sang-Youp; Lee, Hong Seok; Suh, Eun-Kyung; Jeong, Mun Seok

    2013-03-01

    We developed a instrument consisting of an ultraviolet (UV) near-field scanning optical microscope (NSOM) combined with time-correlated single photon counting, which allows efficient observation of temporal dynamics of near-field photoluminescence (PL) down to the sub-wavelength scale. The developed time-resolved UV NSOM system showed a spatial resolution of 110 nm and a temporal resolution of 130 ps in the optical signal. The proposed microscope system was successfully demonstrated by characterizing the near-field PL lifetime of InGaN/GaN multiple quantum wells.

  16. Interaction of high power ultrashort laser pulses with plasmas

    International Nuclear Information System (INIS)

    Geissler, M.

    2000-12-01

    The invention of short laser-pulses has opened a vast application range from testing ultra high-speed semiconductor devices to precision material processing, from triggering and tracing chemical reactions to sophisticated surgical applications in opthalmology and neurosurgery. In physical science, ultrashort light pulses enable researchers to follow ultrafast relaxation processes in the microcosm on time scale never before accessible and study light-matter-interactions at unprecedented intensity levels. The aim of this thesis is to investigate the interaction of ultrashort high power laser pulses with plasmas for a broad intensity range. First the ionization of atoms with intense laser fields is investigated. For sufficient strong and low frequent laser pulses, electrons can be removed from the core by a tunnel process through a potential barrier formed by the electric field of the laser. This mechanism is described by a well-established theory, but the interaction of few-cycle laser pulses with atoms can lead to regimes where the tunnel theory loses its validity. This regime is investigated and a new description of the ionization is found. Although the ionization plays a major role in many high-energy laser processes, there exist no simple and complete model for the evolution of laser pulses in field-ionizing media. A new propagation equation and the polarization response for field-ionizing media are presented and the results are compared with experimental data. Further the interaction of high power laser radiation with atoms result in nonlinear response of the electrons. The spectrum of this induced nonlinear dipole moment reaches beyond visible wavelengths into the x-ray regime. This effect is known as high harmonic generation (HHG) and is a promising tool for the generation of coherent shot wavelength radiation, but the conversions are still not efficient enough for most practical applications. Phase matching schemes to overcome the limitation are discussed

  17. Inactivation of Pseudomonas fluorescens in skim milk by combinations of pulsed electric fields and organic acids.

    Science.gov (United States)

    Fernández-Molina, Juan J; Altunakar, Bilge; Bermúdez-Aguirre, Daniela; Swanson, Barry G; Barbosa-Cánovas, Gustavo V

    2005-06-01

    Pseudomonas fluorescens suspended in skim milk was inactivated by application of pulsed electric fields (PEF) either alone or in combination with acetic or propionic acid. The initial concentration of microorganisms ranged from 10(5) to 10(6) CFU/ml. Addition of acetic acid and propionic acid to skim milk inactivated 0.24 and 0.48 log CFU/ml P. fluorescens, respectively. Sets of 10, 20, and 30 pulses were applied to the skim milk using exponentially decaying pulses with pulse lengths of 2 micros and pulse frequencies of 3 Hz. Treatment temperature was maintained between 16 and 20 degrees C. In the absence of organic acids, PEF treatment of skim milk at field intensities of 31 and 38 kV/cm reduced P. fluorescens populations by 1.0 to 1.8 and by 1.2 to 1.9 log CFU/ml, respectively. Additions of acetic and propionic acid to the skim milk in a pH range of 5.0 to 5.3 and PEF treatment at 31, 33, and 34 kV/cm, and 36, 37, and 38 kV/cm reduced the population of P. fluorescens by 1.4 and 1.8 log CFU/ml, respectively. No synergistic effect resulted from the combination of PEF with acetic or propionic acid.

  18. A simple approach to spectrally resolved fluorescence and bright field microscopy over select regions of interest

    OpenAIRE

    Dahlberg, Peter D.; Boughter, Christopher T.; Faruk, Nabil F.; Hong, Lu; Koh, Young Hoon; Reyer, Matthew A.; Shaiber, Alon; Sherani, Aiman; Zhang, Jiacheng; Jureller, Justin E.; Hammond, Adam T.

    2016-01-01

    A standard wide field inverted microscope was converted to a spatially selective spectrally resolved microscope through the addition of a polarizing beam splitter, a pair of polarizers, an amplitude-mode liquid crystal-spatial light modulator, and a USB spectrometer. The instrument is capable of simultaneously imaging and acquiring spectra over user defined regions of interest. The microscope can also be operated in a bright-field mode to acquire absorption spectra of micron scale objects. Th...

  19. International Conference on the Interaction of atoms, molecules and plasmas with intense ultrashort laser pulses. Book of abstracts

    International Nuclear Information System (INIS)

    2006-01-01

    International Conference on the Interaction of atoms, molecules and plasmas with intense ultrashort laser pulses was held in Hungary in 2006. This conference which joined the ULTRA COST activity ('Laser-matter interactions with ultra-short pulses, high-frequency pulses and ultra-intense pulses. From attophysics to petawatt physics') and the XTRA ('Ultrashort XUV Pulses for Time-Resolved and Non-Linear Applications') Marie-Curie Research Training Network, intends to offer a possibility to the members of both of these activities to exchange ideas on recent theoretical and experimental results on the interaction of ultrashort laser pulses with matter giving a broad view from theoretical models to practical and technical applications. Ultrashort laser pulses reaching extra high intensities open new windows to obtain information about molecular and atomic processes. These pulses are even able to penetrate into atomic scalelengths not only by generating particles of ultrahigh energy but also inside the spatial and temporal atomic scalelengths. New regimes of laser-matter interaction were opened in the last decade with an increasing number of laboratories and researchers in these fields. (S.I.)

  20. Angularly resolved electron wave packet interferences

    International Nuclear Information System (INIS)

    Varju, K; Johnsson, P; Mauritsson, J; Remetter, T; Ruchon, T; Ni, Y; Lepine, F; Kling, M; Khan, J; Schafer, K J; Vrakking, M J J; L'Huillier, A

    2006-01-01

    We study experimentally the ionization of argon atoms by a train of attosecond pulses in the presence of a strong infrared laser field, using a velocity map imaging technique. The recorded momentum distribution strongly depends on the delay between the attosecond pulses and the laser field. We interpret the interference patterns observed for different delays using numerical and analytical calculations within the strong field approximation

  1. Angularly resolved electron wave packet interferences

    Energy Technology Data Exchange (ETDEWEB)

    Varju, K [Department of Physics, Lund University, PO Box 118, SE-221 00 Lund (Sweden); Johnsson, P [Department of Physics, Lund University, PO Box 118, SE-221 00 Lund (Sweden); Mauritsson, J [Department of Physics, Lund University, PO Box 118, SE-221 00 Lund (Sweden); Remetter, T [Department of Physics, Lund University, PO Box 118, SE-221 00 Lund (Sweden); Ruchon, T [Department of Physics, Lund University, PO Box 118, SE-221 00 Lund (Sweden); Ni, Y [FOM-Institute AMOLF, Kruislaan 407, 1098 SJ Amsterdam (Netherlands); Lepine, F [FOM-Institute AMOLF, Kruislaan 407, 1098 SJ Amsterdam (Netherlands); Kling, M [FOM-Institute AMOLF, Kruislaan 407, 1098 SJ Amsterdam (Netherlands); Khan, J [FOM-Institute AMOLF, Kruislaan 407, 1098 SJ Amsterdam (Netherlands); Schafer, K J [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803-4001 (United States); Vrakking, M J J [FOM-Institute AMOLF, Kruislaan 407, 1098 SJ Amsterdam (Netherlands); L' Huillier, A [Department of Physics, Lund University, PO Box 118, SE-221 00 Lund (Sweden)

    2006-09-28

    We study experimentally the ionization of argon atoms by a train of attosecond pulses in the presence of a strong infrared laser field, using a velocity map imaging technique. The recorded momentum distribution strongly depends on the delay between the attosecond pulses and the laser field. We interpret the interference patterns observed for different delays using numerical and analytical calculations within the strong field approximation.

  2. High resolving power spectrometer for beam analysis

    International Nuclear Information System (INIS)

    Moshammer, H.W.; Spencer, J.E.

    1992-03-01

    We describe a system designed to analyze the high energy, closely spaced bunches from individual RF pulses. Neither a large solid angle nor momentum range is required so this allows characteristics that appear useful for other applications such as ion beam lithography. The spectrometer is a compact, double-focusing QBQ design whose symmetry allows the Quads to range between F or D with a correspondingly large range of magnifications, dispersion and resolving power. This flexibility insures the possibility of spatially separating all of the bunches along the focal plane with minimal transverse kicks and bending angle for differing input conditions. The symmetry of the system allows a simple geometric interpretationof the resolving power in terms of thin lenses and ray optics. We discuss the optics and the hardware that is proposed to measure emittance, energy, energy spread and bunch length for each bunch in an RF pulse train for small bunch separations. We also discuss how to use such measurements for feedback and feedforward control of these bunch characteristics as well as maintain their stability. 2 refs

  3. Time-resolved pulse-counting lock-in detection of laser induced fluorescence in the presence of a strong background emission

    Science.gov (United States)

    Pelissier, B.; Sadeghi, N.

    1996-10-01

    We describe a time-resolved pulse-counting system well adapted for the detection of continuous laser induced fluorescence (LIF) signals in repetitive phenomena, when a strong background emission is present. It consists of 256 channels coupled to a first in first out memory and interfaced to a 486 DX 33 PC, for data storage. It accepts time-averaged count rates up to 450 kcount/s. Time between channels can be set from 12.5 ns to several μs and the dead time between two consecutive cycles of the physical phenomena is less than 20 ns. In phase with a chopper, which modulates the laser beam, it adds the observed photon signal to the channel memories when the beam is on and substracts it when the beam is stopped, acting like a lock-in amplifier which detect only the modulated part of the signal. The minimum detectivity on the LIF signal is only limited by the shot noise of the plasma induced emission signal. As an application, we studied the time variation of the Ar+*(2G9/2) metastable ions, detected by LIF, in two types of plasmas. Their radiative lifetime and collisional quenching frequencies were deduced from their decay rate in the afterglow of a pulsed Helicon reactor. We also observed the evolution of their density in a 455 kHz capacitively coupled argon discharge.

  4. Activation of Anti-tumor Immune Response by Ablation of HCC with Nanosecond Pulsed Electric Field.

    Science.gov (United States)

    Xu, Xiaobo; Chen, Yiling; Zhang, Ruiqing; Miao, Xudong; Chen, Xinhua

    2018-03-28

    Locoregional therapy is playing an increasingly important role in the non-surgical management of hepatocellular carcinoma (HCC). The novel technique of non-thermal electric ablation by nanosecond pulsed electric field has been recognized as a potential locoregional methodology for indicated HCC. This manuscript explores the most recent studies to indicate its unique anti-tumor immune response. The possible immune mechanism, termed as nano-pulse stimulation, was also analyzed.

  5. New developments in pulsed fields at the US National High Magnetic Field Laboratory

    International Nuclear Information System (INIS)

    Campbell, L.J.; Parkin, D.M.; Rickel, D.G.; Pernambuco-Wise, P.

    1996-01-01

    Los Alamos National Laboratory is a member of a consortium (with Florida State University and the University of Florida) to operate the National High Magnetic Field Laboratory (NHMFL), with funding from the National Science Foundation and the State of Florida. Los Alamos provides unique resources for its component of NHMFL in the form of a 1.4 GW inertial storage motor-generator for high field pulsed magnets and infrastructure for fields generated by flux compression. The NHMFL provides a user facility open to all qualified users, develops magnet technology in association with the private sector, and advances science and technology opportunities. The magnets in service at Los Alamos are of three types. Starting with the pre-existing explosive flux compression capability in 1991, NHMFL added capacitor-driven magnets in December, 1992, and a 20 tesla superconducting magnet in January, 1993. The capacitor-driven magnets continue to grow in diversity and accessibility, with four magnet stations now available for several different magnet types. Two magnets of unprecedented size and strength are nearing completion of assembly and design, respectively. Under final assembly is a quasi-continuous magnet that contains 90 MJ of magnetic energy at full field, and being designed is a non-destructive 100 T magnet containing 140 MJ

  6. Probing Photoinduced Structural Phase Transitions by Fast or Ultra-Fast Time-Resolved X-Ray Diffraction

    Science.gov (United States)

    Cailleau, Hervé Collet, Eric; Buron-Le Cointe, Marylise; Lemée-Cailleau, Marie-Hélène Koshihara, Shin-Ya

    A new frontier in the field of structural science is the emergence of the fast and ultra-fast X-ray science. Recent developments in time-resolved X-ray diffraction promise direct access to the dynamics of electronic, atomic and molecular motions in condensed matter triggered by a pulsed laser irradiation, i.e. to record "molecular movies" during the transformation of matter initiated by light pulse. These laser pump and X-ray probe techniques now provide an outstanding opportunity for the direct observation of a photoinduced structural phase transition as it takes place. The use of X-ray short-pulse of about 100ps around third-generation synchrotron sources allows structural investigations of fast photoinduced processes. Other new X-ray sources, such as laser-produced plasma ones, generate ultra-short pulses down to 100 fs. This opens the way to femtosecond X-ray crystallography, but with rather low X-ray intensities and more limited experimental possibilities at present. However this new ultra-fast science rapidly progresses around these sources and new large-scale projects exist. It is the aim of this contribution to overview the state of art and the perspectives of fast and ultra-fast X-ray scattering techniques to study photoinduced phase transitions (here, the word ultra-fast is used for sub-picosecond time resolution). In particular we would like to largely present the contribution of crystallographic methods in comparison with optical methods, such as pump-probe reflectivity measurements, the reader being not necessary familiar with X-ray scattering. Thus we want to present which type of physical information can be obtained from the positions of the Bragg peaks, their intensity and their shape, as well as from the diffuse scattering beyond Bragg peaks. An important physical feature is to take into consideration the difference in nature between a photoinduced phase transition and conventional homogeneous photoinduced chemical or biochemical processes where

  7. Crystal Growth of High-Quality Protein Crystals under the Presence of an Alternant Electric Field in Pulse-Wave Mode, and a Strong Magnetic Field with Radio Frequency Pulses Characterized by X-ray Diffraction

    Directory of Open Access Journals (Sweden)

    Adela Rodríguez-Romero

    2017-06-01

    Full Text Available The first part of this research was devoted to investigating the effect of alternate current (AC using four different types of wave modes (pulse-wave at 2 Hz on the crystal growth of lysozyme in solution. The best results, in terms of size and crystal quality, were obtained when protein crystals were grown under the influence of electric fields in a very specific wave mode (“breathing” wave, giving the highest resolution up to 1.34 Å in X-ray diffraction analysis compared with controls and with those crystals grown in gel. In the second part, we evaluated the effect of a strong magnetic field of 16.5 Tesla combined with radiofrequency pulses of 0.43 μs on the crystal growth in gels of tetragonal hen egg white (HEW lysozyme. The lysozyme crystals grown, both in solution applying breathing-wave and in gel under the influence of this strong magnetic field with pulses of radio frequencies, produced the larger-in-size crystals and the highest resolution structures. Data processing and refinement statistics are very good in terms of the resolution, mosaicity and Wilson B factor obtained for each crystal. Besides, electron density maps show well-defined and distinctly separated atoms at several selected tryptophan residues for the crystal grown using the “breathing wave pulses”.

  8. General planar transverse domain walls realized by optimized transverse magnetic field pulses in magnetic biaxial nanowires

    Science.gov (United States)

    Li, Mei; Wang, Jianbo; Lu, Jie

    2017-02-01

    The statics and field-driven dynamics of transverse domain walls (TDWs) in magnetic nanowires (NWs) have attracted continuous interests because of their theoretical significance and application potential in future magnetic logic and memory devices. Recent results demonstrate that uniform transverse magnetic fields (TMFs) can greatly enhance the wall velocity, meantime leave a twisting in the TDW azimuthal distribution. For application in high-density NW devices, it is preferable to erase the twisting so as to minimize magnetization frustrations. Here we report the realization of a completely planar TDW with arbitrary tilting attitude in a magnetic biaxial NW under a TMF pulse with fixed strength and well-designed orientation profile. We smooth any twisting in the TDW azimuthal plane thus completely decouple the polar and azimuthal degrees of freedom. The analytical differential equation describing the polar angle distribution is derived and the resulting solution is not the Walker-ansatz form. With this TMF pulse comoving, the field-driven dynamics of the planar TDW is investigated with the help of the asymptotic expansion method. It turns out the comoving TMF pulse increases the wall velocity under the same axial driving field. These results will help to design a series of modern magnetic devices based on planar TDWs.

  9. Theoretical and Experimental Investigations of Coincidences in Poisson Distributed Pulse Trains and Spectral Distortion Caused by Pulse Pileup.

    Science.gov (United States)

    Bristow, Quentin

    1990-01-01

    Part one of this two-part study is concerned with the multiple coincidences in pulse trains from X-ray and gamma radiation detectors which are the cause of pulse pileup. A sequence of pulses with inter-arrival times less than tau, the resolving time of the pulse-height analysis system used to acquire spectra, is called a multiple pulse string. Such strings can be classified on the basis of the number of pulses they contain, or the number of resolving times they cover. The occurrence rates of such strings are derived from theoretical considerations. Logic circuits were devised to make experimental measurements of multiple pulse string occurrence rates in the output from a NaI(Tl) scintillation detector over a wide range of count rates. Markov process theory was used to predict state transition rates in the logic circuits, enabling the experimental data to be checked rigorously for conformity with those predicted for a Poisson distribution. No fundamental discrepancies were observed. Part two of the study is concerned with a theoretical analysis of pulse pileup and the development of a discrete correction algorithm, based on the use of a function to simulate the coincidence spectrum produced by partial sums of pulses. Monte Carlo simulations, incorporating criteria for pulse pileup inherent in the operation of modern ADC's, were used to generate pileup spectra due to coincidences between two pulses, (1st order pileup) and three pulses (2nd order pileup), for different semi-Gaussian pulse shapes. Coincidences between pulses in a single channel produced a basic probability density function spectrum which can be regarded as an impulse response for a particular pulse shape. The use of a flat spectrum (identical count rates in all channels) in the simulations, and in a parallel theoretical analysis, showed the 1st order pileup distorted the spectrum to a linear ramp with a pileup tail. The correction algorithm was successfully applied to correct entire spectra for 1st and

  10. [Orthogonal design method to optimize rehabilitation prescription of pulsed electric field at Jiaji (EX-B 2) points for spinal cord injury].

    Science.gov (United States)

    Zhang, Lifeng; Zhang, Hui; Wang, Lin; Liu, Yanyan; Sun, Xianyue; Li, Lingyan; Hou, Jing

    2015-01-01

    By using orthogonal design method to optimnize prescription of pulsed electric field at Jiaji (EX- B 2) points for spinal cord injury (SCI). Fifty six patients of SCI were selected, in which 36 cases were divided into orthogonal design trial and 20 cases were into clinical verification. With 36 patients who received orthogonal design trial, Frankel grading scale was used as observation index to screen optimal prescription of pulsed electric field. Pulse frequency (factor A) included low frequency (factor A(I), 10(2) Hz). moderate frequency (factor A(II), 10(4) Hz) and high frequency (factor A(III), 10(3) Hz); pulse amplitude (factor B) included 0-30 V (factor B ), 0-60 V (factor B(II)) and 0-90 V (factor B(III)); pulse width (factor C) included 0.1 ms (factor C(I)). 0.6 ms (factor C(II)) and 0.9 ms (factor C(III)); acupuncture time (factor D) included one month (DI), three months (D(II)) and five months (D(III)). Twenty patients were used for clinical efficacy observation and the effects of screened optimal pre scription of pulsed electric field at Jiaji (EX-B 2) points combined with regular rehabilitation training on spasm se- verity, score of sensory and motor functions, Barthel index and Frankel score were observed. (1) As results of orthogonal design trial, the optimal prescription was A(III) B(III), C(I), D(III), which were high frequency (10(3) Hz), 0-90 V of pulse amplitude, 0.4 ms of pulse width and 5 months of treatment time. (2) As results of 20 patient clinical verification, Ashworth score, tendon reflex and clonus were all significantly improved (Ppulsed electric field at Jiaji (EX-B 2) points for spinal cord injury is high frequency (10& Hz), 0-90 V of pulse amplitude, 0.4 ms of pulse width and 5 months of treatment time. The optimal prescription of pulsed electric field at Jiaji (EX-B 2) points combined with regular rehabilitation could obviously improve spasm severity, enhance senso- ry and motor functions, and ameliorate activity of daily life and

  11. Elasticity and tumorigenic characteristics of cells in a monolayer after nanosecond pulsed electric field exposure.

    Science.gov (United States)

    Steuer, A; Wende, K; Babica, P; Kolb, J F

    2017-09-01

    Nanosecond pulsed electric fields (nsPEFs) applied to cells can induce different biological effects depending on pulse duration and field strength. One known process is the induction of apoptosis whereby nsPEFs are currently investigated as a novel cancer therapy. Another and probably related change is the breakdown of the cytoskeleton. We investigated the elasticity of rat liver epithelial cells WB-F344 in a monolayer using atomic force microscopy (AFM) with respect to the potential of cells to undergo malignant transformation or to develop a potential to metastasize. We found that the elastic modulus of the cells decreased significantly within the first 8 min after treatment with 20 pulses of 100 ns and with a field strength of 20 kV/cm but was still higher than the elasticity of their tumorigenic counterpart WB-ras. AFM measurements and immunofluorescent staining showed that the cellular actin cytoskeleton became reorganized within 5 min. However, both a colony formation assay and a cell migration assay revealed no significant changes after nsPEF treatment, implying that cells seem not to adopt malignant characteristics associated with metastasis formation despite the induced transient changes to elasticity and cytoskeleton that can be observed for up to 1 h.

  12. Tracing the plasma interactions for pulsed reactive crossed-beam laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jikun; Stender, Dieter; Pichler, Markus; Pergolesi, Daniele; Schneider, Christof W.; Wokaun, Alexander; Lippert, Thomas, E-mail: thomas.lippert@psi.ch [General Energy Research Department, Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Döbeli, Max [Ion Beam Physics, ETH Zurich, CH-8093 Zurich (Switzerland)

    2015-10-28

    Pulsed reactive crossed-beam laser ablation is an effective technique to govern the chemical activity of plasma species and background molecules during pulsed laser deposition. Instead of using a constant background pressure, a gas pulse with a reactive gas, synchronized with the laser beam, is injected into vacuum or a low background pressure near the ablated area of the target. It intercepts the initially generated plasma plume, thereby enhancing the physicochemical interactions between the gaseous environment and the plasma species. For this study, kinetic energy resolved mass-spectrometry and time-resolved plasma imaging were used to study the physicochemical processes occurring during the reactive crossed beam laser ablation of a partially {sup 18}O substituted La{sub 0.6}Sr{sub 0.4}MnO{sub 3} target using oxygen as gas pulse. The characteristics of the ablated plasma are compared with those observed during pulsed laser deposition in different oxygen background pressures.

  13. THz field engineering in two-color femtosecond filaments using chirped and delayed laser pulses

    Science.gov (United States)

    Nguyen, A.; González de Alaiza Martínez, P.; Thiele, I.; Skupin, S.; Bergé, L.

    2018-03-01

    We numerically study the influence of chirping and delaying several ionizing two-color light pulses in order to engineer terahertz (THz) wave generation in air. By means of comprehensive 3D simulations, it is shown that two chirped pulses can increase the THz yield when they are separated by a suitable time delay for the same laser energy in focused propagation geometry. To interpret these results, the local current theory is revisited and we propose an easy, accessible all-optical criterion that predicts the laser-to-THz conversion efficiencies given any input laser spectrum. In the filamentation regime, numerical simulations display evidence that a chirped pulse is able to produce more THz radiation due to propagation effects, which maintain the two colors of the laser field more efficiently coupled over long distances. A large delay between two pulses promotes multi-peaked THz spectra as well as conversion efficiencies above 10‑4.

  14. Control of quantum paths of high-order harmonics and attosecond pulse generation in the presence of a static electric field

    International Nuclear Information System (INIS)

    Hong Weiyi; Lu Peixiang; Cao Wei; Lan Pengfei; Wang Xinlin

    2007-01-01

    The time-frequency properties of high-order harmonic generation in the presence of a static electric field are investigated. It is found that the quantum paths contributing to the harmonics can be controlled by adding a static electric field. The highest photon energies of harmonics emitted in the adjacent half-cycles of the laser field are modulated by the static electric field, and then an attosecond pulse train with one burst per optical cycle can be extracted. For the ratio between the laser and the static field of 0.39, the harmonic spectrum is extended to I p + 9.1U p , and the harmonics above I p + 0.7U p are emitted almost in phase. The phase-locked harmonics covered by a broad bandwidth are produced, and then a regular attosecond pulse train with a pulse duration of 80 as is generated

  15. Effects of the pulse-driven magnetic field detuning on the calibration of coil constants while using noble gases

    Directory of Open Access Journals (Sweden)

    Jing Wang

    2018-04-01

    Full Text Available In the calibration of coil constants using the Free Induction Decay (FID signal of noble gases, we analyse the effects of the pulse-driven magnetic field detuning on the calibration results. This method is based on the inverse relation between the π/2 pulse duration and its amplitude. We confirmed that obtaining a precise frequency is a prerequisite for ensuring the accuracy of research using the initial amplitude of the FID signal. In this paper, the spin dynamics of noble gases and its time-domain solution under the driving pulse have been discussed with regard to different detuning ranges. Experimental results are in good agreement with our theoretical predictions, which indicate the correctness of our theoretical deduction. Therefore, the frequency of the pulse-driven magnetic field is an important factor to the calibration of coil constants, it should be determined with a high degree of accuracy.

  16. Breaking time-resolution limits in pulse radiolysis

    International Nuclear Information System (INIS)

    Yang Jinfeng; Kondoh, Takafumi; Norizawa, Kimihiro; Yoshida, Yoichi; Tagawa, Seiichi

    2009-01-01

    Pulse radiolysis, which is a time-resolved stroboscopic method based on ultrashort electron pulse and ultrashort analyzing light, is widely used for the study of the chemical kinetics and radiation primary processes or reactions. Although it has become possible to use femtosecond-pulse electron beam and femtosecond laser light in pulse radiolysis, the resolution is limited by the difference in group velocities of the electrons and the light in sample. In this contribution, we introduce a concept of equivalent velocity spectroscopy (EVS) into pulse radiolysis and demonstrate the methodology experimentally. In EVS, both the electron and the analyzing light pulses precisely overlap at every point in the sample and throughout the propagation time by rotating the electron pulse. The advance allows us to overcome the resolution degradation due to the different group velocity. We also present a method for measuring the rotated angle of the electron pulse and a technique for rotating the electron pulse with a deflecting cavity.

  17. Characterizing a pulse-resolved dosimetry system for complex radiotherapy beams using organic scintillators

    DEFF Research Database (Denmark)

    Beierholm, Anders Ravnsborg; Ottosson, Rickard; Lindvold, Lars René

    2011-01-01

    A fast-readout dosimetry system based on fibre-coupled organic scintillators has been developed for the purpose of conducting point measurements of absorbed dose in radiotherapy beams involving high spatial and temporal dose gradients. The system measures the dose for each linac radiation pulse w...... and quality assurance of complex radiotherapy treatments.......A fast-readout dosimetry system based on fibre-coupled organic scintillators has been developed for the purpose of conducting point measurements of absorbed dose in radiotherapy beams involving high spatial and temporal dose gradients. The system measures the dose for each linac radiation pulse....... No significant differences between measurements and simulations were observed. The temporal resolution of the system was demonstrated by measuring dose per pulse, beam start-up transients and the quality factor for 6 MV. The precision of dose per pulse measurements was within 2.7% (1 SD) for a 10 cm × 10 cm...

  18. Time-resolved luminescence from feldspars: New insight into fading

    DEFF Research Database (Denmark)

    Tsukamoto, S.; Denby, P.M.; Murray, A.S.

    2006-01-01

    Time-resolved infrared optically stimulated luminescence (IR-OSL) signals of K- and Na-feldspar samples extracted from sediments were measured in UV, blue and red detection windows, using a fast photon counter and pulsed IR stimulation (lambda = 875 nm). We observe that the relative contribution ...

  19. Photoelectron spectroscopy at a free-electron laser. Investigation of space-charge effects in angle-resolved and core-level spectroscopy and realizaton of a time-resolved core-level photoemission experiment

    International Nuclear Information System (INIS)

    Marczynski-Buehlow, Martin

    2012-01-01

    The free-electron laser (FEL) in Hamburg (FLASH) is a very interesting light source with which to perform photoelectron spectroscopy (PES) experiments. Its special characteristics include highly intense photon pulses (up to 100 J/pulse), a photon energy range of 30 eV to 1500 eV, transverse coherence as well as pulse durations of some ten femtoseconds. Especially in terms of time-resolved PES (TRPES), the deeper lying core levels can be reached with photon energies up to 1500 eV with acceptable intensity now and, therefore, element-specific, time-resolved core-level PES (XPS) is feasible at FLASH. During the work of this thesis various experimental setups were constructed in order to realize angle-resolved (ARPES), core-level (XPS) as well as time-resolved PES experiments at the plane grating monochromator beamline PG2 at FLASH. Existing as well as newly developed systems for online monitoring of FEL pulse intensities and generating spatial and temporal overlap of FEL and optical laser pulses for time-resolved experiments are successfully integrated into the experimental setup for PES. In order to understand space-charge effects (SCEs) in PES and, therefore, being able to handle those effects in future experiments using highly intense and pulsed photon sources, the origin of energetic broadenings and shifts in photoelectron spectra are studied by means of a molecular dynamic N-body simulation using a modified Treecode Algorithm for sufficiently fast and accurate calculations. It turned out that the most influencing parameter is the ''linear electron density'' - the ratio of the number of photoelectrons to the diameter of the illuminated spot on the sample. Furthermore, the simulations could reproduce the observations described in the literature fairly well. Some rules of thumb for XPS and ARPES measurements could be deduced from the simulations. Experimentally, SCEs are investigated by means of ARPES as well as XPS measurements as a function of FEL pulse

  20. Photoelectron spectroscopy at a free-electron laser. Investigation of space-charge effects in angle-resolved and core-level spectroscopy and realizaton of a time-resolved core-level photoemission experiment

    Energy Technology Data Exchange (ETDEWEB)

    Marczynski-Buehlow, Martin

    2012-01-30

    The free-electron laser (FEL) in Hamburg (FLASH) is a very interesting light source with which to perform photoelectron spectroscopy (PES) experiments. Its special characteristics include highly intense photon pulses (up to 100 J/pulse), a photon energy range of 30 eV to 1500 eV, transverse coherence as well as pulse durations of some ten femtoseconds. Especially in terms of time-resolved PES (TRPES), the deeper lying core levels can be reached with photon energies up to 1500 eV with acceptable intensity now and, therefore, element-specific, time-resolved core-level PES (XPS) is feasible at FLASH. During the work of this thesis various experimental setups were constructed in order to realize angle-resolved (ARPES), core-level (XPS) as well as time-resolved PES experiments at the plane grating monochromator beamline PG2 at FLASH. Existing as well as newly developed systems for online monitoring of FEL pulse intensities and generating spatial and temporal overlap of FEL and optical laser pulses for time-resolved experiments are successfully integrated into the experimental setup for PES. In order to understand space-charge effects (SCEs) in PES and, therefore, being able to handle those effects in future experiments using highly intense and pulsed photon sources, the origin of energetic broadenings and shifts in photoelectron spectra are studied by means of a molecular dynamic N-body simulation using a modified Treecode Algorithm for sufficiently fast and accurate calculations. It turned out that the most influencing parameter is the ''linear electron density'' - the ratio of the number of photoelectrons to the diameter of the illuminated spot on the sample. Furthermore, the simulations could reproduce the observations described in the literature fairly well. Some rules of thumb for XPS and ARPES measurements could be deduced from the simulations. Experimentally, SCEs are investigated by means of ARPES as well as XPS measurements as a function of

  1. Time resolved studies of H{sub 2}{sup +} dissociation with phase-stabilized laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Bettina

    2010-06-23

    In the course of this thesis, experimental studies on the dissociation of H{sub 2}{sup +}(H{sub 2}{sup +}{yields}p+H) in ultrashort laser pulses with a stabilized carrier-envelope phase (CEP) were carried out. In single-pulse measurements, the ability to control the emission direction of low energetic protons, i.e. the localization of the bound electron at one of the nuclei after dissociation, by the CEP was demonstrated. The coincident detection of the emitted protons and electrons and the measurement of their three-dimensional momentum vectors with a reaction microscope allowed to clarify the localization mechanism. Further control was achieved by a pump-control scheme with two timedelayed CEP-stabilized laser pulses. Here the neutral H{sub 2} molecule was ionized in the first pulse and dissociation was induced by the second pulse. Electron localization was shown to depend on the properties of the bound nuclear wave packet in H{sub 2}{sup +} at the time the control pulse is applied, demonstrating the ability to use the shape and dynamics of the nuclear wave packet as control parameters. Wave packet simulations were performed reproducing qualitatively the experimental results of the single and the two-pulse measurements. For both control schemes, intuitive models are presented, which qualitatively explain the main features of the obtained results. (orig.)

  2. Kinetics of the F+NO2+M->FNO2+M reaction studied by pulse radiolysis combined with time-resolved IR and UV spectroscopy

    DEFF Research Database (Denmark)

    Pagsberg, Palle Bjørn; Sillesen, A.; Jodkowski, J.T.

    1996-01-01

    was studied with SF6 pressures of 5-1000 mbar at 298 K. Comparative studies were carried out by monitoring the decay kinetics of NO2 at 445 nm using pressures of 100-1000 mbar at 295 and 341 K. The observed pressure dependence is represented in terms of a fall-off curve with the following values......The title reaction was initiated by the pulse radiolysis of SF6/NO2 gas mixtures, and the formation of FNO2 was studied by time-resolved infrared spectroscopy employing strong rotational transitions within the nu(1) and nu(4) bands of FNO2. The pressure dependence of the formation kinetics...

  3. Investigation of attosecond ionization dynamics in gases and solids with intense few-cycle laser pulses

    International Nuclear Information System (INIS)

    Mitrofanov, A. V.

    2011-01-01

    the temporal dynamics of ionization in transparent solids. It can also be considered as an all-optical alternative to the methods of attosecond metrology based on the detection of charged particles. The experiments on the optical-field-ionization in solids are discussed along with the description of the main technologies used in generation and characterization of few-cycle near-IR laser pulses. Characterization of ultra-broadband ultra-short pulses is a separate important problem. A new bandwidth unlimited pulse measurement technique based on quasi-linear temporal phase modulation in a gas weakly ionized by a long pump pulse is presented in this thesis. The most direct way to investigate the electron dynamics in different systems with a high temporal resolution is to employ time-resolved spectroscopy where the initiating and probing optical events are substantially shorter then the characteristic time of the process under investigation. The substantial progress in the development of XUV technologies and attosecond science in the recent years resulted in a remarkable success in studying ionization dynamics in atoms and molecules with a sub-femtosecond time resolution. The closing part of this thesis is dedicated to the time- and energy-resolved measurements of Auger decay in Krypton and Xenon using attosecond XUV-pump-IR-probe spectroscopic technique. (author)

  4. Characterisation of an optimised high current MgO/Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8.21} composite conductor using pulsed transport currents with pulsed magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Glowacki, B A; Gilewski, A; Rogacki, K; Kursumovic, A; Evetts, J E; Jones, H; Henson, R; Tsukamoto, O

    2003-01-15

    High temperature superconducting conductors are already used in hybrid magnets to produce fields that enhance the performance of conventional magnets made from A-15 type low temperature superconducting wires. For such applications it is vital that the interdependence of the critical parameters such as critical current versus magnetic field can be mapped under high field and high current conditions. However these superconductors have high critical currents even at fields over 20 T, making accurate measurements difficult due to the thermal and mechanical problems. In this paper, we compare measurements on the fully optimised Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8.21} flat rigid conductors using an innovative pulsed high transport current and pulsed high field technique. We show how analysis of the voltage signal from Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8.21} tape in pulsed conditions may be used to extract the critical current under quasi-stationary conditions.

  5. Wavelet brain angiography suggests arteriovenous pulse wave phase locking.

    Directory of Open Access Journals (Sweden)

    William E Butler

    Full Text Available When a stroke volume of arterial blood arrives to the brain, the total blood volume in the bony cranium must remain constant as the proportions of arterial and venous blood vary, and by the end of the cardiac cycle an equivalent volume of venous blood must have been ejected. I hypothesize the brain to support this process by an extraluminally mediated exchange of information between its arterial and venous circulations. To test this I introduce wavelet angiography methods to resolve single moving vascular pulse waves (PWs in the brain while simultaneously measuring brain pulse motion. The wavelet methods require angiographic data acquired at significantly faster rate than cardiac frequency. I obtained these data in humans from brain surface optical angiograms at craniotomy and in piglets from ultrasound angiograms via cranial window. I exploit angiographic time of flight to resolve arterial from venous circulation. Initial wavelet reconstruction proved unsatisfactory because of angiographic motion alias from brain pulse motion. Testing with numerically simulated cerebral angiograms enabled the development of a vascular PW cine imaging method based on cross-correlated wavelets of mixed high frequency and high temporal resolution respectively to attenuate frequency and motion alias. Applied to the human and piglet data, the method resolves individual arterial and venous PWs and finds them to be phase locked each with separate phase relations to brain pulse motion. This is consistent with arterial and venous PW coordination mediated by pulse motion and points to a testable hypothesis of a function of cerebrospinal fluid in the ventricles of the brain.

  6. Pulse radiolysis of alkanes: a time-resolved EPR study - Part I. Alkyl radicals

    International Nuclear Information System (INIS)

    Shkrob, I.A.; Trifunac, A.D.

    1995-01-01

    Time-resolved EPR was applied to detect short-lived alkyl radicals in pulse radiolysis of liquid alkanes. Two problems were addressed: (i) the mechanism of radical formation and (ii) the mechanism of chemically-induced spin polarization in these radicals. (i) The ratio of yields of penultimate and interior radicals in n-alkanes at the instant of their generation was found to be ≅ 1.25 times greater than the statistical quantity. This higher-than-statistical production of penultimate radicals indicates that the proton transfer reaction involving excited radical cations must be a prevailing route of radical generation. The relative yields of hydrogen abstraction and fragmentation for various branched alkanes are estimated. It is concluded that the fragmentation occurs prior to the formation of radicals in an excited precursor species. (ii) The analysis of spin-echo kinetics in n-alkanes suggests that the alkyl radicals gain the emissive polarization in spur reactions. This initial polarization increases with shortening of the aliphatic chain. We suggest that the origin of this polarization is the ST mechanism operating in the pairs of alkyl radicals and hydrogen atoms generated in dissociation of excited alkane molecules. It is also found that a long-chain structure of alkyl radicals results in much higher rate of Heisenberg spin exchange relative to the recombination rate (up to 30 times). That suggests prominent steric effects in recombination or the occurrence of through-chain electron exchange. The significance of these results in the context of cross-linking in polyethylene and higher paraffins is discussed. (Author)

  7. Stress analysis in high-temperature superconductors under pulsed field magnetization

    Science.gov (United States)

    Wu, Haowei; Yong, Huadong; Zhou, Youhe

    2018-04-01

    Bulk high-temperature superconductors (HTSs) have a high critical current density and can trap a large magnetic field. When bulk superconductors are magnetized by the pulsed field magnetization (PFM) technique, they are also subjected to a large electromagnetic stress, and the resulting thermal stress may cause cracking of the superconductor due to the brittle nature of the sample. In this paper, based on the H-formulation and the law of heat transfer, we can obtain the distributions of electromagnetic field and temperature, which are in qualitative agreement with experiment. After that, based on the dynamic equilibrium equations, the mechanical response of the bulk superconductor is determined. During the PFM process, the change in temperature has a dramatic effect on the radial and hoop stresses, and the maximum radial and hoop stress are 24.2 {{MPa}} and 22.6 {{MPa}}, respectively. The mechanical responses of a superconductor for different cases are also studied, such as the peak value of the applied field and the size of bulk superconductors. Finally, the stresses are also presented for different magnetization methods.

  8. The effects of pulsed low-level EM fields on memory processes; Zur Wirkung gepulster elektromagnetischer Felder geringer Leistungen auf Gedaechtnisprozesse

    Energy Technology Data Exchange (ETDEWEB)

    Maier, R. [Klinik fuer Kommunikationsstoerungen, Univ. Mainz (Germany); Greter, S.E.; Schaller, G. [Inst. fuer HF-Technik, Univ. Erlangen (Germany); Hommel, G. [Inst. fuer Medizinische Biometrie, Epidemiologie und Informatik, Univ. Mainz (Germany)

    2004-07-01

    This pilot study examined the effects of pulsed electromagnetic fields on the organism in humans. Using a psychophysiological test, the changes in memory performance were tested in 33 volunteers both at rest and upon exposure to pulsed fields (GSM standard). To evaluate the cognition performance, we applied a psycho-physiological test paradigm (auditory discrimination task) based on the ''Order Threshold''. The investigation took place in an acoustically-shielded room, and the volunteers were requested to relax on a stretcher. The exposure to electromagnetic fields took place during this relaxation time (30 minutes). Measurements were performed before and after the exposure phase, and compared to a reference situation of change in vigilance. Exposure to pulsed fields resulted in reduced mental-regeneration performance in 21 of the 33 test participants, as reflected by an increase of order threshold. (orig.)

  9. Nonperturbative measurement of the local magnetic field using pulsed polarimetry for fusion reactor conditions (invited).

    Science.gov (United States)

    Smith, Roger J

    2008-10-01

    A novel diagnostic technique for the remote and nonperturbative sensing of the local magnetic field in reactor relevant plasmas is presented. Pulsed polarimetry [Patent No. 12/150,169 (pending)] combines optical scattering with the Faraday effect. The polarimetric light detection and ranging (LIDAR)-like diagnostic has the potential to be a local B(pol) diagnostic on ITER and can achieve spatial resolutions of millimeters on high energy density (HED) plasmas using existing lasers. The pulsed polarimetry method is based on nonlocal measurements and subtle effects are introduced that are not present in either cw polarimetry or Thomson scattering LIDAR. Important features include the capability of simultaneously measuring local T(e), n(e), and B(parallel) along the line of sight, a resiliency to refractive effects, a short measurement duration providing near instantaneous data in time, and location for real-time feedback and control of magnetohydrodynamic (MHD) instabilities and the realization of a widely applicable internal magnetic field diagnostic for the magnetic fusion energy program. The technique improves for higher n(e)B(parallel) product and higher n(e) and is well suited for diagnosing the transient plasmas in the HED program. Larger devices such as ITER and DEMO are also better suited to the technique, allowing longer pulse lengths and thereby relaxing key technology constraints making pulsed polarimetry a valuable asset for next step devices. The pulsed polarimetry technique is clarified by way of illustration on the ITER tokamak and plasmas within the magnetized target fusion program within present technological means.

  10. Nonperturbative measurement of the local magnetic field using pulsed polarimetry for fusion reactor conditions (invited)

    International Nuclear Information System (INIS)

    Smith, Roger J.

    2008-01-01

    A novel diagnostic technique for the remote and nonperturbative sensing of the local magnetic field in reactor relevant plasmas is presented. Pulsed polarimetry [Patent No. 12/150,169 (pending)] combines optical scattering with the Faraday effect. The polarimetric light detection and ranging (LIDAR)-like diagnostic has the potential to be a local B pol diagnostic on ITER and can achieve spatial resolutions of millimeters on high energy density (HED) plasmas using existing lasers. The pulsed polarimetry method is based on nonlocal measurements and subtle effects are introduced that are not present in either cw polarimetry or Thomson scattering LIDAR. Important features include the capability of simultaneously measuring local T e , n e , and B || along the line of sight, a resiliency to refractive effects, a short measurement duration providing near instantaneous data in time, and location for real-time feedback and control of magnetohydrodynamic (MHD) instabilities and the realization of a widely applicable internal magnetic field diagnostic for the magnetic fusion energy program. The technique improves for higher n e B || product and higher n e and is well suited for diagnosing the transient plasmas in the HED program. Larger devices such as ITER and DEMO are also better suited to the technique, allowing longer pulse lengths and thereby relaxing key technology constraints making pulsed polarimetry a valuable asset for next step devices. The pulsed polarimetry technique is clarified by way of illustration on the ITER tokamak and plasmas within the magnetized target fusion program within present technological means.

  11. Fermentation Assisted by Pulsed Electric Field and Ultrasound: A Review

    Directory of Open Access Journals (Sweden)

    Leandro Galván-D’Alessandro

    2018-01-01

    Full Text Available Various novel techniques are proposed to improve process efficiency, quality, and safety of fermented food products. Ultrasound and pulsed electric field (PEF are versatile technologies that can be employed in conjunction with fermentation processes to enhance process efficiency and production rates by improving mass transfer and cell permeability. The aim of this review is to highlight current and potential applications of ultrasound and PEF techniques in food fermentation processes. Their effects on microbial enzymes, along with mechanisms of action, are also discussed.

  12. Chirp of monolithic colliding pulse mode-locked diode lasers

    DEFF Research Database (Denmark)

    Hofmann, M.; Bischoff, S.; Franck, Thorkild

    1997-01-01

    Spectrally resolved streak camera measurements of picosecond pulses emitted by hybridly colliding pulse mode-locked (CPM) laser diodes are presented in this letter. Depending on the modulation frequency both blue-chirped (upchirped) and red-chirped (downchirped) pulses can be observed. The two...... different regimes and the transition between them are characterized experimentally and the behavior is explained on the basis of our model for the CPM laser dynamics. (C) 1997 American Institute of Physics....

  13. Ultrafast photodynamics of pyrazine in the vacuum ultraviolet region studied by time-resolved photoelectron imaging using 7.8-eV pulses

    Energy Technology Data Exchange (ETDEWEB)

    Horio, Takuya; Suzuki, Yoshi-ichi; Suzuki, Toshinori, E-mail: suzuki@kuchem.kyoto-u.ac.jp [Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-Ku, Kyoto 606-8502 (Japan)

    2016-07-28

    The ultrafast electronic dynamics of pyrazine (C{sub 4}N{sub 2}H{sub 4}) were studied by time-resolved photoelectron imaging (TRPEI) using the third (3ω, 4.7 eV) and fifth harmonics (5ω, 7.8 eV) of a femtosecond Ti:sapphire laser (ω). Although the photoionization signals due to the 5ω − 3ω and 3ω − 5ω pulse sequences overlapped near the time origin, we have successfully extracted their individual TRPEI signals using least squares fitting of the observed electron kinetic energy distributions. When the 5ω pulses preceded the 3ω pulses, the 5ω pulses predominantly excited the S{sub 4} (ππ{sup *}, {sup 1}B{sub 1u}+{sup 1}B{sub 2u}) state. The photoionization signal from the S{sub 4} state generated by the time-delayed 3ω pulses was dominated by the D{sub 3}({sup 2}B{sub 2g})←S{sub 4} photoionization process and exhibited a broad electron kinetic energy distribution, which rapidly downshifted in energy within 100 fs. Also observed were the photoionization signals for the 3s, 3p{sub z}, and 3p{sub y} members of the Rydberg series converging to D{sub 0}({sup 2}A{sub g}). The Rydberg signals appeared immediately within our instrumental time resolution of 27 fs, indicating that these states are directly photoexcited from the ground state or populated from S{sub 4} within 27 fs. The 3s, 3p{sub z}, and 3p{sub y} states exhibited single exponential decay with lifetimes of 94 ± 2, 89 ± 2, and 58 ± 1 fs, respectively. With the reverse pulse sequence of 3ω − 5ω, the ultrafast internal conversion (IC) from S{sub 2}(ππ{sup *}) to S{sub 1}(nπ{sup *}) was observed. The decay associated spectrum of S{sub 2} exhibited multiple bands ascribed to D{sub 0}, D{sub 1}, and D{sub 3}, in agreement with the 3ω-pump and 6ω-probe experiment described in our preceding paper [T. Horio et al., J. Chem. Phys. 145, 044306 (2016)]. The electron kinetic energy and angular distributions from S{sub 1} populated by IC from S{sub 2} are also discussed.

  14. Sodium current inhibition by nanosecond pulsed electric field (nsPEF)--fact or artifact?

    NARCIS (Netherlands)

    Verkerk, Arie O.; van Ginneken, Antoni C. G.; Wilders, Ronald

    2013-01-01

    In two recent publications in Bioelectromagnetics it has been demonstrated that the voltage-gated sodium current (I(Na)) is inhibited in response to a nanosecond pulsed electric field (nsPEF). At the same time, there was an increase in a non-inactivating "leak" current (I(leak)), which was

  15. Red cherries (Prunus avium var. Stella) processed by pulsed electric field - Physical, chemical and microbiological analyses.

    Science.gov (United States)

    Sotelo, Kristine A G; Hamid, Nazimah; Oey, Indrawati; Pook, Chris; Gutierrez-Maddox, Noemi; Ma, Qianli; Ying Leong, Sze; Lu, Jun

    2018-02-01

    This study examined, for the first time, the effect of mild or moderate intensity pulsed electric field (PEF) processing on cherries, in particular changes in physicochemical properties, release of anthocyanins and polyphenols, and the potential growth of lactic acid bacteria. Cherry samples were treated at a constant pulse frequency of 100Hz and a constant pulse width of 20μs with different electric field strengths between 0.3 and 2.5kV/cm. Titratable acidity and total soluble solids values of most PEF samples stored for 24h significantly decreased compared to other samples. Stored samples also had increased cyanidin glucoside content. However, concentration of rutin, 4-hydroxybenzoic acid and isorhamnetin rutinoside significantly decreased in samples stored for 24h. In conclusion, sweet cherries were only influenced by storage after PEF processing. PEF processing did not affect the growth of probiotic bacteria. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Orientationally invariant metrics of apparent compartment eccentricity from double pulsed field gradient diffusion experiments

    DEFF Research Database (Denmark)

    Jespersen, Sune Nørhøj; Lundell, Henrik; Sønderby, Casper Kaae

    2013-01-01

    Pulsed field gradient diffusion sequences (PFG) with multiple diffusion encoding blocks have been indicated to offer new microstructural tissue information, such as the ability to detect nonspherical compartment shapes in macroscopically isotropic samples, i.e. samples with negligible directional...

  17. Probing spatial properties of electronic excitation in water after interaction with temporally shaped femtosecond laser pulses: Experiments and simulations

    Energy Technology Data Exchange (ETDEWEB)

    Winkler, Thomas; Sarpe, Cristian; Jelzow, Nikolai [Institute of Physics and CINSaT, University of Kassel, Heinrich-Plett-Str. 40, D-34132 Kassel (Germany); Lillevang, Lasse H. [Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Götte, Nadine; Zielinski, Bastian [Institute of Physics and CINSaT, University of Kassel, Heinrich-Plett-Str. 40, D-34132 Kassel (Germany); Balling, Peter [Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Senftleben, Arne [Institute of Physics and CINSaT, University of Kassel, Heinrich-Plett-Str. 40, D-34132 Kassel (Germany); Baumert, Thomas, E-mail: baumert@physik.uni-kassel.de [Institute of Physics and CINSaT, University of Kassel, Heinrich-Plett-Str. 40, D-34132 Kassel (Germany)

    2016-06-30

    Highlights: • Temporally asymmetric shaped femtosecond laser pulses lead to excitation over smaller area and larger depth in water. • Transient optical properties are measured radially resolved by spectral interference in an imaging geometry. • Radially resolved spectral interference shows indications of nonlinear propagation effects at high fluences. - Abstract: In this work, laser excitation of water under ambient conditions is investigated by radially resolved common-path spectral interferometry. Water, as a sample system for dielectric materials, is excited by ultrashort bandwidth-limited and temporally asymmetric shaped femtosecond laser pulses, where the latter start with an intense main pulse followed by a decaying pulse sequence, i.e. a temporal Airy pulse. Spectral interference in an imaging geometry allows measurements of the transient optical properties integrated along the propagation through the sample but radially resolved with respect to the transverse beam profile. Since the optical properties reflect the dynamics of the free-electron plasma, such measurements reveal the spatial characteristics of the laser excitation. We conclude that temporally asymmetric shaped laser pulses are a promising tool for high-precision laser material processing, as they reduce the transverse area of excitation, but increase the excitation inside the material along the beam propagation.

  18. Wiebel instability of microwave gas discharge in strong linear and circular pulsed fields

    International Nuclear Information System (INIS)

    Shokri, B.; Ghorbanalilu, M.

    2004-01-01

    Being much weaker than the atomic fields, the gas breakdown produced by high-power pulsed microwave fields is investigated in the nonrelativistic case. The distribution function of the electrons produced by the interaction with intense linearly and circularly polarized microwave fields is obtained and it is shown that it is in a nonequilibrium state and anisotropic. The discharge mechanism for the gas atoms is governed by electron-impact avalanche ionization. By analyzing the instability of the system and by finding its growth rate, it is shown that the instability which is governed by the anisotropic property of the distribution function is Wiebel instability

  19. Materials processing, pulsed field magnetization and field-pole application to propulsion motors on Gd123 bulk superconductors

    International Nuclear Information System (INIS)

    Izumi, M; Xu, C; Xu, Y; Morita, E; Kimura, Y; Hu, A; Ichihara, M; Murakami, M; Sakai, N; Hirabayashi, I; Sugimoto, H; Miki, M

    2008-01-01

    Gd123 bulk superconductor is one of the promising magnet materials. We studied the materials processing to grow high performance magnet with a doping of nano-sized metal oxides such as ZrO 2 as a candidature of pinning centre. The enhancement of the critical current density was obtained. Growth of nano-sized particles of Gd211 in addition to BaZrO 3 were observed by TEM. The formation of nano-sized particles appears a key to improve the integrated flux trapped inside the bulks and the TEM reveals an intriguing effect of the addition to the microstructure of bulk materials. Magnetization process is crucial especially for an extended machinery. Pulsed field magnetization was applied to the field-pole bulk on the rotor disk of the tested synchronous motor. The trapped flux density of 1.3 T for Gd123 bulk sample and of 60 mm diameter was reached in the limited dimension of the tested motor by a step cooling method down to 38 K with a closed-cycle condensed neon. The pulsed magnetic field was applied with a new type of split-armature coil. A large bulk of 140 mm diameter has also shown a potential flux trapping superior to other smaller specimens. The bulk magnet provides a strong magnetic field around the bulk body itself with high current density relative to a coil winding. A comparative drawing of a 'torque density' of a variety of motors which is defined as the torque divided by the volume of the motor indicates a potential advantage of bulk motor as a super permanent magnet motor

  20. Electrical control of calcium oscillations in mesenchymal stem cells using microsecond pulsed electric fields.

    Science.gov (United States)

    Hanna, Hanna; Andre, Franck M; Mir, Lluis M

    2017-04-20

    Human mesenchymal stem cells are promising tools for regenerative medicine due to their ability to differentiate into many cellular types such as osteocytes, chondrocytes and adipocytes amongst many other cell types. These cells present spontaneous calcium oscillations implicating calcium channels and pumps of the plasma membrane and the endoplasmic reticulum. These oscillations regulate many basic functions in the cell such as proliferation and differentiation. Therefore, the possibility to mimic or regulate these oscillations might be useful to regulate mesenchymal stem cells biological functions. One or several electric pulses of 100 μs were used to induce Ca 2+ spikes caused by the penetration of Ca 2+ from the extracellular medium, through the transiently electropermeabilized plasma membrane, in human adipose mesenchymal stem cells from several donors. Attached cells were preloaded with Fluo-4 AM and exposed to the electric pulse(s) under the fluorescence microscope. Viability was also checked. According to the pulse(s) electric field amplitude, it is possible to generate a supplementary calcium spike with properties close to those of calcium spontaneous oscillations, or, on the contrary, to inhibit the spontaneous calcium oscillations for a very long time compared to the pulse duration. Through that inhibition of the oscillations, Ca 2+ oscillations of desired amplitude and frequency could then be imposed on the cells using subsequent electric pulses. None of the pulses used here, even those with the highest amplitude, caused a loss of cell viability. An easy way to control Ca 2+ oscillations in mesenchymal stem cells, through their cancellation or the addition of supplementary Ca 2+ spikes, is reported here. Indeed, the direct link between the microsecond electric pulse(s) delivery and the occurrence/cancellation of cytosolic Ca 2+ spikes allowed us to mimic and regulate the Ca 2+ oscillations in these cells. Since microsecond electric pulse delivery