WorldWideScience

Sample records for resolved photoelectron spectroscopy

  1. An instrument for the investigation of actinides with spin resolved photoelectron spectroscopy and bremsstrahlung isochromat spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yu, S.-W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Tobin, J. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chung, B. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2011-01-01

    A new system for spin resolved photoelectron spectroscopy and bremsstrahlung isochromat spectroscopy has been built and commissioned at Lawrence Livermore National Laboratory for the investigation of the electronic structure of the actinides.Actinide materials are very toxic and radioactive and therefore cannot be brought to most general user facilities for spectroscopic studies. The technical details of the new system and preliminary data obtained therein will be presented and discussed.

  2. Time-resolved photoelectron spectroscopy and ab initio multiple spawning studies of hexamethylcyclopentadiene

    DEFF Research Database (Denmark)

    Wolf, T. J. A.; Kuhlman, Thomas Scheby; Schalk, O.

    2014-01-01

    Time-resolved photoelectron spectroscopy and ab initio multiple spawning were applied to the ultrafast non-adiabatic dynamics of hexamethylcyclopentadiene. The high level of agreement between experiment and theory associates wavepacket motion with a distinct degree of freedom....

  3. Time-resolved photoelectron spectroscopy of non-adiabatic dynamics in polyatomic molecules

    CERN Document Server

    Stolow, Albert

    2015-01-01

    This review article discusses advances in the use of time-resolved photoelectron spectroscopy for the study of non-adiabatic processes in molecules. A theoretical treatment of the experiments is presented together with a number of experimental examples.

  4. Imaging electron dynamics with time- and angle-resolved photoelectron spectroscopy

    CERN Document Server

    Popova-Gorelova, Daria; Santra, Robin

    2016-01-01

    We theoretically study how time- and angle-resolved photoemission spectroscopy can be applied for imaging coherent electron dynamics in molecules. We consider a process in which a pump pulse triggers coherent electronic dynamics in a molecule by creating a valence electron hole. An ultrashort extreme ultraviolet (XUV) probe pulse creates a second electron hole in the molecule. Information about the electron dynamics is accessed by analyzing angular distributions of photoemission probabilities at a fixed photoelectron energy. We demonstrate that a rigorous theoretical analysis, which takes into account the indistinguishability of transitions induced by the ultrashort, broadband probe pulse and electron hole correlation effects, is necessary for the interpretation of time- and angle-resolved photoelectron spectra. We show how a Fourier analysis of time- and angle-resolved photoelectron spectra from a molecule can be applied to follow its electron dynamics by considering photoelectron distributions from an indol...

  5. Pseudo-bimolecular [2+2] cycloaddition studied by time-resolved photoelectron spectroscopy

    DEFF Research Database (Denmark)

    Brogaard, Rasmus Y; Boguslavskiy, Andrey E; Schalk, Oliver

    2011-01-01

    The first study of pseudo-bimolecular cycloaddition reaction dynamics in the gas phase is presented. We used femtosecond time-resolved photoelectron spectroscopy (TRPES) to study the [2+2] photocycloaddition in the model system pseudo-gem-divinyl[2.2]paracyclophane. From X-ray crystal diffraction...

  6. Disentangling Multichannel Photodissociation Dynamics in Acetone by Time-Resolved Photoelectron-Photoion Coincidence Spectroscopy.

    Science.gov (United States)

    Maierhofer, Paul; Bainschab, Markus; Thaler, Bernhard; Heim, Pascal; Ernst, Wolfgang E; Koch, Markus

    2016-08-18

    For the investigation of photoinduced dynamics in molecules with time-resolved pump-probe photoionization spectroscopy, it is essential to obtain unequivocal information about the fragmentation behavior induced by the laser pulses. We present time-resolved photoelectron-photoion coincidence (PEPICO) experiments to investigate the excited-state dynamics of isolated acetone molecules triggered by two-photon (269 nm) excitation. In the complex situation of different relaxation pathways, we unambiguously identify three distinct pump-probe ionization channels. The high selectivity of PEPICO detection allows us to observe the fragmentation behavior and to follow the time evolution of each channel separately. For channels leading to fragment ions, we quantitatively obtain the fragment-to-parent branching ratio and are able to determine experimentally whether dissociation occurs in the neutral molecule or in the parent ion. These results highlight the importance of coincidence detection for the interpretation of time-resolved photochemical relaxation and dissociation studies if multiple pathways are present.

  7. Hexamethylcyclopentadiene: time-resolved photoelectron spectroscopy and ab initio multiple spawning simulations

    DEFF Research Database (Denmark)

    Wolf, T. J. A.; Kuhlman, Thomas Scheby; Schalk, O.

    2014-01-01

    comparing time-resolved photoelectron spectroscopy (TRPES) with ab initio multiple spawning (AIMS) simulations on the MS-MR-CASPT2 level of theory. We disentangle the relationship between two phenomena that dominate the immediate molecular response upon light absorption: a spectrally dependent delay...... replaced by ‘‘hydrogen atoms’’ having mass 15 and TRPES spectra were calculated. These showed an induction time of (108 10) fs which could directly be assigned to progress along a torsional mode leading to the intersection seam with the molecular ground state. In a stepladder-type approach, the close...

  8. Magnetic dichroism in angular resolved hard X-ray photoelectron spectroscopy from buried magnetic layers

    Energy Technology Data Exchange (ETDEWEB)

    ViolBarbosa, Carlos E.; Ouardi, Siham [Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Str. 40, 01187 Dresden (Germany); Fecher, Gerhard H., E-mail: fecher@cpfs.mpg.de [Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Str. 40, 01187 Dresden (Germany); Ebke, Daniel; Felser, Claudia [Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Str. 40, 01187 Dresden (Germany)

    2013-08-15

    Highlights: ► We show the feasibility of angular resolved MCD in photospectroscopy. ► Wide-acceptance lens system allows a fixed incident light angle in the experiment. ► Bulk-sensitive HAXPES-MCDAD was used to study buried layers. ► Performance tools as Scalasca and Paraver are used to debug the applications. -- Abstract: This work reports on the measurement of magnetic dichroism in angular-resolved photoelectron spectroscopy from in-plane magnetized buried thin films. The high bulk sensitivity of hard X-ray photoelectron spectroscopy (HAXPES) in combination with circularly polarized radiation enables the investigation of the magnetic properties of buried layers. Angular distributions of high kinetic energy (7–8 keV) photoelectrons in a range of about 60° were recorded in parallel to the energy distribution. Depending on purpose, energy and angular resolutions of 150–250 meV and 0.17–2° can be accomplished simultaneously in such experiments. Experiments were performed on exchange-biased magnetic layers covered by thin oxide films. More specifically, the angular distribution of photoelectrons from the ferromagnetic layer Co{sub 2}FeAl layer grown on MnIr exchange-biasing layer was investigated where the magnetic structure is buried beneath a MgO layer. Pronounced magnetic dichroism is found in the Co and Fe 2p states for all angles of emission. A slightly increased magnetic dichroism was observed for normal emission in agreement with theoretical considerations.

  9. Advancements in time-resolved x-ray laser induced time-of-flight photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, A J; Dunn, J; Widmann, K; Ao, T; Ping, Y; Hunter, J; Ng, A

    2005-07-28

    Time-resolved soft x-ray photoelectron spectroscopy is used to probe the non-steady-state evolution of the valence band electronic structure of laser heated ultra-thin (50 nm) metal foils and bulk semiconductors. Single-shot soft x-ray laser induced time-of-flight photoelectron spectroscopy with picosecond time resolution was used in combination with optical measurements of the disassembly dynamics that have shown the existence of a metastable liquid phase in fs-laser heated metal foils persisting 4-5 ps. This metastable phase is studied using a 527 nm wavelength 400 fs laser pulse containing 0.3-2.5 mJ laser energy focused in a large 500 x 700 {micro}m{sup 2} spot to create heated conditions of 0.2-1.8 x 10{sup 12} W cm{sup -2} intensity. The unique LLNL COMET compact tabletop soft x-ray laser source provided the necessary high photon flux, highly monoenergetic, picosecond pulse duration, and coherence for observing the evolution of changes in the valence band electronic structure of laser heated metals and semiconductors with picosecond time resolution. This work demonstrates the continuing development of a powerful new technique for probing reaction dynamics and changes of local order on surfaces on their fundamental timescales including phenomena such as non-thermal melting, chemical bond formation, intermediate reaction steps, and the existence of transient reaction products.

  10. A novel approach to angular-resolved X-ray photoelectron spectroscopy depth-profiling

    Energy Technology Data Exchange (ETDEWEB)

    Stanchev, A.; Ignatova, V.; Ghelev, Ch. E-mail: chghelev@ie.bas.bg

    2000-05-02

    The angular-resolved-X-ray photoelectron spectroscopy (AR-XPS) technique is chosen to investigate the O redistribution on the surface of yttria-stabilized ZrO{sub 2} crystals during 10 keV He{sup +} ion bombardment. The data processing is performed by means of a newly-developed version of the 'Box-car' function method. An energy correction of the inelastic mean free paths (IMFP) of the elements present is performed and the elements peak areas are normalized with respect to surface carbon layer. An algorithm is described, which is tested and applied to the angular-dependent XPS data, and the true elements' depth-profiles are thus obtained.

  11. Real-time analysis for MBE by time-resolved core-level photoelectron spectroscopy.

    Science.gov (United States)

    Maeda, F; Watanabe, Y; Oshima, M; Taguchi, M; Oiwa, R

    1998-05-01

    A system has been developed for the real-time analysis of surface reactions during molecular beam epitaxial growth which uses photoelectron spectroscopy with VUV light taken from synchrotron radiation. This system consists of a synchrotron radiation beamline and growth/analysis apparatus in which photoelectron spectroscopy is performed with sub-second time resolution. In this system, photoelectron spectra are measured in sequence by a 'non-scanning' measurement method that enables the acquisition of snapshot photoelectron spectra using a multi-channel detector. This non-scanning measurement method was enabled by equipping an electric field correction grid. This system was used to monitor the photoelectron spectra of a GaSb(001) surface.

  12. Capturing interfacial photoelectrochemical dynamics with picosecond time-resolved X-ray photoelectron spectroscopy.

    Science.gov (United States)

    Neppl, Stefan; Shavorskiy, Andrey; Zegkinoglou, Ioannis; Fraund, Matthew; Slaughter, Daniel S; Troy, Tyler; Ziemkiewicz, Michael P; Ahmed, Musahid; Gul, Sheraz; Rude, Bruce; Zhang, Jin Z; Tremsin, Anton S; Glans, Per-Anders; Liu, Yi-Sheng; Wu, Cheng Hao; Guo, Jinghua; Salmeron, Miquel; Bluhm, Hendrik; Gessner, Oliver

    2014-01-01

    Time-resolved core-level spectroscopy using laser pulses to initiate and short X-ray pulses to trace photoinduced processes has the unique potential to provide electronic state- and atomic site-specific insight into fundamental electron dynamics in complex systems. Time-domain studies using transient X-ray absorption and emission techniques have proven extremely valuable to investigate electronic and structural dynamics in isolated and solvated molecules. Here, we describe the implementation of a picosecond time-resolved X-ray photoelectron spectroscopy (TRXPS) technique at the Advanced Light Source (ALS) and its application to monitor photoinduced electron dynamics at the technologically pertinent interface formed by N3 dye molecules anchored to nanoporous ZnO. Indications for a dynamical chemical shift of the Ru3d photoemission line originating from the N3 metal centre are observed ∼30 ps after resonant HOMO-LUMO excitation with a visible laser pump pulse. The transient changes in the TRXPS spectra are accompanied by a characteristic surface photovoltage (SPV) response of the ZnO substrate on a pico- to nanosecond time scale. The interplay between the two phenomena is discussed in the context of possible electronic relaxation and recombination pathways that lead to the neutralisation of the transiently oxidised dye after ultrafast electron injection. A detailed account of the experimental technique is given including an analysis of the chemical modification of the nano-structured ZnO substrate during extended periods of solution-based dye sensitisation and its relevance for studies using surface-sensitive spectroscopy techniques.

  13. Initial processes of proton transfer in salicylideneaniline studied by time-resolved photoelectron spectroscopy.

    Science.gov (United States)

    Sekikawa, Taro; Schalk, Oliver; Wu, Guorong; Boguslavskiy, Andrey E; Stolow, Albert

    2013-04-11

    Excited-state intramolecular proton transfer (ESIPT) in salicylideneaniline (SA) and selected derivatives substituted in the para position of the anilino group have been investigated by femtosecond time-resolved photoelectron spectroscopy (TRPES) and time-dependent density functional theory (TDDFT). SA has a twisted structure at the energetic minimum of the ground state, but ESIPT is assumed to take place through a planar structure, although this has not been fully established. The TRPES studies revealed that the excited-state dynamics within the S1 band varied significantly with excitation wavelength. At finite temperatures, the ground state was found to sample a broad range of torsional angles, from planar to twisted. At lower photon energies (370 nm), only the planar ground-state molecules were excited, and the excited-state reaction took place within 50 fs. At higher energies (350 and 330 nm), predominantly twisted ground-state molecules were excited: they had to planarize before ESIPT could occur. This process was found to be slower in methylated SA but did not change significantly in the brominated and nitrated SAs. These substitution effects on the decay dynamics can be explained by modifications of the potential barriers, as predicted by the TDDFT calculations, and support the mechanism of a twisting motion of the anilino ring prior to ESIPT. The contribution of another pathway leading to internal conversion within the enol form was found to be minor at the excitation wavelengths considered here.

  14. Ultrafast dynamics of o-fluorophenol studied with femtosecond time-resolved photoelectron and photoion spectroscopy

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The ultrafast dynamics of o-fluorophenol via the excited states has been studied by femtosecond time-resolved photoelectron imaging. The photoion and photoelectron spectra taken with a time delay between 267 nm pump laser and 800 nm probe laser provide a longer-lived S1 electronic state of about ns timescale. In comparison,the spectra obtained by exciting the S2 state with femtosecond laser pulses at 400 nm and ionizing with pulses at 800 nm suggest that the S2 state has an ultrashort lifetime about 102 fs and reflects the internal conversion dynamics of the S2 state to the S1 state.

  15. Electronic states localized at surface defects on Cu(755) studied by angle-resolved ultraviolet photoelectron spectroscopy using synchrotron radiation

    CERN Document Server

    Ogawa, K; Namba, H

    2003-01-01

    'Regularly stepped' and 'defective' surfaces of Cu(755) were prepared by low- and high-temperature annealing, respectively, of a clean specimen. Electronic states on both surfaces were studied by angle-resolved ultraviolet photoelectron spectroscopy using synchrotron radiation. On the defective Cu(755), we found a new photoelectron peak due to surface defects just below the Fermi level. The dispersion profile of the defect state is derived to be almost flat, which demonstrates the localized nature of the defects. High activity to oxygen adsorption of the defect state was revealed. (author)

  16. Band structures of 4f and 5f materials studied by angle-resolved photoelectron spectroscopy

    Science.gov (United States)

    Fujimori, Shin-ichi

    2016-04-01

    Recent remarkable progress in angle-resolved photoelectron spectroscopy (ARPES) has enabled the direct observation of the band structures of 4f and 5f materials. In particular, ARPES with various light sources such as lasers (hν ∼ 7~\\text{eV} ) or high-energy synchrotron radiations (hν ≳ 400~\\text{eV} ) has shed light on the bulk band structures of strongly correlated materials with energy scales of a few millielectronvolts to several electronvolts. The purpose of this paper is to summarize the behaviors of 4f and 5f band structures of various rare-earth and actinide materials observed by modern ARPES techniques, and understand how they can be described using various theoretical frameworks. For 4f-electron materials, ARPES studies of \\text{Ce}M\\text{I}{{\\text{n}}5} (M=\\text{Rh} , \\text{Ir} , and \\text{Co} ) and \\text{YbR}{{\\text{h}}2}\\text{S}{{\\text{i}}2} with various incident photon energies are summarized. We demonstrate that their 4f electronic structures are essentially described within the framework of the periodic Anderson model, and that the band-structure calculation based on the local density approximation cannot explain their low-energy electronic structures. Meanwhile, electronic structures of 5f materials exhibit wide varieties ranging from itinerant to localized states. For itinerant \\text{U}~5f compounds such as \\text{UFeG}{{\\text{a}}5} , their electronic structures can be well-described by the band-structure calculation assuming that all \\text{U}~5f electrons are itinerant. In contrast, the band structures of localized \\text{U}~5f compounds such as \\text{UP}{{\\text{d}}3} and \\text{U}{{\\text{O}}2} are essentially explained by the localized model that treats \\text{U}~5f electrons as localized core states. In regards to heavy fermion \\text{U} -based compounds such as the hidden-order compound \\text{UR}{{\\text{u}}2}\\text{S}{{\\text{i}}2} , their electronic structures exhibit complex behaviors. Their overall band structures

  17. Highly polarized emission in spin resolved photoelectron spectroscopy of alpha-Fe(001)/GaAs(001)

    Energy Technology Data Exchange (ETDEWEB)

    Tobin, James; Yu, Sung Woo; Morton, Simon; Waddill, George; Thompson, Jamie; Neal, James; Spangenberg, Matthais; Shen, T.H.

    2009-05-19

    Highly spin-polarized sources of electrons, Integrated into device design, remain of great interest to the spintronic and magneto-electronic device community Here, the growth of Fe upon GaAs(001) has been studied with photoelectron spectroscopy (PES), including Spin Resolved PES. Despite evidence of atomic level disorder such as intermixing, an over-layer with the spectroscopic signature of alpha-Fe(001), with a bcc real space ordering, Is obtained The results will be discussed in light of the possibility of using such films as a spin-polarized source in device applications.

  18. Dual analyzer system for surface analysis dedicated for angle-resolved photoelectron spectroscopy at liquid surfaces and interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Niedermaier, Inga; Kolbeck, Claudia; Steinrück, Hans-Peter; Maier, Florian, E-mail: florian.maier@fau.de [Lehrstuhl für Physikalische Chemie II, FAU Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen (Germany)

    2016-04-15

    The investigation of liquid surfaces and interfaces with the powerful toolbox of ultra-high vacuum (UHV)-based surface science techniques generally has to overcome the issue of liquid evaporation within the vacuum system. In the last decade, however, new classes of liquids with negligible vapor pressure at room temperature—in particular, ionic liquids (ILs)—have emerged for surface science studies. It has been demonstrated that particularly angle-resolved X-ray Photoelectron Spectroscopy (ARXPS) allows for investigating phenomena that occur at gas-liquid and liquid-solid interfaces on the molecular level. The results are not only relevant for IL systems but also for liquids in general. In all of these previous ARXPS studies, the sample holder had to be tilted in order to change the polar detection angle of emitted photoelectrons, which restricted the liquid systems to very thin viscous IL films coating a flat solid support. We now report on the concept and realization of a new and unique laboratory “Dual Analyzer System for Surface Analysis (DASSA)” which enables fast ARXPS, UV photoelectron spectroscopy, imaging XPS, and low-energy ion scattering at the horizontal surface plane of macroscopically thick non-volatile liquid samples. It comprises a UHV chamber equipped with two electron analyzers mounted for simultaneous measurements in 0° and 80° emission relative to the surface normal. The performance of DASSA on a first macroscopic liquid system will be demonstrated.

  19. Pump laser-induced space-charge effects in HHG-driven time- and angle-resolved photoelectron spectroscopy

    Science.gov (United States)

    Oloff, L.-P.; Hanff, K.; Stange, A.; Rohde, G.; Diekmann, F.; Bauer, M.; Rossnagel, K.

    2016-06-01

    With the advent of ultrashort-pulsed extreme ultraviolet sources, such as free-electron lasers or high-harmonic-generation (HHG) sources, a new research field for photoelectron spectroscopy has opened up in terms of femtosecond time-resolved pump-probe experiments. The impact of the high peak brilliance of these novel sources on photoemission spectra, so-called vacuum space-charge effects caused by the Coulomb interaction among the photoemitted probe electrons, has been studied extensively. However, possible distortions of the energy and momentum distributions of the probe photoelectrons caused by the low photon energy pump pulse due to the nonlinear emission of electrons have not been studied in detail yet. Here, we systematically investigate these pump laser-induced space-charge effects in a HHG-based experiment for the test case of highly oriented pyrolytic graphite. Specifically, we determine how the key parameters of the pump pulse—the excitation density, wavelength, spot size, and emitted electron energy distribution—affect the measured time-dependent energy and momentum distributions of the probe photoelectrons. The results are well reproduced by a simple mean-field model, which could open a path for the correction of pump laser-induced space-charge effects and thus toward probing ultrafast electron dynamics in strongly excited materials.

  20. Excited state dynamics in SO2. I. Bound state relaxation studied by time-resolved photoelectron-photoion coincidence spectroscopy.

    Science.gov (United States)

    Wilkinson, Iain; Boguslavskiy, Andrey E; Mikosch, Jochen; Bertrand, Julien B; Wörner, Hans Jakob; Villeneuve, David M; Spanner, Michael; Patchkovskii, Serguei; Stolow, Albert

    2014-05-28

    The excited state dynamics of isolated sulfur dioxide molecules have been investigated using the time-resolved photoelectron spectroscopy and time-resolved photoelectron-photoion coincidence techniques. Excited state wavepackets were prepared in the spectroscopically complex, electronically mixed (B̃)(1)B1/(Ã)(1)A2, Clements manifold following broadband excitation at a range of photon energies between 4.03 eV and 4.28 eV (308 nm and 290 nm, respectively). The resulting wavepacket dynamics were monitored using a multiphoton ionisation probe. The extensive literature associated with the Clements bands has been summarised and a detailed time domain description of the ultrafast relaxation pathways occurring from the optically bright (B̃)(1)B1 diabatic state is presented. Signatures of the oscillatory motion on the (B̃)(1)B1/(Ã)(1)A2 lower adiabatic surface responsible for the Clements band structure were observed. The recorded spectra also indicate that a component of the excited state wavepacket undergoes intersystem crossing from the Clements manifold to the underlying triplet states on a sub-picosecond time scale. Photoelectron signal growth time constants have been predominantly associated with intersystem crossing to the (c̃)(3)B2 state and were measured to vary between 750 and 150 fs over the implemented pump photon energy range. Additionally, pump beam intensity studies were performed. These experiments highlighted parallel relaxation processes that occurred at the one- and two-pump-photon levels of excitation on similar time scales, obscuring the Clements band dynamics when high pump beam intensities were implemented. Hence, the Clements band dynamics may be difficult to disentangle from higher order processes when ultrashort laser pulses and less-differential probe techniques are implemented.

  1. Single-State Electronic Structure Measurements Using Time-Resolved X-Ray Laser Induced Photoelectron Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, A J; Dunn, J; van Buuren, T; Hunter, J

    2004-11-11

    We demonstrate single-shot x-ray laser induced time-of-flight photoelectron spectroscopy on semiconductor and metal surfaces with picosecond time resolution. The LLNL COMET compact tabletop x-ray laser source provides the necessary high photon flux (>10{sup 12}/pulse), monochromaticity, picosecond pulse duration, and coherence for probing ultrafast changes in the city, chemical and electronic structure of these materials. Static valence band and shallow core-level photoemission spectra are presented for ambient temperature Ge(100) and polycrystalline Cu foils. Surface contamination was removed by UV ozone cleaning prior to analysis. In addition, the ultrafast nature of this technique lends itself to true single-state measurements of shocked and heated materials. Time-resolved electron time-of-flight photoemission results for ultra-thin Cu will be presented.

  2. Excited state non-adiabatic dynamics of pyrrole: A time-resolved photoelectron spectroscopy and quantum dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Guorong [National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6 (Canada); State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Neville, Simon P.; Worth, Graham A., E-mail: g.a.worth@bham.ac.uk [School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Schalk, Oliver [National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6 (Canada); Department of Physics, AlbaNova University Center, Stockholm University, Roslagstullsbacken 21, 109 61 Stockholm (Sweden); Sekikawa, Taro [National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6 (Canada); Department of Applied Physics, Hokkaido University, Kita-13 Nishi-8, Kita-ku, Sapporo 060-8628 (Japan); Ashfold, Michael N. R. [School of Chemistry, University of Bristol, Bristol BS8 1TS (United Kingdom); Stolow, Albert, E-mail: astolow@uottawa.ca [National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6 (Canada); Departments of Chemistry and Physics, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5 (Canada)

    2015-02-21

    The dynamics of pyrrole excited at wavelengths in the range 242-217 nm are studied using a combination of time-resolved photoelectron spectroscopy and wavepacket propagations performed using the multi-configurational time-dependent Hartree method. Excitation close to the origin of pyrrole’s electronic spectrum, at 242 and 236 nm, is found to result in an ultrafast decay of the system from the ionization window on a single timescale of less than 20 fs. This behaviour is explained fully by assuming the system to be excited to the A{sub 2}(πσ{sup ∗}) state, in accord with previous experimental and theoretical studies. Excitation at shorter wavelengths has previously been assumed to result predominantly in population of the bright A{sub 1}(ππ{sup ∗}) and B{sub 2}(ππ{sup ∗}) states. We here present time-resolved photoelectron spectra at a pump wavelength of 217 nm alongside detailed quantum dynamics calculations that, together with a recent reinterpretation of pyrrole’s electronic spectrum [S. P. Neville and G. A. Worth, J. Chem. Phys. 140, 034317 (2014)], suggest that population of the B{sub 1}(πσ{sup ∗}) state (hitherto assumed to be optically dark) may occur directly when pyrrole is excited at energies in the near UV part of its electronic spectrum. The B{sub 1}(πσ{sup ∗}) state is found to decay on a timescale of less than 20 fs by both N-H dissociation and internal conversion to the A{sub 2}(πσ{sup ∗}) state.

  3. Expansion dynamics of supercritical water probed by picosecond time-resolved photoelectron spectroscopy.

    Science.gov (United States)

    Gladytz, Thomas; Abel, Bernd; Siefermann, Katrin R

    2015-02-21

    Vibrational excitation of liquid water with femtosecond laser pulses can create extreme states of water. Yet, the dynamics directly after initial sub-picosecond delocalization of molecular vibrations remain largely unclear. We study the ultrafast expansion dynamics of an accordingly prepared supercritical water phase with a picosecond time resolution. Our experimental setup combines vacuum-compatible liquid micro-jet technology and a table top High Harmonic light source driven by a femtosecond laser system. An ultrashort laser pulse centered at a wavelength of 2900 nm excites the OH-stretch vibration of water molecules in the liquid. The deposited energy corresponds to a supercritical phase with a temperature of about 1000 K and a pressure of more than 1 GPa. We use a time-delayed extreme ultraviolet pulse centered at 38.6 eV, and obtained via High Harmonic generation (HHG), to record valence band photoelectron spectra of the expanding water sample. The series of photoelectron spectra is analyzed with noise-corrected target transform fitting (cTTF), a specifically developed multivariate method. Together with a simple fluid dynamics simulation, the following picture emerges: when a supercritical phase of water expands into vacuum, temperature and density of the first few nanometers of the expanding phase drop below the critical values within a few picoseconds. This results in a supersaturated phase, in which condensation seeds form and grow from small clusters to large clusters on a 100 picosecond timescale.

  4. Angle-resolved X-ray photoelectron spectroscopy (ARXPS) and a modified Levenberg-Marquardt fit procedure: a new combination for modeling thin layers

    NARCIS (Netherlands)

    Aarnink, W.A.M.; Weishaupt, A.; Silfhout, van A.

    1990-01-01

    The combination of angle-resolved X-ray photoelectron spectroscopy (ARXPS) and a modified Levenberg-Marquardt (LM) fit procedure has been used to study a native oxide layer on a clean Si(100) substrate. Numerical calculations show that with an aperture of 3° or 9° of the electron analyser, the photo

  5. Time-resolved photoelectron nano-spectroscopy of individual silver particles: Perspectives and limitations

    DEFF Research Database (Denmark)

    Rohmer, Martin; Bauer, Michael; Leissner, Till

    2010-01-01

    Simultaneous time- and energy-resolved two-photon photoemission with nanometer resolution is demonstrated for the first time. We monitor the energy dependence of the decay dynamics of electron excitations in individual silver particles, which were deposited from a gas aggregation cluster source o...

  6. Time-resolved photoelectron nano-spectroscopy of individual silver particles: Perspectives and limitations

    DEFF Research Database (Denmark)

    Rohmer, Martin; Bauer, Michael; Leissner, Till

    2010-01-01

    Simultaneous time- and energy-resolved two-photon photoemission with nanometer resolution is demonstrated for the first time. We monitor the energy dependence of the decay dynamics of electron excitations in individual silver particles, which were deposited from a gas aggregation cluster source o...... onto a silicon substrate. We show furthermore that the near-field enhancement due to plasmon-resonant excitation is an efficient means to address individual nanometer-sized particles using photoemission electron microscopy. (C) 2010 WILEY-VCH Verlag GmbH Co. KGaA, Weinheim......Simultaneous time- and energy-resolved two-photon photoemission with nanometer resolution is demonstrated for the first time. We monitor the energy dependence of the decay dynamics of electron excitations in individual silver particles, which were deposited from a gas aggregation cluster source...

  7. Excited state non-adiabatic dynamics of N-methylpyrrole: A time-resolved photoelectron spectroscopy and quantum dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Guorong [National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6 (Canada); State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023 (China); Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Neville, Simon P. [Department of Chemistry, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5 (Canada); Schalk, Oliver [National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6 (Canada); Department of Physics, AlbaNova University Center, Stockholm University, Roslagstullsbacken 21, 106 91 Stockholm (Sweden); Sekikawa, Taro [Department of Applied Physics, Hokkaido University, Kita-13 Nishi-8, Kita-ku, Sapporo 060-8628 (Japan); Ashfold, Michael N. R. [School of Chemistry, University of Bristol, Bristol BS8 1TS (United Kingdom); Worth, Graham A. [School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Stolow, Albert, E-mail: astolow@uottawa.ca [National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6 (Canada); Department of Chemistry, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5 (Canada); Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario K1N 6N5 (Canada)

    2016-01-07

    The dynamics of N-methylpyrrole following excitation at wavelengths in the range 241.5-217.0 nm were studied using a combination of time-resolved photoelectron spectroscopy (TRPES), ab initio quantum dynamics calculations using the multi-layer multi-configurational time-dependent Hartree method, as well as high-level photoionization cross section calculations. Excitation at 241.5 and 236.2 nm results in population of the A{sub 2}(πσ{sup ∗}) state, in agreement with previous studies. Excitation at 217.0 nm prepares the previously neglected B{sub 1}(π3p{sub y}) Rydberg state, followed by prompt internal conversion to the A{sub 2}(πσ{sup ∗}) state. In contrast with the photoinduced dynamics of pyrrole, the lifetime of the wavepacket in the A{sub 2}(πσ{sup ∗}) state was found to vary with excitation wavelength, decreasing by one order of magnitude upon tuning from 241.5 nm to 236.2 nm and by more than three orders of magnitude when excited at 217.0 nm. The order of magnitude difference in lifetimes measured at the longer excitation wavelengths is attributed to vibrational excitation in the A{sub 2}(πσ{sup ∗}) state, facilitating wavepacket motion around the potential barrier in the N–CH{sub 3} dissociation coordinate.

  8. Angle resolved x-ray photoelectron spectroscopy (ARXPS) analysis of lanthanum oxide for micro-flexography printing

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, S., E-mail: suhaimihas@uthm.edu.my; Yusof, M. S., E-mail: mdsalleh@uthm.edu.my; Maksud, M. I., E-mail: midris1973@gmail.com [Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia, 86400 Batu Pahat, Johor (Malaysia); Embong, Z., E-mail: zaidi@uthm.edu.my [Faculty of Science, Technology and Human Development, Universiti Tun Hussein Onn Malaysia, 86400 Batu Pahat, Johor (Malaysia)

    2016-01-22

    Micro-flexography printing was developed in patterning technique from micron to nano scale range to be used for graphic, electronic and bio-medical device on variable substrates. In this work, lanthanum oxide (La{sub 2}O{sub 3}) has been used as a rare earth metal candidate as depositing agent. This metal deposit was embedded on Carbon (C) and Silica (Si) wafer substrate using Magnetron Sputtering technique. The choose of Lanthanum as a target is due to its wide application in producing electronic devices such as thin film battery and printed circuit board. The La{sub 2}O{sub 3} deposited on the surface of Si wafer substrate was then analyzed using Angle Resolve X-Ray Photoelectron Spectroscopy (ARXPS). The position for each synthetic component in the narrow scan of Lanthanum (La) 3d and O 1s are referred to the electron binding energy (eV). The La 3d narrow scan revealed that the oxide species of this particular metal is mainly contributed by La{sub 2}O{sub 3} and La(OH){sub 3}. The information of oxygen species, O{sup 2-} component from O 1s narrow scan indicated that there are four types of species which are contributed from the bulk (O{sup 2−}), two chemisorb component (La{sub 2}O{sub 3}) and La(OH){sub 3} and physisorp component (OH). Here, it is proposed that from the adhesive and surface chemical properties of La, it is suitable as an alternative medium for micro-flexography printing technique in printing multiple fine solid lines at nano scale. Hence, this paper will describe the capability of this particular metal as rare earth metal for use in of micro-flexography printing practice. The review of other parameters contributing to print fine lines will also be described later.

  9. Electron-hole recombination on ZnO(0001) single-crystal surface studied by time-resolved soft X-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yukawa, R.; Yamamoto, S.; Ogawa, M.; Yamamoto, Sh.; Fujikawa, K.; Hobara, R.; Matsuda, I., E-mail: imatsuda@issp.u-tokyo.ac.jp [Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba 277-8581 (Japan); Ozawa, K. [Department of Chemistry and Materials Science, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551 (Japan); Emori, M.; Sakama, H. [Department of Physics, Sophia University, Chiyoda-ku, Tokyo 102-8554 (Japan); Kitagawa, S.; Daimon, H. [Nara Institute of Science and Technology (NAIST), Ikoma, Nara 630-0192 (Japan)

    2014-10-13

    Time-resolved soft X-ray photoelectron spectroscopy (PES) experiments were performed with time scales from picoseconds to nanoseconds to trace relaxation of surface photovoltage on the ZnO(0001) single crystal surface in real time. The band diagram of the surface has been obtained numerically using PES data, showing a depletion layer which extends to 1 μm. Temporal evolution of the photovoltage effect is well explained by a recombination process of a thermionic model, giving the photoexcited carrier lifetime of about 1 ps at the surface under the flat band condition. This lifetime agrees with a temporal range reported by the previous time-resolved optical experiments.

  10. Interference stabilization of autoionizing states in molecular $N_2$ studied by time- and angular-resolved photoelectron spectroscopy

    CERN Document Server

    Eckstein, Martin; Yang, Chung-Hsin; Sansone, Giuseppe; Vrakking, Marc J J; Ivanov, Misha; Kornilov, Oleg

    2016-01-01

    An autoionizing resonance in molecular N$_2$ is excited by an ultrashort XUV pulse and probed by a subsequent weak IR pulse, which ionizes the contributing Rydberg states. Time- and angular-resolved photoelectron spectra recorded with a velocity map imaging spectrometer reveal two electronic contributions with different angular distributions. One of them has an exponential decay rate of $20\\pm5$ fs, while the other one is shorter than 10 fs. This observation is interpreted as a manifestation of interference stabilization involving the two overlapping discrete Rydberg states. A formalism of interference stabilization for molecular ionization is developed and applied to describe the autoionizing resonance. The results of calculations reveal, that the effect of the interference stabilization is facilitated by rotationally-induced couplings of electronic states with different symmetry.

  11. Polarization Effects in Attosecond Photoelectron Spectroscopy

    DEFF Research Database (Denmark)

    Baggesen, Jan Conrad; Madsen, Lars Bojer

    2010-01-01

    following the field instead. We show that polarization effects may lead to an apparent temporal shift that needs to be properly accounted for in the analysis. The effect may be isolated and studied by angle-resolved photoelectron spectroscopy from oriented polar molecules. We also show that polarization...

  12. Femtosecond time-resolved photoelectron spectroscopy with a vacuum-ultraviolet photon source based on laser high-order harmonic generation.

    Science.gov (United States)

    Wernet, Philippe; Gaudin, Jérôme; Godehusen, Kai; Schwarzkopf, Olaf; Eberhardt, Wolfgang

    2011-06-01

    A laser-based tabletop approach to femtosecond time-resolved photoelectron spectroscopy with photons in the vacuum-ultraviolet (VUV) energy range is described. The femtosecond VUV pulses are produced by high-order harmonic generation (HHG) of an amplified femtosecond Ti:sapphire laser system. Two generations of the same setup and results from photoelectron spectroscopy in the gas phase are discussed. In both generations, a toroidal grating monochromator was used to select one harmonic in the photon energy range of 20-30 eV. The first generation of the setup was used to perform photoelectron spectroscopy in the gas phase to determine the bandwidth of the source. We find that our HHG source has a bandwidth of 140 ± 40 meV. The second and current generation is optimized for femtosecond pump-probe photoelectron spectroscopy with high flux and a small spot size at the sample of the femtosecond probe pulses. The VUV radiation is focused into the interaction region with a toroidal mirror to a spot smaller than 100 × 100 μm(2) and the flux amounts to 10(10) photons/s at the sample at a repetition rate of 1 kHz. The duration of the monochromatized VUV pulses is determined to be 120 fs resulting in an overall pump-probe time resolution of 135 ± 5 fs. We show how this setup can be used to map the transient valence electronic structure in molecular dissociation. © 2011 American Institute of Physics

  13. Photoelectron photoion molecular beam spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Trevor, D.J.

    1980-12-01

    The use of supersonic molecular beams in photoionization mass spectroscopy and photoelectron spectroscopy to assist in the understanding of photoexcitation in the vacuum ultraviolet is described. Rotational relaxation and condensation due to supersonic expansion were shown to offer new possibilities for molecular photoionization studies. Molecular beam photoionization mass spectroscopy has been extended above 21 eV photon energy by the use of Stanford Synchrotron Radiation Laboratory (SSRL) facilities. Design considerations are discussed that have advanced the state-of-the-art in high resolution vuv photoelectron spectroscopy. To extend gas-phase studies to 160 eV photon energy, a windowless vuv-xuv beam line design is proposed.

  14. Application of high-resolution photoelectron spectroscopy: Vibrational resolved C 1s and O 1s spectra of CO adsorbed on Ni(100)

    Energy Technology Data Exchange (ETDEWEB)

    Foehlisch, A.; Nilsson, A.; Martensson, N. [Uppsala Univ. (Sweden)] [and others

    1997-04-01

    There are various effects which determine the line shape of a core-level electron spectrum. These are due to the finite life-time of the core hole, inelastic scattering of the outgoing photoelectron, electronic shake-up and shake-off processes and vibrational excitations. For free atoms and molecules the different contributions to the observed line shapes can often be well separated. For solids, surfaces and adsorbates the line shapes are in general much broader and it has in the past been assumed that no separation of the various contributions can be made. In the present report the authors will show that this is indeed not the case. Surprisingly, the vibrational fine structure of CO adsorbed on Ni(100) can be resolved in the C 1s and O 1s electron spectra. This was achieved by the combination of highly monochromatized soft X-rays from B18.0 with a high resolution Scienta 200 mm photoelectron spectrometer. X-ray photoelectron spectroscopy (XPS) with tunable excitation energy yields as a core level spectroscopy atomic and site-specific information. The presented measurements allow for a determination of internuclear distances and potential energy curves in corehole ionized adsorbed molecules. The authors analysis of the c(2x2) phase CO/Ni(100) on {open_quotes}top{close_quotes} yielded a vibrational splitting of 217 +/- 2 meV for C 1s ionization. For O 1s ionization a splitting of 173 +/- 8 meV was found.

  15. Photoelectron spectroscopy principles and applications

    CERN Document Server

    Hüfner, Stefan

    1995-01-01

    Photoelectron Spectroscopy presents an up-to-date introduction to the field by treating comprehensively the electronic structures of atoms, molecules, solids and surfaces Brief descriptions are given of inverse photoemission, spin-polarized photoemission and photoelectron diffraction Experimental aspects are considered throughout the book, and the results are carefully interpreted by theory A wealth of measured data is presented in the form of tables for easy use by experimentalists

  16. Photoelectron spectroscopy and the dipole approximation

    Energy Technology Data Exchange (ETDEWEB)

    Hemmers, O.; Hansen, D.L.; Wang, H. [Univ. of Nevada, Las Vegas, NV (United States)] [and others

    1997-04-01

    Photoelectron spectroscopy is a powerful technique because it directly probes, via the measurement of photoelectron kinetic energies, orbital and band structure in valence and core levels in a wide variety of samples. The technique becomes even more powerful when it is performed in an angle-resolved mode, where photoelectrons are distinguished not only by their kinetic energy, but by their direction of emission as well. Determining the probability of electron ejection as a function of angle probes the different quantum-mechanical channels available to a photoemission process, because it is sensitive to phase differences among the channels. As a result, angle-resolved photoemission has been used successfully for many years to provide stringent tests of the understanding of basic physical processes underlying gas-phase and solid-state interactions with radiation. One mainstay in the application of angle-resolved photoelectron spectroscopy is the well-known electric-dipole approximation for photon interactions. In this simplification, all higher-order terms, such as those due to electric-quadrupole and magnetic-dipole interactions, are neglected. As the photon energy increases, however, effects beyond the dipole approximation become important. To best determine the range of validity of the dipole approximation, photoemission measurements on a simple atomic system, neon, where extra-atomic effects cannot play a role, were performed at BL 8.0. The measurements show that deviations from {open_quotes}dipole{close_quotes} expectations in angle-resolved valence photoemission are observable for photon energies down to at least 0.25 keV, and are quite significant at energies around 1 keV. From these results, it is clear that non-dipole angular-distribution effects may need to be considered in any application of angle-resolved photoelectron spectroscopy that uses x-ray photons of energies as low as a few hundred eV.

  17. Photoelectron spectroscopy at a free-electron laser. Investigation of space-charge effects in angle-resolved and core-level spectroscopy and realizaton of a time-resolved core-level photoemission experiment

    Energy Technology Data Exchange (ETDEWEB)

    Marczynski-Buehlow, Martin

    2012-01-30

    The free-electron laser (FEL) in Hamburg (FLASH) is a very interesting light source with which to perform photoelectron spectroscopy (PES) experiments. Its special characteristics include highly intense photon pulses (up to 100 J/pulse), a photon energy range of 30 eV to 1500 eV, transverse coherence as well as pulse durations of some ten femtoseconds. Especially in terms of time-resolved PES (TRPES), the deeper lying core levels can be reached with photon energies up to 1500 eV with acceptable intensity now and, therefore, element-specific, time-resolved core-level PES (XPS) is feasible at FLASH. During the work of this thesis various experimental setups were constructed in order to realize angle-resolved (ARPES), core-level (XPS) as well as time-resolved PES experiments at the plane grating monochromator beamline PG2 at FLASH. Existing as well as newly developed systems for online monitoring of FEL pulse intensities and generating spatial and temporal overlap of FEL and optical laser pulses for time-resolved experiments are successfully integrated into the experimental setup for PES. In order to understand space-charge effects (SCEs) in PES and, therefore, being able to handle those effects in future experiments using highly intense and pulsed photon sources, the origin of energetic broadenings and shifts in photoelectron spectra are studied by means of a molecular dynamic N-body simulation using a modified Treecode Algorithm for sufficiently fast and accurate calculations. It turned out that the most influencing parameter is the ''linear electron density'' - the ratio of the number of photoelectrons to the diameter of the illuminated spot on the sample. Furthermore, the simulations could reproduce the observations described in the literature fairly well. Some rules of thumb for XPS and ARPES measurements could be deduced from the simulations. Experimentally, SCEs are investigated by means of ARPES as well as XPS measurements as a function of

  18. Ultrafast electron relaxation in superconducting Bi(2)Sr(2)CaCu(2)O(8+delta) by time-resolved photoelectron spectroscopy.

    Science.gov (United States)

    Perfetti, L; Loukakos, P A; Lisowski, M; Bovensiepen, U; Eisaki, H; Wolf, M

    2007-11-09

    Time-resolved photoelectron spectroscopy is employed to study the dynamics of photoexcited electrons in optimally doped Bi{2}Sr{2}CaCu{2}O{8+delta} (Bi-2212). Hot electrons thermalize in less than 50 fs and dissipate their energy on two distinct time scales (110 fs and 2 ps). These are attributed to the generation and subsequent decay of nonequilibrium phonons, respectively. We conclude that 20% of the total lattice modes dominate the coupling strength and estimate the second momentum of the Eliashberg coupling function lambdaOmega{0}{2}=360+/-30 meV{2}. For the typical phonon energy of copper-oxygen bonds (Omega{0} approximately 40-70 meV), this results in an average electron-phonon coupling lambda<0.25.

  19. A spin- and angle-resolving photoelectron spectrometer

    CERN Document Server

    Berntsen, M H; Leandersson, M; Hahlin, A; hlund, J \\AA; Wannberg, B; nsson, M M\\aa; Tjernberg, O

    2010-01-01

    A new type of hemispherical electron energy analyzer that permits angle and spin resolved photoelectron spectroscopy has been developed. The analyzer permits standard angle resolved spectra to be recorded with a two-dimensional detector in parallel with spin detection using a mini-Mott polarimeter. General design considerations as well as technical solutions are discussed and test results from the Au(111) surface state are presented.

  20. Time-resolved photoelectron spectroscopy of a dinuclear Pt(II) complex: Tunneling autodetachment from both singlet and triplet excited states of a molecular dianion

    Science.gov (United States)

    Winghart, Marc-Oliver; Yang, Ji-Ping; Vonderach, Matthias; Unterreiner, Andreas-Neil; Huang, Dao-Ling; Wang, Lai-Sheng; Kruppa, Sebastian; Riehn, Christoph; Kappes, Manfred M.

    2016-02-01

    Time-resolved pump-probe photoelectron spectroscopy has been used to study the relaxation dynamics of gaseous [Pt2(μ-P2O5H2)4 + 2H]2- after population of its first singlet excited state by 388 nm femtosecond laser irradiation. In contrast to the fluorescence and phosphorescence observed in condensed phase, a significant fraction of the photoexcited isolated dianions decays by electron loss to form the corresponding monoanions. Our transient photoelectron data reveal an ultrafast decay of the initially excited singlet 1A2u state and concomitant rise in population of the triplet 3A2u state, via sub-picosecond intersystem crossing (ISC). We find that both of the electronically excited states are metastably bound behind a repulsive Coulomb barrier and can decay via delayed autodetachment to yield electrons with characteristic kinetic energies. While excited state tunneling detachment (ESETD) from the singlet 1A2u state takes only a few picoseconds, ESETD from the triplet 3A2u state is much slower and proceeds on a time scale of hundreds of nanoseconds. The ISC rate in the gas phase is significantly higher than in solution, which can be rationalized in terms of changes to the energy dissipation mechanism in the absence of solvent molecules. [Pt2(μ-P2O5H2)4 + 2H]2- is the first example of a photoexcited multianion for which ESETD has been observed following ISC.

  1. Photoelectron Spectroscopy Study of Quinonimides

    Energy Technology Data Exchange (ETDEWEB)

    Hossain, Ekram; Deng, Shihu; Gozem, Samer; Krylov, Anna; Wang, Xue-Bin; Wenthold, Paul G.

    2017-08-16

    Structures and energetics of o-, m- and p-quinonimide anions (OC6H4N) and quinoniminyl radicals have been investigated by using negative ion photoelectron spectroscopy. Modeling of the photoelectron spectrum of the ortho isomer shows that the ground state of the anion is a triplet, while the quinoniminyl radical has a doublet ground state with a doublet-quartet splitting of 35.5 kcal/mol. The para radical has doublet ground state, but a band for a quartet state is missing from the photoelectron spectrum indicating that the anion has a singlet ground state, in contrast to previously reported calculations. The theoretical modeling is revisited here, and it is shown that accurate predictions for the electronic structure of the para quinonimide anion require both an accurate account of electron correlation and a sufficiently diffuse basis set. Electron affinities of o- and p-quinoniminyl radicals are measured to be 1.715 ± 0.010 and 1.675 ± 0.010 eV, respectively. The photoelectron spectrum of the m-quinonimide anion shows that the ion undergoes several different rearrangements, including a rearrangement to the energetically favorable para isomer. Such rearrangements preclude a meaningful analysis of the experimental spectrum.

  2. Spin-resolved photoelectron spectroscopy using femtosecond extreme ultraviolet light pulses from high-order harmonic generation

    Science.gov (United States)

    Plötzing, M.; Adam, R.; Weier, C.; Plucinski, L.; Eich, S.; Emmerich, S.; Rollinger, M.; Aeschlimann, M.; Mathias, S.; Schneider, C. M.

    2016-04-01

    The fundamental mechanism responsible for optically induced magnetization dynamics in ferromagnetic thin films has been under intense debate since almost two decades. Currently, numerous competing theoretical models are in strong need for a decisive experimental confirmation such as monitoring the triggered changes in the spin-dependent band structure on ultrashort time scales. Our approach explores the possibility of observing femtosecond band structure dynamics by giving access to extended parts of the Brillouin zone in a simultaneously time-, energy- and spin-resolved photoemission experiment. For this purpose, our setup uses a state-of-the-art, highly efficient spin detector and ultrashort, extreme ultraviolet light pulses created by laser-based high-order harmonic generation. In this paper, we present the setup and first spin-resolved spectra obtained with our experiment within an acquisition time short enough to allow pump-probe studies. Further, we characterize the influence of the excitation with femtosecond extreme ultraviolet pulses by comparing the results with data acquired using a continuous wave light source with similar photon energy. In addition, changes in the spectra induced by vacuum space-charge effects due to both the extreme ultraviolet probe- and near-infrared pump-pulses are studied by analyzing the resulting spectral distortions. The combination of energy resolution and electron count rate achieved in our setup confirms its suitability for spin-resolved studies of the band structure on ultrashort time scales.

  3. Charge-transfer-to-solvent reactions from I(-) to water, methanol, and ethanol studied by time-resolved photoelectron spectroscopy of liquids.

    Science.gov (United States)

    Okuyama, Haruki; Suzuki, Yoshi-Ichi; Karashima, Shutaro; Suzuki, Toshinori

    2016-08-21

    The charge-transfer-to-solvent (CTTS) reactions from iodide (I(-)) to H2O, D2O, methanol, and ethanol were studied by time-resolved photoelectron spectroscopy of liquid microjets using a magnetic bottle time-of-flight spectrometer with variable pass energy. Photoexcited iodide dissociates into a weak complex (a contact pair) of a solvated electron and an iodine atom in similar reaction times, 0.3 ps in H2O and D2O and 0.5 ps in methanol and ethanol, which are much shorter than their dielectric relaxation times. The results indicate that solvated electrons are formed with minimal solvent reorganization in the long-range solvent polarization field created for I(-). The photoelectron spectra for CTTS in H2O and D2O-measured with higher accuracy than in our previous study [Y. I. Suzuki et al., Chem. Sci. 2, 1094 (2011)]-indicate that internal conversion yields from the photoexcited I(-*) (CTTS) state are less than 10%, while alcohols provide 2-3 times greater yields of internal conversion from I(-*). The overall geminate recombination yields are found to be in the order of H2O > D2O > methanol > ethanol, which is opposite to the order of the mutual diffusion rates of an iodine atom and a solvated electron. This result is consistent with the transition state theory for an adiabatic outer-sphere electron transfer process, which predicts that the recombination reaction rate has a pre-exponential factor inversely proportional to a longitudinal solvent relaxation time.

  4. Charge-transfer-to-solvent reactions from I- to water, methanol, and ethanol studied by time-resolved photoelectron spectroscopy of liquids

    Science.gov (United States)

    Okuyama, Haruki; Suzuki, Yoshi-Ichi; Karashima, Shutaro; Suzuki, Toshinori

    2016-08-01

    The charge-transfer-to-solvent (CTTS) reactions from iodide (I-) to H2O, D2O, methanol, and ethanol were studied by time-resolved photoelectron spectroscopy of liquid microjets using a magnetic bottle time-of-flight spectrometer with variable pass energy. Photoexcited iodide dissociates into a weak complex (a contact pair) of a solvated electron and an iodine atom in similar reaction times, 0.3 ps in H2O and D2O and 0.5 ps in methanol and ethanol, which are much shorter than their dielectric relaxation times. The results indicate that solvated electrons are formed with minimal solvent reorganization in the long-range solvent polarization field created for I-. The photoelectron spectra for CTTS in H2O and D2O—measured with higher accuracy than in our previous study [Y. I. Suzuki et al., Chem. Sci. 2, 1094 (2011)]—indicate that internal conversion yields from the photoexcited I-* (CTTS) state are less than 10%, while alcohols provide 2-3 times greater yields of internal conversion from I-*. The overall geminate recombination yields are found to be in the order of H2O > D2O > methanol > ethanol, which is opposite to the order of the mutual diffusion rates of an iodine atom and a solvated electron. This result is consistent with the transition state theory for an adiabatic outer-sphere electron transfer process, which predicts that the recombination reaction rate has a pre-exponential factor inversely proportional to a longitudinal solvent relaxation time.

  5. Time-resolved photoelectron spectroscopy of a dinuclear Pt(II) complex: Tunneling autodetachment from both singlet and triplet excited states of a molecular dianion

    Energy Technology Data Exchange (ETDEWEB)

    Winghart, Marc-Oliver, E-mail: marc-oliver.winghart@kit.edu; Unterreiner, Andreas-Neil [Institute of Physical Chemistry, Karlsruhe Institute of Technology, P.O. Box 6980, 76049 Karlsruhe (Germany); Yang, Ji-Ping [Institute of Physical Chemistry, Karlsruhe Institute of Technology, P.O. Box 6980, 76049 Karlsruhe (Germany); School of Sciences, Hefei University of Technology, Hefei 230009 (China); Vonderach, Matthias [Centre for Proteome Research, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB (United Kingdom); Huang, Dao-Ling; Wang, Lai-Sheng [Department of Chemistry, Brown University, Providence, Rhode Island 02912 (United States); Kruppa, Sebastian; Riehn, Christoph [Fachbereich Chemie und Landesforschungszentrum OPTIMAS, Technische Universität Kaiserslautern, Erwin-Schrödinger-Str. 52–54, 67663 Kaiserslautern (Germany); Kappes, Manfred M., E-mail: manfred.kappes@kit.edu [Institute of Physical Chemistry, Karlsruhe Institute of Technology, P.O. Box 6980, 76049 Karlsruhe (Germany); Institute of Nanotechnology, Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe (Germany)

    2016-02-07

    Time-resolved pump-probe photoelectron spectroscopy has been used to study the relaxation dynamics of gaseous [Pt{sub 2}(μ-P{sub 2}O{sub 5}H{sub 2}){sub 4} + 2H]{sup 2−} after population of its first singlet excited state by 388 nm femtosecond laser irradiation. In contrast to the fluorescence and phosphorescence observed in condensed phase, a significant fraction of the photoexcited isolated dianions decays by electron loss to form the corresponding monoanions. Our transient photoelectron data reveal an ultrafast decay of the initially excited singlet {sup 1}A{sub 2u} state and concomitant rise in population of the triplet {sup 3}A{sub 2u} state, via sub-picosecond intersystem crossing (ISC). We find that both of the electronically excited states are metastably bound behind a repulsive Coulomb barrier and can decay via delayed autodetachment to yield electrons with characteristic kinetic energies. While excited state tunneling detachment (ESETD) from the singlet {sup 1}A{sub 2u} state takes only a few picoseconds, ESETD from the triplet {sup 3}A{sub 2u} state is much slower and proceeds on a time scale of hundreds of nanoseconds. The ISC rate in the gas phase is significantly higher than in solution, which can be rationalized in terms of changes to the energy dissipation mechanism in the absence of solvent molecules. [Pt{sub 2}(μ-P{sub 2}O{sub 5}H{sub 2}){sub 4} + 2H]{sup 2−} is the first example of a photoexcited multianion for which ESETD has been observed following ISC.

  6. Photoelectron spectroscopy bulk and surface electronic structures

    CERN Document Server

    Suga, Shigemasa

    2014-01-01

    Photoelectron spectroscopy is now becoming more and more required to investigate electronic structures of various solid materials in the bulk, on surfaces as well as at buried interfaces. The energy resolution was much improved in the last decade down to 1 meV in the low photon energy region. Now this technique is available from a few eV up to 10 keV by use of lasers, electron cyclotron resonance lamps in addition to synchrotron radiation and X-ray tubes. High resolution angle resolved photoelectron spectroscopy (ARPES) is now widely applied to band mapping of materials. It attracts a wide attention from both fundamental science and material engineering. Studies of the dynamics of excited states are feasible by time of flight spectroscopy with fully utilizing the pulse structures of synchrotron radiation as well as lasers including the free electron lasers (FEL). Spin resolved studies also made dramatic progress by using higher efficiency spin detectors and two dimensional spin detectors. Polarization depend...

  7. Influence of surface hydroxylation on 3-aminopropyltriethoxysilane growth mode during chemical functionalization of GaN Surfaces: an angle-resolved X-ray photoelectron spectroscopy Study.

    Science.gov (United States)

    Arranz, A; Palacio, C; García-Fresnadillo, D; Orellana, G; Navarro, A; Muñoz, E

    2008-08-19

    A comparative study of the chemical functionalization of undoped, n- and p-type GaN layers grown on sapphire substrates by metal-organic chemical vapor deposition was carried out. Both types of samples were chemically functionalized with 3-aminopropyltriethoxysilane (APTES) using a well-established silane-based approach for functionalizing hydroxylated surfaces. The untreated surfaces as well as those modified by hydroxylation and APTES deposition were analyzed using angle-resolved X-ray photoelectron spectroscopy. Strong differences were found between the APTES growth modes on n- and p-GaN surfaces that can be associated with the number of available hydroxyl groups on the GaN surface of each sample. Depending on the density of surface hydroxyl groups, different mechanisms of APTES attachment to the GaN surface take place in such a way that the APTES growth mode changes from a monolayer to a multilayer growth mode when the number of surface hydroxyl groups is decreased. Specifically, a monolayer growth mode with a surface coverage of approximately 78% was found on p-GaN, whereas the formation of a dense film, approximately 3 monolayers thick, was observed on n-GaN.

  8. Stark-assisted population control of coherent CS(2) 4f and 5p Rydberg wave packets studied by femtosecond time-resolved photoelectron spectroscopy.

    Science.gov (United States)

    Knappenberger, Kenneth L; Lerch, Eliza-Beth W; Wen, Patrick; Leone, Stephen R

    2007-09-28

    A two-color (3+1(')) pump-probe scheme is employed to investigate Rydberg wave packet dynamics in carbon disulfide (CS(2) (*)). The state superpositions are created within the 4f and 5p Rydberg manifolds by three photons of the 400 nm pump pulse, and their temporal evolution is monitored with femtosecond time-resolved photoelectron spectroscopy using an 800 nm ionizing probe pulse. The coherent behavior of the non-stationary superpositions are observed through wavepacket revivals upon ionization to either the upper (12) or lower (32) spin-orbit components of CS(2) (+). The results show clearly that the composition of the wavepacket can be efficiently controlled by the power density of the excitation pulse over a range from 500 GWcm(2) to 10 TWcm(2). The results are consistent with the anticipated ac-Stark shift for 400 nm light and demonstrate an effective method for population control in molecular systems. Moreover, it is shown that Rydberg wavepackets can be formed in CS(2) with excitation power densities up to 10 TWcm(2) without significant fragmentation. The exponential 1e population decay (T(1)) of specific excited Rydberg states are recovered by analysis of the coherent part of the signal. The dissociation lifetimes of these states are typically 1.5 ps. However, a region exhibiting a more rapid decay ( approximately 800 fs) is observed for states residing in the energy range of 74 450-74 550 cm(-1), suggestive of an enhanced surface crossing in this region.

  9. High-resolution soft X-ray beamline ADRESS at the Swiss Light Source for resonant inelastic X-ray scattering and angle-resolved photoelectron spectroscopies

    Energy Technology Data Exchange (ETDEWEB)

    Strocov, V. N., E-mail: vladimir.strocov@psi.ch; Schmitt, T.; Flechsig, U.; Schmidt, T.; Imhof, A.; Chen, Q.; Raabe, J. [Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen-PSI (Switzerland); Betemps, R.; Zimoch, D.; Krempasky, J. [Paul Scherrer Institut, CH-5232 Villigen-PSI (Switzerland); Wang, X. [Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen-PSI (Switzerland); Institut de Physique de la Matiére Condensé, Ecole Polytechnique Fédéderale de Lausanne (Switzerland); Grioni, M. [Institut de Physique de la Matiére Condensé, Ecole Polytechnique Fédéderale de Lausanne (Switzerland); Piazzalunga, A. [Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen-PSI (Switzerland); Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano (Italy); Patthey, L. [Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen-PSI (Switzerland)

    2010-09-01

    Concepts and technical realization of the high-resolution soft X-ray beamline ADRESS at the Swiss Light Source are described. Optimization of the optical scheme for high resolution and photon flux as well as diagnostics tools and alignment strategies are discussed. The concepts and technical realisation of the high-resolution soft X-ray beamline ADRESS operating in the energy range from 300 to 1600 eV and intended for resonant inelastic X-ray scattering (RIXS) and angle-resolved photoelectron spectroscopy (ARPES) are described. The photon source is an undulator of novel fixed-gap design where longitudinal movement of permanent magnetic arrays controls not only the light polarization (including circular and 0–180° rotatable linear polarizations) but also the energy without changing the gap. The beamline optics is based on the well established scheme of plane-grating monochromator operating in collimated light. The ultimate resolving power E/ΔE is above 33000 at 1 keV photon energy. The choice of blazed versus lamellar gratings and optimization of their profile parameters is described. Owing to glancing angles on the mirrors as well as optimized groove densities and profiles of the gratings, the beamline is capable of delivering high photon flux up to 1 × 10{sup 13} photons s{sup −1} (0.01% BW){sup −1} at 1 keV. Ellipsoidal refocusing optics used for the RIXS endstation demagnifies the vertical spot size down to 4 µm, which allows slitless operation and thus maximal transmission of the high-resolution RIXS spectrometer delivering E/ΔE > 11000 at 1 keV photon energy. Apart from the beamline optics, an overview of the control system is given, the diagnostics and software tools are described, and strategies used for the optical alignment are discussed. An introduction to the concepts and instrumental realisation of the ARPES and RIXS endstations is given.

  10. Photoelectron Spectroscopy of Substituted Phenylnitrenes

    Science.gov (United States)

    Wijeratne, Neloni R.; Fonte, Maria Da; Wenthold, Paul G.

    2009-06-01

    Nitrenes are unusual molecular structures with unfilled electronic valences that are isoelectronic with carbenes. Although, both can be generated by either thermal or photochemical decomposition of appropriate precursors they usually exhibit different reactivities. In this work, we carry out spectroscopic studies of substituted phenylnitrene to determine how the introduction of substituents will affect the reactivity and its thermochemical properties. All studies were carried out by using the newly constructed time-of-flight negative ion photoelectron spectrometer (NIPES) at Purdue University. The 355 nm photoelectron spectra of the o-, m-, and p-chlorophenyl nitrene anions are fairly similar to that measured for phenylnitrene anion. All spectra show low energy triplet state and a high energy singlet state. The singlet state for the meta isomer is well-resolved, with a well defined origin and observable vibrational structure. Whereas the singlet states for the ortho and para isomers have lower energy onsets and no resolved structure. The isomeric dependence suggests that the geometry differences result from the resonance interaction between the nitrogen and the substituent. Quinoidal resonance structures are possible for the open-shell singlet states of the o- and p-chlorinated phenyl nitrenes. The advantages of this type of electronic structures for the open-shell singlet states is that the unpaired electrons can be more localized on separate atoms in the molecules, minimizing the repulsion between. Because the meta position is not in resonance with the nitrenes, substitution at that position should not affect the structure of the open-shell singlet state. The measured electron affinities (EA) of the triplet phenylnitrenes are in excellent agreement with the values predicted by electronic structure calculations. The largest EA, 1.82 eV is found for the meta isomer, with para being the smallest, 1.70 eV.

  11. Surface Reactions Studied by Synchrotron Based Photoelectron Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hrbek, J.

    1998-11-03

    The goal of this article is to illustrate the use of synchrotron radiation for investigating surface chemical reactions by photoelectron spectroscopy. A brief introduction and background information is followed by examples of layer resolved spectroscopy, oxidation and sulfidation of metallic, semiconducting and oxide surfaces.

  12. Sub-nanosecond time-resolved ambient-pressure X-ray photoelectron spectroscopy setup for pulsed and constant wave X-ray light sources.

    Science.gov (United States)

    Shavorskiy, Andrey; Neppl, Stefan; Slaughter, Daniel S; Cryan, James P; Siefermann, Katrin R; Weise, Fabian; Lin, Ming-Fu; Bacellar, Camila; Ziemkiewicz, Michael P; Zegkinoglou, Ioannis; Fraund, Matthew W; Khurmi, Champak; Hertlein, Marcus P; Wright, Travis W; Huse, Nils; Schoenlein, Robert W; Tyliszczak, Tolek; Coslovich, Giacomo; Robinson, Joseph; Kaindl, Robert A; Rude, Bruce S; Ölsner, Andreas; Mähl, Sven; Bluhm, Hendrik; Gessner, Oliver

    2014-09-01

    An apparatus for sub-nanosecond time-resolved ambient-pressure X-ray photoelectron spectroscopy studies with pulsed and constant wave X-ray light sources is presented. A differentially pumped hemispherical electron analyzer is equipped with a delay-line detector that simultaneously records the position and arrival time of every single electron at the exit aperture of the hemisphere with ~0.1 mm spatial resolution and ~150 ps temporal accuracy. The kinetic energies of the photoelectrons are encoded in the hit positions along the dispersive axis of the two-dimensional detector. Pump-probe time-delays are provided by the electron arrival times relative to the pump pulse timing. An average time-resolution of (780 ± 20) ps (FWHM) is demonstrated for a hemisphere pass energy E(p) = 150 eV and an electron kinetic energy range KE = 503-508 eV. The time-resolution of the setup is limited by the electron time-of-flight (TOF) spread related to the electron trajectory distribution within the analyzer hemisphere and within the electrostatic lens system that images the interaction volume onto the hemisphere entrance slit. The TOF spread for electrons with KE = 430 eV varies between ~9 ns at a pass energy of 50 eV and ~1 ns at pass energies between 200 eV and 400 eV. The correlation between the retarding ratio and the TOF spread is evaluated by means of both analytical descriptions of the electron trajectories within the analyzer hemisphere and computer simulations of the entire trajectories including the electrostatic lens system. In agreement with previous studies, we find that the by far dominant contribution to the TOF spread is acquired within the hemisphere. However, both experiment and computer simulations show that the lens system indirectly affects the time resolution of the setup to a significant extent by inducing a strong dependence of the angular spread of electron trajectories entering the hemisphere on the retarding ratio. The scaling of the angular spread with

  13. Anion photoelectron spectroscopy of radicals and clusters

    Energy Technology Data Exchange (ETDEWEB)

    Travis, Taylor R. [Univ. of California, Berkeley, CA (United States)

    1999-12-01

    Anion photoelectron spectroscopy is used to study free radicals and clusters. The low-lying 2Σ and 2π states of C2nH (n = 1--4) have been studied. The anion photoelectron spectra yielded electron affinities, term values, and vibrational frequencies for these combustion and astrophysically relevant species. Photoelectron angular distributions allowed the author to correctly assign the electronic symmetry of the ground and first excited states and to assess the degree of vibronic coupling in C2H and C4H. Other radicals studied include NCN and I3. The author was able to observe the low-lying singlet and triplet states of NCN for the first time. Measurement of the electron affinity of I3 revealed that it has a bound ground state and attachment of an argon atom to this moiety enabled him to resolve the symmetric stretching progression.

  14. Ultrahigh spatiotemporal resolved spectroscopy

    Institute of Scientific and Technical Information of China (English)

    LI; Zhi

    2007-01-01

    We review the technique and research of the ultrahigh spatiotemporal resolved spectroscopy and its applications in the field of the ultrafast dynamics of mesoscopic systems and nanomaterials. Combining femtosecond time-resolved spectroscopy and scanning near-field optical microscopy (SNOM), we can obtain the spectra with ultrahigh temporal and spatial resolutions simultaneously. Some problems in doing so are discussed. Then we show the important applications of the ultrahigh spatiotemporal resolved spectroscopy with a few typical examples.……

  15. Ultrahigh spatiotemporal resolved spectroscopy

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ We review the technique and research of the ultrahigh spatiotemporal resolved spectroscopy and its applications in the field of the ultrafast dynamics of mesoscopic systems and nanomaterials. Combining femtosecond time-resolved spectroscopy and scanning near-field optical microscopy (SNOM), we can obtain the spectra with ultrahigh temporal and spatial resolutions simultaneously. Some problems in doing so are discussed. Then we show the important applications of the ultrahigh spatiotemporal resolved spectroscopy with a few typical examples.

  16. Photoelectron spectrometer for attosecond spectroscopy of liquids and gases

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, I.; Huppert, M.; Wörner, H. J., E-mail: hwoerner@ethz.ch [Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich (Switzerland); Brown, M. A. [Laboratory for Surface Science and Technology, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, 8093 Zurich (Switzerland); Bokhoven, J. A. van [Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich (Switzerland); Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, 5232 Villigen (Switzerland)

    2015-12-15

    A new apparatus for attosecond time-resolved photoelectron spectroscopy of liquids and gases is described. It combines a liquid microjet source with a magnetic-bottle photoelectron spectrometer and an actively stabilized attosecond beamline. The photoelectron spectrometer permits venting and pumping of the interaction chamber without affecting the low pressure in the flight tube. This pressure separation has been realized through a sliding skimmer plate, which effectively seals the flight tube in its closed position and functions as a differential pumping stage in its open position. A high-harmonic photon spectrometer, attached to the photoelectron spectrometer, exit port is used to acquire photon spectra for calibration purposes. Attosecond pulse trains have been used to record photoelectron spectra of noble gases, water in the gas and liquid states as well as solvated species. RABBIT scans demonstrate the attosecond resolution of this setup.

  17. Photoelectron spectroscopy of phthalocyanine vapors

    Energy Technology Data Exchange (ETDEWEB)

    Berkowitz, J.

    1979-01-01

    The He(I) photoelectron spectra of several metal phthalocyanines and metal-free phthalocyanine vapor shows that: a sharp peak at 4.99 eV is an artifact due to ionization of atomic He by He(II) radiation; the first phthalocyanine peak (metal-containing or metal-free) occurs at 6.4 eV; and the metal-like d orbitals lie at least 1 to 2 eV deeper, except in the case of Fe. (DLC)

  18. Revealing Deactivation Pathways Hidden in Time-Resolved Photoelectron Spectra

    Science.gov (United States)

    Ruckenbauer, Matthias; Mai, Sebastian; Marquetand, Philipp; González, Leticia

    2016-10-01

    Time-resolved photoelectron spectroscopy is commonly employed with the intention to monitor electronic excited-state dynamics occurring in a neutral molecule. With the help of theory, we show that when excited-state processes occur on similar time scales the different relaxation pathways are completely obscured in the total photoionization signal recorded in the experiment. Using non-adiabatic molecular dynamics and Dyson norms, we calculate the photoionization signal of cytosine and disentangle the transient contributions originating from the different deactivation pathways of its tautomers. In the simulations, the total signal from the relevant keto and enol tautomers can be decomposed into contributions either from the neutral electronic state populations or from the distinct mechanistic pathways across the multiple potential surfaces. The lifetimes corresponding to these contributions cannot be extracted from the experiment, thereby illustrating that new experimental setups are necessary to unravel the intricate non-adiabatic pathways occurring in polyatomic molecules after irradiation by light.

  19. Photoelectron Spectroscopy in Advanced Placement Chemistry

    Science.gov (United States)

    Benigna, James

    2014-01-01

    Photoelectron spectroscopy (PES) is a new addition to the Advanced Placement (AP) Chemistry curriculum. This article explains the rationale for its inclusion, an overview of how the PES instrument records data, how the data can be analyzed, and how to include PES data in the course. Sample assessment items and analysis are included, as well as…

  20. Photoelectron Spectroscopy in Advanced Placement Chemistry

    Science.gov (United States)

    Benigna, James

    2014-01-01

    Photoelectron spectroscopy (PES) is a new addition to the Advanced Placement (AP) Chemistry curriculum. This article explains the rationale for its inclusion, an overview of how the PES instrument records data, how the data can be analyzed, and how to include PES data in the course. Sample assessment items and analysis are included, as well as…

  1. Photoelectron spectroscopy of heavy atoms and molecules

    Energy Technology Data Exchange (ETDEWEB)

    White, M.G.

    1979-07-01

    The importance of relativistic interactions in the photoionization of heavy atoms and molecules has been investigated by the technique of photoelectron spectroscopy. In particular, experiments are reported which illustrate the effects of the spin-orbit interaction in the neutral ground state, final ionic states and continuum states of the photoionization target.

  2. Multimode Surface Functional Group Determination: Combining Steady-State and Time-Resolved Fluorescence with X-ray Photoelectron Spectroscopy and Absorption Measurements for Absolute Quantification.

    Science.gov (United States)

    Fischer, Tobias; Dietrich, Paul M; Unger, Wolfgang E S; Rurack, Knut

    2016-01-19

    The quantitative determination of surface functional groups is approached in a straightforward laboratory-based method with high reliability. The application of a multimode BODIPY-type fluorescence, photometry, and X-ray photoelectron spectroscopy (XPS) label allows estimation of the labeling ratio, i.e., the ratio of functional groups carrying a label after reaction, from the elemental ratios of nitrogen and fluorine. The amount of label on the surface is quantified with UV/vis spectrophotometry based on the molar absorption coefficient as molecular property. The investigated surfaces with varying density are prepared by codeposition of 3-(aminopropyl)triethoxysilane (APTES) and cyanoethyltriethoxysilane (CETES) from vapor. These surfaces show high functional group densities that result in significant fluorescence quenching of surface-bound labels. Since alternative quantification of the label on the surface is available through XPS and photometry, a novel method to quantitatively account for fluorescence quenching based on fluorescence lifetime (τ) measurements is shown. Due to the complex distribution of τ on high-density surfaces, the stretched exponential (or Kohlrausch) function is required to determine representative mean lifetimes. The approach is extended to a commercial Rhodamine B isothiocyanate (RITC) label, clearly revealing the problems that arise from such charged labels used in conjunction with silane surfaces.

  3. Spectroscopy of transient neutral species via negative ion photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, A.

    1991-12-01

    Negative ion photoelectron spectroscopy has been used to study two types of transient neutral species: bound free radicals (NO{sub 2} and NO{sub 3}) and unstable neutral species ([IHI] and [FH{sub 2}]). The negative ion time-of-flight photoelectron spectrometer used for these experiments is described in detail.

  4. Spectroscopy of transient neutral species via negative ion photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, A.

    1991-12-01

    Negative ion photoelectron spectroscopy has been used to study two types of transient neutral species: bound free radicals (NO{sub 2} and NO{sub 3}) and unstable neutral species ((IHI) and (FH{sub 2})). The negative ion time-of-flight photoelectron spectrometer used for these experiments is described in detail.

  5. Differences between GaAs/GaInP and GaAs/AlInP interfaces grown by movpe revealed by depth profiling and angle-resolved X-ray photoelectron spectroscopies

    Energy Technology Data Exchange (ETDEWEB)

    López-Escalante, M.C., E-mail: mclopez@uma.es [Nanotech Unit, Laboratorio de Materiales y Superficies, Departamento de Ingeniería Química, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga (Spain); Gabás, M. [The Nanotech Unit, Depto. de Física Aplicada I, Andalucía Tech, Universidad de Málaga, Campus de Teatinos s/n, 29071 Málaga Spain (Spain); García, I.; Barrigón, E.; Rey-Stolle, I.; Algora, C. [Instituto de Energía Solar, Universidad Politécnica de Madrid, Avda. Complutense 30, 28040 Madrid Spain (Spain); Palanco, S.; Ramos-Barrado, J.R. [The Nanotech Unit, Depto. de Física Aplicada I, Andalucía Tech, Universidad de Málaga, Campus de Teatinos s/n, 29071 Málaga Spain (Spain)

    2016-01-01

    Graphical abstract: - Highlights: • GaAs, AlInP and GaInP epi-layers grown in a MOVPE facility. • GaAs/GaInP and GaAs/AlInP interfaces studied through the combination of angle resolved and depth profile X-ray photoelectros spectroscopies. • GaAs/GaInP interface shows no features appart from GaAs, GaInP and mixed GaInAs or GaInAsP phases. • GaAs/AlInP interface shows traces of an anomalous P environment, probably due to P-P clusters. - Abstract: GaAs/GaInP and GaAs/AlInP interfaces have been studied using photoelectron spectroscopy tools. The combination of depth profile through Ar{sup +} sputtering and angle resolved X-ray photoelectron spectroscopy provides reliable information on the evolution of the interface chemistry. Measurement artifacts related to each particular technique can be ruled out on the basis of the results obtained with the other technique. GaAs/GaInP interface spreads out over a shorter length than GaAs/AlInP interface. The former could include the presence of the quaternary GaInAsP in addition to the nominal GaAs and GaInP layers. On the contrary, the GaAs/AlInP interface exhibits a higher degree of compound mixture. Namely, traces of P atoms in a chemical environment different to the usual AlInP coordination were found at the top of the GaAs/AlInP interface, as well as mixed phases like AlInP, GaInAsP or AlGaInAsP, located at the interface.

  6. High-power, narrow-band, high-repetition-rate, 5.9 eV coherent light source using passive optical cavity for laser-based angle-resolved photoelectron spectroscopy.

    Science.gov (United States)

    Omachi, J; Yoshioka, K; Kuwata-Gonokami, M

    2012-10-08

    We demonstrate a scheme for efficient generation of a 5.9 eV coherent light source with an average power of 23 mW, 0.34 meV linewidth, and 73 MHz repetition rate from a Ti: sapphire picosecond mode-locked laser with an output power of 1 W. Second-harmonic light is generated in a passive optical cavity by a BiB(3)O(6) crystal with a conversion efficiency as high as 67%. By focusing the second-harmonic light transmitted from the cavity into a β-BaB(2)O(4) crystal, we obtain fourth-harmonic light at 5.9 eV. This light source offers stable operation for at least a week. We discuss the suitability of the laser light source for high-resolution angle-resolved photoelectron spectroscopy by comparing it with other sources (synchrotron radiation facilities and gas discharge lamp).

  7. Initial and steady-state Ru growth by atomic layer deposition studied by in situ Angle Resolved X-ray Photoelectron Spectroscopy

    Science.gov (United States)

    Egorov, Konstantin V.; Lebedinskii, Yury Yu.; Soloviev, Anatoly A.; Chouprik, Anastasia A.; Azarov, Alexander Yu.; Markeev, Andrey M.

    2017-10-01

    The clear substrate-dependent growth and delayed film continuity are essential challenges of Ru atomic layer deposition (ALD) demanding adequate and versatile approaches for their study. Here, we report on the application of in situ Angle Resolved X-ray Phototelectron Spectroscopy (ARXPS) for investigation of initial and steady-state ALD growth of Ru using Ru(EtCp)2 and O2 as precursors. Using ARXPS surface analysis technique we determine such parameters of Ru ALD initial growth as incubation period, fractional coverage and the thickness of islands/film depending on the substrate chemical state, governed by the presence/absence of NH3/Ar plasma pretreatment. It was demonstrated that NH3/Ar plasma pretreatment allows to obtain the lowest incubation period (∼7 ALD cycles) resulting in a continuous ultrathin (∼20 Å) and smooth Ru films after 70 ALD cycles. In situ XPS at UHV was used at steady state Ru growth for analysis of half-cycle reactions that revealed formation of RuOx (x ≈ 2) layer with thickness of ∼8 Å after O2 pulse (first half-cycle). It was also shown that oxygen of RuOx layer combusts Ru(EtCp)2 ligands in the second half-cycle reaction and the observed Ru growth of ∼0.34 Å per cycle is in a good agreement with the amount of oxygen in the RuOx layer.

  8. X-Ray photoelectron Spectroscopy Applications

    Energy Technology Data Exchange (ETDEWEB)

    Engelhard, Mark H.; Droubay, Timothy C.; Du, Yingge

    2017-01-03

    With capability for obtaining quantitative elemental composition, chemical and electronic state, and overlayer thickness information from the top ~10 nm of a sample surface, X-ray Photoelectron Spectroscopy (XPS) or Electron Spectroscopy for Chemical Analysis (ESCA) is a versatile and widely used technique for analyzing surfaces. The technique is applied to a host of materials, from insulators to conductors in virtually every scientific field and sub-discipline. More recently, XPS has been extended under in-situ and operando conditions. Following a brief introduction to XPS principles and instrument components, this article exemplifies widely ranging XPS applications in material and life sciences.

  9. Molecular-orbital decomposition of the ionization continuum for a diatomic molecule by angle- and energy-resolved photoelectron spectroscopy. I. Formalism

    Science.gov (United States)

    Park, Hongkun; Zare, Richard N.

    1996-03-01

    A theoretical formalism is developed for the quantum-state-specific photoelectron angular distributions (PADs) from the direct photoionization of a diatomic molecule in which both the ionizing state and the state of the ion follow Hund's case (b) coupling. The formalism is based on the molecular-orbital decomposition of the ionization continuum and therefore fully incorporates the molecular nature of the photoelectron-ion scattering within the independent electron approximation. The resulting expression for the quantum-state-specific PADs is dependent on two distinct types of dynamical quantities, one that pertains only to the ionization continuum and the other that depends both on the ionizing state and the ionization continuum. Specifically, the electronic dipole-moment matrix element rlλ exp(iηlλ) for the ejection of a photoelectron with orbital angular momentum quantum number l making a projection λ on the internuclear axis is expressed as ΣαλŪlαλλ exp (iπτ¯αλλ) Mαλλ, where Ūλ is the electronic transformation matrix, τ¯αλλ is the scattering phase shift associated with the αλth continuum molecular orbital, and Mαλλ is the real electronic dipole-moment matrix element that connects the ionizing orbital to the αλth continuum molecular orbital. Because Ūλ and τ¯αλλ depend only on the dynamics in the ionization continuum, this formalism allows maximal exploitation of the commonality between photoionization processes from different ionizing states. It also makes possible the direct experimental investigation of scattering matrices for the photoelectron-ion scattering and thus the dynamics in the ionization continuum by studying the quantum-state-specific PADs, as illustrated in the companion article on the photoionization of NO.

  10. Angular distribution and atomic effects in condensed phase photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Davis, R.F.

    1981-11-01

    A general concept of condensed phase photoelectron spectroscopy is that angular distribution and atomic effects in the photoemission intensity are determined by different mechanisms, the former being determined largely by ordering phenomena such as crystal momentum conservation and photoelectron diffraction while the latter are manifested in the total (angle-integrated) cross section. In this work, the physics of the photoemission process is investigated in several very different experiments to elucidate the mechanisms of, and correlation between, atomic and angular distribution effects. Theoretical models are discussed and the connection betweeen the two effects is clearly established. The remainder of this thesis, which describes experiments utilizing both angle-resolved and angle-integrated photoemission in conjunction with synchrotron radiation in the energy range 6 eV less than or equal to h ..nu.. less than or equal to 360 eV and laboratory sources, is divided into three parts.

  11. Development of a single-shot CCD-based data acquisition system for time-resolved X-ray photoelectron spectroscopy at an X-ray free-electron laser facility.

    Science.gov (United States)

    Oura, Masaki; Wagai, Tatsuya; Chainani, Ashish; Miyawaki, Jun; Sato, Hiromi; Matsunami, Masaharu; Eguchi, Ritsuko; Kiss, Takayuki; Yamaguchi, Takashi; Nakatani, Yasuhiro; Togashi, Tadashi; Katayama, Tetsuo; Ogawa, Kanade; Yabashi, Makina; Tanaka, Yoshihito; Kohmura, Yoshiki; Tamasaku, Kenji; Shin, Shik; Ishikawa, Tetsuya

    2014-01-01

    In order to utilize high-brilliance photon sources, such as X-ray free-electron lasers (XFELs), for advanced time-resolved photoelectron spectroscopy (TR-PES), a single-shot CCD-based data acquisition system combined with a high-resolution hemispherical electron energy analyzer has been developed. The system's design enables it to be controlled by an external trigger signal for single-shot pump-probe-type TR-PES. The basic performance of the system is demonstrated with an offline test, followed by online core-level photoelectron and Auger electron spectroscopy in 'single-shot image', 'shot-to-shot image (image-to-image storage or block storage)' and `shot-to-shot sweep' modes at soft X-ray undulator beamline BL17SU of SPring-8. In the offline test the typical repetition rate for image-to-image storage mode has been confirmed to be about 15 Hz using a conventional pulse-generator. The function for correcting the shot-to-shot intensity fluctuations of the exciting photon beam, an important requirement for the TR-PES experiments at FEL sources, has been successfully tested at BL17SU by measuring Au 4f photoelectrons with intentionally controlled photon flux. The system has also been applied to hard X-ray PES (HAXPES) in `ordinary sweep' mode as well as shot-to-shot image mode at the 27 m-long undulator beamline BL19LXU of SPring-8 and also at the SACLA XFEL facility. The XFEL-induced Ti 1s core-level spectrum of La-doped SrTiO3 is reported as a function of incident power density. The Ti 1s core-level spectrum obtained at low power density is consistent with the spectrum obtained using the synchrotron source. At high power densities the Ti 1s core-level spectra show space-charge effects which are analysed using a known mean-field model for ultrafast electron packet propagation. The results successfully confirm the capability of the present data acquisition system for carrying out the core-level HAXPES studies of condensed matter induced by the XFEL.

  12. Surface and subsurface oxidation of Mo2C/Mo(100): low-energy ion-scattering, auger electron, angle-resolved X-ray photoelectron, and mass spectroscopy studies.

    Science.gov (United States)

    Ovári, László; Kiss, János; Farkas, Arnold P; Solymosi, Frigyes

    2005-03-17

    The interaction of oxygen with a carburized Mo(100) surface was investigated at different temperatures (300-1000 K). The different information depths of low-energy ion-scattering (LEIS) spectroscopy, with topmost layer sensitivity, Auger electron spectroscopy (AES), and angle-resolved X-ray photoelectron spectroscopy (ARXPS) allowed us to discriminate between reactions on the topmost layer and subsurface transformations. According to ARXPS measurements, a carbide overlayer was prepared by the high-temperature decomposition of C(2)H(4) on Mo(100), and the carbon distribution proved to be homogeneous with a Mo(2)C stoichiometry down to the information depth of XPS. O(2) adsorbs dissociatively on the carbide layer at room temperature. One part of the chemisorbed oxygen is bound to both C and Mo sites, indicated by LEIS. Another fraction of oxygen atoms probably resides in the hollow sites not occupied by C. The removal of C from the outermost layer by O(2), in the form of CO, detected by mass spectroscopy (MS), was observed at 500-600 K. The carbon-depleted first layer is able to adsorb more oxygen compared to the Mo(2)C/Mo(100) surface. Applying higher doses of O(2) at 800 K results in the inward diffusion of O and the partial oxidation of Mo atoms. This process, however, is not accompanied by the removal of C from subsurface sites. The depletion of C from the bulk starts only at 900 K (as shown by MS, AES, and XPS), very probably by the diffusion of C to the surface followed by its reaction with oxygen. At T(ads) = 1000 K, the carbon content of the sample, down to the information depth of XPS, decreased further, accompanied by the attenuation of the C concentration gradient and a substantially decreased amount of oxygen.

  13. Graphene Membranes for Atmospheric Pressure Photoelectron Spectroscopy.

    Science.gov (United States)

    Weatherup, Robert S; Eren, Baran; Hao, Yibo; Bluhm, Hendrik; Salmeron, Miquel B

    2016-05-05

    Atmospheric pressure X-ray photoelectron spectroscopy (XPS) is demonstrated using single-layer graphene membranes as photoelectron-transparent barriers that sustain pressure differences in excess of 6 orders of magnitude. The graphene serves as a support for catalyst nanoparticles under atmospheric pressure reaction conditions (up to 1.5 bar), where XPS allows the oxidation state of Cu nanoparticles and gas phase species to be simultaneously probed. We thereby observe that the Cu(2+) oxidation state is stable in O2 (1 bar) but is spontaneously reduced under vacuum. We further demonstrate the detection of various gas-phase species (Ar, CO, CO2, N2, O2) in the pressure range 10-1500 mbar including species with low photoionization cross sections (He, H2). Pressure-dependent changes in the apparent binding energies of gas-phase species are observed, attributable to changes in work function of the metal-coated grids supporting the graphene. We expect atmospheric pressure XPS based on this graphene membrane approach to be a valuable tool for studying nanoparticle catalysis.

  14. X-ray Photoelectron Spectroscopy Database (Version 4.1)

    Science.gov (United States)

    SRD 20 X-ray Photoelectron Spectroscopy Database (Version 4.1) (Web, free access)   The NIST XPS Database gives access to energies of many photoelectron and Auger-electron spectral lines. The database contains over 22,000 line positions, chemical shifts, doublet splittings, and energy separations of photoelectron and Auger-electron lines.

  15. Electronic structure of ThRu2Si2 studied by angle-resolved photoelectron spectroscopy: Elucidating the contribution of U 5 f states in URu2Si2

    Science.gov (United States)

    Fujimori, Shin-ichi; Kobata, Masaaki; Takeda, Yukiharu; Okane, Tetsuo; Saitoh, Yuji; Fujimori, Atsushi; Yamagami, Hiroshi; Matsumoto, Yuji; Yamamoto, Etsuji; Tateiwa, Naoyuki; Haga, Yoshinori

    2017-09-01

    The electronic structure of ThRu2Si2 was studied using angle-resolved photoelectron spectroscopy (ARPES) with incident photon energies of h ν =655 -745 eV. Detailed band structure and the three-dimensional shapes of Fermi surfaces were derived experimentally, and their characteristic features were mostly explained by means of band-structure calculations based on density-functional theory. Comparison of the experimental ARPES spectra of ThRu2Si2 with those of URu2Si2 shows that they have considerably different spectral profiles, particularly in the energy range of 1 eV from the Fermi level, suggesting that U 5 f states are substantially hybridized in these bands. The relationship between the ARPES spectra of URu2Si2 and ThRu2Si2 is very different from the one between the ARPES spectra of CeRu2Si2 and LaRu2Si2 , where the intrinsic difference in their spectra is limited only in the very vicinity of the Fermi energy. The present result suggests that the U 5 f electrons in URu2Si2 have strong hybridization with ligand states and have an essentially itinerant character.

  16. Bimolecular reaction dynamics from photoelectron spectroscopy of negative ions

    Energy Technology Data Exchange (ETDEWEB)

    Bradforth, S.E.

    1992-11-01

    The transition state region of a neutral bimolecular reaction may be experimentally investigated by photoelectron spectroscopy of an appropriate negative ion. The photoelectron spectrum provides information on the spectroscopy and dynamics of the short lived transition state and may be used to develop model potential energy surfaces that are semi-quantitative in this important region. The principles of bound [yields] bound negative ion photoelectron spectroscopy are illustrated by way of an example: a full analysis of the photoelectron bands of CN[sup [minus

  17. Threshold photoelectron spectroscopy of the imidogen radical

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Gustavo A., E-mail: gustavo.garcia@synchrotron-soleil.fr [Synchrotron SOLEIL, L’Orme des Merisiers, St. Aubin, BP 48, 91192 Gif sur Yvette (France); Gans, Bérenger [Institut des Sciences Moléculaires d’Orsay, Univ Paris-Sud, CNRS, Bât 210, Univ Paris-Sud, 91405 Orsay Cedex (France); Tang, Xiaofeng [Synchrotron SOLEIL, L’Orme des Merisiers, St. Aubin, BP 48, 91192 Gif sur Yvette (France); Ward, Michael; Batut, Sébastien [PC2A, Université de Lille 1, UMR CNRS-USTL 8522, Cité Scientifique Bât. C11, F-59655 Villeneuve d’Ascq (France); Nahon, Laurent [Synchrotron SOLEIL, L’Orme des Merisiers, St. Aubin, BP 48, 91192 Gif sur Yvette (France); Fittschen, Christa [PC2A, Université de Lille 1, UMR CNRS-USTL 8522, Cité Scientifique Bât. C11, F-59655 Villeneuve d’Ascq (France); Loison, Jean-Christophe [ISM, Université de Bordeaux, CNRS, 351 cours de la Libération, 33405 Talence Cedex (France)

    2015-08-15

    We present the threshold photoelectron spectroscopy of the imidogen radical (NH) recorded in the photon energy region up to 1 eV above its first ionization threshold. The radical was produced by reaction of NH{sub 3} and F in a microwave discharge flow-tube and photoionized using vacuum ultraviolet (VUV) synchrotron radiation. A double imaging coincidence spectrometer was used to record mass-selected spectra and avoid contributions from the byproducts present in the reactor and background gas. The energy region includes the ground X{sup +2}Π and first electronically excited a{sup +4}Σ{sup −} states of NH{sup +}. Strong adiabatic transitions and weak vibrational progressions up to v{sup +} = 2 are observed for both electronic states. The rotational profile seen in the origin band has been modeled using existing neutral and cationic spectroscopic constants leading to a precise determination of the adiabatic ionization energy at 13.480 ± 0.002 eV.

  18. Photoelectron spectroscopy of strongly correlated Yb compounds

    Energy Technology Data Exchange (ETDEWEB)

    Joyce, J.J.; Andrews, A.B.; Arko, A.J.; Bartlett, R.J.; Blythe, R.I. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Olson, C.G.; Benning, P.J.; Canfield, P.C. [Ames Laboratory, U. S. Department of Energy, Ames, Iowa 50011 (United States); Poirier, D.M. [Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455 (United States)

    1996-12-01

    The electronic properties of the Yb compounds YBCu{sub 2}Si{sub 2}, YBAgCu{sub 4}, and YbAl{sub 3} along with purely divalent Yb metal, have been investigated by means of high-resolution ultraviolet and x-ray photoelectron spectroscopy. We present the intrinsic characteristic features of the 4{ital f} levels of Yb while accounting for lattice vibrations and the manifestation of corelike energy levels degenerate with the valence states and modified by the temperature-dependent Fermi function. For these strongly correlated Yb-based compounds, the hole occupancy values ({ital n}{sub {ital f}}{approximately}0.6) directly obtained from integration of the divalent and trivalent portions of the 4{ital f} photoemission features indicate that these compounds are strongly mixed valent. The small intensity modulation with temperature in the divalent Yb 4{ital f} levels (0{endash}10{percent} over a {ital T}=20{minus}300 K range) is discussed within the conventional framework of the photoemission process and nominal allowances for lattice variations with temperature. Results from photoemission experiments on the divalent 4{ital f} levels of strongly correlated Yb compounds are remarkably similar to the 4{ital f} levels of purely divalent Yb metal. {copyright} {ital 1996 The American Physical Society.}

  19. Zero kinetic energy photoelectron spectroscopy of pyrene.

    Science.gov (United States)

    Zhang, Jie; Han, Fangyuan; Kong, Wei

    2010-10-28

    We report zero kinetic energy photoelectron (ZEKE) spectroscopy of pyrene via resonantly enhanced multiphoton ionization. Our analysis centers on the symmetry of the first electronically excited state (S(1)), its vibrational modes, and the vibration of the ground cationic state (D(0)). From comparisons between the observed vibrational frequencies and those from ab initio calculations at the configuration interaction singles level using the 6-311G (d,p) basis set, and based on other previous experimental and theoretical reports, we confirm the (1)B(2u) symmetry for the S(1) state. This assignment represents a reversal in the energy order of the two closely spaced electronically excited states from our theoretical calculation, and extensive configuration interactions are attributed to this result. Among the observed vibrational levels of the S(1) state, three are results of vibronic coupling due to the nearby second electronically excited state. The ZEKE spectroscopy obtained via the vibronic levels of the S(1) state reveals similar modes for the cation as those of the intermediate state. Although we believe that the ground ionic state can be considered a single electron configuration, the agreement between theoretical and experimental frequencies for the cation is limited. This result is somewhat surprising based on our previous work on cata-condensed polycyclic aromatic hydrocarbons and small substituted aromatic compounds. Although a relatively small molecule, pyrene demonstrates its nonrigidity via several out-of-plane bending modes corresponding to corrugation of the molecular plane. The adiabatic ionization potential of neutral pyrene is determined to be 59 888 ± 7 cm(-1).

  20. Photoelectron spectroscopy and Auger electron spectroscopy of solids and surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kowalczyk, S.P.

    1976-01-01

    The use of photoelectron spectroscopy, primarily x-ray photoelectron spectroscopy, to obtain information on the electronic structure of a wide variety of solids (especially the bulk electronic structure of solids) is covered. Both valence band and core-level spectra, as well as a few cases of photon excited Auger electron spectroscopy, are employed in the investigations to derive information on N(E). The effect of several modulations inherent in the measured I(E)'s, such as final state band structure, cross section, and relaxation, is discussed. Examples of many-electron interactions in PES are given. Some experimental aspects of PES and AES studies are given with emphasis on sample preparation techniques. Multiple splitting of core levels is examined using the Mn levels in MnF/sub 2/ as a detailed case study. Core level splittings in transition metals, rare earth metals, transition metal halides and several alloys are also reported. The application of PES to the study of the chemical bond in some crystalline semiconductors and insulators, A/sup N/B/sup 8-N/ and A/sup N/B/sup 10-N/ compounds is treated, and a spectroscopic scale of ionicity for these compounds is developed from the measured ''s-band'' splitting in the valence band density of states. (GHT)

  1. Locally resolved investigation of wedged Cu(In,Ga)Se{sub 2} films prepared by physical vapor deposition using hard X-ray photoelectron and X-ray fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Calvet, Wolfram, E-mail: wolfram.calvet@helmholtz-berlin.de [Helmholtz-Zentrum Berlin, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany); Ümsür, Bünyamin; Höpfner, Britta; Lauermann, Iver; Prietzel, Karsten; Kaufmann, Christan A.; Unold, Thomas [Helmholtz-Zentrum Berlin, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany); Lux-Steiner, Martha C. [Helmholtz-Zentrum Berlin, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany); Freie Universität Berlin, Department of Physics, Arnimallee 14, D-14195 Berlin (Germany)

    2015-05-01

    We have investigated a specially grown Cu(In,Ga)Se{sub 2} (CIGSe) absorber, which was deposited by co-evaporation of Cu, In, Ga, and Se using a modified three stage process. Prior to the growth, the molybdenum-coated glass substrate was covered by a bent shroud made from tantalum (Ta), leading to a wedged absorber structure with a width of about 2 mm where the film thickness varies from 0 to 2 μm. In this region of interest the thickness dependency of morphology, concentration ratios and electronic properties was studied with secondary electron microscopy (SEM), X-ray fluorescence (XRF) and hard X-ray photoelectron spectroscopy (HAXPES), probing the CIGSe sample along the thickness gradient. The evidence of the thickness gradient itself was proven with SEM measurements in cross section geometry. By using XRF it was found that with decreasing film thickness the Cu concentration decreases significantly. This finding was also verified by HAXPES measurements. Furthermore, an enrichment of Ga towards the Mo back contact was found using the same technique. Besides these results the formation of a molybdenum selenide (MoSe) phase was observed on the fully covered part of the Mo coated substrate indicating a high mobility of Se on Mo under the given temperature conditions of the modified three stage deposition process. - Highlights: • Growth of a CIGSe wedge • Application of HAXPES and XRF as local probing techniques • Good agreement with former studies • Wedged CIGSe structures can be used for further, locally resolved experiments.

  2. SPIN POLARIZED PHOTOELECTRON SPECTROSCOPY AS A PROBE OF MAGNETIC SYSTEMS.

    Energy Technology Data Exchange (ETDEWEB)

    JOHNSON, P.D.; GUNTHERODT, G.

    2006-11-01

    Spin-polarized photoelectron spectroscopy has developed into a versatile tool for the study of surface and thin film magnetism. In this chapter, we examine the methodology of the technique and its recent application to a number of different problems. We first examine the photoemission process itself followed by a detailed review of spin-polarization measurement techniques and the related experimental requirements. We review studies of spin polarized surface states, interface states and quantum well states followed by studies of the technologically important oxide systems including half-metallic transition metal oxides, ferromagnet/oxide interfaces and the antiferromagnetic cuprates that exhibit high Tc Superconductivity. We also discuss the application of high-resolution photoemission with spin resolving capabilities to the study of spin dependent self energy effects.

  3. Rotationally Resolved Photoelectron Spectroscopic Study of the tilde{A}^+ State of H_2O^+

    Science.gov (United States)

    Lauzin, Clément; Gans, Berenger; Jacovella, Ugo; Merkt, Frederic

    2016-06-01

    This talk will present the analysis of the rotationally resolved pulsed-field-ionization zero-kinetic-energy (PFI-ZEKE) photoelectron spectrum of H_2O and will be focussed on the tilde{A}^+←tilde{X} transitions. H_2O^+ in the tilde{A}^+ state is predicted to be linear. The sensitivity and the high resolution of PFI- ZEKE photoelectron spectroscopy allowed us to observe the rotational structure of low bending vibrational levels of the tilde{A}^+ state of H_2O^+ from the tilde{X} ground electronic state of H_2O. The assignment of the rotational structure of ionic levels previously observed by optical spectroscopy of the tilde{A}^+ - tilde{X}^+ band system of H_2O^+ will be presented and the intensity distribution of the photoelectron spectrum will be discussed in terms of the even or odd nature of the orbital angular momentum quantum number l of the photoelectron. Tentative assignments will be presented for several low-lying vibrational levels of the tilde{A}^+ state and compared with theoretical predictions ^c. They will also be discussed in terms of the rotational structure of higher tilde{A}^+ vibrational levels of the same symmetry. M. Brommer, B. Weis, B. Follmeg, P. Rosmus, S. Carter, N. C. Handy, H. J. Werner, and P. J. Knowles, J. Chem. Phys. 98, 5222 (1993) H. Lew, Can. J. Phys. 54, 2028 (1976).

  4. Anion photoelectron imaging spectroscopy of glyoxal

    Science.gov (United States)

    Xue, Tian; Dixon, Andrew R.; Sanov, Andrei

    2016-09-01

    We report a photoelectron imaging study of the radical-anion of glyoxal. The 532 nm photoelectron spectrum provides the first direct spectroscopic determination of the adiabatic electron affinity of glyoxal, EA = 1.10 ± 0.02 eV. This assignment is supported by a Franck-Condon simulation of the experimental spectrum that successfully reproduces the observed spectral features. The vertical detachment energy of the radical-anion is determined as VDE = 1.30 ± 0.04 eV. The reported EA and VDE values are attributed to the most stable (C2h symmetry) isomers of the neutral and the anion.

  5. Time-resolved vibrational spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tokmakoff, Andrei [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Champion, Paul [Northeastern Univ., Boston, MA (United States); Heilweil, Edwin J. [National Inst. of Standards and Technology (NIST), Boulder, CO (United States); Nelson, Keith A. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Ziegler, Larry [Boston Univ., MA (United States)

    2009-05-14

    This document contains the Proceedings from the 14th International Conference on Time-Resolved Vibrational Spectroscopy, which was held in Meredith, NH from May 9-14, 2009. The study of molecular dynamics in chemical reaction and biological processes using time-resolved spectroscopy plays an important role in our understanding of energy conversion, storage, and utilization problems. Fundamental studies of chemical reactivity, molecular rearrangements, and charge transport are broadly supported by the DOE's Office of Science because of their role in the development of alternative energy sources, the understanding of biological energy conversion processes, the efficient utilization of existing energy resources, and the mitigation of reactive intermediates in radiation chemistry. In addition, time-resolved spectroscopy is central to all fiveof DOE's grand challenges for fundamental energy science. The Time-Resolved Vibrational Spectroscopy conference is organized biennially to bring the leaders in this field from around the globe together with young scientists to discuss the most recent scientific and technological advances. The latest technology in ultrafast infrared, Raman, and terahertz spectroscopy and the scientific advances that these methods enable were covered. Particular emphasis was placed on new experimental methods used to probe molecular dynamics in liquids, solids, interfaces, nanostructured materials, and biomolecules.

  6. TIME-RESOLVED VIBRATIONAL SPECTROSCOPY

    Energy Technology Data Exchange (ETDEWEB)

    Andrei Tokmakoff, MIT (Conference Chair); Paul Champion, Northeastern University; Edwin J. Heilweil, NIST; Keith A. Nelson, MIT; Larry Ziegler, Boston University

    2009-05-14

    This document contains the Proceedings from the 14th International Conference on Time-Resolved Vibrational Spectroscopy, which was held in Meredith, NH from May 9-14, 2009. The study of molecular dynamics in chemical reaction and biological processes using time-resolved spectroscopy plays an important role in our understanding of energy conversion, storage, and utilization problems. Fundamental studies of chemical reactivity, molecular rearrangements, and charge transport are broadly supported by the DOE’s Office of Science because of their role in the development of alternative energy sources, the understanding of biological energy conversion processes, the efficient utilization of existing energy resources, and the mitigation of reactive intermediates in radiation chemistry. In addition, time-resolved spectroscopy is central to all five of DOE’s grand challenges for fundamental energy science. The Time-Resolved Vibrational Spectroscopy conference is organized biennially to bring the leaders in this field from around the globe together with young scientists to discuss the most recent scientific and technological advances. The latest technology in ultrafast infrared, Raman, and terahertz spectroscopy and the scientific advances that these methods enable were covered. Particular emphasis was placed on new experimental methods used to probe molecular dynamics in liquids, solids, interfaces, nanostructured materials, and biomolecules.

  7. Threshold photoelectron spectroscopy of acetaldehyde and acrolein

    Energy Technology Data Exchange (ETDEWEB)

    Yencha, Andrew J., E-mail: ayencha@albany.edu [Department of Chemistry, University at Albany, State University of New York, Albany, NY 12222 (United States); Siggel-King, Michele R.F. [Cockcroft Institute, Sci-Tech Daresbury, Warrrington WA4 4AD (United Kingdom); Department of Physics, University of Liverpool, Liverpool L69 3BX (United Kingdom); King, George C. [Department of Physics and Astronomy and Photon Science Institute, Manchester University, Manchester M13 9PL (United Kingdom); Malins, Andrew E.R. [Cockcroft Institute, Sci-Tech Daresbury, Warrrington WA4 4AD (United Kingdom); Eypper, Marie [School of Chemistry, University of Southampton, Southampton SO17 1BJ (United Kingdom)

    2013-04-15

    Highlights: •High-resolution threshold photoelectron spectrum of acetaldehyde. •High-resolution threshold photoelectron spectrum of acrolein. •High-resolution total photoion yield spectrum of acetaldehyde. •High-resolution total photoion yield spectrum of acrolein. •Determination of vertical ionization potentials in acetaldehyde and acrolein. -- Abstract: High-resolution (6 meV and 12 meV) threshold photoelectron (TPE) spectra of acetaldehyde and acrolein (2-propenal) have been recorded over the valence binding energy region 10–20 eV, employing synchrotron radiation and a penetrating-field electron spectrometer. These TPE spectra are presented here for the first time. All of the band structures observed in the TPE spectra replicate those found in their conventional HeI photoelectron (PE) spectra. However, the relative band intensities are found to be dramatically different in the two types of spectra that are attributed to the different dominant operative formation mechanisms. In addition, some band shapes and their vertical ionization potentials are found to differ in the two types of spectra that are associated with the autoionization of Rydberg states in the two molecules.

  8. Imaging plasmonic fields near gold nanospheres in attosecond time-resolved streaked photoelectron spectra

    Science.gov (United States)

    Li, Jianxiong; Thumm, Uwe

    2016-05-01

    To study time-resolved photoemission from gold nanospheres, we introduce a quantum-mechanical approach, including the plasmonic near-field-enhancement of the streaking field at the surface of the nanosphere. We use Mie theory to calculate the plasmonically enhanced fields near 10 to 200 nm gold nanospheres, driven by incident near infrared (NIR) or visible laser pulses. We model the gold conduction band in terms of a spherical square well potential. Our simulated streaked photoelectron spectra reveal a plasmonic amplitude enhancement and phase shift related to calculations that exclude the induced plasmonic field. The phase shift is due to the plasma resonance. This suggests the use of streaked photoelectron spectroscopy for imaging the dielectric response and plasmonic field near nanoparticles. Supported by the NSD-EPSCoR program, NSF, and the USDoE.

  9. Bimolecular reaction dynamics from photoelectron spectroscopy of negative ions

    Energy Technology Data Exchange (ETDEWEB)

    Bradforth, S.E.

    1992-11-01

    The transition state region of a neutral bimolecular reaction may be experimentally investigated by photoelectron spectroscopy of an appropriate negative ion. The photoelectron spectrum provides information on the spectroscopy and dynamics of the short lived transition state and may be used to develop model potential energy surfaces that are semi-quantitative in this important region. The principles of bound {yields} bound negative ion photoelectron spectroscopy are illustrated by way of an example: a full analysis of the photoelectron bands of CN{sup {minus}}, NCO{sup {minus}} and NCS{sup {minus}}. Transition state photoelectron spectra are presented for the following systems Br + HI, Cl + HI, F + HI, F + CH{sub 3}0H,F + C{sub 2}H{sub 5}OH,F + OH and F + H{sub 2}. A time dependent framework for the simulation and interpretation of the bound {yields} free transition state photoelectron spectra is subsequently developed and applied to the hydrogen transfer reactions Br + HI, F + OH {yields} O({sup 3}P, {sup 1}D) + HF and F + H{sub 2}. The theoretical approach for the simulations is a fully quantum-mechanical wave packet propagation on a collinear model reaction potential surface. The connection between the wavepacket time evolution and the photoelectron spectrum is given by the time autocorrelation function. For the benchmark F + H{sub 2} system, comparisons with three-dimensional quantum calculations are made.

  10. Attosecond photoelectron spectroscopy of electron transport in solids

    Energy Technology Data Exchange (ETDEWEB)

    Magerl, Elisabeth

    2011-03-31

    Time-resolved photoelectron spectroscopy of condensed matter systems in the attosecond regime promises new insights into excitation mechanisms and transient dynamics of electrons in solids. This timescale became accessible directly only recently with the development of the attosecond streak camera and of laser systems providing few-cycle, phase-controlled laser pulses in the near-infrared, which are used to generate isolated, sub-femtosecond extreme-ultraviolet pulses with a well-defined timing with respect to the near-infrared pulse. Employing these pulses, the attosecond streak camera offers time resolutions as short as a few 10 attoseconds. In the framework of this thesis, a new, versatile experimental apparatus combining attosecond pulse generation in gases with state of the art surface science techniques is designed, constructed, and commissioned. Employing this novel infrastructure and the technique of the attosecond transient recorder, we investigate transport phenomena occurring after photoexcitation of electrons in tungsten and rhenium single crystals and show that attosecond streaking is a unique method for resolving extremely fast electronic phenomena in solids. It is demonstrated that electrons originating from different energy levels, i.e. from the conduction band and the 4f core level, are emitted from the crystal surface at different times. The origin of this time delay, which is below 150 attoseconds for all studied systems, is investigated by a systematic variation of several experimental parameters, in particular the photon energy of the employed attosecond pulses. These experimental studies are complemented by theoretical studies of the group velocity of highly-excited electrons based on ab initio calculations. While the streaking technique applied on single crystals can provide only information about the relative time delay between two types of photoelectrons, the absolute transport time remains inaccessible. We introduce a scheme of a reference

  11. Ultrafast Dynamics Through Conical Intersections in 2,6-dimethylpyridine Studied with Time-resolved Photoelectron Imaging

    Institute of Scientific and Technical Information of China (English)

    Xue-jun Qiu; Rong-shu Zhu; Yan-qi Xu; Abulimiti Bumaliya; Song Zhang; Bing Zhang

    2011-01-01

    The ultrafast dynamics through conical intersections in 2,6-dimethylpyridine has been studied by femtosecond time-resolved photoelectron imaging coupled with time-resolved mass spectroscopy.Upon absorption of 266 nm pump laser,2,6-dimethylpyridine is excited to the S2 state with a ππ* character from So state.The time evolution of the parent ion signals consists of two exponential decays.One is a fast component on a timescale of 635 fs and the other is a slow component with a timescale of 4.37 ps.Time-dependent photoelectron angular distributions and energy-resolved photoelectron spectroscopy are extracted from time-resolved photoelectron imaging and provide the evolutive information of S2 state.In brief,the ultrafast component is a population transfer from S2 to S1 through the S2/S1 conical intersections,the slow component is attributed to simultaneous IC from the S2 state and the higher vibrational levels of S1 state to S0 state,which involves the coupling of S2/S0 and S1/S0 conical intersections.Additionally,the observed ultrafast S2→S1 transition occurs only with an 18% branching ratio.

  12. Photoelectron spectroscopy and density functional theory study of ConO- (n = 1-3)

    Science.gov (United States)

    Li, Ren-Zhong; Liang, Jun; Xu, Xi-Ling; Xu, Hong-Guang; Zheng, Wei-Jun

    2013-06-01

    ConO- (n = 1-3) clusters were investigated with photoelectron spectroscopy and density functional calculations. The vertical detachment energies (VDEs) of ConO- (n = 1-3) were measured to be 1.54 ± 0.04, 1.43 ± 0.08, and 1.42 ± 0.08 eV respectively from their photoelectron spectra. The electron affinity and term energy of CoO were determined to be 1.54 ± 0.04 eV and 0.31 ± 0.04 eV respectively based on the vibrationally resolved photoelectron spectrum of CoO- and theoretical calculations. The structures of ConO- (n = 1-3) were determined by comparison of photoelectron experiments and calculations. The analysis of molecular orbitals shows that the HOMOs of ConO- (n = 1-3) cluster anions are mainly localized on the Co atoms.

  13. Alignment of the photoelectron spectroscopy beamline at NSRL

    CERN Document Server

    Li, Chaoyang; Wen, Shen; Pan, Congyuan; An, Ning; Du, Xuewei; Zhu, Junfa; Wang, Qiuping

    2013-01-01

    The photoelectron spectroscopy beamline at National Synchrotron Radiation Laboratory (NSRL) is equipped with a spherical grating monochromator with the included angle of 174 deg. Three gratings with line density of 200, 700 and 1200 lines/mm are used to cover the energy region from 60 eV to 1000 eV. After several years operation, the spectral resolution and flux throughput were deteriorated, realignment is necessary to improve the performance. First, the wavelength scanning mechanism, the optical components position and the exit slit guide direction are aligned according to the design value. Second, the gratings are checked by Atomic Force Microscopy (AFM). And then the gas absorption spectrum is measured to optimize the focusing condition of the monochromator. The spectral resolving power is recovered to the designed value of 1000@244eV. The flux at the end station for the 200 lines/mm grating is about 10^10 photons/sec/200mA, which is in accordance with the design. The photon flux for the 700 lines/mm grati...

  14. Hard x-ray photoelectron spectroscopy of chalcopyrite solar cell components

    Science.gov (United States)

    Gloskovskii, A.; Jenkins, C. A.; Ouardi, S.; Balke, B.; Fecher, G. H.; Dai, X.-F.; Gruhn, T.; Johnson, B.; Lauermann, I.; Caballero, R.; Kaufmann, C. A.; Felser, C.

    2012-02-01

    Hard x-ray photoelectron spectroscopy is used to examine the partial density of states of Cu(In,Ga)Se2 (CIGSe), a semiconducting component of solar cells. The investigated, thin Cu(In,Ga)Se2 films were produced by multi-stage co-evaporation. Details of the measured core level and valence band spectra are compared to the calculated density of states. The semiconducting type electronic structure of Cu(In,Ga)Se2 is clearly resolved in the hard x-ray photoelectron spectra.

  15. Coincident photoelectron spectroscopy on superconductors; Koinzidente Photoelektronenspektroskopie an Supraleitern

    Energy Technology Data Exchange (ETDEWEB)

    Voss, Stefan

    2011-07-01

    Aim of the performed experiments of this thesis was to attempt to detect Cooper pairs as carriers of the superconducting current directly by means of the photoelectric effect. The method of the coincident photoelectron spectroscopy aims thereby at the detection of two coherently emitted electrons by the interaction with a photon. Because electrostatic analyzers typically cover only a very small spatial angle, which goes along with very low coincidence rates, in connection with this thesis a time-of-flight projection system has been developed, which maps nearly the whole spatial angle on a position-resolving detector. The pulsed light source in form of special synchrotron radiation necessary for the measurement has been adjusted so weak, that only single photons could arrive at the sample. Spectroscoped were beside test measurements on silver layers both a lead monocrystal as representative of the classical BCS superconductors and monocrystalline Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} from the family of the high-temperature superconductors. With excitation energies up to 40 eV could be shown that sufficiently smooth and clean surfaces in the superconducting phase exhibit within the resolving power of about 0.5 eV no recognizable differences in comparison to the normally conducting phase. Beside these studies furthermore the simple photoemission at the different samples and especially in the case of the lead crystal is treated, because here no comparable results are known. Thereby the whole momentum space is discussed and the Fermi surface established as three-dimensional model, by means of which the measurement results are discussed. in the theoretical descriptions different models for the Cooper-pair production are presented, whereby to the momentum exchange with the crystal a special role is attributed, because this can only occur in direct excitations via discrete lattice vectors.

  16. Photoelectron spectroscopy in heavy fermions: Inconsistencies with the Kondo model

    Energy Technology Data Exchange (ETDEWEB)

    Arko, A.J.; Joyce, J.J.; Blyth, R.R.; Canfield, P.C.; Thompson, J.D.; Bartlett, R.J.; Fisk, Z. [Los Alamos National Lab., NM (United States); Lawrence, J.; Tang, J. [California Univ., Irvine, CA (United States); Riseborough, P. [Polytechnic Univ., Brooklyn, NY (United States)

    1992-09-01

    We have investigated a number of Ce and Yb heavy fermion compounds via photoelectron spectroscopy and compared the results to the predictions of the Imurity Anderson Hamiltonian within the Gunnarson-Schonhammer approach. For the low T{sub K} materials investigated we find little or no correlation with T{sub K}, the only parameter that can be determined independent of photoemission.

  17. Characterization of Ge-nanocrystal films with photoelectron spectroscopy

    CERN Document Server

    Bostedt, C; Willey, T M; Nelson, A J; Franco, N; Möller, T; Terminello, L J

    2003-01-01

    The Ge 3d core-levels of germanium nanocrystal films have been investigated by means of photoelectron spectroscopy. The experiments indicate bulk-like coordinated atoms in the nanocrystals and suggest structured disorder on the nanoparticle surface. The results underline the importance of the surface on the overall electronic structure of this class of nanostructured materials.

  18. Lifetime Resolved Fluorescence Fluctuation Spectroscopy

    Science.gov (United States)

    Guo, Peng; Berland, Keith

    2009-11-01

    Fluorescence correlation spectroscopy (FCS) has been widely used investigate molecular dynamics and interactions in biological systems. FCS typically resolves the component species of a sample either through differences in diffusion coefficient or molecular brightness. Diffusion based assays currently have a major limitation which requires that the diffusion coefficients of component species in a sample must be substantially different in order to be resolved. This criterion is not met in many important cases, such as when molecules of similar molecular weight bind to each other. This limitation can be overcome, and resolution of FCS measurements enhanced, by combining FCS measurements with measurements of fluorescence lifetimes. By using of global analysis on simultaneously acquired FCS and lifetime data we show that we can dramatically enhance resolution in FCS measurements, and accurately resolve the concentration and diffusion coefficients of multiple sample components even when their diffusion coefficients are identical provided there is a difference in the lifetime of the component species. We show examples of this technique using both simulations and experiments. It is expected that this method will be of significance for binding assays studying molecular interactions.

  19. Radiationless S 1 → S 0 phenyl deactivation pathway: an investigation of iodine-marked bi-phenyl on a silicon surface by means of time resolved core-level photoelectron spectroscopy

    Science.gov (United States)

    Michelswirth, Martin; Dachraoui, Hatem; Mattay, Jochen; Heinzmann, Ulrich

    2012-02-01

    The S 1 → S 0 radiationless deactivation of iodine terminated bi-phenyl immobilized on a silicon surface was probed by analysing the I4d signature (BE: 45.6 eV, 47.3 eV) by means of High Harmonic Generation (HHG) based photoelectron spectroscopy. Modifications of the 4d5/2,3/2 spectroscopic contents spanning about 0.2 ps after UV activation (266 nm) were verified as showing a transient molecular response character. A localization to the terminated phenyl substructure in the complex structural environment on the surface was ensured according to the core-level nature of the recorded I4d. The activation of the bi-phenyl achieved by UV irradiation, corresponding to the UV absorption band-edge, was verified as being dominated by a Bπ → Bπ* phenyl excitation. Time-Dependent Density Functional Theory (TD-DFT) modellings were therefore performed. They were matched to Configuration Interaction semi-empirical calculations (CI-MNDO) verifying the Rustagi-Ducuing relation. The simulated singlet-singlet excitation spectrum was referenced to the spectra of an iodine terminated monomer and a linear oligophenyl chain (N = 8). Thus the deactivation response studied was assigned to a conical intersection promoted ? reaction pathway.

  20. Recent applications of hard x-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Weiland, Conan; Woicik, Joseph C., E-mail: Joseph.Woicik@NIST.gov [National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Rumaiz, Abdul K. [National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973 (United States); Pianetta, Piero [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States)

    2016-05-15

    Recent applications of hard x-ray photoelectron spectroscopy (HAXPES) demonstrate its many capabilities in addition to several of its limitations. Examples are given, including measurement of buried interfaces and materials under in situ or in operando conditions, as well as measurements under x-ray standing-wave and resonant excitation. Physical considerations that differentiate HAXPES from photoemission measurements utilizing soft x-ray and ultraviolet photon sources are also presented.

  1. High-throughput Toroidal Grating Beamline for Photoelectron Spectroscopy at CAMD

    Science.gov (United States)

    Kizilkaya, O; Jiles, R W; Patterson, M C; Thibodeaux, C A; Poliakoff, E D; Sprunger, P T; Kurtz, R L; Morikawa, E

    2016-01-01

    A 5 meter toroidal grating (5m-TGM) beamline has been commissioned to deliver 28 mrad of bending magnet radiation to an ultrahigh vacuum endstation chamber to facilitate angle resolved photoelectron spectroscopy. The 5m-TGM beamline is equipped with Au-coated gratings with 300, 600 and 1200 lines/mm providing monochromatized synchrotron radiation in the energy ranges 25-70 eV, 50–120 eV and 100–240 eV, respectively. The beamline delivers excellent flux (~1014-1017 photons/sec/100mA) and a combined energy resolution of 189 meV for the beamline (at 1.0 mm slit opening) and HA-50 hemispherical analyzer was obtained at the Fermi level of polycrystalline gold crystal. Our preliminary photoelectron spectroscopy results of phenol adsorption on TiO2 (110) surface reveals the metal ion (Ti) oxidation. PMID:27134636

  2. Theoretical Investigation of Femtosecond-Resolved Photoelectron Spectrum of NaI Molecules

    Institute of Scientific and Technical Information of China (English)

    LIU Yu-Fang; ZHAI Hong-Sheng; GAO Ya-Li; LIU Rui-Qiong

    2008-01-01

    The time-resolved photoelectron spectra (TRPES) of Ned molecules are calculated by using the time-dependent wave packet method. Two different potential energy curves (adiabatic and diabatic) are adopted in the simulation. The third peak of the photoelectron spectra presented in the adiabatic calculation is induced by the reflection of the wave packet. The oscillating of the wave packet onto the diabatic energy curve is a decreasing process. The comparison of the photoelectron spectra between the two different calculations (adiabatic and diabatic) is presented.

  3. Photoelectron spectroscopy of the hydroxymethoxide anion, H2C(OH)O-

    Science.gov (United States)

    Oliveira, Allan M.; Lehman, Julia H.; McCoy, Anne B.; Lineberger, W. Carl

    2016-09-01

    We report the negative ion photoelectron spectroscopy of the hydroxymethoxide anion, H2C(OH)O-. The photoelectron spectra show that 3.49 eV photodetachment produces two distinct electronic states of the neutral hydroxymethoxy radical (H2C(OH)Oṡ). The H2C(OH)Oṡ ground state (X ˜ 2A) photoelectron spectrum exhibits a vibrational progression consisting primarily of the OCO symmetric and asymmetric stretches, the OCO bend, as well as combination bands involving these modes with other, lower frequency modes. A high-resolution photoelectron spectrum aids in the assignment of several vibrational frequencies of the neutral H2C(OH)Oṡ radical, including an experimental determination of the H2C(OH)Oṡ 2ν12 overtone of the H-OCO torsional vibration as 220(10) cm-1. The electron affinity of H2C(OH)Oṡ is determined to be 2.220(2) eV. The low-lying A ˜ 2A excited state is also observed, with a spectrum that peaks ˜0.8 eV above the X ˜ 2A state origin. The A ˜ 2A state photoelectron spectrum is a broad, partially resolved band. Quantum chemical calculations and photoelectron simulations aid in the interpretation of the photoelectron spectra. In addition, the gas phase acidity of methanediol is calculated to be 366(2) kcal mol-1, which results in an OH bond dissociation energy, D0(H2C(OH)O-H), of 104(2) kcal mol-1, using the experimentally determined electron affinity of the hydroxymethoxy radical.

  4. Photoelectron spectroscopy of several lanthanide β-diketonates

    Energy Technology Data Exchange (ETDEWEB)

    Westcott, Barry L., E-mail: westcottb@ccsu.edu [Department of Chemistry and Biochemistry, Central Connecticut State University, New Britain, CT 06053 (United States); Seguin, Trevor J. [Department of Chemistry and Biochemistry, Central Connecticut State University, New Britain, CT 06053 (United States); Gruhn, Nadine E. [Department of Chemistry, University of Washington, Seattle, WA 98195 (United States)

    2014-03-01

    The valence region electronic structure of Ln(acac){sub 3} complexes (Ln = Nd, Tm, Pr; acac = acetylacetonate) is investigated using, principally, gas-phase ultraviolet photoelectron (PE) spectroscopy. Analysis of PE spectra focuses on the 7–12 eV region containing the first several ionization bands which likely contain metal f-ionizations and acac-based ionizations. These correspond to oxygen 2p-type orbitals and carbon 2p-type orbitals, which are equivalent to oxygen lone pairs and electrons from the pi-bond system of the ligand.

  5. Secondary-electron cascade in attosecond photoelectron spectroscopy from metals

    DEFF Research Database (Denmark)

    Baggesen, Jan Conrad; Madsen, Lars Bojer

    2009-01-01

    Attosecond spectroscopy is currently restricted to photon energies around 100 eV. We show that under these conditions, electron-electron scatterings, as the photoelectrons leave the metal, give rise to a tail of secondary electrons with lower energies and hence a significant background. We develop...... an analytical model based on an approximate solution to Boltzmann's transport equation to account for the amount and energy distribution of these secondary electrons. Our theory is in good agreement with the electron spectrum found in a recent attosecond streaking experiment. To suppress the background and gain...

  6. Spin resolved photoelectron spectroscopy of [Mn{sub 6}{sup III}Cr{sup III}]{sup 3+} single-molecule magnets and of manganese compounds as reference layers

    Energy Technology Data Exchange (ETDEWEB)

    Helmstedt, Andreas; Mueller, Norbert; Gryzia, Aaron; Dohmeier, Niklas; Brechling, Armin; Sacher, Marc D; Heinzmann, Ulrich [Fakultaet fuer Physik, Universitaet Bielefeld, Universitaetsstrasse 25, 33615 Bielefeld (Germany); Hoeke, Veronika; Krickemeyer, Erich; Glaser, Thorsten [Fakultaet fuer Chemie, Universitaet Bielefeld, Universitaetsstrasse 25, 33615 Bielefeld (Germany); Bouvron, Samuel; Fonin, Mikhail [Fachbereich Physik, Universitaet Konstanz, Universitaetsstrasse 10, 78457 Konstanz (Germany); Neumann, Manfred, E-mail: andreas.helmstedt@uni-bielefeld.de [Fachbereich Physik, Universitaet Osnabrueck, Barbarastrasse 7, 49069 Osnabrueck (Germany)

    2011-07-06

    Properties of the manganese-based single-molecule magnet [Mn{sup III}{sub 6}Cr{sup III}]{sup 3+} are studied. It contains six Mn{sup III} ions arranged in two bowl-shaped trinuclear triplesalen building blocks linked by a hexacyanochromate and exhibits a large spin ground state of S{sub t} = 21/2. The dominant structures in the electron emission spectra of [Mn{sup III}{sub 6}Cr{sup III}]{sup 3+} resonantly excited at the L{sub 3}-edge are the L{sub 3}M{sub 2,3}M{sub 2,3}, L{sub 3}M{sub 2,3}V and L{sub 3}VV Auger emission groups following the decay of the primary p{sub 3/2} core hole state. Significant differences of the Auger spectra from intact and degraded [Mn{sup III}{sub 6}Cr{sup III}]{sup 3+} show up. First measurements of the electron spin polarization in the L{sub 3}M{sub 2,3}V and L{sub 3}VV Auger emission peaks from the manganese constituents in [Mn{sup III}{sub 6}Cr{sup III}]{sup 3+} resonantly excited at the L{sub 3}-edge near 640 eV by circularly polarized synchrotron radiation are reported. In addition spin resolved Auger electron spectra of the reference substances MnO, Mn{sub 2}O{sub 3} and Mn{sup II}(acetate){sub 2{center_dot}}4H{sub 2}O are given. The applicability of spin resolved electron spectroscopy for characterizing magnetic states of constituent atoms compared to magnetic circular dichroism (MCD) is verified: the spin polarization obtained from Mn{sup II}(acetate){sub 2{center_dot}}4H{sub 2}O at room temperature in the paramagnetic state compares to the MCD asymmetry revealed for a star-shaped molecule with a Mn{sub 4}{sup II}O{sub 6} core at 5 K in an external magnetic field of 5 T.

  7. Hard X-ray photoelectron spectroscopy: A few recent applications

    Energy Technology Data Exchange (ETDEWEB)

    Taguchi, M., E-mail: mtaguchi@spring8.or.jp [RIKEN SPring-8 Center, Sayo, Hyogo 679-5148 (Japan); Takata, Y.; Chainani, A. [RIKEN SPring-8 Center, Sayo, Hyogo 679-5148 (Japan)

    2013-10-15

    Highlights: ► We discuss recent applications of HAXPES carried out at BL29XU in SPring-8. ► We provide a brief description of the salient features of the instrument. ► The recoil effect of photoelectrons in core levels and valence band are discussed. ► We overview HAXPES studies of a series of 3d transition metal compounds. ► The extended cluster model for explaining well-screened feature is presented. -- Abstract: In this report, we discuss a few recent applications of hard X-ray photoelectron spectroscopy (HAXPES) carried out at the RIKEN beamline BL29XU in SPring-8. We first provide a brief description of the salient features of the instrument in operation at BL29 XU in SPring-8. HAXPES studies on the recoil effect of photoelectrons in core levels and valence band states are presented. The experiments show remarkable consistency with theoretical results and indicate the role of phonon excitations in the recoil effect of photoelectrons. We then overview HAXPES applied to the study of a series of 3d transition metal (TM) compounds. The HAXPES experimental results often show an additional well-screened feature in bulk sensitive electronic structure of strongly correlated compounds compared to surface sensitive spectra. The extended cluster model developed by us for explaining this well-screened feature is validated for a series of TM compounds. These results show that HAXPES is a valuable tool for the study of doping and temperature dependent electronic structure of solids with tremendous potential for future activities.

  8. Electron mean free path from angle-dependent photoelectron spectroscopy of aerosol particles

    CERN Document Server

    Goldmann, Maximilian; West, Adam H C; Yoder, Bruce L; Signorell, Ruth

    2015-01-01

    We propose angle-resolved photoelectron spectroscopy of aerosol particles as an alternative way to determine the electron mean free path of low energy electrons in solid and liquid materials. The mean free path is obtained from fits of simulated photoemission images to experimental ones over a broad range of different aerosol particle sizes. The principal advantage of the aerosol approach is twofold. Firstly, aerosol photoemission studies can be performed for many different materials, including liquids. Secondly, the size-dependent anisotropy of the photoelectrons can be exploited in addition to size-dependent changes in their kinetic energy. These finite size effects depend in different ways on the mean free path and thus provide more information on the mean free path than corresponding liquid jet, thin film, or bulk data. The present contribution is a proof of principle employing a simple model for the photoemission of electrons and preliminary experimental data for potassium chloride aerosol particles.

  9. A flexible apparatus for attosecond photoelectron spectroscopy of solids and surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Magerl, E.; Stanislawski, M.; Uphues, Th. [Max-Planck-Institut fuer Quantenoptik, Hans-Kopfermann-Strasse 1, 85748 Garching (Germany); Neppl, S.; Barth, J. V.; Menzel, D.; Feulner, P. [Physik Department E20, Technische Universitaet Muenchen, James-Franck-Strasse, 85748 Garching (Germany); Cavalieri, A. L. [Max-Planck-Institut fuer Quantenoptik, Hans-Kopfermann-Strasse 1, 85748 Garching (Germany); Max-Planck Research Department for Structural Dynamics, Universitaet Hamburg, Notkestrasse 85, 22607 Hamburg (Germany); Bothschafter, E. M.; Ernstorfer, R.; Kienberger, R. [Max-Planck-Institut fuer Quantenoptik, Hans-Kopfermann-Strasse 1, 85748 Garching (Germany); Physik Department E11, Technische Universitaet Muenchen, James-Franck-Strasse, 85748 Garching (Germany); Hofstetter, M.; Kleineberg, U.; Krausz, F. [Max-Planck-Institut fuer Quantenoptik, Hans-Kopfermann-Strasse 1, 85748 Garching (Germany); Ludwig-Maximilians-Universitaet Muenchen, Fakultaet fuer Physik, Am Coulombwall 1, 85748 Garching (Germany)

    2011-06-15

    We describe an apparatus for attosecond photoelectron spectroscopy of solids and surfaces, which combines the generation of isolated attosecond extreme-ultraviolet (XUV) laser pulses by high harmonic generation in gases with time-resolved photoelectron detection and surface science techniques in an ultrahigh vacuum environment. This versatile setup provides isolated attosecond pulses with photon energies of up to 140 eV and few-cycle near infrared pulses for studying ultrafast electron dynamics in a large variety of surfaces and interfaces. The samples can be prepared and characterized on an atomic scale in a dedicated flexible surface science end station. The extensive possibilities offered by this apparatus are demonstrated by applying attosecond XUV pulses with a central photon energy of {approx}125 eV in an attosecond streaking experiment of a xenon multilayer grown on a Re(0001) substrate.

  10. Photoelectron spectroscopy of a series of acetate and propionate esters

    Science.gov (United States)

    Śmiałek, Małgorzata A.; Guthmuller, Julien; MacDonald, Michael A.; Zuin, Lucia; Delwiche, Jacques; Hubin-Franskin, Marie-Jeanne; Lesniewski, Tadeusz; Mason, Nigel J.; Limão-Vieira, Paulo

    2017-10-01

    The electronic state and photoionization spectroscopy of a series of acetate esters: methyl acetate, isopropyl acetate, butyl acetate and pentyl acetate as well as two propionates: methyl propionate and ethyl propionate, have been determined using vacuum-ultraviolet photoelectron spectroscopy. These experimental investigations are complemented by ab initio calculations. The measured first adiabatic and vertical ionization energies were determined as: 10.21 and 10.45 eV for methyl acetate, 9.99 and 10.22 eV for isopropyl acetate, 10.07 and 10.26 eV for butyl acetate, 10.01 and 10.22 eV for pentyl acetate, 10.16 and 10.36 eV for methyl propionate and 9.99 and 10.18 eV for ethyl propionate. For the four smaller esters vibrational transitions were calculated and compared with those identified in the photoelectron spectrum, revealing the most distinctive ones to be a Csbnd O stretch combined with a Cdbnd O stretch. The ionization energies of methyl and ethyl esters as well as for a series of formates and acetates were compared showing a clear dependence of the value of the ionization energy on the size of the molecule with very little influence of its conformation.

  11. CRF-PEPICO: Double velocity map imaging photoelectron photoion coincidence spectroscopy for reaction kinetics studies

    Science.gov (United States)

    Sztáray, Bálint; Voronova, Krisztina; Torma, Krisztián G.; Covert, Kyle J.; Bodi, Andras; Hemberger, Patrick; Gerber, Thomas; Osborn, David L.

    2017-07-01

    Photoelectron photoion coincidence (PEPICO) spectroscopy could become a powerful tool for the time-resolved study of multi-channel gas phase chemical reactions. Toward this goal, we have designed and tested electron and ion optics that form the core of a new PEPICO spectrometer, utilizing simultaneous velocity map imaging for both cations and electrons, while also achieving good cation mass resolution through space focusing. These optics are combined with a side-sampled, slow-flow chemical reactor for photolytic initiation of gas-phase chemical reactions. Together with a recent advance that dramatically increases the dynamic range in PEPICO spectroscopy [D. L. Osborn et al., J. Chem. Phys. 145, 164202 (2016)], the design described here demonstrates a complete prototype spectrometer and reactor interface to carry out time-resolved experiments. Combining dual velocity map imaging with cation space focusing yields tightly focused photoion images for translationally cold neutrals, while offering good mass resolution for thermal samples as well. The flexible optics design incorporates linear electric fields in the ionization region, surrounded by dual curved electric fields for velocity map imaging of ions and electrons. Furthermore, the design allows for a long extraction stage, which makes this the first PEPICO experiment to combine ion imaging with the unimolecular dissociation rate constant measurements of cations to detect and account for kinetic shifts. Four examples are shown to illustrate some capabilities of this new design. We recorded the threshold photoelectron spectrum of the propargyl and the iodomethyl radicals. While the former agrees well with a literature threshold photoelectron spectrum, we have succeeded in resolving the previously unobserved vibrational structure in the latter. We have also measured the bimolecular rate constant of the CH2I + O2 reaction and observed its product, the smallest Criegee intermediate, CH2OO. Finally, the second

  12. Ambient pressure photoelectron spectroscopy: Practical considerations and experimental frontiers

    Science.gov (United States)

    Trotochaud, Lena; Head, Ashley R.; Karslıoğlu, Osman; Kyhl, Line; Bluhm, Hendrik

    2017-02-01

    Over the past several decades, ambient pressure x-ray photoelectron spectroscopy (APXPS) has emerged as a powerful technique for in situ and operando investigations of chemical reactions under relevant ambient atmospheres far from ultra-high vacuum conditions. This review focuses on exemplary cases of APXPS experiments, giving special consideration to experimental techniques, challenges, and limitations specific to distinct condensed matter interfaces. We discuss APXPS experiments on solid/vapor interfaces, including the special case of 2D films of graphene and hexagonal boron nitride on metal substrates with intercalated gas molecules, liquid/vapor interfaces, and liquid/solid interfaces, which are a relatively new class of interfaces being probed by APXPS. We also provide a critical evaluation of the persistent limitations and challenges of APXPS, as well as the current experimental frontiers.

  13. X-ray photoelectron spectroscopy of FeP phosphide

    Energy Technology Data Exchange (ETDEWEB)

    Teterin, Yu. A.; Sobolev, A. V., E-mail: salex12@rambler.ru, E-mail: alex@radio.chem.msu.ru; Presnyakov, I. A.; Maslakov, K. I. [Moscow State University (Russian Federation); Teterin, A. Yu. [National Research Center “Kurchatov Institute,” (Russian Federation); Morozov, I. V.; Chernyavskii, I. O. [Moscow State University (Russian Federation); Ivanov, K. E. [National Research Center “Kurchatov Institute,” (Russian Federation); Shevel’kov, A. V. [Moscow State University (Russian Federation)

    2017-02-15

    The structure of the outer and inner electron spectra of iron (2p, 3p, 3s, and 3d) and phosphorus (3s and 3p) atoms in FeP monophosphide is studied in detail by the X-ray photoelectron spectroscopy (XPS) method. On the basis of the analysis of the binding energy of electrons, as well as the parameters characterizing the structure of experimental spectra, a conclusion is made that Fe{sup 3+} (d{sup 5}) cations in FeP are stabilized in a state with intermediate value of the total spin (IS, S = 3/2). The range of values of intra-atomic parameters (10Dq, J{sub H}) is established in which the consideration of the high degree of covalence of Fe–P bonds may lead to the stabilization of (FeP{sub 6}){sup 15–} clusters in the IS state.

  14. Caveats in the interpretation of time-resolved photoionization measurements: A photoelectron imaging study of pyrrole

    Science.gov (United States)

    Crane, Stuart W.; Zawadzki, Magdalena M.; Thompson, James O. F.; Kotsina, Nikoleta; Ghafur, Omair; Townsend, Dave

    2016-12-01

    We report time-resolved photoelectron imaging studies of gas-phase pyrrole over the 267-240 nm excitation region, recorded in conjunction with a 300 nm probe. Of specific interest is the lowest-lying (3 s /π σ* ) state, which exhibits very weak oscillator strength but is thought to be excited directly at wavelengths ≤254 nm. We conclude, however, that the only significant contribution to our photoelectron data at all wavelengths investigated is from non-resonant ionization. Our findings do not rule out (3 s /π σ* ) state excitation (as appears to be confirmed by supporting time-resolved ion-yield measurements) but do potentially highlight important caveats regarding the use and interpretation of photoreactant ionization measurements to interrogate dynamical processes in systems exhibiting significant topological differences between the potential energy surfaces of the neutral and cation states.

  15. Perspective: Electrospray photoelectron spectroscopy: From multiply-charged anions to ultracold anions

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lai-Sheng, E-mail: Lai-Sheng-Wang@brown.edu [Department of Chemistry, Brown University, Providence, Rhode Island 02912 (United States)

    2015-07-28

    Electrospray ionization (ESI) has become an essential tool in chemical physics and physical chemistry for the production of novel molecular ions from solution samples for a variety of spectroscopic experiments. ESI was used to produce free multiply-charged anions (MCAs) for photoelectron spectroscopy (PES) in the late 1990 s, allowing many interesting properties of this class of exotic species to be investigated. Free MCAs are characterized by strong intramolecular Coulomb repulsions, which create a repulsive Coulomb barrier (RCB) for electron emission. The RCB endows many fascinating properties to MCAs, giving rise to meta-stable anions with negative electron binding energies. Recent development in the PES of MCAs includes photoelectron imaging to examine the influence of the RCB on the electron emission dynamics, pump-probe experiments to examine electron tunneling through the RCB, and isomer-specific experiments by coupling PES with ion mobility for biological MCAs. The development of a cryogenically cooled Paul trap has led to much better resolved PE spectra for MCAs by creating vibrationally cold anions from the room temperature ESI source. Recent advances in coupling the cryogenic Paul trap with PE imaging have allowed high-resolution PE spectra to be obtained for singly charged anions produced by ESI. In particular, the observation of dipole-bound excited states has made it possible to conduct vibrational autodetachment spectroscopy and resonant PES, which yield much richer vibrational spectroscopic information for dipolar free radicals than traditional PES.

  16. Gamma ray spectroscopy with PPM resolving power

    CERN Document Server

    Börner, H; Mutti, P

    2002-01-01

    Applications of gamma-ray spectroscopy with ppm resolving power are presented. The extraordinary resolution allows via the Gamma Ray Induced Doppler broadening (GRID) technique to determine lifetimes of excited nuclear levels. This has contributed to important nuclear structure information. We report on the current status of the technique

  17. Electron band bending and surface sensitivity: X-ray photoelectron spectroscopy of polar GaN surfaces

    Science.gov (United States)

    Bartoš, I.; Romanyuk, O.; Paskova, T.; Jiříček, P.

    2017-10-01

    The role of electron band bending and surface sensitivity in determining the core level binding energies by X-ray photoelectron spectroscopy is investigated. A dominating contribution of surface atomic layers to photoemission intensity is confirmed for normal photoemission. The energy of the photoelectron core level peak does not deviate from core level peak energies of electrons photoemitted from the surface atomic layers of the crystal. The higher surface sensitivity regime, achieved e.g. at off-normal photoelectron detection angle, can be used to study the surface potential barrier in just a few topmost atomic layers. In addition, it is demonstrated that core level binding energy measured by angle-resolved X-ray photoelectron spectroscopy reflect the electron attenuation anisotropy. In particular, core level binding energy changes with emission angle and correlates with the forward focusing directions in a crystal. This effect is demonstrated by measuring the polar angle dependence of Ga 3d core levels on clean GaN(0001) and GaN(000 1 bar) surfaces with a higher and a lower band bending, respectively. The effect is explained by variation of emission depth in a crystal for normal and off-normal photoelectron emission angles.

  18. Bonding in inorganic compounds: a study by x-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Avanzino, S.C.

    1978-10-01

    Core electron binding energies were measured for a variety of inorganic and organometallic compounds using gas-phase X-ray photoelectron spectroscopy (XPS). The atomic charge distributions in these molecules are deduced from the binding energies, often leading to a better understanding of the bonding in these compounds. The XPS spectra of fifteen volatile tin compounds were recorded. The data suggest that the metal d orbitals are not significantly involved in the bonding. The oxygen ls XPS spectra of gaseous CH/sub 3/Mn(CO)/sub 5/, (..pi..-C/sub 5/H/sub 5/Fe(CO)/sub 2/)/sub 2/, and Co/sub 4/(CO)/sub 12/ can be readily resolved into separate peaks due to bridging and terminal carbonyl groups. The C ls spectrum of Fe(CO)/sub 5/ consists of a single symmetric peak. The carbonyl ligand core binding energies of transition-metal carbonyl complexes are sensitive to differences in the metal-to-CO ligand bonding. Both C ls and O ls carbonyl binding energies correlate well with average C-O stretching force constants or average C-O stretching frequencies. The metal and carbonyl binding energies in a series of pentacarbonylmanganese complexes LMn(CO)/sub 5/ are a good measure of the relative electronegativities of the ligands L. High-quality X-ray photoelectron spectra have been obtained for compounds dissolved in glycerin solutions, and aqueous solutions were converted into glycerin solutions which gave good XRSspectra of the solutes. The technique appears promising as a future analytical application of X-ray photoelectron spectroscopy. The shifts in the binding energies of oxygen, chlorine, and carbon atoms in some isoelectronic isostructural compounds can be explained in terms of simple trends in atomic charges.

  19. Insights into electrochemical reactions from ambient pressure photoelectron spectroscopy.

    Science.gov (United States)

    Stoerzinger, Kelsey A; Hong, Wesley T; Crumlin, Ethan J; Bluhm, Hendrik; Shao-Horn, Yang

    2015-11-17

    The understanding of fundamental processes in the bulk and at the interfaces of electrochemical devices is a prerequisite for the development of new technologies with higher efficiency and improved performance. One energy storage scheme of great interest is splitting water to form hydrogen and oxygen gas and converting back to electrical energy by their subsequent recombination with only water as a byproduct. However, kinetic limitations to the rate of oxygen-based electrochemical reactions hamper the efficiency in technologies such as solar fuels, fuel cells, and electrolyzers. For these reactions, the use of metal oxides as electrocatalysts is prevalent due to their stability, low cost, and ability to store oxygen within the lattice. However, due to the inherently convoluted nature of electrochemical and chemical processes in electrochemical systems, it is difficult to isolate and study individual electrochemical processes in a complex system. Therefore, in situ characterization tools are required for observing related physical and chemical processes directly at the places where and while they occur and can help elucidate the mechanisms of charge separation and charge transfer at electrochemical interfaces. X-ray photoelectron spectroscopy (XPS), also known as ESCA (electron spectroscopy for chemical analysis), has been used as a quantitative spectroscopic technique that measures the elemental composition, as well as chemical and electronic state of a material. Building from extensive ex situ characterization of electrochemical systems, initial in situ studies were conducted at or near ultrahigh vacuum (UHV) conditions (≤10(-6) Torr) to probe solid-state electrochemical systems. However, through the integration of differential-pumping stages, XPS can now operate at pressures in the torr range, comprising a technique called ambient pressure XPS (AP-XPS). In this Account, we briefly review the working principles and current status of AP-XPS. We use several recent

  20. Comments on photoelectron spectroscopy of high- Tc 's

    Energy Technology Data Exchange (ETDEWEB)

    Arko, A.J.

    1991-01-01

    The photoemission discussion session during the Argonne conference on Fermiology of High-{Tc}'s provided a forum to air a number of unresolved issues in photoelectron spectroscopy. These are: (a) what is the exact energy dependence of the line width of the quasiparticle peaks: (b) are there any chemical potential shifts with hole doping; (c) why is a superconducting gap not observed in Y-123; and (d) different groups report different results in the band structure of Bi-2212. The first issue, while much discussed, essentially becomes a non-issue in the sense that nearly all theories predict a linear as well as a quadratic energy dependence to the quasiparticle lifetime. Furthermore, the data are not yet good enough to distinguish between linear and quadratic dependence in the important region within 0.1 eV of E{sub F}. Regarding chemical potential shifts, they very definitely are observed with hole doping both in Y-123 and Bi-2212 in spite of the claims by RVB enthusiasts to the contrary. In Y-123 the shifts are as large as 0.75 eV. The non-observation of a gap in Y-123 is puzzling, but may be related to surface reconstruction and an overdoped situation. The important question of whether we have one or two bands near E{sub F} in Bi-2212 revolves around the surface quality of the samples studied by different groups. It is difficult to compare data taken at room temperature vs. data taken at low temperature when no documentation exists that a reconstruction did not occur. We suspect that the small second band championed by the Sendai group is a surface impurity band.

  1. Angle-Resolved Spectroscopy of Parametric Fluorescence

    CERN Document Server

    Hsu, Feng-kuo

    2013-01-01

    The parametric fluorescence from a nonlinear crystal forms a conical radiation pattern. We measure the angular and spectral distributions of parametric fluorescence in a beta-barium borate crystal pumped by a 405-nm diode laser employing angle-resolved imaging spectroscopy. The experimental angle-resolved spectra and the generation efficiency of parametric down conversion are compared with a plane-wave theoretical analysis. The parametric fluorescence is used as a broadband light source for the calibration of the instrument spectral response function in the wavelength range from 450 to 1000 nm.

  2. The Electron-Phonon Interaction as Studied by Photoelectron Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    D.W. Lynch

    2004-09-30

    With recent advances in energy and angle resolution, the effects of electron-phonon interactions are manifest in many valence-band photoelectron spectra (PES) for states near the Fermi level in metals.

  3. Nonselective and polarization effects in time-resolved optogalvanic spectroscopy

    Science.gov (United States)

    Zhechev, D.; Steflekova, V.

    2016-02-01

    Three interfering effects in optogalvanic (OG) spectroscopy are identified in a hollow cathode discharge (HCD) - OG detector. The laser beam is found to generate two nonselective processes, namely photoelectron emission (PE) from the cathode surface with a sub-breakdown bias applied, and nonresonant space ionization. The convolution of these galvanic contributions was determined experimentally as an instrumental function and a deconvolution procedure to determine the actual OG signal was developed. Specific plasma conductance is detected dependent on the polarization of the laser beam irradiating. Linearly/circularly polarized light beam is found to induce OG signals differ in amplitude (and their shape parameters in the time-resolved OG signals (TROGS)). The phenomena coherence and specific conductance are found to be in causal relationship. The additional conductance due to coherent states of atoms manifests itself as an intrinsic instrumental property of OG detector.

  4. Photoelectron imaging spectroscopy of MoC{sup −} and NbN{sup −} diatomic anions: A comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qing-Yu; Li, Zi-Yu; He, Sheng-Gui, E-mail: shengguihe@iccas.ac.cn, E-mail: chenh@iccas.ac.cn [Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Hu, Lianrui; Chen, Hui, E-mail: shengguihe@iccas.ac.cn, E-mail: chenh@iccas.ac.cn [Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Ning, Chuan-Gang [Department of Physics, State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University, Beijing 100084 (China); Ma, Jia-Bi [Key Laboratory of Cluster Science, The Institute for Chemical Physics, School of Chemistry, Beijing Institute of Technology, Beijing 100081 (China)

    2015-04-28

    The isoeletronic diatomic MoC{sup −} and NbN{sup −} anions have been prepared by laser ablation and studied by photoelectron imaging spectroscopy combined with quantum chemistry calculations. The photoelectron spectra of NbN{sup −} can be very well assigned on the basis of literature reported optical spectroscopy of NbN. In contrast, the photoelectron spectra of MoC{sup −} are rather complex and the assignments suffered from the presence of many electronically hot bands and limited information from the reported optical spectroscopy of MoC. The electron affinities of NbN and MoC have been determined to be 1.450 ± 0.003 eV and 1.360  ±  0.003 eV, respectively. The good resolution of the imaging spectroscopy provided a chance to resolve the Ω splittings of the X{sup 3}Σ{sup −} (Ω = 0 and 1) state of MoC and the X{sup 4}Σ{sup −} (Ω = 1/2 and 3/2) state of MoC{sup −} for the first time. The spin-orbit splittings of the X{sup 2}Δ state of NbN{sup −} and the a{sup 2}Δ state of MoC{sup −} were also determined. The similarities and differences between the electronic structures of the NbN and MoC systems were discussed.

  5. Photoelectron spectroscopy on doped organic semiconductors and related interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Olthof, Selina Sandra

    2010-06-08

    Using photoelectron spectroscopy, we show measurements of energy level alignment of organic semiconducting layers. The main focus is on the properties and the influence of doped layers. The investigations on the p-doping process in organic semiconductors show typical charge carrier concentrations up to 2.10{sup 20} cm{sup -3}. By a variation of the doping concentration, an over proportional influence on the position of the Fermi energy is observed. Comparing the number of charge carriers with the amount of dopants present in the layer, it is found that only 5% of the dopants undergo a full charge transfer. Furthermore, a detailed investigation of the density of states beyond the HOMO onset reveals that an exponentially decaying density of states reaches further into the band gap than commonly assumed. For an increasing amount of doping, the Fermi energy gets pinned on these states which suggests that a significant amount of charge carriers is present there. The investigation of metal top and bottom contacts aims at understanding the asymmetric current-voltage characteristics found for some symmetrically built device stacks. It can be shown that a reaction between the atoms from the top contact with the molecules of the layer leads to a change in energy level alignment that produces a 1.16 eV lower electron injection barrier from the top. Further detailed investigations on such contacts show that the formation of a silver top contact is dominated by diffusion processes, leading to a broadened interface. However, upon insertion of a thin aluminum interlayer this diffusion can be stopped and an abrupt interface is achieved. Furthermore, in the case of a thick silver top contact, a monolayer of molecules is found to oat on top of the metal layer, almost independent on the metal layer thickness. Finally, several device stacks are investigated, regarding interface dipoles, formation of depletion regions, energy alignment in mixed layers, and the influence of the built

  6. Is the Separable Propagator Perturbation Approach Accurate in Calculating Angle Resolved Photoelectron Diffraction Spectra?

    Science.gov (United States)

    Ng, C. N.; Chu, T. P.; Wu, Huasheng; Tong, S. Y.; Huang, Hong

    1997-03-01

    We compare multiple scattering results of angle-resolved photoelectron diffraction spectra between the exact slab method and the separable propagator perturbation method. In the slab method,footnote C.H. Li, A.R. Lubinsky and S.Y. Tong, Phys. Rev. B17, 3128 (1978). the source wave and multiple scattering within the strong scattering atomic layers are expanded in spherical waves while interlayer scattering is expressed in plane waves. The transformation between spherical waves and plane waves is done exactly. The plane waves are then matched across the solid-vacuum interface to a single outgoing plane wave in the detector's direction. The separable propagator perturbation approach uses two approximations: (i) A separable representation of the Green's function propagator and (ii) A perturbation expansion of multiple scattering terms. Results of c(2x2) S-Ni(001) show that this approximate method fails to converge due to the very slow convergence of the separable representation for scattering angles less than 90^circ. However, this method is accurate in the backscattering regime and may be applied to XAFS calculations.(J.J. Rehr and R.C. Albers, Phys. Rev. B41, 8139 (1990).) The use of this method for angle-resolved photoelectron diffraction spectra is substantially less reliable.

  7. Electronic structures of U X3 (X =Al , Ga, and In) studied by photoelectron spectroscopy

    Science.gov (United States)

    Fujimori, Shin-ichi; Kobata, Masaaki; Takeda, Yukiharu; Okane, Tetsuo; Saitoh, Yuji; Fujimori, Atsushi; Yamagami, Hiroshi; Haga, Yoshinori; Yamamoto, Etsuji; Ōnuki, Yoshichika

    2017-09-01

    The electronic structures of U X3 (X =Al , Ga , and In ) were studied by photoelectron spectroscopy to understand the relationship between their electronic structures and magnetic properties. The band structures and Fermi surfaces of UAl3 and UGa3 were revealed experimentally by angle-resolved photoelectron spectroscopy (ARPES), and they were compared with the result of band-structure calculations. The topologies of the Fermi surfaces and the band structures of UAl3 and UGa3 were explained reasonably well by the calculation, although bands near the Fermi level (EF) were renormalized owing to the finite electron correlation effect. The topologies of the Fermi surfaces of UAl3 and UGa3 are very similar to each other, except for some minor differences. Such minor differences in their Fermi surface or electron correlation effect might take an essential role in their different magnetic properties. No significant changes were observed between the ARPES spectra of UGa3 in the paramagnetic and antiferromagnetic phases, suggesting that UGa3 is an itinerant weak antiferromagnet. The effect of chemical pressure on the electronic structures of U X3 compounds was also studied by utilizing the smaller lattice constants of UAl3 and UGa3 than that of UIn3. The valence band spectrum of UIn3 is accompanied by a satellitelike structure on the high-binding-energy side. The core-level spectrum of UIn3 is also qualitatively different from those of UAl3 and UGa3. These findings suggest that the U 5 f states in UIn3 are more localized than those in UAl3 and UGa3.

  8. Ultrafast Molecular Photodissociation Dynamics Studied by Femtosecond Photoelectron-Photoion Coincidence Spectroscopy

    Science.gov (United States)

    Thaler, Bernhard; Heim, Pascal; Ernst, Wolfgang E.; Koch, Markus

    2017-06-01

    To completely characterize photodissociation mechanisms with time-resolved spectroscopy, it is essential to obtain unequivocal experimental information about the fragmentation dynamics induced by the laser pulse. We apply time-resolved photoelectron-photoion coincidence (PEPICO) detection in combination with different excitation schemes to obtain a mechanistic picture of the fragmentation process. For gas phase acetone molecules excited to high lying Rydberg states we are able to disentangle different ionization channels and investigate the fragmentation behavior of each channel separately. In particular, the high differentiability of PEPICO allows to distinguish channels where fragmentation proceeds after ionization from channels with fragmentation in the neutral. We show that excited Rydberg state population undergoes internal conversion due to coupling to valence states, which takes place within (150 ± 30) fs. The corresponding non-adiabatic, ultrafast relaxation dynamics to lower lying states causes conversion of electronic to vibrational energy and is found to play a crucial role in the fragmentation process (see figure 1). By studying the influence of photon energy, pulse duration, chirp and intensity of the laser pulses, we are able to determine the energy-threshold that is required for fragmentation, as well as corresponding fragmentation ratios. Surprisingly, for excitation with pulses possessing a strong negative chirp we observe significantly reduced fragmentation, indicating different internal conversion pathways and the associated intramolecular vibrational redistribution.

  9. Attosecond electronic and nuclear quantum photodynamics of ozone monitored with time and angle resolved photoelectron spectra

    CERN Document Server

    Decleva, P; Perveaux, A; Lauvergnat, D; Gatti, F; Lasorne, B; Halász, G J; Vibók, Á

    2016-01-01

    Recently we reported a series of numerical simulations proving that it is possible in principle to create an electronic wave packet and subsequent electronic motion in a neutral molecule photoexcited by a UV pump pulse within a few femtoseconds. We considered the ozone molecule: for this system the electronic wave packet leads to a dissociation process. In the present work, we investigate more specifically the time-resolved photoelectron angular distribution of the ozone molecule that provides a much more detailed description of the evolution of the electronic wave packet. We thus show that this experimental technique should be able to give access to observing in real time the creation of an electronic wave packet in a neutral molecule and its impact on a chemical process.

  10. Attosecond electronic and nuclear quantum photodynamics of ozone monitored with time and angle resolved photoelectron spectra

    Science.gov (United States)

    Decleva, Piero; Quadri, Nicola; Perveaux, Aurelie; Lauvergnat, David; Gatti, Fabien; Lasorne, Benjamin; Halász, Gábor J.; Vibók, Ágnes

    2016-11-01

    Recently we reported a series of numerical simulations proving that it is possible in principle to create an electronic wave packet and subsequent electronic motion in a neutral molecule photoexcited by a UV pump pulse within a few femtoseconds. We considered the ozone molecule: for this system the electronic wave packet leads to a dissociation process. In the present work, we investigate more specifically the time-resolved photoelectron angular distribution of the ozone molecule that provides a much more detailed description of the evolution of the electronic wave packet. We thus show that this experimental technique should be able to give access to observing in real time the creation of an electronic wave packet in a neutral molecule and its impact on a chemical process.

  11. Nanocrystalline tin oxide: Possible origin of its weak ferromagnetism deduced from nuclear magnetic resonance and X-ray photoelectron spectroscopies

    Science.gov (United States)

    Zhang, Feng; Lian, Yadong; Gu, Min; Yu, Ji; Tang, Tong B.; Sun, Jian; Zhang, Weiyi

    2016-09-01

    Nanocrystalline tin oxide was fabricated, with molar ratio O/Sn determined as 1.40, 1.55, 1.79, 1.92 and 1.96 from X-ray photoelectron spectroscopy. They displayed weak ferromagnetism, the sample with O/Sn = 1.55 showing the maximum saturation magnetization reaching almost 8 ×10-3 emu /g at room temperature. 119Sn nuclear magnetic resonance allowed the deduction, based on four resolved resonance peaks, that their Sn ions had four possible coordination numbers, namely 3, 4, 5 and 6. The relative fraction of 4-coordinated cations was the one found to bear positive linear correlation with saturation magnetization of the sample. It is surmised that magnetism in tin oxide results mainly from 4-coordination Sn ions, of valance about +3, as estimated from the binding energies of their 3d photoelectron emission levels.

  12. Rotationally resolved state-to-state photoelectron study of niobium carbide radical

    Science.gov (United States)

    Luo, Zhihong; Huang, Huang; Zhang, Zheng; Chang, Yih-Chung; Ng, C. Y.

    2014-07-01

    By employing the two-color visible (VIS)-ultraviolet (UV) laser photoexcitation scheme and the pulsed field ionization-photoelectron (PFI-PE) detection, we have obtained rovibronically selected and resolved photoelectron spectra for niobium carbide cation (NbC+). The fully rotationally resolved state-to-state VIS-UV-PFI-PE spectra thus obtained allow the unambiguous assignments of rotational photoionization transitions, indicating that the electronic configuration and term symmetry of NbC+(tilde X) ground state are …10σ2 5π4 11σ2 (tilde X1Σ+). Furthermore, the rotational analysis of these spectra yields the ionization energy of NbC [IE(NbC)] to be 56 369.2 ± 0.8 cm-1 (6.9889 ± 0.0001 eV) and the rotation constant B0+ = 0.5681 ± 0.0007 cm-1. The latter value allows the determination of the bond distance r0+ = 1.671 ± 0.001 Å for NbC+(tilde X1Σ+). Based on conservation of energy, the IE(NbC) determined in the present study along with the known IE(Nb) gives the difference of 0 K bond dissociation energies (D0's) for NbC+ and NbC, D0(NbC+) - D0(NbC) = -1855.4 ± 0.9 cm-1 (-0.2300 ± 0.0001 eV). The energetic values and the B0+ constant determined in this work are valuable for benchmarking state-of-the-art ab initio quantum calculations of 4d transition metal-containing molecules.

  13. Rotationally resolved state-to-state photoelectron study of niobium carbide radical

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Zhihong; Huang, Huang; Zhang, Zheng; Chang, Yih-Chung; Ng, C. Y., E-mail: cyng@ucdavis.edu [Department of Chemistry, University of California, Davis, California 95616 (United States)

    2014-07-14

    By employing the two-color visible (VIS)-ultraviolet (UV) laser photoexcitation scheme and the pulsed field ionization-photoelectron (PFI-PE) detection, we have obtained rovibronically selected and resolved photoelectron spectra for niobium carbide cation (NbC{sup +}). The fully rotationally resolved state-to-state VIS-UV-PFI-PE spectra thus obtained allow the unambiguous assignments of rotational photoionization transitions, indicating that the electronic configuration and term symmetry of NbC{sup +}(X{sup ~}) ground state are …10σ{sup 2} 5π{sup 4} 11σ{sup 2} (X{sup ~1}Σ{sup +}). Furthermore, the rotational analysis of these spectra yields the ionization energy of NbC [IE(NbC)] to be 56 369.2 ± 0.8 cm{sup −1} (6.9889 ± 0.0001 eV) and the rotation constant B{sub 0}{sup +} = 0.5681 ± 0.0007 cm{sup −1}. The latter value allows the determination of the bond distance r{sub 0}{sup +} = 1.671 ± 0.001 Å for NbC{sup +}(X{sup ~1}Σ{sup +}). Based on conservation of energy, the IE(NbC) determined in the present study along with the known IE(Nb) gives the difference of 0 K bond dissociation energies (D{sub 0}’s) for NbC{sup +} and NbC, D{sub 0}(NbC{sup +}) − D{sub 0}(NbC) = −1855.4 ± 0.9 cm{sup −1} (−0.2300 ± 0.0001 eV). The energetic values and the B{sub 0}{sup +} constant determined in this work are valuable for benchmarking state-of-the-art ab initio quantum calculations of 4d transition metal-containing molecules.

  14. Assignment of benzodiazepine UV absorption spectra by the use of photoelectron spectroscopy

    Science.gov (United States)

    Khvostenko, O. G.; Tzeplin, E. E.; Lomakin, G. S.

    2002-04-01

    Correlations between singlet transition energies and energy gaps of corresponding pairs of occupied and unoccupied molecular orbitals were revealed in a series of benzodiazepines. The occupied orbital energies were taken from the photoelectron spectra of the compound investigated, the unoccupied ones were obtained from MNDO/d calculations, and the singlet energies were taken from the UV absorption spectra. The correspondence of the singlet transitions to certain molecular orbitals was established using MNDO/d calculations and comparing between UV and photoelectron spectra. It has been concluded that photoelectron spectroscopy can be applied for interpretation of UV absorption spectra of various compounds on the basis of similar correlations.

  15. Study on the ultrafast dynamics of o-xylene cation by combined fs-photoelectron imaging-photofragmentation spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yuzhu, E-mail: yuzhu.liu@psi.ch; Radi, Peter; Gerber, Thomas; Knopp, Gregor, E-mail: gregor.knopp@psi.ch

    2014-10-17

    Highlights: • Photoelectron imaging and photofragment spectroscopy are combined. • Photoelectron imaging has been measured to characterize the prepared cation states. • Ultrafast signal decay with time constant of 734 (±61) fs has been observed. - Abstract: Ultrafast dynamics of o-xylene cation has been studied by time resolved fs-photofragmentation (PF) spectroscopy in combination with photoelectron imaging (PEI). In the experiment, multiphoton ionization is used to prepare the o-xylene cation characterized by PEI. The ultrafast dynamics of o-xylene ions are measured by monitoring the time dependent parent-ion depletion and the fragment-ion formation, simultaneously. An ultrafast relaxation time of the parent ion of 734 (±61) fs has been observed. The PEI-PF measurements support the interpretation of this relaxation channel to a combination of internal conversion between the two ionic states (D{sub 0} and D{sub 1}) and intramolecular vibrational-energy redistribution process within the D{sub 0} state.

  16. Photoelectron Spectroscopy,Photoionization Mass Spectroscopy,and Theoretical Study on CCI3SSCN

    Institute of Scientific and Technical Information of China (English)

    Lin Du; Li Yao; Mao-fa Ge

    2008-01-01

    Trichloromethanesulfenyl thiocyanate,CCI3SSCN,was generated and studied by photoelectron spectroscoy (PES),photoionization mass spectroscopy(PIMS),and theoretical calculations.This molecule exhibits a gaucho conformation,and the torsional angle around S-S bond is 91.4° due to the sulfur-sulfur lone pair interactions.After ionization,the ground-state cationic-radical form of CC13SSCN+ adopts a trans planar main-atom structure with Cs symmetry.The highest occupied molecular orbital (HOMO) of CCI3SSCN corresponds to the electrons mainly localized on the sulfur 3p lone pair MO.The first ionization energy is determined to be 10.40 eV.

  17. A simple electron time-of-flight spectrometer for ultrafast vacuum ultraviolet photoelectron spectroscopy of liquid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Arrell, C. A., E-mail: christopher.arrell@epfl.ch; Ojeda, J.; Mourik, F. van; Chergui, M. [Laboratory of Ultrafast Spectroscopy, ISIC, Station 6, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland); Sabbar, M.; Gallmann, L.; Keller, U. [Physics Department, ETH Zurich, 8093 Zurich (Switzerland); Okell, W. A.; Witting, T.; Siegel, T.; Diveki, Z.; Hutchinson, S.; Tisch, J. W.G.; Marangos, J. P. [Department of Physics, The Blackett Laboratory, Imperial College, London SW7 2AZ (United Kingdom); Chapman, R. T.; Cacho, C.; Rodrigues, N.; Turcu, I. C.E.; Springate, E. [Central Laser Facility, STFC Rutherford Appleton Laboratory, Oxon OX11 0QX (United Kingdom)

    2014-10-01

    We present a simple electron time of flight spectrometer for time resolved photoelectron spectroscopy of liquid samples using a vacuum ultraviolet (VUV) source produced by high-harmonic generation. The field free spectrometer coupled with the time-preserving monochromator for the VUV at the Artemis facility of the Rutherford Appleton Laboratory achieves an energy resolution of 0.65 eV at 40 eV with a sub 100 fs temporal resolution. A key feature of the design is a differentially pumped drift tube allowing a microliquid jet to be aligned and started at ambient atmosphere while preserving a pressure of 10⁻¹ mbar at the micro channel plate detector. The pumping requirements for photoelectron (PE) spectroscopy in vacuum are presented, while the instrument performance is demonstrated with PE spectra of salt solutions in water. The capability of the instrument for time resolved measurements is demonstrated by observing the ultrafast (50 fs) vibrational excitation of water leading to temporary proton transfer.

  18. Multiphoton ionization photoelectron spectroscopy of xenon: Experiment and theory

    Energy Technology Data Exchange (ETDEWEB)

    Bajic, S.J.; Compton, R.N.; Tang, X.; L' Huiller, A.; Lambropoulos, P.

    1988-11-01

    Photoelectron energy and angular distributions for resonantly enhanced multiphoton ionization (REMPI) of xenon via the three-photon-allowed 7s(3/2)/sub 1//sup 0/ and 5d(3/2)/sub 1//sup 0/ states have been studied both experimentally and theoretically. The electron kinetic energy spectra give the probability of leaving Xe/sup +/ in either the /sup 2/P/sub 1/2/ or /sup 2/P/sub 3/2/ core. The measured branching ratio for leaving each ionic core is used to test the theoretical description of the REMPI process. Measurements of both the angular distributions and the (3+1) REMPI via the 5d state are adequately reproduced by multichannel quantum defect theory. However, measurements of angular distributions for the electrons resulting from (3+1) via the 7s(3/2)/sub 1//sup 0/ state into Xe/sup +/ /sup 2/P/sub 3/2/ (core preserving) or Xe/sup +/ /sup 2/P/sub 1/2/ (core changing) are in striking disagreement with theory. 1 ref., 2 figs.

  19. Characterization of EUV irradiation effects on polystyrene derivatives studied by x-ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS)

    Science.gov (United States)

    Yamamoto, Hiroki; Kozawa, Takahiro; Tagawa, Seiichi

    2011-04-01

    The trade-off among resolution, sensitivity, and line edge roughness (LER) is the most serious problem in actualization of extreme ultraviolet (EUV). As feature sizes are reduced, it becomes very strict to simultaneously meet these requirements. Also, reaction in resist materials induced by EUV photon is more complicate. In chemically amplified EUV resists, not acid generator but polymers mainly adsorbed EUV photons. The secondary electrons are generated from polymer upon exposure to ionizing radiation such as EUV radiation and electron beam. Therefore, the increase in secondary electrons generated by EUV photons adsorbed in resist film is very important factor in the resist design. Therefore, it is essential to know the ionization mechanisms of backbone polymers and understand the reaction mechanism in details in order to accomplish high sensitivity and ultra-fine pattern in EUV lithography. We investigated the photoelectron spectra of typical backbone polymers for chemically amplified EUV resists using ultraviolet photoelectron spectroscopy (UPS). Also, the structure degradations in polystyrene (PS) derivatives thin films induced by EUV radiation were analyzed by X-ray photoelectron spectroscopy (XPS) and UPS.

  20. A facility for the analysis of the electronic structures of solids and their surfaces by synchrotron radiation photoelectron spectroscopy

    Science.gov (United States)

    Hoesch, M.; Kim, T. K.; Dudin, P.; Wang, H.; Scott, S.; Harris, P.; Patel, S.; Matthews, M.; Hawkins, D.; Alcock, S. G.; Richter, T.; Mudd, J. J.; Basham, M.; Pratt, L.; Leicester, P.; Longhi, E. C.; Tamai, A.; Baumberger, F.

    2017-01-01

    A synchrotron radiation beamline in the photon energy range of 18-240 eV and an electron spectroscopy end station have been constructed at the 3 GeV Diamond Light Source storage ring. The instrument features a variable polarisation undulator, a high resolution monochromator, a re-focussing system to form a beam spot of 50 × 50 μm2, and an end station for angle-resolved photoelectron spectroscopy (ARPES) including a 6-degrees-of-freedom cryogenic sample manipulator. The beamline design and its performance allow for a highly productive and precise use of the ARPES technique at an energy resolution of 10-15 meV for fast k-space mapping studies with a photon flux up to 2 ṡ 1013 ph/s and well below 3 meV for high resolution spectra.

  1. A facility for the analysis of the electronic structures of solids and their surfaces by synchrotron radiation photoelectron spectroscopy.

    Science.gov (United States)

    Hoesch, M; Kim, T K; Dudin, P; Wang, H; Scott, S; Harris, P; Patel, S; Matthews, M; Hawkins, D; Alcock, S G; Richter, T; Mudd, J J; Basham, M; Pratt, L; Leicester, P; Longhi, E C; Tamai, A; Baumberger, F

    2017-01-01

    A synchrotron radiation beamline in the photon energy range of 18-240 eV and an electron spectroscopy end station have been constructed at the 3 GeV Diamond Light Source storage ring. The instrument features a variable polarisation undulator, a high resolution monochromator, a re-focussing system to form a beam spot of 50 × 50 μm(2), and an end station for angle-resolved photoelectron spectroscopy (ARPES) including a 6-degrees-of-freedom cryogenic sample manipulator. The beamline design and its performance allow for a highly productive and precise use of the ARPES technique at an energy resolution of 10-15 meV for fast k-space mapping studies with a photon flux up to 2 ⋅ 10(13) ph/s and well below 3 meV for high resolution spectra.

  2. Photoelectron Spectroscopy under Ambient Pressure and Temperature Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ogletree, D. Frank; Bluhm, Hendrik; Hebenstreit, Eleonore B.; Salmeron, Miquel

    2009-02-27

    We describe the development and applications of novel instrumentation for photoemission spectroscopy of solid or liquid surfaces in the presence of gases under ambient conditions or pressure and temperature. The new instrument overcomes the strong scattering of electrons in gases by the use of an aperture close to the surface followed by a differentially-pumped electrostatic lens system. In addition to the scattering problem, experiments in the presence of condensed water or other liquids require the development of special sample holders to provide localized cooling. We discuss the first two generations of Ambient Pressure PhotoEmission Spectroscopy (APPES) instruments developed at synchrotron light sources (ALS in Berkeley and BESSY in Berlin), with special focus on the Berkeley instruments. Applications to environmental science and catalytic chemical research are illustrated in two examples.

  3. Photoelectron spectroscopy investigations of pyrrolo[1,2-a][1,10]phenanthroline derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Prelipceanu, M.; Prelipceanu, O.S. [University of Applied Sciences Wildau, Department of Engineering, Institute of Photonics and Physics Technologies, Friedrich-Engels Street 63, 15745 Wildau (Germany); Leontie, L. [Faculty of Physics, ' Al.I. Cuza' University, 11 Carol I Boulevard, 700506 Iasi (Romania)], E-mail: lleontie@uaic.ro; Danac, R. [Faculty of Chemistry, ' Al.I. Cuza' University, 11 Carol I Boulevard, 700506 Iasi (Romania)

    2007-08-20

    Thin films of new pyrrolo[1,2-a][1,10]phenanthroline derivatives have been investigated by ultraviolet photoelectron spectroscopy, with a view of future applications in optoelectronic devices. The electronic band structure of investigated compounds (for electron energies {<=}25 eV) is to a great extent determined by substituent (R = NO{sub 2}, Cl) induced transformations of molecular orbitals.

  4. Photoelectron spectroscopy and modeling of interface properties related to organic photovoltaic cells

    NARCIS (Netherlands)

    Fahlman, Mats; Sehati, Parisa; Osikowicz, Wojciech; Braun, Slawomir; Jong, de Michel P.; Brocks, Geert

    2013-01-01

    In this short review, we will give examples on how photoelectron spectroscopy (PES) assisted by models on interface energetics can be used to study properties important to bulk heterojunction type organic photovoltaic devices focusing on the well-known bulk heterojunction blend of poly(3-hexylthioph

  5. X-ray Photoelectron Spectroscopy Investigation on Electrochemical Degradation of Proton Exchange Membrane Fuel Cell Electrodes

    DEFF Research Database (Denmark)

    Andersen, Shuang Ma; Dhiman, Rajnish; Skou, Eivind Morten

    2015-01-01

    X-ray photoelectron spectroscopy studies were systematically carried out on the electrodes before and after the electrochemical stress tests in an aqueous electrolyte at 20 °C and 70 °C. The electrodes have different ionomer structures (no ionomer, only ionomer, physically mixed ionomer and hot p...

  6. Evaluating Superconducting YBCO Film Properties Using X-Ray Photoelectron Spectroscopy (Postprint)

    Science.gov (United States)

    2012-02-01

    AFRL-RZ-WP-TP-2012-0093 EVALUATING SUPERCONDUCTING YBCO FILM PROPERTIES USING X-RAY PHOTOELECTRON SPECTROSCOPY (POSTPRINT) Paul N. Barnes...2012 Conference Paper Postprint 01 January 2002 – 01 January 2004 4. TITLE AND SUBTITLE EVALUATING SUPERCONDUCTING YBCO FILM PROPERTIES USING X-RAY

  7. X-ray photoelectron spectroscopy for the study of microbial cell surfaces

    NARCIS (Netherlands)

    van der Mei, Henderina C; de Vries, Jacob; Busscher, Hendrik J

    2000-01-01

    X-ray photoelectron spectroscopy (XPS) is well known for the characterisation of material surfaces, but at first glance, is an unexpected technique to study the composition of microbial cell surfaces. Despite the fact that intimate contact between materials and microbial cell surfaces occurs in many

  8. X-ray photoelectron spectroscopy for the study of microbial cell surfaces

    NARCIS (Netherlands)

    van der Mei, Henderina C; de Vries, Jacob; Busscher, Hendrik J

    2000-01-01

    X-ray photoelectron spectroscopy (XPS) is well known for the characterisation of material surfaces, but at first glance, is an unexpected technique to study the composition of microbial cell surfaces. Despite the fact that intimate contact between materials and microbial cell surfaces occurs in many

  9. In situ ALD experiments with synchrotron radiation photoelectron spectroscopy

    Science.gov (United States)

    Tallarida, Massimo; Schmeisser, Dieter

    2012-07-01

    In this contribution, we describe some features of atomic layer deposition (ALD) investigated by means of synchrotron radiation photoelemission spectroscopy (SR-PES). In particular, we show how the surface sensitivity of SR-PES combined with the in situ nature of our investigations can point out interactions between the substrate and ALD precursors. We observed changes on all substrates investigated, included Si, GaAs, Ru and their surface oxides. These interactions are extremely important during the first ALD cycles and induce modifications in the substrate, which might lead to its functionality enhancement.

  10. Angle resolved photoemission spectroscopy and surface states

    Science.gov (United States)

    Kar, Nikhiles

    2016-10-01

    Angle Resolved Photo Emission Spectroscopy (ARPES) has been a very effective tool to study the electronic states of solids, from simple metals to complex systems like cuprate superconductors. For photon energy in the range of 10 - 100 eV, it is a surface sensitive process as the free path of the photo emitted electrons is of the order of a few lattice parameters. However to interpret the experimental data one needs to have a theoretical foundation for the photoemission process. From the theory of photoemission it may be seen that one can get information about the state from which the electron has been excited. As the translational periodicity is broken normal to the surface, a new type of electron state in the forbidden energy gap can exist localized in the surface region. ARPES can reveal the existence and the property of such surface states. We shall also discuss briefly how the electromagnetic field of the photons are influenced by the presence of the surface and how one can try to take that into account in photoemission theory.

  11. A laser-generated plasma as a source of VUV continuum radiation for photoelectronic spectroscopy

    OpenAIRE

    Heckenkamp, Ch.; Heinzmann, Ulrich; Schönhense, G.; BURGESS.D.D; Thorne, A. P.; Wheaton, J. E. G.

    1981-01-01

    The feasibility of using laser-generated plasmas as VUV continuum sources for photoelectron spectroscopy has been demonstrated by measuring the spectral intensity distribution of the VUV continuum in the wavelength region from 79 to 43 nm by energy analysis of the photoelectrons ejected from argon atoms. The maximum photon flux obtained after reflection at a gold-coated spherical mirror was of the order of 10(11) photons nm(-1) per pulse at 50 nm for a laser energy of 830 mJ. The results show...

  12. State-to-State Spectroscopy and Dynamics of Ions and Neutrals by Photoionization and Photoelectron Methods

    Science.gov (United States)

    Ng, Cheuk-Yiu

    2014-04-01

    Recent advances in high-resolution photoionization, photoelectron, and photodissociation studies based on single-photon vacuum ultraviolet (VUV) and two-color infrared (IR)-VUV, visible (Vis)-ultraviolet (UV), and VUV-VUV laser excitations are illustrated with selected examples. VUV laser photoionization coupled with velocity-map-imaging threshold photoelectron (VMI-TPE) detection can achieve comparable energy resolution but has higher-detection sensitivities than those observed in VUV laser pulsed field ionization photoelectron (PFI-PE) measurements. For molecules with known intermediate states, IR-VUV and Vis-UV excitation schemes are highly sensitive for rovibronically selected and resolved PFI-PE studies. The successful applications of the VUV-PFI-PE, VUV-VMI-TPE, and Vis-UV-PFI-PE methods to state-resolved and state-to-state photoelectron studies of transient radicals and transitional metal-containing molecules are highlighted. The most recently established VUV-VUV pump-probe time-slice VMI photoion method is shown to be promising for state-to-state photodissociation studies of small molecules relevant to planetary atmospheres and for the fundamental understanding of photodissociation dynamics.

  13. State-To Spectroscopy and Dynamics of Ions and Neutrals by Photoionization and Photoelectron Methods

    Science.gov (United States)

    Ng, Cheuk-Yiu

    2014-06-01

    Recent advances in high-resolution photoionization, photoelectron, and photodissociation studies based on single-photon vacuum ultraviolet (VUV) and two-color infrared (IR)-VUV, visible (VIS)-ultraviolet (UV), and VUV-VUV laser excitations are illustrated with selected examples. We show that VUV laser photoionization coupled with velocity-map-imaging (VMI)-threshold photoelectron (VMI-TPE) detection can achieve comparable energy resolutions, but higher detection sensitivities than those observed in VUV laser pulsed field ionization-photoelectron (PFI-PE) measurements. For molecules with known intermediate states, IR-VUV and VIS-UV excitation schemes are highly sensitive for rovibronically selected and resolved PFI-PE studies. The successful applications of the VUV-PFI-PE, VUV-VMI-TPE and VIS-UV-PFI-PE methods to state-resolved and state-to-state photoelectron studies of transient radicals and transitional metal-containing molecules are highlighted. The most recently established VUV-VUV pump-probe time-slice VMI-photoion method is shown to be promising for state-to-state photodissociation studies of small molecules relevant to planetary atmospheres and for the fundamental understanding of photodissociation dynamics.

  14. State-to-state spectroscopy and dynamics of ions and neutrals by photoionization and photoelectron methods.

    Science.gov (United States)

    Ng, Cheuk-Yiu

    2014-01-01

    Recent advances in high-resolution photoionization, photoelectron, and photodissociation studies based on single-photon vacuum ultraviolet (VUV) and two-color infrared (IR)-VUV, visible (Vis)-ultraviolet (UV), and VUV-VUV laser excitations are illustrated with selected examples. VUV laser photoionization coupled with velocity-map-imaging threshold photoelectron (VMI-TPE) detection can achieve comparable energy resolution but has higher-detection sensitivities than those observed in VUV laser pulsed field ionization photoelectron (PFI-PE) measurements. For molecules with known intermediate states, IR-VUV and Vis-UV excitation schemes are highly sensitive for rovibronically selected and resolved PFI-PE studies. The successful applications of the VUV-PFI-PE, VUV-VMI-TPE, and Vis-UV-PFI-PE methods to state-resolved and state-to-state photoelectron studies of transient radicals and transitional metal-containing molecules are highlighted. The most recently established VUV-VUV pump-probe time-slice VMI photoion method is shown to be promising for state-to-state photodissociation studies of small molecules relevant to planetary atmospheres and for the fundamental understanding of photodissociation dynamics.

  15. Ultrafast Internal Conversion of Aromatic Molecules Studied by Photoelectron Spectroscopy using Sub-20 fs Laser Pulses

    Directory of Open Access Journals (Sweden)

    Toshinori Suzuki

    2014-02-01

    Full Text Available This article describes our recent experimental studies on internal conversion via a conical intersection using photoelectron spectroscopy. Ultrafast S2(ππ*–S1(nπ* internal conversion in pyrazine is observed in real time using sub-20 fs deep ultraviolet pulses (264 and 198 nm. While the photoelectron kinetic energy distribution does not exhibit a clear signature of internal conversion, the photoelectron angular anisotropy unambiguously reveals the sudden change of electron configuration upon internal conversion. An explanation is presented as to why these two observables have different sensitivities to internal conversion. The 198 nm probe photon energy is insufficient for covering the entire Franck-Condon envelopes upon photoionization from S2/S1 to D1/D0. A vacuum ultraviolet free electron laser (SCSS producing 161 nm radiation is employed to solve this problem, while its pulse-to-pulse timing jitter limits the time resolution to about 1 ps. The S2–S1 internal conversion is revisited using the sub-20 fs 159 nm pulse created by filamentation four-wave mixing. Conical intersections between D1(π−1 and D0(n−1 and also between the Rydberg state with a D1 ion core and that with a D0 ion core of pyrazine are studied by He(I photoelectron spectroscopy, pulsed field ionization photoelectron spectroscopy and one-color resonance-enhanced multiphoton ionization spectroscopy. Finally, ultrafast S2(ππ*–S1(ππ* internal conversion in benzene and toluene are compared with pyrazine.

  16. Insights from angle-resolved photoemission spectroscopy on the metallic states of YbB6(001): E(k) dispersion, temporal changes, and spatial variation

    NARCIS (Netherlands)

    Frantzeskakis, E.; de Jong, N.; Zhang, J.X.; Zhang, X.; Li, Z.; Liang, C.L.; Wang, Y.; Varykhalov, A.; Huang, Y.K.; Golden, M.S.

    2014-01-01

    We report high-resolution angle-resolved photoelectron spectroscopy (ARPES) results on the (001) cleavage surface of YbB6, a rare-earth compound that has been recently predicted to host surface electronic states with topological character. We observe two types of well-resolved metallic states, whose

  17. Experimental evidence for extreme surface sensitivity in Auger-Photoelectron Coincidence Spectroscopy (APECS) from solids

    Energy Technology Data Exchange (ETDEWEB)

    Liscio, A.; Gotter, R.; Ruocco, A.; Iacobucci, S.; Danese, A.G.; Bartynski, R.A.; Stefani, G

    2004-07-01

    Core hole creation and subsequent Auger decay processes are studied with unprecedented discrimination by Auger-Photoelectron Coincidence Spectroscopy (APECS). Early works in this field have already pointed out the intrinsic surface sensitivity of these experiments. However, it was not until recently that a model calculation was developed to quantitatively evaluate it. Here we present the first attempt to experimentally establish an effective target thickness for such experiments. The angular distribution of 3p{sub 3/2} photoelectron with kinetic energy of 160 eV is measured in coincidence with the M{sub 3}VV Auger electron with kinetic energy of 55 eV on a Cu (1 1 1) surface. Coincidence and non-coincidence photoelectron angular distributions display differences that, to large extent, are explained by confining the source of the coincident signal within the first two layers of Cu target, thus establishing an experimental upper limit for the effective target thickness of the APECS experiment.

  18. Photoelectron and electron momentum spectroscopy of tetrahydrofuran from a molecular dynamical perspective.

    Science.gov (United States)

    Shojaei, S H Reza; Morini, Filippo; Deleuze, Michael S

    2013-03-07

    The results of experimental studies of the valence electronic structure of tetrahydrofuran employing He I photoelectron spectroscopy as well as Electron Momentum Spectroscopy (EMS) have been reinterpreted on the basis of Molecular Dynamical simulations employing the classical MM3 force field and large-scale quantum mechanical simulations employing Born-Oppenheimer Molecular Dynamics in conjunction with the dispersion corrected ωB97XD exchange-correlation functional. Analysis of the produced atomic trajectories demonstrates the importance of thermal deviations from the lowest energy path for pseudorotation, in the form of considerable variations of the ring-puckering amplitude. These deviations are found to have a significant influence on several outer-valence electron momentum distributions, as well as on the He I photoelectron spectrum.

  19. High Resolution Velocity Map Imaging Photoelectron Spectroscopy of the Beryllium Oxide Anion, BeO-

    Science.gov (United States)

    Dermer, Amanda Reed; Mascaritolo, Kyle; Heaven, Michael

    2016-06-01

    The photodetachment spectrum of BeO- has been studied using high resolution velocity map imaging photoelectron spectroscopy. The vibrational contours were imaged and compared with Franck-Condon simulations for the ground and excited states of the neutral. The electron affinity of BeO was measured for the first time, and anisotropies of several transitions were determined. Experimental findings are compared to high level ab initio calculations.

  20. Photoelectron spectroscopy in a wide hν region from 6 eV to 8 keV with full momentum and spin resolution

    Energy Technology Data Exchange (ETDEWEB)

    Suga, Shigemasa, E-mail: ssmsuga@gmail.com [Institute of Scientific and Industrial Research, Osaka University, Osaka (Japan); Max-Planck-Institute für Mikrostrukturphysik, Weinberg 2, 06120 Halle (Germany); Tusche, Christian [Max-Planck-Institute für Mikrostrukturphysik, Weinberg 2, 06120 Halle (Germany)

    2015-04-15

    Highlights: • Full two-dimensional angle resolved photoelectron spectroscopy (2D-ARPES). • Spin-resolved ARPES (SP-ARPES) with very high spin detection efficiency. • Aberration corrected double hemispherical deflection analyzers (HDAs). • Momentum microscopy (M.M.) with high energy and momentum resolutions. • Spin resolved momentum microscopy with capability of micro-nano region detection. - Abstract: High resolution photoelectron spectroscopy is recognized to be a very powerful approach to study surface and bulk electronic structures of various solids by employing different photon energies (hν). In particular, angle resolved photoelectron spectroscopy (ARPES) has progressed dramatically in the last few decades providing useful information on Fermi surface (FS) topology and band dispersions. The information of the electron spin is often decisive to fully understand the electronic properties of many material classes. However, spin-resolved studies by photoelectron spectroscopy were strongly hindered by the low detection efficiency of spin detectors. In the case of surface electronic structures, possible surface degradation with time is a serious problem to discuss intrinsic electronic effects. Therefore rather fast and high efficiency detection is required in the case of surface sensitive spin-resolved ARPES. Two-dimensional (2D) detection is nowadays widely employed in ARPES. In the use of a conventional hemispherical deflection analyzer (HDA), one direction on the 2D detector corresponds to the binding energy E{sub B} and the other direction to the emission angle. The novel concept of momentum microscopy, however, directly provides 2D (k{sub x},k{sub y}) maps of the photoemission intensities. The reciprocal space image directly represents the cross section through the valence band structure of the sample at a selected energy. By scanning E{sub B}, very high resolution three-dimensional E{sub B}(k{sub x},k{sub y}) maps of the band-dispersion can be

  1. Steady state and time resolved spectroscopy of photoswitchable systems

    NARCIS (Netherlands)

    Hou, Lili

    2013-01-01

    Steady state en time resolved spectroscopie zijn twee fundamentele methodes voor het bestuderen van fotochemische processen. In dit proefschrift zijn drie zelf-opgezette spectroscopische systemen beschreven, waarmee samen met andere spectroscopische methoden verscheidende met licht schakelbare syste

  2. Hard X-ray photoelectron spectroscopy of bulk and thin films of Heusler compounds

    Energy Technology Data Exchange (ETDEWEB)

    Kozina, Xeniya

    2012-03-26

    X-ray photoemission spectroscopy (XPS) is one of the most universal and powerful tools for investigation of chemical states and electronic structures of materials. The application of hard X-rays increases the inelastic mean free path of the emitted electrons within the solid and thus makes hard X-ray photoelectron spectroscopy (HAXPES) a bulk sensitive probe for solid state research and especially a very effective nondestructive technique to study buried layers. This thesis focuses on the investigation of multilayer structures, used in magnetic tunnel junctions (MTJs), by a number of techniques applying HAXPES. MTJs are the most important components of novel nanoscale devices employed in spintronics. The investigation and deep understanding of the mechanisms responsible for the high performance of such devices and properties of employed magnetic materials that are, in turn, defined by their electronic structure becomes feasible applying HAXPES. Thus the process of B diffusion in CoFeB-based MTJs was investigated with respect to the annealing temperature and its influence on the changes in the electronic structure of CoFeB electrodes that clarify the behaviour and huge TMR ratio values obtained in such devices. These results are presented in chapter 6. The results of investigation of the changes in the valence states of buried off-stoichiometric Co{sub 2}MnSi electrodes were investigated with respect to the Mn content {alpha} and its influence on the observed TMR ratio are described in chapter 7. Magnetoelectronic properties such as exchange splitting in ferromagnetic materials as well as the macroscopic magnetic ordering can be studied by magnetic circular dichroism in photoemission (MCDAD). It is characterized by the appearance of an asymmetry in the photoemission spectra taken either from the magnetized sample with the reversal of the photon helicity or by reversal of magnetization direction of the sample when the photon helicity direction is fixed. Though

  3. Study of organic radicals through anion photoelectron velocity-map imaging spectroscopy

    Science.gov (United States)

    Dixon, Andrew Robert

    .30(4) eV. The EA of methylglyoxal is determined as ≤ 0.8 eV based on the signal-to-noise ratio of the X 1A ' ← X 2A'' transition, with a VDE = 1.28(4) eV. The EA of the a 3A'' ← X 2A '' and A 1A'' ← X 2A'' transitions are determined as 3.28(3) eV and 3.614(5) eV respectively. The intrinsically short-lived ethylenedione molecule (OCCO) was observed and investigated using anion photoelectron spectroscopy. The adiabatic electron affinity of its 3Sigmag □ ground state is 1.936(8) eV. The vibrational progression with a 417(15) cm-1 frequency observed within the triplet band corresponds to a trans-bending mode. Several dissociative singlet states are also observed, corresponding to two components of the 1Delta g state and the 1Sigmag + state. The experimental results are in agreement with the theory predictions and constitute the first spectroscopic observation and characterization of the elusive ethylenedione molecule. Two glyoxal derivatives related to the ethylenedione anion (OCCO -), ethynediolide (HOCCO-) and glyoxalide (OHCCO-), were studied. These anions provide access to the corresponding neutral reactive intermediates: the HOCCO and OHCCO radicals. In the HOCCO/OHCCO anion photoelectron spectrum, we identify several electronic states of this radical system and determine the adiabatic electron affinity of HOCCO as 1.763(6) eV. This result is compared to the corresponding 1.936(8) eV value for ethylenedione (OCCO). Initial attempts were made to detect and observe the dicyanoacetylene anion, NCCCCN- , by photoelectron imaging. While it is believed the experimental design path of H2+ abstraction from fumaronitrile is sound, no spectral signature can be assigned to NCCCCN -. Calculations targeting the low-lying transitions from the anion indicate that the molecule should have a significantly positive electron affinity and at least the ground state should be accessible with the currently available laser sources. The cluster ion O2(N2O) of the same nominal mass as

  4. Photoelectron yield spectroscopy and inverse photoemission spectroscopy evaluations of p-type amorphous silicon carbide films prepared using liquid materials

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Tatsuya, E-mail: mtatsuya@jaist.ac.jp, E-mail: mtakashi@jaist.ac.jp [Center for Nano Materials and Technology, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan); Masuda, Takashi, E-mail: mtatsuya@jaist.ac.jp, E-mail: mtakashi@jaist.ac.jp; Inoue, Satoshi; Shimoda, Tatsuya [Green Device Research Center, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa 923-1211 (Japan); Yano, Hiroshi; Iwamuro, Noriyuki [Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennoudai, Tsukuba, Ibaraki 305-8573 (Japan)

    2016-05-15

    Phosphorus-doped amorphous silicon carbide films were prepared using a polymeric precursor solution. Unlike conventional polymeric precursors, this polymer requires neither catalysts nor oxidation for its synthesis and cross-linkage, providing semiconducting properties in the films. The valence and conduction states of resultant films were determined directly through the combination of inverse photoemission spectroscopy and photoelectron yield spectroscopy. The incorporated carbon widened energy gap and optical gap comparably in the films with lower carbon concentrations. In contrast, a large deviation between the energy gap and the optical gap was observed at higher carbon contents because of exponential widening of the band tail.

  5. Relaxation Dynamics in Photoexcited Chiral Molecules Studied by Time-Resolved Photoelectron Circular Dichroism: Toward Chiral Femtochemistry

    CERN Document Server

    Comby, Antoine; Boggio-Pasqua, Martial; Descamps, Dominique; Légaré, Francois; Nahon, Laurent; Petit, Stéphane; Pons, Bernard; Fabre, Baptiste; Mairesse, Yann; Blanchet, Valérie

    2016-01-01

    Unravelling the main initial dynamics responsible for chiral recognition is a key stepin the understanding of many biological processes. However this challenging task requires a sensitive enantiospecic probe to investigate molecular dynamics on their natural femtosecond timescale. Here we show that, in the gas phase, the ultrafast relaxationdynamics of photoexcited chiral molecules can be tracked by recording Time-ResolvedPhotoElectron Circular Dichroism (TR-PECD) resulting from the photoionisation bya circularly polarized probe pulse. A large forward/backward asymmetry along theprobe propagation axis is observed in the photoelectron angular distribution. Its evolution with pump-probe delay reveals ultrafast dynamics that are inaccessible in theangle-integrated photoelectron spectrum nor via the usual electron emission anisotropyparameter ($\\beta$). PECD, which originates from the electron scattering in the chiral molecular potential, appears as a new sensitive observable for ultrafast molecular dynamicsin ch...

  6. Determination of vertical phase separation in a polyfluorene copolymer : fullerene derivative solar cell blend by X-ray photoelectron spectroscopy

    NARCIS (Netherlands)

    Felicissimo, Marcella Passos; Jarzab, Dorota; Gorgoi, Mihaela; Forster, Michael; Scherf, Ullrich; Scharber, Markus C.; Svensson, Svante; Rudolf, Petra; Loi, Maria Antonietta

    2009-01-01

    A vertical phase separation is evidenced using high-kinetic-energy X-ray photoelectron spectroscopy at different photon energies in a polyfluorene copolymer:C(60) derivative blend relevant for photovoltaic application.

  7. Ultraviolet photoelectron spectroscopy of the valence bands of some Au alloys

    Energy Technology Data Exchange (ETDEWEB)

    Nicholson, J.A.; Riley, J.D.; Leckey, R.C.G.; Jenkin, J.G.; Liesegang, J.; Azoulay, J.

    1978-09-15

    Ultraviolet photoelectron spectra taken with 40.81-eV photons are presented for three series of Au alloys: AuGa, AuIn, and AuCd. The results are discussed with reference to similar work on a series of Ag alloys previously reported and are also compared with x-ray photoelectron spectroscopy data. The results are consistent with the previous work on Ag alloys in that the Au 5d doublet width and splitting are (i) independent of the secondary or alloying metal, and (ii) strongly dependent on the mean number of nearest Au neighbors. The behavior of the Au 5d bandwidth, as a function of Au concentration, as measured here using He II radiation, differs significantly from that measured previously using x-ray photoelectron spectroscopy. This difference cannot be attributed wholly to the difference in linewidth of the two-photon sources or to surface enrichment of the samples. The similar variations of the Ga, In, and Cd d bands as a function of Au concentration are discussed with reference to previous work on the alloys of AgIn and AgCd.

  8. Angle resolved photoelectron distribution of the 1{pi} resonance of CO/Pt(111)

    Energy Technology Data Exchange (ETDEWEB)

    Haarlammert, Thorben; Wegner, Sebastian; Tsilimis, Grigorius; Zacharias, Helmut [Physikalisches Institut, Westfaelische Wilhelms Universitaet, Muenster (Germany); Golovin, Alexander [Institute of Physics, St. Petersburg State University (Russian Federation)

    2009-07-01

    The CO 1{pi} level of a c(4 x 2)-2CO/Pt(111) reconstruction shows a significant resonance when varying the photon energy between h{nu}=23 eV and h{nu}=48 e V. This resonance has not been observed in gas phase measurements or on the Pt(1 10) surface. To investigate the photoelectron distribution of the 1{pi} level high harmonic radiaton has been used. By conversion in rare gases like argon, neon, or helium photon energies of up to 100 eV have been generated at repetition r ates of up to 10 kHz. The single harmonics have been separated and focused by a toroidal grating and directed to the sample surface. A time-of-flight detector with multiple anodes registers the kinetic energies of the emitted photoelectrons and enables the simultaneous detection of multiple emission angles. The angular distributions of photoelectrons emitted from the CO 1{pi} level have been measured for a variety of initial photon energies. Further the angular distributions of the CO 1{pi} level photoelectrons emitted from a CO-Pt{sub 7} cluster have been calculated using the MSX{alpha}-Method which shows good agreement with the ex perimental data.

  9. X-ray and photoelectron spectroscopy of the structure, reactivity, and electronic structure of semiconductor nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Hamad, Kimberly Sue [Univ. of California, Berkeley, CA (United States)

    2000-01-01

    Semiconductor nanocrystals are a system which has been the focus of interest due to their size dependent properties and their possible use in technological applications. Many chemical and physical properties vary systematically with the size of the nanocrystal and thus their study enables the investigation of scaling laws. Due to the increasing surface to volume ratio as size is decreased, the surfaces of nanocrystals are expected to have a large influence on their electronic, thermodynamic, and chemical behavior. In spite of their importance, nanocrystal surfaces are still relatively uncharacterized in terms of their structure, electronic properties, bonding, and reactivity. Investigation of nanocrystal surfaces is currently limited by what techniques to use, and which methods are suitable for nanocrystals is still being determined. This work presents experiments using x-ray and electronic spectroscopies to explore the structure, reactivity, and electronic properties of semiconductor (CdSe, InAs) nanocrystals and how they vary with size. Specifically, x-ray absorption near edge spectroscopy (XANES) in conjunction with multiple scattering simulations affords information about the structural disorder present at the surface of the nanocrystal. X-ray photoelectron spectroscopy (XPS) and ultra-violet photoelectron spectroscopy (UPS) probe the electronic structure in terms of hole screening, and also give information about band lineups when the nanocrystal is placed in electric contact with a substrate. XPS of the core levels of the nanocrystal as a function of photo-oxidation time yields kinetic data on the oxidation reaction occurring at the surface of the nanocrystal.

  10. X-ray and photoelectron spectroscopy of the structure, reactivity, and electronic structure of semiconductor nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Hamad, K.S.

    2000-05-01

    Semiconductor nanocrystals are a system which has been the focus of interest due to their size dependent properties and their possible use in technological applications. Many chemical and physical properties vary systematically with the size of the nanocrystal and thus their study enables the investigation of scaling laws. Due to the increasing surface to volume ratio as size is decreased, the surfaces of nanocrystals are expected to have a large influence on their electronic, thermodynamic, and chemical behavior. In spite of their importance, nanocrystal surfaces are still relatively uncharacterized in terms of their structure, electronic properties, bonding, and reactivity. Investigation of nanocrystal surfaces is currently limited by what techniques to use, and which methods are suitable for nanocrystals is still being determined. This work presents experiments using x-ray and electronic spectroscopies to explore the structure, reactivity, and electronic properties of semiconductor (CdSe, InAs) nanocrystals and how they vary with size. Specifically, x-ray absorption near edge spectroscopy (XANES) in conjunction with multiple scattering simulations affords information about the structural disorder present at the surface of the nanocrystal. X-ray photoelectron spectroscopy (XPS) and ultra-violet photoelectron spectroscopy (UPS) probe the electronic structure in terms of hole screening, and also give information about band lineups when the nanocrystal is placed in electric contact with a substrate. XPS of the core levels of the nanocrystal as a function of photo-oxidation time yields kinetic data on the oxidation reaction occurring at the surface of the nanocrystal.

  11. Quantitative interpretation of molecular dynamics simulations for X-ray photoelectron spectroscopy of aqueous solutions

    Science.gov (United States)

    Olivieri, Giorgia; Parry, Krista M.; Powell, Cedric J.; Tobias, Douglas J.; Brown, Matthew A.

    2016-04-01

    Over the past decade, energy-dependent ambient pressure X-ray photoelectron spectroscopy (XPS) has emerged as a powerful analytical probe of the ion spatial distributions at the vapor (vacuum)-aqueous electrolyte interface. These experiments are often paired with complementary molecular dynamics (MD) simulations in an attempt to provide a complete description of the liquid interface. There is, however, no systematic protocol that permits a straightforward comparison of the two sets of results. XPS is an integrated technique that averages signals from multiple layers in a solution even at the lowest photoelectron kinetic energies routinely employed, whereas MD simulations provide a microscopic layer-by-layer description of the solution composition near the interface. Here, we use the National Institute of Standards and Technology database for the Simulation of Electron Spectra for Surface Analysis (SESSA) to quantitatively interpret atom-density profiles from MD simulations for XPS signal intensities using sodium and potassium iodide solutions as examples. We show that electron inelastic mean free paths calculated from a semi-empirical formula depend strongly on solution composition, varying by up to 30% between pure water and concentrated NaI. The XPS signal thus arises from different information depths in different solutions for a fixed photoelectron kinetic energy. XPS signal intensities are calculated using SESSA as a function of photoelectron kinetic energy (probe depth) and compared with a widely employed ad hoc method. SESSA simulations illustrate the importance of accounting for elastic-scattering events at low photoelectron kinetic energies (hoc method systematically underestimates the preferential enhancement of anions over cations. Finally, some technical aspects of applying SESSA to liquid interfaces are discussed.

  12. Vanadium-doped small silicon clusters: Photoelectron spectroscopy and density-functional calculations

    Science.gov (United States)

    Xu, Hong-Guang; Zhang, Zeng-Guang; Feng, Yuan; Yuan, Jinyun; Zhao, Yuchao; Zheng, Weijun

    2010-03-01

    Vanadium-doped small silicon clusters, VSin- and VSin- ( n = 3-6), have been studied by anion photoelectron spectroscopy. The vertical detachment energies (VDEs) and adiabatic detachment energies (ADEs) of these clusters were obtained from their photoelectron spectra. We have also conducted density-functional calculations of VSin- and VSin- clusters and determined their structures by comparison of theoretical calculations with experimental results. Our results show that two V atoms in VSin- clusters tend to form a strong V-V bond. VSi6- has D3d symmetry with the six Si atoms forming a chair like six-membered ring similar to the ring in cyclohexane and the two vanadium atoms are joined with a δ bond.

  13. Depth-resolved soft x-ray photoelectron emission microscopy in nanostructures via standing-wave excited photoemission

    Energy Technology Data Exchange (ETDEWEB)

    Kronast, F.; Ovsyannikov, R.; Kaiser, A.; Wiemann, C.; Yang, S.-H.; Locatelli, A.; Burgler, D.E.; Schreiber, R.; Salmassi, F.; Fischer, P.; Durr, H.A.; Schneider, C.M.; Eberhardt, W.; Fadley, C.S.

    2008-11-24

    We present an extension of conventional laterally resolved soft x-ray photoelectron emission microscopy. A depth resolution along the surface normal down to a few {angstrom} can be achieved by setting up standing x-ray wave fields in a multilayer substrate. The sample is an Ag/Co/Au trilayer, whose first layer has a wedge profile, grown on a Si/MoSi2 multilayer mirror. Tuning the incident x-ray to the mirror Bragg angle we set up standing x-ray wave fields. We demonstrate the resulting depth resolution by imaging the standing wave fields as they move through the trilayer wedge structure.

  14. Femtosecond photoelectron spectroscopy: a new tool for the study of anion dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Greenblatt, Benjamin J. [Univ. of California, Berkeley, CA (United States)

    1999-02-01

    A new experimental technique for the time-resolved study of anion reactions is presented. Using femtosecond laser pulses, which provide extremely fast (~100 fs) time resolution, in conjunction with photoelectron spectroscopy, which reveals differences between anion and neutral potential energy surfaces, a complex anion reaction can be followed from its inception through the formation of asymptotic products. Experimental data can be modeled quantitatively using established theoretical approaches, allowing for the refinement of potential energy surfaces as well as dynamical models. After a brief overview, a detailed account of the construction of the experimental apparatus is presented. Documentation of the data acquisition program is contained in the Appendix. The first experimental demonstration of the technique is then presented for I2- photodissociation, modeled using a simulation program which is also detailed in the Appendix. The investigation of I2- photodissociation in several size-selected I2-(Ar)n (n = 6-20) and I2-(CO2)n (n = 4-16) clusters forms the heart of the dissertation. In a series of chapters, the numerous effects of solvation on this fundamental bond-breaking reaction are explored, the most notable of which is the recombination of I2- on the ground $\\tilde{X}$(2Σu+) state in sufficiently large clusters. Recombination and trapping of I2- on the excited $\\tilde{A}$(2π3/2,g) state is also observed in both types of clusters. The studies have revealed electronic state transitions, the first step in recombination, on a ~500 fs to ~10 ps timescale. Accompanying the changes in electronic state is solvent reorganization, which occurs on a similar timescale. Over longer periods (~1 ps to >200 ps), energy is transferred from vibrationally

  15. Femtosecond photoelectron spectroscopy: a new tool for the study of anion dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Greenblatt, B.J.

    1999-02-01

    A new experimental technique for the time-resolved study of anion reactions is presented. Using femtosecond laser pulses, which provide extremely fast ({approx} 100 fs) time resolution, in conjunction with photoelectron spectroscopy, which reveals differences between anion and neutral potential energy surfaces, a complex anion reaction can be followed from its inception through the formation of asymptotic products. Experimental data can be modeled quantitatively using established theoretical approaches, allowing for the refinement of potential energy surfaces as well as dynamical models. After a brief overview, a detailed account of the construction of the experimental apparatus is presented. Documentation of the data acquisition program is contained in the Appendix. The first experimental demonstration of the technique is then presented for I{sub 2}{sup -} photodissociation, modeled using a simulation program which is also detailed in the Appendix. The investigation of I{sub 2}{sup -} photodissociation in several size-selected I{sub 2}{sup -}(Ar){sub n} (n = 6-20) and I{sub 2}{sup -}(CO{sub 2}){sub n} (n = 4-16) clusters forms the heart of the dissertation. In a series of chapters, the numerous effects of solvation on this fundamental bond-breaking reaction are explored, the most notable of which is the recombination of I{sub 2}{sup -} on the ground {tilde X}({sup 2}{Sigma}{sub u}{sup +}) state in sufficiently large clusters. Recombination and trapping of I{sub 2}{sup -} on the excited {tilde A}({sup 2}{Pi}{sub 3/2,g}) state is also observed in both types of clusters. The studies have revealed electronic state transitions, the first step in recombination, on a {approx}500 fs to {approx}10 ps timescale. Accompanying the changes in electronic state is solvent reorganization, which occurs on a similar timescale. Over longer periods ({approx}1 ps to >200 ps), energy is transferred from vibrationally excite d I{sub 2}{sup -} to modes of the solvent, which in turn leads

  16. Functional materials for information and energy technology: Insights by photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Müller, Martina [Peter Grünberg Institut (PGI-6), Forschungszentrum Jülich, 52425 Jülich (Germany); JARA Jülich-Aachen Research Alliance, Forschungszentrum Jülich, 52425 Jülich (Germany); Fakultät für Physik, Universität Duisburg-Essen, 47048 Duisburg (Germany); Nemšák, Slavomír; Plucinski, Lukasz [Peter Grünberg Institut (PGI-6), Forschungszentrum Jülich, 52425 Jülich (Germany); JARA Jülich-Aachen Research Alliance, Forschungszentrum Jülich, 52425 Jülich (Germany); Schneider, Claus M., E-mail: c.m.schneider@fz-juelich.de [Peter Grünberg Institut (PGI-6), Forschungszentrum Jülich, 52425 Jülich (Germany); JARA Jülich-Aachen Research Alliance, Forschungszentrum Jülich, 52425 Jülich (Germany); Fakultät für Physik, Universität Duisburg-Essen, 47048 Duisburg (Germany)

    2016-04-15

    Highlights: • Photoemission spectro/microscopy studies of functional material systems. • Hard X-ray photoemission spectroscopy from magnetic semiconductors and insulators. • Information depth studies in hard X-ray photoemission microscopy. • Soft X-ray standing wave ambient pressure photoemission spectroscopy from liquid films. - Abstract: The evolution of both information and energy technology is intimately connected to complex condensed matter systems, the properties of which are determined by electronic and chemical interactions and processes on a broad range of length and time scales. Dedicated photoelectron spectroscopy and spectromicroscopy experiments can provide important insights into fundamental phenomena and applied functionalities. We discuss some recent methodological developments with application to relevant questions in spintronics, and towards operando studies of resistive switching and electrochemical processes.

  17. Photoelectron spectroscopy of liquid water, some alcohols, and pure nonane in free micro jets

    Science.gov (United States)

    Faubel, Manfred; Steiner, Björn; Toennies, J. Peter

    1997-06-01

    The recently developed technique of accessing volatile liquids in a high vacuum environment by using a very thin liquid jet is implemented to carry out the first measurements of photoelectron spectra of pure liquid water, methanol, ethanol, 1-propanol, 1-butanol, and benzyl alcohol as well as of liquid n-nonane. The apparatus, which consists of a commercial hemispherical (10 cm mean radius) electron analyzer and a hollow cathode discharge He I light source is described in detail and the problems of the sampling of the photoelectrons in such an environment are discussed. For water and most of the alcohols up to six different electronic bands could be resolved. The spectra of 1-butanol and n-nonane show two weakly discernable peaks from which the threshold ionization potential could be determined. A deconvolution of the photoelectron spectra is used to extract ionization potentials of individual molecular bands of molecules near the surface of the liquid and shifts of the order of 1 eV compared to the gas phase are observed. A molecular orientation for water molecules at the surface of liquid water is inferred from a comparison of the relative band strengths with the gas phase. Similar effects are also observed for some of the alcohols. The results are discussed in terms of a simple "Born-solvation" model.

  18. Study on RE-Al-Zr-C-N Coating by X-ray Photoelectron Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    韦永德; 马楠; 侯仰龙

    2001-01-01

    Thermal diffusion of coating on 45 steel with rare earths, zirconium, aluminum, carbon and nitrogen was reported. Through X-ray photoelectron spectrum, the binding energy of permeated elements and their existence states were analyzed. Their existence on the surface of treated steel was confirmed by scanning electronic microscopy and energy dispersive spectroscopy. The results show that the rare earth acts as an activator and accelerator of the permeating of other elements. The effect of rare earths on aluminum is greater than that on zirconium.

  19. In situ photoelectron spectroscopy of molecular-beam-epitaxy grown surfaces

    CERN Document Server

    Oshima, M; Okabayashi, J; Ono, K

    2003-01-01

    Two in situ high-resolution synchrotron radiation photoelectron spectroscopy (SRPES) systems combined with a molecular beam epitaxy (MBE) chamber for III-V compound semiconductors and a laser MBE chamber for strongly correlated oxide films, respectively, have been designed and fabricated to analyze intrinsic and surface/interface electronic structures of these unique materials. The importance of the in situ SRPES has been demonstrated by the results of 1) Si surface nanostructures, 2) GaAs surfaces/interfaces and nanostructures, 3) MnAs magnetic nanostructures, and 4) strongly-correlated La sub 1 sub - sub x Sr sub x MnO sub 3 surfaces/interfaces and superstructures.

  20. Chemical Reaction Between Polyvinyl Alcohol and Titanate Coupling Agent with X-Ray Photoelectron Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    LI Bei-xing; ZHANG Wen-sheng

    2003-01-01

    The chemical reaction between polyvinyl alcohol (PVA) and tri(dioctylpyrophosphoryloxy) isopropyl titanate (NDZ-201) was studied using X-ray photoelectron spectroscopy (XPS).The results show that some C-OH functional groups of PVA react with the titanate coupling agent to form CPVA-O-Ti-O-CPVA bond.The cross-linking of the PVA chains occurs through the formation of CPVA-O-Ti-O-CPVA bonds and produces a three dimensional hydrophobic polymer network.Accordingly,the mechanism is proposed that the titanate coupling agent improves the moisture sensitivity of high alumina cement/polyvinyl alcohol (HAC/PVA) based macro defect free (MDF) composite material.

  1. Structural Investigation of SBGESE Glasses by High Resolution X-Ray Photoelectron Spectroscopy

    Directory of Open Access Journals (Sweden)

    R. Golovchak

    2011-01-01

    Full Text Available The evolution of the structure of Sb8Ge32Se60 (Z=2.72 and Sb20Ge20Se60 (Z=2.60 chalcogenide glasses is determined by high resolution X-ray photoelectron spectroscopy. Glasses with Z=2.60 the structure consists of deformed tetrahedra and pyramids, in which at least one Se atom is substituted by Ge or Sb atom. For the Z=2.72 structure consisting of shared pyramids and tetrahedra with two or more Se atoms substituted by the cations. At the same time, Se-Se dimers are present in both compositions.

  2. X-ray photoelectron spectroscopy study of the effects of ultrapure water on GaAs

    Science.gov (United States)

    Massies, J.; Contour, J. P.

    1985-06-01

    X-ray photoelectron spectroscopy has been used to investigate the effects of de-ionized water on chemical etched GaAs surfaces. When the treatment with water is performed in static conditions (stagnant water) a Ga-rich oxide layer is formed on GaAs at the rate of 10-20 Å h-1. In contrast, when the GaAs surface is treated in dynamic conditions (running water), no oxide buildup is observed. Moreover, running water can remove the oxide film formed in static conditions, as well as oxidized layers due to air exposure. These results are discussed in the framework of cleaning prior to molecular beam epitaxy.

  3. Assessment of nanocomposite photonic systems with the X-ray photoelectron spectroscopy

    Institute of Scientific and Technical Information of China (English)

    L. Minati; G. Speranza; M. Anderle; M. Ferrari; A. Chiasera; G. C. Righini

    2007-01-01

    The chemical compositions of Ag-Er co-doped phosphate and silicate glasses were investigated with X-ray photoelectron spectroscopy with the purpose to identify the chemical state of silver. The analysis of the Ag 3d core lines show the presence of nanometer-sized silver particles in each of the annealed samples, even if these Ag 3d lines appear to be very different from each other. We explain these results as a different interaction of silver with the two glasses matrix, which leads to a different nucleation rate of the Ag clusters.

  4. Single-order laser high harmonics in XUV for ultrafast photoelectron spectroscopy of molecular wavepacket dynamics

    Directory of Open Access Journals (Sweden)

    Mizuho Fushitani

    2016-11-01

    Full Text Available We present applications of extreme ultraviolet (XUV single-order laser harmonics to gas-phase ultrafast photoelectron spectroscopy. Ultrashort XUV pulses at 80 nm are obtained as the 5th order harmonics of the fundamental laser at 400 nm by using Xe or Kr as the nonlinear medium and separated from other harmonic orders by using an indium foil. The single-order laser harmonics is applied for real-time probing of vibrational wavepacket dynamics of I2 molecules in the bound and dissociating low-lying electronic states and electronic-vibrational wavepacket dynamics of highly excited Rydberg N2 molecules.

  5. Study of selected benzyl azides by UV photoelectron spectroscopy and mass spectrometry

    Science.gov (United States)

    Pinto, R. M.; Olariu, R. I.; Lameiras, J.; Martins, F. T.; Dias, A. A.; Langley, G. J.; Rodrigues, P.; Maycock, C. D.; Santos, J. P.; Duarte, M. F.; Fernandez, M. T.; Costa, M. L.

    2010-09-01

    Benzyl azide and the three methylbenzyl azides were synthesized and characterized by mass spectrometry (MS) and ultraviolet photoelectron spectroscopy (UVPES). The electron ionization fragmentation mechanisms for benzyl azide and their methyl derivatives were studied by accurate mass measurements and linked scans at constant B/ E. For benzyl azide, in order to clarify the fragmentation mechanism, labelling experiments were performed. From the mass analysis of methylbenzyl azides isomers it was possible to differentiate the isomers ortho, meta and para. The abundance and nature of the ions resulting from the molecular ion fragmentation, for the three distinct isomers of substituted benzyl azides, were rationalized in terms of the electronic properties of the substituent. Concerning the para-isomer, IRC calculations were performed at UHF/6-31G(d) level. The photoionization study of benzyl azide, with He(I) radiation, revealed five bands in the 8-21 eV ionization energies region. From every photoelectron spectrum of methylbenzyl azides isomers it has been identified seven bands, on the same range as the benzyl azide. Interpretation of the photoelectron spectra was accomplished applying Koopmans' theorem to the SCF orbital energies obtained at HF/6-311++G(d, p) level.

  6. Spatially resolved spectroscopy on semiconductor nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Roessler, Johanna

    2009-02-20

    Cleared edge overgrowth (CEO) nanostructures are identified and studied by 1D und 2D {mu}PL mapping scans and by time-resolved and power-dependent measurements. Distinct excitonic ground states of 2fold CEO QDs with large localization energies are achieved. The deeper localization reached as compared to the only other report on 2fold CEO QDs in literature is attributed to a new strain-free fabrication process and changed QW thickness in [001] growth. In order to achieve controlled manipulation of 2fold CEO QDs the concept of a CEO structure with three top gates and one back gate is presented. Due to the complexity of this device, a simpler test structure is realized. Measurements on this test structure confirm the necessity to either grow significantly thicker overgrowth layers or to provide separate top gates in all three spatial direction to controllably manipulate 2fold CEO QDs with an external electric field. (orig.)

  7. Rotationally resolved electronic spectroscopy of 5-methoxyindole.

    Science.gov (United States)

    Brand, Christian; Oeltermann, Olivia; Pratt, David; Weinkauf, Rainer; Meerts, W Leo; van der Zande, Wim; Kleinermanns, Karl; Schmitt, Michael

    2010-07-14

    Rotationally resolved electronic spectra of the vibrationless origin and of eight vibronic bands of 5-methoxyindole (5MOI) have been measured and analyzed using an evolutionary strategy approach. The experimental results are compared to the results of ab initio calculations. All vibronic bands can be explained by absorption of a single conformer, which unambiguously has been shown to be the anti-conformer from its rotational constants and excitation energy. For both anti- and syn-conformers, a (1)L(a)/(1)L(b) gap larger than 4000 cm(-1) is calculated, making the vibronic coupling between both states very small, thereby explaining why the spectrum of 5MOI is very different from that of the parent molecule, indole.

  8. In situ SERS and X-ray photoelectron spectroscopy studies on the pH-dependant adsorption of anthraquinone-2-carboxylic acid on silver electrode

    Energy Technology Data Exchange (ETDEWEB)

    Li, Dan, E-mail: dany@sit.edu.cn [School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418 (China); Jia, Shaojie [School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418 (China); Fodjo, Essy Kouadio [Laboratory of Physical Chemistry, University Felix Houphouet Boigny, 22 BP 582, Abidjan 22, Cote d’Ivoire (Cote d' Ivoire); Xu, Hu [School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418 (China); Wang, Yuhong, E-mail: yuhong_wang502@sit.edu.cn [School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418 (China); Deng, Wei [School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418 (China)

    2016-03-30

    Graphical abstract: The orientation of anthraquinone-2-carboxylic acid (AQ-2-COOH) has been investigated by in situ surface-enhanced Raman scattering (in situ SERS) spectroelectrochemistry and angle-resolved X-ray photoelectron spectroscopy (AR-XPS) on silver surface. - Highlights: • The adsorption behavior of anthraquinone-2-carboxylic acid (AQ-2-COOH) on Ag electrode is influenced by the pH. • The pH-dependant adsorption of AQ-2-COOH has been confirmed by in situ surface-enhanced Raman scattering (in situ SERS) spectroelectrochemistry and angle-resolved X-ray photoelectron spectroscopy (AR-XPS). • The results can provide insights into electron transfer reactions of AQ-2-COOH in biological systems. - Abstract: In this study, in situ surface-enhanced Raman scattering (SERS) spectroelectrochemistry and angle-resolved X-ray photoelectron spectroscopy (AR-XPS) are used to investigate the redox reaction and adsorption behavior of anthraquinone-2-carboxylic acid (AQ-2-COOH) on an Ag electrode at different pH values. The obtained results indicate that AQ-2-COOH is adsorbed tilted on the Ag electrode through O-atom of ring carbonyl in a potential range from −0.3 to −0.5 V vs. SCE, but the orientation turns to more tilted orientation with both O-atom of the ring carbonyl and carboxylate group in positive potential region for pH 6.0 and 7.4. However, at pH 10.0, the orientation adopts tilted conformation constantly on the Ag electrode with both O-atom of the anthraquinone ring and carboxylate group in the potential range from −0.3 to −0.5 V vs. SCE or at positive potentials. Moreover, the adsorption behavior of AQ-2-COOH has been further confirmed by AR-XPS on the Ag surface. Proposed reasons for the observed changes in orientation are presented.

  9. Time-Resolved Spectroscopy in Complex Liquids An Experimental Perspective

    CERN Document Server

    Torre, Renato

    2007-01-01

    Time-Resolved Spectroscopy in Complex Liquids introduces current state-of-the-art techniques in the study of complex dynamical problems in liquid phases. With a unique focus on the experimental aspects applied to complex liquids, this volume provides an excellent overview into the quickly emerging field of soft-matter science. Researchers and engineers will find a comprehensive review of current non-linear spectroscopic and optical Kerr effect techniques, in addition to an in-depth look into relaxation dynamics in complex liquids. This volume offers current experimental findings in transient grating spectroscopy and their application to viscoelastic phenomena in glass-formers, dynamics of confined liquid-crystals, and a time-resolved analysis of the host-quest interactions of dye molecules in liquid-crystal matter. Time-Resolved Spectroscopy in Complex Liquids provides a cohesive introduction suitable for individuals involved in this emerging field, complete with the latest experimental procedures of complex ...

  10. Local resolved electrochemical impedance spectroscopy of PEFC single cells

    Energy Technology Data Exchange (ETDEWEB)

    Schulze, M.; Gulzow, E. [German Aerospace Center, Inst. of Technical Thermodynamics, Stuttgart (Germany)

    2009-07-01

    Experimental data on a spatial resolved level is needed to understand the integral behaviour of fuel cells as well as to validate models describing fuel cell behaviour. This paper described a new tool developed to increase the accuracy of current density measurements. Based on a printed circuit board, the tool integrated local electrochemical impedance spectroscopy techniques in order to determine local membrane resistance, electrochemical reactions, and transport processes. Solutions for locally resolved impedance spectroscopy measurements were presented. It was concluded that the tool will help to provide a more detailed understanding of fuel cell behaviour.

  11. A photoelectron spectroscopy study of the electronic structure evolution in CuInSe{sub 2}-related compounds at changing copper content

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsova, T. V.; Grebennikov, V. I. [Institute of Metal Physics, UB RAS, 620041 Ekaterinburg (Russian Federation); Zhao, H. [Department of Materials Science and Engineering, Royal Institute of Technology, SE-100 44 Stockholm (Sweden); Derks, C.; Taubitz, C.; Neumann, M. [University of Osnabrueck, D-49069 Osnabrueck (Germany); Persson, C. [Department of Materials Science and Engineering, Royal Institute of Technology, SE-100 44 Stockholm (Sweden); Department of Physics, University of Oslo, P.O. Box 1048 Blindern, NO-0316 Oslo (Norway); Kuznetsov, M. V. [Institute of Solid State Chemistry, UB RAS, 620990 Ekaterinburg (Russian Federation); Urals Federal University, 19 Mira Str., Ekaterinburg 620002 (Russian Federation); Bodnar, I. V. [Department of Chemistry, Belarusian State University of Informatics and Radioelectronics, P. Brovka 6, 220027 Minsk (Belarus); Martin, R. W.; Yakushev, M. V. [Department of Physics, SUPA, Strathclyde University, G4 0NG Glasgow (United Kingdom)

    2012-09-10

    Evolution of the valence-band structure at gradually increasing copper content has been analysed by x-ray photoelectron spectroscopy (XPS) in In{sub 2}Se{sub 3}, CuIn{sub 5}Se{sub 8}, CuIn{sub 3}Se{sub 5}, and CuInSe{sub 2} single crystals. A comparison of these spectra with calculated total and angular-momentum resolved density-of-states (DOS) revealed the main trends of this evolution. The formation of the theoretically predicted gap between the bonding and non-bonding states has been observed in both experimental XPS spectra and theoretical DOS.

  12. Harmonium: A pulse preserving source of monochromatic extreme ultraviolet (30–110 eV) radiation for ultrafast photoelectron spectroscopy of liquids

    OpenAIRE

    2016-01-01

    A tuneable repetition rate extreme ultraviolet source (Harmonium) for time resolved photoelectron spectroscopy of liquids is presented. High harmonic generation produces 30-110 eV photons, with fluxes ranging from similar to 2 x 10(11) photons/s at 36 eV to similar to 2 x 10(8) photons/s at 100 eV. Four different gratings in a time-preserving grating monochromator provide either high energy resolution (0.2 eV) or high temporal resolution (40 fs) between 30 and 110 eV. Laser assisted photoemis...

  13. Seventh international conference on time-resolved vibrational spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dyer, R.B.; Martinez, M.A.D.; Shreve, A.; Woodruff, W.H. [comps.

    1997-04-01

    The International Conference on Time-Resolved Vibrational Spectroscopy (TRVS) is widely recognized as the major international forum for the discussion of advances in this rapidly growing field. The 1995 conference was the seventh in a series that began at Lake Placid, New York, 1982. Santa Fe, New Mexico, was the site of the Seventh International Conference on Time-Resolved Vibrational Spectroscopy, held from June 11 to 16, 1995. TRVS-7 was attended by 157 participants from 16 countries and 85 institutions, and research ranging across the full breadth of the field of time-resolved vibrational spectroscopy was presented. Advances in both experimental capabilities for time-resolved vibrational measurements and in theoretical descriptions of time-resolved vibrational methods continue to occur, and several sessions of the conference were devoted to discussion of these advances and the associated new directions in TRVS. Continuing the interdisciplinary tradition of the TRVS meetings, applications of time-resolved vibrational methods to problems in physics, biology, materials science, and chemistry comprised a large portion of the papers presented at the conference.

  14. Electronic structure and thermal decomposition of 5-aminotetrazole studied by UV photoelectron spectroscopy and theoretical calculations

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, Rui M., E-mail: ruipinto@fct.unl.pt [CFA, Centro de Fisica Atomica, Departamento de Fisica, Faculdade de Ciencias e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Dias, Antonio A.; Costa, Maria L. [CFA, Centro de Fisica Atomica, Departamento de Fisica, Faculdade de Ciencias e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal)

    2011-03-18

    Graphical abstract: Gas-phase UV photoelectron spectrum of the thermal decomposition of 5-aminotetrazole (5ATZ), obtained at 245 {sup o}C, and mechanism underlying the thermal dissociation of 2H-5ATZ. Research highlights: {yields} Electronic structure of 5ATZ studied by photoelectron spectroscopy. {yields} Gas-phase 5-ATZ exists mainly as the 2H-tautomer. {yields} Thermal decomposition of 5ATZ gives N{sub 2}, NH{sub 2}CN, HN{sub 3} and HCN, at 245 {sup o}C. {yields} HCN can be originated from a carbene intermediate. - Abstract: The electronic properties and thermal decomposition of 5-aminotetrazole (5ATZ) are investigated using UV photoelectron spectroscopy (UVPES) and theoretical calculations. Simulated spectra of both 1H- and 2H-5ATZ, based on electron propagator methods, are produced in order to study the relative gas-phase tautomer population. The thermal decomposition results are rationalized in terms of intrinsic reaction coordinate (IRC) calculations. 5ATZ yields a HOMO ionization energy of 9.44 {+-} 0.04 eV and the gas-phase 5ATZ assumes mainly the 2H-form. The thermal decomposition of 5ATZ leads to the formation of N{sub 2}, HN{sub 3} and NH{sub 2}CN as the primary products, and HCN from the decomposition of a intermediate CH{sub 3}N{sub 3} compound. The reaction barriers for the formation of HN{sub 3} and N{sub 2} from 2H-5ATZ are predicted to be {approx}228 and {approx}150 kJ/mol, at the G2(MP2) level, respectively. The formation of HCN and HNNH from the thermal decomposition of a CH{sub 3}N{sub 3} carbene intermediate is also investigated.

  15. Probing the structures and chemical bonding of boron-boronyl clusters using photoelectron spectroscopy and computational chemistry: B4(BO)(n)- (n = 1-3).

    Science.gov (United States)

    Chen, Qiang; Zhai, Hua-Jin; Li, Si-Dian; Wang, Lai-Sheng

    2012-07-28

    The electronic and structural properties of a series of boron oxide clusters, B(5)O(-), B(6)O(2)(-), and B(7)O(3)(-), are studied using photoelectron spectroscopy and density functional calculations. Vibrationally resolved photoelectron spectra are obtained, yielding electron affinities of 3.45, 3.54, and 4.94 eV for the corresponding neutrals, B(5)O, B(6)O(2), and B(7)O(3), respectively. Structural optimizations show that these oxide clusters can be formulated as B(4)(BO)(n)(-) (n = 1-3), which involve boronyls coordinated to a planar rhombic B(4) cluster. Chemical bonding analyses indicate that the B(4)(BO)(n)(-) clusters are all aromatic species with two π electrons.

  16. Probing the structures and chemical bonding of boron-boronyl clusters using photoelectron spectroscopy and computational chemistry: B4(BO)n- (n = 1-3)

    Science.gov (United States)

    Chen, Qiang; Zhai, Hua-Jin; Li, Si-Dian; Wang, Lai-Sheng

    2012-07-01

    The electronic and structural properties of a series of boron oxide clusters, B5O-, B6O2-, and B7O3-, are studied using photoelectron spectroscopy and density functional calculations. Vibrationally resolved photoelectron spectra are obtained, yielding electron affinities of 3.45, 3.54, and 4.94 eV for the corresponding neutrals, B5O, B6O2, and B7O3, respectively. Structural optimizations show that these oxide clusters can be formulated as B4(BO)n- (n = 1-3), which involve boronyls coordinated to a planar rhombic B4 cluster. Chemical bonding analyses indicate that the B4(BO)n- clusters are all aromatic species with two π electrons.

  17. Functionalized tellurols: synthesis, spectroscopic characterization by photoelectron spectroscopy, and quantum chemical study.

    Science.gov (United States)

    Khater, Brahim; Guillemin, Jean-Claude; Bajor, Gábor; Veszprémi, Tamás

    2008-03-03

    Ethene-, cyclopropane-, 3-butene-, and cyclopropanemethanetellurol have been synthesized by reaction of tributyltin hydride with the corresponding ditellurides and characterized by 1H, 13C, and 125Te NMR spectroscopy and high-resolution mass spectrometry. The tellurols of this series, with a gradually increasing distance between the tellurium atom and the unsaturated group, have been studied by photoelectron spectroscopy and quantum chemical calculations. Two stable conformations of ethenetellurol and cyclopropanetellurol, five of allyltellurol, and four of cyclopropanemethanetellurol were found. In the photoelectron spectrum of vinyltellurol, the huge split between the first two bands indicates a direct interaction between the tellurium lone electron pair and the double bond. In the allyl derivative, a hyperconjugation effect was found for the most stable conformers. In contrast to the vinyl compounds, no direct interaction between the lone electron pair of X (X = O, S, Se, and Te) and the three-membered ring could be observed in the cyclopropyl derivatives. A hyperconjugation-like effect, which is independent of the relative orientation of the X-H group, is found to increase from S to Te. Thus, the type and extent of the interaction between the TeH group and an unsaturated or cyclopropyl moiety are clarified while the first comparison of interactions between the nonradioactive unsaturated chalcogen derivatives is performed.

  18. Time-resolved spectroscopy and imaging

    Science.gov (United States)

    Chance, Britton

    1995-05-01

    In response to the conference organizer's request, I am presenting a summary of the current status of medical optical imaging and spectroscopy. This is a topic which is advancing rapidly and on which there have been a number of conferences recently, and yet there has not been presented an overview of the field and some idea of what the advantages and disadvantages of the photon diffusion technology may be. Thus, this paper emphasizes diffusion waves for spectroscopy and imaging deep within the tissue and, at the same time, for providing specificity information of both absorption and scattering. In achieving this goal, I will not be able to cite all of the advantages of technologies that view the superficial layers of skin, retina, etc., on the one hand, nor those that measure the photons that have been scattered minimally on the transit between input and output. One of the main reasons for this is that specificity of the optical methods requires all of the information available: absorption and scattering of intrinsic signals naturally in the tissue, and of extrinsic signal due to contrast agents that have been artificially lodged in strategic tissue volumes. Since this paper is essentially the transcript of a lecture, it is not proposed as a topic review and does not contain full-scale bibliographic references, some of which may be found in a recent review elsewhere. This paper highlights what we all might accomplish in order to bring to bear with maximal effectiveness the optical method for altering the outcome of medical problems. I have not emphasized the mathematics of photon diffusion so well represented by the papers of this symposium volume. The achievable goals of the optical methods are to speed detection, improve diagnosis, guide therapy, and what appears in the minds of most, contribute to the improvement of medical economics. In order to fulfill these objectives, we will in the end have to demonstrate by lengthy and expensive clinical studies that the

  19. A photoelectron spectroscopic investigation of vinyl fluoride (C{sub 2}H{sub 3}F): the HeI, threshold and CIS photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Locht, R; Leyh, B [Laboratoire de Dynamique Moleculaire, Departement de Chimie, Institut de Chimie, Bat.B6c, Universite de Liege, Sart-Tilman par B-4000 Liege 1 (Belgium); Dehareng, D [Centre d' Ingenierie des Proteines, Institut de Chimie, Bat.B6a, Universite de Liege, Sart-Tilman par B-4000 Liege 1 (Belgium); Hottmann, K; Baumgaertel, H, E-mail: robert.locht@ulg.ac.b [Institut fuer Physikalische und Theoretische Chemie, Freie Universitaet Berlin, Takustrasse 3, D-14195 Berlin (Germany)

    2010-01-14

    The threshold photoelectron spectrum (TPES) and the constant ion state (CIS) spectra of the individual ionic states of C{sub 2}H{sub 3}F have been recorded using synchrotron radiation. For comparison a well-resolved HeI photoelectron spectrum (HeI-PES) has also been measured and analysed in detail. The TPES has been measured between 9.5 eV and 35 eV photon energy. Numerous vibrational structures, reported for the first time, observed in the ground state and the six excited states of the cation are analysed. Quantum chemical calculations have been performed and provide strong support to the assignments. State-selected CIS spectra highlighted the major importance of autoionization for the production of almost all ionized states of C{sub 2}H{sub 3}F observed in this work.

  20. Coherent Derivation of Equations for Differential Spectroscopy and Spatially Resolved Spectroscopy : An Undergraduate Tutorial

    NARCIS (Netherlands)

    Lindkvist, M.; Granasen, G.; Groenlund, C.

    2013-01-01

    Near-infrared spectroscopy (NIRS) is a spectroscopic method that is frequently used in health care and sports medicine to monitor oxygenation parameters in biological tissue. This tutorial provides a coherent derivation of equations for differential spectroscopy and spatially resolved spectroscopy,

  1. Coherent Derivation of Equations for Differential Spectroscopy and Spatially Resolved Spectroscopy : An Undergraduate Tutorial

    NARCIS (Netherlands)

    Lindkvist, M.; Granasen, G.; Groenlund, C.

    2013-01-01

    Near-infrared spectroscopy (NIRS) is a spectroscopic method that is frequently used in health care and sports medicine to monitor oxygenation parameters in biological tissue. This tutorial provides a coherent derivation of equations for differential spectroscopy and spatially resolved spectroscopy,

  2. Ultrafast time resolved vibrational spectroscopy in liquid systems

    Energy Technology Data Exchange (ETDEWEB)

    Seifert, G.; Hofmann, M.; Weidlich, K.; Graener, H. [Physics Institute, University of Bayreuth, D-95440 Bayreuth (Germany)

    1996-04-01

    The ultrafast dynamics of small molecules in the liquid phase can successfully be studied tracing the relaxation pathways of vibrational excess energy. Two complementing experimental techniques, picosecond IR double resonance spectroscopy and time resolved incoherent Anti-Stokes Raman spectroscopy, are very powerful tools for such studies. The capabilities of investigations combining these methods are discussed on the example of new experimental data on liquid dichloromethane (CH{sub 2}Cl{sub 2}). {copyright} {ital 1996 American Institute of Physics.}

  3. A Study on the Structure and Photodetachment Dynamics of Copper Based Molecular Anions Using Photoelectron Spectroscopy

    Science.gov (United States)

    Holtgrewe, Nicholas Stephen

    This dissertation represents a study of the effects of electron molecule interactions in the detachment and dissociation dynamics of copper based molecular anions. Results are presented on the photodetachment of small copper oxide CuOn-- (n = 1, 2) and copper fluoride CuFn-- (n = 1, 2) molecular anions. Effects of different resonances are explored using the photoelectron angular distributions (PADs) and the relative intensity variations in vibrational channel cross sections. The specific resonances studied include dipole bound resonances, in which the electric dipole moment of the neutral molecule captures the outgoing electron, and electronic Feshbach resonances, in which the anion undergoes absorption to an excited anion state (lying energetically above the neutral) followed by relaxation via autodetachment into the electronic continuum. In addition to electron scattering resonances, the effects of dissociation dynamics on linear CuO2-- are studied, wherein the linear anion isomer was found to dissociate to Cu-- fragments. This dissociation process is interpreted with experimental data acquired from nanosecond photoelectron images and a femtosecond time resolved study.

  4. Time-resolved vibrational spectroscopy of a molecular shuttle

    NARCIS (Netherlands)

    Panman, M.R.; Bodis, P.; Shaw, D.J.; Bakker, B.H.; Newton, A.C.; Kay, E.R.; Leigh, D.A.; Buma, W.J.; Brouwer, A.M.; Woutersen, S.

    2012-01-01

    Time-resolved vibrational spectroscopy is used to investigate the inter-component motion of an ultraviolet-triggered two-station molecular shuttle. The operation cycle of this molecular shuttle involves several intermediate species, which are observable in the amide I and amide II regions of the mid

  5. Time-resolved terahertz spectroscopy of black silicon

    DEFF Research Database (Denmark)

    Porte, Henrik; Turchinovich, Dmitry; Jepsen, Peter Uhd;

    2010-01-01

    The ultrafast photoconductivity dynamics of black silicon is measured by time-resolved terahertz spectroscopy. Black silicon is produced by laser annealing of an a-Si:H film. We show that the decay time of the photoconductivity depends on the annealing method and fluence used in the production...

  6. Time-resolved photoelectron imaging of the iodide-thymine and iodide-uracil binary cluster systems.

    Science.gov (United States)

    King, Sarah B; Yandell, Margaret A; Neumark, Daniel M

    2013-01-01

    The energetics and dynamics of thymine and uracil transient negative ions were examined using femtosecond time-resolved photoelectron imaging. The vertical detachment energies (VDEs) of these systems were found to be 4.05 eV and 4.11 eV for iodide-thymine (I(-) x T) and iodide-uracil (I(-) x U) clusters, respectively. An ultraviolet pump pulse was used to promote intracluster charge transfer from iodide to the nucleobase. Subsequent electron detachment using an infrared probe pulse monitored the dynamics of the resulting transient negative ion. Photoelectron spectra reveal two primary features: a near-zero electron kinetic energy signal attributed to autodetachment and a transient feature representing photodetachment from the excited anion state. The transient state exhibits biexponential decay in both thymine and uracil complexes with short and long decay time constants ranging from 150-600 fs and 1-50 ps, respectively, depending on the excitation energy. However, both time constants are systematically shorter for I(-) x T. Vibrational autodetachment and iodine loss are identified as the primary decay mechanisms of the transient negative ions of thymine and uracil.

  7. Ambient pressure photoelectron spectroscopy: a new tool for surface science and nanotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Salmeron, Miquel; Salmeron, Miquel; Schlogl, Robert

    2008-03-12

    Progress in science often follows or parallels the development of new techniques. The optical microscope helped convert medicine and biology from a speculative activity in old times to today's sophisticated scientific disciplines. The telescope changed the study and interpretation of heavens from mythology to science. X-ray diffraction enabled the flourishing of solid state physics and materials science. The technique object of this review, Ambient Pressure Photoelectron Spectroscopy or APPES for short, has also the potential of producing dramatic changes in the study of liquid and solid surfaces, particularly in areas such as atmospheric, environment and catalysis sciences. APPES adds an important missing element to the host of techniques that give fundamental information, i.e., spectroscopy and microscopy, about surfaces in the presence of gases and vapors, as encountered in industrial catalysis and atmospheric environments. APPES brings electron spectroscopy into the realm of techniques that can be used in practical environments. Decades of surface science in ultra high vacuum (UHV) has shown the power of electron spectroscopy in its various manifestations. Their unique property is the extremely short elastic mean free path of electrons as they travel through condensed matter, of the order of a few atomic distances in the energy range from a few eV to a few thousand eV. As a consequence of this the information obtained by analyzing electrons emitted or scattered from a surface refers to the top first few atomic layers, which is what surface science is all about. Low energy electron diffraction (LEED), Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), Ultraviolet photoelectron spectroscopy (UPS), and other such techniques have been used for decades and provided some of the most fundamental knowledge about surface crystallography, composition and electronic structure available today. Unfortunately the high interaction cross section of

  8. Dealloying of Cu{sub x}Au studied by hard X-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Rajput, Parasmani, E-mail: parasmani.rajput@northwestern.edu [European Synchrotron Radiation Facility, 6 rue Jules Horowitz, F-38043 Grenoble (France); Gupta, Ajay [UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore 452 017 (India); Detlefs, Blanka [European Synchrotron Radiation Facility, 6 rue Jules Horowitz, F-38043 Grenoble (France); Kolb, Dieter M. [Institute for Electrochemistry, University of Ulm, D-89069 Ulm (Germany); Potdar, Satish [UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore 452 017 (India); Zegenhagen, Jörg [European Synchrotron Radiation Facility, 6 rue Jules Horowitz, F-38043 Grenoble (France)

    2013-10-15

    Highlights: ► The shift in binding energy of Cu and Au lines in CuAu alloys is opposite to expected from the nobility of the elements. ► The magnitude of the chemical shifts of the metal lines in CuAu alloys is strongly influenced by finite size effects and disorder. ► Cu 3s and/or Au 4f cross-sections are not well described by theory (Scofield). The Cu 3s photoabsorption cross-section seems to be strongly overestimated. ► We find/confirm that (CuAu) dealloying proceeds into depth like a spinodal decomposition. -- Abstract: We studied pristine and leached ultra-thin Cu{sub x}Au (x ≈ 4) films by hard X-ray photoelectron spectroscopy. The Au 4f and Cu 3s core levels show a shift in binding energy which is opposite to expected from the nobility of the elements, which is explained by charge transfer involving differently screening s and d valence levels of the elements [W. Eberhardt, S.C. Wu, R. Garrett, D. Sondericker, F. Jona, Phys. Rev. B 31 (1985) 8285]. The magnitude of the chemical shifts of the metal lines is strongly influenced by the finite size and disorder of the films. Angular dependent photoelectron emission allowed to assess the alloy composition as a function of depth larger than 5 nm. The potential controlled dealloying proceeds into depth like a spinodal decomposition with Cu going into solution and the remaining Au accumulating in the surface region. The compositional gradient did not lead to a significant broadening of the metal photoelectron lines suggesting a non-local screening mechanism.

  9. Atomic and Molecular Photoelectron and Auger Electron SpectroscopyStudies Using Synchrotron Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Southworth, Stephen H.

    1982-01-01

    Electron spectroscopy, combined with synchrotron radiation, was used to measure the angular distributions of photoelectrons and Auger electrons from atoms and molecules as functions of photon energy. The branching ratios and partial cross sections were a 130 measured in certain cases. By comparison with theoretical calculations, the experimental results are interpreted in terms of the characteristic electronic structure and ionization dynamics of the atomic or molecular sample. The time structure of the synchrotron radiation source was used to record time-of-flight (TOF) spectra o f the ejected electrons. The ''a double-angle-TOF'' method for the measurement of photoelectron angular distributions is discussed. This technique offers the advantages of increased electron collect ion efficiency and the elimination of certain systematic errors. Several results were obtained for Xe using photon energies in the range hv {approx_equal} 60-190 eV, where excitation and ionization of the inner-subshell 4d electrons dominates. The 4d asymmetry parameter {beta} exhibits strong oscillations with energy, in agreement with several theoretical calculations. As predicted, the 5p asymmetry parameter was observed to deviate strongly from that calculated using the independent-electron model, due to intershell correlation with the 4d electrons.

  10. Conformation-Selective Resonant Photoelectron Spectroscopy via Dipole-Bound States of Cold Anions.

    Science.gov (United States)

    Huang, Dao-Ling; Liu, Hong-Tao; Ning, Chuan-Gang; Wang, Lai-Sheng

    2015-06-18

    Molecular conformation is important in chemistry and biochemistry. Conformers connected by low energy barriers can only be observed at low temperatures and are difficult to be separated. Here we report a new method to obtain conformation-selective spectroscopic information about dipolar molecular radicals via dipole-bound excited states of the corresponding anions cooled in a cryogenic ion trap. We observed two conformers of cold 3-hydroxyphenoxide anions [m-HO(C6H4)O(-)] in high-resolution photoelectron spectroscopy and measured different electron affinities, 18,850(8) and 18,917(5) cm(-1), for the syn and anti 3-hydroxyphenoxy radicals, respectively. We also observed dipole-bound excited states for m-HO(C6H4)O(-) with different binding energies for the two conformers due to the different dipole moments of the corresponding 3-hydroxyphenoxy radicals. Excitations to selected vibrational levels of the dipole-bound states result in conformation-selective photoelectron spectra. This method should be applicable to conformation-selective spectroscopic studies of any anions with dipolar neutral cores.

  11. X-ray photoelectron spectroscopy of graphitic carbon nanomaterials doped with heteroatoms

    Directory of Open Access Journals (Sweden)

    Toma Susi

    2015-01-01

    Full Text Available X-ray photoelectron spectroscopy (XPS is one of the best tools for studying the chemical modification of surfaces, and in particular the distribution and bonding of heteroatom dopants in carbon nanomaterials such as graphene and carbon nanotubes. Although these materials have superb intrinsic properties, these often need to be modified in a controlled way for specific applications. Towards this aim, the most studied dopants are neighbors to carbon in the periodic table, nitrogen and boron, with phosphorus starting to emerge as an interesting new alternative. Hundreds of studies have used XPS for analyzing the concentration and bonding of dopants in various materials. Although the majority of works has concentrated on nitrogen, important work is still ongoing to identify its precise atomic bonding configurations. In general, care should be taken in the preparation of a suitable sample, consideration of the intrinsic photoemission response of the material in question, and the appropriate spectral analysis. If this is not the case, incorrect conclusions can easily be drawn, especially in the assignment of measured binding energies into specific atomic configurations. Starting from the characteristics of pristine materials, this review provides a practical guide for interpreting X-ray photoelectron spectra of doped graphitic carbon nanomaterials, and a reference for their binding energies that are vital for compositional analysis via XPS.

  12. X-ray photoelectron spectroscopy of graphitic carbon nanomaterials doped with heteroatoms.

    Science.gov (United States)

    Susi, Toma; Pichler, Thomas; Ayala, Paola

    2015-01-01

    X-ray photoelectron spectroscopy (XPS) is one of the best tools for studying the chemical modification of surfaces, and in particular the distribution and bonding of heteroatom dopants in carbon nanomaterials such as graphene and carbon nanotubes. Although these materials have superb intrinsic properties, these often need to be modified in a controlled way for specific applications. Towards this aim, the most studied dopants are neighbors to carbon in the periodic table, nitrogen and boron, with phosphorus starting to emerge as an interesting new alternative. Hundreds of studies have used XPS for analyzing the concentration and bonding of dopants in various materials. Although the majority of works has concentrated on nitrogen, important work is still ongoing to identify its precise atomic bonding configurations. In general, care should be taken in the preparation of a suitable sample, consideration of the intrinsic photoemission response of the material in question, and the appropriate spectral analysis. If this is not the case, incorrect conclusions can easily be drawn, especially in the assignment of measured binding energies into specific atomic configurations. Starting from the characteristics of pristine materials, this review provides a practical guide for interpreting X-ray photoelectron spectra of doped graphitic carbon nanomaterials, and a reference for their binding energies that are vital for compositional analysis via XPS.

  13. Ambient-Pressure X-ray Photoelectron Spectroscopy through Electron Transparent Graphene Membranes

    CERN Document Server

    Kraus, Jurgen; Gunther, Sebastian; Gregoratti, Luca; Amati, Matteo; Kiskinova, Maya; Yulaev, Alexander; Vlassiouk, Ivan; Kolmakov, Andrei

    2014-01-01

    Photoelectron spectroscopy (PES) and microscopy are highly demanded for exploring morphologically complex solid-gas and solid-liquid interfaces under realistic conditions, but the very small electron mean free path inside the dense media imposes serious experimental challenges. Currently, near ambient pressure PES is conducted using sophisticated and expensive electron energy analyzers coupled with differentially pumped electron lenses. An alternative economical approach proposed in this report uses ultrathin graphene membranes to isolate the ambient sample environment from the PES detection system. We demonstrate that the graphene membrane separating windows are both mechanically robust and sufficiently transparent for electrons in a wide energy range to allow PES of liquid and gaseous water. The reported proof-of-principle experiments also open a principal possibility to probe vacuum-incompatible toxic or reactive samples enclosed inside the hermetic environmental cells.

  14. Probing electronic properties of molecular engineered zinc oxide nanowires with photoelectron spectroscopy.

    Science.gov (United States)

    Aguilar, Carlos A; Haight, Richard; Mavrokefalos, Anastassios; Korgel, Brian A; Chen, Shaochen

    2009-10-27

    ZnO nanowires (NWs) are emerging as key elements for new lasing, photovoltaic and sensing applications but elucidation of their fundamental electronic properties has been hampered by a dearth of characterization tools capable of probing single nanowires. Herein, ZnO NWs were synthesized in solution and integrated into a low energy photoelectron spectroscopy system, where quantitative optical measurements of the NW work function and Fermi level location within the band gap were collected. Next, the NWs were decorated with several dipolar self-assembled monolayers (SAMs) and control over the electronic properties is demonstrated, yielding a completely tunable hybrid electronic material. Using this new metrology approach, a host of other extraordinary interfacial phenomena could be explored on nanowires such as spatial dopant profiling or heterostructures.

  15. Thermal oxidation of vanadium-free Ti alloys: An X-ray photoelectron spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Maria Francisca, E-mail: mflopez@icmm.csic.es [Department of Surfaces and Coatings, ICMM-CSIC, Sor Juana Ines de la Cruz, 3, Cantoblanco, 28049 Madrid (Spain); Gutierrez, Alejandro [Departamento de Fisica Aplicada and Instituto Nicolas Cabrera, Universidad Autonoma de Madrid, Cantoblanco, E-28049 Madrid (Spain); Jimenez, Jose Antonio [Centro Nacional de Investigaciones Metalurgicas, CSIC, Avda. Gregorio del Amo 8, E-28040 Madrid (Spain); Martinesi, Maria; Stio, Maria; Treves, Cristina [Department of Biochemical Sciences of University of Florence, Viale Morgagni 50, 50134 Florence (Italy)

    2010-04-06

    In the present work, X-ray photoelectron spectroscopy (XPS) was used to study the surface chemical composition of three alloys for biomedical applications: Ti-7Nb-6Al, Ti-13Nb-13Zr and Ti-15Zr-4Nb. The surface of these alloys was modified by annealing in air at 750 deg. C for different times with the aim of developing an oxide thick layer on top. The evolution of surface composition with annealing time was studied by XPS, and compared with the composition of the native oxide layer present on the samples before annealing. Two different oxidation trends were observed depending on the alloying elements and their corresponding diffusion kinetics, which give rise to different chemical species at the topmost layers. These results were linked with an evaluation of the biological response of the alloys by bringing them in contact with human peripheral blood mononuclear cells (PBMC).

  16. Materials characterization by photoelectron spectroscopy; Caracterizacao de materiais por espectroscopia de fotoeletrons

    Energy Technology Data Exchange (ETDEWEB)

    Nascente, P.A.P., E-mail: nascente@ufscar.b [Universidade Federal de Sao Carlos (DEMa/UFSCar), SP (Brazil). Dept. de Engenharia de Materiais

    2010-07-01

    Low energy electrons are suitable for investigating surfaces due to their low mean free path in solids, which correspond to a few atomic layers (0.5 to 3.0 nm), and could be used in one of the following ways: incident electrons cause the emission of backscattered and secondary electrons and the electrons are excited by irradiated photons. The first case includes the emission of Auger electrons, while photoemission corresponds to the second case. X-ray photoelectron spectroscopy (XPS) is one of the most used surface analysis techniques since it is able to identify not only the surface constituents but also their chemical states. XPS can be employed in several areas of science and engineering, but in this report it will be presented only few examples of its use in the characterization of metallic materials, with an emphasis on thin films of noble and transition metals. (author)

  17. Photodissociation and charge transfer dynamics of negative ions studied with femtosecond photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zanni, Martin Thomas [Univ. of California, Berkeley, CA (United States)

    1999-12-01

    This dissertation presents studies aimed at understanding the potential energy surfaces and dynamics of isolated negative ions, and the effects of solvent on each. Although negative ions play important roles in atmospheric and solution phase chemistry, to a large extent the ground and excited state potential energy surfaces of gas phase negative ions are poorly characterized, and solvent effects even less well understood. In an effort to fill this gap, the author's coworkers and the author have developed a new technique, anion femtosecond photoelectron spectroscopy, and applied it to gas phase photodissociation and charge transfer processes. Studies are presented that (1) characterize the ground and excited states of isolated and clustered anions, (2) monitor the photodissociation dynamics of isolated and clustered anions, and (3) explore the charge-transfer-to-solvent states of atomic iodide clustered with polar and non-polar solvents.

  18. [Surface and interface analysis of PTCDA/ITO using X-ray photoelectron spectroscopy (XPS)].

    Science.gov (United States)

    Ou, Gu-ping; Song, Zhen; Gui, Wen-ming; Zhang, Fu-jia

    2006-04-01

    X-ray photoelectron spectroscopy (XPS) of surface and interface of PTCDA/ITO in PTCDA/p-Si organic-on-inorganic photoelectric detector was investigated. From C1s fine spectrum we found that the binding energy of C atoms in perylene rings was 284.6 eV; and the binding energy of C atoms in acid radical was 288.7 eV; moreover, some C atoms were oxidized by O atoms from ITO. The binding energy of O atoms in C=O bonds and C-O-C bonds was 531.5 and 533.4 eV, respectively. At the interface, the peak of high binding energy in C1s spectrum disappeared, and the main peak shifted toward lower binding energy.

  19. Structures of cycloserine and 2-oxazolidinone probed by X-ray photoelectron spectroscopy

    CERN Document Server

    Ahmed, Marawan; Acres, Robert G; Prince, Kevin C

    2013-01-01

    The electronic structures and properties of 2-oxazolidinone and the related compound cycloserine (CS) have been investigated using core and valence photoelectron spectroscopy and theoretical calculations. Isomerization of the central oxazolidine heterocycle and the addition of an amino group yields cycloserine. Theory correctly predicts the C, N and O 1s core spectra, and additionally we report theoretical natural bond orbital (NBO) charges. The valence ionization energies are also in agreement with theory and previous measurements. Although the lowest binding energy part of the spectra of the two compounds show superficial similarities, analysis of the charge densities of the frontier orbitals indicates substantial reorganization of the wave functions as a result of isomerization. The Highest Occupied Molecular Orbital of CS has leading carbonyl {\\pi} character with contributions from other heavy atoms in the molecule, while the Highest Occupied Molecular Orbital of 2-oxazolidinone has leading nitrogen, carb...

  20. Photodissociation and charge transfer dynamics of negative ions studied with femtosecond photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zanni, Martin T.

    1999-12-17

    This dissertation presents studies aimed at understanding the potential energy surfaces and dynamics of isolated negative ions, and the effects of solvent on each. Although negative ions play important roles in atmospheric and solution phase chemistry, to a large extent the ground and excited state potential energy surfaces of gas phase negative ions are poorly characterized, and solvent effects even less well understood. In an effort to fill this gap, the author's coworkers and the author have developed a new technique, anion femtosecond photoelectron spectroscopy, and applied it to gas phase photodissociation and charge transfer processes. Studies are presented that (1) characterize the ground and excited states of isolated and clustered anions, (2) monitor the photodissociation dynamics of isolated and clustered anions, and (3) explore the charge-transfer-to-solvent states of atomic iodide clustered with polar and non-polar solvents.

  1. Coincidence and covariance data acquisition in photoelectron and -ion spectroscopy. II. Analysis and applications

    Science.gov (United States)

    Mikosch, Jochen; Patchkovskii, Serguei

    2013-10-01

    We use an analytical theory of noisy Poisson processes, developed in the preceding companion publication, to compare coincidence and covariance measurement approaches in photoelectron and -ion spectroscopy. For non-unit detection efficiencies, coincidence data acquisition (DAQ) suffers from false coincidences. The rate of false coincidences grows quadratically with the rate of elementary ionization events. To minimize false coincidences for rare event outcomes, very low event rates may hence be required. Coincidence measurements exhibit high tolerance to noise introduced by unstable experimental conditions. Covariance DAQ on the other hand is free of systematic errors as long as stable experimental conditions are maintained. In the presence of noise, all channels in a covariance measurement become correlated. Under favourable conditions, covariance DAQ may allow orders of magnitude reduction in measurement times. Finally, we use experimental data for strong-field ionization of 1,3-butadiene to illustrate how fluctuations in experimental conditions can contaminate a covariance measurement, and how such contamination can be detected.

  2. Determination of band profiles in GaN films using hard X-ray photoelectron spectroscopy

    Science.gov (United States)

    Saito, Shinji; Yoshiki, Masahiko; Nunoue, Shinya; Sano, Nobuyuki

    2017-02-01

    We investigated band-profile control by introducing interlayers between a semiconductor and metal contact layers to improve the electrical properties of GaN-based semiconductor devices. We evaluated the electronic structure of the semiconductor surface and the metal/semiconductor interface by hard X-ray photoelectron spectroscopy. We also performed Monte Carlo simulations using the Boltzmann transport equation under the potential profile obtained using the Poisson equation. The band profile in the semiconductor substrate was then examined by comparing the energy spectra from the simulations with those from the experiments. We obtained good agreement between the two results. The present experimental and theoretical methods allow one to determine the band profile near the surface of a semiconductor as well as that in a metal interface. This approach may become a useful tool in the design and/or evaluation of processing conditions.

  3. X-ray photoelectron spectroscopy study of excimer laser treated alumina films

    Science.gov (United States)

    Georgiev, D. G.; Kolev, K.; Laude, L. D.; Mednikarov, B.; Starbov, N.

    1998-01-01

    Amorphous alumina layers are deposited on a single crystal Si substrate by a e-gun evaporation technique. These films are then thermally annealed in oxygen to be crystallized and, further, irradiated with an excimer laser beam. At each stage of the film preparation, an x-ray photoelectron spectroscopy analysis is performed at the film surface and in depth, upon ion beam grinding. Results give evidence for the formation of an aluminosilicate upon thermal annealing of the film in oxygen. At the surface itself, this compound is observed to decompose upon excimer laser irradiation at energy densities exceeding 1.75 J/cm2, giving rise to free Si atoms and SiO2, however with complete disappearance of Al atoms. Model photochemical reactions are proposed to explain such transformations.

  4. X-Ray Laser Induced Photoelectron Spectroscopy for Single-State Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, A J; Dunn, J; van Buuren, T; Hunter, J

    2004-07-14

    We demonstrate single-shot x-ray laser induced time-of-flight photoelectron spectroscopy on metal and semiconductor surfaces with picosecond time resolution. The LLNL COMET compact tabletop x-ray laser source provides the necessary high photon flux (>10{sup 12}/pulse), monochromaticity, picosecond pulse duration, and coherence for probing ultrafast changes in the chemical and electronic structure of these materials. Static valence band and shallow core-level photoemission spectra are presented for ambient temperature polycrystalline Cu foils and Ge(100). Surface contamination was removed by UV ozone cleaning prior to analysis. The ultrafast nature of this technique lends itself to true single-state measurements of shocked and heated materials.

  5. Self-assembled heterogeneous argon/neon core-shell clusters studied by photoelectron spectroscopy.

    Science.gov (United States)

    Lundwall, M; Pokapanich, W; Bergersen, H; Lindblad, A; Rander, T; Ohrwall, G; Tchaplyguine, M; Barth, S; Hergenhahn, U; Svensson, S; Björneholm, O

    2007-06-01

    Clusters formed by a coexpansion process of argon and neon have been studied using synchrotron radiation. Electrons from interatomic Coulombic decay as well as ultraviolet and x-ray photoelectron spectroscopy were used to determine the heterogeneous nature of the clusters and the cluster structure. Binary clusters of argon and neon produced by coexpansion are shown to exhibit a core-shell structure placing argon in the core and neon in the outer shells. Furthermore, the authors show that 2 ML of neon on the argon core is sufficient for neon valence band formation resembling the neon solid. For 1 ML of neon the authors observe a bandwidth narrowing to about half of the bulk value.

  6. Study of radicals, clusters and transition state species by anion photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, D.W.

    1994-08-01

    Free radicals, elemental and van der Waals clusters and transition state species for bimolecular chemical reactions are investigated using anion photoelectron spectroscopy. Several low-lying electronic states of ozone have been identified via photoelectron spectroscopy of O{sub 3}{sup {minus}}. A characterization of these states is important to models for atmospheric ozone reaction kinetics. The fluoroformyloxyl radical, FCO{sub 2}, has been investigated, providing vibrational frequencies and energies for two electronic states. The technique has also been employed to make the first direct observation and characterization of the NNO{sub 2} molecule. Several electronic states are observed for this species which is believed to play a role as a reactive intermediate in the N + NO{sub 2} reaction. The experimental results for all three of these radicals are supplemented by ab initio investigations of their molecular properties. The clusters investigations include studies of elemental carbon clusters (C{sub 2}{sup {minus}} {minus} C{sub 11}{sup {minus}}), and van der Waals clusters (X{sup {minus}}(CO{sub 2}){sub n}, X = I, Br, Cl; n {le} 13 and I{sup {minus}} (N{sub 2}O){sub n=1--11}). Primarily linear clusters are observed for the smaller carbon clusters, while the spectra of the larger clusters contain contribution from cyclic anion photodetachment. Very interesting ion-solvent interactions are observed in the X{sup {minus}}(CO{sub 2})n clusters. The transition state regions for several bimolecular chemical reactions have also been investigated by photodetachment of a negative ion precursor possessing a geometry similar to that of the transition state species. These spectra show features which are assigned to motions of the unstable neutral complex existing between reactants and products.

  7. High resolution photoelectron spectroscopy and femtosecond intramolecular dynamics using supersonic molecular beams

    Energy Technology Data Exchange (ETDEWEB)

    Niu, B.

    1992-09-01

    High resolution He I[alpha] photoelectron spectroscopy of formaldehyde and ketene and their deuterated compounds, are reported. The combination of a (H2CO) double-pass high-resolution electron-energy analyzer and effective rotational cooling of the sample by supersonic expansion enable the spectroscopy of these molecular cations. The vibrational autocorrelation functions are calculated from the high-resolution photoelectron spectra, shedding light on the ultrafast intramolecular dynamics of the molecular cations. This study reveals much more vibrational structural detail in the first electronic excited state of H2CO cations. The first electronic excited state of H2CO cations may have nonplanar equilibrium geometry. Strong isotope effects on vibronic (vibrational) coupling are observed in the second electronic excited state of H2CO. Vibrational autocorrelation functions are calculated for all four observed electronic states of H2CO. The correlation function of the first electronic excited state of H2CO shows a slow decay rate on the femtosecond time scale. The ultrafast decay of the H2CO cations in the third electronic excited state implies that dissociation and intramolecular processes are the main decay pathways. The present spectra of the ground states of ketene cations have more fine structure than before. The AIEs of the first and fifth excited states are determined unambiguously more accurately. The doublet-like fine structures present in the lint excited state of ketene implies the excitation of a soft'' mode not observed before. The vibrational autocorrelation functions are calculated for 4 of the 6 observed electronic states. The dynamics of the ground states of the cations are characterized by a wave packet oscillating with small amplitude around the minimum on the upper PES. The decay dynamics of the first and the fifth excited states of ketene are characterized by ultra-fast intramolecular processes like predissociation.

  8. High resolution photoelectron spectroscopy and femtosecond intramolecular dynamics using supersonic molecular beams

    Energy Technology Data Exchange (ETDEWEB)

    Niu, B.

    1992-09-01

    High resolution He I{alpha} photoelectron spectroscopy of formaldehyde and ketene and their deuterated compounds, are reported. The combination of a (H2CO) double-pass high-resolution electron-energy analyzer and effective rotational cooling of the sample by supersonic expansion enable the spectroscopy of these molecular cations. The vibrational autocorrelation functions are calculated from the high-resolution photoelectron spectra, shedding light on the ultrafast intramolecular dynamics of the molecular cations. This study reveals much more vibrational structural detail in the first electronic excited state of H2CO cations. The first electronic excited state of H2CO cations may have nonplanar equilibrium geometry. Strong isotope effects on vibronic (vibrational) coupling are observed in the second electronic excited state of H2CO. Vibrational autocorrelation functions are calculated for all four observed electronic states of H2CO. The correlation function of the first electronic excited state of H2CO shows a slow decay rate on the femtosecond time scale. The ultrafast decay of the H2CO cations in the third electronic excited state implies that dissociation and intramolecular processes are the main decay pathways. The present spectra of the ground states of ketene cations have more fine structure than before. The AIEs of the first and fifth excited states are determined unambiguously more accurately. The doublet-like fine structures present in the lint excited state of ketene implies the excitation of a ``soft`` mode not observed before. The vibrational autocorrelation functions are calculated for 4 of the 6 observed electronic states. The dynamics of the ground states of the cations are characterized by a wave packet oscillating with small amplitude around the minimum on the upper PES. The decay dynamics of the first and the fifth excited states of ketene are characterized by ultra-fast intramolecular processes like predissociation.

  9. Study of radicals, clusters and transition state species by anion photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, Don Wesley [Univ. of California, Berkeley, CA (United States)

    1994-08-01

    Free radicals, elemental and van der Waals clusters and transition state species for bimolecular chemical reactions are investigated using anion photoelectron spectroscopy. Several low-lying electronic states of ozone have been identified via photoelectron spectroscopy of O3-. A characterization of these states is important to models for atmospheric ozone reaction kinetics. The fluoroformyloxyl radical, FCO2, has been investigated, providing vibrational frequencies and energies for two electronic states. The technique has also been employed to make the first direct observation and characterization of the NNO2 molecule. Several electronic states are observed for this species which is believed to play a role as a reactive intermediate in the N + NO2 reaction. The experimental results for all three of these radicals are supplemented by ab initio investigations of their molecular properties. The clusters investigations include studies of elemental carbon clusters (C2- - C11-), and van der Waals clusters (X-(CO2)n, X = I, Br, Cl; n {le} 13 and I- (N2O)n=1--11). Primarily linear clusters are observed for the smaller carbon clusters, while the spectra of the larger clusters contain contribution from cyclic anion photodetachment. Very interesting ion-solvent interactions are observed in the X-(CO2)n clusters. The transition state regions for several bimolecular chemical reactions have also been investigated by photodetachment of a negative ion precursor possessing a geometry similar to that of the transition state species. These spectra show features which are assigned to motions of the unstable neutral complex existing between reactants and products.

  10. Band alignment of HfO{sub 2}/AlN heterojunction investigated by X-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Gang [School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Wang, Hong, E-mail: ewanghong@ntu.edu.sg [School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); CNRS-International-NTU-THALES Research Alliances/UMI 3288, 50 Nanyang Drive, Singapore 637553 (Singapore); Ji, Rong [Data Storage Institute, Agency for Science Technology and Research (A-STAR), Singapore 117608 (Singapore)

    2016-04-18

    The band alignment between AlN and Atomic-Layer-Deposited (ALD) HfO{sub 2} was determined by X-ray photoelectron spectroscopy (XPS). The shift of Al 2p core-levels to lower binding energies with the decrease of take-off angles θ indicated upward band bending occurred at the AlN surface. Based on the angle-resolved XPS measurements combined with numerical calculations, valence band discontinuity ΔE{sub V} of 0.4 ± 0.2 eV at HfO{sub 2}/AlN interface was determined by taking AlN surface band bending into account. By taking the band gap of HfO{sub 2} and AlN as 5.8 eV and 6.2 eV, respectively, a type-II band line-up was found between HfO{sub 2} and AlN.

  11. Development of a high resolution laser based angle-resolving time-of-flight photoelectron spectrometer

    CERN Document Server

    Berntsen, M H; Tjernberg, O

    2011-01-01

    We present the design and performance of a novel Laser-based Angle-Resolving Time-of-Flight (LARTOF) system for photoemission from solids in the vacuum ultraviolet (VUV) energy range. A pulsed laser provides photons which through a third harmonic generation (THG) process performed in a xenon filled gas cell generates VUV photons of energy 10.5 eV. The time-of-flight analyzer is able to collect all electrons that are emitted from the sample within a circular cone of up to +/-15 degrees. By simultaneously measuring the energy and emission angle along two spatial directions for the electrons the analyzer provides three-dimensional detection capability. Data from a test measurement performed on the Au(111) surface state is presented along with some more advanced measurements of the Fermi surface of the high-temperature superconductor Bi2212.

  12. UV-Raman spectroscopy, X-ray photoelectron spectroscopy, and temperature programmed desorption studies of model and bulk heterogeneous catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Tewell, Craig R.

    2002-08-19

    X-ray photoelectron spectroscopy (XPS) and Temperature Programmed Desorption (TPD) have been used to investigate the surface structure of model heterogeneous catalysts in ultra-high vacuum (UHV). UV-Raman spectroscopy has been used to probe the structure of bulk model catalysts in ambient and reaction conditions. The structural information obtained through UV-Raman spectroscopy has been correlated with both the UHV surface analysis and reaction results. The present day propylene and ethylene polymerization catalysts (Ziegler-Natta catalysts) are prepared by deposition of TiCl{sub 4} and a Al(Et){sub 3} co-catalyst on a microporous Mg-ethoxide support that is prepared from MgCl{sub 2} and ethanol. A model thin film catalyst is prepared by depositing metallic Mg on a Au foil in a UHV chamber in a background of TiCl{sub 4} in the gas phase. XPS results indicate that the Mg is completely oxidized to MgCl{sub 2} by TiCl{sub 4} resulting in a thin film of MgCl{sub 2}/TiCl{sub x}, where x = 2, 3, and 4. To prepare an active catalyst, the thin film of MgCl{sub 2}/TiCl{sub x} on Au foil is enclosed in a high pressure cell contained within the UHV chamber and exposed to {approx}1 Torr of Al(Et){sub 3}.

  13. UV-Raman spectroscopy, X-ray photoelectron spectroscopy, and temperature programmed desorption studies of model and bulk heterogeneous catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Tewell, Craig Richmond [Univ. of California, Berkeley, CA (United States)

    2002-01-01

    X-ray photoelectron spectroscopy (XPS) and Temperature Programmed Desorption (TPD) have been used to investigate the surface structure of model heterogeneous catalysts in ultra-high vacuum (UHV). UV-Raman spectroscopy has been used to probe the structure of bulk model catalysts in ambient and reaction conditions. The structural information obtained through UV-Raman spectroscopy has been correlated with both the UHV surface analysis and reaction results. The present day propylene and ethylene polymerization catalysts (Ziegler-Natta catalysts) are prepared by deposition of TiCl4 and a Al(Et)3 co-catalyst on a microporous Mg-ethoxide support that is prepared from MgCl2 and ethanol. A model thin film catalyst is prepared by depositing metallic Mg on a Au foil in a UHV chamber in a background of TiCl4 in the gas phase. XPS results indicate that the Mg is completely oxidized to MgCl2 by TiCl4 resulting in a thin film of MgCl2/TiClx, where x = 2, 3, and 4. To prepare an active catalyst, the thin film of MgCl2/TiClx on Au foil is enclosed in a high pressure cell contained within the UHV chamber and exposed to ~1 Torr of Al(Et)3.

  14. Electronic structure simulation of chromium aluminum oxynitride by discrete variational-X alpha method and X-ray photoelectron spectroscopy

    CERN Document Server

    Choi, Y; Lee, J D; Kim, E; No, K

    2002-01-01

    We use a first-principles discrete variational (DV)-X alpha method to investigate the electronic structure of chromium aluminum oxynitride. When nitrogen is substituted for oxygen in the Cr-Al-O system, the N2p level appears in the energy range between O2p and Cr3d levels. Consequently, the valence band of chromium aluminum oxynitride becomes broader and the band gap becomes smaller than that of chromium aluminum oxide, which is consistent with the photoelectron spectra for the valence band using X-ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS). We expect that this valence band structure of chromium aluminum oxynitride will modify the transmittance slope which is a requirement for photomask application.

  15. Electronic structure of AlCrN films investigated using various photoelectron spectroscopies and ab initio calculations

    Science.gov (United States)

    Tatemizo, N.; Imada, S.; Miura, Y.; Yamane, H.; Tanaka, K.

    2017-03-01

    The valence band (VB) structures of wurtzite AlCrN (Cr concentration: 0-17.1%), which show optical absorption in the ultraviolet-visible-infrared light region, were investigated via photoelectron yield spectroscopy (PYS), x-ray/ultraviolet photoelectron spectroscopy (XPS/UPS), and ab initio density of states (DOS) calculations. An obvious photoelectron emission threshold was observed ~5.3 eV from the vacuum level for AlCrN, whereas no emission was observed for AlN in the PYS spectra. Comparisons of XPS and UPS VB spectra and the calculated DOS imply that Cr 3d states are formed both at the top of the VB and in the AlN gap. These data suggest that Cr doping could be a viable option to produce new materials with relevant energy band structures for solar photoelectric conversion.

  16. Time resolved spectroscopy of GRB 030501 using INTEGRAL

    DEFF Research Database (Denmark)

    Beckmann, V.; Borkowski, J.; Courvoisier, T.J.L.;

    2003-01-01

    The gamma-ray instruments on-board INTEGRAL offer an unique opportunity to perform time resolved analysis on GRBs. The imager IBIS allows accurate positioning of GRBs and broad band spectral analysis, while SPI provides high resolution spectroscopy. GRB 030501 was discovered by the INTEGRAL Burst...... Alert System in the ISGRI field of view. Although the burst was fairly weak (fluence F20-200 keV similar or equal to 3.5x10(-6) erg cm(-2)) it was possible to perform time resolved spectroscopy with a resolution of a few seconds. The GRB shows a spectrum in the 20-400 keV range which is consistent...

  17. Time-resolved laser-induced breakdown spectroscopy of aluminum

    Institute of Scientific and Technical Information of China (English)

    LIU Xian-yun; ZHANG Wei-jun; WANG Zhen-ya; HAO Li-qing; HUANG Ming-qiang; ZHAO Wen-wu; LONG Bo; Zhao Wei

    2008-01-01

    We develop a system to measure the elemental composition of unprepared samples using laser-induced breakdown spectroscopy (LIBS) in our laboratory, which can be used for the determination of elements in solids, liquids and aerosols. A description of the instrumentation, including laser, sample chamber and detection, is followed by a brief discussion. The time-resolved LIBS of aluminum at atmospheric pressure is presented. At the end, the possibilities and later uses of this technique are briefly discussed.

  18. Time-resolved THz spectroscopy in a parallel plate waveguide

    DEFF Research Database (Denmark)

    Cooke, David; Jepsen, Peter Uhd

    2009-01-01

    We demonstrate time-resolved terahertz spectroscopy inside a novel parallel plate waveguide where one of the metallic plates is replaced by a transparent conducting oxide. Considerable improvements to the waveguide loss coefficient are shown, with a power absorption coefficient of 4cm-1 at 0.5 THz....... The time resolution of the technique is shown to be limited by the spatial excitation profile, which for sharply focused beams can approach ~1 ps time scales....

  19. Depth-resolved measurements with elliptically polarized reflectance spectroscopy.

    Science.gov (United States)

    Bailey, Maria J; Sokolov, Konstantin

    2016-07-01

    The ability of elliptical polarized reflectance spectroscopy (EPRS) to detect spectroscopic alterations in tissue mimicking phantoms and in biological tissue in situ is demonstrated. It is shown that there is a linear relationship between light penetration depth and ellipticity. This dependence is used to demonstrate the feasibility of a depth-resolved spectroscopic imaging using EPRS. The advantages and drawbacks of EPRS in evaluation of biological tissue are analyzed and discussed.

  20. Studying the Stereochemistry of Naproxen Using Rotationally Resolved Electronic Spectroscopy.

    Science.gov (United States)

    Young, Justin W.; Alvarez-Valtierra, Leonardo; Pratt, David W.

    2009-06-01

    Many biochemical processes are stereospecific. An example is the physiological response to a drug that depends on its enantiomeric form. Naproxen is a drug which shows this stereo-specific physiological response. To better understand the stereo specificity of chiral substances, we observed the S_1←S_0 transitions of R- and S-naproxen in the gas phase using rotationally resolved electronic spectroscopy. The results will be discussed.

  1. Fine-structure-resolved laser-photodetachment electron spectroscopy of In{sup {minus}}

    Energy Technology Data Exchange (ETDEWEB)

    Williams, W.W.; Carpenter, D.L.; Covington, A.M.; Thompson, J.S. [Department of Physics and Chemical Physics Program, University of Nevada, Reno, Nevada, 89557-0058 (United States); Kvale, T.J. [Department of Physics and Astronomy, University of Toledo, Toledo, Ohio, 43606-3390 (United States); Seely, D.G. [Department of Physics, Albion College, Albion, Michigan, 49224 (United States)

    1998-11-01

    The electron affinity of indium has been measured using the laser-photodetachment electron spectroscopy technique. Fine-structure-resolved photoelectron kinetic energy spectra of In{sup {minus}} were analyzed and the electron affinity of In({sup 2}P{sub 1/2}) was determined to be 0.404{plus_minus}0.009 eV. The fine-structure splittings in the ground state of In{sup {minus}}({sup 3}P{sub 0,1,2}) were determined to be 0.076{plus_minus}0.009 eV (J=0{r_arrow}J=1) and 0.175{plus_minus}0.009 eV (J=0{r_arrow}J=2). This measurement is compared to several recent calculations of the electron affinity of indium. {copyright} {ital 1998} {ital The American Physical Society}

  2. Investigating Surface and Interface Phenomena in LiFeBO3 Electrodes Using Photoelectron Spectroscopy Depth Profiling

    DEFF Research Database (Denmark)

    Maibach, Julia; Younesi, Reza; Schwarzburger, Nele

    2014-01-01

    The formation of surface and interface layers at the electrodes is highly important for the performance and stability of lithium ion batteries. To unravel the surface composition of electrode materials, photoelectron spectroscopy (PES) is highly suitable as it probes chemical surface and interfac...

  3. Chemical functionalization of nanodiamond by amino groups: an X-ray photoelectron spectroscopy study.

    Science.gov (United States)

    Dhanak, V R; Butenko, Yu V; Brieva, A C; Coxon, P R; Alves, L; Siller, L

    2012-04-01

    The development of chemical functionalization techniques for diamond nanocrystallites opens up ways with a view to altering their solubility in different solvents, improve interfacial adhesion of nanodiamonds with a composite matrix in new materials, and provide new possibilities for the modification of the electronic properties of nanodiamond crystallites. In this work, we present results on the chemical functionalization of nanodiamonds by amino groups using ammonia as a nitrogenation agent. Nanodiamond material used was formed by the detonation technique with average crystallite sizes of 4-5 nm. The final materials and intermediates products were characterized by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). Chemical functionalization of nanodiamonds by amino groups could enable the preparation of new nylon nano-composite materials. Presence of surface amino groups could alter pH of nanodiamond colloids towards basic values and improve colloidal stability of nanodiamond suspensions at pH close to 7. This could enable syntheses of new drug delivery systems based on nanodiamonds.

  4. [Characterization of biochar by X-ray photoelectron spectroscopy and 13C nuclear magnetic resonance].

    Science.gov (United States)

    Xu, Dong-yu; Jin, Jie; Yan, Yu; Han, Lan-fang; Kang, Ming-jie; Wang, Zi-ying; Zhao, Ye; Sun, Ke

    2014-12-01

    The wood (willow branch) and grass (rice straw) materials were pyrolyzed at different temperatures (300, 450 and 600 °C) to obtain the biochars used in the present study. The biochars were characterized using elementary analysis, X-ray photoelectron spectroscopy (XPS) and solid state 13C cross-polarization and magic angle spinning nuclear magnetic resonance spectroscopy (13C NMR) to illuminate the structure and composition of the biochars which were derived from the different thermal temperatures and biomass. The results showed that the H/C, O/C and (O+N)/C ratios of the biochars decreased with the increase in the pyrolysis temperatures. The surface polarity and ash content of the grass-derived biochars were higher than those of the wood-derived biochars. The minerals of the wood-derived biochars were mainly covered by the organic matter; in contrast, parts of the mineral surfaces of the grass-derived biochars were not covered by organic matter? The 13C NMR of the low temperature-derived biochars revealed a large contribution of aromatic carbon, aliphatic carbon, carboxyl and carbonyl carbon, while the high temperature-derived biochars contained a large amount of aromatic carbon. Moreover, the wood-derived biochars produced at low heat treatment temperatures contained more lignin residues than grass-derived ones, probably due to the existence of high lignin content in the feedstock soures of wood-derived biochars. The results of the study would be useful for environmental application of biochars.

  5. X-ray photoelectron spectroscopy as a probe of rhodium-ligand interaction in ionic liquids

    Science.gov (United States)

    Men, Shuang; Lovelock, Kevin R. J.; Licence, Peter

    2016-02-01

    We use X-ray photoelectron spectroscopy (XPS) to identify the interaction between the rhodium atom and phosphine ligands in six 1-octyl-3-methylimidazolium-based ionic liquids ([C8C1Im][X]). The formation of a mono-phosphine rhodium complex based upon addition of triphenylphosphine (PPh3) is confirmed by XPS in all ionic liquids studied herein. Due to the electron donation effect of the ligand, the rhodium atom becomes more negatively charged and thus exhibits a lower measured binding energy. The influence of the anion basicity on the formation of different types of rhodium complexes is also investigated. By introducing a biphosphine ligand, a chelated diphosphine rhodium complex is formed in ionic liquids with more basic anions and verified by both XPS and Infrared Spectroscopy (IR). The measured Rh 3d binding energies are correlated to the reaction selectivity of a hydroformylation reaction which inspires a method to design a metal catalyst to control the chemical reaction towards desired products in the future.

  6. Electronic structure of fluorinated multiwalled carbon nanotubes studied using x-ray absorption and photoelectron spectroscopy

    Science.gov (United States)

    Brzhezinskaya, M. M.; Muradyan, V. E.; Vinogradov, N. A.; Preobrajenski, A. B.; Gudat, W.; Vinogradov, A. S.

    2009-04-01

    This paper presents the results of combined investigation of the chemical bond formation in fluorinated multiwalled carbon nanotubes (MWCNTs) with different fluorine contents (10-55wt%) and reference compounds (highly oriented pyrolytic graphite crystals and “white” graphite fluoride) using x-ray absorption and photoelectron spectroscopy at C1s and F1s thresholds. Measurements were performed at BESSY II (Berlin, Germany) and MAX-laboratory (Lund, Sweden). The analysis of the soft x-ray absorption and photoelectron spectra points to the formation of covalent chemical bonding between fluorine and carbon atoms in the fluorinated nanotubes. It was established that within the probing depth (˜15nm) of carbon nanotubes, the process of fluorination runs uniformly and does not depend on the fluorine concentration. In this case, fluorine atoms interact with MWCNTs through the covalent attachment of fluorine atoms to graphene layers of the graphite skeleton (phase 1) and this bonding is accompanied by a change in the hybridization of the 2s and 2p valence electron states of the carbon atom from the trigonal (sp2) to tetrahedral (sp3) hybridization and by a large electron transfer between carbon an fluorine atoms. In the MWCNT near-surface region the second fluorine-carbon phase with weak electron transfer is formed; it is located mainly within two or three upper graphene monolayers, and its contribution becomes much poorer as the probing depth of fluorinated multiwalled carbon nanotubes (F-MWCNTs) increases. The defluorination process of F-MWCNTs on thermal annealing has been investigated. The conclusion has been made that F-MWCNT defluorination without destruction of graphene layers is possible.

  7. Microscopic solvation of NaBO2 in water: anion photoelectron spectroscopy and ab initio calculations.

    Science.gov (United States)

    Feng, Yuan; Cheng, Min; Kong, Xiang-Yu; Xu, Hong-Guang; Zheng, Wei-Jun

    2011-09-21

    We investigated the microscopic solvation of NaBO(2) in water by conducting photoelectron spectroscopy and ab initio studies on NaBO(2)(-)(H(2)O)(n) (n = 0-4) clusters. The vertical detachment energy (VDE) of NaBO(2)(-) is estimated to be 1.00 ± 0.08 eV. The photoelectron spectra of NaBO(2)(-)(H(2)O)(1) and NaBO(2)(-)(H(2)O)(2) are similar to that of bare NaBO(2)(-), except that their VDEs shift to higher electron binding energies (EBE). For the spectra of NaBO(2)(-)(H(2)O)(3) and NaBO(2)(-)(H(2)O)(4), a low EBE feature appears dramatically in addition to the features observed in the spectra of NaBO(2)(-)(H(2)O)(0-2). Our study shows that the water molecules mainly interact with the BO(2)(-) unit in NaBO(2)(-)(H(2)O)(1) and NaBO(2)(-)(H(2)O)(2) clusters to form Na-BO(2)(-)(H(2)O)(n) type structures, while in NaBO(2)(-)(H(2)O)(3) and NaBO(2)(-)(H(2)O)(4) clusters, the water molecules can interact strongly with the Na atom, therefore, the Na-BO(2)(-)(H(2)O)(n) and Na(H(2)O)(n)···BO(2)(-) types of structures coexist. That can be seen as an initial step of the transition from a contact ion pair (CIP) structure to a solvent-separated ion pair (SSIP) structure for the dissolution of NaBO(2).

  8. Photoelectron spectroscopy of cluster anions of naphthalene and related aromatic hydrocarbons

    Science.gov (United States)

    Ando, Naoto; Mitsui, Masaaki; Nakajima, Atsushi

    2008-04-01

    The electronic structures and structural morphologies of naphthalene cluster anions, (naphthalene)n- (n=3-150), and its related aromatic cluster anions, (acenaphthene)n- (n=4-100) and (azulene)n- (n=1-100), are studied using anion photoelectron spectroscopy. For (naphthalene)n- clusters, two isomers coexist over a wide size range: isomers I and II-1 (28⩽n⩽60) or isomers I and II-2 (n⩾˜60). Their contributions to the photoelectron spectra can be separated using an anion beam hole-burning technique. In contrast, such an isomer coexistence is not observed for (acenaphthene)n- and (azulene)n- clusters, where isomer I is exclusively formed throughout the whole size range. The vertical detachment energies (VDEs) of isomer I (7⩽n⩽100) in all the anionic clusters depend linearly on n-1/3 and their size-dependent energetics are quite similar to one another. On the other hand, the VDEs of isomers II-1 and II-2 produced in (naphthalene)n- clusters with n ⩾˜30 remain constant at 0.84 and 0.99eV, respectively, 0.4-0.6eV lower than those of isomer I. Based upon the ion source condition dependence and the hole-burning photoelectron spectra experiments for each isomer, the energetics and characteristics of isomers I, II-1, and II-2 are discussed: isomer I is an internalized anion state accompanied by a large change in its cluster geometry after electron attachment, while isomers II-1 and II-2 are crystal-like states with little structural relaxation. The nonappearance of isomers II-1 and II-2 for (acenaphthene)n- and (azulene)n- and a comparison with other aromatic cluster anions indicate that a highly anisotropic and symmetric π-conjugated molecular framework, such as found in the linear oligoacenes, is an essential factor for the formation of the crystal-like ordered forms (isomers II-1 and II-2). On the other hand, lowering the molecular symmetry makes their production unfavorable.

  9. The RESOLVE Survey: REsolved Spectroscopy Of a Local VolumE

    Science.gov (United States)

    Kannappan, Sheila; Norris, M. A.; Eckert, K. D.; Moffett, A. J.; Stark, D. V.; Haynes, M. P.; Giovanelli, R.; Berlind, A. A.; Wei, L. H.; Baker, A. J.; Vogel, S. N.; Hendel, D. A.; RESOLVE Team

    2011-01-01

    The RESOLVE Survey is a volume-limited census of stellar, gas, and dynamical mass as well as merging and star formation within 53,000 cubic Mpc of the nearby cosmic web in two long equatorial strips. The survey's primary science drivers include relating the galaxy velocity and mass functions to environment, constraining the "missing baryons" problem from a complete accounting perspective, and understanding galaxy disk building in large-scale context. RESOLVE's unique data product is high-resolution multiple-longslit spectroscopy, targeting all 1500 galaxies with baryonic (stellar + cold gas) mass > 109 Msun in the volume. Combined with a complete redshift survey, this spectroscopy will enable an unprecedented high dynamic-range view of how kinematically estimated mass is distributed on scales from dwarf galaxies to clusters. To trace stellar and gas mass, RESOLVE is drawing on deep public surveys at UV, optical, IR, and radio wavelengths, most notably the 21cm ALFALFA Survey. Here we present early results: (1) statistics of our efforts to recover galaxies missed by RESOLVE's parent survey, the SDSS; (2) calibration of indirect atomic and molecular gas estimators to supplement direct observations; (3) progress toward optimizing stellar mass and environment measures; and (4) a first installment of kinematic data focusing on S0 galaxies. This work is supported by the National Science Foundation under CAREER award 0955368.

  10. Cation profiling of passive films on stainless steel formed in sulphuric and acetic acid by deconvolution of angle-resolved X-ray photoelectron spectra

    Energy Technology Data Exchange (ETDEWEB)

    Högström, Jonas, E-mail: jhogstrom@gmail.com; Fredriksson, Wendy, E-mail: wendy.fredriksson@kemi.uu.se; Edstrom, Kristina, E-mail: kristina.edstrom@kemi.uu.se; Björefors, Fredrik, E-mail: fredrik.bjorefors@kemi.uu.se; Nyholm, Leif, E-mail: leif.nyholm@kemi.uu.se; Olsson, Claes-Olof A., E-mail: drclabbe@kth.se

    2013-11-01

    An approach for determining depth gradients of metal-ion concentrations in passive films on stainless steel using angle-resolved X-ray photoelectron spectroscopy (ARXPS) is described. The iterative method, which is based on analyses of the oxidised metal peaks, provides increased precision and hence allows faster ARXPS measurements to be carried out. The method was used to determine the concentration depth profiles for molybdenum, iron and chromium in passive films on 316L/EN 1.4432 stainless steel samples oxidised in 0.5 M H{sub 2}SO{sub 4} and acetic acid diluted with 0.02 M Na{sub 2}B{sub 4}O{sub 7} · 10H{sub 2}O and 1 M H{sub 2}O, respectively. The molybdenum concentration in the film is pin-pointed to the oxide/metal interface and the films also contained an iron-ion-enriched surface layer and a chromium-ion-dominated middle layer. Although films of similar composition and thickness (i.e., about 2 nm) were formed in the two electrolytes, the corrosion currents were found to be three orders of magnitude larger in the acetic acid solution. The differences in the layer composition, found for the two electrolytes as well as different oxidation conditions, can be explained based on the oxidation potentials of the metals and the dissolution rates of the different metal ions.

  11. Electrochemical impedance spectroscopy and X-ray photoelectron spectroscopy study of the corrosion behaviour of galvanized steel and electroplating steel

    Energy Technology Data Exchange (ETDEWEB)

    Lebrini, M., E-mail: mlebrini@yahoo.fr [Laboratoire des Procedes d' Elaboration des Revetements Fonctionnels, PERF-LSPES UMR CNRS 8008, ENSCL, BP 90108, F-59652 Villeneuve d' Ascq Cedex (France); Traisnel, M. [Laboratoire des Procedes d' Elaboration des Revetements Fonctionnels, PERF-LSPES UMR CNRS 8008, ENSCL, BP 90108, F-59652 Villeneuve d' Ascq Cedex (France); Gengembre, L. [Unite de Catalyse et Chimie du solide UMR 8181 Bat C3, USTL, F-59655, Villeneuve d' Ascq Cedex (France); Fontaine, G. [Laboratoire des Procedes d' Elaboration des Revetements Fonctionnels, PERF-LSPES UMR CNRS 8008, ENSCL, BP 90108, F-59652 Villeneuve d' Ascq Cedex (France); Lerasle, O.; Genet, N. [TOTAL France, Centre de Recherche de Solaize, Chemin du canal, BP 22, F-69360 Solaize (France)

    2011-02-01

    The efficiency of a formula containing 2-{l_brace}(2-hydroxyethyl)[(4-methyl-1H-1,2,3-benzotriazol-1-yl)methyl] amino{r_brace}ethanol (tolyltriazole) and decanoic acid as corrosion inhibitor for galvanized steel and electroplating steel in aqueous solution have been determined by electrochemical impedance spectroscopy (EIS) techniques. The experimental data obtained from this method show a frequency distribution and therefore a modelling element with frequency dispersion behaviour, a constant phase element (CPE) has been used. The corrosion behaviour in the presence of different concentration of decanoic acid (DA) in the formula was also investigated by EIS. Results obtained reveal that, the formula is a good inhibitor for galvanized steel and electroplating steel in aqueous solution, the better performance was obtained in the case of galvanized steel. The ability of the inhibitor to be adsorbed on the surface was dependent on the nature of metal. X-ray photoelectron spectroscopy surface analysis with inhibitor shows that it's chemisorbed at the galvanized and electroplating steel/aqueous solution interface.

  12. Ambient pressure photoelectron spectroscopy: a new tool for surface science and nanotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Salmeron, Miquel; Salmeron, Miquel; Schlogl, Robert

    2008-03-12

    Progress in science often follows or parallels the development of new techniques. The optical microscope helped convert medicine and biology from a speculative activity in old times to today's sophisticated scientific disciplines. The telescope changed the study and interpretation of heavens from mythology to science. X-ray diffraction enabled the flourishing of solid state physics and materials science. The technique object of this review, Ambient Pressure Photoelectron Spectroscopy or APPES for short, has also the potential of producing dramatic changes in the study of liquid and solid surfaces, particularly in areas such as atmospheric, environment and catalysis sciences. APPES adds an important missing element to the host of techniques that give fundamental information, i.e., spectroscopy and microscopy, about surfaces in the presence of gases and vapors, as encountered in industrial catalysis and atmospheric environments. APPES brings electron spectroscopy into the realm of techniques that can be used in practical environments. Decades of surface science in ultra high vacuum (UHV) has shown the power of electron spectroscopy in its various manifestations. Their unique property is the extremely short elastic mean free path of electrons as they travel through condensed matter, of the order of a few atomic distances in the energy range from a few eV to a few thousand eV. As a consequence of this the information obtained by analyzing electrons emitted or scattered from a surface refers to the top first few atomic layers, which is what surface science is all about. Low energy electron diffraction (LEED), Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), Ultraviolet photoelectron spectroscopy (UPS), and other such techniques have been used for decades and provided some of the most fundamental knowledge about surface crystallography, composition and electronic structure available today. Unfortunately the high interaction cross section of

  13. High-resolution photoelectron imaging spectroscopy of cryogenically cooled Fe4O- and Fe5O-

    Science.gov (United States)

    Weichman, Marissa L.; DeVine, Jessalyn A.; Neumark, Daniel M.

    2016-08-01

    We report high-resolution photodetachment spectra of the cryogenically cooled iron monoxide clusters Fe4O- and Fe5O- obtained with slow photoelectron velocity-map imaging (cryo-SEVI). Well-resolved vibrational progressions are observed in both sets of spectra, and transitions to low-lying excited states of both species are seen. In order to identify the structural isomers, electronic states, and vibrational modes that contribute to the cryo-SEVI spectra of these clusters, experimental results are compared with density functional theory calculations and Franck-Condon simulations. The main bands observed in the SEVI spectra are assigned to the 15A2←16B2 photodetachment transition of Fe4O- and the 17A'←18A″ photodetachment transition of Fe5O-. We report electron affinities of 1.6980(3) eV for Fe4O and 1.8616(3) eV for Fe5O, although there is some uncertainty as to whether the 15A2 state is the true ground state of Fe4O. The iron atoms have a distorted tetrahedral geometry in Fe4O0/- and a distorted trigonal-bipyramidal arrangement in Fe5O0/-. For both neutral and anionic species, the oxygen atom preferably binds in a μ2-oxo configuration along the cluster edge. This finding is in contrast to prior predictions that Fe5O0/- exhibits a μ3 face-bound structure.

  14. Investigation of coloration of SrLaGaO sub 4 single crystals by X-ray photoelectron spectroscopy

    CERN Document Server

    Novosselov, A; Talik, E; Pajaczkowska, A

    2003-01-01

    An investigation of the X-ray photoelectron spectra of single crystals of SrLaGaO sub 4 grown by the Czochralski method at various oxygen pressures is reported. Light yellow, yellow and red colored crystals were grown at an oxygen pressure lower than about 5x10 sup - sup 4 atm while the green colored crystals were grown at an oxygen pressure higher than 5x10 sup - sup 3 atm. The presence of Ga sup 1 sup + ions for green colored crystals was demonstrated and the existence of interstitial oxygen atoms in the green and red colored crystals was proposed by using X-ray photoelectron spectroscopy.

  15. X-ray photoelectron spectroscopy studies on core-shell structured nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, M. [Surface Physics Division, Saha Institute of Nuclear Physics, Kolkata 700064 (India); Basu, S.; Ghosh, B. [Unit on Nano Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India); Chakravorty, D. [Unit on Nano Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India)], E-mail: mlsdc@iacs.res.in

    2007-08-15

    Core-shell nanostructures were grown in silica-based glasses. Copper-copper oxide and iron-iron oxide structures had diameters in the range 3-6 nm, with shell thicknesses {approx}1-2 nm. Silver-lithium niobate core-shell nanostructures had diameters in the range 4.2-46 nm and thicknesses varying from 2.2 to 22 nm. X-ray photoelectron spectroscopy studies were carried out on all these specimens. The analyses of these results show the presence of Cu{sup +}/Cu{sup 2+}, Fe{sup 2+}/Fe{sup 3+} and Nb{sup 4+}/Nb{sup 5+} valence states in the above three systems. Electrical resistivity data were fitted satisfactorily to the small polaron hopping model in the case of copper and iron-containing specimens. The presence of ions in the lithium niobate shell provides direct evidence of the formation of localized states between which variable range hopping conduction can be effected.

  16. {ital s} -{ital p} Hybridization and Electron Shell Structures in Aluminum Clusters: A Photoelectron Spectroscopy Study

    Energy Technology Data Exchange (ETDEWEB)

    Li, X.; Wu, H.; Wang, X.; Wang, L. [Department of Physics, Washington State University, 2710 University Drive, Richland, Washington 99352-1671 (United States)]|[W. R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, MS K8-88, P.O. Box 999, Richland, Washington 99352 (United States)

    1998-08-01

    Using photoelectron spectroscopy of size-selected Al{sub x}{sup {minus}} (x=1{endash}162) clusters, we studied the electronic structure evolution of Al{sub x} and observed that the Al 3s - and 3p -derived bands evolve and broaden with cluster size and begin to overlap at Al{sub 9} . Direct spectroscopic signatures were obtained for electron shell structures with spherical shell closings at Al{sub 11}{sup {minus}} , Al{sub 13}{sup {minus}} , Al{sub 19}{sup {minus}} , Al{sub 23}{sup {minus}} , Al{sub 35}{sup {minus}} , Al{sub 37}{sup {minus}} , Al{sub 46} , Al{sub 52} , Al{sub 55}{sup {minus}} , Al{sub 56} , Al{sub 66} , and Al{sub 73}{sup {minus}} . The electron shell effect diminishes above Al{sub 75} and new spectral features appearing in Al{sub x}{sup {minus}} (x{gt}100) suggest a possible geometrical packing effect in large clusters. {copyright} {ital 1998} {ital The American Physical Society}

  17. Near surface composition of some alloys by X-ray photoelectron spectroscopy

    Indian Academy of Sciences (India)

    M Sreemany; T B Ghosh

    2001-10-01

    Chemical compositions of the alloys of CuNi (Cu0.10Ni0.90, Cu0.30Ni0.70, Cu0.70Ni0.30) and BiSb (Bi0.80Sb0.20, Bi0.64Sb0.34, Bi0.55Sb0.45) are determined by X-ray photoelectron spectroscopy. The stoichiometries are determined and are compared with the bulk compositions. Possible sources of systematic errors contributing to the results are discussed. Errors arising out of preferential etching in these alloys have been investigated. It has been inferred from such studies that the preferential etching does not enrich the surface composition with a particular component for the two systems reported here. Quantitative results of CuNi system indicate that the surface regions of the Cu0.70Ni0.30 alloy is Cu-rich, although no such evidence is observed in case of BiSb system.

  18. Photoelectron spectroscopy study on Li substituted NiO using PES beamline installed on Indus-1

    CERN Document Server

    Banerjee, A; Phase, D M; Dasannacharya, B A

    2003-01-01

    Photoelectron spectroscopy beamline based on a toroidal grating monochromator (TGM) is recently commissioned on Indus-1 storage ring. It has been used to carry out valence band photoemission study of Li substituted NiO. In this paper initially a brief description of the beamline components and the experimental station for angle integrated photoemission experiment is presented. The later part of this paper is devoted to studies carried out on Li sub x Ni sub 1 sub - sub x O with x=0.0, 0.35 and 0.5 samples. Thin pellets of polycrystalline samples were used for the measurements reported here. Valence band spectra recorded on polycrystalline Li sub x Ni sub 1 sub - sub x O samples show drastic changes in various features as compared to that of pure NiO. The prominent changes are: (i) change in the relative contributions of Ni-3d and O-2p emissions, (ii) change in the peak position of Ni-3d from the top of the valance band of NiO and (iii) no noticeable change in the Ni satellite peak. These results are evaluated...

  19. Characterization of peptide attachment on silicon nanowires by X-ray photoelectron spectroscopy and mass spectrometry.

    Science.gov (United States)

    Kurylo, Ievgen; Dupré, Mathieu; Cantel, Sonia; Enjalbal, Christine; Drobecq, Hervé; Szunerits, Sabine; Melnyk, Oleg; Boukherroub, Rabah; Coffinier, Yannick

    2017-02-27

    In this paper, we report an original method to immobilize a model peptide on silicon nanowires (SiNWs) via a photolinker attached to the SiNWs' surface. The silicon nanowires were fabricated by a metal assisted chemical etching (MACE) method. Then, direct characterization of the peptide immobilization on SiNWs was performed either by X-ray photoelectron spectroscopy (XPS) or by laser-desorption/ionization mass spectrometry (LDI-MS). XPS allowed us to follow the peptide immobilization and its photorelease by recording the variation of the signal intensities of the different elements present on the SiNW surface. Mass spectrometry was performed without the use of an organic matrix and peptide ions were produced via a photocleavage mechanism. Indeed, thanks to direct photorelease achieved upon laser irradiation, a recorded predictable peak related to the molecular peptide ion has been detected, allowing the identification of the model peptide. Additional MS/MS experiments confirmed the photodissociation site and confirmed the N-terminal immobilization of the peptide on SiNWs.

  20. Chemistry of carbon polymer composite electrode - An X-ray photoelectron spectroscopy study

    Science.gov (United States)

    Andersen, Shuang Ma; Dhiman, Rajnish; Skou, Eivind

    2015-01-01

    Surface chemistry of the electrodes in a proton exchange membrane fuel cell is of great importance for the cell performance. Many groups have reported that electrode preparation condition has a direct influence on the resulting electrode properties. In this work, the oxidation state of electrode components and the composites (catalyst ionomer mixtures) in various electrode structures were systematically studied with X-ray photoelectron spectroscopy (XPS). Based on the spectra, when catalyst is physically mixed with Nafion ionomer, the resulting electrode surface chemistry is a combination of the two components. When the electrode is prepared with a lamination procedure, the ratio between fluorocarbon and graphitic carbon is decreased. Moreover, ether type oxide content is decreased although carbon oxide is slightly increased. This indicates structure change of the catalyst layer due to an interaction between the ionomer and the catalyst and possible polymer structural change during electrode fabrication. The surface of micro porous layer was found to be much more influenced by the lamination, especially when it is in contact with catalysts in the interphase. Higher amount of platinum oxide was observed in the electrode structures (catalyst ionomer mixture) compared to the catalyst powder. This also indicates a certain interaction between the functional groups in the polymer and platinum surface.

  1. Recent progress of soft X-ray photoelectron spectroscopy studies of uranium compounds

    Energy Technology Data Exchange (ETDEWEB)

    Fujimori, Shin-ichi; Takeda, Yukiharu; Okane, Tetsuo; Saitoh, Yuji [Condensed Matter Science Divisions, Japan Atomic Energy Agency, Sayo, Hyogo (Japan); Fujimori, Atsushi [Condensed Matter Science Divisions, Japan Atomic Energy Agency, Sayo, Hyogo (Japan); Department of Physics, University of Tokyo, Hongo, Tokyo 113-0033 (Japan); Yamagami, Hiroshi [Condensed Matter Science Divisions, Japan Atomic Energy Agency, Sayo, Hyogo (Japan); Department of Physics, Faculty of Science, Kyoto Sangyo University, Kyoto 603-8555 (Japan); Yamamoto, Etsuji; Haga, Yoshinori [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Ōnuki, Yoshichika [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Faculty of Science, University of the Ryukyus, Nishihara, Okinawa 903-0213 (Japan)

    2016-04-15

    Recent progresses in the soft X-ray photoelectron spectroscopy (PES) studies (hν ≳ 100 eV) for uranium compounds are briefly reviewed. The soft X-ray PES has enhanced sensitivities for the bulk U 5f electronic structure, which is essential to understand the unique physical properties of uranium compounds. In particular, the recent remarkable improvement in energy resolutions from an order of 1 eV to 100 meV made it possible to observe fine structures in U 5f density of states. Furthermore, soft X-ray ARPES becomes available due to the increase of photon flux at beamlines in third generation synchrotron radiation facilities.The technique made it possible to observe bulk band structures and Fermi surfaces of uranium compounds and therefore, the results can be directly compared with theoretical models such as band-structure calculations. The core-level spectra of uranium compounds show a systematic behavior depending on their electronic structures, suggesting that they can be utilized to determine basic physical parameters such as the U 5f-ligand hybridizations or Comlomb interaction between U 5f electrons. It is shown that soft X-ray PES provides unique opportunities to understand the electronic structures of uranium compounds.

  2. Photoelectron spectroscopy study of the electronic structures at CoPc/Bi(111) interface

    Science.gov (United States)

    Sun, Haoliang; Liang, Zhaofeng; Shen, Kongchao; Hu, Jinbang; Ji, Gengwu; Li, Zheshen; Li, Haiyang; Zhu, Zhiyuan; Li, Jiong; Gao, Xingyu; Han, Huang; Jiang, Zheng; Song, Fei

    2017-07-01

    Self-assembly of functional molecules on solid substrate has been recognized as an appealing approach for the fabrication of diverse nanostructures for nanoelectronics. Herein, we investigate the growth of cobalt phthalocyanine (CoPc) on a Bi(111) surface with focus on the interface electronic structures utilizing photoelectron spectroscopy. While charge transfer from bismuth substrate to the molecule results in the emergence of an interface component in the Co 3p core level at lower binding energy, core-levels associated to the molecular ligand (C 1s and N 1s) are less influenced by the adsorption. In addition, density functional theory (DFT) calculations also support the empirical inference that the molecule-substrate interaction mainly involves the out-of-plane empty Co 3d orbital and bismuth states. Finally, valence band spectra demonstrate the molecule-substrate interaction is induced by interface charge transfer, agreeing well with core level measurements. Charge transfer is shown to be mainly from the underlying bismuth substrate to the empty states located at the central Co atom in the CoPc molecules. This report may provide a fundamental basis to the on-surface engineering of interfaces for molecular devices and spintronics.

  3. CHARACTERIZING SURFACE LAYERS IN NITINOL USING X-RAY PHOTOELECTRON SPECTROSCOPY

    Energy Technology Data Exchange (ETDEWEB)

    Christopfel, R.; Mehta, A.

    2008-01-01

    Nitinol is a shape memory alloy whose properties allow for large reversible deformations and a return to its original geometry. This nickel-titanium (NiTi) alloy has become a material used widely in the biomedical fi eld as a stent to open up collapsed arteries. Both ambient and biological conditions cause surface oxidation in these devices which in turn change its biocompatibility. The thickness of oxidized layers can cause fractures in the material if too large and can allow for penetration if too thin. Depending on the type and abundance of the chemical species on or near the surface, highly toxic metal ions can leak into the body causing cell damage or even cell death. Thus, biocompatibility of such devices is crucial. By using highly surface sensitive x-ray photoelectron spectroscopy to probe the surface of these structures, it is possible to decipher both layer composition and layer thickness. Two samples, both of which were mechanically polished, were investigated. Of the two samples, one was then exposed to a phosphate buffered saline (PBS) solution to mimic the chemical properties of blood, while the other remained unexposed. Although both samples were found to have oxide layers of appropriate thickness (on the order of a few nm), it was found that the sample exposed to the saline solution had a slightly thicker oxide layer and more signifi cantly, a phosphate layer very near the surface suggesting toxic metal components are well contained within the sample. These are considerable indications of a biocompatible device.

  4. Effect of Space Radiation Processing on Lunar Soil Surface Chemistry: X-Ray Photoelectron Spectroscopy Studies

    Science.gov (United States)

    Dukes, C.; Loeffler, M.J.; Baragiola, R.; Christoffersen, R.; Keller, J.

    2009-01-01

    Current understanding of the chemistry and microstructure of the surfaces of lunar soil grains is dominated by a reference frame derived mainly from electron microscopy observations [e.g. 1,2]. These studies have shown that the outermost 10-100 nm of grain surfaces in mature lunar soil finest fractions have been modified by the combined effects of solar wind exposure, surface deposition of vapors and accretion of impact melt products [1,2]. These processes produce surface-correlated nanophase Feo, host grain amorphization, formation of surface patinas and other complex changes [1,2]. What is less well understood is how these changes are reflected directly at the surface, defined as the outermost 1-5 atomic monolayers, a region not easily chemically characterized by TEM. We are currently employing X-ray Photoelectron Spectroscopy (XPS) to study the surface chemistry of lunar soil samples that have been previously studied by TEM. This work includes modification of the grain surfaces by in situ irradiation with ions at solar wind energies to better understand how irradiated surfaces in lunar grains change their chemistry once exposed to ambient conditions on earth.

  5. X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes)

    Science.gov (United States)

    Halim, Joseph; Cook, Kevin M.; Naguib, Michael; Eklund, Per; Gogotsi, Yury; Rosen, Johanna; Barsoum, Michel W.

    2016-01-01

    In this work, a detailed high resolution X-ray photoelectron spectroscopy (XPS) analysis is presented for select MXenes-a recently discovered family of two-dimensional (2D) carbides and carbonitrides. Given their 2D nature, understanding their surface chemistry is paramount. Herein we identify and quantify the surface groups present before, and after, sputter-cleaning as well as freshly prepared vs. aged multi-layered cold pressed discs. The nominal compositions of the MXenes studied here are Ti3C2Tx, Ti2CTx, Ti3CNTx, Nb2CTx and Nb4C3Tx, where T represents surface groups that this work attempts to quantify. In all the cases, the presence of three surface terminations, sbnd O, sbnd OH and sbnd F, in addition to OH-terminations relatively strongly bonded to H2O molecules, was confirmed. From XPS peak fits, it was possible to establish the average sum of the negative charges of the terminations for the aforementioned MXenes. Based on this work, it is now possible to quantify the nature of the surface terminations. This information can, in turn, be used to better design and tailor these novel 2D materials for various applications.

  6. Light-induced atom desorption from glass surfaces characterized by X-ray photoelectron spectroscopy

    Science.gov (United States)

    Kumagai, Ryo; Hatakeyama, Atsushi

    2016-07-01

    We analyzed the surfaces of vitreous silica (quartz) and borosilicate glass (Pyrex) substrates exposed to rubidium (Rb) vapor by X-ray photoelectron spectroscopy (XPS) to understand the surface conditions of alkali metal vapor cells. XPS spectra indicated that Rb atoms adopted different bonding states in quartz and Pyrex. Furthermore, Rb atoms in quartz remained in the near-surface region, while they diffused into the bulk in Pyrex. For these characterized surfaces, we measured light-induced atom desorption (LIAD) of Rb atoms. Clear differences in time evolution, photon energy dependence, and substrate temperature dependence were found; the decay of LIAD by continuous ultraviolet irradiation for quartz was faster than that for Pyrex, a monotonic increase in LIAD with increasing photon energy from 1.8 to 4.3 eV was more prominent for quartz, and LIAD from quartz was more efficient at higher temperatures in the range from 300 to 580 K, while that from Pyrex was almost independent of temperature.

  7. X-ray photoelectron spectroscopy for characterization of bionanocomposite functional materials for energy-harvesting technologies.

    Science.gov (United States)

    Artyushkova, Kateryna; Atanassov, Plamen

    2013-07-22

    The analysis of hybrid multicomponent bioorganic and bioinorganic composite materials related to energy technologies by using X-ray photoelectron spectroscopy is discussed. The approaches and considerations of overcoming the difficulties of analyzing hybrid multicomponent materials are demonstrated for different types of materials used in bioenzyme fuel cells, that is, enzyme immobilization in a hybrid inorganic-organic matrix, analysis of peptide binding and structure in the mediation of silica nanoparticle formation, analysis of enzyme-polymeric multilayered architectures obtained through layer-by-layer assembly, and study of the mechanism of electropolymerization. Thorough optimization of experimental design through analysis of an adequate set of reference materials, relevant timescales of sample preparation and X-ray exposure, careful peak decomposition and cross-correlation between elemental speciation, results in a detailed understanding of the chemistry of nanocomposite constituents and interactions between them. The methodology presented and examples discussed are of significant importance to the scientific and engineering communities focused on the immobilization of enzymes, proteins, peptides, and other large biological molecules on solid substrates.

  8. Photoelectron Spectroscopy of YbInCu{sub 4}: Direct Testing of Correlated Electron Models

    Energy Technology Data Exchange (ETDEWEB)

    Joyce, J.J.; Arko, A.J.; Sarrao, J.L.; Fisk, Z.

    1997-12-31

    The electronic properties of single crystal YbInCu{sub 4} have been investigated by means of high resolution photoelectron spectroscopy. A first order, isostructural phase transition for YbInCu{sub 4} at T{sub v}=42 K leads to changes in the Kondo temperature of more than an order of magnitude (27 K vs. 400 K). This phase transition and accompanying Kondo temperature change provide the most direct test of the single impurity model (SIM) to date. Particle hole symmetry allows the SIM to be used for Yb compounds as well as Ce heavy fermions with the great advantage that the predicted Kondo resonance is found on the occupied side of the spectral weight function for Yb materials and is thus directly observable in photoemission. The photoemission results are incongruous with the single impurity model predictions for temperature dependence, binding energy and 4f occupancy, encouraging a reevaluation of the single impurity model. The experiments were conducted using the PGM undulator and 4 meter NIM beamlines at SRC. The spectra were taken at photon energies of 40 eV and 90 eV and the combined energy resolution of the analyzer and monochromator was 45- 85 meV.

  9. Photoelectron spectroscopy and density functional theory studies of N-rich energetic materials.

    Science.gov (United States)

    Zeng, Zhen; Bernstein, Elliot R

    2016-10-28

    The geometric and electronic structures of molecular anionic energetic materials (EMs) DAAF (3,3'-diamino-4,4'-azoxyfurazan), FOX-7 (1,1-diamino-2,2-dinitroethene), 5,5'-BT (5,5'-bistetrazole), and 1,5'-BT (1,5'-bistetrazole) are explored employing anionic photoelectron spectroscopy and density functional theory calculations. The electron binding energies of the observed anionic, energetic material related species are determined and their corresponding anionic structures are assigned. Decomposition reactions for negatively charged EMs can proceed with different energy barriers, and thus mechanisms, from those for their related neutral EMs. Reactivity based on the anionic initial fragments of these EM species further reinforces their respective highly reactive and explosive nature. Fragment ions of the form EM(-)-H-X (X = N2, N2+NH, …) are additionally observed. Detection of such species suggests that EM(-)-H could serve as promising new candidates for EMs, assuming that such species are synthetically available, perhaps as energetic salts. Vertical detachment energies for transitions to the ground and first triplet electronic excited states of neutral matrix dye anion DCM(-) are additionally determined.

  10. Negative ion photoelectron spectroscopy of the copper-aspartic acid anion and its hydrated complexes

    Science.gov (United States)

    Li, Xiang; Wang, Haopeng; Bowen, Kit H.; Martínez, Ana; Salpin, Jean-Yves; Schermann, Jean-Pierre

    2010-08-01

    Negative ions of copper-aspartic acid Cu(Asp)- and its hydrated complexes have been produced in the gas phase and studied by anion photoelectron spectroscopy. The vertical detachment energies (VDE) of Cu(Asp)- and Cu(Asp)-(H2O)1,2 were determined to be 1.6, 1.95, and 2.20 eV, respectively. The spectral profiles of Cu(Asp)-(H2O)1 and Cu(Asp)-(H2O)2 closely resembled that of Cu(Asp)-, indicating that hydration had not changed the structure of Cu(Asp)- significantly. The successive shifts to higher electron binding energies by the spectra of the hydrated species provided measures of their stepwise solvation energies. Density functional calculations were performed on anionic Cu(Asp)- and on its corresponding neutral. The agreement between the calculated and measured VDE values implied that the structure of the Cu(Asp)- complex originated with a zwitterionic form of aspartic acid in which a copper atom had inserted into the N-H bond.

  11. Structures of cycloserine and 2-oxazolidinone probed by X-ray photoelectron spectroscopy: theory and experiment.

    Science.gov (United States)

    Ahmed, Marawan; Wang, Feng; Acres, Robert G; Prince, Kevin C

    2014-05-22

    The electronic structures and properties of 2-oxazolidinone and the related compound cycloserine (CS) have been investigated using theoretical calculations and core and valence photoelectron spectroscopy. Isomerization of the central oxazolidine heterocycle and the addition of an amino group yield cycloserine. Theory correctly predicts the C, N, and O 1s core spectra, and additionally, we report theoretical natural bond orbital (NBO) charges. The valence ionization energies are also in agreement with theory and previous measurements. Although the lowest binding energy part of the spectra of the two compounds shows superficial similarities, further analysis of the charge densities of the frontier orbitals indicates substantial reorganization of the wave functions as a result of isomerization. The highest occupied molecular orbital (HOMO) of CS shows leading carbonyl π character with contributions from other heavy (non-H) atoms in the molecule, while the HOMO of 2-oxazolidinone (OX2) has leading nitrogen, carbon, and oxygen pπ characters. The present study further theoretically predicts bond resonance effects of the compounds, evidence for which is provided by our experimental measurements and published crystallographic data.

  12. Atmospheric pressure X-ray photoelectron spectroscopy apparatus: Bridging the pressure gap

    Energy Technology Data Exchange (ETDEWEB)

    Velasco-Vélez, J. J., E-mail: velasco@fhi-berlin.mpg.de, E-mail: mh@fhi-berlin.mpg.de; Schlögl, R. [Department of Heterogeneous Reactions, Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr 45470 (Germany); Department of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin 14195 (Germany); Pfeifer, V.; Algara-Siller, G.; Stotz, E.; Teschner, D.; Kube, P.; Knop-Gericke, A. [Department of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin 14195 (Germany); Hävecker, M., E-mail: velasco@fhi-berlin.mpg.de, E-mail: mh@fhi-berlin.mpg.de; Skorupska, K. [Department of Heterogeneous Reactions, Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr 45470 (Germany); Wang, R.; Braeuninger-Weimer, P.; Hofmann, S. [Engineering Department, University of Cambridge, Cambridge CB3 0FA (United Kingdom); Centeno, A.; Zurutuza, A. [Graphenea, San Sebastian 20018 (Spain)

    2016-05-15

    One of the main goals in catalysis is the characterization of solid/gas interfaces in a reaction environment. The electronic structure and chemical composition of surfaces become heavily influenced by the surrounding environment. However, the lack of surface sensitive techniques that are able to monitor these modifications under high pressure conditions hinders the understanding of such processes. This limitation is known throughout the community as the “pressure gap.” We have developed a novel experimental setup that provides chemical information on a molecular level under atmospheric pressure and in presence of reactive gases and at elevated temperatures. This approach is based on separating the vacuum environment from the high-pressure environment by a silicon nitride grid—that contains an array of micrometer-sized holes—coated with a bilayer of graphene. Using this configuration, we have investigated the local electronic structure of catalysts by means of photoelectron spectroscopy and in presence of gases at 1 atm. The reaction products were monitored online by mass spectrometry and gas chromatography. The successful operation of this setup was demonstrated with three different examples: the oxidation/reduction reaction of iridium (noble metal) and copper (transition metal) nanoparticles and with the hydrogenation of propyne on Pd black catalyst (powder).

  13. Quantitative determination of ligand densities on nanomaterials by X-ray photoelectron spectroscopy.

    Science.gov (United States)

    Torelli, Marco D; Putans, Rebecca A; Tan, Yizheng; Lohse, Samuel E; Murphy, Catherine J; Hamers, Robert J

    2015-01-28

    X-ray photoelectron spectroscopy (XPS) is a nearly universal method for quantitative characterization of both organic and inorganic layers on surfaces. When applied to nanoparticles, the analysis is complicated by the strong curvature of the surface and by the fact that the electron attenuation length can be comparable to the diameter of the nanoparticles, making it necessary to explicitly include the shape of the nanoparticle to achieve quantitative analysis. We describe a combined experimental and computational analysis of XPS data for molecular ligands on gold nanoparticles. The analysis includes scattering in both Au core and organic shells and is valid even for nanoparticles having diameters comparable to the electron attenuation length (EAL). To test this model, we show experimentally how varying particle diameter from 1.3 to 6.3 nm leads to a change in the measured AC/AAu peak area ratio, changing by a factor of 15. By analyzing the data in a simple computational model, we demonstrate that ligand densities can be obtained, and, moreover, that the actual ligand densities for these nanoparticles are a constant value of 3.9 ± 0.2 molecules nm(-2). This model can be easily extended to a wide range of core-shell nanoparticles, providing a simple pathway to extend XPS quantitative analysis to a broader range of nanomaterials.

  14. Surface characterization of ginger powder examined by X-ray photoelectron spectroscopy and scanning electron microscopy.

    Science.gov (United States)

    Zhao, Xiaoyan; Ao, Qiang; Du, Fangling; Zhu, Junqing; Liu, Jie

    2010-09-01

    The surface composition of five types of ginger powders with the particle sizes of 300, 149, 74, 37 and 8.34 microm was investigated by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and various types of physical-chemical characteristics regarding material particle size distributions, discoloration and chemical composition. The results show that the color differences are greater for superfine ground ginger than for conventional comminuted ones; the values of crude fibre, neutral detergent fiber (NDF) and acid detergent fiber (ADF) decrease with decreasing ginger particle size. However, no relationship with the surface fat, crude protein, ash and total solids exists. With superfine grinding the XPS O/C ratios of the five ginger powders were similar since the surfaces were not oxidized. Correlations were observed between the XPS N/C ratios and the high resolution XPS N 1s spectra. SEM observations revealed that the surface of ginger powder with a particle size of 300 microm is rougher, while superfine ground powders with particle sizes of 149, 74, 37 and 8.34 microm are similar to each other. This roughness difference between these surfaces correlates with the differences in their O/C ratios and the surface morphology of five ginger powders. Copyright 2010 Elsevier B.V. All rights reserved.

  15. X-ray photoelectron spectroscopy for wheat powders: measurement of surface chemical composition.

    Science.gov (United States)

    Saad, Moustafa; Gaiani, Claire; Mullet, Martine; Scher, Joel; Cuq, Bernard

    2011-03-09

    The functional properties of wheat powders depend largely on the surface characteristics of their particles. X-ray photoelectron spectroscopy (XPS) has been considered to investigate the surface composition of wheat powders. The objective of the present study is to evaluate the ability of XPS to discriminate wheat components and to calculate the surface composition of wheat powders. First, XPS surveys for the main wheat isolated components (starch, proteins, arabinoxylans, and lipids) were determined. XPS results demonstrate that it is able to distinguish wheat proteins, polysaccharides, and lipids, but it is not able to distinguish starch and arabinoxylan because of their similarity in chemical structure. The XPS analyses of simple reconstituted wheat flours based on two components (starch and protein) or three components (by adding arabinoxylan) demonstrated the ability of XPS to measure the surface composition of the wheat flours. The surface composition of native wheat flour demonstrated an overrepresentation of protein (54%) and lipids (44%) and an underrepresentation of starch (2%) compared to the bulk composition. Results are discussed with regard to difficulties in discriminating arabinoxylans and starch components.

  16. Cluster Model Studies of Anion and Molecular Specificities via Electrospray Ionization Photoelectron Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xue-Bin

    2017-01-30

    Ion specificity, a widely observed macroscopic phenomenon in condensed phases and at interfaces, is essentially a fundamental chemical physical issue. We have been investigating such effects using cluster models in an “atom-by-atom” and “molecule-by-molecule” fashion not possible with condensed-phase methods. We use electrospray ionization (ESI) to generate molecular and ionic clusters to simulate key molecular entities involved in local binding regions, and characterize them employing negative ion photoelectron spectroscopy (NIPES). Inter- and intramolecular interactions and binding configurations are directly obtained as functions of cluster size and composition, providing insightful molecular-level description and characterization over the local active sites that play crucial roles in determining solution chemistry and condensed phase phenomena. The topics covered in this article are relevant to a wide scope of research fields ranging from ion specific effects in electrolyte solutions, ion selectivity/recognition in normal functioning of life, to molecular specificity in aerosol particle formation, as well as in rational material design and synthesis.

  17. Photoelectron spectroscopy and density functional theory studies of N-rich energetic materials

    Science.gov (United States)

    Zeng, Zhen; Bernstein, Elliot R.

    2016-10-01

    The geometric and electronic structures of molecular anionic energetic materials (EMs) DAAF (3,3'-diamino-4,4'-azoxyfurazan), FOX-7 (1,1-diamino-2,2-dinitroethene), 5,5'-BT (5,5'-bistetrazole), and 1,5'-BT (1,5'-bistetrazole) are explored employing anionic photoelectron spectroscopy and density functional theory calculations. The electron binding energies of the observed anionic, energetic material related species are determined and their corresponding anionic structures are assigned. Decomposition reactions for negatively charged EMs can proceed with different energy barriers, and thus mechanisms, from those for their related neutral EMs. Reactivity based on the anionic initial fragments of these EM species further reinforces their respective highly reactive and explosive nature. Fragment ions of the form EM--H-X (X = N2, N2+NH, …) are additionally observed. Detection of such species suggests that EM--H could serve as promising new candidates for EMs, assuming that such species are synthetically available, perhaps as energetic salts. Vertical detachment energies for transitions to the ground and first triplet electronic excited states of neutral matrix dye anion DCM- are additionally determined.

  18. Hydrazine reduction of transition metal oxides - In situ characterization using X-ray photoelectron spectroscopy

    Science.gov (United States)

    Littrell, D. M.; Tatarchuk, B. J.

    1986-01-01

    The transition metal oxides (TMOs) V2O5, FeO3, Co3O4, NiO, CuO, and ZnO were exposed to hydrazine at various pressures. The metallic surfaces were surveyed by in situ X-ray photoelectron spectroscopy to determine the irrelative rate of reduction by hydrazine. The most easily reducible oxide, CuO, could be reduced to the metallic state at room temperature and 10 to the -6th torr. The reaction is first order with respect to CuO, with an activation energy of about 35 kJ/mol. Two types of adsorption were seen to occur at 295 K: (1) a reversible component in which the measured N:Cu ratio increased to 0.60 at hydrazine pressures up to 0.5 torr, and (2) an irreversible component, with a N:Cu ratio of 0.28, which could not be removed by extended vacuum pumping. The results of this study are useful for the identification of TMO's that can be used as solid neatallizers of hydrazine spills, and for the preparation of metal surfaces for electroplating and evaporative thin-film coating.

  19. Probing the bonding of CO to heteronuclear group 4 metal-nickel clusters by photoelectron spectroscopy.

    Science.gov (United States)

    Zou, Jinghan; Xie, Hua; Yuan, Qinqin; Zhang, Jumei; Dai, Dongxu; Fan, Hongjun; Tang, Zichao; Jiang, Ling

    2017-04-12

    A series of heterobinuclear group 4 metal-nickel carbonyls MNi(CO)n(-) (M = Ti, Zr, Hf; n = 3-7) has been generated via a laser vaporization supersonic cluster source and characterized by mass-selected photoelectron velocity-map imaging spectroscopy. Quantum chemical calculations have been carried out to elucidate the geometric and electronic structures and support the spectral assignments. The n = 3 cluster is determined to be capable of simultaneously accommodating three different types of CO bonds (i.e., side-on-bonded, bridging, and terminal modes), resulting in a MNi[η(2)(μ2-C, O)](μ-CO)(CO)(-) structure, which represents the smallest metal carbonyl with the involvement of all the main modes of metal-CO coordination to date. The building block of three bridging CO molecules is favored at n = 4, the structure of which persists up to n = 7. The additional CO ligands are bonded terminally to the metal atoms. The present findings provide important new insight into the structure and bonding mechanisms of CO molecules with heteronuclear transition metals, which would have important implications for understanding chemisorbed CO molecules on alloy surfaces.

  20. Probing Local Environments by Time-Resolved Stimulated Emission Spectroscopy

    Directory of Open Access Journals (Sweden)

    Ana Rei

    2012-01-01

    Full Text Available Time-resolved stimulated emission spectroscopy was employed to probe the local environment of DASPMI (4-(4-(dimethylaminostyryl-N-methyl-pyridinium iodide in binary solvents of different viscosity and in a sol-gel matrix. DASPMI is one of the molecules of choice to probe local environments, and the dependence of its fluorescence emission decay on viscosity has been previously used for this purpose in biological samples, solid matrices as well as in solution. The results presented in this paper show that time-resolved stimulated emission of DASPMI is a suitable means to probe the viscosity of local environments. Having the advantage of a higher time resolution, stimulated emission can provide information that is complementary to that obtained from fluorescence decay measurements, making it feasible to probe systems with lower viscosity.

  1. Time-resolved photoluminescence spectroscopy of organic-plasmonic hybrids

    DEFF Research Database (Denmark)

    Leißner, Till; Brewer, Jonathan R.; Fiutowski, Jacek

    We study the optical properties of organic thin films and crystalline organic nanofibers as well as their interaction with plasmonic materials by means of laser-scanning fluorescence lifetime imaging microscopy (FLIM) and time-resolved photoluminescence spectroscopy (TR-PLS). The aim of our......-carrier dynamics in such systems. In this contribution we will show how the interaction of organic nanofibers placed on top of regular arrays of nanostructures leads to a significantly enhanced second-harmonic response and, at the same time, an increased decay rate of the photoluminescence lifetime....

  2. Time Resolved Phonon Spectroscopy, Version 1.0

    Energy Technology Data Exchange (ETDEWEB)

    2016-12-22

    TRPS code was developed for the project "Time Resolved Phonon Spectroscopy". Routines contained in this piece of software were specially created to model phonon generation and tracking within materials that interact with ionizing radiation, particularly applicable to the modeling of cryogenic radiation detectors for dark matter and neutrino research. These routines were created to link seamlessly with the open source Geant4 framework for the modeling of radiation transport in matter, with the explicit intent of open sourcing them for eventual integration into that code base.

  3. Growth and structure of thin platinum films deposited on Co(0001) studied by low-energy electron diffraction, X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy and scanning tunneling microscopy

    Science.gov (United States)

    Cabeza, G. F.; Légaré, P.; Sadki, A.; Castellani, N. J.

    2000-06-01

    The growth of platinum deposited on Co(0001) at room temperature in the range of submonolayer coverage is described. The evolution of very thin Pt films has been studied using low-energy electron diffraction (LEED), X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy and scanning tunneling microscopy (STM). The LEED patterns suggested a coherent epitaxial growth mode for Pt on Co(0001). Evidence for an island growth mode has been confirmed by STM together with step decoration. However, the second and third monolayers start growing before the completion of the first Pt layer. The electronic structure of the Pt deposits exhibited original properties with low Fermi level density of states and valence-band broadening. This is in agreement with theoretical calculations presented in this work.

  4. Examining Electron-Boson Coupling Using Time-Resolved Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sentef, Michael; Kemper, Alexander F.; Moritz, Brian; Freericks, James K.; Shen, Zhi-Xun; Devereaux, Thomas P.

    2013-12-26

    Nonequilibrium pump-probe time-domain spectroscopies can become an important tool to disentangle degrees of freedom whose coupling leads to broad structures in the frequency domain. Here, using the time-resolved solution of a model photoexcited electron-phonon system, we show that the relaxational dynamics are directly governed by the equilibrium self-energy so that the phonon frequency sets a window for “slow” versus “fast” recovery. The overall temporal structure of this relaxation spectroscopy allows for a reliable and quantitative extraction of the electron-phonon coupling strength without requiring an effective temperature model or making strong assumptions about the underlying bare electronic band dispersion.

  5. Multidimensional Time-Resolved Spectroscopy of Vibrational Coherence in Biopolyenes

    Science.gov (United States)

    Buckup, Tiago; Motzkus, Marcus

    2014-04-01

    Multidimensional femtosecond time-resolved vibrational coherence spectroscopy allows one to investigate the evolution of vibrational coherence in electronic excited states. Methods such as pump-degenerate four-wave mixing and pump-impulsive vibrational spectroscopy combine an initial ultrashort laser pulse with a nonlinear probing sequence to reinduce vibrational coherence exclusively in the excited states. By carefully exploiting specific electronic resonances, one can detect vibrational coherence from 0 cm-1 to over 2,000 cm-1 and map its evolution. This review focuses on the observation and mapping of high-frequency vibrational coherence for all-trans biological polyenes such as β-carotene, lycopene, retinal, and retinal Schiff base. We discuss the role of molecular symmetry in vibrational coherence activity in the S1 electronic state and the interplay of coupling between electronic states and vibrational coherence.

  6. Multidimensional time-resolved spectroscopy of vibrational coherence in biopolyenes.

    Science.gov (United States)

    Buckup, Tiago; Motzkus, Marcus

    2014-01-01

    Multidimensional femtosecond time-resolved vibrational coherence spectroscopy allows one to investigate the evolution of vibrational coherence in electronic excited states. Methods such as pump-degenerate four-wave mixing and pump-impulsive vibrational spectroscopy combine an initial ultrashort laser pulse with a nonlinear probing sequence to reinduce vibrational coherence exclusively in the excited states. By carefully exploiting specific electronic resonances, one can detect vibrational coherence from 0 cm(-1) to over 2,000 cm(-1) and map its evolution. This review focuses on the observation and mapping of high-frequency vibrational coherence for all-trans biological polyenes such as β-carotene, lycopene, retinal, and retinal Schiff base. We discuss the role of molecular symmetry in vibrational coherence activity in the S1 electronic state and the interplay of coupling between electronic states and vibrational coherence.

  7. Photoelectron Spectroscopy Study of [Ta2B6]-: a Hexagonal Bipyramdial Cluster

    Science.gov (United States)

    Jian, Tian; Li, Weili; Romanescu, Constantin; Wang, Lai-Sheng

    2014-06-01

    It has been a long-sought goal in cluster science to discover stable atomic clusters as building blocks for cluster-assembled nanomaterials, as exemplified by the fullerenes and their subsequent bulk syntheses.[1,2] Clusters have also been considered as models to understand bulk properties, providing a bridge between molecular and solid-state chemistry.[3] Herein we report a joint photoelectron spectroscopy and theoretical study on the [Ta2B6]- and [Ta2B6] clusters.[4] The photoelectron spectrum of [Ta2B6]- displays a simple spectral pattern and a large HOMO-LUMO gap, suggesting its high symmetry. Theoretical calculations show that both the neutral and anion are D6h pyramidal. The chemical bonding analyses for [Ta2B6] revealed the nature of the B6 and Ta interactions and uncovered strong covalent bonding between B6 and Ta. The D6h-[TaB6Ta] gaseous cluster is reminiscent of the structural pattern in the ReB6X6Re core in the [(Cp*Re)2B6H4Cl2] and the TiB6Ti motif in the newly synthesized Ti7Rh4Ir2B8 solid-state compound.[5,6] The current work provides an intrinsic link between a gaseous cluster and motifs for solid materials. Continued investigations of the transition-metal boron clusters may lead to the discovery of new structural motifs involving pure boron clusters for the design of novel boride materials. Reference [1] H.W. Kroto, J. R. Heath, S. C. OBrien, R. F. Curl, R. E. Smalley, Nature 1985, 318, 162 - 163. [2] W. Krtschmer, L. D. Lamb, K. Fostiropoulos, D. R. Huffman, Nature 1990, 347, 354 - 358. [3] T. P. Fehlner, J.-F. Halet, J.-Y. Saillard, Molecular Clusters: A Bridge to Solid-State Chemitry, Cambridge University Press, UK, 2007. [4] W. L. Li, L. Xie, T. Jian, C. Romanescu, X. Huang, L.-S. Wang, Angew. Chem. Int. Ed. 2014, 126, 1312 - 1316. [5] B. Le Guennic, H. Jiao, S. Kahlal, J.-Y. Saillard, J.-F. Halet, S. Ghosh, M. Shang, A. M. Beatty, A. L. Rheingold, T. P. Fehlner, J. Am. Chem. Soc. 2004, 126, 3203 - 3217. [6] B. P. T. Fokwa, M. Hermus, Angew

  8. Development of ultrafast time-resolved dual-comb spectroscopy

    Directory of Open Access Journals (Sweden)

    Akifumi Asahara

    2017-04-01

    Full Text Available Ultrafast time-resolved dual-comb spectroscopy (TR-DCS has been demonstrated, which enables direct observations of transient responses of complex optical spectra by combining dual-comb spectroscopy with the pump–probe method. TR-DCS achieves two-dimensional spectroscopy with a wide dynamic range for both the temporal and frequency axes. As a demonstration, we investigated the femtosecond relaxation dynamics of a photo-excited InGaAs saturable absorber in the near-infrared frequency region. The transient response of the interferogram was successfully obtained, and both the amplitude and phase spectra of the dynamic complex transmittance were independently deduced without using the Kramers-Kronig relations. A high phase resolution in the order of milliradian was achieved by suppressing the effect from the slow phase drift caused in the experimental system. Our proof-of-principle experiment promotes a pathway to coherent, highly accurate, and multi-dimensional pump–probe spectroscopy using the optical frequency comb technology.

  9. Synchrotron-based double imaging photoelectron/photoion coincidence spectroscopy of radicals produced in a flow tube: OH and OD

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Gustavo A.; Tang, Xiaofeng; Gil, Jean-François; Nahon, Laurent [Synchrotron SOLEIL, L’Orme des Merisiers, St. Aubin, BP 48, 91192 Gif sur Yvette (France); Ward, Michael; Batut, Sebastien; Fittschen, Christa [PC2A, Université de Lille 1, UMR CNRS-USTL 8522, Cité Scientifique Bât. C11, F-59655 Villeneuve d’Ascq (France); Taatjes, Craig A.; Osborn, David L. [Combustion Research Facility, Mail Stop 9055, Sandia National Laboratories, Livermore, California 94551-0969 (United States); Loison, Jean-Christophe [ISM, Université Bordeaux 1, CNRS, 351 cours de la Libération, 33405 Talence Cedex (France)

    2015-04-28

    We present a microwave discharge flow tube coupled with a double imaging electron/ion coincidence device and vacuum ultraviolet (VUV) synchrotron radiation. The system has been applied to the study of the photoelectron spectroscopy of the well-known radicals OH and OD. The coincidence imaging scheme provides a high selectivity and yields the spectra of the pure radicals, removing the ever-present contributions from excess reactants, background, or secondary products, and therefore obviating the need for a prior knowledge of all possible byproducts. The photoelectron spectra encompassing the X{sup 3}Σ{sup −} ground state of the OH{sup +} and OD{sup +} cations have been extracted and the vibrational constants compared satisfactorily to existing literature values. Future advantages of this approach include measurement of high resolution VUV spectroscopy of radicals, their absolute photoionization cross section, and species/isomer identification in chemical reactions as a function of time.

  10. Synchrotron-based double imaging photoelectron/photoion coincidence spectroscopy of radicals produced in a flow tube: OH and OD

    Science.gov (United States)

    Garcia, Gustavo A.; Tang, Xiaofeng; Gil, Jean-François; Nahon, Laurent; Ward, Michael; Batut, Sebastien; Fittschen, Christa; Taatjes, Craig A.; Osborn, David L.; Loison, Jean-Christophe

    2015-04-01

    We present a microwave discharge flow tube coupled with a double imaging electron/ion coincidence device and vacuum ultraviolet (VUV) synchrotron radiation. The system has been applied to the study of the photoelectron spectroscopy of the well-known radicals OH and OD. The coincidence imaging scheme provides a high selectivity and yields the spectra of the pure radicals, removing the ever-present contributions from excess reactants, background, or secondary products, and therefore obviating the need for a prior knowledge of all possible byproducts. The photoelectron spectra encompassing the X3Σ- ground state of the OH+ and OD+ cations have been extracted and the vibrational constants compared satisfactorily to existing literature values. Future advantages of this approach include measurement of high resolution VUV spectroscopy of radicals, their absolute photoionization cross section, and species/isomer identification in chemical reactions as a function of time.

  11. Time resolved spectroscopy of GRB030501 using INTEGRAL

    CERN Document Server

    Beckmann, V; Courvoisier, Thierry J L; Goetz, D; Hudec, R; Hroch, F; Lund, N; Mereghetti, S; Shaw, S E; Wigger, C

    2003-01-01

    The Gamma-ray instruments on-board INTEGRAL offer an unique opportunity to perform time resolved analysis on GRBs. The imager IBIS allows accurate positiioning of GRBs and broad band spectral analysis, while SPI provides high resolution spectroscopy. GRB 030501 was discovered by the INTEGRAL Burst Alert System in the ISGRI field of view. Although the burst was fairly weak (fluence F = 3.5 * 10^-6 erg cm^-2 in the 20-200 keV energy band) it was possible to perform time resolved spectroscopy with a resolution of a few seconds. The GRB shows a spectrum in the 20 - 400 keV range which is consistent with a spectral photon index of -1.7. No emission line or spectral break was detectable in the spectrum. Although the flux seems to be correlated with the hardness of the GRB spectrum, there is no clear soft to hard evolution seen over the duration of the burst. The INTEGRAL data have been compared with results from the Ulysses and RHESSI experiments.

  12. Harmonium: A pulse preserving source of monochromatic extreme ultraviolet (30–110 eV radiation for ultrafast photoelectron spectroscopy of liquids

    Directory of Open Access Journals (Sweden)

    J. Ojeda

    2016-03-01

    Full Text Available A tuneable repetition rate extreme ultraviolet source (Harmonium for time resolved photoelectron spectroscopy of liquids is presented. High harmonic generation produces 30–110 eV photons, with fluxes ranging from ∼2 × 1011 photons/s at 36 eV to ∼2 × 108 photons/s at 100 eV. Four different gratings in a time-preserving grating monochromator provide either high energy resolution (0.2 eV or high temporal resolution (40 fs between 30 and 110 eV. Laser assisted photoemission was used to measure the temporal response of the system. Vibrational progressions in gas phase water were measured demonstrating the ∼0.2 eV energy resolution.

  13. Interface Energy Alignment of Atomic-Layer-Deposited VOx on Pentacene: an in Situ Photoelectron Spectroscopy Investigation.

    Science.gov (United States)

    Zhao, Ran; Gao, Yuanhong; Guo, Zheng; Su, Yantao; Wang, Xinwei

    2017-01-18

    Ultrathin atomic-layer-deposited (ALD) vanadium oxide (VOx) interlayer has recently been demonstrated for remarkably reducing the contact resistance in organic electronic devices (Adv. Funct. Mater. 2016, 26, 4456). Herein, we present an in situ photoelectron spectroscopy investigation (including X-ray and ultraviolet photoelectron spectroscopies) of ALD VOx grown on pentacene to understand the role of the ALD VOx interlayer for the improved contact resistance. The in situ photoelectron spectroscopy characterizations allow us to monitor the ALD growth process of VOx and trace the evolutions of the work function, pentacene HOMO level, and VOx defect states during the growth. The initial VOx growth is found to be partially delayed on pentacene in the first ∼20 ALD cycles. The underneath pentacene layer is largely intact after ALD. The ALD VOx is found to contain a high density of defect states starting from 0.67 eV below the Fermi level, and the energy level of these defect states is in excellent alignment with the HOMO level of pentacene, which therefore allows these VOx defect states to provide an efficient hole-injection pathway at the contact interface.

  14. Energy band alignment in chalcogenide thin film solar cells from photoelectron spectroscopy.

    Science.gov (United States)

    Klein, Andreas

    2015-04-10

    Energy band alignment plays an important role in thin film solar cells. This article presents an overview of the energy band alignment in chalcogenide thin film solar cells with a particular focus on the commercially available material systems CdTe and Cu(In,Ga)Se2. Experimental results from two decades of photoelectron spectroscopy experiments are compared with density functional theory calculations taken from literature. It is found that the experimentally determined energy band alignment is in good agreement with theoretical predictions for many interfaces. These alignments, in particular the theoretically predicted alignments, can therefore be considered as the intrinsic or natural alignments for a given material combination. The good agreement between experiment and theory enables a detailed discussion of the interfacial composition of Cu(In,Ga)Se2/CdS interfaces in terms of the contribution of ordered vacancy compounds to the alignment of the energy bands. It is furthermore shown that the most important interfaces in chalcogenide thin film solar cells, those between Cu(In,Ga)Se2 and CdS and between CdS and CdTe are quite insensitive to the processing of the layers. There are plenty of examples where a significant deviation between experimentally-determined band alignment and theoretical predictions are evident. In such cases a variation of band alignment of sometimes more than 1 eV depending on interface preparation can be obtained. This variation can lead to a significant deterioration of device properties. It is suggested that these modifications are related to the presence of high defect concentrations in the materials forming the contact. The particular defect chemistry of chalcogenide semiconductors, which is related to the ionicity of the chemical bond in these materials and which can be beneficial for material and device properties, can therefore cause significant device limitations, as e.g. in the case of the CuInS2 thin film solar cells or for new

  15. Energetics and dissociation pathways of dimethyl disulfide and dimethyl diselenide using photoelectron photoion coincidence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Borkar, Sampada [Department of Chemistry, University of the Pacific, Stockton, CA 95211 (United States); Sztáray, Bálint, E-mail: bsztaray@pacific.edu [Department of Chemistry, University of the Pacific, Stockton, CA 95211 (United States); Bodi, Andras, E-mail: andras.boedi@psi.ch [Molecular Dynamics Group, Paul Scherrer Institut, Villigen 5232 (Switzerland)

    2014-10-15

    Internal energy selected dimethyl disulfide and dimethyl diselenide cations were prepared by vacuum ultraviolet threshold photoionization in Imaging Photoelectron Photoion Coincidence (iPEPICO) spectroscopy experiments. XH-, CH{sub 3}- and CH{sub n}X-loss reactions (n = 2–4, X = S, Se) were observed in both samples with varying branching ratios. SH loss from dimethyl disulfide, DMDS, and SeH loss from dimethyl diselenide were both found to be slow at threshold, and proceed through a tight transition state. By modeling the breakdown diagram and the ion time-of-flight distributions to extract unimolecular dissociation rates to account for kinetic shifts, we obtained a new, significantly revised 0 K SH-loss CH{sub 3}SCH{sub 2}{sup +} appearance energy. At slightly higher energies, CH{sub n}X{sup +} (n = 2–4) fragments are observed, still in the metastable energy range of the parent ion. Later, CH{sub 3}-loss outcompetes the lower energy channels and becomes dominant. At yet higher energies, the CH{sub 3}-loss fragment ion, probably CH{sub 3}X{sub 2}{sup +}, forms CHX{sup +} by H{sub 2}X abstraction. The newly obtained 0 K appearance energies are used in the ion cycle to discuss the heats of formation of CH{sub 3}SCH{sub 2}{sup +}, CH{sub 3}S{sub 2}{sup +}, CH{sub 2}S{sup +}, C{sub 2}H{sub 5}Se{sup +}, and CH{sub 3}Se{sub 2}{sup +}.

  16. Assessment of Quantum Mechanical Methods for Copper and Iron Complexes by Photoelectron Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Niu, Shuqiang; Huang, Dao-Ling; Dau, Phuong D.; Liu, Hong-Tao; Wang, Lai S.; Ichiye, Toshiko

    2014-03-11

    Broken-symmetry density functional theory (BS-DFT) calculations are assessed for redox energetics [Cu(SCH3)2]1–/0, [Cu(NCS)2]1–/0, [FeCl4]1–/0, and [Fe(SCH3)4]1–/0 against vertical detachment energies (VDE) from valence photoelectron spectroscopy (PES), as a prelude to studies of metalloprotein analogs. The M06 and B3LYP hybrid functionals give VDE that agree with the PES VDE for the Fe complexes, but both underestimate it by 400 meV for the Cu complexes; other hybrid functionals give VDEs that are an increasing function of the amount of Hartree–Fock (HF) exchange and so cannot show good agreement for both Cu and Fe complexes. Range-separated (RS) functionals appear to give a better distribution of HF exchange since the negative HOMO energy is approximately equal to the VDEs but also give VDEs dependent on the amount of HF exchange, sometimes leading to ground states with incorrect electron configurations; the LRC-ωPBEh functional reduced to 10% HF exchange at short-range give somewhat better values for both, although still 150 meV too low for the Cu complexes and 50 meV too high for the Fe complexes. Overall, the results indicate that while HF exchange compensates for self-interaction error in DFT calculations of both Cu and Fe complexes, too much may lead to more sensitivity to nondynamical correlation in the spin-polarized Fe complexes.

  17. Interaction of FeO(-) with water: anion photoelectron spectroscopy and theoretical calculations.

    Science.gov (United States)

    Zhao, Li-Juan; Xu, Xi-Ling; Xu, Hong-Guang; Feng, Gang; Zheng, Wei-Jun

    2017-08-09

    The interactions of FeO(-) with water molecules were studied by using photoelectron spectroscopy and density functional theoretical calculations. It is found that a dihydroxyl species, Fe(OH)2(-/0), can be formed when FeO(-/0) interacts with the first water molecule. The complexes formed via the interactions between FeO(-/0) and n water molecules can be viewed as Fe(OH)2(H2O)n-1(-/0), in which (n - 1)H2O molecules interact with a Fe(OH)2 core. For Fe(OH)2(-/0) and Fe(OH)2(H2O)(-), the Fe(OH)2 unit has two conformers with the two OH groups oriented differently. The vertical detachment energies (VDEs) of FeO2H2(H2O)n-1(-) (n = 1-4) are measured to be 1.25 ± 0.04, 1.66 ± 0.04, 2.06 ± 0.04, and 2.37 ± 0.04 eV, respectively, by experiment. It is also worth mentioning that in the FeO2H2(H2O)(-) anion the water molecule interacts with the Fe(OH)2 core by forming a hydrogen bond with one of the OH groups, while in neutral FeO2H2(H2O), the water molecule interacts with the Fe atom of the Fe(OH)2 core via its O atom.

  18. Assessment of Quantum Mechanical Methods for Copper and Iron Complexes by Photoelectron Spectroscopy.

    Science.gov (United States)

    Niu, Shuqiang; Huang, Dao-Ling; Dau, Phuong D; Liu, Hong-Tao; Wang, Lai-Sheng; Ichiye, Toshiko

    2014-03-11

    Broken-symmetry density functional theory (BS-DFT) calculations are assessed for redox energetics [Cu(SCH3)2](1-/0), [Cu(NCS)2](1-/0), [FeCl4](1-/0), and [Fe(SCH3)4](1-/0) against vertical detachment energies (VDE) from valence photoelectron spectroscopy (PES), as a prelude to studies of metalloprotein analogs. The M06 and B3LYP hybrid functionals give VDE that agree with the PES VDE for the Fe complexes, but both underestimate it by ∼400 meV for the Cu complexes; other hybrid functionals give VDEs that are an increasing function of the amount of Hartree-Fock (HF) exchange and so cannot show good agreement for both Cu and Fe complexes. Range-separated (RS) functionals appear to give a better distribution of HF exchange since the negative HOMO energy is approximately equal to the VDEs but also give VDEs dependent on the amount of HF exchange, sometimes leading to ground states with incorrect electron configurations; the LRC-ωPBEh functional reduced to 10% HF exchange at short-range give somewhat better values for both, although still ∼150 meV too low for the Cu complexes and ∼50 meV too high for the Fe complexes. Overall, the results indicate that while HF exchange compensates for self-interaction error in DFT calculations of both Cu and Fe complexes, too much may lead to more sensitivity to nondynamical correlation in the spin-polarized Fe complexes.

  19. Measuring the pK/pI of biomolecules using X-ray photoelectron spectroscopy.

    Science.gov (United States)

    Fears, Kenan P

    2014-09-02

    Dissociation constants of GG-X-GG and X5 peptides (X = G, D, H, or K), and bovine albumin (BSA) and fibronectin (FN) were measured by X-ray photoelectron spectroscopy (XPS) in ultrahigh vacuum at room temperature. The biomolecules were deposited on Au substrates by drying 2.0 μL drops of 1.0 μg μL(-1) stock solutions in 100 mM sodium phosphate buffers (pH 1-12) at room temperature. Because of the ∼+1.3 eV shift in binding energy (BE) of protonated amines, pK values of basic amino acids were calculated by plotting the fraction of protonated amines as a function of solution pH. Similarly, the BE of carboxyl groups shifted ∼-1.3 eV upon deprotonation. While C 1s spectra were convoluted by the multiple chemical states of carbon present in the samples, the ratio of the C 1s components centered at BE = 289.0 ± 0.4 and BE = 287.9 ± 0.3 proved to reliably assess deprotonation of carboxyl groups. The pK values for the Asp (3.1 and 2.4), His (6.7), and Lys (11.3 and 10.6) peptides, and the pI of BSA (4.8) and FN (5.7), were consistent with published values; thus, these methods could potentially be used to determine the dissociation constants of surface-bound biomolecules.

  20. Examining the Amine Functionalization in Dicarboxylates: Photoelectron Spectroscopy and Theoretical Studies of Aspartate and Glutamate

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Shihu; Hou, Gao-Lei; Kong, Xiangyu; Valiev, Marat; Wang, Xue B.

    2014-06-30

    Aspartate (Asp2-) and Glutamate (Glu2-), two doubly charged conjugate bases of the corresponding amino acids were investigated using low temperature negative ion photoelectron spectroscopy (NIPES) and ab-initio calculations. The effect of amine functionalization was studied by a direct comparison to the parent dicarboxylate species (-CO2–(CH2)n–CO2-, DCn2-) -- succinate (DC22-) and propionate (DC32-). Experimentally the addition of amine group for n = 2 case (DC22-, Asp2-) significantly improves the stability of the resultant Asp2- dianionic species, albeit that NIPES shows only a small increase in adiabatic electron detachment energy (ADE) (+0.05eV). In contrast, for n = 3 (DC32-, Glu2-), much larger ADE increase is observed (+0.15eV). Similar results are obtained through ab-initio calculations. The latter indicates that increased stability of Asp2- can be attributed to the lowering of the energy of singlet dianion state due to hydrogen bonding effects. The effect of the amino group on the doublet monoanion state is more complicated, and results in the weakening of the binding of the adjacent carboxylate group due to electronic structure resonance effects. This conclusion is confirmed by the analysis of NIPES results that show enhanced production of near zero kinetic energy electrons observed experimentally for amine-functionalized species.

  1. Surface functional group characterization using chemical derivatization X-ray photoelectron spectroscopy (CD-XPS)

    Energy Technology Data Exchange (ETDEWEB)

    Jagst, Eda

    2011-03-18

    Chemical derivatization - X-ray photolectron spectroscopy (CD-XPS) was applied successfully in order to determine different functional groups on thin film surfaces. Different amino group carrying surfaces, prepared by spin coating, self-assembly and plasma polymerization, were successfully investigated by (XPS) and near edge X-ray absorption fine structure (NEXAFS) spectroscopy. Amino groups were derivatized with the widely used primary amino group tags, pentafluorobenzaldehyde (PFB) and 4-(trifluoromethyl)-benzaldehyde (TFBA), prior to analysis. Primary amino group quantification was then carried out according to the spectroscopical data. Self-assembled monolayers (SAMs) of different terminal groups were prepared and investigated with XPS and spectra were compared with reference surfaces. An angle resolved NEXAFS measurement was applied to determine the orientation of SAMs. Plasma polymerized allylamine samples with different duty cycle, power and pressure values were prepared in order to study the effects of external plasma parameters on the primary amino group retention. CD-XPS was used to quantify the amino groups and experiments show, that the milder plasma conditions promote the retention of amino groups originating from the allylamine monomer. An interlaboratory comparison of OH group determination on plasma surfaces of polypropylene treated with oxygen plasma, was studied. The surfaces were investigated with XPS and the [OH] amount on the surfaces was calculated. (orig.)

  2. Franck-Condon simulation of the anion photoelectron spectroscopy of CrO{sub 2} by coherent state method

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Guohua, E-mail: ghxu711@sohu.com; Yu, Feng

    2015-11-15

    Highlights: • A program to calculate multidimensional Franck-Condon integrals was developed. • The anion photoelectron spectroscopy of CrO{sub 2} was simulated and analyzed. • The calculated electron affinity of CrO{sub 2} is in agreement with the experiment. - Abstract: The equilibrium geometries and harmonic vibrational frequencies of CrO{sub 2}(X{sup 3}B{sub 1}) and CrO{sub 2}{sup -}(X{sup 4}B{sub 1}) were calculated using density functional theory and couple cluster method with various basis sets. A program was developed to calculate multidimensional Franck-Condon factors based on coherent state method. Its application to the photoelectron spectroscopy of the CrO{sub 2}(X{sup 3}B{sub 1})←CrO{sub 2}{sup -}(X{sup 4}B{sub 1}) photodetachment process was presented. The simulation at the CCSD(T)/aug-cc-pwCVTZ level of theory is in good agreement with the experimental spectroscopy, revealing that the hot bands contribute to the spectroscopy remarkably. All peaks of the experimental spectroscopy were assigned explicitly according to the theoretical modeling. Our calculations support original experimental assignments. In addition, the agreement between the calculated and experimental adiabatic electron affinities of CrO{sub 2}(X{sup 3}B{sub 1}) is excellent.

  3. Implementation of Inverse Photoelectron Spectroscopy for Measuring the Empty Electronic States of Metal Oxide Surfaces

    Science.gov (United States)

    2014-11-05

    turbomolecular pump were also purchased from the DURIP funds. This equipment was installed in an existing photoelectron spectrometer in the Whitten group...auxiliary equipment, including a mass spectrometer for thermal desorption and a Kelvin probe. Figure 1: Photograph of the photoelectron spectrometer at...hydroxides and oxides and how this is affected by adsorption of hazardous gases. Ultimately, we are interested in correlating adsorbate-induced changes in

  4. Direct work function measurement by gas phase photoelectron spectroscopy and its application on PbS nanoparticles.

    Science.gov (United States)

    Axnanda, Stephanus; Scheele, Marcus; Crumlin, Ethan; Mao, Baohua; Chang, Rui; Rani, Sana; Faiz, Mohamed; Wang, Suidong; Alivisatos, A Paul; Liu, Zhi

    2013-01-01

    Work function is a fundamental property of a material's surface. It is playing an ever more important role in engineering new energy materials and efficient energy devices, especially in the field of photovoltaic devices, catalysis, semiconductor heterojunctions, nanotechnology, and electrochemistry. Using ambient pressure X-ray photoelectron spectroscopy (APXPS), we have measured the binding energies of core level photoelectrons of Ar gas in the vicinity of several reference materials with known work functions (Au(111), Pt(111), graphite) and PbS nanoparticles. We demonstrate an unambiguously negative correlation between the work functions of reference samples and the binding energies of Ar 2p core level photoelectrons detected from the Ar gas near the sample surface region. Using this experimentally determined linear relationship between the surface work function and Ar gas core level photoelectron binding energy, we can measure the surface work function of different materials under different gas environments. To demonstrate the potential applications of this ambient pressure XPS technique in nanotechnology and solar energy research, we investigate the work functions of PbS nanoparticles with various capping ligands: methoxide, mercaptopropionic acid, and ethanedithiol. Significant Fermi level position changes are observed for PbS nanoparticles when the nanoparticle size and capping ligands are varied. The corresponding changes in the valence band maximum illustrate that an efficient quantum dot solar cell design has to take into account the electrochemical effect of the capping ligand as well.

  5. Photoelectron spectroscopy of mono-niobium carbide clusters NbCn-(n=2-7): Evidence for a cyclic to linear structural transition

    Science.gov (United States)

    Zhai, Hua-Jin; Liu, Shu-Rong; Li, Xi; Wang, Lai-Sheng

    2001-09-01

    We investigated a series of mono-niobium carbide clusters, NbCn- (n=2-7), using anion photoelectron spectroscopy. Vibrationally resolved photoelectron spectra were observed for NbC2- and NbC3-, which were both shown to have cyclic C2v structures. Two isomers were observed for NbC4- and NbC5-. The weak and low electron binding energy isomers were shown to be cyclic structures forming a series with NbC2- and NbC3-, and all have similar and low electron binding energies. The main isomers of NbC4- and NbC5-, which possess much higher electron binding energies, were shown to be due to linear structures, which form a series with NbC6- and NbC7-. All the linear NbCn- clusters were observed to have high electron binding energies and exhibit an even-odd alternation, similar to that observed for pure linear carbon clusters in the same size range. A cyclic to linear structural transition was thus observed for the NbCn- clusters from NbC3- to NbC4-, with the cyclic structures favored for the smaller clusters and the linear isomers favored for the larger clusters.

  6. Time-resolved vibrational spectroscopy of a molecular shuttle.

    Science.gov (United States)

    Panman, Matthijs R; Bodis, Pavol; Shaw, Danny J; Bakker, Bert H; Newton, Arthur C; Kay, Euan R; Leigh, David A; Buma, Wybren Jan; Brouwer, Albert M; Woutersen, Sander

    2012-02-14

    Time-resolved vibrational spectroscopy is used to investigate the inter-component motion of an ultraviolet-triggered two-station molecular shuttle. The operation cycle of this molecular shuttle involves several intermediate species, which are observable in the amide I and amide II regions of the mid-IR spectrum. Using ab initio calculations on specific parts of the rotaxane, and by comparing the transient spectra of the normal rotaxane with that of the N-deuterated version, we can assign the observed vibrational modes of each species occurring during the shuttling cycle in an unambiguous way. The complete time- and frequency-dependent data set is analyzed using singular value decomposition (SVD). Using a kinetic model to describe the time-dependent concentrations of the transient species, we derive the absorption spectra associated with each stage in the operation cycle of the molecular shuttle, including the recombination of the charged species.

  7. Spatially Resolved Fourier Transform Spectroscopy in the Extreme Ultraviolet

    CERN Document Server

    Jansen, G S M; Freisem, L; Eikema, K S E; Witte, S

    2016-01-01

    Coherent extreme ultraviolet (XUV) radiation produced by table-top high-harmonic generation (HHG) sources provides a wealth of possibilities in research areas ranging from attosecond physics to high resolution coherent imaging. However, it remains challenging to fully exploit the coherence of such sources for interferometry and Fourier transform spectroscopy (FTS). This is due to the need for a measurement system that is stable at the level of a wavelength fraction, yet allowing a controlled scanning of time delays. Here we demonstrate XUV interferometry and FTS in the 17-55 nm wavelength range using an ultrastable common-path interferometer suitable for high-intensity laser pulses that drive the HHG process. This approach enables the generation of fully coherent XUV pulse pairs with sub-attosecond timing variation, tunable time delay and a clean Gaussian spatial mode profile. We demonstrate the capabilities of our XUV interferometer by performing spatially resolved FTS on a thin film composed of titanium and...

  8. Time-resolved terahertz spectroscopy of semiconductor nanostructures

    DEFF Research Database (Denmark)

    Porte, Henrik

    of the photoconductivity is observed, due the release of carriers from the quantum dots into the conducting barrier states. Secondly, the carrier dynamics in InGaN/GaN quantum wells subject to a built-in piezoelectric eld is described. An initial fast decay of the photoconductivity as the piezoelectric eld is screened......This thesis describes time-resolved terahertz spectroscopy measurements on various semiconductor nanostructures. The aim is to study the carrier dynamics in these nanostructures on a picosecond timescale. In a typical experiment carriers are excited with a visible or near-infrared pulse...... and by measuring the transmission of a terahertz probe pulse, the photoconductivity of the excited sample can be obtained. By changing the relative arrival time at the sample between the pump and the probe pulse, the photoconductivity dynamics can be studied on a picosecond timescale. The rst studied semiconductor...

  9. Complete momentum and energy resolved TOF electron spectrometerfor time-resolved photoemission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Zahid; Lebedev, G.; Tremsin, A.; Siegmund, O.; Chen, Y.; Shen, Z.X.; Hussain, Z.

    2007-08-12

    Over the last decade, high-resolution Angle-Resolved Photoemission Spectroscopy (ARPES) has emerged as a tool of choice for studying the electronic structure of solids, in particular, strongly correlated complex materials such as cuprate superconductors. In this paper we present the design of a novel time-of-flight based electron analyzer with capability of 2D in momentum space (kx and ky) and all energies (calculated from time of flight) in the third dimension. This analyzer will utilize an improved version of a 2D delay linedetector capable of imaging with<35 mm (700x700 pixels) spatial resolution and better than 120 ps FWHM timing resolution. Electron optics concepts and optimization procedure are considered for achieving an energy resolution less than 1 meV and an angular resolution better than 0.11.

  10. Radiation effects and metalloproteins studied by x-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wurzbach, J.A.

    1975-07-01

    X-ray photoelectron spectroscopy (XPS) is used to study the bonding structure at the iron site of cytochrome c and the bonding of rare earth ions to the phosphate oxygens of ATP. Radiation effects are studied on several amino acid and simple peptide model systems. The emission spectrum of the x-ray source is calculated from literature references. The distributions of photon energy as a function of photon frequency and as a function of take-off angle are obtained. From these distributions, the radiation dose absorbed by an organic sample is found to be 10/sup 6/ rads/sec. The C 1s and N 1s spectra of amino acids and peptides are studied to characterize an internal reference standard for protein XPS spectra. Samples of native cytochrome c prepared from solutions of pH 1.5, 3, 7, and 11 are studied. Control samples include porphyrin cytochrome c (PCC), the metal free analogue of the native protein, and microperoxidase (MP), a mixture of heme peptides derived from the peptic digestion of cytochrome c. These samples show two S 2p peaks. The first peak has a binding energy (BE) of 163 eV, which corresponds to the S containing amino acids; the second peak is shifted to 167 eV. This large shift may be the result of Fe-S binding, or oxidation, or both. Low spin ferricytochrome c and ferri-MP were found to have Fe 3p BE's that are unusually low (51 eV) compared to other ferric compounds (54 to 58 eV) and even Fe metal (53 eV). X-ray crystal structures of these compounds show that low spin heme Fe lies in the porphyrin plane; while, high spin heme Fe is displaced above the plane. The N 1s and P 2p spectra of ATP show no change except slight broadening when Nd/sup 3 +/ is substituted for Na/sup +/. Thus, there is no inconsistency with proposals that rare earth ions might be useful as substitutes for alkali metal ions and alkaline earth ions in proteins.

  11. The Ultraviolet Photoelectron Spectroscopy of Group IV 2-15 Atom Cluster Anions

    Science.gov (United States)

    Craycraft, Mary Jo.

    The ability to map valence electronic structure is the result of a recent advance in photoelectron spectroscopy; its union with cluster molecular beam technology. The task of interpreting the spectra is hampered by a serious lack of understanding of cluster electronic structure in general. Recently progress has been made in finding models for single s valence electron systems. Alkali and noble metal clusters can be treated as free electron systems and simple interatomic potentials can be used with rare gas clusters. Neither a smeared jellium background nor a simple interatomic potential is adequate to describe covalent bonding, however. The isoelectronic Group IV members have a valence configuration of ns^2 np^2. All readily form clusters, and the elements differ in both their atomic and bulk properties; thus the series provides an ideal system for studying electronic structure. The mass selected cluster ion beam is crossed with a beam (6.42 or 7.9eV) and the resulting photodetached electrons collected with the aid of judiciously arranged magnetic fields. The spectra are found to be unique for each size cluster. Some spectra show a significant gap between the two lowest binding energy features, indicating that the neutral cluster is a closed shell species. The clusters with such gaps are minima in a plot of EA as a function of cluster size. The UPS also vary with the cluster composition. Carbon is unique; an even -odd alternation in electron affinities switches from odd minima for clusters containing less than ten atoms to odd maxima for larger clusters. This corresponds with an alternation in singlet and triplet ground states and a switch from chain to ring structures previously predicted by theory (K. S. Pitzer, E. Clementi, J. Amer. Chem. Soc. 81 4477 (1958) and R. Hoffmann, Tetrahedron 22 521 (1965)). The spectra of the remaining group IV members are remarkably similar to each other for clusters of up to ten atoms, as is the trend in the electron affinities as

  12. Broadband Mid-Infrared Comb-Resolved Fourier Transform Spectroscopy

    Science.gov (United States)

    Lee, Kevin; Mills, Andrew; Mohr, Christian; Jiang, Jie; Fermann, Martin; Maslowski, Piotr

    2014-06-01

    We report on a comb-resolved, broadband, direct-comb spectroscopy system in the mid-IR and its application to the detection of trace gases and molecular line shape analysis. By coupling an optical parametric oscillator (OPO), a 100 m multipass cell, and a high-resolution Fourier transform spectrometer (FTS), sensitive, comb-resolved broadband spectroscopy of dilute gases is possible. The OPO has radiation output at 3.1-3.7 and 4.5-5.5 μm. The laser repetition rate is scanned to arbitrary values with 1 Hz accuracy around 417 MHz. The comb-resolved spectrum is produced with an absolute frequency axis depending only on the RF reference (in this case a GPS disciplined oscillator), stable to 1 part in 10^9. The minimum detectable absorption is 1.6x10-6 wn Hz-1/2. The operating range of the experimental setup enables access to strong fundamental transitions of numerous molecular species for applications based on trace gas detection such as environmental monitoring, industrial gas calibration or medical application of human breath analysis. In addition to these capabilities, we show the application for careful line shape analysis of argon-broadened CO band spectra around 4.7 μm. Fits of the obtained spectra clearly illustrate the discrepancy between the measured spectra and the Voigt profile (VP), indicating the need to include effects such as Dicke narrowing and the speed-dependence of the collisional width and shift in the line shape model, as was shown in previous cw-laser studies. In contrast to cw-laser based experiments, in this case the entire spectrum (˜ 250 wn) covering the whole P and R branches can be measured in 16 s with 417 MHz resolution, decreasing the acquisition time by orders of magnitude. The parallel acquisition allows collection of multiple lines simultaneously, removing the correlation of possible temperature and pressure drifts. While cw-systems are capable of measuring spectra with higher precision, this demonstration opens the door for fast

  13. Photoelectron spectroscopy and density functional study of Co(n)C2(-) (n = 1-5) clusters.

    Science.gov (United States)

    Yuan, Jin-Yun; Xu, Hong-Guang; Zheng, Wei-Jun

    2014-03-21

    ConC2(-) (n = 1-5) cluster anions were investigated using anion photoelectron spectroscopy. The adiabatic detachment energies (ADEs) and the vertical detachment energies (VDEs) of the ConC2(-) (n = 1-5) cluster anions were determined from their photoelectron spectra. Density functional calculations were performed for the ConC2 (n = 1-5) cluster anions and neutrals. Our studies show that the structures of ConC2(-) (n = 1-5) can be described as attaching C2 to the top sites, bridge sites, or hollow sites of the Con clusters. The C2 retains an integral structure unit in the ConC2 (n = 1-5) cluster anions and neutrals, rather than being separated by the Con clusters. The C2 unit in the ConC2 (n = 1-5) cluster anions and neutrals has the characteristics of a double-bond.

  14. Negative ion photoelectron spectroscopy of 2,2'-bithiophene cluster anions, (2T)n- (n = 1 100)

    Science.gov (United States)

    Mitsui, M.; Matsumoto, Y.; Ando, N.; Nakajima, A.

    2005-07-01

    Cluster anions of 2,2'-bithiophene, (2T){n}-, were produced up to n ˜ 500 in the gas-phase. The energetics of the excess electron in the (2T){n}- clusters with n =1{-}100 were explored by negative ion photoelectron spectroscopy. When the vertical detachment energies (VDEs) obtained from the photoelectron spectra were analyzed by a plot against n-1/3, it has been revealed that the excess electron trapping level thus extrapolated is located at ˜ 0.8 eV below the conduction band minimum (i.e. LUMO) of the 2T thin film. The large slope of the VDEs vs. n-1/3 plot suggests that the neutral 2T molecules surrounding the anion core take non-planar twisted conformations with permanent dipole moments, resulting in the exceedingly deep trapping of the excess electron in the 2T cluster anions.

  15. Metal-polymer interfaces studied with adsorption microcalorimetry and photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bebensee, Fabian

    2010-06-21

    The interface formation between calcium and two different semiconducting, ?-conjugated polymers, namely poly(3-hexylthiophene) (P3HT) and poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-(1-cyanovilylene)phenylene] (CN-MEH-PPV), was investigated using adsorption microcalorimetry, low energy ion scattering spectroscopy (LEIS), atomic beam scattering and X-ray photoelectron spectroscopy. In addition to the interface formation on pristine, i.e., untreated polymer surfaces, the influence of electron irradiation prior to calcium deposition and the effect of dosing calcium at a low substrate temperature was studied. The reactive site for the interaction of calcium atoms impinging on a pristine P3HT surface appears to be the sulfur in the thiophene ring, as is concluded from a combination of XPS, adsorption calorimetry and theory results. The interaction, in fact, is strong enough that the sulfur atoms abstracted from the thiophene ring under formation of calcium sulfide with an overall reaction energy of this process of 405 kJ per mol. Quantitative evaluation of XPS data reveal that the depth up to which Ca atoms react with sulfur in the polymer is 3 nm, irrespective of increasing the amount of Ca dosed onto the substrate. A closed layer of Ca is only formed at a Ca coverage exceeding 11 ML, as suggested by LEIS. Irradiation of P3HT with electrons with a kinetic energy of 100 eV results in dehydrogenation of the hexyl side chains and formation of new C=C double bonds. This in turn results in a higher initial sticking probability of 0.63 for Ca, while no other significant changes could be observed: XPS indicates that the thiophene rings remain intact and the measured heat of adsorption is the same as observed for the deposition of Ca on pristine P3HT. Dosing Ca onto P3HT held at low temperature (130 K) is found to result in a very low saturation thickness of the reacted layer of approximately 0.3 nm. Upon warming the sample up to room temperature, the thickness of the reacted layer

  16. Electron-transfer acceleration investigated by time resolved infrared spectroscopy.

    Science.gov (United States)

    Vlček, Antonín; Kvapilová, Hana; Towrie, Michael; Záliš, Stanislav

    2015-03-17

    Ultrafast electron transfer (ET) processes are important primary steps in natural and artificial photosynthesis, as well as in molecular electronic/photonic devices. In biological systems, ET often occurs surprisingly fast over long distances of several tens of angströms. Laser-pulse irradiation is conveniently used to generate strongly oxidizing (or reducing) excited states whose reactions are then studied by time-resolved spectroscopic techniques. While photoluminescence decay and UV-vis absorption supply precise kinetics data, time-resolved infrared absorption (TRIR) and Raman-based spectroscopies have the advantage of providing additional structural information and monitoring vibrational energy flows and dissipation, as well as medium relaxation, that accompany ultrafast ET. We will discuss three cases of photoinduced ET involving the Re(I)(CO)3(N,N) moiety (N,N = polypyridine) that occur much faster than would be expected from ET theories. [Re(4-N-methylpyridinium-pyridine)(CO)3(N,N)](2+) represents a case of excited-state picosecond ET between two different ligands that remains ultrafast even in slow-relaxing solvents, beating the adiabatic limit. This is caused by vibrational/solvational excitation of the precursor state and participation of high-frequency quantum modes in barrier crossing. The case of Re-tryptophan assemblies demonstrates that excited-state Trp → *Re(II) ET is accelerated from nanoseconds to picoseconds when the Re(I)(CO)3(N,N) chromophore is appended to a protein, close to a tryptophan residue. TRIR in combination with DFT calculations and structural studies reveals an interaction between the N,N ligand and the tryptophan indole. It results in partial electronic delocalization in the precursor excited state and likely contributes to the ultrafast ET rate. Long-lived vibrational/solvational excitation of the protein Re(I)(CO)3(N,N)···Trp moiety, documented by dynamic IR band shifts, could be another accelerating factor. The last

  17. Visible and ultraviolet photoelectron spectroscopy of fullerenes using femtosecond laser pulses

    OpenAIRE

    Campbell E. E. B.; Henderson G. G.; Johansson J. O.

    2013-01-01

    Photoelectron spectra are presented for C60 excited with fs pulses of wavelengths 532 and 267 nm. The spectra indicate a quick redistribution of the excitation energy. Excitation of SAMO states is observed with 532 nm excitation, but due to the relatively large photon energy of the 267 nm pulses, these orbitals are not populated for this wavelength.

  18. Oxidation of nanostructured Ti films produced by low energy cluster beam deposition: An X-ray Photoelectron Spectroscopy characterization

    Energy Technology Data Exchange (ETDEWEB)

    Simone, Monica de, E-mail: desimone@tasc.infm.it [CNR-IOM Laboratorio TASC, Area Science Park Basovizza, 34149 Trieste (Italy); Snidero, Elena [CNR-IOM Laboratorio TASC, Area Science Park Basovizza, 34149 Trieste (Italy); Coreno, Marcello [CNR-IMIP, c/o Laboratorio TASC Area Science Park Basovizza, 34149 Trieste (Italy); Sincrotrone Trieste ScpA, Area Science Park Basovizza, 34149 Trieste (Italy); Bongiorno, Gero [Fondazione Filarete, v.le Ortles 22/4, 20139 Milano (Italy); Giorgetti, Luca [Istituto Europeo di Oncologia, Dip. di Oncologia Sperimentale, Via Adamello 16, 20139, Milano (Italy); Amati, Matteo [Sincrotrone Trieste ScpA, Area Science Park Basovizza, 34149 Trieste (Italy); Cepek, Cinzia [CNR-IOM Laboratorio TASC, Area Science Park Basovizza, 34149 Trieste (Italy)

    2012-05-01

    We used in-situ X-ray Photoelectron Spectroscopy (XPS) to study the oxidation process of a cluster-assembled metallic titanium film exposed to molecular oxygen at room temperature. The nanostructured film has been grown on a Si(111) substrate, in ultra high vacuum conditions, by coupling a supersonic cluster beam deposition system with an XPS experimental chamber. Our results show that upon in-situ oxygen exposure Ti{sup 3+} is the first oxidation state observed, followed by Ti{sup 4+}, whereas Ti{sup 2+} is practically absent during the whole process. Our results compare well with the existing literature on Ti films produced using other techniques.

  19. Application of maximum-entropy spectral estimation to deconvolution of XPS data. [X-ray Photoelectron Spectroscopy

    Science.gov (United States)

    Vasquez, R. P.; Klein, J. D.; Barton, J. J.; Grunthaner, F. J.

    1981-01-01

    A comparison is made between maximum-entropy spectral estimation and traditional methods of deconvolution used in electron spectroscopy. The maximum-entropy method is found to have higher resolution-enhancement capabilities and, if the broadening function is known, can be used with no adjustable parameters with a high degree of reliability. The method and its use in practice are briefly described, and a criterion is given for choosing the optimal order for the prediction filter based on the prediction-error power sequence. The method is demonstrated on a test case and applied to X-ray photoelectron spectra.

  20. Band alignment at the interface of PbTe/SnTe heterojunction determined by X-ray photoelectron spectroscopy

    Science.gov (United States)

    Shu, Tianyu; Ye, Zhenyu; Lu, Pengqi; Chen, Lu; Xu, Gangyi; Zhou, Jie; Wu, Huizhen

    2016-11-01

    We report the determination of band alignment of PbTe/SnTe (111) heterojunction interfaces using X-ray photoelectron spectroscopy (XPS). Multiple core levels of Pb and Sn were utilized to determine the valence band offset (VBO) of the heterojunction. The XPS result shows a type-III band alignment with the VBO of 1.37+/- 0.18 \\text{eV} and the conduction band offset (CBO) of 1.23+/- 0.18 \\text{eV} . The experimental determination of the band alignment of the PbTe/SnTe heterojunction shall benefit the improvement of PbTe/SnTe-related optoelectronic and electronic devices.

  1. Measurement of the CdSe/ZnTe valence band offset by x-ray photoelectron spectroscopy

    OpenAIRE

    E. T. Yu; Phillips, M. C.; McCaldin, J. O.; McGill, T. C.

    1991-01-01

    We have used x-ray photoelectron spectroscopy (XPS) to measure the valence band offset in situ for CdSe/ZnTe (100) heterojunctions grown by molecular-beam epitaxy. XPS measurements were performed for films of CdSe (100) and ZnTe (100), and for heterojunctions consisting of either ~25 Å of CdSe grown on ZnTe or ~25 Å of ZnTe grown on CdSe. Observations of reflection high energy electron diffraction patterns indicated that CdSe films deposited on ZnTe were grown in cubic zinc blende form, rathe...

  2. A combined photoelectron spectroscopy and relativistic ab initio studies of the electronic structures of UFO and UFO-

    Science.gov (United States)

    Roy, Soumendra K.; Jian, Tian; Lopez, Gary V.; Li, Wei-Li; Su, Jing; Bross, David H.; Peterson, Kirk A.; Wang, Lai-Sheng; Li, Jun

    2016-02-01

    The observation of the gaseous UFO- anion is reported, which is investigated using photoelectron spectroscopy and relativisitic ab initio calculations. Two strong photoelectron bands are observed at low binding energies due to electron detachment from the U-7sσ orbital. Numerous weak detachment bands are also observed due to the strongly correlated U-5f electrons. The electron affinity of UFO is measured to be 1.27(3) eV. High-level relativistic quantum chemical calculations have been carried out on the ground state and many low-lying excited states of UFO to help interpret the photoelectron spectra and understand the electronic structure of UFO. The ground state of UFO- is linear with an O-U-F structure and a 3H4 spectral term derived from a U 7sσ25fφ15fδ1 electron configuration, whereas the ground state of neutral UFO has a 4H7/2 spectral term with a U 7sσ15fφ15fδ1 electron configuration. Strong electron correlation effects are found in both the anionic and neutral electronic configurations. In the UFO neutral, a high density of electronic states with strong configuration mixing is observed in most of the scalar relativistic and spin-orbit coupled states. The strong electron correlation, state mixing, and spin-orbit coupling of the electronic states make the excited states of UFO very challenging for accurate quantum chemical calculations.

  3. A Clinical Tissue Oximeter Using NIR Time-Resolved Spectroscopy.

    Science.gov (United States)

    Fujisaka, Shin-ichi; Ozaki, Takeo; Suzuki, Tsuyoshi; Kamada, Tsuyoshi; Kitazawa, Ken; Nishizawa, Mitsunori; Takahashi, Akira; Suzuki, Susumu

    2016-01-01

    The tNIRS-1, a new clinical tissue oximeter using NIR time-resolved spectroscopy (TRS), has been developed. The tNIRS-1 measures oxygenated, deoxygenated and total hemoglobin and oxygen saturation in living tissues. Two-channel TRS measurements are obtained using pulsed laser diodes (LD) at three wavelengths, multi-pixel photon counters (MPPC) for light detection, and time-to-digital converters (TDC) for time-of-flight photon measurements. Incorporating advanced semiconductor devices helped to make the design of this small-size, low-cost and low-power TRS instrument possible. In order to evaluate the correctness and reproducibility of measurement data obtained with the tNIRS-1, a study using blood phantoms and healthy volunteers was conducted to compare data obtained from a conventional SRS device and data from an earlier TRS system designed for research purposes. The results of the study confirmed the correctness and reproducibility of measurement data obtained with the tNIRS-1. Clinical evaluations conducted in several hospitals demonstrated a high level of usability in clinical situations and confirmed the efficacy of measurement data obtained with the tNIRS-1.

  4. Photoelectron spectroscopy of acetone cluster anions, [(CH)2CO]n-(n=2,5-15)

    Science.gov (United States)

    Nakanishi, Ryuzo; Muraoka, Azusa; Nagata, Takashi

    2006-08-01

    Photoelectron images of [(CH)2CO]n-(n=2,5-15) were recorded at 3.49 eV. Analysis of the images provided the vertical detachment energies (VDEs) and photoelectron angular distributions (PADs) of [(CH)2CO]n-. The n-dependence of these quantities starts with VDE = 0.83 ± 0.03 eV and β ≈ -0.3 at n = 2, and it ends up with 2.83 ± 0.03 eV and ≈0.1 at n = 15. These findings, in conjunction with ab initio results, indicate: (1) the formation of a specific anion structure at n = 2; and (2) the presence of a solvent-stabilized (CH 3) 2CO - valence anion in the larger analogues.

  5. Coincidence and covariance data acquisition in photoelectron and -ion spectroscopy. I. Formal theory

    Science.gov (United States)

    Mikosch, Jochen; Patchkovskii, Serguei

    2013-10-01

    We derive a formal theory of noisy Poisson processes with multiple outcomes. We obtain simple, compact expressions for the probability distribution function of arbitrarily complex composite events and its moments. We illustrate the utility of the theory by analyzing properties of coincidence and covariance photoelectron-photoion detection involving single-ionization events. The results and techniques introduced in this work are directly applicable to more general coincidence and covariance experiments, including multiple ionization and multiple-ion fragmentation pathways.

  6. High resolution photoelectron spectroscopy and femtosecond intramolecular dynamics of H2CCO + and D2CCO +

    Science.gov (United States)

    Niu, Baohua; Bai, Ying; Shirley, David A.

    1993-08-01

    High resolution helium Iα (584 Å) photoelectron spectra of H2CCO and D2CCO are reported. The present spectra of the ground states of ketene cations show more vibrational fine structure than previously reported. The adiabatic ionization energies (AIEs) of the cations' first, second, and fifth excited states are determined unambiguously. The doubletlike fine structures present in the first excited states of ketene cations imply the excitation of a ``soft'' mode that was not observed before. It was assigned to the ν5 mode, which is characterized by the CH2 (CD2) group out-of-plane wagging motion. The complexity of the photoelectron spectra obtained for the ionic first excited states is attributed to the possible dissociation and predissociation of this state. Strong isotope effects are observed in the vibronic (vibrational) couplings in most of the ionic states. Vibrational autocorrelation functions are calculated from the high-resolution photoelectron spectra for four of the six ionic states observed. The dynamics of the ground states of the cations are characterized by a wave packet oscillating with small amplitude around the minimum of the upper potential energy surfaces (PES). The decay dynamics of the ionic first and fifth excited states of ketene are characterized by ultrafast intramolecular processes such as dissociation and predissociation.

  7. Time-resolved photoelectron signals from bifurcating electron wavepackets propagated across conical intersection in path-branching dynamics

    Science.gov (United States)

    Arasaki, Yasuki; Takatsuka, Kazuo

    2017-08-01

    A computational scheme of energy- and geometry-dependent photoelectron signals from the dynamics near a conical intersection based on a simplified path-branching representation of nonadiabatic electron wavepacket dynamics is proposed. Taking the NO2 X / A conical intersection as an example, the results of the present scheme compared to those from previous study based on the method of full quantum vibrational wavepacket shows qualitative agreement suggesting promising application to computation in larger systems intractable to full quantum exact methods.

  8. Irradiation-induced degradation of PTB7 investigated by valence band and S 2p photoelectron spectroscopy

    Science.gov (United States)

    Darlatt, Erik; Muhsin, Burhan; Roesch, Roland; Lupulescu, Cosmin; Roth, Friedrich; Kolbe, Michael; Gottwald, Alexander; Hoppe, Harald; Richter, Mathias

    2016-08-01

    Monochromatic radiation with known absolute radiant power from an undulator at the electron storage ring Metrology Light Source (MLS) was used to irradiate PTB7 (a thieno[3, 4-b]thiophene-alt-benzodithiophene polymer) thin films at wavelengths (photon energies) of 185 nm (6.70 eV), 220 nm (5.64 eV), 300 nm (4.13 eV), 320 nm (3.88 eV), 356 nm (3.48 eV) and 675 nm (1.84 eV) under ultra-high vacuum conditions for the investigation of radiation-induced degradation effects. The characterization of the thin films is focused at ultraviolet photoelectron spectroscopy (UPS) of valence bands and is complemented by S 2p x-ray photoelectron spectroscopy (S 2p XPS) before and after the irradiation procedure. The radiant exposure was determined for each irradiation by means of photodiodes traceably calibrated to the international system of units SI. The valence band spectra show the strongest changes for the shortest wavelengths and no degradation effect at 356 nm and 675 nm even with the highest radiant exposure applied. In the spectral range where the Sun appears bright on the Earth’s surface, no degradation effects are observed.

  9. 50 years anniversary of the discovery of the core level chemical shifts. The early years of photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Mårtensson, Nils [Department of Physics and Astronomy, Uppsala University, Box 516, 751 20 Uppsala (Sweden); Sokolowski, Evelyn [Tvär-Ramsdal 1, 611 99 Tystberga (Sweden); Svensson, Svante, E-mail: Svante.Svensson@fysik.uu.se [Department of Physics and Astronomy, Uppsala University, Box 516, 751 20 Uppsala (Sweden)

    2014-03-01

    Highlights: • 50 years since the discovery of t the core level chemical shift. • The pioneering years of ESCA. • A critical review of the first core electron chemical shift results. - Abstract: The pioneering years of photoelectron spectroscopy in Uppsala are discussed, especially the work leading to the discovery of the core level chemical shifts. At a very early stage of the project, the pioneering group observed what they described as evidence for chemical shifts in the core level binding energies. However, it can now be seen that the initial observations to a large extent was due to charging of the samples. It is interesting to note that the decisive experiment was realized, not as a result of a systematic study, but was obtained with a large element of serendipity. Only when a chemical binding energy shift was observed between two S2p electron lines in the same molecule, the results were accepted internationally, and the fascinating expansion of modern core level photoelectron spectroscopy could start.

  10. X-ray photoelectron spectroscopy study of irradiation-induced amorphizaton of Gd2Ti2O7

    Science.gov (United States)

    Chen, J.; Lian, J.; Wang, L. M.; Ewing, R. C.; Boatner, L. A.

    2001-09-01

    The radiation-induced evolution of the microstructure of Gd2Ti2O7, an important pyrochlore phase in radioactive waste disposal ceramics and a potential solid electrolyte and oxygen gas sensor, has been characterized using transmission electron microscopy and x-ray photoelectron spectroscopy. Following the irradiation of a Gd2Ti2O7 single crystal with 1.5 MeV Xe+ ions at a fluence of 1.7×1014Xe+/cm2, cross-sectional transmission electron microscopy revealed a 300-nm-thick amorphous layer at the specimen surface. X-ray photoelectron spectroscopy analysis of the Ti 2p and O 1s electron binding energy shifts of Gd2Ti2O7 before and after amorphization showed that the main results of ion-irradiation-induced disorder are a decrease in the coordination number of titanium and a transformation of the Gd-O bond. These features resemble those occurring in titanate glass formation, and they have implications for the chemical stability and electronic properties of pyrochlores subjected to displacive radiation damage.

  11. Dynamics of dipole- and valence bound anions in iodide-adenine binary complexes: A time-resolved photoelectron imaging and quantum mechanical investigation.

    Science.gov (United States)

    Stephansen, Anne B; King, Sarah B; Yokoi, Yuki; Minoshima, Yusuke; Li, Wei-Li; Kunin, Alice; Takayanagi, Toshiyuki; Neumark, Daniel M

    2015-09-14

    Dipole bound (DB) and valence bound (VB) anions of binary iodide-adenine complexes have been studied using one-color and time-resolved photoelectron imaging at excitation energies near the vertical detachment energy. The experiments are complemented by quantum chemical calculations. One-color spectra show evidence for two adenine tautomers, the canonical, biologically relevant A9 tautomer and the A3 tautomer. In the UV-pump/IR-probe time-resolved experiments, transient adenine anions can be formed by electron transfer from the iodide. These experiments show signals from both DB and VB states of adenine anions formed on femto- and picosecond time scales, respectively. Analysis of the spectra and comparison with calculations suggest that while both the A9 and A3 tautomers contribute to the DB signal, only the DB state of the A3 tautomer undergoes a transition to the VB anion. The VB anion of A9 is higher in energy than both the DB anion and the neutral, and the VB anion is therefore not accessible through the DB state. Experimental evidence of the metastable A9 VB anion is instead observed as a shape resonance in the one-color photoelectron spectra, as a result of UV absorption by A9 and subsequent electron transfer from iodide into the empty π-orbital. In contrast, the iodide-A3 complex constitutes an excellent example of how DB states can act as doorway state for VB anion formation when the VB state is energetically available.

  12. The effect of autoionization on the N2+ X 2Σg+ state vibrationally resolved photoelectron anisotropy parameters and branching ratios

    Science.gov (United States)

    Holland, D. M. P.; Seddon, E. A.; Daly, S.; Alcaraz, C.; Romanzin, C.; Nahon, L.; Garcia, G. A.

    2013-05-01

    Vibrationally resolved photoelectron anisotropy parameters and branching ratios for the N2+ X 2Σg+ state have been measured between the ionization threshold and ˜16.7 eV to study the influence of autoionization on the photoionization dynamics. In this energy range the ion yield curve exhibits extensive structure due to autoionizing Rydberg or valence states. Some of these Rydberg states belong to series converging onto the A 2Πu limit but, close to the ionization threshold, states belonging to series converging onto vibrationally excited levels of the X 2Σg+ state are also observed. At photon energies free from the influence of neutral excited states, the measured vibrational branching ratios correlate with the Franck-Condon factors for direct ionization. However, strong deviations are observed when the excitation energy corresponds with a transition into an autoionizing state. An attempt to interpret these variations using Franck-Condon factors connecting the neutral excited state and the final ionic state proved unsuccessful. This failure suggests that the intermediate states might not be pure Rydberg states. Electronic and, close to threshold, vibrational autoionization affects the vibrationally resolved photoelectron anisotropy parameters, leading to a significant reduction in the fairly high β-values determined for non-resonant ionization. Photoelectron images of the N2+ X 2Σg+ state recorded close to the v+ = 1 or the v+ = 2 ionization thresholds suggest that electronic autoionization results in rotational branch populations that differ from those due to direct, non-resonant, photoionization.

  13. Short-range order in amorphous SiO{sub x} by x ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Novikov, Yu. N.; Gritsenko, V. A. [Institute of Semiconductor Physics, Novosibirsk 630090 (Russian Federation)

    2011-07-01

    The Si 2p x ray photoelectron spectra of SiO{sub x} with a different composition of 0 {<=} x {<=} 2 have been studied experimentally and theoretically. The SiO{sub x} films were prepared by low-pressure chemical vapor deposition from SiH{sub 4} and N{sub 2}O source at 750 deg. C. Neither random bonding nor random mixture models can adequately describe the structure of these compounds. The interpretation of the experimental results is discussed according to a large scale potential fluctuation due to the spatial variation of chemical composition in SiO{sub x}.

  14. Investigation of low-Z Coster-Kronig transitions by means of Auger and photoelectron spectroscopy

    Science.gov (United States)

    Yin, L. I.; Tsang, T.; Adler, I.

    1972-01-01

    Experimental intensity ratios of Auger transitions for Co, Ni, Cu, and Zn as well as the relative L sub 2 and L sub 3 level widths of Cu and Zn, derived from their photoelectron spectra, are presented. Evidence is presented that a great deal of vacancy reorganization took place following photoionization and prior to Auger emission. These reorganizations are assumed to be due to Coster-Kronig transitions f sub 23. These results are compared with theoretical calculations and agree with predicted discontinuity at Z = 30 where f sub 23 transitions become energetically impossible.

  15. Electronic structure effects in liquid water studied by photoelectron spectroscopy and density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Nordlund, Dennis; Odelius, Michael; Bluhm, Hendrik; Ogasawara, Hirohito; Pettersson, Lars G.M.; Nilsson, Anders

    2008-04-29

    We present valence photoelectron emission spectra of liquid water in comparison with gas-phase water, ice close to the melting point, low temperature amorphous and crystalline ice. All aggregation states have major electronic structure changes relative to the free molecule, with rehybridization and development of bonding and anti-bonding states accompanying the hydrogen bond formation. Sensitivity to the local structural order, most prominent in the shape and splitting of the occupied 3a{sub 1} orbital, is understood from the electronic structure averaging over various geometrical structures, and reflects the local nature of the orbital interaction.

  16. Internal energy dependence of the photodissociation dynamics of O3(-) using cryogenic photoelectron-photofragment coincidence spectroscopy.

    Science.gov (United States)

    Shen, Ben B; Benitez, Yanice; Lunny, Katharine G; Continetti, Robert E

    2017-09-07

    Photoelectron-photofragment coincidence (PPC) spectra of ozonide, O3(-), were measured at 388 nm (Ehν = 3.20 eV) using a newly constructed cryogenic octopole accumulation trap coupled to a PPC spectrometer. The photoelectron spectra reveal three processes consisting of a stable photodetachment channel, and two distinct photodissociation pathways yielding (1) O2 + O(-) or (2) O + O2(-). The first photodissociation pathway is observed in the PPC spectra by photodetachment of the O(-) product by a second photon, and produces electronically excited O2((1)Δg). The O2(-) product of the second photodissociation pathway undergoes autodetachment for O2(-)((2)Πg, v″ > 4), a process greatly enhanced by vibrational excitation of the precursor O3(-). Cooling anions thermalized at 300 K to cryogenic octopole accumulation trap essentially turns off this autodetachment pathway. The product kinetic energy distribution in coincidence with the autodetached electrons from O2(-)(v″ = 4) exhibits resolved features consistent with bend (ν2), asymmetric stretch (ν3) and a stretching combination band (ν1 + ν3) in the intermediate electronic state, illustrating the insights that can be gained from kinematically complete measurements. These results are discussed in the context of the low-lying excited states of O3(-).

  17. Angle-resolved photoemission spectroscopy study of adsorption process and electronic structure of silver on ZnO(1010).

    Science.gov (United States)

    Ozawa, K; Sato, T; Kato, M; Edamoto, K; Aiura, Y

    2005-08-01

    The adsorption process and valence band structure of Ag on ZnO(1010) have been investigated by angle-resolved photoelectron spectroscopy utilizing synchrotron radiation. The coverage-dependent measurements of the Ag 4d band structure reveal that the Ag bands with a dispersing feature are formed even at low coverages and that the basic structure of the bands is essentially the same throughout the submonolayer region. These results indicate that the Ag atoms aggregate to form islands with an atomically ordered structure from the low coverages. Upon annealing the Ag-covered surface at 900 K, the Ag 4d band undergoes only a minor change, suggesting that the ordered structure within the Ag islands is persistent against mild annealing. From the dispersive feature of the Ag 4d states, we propose that the atomic structure has locally rectangular symmetry with a good lattice matching with the ZnO(1010) surface.

  18. Electronic structures of melatonin and related compounds studied by photoelectron spectroscopy

    CERN Document Server

    Kubota, M

    2003-01-01

    Melatonin is a hormone structurally regarded as being composed of a 5-methoxyindole group and an N-ethylacetamide group; its various physiological activities have attracted a great deal of attention recently. The gas phase He(I) photoelectron spectra of melatonin (M) and its related compounds including N-acetylserotonin have been studied with the aid of molecular orbital calculations. The first photoelectron spectral band group of compound M is ascribed to ionizations from the two pi orbitals localized on the methoxyindole group. The second band group is quite complicated and is regarded as being composed of several bands. The lower energy part of the second band group is ascribed to the three orbitals relevant to the third highest occupied pi orbital of 5-methoxyindole and the highest occupied pi and the n sub C sub = sub 0 orbitals of N-ethylacetamide. The interactions among the three orbitals have been found to operate on the basis of the molecular orbital calculations; these interactions depend strongly o...

  19. Electronic structures of melatonin and related compounds studied by photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kubota, Mari. E-mail: marik@hc.cc.keio.ac.jp; Kobayashi, Tsunetoshi

    2003-02-01

    Melatonin is a hormone structurally regarded as being composed of a 5-methoxyindole group and an N-ethylacetamide group; its various physiological activities have attracted a great deal of attention recently. The gas phase He(I) photoelectron spectra of melatonin (M) and its related compounds including N-acetylserotonin have been studied with the aid of molecular orbital calculations. The first photoelectron spectral band group of compound M is ascribed to ionizations from the two {pi} orbitals localized on the methoxyindole group. The second band group is quite complicated and is regarded as being composed of several bands. The lower energy part of the second band group is ascribed to the three orbitals relevant to the third highest occupied {pi} orbital of 5-methoxyindole and the highest occupied {pi} and the n{sub C=0} orbitals of N-ethylacetamide. The interactions among the three orbitals have been found to operate on the basis of the molecular orbital calculations; these interactions depend strongly on the conformations. The high energy end of the second band group is relevant to the {pi} orbital mainly localized on the 5-methoxyindole group and is ascribed to the fourth highest occupied {pi} orbital of 5-methoxyindole.

  20. Surface study of stainless steel electrode deposition from soil electrokinetic (EK) treatment using X-ray photoelectron spectroscopy (XPS)

    Energy Technology Data Exchange (ETDEWEB)

    Embong, Zaidi, E-mail: zaidi@uthm.edu.my [Faculty of Science, Technology and Human Development, Universiti Tun Hussien Onn Malaysia (UTHM) 86400, Parit Raja, Batu, Johor (Malaysia); Research Centre for Soft Soils (RECESS), Office for Research, Innovation, Commercialization and Consultancy Management (ORICC), Universiti Tun Hussien Onn Malaysia UTHM 86400, Parit Raja, Batu, Johor (Malaysia); Johar, Saffuwan [Faculty of Science, Technology and Human Development, Universiti Tun Hussien Onn Malaysia (UTHM) 86400, Parit Raja, Batu, Johor (Malaysia); Tajudin, Saiful Azhar Ahmad [Research Centre for Soft Soils (RECESS), Office for Research, Innovation, Commercialization and Consultancy Management (ORICC), Universiti Tun Hussien Onn Malaysia UTHM 86400, Parit Raja, Batu, Johor (Malaysia); Sahdan, Mohd Zainizan [Microelectronics and Nanotechnology Centre (MiNT-SRC), Office for Research, Innovation, Commercialization and Consultancy Management (ORICC), Universiti Tun Hussien Onn Malaysia UTHM 86400, Parit Raja, Batu, Johor (Malaysia)

    2015-04-29

    Electrokinetic (EK) remediation relies upon application of a low-intensity direct current through the soil between stainless steel electrodes that are divided into a cathode array and an anode array. This mobilizes charged species, causing ions and water to move toward the electrodes. Metal ions and positively charged organic compounds move toward the cathode. Anions such as chloride, fluoride, nitrate, and negatively charged organic compounds move toward the anode. Here, this remediation techniques lead to a formation of a deposition at the both cathode and anode surface that mainly contributed byanion and cation from the remediated soil. In this research, Renggam-Jerangau soil species (HaplicAcrisol + RhodicFerralsol) with a surveymeter reading of 38.0 ± 3.9 μR/hr has been investigation in order to study the mobility of the anion and cation under the influence electric field. Prior to the EK treatment, the elemental composition of the soil and the stainless steel electrode are measured using XRF analyses. Next, the soil sample is remediated at a constant electric potential of 30 V within an hour of treatment period. A surface study for the deposition layer of the cathode and anode using X-ray Photoelectron spectroscopy (XPS) revealed that a narrow photoelectron signal from oxygen O 1s, carbon, C 1s silica, Si 2p, aluminium, Al 2p and chromium, Cr 2p exhibited on the electrode surface and indicate that a different in photoelectron intensity for each element on both electrode surface. In this paper, the mechanism of Si{sup 2+} and Al{sup 2+} cation mobility under the influence of voltage potential between the cathode and anode will be discussed in detail.

  1. A combined photoelectron spectroscopy and relativistic ab initio studies of the electronic structures of UFO and UFO(-).

    Science.gov (United States)

    Roy, Soumendra K; Jian, Tian; Lopez, Gary V; Li, Wei-Li; Su, Jing; Bross, David H; Peterson, Kirk A; Wang, Lai-Sheng; Li, Jun

    2016-02-28

    The observation of the gaseous UFO(-) anion is reported, which is investigated using photoelectron spectroscopy and relativisitic ab initio calculations. Two strong photoelectron bands are observed at low binding energies due to electron detachment from the U-7sσ orbital. Numerous weak detachment bands are also observed due to the strongly correlated U-5f electrons. The electron affinity of UFO is measured to be 1.27(3) eV. High-level relativistic quantum chemical calculations have been carried out on the ground state and many low-lying excited states of UFO to help interpret the photoelectron spectra and understand the electronic structure of UFO. The ground state of UFO(-) is linear with an O-U-F structure and a (3)H4 spectral term derived from a U 7sσ(2)5fφ(1)5fδ(1) electron configuration, whereas the ground state of neutral UFO has a (4)H(7/2) spectral term with a U 7sσ(1)5fφ(1)5fδ(1) electron configuration. Strong electron correlation effects are found in both the anionic and neutral electronic configurations. In the UFO neutral, a high density of electronic states with strong configuration mixing is observed in most of the scalar relativistic and spin-orbit coupled states. The strong electron correlation, state mixing, and spin-orbit coupling of the electronic states make the excited states of UFO very challenging for accurate quantum chemical calculations.

  2. Angle-resolved photoemission spectroscopy (ARPES) studies of cuprate superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Palczewski, Ari Deibert [Iowa State Univ., Ames, IA (United States)

    2010-01-01

    This dissertation is comprised of three different angle-resolved photoemission spectroscopy (ARPES) studies on cuprate superconductors. The first study compares the band structure from two different single layer cuprates Tl2Ba2CuO6+δ (Tl2201) Tc, max ≈ 95 K and (Bi 1.35Pb0.85)(Sr1.47La0.38)CuO6+δ (Bi2201) Tc, max ≈ 35 K. The aim of the study was to provide some insight into the reasons why single layer cuprate's maximum transition temperatures are so different. The study found two major differences in the band structure. First, the Fermi surface segments close to (π,0) are more parallel in Tl2201 than in Bi2201. Second, the shadow band usually related to crystal structure is only present in Bi2201, but absent in higher Tc Tl2201. The second study looks at the different ways of doping Bi2Sr2CaCu2O8+δ (Bi2212) in-situ by only changing the post bake-out vacuum conditions and temperature. The aim of the study is to systematically look into the generally overlooked experimental conditions that change the doping of a cleaved sample in ultra high vacuum (UHV) experiments. The study found two major experimental facts. First, in inadequate UHV conditions the carrier concentration of Bi2212 increases with time, due to the absorption of oxygen from CO2/CO molecules, prime contaminants present in UHV systems. Second, in a very clean UHV system at elevated temperatures (above about 200 K), the carrier concentration decreases due to the loss of oxygen atoms from the Bi-O layer. The final study probed the particle-hole symmetry of the pseudogap phase in high temperature superconducting cuprates by looking at the thermally excited bands above the Fermi level. The data showed a particle-hole symmetric pseudogap which symmetrically closes away from the nested FS before the node. The data is

  3. Angle-resolved photoemission spectroscopy (ARPES) studies of cuprate superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Palczewski, Ari Deibert [Iowa State Univ., Ames, IA (United States)

    2010-01-01

    This dissertation is comprised of three different angle-resolved photoemission spectroscopy (ARPES) studies on cuprate superconductors. The first study compares the band structure from two different single layer cuprates Tl2Ba2CuO6+δ (Tl2201) Tc,max ~95 K and (Bi1.35Pb0.85)(Sr1.47La0.38)CuO6+δ (Bi2201) Tc,max 35 K. The aim of the study was to provide some insight into the reasons why single layer cuprate's maximum transition temperatures are so different. The study found two major di erences in the band structure. First, the Fermi surface segments close to ( π,0) are more parallel in Tl2201 than in Bi2201. Second, the shadow band usually related to crystal structure is only present in Bi2201, but absent in higher Tc Tl2201. The second study looks at the different ways of doping Bi2Sr2CaCu2O8+δ (Bi2212) in-situ by only changing the post bake-out vacuum conditions and temperature. The aim of the study is to systematically look into the generally overlooked experimental conditions that change the doping of a cleaved sample in ultra high vacuum (UHV) experiments. The study found two major experimental facts. First, in inadequate UHV conditions the carrier concentration of Bi2212 increases with time, due to the absorption of oxygen from CO2/CO molecules, prime contaminants present in UHV systems. Second, in a very clean UHV system at elevated temperatures (above about 200 K), the carrier concentration decreases due to the loss of oxygen atoms from the Bi-O layer. The final study probed the particle-hole symmetry of the pseudogap phase in high temperature superconducting cuprates by looking at the thermally excited bands above the Fermi level. The data showed a particle-hole symmetric pseudogap which symmetrically closes away from the nested FS before the node. The data is consistent with

  4. Time-Resolved Spectroscopy of Active Binary Stars

    Science.gov (United States)

    Brown, Alexander

    2000-01-01

    This NASA grant covered EUVE observing and data analysis programs during EUVE Cycle 5 GO observing. The research involved a single Guest Observer project 97-EUVE-061 "Time-Resolved Spectroscopy of Active Binary Stars". The grant provided funding that covered 1.25 months of the PI's salary. The activities undertaken included observation planning and data analysis (both temporal and spectral). This project was awarded 910 ksec of observing time to study seven active binary stars, all but one of which were actually observed. Lambda-And was observed on 1997 Jul 30 - Aug 3 and Aug 7-14 for a total of 297 ksec; these observations showed two large complex flares that were analyzed by Osten & Brown (1999). AR Psc, observed for 350 ksec on 1997 Aug 27 - Sep 13, showed only relatively small flares that were also discussed by Osten & Brown (1999). EUVE observations of El Eri were obtained on 1994 August 24-28, simultaneous with ASCA X-ray spectra. Four flares were detected by EUVE with one of these also observed simultaneously, by ASCA. The other three EUVE observations were of the stars BY Dra (1997 Sep 22-28), V478 Lyr (1998 May 18-27), and sigma Gem (1998 Dec 10-22). The first two stars showed a few small flares. The sigma Gem data shows a beautiful complete flare with a factor of ten peak brightness compared to quiescence. The flare rise and almost all the decay phase are observed. Unfortunately no observations in other spectral regions were obtained for these stars. Analysis of the lambda-And and AR Psc observations is complete and the results were published in Osten & Brown (1999). Analysis of the BY Dra, V478 Lyr and sigma Gem EUVE data is complete and will be published in Osten (2000, in prep.). The El Eri EUV analysis is also completed and the simultaneous EUV/X-ray study will be published in Osten et al. (2000, in prep.). Both these latter papers will be submitted in summer 2000. All these results will form part of Rachel Osten's PhD thesis.

  5. Time-resolved optical spectroscopy measurements of shocked liquid deuterium

    Science.gov (United States)

    Bailey, J. E.; Knudson, M. D.; Carlson, A. L.; Dunham, G. S.; Desjarlais, M. P.; Hanson, D. L.; Asay, J. R.

    2008-10-01

    Time-resolved optical spectroscopy has been used to measure the shock pressure steadiness, emissivity, and temperature of liquid deuterium shocked to 22-90 GPa. The shock was produced using magnetically accelerated flyer plate impact, and spectra were acquired with a suite of four fiber-optic-coupled spectrometers with streak camera detectors. The shock pressure changes by an average of -1.2% over the 10-30 ns cell transit time, determined from the relative changes in the shock front self-emission with time. The shock front reflectivity was measured from 5140Å and 5320Å laser light reflected from the D2 shock. The emissivity inferred from the reflectivity measurements was in reasonably good agreement with quantum molecular dynamics simulation predictions. The spectral radiance wavelength dependence was found to agree well (average normalized χ2=1.6 ) with a Planckian multiplied by the emissivity. The shock front temperature was determined from the emissivity and the wavelength-dependent shock self-emission. Thirty-seven temperature measurements spanning the 22-90 GPa range were accumulated. The large number of temperature measurements enables a comparison of the scatter in the data with expectations for a Gaussian distribution. This facilitates determination of uncertainties that incorporate both apparatus contributions and otherwise unquantified systematic effects that cause self-emission variations from one experiment to another. Agreement between temperatures determined from the absolute spectral radiance and from the relative shape of the spectrum further substantiates the absence of systematic biases. The weighted mean temperature uncertainties were as low as ±3-4% , enabling the discrimination between competing models for the D2 equation of state (EOS). The temperature results agree well with models that predict a maximum compression of ˜4.4 . Softer models that predict approximately sixfold compression are inconsistent with the data to a very high

  6. Photoelectron spectroscopy and theoretical studies of gaseous uranium hexachlorides in different oxidation states: UCl6q- (q = 0-2)

    Science.gov (United States)

    Su, Jing; Dau, Phuong D.; Liu, Hong-Tao; Huang, Dao-Ling; Wei, Fan; Schwarz, W. H. E.; Li, Jun; Wang, Lai-Sheng

    2015-04-01

    Uranium chlorides are important in actinide chemistry and nuclear industries, but their chemical bonding and many physical and chemical properties are not well understood yet. Here, we report the first experimental observation of two gaseous uranium hexachloride anions, UCl6- and UCl62-, which are probed by photoelectron spectroscopy in conjunction with quantum chemistry calculations. The electron affinity of UCl6 is measured for the first time as +5.3 eV; its second electron affinity is measured to be +0.60 eV from the photoelectron spectra of UCl62-. We observe that the detachment cross sections of the 5f electrons are extremely weak in the visible and UV energy ranges. It is found that the one-electron one-determinental molecular orbital picture and Koopmans' theorem break down for the strongly internally correlated U-5f2 valence shell of tetravalent U+4 in UCl62-. The calculated adiabatic and vertical electron detachment energies from ab initio calculations agree well with the experimental observations. Electronic structure and chemical bonding in the uranium hexachloride species UCl62- to UCl6 are discussed as a function of the oxidation state of U.

  7. In-situ observation of oxidation of Ti(0001) surface by real-time photoelectron spectroscopy using synchrotron radiation

    CERN Document Server

    Takakuwa, Y; Yoshigoe, A; Teraoka, Y; Mizuno, Y; Tonda, H; Homma, T

    2003-01-01

    Temperature dependence of the initial oxidation kinetics of Ti(0001) surface was investigated by low energy electron diffraction (LEED) and real-time photoelectron spectroscopy using synchrotron radiation of surface- and bulk-sensitive photon energies. LEED observation revealed that oxide layers grow epitaxially with different surface structures depending on temperature: 1x1 at 200degC and sq root 3 x sq root 3 at 400degC. From the oxygen uptake curve measured by O 1s photo-electron intensity, it was clarified that oxygen diffusion through the epitaxially grown oxide layer is significantly enhanced with raising temperature, making the oxide layer thicker than 70A at 400degC. The chemical shift components observed for Ti 2p showed that TiO sub 2 becomes predominant at the subsurface with O sub 2 dose, while the stoichiometry of oxide near the interface is maintained as TiO and Ti sub 2 O sub 3 , for both cases at 200degC and 400degC. Thus it is concluded that the epitaxial growth of a very thin oxide on the Ti...

  8. HeI photoelectron spectroscopy of the isoproxy (CH 3) 2CHO radical

    Science.gov (United States)

    Zheng, Sun; Shijun, Zheng; Lingpeng, Meng; Dianxun, Wang

    2003-02-01

    A continuous (CH 3) 2CHO radical beam is generated by pyrolysis of (CH 3) 2CHONO at 145(±0.5) °C. The HeI photoelectron spectrum of (CH 3) 2CHO is recorded in situ. The IP of (CH 3) 2CHO is 9.70 eV and the spectrum of the X3A″ state of (CH 3) 2CHO + exhibits a vibrational progression of 1200±60 cm-1. The removal of an electron from the highest occupied molecular orbital 11a ', which corresponds to ionization process of ( CH3) 2CHO+( 1A')←( CH3) 2CHO( X2A') , leads to a very sharp peak at 10.21 eV. This study provides new experimental and theoretical ionization energies of several ionic states of (CH 3) 2CHO.

  9. First stages of surface steel nitriding: X-ray photoelectron spectroscopy and electrical measurements

    Energy Technology Data Exchange (ETDEWEB)

    Flori, M., E-mail: flori.mihaela@fih.upt.ro [' Politehnica' University of Timisoara, Faculty of Engineering of Hunedoara, 331128 Hunedoara (Romania); Gruzza, B.; Bideux, L.; Monier, G.; Robert-Goumet, C. [LASMEA, UMR CNRS 6602, Blaise Pascal University, 63177 Aubiere Cedex (France); Benamara, Z. [Laboratoire de Microelectronique Appliquee, Sidi Bel Abbes University, 22000 Sidi Bel Abbes (Algeria)

    2009-08-30

    Quantitative and qualitative analysis techniques were employed to study the first stages of ultra-high vacuum plasma nitriding of the 42CrMo4 steel. At constant treatment temperature, maintained for all samples at about 360 deg. C, we have established the influence of treatment time on the chemical composition, thickness and electrical properties of the nitrided layer. In this purpose it was used a stacking atomic layer model describing the sample surface, which takes into account the attenuation depth of photoelectrons by the atomic monolayers. So, we have found that after 2 h of nitriding in laboratory conditions, 70% of the nitrided layer was composed of iron oxide. Also, I-V measurements indicate an influence of the nitride overlayer with increasing treatment time.

  10. Elemental content of enamel and dentin after bleaching of teeth (a comparative study between laser-induced breakdown spectroscopy and x-ray photoelectron spectroscopy)

    Energy Technology Data Exchange (ETDEWEB)

    Imam, H. [National Institute of Laser Enhanced Sciences, NILES, Cairo University, Giza (Egypt); Ahmed, Doaa [Department of Restorative Sciences, Faculty of Dentistry, Alexandria University, Alexandria (Egypt); Eldakrouri, Ashraf [National Institute of Laser Enhanced Sciences, NILES, Cairo University, Giza (Egypt); Department of Optometry and Vision Science, College of Applied Medical Science, King Saud University, Riyadh (Saudi Arabia)

    2013-06-21

    The elemental content of the superficial and inner enamel as well as that of dentin was analyzed using laser-induced breakdown spectroscopy (LIBS) and x-ray photoelectron spectroscopy (XPS) of bleached and unbleached tooth specimens. It is thus clear from the spectral analysis using both the LIBS and XPS technique that elemental changes (though insignificant within the scopes of this study) of variable intensities do occur on the surface of the enamel and extend deeper to reach dentin. The results of the LIBS revealed a slight reduction in the calcium levels in the bleached compared to the control specimens in all the different bleaching groups and in both enamel and dentin. The good correlation found between the LIBS and XPS results demonstrates the possibility of LIBS technique for detection of minor loss in calcium and phosphorus in enamel and dentin.

  11. Measurement of the time-resolved spectrum of photoelectrons from ZnS:Mn, Cu luminescent material

    CERN Document Server

    Dong Guo Yi; Wei Zh; Yang Shao Peng; Fu Guang Sheng

    2003-01-01

    The process of decay of photoelectrons in the conduction band of ZnS:Mn, Cu luminescent materials after excitation with a short-pulse laser has been investigated in this paper by means of measurements made using the microwave absorption dielectric spectrum detection technique. Exponential decay processes were observed for the electrons in the conduction band and the shallow-trapped electrons; the lifetimes of the electrons were found to be 1177 and 1703 ns, respectively. The processes of decay of the luminescence from ZnS:Mn, Cu were investigated and exponential decay processes were found for blue Cu sup + , green Cu sup + and Mn sup 2 sup + luminescent centres with lifetimes of the excited state of 139, 140 and 680 mu s, respectively.

  12. Annealing dependence of diamond-metal Schottky barrier heights probed by hard x-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gaowei, M.; Muller, E. M. [Department of Materials Science and Engineering, SUNY Stony Brook, Stony Brook, New York 11794 (United States); Rumaiz, A. K. [National Synchrotron Light Source, Brookhaven National Laboratory, Upton, New York 11973 (United States); Weiland, C.; Cockayne, E.; Woicik, J. C. [National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Jordan-Sweet, J. [IBM T.J. Watson Research Center, Yorktown Heights, New York 10598 (United States); Smedley, J. [Instrumentation Department, Brookhaven National Laboratory, Upton, New York 11973 (United States)

    2012-05-14

    Hard x-ray photoelectron spectroscopy was applied to investigate the diamond-metal Schottky barrier heights for several metals and diamond surface terminations. The position of the diamond valence-band maximum was determined by theoretically calculating the diamond density of states and applying cross section corrections. The diamond-platinum Schottky barrier height was lowered by 0.2 eV after thermal annealing, indicating annealing may increase carrier injection in diamond devices leading to photoconductive gain. The platinum contacts on oxygen-terminated diamond was found to provide a higher Schottky barrier and therefore a better blocking contact than that of the silver contact in diamond-based electronic devices.

  13. Adsorption of ethylene on Sn and In terminated Si(001) surface studied by photoelectron spectroscopy and scanning tunneling microscopy.

    Science.gov (United States)

    Zimmermann, Petr; Sobotík, Pavel; Kocán, Pavel; Ošt'ádal, Ivan; Vorokhta, Mykhailo; Acres, Robert George; Matolín, Vladimír

    2016-09-07

    Interaction of ethylene (C2H4) with Si(001)-Sn-2 × 2 and Si(001)-In-2 × 2 at room temperature has been studied using core level (C 1s) X-ray photoelectron spectroscopy with synchrotron radiation and scanning tunneling microscopy. Sn and In form similar dimer chains on Si(001)2 × 1, but exhibit different interaction with ethylene. While ethylene adsorbs on top of Sn dimers of the Si(001)-Sn-2 × 2 surface, the Si(001)-In-2 × 2 surface turned out to be inert. Furthermore, the reactivity of the Sn terminated surface is found to be considerably decreased in comparison with Si(001)2 × 1. According to the proposed adsorption model ethylene bonds to Sn dimers via [2 + 2] cycloaddition by interacting with their π dimer bonds. In contrast, indium dimers do not contain π bonds, which renders the In terminated Si(001) surface inert for ethylene adsorption.

  14. Adsorption of ethylene on Sn and In terminated Si(001) surface studied by photoelectron spectroscopy and scanning tunneling microscopy

    Science.gov (United States)

    Zimmermann, Petr; Sobotík, Pavel; Kocán, Pavel; Ošt'ádal, Ivan; Vorokhta, Mykhailo; Acres, Robert George; Matolín, Vladimír

    2016-09-01

    Interaction of ethylene (C2H4) with Si(001)-Sn-2 × 2 and Si(001)-In-2 × 2 at room temperature has been studied using core level (C 1s) X-ray photoelectron spectroscopy with synchrotron radiation and scanning tunneling microscopy. Sn and In form similar dimer chains on Si(001)2 × 1, but exhibit different interaction with ethylene. While ethylene adsorbs on top of Sn dimers of the Si(001)-Sn-2 × 2 surface, the Si(001)-In-2 × 2 surface turned out to be inert. Furthermore, the reactivity of the Sn terminated surface is found to be considerably decreased in comparison with Si(001)2 × 1. According to the proposed adsorption model ethylene bonds to Sn dimers via [2 + 2] cycloaddition by interacting with their π dimer bonds. In contrast, indium dimers do not contain π bonds, which renders the In terminated Si(001) surface inert for ethylene adsorption.

  15. Light-induced changes in an alkali metal atomic vapor cell coating studied by X-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hibberd, A. M.; Bernasek, S. L. [Department of Chemistry, Princeton University, Princeton, New Jersey 08544 (United States); Seltzer, S. J. [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Balabas, M. V. [Department of Physics, Saint-Petersburg State University, St. Petersburg 198504 (Russian Federation); Morse, M. [Department of Materials Science Engineering, Boise State University, Boise, Idaho 83725 (United States); Budker, D. [Department of Physics, University of California, Berkeley, California 94720-7300 (United States); Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2013-09-07

    The light-induced desorption of Rb atoms from a paraffin coating is studied with depth-profiling X-ray photoelectron spectroscopy (XPS) using tunable synchrotron radiation. Following Rb exposure, shifts of the C1s signal to higher binding energies, as well as the appearance of lower binding energy components in the O1s region, were observed. These effects were diminished after irradiation with desorbing light. Additionally, following desorbing-light irradiation, changes in the depth-dependent concentration of carbon were observed. These observations offer an insight into the microscopic changes that occur during light-induced atomic desorption and demonstrate the utility of XPS in understanding atom-coating interactions.

  16. Electronic structure of Al- and Ga-doped ZnO films studied by hard X-ray photoelectron spectroscopy

    Directory of Open Access Journals (Sweden)

    M. Gabás

    2014-01-01

    Full Text Available Al- and Ga-doped sputtered ZnO films (AZO, GZO are semiconducting and metallic, respectively, despite the same electronic valence structure of the dopants. Using hard X-ray photoelectron spectroscopy we observe that both dopants induce a band in the electronic structure near the Fermi level, accompanied by a narrowing of the Zn 3d/O 2p gap in the valence band and, in the case of GZO, a substantial shift in the Zn 3d. Ga occupies substitutional sites, whereas Al dopants are in both substitutional and interstitial sites. The latter could induce O and Zn defects, which act as acceptors explaining the semiconducting character of AZO and the lack of variation in the optical gap. By contrast, mainly substitutional doping is consistent with the metallic-like behavior of GZO.

  17. Hard x-ray photoelectron spectroscopy equipment developed at beamline BL46XU of SPring-8 for industrial researches

    Energy Technology Data Exchange (ETDEWEB)

    Yasuno, Satoshi, E-mail: yasuno@spring8.or.jp; Koganezawa, Tomoyuki; Watanabe, Takeshi [Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan); Oji, Hiroshi [Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan); SPring-8 Service Co., Ltd., 1-20-5 Kouto, Shingu, Tatsuno, Hyogo 679-5165 (Japan)

    2016-07-27

    Hard X-ray photoelectron spectroscopy (HAXPES) is a powerful tool for investigating the chemical and electronic states of bulk and buried interface in a non-destructive manner due to the large probing depth of this technique. At BL46XU of SPring-8, there are two HAXPES systems equipped with different electron spectrometers, which can be utilized appropriately according to the purpose in various industrial researches. In this article, these systems are outlined, and two typical examples of HAXPES studies performed by them are presented, which focus on the silicidation at Ni/SiC interface and the energy distribution of interface states at SiO{sub 2}/a-InGaZnO.

  18. X-ray photoelectron spectroscopy as a probe of the interaction between rhodium acetate and ionic liquids

    Science.gov (United States)

    Men, Shuang; Jiang, Jing

    2016-02-01

    X-ray photoelectron spectroscopy (XPS) is used as a probe of the interaction between rhodium acetate ([Rh2(OAc)4]) and ionic liquids. Due to the impact of the anion of ionic liquids on the electronic environment of the rhodium centre, the measured Rh 3d binding energies of [Rh2(OAc)4] dissolved in a series of ionic liquids were found to decrease along with the increasing of the basicity of anions. The reduction of Rh(II) to Rh(0) in 1-octyl-3methylimidazolium acetate ([C8C1Im][OAc]) under UHV condition was monitored by XPS. The intensity of the new formed metallic Rh(0) peak was found increased along with time. The surface enrichment of the new formed Rh(0) species in the system was also concluded.

  19. Native target chemistry during reactive dc magnetron sputtering studied by ex-situ x-ray photoelectron spectroscopy

    Science.gov (United States)

    Greczynski, G.; Mráz, S.; Schneider, J. M.; Hultman, L.

    2017-07-01

    We report x-ray photoelectron spectroscopy (XPS) analysis of native Ti target surface chemistry during magnetron sputtering in an Ar/N2 atmosphere. To avoid air exposure, the target is capped immediately after sputtering with a few-nm-thick Al overlayers; hence, information about the chemical state of target elements as a function of N2 partial pressure pN2 is preserved. Contrary to previous reports, which assume stoichiometric TiN formation, we present direct evidence, based on core-level XPS spectra and TRIDYN simulations, that the target surface is covered by TiNx with x varying in a wide range, from 0.27 to 1.18, depending on pN2. This has far-reaching consequences both for modelling of the reactive sputtering process and for everyday thin film growth where detailed knowledge of the target state is crucial.

  20. Investigation of interface dipole formation of dithiocarbamate molecules on gold by density functional theory and photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Tobias; Schulz, Philip; Meyer, Dominik; Wuttig, Matthias [I. Physikalisches Institut, RWTH Aachen University (Germany); Mazzarello, Riccardo [Institut fuer Theoretische Physik C, RWTH Aachen University (Germany)

    2011-07-01

    One of the main challenges in constructing organic optoelectronic devices is to control the charge carrier injection between the active organic material and metal contact electrodes. The insertion of a self assembled monolayer (SAM) between the organic/inorganic interface depicts an advantageous way to align the metal work function to the frontier molecular orbitals of adjacent organic species. In this study Dithiocarbamate terminated molecules (DTC) on gold have been investigated as a potential SAM building block. Photoelectron Spectroscopy reveals a strong lowering of the metal work function upon adsorption of DTC molecules. Hence, calculations employing density functional theory (DFT) have been conducted in order to correlate this effect to the formation of a layer of permanent as well as induced dipoles.

  1. Electronic structure of Al- and Ga-doped ZnO films studied by hard X-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gabás, M.; Ramos Barrado, José R. [Lab. de Materiales and Superficies, Dpto. de Física Aplicada I, Universidad de Málaga, 29071 Málaga (Spain); Torelli, P. [Laboratorio TASC, IOM-CNR, S.S. 14 km 163.5, Basovizza, I-34149 Trieste (Italy); Barrett, N. T. [CEA, DSM/IRAMIS/SPCSI, F-91191 Gif-sur-Yvette Cedex (France); Sacchi, M. [Synchrotron SOLEIL, BP 48, 91192 Gif-sur-Yvette, France and Institut des NanoSciences de Paris, UPMC Paris 06, CNRS UMR 7588, 4 Place Jussieu, 75005 Paris (France)

    2014-01-01

    Al- and Ga-doped sputtered ZnO films (AZO, GZO) are semiconducting and metallic, respectively, despite the same electronic valence structure of the dopants. Using hard X-ray photoelectron spectroscopy we observe that both dopants induce a band in the electronic structure near the Fermi level, accompanied by a narrowing of the Zn 3d/O 2p gap in the valence band and, in the case of GZO, a substantial shift in the Zn 3d. Ga occupies substitutional sites, whereas Al dopants are in both substitutional and interstitial sites. The latter could induce O and Zn defects, which act as acceptors explaining the semiconducting character of AZO and the lack of variation in the optical gap. By contrast, mainly substitutional doping is consistent with the metallic-like behavior of GZO.

  2. Employing X-ray Photoelectron Spectroscopy for Determining Layer Homogeneity in Mixed Polar Self-Assembled Monolayers.

    Science.gov (United States)

    Hehn, Iris; Schuster, Swen; Wächter, Tobias; Abu-Husein, Tarek; Terfort, Andreas; Zharnikov, Michael; Zojer, Egbert

    2016-08-04

    Self-assembled monolayers (SAMs) containing embedded dipolar groups offer the particular advantage of changing the electronic properties of a surface without affecting the SAM-ambient interface. Here we show that such systems can also be used for continuously tuning metal work functions by growing mixed monolayers consisting of molecules with different orientations of the embedded dipolar groups. To avoid injection hot-spots when using the SAM-modified electrodes in devices, a homogeneous mixing of the two components is crucial. We show that a combination of high-resolution X-ray photoelectron spectroscopy with state-of-the-art simulations is an ideal tool for probing the electrostatic homogeneity of the layers and thus for determining phase separation processes in polar adsorbate assemblies down to inhomogeneities at the molecular level.

  3. The X-ray photoelectron spectroscopy depth profiling and tribological characterization of ion-plated gold on various metals

    Science.gov (United States)

    Miyoshi, K.; Spalvins, T.; Buckley, D. H.

    1983-01-01

    For the case of ion-plated gold, the graded interface between gold and a nickel substrate and a nickel substrate, such tribological properties as friction and microhardness are examined by means of X-ray photoelectron spectroscopy analysis and depth profiling. Sliding was conducted against SiC pins in both the adhesive process, where friction arises from adhesion between sliding surfaces, and abrasion, in which friction is due to pin indentation and groove-plowing. Both types of friction are influenced by coating depth, but with opposite trends: the graded interface exhibited the highest adhesion, but the lowest abrasion. The coefficient of friction due to abrasion is inversely related to hardness. Graded interface microhardness values are found to be the highest, due to an alloying effect. There is almost no interface gradation between the vapor-deposited gold film and the substrate.

  4. Further insights into the photodegradation of poly(3-hexylthiophene) by means of X-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Manceau, Matthieu [Clermont Universite, Universite Blaise Pascal, LPMM, BP 10448, F-63000 Clermont-Ferrand (France); CNRS, UMR 6505, LPMM, F-63177 Aubiere (France); CEA-Grenoble DRT/LITEN/DTS/LCS, INES-RDI, Laboratoire des Composants Solaires, 50 avenue du Lac Leman BP 332, 73377 Le Bourget Du Lac (France); Gaume, Julien; Rivaton, Agnes [Clermont Universite, Universite Blaise Pascal, LPMM, BP 10448, F-63000 Clermont-Ferrand (France); CNRS, UMR 6505, LPMM, F-63177 Aubiere (France); Gardette, Jean-Luc, E-mail: luc.gardette@univ-bpclermont.f [Clermont Universite, Universite Blaise Pascal, LPMM, BP 10448, F-63000 Clermont-Ferrand (France); CNRS, UMR 6505, LPMM, F-63177 Aubiere (France); Monier, Guillaume; Bideux, Luc [Clermont Universite, Universite Blaise Pascal, LASMEA, BP 10448, F-63000 Clermont-Ferrand (France); CNRS, UMR 6602, LASMEA, F-63177 Aubiere (France)

    2010-09-30

    X-ray photoelectron spectroscopy (XPS) was used to monitor the chemical changes resulting from irradiation (> 295 nm) in air of poly(3-hexylthiophene) (P3HT), polymer which is a good candidate for photovoltaic applications. The formation of carbonyl moieties and the stepwise oxidation of sulphur atoms were characterised. The oxidation and the cleavage of the hexyl side-chain was monitored. It is also shown that sulfur was first converted into sulfoxides, then into sulfones and finally into sulfinate esters. The formation of these ultimate degradation products provoked a disruption of {pi}-conjugation in P3HT, leading to diminished visible absorbance. Based on these results, a mechanism of P3HT photooxidation is proposed. Comparison of XPS data with previously reported infrared and UV-visible spectral analysis showed that the information provided by these techniques is completely consistent.

  5. Combined use of atomic force microscopy, X-ray photoelectron spectroscopy, and secondary ion mass spectrometry for cell surface analysis.

    Science.gov (United States)

    Dague, Etienne; Delcorte, Arnaud; Latgé, Jean-Paul; Dufrêne, Yves F

    2008-04-01

    Understanding the surface properties of microbial cells is a major challenge of current microbiological research and a key to efficiently exploit them in biotechnology. Here, we used three advanced surface analysis techniques with different sensitivity, probing depth, and lateral resolution, that is, in situ atomic force microscopy, X-ray photoelectron spectroscopy, and secondary ion mass spectrometry, to gain insight into the surface properties of the conidia of the human fungal pathogen Aspergillus fumigatus. We show that the native ultrastructure, surface protein and polysaccharide concentrations, and amino acid composition of three mutants affected in hydrophobin production are markedly different from those of the wild-type, thereby providing novel insight into the cell wall architecture of A. fumigatus. The results demonstrate the power of using multiple complementary techniques for probing microbial cell surfaces.

  6. X-ray Photoelectron Spectroscopy (XPS Depth Profiling for Evaluation of La2Zr2O7 Buffer Layer Capacity

    Directory of Open Access Journals (Sweden)

    Isabel van Driessche

    2012-02-01

    Full Text Available Lanthanum zirconate (LZO films from water-based precursors were deposited on Ni-5%W tape by chemical solution deposition. The buffer capacity of these layers includes the prevention of Ni oxidation of the substrate and Ni penetration towards the YBCO film which is detrimental for the superconducting properties. X-ray Photoelectron Spectroscopy depth profiling was used to study the barrier efficiency before and after an additional oxygen annealing step, which simulates the thermal treatment for YBCO thin film synthesis. Measurements revealed that the thermal treatment in presence of oxygen could severely increase Ni diffusion. Nonetheless it was shown that from the water-based precursors’ buffer layers with sufficient barrier capacity towards Ni penetration could be synthesized if the layers meet a certain critical thickness and density.

  7. X-ray Photoelectron Spectroscopy Study of Disordering in Gd2(Ti1-xZrx)2O7 Pyrochlores

    Science.gov (United States)

    Chen, J.; Lian, J.; Wang, L. M.; Ewing, R. C.; Wang, R. G.; Pan, W.

    2002-03-01

    The dramatic increases in ionic conductivity in Gd2(Ti1-xZrx)2O7 solid solution are related to disordering on the cation and anion lattices. Disordering in Gd2(Ti1-xZrx)2O7 was characterized using x-ray photoelectron spectroscopy (XPS). As Zr substitutes for Ti in Gd2Ti2O7 to form Gd2(Ti1-xZrx)2O7 (0.25

  8. Thermodynamic equilibrium studies of nanocrystallite SrTiO3 grain boundaries by high temperature photoelectron spectroscopy

    Institute of Scientific and Technical Information of China (English)

    刘振祥; 谢侃

    2000-01-01

    Nanostructured strontium titanate (SrTiO3) thin films are studied by high temperature pho-toelectron spectroscopy and thermal gravimetric analysis. The results indicate that ion migration and redistribution as well as transformation between lattice oxygen and gas phase oxygen take place near the grain boundaries during thermodynamic equilibrium process, which lead to obvious variation of the surface composition with temperature. The lattice oxygen ions migrate from bulk to grain surface with temperature rising up; meanwhile Ti ions also migrate to grain surface and combine with oxygen ions forming Ti-O complex. An opposite process takes place during temperature falling down, but the latter process is much slower than the former one. A primary model is proposed to explain this phenomenon.

  9. Thermodynamic equilibrium studies of nanocrystallite SrTiO3 grain boundaries by high temperature photoelectron spectroscopy

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Nanostructured strontium titanate (SrTiO3) thin films are studied by high temperature photoelectron spectroscopy and thermal gravimetric analysis. The results indicate that ion migration and redistribution as well as transformation between lattice oxygen and gas phase oxygen take place near the grain boundaries during thermodynamic equilibrium process, which lead to obvious variation of the surface composition with temperature. The lattice oxygen ions migrate from bulk to grain surface with temperature rising up; meanwhile Ti ions also migrate to grain surface and combine with oxygen ions forming Ti-O complex. An opposite process takes place during temperature falling down, but the latter process is much slower than the former one. A primary model is proposed to explain this phenomenon.

  10. Surface chemical composition of human maxillary first premolar as assessed by X-ray photoelectron spectroscopy (XPS)

    Energy Technology Data Exchange (ETDEWEB)

    Lou, Leo [Orthodontic Graduate Program, Faculty of Medicine and Dentistry, University of Alberta (Canada); Nelson, Alan E. [Department of Chemical and Materials Engineering, University of Alberta (Canada)], E-mail: aenelson@dow.com; Heo, Giseon [Department of Statistics, Department of Dentistry, University of Alberta (Canada); Major, Paul W. [Orthodontic Graduate Program, Faculty of Medicine and Dentistry, University of Alberta (Canada)

    2008-08-30

    The surface chemical composition of dental enamel has been postulated as a contributing factor in the variation of bond strength of brackets bonded to teeth, and hence, the probability of bracket failure during orthodontic treatment. This study systematically investigated the chemical composition of 98 bonding surfaces of human maxillary premolars using X-ray photoelectron spectroscopy (XPS) to ascertain compositional differences between right and left first premolars. The major elements detected in all samples were calcium, phosphorus, oxygen, nitrogen and carbon. Surface compositions were highly variable between samples and several elements were found to be highly correlated. No statistical significant difference in the chemical composition of the maxillary right and left first premolars was found (p > 0.05). Knowledge of the chemical composition of enamel surfaces will facilitate future studies that relate this information to the variations in dental enamel bond strength.

  11. A high-efficiency spin-resolved photoemission spectrometer combining time-of-flight spectroscopy with exchange-scattering polarimetry

    Energy Technology Data Exchange (ETDEWEB)

    Jozwiak, Chris M.; Graff, Jeff; Lebedev, Gennadi; Andresen, Nord; Schmid, Andreas; Fedorov, Alexei; El Gabaly, Farid; Wan, Weishi; Lanzara, Alessandra; Hussain, Zahid

    2010-04-13

    We describe a spin-resolved electron spectrometer capable of uniquely efficient and high energy resolution measurements. Spin analysis is obtained through polarimetry based on low-energy exchange scattering from a ferromagnetic thin-film target. This approach can achieve a similar analyzing power (Sherman function) as state-of-the-art Mott scattering polarimeters, but with as much as 100 times improved efficiency due to increased reflectivity. Performance is further enhanced by integrating the polarimeter into a time-of-flight (TOF) based energy analysis scheme with a precise and flexible electrostatic lens system. The parallel acquisition of a range of electron kinetic energies afforded by the TOF approach results in an order of magnitude (or more) increase in efficiency compared to hemispherical analyzers. The lens system additionally features a 90 degrees bandpass filter, which by removing unwanted parts of the photoelectron distribution allows the TOF technique to be performed at low electron drift energy and high energy resolution within a wide range of experimental parameters. The spectrometer is ideally suited for high-resolution spin- and angle-resolved photoemission spectroscopy (spin-ARPES), and initial results are shown. The TOF approach makes the spectrometer especially ideal for time-resolved spin-ARPES experiments.

  12. In situ SERS and X-ray photoelectron spectroscopy studies on the pH-dependant adsorption of anthraquinone-2-carboxylic acid on silver electrode

    Science.gov (United States)

    Li, Dan; Jia, Shaojie; Fodjo, Essy Kouadio; Xu, Hu; Wang, Yuhong; Deng, Wei

    2016-03-01

    In this study, in situ surface-enhanced Raman scattering (SERS) spectroelectrochemistry and angle-resolved X-ray photoelectron spectroscopy (AR-XPS) are used to investigate the redox reaction and adsorption behavior of anthraquinone-2-carboxylic acid (AQ-2-COOH) on an Ag electrode at different pH values. The obtained results indicate that AQ-2-COOH is adsorbed tilted on the Ag electrode through O-atom of ring carbonyl in a potential range from -0.3 to -0.5 V vs. SCE, but the orientation turns to more tilted orientation with both O-atom of the ring carbonyl and carboxylate group in positive potential region for pH 6.0 and 7.4. However, at pH 10.0, the orientation adopts tilted conformation constantly on the Ag electrode with both O-atom of the anthraquinone ring and carboxylate group in the potential range from -0.3 to -0.5 V vs. SCE or at positive potentials. Moreover, the adsorption behavior of AQ-2-COOH has been further confirmed by AR-XPS on the Ag surface. Proposed reasons for the observed changes in orientation are presented.

  13. Quantification of the toxic hexavalent chromium content in an organic matrix by X-ray photoelectron spectroscopy (XPS) and ultra-low-angle microtomy (ULAM)

    Science.gov (United States)

    Greunz, Theresia; Duchaczek, Hubert; Sagl, Raffaela; Duchoslav, Jiri; Steinberger, Roland; Strauß, Bernhard; Stifter, David

    2017-02-01

    Cr(VI) is known for its corrosion inhibitive properties and is, despite legal regulations, still a potential candidate to be added to thin (1-3 μm) protective coatings applied on, e.g., electrical steel as used for transformers, etc. However, Cr(VI) is harmful to the environment and to the human health. Hence, a reliable quantification of it is of decisive interest. Commonly, an alkaline extraction with a photometric endpoint detection of Cr(VI) is used for such material systems. However, this procedure requires an accurate knowledge on sample parameters such as dry film thickness and coating density that are occasionally associated with significant experimental errors. We present a comprehensive study of a coating system with a defined Cr(VI) pigment concentration applied on electrical steel. X-ray photoelectron spectroscopy (XPS) was employed to resolve the elemental chromium concentration and the chemical state. Turning to the fact that XPS is extremely surface sensitive (purpose a special sample preparation step performed on an ultra-microtome was required prior to analysis. Since a temperature increase leads to a reduction of Cr(VI) we extend our method on samples, which were subjected to different curing temperatures. We show that our proposed approach now allows to determine the elemental and Cr(VI) concentration and distribution inside the coating.

  14. In Situ Observation of Water Dissociation with Lattice Incorporation at FeO Particle Edges Using Scanning Tunneling Microscopy and X-ray Photoelectron Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Xingyi [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Lee, Junseok [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Wang, Congjun [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Matranga, Christopher [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Aksoy, Funda [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Nigde University, Nigde (Turkey). Dept. of Physics; Liu, Zhi [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2011-03-15

    The dissociation of H2O and formation of adsorbed hydroxyl groups, on FeO particles grown on Au(111) were identified with in situ,: X:ray photoelectron spectroscopy (XPS) at water pressures ranging from 3 x 10-8 to 0.1 Torr. The facile dissociation of H2O takes place at FeO particle edges, and it was successfully observed in situ With atomically resolved scanning tunneling microscopy (STM). The in situ STM studies show that adsorbed hydroxyl groups were formed exclusively along the edges of the FeO particles with the 0 atom becoming directly incorporated into the oxide crystalline lattice The STM results are consistent with coordinatively unsaturated ferrous (CUF) sites along the FeO particle edge causing the observed reactivity with H2O. Our results also directly illustrate how structural defects and under.-coordinated sites participate in chemical reactions.

  15. Ultrafast α -CC bond cleavage of acetone upon excitation to 3p and 3d Rydberg states by femtosecond time-resolved photoelectron imaging

    Science.gov (United States)

    Hüter, O.; Temps, F.

    2016-12-01

    The radiationless electronic relaxation and α -CC bond fission dynamics of jet-cooled acetone in the S1 (n π* ) state and in high-lying 3p and 3d Rydberg states have been investigated by femtosecond time-resolved mass spectrometry and photoelectron imaging. The S1 state was accessed by absorption of a UV pump photon at selected wavelengths between λ = 320 and 250 nm. The observed acetone mass signals and the S1 photoelectron band decayed on sub-picosecond time scales, consistent with a recently proposed ultrafast structural relaxation of the molecules in the S1 state away from the Franck-Condon probe window. No direct signatures could be observed by the experiments for CC dissociation on the S1 potential energy hypersurface in up to 1 ns. The observed acetyl mass signals at all pump wavelengths turned out to be associated with absorption by the molecules of one or more additional pump and/or probe photons. In particular, absorption of a second UV pump photon by the S1 (n π* ) state was found to populate a series of high-lying states belonging to the n = 3 Rydberg manifold. The respective transitions are favored by much larger cross sections compared to the S1 ← S0 transition. The characteristic energies revealed by the photoelectron images allowed for assignments to the 3p and 3dyz states. At two-photon excitation energies higher than 8.1 eV, an ultrafast reaction pathway for breaking the α -CC bond in 50-90 fs via the 3dyz Rydberg state and the elusive π π* state was observed, explaining the formation of acetyl radicals after femtosecond laser excitation of acetone at these wavelengths.

  16. Time-resolved spectroscopy of the fluorescence quenching of a donor — acceptor pair by halothane

    Science.gov (United States)

    Sharma, A.; Draxler, S.; Lippitsch, M. E.

    1992-04-01

    Donor (anthracene) sensitized acceptor (perylene) fluorescence is quenched more efficiently by halothane than is intrinsic perylene fluorescence. The underlying process of dynamic fluorescence quenching is investigated by time-resolved fluorescence spectroscopy.

  17. A multi-plate velocity-map imaging design for high-resolution photoelectron spectroscopy

    Science.gov (United States)

    Kregel, Steven J.; Thurston, Glen K.; Zhou, Jia; Garand, Etienne

    2017-09-01

    A velocity map imaging (VMI) setup consisting of multiple electrodes with three adjustable voltage parameters, designed for slow electron velocity map imaging applications, is presented. The motivations for this design are discussed in terms of parameters that influence the VMI resolution and functionality. Particularly, this VMI has two tunable potentials used to adjust for optimal focus, yielding good VMI focus across a relatively large energy range. It also allows for larger interaction volumes without significant sacrifice to the resolution via a smaller electric gradient at the interaction region. All the electrodes in this VMI have the same dimensions for practicality and flexibility, allowing for relatively easy modifications to suit different experimental needs. We have coupled this VMI to a cryogenic ion trap mass spectrometer that has a flexible source design. The performance is demonstrated with the photoelectron spectra of S- and CS2 -. The latter has a long vibrational progression in the ground state, and the temperature dependence of the vibronic features is probed by changing the temperature of the ion trap.

  18. Silica-supported silicotungstic acid: A study by X-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Berry, Frank J.; Derrick, Glyn R. [Department of Chemistry and Analytical Sciences, Robert Hooke Building, Open University, Walton Hall, Milton Keynes, MK7 6AA (United Kingdom); Marco, Jose F. [Instituto de Quimica -Fisica ' Rocasolano' , Consejo Superior de Investigaciones Cientificas, Serrano 119, 28006 Madrid (Spain); Mortimer, Michael [Department of Chemistry and Analytical Sciences, Robert Hooke Building, Open University, Walton Hall, Milton Keynes, MK7 6AA (United Kingdom)], E-mail: m.mortimer@open.ac.uk

    2009-04-15

    W 4f and O 1s X-ray photoelectron spectra for silicotungstic acid, H{sub 4}SiW{sub 12}O{sub 40}, in pure and silica-supported form are reported. W 4f XP spectra for the supported acid are analysed in terms of contributions from two W(VI) spin-orbit doublets arising from tungsten atoms in terminal W=O bonds some of which directly interact with the silica surface. At low loading (3.2 wt.%) significant changes in the relative contributions and binding energies of the two spin-orbit doublets are taken as evidence of a strong interaction of individual [SiW{sub 12}O{sub 40}]{sup 4-} anions with highly active sites on the silica surface. It is suggested that selective ordering of silanol groups can occur on the silica surface in order to accommodate the adsorption of individual [SiW{sub 12}O{sub 40}]{sup 4-} anions.

  19. Tautomerism in 5-aminotetrazole investigated by core-level photoelectron spectroscopy and {Delta}SCF calculations

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, R.M., E-mail: ruipinto@fct.unl.pt [CFA, Centro de Fisica Atomica, Departamento de Fisica, Faculdade de Ciencias e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Dias, A.A. [CFA, Centro de Fisica Atomica, Departamento de Fisica, Faculdade de Ciencias e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Coreno, M. [CNR-IMIP, Montelibretti, Rome I-00016 (Italy); Simone, M. de [CNR-IOM, Laboratorio TASC, 34149 Trieste (Italy); Giuliano, B.M. [Departamento de Quimica da Universidade de Coimbra, 3004-535 Coimbra (Portugal); Santos, J.P.; Costa, M.L. [CFA, Centro de Fisica Atomica, Departamento de Fisica, Faculdade de Ciencias e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer High-resolution XPS of 5-aminotetrazole reveals different tautomers. Black-Right-Pointing-Pointer 5ATZ exists mainly in the 2H-form. Black-Right-Pointing-Pointer Results obtained with DSCF are in good agreement with the observed binding energies. - Abstract: The C 1s and N 1s photoelectron spectra of gas-phase 5-aminotetrazole (5ATZ) were recorded using synchrotron radiation, with the aim of evaluating 1H/2H tautomer population ratios. The core-electron binding energies (CEBEs) were estimated from computational results, using the delta self-consistent-field ({Delta}SCF) approach. Simulated spectra were generated using these CEBEs and the results from GAUSSIAN-n (Gn, n = 1, 2 and 3) and Complete Basis Set (CBS-4M and CBS-Q) methods. Results reveal the almost exclusive predominance of the 2H-tautomer, with a 1H/2H ratio of ca. 0.12/0.88, taken from a gross analysis of the XPS C 1s spectrum, recorded at 365 K.

  20. Probing the structural evolution of ruthenium doped germanium clusters: Photoelectron spectroscopy and density functional theory calculations

    Science.gov (United States)

    Jin, Yuanyuan; Lu, Shengjie; Hermann, Andreas; Kuang, Xiaoyu; Zhang, Chuanzhao; Lu, Cheng; Xu, Hongguang; Zheng, Weijun

    2016-07-01

    We present a combined experimental and theoretical study of ruthenium doped germanium clusters, RuGen- (n = 3-12), and their corresponding neutral species. Photoelectron spectra of RuGen- clusters are measured at 266 nm. The vertical detachment energies (VDEs) and adiabatic detachment energies (ADEs) are obtained. Unbiased CALYPSO structure searches confirm the low-lying structures of anionic and neutral ruthenium doped germanium clusters in the size range of 3 ≤ n ≤ 12. Subsequent geometry optimizations using density functional theory (DFT) at PW91/LANL2DZ level are carried out to determine the relative stability and electronic properties of ruthenium doped germanium clusters. It is found that most of the anionic and neutral clusters have very similar global features. Although the global minimum structures of the anionic and neutral clusters are different, their respective geometries are observed as the low-lying isomers in either case. In addition, for n > 8, the Ru atom in RuGen-/0 clusters is absorbed endohedrally in the Ge cage. The theoretically predicted vertical and adiabatic detachment energies are in good agreement with the experimental measurements. The excellent agreement between DFT calculations and experiment enables a comprehensive evaluation of the geometrical and electronic structures of ruthenium doped germanium clusters.

  1. Photoelectron spectroscopy and density functional theory studies on the uridine homodimer radical anions

    Science.gov (United States)

    Jae Ko, Yeon; Storoniak, Piotr; Wang, Haopeng; Bowen, Kit H.; Rak, Janusz

    2012-11-01

    We report the photoelectron spectrum (PES) of the homogeneous dimer anion radical of uridine, (rU)2•-. It features a broad band consisting of an onset of ˜1.2 eV and a maximum at the electron binding energy (EBE) ranging from 2.0 to 2.5 eV. Calculations performed at the B3LYP/6-31++G** level of theory suggest that the PES is dominated by dimeric radical anions in which one uridine nucleoside, hosting the excess charge on the base moiety, forms hydrogen bonds via its O8 atom with hydroxyl of the other neutral nucleoside's ribose. The calculated adiabatic electron affinities (AEAGs) and vertical detachment energies (VDEs) of the most stable homodimers show an excellent agreement with the experimental values. The anionic complexes consisting of two intermolecular uracil-uracil hydrogen bonds appeared to be substantially less stable than the uracil-ribose dimers. Despite the fact that uracil-uracil anionic homodimers are additionally stabilized by barrier-free electron-induced proton transfer, their relative thermodynamic stabilities and the calculated VDEs suggest that they do not contribute to the experimental PES spectrum of (rU)2•-.

  2. Vibrationally high-resolved electronic spectra of MCl2 (M = C, Si, Ge, Sn, Pb) and photoelectron spectra of MCl2-

    Science.gov (United States)

    Ran, Yibin; Pang, Min; Shen, Wei; Li, Ming; He, Rongxing

    2016-10-01

    We systematically studied the vibrational-resolved electronic spectra of group IV dichlorides using the Franck-Condon approximation combined with the Duschinsky and Herzberg-Teller effects in harmonic and anharmonic frameworks (only the simulation of absorption spectra includes the anharmonicity). Calculated results showed that the band shapes of simulated spectra are in accordance with those of the corresponding experimental or theoretical ones. We found that the symmetric bend mode in progression of absorption is the most active one, whereas the main contributor in photoelectron spectra is the symmetric stretching mode. Moreover, the Duschinsky and anharmonic effects exert weak influence on the absorption spectra, except for PbCl2 molecule. The theoretical insights presented in this work are significant in understanding the photophysical properties of MCl2 (M = C, Si, Ge, Sn, Pb) and studying the Herzberg-Teller and the anharmonic effects on the absorption spectra of new dichlorides of this main group.

  3. TOF Electron Energy Analyzer for Spin and Angular Resolved Photoemission Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lebedev, Gennadi; Jozwiak, Chris; Andresen, Nord; Lanzara, Alessandra; Hussain, Zahid

    2008-07-09

    Current pulsed laser and synchrotron x-ray sources provide new opportunities for Time-Of- Flight (TOF) based photoemission spectroscopy to increase photoelectron energy resolution and efficiency compared to current standard techniques. The principals of photoelectron timing front formation, temporal aberration minimization, and optimization of electron beam transmission are presented. We have developed these concepts into a high resolution Electron Optical Scheme (EOS) of a TOF Electron Energy Analyzer (TOF-EEA) for photoemission spectroscopy. The EOS of the analyzer includes an electrostatic objective lens, three columns of transport lenses and a 90 degree energy band pass filter (BPF). The analyzer has two modes of operation: Spectrometer Mode (SM) with straight passage of electrons through the EOS undeflected by the BPF, allowing the entire spectrum to be measured, and Monochromator Mode (MM) in which the BPF defines a certain energy window inside the scope of the electron energy spectrum.

  4. Hydration of potassium iodide dimer studied by photoelectron spectroscopy and ab initio calculations

    Science.gov (United States)

    Li, Ren-Zhong; Zeng, Zhen; Hou, Gao-Lei; Xu, Hong-Guang; Zhao, Xiang; Gao, Yi Qin; Zheng, Wei-Jun

    2016-11-01

    We measured the photoelectron spectra of (KI)2-(H2O)n (n = 0-3) and conducted ab initio calculations on (KI)2-(H2O)n anions and their corresponding neutrals up to n = 6. Two types of spectral features are observed in the experimental spectra of (KI)2-(H2O) and (KI)2-(H2O)2, indicating that two types of isomers coexist, in which the high EBE feature corresponds to the hydrated chain-like (KI)2- while the low EBE feature corresponds to the hydrated pyramidal (KI)2-. In (KI)2-(H2O)3, the (KI)2- unit prefers a pyramidal configuration, and one of the K-I distances is elongated significantly, thus a K atom is firstly separated out from the (KI)2- unit. As for the neutrals, the bare (KI)2 has a rhombus structure, and the structures of (KI)2(H2O)n are evolved from the rhombus (KI)2 unit by the addition of H2O. When the number of water molecules reaches 4, the K-I distances have significant increment and one of the I atoms prefers to leave the (KI)2 unit. The comparison of (KI)2(H2O)n and (NaI)2(H2O)n indicates that it is slightly more difficult to pry apart (KI)2 than (NaI)2 via hydration, which is in agreement with the lower solubility of KI compared to that of NaI.

  5. Hard X-ray PhotoElectron Spectroscopy of transition metal oxides: Bulk compounds and device-ready metal-oxide interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Borgatti, F., E-mail: francesco.borgatti@cnr.it [Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), Consiglio Nazionale delle Ricerche (CNR), via P. Gobetti 101, Bologna I-40129 (Italy); Torelli, P.; Panaccione, G. [Istituto Officina dei Materiali (IOM)-CNR, Laboratorio TASC, Area Science Park, Trieste I-34149 (Italy)

    2016-04-15

    Highlights: • Hard X-ray PhotoElectron Spectroscopy (HAXPES) applied to buried interfaces of systems involving Transition Metal Oxides. • Enhanced contribution of the s states at high kinetic energies both for valence and core level spectra. • Sensitivity to chemical changes promoted by electric field across metal-oxide interfaces in resistive switching devices. - Abstract: Photoelectron spectroscopy is one of the most powerful tool to unravel the electronic structure of strongly correlated materials also thanks to the extremely large dynamic range in energy, coupled to high energy resolution that this form of spectroscopy covers. The kinetic energy range typically used for photoelectron experiments corresponds often to a strong surface sensitivity, and this turns out to be a disadvantage for the study of transition metal oxides, systems where structural and electronic reconstruction, different oxidation state, and electronic correlation may significantly vary at the surface. We report here selected Hard X-ray PhotoElectron Spectroscopy (HAXPES) results from transition metal oxides, and from buried interfaces, where we highlight some of the important features that such bulk sensitive technique brings in the analysis of electronic properties of the solids.

  6. An X-ray photoelectron spectroscopy study of the acidity of SiO{sub 2}-ZrO{sub 2} mixed oxides

    Energy Technology Data Exchange (ETDEWEB)

    Bosman, H.J.M.; Pijpers, A.P.; Jaspers, A.W.M.A. [DSM Research B.V., MD Geleen (Netherlands)

    1996-07-01

    X-ray photoelectron spectroscopy (XPS) of SiO{sub 2}-ZrO{sub 2} mixed oxides was studied. Surface acidity was investigated in light of the relationship between acidity and catalytic effects. 28 refs., 12 figs., 3 tabs.

  7. X-Ray Photoelectron Spectroscopy Study of the Effect of Hydrocarbon Contamination on Poly(Tetrafluoroethylene) Exposed to a Nitrogen Plasma

    Science.gov (United States)

    Golub, Morton A.; Lopata, Eugene S.; Finney, Lorie S.

    1993-01-01

    It has been shown that unless the surface of poly(tetrafluoroethylene)(PTFE) is free of hydrocarbon contamination, anomalous changes in the oxygen and fluorine contents, as measured by X-ray photoelectron spectroscopy (XPS), and hence also the surface properties, may be improperly ascribed to a PTFE film exposed to a oxygen plasma.

  8. X-Ray Photoelectron Spectroscopy and Reflection High Energy Electron Diffraction of Epitaxial Growth SiC on Si(100) Using C60 and Si

    Institute of Scientific and Technical Information of China (English)

    LIU Yan-Fang; LIU Jin-Feng; XU Peng-Shou; PAN Hai-Bin

    2007-01-01

    The formation of silicon carbide upon deposition of C60 and Si on Si(100) surface at 850 ℃ is studied via x-ray photoelectron spectroscopy and reflection high energy electron diffraction (RHEED). The C 1s, O 1s and Si 2p core-level spectra and the RHEED patterns indicate the formation of 3C-SiC.

  9. Band bending at copper and gold interfaces with ferroelectric Pb(Zr,Ti)O3 investigated by photoelectron spectroscopy

    Science.gov (United States)

    Apostol, Nicoleta G.; Ştoflea, Laura E.; Tănase, Liviu C.; Bucur, Ioana Cristina; Chirilă, Cristina; Negrea, Raluca F.; Teodorescu, Cristian M.

    2015-11-01

    Interfaces formed by gold and copper on single crystal layers of (0 0 1) PbZr0.2Ti0.8O3 (PZT) produced by pulsed laser deposition and exhibiting outwards polarization are analyzed by X-ray photoelectron spectroscopy. The stoichiometry of the layers reproduces reasonably that of the PZT target. The band bending occurring at the interface between PZT and the metals is investigated by analyzing the core level shifts as function on the metal deposition. It is found that for Au/PZT(0 0 1) the gold layer is not continuous and the observed band bendings can be attributed to a Schottky mechanism, whereas for Cu/PZT(0 0 1) the copper layer is continuous; in this latter case, the observed band bendings towards higher energies (lower binding energies) can be attributed to a concomitant bending due to the Schottky effect together with the disappearance of the initial bending due to the outwards polarization of the samples. Metal Pb is observed to segregate only in the case of Cu/PZT(0 0 1), therefore the surface self-reduction might also be connected to the presence of a metal with lower work function, which for larger coverage forms a continuous metal layer, able to provide electrons to the surface. High resolution transmission electron spectroscopy yielded the disappearance of the tetragonal distortion in the case of Cu/PZT(0 0 1), in line with the assumption of disappearance of the polarization-induced band bending.

  10. X-ray photoelectron spectroscopy and transmission electron microscopy analysis of silver-coated gold nanorods designed for bionanotechnology applications

    Science.gov (United States)

    Watanabe, Fumiya; Nima, Zeid A.; Honda, Takumi; Mitsuhara, Masatoshi; Nishida, Minoru; Biris, Alexandru S.

    2017-01-01

    Multicomponent nano-agents were designed and built via a core-shell approach to enhance their surface enhanced Raman scattering (SERS) signals. These nano-agents had 36 nm × 12 nm gold nanorod cores coated by 4 nm thick silver shell films and a subsequent thin bifunctional thiolated polyethylene glycol (HS-PEG-COOH) layer. Ambient time-lapsed SERS signal measurements of these functionalized nanorods taken over a two-week period indicated no signal degradation, suggesting that large portions of the silver shells remained in pure metallic form. The morphology of the nanorods was characterized by transmission electron microscopy (TEM) and ultra-high resolution scanning TEM. X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) were utilized to assess the oxidation states of the silver shells covered by HS-PEG-COOH. The binding energies of Ag 3d XPS spectra yielded very small chemical shifts with oxidation; however, the AES peak shapes gave meaningful information about the extent of oxidation undergone by the nano-agent. While the silver shells without HS-PEG-COOH coatings oxidized significantly, the silver shells with HS-PEG-COOH remained predominantly metallic. In fact, six month-old samples still retained mostly metallic silver shells. These findings further demonstrate the stability and longevity of the nanostructures, indicating their significant potential as plasmonically active agents for highly sensitive detection in various biological systems, including cancer cells, tissues, or even organisms.

  11. Effect of gamma irradiation on X-ray absorption and photoelectron spectroscopy of Nd-doped phosphate glass.

    Science.gov (United States)

    Rai, V N; Rajput, Parasmani; Jha, S N; Bhattacharyya, D; Raja Shekhar, B N; Deshpande, U P; Shripathi, T

    2016-11-01

    X-ray absorption near-edge structure (XANES) and X-ray photoelectron spectroscopy (XPS) of Nd-doped phosphate glasses have been studied before and after gamma irradiation. The intensity and the location of the white line peak of the L3-edge XANES of Nd are found to be dependent on the ratio O/Nd in the glass matrix. Gamma irradiation changes the elemental concentration of atoms in the glass matrix, which affects the peak intensity of the white line due to changes in the covalence of the chemical bonds with Nd atoms in the glass (structural changes). Sharpening of the Nd 3d5/2 peak profile in XPS spectra indicates a deficiency of oxygen in the glasses after gamma irradiation, which is supported by energy-dispersive X-ray spectroscopy measurements. The ratio of non-bridging oxygen to total oxygen in the glass after gamma radiation has been found to be correlated to the concentration of defects in the glass samples, which are responsible for its radiation resistance as well as for its coloration.

  12. Adsorption, X-ray Diffraction, Photoelectron, and Atomic Emission Spectroscopy Benchmark Studies for the Eighth Industrial Fluid Properties Simulation Challenge*+

    Science.gov (United States)

    Ross, Richard B.; Aeschliman, David B.; Ahmad, Riaz; Brennan, John K.; Brostrom, Myles L.; Frankel, Kevin A.; Moore, Jonathan D.; Moore, Joshua D.; Mountain, Raymond D.; Poirier, Derrick M.; Thommes, Matthias; Shen, Vincent K.; Schultz, Nathan E.; Siderius, Daniel W.; Smith, Kenneth D.

    2016-01-01

    The primary goal of the eighth industrial fluid properties simulation challenge was to test the ability of molecular simulation methods to predict the adsorption of organic adsorbates in activated carbon materials. The challenge focused on the adsorption of perfluorohexane in the activated carbon standard BAM-P109 (Panne and Thünemann 2010). Entrants were challenged to predict the adsorption of perfluorohexane in the activated carbon at a temperature of 273 K and at relative pressures of 0.1, 0.3, and 0.6. The relative pressure (P/Po) is defined as that relative to the bulk saturation pressure predicted by the fluid model at a given temperature (273 K in this case). The predictions were judged by comparison to a set of experimentally determined values, which are published here for the first time and were not disclosed to the entrants prior to the challenge. Benchmark experimental studies, described herein, were also carried out and provided to entrants in order to aid in the development of new force fields and simulation methods to be employed in the challenge. These studies included argon, carbon dioxide, and water adsorption in the BAM-P109 activated carbon as well as X-ray diffraction, X-ray microtomography, photoelectron spectroscopy, and atomic emission spectroscopy studies of BAM-P109. Several concurrent studies were carried out for the BAM-P108 activated carbon (Panne and Thünemann 2010). These are included in the current manuscript for comparison. PMID:27840543

  13. ANALYSIS OF PASSIVATED SURFACES FOR MASS SPECTROMETER INLET SYSTEMS BY AUGER ELECTRON AND X-RAY PHOTOELECTRON SPECTROSCOPY

    Energy Technology Data Exchange (ETDEWEB)

    Ajo, H.; Clark, E.

    2010-09-01

    Stainless steel coupons approximately 0.5' in diameter and 0.125' thick were passivated with five different surface treatments and an untreated coupon was left as a control. These surface treatments are being explored for use in tritium storage containers. These coupons were made to allow surface analysis of the surface treatments using well-know surface analysis techniques. Depth profiles using Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS) were performed on these coupons to characterize the surface and near surface regions. Scanning electron microscope (SEM) images were collected as well. All of the surface treatments studied here appear to change the surface morphology dramatically, as evidenced by lack of tool marks on the treated samples. In terms of the passivation treatment, Vendors A-D appeared to have oxide layers that were very similar in thickness to each other (0.7-0.9 nm thick) as well as the untreated samples (the untreated sample oxide layers appeared to be somewhat larger). Vendor E's silicon coating appears to be on the order of 200 nm thick.

  14. Spectrally resolved femtosecond photon echo spectroscopy of astaxanthin

    Science.gov (United States)

    Kumar, Ajitesh; Karthick Kumar, S. K.; Gupta, Aditya; Goswami, Debabrata

    2011-08-01

    We have studied the coherence and population dynamics of Astaxanthin solution in methanol and acetonitrile by spectrally resolving their photon echo signals. Our experiments indicate that methanol has a much stronger interaction with the ultrafast dynamics of Astaxanthin in comparison to that of acetonitrile.

  15. TIME-RESOLVED INFRARED SPECTROSCOPY IN THE U121R BEAMLINE AT THE NSLS

    Energy Technology Data Exchange (ETDEWEB)

    CARR,G.L.; LAVEIGNE,J.D.; LOBO,R.P.S.M.; REITZE,D.H.; TANNER,D.B.

    1999-07-19

    A facility for performing time-resolved infrared spectroscopy has been developed at the NSLS, primarily at beamline U12IR. The pulsed IR light from the synchrotron is used to perform pump-probe spectroscopy. The authors present here a description of the facility and results for the relaxation of photoexcitations in both a semiconductor and superconductor.

  16. Valence shell threshold photoelectron spectroscopy of the CHxCN (x = 0-2) and CNC radicals.

    Science.gov (United States)

    Garcia, Gustavo A; Krüger, Julia; Gans, Bérenger; Falvo, Cyril; Coudert, Laurent H; Loison, Jean-Christophe

    2017-07-07

    We present the photoelectron spectroscopy of four radical species, CHxCN (x = 0-2) and CNC, formed in a microwave discharge flow-tube reactor by consecutive H abstractions from CH3CN (CHxCN + F → CHx-1CN + HF (x = 1-3)). The spectra were obtained combining tunable vacuum ultraviolet synchrotron radiation with double imaging electron/ion coincidence techniques, which yielded mass-selected threshold photoelectron spectra. The results obtained for H2CCN complement existing ones while for the other radicals the data represent the first observation of their (single-photon) ionizing transitions. In the case of H2CCN, Franck-Condon calculations have been performed in order to assign the vibrational structure of the X(+ 1)A1←X (2)B1 ionizing transition. A similar treatment for the HCCN, CCN, and CNC radicals appeared to be more complicated mainly because a Renner-Teller effect strongly affects the vibrational levels of the ground electronic state of the HCCN(+), CCN, and CNC species. Nevertheless, the first adiabatic ionization energies of these radicals are reported and compared to our ab initio calculated values, leading to new values for enthalpies of formation (ΔfH298(0)(HCCN(+)(X(2)A(')))=1517±12kJmol(-1),ΔfH298(0)(CCN(X(2)Π))=682±13kJmol(-1), and ΔfH298(0)(CNC(X(2)Πg))=676±12kJmol(-1)), which are of fundamental importance for astrochemistry.

  17. Probing the Vibrational Spectroscopy of the Deprotonated Thymine Radical by Photodetachment and State-Selective Autodetachment Photoelectron Spectroscopy via Dipole-Bound States

    Science.gov (United States)

    Huang, Dao-Ling; Zhu, Guo-Zhu; Wang, Lai-Sheng

    2016-06-01

    Deprotonated thymine can exist in two different forms, depending on which of its two N sites is deprotonated: N1[T-H]^- or N3[T-H]^-. Here we report a photodetachment study of the N1[T-H]^- isomer cooled in a cryogenic ion trap and the observation of an excited dipole-bound state. Eighteen vibrational levels of the dipole-bound state are observed, and its vibrational ground state is found to be 238 ± 5 wn below the detachment threshold of N1[T-H]^-. The electron affinity of the deprotonated thymine radical (N1[T-H]^.) is measured accruately to be 26 322 ± 5 wn (3.2635 ± 0.0006 eV). By tuning the detachment laser to the sixteen vibrational levels of the dipole-bound state that are above the detachment threshold, highly non-Franck-Condon resonant-enhanced photoelectron spectra are obtained due to state- and mode-selective vibrational autodetachment. Much richer vibrational information is obtained for the deprotonated thymine radical from the photodetachment and resonant-enhanced photoelectron spectroscopy. Eleven fundamental vibrational frequencies in the low-frequency regime are obtained for the N1[T-H]^. radical, including the two lowest-frequency internal rotational modes of the methyl group at 70 ± 8 wn and 92 ± 5 wn. D. L. Huang, H. T. Liu, C. G. Ning, G. Z. Zhu and L. S. Wang, Chem. Sci., 6, 3129-3138 (2015)

  18. An X-Ray Photoelectron Spectroscopy (XPS) Study of Activated Carbons Impregnated with Some Organocopper Complexes

    Science.gov (United States)

    1993-10-01

    organocuivre ont dte imprdgn~s & la surface du charbon activd, et la composition de la surface du charbon imprdgn6 a dt examinee par spectroscopie...F/Cu et du C/Cu a pu fitre calcule. Ii a dtd trouvd que trois de ces * complexes dtaient soit instables ou ddcomposds & la surface du charbon . Cette...surface composition analysis, there was actually a higher concentration of Cu(I) than Cu(II), the original impregnant. It has been mentioned in an

  19. He I photoelectron spectroscopy of four isotopologues of formic acid: HCOOH, HCOOD, DCOOH and DCOOD

    Energy Technology Data Exchange (ETDEWEB)

    Leach, Sydney; Schwell, Martin; Talbi, Dahbia; Berthier, Gaston; Hottmann, Klaus; Jochims, Hans-Werner; Baumgaertel, Helmut

    2003-01-01

    He I photoelectron spectra of four isotopologues of formic acid, HCOOH, HCOOD, DCOOH and DCOOD have been measured, mainly with an electron kinetic energy resolution of 15 meV. Quantum chemical calculations of geometries, vibrational mode frequencies and the potential energy distributions characterising each normal mode were made for the neutral 1{sup 1}A{sup '} ground state, the cation ground state 1{sup 2}A{sup '} and first excited ion state 1{sup 2}A{sup '}' of the four isotopologues. The results were used to analyse observed vibronic structure in the two PES bands in the 11.3-13.5 eV energy region and this analysis provided values for several vibrational mode frequencies of the ion states. The calculated structure and internal dynamics of the 1{sup 2}A{sup '} ground state of the ion provide satisfactory agreement with experiment but for the 1{sup 2}A{sup '}' excited state a more refined theoretical treatment, permitting greater structural flexibility, is required. The PES first ionization energy of HCOOH agrees well with that obtained from Rydberg series in absorption spectra, and values more precise than hitherto were obtained for the first and second ionization energies of the four isotopologues. Analysis is also made of PES features concerning the higher energy states of the ions between 12.2 and 21 eV. The adabatic ionization energies of the 2{sup 2}A{sup '}, 2{sup 2}A{sup '}', 3{sup 2}A{sup '} and 4{sup 2}A{sup '} states in this energy region were determined. Vibrational frequencies were obtained for the 3{sup 2}A{sup '} ion state of the isotopologues and new assignments were made concerning the energy and structure of the 4{sup 2}A{sup '} ion state, whose adiabatic energy was found to lie about 60 meV below the 3{sup 2}A{sup '} state.

  20. Photoelectron Microscopy

    Science.gov (United States)

    King, Paul Lawrence

    1992-01-01

    This thesis describes the theory and first operations of a novel synchrotron-based imaging system allowing photoemission spectroscopy (XPS or ESCA) to be performed at lateral resolutions better than 10 microns. Originally developed in David Turner's group at Oxford, the MicroESCA^ {rm TM} relies on the diverging magnetic field from a 7 Tesla superconducting solenoid to project photoemitted electrons from a sample to an imaging detector located 1.5 meters away. The diverging magnetic field converts off-axis momentum to forward momentum and electrons form a magnified image at the detector while moving nearly parallel to one another. Because of this "parallelization", a planar gridded retarding field analyzer achieves excellent energy resolution with only minor impact on image quality. The thesis begins with an overview of the various techniques by which high lateral resolution photoelectron spectroscopy can be achieved. This is followed by a theoretical treatment of magnetic projection leading to predictions of lateral and energy resolution. Chapter 3 documents resolution tests and known deviations from ideality. Image forming capabilities and energy resolution of the retarding field analyzer are demonstrated at near-theoretical limits. Practical limitations of the microscope are recognized in the form of poor signal to noise ratios of core level images which originate from a combination of the narrow dynamic range of the imaging detector and the large backgrounds inherent in retarding field spectroscopy of solids. Chapter 4 describes an interactive image processing and interpretation scheme that relies on scatter plots and principal component analysis to reduce the dimensionality of retarding field image sets and improve image signal to noise. This procedure is generally applicable to all imaging spectroscopies and an example from SEM-based energy dispersive spectroscopy (EDS) is included. In a final results section, variations in the surface Fermi levels on cleaved

  1. X-ray photoelectron spectroscopy (XPS) and FTIR studies of vanadium barium phosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Majjane, Abdelilah [Laboratoire de Physico-Chimie des Matériaux Vitreux et Cristallisés, Université Ibn Tofail, Faculté des Sciences, Kénitra 14090 (Morocco); Chahine, Abdelkrim, E-mail: abdelkrimchahine@gmail.com [Laboratoire de Physico-Chimie des Matériaux Vitreux et Cristallisés, Université Ibn Tofail, Faculté des Sciences, Kénitra 14090 (Morocco); Et-tabirou, Mohamed [Laboratoire de Physico-Chimie des Matériaux Vitreux et Cristallisés, Université Ibn Tofail, Faculté des Sciences, Kénitra 14090 (Morocco); Echchahed, Bousselham [Laboratoire d' Electrochimie, Corrosion et Environnement, Université Ibn Tofail, Faculté des Sciences, Kénitra (Morocco); Do, Trong-On [Département de génie chimique, Université Laval, G1K 7P4 (Canada); Breen, Peter Mc [Département de chimie, Université Laval, G1K 7P4 (Canada)

    2014-01-15

    Barium vanadophosphate glasses, having composition 50BaO–xV{sub 2}O{sub 5}–(50 − x)P{sub 2}O{sub 5}, (x = 0–50 mol%), were prepared by conventional melt quench method. Density, molar volume and glass transition temperature (T{sub g}) were measured as a function of V{sub 2}O{sub 5} content. Structural investigation was done using XPS and FTIR spectroscopy. First, substitution of the P{sub 2}O{sub 5} by the V{sub 2}O{sub 5} in the metaphosphate 50BaO–50P{sub 2}O{sub 5} glass increases the density and T{sub g} and decreases the molar volume. When the amount of V{sub 2}O{sub 5} increases, all these properties show a reverse trend. XPS measurement found in the O1s, P2p, and V2p core level spectra indicate the presence of primarily P–O–P, P–O–V and V–O–V structural bonds, the asymmetry in the P 2p spectra indeed arises from the spin-orbit splitting of P 2p core level, and more than one valence state of V ions being present. IR spectroscopy reveals the depolymerization of the phosphate glass network by systematic conversion of metaphosphate chains into pyrophosphate groups and then orthophosphate groups. Even though metaphosphate to pyrophosphate conversion is taking place due to breaking of P–O–P linkages, formation of P–O–V and P–O–Ba linkages provide cross linking between short P-structural units, which make the glass network more rigid. Above 10–20 mol% V{sub 2}O{sub 5} content, network is highly depolymerized due to the formation of orthophosphate units and V–O–V bridge bonds, resulting in poor cross-linking, making the glass network less rigid. - Highlights: • Barium–vanadium–phosphate glasses. • Structure has been investigated by XPS and IR spectra. • Variation in structure and properties with substitution of V{sub 2}O{sub 5} for P{sub 2}O{sub 5}. • Conversion of metaphosphate to pyrophosphate and finally to orthophosphate. • Substitution of P–O–P linkages by P–O–V, P–O–Ba and V–O–V linkages.

  2. Spatially resolved voltage, current and electrochemical impedance spectroscopy measurements

    Energy Technology Data Exchange (ETDEWEB)

    Gerteisen, D.; Kurz, T.; Schwager, M.; Hebling, C. [Fraunhofer Institute for Solar Energy Systems ISE, Freiburg im Breisgau (Germany); Merida, W. [Clean Energy Research Centre, University of British Columbia, Vancouver, BC (Canada); Lupotto, P. [Materials Mates Italia, Milano (Italy)

    2011-04-15

    In this work a 50-channel characterisation system for PEMFCs is presented. The system is capable of traditional electrochemical measurements (e.g. staircase voltammetry, chronoamperometry and cyclic voltammetry), and concurrent EIS measurements. Unlike previous implementations, this system relies on dedicated potentiostats for current and voltage control, and independent frequency response analysers (FRAs) at each channel. Segmented fuel cell hardware is used to illustrate the system's flexibility and capabilities. The results here include steady-state data for cell characterisation under galvanostatic and potentiostatic control as well as spatially resolved impedance spectra. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Quantitative Surface Analysis by Xps (X-Ray Photoelectron Spectroscopy: Application to Hydrotreating Catalysts

    Directory of Open Access Journals (Sweden)

    Beccat P.

    1999-07-01

    Full Text Available XPS is an ideal technique to provide the chemical composition of the extreme surface of solid materials, vastly applied to the study of catalysts. In this article, we will show that a quantitative approach, based upon fundamental expression of the XPS signal, has enabled us to obtain a consistent set of response factors for the elements of the periodic table. In-depth spadework has been necessary to know precisely the transmission function of the spectrometer used at IFP. The set of response factors obtained enables to perform, on a routine basis, a quantitative analysis with approximately 20% relative accuracy, which is quite acceptable for an analysis of such a nature. While using this quantitative approach, we have developed an analytical method specific to hydrotreating catalysts that allows obtaining the sulphiding degree of molybdenum quite reliably and reproducibly. The usage of this method is illustrated by two examples for which XPS spectroscopy has provided with information sufficiently accurate and quantitative to help understand the reactivity differences between certain MoS2/Al2O3 or NiMoS/Al2O3-type hydrotreating catalysts.

  4. Applications of time-resolved terahertz spectroscopy in ultrafast carrier dynamics

    Institute of Scientific and Technical Information of China (English)

    Qingli Zhou; Xicheng Zhang

    2011-01-01

    1.Introduction Terahertz time-domain spectroscopy (THz-TDS)[1-3]is a powerful and coherent free-space technique in which nearly single-cycle electromagnetic pulse is generated and detected using femtosecond optical pulses.THz-TDS has been utilized as one of the important methods for material characterization in the past two decades.Because transmission or reflection of THz waves is sensitive to carrier density and mobility,an ultrafast THz-TDS system is required to provide time-resolved capability of material characterization in the THz region[4-6].In the past decade,one of the widely used time-resolved THz spectroscopy methods is optical-pump/THz probe (O/T)spectroscopy[3].%Three time-resolved terahertz (THz) spectroscopy methods (optical-pump/THz-probe spectroscopy, THz-pump/THz-probe spectroscopy, and THz-pump/optical-probe spectroscopy) are reviewed. These are used to characterize ultrafast dynamics in photo- or THz-excited semiconductors, superconductors, nanomateri-als, and other materials. In particular, the optical-pump/THz-probe spectroscopy is utilized to investigate carrier dynamics and the related intervalley scattering phenomena in semiconductors. The recent development of intense pulsed THz sources is expected to affect the research in nonlinear THz responses of various materials.

  5. Oxidation and surface segregation of chromium in Fe–Cr alloys studied by Mössbauer and X-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Idczak, R., E-mail: ridczak@ifd.uni.wroc.pl; Idczak, K.; Konieczny, R.

    2014-09-15

    The room temperature {sup 57}Fe Mössbauer and XPS spectra were measured for polycrystalline iron-based Fe–Cr alloys. The spectra were collected using three techniques: the transmission Mössbauer spectroscopy (TMS), the conversion electron Mössbauer spectroscopy (CEMS) and the X-ray photoelectron spectroscopy (XPS). The combination of these experimental techniques allows to determine changes in Cr concentration and the presence of oxygen in bulk, in the 300 nm pre-surface layer and on the surface of the studied alloys.

  6. High resolution pulsed field ionization photoelectron spectroscopy using multibunch synchrotron radiation: Time-of-flight selection scheme

    Energy Technology Data Exchange (ETDEWEB)

    Jarvis, G.K. [Chemical Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Song, Y.; Ng, C.Y. [Ames Laboratory, United States Department of Energy and Department of Chemistry, Iowa State University, Ames, Iowa 50011 (United States)

    1999-06-01

    We have developed an efficient electron time-of-flight (TOF) selection scheme for high resolution pulsed field ionization (PFI) photoelectron (PFI-PE) measurements using monochromatized multibunch undulator synchrotron radiation at the Advanced Light Source. By employing a simple electron TOF spectrometer, we show that PFI-PEs produced by the PFI in the dark gap of a synchrotron ring period can be cleanly separated from prompt background photoelectrons. A near complete suppression of prompt electrons was achieved in PFI-PE measurements by gating the PFI-PE TOF peak, as indicated by monitoring background electron counts at the Ar(11s{sup {prime}}) autoionizing Rydberg peak, which is adjacent to the Ar{sup +}({sup 2}P{sub 3/2}) PFI-PE band. The rotational-resolved PFI-PE band for H{sub 2}{sup +} (X {sup 2}{Sigma}{sub g}{sup +},v{sup +}=0) measured using this electron TOF selection scheme is nearly free from residues of nearby autoionizing features, which were observed in the previous measurement by employing an electron spectrometer equipped with a hemispherical energy analyzer. This comparison indicates that the TOF PFI-PE scheme is significantly more effective in suppressing the hot-electron background. In addition to attaining a high PFI-PE transmission, a major advantage of the electron TOF scheme is that it allows the use of a smaller pulsed electric field and thus results in a higher instrumental PFI-PE resolution. We have demonstrated instrumental resolutions of 1.0 cm{sup {minus}1} full width at half maximum (FWHM) and 1.9 cm{sup {minus}1} FWHM in the PFI-PE bands for Xe{sup +}({sup 2}P{sub 3/2}) and Ar{sup +}({sup 2}P{sub 3/2}) at 12.123 and 15.760 eV, respectively. These resolutions are more than a factor 2 better than those achieved in previous synchrotron based PFI-PE studies. {copyright} {ital 1999 American Institute of Physics.}

  7. Band alignments at interface of ZnO/FAPbI{sub 3} heterojunction by X-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Tao; Li, Ruifeng; Kong, Weiguang; Zhang, Bingpo; Wu, Huizhen, E-mail: hzwu@zju.edu.cn

    2015-12-01

    Highlights: • The band alignments at ZnO/HC(NH{sub 2}){sub 2}PbI{sub 3} interface were measured by XPS. • The valence-band offset was determined to be 1.86 ± 0.10 eV. • The conduction-band offset was concluded to be 0.05 ± 0.10 eV. • The ZnO/FAPbI{sub 3} heterojunction has a type-I band alignment. • The desired band alignment is benefit for the new generation of solar cells. - Abstract: The band alignments at the interface of ZnO/HC(NH{sub 2}){sub 2}PbI{sub 3} (FAPbI{sub 3}) heterojunction were measured by X-ray photoelectron spectroscopy. Core levels of Pb 5d and Zn 3d were utilized to align the valence-band offset (VBO). The VBO was determined to be 1.86 ± 0.30 eV, and the conduction-band offset (CBO) was concluded to be 0.05 ± 0.30 eV, manifesting that the ZnO/FAPbI{sub 3} heterojunction has a type-I band alignment. The data of the band alignment of ZnO/FAPbI{sub 3} heterojunction may benefit the design and development of novel perovskite solar cells (PSCs).

  8. Interface investigations of a commercial lithium ion battery graphite anode material by sputter depth profile X-ray photoelectron spectroscopy.

    Science.gov (United States)

    Niehoff, Philip; Passerini, Stefano; Winter, Martin

    2013-05-14

    Here we provide a detailed X-ray photoelectron spectroscopy (XPS) study of the electrode/electrolyte interface of a graphite anode from commercial NMC/graphite cells by intense sputter depth profiling using a polyatomic ion gun. The uniqueness of this method lies in the approach using 13-step sputter depth profiling (SDP) to obtain a detailed model of the film structure, which forms at the electrode/electrolyte interface often noted as the solid electrolyte interphase (SEI). In addition to the 13-step SDP, several reference experiments of the untreated anode before formation with and without electrolyte were carried out to support the interpretation. Within this work, it is shown that through charging effects during X-ray beam exposure chemical components cannot be determined by the binding energy (BE) values only, and in addition, that quantification by sputter rates is complicated for composite electrodes. A rough estimation of the SEI thickness was carried out by using the LiF and graphite signals as internal references.

  9. Growth mechanisms and band bending in Cu and Pt on Ge(001) investigated by LEED and photoelectron spectroscopy

    Science.gov (United States)

    Tănase, Liviu Cristian; Bocîrnea, Amelia Elena; Şerban, Andreea Bianca; Abramiuc, Laura Elena; Bucur, Ioana Cristina; Lungu, George-Adrian; Costescu, Ruxandra Maria; Teodorescu, Cristian Mihail

    2016-11-01

    We investigate band bending effects occurring at the interface between atomically clean Ge(001) and molecular beam epitaxy (MBE) deposited copper and platinum. Low energy electron diffraction (LEED) confirmed the crystallinity of the surface, evidenced the formation of (2 × 1) and (1 × 2) reconstructions, and revealed that it is strongly affected with metal deposition. X-ray photoelectron spectroscopy (XPS) data let us assume a Stranski-Krastanov growth mechanism and confirmed that the observed band bending is associated to an ohmic contact in both cases. For the platinum contact, the high values of the apparent inelastic mean free path (IMFP) derived from the evolution of the XPS intensities indicate a prevalence of mixture of Pt with Ge nearby the interface. Pt deposited on Ge(001) does not behave like a Schottky contact, as one may have expected due to the higher work function of platinum. The observed effect is similar to the case where interfacial Pt had a lower work function by 2.25/1.96 eV than that of metallic Pt. We propose a model to explain this fact by the effective mass variation or to the conduction band broadening due to the strong intermixing of platinum with germanium under the surface.

  10. Reactivity of Au nanoparticles supported over SiO2 and TiO2 studiedby ambient pressure photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Herranz, Tirma; Deng, Xingyi; Cabot, Andreu; Alivisatos, Paul; Liu, Zhi; Soler-Illia, Galo; Salmeron, Miquel

    2009-04-15

    The influence of the metal cluster size and the identity of the support on the reactivity of gold based catalysts have been studied in the CO oxidation reaction. To overcome the structural complexity of the supported catalysts, gold nanoparticles synthesized from colloidal chemistry with precisely controlled size have been used. Those particles were supported over SiO{sub 2} and TiO{sub 2} and their catalytic activity was measured in a flow reactor. The reaction rate was dependent on the particle size and the support, suggesting two reaction pathways in the CO oxidation reaction. In parallel, ambient pressure photoelectron spectroscopy (APPS) has been performed under reaction conditions using bidimensional model catalysts prepared upon supporting the Au nanoparticles over planar polycrystalline SiO{sub 2} and TiO{sub 2} thin films by means of the Langmuir-Blodgett (LB) technique to mimic the characteristic of the powder samples. In this way, the catalytically active surface was characterized under true reaction conditions, revealing that during CO oxidation gold remains in the metallic state.

  11. Characterization of photocatalytic TiO2 powder under varied environments using near ambient pressure X-ray photoelectron spectroscopy

    Science.gov (United States)

    Krishnan, Padmaja; Liu, Minghui; Itty, Pierre A.; Liu, Zhi; Rheinheimer, Vanessa; Zhang, Min-Hong; Monteiro, Paulo J. M.; Yu, Liya E.

    2017-01-01

    Consecutive eight study phases under the successive presence and absence of UV irradiation, water vapor, and oxygen were conducted to characterize surface changes in the photocatalytic TiO2 powder using near-ambient-pressure X-ray photoelectron spectroscopy (XPS). Both Ti 2p and O 1s spectra show hysteresis through the experimental course. Under all the study environments, the bridging hydroxyl (OHbr) and terminal hydroxyl (OHt) are identified at 1.1–1.3 eV and 2.1–2.3 eV above lattice oxygen, respectively. This enables novel and complementary approach to characterize reactivity of TiO2 powder. The dynamic behavior of surface-bound water molecules under each study environment is identified, while maintaining a constant distance of 1.3 eV from the position of water vapor. In the dark, the continual supply of both water vapor and oxygen is the key factor retaining the activated state of the TiO2 powder for a time period. Two new surface peaks at 1.7–1.8 and 4.0–4.2 eV above lattice oxygen are designated as peroxides (OOH/H2O2) and H2O2 dissolved in water, respectively. The persistent peroxides on the powder further explain previously observed prolonged oxidation capability of TiO2 powder without light irradiation. PMID:28240300

  12. In situ x-ray photoelectron spectroscopy studies of gas/solidinterfaces at near-ambient conditions

    Energy Technology Data Exchange (ETDEWEB)

    Bluhm, Hendrik; Havecker, Michael; Knop-Gericke, Axel; Kiskinova,Maya; Schlogl, Robert; Salmeron, Miquel

    2007-12-03

    X-ray photoelectron spectroscopy (XPS) is a quantitative, chemically specific technique with a probing depth of a few angstroms to a few nanometers. It is therefore ideally suited to investigate the chemical nature of the surfaces of catalysts. Because of the scattering of electrons by gas molecules, XPS is generally performed under vacuum conditions. However, for thermodynamic and/or kinetic reasons, the catalyst's chemical state observed under vacuum reaction conditions is not necessarily the same as that of a catalyst under realistic operating pressures. Therefore, investigations of catalysts should ideally be performed under reaction conditions, i.e., in the presence of a gas or gas mixtures. Using differentially pumped chambers separated by small apertures, XPS can operate at pressures of up to 1 Torr, and with a recently developed differentially pumped lens system, the pressure limit has been raised to about 10 Torr. Here, we describe the technical aspects of high-pressure XPS and discuss recent applications of this technique to oxidation and heterogeneous catalytic reactions on metal surfaces.

  13. Reactivity of Au nanoparticles supported over SiO2 and TiO2 studiedby ambient pressure photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Herranz, Tirma; Deng, Xingyi; Cabot, Andreu; Alivisatos, Paul; Liu, Zhi; Soler-Illia, Galo; Salmeron, Miquel

    2009-04-15

    The influence of the metal cluster size and the identity of the support on the reactivity of gold based catalysts have been studied in the CO oxidation reaction. To overcome the structural complexity of the supported catalysts, gold nanoparticles synthesized from colloidal chemistry with precisely controlled size have been used. Those particles were supported over SiO{sub 2} and TiO{sub 2} and their catalytic activity was measured in a flow reactor. The reaction rate was dependent on the particle size and the support, suggesting two reaction pathways in the CO oxidation reaction. In parallel, ambient pressure photoelectron spectroscopy (APPS) has been performed under reaction conditions using bidimensional model catalysts prepared upon supporting the Au nanoparticles over planar polycrystalline SiO{sub 2} and TiO{sub 2} thin films by means of the Langmuir-Blodgett (LB) technique to mimic the characteristic of the powder samples. In this way, the catalytically active surface was characterized under true reaction conditions, revealing that during CO oxidation gold remains in the metallic state.

  14. In Situ Ambient Pressure X-ray Photoelectron Spectroscopy of Cobalt Perovskite Surfaces under Cathodic Polarization at High Temperatures

    KAUST Repository

    Crumlin, Ethan J.

    2013-08-08

    Heterostructured oxide interfaces have demonstrated enhanced oxygen reduction reaction rates at elevated temperatures (∼500-800 C); however, the physical origin underlying this enhancement is not well understood. By using synchrotron-based in situ ambient pressure X-ray photoelectron spectroscopy (APXPS), we focus on understanding the surface electronic structure, elemental composition, and chemical nature of epitaxial La0.8Sr 0.2CoO3-δ (LSC113), (La 0.5Sr0.5)2CoO4±δ (LSC214), and LSC214-decorated LSC113 (LSC 113/214) thin films as a function of applied electrical potentials (0 to -800 mV) at 520 C and p(O2) of 1 × 10-3 atm. Shifts in the top of the valence band binding energy and changes in the Sr 3d and O 1s spectral components under applied bias reveal key differences among the film chemistries, most notably in the degree of Sr segregation to the surface and quantity of active oxygen sites in the perovskite termination layer. These differences help to identify important factors governing the enhanced activity of oxygen electrocatalysis observed for the LSC113/214 heterostructured surface. © 2013 American Chemical Society.

  15. Experimental determination of vacuum-level band alignments of SnS-based solar cells by photoelectron yield spectroscopy

    Science.gov (United States)

    Sugiyama, Mutsumi; Shimizu, Tsubasa; Kawade, Daisuke; Ramya, Kottadi; Ramakrishna Reddy, K. T.

    2014-02-01

    Energy band offsets of SnS-based solar cell structure using various n-type semiconductors, such as CdS, SnS2, In2S3, ZnIn2Se4, ZnO, and Mg0.3In0.7O, are evaluated by photoelectron yield spectroscopy. The valence band discontinuities are estimated to be 1.6 eV for both SnS/CdS and SnS/SnS2, 0.9 eV for SnS/In2S3, 1.7 eV for SnS/ZnIn2Se4, and 1.8 eV for both SnS/ZnO and SnS/Mg0.3Zn0.7O. Using the valence band discontinuity values and the corresponding energy bandgaps of the layers, energy band diagrams are developed. This study implied a type-I heterostructure, appropriate for SnS-based solar cell, for the ZnIn2Se4 or MgxZn1-xO (0 ≤ x ≤ 0.3) interface and type-II for other junctions.

  16. X-ray photoelectron spectroscopy of cadmium tin oxide ceramics in as-fired and electrochemically reduced forms

    Energy Technology Data Exchange (ETDEWEB)

    Hashemi, T.; Illingsworth, J. (Applied Physics and Electronics, School of Engineering and Applied Science, Univ. of Durham, Durham DH1 3LE (GB)); Golestani-Fard, F. (Material and Energy Research Center, Tehran (IR))

    1991-03-01

    X-ray photoelectron spectroscopy (XPS) has been employed to investigate the chemical nature of samples of dicadmium stannate (Cd{sub 2}SnO{sub 4}) in the as-fired, electrochemically reduced, and reoxidized states. The reduction of Cd{sub 2}SnO{sub 4} was found to be associated with a dramatic color change from bright yellow to dark green, a phenomenon commonly known as the electrochromic effect. Both quantitative XPS results and binding energy measurements proved that, upon exposure of the reduced ceramic bodies to air, the Sn{sup 2+} to Sn{sup 4+} transition readily took place to produce the intermediate compound, Cd{sub 2}SnO{sub 3} with divalent tin. Prolonged exposure to the atmosphere did not result in further progress of reoxidation extending to monovalent cadmium. However, complete reoxidation of the reduced samples was possible by annealing in air at 350{degrees}C for a short period of time, e.g., 3 h by which the original features of the as-fired state such as color and electrical conductivity were restored. The results also showed that reoxidized samples at high temperature assume the same XPS characteristics as those of as-fired ceramics.

  17. In-situ X-ray photoelectron spectroscopy studies of water on metals and oxides at ambient conditions

    Energy Technology Data Exchange (ETDEWEB)

    Salmeron, Miquel; Yamamoto, S.; Bluhm, H.; Andersson, K.; Ketteler, G.; Ogasawara, H.; Salmeron, M.; Nilsson, A.

    2007-10-29

    X-ray photoelectron spectroscopy (XPS) is a powerful tool for surface and interface analysis, providing the elemental composition of surfaces and the local chemical environment of adsorbed species. Conventional XPS experiments have been limited to ultrahigh vacuum (UHV) conditions due to a short mean free path of electrons in a gas phase. The recent advances in instrumentation coupled with third-generation synchrotron radiation sources enables in-situ XPS measurements at pressures above 5 Torr. In this review, we describe the basic design of the ambient pressure XPS setup that combines differential pumping with an electrostatic focusing. We present examples of the application of in-situ XPS to studies of water adsorption on the surface of metals and oxides including Cu(110), Cu(111), TiO2(110) under environmental conditions of water vapor pressure. On all these surfaces we observe a general trend where hydroxyl groups form first, followed by molecular water adsorption. The importance of surface OH groups and their hydrogen bonding to water molecules in water adsorption on surfaces is discussed in detail.

  18. Probing Co/Si interface behaviour by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM)

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In this work, we investigate the Co-Si reaction, the Co growth mode at room temperature, diffusion behaviour as well as morphology evolution during annealing on both H-terminated and clean Si(001) and Si(111) surfaces. From in-situ X-ray photoelectron spectroscopy (XPS) investigation, "Co-Si" reaction appears to occur on both H-terminated and clean surfaces at room temperature (RT) and the silicide crystallinity is improved upon annealing.Co growth mode on H-terminated Si surfaces occurs in a pseudo layer-by-layer manner while small close-packed island growth mode is observed on the clean Si surface. Upon annealing at different temperatures, Co atom concentration decreases versus annealing time, which in part is attributed to Co atoms inward diffusion. The diffusion behaviour on both types of surfaces demonstrates a similar trend. Morphology study using ex-situ atomic force microscopy (AFM) shows that the islands formed on Si(001) surface after annealing at 700 ℃ are elongated with growth directions alternate between the two perpendicular [(-1)10] and [110] directions. Triangular islands are observed on Si(111) surface.

  19. Characterization of photocatalytic TiO2 powder under varied environments using near ambient pressure X-ray photoelectron spectroscopy

    Science.gov (United States)

    Krishnan, Padmaja; Liu, Minghui; Itty, Pierre A.; Liu, Zhi; Rheinheimer, Vanessa; Zhang, Min-Hong; Monteiro, Paulo J. M.; Yu, Liya E.

    2017-02-01

    Consecutive eight study phases under the successive presence and absence of UV irradiation, water vapor, and oxygen were conducted to characterize surface changes in the photocatalytic TiO2 powder using near-ambient-pressure X-ray photoelectron spectroscopy (XPS). Both Ti 2p and O 1s spectra show hysteresis through the experimental course. Under all the study environments, the bridging hydroxyl (OHbr) and terminal hydroxyl (OHt) are identified at 1.1–1.3 eV and 2.1–2.3 eV above lattice oxygen, respectively. This enables novel and complementary approach to characterize reactivity of TiO2 powder. The dynamic behavior of surface-bound water molecules under each study environment is identified, while maintaining a constant distance of 1.3 eV from the position of water vapor. In the dark, the continual supply of both water vapor and oxygen is the key factor retaining the activated state of the TiO2 powder for a time period. Two new surface peaks at 1.7–1.8 and 4.0–4.2 eV above lattice oxygen are designated as peroxides (OOH/H2O2) and H2O2 dissolved in water, respectively. The persistent peroxides on the powder further explain previously observed prolonged oxidation capability of TiO2 powder without light irradiation.

  20. In situ chemical state analysis of buried polymer/metal adhesive interface by hard X-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ozawa, Kenichi, E-mail: ozawa.k.ab@m.titech.ac.jp [Department of Chemistry and Materials Science, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8551 (Japan); Kakubo, Takashi; Shimizu, Katsunori; Amino, Naoya [The Yokohama Rubber Co., Ltd., Oiwake, Hiratsuka 254-8601 (Japan); Mase, Kazuhiko [Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801 (Japan); Ikenaga, Eiji; Nakamura, Tetsuya; Kinoshita, Toyohiko; Oji, Hiroshi [Japan Synchrotron Radiation Research Institute (JASRI), SPring-8, Hyogo 679-5198 (Japan)

    2014-11-30

    Highlights: • Chemical state analysis of the buried rubber/brass interface is conducted by HAXPES. • Ultrathin rubber films are prepared on the brass surface by two methods. • A high density of Cu{sub 2}S is found on the rubber side of the buried adhesive layer. • The chemical states of the buried and exposed interfaces are compared. - Abstract: Chemical state analysis of adhesive interfaces is important to understand an adhesion mechanism between two different materials. Although photoelectron spectroscopy (PES) is an ideal tool for such an analysis, the adhesive interfaces must be exposed to the surface because PES is essentially a surface sensitive technique. However, an in situ observation is possible by hard X-ray PES (HAXPES) owing to its large probing depth. In the present study, HAXPES is applied to investigate the adhesive interface between rubber and brass without exposing the interface. It is demonstrated that copper sulfides formed at the buried rubber/brass interface are distinguished from S-containing species in the rubber overlayer. The chemical state of the buried interface is compared with that of the “exposed” interface prepared by so-called a filter-paper method.

  1. Photoelectric characteristics of silicon P—N junction with nanopillar texture: Analysis of X-ray photoelectron spectroscopy

    Science.gov (United States)

    Liu, Jing; Wang, Jia-Ou; Yi, Fu-Ting; Wu, Rui; Zhang, Nian; Ibrahim, Kurash

    2014-09-01

    Silicon nanopillars are fabricated by inductively coupled plasma (ICP) dry etching with the cesium chloride (CsCl) islands as masks originally from self-assembly. Wafers with nanopillar texture or planar surface are subjected to phosphorus (P) diffusion by liquid dopant source (POCl3) at 870 °C to form P—N junctions with a depth of 300 nm. The X-ray photoelectron spectroscopy (XPS) is used to measure the Si 2p core levels of P—N junction wafer with nanopillar texture and planar surface. With a visible light excitation, the P—N junction produces a new electric potential for photoelectric characteristic, which causes the Si 2p core level to have a energy shift compared with the spectrum without the visible light. The energy shift of the Si 2p core level is -0.27 eV for the planar P—N junction and -0.18 eV for the nanopillar one. The difference in Si 2p energy shift is due to more space lattice defects and chemical bond breaks for nanopillar compared with the planar one.

  2. Anion Binding of One-, Two-, and Three-Armed Thiourea Receptors Examined via Photoelectron Spectroscopy and Quantum Computations

    Energy Technology Data Exchange (ETDEWEB)

    Beletskiy, Evgeny V.; Wang, Xue-Bin; Kass, Steven R.

    2016-10-27

    A benzene ring substituted with 1–3 thiourea containing arms (1–3) were examined by photoelectron spectroscopy and density functional theory computations. Their conjugate bases and chloride, acetate and dihydrogen phosphate anion clusters are reported. The resulting vertical and adiabatic detachment energies span from 3.93 – 5.82 eV (VDE) and 3.65 – 5.10 (ADE) for the deprotonated species and 4.88 – 5.97 eV (VDE) and 4.45 – 5.60 eV (ADE) for the anion complexes. These results reveal the stabilizing effects of multiple hydrogen bonds and anionic host-guest interactions in the gas phase. Previously measured equilibrium binding constants in aqueous dimethyl sulfoxide for all three thioureas (Org. Biolmol. Chem. 2015, 13, 2170-2176) are compared to the present results and cooperative binding is uniformly observed in the gas phase but only for one case (i.e., 3 • H2PO4–) in solution.

  3. Uniqueness plots: A simple graphical tool for identifying poor peak fits in X-ray photoelectron spectroscopy

    Science.gov (United States)

    Singh, Bhupinder; Diwan, Anubhav; Jain, Varun; Herrera-Gomez, Alberto; Terry, Jeff; Linford, Matthew R.

    2016-11-01

    Peak fitting is an essential part of X-ray photoelectron spectroscopy (XPS) narrow scan analysis, and the Literature contains both good and bad examples of peak fitting. A common cause of poor peak fitting is the inclusion of too many fit parameters, often without a sound chemical and/or physical basis for them, and/or the failure to reasonably constrain them. Under these conditions, fit parameters are often correlated, and therefore lacking in statistical meaning. Here we introduce the uniqueness plot as a simple graphical tool for identifying bad peak fits in XPS, i.e., fit parameter correlation. These plots are widely used in spectroscopic ellipsometry. We illustrate uniqueness plots with two data sets: a C 1s narrow scan from ozone-treated carbon nanotube forests and an Si 2p narrow scan from an air-oxidized silicon wafer. For each fit, we consider different numbers of parameters and constraints on them. As expected, the uniqueness plots are parabolic when fewer fit parameters and/or more constraints are applied. However, they fan out and eventually become horizontal lines as more unconstrained parameters are included in the fits. Uniqueness plots are generated by plotting the chi squared (χ2) value for a fit vs. a systematically varied value of a parameter in the fit. The Abbe criterion is also considered as a figure of merit for uniqueness plots in the Supporting Information. We recommend that uniqueness plots be used by XPS practitioners for identifying inappropriate peak fits.

  4. X-ray Photoelectron Spectroscopy of Pyridinium-Based Ionic Liquids: Comparison to Imidazolium- and Pyrrolidinium-Based Analogues.

    Science.gov (United States)

    Men, Shuang; Mitchell, Daniel S; Lovelock, Kevin R J; Licence, Peter

    2015-07-20

    We investigate eight 1-alkylpyridinium-based ionic liquids of the form [Cn Py][A] by using X-ray photoelectron spectroscopy (XPS). The electronic environment of each element of the ionic liquids is analyzed. In particular, a reliable fitting model is developed for the C 1s region that applies to each of the ionic liquids. This model allows the accurate charge correction of binding energies and the determination of reliable and reproducible binding energies for each ionic liquid. Shake-up/off phenomena are determinedfor both C 1s and N 1s spectra. The electronic interaction between cations and anions is investigated for both simple ionic liquids and an example of an ionic-liquid mixture; the effect of the anion on the electronic environment of the cation is also explored. Throughout the study, a detailed comparison is made between [C8 Py][A] and analogues including 1-octyl-1-methylpyrrolidinium- ([C8 C1 Pyrr][A]), and 1-octyl-3-methylimidazolium- ([C8 C1 Im][A]) based samples, where X is common to all ionic liquids.

  5. X‐ray Photoelectron Spectroscopy of Pyridinium‐Based Ionic Liquids: Comparison to Imidazolium‐ and Pyrrolidinium‐Based Analogues

    Science.gov (United States)

    Mitchell, Daniel S.; Lovelock, Kevin R. J.

    2015-01-01

    Abstract We investigate eight 1‐alkylpyridinium‐based ionic liquids of the form [CnPy][A] by using X‐ray photoelectron spectroscopy (XPS). The electronic environment of each element of the ionic liquids is analyzed. In particular, a reliable fitting model is developed for the C 1s region that applies to each of the ionic liquids. This model allows the accurate charge correction of binding energies and the determination of reliable and reproducible binding energies for each ionic liquid. Shake‐up/off phenomena are determinedfor both C 1s and N 1s spectra. The electronic interaction between cations and anions is investigated for both simple ionic liquids and an example of an ionic‐liquid mixture; the effect of the anion on the electronic environment of the cation is also explored. Throughout the study, a detailed comparison is made between [C8Py][A] and analogues including 1‐octyl‐1‐methylpyrrolidinium‐ ([C8C1Pyrr][A]), and 1‐octyl‐3‐methylimidazolium‐ ([C8C1Im][A]) based samples, where X is common to all ionic liquids. PMID:25952131

  6. Equivalent-core calculation of core-level relaxation energies in photoelectron spectroscopy: A molecular-orbital approach

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y. [Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Zhuang, G.; Ross, P.N. [Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Van Hove, M.A.; Fadley, C.S. [Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)]|[Department of Physics, University of California at Davis, Davis, California 95616 (United States)

    1998-10-01

    The equivalent-core approximation is implemented in a novel way so as to calculate core-level relaxation energies in photoelectron spectroscopy. The method is based on self-consistent field (SCF) Hartree{endash}Fock molecular-orbital calculations via linear combinations of atomic orbitals, and involves evaluating the difference of sums of two-electron Coulomb and exchange integrals, for all electrons in an atom and in its equivalent-core ion. By thus avoiding SCF calculations with a core hole present (the true final state of photoemission), this procedure is shown to significantly save computing time in comparison with an exact SCF direct-hole calculation. Application of the method in single atoms and selected molecules shows about a 10{percent} difference with respect to direct-hole calculation results. The approximation introduces about 1{endash}6 eV errors compared to the experimental results of gas phase molecules. This method thus should be a generally useful procedure for estimating relaxation energies in core spectra. {copyright} {ital 1998 American Institute of Physics.}

  7. Hard X-ray photoelectron and X-ray absorption spectroscopy characterization of oxidized surfaces of iron sulfides

    Science.gov (United States)

    Mikhlin, Yuri; Tomashevich, Yevgeny; Vorobyev, Sergey; Saikova, Svetlana; Romanchenko, Alexander; Félix, Roberto

    2016-11-01

    Hard X-ray photoelectron spectroscopy (HAXPES) using an excitation energy range of 2 keV to 6 keV in combination with Fe K- and S K-edge XANES, measured simultaneously in total electron (TEY) and partial fluorescence yield (PFY) modes, have been applied to study near-surface regions of natural polycrystalline pyrite FeS2 and pyrrhotite Fe1-xS before and after etching treatments in an acidic ferric chloride solution. It was found that the following near-surface regions are formed owing to the preferential release of iron from oxidized metal sulfide lattices: (i) a thin, no more than 1-4 nm in depth, outer layer containing polysulfide species, (ii) a layer exhibiting less pronounced stoichiometry deviations and low, if any, concentrations of polysulfide, the composition and dimensions of which vary for pyrite and pyrrhotite and depend on the chemical treatment, and (iii) an extended almost stoichiometric underlayer yielding modified TEY XANES spectra, probably, due to a higher content of defects. We suggest that the extended layered structure should heavily affect the near-surface electronic properties, and processes involving the surface and interfacial charge transfer.

  8. Photoelectron spectroscopy and density functional calculations of C(n)S(m)(-) (n = 2-7; m = 1, 2) clusters.

    Science.gov (United States)

    Xu, Xi-Ling; Deng, Xiao-Jiao; Xu, Hong-Guang; Zheng, Wei-Jun

    2015-12-14

    CnSm(-) (n = 2-7; m = 1, 2) clusters were investigated by using photoelectron spectroscopy combined with density functional theory calculations. We found that the vertical detachment energies of both CnS(-) and CnS2(-) (n = 2-7) clusters exhibit a strong odd-even alternation with an increasing number of carbon atoms: the VDEs of even-n clusters are higher than those of adjacent odd-n clusters. The most stable structures of the anionic and neutral CnS (n = 2-7) clusters are linear with the S atom locating at one end of the carbon chain except that the structure of C3S(-) is slightly bent. The ground state isomers of the anionic and neutral CnS2 (n = 2-7) clusters are all linear structures with two S atoms locating at two ends of the carbon chain. The electron affinities of the neutral CnS (n = 2, 4-7) and CnS2 (n = 2-7) clusters are determined based on the experimental adiabatic detachment energies of the corresponding anion species, because the most stable structures of the neutral clusters are similar to those of the corresponding anions.

  9. Photoelectron spectroscopy of the [glycine.(H2O)1,2]- clusters: Sequential hydration shifts and observation of isomers

    Science.gov (United States)

    Diken, Eric G.; Headrick, Jeffrey M.; Johnson, Mark A.

    2005-06-01

    The electron binding energies of the small hydrated amino acid anions, [glycine•(H2O)1,2]-, are determined using photoelectron spectroscopy. The vertical electron detachment energies (VDEs) are found to increase by approximately 0.12 eV with each additional water molecule such that the higher electron binding isomer of the dihydrate is rather robust, with a VDE value of 0.33 eV. A weak binding isomer of the dihydrate is also recovered, however, with a VDE value (0.14 eV) lower than that of the monohydrate. Unlike the situation in the smaller (n⩽13) water cluster anions, the [Gly•(H2O)n⩾6]- clusters are observed to photodissociate via water monomer evaporation upon photoexcitation in the O-H stretching region. We discuss this observation in the context of the mechanism responsible for the previously observed [S. Xu, M. Nilles, and K. H. Bowen, Jr., J. Chem. Phys. 119, 10696 (2003)] sudden onset in the cluster formation at [Gly•(H2O)5]-.

  10. Adsorption of Saliva Related Protein on Denture Materials: An X-Ray Photoelectron Spectroscopy and Quartz Crystal Microbalance Study

    Directory of Open Access Journals (Sweden)

    Akiko Miyake

    2016-01-01

    Full Text Available The aim of this study was to evaluate the difference in the adsorption behavior of different types of bovine salivary proteins on the PMMA and Ti QCM sensors are fabricated by spin-coating and sputtering onto bare QCM sensors by using QCM and X-ray photoelectron spectroscopy (XPS. SPM, XPS, and contact angle investigations were carried out to determine the chemical composition and surface wettability of the QCM surface. We discuss the quality of each sensor and evaluate the potential of the high-frequency QCM sensors by investigating the binding between the QCM sensor and the proteins albumin and mucin (a salivary-related protein. The SPM image showed a relatively homogeneous surface with nano-order roughness. The XPS survey spectra of the thin films coated on the sensors were similar to the binding energy of the characteristic spectra of PMMA and Ti. Additionally, the amount of salivary-related protein on the PMMA QCM sensor was higher than those on the Ti and Au QCM sensors. The difference of protein adsorption is proposed to be related to the wettability of each material. The PMMA and Ti QCM sensors are useful tools to study the adsorption and desorption of albumin and mucin on denture surfaces.

  11. Resonant photoelectron spectroscopy of γ-Al{sub 2}O{sub 3}/SrTiO{sub 3} heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Schuetz, Philipp; Pfaff, Florian; Zapf, Michael; Gabel, Judith; Dudy, Lenart; Berner, Goetz; Sing, Michael; Claessen, Ralph [Wuerzburg Univ. (Germany). Physikalisches Inst. and Roentgen Center for Complex Material Systems (RCCM); Chen, Yunzhong; Pryds, Nini [Technical Univ. of Denmark, Risoe (Denmark). Dept. of Energy Conversion and Storage; Rogalev, Victor; Strocov, Vladimir [Paul Scherrer Institut, Villigen (Switzerland). Swiss Light Source; Schlueter, Christoph; Lee, Tien-Lin [Diamond Light Source Ltd., Didcot (United Kingdom)

    2015-07-01

    The spinel/perovskite heterointerface between the band insulators γ-Al{sub 2}O{sub 3} and SrTiO{sub 3} hosts a two-dimensional electron system (2DES) with exceptionally high electron mobility. Soft X-ray resonant photoelectron spectroscopy at the Ti L absorption edge is used to probe the Ti 3d derived interface states. Marked differences in the resonance behavior are found for the SrTiO{sub 3} valence band and the different interface states, which are observed in the band gap of SrTiO{sub 3}. A comparison to X-ray absorption spectra of Ti 3d{sup 0} and Ti 3d{sup 1} systems reveals the presence of different types of electronic states with Ti 3d character, i.e., oxygen vacancy induced, trapped in-gap states and itinerant states contributing to the 2DES. Furthermore, exposure to low doses of oxygen during irradiation allows for the controlled and reversible manipulation of the interfacial electronic structure, i.e., the in-gap state intensity and the valence band offset between SrTiO{sub 3} and γ-Al{sub 2}O{sub 3}.

  12. Analysis of the surface of tricalcium silicate during the induction period by X-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bellmann, F., E-mail: frank.bellmann@uni-weimar.de [Institute for Building Materials Science, Bauhaus University Weimar, 99423 Weimar (Germany); Sowoidnich, T.; Ludwig, H.-M. [Institute for Building Materials Science, Bauhaus University Weimar, 99423 Weimar (Germany); Damidot, D. [Ecole des Mines de Douai, Civil and Environmental Engineering Department, 941 rue Charles Bourseul, BP 10838, 59508 Doua cedex (France)

    2012-09-15

    X-ray photoelectron spectroscopy allows the analysis of surface layers with a thickness of a few nanometers. The method is sensitive to the chemical environment of the atoms since the binding energy of the electrons depends on the chemical bonds to neighboring atoms. It has been applied to the hydration of tricalcium silicate (Ca{sub 3}SiO{sub 5}, C{sub 3}S) by analyzing a sample after 30 min of hydration. Also two references have been investigated namely anhydrous C{sub 3}S and intermediate phase in order to enable a quantitative evaluation of the experimental data. In the hydrated C{sub 3}S sample, the analyzed volume (0.2 mm{sup 2} surface by 13 nm depth) contained approximately 44 wt.% of C{sub 3}S and 56 wt.% of intermediate phase whereas C-S-H was not detected. Scanning Electron Microscopy data and geometric considerations indicate that the intermediate phase forms a thin layer having a thickness of approximately 2 nm and covers the complete surface instead of forming isolated clusters.

  13. X-Ray Photoelectron Spectroscopy Study of the Heating Effects on Pd/6H-SiC Schottky Structure

    Science.gov (United States)

    Chen, Liang-Yu; Hunter, Gary W.; Neudeck, Philip G.; Knight, Dak

    1998-01-01

    X-ray photoelectron spectroscopy is used to study the effects of heat treatment on the Pd/6H-SiC Schottky diode structure. After heating the structure at 425 C for 140 h, a very thin surface layer of PdO mixed with SiO(x) formed on the palladium surface of the Schottky structure. Heat treatment promoted interfacial diffusion and reaction which significantly broadened the interfacial region. In the interfacial region, the palladium concentration decreases with depth, and the interfacial products are Pd(x)Si (x = 1,2,3,4). In the high Pd concentration regions, Pd4Si is the major silicide component while gr and Pd2Si are major components in the low Pd concentration region. At the center of the interface, where the total palladium concentration equals that of silicon, the concentrations of palladium associated with various palladium silicides (Pd(x)Si, x= 1,2,3,4) are approximately equal. The surface passivation layer composed of PdO and SiO, may significantly affect the electronic and catalytic properties of the surface of the Schottky diode which plays a major role in gas detection. The electronic properties of the Schottky structure may be dominated by a (Pd+Pd(x)Si)/SiC interface. In order to stabilize the properties of the Schottky structure the surface and interface diffusion and reactions must be controlled.

  14. General equation for size nanocharacterization of the core-shell nanoparticles by X-ray photoelectron spectroscopy.

    Science.gov (United States)

    Gillet, Jean-Numa; Meunier, Michel

    2005-05-12

    Nanocharacterization is essential for nanoengineering of new types of core-shell (c-s) nanoparticles, which can be used to design new devices for photonics, electronics, catalysis, medicine, etc. X-ray photoelectron spectroscopy (XPS) has been widely used to study the elemental composition of the c-s nanoparticles. However, the physical and chemical properties of a c-s nanoparticle dramatically depend on the sizes of its core and shell. We therefore propose a general equation for the XPS intensity of a c-s nanoparticle, which is based on an analytical model. With this equation, XPS can now also be used for nanocharacterization of the core and shell sizes of the c-s nanoparticles (with a diameter smaller than or equal to the XPS probing depth of approximately 10 nm). To validate the new equation with experimental XPS data, we first determine the average shell thickness of a group of c-s nanoparticles by comparing the XPS intensity of reference bare cores to that of the c-s nanoparticles. Then we study the growth kinetics of the cores and shells of another group of c-s nanoparticles where the shells are obtained by oxidation.

  15. Time-resolved spectroscopy of low-dimensional semiconductor structures

    Science.gov (United States)

    Murphy, Joseph R.

    This dissertation is a survey of ultrafast time-resolved optical measurements conducted on a variety of low-dimensional semiconductor systems to further the understanding of the dynamic behavior in the following systems: ZnMnTe/ZnSe quantum dots, ZnTe/ZnMnSe quantum dots, InGaAs quantum wells, CdMnSe colloidal quantum dots, multi-shell CdSe/CdMnS/CdS colloidal nanoplatelets, and graphene and graphene-related solutions and films. Using time-resolved photoluminescence to study epitaxially-grown ZnTe and ZnMnTe quantum dots in corresponding ZnMnSe and ZnSe matrices, the location dependence of manganese ions in respect to magnetic polaron formation is shown. The structure with manganese ions located in the matrix exhibited magnetic polaron behavior consistent with previous literature, whereas the structure with the magnetic ions located within the quantum dots exhibited unconventional magnetic polaron properties. These properties, including temperature and magnetic field insensitivity, were explained through the use of a model that predicted an increased internal magnetic field due to a decreased effective volume of the magnetic polaron and a higher effective temperature due to laser heating. Magneto-time-resolved photoluminescence measurements on a system of colloidal CdMnSe quantum dots show that the magnetic polaron properties differ significantly from the epitaxially grown quantum dots. First the timescales at which the magnetic polaron forms and the polarization saturates are different by more than an order of magnitude, and second, the magnetic polaron energy exhibited step-like behavior as the strength of the externally applied magnetic field is increased. The field dependent MP formation energy that is observed experimentally is explained as due to the breaking of the antiferromagnetic coupling of Mn dimers within the QDs. This model is further verified by the observation of quantized behavior in the Zeeman energy splitting. Through the use of magneto

  16. Investigation of nanoparticulate silicon as printed layers using scanning electron microscopy, transmission electron microscopy, X-ray absorption spectroscopy and X-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Unuigbe, David M.; Harting, Margit; Jonah, Emmanuel O.; Britton, David T.; Nordlund, Dennis

    2017-08-21

    The presence of native oxide on the surface of silicon nanoparticles is known to inhibit charge transport on the surfaces. Scanning electron microscopy (SEM) studies reveal that the particles in the printed silicon network have a wide range of sizes and shapes. High-resolution transmission electron microscopy reveals that the particle surfaces have mainly the (111)- and (100)-oriented planes which stabilizes against further oxidation of the particles. X-ray absorption spectroscopy (XANES) and X-ray photoelectron spectroscopy (XPS) measurements at the O 1s-edge have been utilized to study the oxidation and local atomic structure of printed layers of silicon nanoparticles which were milled for different times. XANES results reveal the presence of the +4 (SiO2) oxidation state which tends towards the +2 (SiO) state for higher milling times. Si 2pXPS results indicate that the surfaces of the silicon nanoparticles in the printed layers are only partially oxidized and that all three sub-oxide, +1 (Si2O), +2 (SiO) and +3 (Si2O3), states are present. The analysis of the change in the sub-oxide peaks of the silicon nanoparticles shows the dominance of the +4 state only for lower milling times.

  17. Electronic structure of Fe2P(10 1 bar 0) studied by soft X-ray photoelectron spectroscopy and X-ray absorption spectroscopy

    Science.gov (United States)

    Sugizaki, Y.; Motoyama, H.; Edamoto, K.; Ozawa, K.

    2017-10-01

    The electronic structure of Fe2P(10 1 bar 0) has been investigated by photoelectron spectroscopy (PES) and X-ray absorption spectroscopy (XAS). The surface prepared by cycles of Ar+ ion sputtering and annealing at 500-800 °C showed a c(2 × 2) low-energy electron diffraction (LEED) pattern. An Fe 3d-P 3p hybrid band (main band) and a satellite were observed at 0-4 eV and 5-8 eV, respectively, in PES spectra of c(2 × 2) Fe2P(10 1 bar 0). The main band showed a clear cut-off at the Fermi edge, indicating the metallic nature of Fe2P. The satellite intensity showed a resonant maximum around the Fe 3p threshold, suggesting that the satellite is caused through a shake-up process. Three types of surface-shifted components were found in P 2p PES spectra. All the P 2p peaks have symmetric line shapes, while the Fe 2p PES and Fe L-edge XAS spectra have asymmetric line shapes, suggesting that the electronic states around the Fermi level are mostly composed of Fe 3d components. These results suggest that the stabilization of the electronic structure at metal sites through the bonding with P atoms is ineffective on Fe2P(10 1 bar 0), as in the case of Fe2P(0001).

  18. Far-Infrared Spectroscopy of Cationic Polycyclic Aromatic Hydrocarbons: Zero Kinetic Energy Photoelectron Spectroscopy of Pentacene Vaporized from Laser Desorption

    CERN Document Server

    Zhang, J; Pei, L; Kong, W; Li, Aigen

    2012-01-01

    The distinctive set of infrared (IR) emission bands at 3.3, 6.2, 7.7, 8.6, and 11.3{\\mu}m are ubiquitously seen in a wide variety of astrophysical environments. They are generally attributed to polycyclic aromatic hydrocarbon (PAH) molecules. However, not a single PAH species has yet been identified in space, as the mid-IR vibrational bands are mostly representative of functional groups and thus do not allow one to fingerprint individual PAH molecules. In contrast, the far-IR (FIR) bands are sensitive to the skeletal characteristics of a molecule, hence they are important for chemical identification of unknown species. With an aim to offer laboratory astrophysical data for the Herschel Space Observatory, Stratospheric Observatory for Infrared Astronomy, and similar future space missions, in this work we report neutral and cation FIR spectroscopy of pentacene (C_22H_14), a five-ring PAH molecule. We report three IR active modes of cationic pentacene at 53.3, 84.8, and 266{\\mu}m that may be detectable by space ...

  19. Time-resolved Spectroscopy of Active Binary Stars

    Science.gov (United States)

    Brown, Alexander

    EUVE has provided the first stellar coronal spectra showing individual emission lines, thereby allowing coronal modelling at a level of sophistication previously unattainable. Long EUVE observations have shown the prevalence of large-scale flaring in the coronae of active binary stars. We propose to obtain EUVE DSS spectra and photometry for 8 active binaries, four of which have never been observed by EUVE (EI Eri, AR Psc, V478 Lyr, BY Dra) and four EUV-bright systems that merit reobservation (Sigma CrB, Sigma Gem, Xi UMa, Lambda And). We shall use these observations to derive high quality quiescent coronal spectra for modelling, and to obtain new flare data. We shall try to coordinate these observations with ground-based radio observations and other spacecraft, if the scheduling allows. The proposed observations will significantly increase the available EUVE spectroscopy of active binaries.

  20. Resonant and Time-Resolved Spin Noise Spectroscopy

    Science.gov (United States)

    Song, Xinlin; Pursley, Brennan; Sih, Vanessa

    Spin noise spectroscopy is a technique which can probe the system while it remains in equilibrium. It was first demonstrated in atomic gases and then in solid state systems. Most existing spin noise measurement setups digitize the spin fluctuation signal and then analyze the power spectrum. Recently, pulsed lasers have been used to expand the bandwidth of accessible dynamics and allow direct time-domain correlation measurements. Here we develop and test a model for ultrafast pulsed laser spin noise measurements as well as a scheme to measure spin lifetimes longer than the laser repetition period. For the resonant spin noise technique, analog electronics are used to capture correlations from the extended pulse train, and the signal at a fixed time delay is measured as a function of applied magnetic field.

  1. Mobile charge generation dynamics in P3HT: PCBM observed by time-resolved terahertz spectroscopy

    DEFF Research Database (Denmark)

    Cooke, D. G.; Krebs, Frederik C; Jepsen, Peter Uhd

    2012-01-01

    Ultra-broadband time-resolved terahertz spectroscopy is used to examine the sub-ps conductivity dynamics of a conjugated polymer bulk heterojunction film P3HT:PCBM. We directly observe mobile charge generation dynamics on a sub-100 fs time scale.......Ultra-broadband time-resolved terahertz spectroscopy is used to examine the sub-ps conductivity dynamics of a conjugated polymer bulk heterojunction film P3HT:PCBM. We directly observe mobile charge generation dynamics on a sub-100 fs time scale....

  2. Chandra Phase-Resolved Spectroscopy of the Crab Pulsar

    CERN Document Server

    Weisskopf, M C; Paerels, F; Becker, W; Tennant, A F; Swartz, D A; Weisskopf, Martin C.; Dell, Stephen L. O'; Paerels, Frits; Becker, Werner; Tennant, Allyn F.; Swartz, Douglas A.

    2004-01-01

    We present the first phase-resolved study of the X-ray spectral properties of the Crab Pulsar that covers all pulse phases. The superb angular resolution of the Chandra X-ray Observatory enables distinguishing the pulsar from the surrounding nebulosity, even at pulse minimum. Analysis of the pulse-averaged spectrum measures interstellar X-ray extinction due primarily to photoelectric absorption and secondarily to scattering by dust grains in the direction of the Crab Nebula. We confirm previous findings that the line-of-sight to the Crab is underabundant in oxygen, although more-so than recently measured. Using the abundances and cross sections from Wilms, Allen & McCray (2000) we find [O/H] = (3.33 +/-0.25) x 10**-4. Analysis of the spectrum as a function of pulse phase measures the low-energy X-ray spectral index even at pulse minimum -- albeit with large statistical uncertainty -- and we find marginal evidence for variations of the spectral index. The data are also used to set a new (3-sigma) upper lim...

  3. First disk-resolved spectroscopy of (4) Vesta

    CERN Document Server

    Carry, Benoît; Dumas, Christophe; Fulchignoni, Marcello; 10.1016/j.icarus.2009.07.047

    2009-01-01

    Vesta, the second largest Main Belt asteroid, will be the first to be explored in 2011 by NASA's Dawn mission. It is a dry, likely differentiated body with spectrum suggesting that is has been resurfaced by basaltic lava flows, not too different from the lunar maria. Here we present the first disk-resolved spectroscopic observations of an asteroid from the ground. We observed (4) Vesta with the ESO-VLT adaptive optics equipped integral-field near-infrared spectrograph SINFONI, as part of its science verification campaign. The highest spatial resolution of ~90 km on Vesta's surface was obtained during excellent seeing conditions (0.5") in October 2004. We observe spectral variations across Vesta's surface that can be interpreted as variations of either the pyroxene composition, or the effect of surface aging. We compare Vesta's 2 micron absorption band to that of howardite-eucrite-diogenite (HED) meteorites that are thought to originate from Vesta, and establish particular links between specific regions and HE...

  4. The effect of the dipole bound state on AgF{sup −} vibrationally resolved photodetachment cross sections and photoelectron angular distributions

    Energy Technology Data Exchange (ETDEWEB)

    Dao, Diep Bich; Mabbs, Richard, E-mail: mabbs@wustl.edu [Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis 63130 (United States)

    2014-10-21

    The first photoelectron spectra of AgF{sup −} are recorded over the energy range 1.61–1.85 eV using the velocity map imaging technique. The resolved vibrational structure of the AgF X′, v′ ← AgF{sup −} X″, v″ = 0 band yields an AgF electron affinity of 1.46 ± 0.01 eV and vibrational frequency of 500 ± 40 cm{sup −1}. For the v′ = 2, 3, 4 channels, the photodetachment cross sections and angular distributions undergo rapid changes over a narrow electron kinetic energy range in the region of 50 meV (approximately 13 meV below the opening of the next vibrational channel). This is consistent with Fano-like behavior indicating autodetachment following excitation to a resonant anion state lying in the detachment continuum. EOM-CCSD calculations reveal this to be a dipole bound state. The consistency of the detachment data with the vibrational autodetachment propensity rule Δv = −1 shows that the autodetachment results from breakdown of the Born-Oppenheimer approximation, coupling the vibrational and electronic degrees of freedom.

  5. Electronic structures of active sites on metal oxide surfaces: Definition of the Cu/ZnO methanol synthesis catalyst by photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, E.I.; Jones, P.M.; May, J.A. (Stanford Univ., CA (United States). Dept. of Chemistry)

    1993-12-01

    The focus of this review is on the use of photoelectron spectroscopy (PES) to study the interaction of small molecules (particularly carbon monoxide) with metal ion sites on metal oxide surfaces. There have been numerous photoemission studies of chemisorption on metal surfaces. However, it is important to note that while metal oxides are involved in many heterogeneous catalytic processes, only a limited number of electron spectroscopic studies of chemically relevant molecules on metal oxide surfaces have appeared. The paper contains the following sections: The electronic structure of clean ZnO surfaces -- variable-energy photoelectron spectroscopy; CO chemisorption on ZnO surfaces; geometric structures for CO binding to the four chemically different surfaces of ZnO; electronic structure of the CO/ZnO surface complex; nature of copper sites on ZnO surfaces; electronic structures of CO bonding to d[sup 10] metal ion sites; relevance to catalysis; and summary and future directions. 185 refs.

  6. Initial stages of Lutetium growth on Si (111)-7 × 7 probed by STM and core-level photoelectron spectroscopy

    Science.gov (United States)

    Smykalla, Lars; Shukrynau, Pavel; Hietschold, Michael

    2017-09-01

    The interaction of small amounts of Lutetium with the Si (111)-7 × 7 reconstructed surface was investigated in detail using a combination of Scanning Tunneling Microscopy (STM) and Photoelectron Spectroscopy (XPS and UPS). Various immobile and also fastly moving atoms and nanocluster were found in the initial growth of the Lu/Si interface. Density functional theory calculations and photoelectron spectroscopy results suggest that the most attractive adsorption sites for the Lu atoms are basins around Si rest-atoms and there is no strong interaction between Lu and Si at the initial steps of film growth. However Lu nanocluster could also be found on other adsorption sites which results in a different voltage dependence in STM. Coverage-dependent STM images reveal the growth of a closed Lu metal overlayer by joining of the clusters. The existence of a stoichiometric Lu silicide compound was not detected on the surface in the initial growth for deposition at room temperature.

  7. Resolving stellar populations with crowded field 3D spectroscopy

    CERN Document Server

    Kamann, Sebastian; Roth, Martin M

    2012-01-01

    (Abridged) We describe a new method to extract spectra of stars from observations of crowded stellar fields with integral field spectroscopy (IFS). Our approach extends the well-established concept of crowded field photometry in images into the domain of 3-dimensional spectroscopic datacubes. The main features of our algorithm are: (1) We assume that a high-fidelity input source catalogue already exists and that it is not needed to perform sophisticated source detection in the IFS data. (2) Source positions and properties of the point spread function (PSF) vary smoothly between spectral layers of the datacube, and these variations can be described by simple fitting functions. (3) The shape of the PSF can be adequately described by an analytical function. Even without isolated PSF calibrator stars we can therefore estimate the PSF by a model fit to the full ensemble of stars visible within the field of view. (4) By using sparse matrices to describe the sources, the problem of extracting the spectra of many sta...

  8. Spatially-resolved mid-infrared spectroscopy of IC 5063

    Directory of Open Access Journals (Sweden)

    S. Young

    2007-01-01

    Full Text Available N-band spectroscopy of the radio strong Seyfert 2 active galaxy IC 5063 (z=0.0110 was obtained using Gemini South in conjunc- tion with the Thermal-Region Camera Spec- trograph (T-ReCS; Telesco et al. 1998. T- ReCS uses a Raytheon 320x240 pixel SiAs IBC array, at a plate scale of 0.08900 pixel-1. The observations were conducted on the nights of UT 2005 July 7 and 9 using the standard chop-nod technique to remove the time-variable sky background, telescope ther- mal emission, and the so-called 1/f detector noise. A 0.6700 wide slit was used aligned along the position angle of the radio axis at 305o(Morganti et al. 1998 and close to the extended narrow line emission region (ENLR axis at 303_(Colina et al. 1991. The total on- source integration time was 1212 seconds.

  9. A high pressure x-ray photoelectron spectroscopy experimental method for characterization of solid-liquid interfaces demonstrated with a Li-ion battery system

    Energy Technology Data Exchange (ETDEWEB)

    Maibach, Julia; Xu, Chao; Gustafsson, Torbjörn; Edström, Kristina [Department of Chemistry–Ångström Laboratory, Uppsala University, Box 538, SE-751 21 Uppsala (Sweden); Eriksson, Susanna K. [Department of Chemistry–Ångström Laboratory, Uppsala University, Box 523, SE-751 20 Uppsala (Sweden); Åhlund, John [VG Scienta AB, Box 15120, SE-750 15 Uppsala (Sweden); Siegbahn, Hans; Rensmo, Håkan; Hahlin, Maria, E-mail: maria.hahlin@physics.uu.se [Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala (Sweden)

    2015-04-15

    We report a methodology for a direct investigation of the solid/liquid interface using high pressure x-ray photoelectron spectroscopy (HPXPS). The technique was demonstrated with an electrochemical system represented by a Li-ion battery using a silicon electrode and a liquid electrolyte of LiClO{sub 4} in propylene carbonate (PC) cycled versus metallic lithium. For the first time the presence of a liquid electrolyte was realized using a transfer procedure where the sample was introduced into a 2 mbar N{sub 2} environment in the analysis chamber without an intermediate ultrahigh vacuum (UHV) step in the load lock. The procedure was characterized in detail concerning lateral drop gradients as well as stability of measurement conditions over time. The X-ray photoelectron spectroscopy (XPS) measurements demonstrate that the solid substrate and the liquid electrolyte can be observed simultaneously. The results show that the solid electrolyte interphase (SEI) composition for the wet electrode is stable within the probing time and generally agrees well with traditional UHV studies. Since the methodology can easily be adjusted to various high pressure photoelectron spectroscopy systems, extending the approach towards operando solid/liquid interface studies using liquid electrolytes seems now feasible.

  10. Determination of 4f energy levels for trivalent lanthanide ions in YAlO{sub 3} by X-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Yuhei; Ueda, Kazushige, E-mail: kueda@che.kyutech.ac.jp

    2016-09-01

    A simple method to analyze 4f energy levels of trivalent lanthanide (Ln) ions was demonstrated by conventional X-ray photoelectron spectroscopy (XPS) measurements using Ln ions doped YAlO{sub 3} sintered polycrystalline samples. Although XPS peaks derived from Ln 4f states overlapped with the host's valence band consisting of O 2p states, the difference XPS spectra between Ln doped and non-doped samples showed only the Ln 4f peaks due to the large difference of photoionization cross sections between Ln 4f and O 2p orbitals. The difference spectra showing Ln 4f states were aligned at the valence band maximum (VBM) making use of the peaks of Al 2p inner shells, and the Ln{sup 3+} 4f energy levels referred to the VBM were determined from the Ln{sup 3+} 4f peak energies. The Ln{sup 3+} 4f energy levels obtained by this simple method were in good agreement with those previously obtained by resonant ultraviolet photoelectron spectroscopy measurements using single crystal samples. - Highlights: • Lanthanide (Ln) 4f energy in YAlO{sub 3} was studied by X-ray photoelectron spectroscopy. • The method used differences in photoionization probability between Ln 4f and O 2p. • Ln 4f states were obtained by difference spectra between Ln- and non-doped samples. • Obtained 4f energy levels agreed with those reported by a sophisticated method.

  11. X-ray photoelectron spectroscopy study of pyrolytically coated graphite platforms submitted to simulated electrothermal atomic absorption spectrometry conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, Frine [Laboratorio de Quimica Analitica, Centro de Quimica, Instituto Venezolano de Investigaciones Cientificas, IVIC, Apartado Postal 21827, Caracas 1020-A (Venezuela); Benzo, Zully [Laboratorio de Quimica Analitica, Centro de Quimica, Instituto Venezolano de Investigaciones Cientificas, IVIC, Apartado Postal 21827, Caracas 1020-A (Venezuela); Quintal, Manuelita [Laboratorio de Quimica Analitica, Centro de Quimica, Instituto Venezolano de Investigaciones Cientificas, IVIC, Apartado Postal 21827, Caracas 1020-A (Venezuela); Garaboto, Angel [Laboratorio de Quimica Analitica, Centro de Quimica, Instituto Venezolano de Investigaciones Cientificas, IVIC, Apartado Postal 21827, Caracas 1020-A (Venezuela); Albornoz, Alberto [Laboratorio de Fisicoquimica de Superficies, Centro de Quimica, Instituto Venezolano de Investigaciones Cientificas, IVIC, Apartado Postal 21827, Caracas 1020-A (Venezuela); Brito, Joaquin L. [Laboratorio de Fisicoquimica de Superficies, Centro de Quimica, Instituto Venezolano de Investigaciones Cientificas, IVIC, Apartado Postal 21827, Caracas 1020-A (Venezuela)]. E-mail: joabrito@ivic.ve

    2006-10-15

    The present work is part of an ongoing project aiming to a better understanding of the mechanisms of atomization on graphite furnace platforms used for electrothermal atomic absorption spectrometry (ETAAS). It reports the study of unused pyrolytic graphite coated platforms of commercial origin, as well as platforms thermally or thermo-chemically treated under simulated ETAAS analysis conditions. X-ray photoelectron spectroscopy (XPS) was employed to study the elements present at the surfaces of the platforms. New, unused platforms showed the presence of molybdenum, of unknown origin, in concentrations up to 1 at.%. Species in two different oxidations states (Mo{sup 6+} and Mo{sup 2+}) were detected by analyzing the Mo 3d spectral region with high resolution XPS. The analysis of the C 1s region demonstrated the presence of several signals, one of these at 283.3 eV related to the presence of Mo carbide. The O 1s region showed also various peaks, including a signal that can be attributed to the presence of MoO{sub 3}. Some carbon and oxygen signals were consistent with the presence of C=O and C-O- (probably C-OH) groups on the platforms surfaces. Upon thermal treatment up to 2900 deg. C, the intensity of the Mo signal decreased, but peaks due to Mo oxides (Mo{sup 6+} and Mo{sup 5+}) and carbide (Mo{sup 2+}) were still apparent. Thermo-chemical treatment with 3 vol.% HCl solutions and heating up to 2900 deg. C resulted in further diminution of the Mo signal, with complete disappearance of Mo carbide species. Depth profiling of unused platforms by Ar{sup +} ion etching at increasing time periods demonstrated that, upon removal of several layers of carbonaceous material, the Mo signal disappears suggesting that this contamination is present only at the surface of the pyrolytic graphite platform.

  12. X-ray photoelectron spectroscopy study of high-k CeO2/La2O3 stacked dielectrics

    Directory of Open Access Journals (Sweden)

    Jieqiong Zhang

    2014-11-01

    Full Text Available This work presents a detailed study on the chemical composition and bond structures of CeO2/La2O3 stacked gate dielectrics based on x-ray photoelectron spectroscopy (XPS measurements at different depths. The chemical bonding structures in the interfacial layers were revealed by Gaussian decompositions of Ce 3d, La 3d, Si 2s, and O 1s photoemission spectra at different depths. We found that La atoms can diffuse into the CeO2 layer and a cerium-lanthanum complex oxide was formed in between the CeO2 and La2O3 films. Ce3+ and Ce4+ states always coexist in the as-deposited CeO2 film. Quantitative analyses were also conducted. The amount of CeO2 phase decreases by about 8% as approaching the CeO2/La2O3 interface. In addition, as compared with the single layer La2O3 sample, the CeO2/La2O3 stack exhibits a larger extent of silicon oxidation at the La2O3/Si interface. For the CeO2/La2O3 gate stack, the out-diffused lanthanum atoms can promote the reduction of CeO2 which produce more atomic oxygen. This result confirms the significant improvement of electrical properties of CeO2/La2O3 gated devices as the excess oxygen would help to reduce the oxygen vacancies in the film and would suppress the formation of interfacial La-silicide also.

  13. Zero kinetic energy photoelectron spectroscopy of tryptamine and the dissociation pathway of the singly hydrated cation cluster.

    Science.gov (United States)

    Gu, Quanli; Knee, J L

    2012-09-14

    The relative ionization energies of tryptamine conformations are determined by zero kinetic energy photoelectron spectroscopy and photoionization efficiency measurements. The relative cationic conformational stabilities are compared to the published results for the neutral molecule. In the cation, the interaction strength changes significantly between amino group and either the phenyl or the pyrrole moiety of the indole chromophore where most of the positive charge is located, leading to different conformational structures and relative conformer energies in the cation. In particular, the measured adiabatic ionization potential of isomer B is 60,928 ± 5 cm(-1), at least 400 cm(-1) higher than any of the 6 other tryptamine isomers which all have ionization potentials within 200 cm(-1) of each other. In addition to the monomer, measurements were made on the A conformer of the tryptamine(+)-H(2)O complex including the ionization threshold and cation dissociation energy measured using a threshold photoionization fragmentation method. The water cluster exhibits an unexpectedly high ionization potential of 60,307 ± 100 cm(-1), close to the conformer A monomer of 60 320 ± 100 cm(-1). It also exhibits surprisingly low dissociation energy of 1750 ± 150 cm(-1) compared to other H-bonding involved cation-H(2)O complexes which are typically several thousands of wavenumbers higher. Quantum chemical calculations indicate that upon ionization the structure of the parent molecule in the water complex remains mostly unchanged due to the rigid intermolecular double hydrogen bonded water molecule bridging the monomer backbone and its side chain thus leading to the high ionization potential in the water cluster. The surprisingly low dissociation energy measured in the cationic water complex is attributed to the formation of a much more stable structural isomer H(+) in the exit channel.

  14. Quantitative X-ray photoelectron spectroscopy-based depth profiling of bioleached arsenopyrite surface by Acidithiobacillus ferrooxidans

    Science.gov (United States)

    Zhu, Tingting; Lu, Xiancai; Liu, Huan; Li, Juan; Zhu, Xiangyu; Lu, Jianjun; Wang, Rucheng

    2014-02-01

    In supergene environments, microbial activities significantly enhance sulfide oxidation and result in the release of heavy metals, causing serious contamination of soils and waters. As the most commonly encountered arsenic mineral in nature, arsenopyrite (FeAsS) accounts for arsenic contaminants in various environments. In order to investigate the geochemical behavior of arsenic during microbial oxidation of arsenopyrite, (2 3 0) surfaces of arsenopyrite slices were characterized after acidic (pH 2.00) and oxidative decomposition with or without an acidophilic microorganism Acidithiobacillus ferrooxidans. The morphology as well as chemical and elemental depth profiles of the oxidized arsenopyrite surface were investigated by scanning electron microscopy and X-ray photoelectron spectroscopy. With the mediation of bacteria, cell-shaped and acicular pits were observed on the reacted arsenopyrite surface, and the concentration of released arsenic species in solution was 50 times as high as that of the abiotic reaction after 10 days reaction. Fine-scale XPS depth profiles of the reacted arsenopyrite surfaces after both microbial and abiotic oxidation provided insights into the changes in chemical states of the elements in arsenopyrite surface layers. Within the 450 nm surface layer of abiotically oxidized arsenopyrite, Fe(III)-oxides appeared and gradually increased towards the surface, and detectable sulfite and monovalent arsenic appeared above 50 nm. In comparison, higher contents of ferric sulfate, sulfite, and arsenite were found in the surface layer of approximately 3 μm of the microbially oxidized arsenopyrite. Intermediates, such as Fe(III)-AsS and S0, were detectable in the presence of bacteria. Changes of oxidative species derived from XPS depth profiles show the oxidation sequence is Fe > As = S in abiotic oxidation, and Fe > S > As in microbial oxidation. Based on these results, a possible reaction path of microbial oxidation was proposed in a concept model.

  15. X-ray Photoelectron Spectroscopy Study of Indium Tin Oxide Films Deposited at Various Oxygen Partial Pressures

    Science.gov (United States)

    Peng, Shou; Cao, Xin; Pan, Jingong; Wang, Xinwei; Tan, Xuehai; Delahoy, Alan E.; Chin, Ken K.

    2017-02-01

    Here, a systematic experimental study on indium tin oxide (ITO) films is presented to investigate the effects of oxygen partial pressure on the film's electrical properties. The results of Hall measurements show that adding more oxygen in the sputtering gas has negative influences on the electrical conductivity of ITO films. As O2/(O2 + Ar)% in the sputtering gas is increased from 0 to 6.98%, the resistivity of ITO film rises almost exponentially from 7.9 × 10-4 to 4.1 × 10-2 Ω cm, with the carrier density decreasing from 4.8 × 1020 to 5.4 × 1018 cm-3. The origins of these negative effects are discussed with focuses on the concentration of ionized impurities and the scattering of grain barriers. Extensive x-ray photoelectron spectroscopy (XPS) analyses were employed to gain insight into the concentration of ionized impurities, demonstrating a strong correlation between the oxygen vacancy concentration and the carrier density in ITO films as a function of sputtering O2 partial pressure. Other microstructural characterization techniques including x-ray diffraction (XRD), high-magnification scanning electron microscopy (SEM) and scanning transmission electron microscopy (STEM) analyses were used to evaluate the average grain size of ITO films. For ITO films that have carrier density above 1019 cm-3, scattering on grain boundaries and other crystallographic defects show negligible effects on the carrier transport. The results point to the oxygen vacancy concentration that dictates the carrier density and, thus, the resistivity of magnetron-sputtered ITO films.

  16. Band offset in zinc oxy-sulfide/cubic-tin sulfide interface from X-ray photoelectron spectroscopy

    Science.gov (United States)

    K. C., Sanal; Nair, P. K.; Nair, M. T. S.

    2017-02-01

    Zinc oxy-sulfide, ZnOxS1-x, has been found to provide better band alignment in thin film solar cells of tin sulfide of orthorhombic crystalline structure. Here we examine ZnOxS1-x/SnS-CUB interface, in which the ZnOxS1-x thin film was deposited by radio frequency (rf) magnetron sputtering on SnS thin film of cubic (CUB) crystalline structure with a band gap (Eg) of 1.72 eV, obtained via chemical deposition. X-ray photoelectron spectroscopy provides the valence band maxima of the materials and hence places the conduction band offset of 0.41 eV for SnS-CUB/ZnO0.27S0.73 and -0.28 eV for SnS-CUB/ZnO0.88S0.12 interfaces. Thin films of ZnOxS1-x with 175-240 nm in thickness were deposited from targets prepared with different ZnO to ZnS molar ratios. With the target of molar ratio of 1:13.4, the thin films are of composition ZnO0.27S0.73 with hexagonal crystalline structure and with that of 1:1.7 ratio, it is ZnO0.88S0.12. The optical band gap of the ZnOxS1-x thin films varies from 2.90 eV to 3.21 eV as the sulfur to zinc ratio in the film increases from 0.12:1 to 0.73:1 as determined from X-ray diffraction patterns. Thus, band offsets sought for absorber materials and zinc oxy-sulfide in solar cells may be achieved through a choice of ZnO:ZnS ratio in the sputtering target.

  17. Hard X-ray photoelectron and X-ray absorption spectroscopy characterization of oxidized surfaces of iron sulfides

    Energy Technology Data Exchange (ETDEWEB)

    Mikhlin, Yuri, E-mail: yumikh@icct.ru [Institute of Chemistry and Chemical Technology of the Siberian Branch of the Russian Academy of sciences, Akademgorodok, 50/24, Krasnoyarsk, 660036 (Russian Federation); Tomashevich, Yevgeny [Institute of Chemistry and Chemical Technology of the Siberian Branch of the Russian Academy of sciences, Akademgorodok, 50/24, Krasnoyarsk, 660036 (Russian Federation); Vorobyev, Sergey [Institute of Chemistry and Chemical Technology of the Siberian Branch of the Russian Academy of sciences, Akademgorodok, 50/24, Krasnoyarsk, 660036 (Russian Federation); Siberian Federal University, Svobodny pr. 79, Krasnoyarsk, 660041 (Russian Federation); Saikova, Svetlana [Siberian Federal University, Svobodny pr. 79, Krasnoyarsk, 660041 (Russian Federation); Romanchenko, Alexander [Institute of Chemistry and Chemical Technology of the Siberian Branch of the Russian Academy of sciences, Akademgorodok, 50/24, Krasnoyarsk, 660036 (Russian Federation); Félix, Roberto [Renewable Energy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Lise-Meitner-Campus, Hahn-Meitner-Platz 1, 14109 Berlin (Germany)

    2016-11-30

    Highlights: • Pyrite and pyrrhotite in-air abraded and etched in aqueous Fe{sup 3+} solution were studied. • HAXPES (2 keV-6 keV) and Fe K-, S K-edge XANES (TEY and PFY mode) were measured. • Outer “polysulfide”, strongly S-excessive layers are no more than 1–4 nm thick. • “Metal-depleted” layers depend on the treatment and differ for pyrite and pyrrhotite. • Extended nearly-stoichiometric “defective” underlayers were detected using TEY XANES. - Abstract: Hard X-ray photoelectron spectroscopy (HAXPES) using an excitation energy range of 2 keV to 6 keV in combination with Fe K- and S K-edge XANES, measured simultaneously in total electron (TEY) and partial fluorescence yield (PFY) modes, have been applied to study near-surface regions of natural polycrystalline pyrite FeS{sub 2} and pyrrhotite Fe{sub 1−x}S before and after etching treatments in an acidic ferric chloride solution. It was found that the following near-surface regions are formed owing to the preferential release of iron from oxidized metal sulfide lattices: (i) a thin, no more than 1–4 nm in depth, outer layer containing polysulfide species, (ii) a layer exhibiting less pronounced stoichiometry deviations and low, if any, concentrations of polysulfide, the composition and dimensions of which vary for pyrite and pyrrhotite and depend on the chemical treatment, and (iii) an extended almost stoichiometric underlayer yielding modified TEY XANES spectra, probably, due to a higher content of defects. We suggest that the extended layered structure should heavily affect the near-surface electronic properties, and processes involving the surface and interfacial charge transfer.

  18. Uniqueness plots: A simple graphical tool for identifying poor peak fits in X-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Bhupinder; Diwan, Anubhav; Jain, Varun [Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84606 (United States); Herrera-Gomez, Alberto [CINVESTAV-Unidad Queretaro, Queretaro, 76230 (Mexico); Terry, Jeff [Department of Physics, Illinois Institute of Technology, Chicago, IL, 60616 (United States); Linford, Matthew R., E-mail: mrlinford@chem.byu.edu [Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84606 (United States)

    2016-11-30

    Highlights: • Uniqueness plots are introduced as a new tool for identifying poor XPS peak fits. • Uniqueness plots are demonstrated on real XPS data sets. • A horizontal line in a uniqueness plot indicates a poor fit, i.e., fit parameter correlation. • A parabolic shape in a uniqueness plot indicates that a fit may be appropriate. - Abstract: Peak fitting is an essential part of X-ray photoelectron spectroscopy (XPS) narrow scan analysis, and the Literature contains both good and bad examples of peak fitting. A common cause of poor peak fitting is the inclusion of too many fit parameters, often without a sound chemical and/or physical basis for them, and/or the failure to reasonably constrain them. Under these conditions, fit parameters are often correlated, and therefore lacking in statistical meaning. Here we introduce the uniqueness plot as a simple graphical tool for identifying bad peak fits in XPS, i.e., fit parameter correlation. These plots are widely used in spectroscopic ellipsometry. We illustrate uniqueness plots with two data sets: a C 1s narrow scan from ozone-treated carbon nanotube forests and an Si 2p narrow scan from an air-oxidized silicon wafer. For each fit, we consider different numbers of parameters and constraints on them. As expected, the uniqueness plots are parabolic when fewer fit parameters and/or more constraints are applied. However, they fan out and eventually become horizontal lines as more unconstrained parameters are included in the fits. Uniqueness plots are generated by plotting the chi squared (χ{sup 2}) value for a fit vs. a systematically varied value of a parameter in the fit. The Abbe criterion is also considered as a figure of merit for uniqueness plots in the Supporting Information. We recommend that uniqueness plots be used by XPS practitioners for identifying inappropriate peak fits.

  19. Time-resolved terahertz spectroscopy in a parallel-plate waveguide

    DEFF Research Database (Denmark)

    Cooke, David; Jepsen, Peter Uhd

    2009-01-01

    Time-resolved THz spectroscopy is a powerful tool to investigate photoconductivity dynamics in a wide variety of materials with sub-picosecond resolution, all without applying contacts to the material. This technique uses coherently detected and broadband pulses of far-infrared light, known as THz...

  20. Time-resolved diffusing wave spectroscopy applied to dynamic heterogeneity imaging

    CERN Document Server

    Cheikh, M; Ettori, D; Tinet, E; Avrillier, S; Tualle, J M; Cheikh, Monia; Nghiem, Ha Lien; Ettori, Dominique; Tinet, Eric; Avrillier, Sigrid; Tualle, Jean-Michel

    2006-01-01

    We report in this paper what is to our knowledge the first observation of a time-resolved diffusing wave spectroscopy signal recorded by transillumination through a thick turbid medium: the DWS signal is measured for a fixed photon transit time, which opens the possibility of improving the spatial resolution. This technique could find biomedical applications, especially in mammography.

  1. Time-resolved VUV spectroscopy in the EXTRAP-T2 reversed field pinch

    Science.gov (United States)

    Hedqvist, Anders; Rachlew-Källne, Elisabeth

    1998-09-01

    Time-resolved VUV spectroscopy has been used to investigate the effects of impurities in a reversed field pinch operating with a resistive shell. Results of electron temperature, impurity ion densities, particle confinement time and 0741-3335/40/9/004/img1 together with a description of the interpretation and the equipment are presented.

  2. The Self-Injected Laser for Picosecond Time-Resolved Spectroscopy

    OpenAIRE

    Armani, F.; Martini, F; Mataloni, P.

    1983-01-01

    The principles of operation and the characteristics of the self-injected picosecond laser are presented. We show that in spite of its simple design our device is able to generate very high power pulses in the picosecond domain. This warrants the use of this laser for time resolved spectroscopy in the picosecond domain.

  3. Chilling injury in stored nectarines and its detection by time-resolved reflectance spectroscopy

    NARCIS (Netherlands)

    Lurie, S.; Vanoli, M.; Dagar, A.; Weksler, A.; Eccher Zerbini, P.C.; Spinelli, L.; Torricelli, A.; Lovati, F.; Feng, R.; Rizzolo, A.

    2011-01-01

    Nectarine fruit after cold storage soften normally, but become dry instead of juicy and can develop flesh browning, bleeding and a gel-like or glassy formation of the flesh near the pit. An experiment was conducted to see if time-resolved reflectance spectroscopy could distinguish these internal dis

  4. Capturing molecular structural dynamics by 100 ps time-resolved X-ray absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Tokushi [Department of Materials Science, Tokyo Institute of Technology, 2-12-1-H61 Ohokayama, Meguro-ku, Tokyo 152-8551 (Japan); Non-Equilibrium Dynamics Project, ERATO, Japan Science and Technology Agency, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Nozawa, Shunsuke; Ichiyanagi, Kohei [Non-Equilibrium Dynamics Project, ERATO, Japan Science and Technology Agency, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Tomita, Ayana [Department of Materials Science, Tokyo Institute of Technology, 2-12-1-H61 Ohokayama, Meguro-ku, Tokyo 152-8551 (Japan); Non-Equilibrium Dynamics Project, ERATO, Japan Science and Technology Agency, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Chollet, Matthieu [Department of Materials Science, Tokyo Institute of Technology, 2-12-1-H61 Ohokayama, Meguro-ku, Tokyo 152-8551 (Japan); Ichikawa, Hirohiko [Non-Equilibrium Dynamics Project, ERATO, Japan Science and Technology Agency, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Fujii, Hiroshi [Institute for Molecular Science and Okazaki Institute for Integrative Bioscience, Myodaiji, Okazaki 444-8787 (Japan); Adachi, Shin-ichi [Non-Equilibrium Dynamics Project, ERATO, Japan Science and Technology Agency, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Koshihara, Shin-ya, E-mail: skoshi@cms.titech.ac.jp [Department of Materials Science, Tokyo Institute of Technology, 2-12-1-H61 Ohokayama, Meguro-ku, Tokyo 152-8551 (Japan); Non-Equilibrium Dynamics Project, ERATO, Japan Science and Technology Agency, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Frontier Research Center, Tokyo Institute of Technology, 2-12-1 Ohokayama, Meguro-ku, Tokyo 152-8551 (Japan)

    2009-01-01

    An experimental set-up for time-resolved X-ray absorption spectroscopy with 100 ps time resolution at beamline NW14A at the Photon Factory Advanced Ring is presented. An experimental set-up for time-resolved X-ray absorption spectroscopy with 100 ps time resolution at beamline NW14A at the Photon Factory Advanced Ring is presented. The X-ray positional active feedback to crystals in a monochromator combined with a figure-of-merit scan of the laser beam position has been utilized as an essential tool to stabilize the spatial overlap of the X-ray and laser beams at the sample position. As a typical example, a time-resolved XAFS measurement of a photo-induced spin crossover reaction of the tris(1,10-phenanthrorine)iron(II) complex in water is presented.

  5. Thermal decomposition of methyl 2-azidopropionate studied by UV photoelectron spectroscopy and matrix isolation IR spectroscopy: heterocyclic intermediate vs imine formation.

    Science.gov (United States)

    Pinto, R M; Dias, A A; Costa, M L; Rodrigues, P; Barros, M T; Ogden, J S; Dyke, J M

    2011-08-01

    Methyl 2-azidopropionate (N(3)CH(3)CHCOOCH(3), M2AP) has been synthesized and characterized by different spectroscopic methods, and the thermal decomposition of this molecule has been investigated by matrix isolation infrared (IR) spectroscopy and ultraviolet photoelectron spectroscopy (UVPES). Computational methods have been employed in the spectral simulation of both UVPES and matrix IR spectra and in the rationalization of the thermal decomposition results. M2AP presents a HOMO vertical ionization energy (VIE) of 9.60 ± 0.03 eV and contributions from all four lowest-energy conformations of this molecule are detected in the gas phase. Its thermal decomposition starts at ca. 400 °C and is complete at ca. 650 °C, yielding N(2), CO, CO(2), CH(3)CN, and CH(3)OH as the final decomposition products. Methyl formate (MF) and CH(4) are also found during the pyrolysis process. Analysis of the potential energy surface of the decomposition of M2AP indicates that M2AP decomposes preferentially into the corresponding imine (M2IP), through a 1,2-H shift synchronous with the N(2) elimination (Type 1 mechanism), requiring an activation energy of 160.8 kJ/mol. The imine further decomposes via two competitive routes: one accounting for CO, CH(3)OH, and CH(3)CN (ΔE(G3) = 260.2 kJ/mol) and another leading to CO(2), CH(4), and CH(3)CN (ΔE(G3) = 268.6 kJ/mol). A heterocyclic intermediate (Type 2 mechanism)-4-Me-5-oxazolidone-can also be formed from M2AP via H transfer from the remote O-CH(3) group, together with the N(2) elimination (ΔE(G3) = 260.2 kJ/mol). Finally, a third pathway which accounts for the formation of MF through an M2AP isomer is envisioned.

  6. Time-resolved fluorescence spectroscopy of oil spill detected by ocean lidar

    Science.gov (United States)

    Li, Xiao-long; Chen, Yong-hua; Li, Jie; Jiang, Jingbo; Ni, Zuotao; Liu, Zhi-shen

    2016-10-01

    Based on time-resolved fluorescence of oils, an oceanographic fluorescence Lidar was designed to identify oil pollutions. A third harmonic (at 355nm) of Nd:YAG laser is used as the excitation source, and the fluorescence intensities and lifetimes of oil fluorescence at wavelength from 380 nm to 580 nm are measured by an intensified CCD (ICCD). In the experiments, time-resolved fluorescence spectra of 20 oil samples, including crude oils, fuel oils, lubricating oil, diesel oils and gasoline, are analyzed to discuss fluorescence spectral characteristics of samples for oil classification. The spectral characteristics of oil fluorescence obtained by ICCD with delay time of 2 ns, 4 ns, and 6 ns were studied by using the principal component analysis (PCA) method. Moreover, an efficient method is used to improve the recognition rate of the oil spill types, through enlarging spectral differences of oil fluorescence at different delay times. Experimental analysis shows that the optimization method can discriminate between crude oil and fuel oil, and a more accurate classification of oils is obtained by time-resolved fluorescence spectroscopy. As the result, comparing to traditional fluorescence spectroscopy, a higher recognition rate of oil spill types is achieved by time-resolved fluorescence spectroscopy which is also a feasibility technology for Ocean Lidar.

  7. Excitation emission and time-resolved fluorescence spectroscopy of selected varnishes used in historical musical instruments.

    Science.gov (United States)

    Nevin, Austin; Echard, Jean-Philippe; Thoury, Mathieu; Comelli, Daniela; Valentini, Gianluca; Cubeddu, Rinaldo

    2009-11-15

    The analysis of various varnishes from different origins, which are commonly found on historical musical instruments was carried out for the first time with both fluorescence excitation emission spectroscopy and laser-induced time-resolved fluorescence spectroscopy. Samples studied include varnishes prepared using shellac, and selected diterpenoid and triterpenoid resins from plants, and mixtures of these materials. Fluorescence excitation emission spectra have been collected from films of naturally aged varnishes. In parallel, time-resolved fluorescence spectroscopy of varnishes provides means for discriminating between short- (less than 2.0 ns) and long-lived (greater than 7.5 ns) fluorescence emissions in each of these complex materials. Results suggest that complementary use of the two non destructive techniques allows a better understanding of the main fluorophores responsible for the emission in shellac, and further provides means for distinguishing the main classes of other varnishes based on differences in fluorescence lifetime behaviour. Spectrofluorimetric data and time resolved spectra presented here may form the basis for the interpretation of results from future in situ fluorescence examination and time resolved fluorescence imaging of varnished musical instruments.

  8. Time-resolved rotational spectroscopy of para-difluorobenzene·Ar

    Science.gov (United States)

    Weichert, A.; Riehn, C.; Matylitsky, V. V.; Jarzeba, W.; Brutschy, B.

    2002-07-01

    We report on time-resolved rotational spectroscopy experiments of the cluster para-difluorobenzene·Ar ( pDFB·Ar) by picosecond laser pulses in a supersonic expansion. Rotational coherences of pDFB·Ar are generated by resonant electronic excitation and probed by time-resolved fluorescence depletion spectroscopy and time-resolved photoionization ((1+1') PPI) spectroscopy. The former allows the determination of both ground and excited state rotational constants, whereas the latter technique enables the separate study of the excited state with the benefit of mass-selective detection. Since pDFB·Ar represents a near symmetric oblate rotor, persistent J-type transients with tJ≈ n/2( A+ B) could be measured. From their analysis, (A″+B″)=2234.9±2 MHz and (A'+B')=2237.9±2 MHz were obtained. A structural investigation, based on data of the pDFB monomer, is presented resulting in a pDFB·Ar center-of-mass distance of both moieties of R z=3.543±0.017 Å with a change of ΔR z=-0.057±0.009 Å upon electronic excitation. These results are compared to data of former frequency-resolved experiments and ab initio computations.

  9. Al capping layers for nondestructive x-ray photoelectron spectroscopy analyses of transition-metal nitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Greczynski, Grzegorz, E-mail: grzgr@ifm.liu.se; Hultman, Lars [Thin Film Physics Division, Department of Physics (IFM), Linköping University, SE-581 83 Linköping (Sweden); Petrov, Ivan [Thin Film Physics Division, Department of Physics (IFM), Linköping University, SE-581 83 Linköping, Sweden and Materials Science Department and Frederick Seitz Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801 (United States); Greene, J. E. [Thin Film Physics Division, Department of Physics (IFM), Linköping University, SE-581 83 Linköping (Sweden); Materials Science Department and Frederick Seitz Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801(United States); Department of Physics, University of Illinois, Urbana, Illinois 61801 (United States)

    2015-09-15

    X-ray photoelectron spectroscopy (XPS) compositional analyses of materials that have been air exposed typically require ion etching in order to remove contaminated surface layers. However, the etching step can lead to changes in sample surface and near-surface compositions due to preferential elemental sputter ejection and forward recoil implantation; this is a particular problem for metal/gas compounds and alloys such as nitrides and oxides. Here, the authors use TiN as a model system and compare XPS analysis results from three sets of polycrystalline TiN/Si(001) films deposited by reactive magnetron sputtering in a separate vacuum chamber. The films are either (1) air-exposed for ≤10 min prior to insertion into the ultrahigh-vacuum (UHV) XPS system; (2) air-exposed and subject to ion etching, using different ion energies and beam incidence angles, in the XPS chamber prior to analysis; or (3) Al-capped in-situ in the deposition system prior to air-exposure and loading into the XPS instrument. The authors show that thin, 1.5–6.0 nm, Al capping layers provide effective barriers to oxidation and contamination of TiN surfaces, thus allowing nondestructive acquisition of high-resolution core-level spectra representative of clean samples, and, hence, correct bonding assignments. The Ti 2p and N 1s satellite features, which are sensitive to ion bombardment, exhibit high intensities comparable to those obtained from single-crystal TiN/MgO(001) films grown and analyzed in-situ in a UHV XPS system and there is no indication of Al/TiN interfacial reactions. XPS-determined N/Ti concentrations acquired from Al/TiN samples agree very well with Rutherford backscattering and elastic recoil analysis results while ion-etched air-exposed samples exhibit strong N loss due to preferential resputtering. The intensities and shapes of the Ti 2p and N 1s core level signals from Al/TiN/Si(001) samples do not change following long-term (up to 70 days) exposure to ambient conditions

  10. Properties of iron sulfide, hydrosulfide, and mixed sulfide/hydrosulfide cluster anions through photoelectron spectroscopy and density functional theory calculations

    Science.gov (United States)

    Yin, Shi; Bernstein, Elliot R.

    2016-10-01

    A new magnetic-bottle time-of-flight photoelectron spectroscopy (PES) apparatus is constructed in our laboratory. The PES spectra of iron sulfide, hydrosulfide, and mixed sulfide/hydrosulfide [FeSm(SH)n-; m, n = 0-3, 0 theory. The most probable structures and ground state spin multiplicity for these cluster anions are tentatively assigned by comparing their theoretical first vertical detachment energies (VDEs) with their respective experiment values. The behavior of S and (SH) as ligands in these iron sulfide, hydrosulfide, and mixed sulfide/hydrosulfide cluster anions is investigated and compared. The experimental first VDEs for Fe(SH)1-3- cluster anions are lower than those found for their respective FeS1-3- cluster anions. The experimental first VDEs for FeS1-3- clusters are observed to increase for the first two S atoms bound to Fe-; however, due to the formation of an S-S bond for the FeS3- cluster, its first VDE is found to be ˜0.41 eV lower than the first VDE for the FeS2- cluster. The first VDEs of Fe(SH)1-3- cluster anions are observed to increase with the increasing numbers of SH groups. The calculated partial charges of the Fe atom for ground state FeS1-3- and Fe(SH)1-3- clusters are apparently related to and correlated with their determined first VDEs. The higher first VDE is correlated with a higher, more positive partial charge for the Fe atom of these cluster anions. Iron sulfide/hydrosulfide mixed cluster anions are also explored in this work: the first VDE for FeS(SH)- is lower than that for FeS2-, but higher than that for Fe(SH)2-; the first VDEs for FeS2(SH)- and FeS(SH)2- are close to that for FeS3-, but higher than that for Fe(SH)3-. The first VDEs of general iron sulfide, hydrosulfide, and mixed sulfide/hydrosulfide clusters [FeSm(SH)n-; m, n = 0-3, 0 < (m + n) ≤ 3] are dependent on three properties of these anions: 1. the partial charge on the Fe atom, 2. disulfide bond formation (S-S) in the cluster, and 3. the number of hydrosulfide

  11. Properties of iron sulfide, hydrosulfide, and mixed sulfide/hydrosulfide cluster anions through photoelectron spectroscopy and density functional theory calculations.

    Science.gov (United States)

    Yin, Shi; Bernstein, Elliot R

    2016-10-21

    A new magnetic-bottle time-of-flight photoelectron spectroscopy (PES) apparatus is constructed in our laboratory. The PES spectra of iron sulfide, hydrosulfide, and mixed sulfide/hydrosulfide [FeSm(SH)n(-); m, n = 0-3, 0 density functional theory. The most probable structures and ground state spin multiplicity for these cluster anions are tentatively assigned by comparing their theoretical first vertical detachment energies (VDEs) with their respective experiment values. The behavior of S and (SH) as ligands in these iron sulfide, hydrosulfide, and mixed sulfide/hydrosulfide cluster anions is investigated and compared. The experimental first VDEs for Fe(SH)1-3(-) cluster anions are lower than those found for their respective FeS1-3(-) cluster anions. The experimental first VDEs for FeS1-3(-) clusters are observed to increase for the first two S atoms bound to Fe(-); however, due to the formation of an S-S bond for the FeS3(-) cluster, its first VDE is found to be ∼0.41 eV lower than the first VDE for the FeS2(-) cluster. The first VDEs of Fe(SH)1-3(-) cluster anions are observed to increase with the increasing numbers of SH groups. The calculated partial charges of the Fe atom for ground state FeS1-3(-) and Fe(SH)1-3(-) clusters are apparently related to and correlated with their determined first VDEs. The higher first VDE is correlated with a higher, more positive partial charge for the Fe atom of these cluster anions. Iron sulfide/hydrosulfide mixed cluster anions are also explored in this work: the first VDE for FeS(SH)(-) is lower than that for FeS2(-), but higher than that for Fe(SH)2(-); the first VDEs for FeS2(SH)(-) and FeS(SH)2(-) are close to that for FeS3(-), but higher than that for Fe(SH)3(-). The first VDEs of general iron sulfide, hydrosulfide, and mixed sulfide/hydrosulfide clusters [FeSm(SH)n(-); m, n = 0-3, 0 number of hydrosulfide ligands in the cluster. The higher the partial charge on the Fe atom of these clusters, the larger the first VDE

  12. Flexible Acyclic Polyol-Chloride Anion Complexes and Their Characterization by Photoelectron Spectroscopy and Variable Temperature Binding Constant Determinations

    Energy Technology Data Exchange (ETDEWEB)

    Shokri, Alireza; Wang, Xue B.; Wang, Yangping; O' Doherty, George A.; Kass, Steven R.

    2016-03-17

    Flexible acyclic alcohols with 1–5 hydroxyl groups were bound to chloride anion and these complexes were interrogated by negative ion photoelectron spectroscopy and companion density functional theory computations. The resulting vertical detachment energies are reproduced on average to 0.10 eV by M06-2X/aug-cc-pVTZ predictions and range from 4.45 – 5.96 eV. These values are 0.84 – 2.35 eV larger than the adiabatic detachment energy of Cl– as a result of the larger hydrogen bond networks in the bigger polyols. Adiabatic detachment energies of the alcohol–Cl– clusters are more difficult to determine both experimentally and computationally. This is due to the large geometry changes that occur upon photodetachment and the large bond dissociation energy of H–Cl which enables the resulting chlorine atom to abstract a hydrogen from any of the methylene (CH2) or methine (CH) positions. Both ionic and non-ionic hydrogen bonds (i.e., OH•••Cl– and OH•••OH•••Cl–) form in the larger polyols complexes, and are found to be energetically comparable. Subtle structural differences, consequently can lead to the formation of different types of hydrogen bonds and maximizing the ionic ones is not always preferred. Solution equilibrium binding constants between the alcohols and tetrrabuylammonium chloride (TBACl) in acetonitrile at -24.2, 22.0, and 53.6 °C were also determined. The free energies of association are nearly identical for all of the substrates (i.e., ΔG° = -2.8 ± 0.7 kcal mol–1). Compensating enthalpy and entropy values reveal, contrary to expectation and the intrinsic gas-phase preferences, that the bigger systems with more hydroxyl groups are entropically favored and enthalpically disfavored relative to the smaller species. This suggests that more solvent molecules are released upon binding TBACl to alcohols with more hydroxyl groups and is consistent with the measured negative heat capacities. These quantities increase with

  13. Photoelectron spectroscopy of aqueous solutions: streaming potentials of NaX (X = Cl, Br, and I) solutions and electron binding energies of liquid water and X-.

    Science.gov (United States)

    Kurahashi, Naoya; Karashima, Shutaro; Tang, Ying; Horio, Takuya; Abulimiti, Bumaliya; Suzuki, Yoshi-Ichi; Ogi, Yoshihiro; Oura, Masaki; Suzuki, Toshinori

    2014-05-07

    The streaming potentials of liquid beams of aqueous NaCl, NaBr, and NaI solutions are measured using soft X-ray, He(I), and laser multiphoton ionization photoelectron spectroscopy. Gaseous molecules are ionized in the vicinity of liquid beams and the photoelectron energy shifts are measured as a function of the distance between the ionization point and the liquid beam. The streaming potentials change their polarity with concentration of electrolytes, from which the singular points of concentration eliminating the streaming potentials are determined. The streaming currents measured in air also vanish at these concentrations. The electron binding energies of liquid water and I(-), Br(-), and Cl(-) anions are revisited and determined more accurately than in previous studies.

  14. Angle-Resolved Auger Spectroscopy as a Sensitive Access to Vibronic Coupling

    Science.gov (United States)

    Knie, A.; Patanen, M.; Hans, A.; Petrov, I. D.; Bozek, J. D.; Ehresmann, A.; Demekhin, Ph. V.

    2016-05-01

    In the angle-averaged excitation and decay spectra of molecules, vibronic coupling may induce the usually weak dipole-forbidden transitions by the excitation intensity borrowing mechanism. The present complementary theoretical and experimental study of the resonant Auger decay of core-to-Rydberg excited CH4 and Ne demonstrates that vibronic coupling plays a decisive role in the formation of the angle-resolved spectra by additionally involving the decay rate borrowing mechanism. Thereby, we propose that the angle-resolved Auger spectroscopy can in general provide very insightful information on the strength of the vibronic coupling.

  15. Rapid and economical data acquisition in ultrafast frequency-resolved spectroscopy using choppers and a microcontroller.

    Science.gov (United States)

    Guo, Liang; Monahan, Daniele M; Fleming, Graham

    2016-08-08

    Spectrometers and cameras are used in ultrafast spectroscopy to achieve high resolution in both time and frequency domains. Frequency-resolved signals from the camera pixels cannot be processed by common lock-in amplifiers, which have only a limited number of input channels. Here we demonstrate a rapid and economical method that achieves the function of a lock-in amplifier using mechanical choppers and a programmable microcontroller. We demonstrate the method's effectiveness by performing a frequency-resolved pump-probe measurement on the dye Nile Blue in solution.

  16. Resolving molecular vibronic structure using high-sensitivity two-dimensional electronic spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bizimana, Laurie A.; Brazard, Johanna; Carbery, William P.; Gellen, Tobias; Turner, Daniel B., E-mail: dturner@nyu.edu [Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003 (United States)

    2015-10-28

    Coherent multidimensional optical spectroscopy is an emerging technique for resolving structure and ultrafast dynamics of molecules, proteins, semiconductors, and other materials. A current challenge is the quality of kinetics that are examined as a function of waiting time. Inspired by noise-suppression methods of transient absorption, here we incorporate shot-by-shot acquisitions and balanced detection into coherent multidimensional optical spectroscopy. We demonstrate that implementing noise-suppression methods in two-dimensional electronic spectroscopy not only improves the quality of features in individual spectra but also increases the sensitivity to ultrafast time-dependent changes in the spectral features. Measurements on cresyl violet perchlorate are consistent with the vibronic pattern predicted by theoretical models of a highly displaced harmonic oscillator. The noise-suppression methods should benefit research into coherent electronic dynamics, and they can be adapted to multidimensional spectroscopies across the infrared and ultraviolet frequency ranges.

  17. [A method for time-resolved laser-induced breakdown spectroscopy measurement].

    Science.gov (United States)

    Pan, Cong-Yuan; Han, Zhen-Yu; Li, Chao-Yang; Yu, Yun-Si; Wang, Sheng-Bo; Wang, Qiu-Ping

    2014-04-01

    Laser-Induced Breakdown Spectroscopy (LIBS) is strongly time related. Time-resolved LIBS measurement is an important technique for the research on laser induced plasma evolution and self-absorption of the emission lines. Concerning the temporal characteristics of LIBS spectrum, a method is proposed in the present paper which can achieve micros-scale time-resolved LIBS measurement by using general ms-scale detector. By setting different integration delay time of the ms-scale spectrum detector, a series of spectrum are recorded. And the integration delay time interval should be longer than the worst temporal precision. After baseline correction and spectrum fitting, the intensity of the character line was obtained. Calculating this intensity with differential method at a certain time interval and then the difference value is the time-resolved line intensity. Setting the plasma duration time as X-axis and the time-resolved line intensity as Y-axis, the evolution curve of the character line intensity can be plotted. Character line with overlap-free and smooth background should be a priority to be chosen for analysis. Using spectrometer with ms-scale integration time and a control system with temporal accuracy is 0.021 micros, experiments carried out. The results validate that this method can be used to characterize the evolution of LIBS characteristic lines and can reduce the cost of the time-resolved LIBS measurement system. This method makes high time-resolved LIBS spectrum measurement possible with cheaper system.

  18. Time-resolved terahertz spectroscopy of conjugated polymer/CdSe nanorod composites

    DEFF Research Database (Denmark)

    Cooke, David; Lek, Jun Y.; Krebs, Frederik C

    2010-01-01

    report ultrafast carrier dynamics in hybrid CdSe nanorod / poly(3-hexythiophene) (P3HT) bulk heterojunction films measured by time-resolved terahertz spectroscopy, and compare to the well studied P3HT/phenyl-C61-butyric acid methyl ester (PCBM) blend. Both films show an improved peak photoconduct......report ultrafast carrier dynamics in hybrid CdSe nanorod / poly(3-hexythiophene) (P3HT) bulk heterojunction films measured by time-resolved terahertz spectroscopy, and compare to the well studied P3HT/phenyl-C61-butyric acid methyl ester (PCBM) blend. Both films show an improved peak...... photoconductivity compared to P3HT alone, consistent with efficient charge transfer. The photoconductivity dynamics show fast, picosecond trapping or recombination in the hybrid blend while the all-organic film shows no such loss of mobile charge over ns time scales. The ac conductivity for all samples is well...

  19. Following [FeFe] Hydrogenase Active Site Intermediates by Time-Resolved Mid-IR Spectroscopy.

    Science.gov (United States)

    Mirmohades, Mohammad; Adamska-Venkatesh, Agnieszka; Sommer, Constanze; Reijerse, Edward; Lomoth, Reiner; Lubitz, Wolfgang; Hammarström, Leif

    2016-08-18

    Time-resolved nanosecond mid-infrared spectroscopy is for the first time employed to study the [FeFe] hydrogenase from Chlamydomonas reinhardtii and to investigate relevant intermediates of the enzyme active site. An actinic 355 nm, 10 ns laser flash triggered photodissociation of a carbonyl group from the CO-inhibited state Hox-CO to form the state Hox, which is an intermediate of the catalytic proton reduction cycle. Time-resolved infrared spectroscopy allowed us to directly follow the subsequent rebinding of the carbonyl, re-forming Hox-CO, and determine the reaction half-life to be t1/2 ≈ 13 ± 5 ms at room temperature. This gives direct information on the dynamics of CO inhibition of the enzyme.

  20. Simultaneous reference and differential waveform acquisition in time-resolved terahertz spectroscopy

    DEFF Research Database (Denmark)

    Iwaszczuk, Krzysztof; Cooke, David; Fujiwara, Masazumi;

    2009-01-01

    We present a new method for data acquisition in time-resolved terahertz spectroscopy experiments. Our approach is based on simultaneous collection of reference and differential THz scans. Both the optical THz generation beam and the pump beam are modulated at two different frequencies...... that are not harmonic with respect to each other. Our method allows not only twice as fast data acquisition but also minimization of noise connected to slowly varying laser power fluctuations and timing instabilities. Our use of the nonlinear crystal N-benzyl-2-methyl-4-nitroaniline (BNA) enables time-resolved THz...... spectroscopy to beyond 5 THz, thereby highlighting that the presented method is especially valuable at higher frequencies where phase errors in the data acquisition become increasingly important....

  1. The interfacial and surface properties of thin Fe and Gd films grown on W(110) as studied by scanning tunneling microscopy, site-resolved photoelectron diffraction, and spin polarized photoelectron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Tober, E.D. [Univ. of California, Davis, CA (US). Office of Graduate Studies

    1997-06-01

    Combined scanning tunneling microscopy (STM) and low energy electron diffraction (LEED) measurements from Gd films grown on W(110) prepared with and without annealing have been used to provide a detailed picture of the growth of such films, permitting a quantitative structural explanation for previously-measured magnetic properties and the identification of a new two-dimensional structure for the first monolayer. The analysis of the film roughness of room-temperature-grown films as a function of coverage and lateral length scale reveals that the growing Gd surface follows scaling laws for a self-affine surface. Annealing these as-deposited films at elevated temperatures is found to drastically alter the morphology of the films, as seen by both STM and LEED. Nanometer-scale islands of relatively well-defined size and shape are observed under certain conditions. Finally, the first monolayer of Gd is observed to form a (7x14) superstructure with pseudo-(7x7) symmetry that is consistent with a minimally-distorted hexagonal two-dimensional Gd(0001) film. Furthermore, a new beamline and photoelectron spectrometer/diffractometer at the Advanced Light Source have been used to obtain full-solid-angle and site-specific photoelectron diffraction (PD) data from interface W atoms just beneath (1x1) Fe and (7x14) Gd monolayers on W(110) by utilizing the core level shift in the W 4f{sub 7/2} spectrum. A comparison of experiment with multiple scattering calculations permits determining the Fe adsorption site and the relative interlayer spacing to the first and second W layers. These Fe results are also compared to those from the very different Gd overlayer and from the clean W(110) surface. Such interface PD measurements show considerable promise for future studies. Finally, the rare-earth ferromagnetic system of Gd(0001) has been examined through the use of spin polarized photoelectron diffraction from the Gd 4s and 5s photoelectron multiplets.

  2. The interfacial and surface properties of thin Fe and Gd films grown on W(110) as studied by scanning tunneling microscopy, site-resolved photoelectron diffraction, and spin polarized photoelectron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Tober, Eric D. [Univ. of California, Davis, CA (United States)

    1997-06-01

    Combined scanning tunneling microscopy (STM) and low energy electron diffraction (LEED) measurements from Gd films grown on W(110) prepared with and without annealing have been used to provide a detailed picture of the growth of such films, permitting a quantitative structural explanation for previously-measured magnetic properties and the identification of a new two-dimensional structure for the first monolayer. The analysis of the film roughness of room-temperature-grown films as a function of coverage and lateral length scale reveals that the growing Gd surface follows scaling laws for a self-affine surface. Annealing these as-deposited films at elevated temperatures is found to drastically alter the morphology of the films, as seen by both STM and LEED. Nanometer-scale islands of relatively well-defined size and shape are observed under certain conditions. Finally, the first monolayer of Gd is observed to form a (7x14) superstructure with pseudo-(7x7) symmetry that is consistent with a minimally-distorted hexagonal two-dimensional Gd(0001) film. Furthermore, a new beamline and photoelectron spectrometer/diffractometer at the Advanced Light Source have been used to obtain full-solid-angle and site-specific photoelectron diffraction (PD) data from interface W atoms just beneath (1x1) Fe and (7x14) Gd monolayers on W(110) by utilizing the core level shift in the W 4f7/2 spectrum. A comparison of experiment with multiple scattering calculations permits determining the Fe adsorption site and the relative interlayer spacing to the first and second W layers. These Fe results are also compared to those from the very different Gd overlayer and from the clean W(110) surface. Such interface PD measurements show considerable promise for future studies. Finally, the rare-earth ferromagnetic system of Gd(0001) has been examined through the use of spin polarized photoelectron diffraction from the Gd 4s and 5s photoelectron multiplets.

  3. Time-resolved single-shot terahertz time-domain spectroscopy for ultrafast irreversible processes

    Science.gov (United States)

    Zhai, Zhao-Hui; Zhong, Sen-Cheng; Li, Jun; Zhu, Li-Guo; Meng, Kun; Li, Jiang; Liu, Qiao; Peng, Qi-Xian; Li, Ze-Ren; Zhao, Jian-Heng

    2016-09-01

    Pulsed terahertz spectroscopy is suitable for spectroscopic diagnostics of ultrafast events. However, the study of irreversible or single shot ultrafast events requires ability to record transient properties at multiple time delays, i.e., time resolved at single shot level, which is not available currently. Here by angular multiplexing use of femtosecond laser pulses, we developed and demonstrated a time resolved, transient terahertz time domain spectroscopy technique, where burst mode THz pulses were generated and then detected in a single shot measurement manner. The burst mode THz pulses contain 2 sub-THz pulses, and the time gap between them is adjustable up to 1 ns with picosecond accuracy, thus it can be used to probe the single shot event at two different time delays. The system can detect the sub-THz pulses at 0.1 THz-2.5 THz range with signal to noise ratio (SNR) of ˜400 and spectrum resolution of 0.05 THz. System design was described here, and optimizations of single shot measurement of THz pulses were discussed in detail. Methods to improve SNR were also discussed in detail. A system application was demonstrated where pulsed THz signals at different time delays of the ultrafast process were successfully acquired within single shot measurement. This time resolved transient terahertz time domain spectroscopy technique provides a new diagnostic tool for irreversible or single shot ultrafast events where dynamic information can be extracted at terahertz range within one-shot experiment.

  4. Application of two-dimensional J-resolved nuclear magnetic resonance spectroscopy to differentiation of beer

    Energy Technology Data Exchange (ETDEWEB)

    Khatib, Alfi [Division of Pharmacognosy, Section Metabolomics, Institute of Biology, Leiden University, P.O. Box 9502, 2300 RA Leiden (Netherlands); Wilson, Erica G. [Division of Pharmacognosy, Section Metabolomics, Institute of Biology, Leiden University, P.O. Box 9502, 2300 RA Leiden (Netherlands); Kim, Hye Kyong [Division of Pharmacognosy, Section Metabolomics, Institute of Biology, Leiden University, P.O. Box 9502, 2300 RA Leiden (Netherlands); Lefeber, Alfons W.M. [Division of NMR, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden (Netherlands); Erkelens, Cornelis [Division of NMR, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden (Netherlands); Choi, Young Hae [Division of Pharmacognosy, Section Metabolomics, Institute of Biology, Leiden University, P.O. Box 9502, 2300 RA Leiden (Netherlands)]. E-mail: y.choi@chem.leidenuniv.nl; Verpoorte, Robert [Division of Pharmacognosy, Section Metabolomics, Institute of Biology, Leiden University, P.O. Box 9502, 2300 RA Leiden (Netherlands)

    2006-02-16

    A number of ingredients in beer that directly or indirectly affect its quality require an unbiased wide-spectrum analytical method that allows for the determination of a wide array of compounds for its efficient control. {sup 1}H nuclear magnetic resonance (NMR) spectroscopy is a method that clearly meets this description as the broad range of compounds in beer is detectable. However, the resulting congestion of signals added to the low resolution of {sup 1}H NMR spectra makes the identification of individual components very difficult. Among two-dimensional (2D) NMR techniques that increase the resolution, J-resolved NMR spectra were successfully applied to the analysis of 2-butanol extracts of beer as overlapping signals in {sup 1}H NMR spectra were fully resolved by the additional axis of the coupling constant. Principal component analysis based on the projected J-resolved NMR spectra showed a clear separation between all of the six brands of pilsner beer evaluated in this study. The compounds responsible for the differentiation were identified by 2D NMR spectra including correlated spectroscopy and heteronuclear multiple bond correlation spectra together with J-resolved spectra. They were identified as nucleic acid derivatives (adenine, uridine and xanthine), amino acids (tyrosine and proline), organic acid (succinic and lactic acid), alcohol (tyrosol and isopropanol), cholines and carbohydrates.

  5. Note: Alignment/focus dependent core-line sensitivity for quantitative chemical analysis in hard x-ray photoelectron spectroscopy using a hemispherical electron analyzer

    Energy Technology Data Exchange (ETDEWEB)

    Weiland, Conan; Browning, Raymond; Karlin, Barry A.; Fischer, Daniel A.; Woicik, Joseph C. [Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States)

    2013-03-15

    X-ray photoelectron spectroscopy is an established technique for quantitative chemical analysis requiring accurate peak intensity analysis. We present evidence of focus/alignment dependence of relative peak intensities for peaks over a broad kinetic energy range with a hemispherical electron analyzer operated in a position imaging mode. A decrease of over 50% in the Ag 2p{sub 3/2} to Ag 3d ratio is observed in a Ag specimen. No focus/alignment dependence is observed when using an angular imaging mode, necessitating the use of angular mode for quantitative chemical analysis.

  6. X-ray photoelectron spectroscopy studies of initial growth mechanism of CdTe layers grown on (100)GaAs by organometallic vapor phase epitaxy

    OpenAIRE

    1990-01-01

    Variations of the GaAs surface conditions and the adsorption of the precursor elements of Cd and Te on the (100)GaAs substrate were studied by x‐ray photoelectron spectroscopy at the initial stage of CdTe growth by organometallic vapor phase epitaxy. The stoichiometry of GaAs substrates was found to recover by annealing in the H2 environment (500°C, 5 min), while the surface was initially in an As‐rich condition after etching with H2SO4:H2O2:H2O (5:1:1). The preferential adsorption of Te on t...

  7. Electronic structure of β-Ga{sub 2}O{sub 3} single crystals investigated by hard X-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Guo-Ling [School of Physics and Engineering, Henan University of Science and Technology, Luoyang 471023 (China); Zhang, Fabi; Guo, Qixin, E-mail: guoq@cc.saga-u.ac.jp [Synchrotron Light Application Center, Department of Electrical and Electronic Engineering, Saga University, Saga 840-8502 (Japan); Cui, Yi-Tao [Synchrotron Radiation Research Organization, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Oji, Hiroshi; Son, Jin-Young [Industrial Application Division, Japan Synchrotron Radiation Institute/SPring8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); SPring-8 Service Co., Ltd., 2-23-1 Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1205 (Japan)

    2015-07-13

    By combination of hard X-ray photoelectron spectroscopy (HAXPES) and first-principles band structure calculations, the electronic states of β-Ga{sub 2}O{sub 3} were investigated to deepen the understanding of bulk information for this compound. The valence band spectra of HAXPES presented the main contribution from Ga 4sp, which are well represented by photoionization cross section weighted partial density of states. The experimental data complemented with the theoretical study yield a realistic picture of the electronic structure for β-Ga{sub 2}O{sub 3}.

  8. Complementary low energy ion scattering and X-ray photoelectron spectroscopy characterization of polystyrene submitted to N{sub 2}/H{sub 2} glow discharge

    Energy Technology Data Exchange (ETDEWEB)

    Bonatto, F., E-mail: bonatto02@yahoo.com.br [Instituto de Fisica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 91509-900 (Brazil); Rovani, S. [Universidade de Caxias do Sul, Caxias do Sul, Rio Grande do Sul 95070-560 (Brazil); Kaufmann, I.R.; Soares, G.V. [Instituto de Fisica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 91509-900 (Brazil); Baumvol, I.J.R. [Instituto de Fisica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 91509-900 (Brazil); Universidade de Caxias do Sul, Caxias do Sul, Rio Grande do Sul 95070-560 (Brazil); Krug, C. [Instituto de Fisica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 91509-900 (Brazil)

    2012-02-15

    Low energy ion scattering (LEIS) and X-ray photoelectron spectroscopy (XPS) were used to access the elemental composition and chemical bonding characteristics of polystyrene (PS) surfaces sequentially treated by corona and glow discharge (plasma) processing in N{sub 2}/H{sub 2} ambient. The latter has shown activity as suppressor of pathogenic Staphylococcus epidermidis biofilms. LEIS indicated that oxygen from the corona discharge process is progressively replaced by nitrogen at the PS surface. XPS shows C=N and N-C=O chemical groups as significant inhibitors of bacterial adhesion, suggesting application in medical devices.

  9. X-ray photoelectron spectroscopy studies of Ag-doped thin amorphous Ge{sub x}Sb{sub 40-x}S{sub 60} films

    Energy Technology Data Exchange (ETDEWEB)

    Debnath, R.K.; Fitzgerald, A.G.; Christova, K

    2002-12-30

    X-ray photoelectron spectroscopy has been used to determine the binding energies of the core electrons in Ag-doped amorphous thin Ge{sub x}Sb{sub 40-x}S{sub 60} films (x=15, 20, 25 and 27). Chemical shifts of the constituent elements have revealed that electrons are transferred from chalcogenide to metal and compounds such as Ag{sub 2}S and Ag{sub 2}O are likely to foue to photo-induced chemical modification and oxidation, respectively. Charge defects are induced in the amorphous system.

  10. Effects of Varied Cleaning Methods on Ni-5% W Substrate for Dip-Coating of Water-based Buffer Layers: An X-ray Photoelectron Spectroscopy Study

    Directory of Open Access Journals (Sweden)

    Isabel Van Driessche

    2012-08-01

    Full Text Available This work describes various combinations of cleaning methods involved in the preparation of Ni-5% W substrates for the deposition of buffer layers using water-based solvents. The substrate has been studied for its surface properties using X-ray photoelectron spectroscopy (XPS. The contaminants in the substrates have been quantified and the appropriate cleaning method was chosen in terms of contaminants level and showing good surface crystallinity to further consider them for depositing chemical solution-based buffer layers for Y1Ba2Cu3Oy (YBCO coated conductors.

  11. X-ray photoelectron spectroscopy analysis for undegraded and degraded Gd2O2S:Tb3+ phosphor thin films

    Science.gov (United States)

    Dolo, J. J.; Swart, H. C.; Terblans, J. J.; Coetsee, E.; Ntwaeaborwa, O. M.; Dejene, B. F.

    2012-05-01

    This paper presents the X-ray Photoelectron Spectroscopy (XPS) analysis for the undegraded and degraded Gd2O2S:Tb3+ thin film phosphor. The thin films were grown with the pulsed laser deposition (PLD) technique. XPS measurements were done on Gd2O2S:Tb3+ phosphor thin films before and after electron degradation. The XPS technique has proven the presence of Gd2O3 on the degraded and undegraded thin film spots. The presence of the SO2 bonding was also detected after degradation. This clearly indicates that surface reactions did occur during prolonged electron bombardment in an oxygen atmosphere.

  12. X-ray photoelectron spectroscopy and atomic force microscopy characterization of the effects of etching Zn xCd 1- xTe surfaces

    Science.gov (United States)

    George, M. A.; Azoulay, M.; Jayatirtha, H. N.; Burger, A.; Collins, W. E.; Silberman, E.

    1993-10-01

    X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) was used for the first time to characterize the chemical composition of modified surfaces of Zn xCd 1- xTe single crystals. These surface treatments were selected for their relevance to device preparation procedures. The XPS peaks indicated an increase of the tellurium and a depletion of the cadmium concentrations upon etching in bromine methanol solution. AFM revealed the formation of pronounced Te inclusions. Higher x values correlated with a decrease in residual bromine left on the surface, while cut and polished samples had higher oxide concentrations and increased bromination of the surface than cleaved samples.

  13. Real-Time Probing of Electron Dynamics Using Attosecond Time-Resolved Spectroscopy

    Science.gov (United States)

    Ramasesha, Krupa; Leone, Stephen R.; Neumark, Daniel M.

    2016-05-01

    Attosecond science has paved the way for direct probing of electron dynamics in gases and solids. This review provides an overview of recent attosecond measurements, focusing on the wealth of knowledge obtained by the application of isolated attosecond pulses in studying dynamics in gases and solid-state systems. Attosecond photoelectron and photoion measurements in atoms reveal strong-field tunneling ionization and a delay in the photoemission from different electronic states. These measurements applied to molecules have shed light on ultrafast intramolecular charge migration. Similar approaches are used to understand photoemission processes from core and delocalized electronic states in metal surfaces. Attosecond transient absorption spectroscopy is used to follow the real-time motion of valence electrons and to measure the lifetimes of autoionizing channels in atoms. In solids, it provides the first measurements of bulk electron dynamics, revealing important phenomena such as the timescales governing the switching from an insulator to a metallic state and carrier-carrier interactions.

  14. Examining the structural evolution of bicarbonate–water clusters: insights from photoelectron spectroscopy, basin-hopping structural search, and comparison with available IR spectral studies

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Hui [Chinese Academy of Sciences (CAS), Hefei (China). Lab. of Atmospheric Physico-Chemistry, Anhui Inst. of Optics & Fine Mechanics; Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Physical Sciences Division; Hou, Gao-Lei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Physical Sciences Division; Liu, Yi-Rong [Chinese Academy of Sciences (CAS), Hefei (China). Lab. of Atmospheric Physico-Chemistry, Anhui Inst. of Optics & Fine Mechanics; Wang, Xue-Bin [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Physical Sciences Division; Huang, Wei [Chinese Academy of Sciences (CAS), Hefei (China). Lab. of Atmospheric Physico-Chemistry, Anhui Inst. of Optics & Fine Mechanics; Univ. of Science and Technology of China, Hefei (China). School of Environmental Science & Optoelectronic Technology

    2016-05-31

    Bicarbonate serves a crucial biochemical role in the physiological pH buffering system and also has important atmospheric implications. In the current study, HCO3$-$(H2O)n (n = 0-13) clusters were successfully produced via electrospray ionization of corresponding bulk salt solution, and were characterized by combining negative ion photoelectron spectroscopy and theoretical calculations. The photoelectron spectra reveal that the electron binding energy monotonically increases with the cluster size up to n = 10 and remains largely the same after n > 10. The photo-detaching feature of the solute HCO3$-$itself, which dominates in the small clusters, diminishes with increase of water coverage. Based on the charge distribution and molecular orbital analyses, the universal high electron binding energy tail that dominates in the larger clusters can be attributed to ionization of water. Thus, the transition of ionization from solute to solvent at the size larger than n=10 has been observed. Extensive theoretical structural search based on the Basin-Hopping unbiased method was carried out, and a plethora of low energy isomers have been obtained for each medium and large size. By comparing the simulated photoelectron spectra and calculated electron binding energies with the experiments, as well as by comparing the simulated infrared spectra with previously reported IR spectra, the probable global minima and the structural evolutionary routes are presented. The nature of bicarbonate-water interactions are mainly electrostatic as implied by the electron localization function (ELF) analysis.

  15. Inner-valence states of N2(+) studied by UV photoelectron spectroscopy and configuration-interaction calculations

    Science.gov (United States)

    Baltzer, P.; Larsson, M.; Karlsson, L.; Wannberg, B.; Goethe, M. C.

    1992-11-01

    Spectrometric observations are conducted to examine the inner-valence photoelectron spectra of nitrogen molecules that are excited by He II. Spectra in the range 20-35 eV are studied by means of a UV source that provides high-resolution high-intensity readings for the radiation with a low photoionization cross section. Vibrational structures are reported in three electron bands related to cationic transitions, and a potential barrier towards dissociation is described. The three states of vibrational progression are given as C2Sigma(u)(+), D2Pi(g), and 3(2)Sigma(g)(+), and calculations of the same states are developed for comparison based on self-consistent-field and multireference configuration-interaction techniques. The present experimental and numerical results present data of interest in the interpretation of photoelectron spectroscopic astrophysical observations.

  16. Spatially Resolved Spectroscopy Across HD189733 (K1V) Using Exoplanet Transits

    Science.gov (United States)

    Gustavsson, Martin; Dravins, Dainis; Ludwig, Hans-Günter

    2016-06-01

    For testing 3-dimensional models of stellar atmospheres, spectroscopy across spatially resolved stellar surfaces would be desired with a spectral resolution of(R = 100,000) or more. Hydrodynamic models predict variations in line profile shapes, strengths, wavelength positions and asymmetries. These variations vary systematically between disk center and limb and as a function of line strength, excitation potential and wavelength region. However, except for a few supergiants and the Sun, current telescopes are not yet capable of resolving any stellar surfaces. One alternative method to resolve distant stellar surfaces, feasible already now, is differential spectroscopy of transiting exoplanet systems. By subtracting in-transit spectra from the spectrum outside of transit, the spectra from stellar surface portions temporarily hidden behind the planet can be disentangled. Since transiting planets cover only a small portion of the stellar surface, the method requires a very high signal-to-noise ratio, obtainable by averaging numerous similar spectral lines. We apply such differential spectroscopy on the 7.7 mag K1V star HD 189733 ('Alopex'*); its transiting planet covers ˜ 3% of its host star's surface, which is the deepest known transit among the brighter systems. Archival data from the ESO HARPS spectrometerare used to construct averaged profiles of photospheric Fe I lines, with the aim of comparing spatially resolved profiles to analogous synthetic line profiles computed from the 3-dimensional hydrodynamic CO5BOLD model. * We refer to HD 189733 as 'Alopex' (from the Greek 'αλɛπού'), denoting a fox related to the one that gave name to its constellation of Vulpecula.

  17. Direct angle resolved photoelectron spectroscopy (DARPES) on high-T{sub c} films: doping, strains, Fermi surface topology and superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Pavuna, D; Ariosa, D; Cancellieri, C; Cloetta, D; Abrecht, M [Institute of Physics of Complex Matter, FSB, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland)], E-mail: davor.pavuna@epfl.ch

    2008-03-15

    Since 1997 we systematically perform Direct ARPES ( = DARPES) on in-situ grown, non-cleaved, ultra-thin (<25nm) cuprate films. Specifically, we probe low energy electronic structure and properties of high-T{sub c} films under different degree of epitaxial (compressive vs tensile) strain. In overdoped in-plane compressed La{sub 2-x}Sr{sub x}CuO{sub 4} (LSCO) thin films we double T{sub c} from 20K to 40K, yet the Fermi surface (FS) remains essentially 2-dimensional (2D). In contrast, tensile strained films show 3-dimensional (3D) dispersion, while T{sub c} is drastically reduced. It seems that the in-plane compressive strain tends to push the apical oxygen far away from the CuO{sub 2} plane, enhances the 2D character of the dispersion and increases T{sub c}, while the tensile strain seems to act exactly in the opposite direction and the resulting dispersion is 3D. We have the FS topology for both cases. As the actual lattice of cuprates is 'Napoleon-cake' -like i.e. rigid CuO{sub 2} planes alternate with softer 'reservoir' (that strains distort differently) our results tend to rule out 2D rigid lattice mean field models. Finally, we briefly discuss recent successful determination of the FS topology from the observed wavevector quantization by DARPES in cuprate films thinner than 18 units cells (<24nm). Such an approach is of broader interest as it can be extended to other similar confined (ultra-thin) functional oxide systems.

  18. Superconducting gap in Bi-Sr-Ca-Cu-O by high-resolution angle-resolved photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Olson, C.G.; Liu, R.; Yang, A.B.; Lynch, D.W. (Iowa State Univ., Ames (USA)); Arko, A.J.; List, R.S. (Los Alamos National Lab., NM (USA)); Veal, B.W.; Chang, Y.C.; Jiang, P.Z.; Paulikas, A.P. (Argonne National Lab., IL (USA))

    1989-08-18

    Detailed studies indicate a superconducting gap in the high-temperature superconductor Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8}. Photoemission measurements with high energy and angle resolution isolate the behavior of a single band as it crosses the Fermi level in both the normal and superconducting states, giving support to the Fermi liquid picture. The magnitude of the gap is 24 millielectron volts. 18 refs., 3 figs.

  19. Direct angle resolved photoelectron spectroscopy (DARPES) on high-Tc films: doping, strains, Fermi surface topology and superconductivity

    Science.gov (United States)

    Pavuna, D.; Ariosa, D.; Cancellieri, C.; Cloetta, D.; Abrecht, M.

    2008-03-01

    Since 1997 we systematically perform Direct ARPES ( = DARPES) on in-situ grown, non-cleaved, ultra-thin (<25nm) cuprate films. Specifically, we probe low energy electronic structure and properties of high-Tc films under different degree of epitaxial (compressive vs tensile) strain. In overdoped in-plane compressed La2-xSrxCuO4 (LSCO) thin films we double Tc from 20K to 40K, yet the Fermi surface (FS) remains essentially 2-dimensional (2D). In contrast, tensile strained films show 3-dimensional (3D) dispersion, while Tc is drastically reduced. It seems that the in-plane compressive strain tends to push the apical oxygen far away from the CuO2 plane, enhances the 2D character of the dispersion and increases Tc, while the tensile strain seems to act exactly in the opposite direction and the resulting dispersion is 3D. We have the FS topology for both cases. As the actual lattice of cuprates is 'Napoleon-cake' -like i.e. rigid CuO2 planes alternate with softer 'reservoir' (that strains distort differently) our results tend to rule out 2D rigid lattice mean field models. Finally, we briefly discuss recent successful determination of the FS topology from the observed wavevector quantization by DARPES in cuprate films thinner than 18 units cells (<24nm). Such an approach is of broader interest as it can be extended to other similar confined (ultra-thin) functional oxide systems.

  20. Maximum information photoelectron metrology

    CERN Document Server

    Hockett, P; Wollenhaupt, M; Baumert, T

    2015-01-01

    Photoelectron interferograms, manifested in photoelectron angular distributions (PADs), are a high-information, coherent observable. In order to obtain the maximum information from angle-resolved photoionization experiments it is desirable to record the full, 3D, photoelectron momentum distribution. Here we apply tomographic reconstruction techniques to obtain such 3D distributions from multiphoton ionization of potassium atoms, and fully analyse the energy and angular content of the 3D data. The PADs obtained as a function of energy indicate good agreement with previous 2D data and detailed analysis [Hockett et. al., Phys. Rev. Lett. 112, 223001 (2014)] over the main spectral features, but also indicate unexpected symmetry-breaking in certain regions of momentum space, thus revealing additional continuum interferences which cannot otherwise be observed. These observations reflect the presence of additional ionization pathways and, most generally, illustrate the power of maximum information measurements of th...