WorldWideScience

Sample records for resolved photodissociation spectroscopy

  1. Photodissociation dynamics and spectroscopy of free radical combustion intermediates

    Energy Technology Data Exchange (ETDEWEB)

    Osborn, David Lewis [Univ. of California, Berkeley, CA (United States)

    1996-12-01

    The photodissociation spectroscopy and dynamics of free radicals is studied by the technique of fast beam photofragment translational spectroscopy. Photodetachment of internally cold, mass-selected negative ions produces a clean source of radicals, which are subsequently dissociated and detected. The photofragment yield as a function of photon energy is obtained, mapping out the dissociative and predissociative electronic states of the radical. In addition, the photodissociation dynamics, product branching ratios, and bond energies are probed at fixed photon energies by measuring the translational energy, P(ET), and angular distribution of the recoiling fragments using a time- and position-sensitive detector. Ab initio calculations are combined with dynamical and statistical models to interpret the observed data. The photodissociation of three prototypical hydrocarbon combustion intermediates forms the core of this work.

  2. Photodissociation spectroscopy and dynamics of free radicals, clusters, and ions

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hyeon [Univ. of California, Berkeley, CA (United States)

    1999-12-01

    The photodissociation spectroscopy and dynamics of free radicals and ions is studied to characterize the dissociative electronic states in these species. To accomplish this, a special method of radical production, based on the photodetachment of the corresponding negative ion, has been combined with the technique of fast beam photofragment translational spectroscopy. The photofragment yield as a function of photon energy is obtained, mapping out the dissociative and predissociative electronic states. Branching ratios to various product channels, the translational energy distributions of the fragments, and bond dissociation energies are then determined at selected photon energies. The detailed picture of photodissociation dynamics is provided with the aid of ab initio calculations and a statistical model to interpret the observed data. Important reaction intermediates in combustion reactions have been studied: CCO, C2H5O, and linear Cn (n = 4--6).

  3. Laser photodissociation and spectroscopy of mass-separated biomolecular ions

    CERN Document Server

    Polfer, Nicolas C

    2014-01-01

    This lecture notes book presents how enhanced structural information of biomolecular ions can be obtained from interaction with photons of specific frequency - laser light. The methods described in the book ""Laser photodissociation and spectroscopy of mass-separated biomolecular ions"" make use of the fact that the discrete energy and fast time scale of photoexcitation can provide more control in ion activation. This activation is the crucial process producing structure-informative product ions that cannot be generated with more conventional heating methods, such as collisional activation. Th

  4. Infrared photodissociation spectroscopy of protonated acetylene and its clusters.

    Science.gov (United States)

    Douberly, G E; Ricks, A M; Ticknor, B W; McKee, W C; Schleyer, P v R; Duncan, M A

    2008-03-06

    The protonated acetylene cation, C2H3+, (also known as the vinyl cation) and the proton-bound acetylene dimer cation (C4H5+) are produced by a pulsed supersonic nozzle/pulsed electrical discharge cluster source. The parent ions are also generated with weakly attached argon "tag" atoms, e.g., C2H3+Ar and C4H5+Ar. These ions are mass selected in a specially designed reflectron time-of-flight mass spectrometer and studied with infrared laser photodissociation spectroscopy in the 800-3600 cm-1 region. Vibrational resonances are detected for both ions in the C-H stretching region. C2H3+ has a strong vibrational resonance near 2200 cm-1 assigned to the bridged proton stretch of the nonclassical ion, while C4H5+ has no such free-proton vibration. Instead, C4H5+ has resonances near 1300 cm-1, consistent with a symmetrically shared proton in a di-bridged structure. Although the shared proton structure is not the lowest energy isomer of C4H5+, this species is apparently stabilized under the supersonic beam conditions. Larger clusters containing additional acetylene units are also investigated via the elimination of acetylene. These species have new IR bands indicating that rearrangement reactions have taken place to produce core C4H5+ ions with the methyl cyclopropane cation structure and/or the protonated cyclobutadiene isomer. Ab initio (MP2) calculations provide structures and predicted spectra consistent with all of these experiments.

  5. Helium Tagging Infrared Photodissociation Spectroscopy of Reactive Ions.

    Science.gov (United States)

    Roithová, Jana; Gray, Andrew; Andris, Erik; Jašík, Juraj; Gerlich, Dieter

    2016-02-16

    The interrogation of reaction intermediates is key for understanding chemical reactions; however their direct observation and study remains a considerable challenge. Mass spectrometry is one of the most sensitive analytical techniques, and its use to study reaction mixtures is now an established practice. However, the information that can be obtained is limited to elemental analysis and possibly to fragmentation behavior, which is often challenging to analyze. In order to extend the available experimental information, different types of spectroscopy in the infrared and visible region have been combined with mass spectrometry. Spectroscopy of mass selected ions usually utilizes the powerful sensitivity of mass spectrometers, and the absorption of photons is not detected as such but rather translated to mass changes. One approach to accomplish such spectroscopy involves loosely binding a tag to an ion that will be removed by absorption of one photon. We have constructed an ion trapping instrument capable of reaching temperatures that are sufficiently low to enable tagging by helium atoms in situ, thus permitting infrared photodissociation spectroscopy (IRPD) to be carried out. While tagging by larger rare gas atoms, such as neon or argon is also possible, these may cause significant structural changes to small and reactive species, making the use of helium highly beneficial. We discuss the "innocence" of helium as a tag in ion spectroscopy using several case studies. It is shown that helium tagging is effectively innocent when used with benzene dications, not interfering with their structure or IRPD spectrum. We have also provided a case study where we can see that despite its minimal size there are systems where He has a huge effect. A strong influence of the He tagging was shown in the IRPD spectra of HCCl(2+) where large spectral shifts were observed. While the presented systems are rather small, they involve the formation of mixtures of isomers. We have therefore

  6. Time-resolved vibrational spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tokmakoff, Andrei [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Champion, Paul [Northeastern Univ., Boston, MA (United States); Heilweil, Edwin J. [National Inst. of Standards and Technology (NIST), Boulder, CO (United States); Nelson, Keith A. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Ziegler, Larry [Boston Univ., MA (United States)

    2009-05-14

    This document contains the Proceedings from the 14th International Conference on Time-Resolved Vibrational Spectroscopy, which was held in Meredith, NH from May 9-14, 2009. The study of molecular dynamics in chemical reaction and biological processes using time-resolved spectroscopy plays an important role in our understanding of energy conversion, storage, and utilization problems. Fundamental studies of chemical reactivity, molecular rearrangements, and charge transport are broadly supported by the DOE's Office of Science because of their role in the development of alternative energy sources, the understanding of biological energy conversion processes, the efficient utilization of existing energy resources, and the mitigation of reactive intermediates in radiation chemistry. In addition, time-resolved spectroscopy is central to all fiveof DOE's grand challenges for fundamental energy science. The Time-Resolved Vibrational Spectroscopy conference is organized biennially to bring the leaders in this field from around the globe together with young scientists to discuss the most recent scientific and technological advances. The latest technology in ultrafast infrared, Raman, and terahertz spectroscopy and the scientific advances that these methods enable were covered. Particular emphasis was placed on new experimental methods used to probe molecular dynamics in liquids, solids, interfaces, nanostructured materials, and biomolecules.

  7. Theoretical analysis of the time-resolved binary (e, 2e) binding energy spectra on three-body photodissociation of acetone at 195 nm

    Science.gov (United States)

    Yamazaki, M.; Nakayama, S.; Zhu, C. Y.; Takahashi, M.

    2017-11-01

    We report on theoretical progress in time-resolved (e, 2e) electron momentum spectroscopy of photodissociation dynamics of the deuterated acetone molecule at 195 nm. We have examined the predicted minimum energy reaction path to investigate whether associated (e, 2e) calculations meet the experimental results. A noticeable difference between the experiment and calculations has been found at around binding energy of 10 eV, suggesting that the observed difference may originate, at least partly, in ever-unconsidered non-minimum energy paths.

  8. Rovibrationally Resolved Direct Photodissociation through the Lyman and Werner Transitions of H2 for FUV/X-Ray-irradiated Environments

    Science.gov (United States)

    Gay, C. D.; Abel, N. P.; Porter, R. L.; Stancil, P. C.; Ferland, G. J.; Shaw, G.; van Hoof, P. A. M.; Williams, R. J. R.

    2012-02-01

    Using ab initio potential curves and dipole transition moments, cross-section calculations were performed for the direct continuum photodissociation of H2 through the B 1Σ+ u strategy is described to create truncated, but reliable, cross-section data consistent with the wavelength resolving power of typical observations.

  9. Electronic and vibrational spectroscopy and vibrationally mediated photodissociation of V+(OCO).

    Science.gov (United States)

    Citir, Murat; Altinay, Gokhan; Metz, Ricardo B

    2006-04-20

    Electronic spectra of gas-phase V+(OCO) are measured in the near-infrared from 6050 to 7420 cm(-1) and in the visible from 15,500 to 16,560 cm(-1), using photofragment spectroscopy. The near-IR band is complex, with a 107 cm(-1) progression in the metal-ligand stretch. The visible band shows clearly resolved vibrational progressions in the metal-ligand stretch and rock, and in the OCO bend, as observed by Brucat and co-workers. A vibrational hot band gives the metal-ligand stretch frequency in the ground electronic state nu3'' = 210 cm(-1). The OCO antisymmetric stretch frequency in the ground electronic state (nu1'') is measured by using vibrationally mediated photodissociation. An IR laser vibrationally excites ions to nu1'' = 1. Vibrationally excited ions selectively dissociate following absorption of a second, visible photon at the nu1' = 1 CO2, due to interaction with the metal. Larger blue shifts observed for complexes with fewer ligands agree with trends seen for larger V+(OCO)n clusters.

  10. Direct angle resolved photoemission spectroscopy and ...

    Indian Academy of Sciences (India)

    Keywords. Condensed matter physics; high-c superconductivity; electronic properties; photoemission spectroscopy; angle resolved photoemission spectroscopy; cuprates; films; strain; pulsed laser deposition.

  11. Femtosecond time-resolved photodissociation dynamics of methyl halide molecules on ultrathin gold films

    Directory of Open Access Journals (Sweden)

    Mihai E. Vaida

    2011-09-01

    Full Text Available The photodissociation of small organic molecules, namely methyl iodide, methyl bromide, and methyl chloride, adsorbed on a metal surface was investigated in real time by means of femtosecond-laser pump–probe mass spectrometry. A weakly interacting gold surface was employed as substrate because the intact adsorption of the methyl halide molecules was desired prior to photoexcitation. The gold surface was prepared as an ultrathin film on Mo(100. The molecular adsorption behavior was characterized by coverage dependent temperature programmed desorption spectroscopy. Submonolayer preparations were irradiated with UV light of 266 nm wavelength and the subsequently emerging methyl fragments were probed by photoionization and mass spectrometric detection. A strong dependence of the excitation mechanism and the light-induced dynamics on the type of molecule was observed. Possible photoexcitation mechanisms included direct photoexcitation to the dissociative A-band of the methyl halide molecules as well as the attachment of surface-emitted electrons with transient negative ion formation and subsequent molecular fragmentation. Both reaction pathways were energetically possible in the case of methyl iodide, yet, no methyl fragments were observed. As a likely explanation, the rapid quenching of the excited states prior to fragmentation is proposed. This quenching mechanism could be prevented by modification of the gold surface through pre-adsorption of iodine atoms. In contrast, the A-band of methyl bromide was not energetically directly accessible through 266 nm excitation. Nevertheless, the one-photon-induced dissociation was observed in the case of methyl bromide. This was interpreted as being due to a considerable energetic down-shift of the electronic A-band states of methyl bromide by about 1.5 eV through interaction with the gold substrate. Finally, for methyl chloride no photofragmentation could be detected at all.

  12. NO sub 3 , the study of molecular properties and photodissociation by ab initio method, spectroscopy, and translational spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, B.

    1990-10-01

    This report discusses the following topics: molecular structure of NO{sub 3} radical studied by laser induced fluorescence; photodissociation and fluorescence spectroscopy of NO{sub 3} in molecular beam; vertical electronic spectrum of NO{sub 3}:{sup 2}A{prime}{sub 2}, {sup 2}E{double prime}({sup 2}A{sub 2}{sup 2}B{sub 1}), and {sup 2}E{prime} states; and Ab initio study of the vibrational spectra of NO{sub 3}.

  13. Photodissociation spectroscopy of the Mg + -CO2 complex and its isotopic analogs

    Science.gov (United States)

    Yeh, C. S.; Willey, K. F.; Robbins, D. L.; Pilgrim, J. S.; Duncan, M. A.

    1993-02-01

    Mg+-CO2 ion-molecule cluster complexes are produced by laser vaporization in a pulsed nozzle cluster source. The vibronic spectroscopy in these complexes is studied with mass-selected photodissociation spectroscopy in a reflectron time-of-flight mass spectrometer. Two excited electronic states are observed (2) 2Σ+ and 2Π. The 2Π state has a vibrational progression in the metal-CO2 stretching mode (ωe'=381.8 cm-1). The complexes are linear (Mg+-OCO) and are bound by the charge-quadrupole interaction. The dissociation energy (D0`) is 14.7 kcal/mol. Corresponding spectra are measured for each of the 24, 25, and 26 isotopes of magnesium. These results are compared to theoretical predictions made by Bauschlicher and co-workers.

  14. Photodissociation Spectroscopy as a Probe of Molecular Dynamics: Mg-Acetaldehyde Interactions

    Science.gov (United States)

    Kleiber, P. D.; Lu, W.-Y.

    2001-05-01

    Photodissociation spectroscopy of a weakly bound bimolecular precursor complex serves to mimic a “half-collision”, and provides an important experimental tool for the study of excited state molecular interactions and chemical dynamics. Here we focus on results from recent studies of Mg^+-acetaldehyde photodissociation. Spectroscopic results are consistent with ab initio calculations that find the Mg^+-acetaldehyde complex to be moderately strongly bound in an end-on Mg^+-OCH_3CH geometry. Nonreactive dissociation to Mg^+ is the dominant quenching channel. However, excitation in the Mg^+-based 3pσreaction, favoring σ-like approach symmetry with the Mg^+ p-orbital aligned along the Mg-O axis. Furthermore, reaction apparently follows in a single step process through either aldehydic C-H or C-C bond cleavage, with roughly comparable yields. This is consistent with suggestions that molecular orbital reorientation may play an important role in determining the relative probability for C-C vs. C-H σ-bond activation in small hydrocarbons, and that this barrier is lower in aldehydes than in alkanes.

  15. Rotationally resolved infrared spectroscopy of adamantane

    NARCIS (Netherlands)

    Pirali, O.; Boudon, V.; Oomens, J.; Vervloet, M.

    2012-01-01

    We present the first rotationally resolved spectra of adamantane (C(10)H(16)) applying gas-phase Fourier transform infrared (IR) absorption spectroscopy. High-resolution IR spectra are recorded in the 334500 cm(-1)range using as source of IR radiation both synchrotron radiation (at the AILES

  16. Rotationally resolved infrared spectroscopy of adamantane

    NARCIS (Netherlands)

    Pirali, O.; Boudon, V.; Oomens, J.; Vervloet, M.

    2012-01-01

    We present the first rotationally resolved spectra of adamantane (C10H16) applying gas-phase Fourier transform infrared (IR) absorption spectroscopy. High-resolution IR spectra are recorded in the 33-4500 cm−1range using as source of IR radiation both synchrotron radiation (at the AILES beamline of

  17. Detection of Indistinct Fe-N Stretching Bands in Iron(V) Nitrides by Photodissociation Spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Andris, E.; Navrátil, R.; Jašík, J.; Sabenya, G.; Costas, M.; Srnec, Martin; Roithová, J.

    2018-01-01

    Roč. 24 (2018) ISSN 1521-3765 R&D Projects: GA ČR(CZ) GJ15-10279Y Institutional support: RVO:61388955 Keywords : photodissociation spectrochemistry * infrared spectra * DFT Subject RIV: CF - Physical ; Theoretical Chemistry

  18. ROVIBRATIONALLY RESOLVED DIRECT PHOTODISSOCIATION THROUGH THE LYMAN AND WERNER TRANSITIONS OF H{sub 2} FOR FUV/X-RAY-IRRADIATED ENVIRONMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Gay, C. D.; Porter, R. L.; Stancil, P. C. [Department of Physics and Astronomy and Center for Simulational Physics, University of Georgia, Athens, GA 30602-2451 (United States); Abel, N. P. [Math, Computers, Geology, and Physics Department, University of Cincinnati, Clermont Campus, Batavia, OH 45103 (United States); Ferland, G. J. [Department of Physics and Astronomy, University of Kentucky, Lexington, KY (United States); Shaw, G. [Centre for Excellence in Basic Sciences, UM-DAE, Vidhyanagari Campus, Mumbai-400098 (India); Van Hoof, P. A. M. [Royal Observatory of Belgium, Ringlaan 3, 1180 Brussels (Belgium); Williams, R. J. R., E-mail: cgay1383@gmail.com, E-mail: ryanlporter@gmail.com, E-mail: stancil@physast.uga.edu, E-mail: npabel2@gmail.com, E-mail: gary@pa.uky.edu, E-mail: gargishaw@gmail.com, E-mail: p.vanhoof@oma.be, E-mail: robin.williams@awe.co.uk [AWE plc, Aldermaston, Reading RG7 4PR (United Kingdom)

    2012-02-10

    Using ab initio potential curves and dipole transition moments, cross-section calculations were performed for the direct continuum photodissociation of H{sub 2} through the B{sup 1}{Sigma}{sup +}{sub u} <- X{sup 1}{Sigma}{sup +}{sub g} (Lyman) and C{sup 1}{Pi}{sub u} <- X{sup 1}{Sigma}{sup +}{sub g} (Werner) transitions. Partial cross-sections were obtained for wavelengths from 100 A to the dissociation threshold between the upper electronic state and each of the 301 bound rovibrational levels v''J'' within the ground electronic state. The resulting cross-sections are incorporated into three representative classes of interstellar gas models: diffuse clouds, photon-dominated regions, and X-ray-dominated regions (XDRs). The models, which used the CLOUDY plasma/molecular spectra simulation code, demonstrate that direct photodissociation is comparable to fluorescent dissociation (or spontaneous radiative dissociation, the Solomon process) as an H{sub 2} destruction mechanism in intense far-ultraviolet or X-ray-irradiated gas. In particular, changes in H{sub 2} rotational column densities are found to be as large as 20% in the XDR model with the inclusion of direct photodissociation. The photodestruction rate from some high-lying rovibrational levels can be enhanced by pumping from H Ly{beta} due to a wavelength coincidence with cross-section resonances resulting from quasi-bound levels of the upper electronic states. Given the relatively large size of the photodissociation data set, a strategy is described to create truncated, but reliable, cross-section data consistent with the wavelength resolving power of typical observations.

  19. Thymine Dimer Formation probed by Time-Resolved Vibrational Spectroscopy

    Science.gov (United States)

    Schreier, Wolfgang J.; Schrader, Tobias E.; Roller, Florian O.; Gilch, Peter; Zinth, Wolfgang; Kohler, Bern

    Cyclobutane pyrimidine dimers are the major photoproducts formed when DNA is exposed to UV light. Femtosecond time-resolved vibrational spectroscopy reveals that thymine dimers are formed in thymidine oligonucleotides in an ultrafast photoreaction.

  20. High precision optical spectroscopy and quantum state selected photodissociation of ultracold 88Sr2 molecules in an optical lattice

    Science.gov (United States)

    McDonald, Mickey

    2017-04-01

    Over the past several decades, rapid progress has been made toward the accurate characterization and control of atoms, epitomized by the ever-increasing accuracy and precision of optical atomic lattice clocks. Extending this progress to molecules will have exciting implications for chemistry, condensed matter physics, and precision tests of physics beyond the Standard Model. My thesis describes work performed over the past six years to establish the state of the art in manipulation and quantum control of ultracold molecules. We describe a thorough set of measurements characterizing the rovibrational structure of weakly bound 88Sr2 molecules from several different perspectives, including determinations of binding energies; linear, quadratic, and higher order Zeeman shifts; transition strengths between bound states; and lifetimes of narrow subradiant states. Finally, we discuss measurements of photofragment angular distributions produced by photodissociation of molecules in single quantum states, leading to an exploration of quantum-state-resolved ultracold chemistry. The images of exploding photofragments produced in these studies exhibit dramatic interference effects and strongly violate semiclassical predictions, instead requiring a fully quantum mechanical description.

  1. Time-Resolved Kinetic Chirped-Pulse Rotational Spectroscopy in a Room-Temperature Flow Reactor.

    Science.gov (United States)

    Zaleski, Daniel P; Harding, Lawrence B; Klippenstein, Stephen J; Ruscic, Branko; Prozument, Kirill

    2017-12-11

    Chirped-pulse Fourier transform millimeter-wave spectroscopy is a potentially powerful tool for studying chemical reaction dynamics and kinetics. Branching ratios of multiple reaction products and intermediates can be measured with unprecedented chemical specificity; molecular isomers, conformers, and vibrational states have distinct rotational spectra. Here we demonstrate chirped-pulse spectroscopy of vinyl cyanide photoproducts in a flow tube reactor at ambient temperature of 295 K and pressures of 1-10 μbar. This in situ and time-resolved experiment illustrates the utility of this novel approach to investigating chemical reaction dynamics and kinetics. Following 193 nm photodissociation of CH2CHCN, we observe rotational relaxation of energized HCN, HNC, and HCCCN photoproducts with 10 μs time resolution and sample the vibrational population distribution of HCCCN. The experimental branching ratio HCN/HCCCN is compared with a model based on RRKM theory using high-level ab initio calculations, which were in turn validated by comparisons to Active Thermochemical Tables enthalpies.

  2. Transient process spectroscopy for the direct observation of inter-molecular photo-dissociation

    Directory of Open Access Journals (Sweden)

    Sena Hashimoto

    2017-09-01

    Full Text Available Transient process spectroscopy has previously been thought to be applicable only to the analysis of intra-molecular processes. Two metal ion bridges used in the present work have allowed us to visualize real-time variations of the molecular vibration frequencies during photo-disproportionation inside bimolecule aggregates, which directly shows transient inter-molecular reactions.

  3. Spatially resolved spectroscopy on semiconductor nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Roessler, Johanna

    2009-02-20

    Cleared edge overgrowth (CEO) nanostructures are identified and studied by 1D und 2D {mu}PL mapping scans and by time-resolved and power-dependent measurements. Distinct excitonic ground states of 2fold CEO QDs with large localization energies are achieved. The deeper localization reached as compared to the only other report on 2fold CEO QDs in literature is attributed to a new strain-free fabrication process and changed QW thickness in [001] growth. In order to achieve controlled manipulation of 2fold CEO QDs the concept of a CEO structure with three top gates and one back gate is presented. Due to the complexity of this device, a simpler test structure is realized. Measurements on this test structure confirm the necessity to either grow significantly thicker overgrowth layers or to provide separate top gates in all three spatial direction to controllably manipulate 2fold CEO QDs with an external electric field. (orig.)

  4. Time resolved spectroscopy of shock compressed liquids

    Science.gov (United States)

    Ogilvie, K.; Duvall, G. E.

    1982-04-01

    An experimental procedure has been developed for using a rotating mirror camera to record time-resolved absorption spectra of liquids undergoing shock compression. Experimental records have been obtained for cells containing liquid carbon disulfide shocked, through reverberation, to peak pressures of 55, 80, 100 and 120 kbar. Experiments have been performed using both reflected and transmitted light. Time and spectral resolution were limited to approximately 30 nsec and 30 Å; spectral range was from 4000 to 2500 Å. This initial work on carbon disulfide shows it to become highly absorptive when shocked to low pressures of 8 to 14 kbar, and to progressively become a better broadband reflector as the pressure in a thin layer rings up to the final value. A decay in the reflectivity after reaching peak pressure in the 120 kbar experiment may indicate chemical decomposition. This is in accord with earlier results of S. A. Sheffield based on measurement of flow parameters.

  5. Time-Resolved Spectroscopy in Complex Liquids An Experimental Perspective

    CERN Document Server

    Torre, Renato

    2007-01-01

    Time-Resolved Spectroscopy in Complex Liquids introduces current state-of-the-art techniques in the study of complex dynamical problems in liquid phases. With a unique focus on the experimental aspects applied to complex liquids, this volume provides an excellent overview into the quickly emerging field of soft-matter science. Researchers and engineers will find a comprehensive review of current non-linear spectroscopic and optical Kerr effect techniques, in addition to an in-depth look into relaxation dynamics in complex liquids. This volume offers current experimental findings in transient grating spectroscopy and their application to viscoelastic phenomena in glass-formers, dynamics of confined liquid-crystals, and a time-resolved analysis of the host-quest interactions of dye molecules in liquid-crystal matter. Time-Resolved Spectroscopy in Complex Liquids provides a cohesive introduction suitable for individuals involved in this emerging field, complete with the latest experimental procedures of complex ...

  6. Seventh international conference on time-resolved vibrational spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dyer, R.B.; Martinez, M.A.D.; Shreve, A.; Woodruff, W.H. [comps.

    1997-04-01

    The International Conference on Time-Resolved Vibrational Spectroscopy (TRVS) is widely recognized as the major international forum for the discussion of advances in this rapidly growing field. The 1995 conference was the seventh in a series that began at Lake Placid, New York, 1982. Santa Fe, New Mexico, was the site of the Seventh International Conference on Time-Resolved Vibrational Spectroscopy, held from June 11 to 16, 1995. TRVS-7 was attended by 157 participants from 16 countries and 85 institutions, and research ranging across the full breadth of the field of time-resolved vibrational spectroscopy was presented. Advances in both experimental capabilities for time-resolved vibrational measurements and in theoretical descriptions of time-resolved vibrational methods continue to occur, and several sessions of the conference were devoted to discussion of these advances and the associated new directions in TRVS. Continuing the interdisciplinary tradition of the TRVS meetings, applications of time-resolved vibrational methods to problems in physics, biology, materials science, and chemistry comprised a large portion of the papers presented at the conference.

  7. Internal energy dependence of the photodissociation dynamics of O3- using cryogenic photoelectron-photofragment coincidence spectroscopy

    Science.gov (United States)

    Shen, Ben B.; Benitez, Yanice; Lunny, Katharine G.; Continetti, Robert E.

    2017-09-01

    Photoelectron-photofragment coincidence (PPC) spectra of ozonide, O3-, were measured at 388 nm (Ehν = 3.20 eV) using a newly constructed cryogenic octopole accumulation trap coupled to a PPC spectrometer. The photoelectron spectra reveal three processes consisting of a stable photodetachment channel, and two distinct photodissociation pathways yielding (1) O2 + O- or (2) O + O2-. The first photodissociation pathway is observed in the PPC spectra by photodetachment of the O- product by a second photon, and produces electronically excited O2(1Δg). The O2- product of the second photodissociation pathway undergoes autodetachment for O2-(2Πg, v″ > 4), a process greatly enhanced by vibrational excitation of the precursor O3-. Cooling anions thermalized at 300 K to context of the low-lying excited states of O3-.

  8. Fast beam studies of free radical photodissociation

    Energy Technology Data Exchange (ETDEWEB)

    Neumark, D.M. [Lawrence Berkeley Laboratory, CA (United States)

    1993-12-01

    The authors have developed a novel technique for studying the photodissociation spectroscopy and dynamics of free radicals. In these experiments, radicals are generated by laser photodetachment of a fast (6-8 keV) mass-selected negative ion beam. The resulting radicals are photodissociated with a second laser, and the photofragments are collected and detected with high efficiency using a microchannel plate detector. The overall process is: ABC{sup -} {yields} ABC + e{sup -} {yields} A + BC, AB + C. Two types of fragment detection schemes are used. To map out the photodissociation cross-section of the radical, the photodissociation laser is scanned and the total photofragment yield is measured as a function of wavelength. In other experiments, the photodissociation frequency is fixed and the photofragment masses, kinetic energy release, and scattering angle is determined for each photodissociation event.

  9. Time-resolved THz spectroscopy in a parallel plate waveguide

    DEFF Research Database (Denmark)

    Cooke, David; Jepsen, Peter Uhd

    2009-01-01

    We demonstrate time-resolved terahertz spectroscopy inside a novel parallel plate waveguide where one of the metallic plates is replaced by a transparent conducting oxide. Considerable improvements to the waveguide loss coefficient are shown, with a power absorption coefficient of 4cm-1 at 0.5 THz...

  10. Orbital Evolution and Orbital Phase Resolved Spectroscopy of the ...

    Indian Academy of Sciences (India)

    tra in the 3–20 keV energy range were fitted with a power law and a high ... acceleration method and also depends on any anisotropy in the stellar wind structure. .... Orbital Evolution and Orbital Phase Resolved Spectroscopy. 415. Figure 3. (a) Pulse arrival time delays measured from the RXTE-PCA observation in 2003,.

  11. Time-resolved terahertz spectroscopy of semiconductor nanostructures

    DEFF Research Database (Denmark)

    Porte, Henrik

    This thesis describes time-resolved terahertz spectroscopy measurements on various semiconductor nanostructures. The aim is to study the carrier dynamics in these nanostructures on a picosecond timescale. In a typical experiment carriers are excited with a visible or near-infrared pulse and by me......This thesis describes time-resolved terahertz spectroscopy measurements on various semiconductor nanostructures. The aim is to study the carrier dynamics in these nanostructures on a picosecond timescale. In a typical experiment carriers are excited with a visible or near-infrared pulse...... and by measuring the transmission of a terahertz probe pulse, the photoconductivity of the excited sample can be obtained. By changing the relative arrival time at the sample between the pump and the probe pulse, the photoconductivity dynamics can be studied on a picosecond timescale. The rst studied semiconductor...... be signicantly reduced. Besides time-resolved terahertz spectroscopy measurement, optical transmission, Raman spectroscopy, scanning electron microscope, energy dispersive X-ray, and X-ray diffraction spectroscopy experiments on black silicon are presented....

  12. EMCCD-based spectrally resolved fluorescence correlation spectroscopy.

    Science.gov (United States)

    Bestvater, Felix; Seghiri, Zahir; Kang, Moon Sik; Gröner, Nadine; Lee, Ji Young; Im, Kang-Bin; Wachsmuth, Malte

    2010-11-08

    We present an implementation of fluorescence correlation spectroscopy with spectrally resolved detection based on a combined commercial confocal laser scanning/fluorescence correlation spectroscopy microscope. We have replaced the conventional detection scheme by a prism-based spectrometer and an electron-multiplying charge-coupled device camera used to record the photons. This allows us to read out more than 80,000 full spectra per second with a signal-to-noise ratio and a quantum efficiency high enough to allow single photon counting. We can identify up to four spectrally different quantum dots in vitro and demonstrate that spectrally resolved detection can be used to characterize photophysical properties of fluorophores by measuring the spectral dependence of quantum dot fluorescence emission intermittence. Moreover, we can confirm intracellular cross-correlation results as acquired with a conventional setup and show that spectral flexibility can help to optimize the choice of the detection windows.

  13. Time resolved spectroscopy of GRB 030501 using INTEGRAL

    DEFF Research Database (Denmark)

    Beckmann, V.; Borkowski, J.; Courvoisier, T.J.L.

    2003-01-01

    The gamma-ray instruments on-board INTEGRAL offer an unique opportunity to perform time resolved analysis on GRBs. The imager IBIS allows accurate positioning of GRBs and broad band spectral analysis, while SPI provides high resolution spectroscopy. GRB 030501 was discovered by the INTEGRAL Burst...... Alert System in the ISGRI field of view. Although the burst was fairly weak (fluence F20-200 keV similar or equal to 3.5x10(-6) erg cm(-2)) it was possible to perform time resolved spectroscopy with a resolution of a few seconds. The GRB shows a spectrum in the 20-400 keV range which is consistent...

  14. Recent trends in spin-resolved photoelectron spectroscopy

    Science.gov (United States)

    Okuda, Taichi

    2017-12-01

    Since the discovery of the Rashba effect on crystal surfaces and also the discovery of topological insulators, spin- and angle-resolved photoelectron spectroscopy (SARPES) has become more and more important, as the technique can measure directly the electronic band structure of materials with spin resolution. In the same way that the discovery of high-Tc superconductors promoted the development of high-resolution angle-resolved photoelectron spectroscopy, the discovery of this new class of materials has stimulated the development of new SARPES apparatus with new functions and higher resolution, such as spin vector analysis, ten times higher energy and angular resolution than conventional SARPES, multichannel spin detection, and so on. In addition, the utilization of vacuum ultra violet lasers also opens a pathway to the realization of novel SARPES measurements. In this review, such recent trends in SARPES techniques and measurements will be overviewed.

  15. Time-resolved Raman spectroscopy for in situ planetary mineralogy.

    Science.gov (United States)

    Blacksberg, Jordana; Rossman, George R; Gleckler, Anthony

    2010-09-10

    Planetary mineralogy can be revealed through a variety of remote sensing and in situ investigations that precede any plans for eventual sample return. We briefly review those techniques and focus on the capabilities for on-surface in situ examination of Mars, Venus, the Moon, asteroids, and other bodies. Over the past decade, Raman spectroscopy has continued to develop as a prime candidate for the next generation of in situ planetary instruments, as it provides definitive structural and compositional information of minerals in their natural geological context. Traditional continuous-wave Raman spectroscopy using a green laser suffers from fluorescence interference, which can be large (sometimes saturating the detector), particularly in altered minerals, which are of the greatest geophysical interest. Taking advantage of the fact that fluorescence occurs at a later time than the instantaneous Raman signal, we have developed a time-resolved Raman spectrometer that uses a streak camera and pulsed miniature microchip laser to provide picosecond time resolution. Our ability to observe the complete time evolution of Raman and fluorescence spectra in minerals makes this technique ideal for exploration of diverse planetary environments, some of which are expected to contain strong, if not overwhelming, fluorescence signatures. We discuss performance capability and present time-resolved pulsed Raman spectra collected from several highly fluorescent and Mars-relevant minerals. In particular, we have found that conventional Raman spectra from fine grained clays, sulfates, and phosphates exhibited large fluorescent signatures, but high quality spectra could be obtained using our time-resolved approach.

  16. An instrument for the investigation of actinides with spin resolved photoelectron spectroscopy and bremsstrahlung isochromat spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yu, S.-W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Tobin, J. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chung, B. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2011-01-01

    A new system for spin resolved photoelectron spectroscopy and bremsstrahlung isochromat spectroscopy has been built and commissioned at Lawrence Livermore National Laboratory for the investigation of the electronic structure of the actinides.Actinide materials are very toxic and radioactive and therefore cannot be brought to most general user facilities for spectroscopic studies. The technical details of the new system and preliminary data obtained therein will be presented and discussed.

  17. Ultrafast photodissociation dynamics of a hexaarylbiimidazole derivative with pyrenyl groups: dispersive reaction from femtosecond to 10 ns time regions.

    Science.gov (United States)

    Miyasaka, Hiroshi; Satoh, Yusuke; Ishibashi, Yukihide; Ito, Syoji; Nagasawa, Yutaka; Taniguchi, Seiji; Chosrowjan, Haik; Mataga, Noboru; Kato, Daisuke; Kikuchi, Azusa; Abe, Jiro

    2009-06-03

    The photodissociation dynamics of a hexaarylbiimidazole (HABI) derivative with two pyrenyl groups was investigated by time-resolved transient absorption spectroscopy and fluorescence measurements. Transient absorption spectroscopy revealed that photodissociation took place in the wide time region of <100 fs to 10 ns. On the other hand, fluorescence time profiles showed the dynamic red shift in the time region <100 ps. The apparent dispersive photodissociation process was attributed to the increase in the interaction between the pyrenyl moiety in the excited state and the other moiety in the ground state, resulting in the gradual increase of the activation energy for the crossing between the attractive potential surface of an excited pyrenyl unit and the repulsive potential surface.

  18. Time-resolved photoluminescence spectroscopy of organic-plasmonic hybrids

    DEFF Research Database (Denmark)

    Leißner, Till; Brewer, Jonathan R.; Fiutowski, Jacek

    We study the optical properties of organic thin films and crystalline organic nanofibers as well as their interaction with plasmonic materials by means of laser-scanning fluorescence lifetime imaging microscopy (FLIM) and time-resolved photoluminescence spectroscopy (TR-PLS). The aim of our...... research is to understand and developed organic-plasmonic hybrid systems with tailored optical and plasmonic properties such as wave-guiding, enhance second-harmonic response and lasing. We are able to image, gather information about the fundamental coupling mechanism, as well as study charge...

  19. Examining Electron-Boson Coupling Using Time-Resolved Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sentef, Michael; Kemper, Alexander F.; Moritz, Brian; Freericks, James K.; Shen, Zhi-Xun; Devereaux, Thomas P.

    2013-12-26

    Nonequilibrium pump-probe time-domain spectroscopies can become an important tool to disentangle degrees of freedom whose coupling leads to broad structures in the frequency domain. Here, using the time-resolved solution of a model photoexcited electron-phonon system, we show that the relaxational dynamics are directly governed by the equilibrium self-energy so that the phonon frequency sets a window for “slow” versus “fast” recovery. The overall temporal structure of this relaxation spectroscopy allows for a reliable and quantitative extraction of the electron-phonon coupling strength without requiring an effective temperature model or making strong assumptions about the underlying bare electronic band dispersion.

  20. Dynamic Time-Resolved Chirped-Pulse Rotational Spectroscopy of Vinyl Cyanide Photoproducts in a Room Temperature Flow Reactor

    Science.gov (United States)

    Zaleski, Daniel P.; Prozument, Kirill

    2017-06-01

    Chirped-pulsed (CP) Fourier transform rotational spectroscopy invented by Brooks Pate and coworkers a decade ago is an attractive tool for gas phase chemical dynamics and kinetics studies. A good reactor for such a purpose would have well-defined (and variable) temperature and pressure conditions to be amenable to accurate kinetic modeling. Furthermore, in low pressure samples with large enough number of molecular emitters, reaction dynamics can be observable directly, rather than mediated by supersonic expansion. In the present work, we are evaluating feasibility of in situ time-resolved CP spectroscopy in a room temperature flow tube reactor. Vinyl cyanide (CH_2CHCN), neat or mixed with inert gasses, flows through the reactor at pressures 1-50 μbar (0.76-38 mTorr) where it is photodissociated by a 193 nm laser. Millimeter-wave beam of the CP spectrometer co-propagates with the laser beam along the reactor tube and interacts with nascent photoproducts. Rotational transitions of HCN, HNC, and HCCCN are detected, with ≥10 μs time-steps for 500 ms following photolysis of CH_2CHCN. The post-photolysis evolution of the photoproducts' rotational line intensities is investigated for the effects of rotational and vibrational thermalization of energized photoproducts. Possible contributions from bimolecular and wall-mediated chemistry are evaluated as well.

  1. Polarization-resolved pump-probe spectroscopy with high harmonics

    Energy Technology Data Exchange (ETDEWEB)

    Mairesse, Y; Fabre, B; Higuet, J; Constant, E; Descamps, D; Mevel, E; Petit, S [CELIA, Universite Bordeaux I, UMR 5107 (CNRS, Bordeaux 1, CEA), 351 Cours de la Liberation, 33405 Talence Cedex (France); Haessler, S; Boutu, W; Breger, P; Salieres, P [CEA-Saclay, DSM, Service des Photons, Atomes et Molecules, 91191 Gif-sur-Yvette (France)], E-mail: mairesse@celia.u-bordeaux1.fr

    2008-02-15

    High harmonic generation in gases can be used as a probe of the electronic structure of the emitting medium, with attosecond temporal resolution and angstroem spatial resolution. The prospect of measuring molecular dynamics by pump-probe spectroscopy with such precision is attracting a lot of interest. An important issue in pump-probe spectroscopy lies in the ability to detect small signals: the detected signal can be easily dominated by the contributions from non-excited molecules or from a carrier gas. In this paper, we demonstrate that polarization-resolved pump-probe spectroscopy can be used to overcome this issue. We study high harmonic generation from rotationally excited molecules. We show that by measuring the harmonic field that is generated orthogonally to the driving laser field, the contrast in the detection of alignment revivals in nitrogen can be increased by a factor 4. We use this configuration to measure alignment revivals in an argon-nitrogen mixture, in which the total harmonic signal is dominated by the contributions from argon.

  2. Time-resolved vibrational spectroscopy of a molecular shuttle.

    Science.gov (United States)

    Panman, Matthijs R; Bodis, Pavol; Shaw, Danny J; Bakker, Bert H; Newton, Arthur C; Kay, Euan R; Leigh, David A; Buma, Wybren Jan; Brouwer, Albert M; Woutersen, Sander

    2012-02-14

    Time-resolved vibrational spectroscopy is used to investigate the inter-component motion of an ultraviolet-triggered two-station molecular shuttle. The operation cycle of this molecular shuttle involves several intermediate species, which are observable in the amide I and amide II regions of the mid-IR spectrum. Using ab initio calculations on specific parts of the rotaxane, and by comparing the transient spectra of the normal rotaxane with that of the N-deuterated version, we can assign the observed vibrational modes of each species occurring during the shuttling cycle in an unambiguous way. The complete time- and frequency-dependent data set is analyzed using singular value decomposition (SVD). Using a kinetic model to describe the time-dependent concentrations of the transient species, we derive the absorption spectra associated with each stage in the operation cycle of the molecular shuttle, including the recombination of the charged species.

  3. CATION-π and CH-π Interactions in the Coordination and Solvation of Cu+ (ACETYLENE)n (n=1-6) Complexes Investigated via Infrared Photodissociation Spectroscopy

    Science.gov (United States)

    Brathwaite, Antonio David; Walters, Richard S.; Ward, Timothy B.; Duncan, Michael A.

    2015-06-01

    Mass-selected copper-acetylene cation complexes of the form Cu(C2H2)n+ are produced by laser ablation and studied via infrared laser photodissociation spectroscopy in the C-H stretching region (3000-3500 wn). Spectra for larger species are measured via ligand elimination, whereas argon tagging is employed to enhance dissociation yields in smaller complexes. The number of infrared active bands, their frequency positions and their relative intensities provide insight into the structure and bonding of these ions. Density functional theory calculations are carried out in support of this work. The combined data show that cation-π bonds are formed for the n=1-3 species, resulting in red-shifted C-H stretches on the acetylene ligands. Three acetylene ligands complete the coordination of the copper cation. Additional ligands (n=4-6) solvate the n=3 core by forming CH-pi bonds. Distinctive vibrational patterns are exhibited for coordinated vs. solvent ligands. Theory reproduces these results.

  4. Time resolved spectroscopy and lifetime measurements of single semiconductor nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Robert; Krasselt, Cornelius; Borczyskowski, Christian von [TU Chemnitz (DE). Institute of Physics, Department of Optical Spectroscopy and Molecular Physics (OSMP), NanoMA

    2010-07-01

    The photoluminescence of single emitters like semiconductor quantum dots (QDs) shows intermittency, called blinking, which divides the intensity time traces into bright ''on''-, dark ''off''-and intermediate-states. The distribution of ''off''-times shows power law behavior with an exponential decay. While the power law behavior of ''off''-times is well understood, it is less evident for ''on''-times. We investigate the blinking-dynamics of CdSe/ZnS-nanocrystals using time resolved confocal microscopy, spectroscopy and lifetime measurements. The intensity time traces are analysed with special focus on intermediate intensities, by varying the threshold separating the on- and off- from intermediate-states. Further the intensity time traces are compared with spectral- and lifetime- time traces in order to obtain correlations between intensities, lifetimes and spectral positions. We report new insights into the intrinsic dynamics of QD.

  5. Surface Ice Spectroscopy of Pluto and Charon Resolved

    Science.gov (United States)

    Protopapa, Silvia; Boehnhardt, H.; Herbst, T.; Merlin, F.; Cruikshank, D. P.; Grundy, W. M.

    2007-10-01

    We present results of 1-5μm spectroscopy of the Pluto-Charon dwarf planet system. The observations were performed in August 2005 with the NACO instrument at the 8.2m-VLT telescope Yepun of the European Southern Observatory in Paranal/Chile. NACO's adaptive optics facility allowed to resolve easily this binary system, this way enabling spectroscopy of the two objects separately. These spectroscopic observations are complemented by a model interpretation of the surface ice composition of Pluto and Charon. For Pluto, it is the first time that the complete L band is measured without unresolved contamination by light from Charon, while its M band spectrum was never measured before. Using Hapke modeling of the spectrum, we find that a geographic mixture of pure methane ice, methane diluted in nitrogen and tholin fits Pluto's spectrum from 1 to 4μm, although not in all details. Our data suggest the presence of further so far unknown and thus unidentified absorption bands centered around 4.0μm and 4.6μm. The latter absorption could be related to the presence of nitriles, arising from C and N connected with a triple bond and possibly CO ice. The difficulty in the modeling is due to the fact that the nitrile band is highly variable in position as a result of variations in its chemical environment. Charon's spectrum is measured in the wavelength range (1-4)μm, for the first time simultaneously with, but isolated from that of Pluto. It was previously studied in some detail in the JHK wavelength region, but was never measured beyond 2.5μm. Since the JHK region of Charon's spectrum is dominated by water ice absorption, it came not unexpectedly that very deep and broad water ice signatures are found in the L band part of Charon's surface spectrum. We model Charon's spectrum with pure H2O ice darkened by a spectrally neutral continuum absorber.

  6. Photoisomerization and photodissociation dynamics of reactive free radicals

    Energy Technology Data Exchange (ETDEWEB)

    Bise, Ryan T. [Univ. of California, Berkeley, CA (United States)

    2000-08-01

    The photofragmentation pathways of chemically reactive free radicals have been examined using the technique of fast beam photofragment translational spectroscopy. Measurements of the photodissociation cross-sections, product branching ratios, product state energy distributions, and angular distributions provide insight into the excited state potential energy surfaces and nonadiabatic processes involved in the dissociation mechanisms. Photodissociation spectroscopy and dynamics of the predissociative $\\tilde{A}$2A1 and $\\tilde{B}$2A2 states of CH3S have been investigated. At all photon energies, CH3 + S(3Pj), was the main reaction channel. The translational energy distributions reveal resolved structure corresponding to vibrational excitation of the CH3 umbrella mode and the S(3Pj) fine-structure distribution from which the nature of the coupled repulsive surfaces is inferred. Dissociation rates are deduced from the photofragment angular distributions, which depend intimately on the degree of vibrational excitation in the C-S stretch. Nitrogen combustion radicals, NCN, CNN and HNCN have also been studied. For all three radicals, the elimination of molecular nitrogen is the primary reaction channel. Excitation to linear excited triplet and singlet electronic states of the NCN radical generates resolved vibrational structure of the N2 photofragment. The relatively low fragment rotational excitation suggests dissociation via a symmetric C2V transition state. Resolved vibrational structure of the N2 photofragment is also observed in the photodissociation of the HNCN radical. The fragment vibrational and rotational distributions broaden with increased excitation energy. Simple dissociation models suggest that the HNCN radical isomerizes to a cyclic intermediate (c-HCNN) which then dissociates via a tight cyclic

  7. Rotational state resolved photodissociation spectroscopy of translationally and vibrationally cold MgH+ ions: toward rotational cooling of molecular ions

    DEFF Research Database (Denmark)

    Højbjerre, Klaus; Hansen, Anders Kragh; Skyt, Peter Sandegaard

    2009-01-01

    The first steps toward the implementation of a simple scheme for rotational cooling of MgH+ ions based on rotational state optical pumping is considered. The various aspects of such an experiment are described in detail, and the rotational state-selective dissociation spectra of translationally...

  8. Angle-resolved photoemission spectroscopy (ARPES) studies of cuprate superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Palczewski, Ari Deibert [Iowa State Univ., Ames, IA (United States)

    2010-01-01

    This dissertation is comprised of three different angle-resolved photoemission spectroscopy (ARPES) studies on cuprate superconductors. The first study compares the band structure from two different single layer cuprates Tl2Ba2CuO6+δ (Tl2201) Tc,max ~95 K and (Bi1.35Pb0.85)(Sr1.47La0.38)CuO6+δ (Bi2201) Tc,max 35 K. The aim of the study was to provide some insight into the reasons why single layer cuprate's maximum transition temperatures are so different. The study found two major di erences in the band structure. First, the Fermi surface segments close to ( π,0) are more parallel in Tl2201 than in Bi2201. Second, the shadow band usually related to crystal structure is only present in Bi2201, but absent in higher Tc Tl2201. The second study looks at the different ways of doping Bi2Sr2CaCu2O8+δ (Bi2212) in-situ by only changing the post bake-out vacuum conditions and temperature. The aim of the study is to systematically look into the generally overlooked experimental conditions that change the doping of a cleaved sample in ultra high vacuum (UHV) experiments. The study found two major experimental facts. First, in inadequate UHV conditions the carrier concentration of Bi2212 increases with time, due to the absorption of oxygen from CO2/CO molecules, prime contaminants present in UHV systems. Second, in a very clean UHV system at elevated temperatures (above about 200 K), the carrier concentration decreases due to the loss of oxygen atoms from the Bi-O layer. The final study probed the particle-hole symmetry of the pseudogap phase in high temperature superconducting cuprates by looking at the thermally excited bands above the Fermi level. The data showed a particle-hole symmetric pseudogap which symmetrically closes away from the nested FS before the node. The data is consistent with

  9. Angle-resolved photoemission spectroscopy (ARPES) studies of cuprate superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Palczewski, Ari Deibert [Iowa State Univ., Ames, IA (United States)

    2010-01-01

    This dissertation is comprised of three different angle-resolved photoemission spectroscopy (ARPES) studies on cuprate superconductors. The first study compares the band structure from two different single layer cuprates Tl2Ba2CuO6+δ (Tl2201) Tc, max ≈ 95 K and (Bi 1.35Pb0.85)(Sr1.47La0.38)CuO6+δ (Bi2201) Tc, max ≈ 35 K. The aim of the study was to provide some insight into the reasons why single layer cuprate's maximum transition temperatures are so different. The study found two major differences in the band structure. First, the Fermi surface segments close to (π,0) are more parallel in Tl2201 than in Bi2201. Second, the shadow band usually related to crystal structure is only present in Bi2201, but absent in higher Tc Tl2201. The second study looks at the different ways of doping Bi2Sr2CaCu2O8+δ (Bi2212) in-situ by only changing the post bake-out vacuum conditions and temperature. The aim of the study is to systematically look into the generally overlooked experimental conditions that change the doping of a cleaved sample in ultra high vacuum (UHV) experiments. The study found two major experimental facts. First, in inadequate UHV conditions the carrier concentration of Bi2212 increases with time, due to the absorption of oxygen from CO2/CO molecules, prime contaminants present in UHV systems. Second, in a very clean UHV system at elevated temperatures (above about 200 K), the carrier concentration decreases due to the loss of oxygen atoms from the Bi-O layer. The final study probed the particle-hole symmetry of the pseudogap phase in high temperature superconducting cuprates by looking at the thermally excited bands above the Fermi level. The data showed a particle-hole symmetric pseudogap which symmetrically closes away from the nested FS before the node. The data is

  10. Time-resolved photoelectron spectroscopy and ab initio multiple spawning studies of hexamethylcyclopentadiene

    DEFF Research Database (Denmark)

    Wolf, T. J. A.; Kuhlman, Thomas Scheby; Schalk, O.

    2014-01-01

    Time-resolved photoelectron spectroscopy and ab initio multiple spawning were applied to the ultrafast non-adiabatic dynamics of hexamethylcyclopentadiene. The high level of agreement between experiment and theory associates wavepacket motion with a distinct degree of freedom.......Time-resolved photoelectron spectroscopy and ab initio multiple spawning were applied to the ultrafast non-adiabatic dynamics of hexamethylcyclopentadiene. The high level of agreement between experiment and theory associates wavepacket motion with a distinct degree of freedom....

  11. Ultracold photodissociation and progress towards a molecular lattice clock with 88 Sr

    Science.gov (United States)

    Lee, Chih-Hsi; McGuyer, Bart; McDonald, Mickey; Apfelback, Florian; Grier, Andrew; Zelevinsky, Tanya

    2016-05-01

    Techniques originally developed for the construction of atomic clocks can be adapted to the study of ultracold molecules, with applications ranging from studies of ultracold chemistry to searches for new physics. We present recent experimental results involving studies of fully quantum state-resolved photodissociation of 88 Sr2 molecules, as well as progress toward building a molecular clock. First, our system has allowed for precise, quantum state-resolved photodissociation studies, revealing not only excellent control over quantum states but also a more accurate way to describe the photodissociation of diatomic molecules and access ultracold chemistry. Second, the molecular clock will allow us to search for a possible time variation of the proton-electron mass ratio. The ``oscillator'' of such a molecular clock would consist of the frequency difference between two lasers driving a two-photon Raman transition between deeply and intermediately-bound rovibrational levels in the electronic ground state. Accomplishing this task requires exploring several research directions, including the precision spectroscopy of bound states and developing tools for the control and minimization of differential lattice light shifts.

  12. Multiple product pathways in photodissociation of nitromethane at 213 nm

    Energy Technology Data Exchange (ETDEWEB)

    Sumida, Masataka; Kohge, Yasunori; Yamasaki, Katsuyoshi; Kohguchi, Hiroshi, E-mail: kohguchi@hiroshima-u.ac.jp [Department of Chemistry, Graduate School of Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima, Hiroshima 739-8526 (Japan)

    2016-02-14

    In this paper, we present a photodissociation dynamics study of nitromethane at 213 nm in the π → π{sup *} transition. Resonantly enhanced multiphoton ionization spectroscopy and ion-imaging were applied to measure the internal state distributions and state-resolved scattering distributions of the CH{sub 3}, NO(X {sup 2}Π, A {sup 2}Σ{sup +}), and O({sup 3}P{sub J}) photofragments. The rotationally state-resolved scattering distribution of the CH{sub 3} fragment showed two velocity components, of which the slower one decreased the relative intensity as the rotational and vibrational excitations. The translational energy distribution of the faster CH{sub 3} fragment indicated the production of the NO{sub 2} counter-product in the electronic excited state, wherein 1 {sup 2}B{sub 2} was the most probable. The NO(v = 0) fragment exhibited a bimodal translational energy distribution, whereas the NO(v = 1 and 2) fragment exhibited a single translational energy component with a relatively larger internal energy. The translational energy of a portion of the O({sup 3}P{sub J}) photofragment was found to be higher than the one-photon dissociation threshold, indicating the two-photon process involved. The NO(A {sup 2}Σ{sup +}) fragment, which was detected by ionization spectroscopy via the Rydberg ←A {sup 2}Σ{sup +} transition, also required two-photon energy. These experimental data corroborate the existence of competing photodissociation product pathways, CH{sub 3} + NO{sub 2},CH{sub 3} + NO + O,CH{sub 3}O + NO, and CH{sub 3}NO + O, following the π → π{sup *} transition. The origins of the observed photofragments are discussed in this report along with recent theoretical studies and previous dynamics experiments performed at 193 nm.

  13. Conformationally resolved spectroscopy of jet-cooled methacetin

    Science.gov (United States)

    Moon, Cheol Joo; Ahn, Ahreum; Min, Ahreum; Seong, Yeon Guk; Kim, Ju Hyun; Choi, Myong Yong

    2017-11-01

    The excitation spectra of jet-cooled methacetin (MA) have been measured using a combination of mass-selected resonant two-photon ionization and ultraviolet-ultraviolet hole-burning (UV-UV HB) spectroscopy in the gas phase. Four different UV-UV HB spectra originating from two conformers of MA (syn- and anti-MA) with their fundamental and hot transitions have been obtained. IR-dip spectroscopy has conclusively confirmed the coexistence of the two conformers with the aid of theoretical calculations. Vibronic band assignments in the low frequency region caused by internal methyl group rotation in the methyl-capped peptide group, which originate from the 1e rotational level, are presented.

  14. Time-resolved diffuse optical spectroscopy of small tissue samples

    Science.gov (United States)

    Taroni, Paola; Comelli, Daniela; Farina, Andrea; Pifferi, Antonio; Kienle, Alwin

    2007-07-01

    Time-resolved transmittance measurements were performed in the wavelength range of 610 or 700 to 1050 nm on phantom slabs and bone tissue cubes of different sizes. The data were best fitted with solutions of the diffusion equation for an infinite slab and for a parallelepiped to investigate how size and optical properties of the samples affect the results obtained with the two models. When small samples are considered, the slab model overestimates both optical coefficients, especially the absorption. The parallelepiped model largely compensates for the small sample size and performs much better also when the absorption spectra are interpreted with the Beer's law to estimate bone tissue composition.

  15. Photodestruction of NO2- using time resolved multicoincidence detection photofragment spectroscopy

    NARCIS (Netherlands)

    Dinu, L.; Zande, W.J. van der

    2004-01-01

    We present an experiment on the photodestruction of the NO2- anion at 266 nm. We have quantified the competition between photodetachment and photodissociation and have identified the nature of the photodissociation process from the photofragment angular distribution. This study involves a novel

  16. Time-resolved spectroscopy of low-pressure discharges

    Energy Technology Data Exchange (ETDEWEB)

    Huldt, S; Lennartsson, T [Lund Observatory, Lund University, Box 43, SE-221 00 Lund (Sweden)], E-mail: Sven.huldt@astro.lu.se

    2008-10-15

    Optical emission spectroscopy is used to investigate the excitation mechanisms in fluorescent tube plasmas. The temporal evolution of the intensities in the non-equilibrium parts of a pulse-excited rare gas - Hg mixture is recorded. Different transitions in a specific atomic system, as well as transitions from upper level of comparable excitation energy in different species, show distinctly different intensity build-up at the onset of the excitation, as well as varying decay characteristics in the afterglow after turning the excitation off. This implies different mechanisms for populating the excited level. The work of modelling the observations is in progress but hampered by the lack of adequate data for many of the important processes.

  17. Time-resolved spectroscopy of low-pressure discharges

    Science.gov (United States)

    Huldt, S.; Lennartsson, T.

    2008-10-01

    Optical emission spectroscopy is used to investigate the excitation mechanisms in fluorescent tube plasmas. The temporal evolution of the intensities in the non-equilibrium parts of a pulse-excited rare gas - Hg mixture is recorded. Different transitions in a specific atomic system, as well as transitions from upper level of comparable excitation energy in different species, show distinctly different intensity build-up at the onset of the excitation, as well as varying decay characteristics in the afterglow after turning the excitation off. This implies different mechanisms for populating the excited level. The work of modelling the observations is in progress but hampered by the lack of adequate data for many of the important processes.

  18. Time-resolved photoelectron spectroscopy using synchrotron radiation time structure.

    Science.gov (United States)

    Bergeard, N; Silly, M G; Krizmancic, D; Chauvet, C; Guzzo, M; Ricaud, J P; Izquierdo, M; Stebel, L; Pittana, P; Sergo, R; Cautero, G; Dufour, G; Rochet, F; Sirotti, F

    2011-03-01

    Synchrotron radiation time structure is becoming a common tool for studying dynamic properties of materials. The main limitation is often the wide time domain the user would like to access with pump-probe experiments. In order to perform photoelectron spectroscopy experiments over time scales from milliseconds to picoseconds it is mandatory to measure the time at which each measured photoelectron was created. For this reason the usual CCD camera-based two-dimensional detection of electron energy analyzers has been replaced by a new delay-line detector adapted to the time structure of the SOLEIL synchrotron radiation source. The new two-dimensional delay-line detector has a time resolution of 5 ns and was installed on a Scienta SES 2002 electron energy analyzer. The first application has been to characterize the time of flight of the photoemitted electrons as a function of their kinetic energy and the selected pass energy. By repeating the experiment as a function of the available pass energy and of the kinetic energy, a complete characterization of the analyzer behaviour in the time domain has been obtained. Even for kinetic energies as low as 10 eV at 2 eV pass energy, the time spread of the detected electrons is lower than 140 ns. These results and the time structure of the SOLEIL filling modes assure the possibility of performing pump-probe photoelectron spectroscopy experiments with the time resolution given by the SOLEIL pulse width, the best performance of the beamline and of the experimental station.

  19. Mobile charge generation dynamics in P3HT: PCBM observed by time-resolved terahertz spectroscopy

    DEFF Research Database (Denmark)

    Cooke, D. G.; Krebs, Frederik C; Jepsen, Peter Uhd

    2012-01-01

    Ultra-broadband time-resolved terahertz spectroscopy is used to examine the sub-ps conductivity dynamics of a conjugated polymer bulk heterojunction film P3HT:PCBM. We directly observe mobile charge generation dynamics on a sub-100 fs time scale.......Ultra-broadband time-resolved terahertz spectroscopy is used to examine the sub-ps conductivity dynamics of a conjugated polymer bulk heterojunction film P3HT:PCBM. We directly observe mobile charge generation dynamics on a sub-100 fs time scale....

  20. Time-resolved terahertz spectroscopy of conjugated polymer/CdSe nanorod composites

    DEFF Research Database (Denmark)

    Cooke, David; Lek, Jun Y.; Krebs, Frederik C

    2010-01-01

    report ultrafast carrier dynamics in hybrid CdSe nanorod / poly(3-hexythiophene) (P3HT) bulk heterojunction films measured by time-resolved terahertz spectroscopy, and compare to the well studied P3HT/phenyl-C61-butyric acid methyl ester (PCBM) blend. Both films show an improved peak photoconduct......report ultrafast carrier dynamics in hybrid CdSe nanorod / poly(3-hexythiophene) (P3HT) bulk heterojunction films measured by time-resolved terahertz spectroscopy, and compare to the well studied P3HT/phenyl-C61-butyric acid methyl ester (PCBM) blend. Both films show an improved peak...

  1. Studies of multifrequency phase-resolved fluorescence spectroscopy for spectral fingerprinting

    Energy Technology Data Exchange (ETDEWEB)

    McGown, L.B.

    1990-01-01

    During the past two project periods (7/1/88--12/31/90), we have made significant advances towards our goal of characterizing samples in terms of their dynamic spectral characteristics through the use of phase-resolved fluorescence spectroscopy. Specific achievements are discussed, each of which describes a particular area of focus in our studies.

  2. Sensitivity Analysis and Requirements for Temporally and Spatially Resolved Thermometry Using Neutron Resonance Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Juan Carlos [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Barnes, Cris William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mocko, Michael Jeffrey [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Zavorka, Lukas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2018-01-31

    This report is intended to examine the use of neutron resonance spectroscopy (NRS) to make time- dependent and spatially-resolved temperature measurements of materials in extreme conditions. Specifically, the sensitivities of the temperature estimate on neutron-beam and diagnostic parameters is examined. Based on that examination, requirements are set on a pulsed neutron-source and diagnostics to make a meaningful measurement.

  3. Chilling injury in stored nectarines and its detection by time-resolved reflectance spectroscopy

    NARCIS (Netherlands)

    Lurie, S.; Vanoli, M.; Dagar, A.; Weksler, A.; Eccher Zerbini, P.C.; Spinelli, L.; Torricelli, A.; Lovati, F.; Feng, R.; Rizzolo, A.

    2011-01-01

    Nectarine fruit after cold storage soften normally, but become dry instead of juicy and can develop flesh browning, bleeding and a gel-like or glassy formation of the flesh near the pit. An experiment was conducted to see if time-resolved reflectance spectroscopy could distinguish these internal

  4. Simultaneous reference and differential waveform acquisition in time-resolved terahertz spectroscopy

    DEFF Research Database (Denmark)

    Iwaszczuk, Krzysztof; Cooke, David; Fujiwara, Masazumi

    2009-01-01

    We present a new method for data acquisition in time-resolved terahertz spectroscopy experiments. Our approach is based on simultaneous collection of reference and differential THz scans. Both the optical THz generation beam and the pump beam are modulated at two different frequencies that are no...

  5. Time-resolved terahertz spectroscopy in a parallel-plate waveguide

    DEFF Research Database (Denmark)

    Cooke, David; Jepsen, Peter Uhd

    2009-01-01

    Time-resolved THz spectroscopy is a powerful tool to investigate photoconductivity dynamics in a wide variety of materials with sub-picosecond resolution, all without applying contacts to the material. This technique uses coherently detected and broadband pulses of far-infrared light, known as TH...

  6. Time-resolved VUV spectroscopy in the EXTRAP-T2 reversed field pinch

    Science.gov (United States)

    Hedqvist, Anders; Rachlew-Källne, Elisabeth

    1998-09-01

    Time-resolved VUV spectroscopy has been used to investigate the effects of impurities in a reversed field pinch operating with a resistive shell. Results of electron temperature, impurity ion densities, particle confinement time and 0741-3335/40/9/004/img1 together with a description of the interpretation and the equipment are presented.

  7. Spatially resolved sulfur K-edge XANES spectroscopy of wheat leaves infected by Puccinia triticina

    Energy Technology Data Exchange (ETDEWEB)

    Lichtenberg, H; Prange, A; Hormes, J [CAMD, Louisiana State University, 6980 Jefferson Hwy, Baton Rouge, LA 70806 (United States); Steiner, U; Oerke, E-C, E-mail: lichtenberg@lsu.ed [INRES-Phytomedicine, University of Bonn, Nussallee 9, 53115 Bonn (Germany)

    2009-11-15

    In this study, wheat leaves infected with brown rust, a plant disease of serious economic concern caused by the fungus Puccinia triticina, were investigated using spatially resolved XANES (X-ray Absorption Near Edge Structure) spectroscopy at the sulfur K-absorption edge.

  8. Hexamethylcyclopentadiene: time-resolved photoelectron spectroscopy and ab initio multiple spawning simulations

    DEFF Research Database (Denmark)

    Wolf, T. J. A.; Kuhlman, Thomas Scheby; Schalk, O.

    2014-01-01

    comparing time-resolved photoelectron spectroscopy (TRPES) with ab initio multiple spawning (AIMS) simulations on the MS-MR-CASPT2 level of theory. We disentangle the relationship between two phenomena that dominate the immediate molecular response upon light absorption: a spectrally dependent delay...

  9. Fourier transform infrared spectroscopy study of ligand photodissociation and migration in inducible nitric oxide synthase [v2; ref status: indexed, http://f1000r.es/4w9

    Directory of Open Access Journals (Sweden)

    Michael Horn

    2014-12-01

    Full Text Available Inducible nitric oxide synthase (iNOS is a homodimeric heme enzyme that catalyzes the formation of nitric oxide (NO from dioxygen and L-arginine (L-Arg in a two-step process. The produced NO can either diffuse out of the heme pocket into the surroundings or it can rebind to the heme iron and inhibit enzyme action. Here we have employed Fourier transform infrared (FTIR photolysis difference spectroscopy at cryogenic temperatures, using the carbon monoxide (CO and NO stretching bands as local probes of the active site of iNOS. Characteristic changes were observed in the spectra of the heme-bound ligands upon binding of the cofactors. Unlike photolyzed CO, which becomes trapped in well-defined orientations, as indicated by sharp photoproduct bands, photoproduct bands of NO photodissociated from the ferric heme iron were not visible, indicating that NO does not reside in the protein interior in a well-defined location or orientation. This may be favorable for NO release from the enzyme during catalysis because it reduces self-inhibition. Moreover, we used temperature derivative spectroscopy (TDS with FTIR monitoring to explore the dynamics of NO and carbon monoxide (CO inside iNOS after photodissociation at cryogenic temperatures. Only a single kinetic photoproduct state was revealed, but no secondary docking sites as in hemoglobins. Interestingly, we observed that intense illumination of six-coordinate ferrous iNOSoxy-NO ruptures the bond between the heme iron and the proximal thiolate to yield five-coordinate ferric iNOSoxy-NO, demonstrating the strong trans effect of the heme-bound NO.

  10. Fourier transform infrared spectroscopy study of ligand photodissociation and migration in inducible nitric oxide synthase [v1; ref status: indexed, http://f1000r.es/4ta

    Directory of Open Access Journals (Sweden)

    Michael Horn

    2014-11-01

    Full Text Available Inducible nitric oxide synthase (iNOS is a homodimeric heme enzyme that catalyzes the formation of nitric oxide (NO from dioxygen and L-arginine (L-Arg in a two-step process. The produced NO can either diffuse out of the heme pocket into the surroundings or it can rebind to the heme iron and inhibit enzyme action. Here we have employed Fourier transform infrared (FTIR photolysis difference spectroscopy at cryogenic temperatures, using the carbon monoxide (CO and NO stretching bands as local probes of the active site of iNOS. Characteristic changes were observed in the spectra of the heme-bound ligands upon binding of the cofactors. Unlike photolyzed CO, which becomes trapped in well-defined orientations, as indicated by sharp photoproduct bands, photoproduct bands of NO photodissociated from the ferric heme iron were not visible, indicating that NO does not reside in the protein interior in a well-defined location or orientation. This may be favorable for NO release from the enzyme during catalysis because it reduces self-inhibition. Moreover, we used temperature derivative spectroscopy (TDS with FTIR monitoring to explore the dynamics of NO and carbon monoxide (CO inside iNOS after photodissociation at cryogenic temperatures. Only a single kinetic photoproduct state was revealed, but no secondary docking sites as in hemoglobins. Interestingly, we observed that intense illumination of six-coordinate ferrous iNOSoxy-NO ruptures the bond between the heme iron and the proximal thiolate to yield five-coordinate ferric iNOSoxy-NO, demonstrating the strong trans effect of the heme-bound NO.

  11. Resolving multiple molecular orbitals using two-dimensional high-harmonic spectroscopy.

    Science.gov (United States)

    Yun, Hyeok; Lee, Kyung-Min; Sung, Jae Hee; Kim, Kyung Taec; Kim, Hyung Taek; Nam, Chang Hee

    2015-04-17

    High-harmonic radiation emitted from molecules in a strong laser field contains information on molecular structure and dynamics. When multiple molecular orbitals participate in high-harmonic generation, resolving the contribution of each orbital is crucial for understanding molecular dynamics and for extending high-harmonic spectroscopy to more complicated molecules. We show that two-dimensional high-harmonic spectroscopy can resolve high-harmonic radiation emitted from the two highest-occupied molecular orbitals, HOMO and HOMO-1, of aligned molecules. By the application of an orthogonally polarized two-color laser field that consists of the fundamental and its second-harmonic fields to aligned CO2 molecules, the characteristics attributed to the two orbitals are found to be separately imprinted in odd and even harmonics. Two-dimensional high-harmonic spectroscopy may open a new route to investigate ultrafast molecular dynamics during chemical processes.

  12. Photodissociation of aromatic azides

    Energy Technology Data Exchange (ETDEWEB)

    Budyka, M F [Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow Region (Russian Federation)

    2008-08-31

    Quantitative data on the photochemical activity of aromatic azides and on the mechanism and kinetics of azido group photodissociation are analysed and described systematically for the first time. The results of quantum chemical calculations of the azide structure in the ground and lower electronically excited states and the potential energy surfaces along the reaction coordinate of the N-N{sub 2} bond dissociation are considered.

  13. Rapid and economical data acquisition in ultrafast frequency-resolved spectroscopy using choppers and a microcontroller.

    Science.gov (United States)

    Guo, Liang; Monahan, Daniele M; Fleming, Graham

    2016-08-08

    Spectrometers and cameras are used in ultrafast spectroscopy to achieve high resolution in both time and frequency domains. Frequency-resolved signals from the camera pixels cannot be processed by common lock-in amplifiers, which have only a limited number of input channels. Here we demonstrate a rapid and economical method that achieves the function of a lock-in amplifier using mechanical choppers and a programmable microcontroller. We demonstrate the method's effectiveness by performing a frequency-resolved pump-probe measurement on the dye Nile Blue in solution.

  14. Time resolved X-ray absorption spectroscopy in condensed matter: A road map to the future

    Energy Technology Data Exchange (ETDEWEB)

    Dell’Angela, Martina [Elettra-Sincrotrone Trieste S.C.p.A., Trieste (Italy); Parmigiani, Fulvio [Elettra-Sincrotrone Trieste S.C.p.A., Trieste (Italy); Department of Physics, University of Trieste, Trieste (Italy); Institute of Physics II, University of Cologne, Cologne (Germany); Malvestuto, Marco, E-mail: marco.malvestuto@elettra.eu [Elettra-Sincrotrone Trieste S.C.p.A., Trieste (Italy)

    2015-04-15

    Highlights: • We provide perspectives in the field Time resolved XAS in condensed matter. • A look at the new technological innovations that are shaping the field of pulsed X-ray sources are introduced. • New experimental schemes for tr-XAS are illustrated. - Abstract: Nowadays cutting edge femtosecond EUV and soft X-rays radiation sources are the driving force of groundbreaking time resolved X-ray spectroscopies. These new light sources are allowing pioneering experiments in the field of ultrafast phenomena and disclosing new insights about the physics of the out-of-equilibrium matter. Here we report an introductory and concise outlook about some possible perspectives in this field.

  15. Resolving molecular vibronic structure using high-sensitivity two-dimensional electronic spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bizimana, Laurie A.; Brazard, Johanna; Carbery, William P.; Gellen, Tobias; Turner, Daniel B., E-mail: dturner@nyu.edu [Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003 (United States)

    2015-10-28

    Coherent multidimensional optical spectroscopy is an emerging technique for resolving structure and ultrafast dynamics of molecules, proteins, semiconductors, and other materials. A current challenge is the quality of kinetics that are examined as a function of waiting time. Inspired by noise-suppression methods of transient absorption, here we incorporate shot-by-shot acquisitions and balanced detection into coherent multidimensional optical spectroscopy. We demonstrate that implementing noise-suppression methods in two-dimensional electronic spectroscopy not only improves the quality of features in individual spectra but also increases the sensitivity to ultrafast time-dependent changes in the spectral features. Measurements on cresyl violet perchlorate are consistent with the vibronic pattern predicted by theoretical models of a highly displaced harmonic oscillator. The noise-suppression methods should benefit research into coherent electronic dynamics, and they can be adapted to multidimensional spectroscopies across the infrared and ultraviolet frequency ranges.

  16. Resolving molecular vibronic structure using high-sensitivity two-dimensional electronic spectroscopy.

    Science.gov (United States)

    Bizimana, Laurie A; Brazard, Johanna; Carbery, William P; Gellen, Tobias; Turner, Daniel B

    2015-10-28

    Coherent multidimensional optical spectroscopy is an emerging technique for resolving structure and ultrafast dynamics of molecules, proteins, semiconductors, and other materials. A current challenge is the quality of kinetics that are examined as a function of waiting time. Inspired by noise-suppression methods of transient absorption, here we incorporate shot-by-shot acquisitions and balanced detection into coherent multidimensional optical spectroscopy. We demonstrate that implementing noise-suppression methods in two-dimensional electronic spectroscopy not only improves the quality of features in individual spectra but also increases the sensitivity to ultrafast time-dependent changes in the spectral features. Measurements on cresyl violet perchlorate are consistent with the vibronic pattern predicted by theoretical models of a highly displaced harmonic oscillator. The noise-suppression methods should benefit research into coherent electronic dynamics, and they can be adapted to multidimensional spectroscopies across the infrared and ultraviolet frequency ranges.

  17. Photoemission with high-order harmonics: A tool for time-resolved core-level spectroscopy

    DEFF Research Database (Denmark)

    Christensen, Bjarke Holl; Raarup, Merete Krog; Balling, Peter

    2010-01-01

    A setup for femtosecond time-resolved photoelectron spectroscopy of solid surfaces is presented. The photon energies for core-level spectroscopy experiments are created by high-order harmonic generation from infrared 120-femtosecond laser pulses focused in a Ne gas jet. The present experimental...... realization allows the sample, located in an ultrahigh-vacuum chamber, to be illuminated by 106 65-eV photons per laser pulse at a 10 Hz repetition rate. The spectral width of a single harmonic is 0.77 eV (FWHM), and a few harmonics are selected by specially designed Mo/Si multi-layer mirrors. Photoelectrons...

  18. [A method for time-resolved laser-induced breakdown spectroscopy measurement].

    Science.gov (United States)

    Pan, Cong-Yuan; Han, Zhen-Yu; Li, Chao-Yang; Yu, Yun-Si; Wang, Sheng-Bo; Wang, Qiu-Ping

    2014-04-01

    Laser-Induced Breakdown Spectroscopy (LIBS) is strongly time related. Time-resolved LIBS measurement is an important technique for the research on laser induced plasma evolution and self-absorption of the emission lines. Concerning the temporal characteristics of LIBS spectrum, a method is proposed in the present paper which can achieve micros-scale time-resolved LIBS measurement by using general ms-scale detector. By setting different integration delay time of the ms-scale spectrum detector, a series of spectrum are recorded. And the integration delay time interval should be longer than the worst temporal precision. After baseline correction and spectrum fitting, the intensity of the character line was obtained. Calculating this intensity with differential method at a certain time interval and then the difference value is the time-resolved line intensity. Setting the plasma duration time as X-axis and the time-resolved line intensity as Y-axis, the evolution curve of the character line intensity can be plotted. Character line with overlap-free and smooth background should be a priority to be chosen for analysis. Using spectrometer with ms-scale integration time and a control system with temporal accuracy is 0.021 micros, experiments carried out. The results validate that this method can be used to characterize the evolution of LIBS characteristic lines and can reduce the cost of the time-resolved LIBS measurement system. This method makes high time-resolved LIBS spectrum measurement possible with cheaper system.

  19. Microscope enabling multimodality imaging, angle-resolved scattering, and scattering spectroscopy.

    Science.gov (United States)

    Cottrell, W J; Wilson, J D; Foster, T H

    2007-08-15

    We present the design, construction, and initial characterization of a multifunctional imaging/scattering spectroscopy system built around a commercial inverted microscope platform. The system enables co-registered brightfield, Fourier-filtered darkfield, and fluorescence imaging; monochromatic angle-resolved scattering measurements; and white-light wavelength-resolved scattering spectroscopy from the same field of view. A fiber-based illumination system provides illumination-wavelength flexibility and a good approximation to a point source. The performance of the system in its various data acquisition modes is experimentally verified using fluorescent microspheres. This multifunctional instrument provides a platform for studies on adherent cells from which the biophysical implications of subcellular light scattering can be studied in conjunction with sensitive fluorescence-based techniques.

  20. Tunable ultrafast extreme ultraviolet source for time- and angle-resolved photoemission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dakovski, G. L.; Rodriguez, G. [MPA-CINT, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Li, Y.; Durakiewicz, T. [MPA-CMMS, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2010-07-15

    We present a laser-based apparatus suitable for visible pump/extreme UV (XUV) probe time-, energy-, and angle-resolved photoemission spectroscopy utilizing high-harmonic generation from a noble gas. Tunability in a wide range of energies (currently 20-36 eV) is achieved by using a time-delay compensated monochromator, which also preserves the ultrashort duration of the XUV pulses. Using an amplified laser system at 10 kHz repetition rate, approximately 10{sup 9}-10{sup 10} photons/s per harmonic are made available for photoelectron spectroscopy. Parallel energy and momentum detection is carried out in a hemispherical electron analyzer coupled with an imaging detector. First applications demonstrate the capabilities of the instrument to easily select the probe wavelength of choice, to obtain angle-resolved photoemission maps (GaAs and URu{sub 2}Si{sub 2}), and to trace ultrafast electron dynamics in an optically excited semiconductor (Ge).

  1. Tunable ultrafast extreme ultraviolet source for time- and angle-resolved photoemission spectroscopy.

    Science.gov (United States)

    Dakovski, G L; Li, Y; Durakiewicz, T; Rodriguez, G

    2010-07-01

    We present a laser-based apparatus suitable for visible pump/extreme UV (XUV) probe time-, energy-, and angle-resolved photoemission spectroscopy utilizing high-harmonic generation from a noble gas. Tunability in a wide range of energies (currently 20-36 eV) is achieved by using a time-delay compensated monochromator, which also preserves the ultrashort duration of the XUV pulses. Using an amplified laser system at 10 kHz repetition rate, approximately 10(9)-10(10) photons/s per harmonic are made available for photoelectron spectroscopy. Parallel energy and momentum detection is carried out in a hemispherical electron analyzer coupled with an imaging detector. First applications demonstrate the capabilities of the instrument to easily select the probe wavelength of choice, to obtain angle-resolved photoemission maps (GaAs and URu(2)Si(2)), and to trace ultrafast electron dynamics in an optically excited semiconductor (Ge).

  2. Time- and angle-resolved photoemission spectroscopy of hydrated electrons near a liquid water surface.

    Science.gov (United States)

    Yamamoto, Yo-ichi; Suzuki, Yoshi-Ichi; Tomasello, Gaia; Horio, Takuya; Karashima, Shutaro; Mitríc, Roland; Suzuki, Toshinori

    2014-05-09

    We present time- and angle-resolved photoemission spectroscopy of trapped electrons near liquid surfaces. Photoemission from the ground state of a hydrated electron at 260 nm is found to be isotropic, while anisotropic photoemission is observed for the excited states of 1,4-diazabicyclo[2,2,2]octane and I- in aqueous solutions. Our results indicate that surface and subsurface species create hydrated electrons in the bulk side. No signature of a surface-bound electron has been observed.

  3. High-harmonic XUV source for time- and angle-resolved photoemission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dakovski, Georgi L [Los Alamos National Laboratory; Li, Yinwan [Los Alamos National Laboratory; Durakiewicz, Tomasz [Los Alamos National Laboratory; Rodriguez, George [Los Alamos National Laboratory

    2009-01-01

    We present a laser-based apparatus for visible pump/XUV probe time- and angle-resolved photoemission spectroscopy (TRARPES) utilizing high-harmonic generation from a noble gas. Femtosecond temporal resolution for each selected harmonic is achieved by using a time-delay-compensated monochromator (TCM). The source has been used to obtain photoemission spectra from insulators (UO{sub 2}) and ultrafast pump/probe processes in semiconductors (GaAs).

  4. Time-resolved single-shot terahertz time-domain spectroscopy for ultrafast irreversible processes

    Science.gov (United States)

    Zhai, Zhao-Hui; Zhong, Sen-Cheng; Li, Jun; Zhu, Li-Guo; Meng, Kun; Li, Jiang; Liu, Qiao; Peng, Qi-Xian; Li, Ze-Ren; Zhao, Jian-Heng

    2016-09-01

    Pulsed terahertz spectroscopy is suitable for spectroscopic diagnostics of ultrafast events. However, the study of irreversible or single shot ultrafast events requires ability to record transient properties at multiple time delays, i.e., time resolved at single shot level, which is not available currently. Here by angular multiplexing use of femtosecond laser pulses, we developed and demonstrated a time resolved, transient terahertz time domain spectroscopy technique, where burst mode THz pulses were generated and then detected in a single shot measurement manner. The burst mode THz pulses contain 2 sub-THz pulses, and the time gap between them is adjustable up to 1 ns with picosecond accuracy, thus it can be used to probe the single shot event at two different time delays. The system can detect the sub-THz pulses at 0.1 THz-2.5 THz range with signal to noise ratio (SNR) of ˜400 and spectrum resolution of 0.05 THz. System design was described here, and optimizations of single shot measurement of THz pulses were discussed in detail. Methods to improve SNR were also discussed in detail. A system application was demonstrated where pulsed THz signals at different time delays of the ultrafast process were successfully acquired within single shot measurement. This time resolved transient terahertz time domain spectroscopy technique provides a new diagnostic tool for irreversible or single shot ultrafast events where dynamic information can be extracted at terahertz range within one-shot experiment.

  5. Probing interfacial electron dynamics with time-resolved X-ray spectroscopy

    Science.gov (United States)

    Neppl, Stefan

    2015-05-01

    Time-resolved core-level spectroscopy techniques using laser pulses to initiate and short X-ray pulses to probe photo-induced processes have the potential to provide electronic state- and atomic site-specific insight into fundamental electron dynamics at complex interfaces. We describe the implementation of femto- and picosecond time-resolved photoelectron spectroscopy at the Linac Coherent Light Source (LCLS) and at the Advanced Light Source (ALS) in order to follow light-driven electron dynamics at dye-semiconductor interfaces on femto- to nanosecond timescales, and from the perspective of individual atomic sites. A distinct transient binding-energy shift of the Ru3d photoemission lines originating from the metal centers of N3 dye-molecules adsorbed on nanoporous ZnO is observed 500 fs after resonant HOMO-LUMO excitation with a visible laser pulse. This dynamical chemical shift is accompanied by a characteristic surface photo-voltage response of the semiconductor substrate. The two phenomena and their correlation will be discussed in the context of electronic bottlenecks for efficient interfacial charge-transfer and possible charge recombination and relaxation pathways leading to the neutralization of the transiently oxidized dye following ultrafast electron injection. First steps towards in operando time-resolved X-ray absorption spectroscopy techniques to monitor interfacial chemical dynamics will be presented.

  6. Application of two-dimensional J-resolved nuclear magnetic resonance spectroscopy to differentiation of beer

    Energy Technology Data Exchange (ETDEWEB)

    Khatib, Alfi [Division of Pharmacognosy, Section Metabolomics, Institute of Biology, Leiden University, P.O. Box 9502, 2300 RA Leiden (Netherlands); Wilson, Erica G. [Division of Pharmacognosy, Section Metabolomics, Institute of Biology, Leiden University, P.O. Box 9502, 2300 RA Leiden (Netherlands); Kim, Hye Kyong [Division of Pharmacognosy, Section Metabolomics, Institute of Biology, Leiden University, P.O. Box 9502, 2300 RA Leiden (Netherlands); Lefeber, Alfons W.M. [Division of NMR, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden (Netherlands); Erkelens, Cornelis [Division of NMR, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden (Netherlands); Choi, Young Hae [Division of Pharmacognosy, Section Metabolomics, Institute of Biology, Leiden University, P.O. Box 9502, 2300 RA Leiden (Netherlands)]. E-mail: y.choi@chem.leidenuniv.nl; Verpoorte, Robert [Division of Pharmacognosy, Section Metabolomics, Institute of Biology, Leiden University, P.O. Box 9502, 2300 RA Leiden (Netherlands)

    2006-02-16

    A number of ingredients in beer that directly or indirectly affect its quality require an unbiased wide-spectrum analytical method that allows for the determination of a wide array of compounds for its efficient control. {sup 1}H nuclear magnetic resonance (NMR) spectroscopy is a method that clearly meets this description as the broad range of compounds in beer is detectable. However, the resulting congestion of signals added to the low resolution of {sup 1}H NMR spectra makes the identification of individual components very difficult. Among two-dimensional (2D) NMR techniques that increase the resolution, J-resolved NMR spectra were successfully applied to the analysis of 2-butanol extracts of beer as overlapping signals in {sup 1}H NMR spectra were fully resolved by the additional axis of the coupling constant. Principal component analysis based on the projected J-resolved NMR spectra showed a clear separation between all of the six brands of pilsner beer evaluated in this study. The compounds responsible for the differentiation were identified by 2D NMR spectra including correlated spectroscopy and heteronuclear multiple bond correlation spectra together with J-resolved spectra. They were identified as nucleic acid derivatives (adenine, uridine and xanthine), amino acids (tyrosine and proline), organic acid (succinic and lactic acid), alcohol (tyrosol and isopropanol), cholines and carbohydrates.

  7. 193 nm photodissociation of acetylene

    Science.gov (United States)

    Balko, B. A.; Zhang, J.; Lee, Y. T.

    1991-06-01

    The product translational energy distribution P(ET) for acetylene photodissociation at 193 nm was obtained from the time-of-flight spectrum of the H atom fragments. The P(ET) shows resolved structure from the vibrational and electronic excitation of the C2H fragment; comparison of the translational energy release for given excited states of C2H with the known energy levels of these states gives D0(HCC-H) = 131.4 + or - 0.5 kcal/mol. This value is in agreement with that determined previously in this group from analogous studies of the C2H fragment and with the latest experimental and theoretical work. The high resolution of the experiment also reveals the nature of C2H internal excitation. A significant fraction of the H atoms detected at moderate laser power were from the secondary dissociation of C2H. The P(ET) derived for this channel indicates that most of the C2 is produced in excited electronic states.

  8. 193 nm photodissociation of acetylene

    Energy Technology Data Exchange (ETDEWEB)

    Balko, B.A.; Zhang, J.; Lee, Y.T. (Department of Chemistry, University of California at Berkeley and Chemical Sciences Division, Lawrence Berkeley Laboratory Berkeley, California 94720 (USA))

    1991-06-15

    The product translational energy distribution {ital P}({ital E}{sub {ital T}}) for acetylene photodissociation at 193 nm was obtained from the time-of-flight spectrum of the H atom fragments. The {ital P}({ital E}{sub {ital T}}) shows resolved structure from the vibrational and electronic excitation of the C{sub 2}H fragment; comparison of the translational energy release for given excited states of C{sub 2}H with the known energy levels of these states gives {ital D}{sub 0}(HCC--H)=131.4{plus minus}0.5 kcal/mol. This value is in agreement with that determined previously in this group from analogous studies of the C{sub 2}H fragment and with the latest experimental and theoretical work. The high resolution of the experiment also reveals the nature of C{sub 2}H internal excitation. A significant fraction of the H atoms detected at moderate laser power were from the secondary dissociation of C{sub 2}H. The {ital P}({ital E}{sub {ital T}}) derived for this channel indicates that most of the C{sub 2} is produced in excited electronic states.

  9. Ultrafast Time-Resolved Hard X-Ray Emission Spectroscopy on a Tabletop

    Directory of Open Access Journals (Sweden)

    Luis Miaja-Avila

    2016-09-01

    Full Text Available Experimental tools capable of monitoring both atomic and electronic structure on ultrafast (femtosecond to picosecond time scales are needed for investigating photophysical processes fundamental to light harvesting, photocatalysis, energy and data storage, and optical display technologies. Time-resolved hard x-ray (>3  keV spectroscopies have proven valuable for these measurements due to their elemental specificity and sensitivity to geometric and electronic structures. Here, we present the first tabletop apparatus capable of performing time-resolved x-ray emission spectroscopy. The time resolution of the apparatus is better than 6 ps. By combining a compact laser-driven plasma source with a highly efficient array of microcalorimeter x-ray detectors, we are able to observe photoinduced spin changes in an archetypal polypyridyl iron complex [Fe(2,2^{′}-bipyridine_{3}]^{2+} and accurately measure the lifetime of the quintet spin state. Our results demonstrate that ultrafast hard x-ray emission spectroscopy is no longer confined to large facilities and now can be performed in conventional laboratories with 10 times better time resolution than at synchrotrons. Our results are enabled, in part, by a 100- to 1000-fold increase in x-ray collection efficiency compared to current techniques.

  10. Noncontact blood species identification method based on spatially resolved near-infrared transmission spectroscopy

    Science.gov (United States)

    Zhang, Linna; Sun, Meixiu; Wang, Zhennan; Li, Hongxiao; Li, Yingxin; Li, Gang; Lin, Ling

    2017-09-01

    The inspection and identification of whole blood are crucially significant for import-export ports and inspection and quarantine departments. In our previous research, we proved Near-Infrared diffuse transmitted spectroscopy method was potential for noninvasively identifying three blood species, including macaque, human and mouse, with samples measured in the cuvettes. However, in open sampling cases, inspectors may be endangered by virulence factors in blood samples. In this paper, we explored the noncontact measurement for classification, with blood samples measured in the vacuum blood vessels. Spatially resolved near-infrared spectroscopy was used to improve the prediction accuracy. Results showed that the prediction accuracy of the model built with nine detection points was more than 90% in identification between all five species, including chicken, goat, macaque, pig and rat, far better than the performance of the model built with single-point spectra. The results fully supported the idea that spatially resolved near-infrared spectroscopy method can improve the prediction ability, and demonstrated the feasibility of this method for noncontact blood species identification in practical applications.

  11. The photodissociation and reaction dynamics of vibrationally excited molecules

    Energy Technology Data Exchange (ETDEWEB)

    Crim, F.F. [Univ. of Wisconsin, Madison (United States)

    1993-12-01

    This research determines the nature of highly vibrationally excited molecules, their unimolecular reactions, and their photodissociation dynamics. The goal is to characterize vibrationally excited molecules and to exploit that understanding to discover and control their chemical pathways. Most recently the author has used a combination of vibrational overtone excitation and laser induced fluorescence both to characterize vibrationally excited molecules and to study their photodissociation dynamics. The author has also begun laser induced grating spectroscopy experiments designed to obtain the electronic absorption spectra of highly vibrationally excited molecules.

  12. The Grateful Infrared: Sequential Protein Structural Changes Resolved by Infrared Difference Spectroscopy.

    Science.gov (United States)

    Kottke, Tilman; Lórenz-Fonfría, Víctor A; Heberle, Joachim

    2017-01-19

    The catalytic activity of proteins is a function of structural changes. Very often these are as minute as protonation changes, hydrogen bonding changes, and amino acid side chain reorientations. To resolve these, a methodology is afforded that not only provides the molecular sensitivity but allows for tracing the sequence of these hierarchical reactions at the same time. This feature article showcases results from time-resolved IR spectroscopy on channelrhodopsin (ChR), light-oxygen-voltage (LOV) domain protein, and cryptochrome (CRY). All three proteins are activated by blue light, but their biological role is drastically different. Channelrhodopsin is a transmembrane retinylidene protein which represents the first light-activated ion channel of its kind and which is involved in primitive vision (phototaxis) of algae. LOV and CRY are flavin-binding proteins acting as photoreceptors in a variety of signal transduction mechanisms in all kingdoms of life. Beyond their biological relevance, these proteins are employed in exciting optogenetic applications. We show here how IR difference absorption resolves crucial structural changes of the protein after photonic activation of the chromophore. Time-resolved techniques are introduced that cover the time range from nanoseconds to minutes along with some technical considerations. Finally, we provide an outlook toward novel experimental approaches that are currently developed in our laboratories or are just in our minds ("Gedankenexperimente"). We believe that some of them have the potential to provide new science.

  13. Broad-band time-resolved near infrared spectroscopy in the TJ-II stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, M.C.; Pastor, I.; Cal, E. de la; McCarthy, K.J. [Laboratorio Nacional de Fusion, CIEMAT, Madrid (Spain); Diaz, D. [Universidad Autonoma de Madrid, Dept Quimica Fisica Aplicada, Madrid (Spain)

    2014-11-15

    First experimental results on broad-band, time-resolved Near Infrared (NIR;here loosely defined as covering from 750 to 1650 nm) passive spectroscopy using a high sensitivity InGaAs detector are reported for the TJ-II Stellarator. Experimental set-up is described together with its main characteristics, the most remarkable ones being its enhanced NIR response, broadband spectrum acquisition in a single shot, and time-resolved measurements with up to 1.8 kHz spectral rate. Prospects for future work and more extended physics studies in this newly open spectral region in TJ-II are discussed. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Hole emission from Ge/Si quantum dots studied by time-resolved capacitance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kapteyn, C.M.A.; Lion, M.; Heitz, R.; Bimberg, D. [Technische Univ. Berlin (Germany). Inst. fuer Festkoerperphysik; Miesner, C.; Asperger, T.; Brunner, K.; Abstreiter, G. [Technische Univ. Muenchen, Garching (Germany). Walter-Schottky-Inst. fuer Physikalische Grundlagen der Halbleiterelektronik

    2001-03-01

    Emission of holes from self-organized Ge quantum dots (QDs) embedded in Si Schottky diodes is studied by time-resolved capacitance spectroscopy (DLTS). The DLTS signal is rather broad and depends strongly on the filling and detection bias conditions. The observed dependence is interpreted in terms of carrier emission from many-hole states of the QDs. The activation energies obtained from the DLTS measurements are a function of the amount of stored charge and the position of the Fermi level in the QDs. (orig.)

  15. High resolution spin- and angle-resolved photoelectron spectroscopy for 3D spin vectorial analysis

    Science.gov (United States)

    Okuda, Taichi; Miyamoto, Koji; Kimura, Akio; Namatame, Hirofumi; Taniguchi, Masaki

    2013-03-01

    Spin- and angle-resolved photoelectron spectroscopy (SARPES) is the excellent tool which can directly observe the band structure of crystals with separating spin-up and -down states. Recent findings of new class of materials possessing strong spin orbit interaction such as Rashba spin splitting systems or topological insulators stimulate to develop new SARPES apparatuses and many sophisticated techniques have been reported recently. Here we report our newly developed a SARPES apparatus for spin vectorial analysis with high precision at Hiroshima Synchrotron Radiation Center. Highly efficient spin polarimeter utilizing very low energy electron diffraction (VLEED) makes high resolution (ΔE Japan Society for the Promotion of Science.

  16. Phase-resolved optical emission spectroscopy for an electron cyclotron resonance etcher

    Energy Technology Data Exchange (ETDEWEB)

    Milosavljevic, Vladimir [BioPlasma Research Group, Dublin Institute of Technology, Sackville Place, Dublin 1 (Ireland); Biosystems Engineering, University College Dublin, Dublin 4, Ireland and Faculty of Physics, University of Belgrade, Belgrade (Serbia); MacGearailt, Niall; Daniels, Stephen; Turner, Miles M. [NCPST, Dublin City University, Dublin (Ireland); Cullen, P. J. [BioPlasma Research Group, Dublin Institute of Technology, Sackville Place, Dublin 1 (Ireland)

    2013-04-28

    Phase-resolved optical emission spectroscopy (PROES) is used for the measurement of plasma products in a typical industrial electron cyclotron resonance (ECR) plasma etcher. In this paper, the PROES of oxygen and argon atoms spectral lines are investigated over a wide range of process parameters. The PROES shows a discrimination between the plasma species from gas phase and those which come from the solid phase due to surface etching. The relationship between the micro-wave and radio-frequency generators for plasma creation in the ECR can be better understood by the use of PROES.

  17. Size Effects in Angle-Resolved Photoelectron Spectroscopy of Free Rare-Gas Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Rolles, D.; Zhang, H.; Pesic, Z.D.; Bilodeau, R.C.; Wills, A.; Kukk, E.; Rude, B.S.; Ackerman, G.D.; Bozek, J.D.; Muino, R.D.; de Abajo, F.J.G.; Berrah, N.; /Western

    2007-05-23

    The photoionization of free Xe clusters is investigated by angle-resolved time-of-flight photoelectron spectroscopy. The measurements probe the evolution of the photoelectron angular distribution parameter as a function of photon energy and cluster size. While the overall photon-energy-dependent behavior of the photoelectrons from the clusters is very similar to that of the free atoms, distinct differences in the angular distribution point at cluster-size-dependent effects. Multiple scattering calculations trace their origin to elastic photoelectron scattering.

  18. Spatially resolved positron annihilation spectroscopy on friction stir weld induced defects.

    Science.gov (United States)

    Hain, Karin; Hugenschmidt, Christoph; Pikart, Philip; Böni, Peter

    2010-04-01

    A friction stir welded (FSW) Al alloy sample was investigated by Doppler broadening spectroscopy (DBS) of the positron annihilation line. The spatially resolved defect distribution showed that the material in the joint zone becomes completely annealed during the welding process at the shoulder of the FSW tool, whereas at the tip, annealing is prevailed by the deterioration of the material due to the tool movement. This might be responsible for the increased probability of cracking in the heat affected zone of friction stir welds. Examination of a material pairing of steel S235 and the Al alloy Silafont36 by coincident Doppler broadening spectroscopy (CDBS) indicates the formation of annealed steel clusters in the Al alloy component of the sample. The clear visibility of Fe in the CDB spectra is explained by the very efficient trapping at the interface between steel cluster and bulk.

  19. A tunable low-energy photon source for high-resolution angle-resolved photoemission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Harter, John W.; Monkman, Eric J.; Shai, Daniel E.; Nie Yuefeng; Uchida, Masaki; Burganov, Bulat; Chatterjee, Shouvik [Laboratory of Atomic and Solid State Physics, Department of Physics, Cornell University, Ithaca, New York 14853 (United States); King, Philip D. C.; Shen, Kyle M. [Laboratory of Atomic and Solid State Physics, Department of Physics, Cornell University, Ithaca, New York 14853 (United States); Kavli Institute at Cornell for Nanoscale Science, Ithaca, New York 14853 (United States)

    2012-11-15

    We describe a tunable low-energy photon source consisting of a laser-driven xenon plasma lamp coupled to a Czerny-Turner monochromator. The combined tunability, brightness, and narrow spectral bandwidth make this light source useful in laboratory-based high-resolution photoemission spectroscopy experiments. The source supplies photons with energies up to {approx}7 eV, delivering under typical conditions >10{sup 12} ph/s within a 10 meV spectral bandwidth, which is comparable to helium plasma lamps and many synchrotron beamlines. We first describe the lamp and monochromator system and then characterize its output, with attention to those parameters which are of interest for photoemission experiments. Finally, we present angle-resolved photoemission spectroscopy data using the light source and compare its performance to a conventional helium plasma lamp.

  20. Multiple spatially resolved reflection spectroscopy for in vivo determination of carotenoids in human skin and blood

    Science.gov (United States)

    Darvin, Maxim E.; Magnussen, Björn; Lademann, Juergen; Köcher, Wolfgang

    2016-09-01

    Non-invasive measurement of carotenoid antioxidants in human skin is one of the important tasks to investigate the skin physiology in vivo. Resonance Raman spectroscopy and reflection spectroscopy are the most frequently used non-invasive techniques in dermatology and skin physiology. In the present study, an improved method based on multiple spatially resolved reflection spectroscopy (MSRRS) was introduced. The results obtained were compared with those obtained using the ‘gold standard’ resonance Raman spectroscopy method and showed strong correlations for the total carotenoid concentration (R  =  0.83) as well as for lycopene (R  =  0.80). The measurement stability was confirmed to be better than 10% within the total temperature range from 5 °C to  +  30 °C and pressure contact between the skin and the MSRRS sensor from 800 Pa to 18 000 Pa. In addition, blood samples taken from the subjects were analyzed for carotenoid concentrations. The MSRRS sensor was calibrated on the blood carotenoid concentrations resulting in being able to predict with a correlation of R  =  0.79. On the basis of blood carotenoids it could be demonstrated that the MSRRS cutaneous measurements are not influenced by Fitzpatrick skin types I-VI. The MSRRS sensor is commercially available under the brand name biozoom.

  1. Dual time-resolved temperature-jump fluorescence and infrared spectroscopy for the study of fast protein dynamics.

    Science.gov (United States)

    Davis, Caitlin M; Reddish, Michael J; Dyer, R Brian

    2017-05-05

    Time-resolved temperature-jump (T-jump) coupled with fluorescence and infrared (IR) spectroscopy is a powerful technique for monitoring protein dynamics. Although IR spectroscopy of the polypeptide amide I mode is more technically challenging, it offers complementary information because it directly probes changes in the protein backbone, whereas, fluorescence spectroscopy is sensitive to the environment of specific side chains. With the advent of widely tunable quantum cascade lasers (QCL) it is possible to efficiently probe multiple IR frequencies with high sensitivity and reproducibility. Here we describe a dual time-resolved T-jump fluorescence and IR spectrometer and its application to study protein folding dynamics. A Q-switched Ho:YAG laser provides the T-jump source for both time-resolved IR and fluorescence spectroscopy, which are probed by a QCL and Ti:Sapphire laser, respectively. The Ho:YAG laser simultaneously pumps the time-resolved IR and fluorescence spectrometers. The instrument has high sensitivity, with an IR absorbance detection limit of jump induced difference spectrum from 50ns to 0.5ms. This study demonstrates the power of the dual time-resolved T-jump fluorescence and IR spectroscopy to resolve complex folding mechanisms by complementary IR absorbance and fluorescence measurements of protein dynamics. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Efficiency estimates and practical aspects of an optical Kerr gate for time-resolved luminescence spectroscopy

    Science.gov (United States)

    Dmitruk, I.; Shynkarenko, Ye; Dmytruk, A.; Aleksiuk, D.; Kadan, V.; Korenyuk, P.; Zubrilin, N.; Blonskiy, I.

    2016-12-01

    We report experience of assembling an optical Kerr gate setup at the Femtosecond Laser Center for collective use at the Institute of Physics of the National Academy of Sciences of Ukraine. This offers an inexpensive solution to the problem of time-resolved luminescence spectroscopy. Practical aspects of its design and alignment are discussed and its main characteristics are evaluated. Theoretical analysis and numerical estimates are performed to evaluate the efficiency and the response time of an optical Kerr gate setup for fluorescence spectroscopy with subpicosecond time resolution. The theoretically calculated efficiency is compared with the experimentally measured one of ~12% for Crown 5 glass and ~2% for fused silica. Other characteristics of the Kerr gate are analyzed and ways to improve them are discussed. A method of compensation for the refractive index dispersion in a Kerr gate medium is suggested. Examples of the application of the optical Kerr gate setup for measurements of the time-resolved luminescence of Astra Phloxine and Coumarin 30 dyes and both linear and nonlinear chirp parameters of a supercontinuum are presented.

  3. Anisotropy resolved multidimensional emission spectroscopy (ARMES): A new tool for protein analysis.

    Science.gov (United States)

    Groza, Radu Constantin; Li, Boyan; Ryder, Alan G

    2015-07-30

    Structural analysis of proteins using the emission of intrinsic fluorophores is complicated by spectral overlap. Anisotropy resolved multidimensional emission spectroscopy (ARMES) overcame the overlap problem by the use of anisotropy, with chemometric analysis, to better resolve emission from different fluorophores. Total synchronous fluorescence scan (TSFS) provided information about all the fluorophores that contributed to emission while anisotropy provided information about the environment of each fluorophore. Here the utility of ARMES was demonstrated via study of the chemical and thermal denaturation of human serum albumin (HSA). Multivariate curve resolution (MCR) analysis of the constituent polarized emission ARMES data resolved contributions from four emitters: fluorescence from tryptophan (Trp), solvent exposed tyrosine (Tyr), Tyr in a hydrophobic environment, and room temperature phosphorescence (RTP) from Trp. The MCR scores, anisotropy, and literature validated these assignments and showed all the expected transitions during HSA unfolding. This new methodology for comprehensive intrinsic fluorescence analysis of proteins is applicable to any protein containing multiple fluorophores. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. The analysis of time-resolved optical waveguide absorption spectroscopy based on positive matrix factorization.

    Science.gov (United States)

    Liu, Ping; Li, Zhu; Li, Bo; Shi, Guolong; Li, Minqiang; Yu, Daoyang; Liu, Jinhuai

    2013-08-01

    Time-resolved optical waveguide absorption spectroscopy (OWAS) makes use of an evanescent field to detect the polarized absorption spectra of sub-monomolecular adlayers. This technique is suitable for the investigation of kinetics at the solid/liquid interface of dyes, pigments, fluorescent molecules, quantum dots, metallic nanoparticles, and proteins with chromophores. In this work, we demonstrate the application of positive matrix factorization (PMF) to analyze time-resolved OWAS for the first time. Meanwhile, PCA is researched to compare with PMF. The absorption/desorption kinetics of Rhodamine 6G (R6G) onto a hydrophilic glass surface and the dynamic process of Meisenheimer complex between Cysteine and TNT are selected as samples to verify experimental system and analytical methods. The results are shown that time-resolved OWAS can well record the absorption/desorption of R6G onto a hydrophilic glass surface and the dynamic formation process of Meisenheimer complexes. The feature of OWAS extracted by PMF is dynamic and consistent with the results analyzed by the traditional function of time/wavelength-absorbance. Moreover, PMF prevents the negative factors from occurring, avoids contradicting physical reality, and makes factors more easily interpretable. Therefore, we believe that PMF will provide a valuable analysis route to allow processing of increasingly large and complex data sets. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Quantifying the cerebral metabolic rate of oxygen by combining diffuse correlation spectroscopy and time-resolved near-infrared spectroscopy.

    Science.gov (United States)

    Verdecchia, Kyle; Diop, Mamadou; Lee, Ting-Yim; St Lawrence, Keith

    2013-02-01

    Preterm infants are highly susceptible to ischemic brain injury; consequently, continuous bedside monitoring to detect ischemia before irreversible damage occurs would improve patient outcome. In addition to monitoring cerebral blood flow (CBF), assessing the cerebral metabolic rate of oxygen (CMRO2) would be beneficial considering that metabolic thresholds can be used to evaluate tissue viability. The purpose of this study was to demonstrate that changes in absolute CMRO2 could be measured by combining diffuse correlation spectroscopy (DCS) with time-resolved near-infrared spectroscopy (TR-NIRS). Absolute CBF was determined using bolus-tracking TR-NIRS to calibrate the DCS measurements. Cerebral venous blood oxygenation (SvO2) was determined by multiwavelength TR-NIRS measurements, the accuracy of which was assessed by directly measuring the oxygenation of sagittal sinus blood. In eight newborn piglets, CMRO2 was manipulated by varying the anesthetics and by injecting sodium cyanide. No significant differences were found between the two sets of SvO2 measurements obtained by TR-NIRS or sagittal sinus blood samples and the corresponding CMRO2 measurements. Bland-Altman analysis showed a mean CMRO2 difference of 0.0268 ± 0.8340 mLO2/100 g/min between the two techniques over a range from 0.3 to 4 mL O2/100 g/min.

  6. Conventional and Ultrafast Pump-Probe Time-Resolved Raman Spectroscopy of Strongly Correlated Systems

    Science.gov (United States)

    Yang, Jhih-An

    Raman scattering has become an invaluable tool for the study of strongly-correlated systems because it can directly probe phonons, magnetic excitations, and electronic excitations. The extension of Raman scattering to the time domain by using the pump-probe technique allows us to study the femtosecond dynamics under a non-equilibrium condition. Time-resolved Raman scattering thus is able to disentangle different fundamental interactions that are difficult to distinguish in the energy domain by their different temporal evolution. In this thesis we show the development of time-resolved Raman spectroscopy and its applications to investigate non-equilibrium dynamics in novel materials. The first part of this thesis is devoted to using large-shift Raman spectroscopy to study the electronic structure of Sr2IrO4, a spin-orbit-induced Mott insulator. We found two high-energy excitations of the d-shell multiplet at 690 meV and 680 meV with A1g and B1g symmetry respectively. We show that both pseudospin-flip and non-pseudosin-flip dd electronic transitions are Raman active, but only the latter are observed. The second part is devoted to the study of the time dynamics of electron-hole excitations as well as the G-phonon in graphite after an excitation by an intense laser pulse. We found that the increase of the G-phonon population occurs with a delay of ˜65 fs in contradiction with the two-temperature model. This time-delay is also evidenced by the absence of the so-called self-pumping for G phonons. It decreases with increased pump fluence. We show that these observations imply a new relaxation pathway: Instead of hot carriers transferring energy to G-phonons directly, the energy is first transferred to optical phonons near the zone boundary K-points, which then decay into G-phonons via phonon-phonon scattering. In the third part we study magnetic dynamics in insulating YBa2 Cu3O6+x using time-resolved Raman spectroscopy. We observed ultrafast melting of the magnetic order

  7. Optical properties of drying wood studied by time-resolved near-infrared spectroscopy.

    Science.gov (United States)

    Konagaya, Keiji; Inagaki, Tetsuya; Kitamura, Ryunosuke; Tsuchikawa, Satoru

    2016-05-02

    We measured the optical properties of drying wood with the moisture contents ranging from 10% to 200%. By using time-resolved near-infrared spectroscopy, the reduced scattering coefficient μs' and absorption coefficient μa were determined independent of each other, providing information on the chemical and structural changes, respectively, of wood on the nanometer scale. Scattering from dry pores dominated, which allowed us to determine the drying process of large pores during the period of constant drying rate, and the drying process of smaller pores during the period of decreasing drying rate. The surface layer and interior of the wood exhibit different moisture states, which affect the scattering properties of the wood.

  8. Pseudo-bimolecular [2+2] cycloaddition studied by time-resolved photoelectron spectroscopy

    DEFF Research Database (Denmark)

    Brogaard, Rasmus Y; Boguslavskiy, Andrey E; Schalk, Oliver

    2011-01-01

    The first study of pseudo-bimolecular cycloaddition reaction dynamics in the gas phase is presented. We used femtosecond time-resolved photoelectron spectroscopy (TRPES) to study the [2+2] photocycloaddition in the model system pseudo-gem-divinyl[2.2]paracyclophane. From X-ray crystal diffraction...... measurements we found that the ground-state molecule can exist in two conformers; a reactive one in which the vinyl groups are immediately situated for [2+2] cycloaddition and a nonreactive conformer in which they point in opposite directions. From the measured S(1) lifetimes we assigned a clear relation...... between the conformation and the excited-state reactivity; the reactive conformer has a lifetime of 13 ps, populating the ground state through a conical intersection leading to [2+2] cycloaddition, whereas the nonreactive conformer has a lifetime of 400 ps. Ab initio calculations were performed to locate...

  9. Time-resolved broadband cavity-enhanced absorption spectroscopy for chemical kinetics.

    Energy Technology Data Exchange (ETDEWEB)

    Sheps, Leonid; Chandler, David W.

    2013-04-01

    Experimental measurements of elementary reaction rate coefficients and product branching ratios are essential to our understanding of many fundamentally important processes in Combustion Chemistry. However, such measurements are often impossible because of a lack of adequate detection techniques. Some of the largest gaps in our knowledge concern some of the most important radical species, because their short lifetimes and low steady-state concentrations make them particularly difficult to detect. To address this challenge, we propose a novel general detection method for gas-phase chemical kinetics: time-resolved broadband cavity-enhanced absorption spectroscopy (TR-BB-CEAS). This all-optical, non-intrusive, multiplexed method enables sensitive direct probing of transient reaction intermediates in a simple, inexpensive, and robust experimental package.

  10. Electron Temperature Measurement of Buried Layer Targets Using Time Resolved K-shell Spectroscopy

    Science.gov (United States)

    Marley, Edward; Foord, M. E.; Shepherd, R.; Beiersdorfer, P.; Brown, G.; Chen, H.; Emig, J.; Schneider, M.; Widmann, K.; Scott, H.; London, R.; Martin, M.; Wilson, B.; Iglesias, C.; Mauche, C.; Whitley, H.; Nilsen, J.; Hoarty, D.; James, S.; Brown, C. R. D.; Hill, M.; Allan, P.; Hobbs, L.

    2016-10-01

    Short pulse laser-heated buried layer experiments have been performed with the goal of creating plasmas with mass densities >= 1 g/cm3 and electron temperatures >= 500 eV. The buried layer geometry has the advantage of rapid energy deposition before significant hydrodynamic expansion occurs. For brief periods (< 40 ps) this provides a low gradient, high density platform for studying emission characteristics under extreme plasma conditions. A study of plasma conditions achievable using the Orion laser facility has been performed. Time resolved K-shell spectroscopy was used to determine the temperature evolution of buried layer aluminum foil targets. The measured evolution is compared to a 2-D PIC simulation done using LSP, which shows late time heating from the non-thermal electron population. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  11. Femtosecond time-resolved impulsive stimulated Raman spectroscopy using sub-7-fs pulses: Apparatus and applications

    Energy Technology Data Exchange (ETDEWEB)

    Kuramochi, Hikaru [Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198 (Japan); Takeuchi, Satoshi; Tahara, Tahei, E-mail: tahei@riken.jp [Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198 (Japan); Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako 351-0198 (Japan)

    2016-04-15

    We describe details of the setup for time-resolved impulsive stimulated Raman spectroscopy (TR-ISRS). In this method, snapshot molecular vibrational spectra of the photoreaction transients are captured via time-domain Raman probing using ultrashort pulses. Our instrument features transform-limited sub-7-fs pulses to impulsively excite and probe coherent nuclear wavepacket motions, allowing us to observe vibrational fingerprints of transient species from the terahertz to 3000-cm{sup −1} region with high sensitivity. Key optical components for the best spectroscopic performance are discussed. The TR-ISRS measurements for the excited states of diphenylacetylene in cyclohexane are demonstrated, highlighting the capability of our setup to track femtosecond dynamics of all the Raman-active fundamental molecular vibrations.

  12. Dimensional Crossover in a Charge Density Wave Material Probed by Angle-Resolved Photoemission Spectroscopy.

    Science.gov (United States)

    Nicholson, C W; Berthod, C; Puppin, M; Berger, H; Wolf, M; Hoesch, M; Monney, C

    2017-05-19

    High-resolution angle-resolved photoemission spectroscopy data reveal evidence of a crossover from one-dimensional (1D) to three-dimensional (3D) behavior in the prototypical charge density wave (CDW) material NbSe_{3}. In the low-temperature 3D regime, gaps in the electronic structure are observed due to two incommensurate CDWs, in agreement with x-ray diffraction and electronic-structure calculations. At higher temperatures we observe a spectral weight depletion that approaches the power-law behavior expected in one dimension. From the warping of the quasi-1D Fermi surface at low temperatures, we extract the energy scale of the dimensional crossover. This is corroborated by a detailed analysis of the density of states, which reveals a change in dimensional behavior dependent on binding energy. Our results offer an important insight into the dimensionality of excitations in quasi-1D materials.

  13. Accessing Phonon Polaritons in Hyperbolic Crystals by Angle-Resolved Photoemission Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tomadin, Andrea; Principi, Alessandro; Song, Justin C. W.; Levitov, Leonid S.; Polini, Marco

    2015-08-01

    Recently studied hyperbolic materials host unique phonon-polariton (PP) modes. The ultrashort wavelengths of these modes, as well as their low damping, hold promise for extreme subdiffraction nanophotonics schemes. Polar hyperbolic materials such as hexagonal boron nitride can be used to realize long-range coupling between PP modes and extraneous charge degrees of freedom. The latter, in turn, can be used to control and probe PP modes. Here we analyze coupling between PP modes and plasmons in an adjacent graphene sheet, which opens the door to accessing PP modes by angle-resolved photoemission spectroscopy (ARPES). A rich structure in the graphene ARPES spectrum due to PP modes is predicted, providing a new probe of PP modes and their coupling to graphene plasmons.

  14. Development of in situ time-resolved Raman spectroscopy facility for dynamic shock loading in materials

    Science.gov (United States)

    Chaurasia, S.; Rastogi, V.; Rao, U.; Sijoy, C. D.; Mishra, V.; Deo, M. N.

    2017-11-01

    The transient state of excitation and relaxation processes in materials under shock compression can be investigated by coupling the laser driven shock facility with Raman spectroscopy. For this purpose, a time resolved Raman spectroscopy setup has been developed to monitor the physical and the chemical changes such as phase transitions, chemical reactions, molecular kinetics etc., under shock compression with nanosecond time resolution. This system consist of mainly three parts, a 2 J/8 ns Nd:YAG laser system used for generation of pump and probe beams, a Raman spectrometer with temporal and spectral resolution of 1.2 ns and 3 cm‑1 respectively and a target holder in confinement geometry assembly. Detailed simulation for the optimization of confinement geometry targets is performed. Time resolved measurement of polytetrafluoroethylene (PTFE) targets at focused laser intensity of 2.2 GW/cm2 has been done. The corresponding pressure in the Aluminum and PTFE are 3.6 and 1.7 GPa respectively. At 1.7 GPa in PTFE, a red shift of 5 cm‑1 is observed for the CF2 twisting mode (291 cm‑1). Shock velocity in PTFE is calculated by measuring rate of change of ratios of the intensity of Raman lines scattered from shocked volume to total volume of sample in the laser focal spot along the laser axis. The calculated shock velocity in PTFE is found to be 1.64 ± 0.16 km/s at shock pressure of 1.7 GPa, for present experimental conditions.

  15. Design and evaluation of a device for fast multispectral time-resolved fluorescence spectroscopy and imaging

    Energy Technology Data Exchange (ETDEWEB)

    Yankelevich, Diego R. [Department of Electrical and Computer Engineering, University of California, 3101 Kemper Hall, Davis, California 95616 (United States); Department of Biomedical Engineering, University of California, 451 Health Sciences Drive, Davis, California 95616 (United States); Ma, Dinglong; Liu, Jing; Sun, Yang; Sun, Yinghua; Bec, Julien; Marcu, Laura, E-mail: lmarcu@ucdavis.edu [Department of Biomedical Engineering, University of California, 451 Health Sciences Drive, Davis, California 95616 (United States); Elson, Daniel S. [Hamlyn Centre for Robotic Surgery, Department of Surgery and Cancer, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom)

    2014-03-15

    The application of time-resolved fluorescence spectroscopy (TRFS) to in vivo tissue diagnosis requires a method for fast acquisition of fluorescence decay profiles in multiple spectral bands. This study focusses on development of a clinically compatible fiber-optic based multispectral TRFS (ms-TRFS) system together with validation of its accuracy and precision for fluorescence lifetime measurements. It also presents the expansion of this technique into an imaging spectroscopy method. A tandem array of dichroic beamsplitters and filters was used to record TRFS decay profiles at four distinct spectral bands where biological tissue typically presents fluorescence emission maxima, namely, 390, 452, 542, and 629 nm. Each emission channel was temporally separated by using transmission delays through 200 μm diameter multimode optical fibers of 1, 10, 19, and 28 m lengths. A Laguerre-expansion deconvolution algorithm was used to compensate for modal dispersion inherent to large diameter optical fibers and the finite bandwidth of detectors and digitizers. The system was found to be highly efficient and fast requiring a few nano-Joule of laser pulse energy and <1 ms per point measurement, respectively, for the detection of tissue autofluorescent components. Organic and biological chromophores with lifetimes that spanned a 0.8–7 ns range were used for system validation, and the measured lifetimes from the organic fluorophores deviated by less than 10% from values reported in the literature. Multi-spectral lifetime images of organic dye solutions contained in glass capillary tubes were recorded by raster scanning the single fiber probe in a 2D plane to validate the system as an imaging tool. The lifetime measurement variability was measured indicating that the system provides reproducible results with a standard deviation smaller than 50 ps. The ms-TRFS is a compact apparatus that makes possible the fast, accurate, and precise multispectral time-resolved fluorescence

  16. Spatially resolved x-ray fluorescence spectroscopy of beryllium capsule implosions at the NIF

    Science.gov (United States)

    MacDonald, M. J.; Bishel, D. T.; Saunders, A. M.; Scott, H. A.; Kyrala, G.; Kline, J.; MacLaren, S.; Thorn, D. B.; Yi, S. A.; Zylstra, A. B.; Falcone, R. W.; Doeppner, T.

    2017-10-01

    Beryllium ablators used in indirectly driven inertial confinement fusion implosions are doped with copper to prevent preheat of the cryogenic hydrogen fuel. Here, we present analysis of spatially resolved copper K- α fluorescence spectra from the beryllium ablator layer. It has been shown that K- α fluorescence spectroscopy can be used to measure plasma conditions of partially ionized dopants in high energy density systems. In these experiments, K-shell vacancies in the copper dopant are created by the hotspot emission at stagnation, resulting in K-shell fluorescence at bang time. Spatially resolved copper K- α emission spectra are compared to atomic kinetics and radiation code simulations to infer density and temperature profiles. This work was supported by the US DOE under Grant No. DE-NA0001859, under the auspices of the US DOE by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344, and by Los Alamos National Laboratory under contract DE-AC52-06NA52396.

  17. Time-resolved x-ray absorption spectroscopy: Watching atoms dance

    Energy Technology Data Exchange (ETDEWEB)

    Milne, Chris J; Pham, Van-Thai; Veen, Renske M van der; El Nahhas, Amal; Lima, Frederico; Vithanage, Dimali A; Chergui, Majed [Laboratoire de Spectroscopie Ultrarapide, Ecole Polytechnique Federale de Lausanne (Switzerland); Gawelda, Wojciech [Laser Processing Group, Instituto de Optica, CSIC (Spain); Johnson, Steven L; Beaud, Paul; Ingold, Gerhard; Grolimund, Daniel; Borca, Camelia; Kaiser, Maik; Abela, Rafael [Swiss Light Source, Paul Scherrer Institut (Switzerland); Benfatto, Maurizio [Laboratori Nazionali di Frascati, INFN (Italy); Hauser, Andreas [Departement de Chimie Physique, Universite de Geneve (Switzerland); Bressler, Christian, E-mail: majed.chergui@epfl.c, E-mail: chris.milne@psi.c [European XFEL Project Team, Deutsches Elektronen Synchrotron (Germany)

    2009-11-15

    The introduction of pump-probe techniques to the field of x-ray absorption spectroscopy (XAS) has allowed the monitoring of both structural and electronic dynamics of disordered systems in the condensed phase with unprecedented accuracy, both in time and in space. We present results on the electronically excited high-spin state structure of an Fe(II) molecular species, [Fe{sup II}(bpy){sub 3}]{sup 2+}, in aqueous solution, resolving the Fe-N bond distance elongation as 0.2 A. In addition an analysis technique using the reduced {chi}{sup 2} goodness of fit between FEFF EXAFS simulations and the experimental transient absorption signal in energy space has been successfully tested as a function of excited state population and chemical shift, demonstrating its applicability in situations where the fractional excited state population cannot be determined through other measurements. Finally by using a novel ultrafast hard x-ray 'slicing' source the question of how the molecule relaxes after optical excitation has been successfully resolved using femtosecond XANES.

  18. Multidimensional electron-nuclear wavepacket dynamics via Time-, Energy- and Angle-resolved Photoelectron Spectroscopy

    Science.gov (United States)

    Veyrinas, K.; Makhija, V.; Boguslavskiy, A. E.; Forbes, R.; Wilkinson, I.; Moffatt, D.; Lausten, R.; Stolow, A.

    2017-04-01

    Generating and probing a coherent superposition of coupled vibrational-electronic (vibronic) states - a multidimensional wavepacket - remains a challenging problem in molecular dynamics. Here, we present recent results using time-resolved photoelectron velocity map imaging (VMI) of complex vibronic wavepacket dynamics in the NO molecule following femtosecond single photon excitation in the vacuum ultraviolet (VUV) range (λpump = 160 nm, 80 fs). The induced ultrafast dynamics, involving highly excited valence and Rydberg states, is probed by single photon ionization (λprobe = 400 nm, 40 fs). Varying the pump-probe time delay, the emitted photoelectrons are detected in a VMI spectrometer for time-, energy- and angle-resolved photoelectron spectroscopy. We observe that the different final vibrational states of the NO+ (X 1Σ+) cation, onto which this evolving vibronic wavepacket is projected, reveal different time dependences for the kinetic energy distribution and the laboratory frame photoelectron angular distribution (LFPAD). In particular, we observe unusually strong oscillations in the β4 asymmetry parameter, indicating sensitivity to the higher angular momentum components of the electronic aspect of this complex vibronic wavepacket.

  19. Microcontroller based resonance tracking unit for time resolved continuous wave cavity-ringdown spectroscopy measurements.

    Science.gov (United States)

    Votava, Ondrej; Mašát, Milan; Parker, Alexander E; Jain, Chaithania; Fittschen, Christa

    2012-04-01

    We present in this work a new tracking servoloop electronics for continuous wave cavity-ringdown absorption spectroscopy (cw-CRDS) and its application to time resolved cw-CRDS measurements by coupling the system with a pulsed laser photolysis set-up. The tracking unit significantly increases the repetition rate of the CRDS events and thus improves effective time resolution (and/or the signal-to-noise ratio) in kinetics studies with cw-CRDS in given data acquisition time. The tracking servoloop uses novel strategy to track the cavity resonances that result in a fast relocking (few ms) after the loss of tracking due to an external disturbance. The microcontroller based design is highly flexible and thus advanced tracking strategies are easy to implement by the firmware modification without the need to modify the hardware. We believe that the performance of many existing cw-CRDS experiments, not only time-resolved, can be improved with such tracking unit without any additional modification to the experiment. © 2012 American Institute of Physics

  20. Time-resolved emission spectroscopy for the combustion analysis of series production engines

    Science.gov (United States)

    Block, Bernd; Moeser, Petra; Hentschel, Werner

    1997-04-01

    This paper presents a device that detects light emerging from the combustion inside a series production automotive engine. Simultaneous time and wavelength resolution is achieved by this system and it can be applied in a simple manner to either diesel or spark ignition (SI) engines without any geometrical modification or the combustion chamber. An optical probe is inserted into spark plug or glow plug. A fiber is connected to the probe and leads the light to a spectrograph, which provides spectral analysis in the UV and visible wavelength ranges. An intensified streak camera with time resolution in the microsecond range completes the detection unit. This measuring system enables time-resolved emission spectroscopy applied to the light emitted during the combustion in a series production engine. Time-resolved emission spectra are presented from both a diesel and an SI engine. The time behavior of the internal temperature in a diesel engine combustion chamber and its dependence on engine speed and load are measured with this setup using a multiple two-color method. In an SI engine, the time behavior of the emissions of specific molecules or radicals is detected. Thus, differences in the combustion process are demonstrated to be caused by operation with different fuels.

  1. Angle resolved photoemission spectroscopy reveals spin charge separation in metallic MoSe2 grain boundary.

    Science.gov (United States)

    Ma, Yujing; Diaz, Horacio Coy; Avila, José; Chen, Chaoyu; Kalappattil, Vijaysankar; Das, Raja; Phan, Manh-Huong; Čadež, Tilen; Carmelo, José M P; Asensio, Maria C; Batzill, Matthias

    2017-02-06

    Material line defects are one-dimensional structures but the search and proof of electron behaviour consistent with the reduced dimension of such defects has been so far unsuccessful. Here we show using angle resolved photoemission spectroscopy that twin-grain boundaries in the layered semiconductor MoSe2 exhibit parabolic metallic bands. The one-dimensional nature is evident from a charge density wave transition, whose periodicity is given by kF/π, consistent with scanning tunnelling microscopy and angle resolved photoemission measurements. Most importantly, we provide evidence for spin- and charge-separation, the hallmark of one-dimensional quantum liquids. Our studies show that the spectral line splits into distinctive spinon and holon excitations whose dispersions exactly follow the energy-momentum dependence calculated by a Hubbard model with suitable finite-range interactions. Our results also imply that quantum wires and junctions can be isolated in line defects of other transition metal dichalcogenides, which may enable quantum transport measurements and devices.

  2. Time-Resolved Measurement of the C_2 ^1AΠ u State Population Following Photodissociation of the S_1 State of Acetylene Using Frequency-Modulation Spectroscopy

    Science.gov (United States)

    Du, Zhenhui; Jiang, Jun; Field, Robert W.

    2017-06-01

    The excited-state population of the C_2 ^1AΠ_u state produced in photolysis of S_1 acetylene was investigated. The pulsed UV laser (216.5 nm) excites acetylene into J=8 e-symmetry level of the S_1 3^4 level, and subsequently dissociates the S_1 acetylene into C_2 fragments. A frequency-modulated near-infrared probe laser beam is used to detect the C_2 population in the ^1AΠ_u state. The sensitivity and the fast response of the experimental setup has been verified by I_2 excited state measurements. The setup will be used to record the C_2 A-X transitions, which are fitted with a Voigt function. The derived lineshape and line intensities will be analyzed, and we will use the information to calculate the A state populations of C_2 and map the populations with time-resolution following the photolysis.

  3. Transient photoconductivity in InGaN/GaN multiple quantum wells, measured by time-resolved terahertz spectroscopy

    DEFF Research Database (Denmark)

    Porte, Henrik; Turchinovich, Dmitry; Cooke, David

    2009-01-01

    Terahertz conductivity of InGaN/GaN MQWs was studied by time-resolved terahertz spectroscopy. Restoration of the built-in piezoelectric field leads to a nonexponential carrier density decay. Terahertz conductivity spectrum is described by the Drude-Smith......Terahertz conductivity of InGaN/GaN MQWs was studied by time-resolved terahertz spectroscopy. Restoration of the built-in piezoelectric field leads to a nonexponential carrier density decay. Terahertz conductivity spectrum is described by the Drude-Smith...

  4. Structural studies of sputtered MOS(2) films by angle-resolved photoelectron spectroscopy

    Science.gov (United States)

    Fleischauer, P. D.; Tolentino, L. U.

    1984-09-01

    Molybdenum disulfide films were deposited by sputtering on both single-crystal molybdenite and steel substrates to assess the effects of varying preparation conditions on film properties. They were then examined by angle-resolved X-ray photoelectron spectroscopy, which provided information on the orientation of the layered crystal substrate, on the film layers immediately adjacent to the substrate (within 1-10 nm), and on thicker, macroscopic films composed of relatively large crystallites (approximately 70-200 nm). For the 4.3-nm-thick films deposited on the crystal's basal-plane surface, the angular dependence of the photoelectron emission is the same as the substrate's, indicating preferred orientation within such films. Angular distribution studies for thicker films on steel substrates are consistent with previous Auger electron spectroscopy results and confirm the presence of oxide films of different thickness of lubricant films with varying orientations. The angle-dependence data were fit to models that describe the structure and composition of the films' surfaces.

  5. Time-resolved reflectance spectroscopy for nondestructive assessment of fruit and vegetable quality

    Science.gov (United States)

    Torricelli, Alessandro; Spinelli, Lorenzo; Vanoli, Maristella; Rizzolo, Anna; Eccher Zerbini, Paola

    2007-09-01

    In the majority of food and feed, due to the microscopic spatial changes in the refractive index, visible (VIS) and near infrared (NIR) light undergoes multiple scattering events and the overall light distribution is determined more by scattering rather than absorption. Conventional steady state VIS/NIR reflectance spectroscopy can provide information on light attenuation, which depends both on light absorption and light scattering, but cannot discriminate these two effects. On the contrary, time-resolved reflectance spectroscopy (TRS) provides a complete optical characterisation of diffusive media in terms of their absorption coefficient and reduced scattering coefficient. From the assessment of the absorption and reduced scattering coefficients, information can then be derived on the composition and internal structure of the medium. Main advantages of the technique are the absolute non-invasiveness, the potentiality for non-contact measurements, and the capacity to probe internal properties with no influence from the skin. In this work we review the physical and technical issues related to the use of TRS for nondestructive quality assessment of fruit and vegetable. A laboratory system for broadband TRS, based on tunable mode-locked lasers and fast microchannel plate photomultiplier, and a portable setup for TRS measurements, based on pulsed diode lasers and compact metal-channel photomultiplier, will be described. Results on broadband optical characterisation of fruits and applications of TRS to the detection of internal defects in pears and to maturity assessment in nectarines will be presented.

  6. Cyclohexene Photo-oxidation over Vanadia Catalyst Analyzed by Time Resolved ATR-FT-IR Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Frei, Heinz; Mul, Guido; Wasylenko, Walter; Hamdy, M. Sameh; Frei, Heinz

    2008-06-04

    Vanadia was incorporated in the 3-dimensional mesoporous material TUD-1 with a loading of 2percent w/w vanadia. The performance in the selective photo-oxidation of liquid cyclohexene was investigated using ATR-FT-IR spectroscopy. Under continuous illumination at 458 nm a significant amount of product, i.e. cyclohexenone, was identified. This demonstrates for the first time that hydroxylated vanadia centers in mesoporous materials can be activated by visible light to induce oxidation reactions. Using the rapid scan method, a strong perturbation of the vanadyl environment could be observed in the selective oxidation process induced by a 458 nm laser pulse of 480 ms duration. This is proposed to be caused by interaction of the catalytic centre with a cyclohexenyl hydroperoxide intermediate. The restoration of the vanadyl environment could be kinetically correlated to the rate of formation of cyclohexenone, and is explained by molecular rearrangement and dissociation of the peroxide to ketone and water. The ketone diffuses away from the active center and ATR infrared probing zone, resulting in a decreasing ketone signal on the tens of seconds time scale after initiation of the photoreaction. This study demonstrates the high potential of time resolved ATR FT-IR spectroscopy for mechanistic studies of liquid phase reactions by monitoring not only intermediates and products, but by correlating the temporal behavior of these species to molecular changes of the vanadyl catalytic site.

  7. Influence of cutaneous and muscular circulation on spatially resolved versus standard Beer-Lambert near-infrared spectroscopy

    OpenAIRE

    Alessandro, Messere; Silvestro, Roatta

    2013-01-01

    Abstract The potential interference of cutaneous circulation on muscle blood volume and oxygenation monitoring by near‐infrared spectroscopy (NIRS) remains an important limitation of this technique. Spatially resolved spectroscopy (SRS) was reported to minimize the contribution of superficial tissue layers in cerebral monitoring but this characteristic has never been documented in muscle tissue monitoring. This study aims to compare SRS with the standard Beer–Lambert (BL) technique in detecti...

  8. Spin-State-Controlled Photodissociation of Iron(III) Azide to an Iron(V) Nitride Complex

    Czech Academy of Sciences Publication Activity Database

    Andris, E.; Navrátil, R.; Jašík, J.; Sabenya, G.; Costas, M.; Srnec, Martin; Roithová, J.

    2017-01-01

    Roč. 56, č. 45 (2017), s. 14057-14060 ISSN 1521-3773 Institutional support: RVO:61388955 Keywords : Ion spectroscopy * Iron (V) nitride * Photodissociation Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry

  9. Gauge invariance in the theoretical description of time-resolved angle-resolved pump/probe photoemission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Freericks, J. K.; Krishnamurthy, H. R.; Sentef, M. A.; Devereaux, T. P.

    2015-10-01

    Nonequilibrium calculations in the presence of an electric field are usually performed in a gauge, and need to be transformed to reveal the gauge-invariant observables. In this work, we discuss the issue of gauge invariance in the context of time-resolved angle-resolved pump/probe photoemission. If the probe is applied while the pump is still on, one must ensure that the calculations of the observed photocurrent are gauge invariant. We also discuss the requirement of the photoemission signal to be positive and the relationship of this constraint to gauge invariance. We end by discussing some technical details related to the perturbative derivation of the photoemission spectra, which involve processes where the pump pulse photoexcites electrons due to nonequilibrium effects.

  10. Symmetry-resolved spectroscopy by detection of a metastable hydrogen atom for investigating the doubly excited states of molecular hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Odagiri, Takeshi; Kumagai, Yoshiaki; Tanabe, Takehiko; Nakano, Motoyoshi; Kouchi, Noriyuki [Department of Chemistry, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551 (Japan); Suzuki, Isao H, E-mail: joe@chem.titech.ac.j [Photon Factory, IMSS, KEK, Tsukuba, Ibaraki 305-0801 (Japan)

    2009-11-01

    Symmetry-resolved spectroscopy for investigating the doubly excited states of molecular hydrogen has been newly developed, where a metastable hydrogen atom dissociating in a direction parallel and perpendicular to the electric vector of the linearly polarized incident light is detected.

  11. Time Resolved Spectroscopy of SGR J1550-5418 Bursts Detected with Fermi/Gamma-Ray Burst Monitor

    NARCIS (Netherlands)

    Younes, G.; Kouveliotou, C.; van der Horst, A.J.; Baring, M.G.; Granot, J.; Watts, A.L.; Bhat, P.N.; Collazzi, A.; Gehrels, N.; Gorgone, N.; Göğüş, E.; Gruber, D.; Grunblatt, S.; Huppenkothen, D.; Kaneko, Y.; von Kienlin, A.; van der Klis, M.; Lin, L.; Mcenery, J.; van Putten, T.; Wijers, R.A.M.J.

    2014-01-01

    We report on a time-resolved spectroscopy of the 63 brightest bursts of SGR J1550-5418, detected with the Fermi/Gamma-ray Burst Monitor during its 2008-2009 intense bursting episode. We performed spectral analysis down to 4 ms timescales to characterize the spectral evolution of the bursts. Using a

  12. Studies of Minerals, Organic and Biogenic Materials through Time-Resolved Raman Spectroscopy

    Science.gov (United States)

    Garcia, Christopher S.; Abedin, M. Nurul; Ismail, Syed; Sharma, Shiv K.; Misra, Anupam K.; Nyugen, Trac; Elsayed-Ali, hani

    2009-01-01

    A compact remote Raman spectroscopy system was developed at NASA Langley Research center and was previously demonstrated for its ability to identify chemical composition of various rocks and minerals. In this study, the Raman sensor was utilized to perform time-resolved Raman studies of various samples such as minerals and rocks, Azalea leaves and a few fossil samples. The Raman sensor utilizes a pulsed 532 nm Nd:YAG laser as excitation source, a 4-inch telescope to collect the Raman-scattered signal from a sample several meters away, a spectrograph equipped with a holographic grating, and a gated intensified CCD (ICCD) camera system. Time resolved Raman measurements were carried out by varying the gate delay with fixed short gate width of the ICCD camera, allowing measurement of both Raman signals and fluorescence signals. Rocks and mineral samples were characterized including marble, which contain CaCO3. Analysis of the results reveals the short (approx.10-13 s) lifetime of the Raman process, and shows that Raman spectra of some mineral samples contain fluorescence emission due to organic impurities. Also analyzed were a green (pristine) and a yellow (decayed) sample of Gardenia leaves. It was observed that the fluorescence signals from the green and yellow leaf samples showed stronger signals compared to the Raman lines. Moreover, it was also observed that the fluorescence of the green leaf was more intense and had a shorter lifetime than that of the yellow leaf. For the fossil samples, Raman shifted lines could not be observed due the presence of very strong short-lived fluorescence.

  13. Time-resolved photoluminescence spectroscopy of semiconductors for optical applications beyond the visible spectral range

    Energy Technology Data Exchange (ETDEWEB)

    Chernikov, Alexey A.

    2011-07-01

    The work discussed in this thesis is focused on the experimental studies regarding these three steps: (1) investigation of the fundamental effects, (2) characterization of new material systems, and (3) optimization of the semiconductor devices. In all three cases, the experimental technique of choice is photoluminescence (PL) spectroscopy. The thesis is organized as follows. Chapter 2 gives a summary of the PL properties of semiconductors relevant for this work. The first section deals with the intrinsic processes in an ideal direct band gap material, starting with a brief summary of the theoretical background followed by the overview of a typical PL scenario. In the second part of the chapter, the role of the lattice-vibrations, the internal electric fields as well as the influence of the band-structure and the dielectric environment are discussed. Finally, extrinsic PL properties are presented in the third section, focusing on defects and disorder in real materials. In chapter 3, the experimental realization of the spectroscopic studies is discussed. The time-resolved photoluminescence (TRPL) setup is presented, focusing on the applied excitation source, non-linear frequency mixing, and the operation of the streak camera used for the detection. In addition, linear spectroscopy setup for continous-wave (CW) PL and absorption measurements is illustrated. Chapter 4 aims at the study of the interactions between electrons and lattice-vibrations in semiconductor crystals relevant for the proper description of carrier dynamics as well as the heat-transfer processes. The presented discussion covers the experimental studies of many-body effects in phonon-assisted emission of semiconductors due to the carriercarrier Coulomb-interaction. The corresponding theoretical background is discussed in detail in chapter 2. The investigations are focused on the two main questions regarding electron-hole plasma contributions to the phonon-assisted light-matter interaction as well as

  14. Identifying Fossil Biosignatures and Minerals in Mars Analog Materials Using Time-Resolved Raman Spectroscopy

    Science.gov (United States)

    Shkolyar, S.; Farmer, J.; Alerstam, E.; Maruyama, Y.; Blacksberg, J.

    2013-12-01

    Mars sample return has been identified as a top priority in the planetary science decadal survey. A Mars sample selection and caching mission would be the likely first step in this endeavor. Such a mission would aim to select and prioritize for return to Earth aqueously formed geological samples present at a selected site on Mars, based upon their potential for biosignature capture and preservation. If evidence of past life exists and is found, it is likely to come via the identification of fossilized carbonaceous matter of biological origin (kerogen) found in the selected samples analyzed in laboratories after return to Earth. Raman spectroscopy is considered one of the primary techniques for analyzing materials in situ and selecting the most promising samples for Earth return. We have previously performed a pilot study to better understand the complexities of identifying kerogen using Raman spectroscopy. For the study, we examined a variety of Mars analog materials representing a broad range of mineral compositions and kerogen maturities. The study revealed that kerogen identification in many of the most promising lithologies is often impeded by background fluorescence that originates from long (>10 ns to ms) and short (organic matter in the samples. This work explores the potential for time-gated Raman spectroscopy to enable clear kerogen and mineral identifications in such samples. The JPL time-resolved Raman system uses time gating to reduce background fluorescence. It uses a custom-built SPAD (single photon avalanche diode) detector, featuring a 1-ns time-gate, and electronically variable gate delay. Results for a range of fluorescent samples show that the JPL system reduces fluorescence, allowing the identification of both kerogen and mineral components more successfully than with conventional Raman systems. In some of the most challenging samples, the detection of organic matter is hindered by a combination of short lifetime fluorescence and weak Raman

  15. Lifetime-resolved photoacoustic (LPA) spectroscopy for monitoring oxygen change and photodynamic therapy (PDT)

    Science.gov (United States)

    Jo, Janggun; Lee, Chang Heon; Kopelman, Raoul; Wang, Xueding

    2016-03-01

    The Methylene Blue loaded Polyacrylamide Nanoparticles (MB-PAA NPs) are used for oxygen sensing and Photodynamic therapy (PDT), a promising therapeutic modality employed for various tumors, with distinct advantages of delivery of biomedical agents and protection from other bio-molecules overcoming inherent limitations of molecular dyes. Lifetime-resolved photoacoustic spectroscopy using quenched-phosphorescence method is applied with MB-PAA NPs so as to sense oxygen, while the same light source is used for PDT. The dye is excited by absorbing 650 nm wavelength light from a pump laser to reach triplet state. The probe laser at 810 nm wavelength is used to excite the first triplet state at certain delayed time to measure the dye lifetime which indicates oxygen concentration. The 9L cells (106 cells/ml) incubated with MB-PAA NP solution are used for monitoring oxygen level change during PDT in situ test. The oxygen level and PDT efficacy are confirmed with a commercial oximeter, and fluorescence microscope imaging and flow cytometry results. This technique with the MB-PAA NPs allowed us to demonstrate a potential non-invasive theragnostic operation, by monitoring oxygen depletion during PDT in situ, without the addition of secondary probes. Here, we demonstrate this theragnostic operation, in vitro, performing PDT while monitoring oxygen depletion. We also show the correlation between O2 depletion and cell death.

  16. Electronic properties of novel topological quantum materials studied by angle-resolved photoemission spectroscopy (ARPES)

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yun [Iowa State Univ., Ames, IA (United States)

    2016-12-17

    The discovery of quantum Hall e ect has motivated the use of topology instead of broken symmetry to classify the states of matter. Quantum spin Hall e ect has been proposed to have a separation of spin currents as an analogue of the charge currents separation in quantum Hall e ect, leading us to the era of topological insulators. Three-dimensional analogue of the Dirac state in graphene has brought us the three-dimensional Dirac states. Materials with three-dimensional Dirac states could potentially be the parent compounds for Weyl semimetals and topological insulators when time-reversal or space inversion symmetry is broken. In addition to the single Dirac point linking the two dispersion cones in the Dirac/Weyl semimetals, Dirac points can form a line in the momentum space, resulting in a topological node line semimetal. These fascinating novel topological quantum materials could provide us platforms for studying the relativistic physics in condensed matter systems and potentially lead to design of new electronic devices that run faster and consume less power than traditional, silicon based transistors. In this thesis, we present the electronic properties of novel topological quantum materials studied by angle-resolved photoemission spectroscopy (ARPES).

  17. Prion protein alpha-to-beta transition monitored by time-resolved Fourier transform infrared spectroscopy.

    Science.gov (United States)

    Ollesch, Julian; Künnemann, Eva; Glockshuber, Rudi; Gerwert, Klaus

    2007-10-01

    The conformational change of the recombinant, murine prion protein (PrP) from an alpha-helical to a beta-sheet enriched state was monitored by time-resolved Fourier transform infrared (FT-IR) spectroscopy. The alpha-to-beta transition is induced by reduction of the single disulfide bond in PrP. This transition is believed to generate the scrapie form PrP(Sc), the supposed infectious agent of transmissible spongiform encephalopathies. We followed the kinetics of this conformational change using a novel method for amide I band analysis of the infrared (IR) spectra. The amide I analysis provides the secondary structure. The amide I decomposition was calibrated with the three dimensional structure of cellular PrP solved by nuclear magnetic resonance (NMR). The novel secondary structure analysis provides a root mean squared deviation (RMSD) of only 3% as compared to the NMR structure. Reduction of alpha-helical PrP caused the transient accumulation of a partially unfolded intermediate, followed by formation of a state with higher beta-sheet than alpha-helical structure contents. The novel approach allows us to now determine the secondary structure of the beta-sheet conformation. This was not determined by either NMR or X-ray. The experiments were performed in a double-sealed security cuvette developed for IR analysis of potentially infectious PrP samples outside the biosafety laboratory.

  18. Characterization of powellite-based solid solutions by site-selective time resolved laser fluorescence spectroscopy.

    Science.gov (United States)

    Schmidt, Moritz; Heck, Stephanie; Bosbach, Dirk; Ganschow, Steffen; Walther, Clemens; Stumpf, Thorsten

    2013-06-21

    We present a comprehensive study of the solid solution system Ca2(MoO4)2-NaGd(MoO4)2 on the molecular scale, by means of site-selective time resolved laser fluorescence spectroscopy (TRLFS). Eu(3+) is used as a trace fluorescent probe, homogeneously substituting for Gd(3+) in the solid solution crystal structure. Site-selective TRLFS of a series of polycrystalline samples covering the whole composition range of the solid solution series from 10% substitution of Ca(2+) to the NaGd end-member reveals it to be homogeneous throughout the whole range. The trivalent ions are incorporated into the powellite structure in only one coordination environment, which exhibits a very strong ligand-metal interaction. Polarization-dependent measurements of a single crystal of NaGd(Eu)(MoO4)2 identify the coordination geometry to be of C2v point symmetry. The S4 symmetry of the Ca site within the powellite lattice can be transformed into C2v assuming minor motion in the first coordination sphere.

  19. Angle-resolved photoemission spectroscopy studies of metallic surface and interface states of oxide insulators

    Science.gov (United States)

    Plumb, Nicholas C.; Radović, Milan

    2017-11-01

    Over the last decade, conducting states embedded in insulating transition metal oxides (TMOs) have served as gateways to discovering and probing surprising phenomena that can emerge in complex oxides, while also opening opportunities for engineering advanced devices. These states are commonly realized at thin film interfaces, such as the well-known case of LaAlO3 (LAO) grown on SrTiO3 (STO). In recent years, the use of angle-resolved photoemission spectroscopy (ARPES) to investigate the k-space electronic structure of such materials led to the discovery that metallic states can also be formed on the bare surfaces of certain TMOs. In this topical review, we report on recent studies of low-dimensional metallic states confined at insulating oxide surfaces and interfaces as seen from the perspective of ARPES, which provides a direct view of the occupied band structure. While offering a fairly broad survey of progress in the field, we draw particular attention to STO, whose surface is so far the best-studied, and whose electronic structure is probably of the most immediate interest, given the ubiquitous use of STO substrates as the basis for conducting oxide interfaces. The ARPES studies provide crucial insights into the electronic band structure, orbital character, dimensionality/confinement, spin structure, and collective excitations in STO surfaces and related oxide surface/interface systems. The obtained knowledge increases our understanding of these complex materials and gives new perspectives on how to manipulate their properties.

  20. Time-resolved four-wave-mixing spectroscopy for inner-valence transitions

    CERN Document Server

    Ding, Thomas; Kaldun, Andreas; Blättermann, Alexander; Meyer, Kristina; Stooß, Veit; Rebholz, Marc; Birk, Paul; Hartmann, Maximilian; Brown, Andrew; Van Der Hart, Hugo; Pfeifer, Thomas

    2015-01-01

    Non-collinear four-wave mixing (FWM) techniques at near-infrared (NIR), visible, and ultraviolet frequencies have been widely used to map vibrational and electronic couplings, typically in complex molecules. However, correlations between spatially localized inner-valence transitions among different sites of a molecule in the extreme ultraviolet (XUV) spectral range have not been observed yet. As an experimental step towards this goal we perform time-resolved FWM spectroscopy with femtosecond NIR and attosecond XUV pulses. The first two pulses (XUV-NIR) coincide in time and act as coherent excitation fields, while the third pulse (NIR) acts as a probe. As a first application we show how coupling dynamics between odd- and even-parity inner-valence excited states of neon can be revealed using a two-dimensional spectral representation. Experimentally obtained results are found to be in good agreement with ab initio time-dependent R-matrix calculations providing the full description of multi-electron interactions,...

  1. Meso-scale defect evaluation of selective laser melting using spatially resolved acoustic spectroscopy

    Science.gov (United States)

    Hirsch, M.; Catchpole-Smith, S.; Patel, R.; Marrow, P.; Li, Wenqi; Tuck, C.; Sharples, S. D.; Clare, A. T.

    2017-09-01

    Developments in additive manufacturing technology are serving to expand the potential applications. Critical developments are required in the supporting areas of measurement and in process inspection to achieve this. CM247LC is a nickel superalloy that is of interest for use in aerospace and civil power plants. However, it is difficult to process via selective laser melting (SLM) as it suffers from cracking during rapid cooling and solidification. This limits the viability of CM247LC parts created using SLM. To quantify part integrity, spatially resolved acoustic spectroscopy (SRAS) has been identified as a viable non-destructive evaluation technique. In this study, a combination of optical microscopy and SRAS was used to identify and classify the surface defects present in SLM-produced parts. By analysing the datasets and scan trajectories, it is possible to correlate morphological information with process parameters. Image processing was used to quantify porosity and cracking for bulk density measurement. Analysis of surface acoustic wave data showed that an error in manufacture in the form of an overscan occurred. Comparing areas affected by overscan with a bulk material, a change in defect density from 1.17% in the bulk material to 5.32% in the overscan regions was observed, highlighting the need to reduce overscan areas in manufacture.

  2. Lifetime-resolved Photoacoustic (LPA) Spectroscopy for monitoring Oxygen change and Photodynamic Therapy (PDT).

    Science.gov (United States)

    Jo, Janggun; Lee, Chang Heon; Kopelman, Raoul; Wang, Xueding

    2016-02-13

    The Methylene Blue loaded Polyacrylamide Nanoparticles (MB-PAA NPs) are used for oxygen sensing and Photodynamic therapy (PDT), a promising therapeutic modality employed for various tumors, with distinct advantages of delivery of biomedical agents and protection from other bio-molecules overcoming inherent limitations of molecular dyes. Lifetime-resolved photoacoustic spectroscopy using quenched-phosphorescence method is applied with MB-PAA NPs so as to sense oxygen, while the same light source is used for PDT. The dye is excited by absorbing 650 nm wavelength light from a pump laser to reach triplet state. The probe laser at 810 nm wavelength is used to excite the first triplet state at certain delayed time to measure the dye lifetime which indicates oxygen concentration. The 9L cells (106 cells/ml) incubated with MB-PAA NP solution are used for monitoring oxygen level change during PDT in situ test. The oxygen level and PDT efficacy are confirmed with a commercial oximeter, and fluorescence microscope imaging and flow cytometry results. This technique with the MB-PAA NPs allowed us to demonstrate a potential non-invasive theragnostic operation, by monitoring oxygen depletion during PDT in situ, without the addition of secondary probes. Here, we demonstrate this theragnostic operation, in vitro, performing PDT while monitoring oxygen depletion. We also show the correlation between O2 depletion and cell death.

  3. Broadband THz waveguiding and high-precision broadband time-resolved spectroscopy

    DEFF Research Database (Denmark)

    Cooke, David; Iwaszczuk, Krzysztof; Nielsen, Kristian

    2009-01-01

    , have tailored dispersion and may be bent into sharp bends. Due to the confinement of the THz field in the core of the fibers they are ideal for stable guiding of THz light in confined environments, and may serve as a useful basis for a wealth of fiber-based photonic components in the THz range......We demonstrate optical fibers designed for the THz frequency range, fabricated in a low-loss polymer. The polymer fibers display a broadband loss of 0.4 dB/cm over the 0.1-1 THz range, with a minimum loss of 0.1 dB/cm in the region near 500 GHz. The fibers, based on endlessly single-mode design......, particularly in spectroscopic applications where tight confinement of the THz field is required. We further demonstrate a new spectroscopic technique for ultrafast time-resolved THz time-domain spectroscopy which simultaneously acquires both reference and sample data. By using this scheme we show...

  4. Spatially Resolved Elemental Analysis, Spectroscopy and Diffraction at the GSECARS Sector at the Advanced Photon Source

    Energy Technology Data Exchange (ETDEWEB)

    Sutton, Stephen R.; Lanzirotti, Antonio; Newville, Matthew; Rivers, Mark L.; Eng, Peter; Lefticariu, Liliana

    2017-01-01

    X-ray microprobes (XRM) coupled with high-brightness synchrotron X-ray facilities are powerful tools for environmental biogeochemistry research. One such instrument, the XRM at the Geo Soil Enviro Center for Advanced Radiation Sources Sector 13 at the Advanced Photon Source (APS; Argonne National Laboratory, Lemont, IL) was recently improved as part of a canted undulator geometry upgrade of the insertion device port, effectively doubling the available undulator beam time and extending the operating energy of the branch supporting the XRM down to the sulfur K edge (2.3 keV). Capabilities include rapid, high-resolution, elemental imaging including fluorescence microtomography, microscale X-ray absorption fine structure spectroscopy including sulfur K edge capability, and microscale X-ray diffraction. These capabilities are advantageous for (i) two-dimensional elemental mapping of relatively large samples at high resolution, with the dwell times typically limited only by the count times needed to obtain usable counting statistics for low concentration elements, (ii) three-dimensional imaging of internal elemental distributions in fragile hydrated specimens, such as biological tissues, avoiding the need for physical slicing, (iii) spatially resolved speciation determinations of contaminants in environmental materials, and (iv) identification of contaminant host phases. In this paper, we describe the XRM instrumentation, techniques, applications demonstrating these capabilities, and prospects for further improvements associated with the proposed upgrade of the APS.

  5. Characterization of normal breast tissue heterogeneity using time-resolved near-infrared spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, Tomas [Department of Physics, Lund Institute of Technology, Box 118, SE-221 00 Lund (Sweden); Swartling, Johannes [Department of Physics, Lund Institute of Technology, Box 118, SE-221 00 Lund (Sweden); Taroni, Paola [Politecnico di Milano, Piazza Leonardo da Vinci 32, I-210 33 Milan (Italy); Torricelli, Alessandro [Politecnico di Milano, Piazza Leonardo da Vinci 32, I-210 33 Milan (Italy); Lindblom, Pia [Department of Surgery, Lund University Hospital, SE-221 85 Lund (Sweden); Ingvar, Christian [Department of Surgery, Lund University Hospital, SE-221 85 Lund (Sweden); Andersson-Engels, Stefan [Department of Physics, Lund Institute of Technology, Box 118, SE-221 00 Lund (Sweden)

    2005-06-07

    In recent years, extensive efforts have been made in developing near-infrared optical techniques to be used in detection and diagnosis of breast cancer. Variations in optical properties of normal breast tissue set limits to the performance of such techniques and must therefore be thoroughly examined. In this paper, we present intra- and intersubject as well as contralateral variations of optical and physiological properties in breast tissue as measured by using four-wavelength time-resolved spectroscopy (at 660, 786, 916 and 974 nm). In total, 36 volunteers were examined at five regions at each breast. Optical properties (absorption, {mu}{sub a}, and reduced scattering, {mu}'{sub s}) are derived by employing diffusion theory. The use of four wavelengths enables determination of main tissue chromophores (haemoglobin, water and lipids) as well as haemoglobin oxygenation. Variations in all evaluated properties seen over the entire breast are approximately twice those for small-scale heterogeneity (millimetre scale). Intrasubject variations in optical properties are almost in all cases below 20% for {mu}'{sub s}, and 40% for {mu}{sub a}. Overall variations in water, lipid and haemoglobin concentrations are all in the order of 20%. Oxygenation is the least variable of the quantities evaluated, overall intrasubject variations being 6% on average. Extracted physiological properties confirm differences between pre- and post-menopausal breast tissue. Results do not indicate systematic differences between left and right breast000.

  6. Monitoring brain temperature by time-resolved near-infrared spectroscopy: pilot study

    Science.gov (United States)

    Bakhsheshi, Mohammad Fazel; Diop, Mamadou; St. Lawrence, Keith; Lee, Ting-Yim

    2014-05-01

    Mild hypothermia (HT) is an effective neuroprotective strategy for a variety of acute brain injuries. However, the wide clinical adaptation of HT has been hampered by the lack of a reliable noninvasive method for measuring brain temperature, since core measurements have been shown to not always reflect brain temperature. The goal of this work was to develop a noninvasive optical technique for measuring brain temperature that exploits both the temperature dependency of water absorption and the high concentration of water in brain (80%-90%). Specifically, we demonstrate the potential of time-resolved near-infrared spectroscopy (TR-NIRS) to measure temperature in tissue-mimicking phantoms (in vitro) and deep brain tissue (in vivo) during heating and cooling, respectively. For deep brain tissue temperature monitoring, experiments were conducted on newborn piglets wherein hypothermia was induced by gradual whole body cooling. Brain temperature was concomitantly measured by TR-NIRS and a thermocouple probe implanted in the brain. Our proposed TR-NIRS method was able to measure the temperature of tissue-mimicking phantoms and brain tissues with a correlation of 0.82 and 0.66 to temperature measured with a thermometer, respectively. The mean difference between the TR-NIRS and thermometer measurements was 0.15°C±1.1°C for the in vitro experiments and 0.5°C±1.6°C for the in vivo measurements.

  7. Noninvasive evaluation of tissue-engineered cartilage with time-resolved laser-induced fluorescence spectroscopy.

    Science.gov (United States)

    Kutsuna, Toshiharu; Sato, Masato; Ishihara, Miya; Furukawa, Katsuko S; Nagai, Toshihiro; Kikuchi, Makoto; Ushida, Takashi; Mochida, Joji

    2010-06-01

    Regenerative medicine requires noninvasive evaluation. Our objective is to investigate the application of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) using a nano-second-pulsed laser for evaluation of tissue-engineered cartilage (TEC). To prepare scaffold-free TEC, articular chondrocytes from 4-week-old Japanese white rabbits were harvested, and were inoculated at a high density in a mold. Cells were cultured for 5 weeks by rotating culture (RC) or static culture (SC). The RC group and SC group at each week (n = 5), as well as normal articular cartilage and purified collagen type II (as controls), were analyzed by TR-LIFS. The peak wavelength was compared with those of type II collagen immunostaining and type II collagen quantification by enzyme-linked immunosorbent assay and tensile testing. The fluorescence peak wavelength of the TEC analyzed by this method shifted significantly in the RC group at 3 weeks, and in the SC group at 5 weeks (p TEC.

  8. Conductivity of ZnO nanowires, nanoparticles, and thin films using time-resolved terahertz spectroscopy.

    Science.gov (United States)

    Baxter, Jason B; Schmuttenmaer, Charles A

    2006-12-21

    The terahertz absorption coefficient, index of refraction, and conductivity of nanostructured ZnO have been determined using time-resolved terahertz spectroscopy, a noncontact optical probe. ZnO properties were measured directly for thin films and were extracted from measurements of nanowire arrays and mesoporous nanoparticle films by applying Bruggeman effective medium theory to the composite samples. Annealing significantly reduces the intrinsic carrier concentration in the ZnO films and nanowires, which were grown by chemical bath deposition. The complex-valued, frequency-dependent photoconductivities for all morphologies were found to be similar at short pump-probe delay times. Fits using the Drude-Smith model show that films have the highest mobility, followed by nanowires and then nanoparticles, and that annealing the ZnO increases its mobility. Time constants for decay of photoinjected electron density in films are twice as long as those in nanowires and more than 5 times those for nanoparticles due to increased electron interaction with interfaces and grain boundaries in the smaller-grained materials. Implications for electron transport in dye-sensitized solar cells are discussed.

  9. Improved Fast, Deep Record Length, Time-Resolved Visible Spectroscopy of Plasmas Using Fiber Grids

    Science.gov (United States)

    Brockington, S.; Case, A.; Cruz, E.; Williams, A.; Witherspoon, F. D.; Horton, R.; Klauser, R.; Hwang, D.

    2017-10-01

    HyperV Technologies is developing a fiber-coupled, deep record-length, low-light camera head for performing high time resolution spectroscopy on visible emission from plasma events. By coupling the output of a spectrometer to an imaging fiber bundle connected to a bank of amplified silicon photomultipliers, time-resolved spectroscopic imagers of 100 to 1,000 pixels can be constructed. A second generation prototype 32-pixel spectroscopic imager employing this technique was constructed and successfully tested at the University of California at Davis Compact Toroid Injection Experiment (CTIX). Pixel performance of 10 Megaframes/sec with record lengths of up to 256,000 frames ( 25.6 milliseconds) were achieved. Pixel resolution was 12 bits. Pixel pitch can be refined by using grids of 100 μm to 1000 μm diameter fibers. Experimental results will be discussed, along with future plans for this diagnostic. Work supported by USDOE SBIR Grant DE-SC0013801.

  10. Time-resolved products observed from high pressure deflagrating energetic materials using femtosecond IR spectroscopy

    Science.gov (United States)

    Zaug, J. M.; Glascoe, E. A.; Crowhurst, J. C.; Fried, L. E.; Armstrong, M. R.; Grant, C. D.

    2007-06-01

    What transient chemical species occur on the nanosecond to microsecond time-scale after an energetic material begins to deflagrate under Chapman-Jouguet conditions? What are the molecular lifetimes of transient species under similar conditions? Using ultrafast infrared spectroscopy to study the transient chemical phenomena of materials encapsulated in high-pressure diamond anvils cells (DACs), these and related questions can be addressed. Here we present a broadband time-resolved IR (TRIR) absorption technique applied to high-pressure deflagrating energetic materials. A 10 nanosecond laser pulse is introduced onto the surface of a high-pressure energetic material. After an induction period of approximately one microsecond the energetic material begins to deflagrate (1500+K) at subsonic velocities radially away from the laser ignited region. A mid-IR femtosecond laser pulse (pulse-gated, 2-10 micron tunable range) is transmitted through the deflagration front. The single-shot mid-IR absorbance is used to detect transient species. Our measurements provide a rigorous test of computational chemistry models.

  11. Time-resolved X-ray Absorption Spectroscopy for Electron Transport Study in Warm Dense Gold

    Science.gov (United States)

    Lee, Jong-Won; Bae, Leejin; Engelhorn, Kyle; Heimann, Philip; Ping, Yuan; Barbrel, Ben; Fernandez, Amalia; Beckwith, Martha Anne; Cho, Byoung-Ick; GIST Team; IBS Team; LBNL Collaboration; SLAC Collaboration; LLNL Collaboration

    2015-11-01

    The warm dense Matter represents states of which the temperature is comparable to Fermi energy and ions are strongly coupled. One of the experimental techniques to create such state in the laboratory condition is the isochoric heating of thin metal foil with femtosecond laser pulses. This concept largely relies on the ballistic transport of electrons near the Fermi-level, which were mainly studied for the metals in ambient conditions. However, they were barely investigated in warm dense conditions. We present a time-resolved x-ray absorption spectroscopy measured for the Au/Cu dual layered sample. The front Au layer was isochorically heated with a femtosecond laser pulse, and the x-ray absorption changes around L-edge of Cu, which was attached on the backside of Au, was measured with a picosecond resolution. Time delays between the heating of the `front surface' of Au layer and the alternation of x-ray spectrum of Cu attached on the `rear surface' of Au indicate the energetic electron transport mechanism through Au in the warm dense conditions. IBS (IBS-R012-D1) and the NRF (No. 2013R1A1A1007084) of Korea.

  12. Temperature-independent band structure of WTe2 as observed from angle-resolved photoemission spectroscopy

    Science.gov (United States)

    Thirupathaiah, S.; Jha, Rajveer; Pal, Banabir; Matias, J. S.; Das, P. Kumar; Vobornik, I.; Ribeiro, R. A.; Sarma, D. D.

    2017-10-01

    Extremely large magnetoresistance (XMR), observed in transition-metal dichalcogenides, WTe2, has attracted recently a great deal of research interest as it shows no sign of saturation up to a magnetic field as high as 60 T, in addition to the presence of type-II Weyl fermions. Currently, there is a great deal of discussion on the role of band structure changes in the temperature-dependent XMR in this compound. In this contribution, we study the band structure of WTe2 using angle-resolved photoemission spectroscopy and first-principles calculations to demonstrate that the temperature-dependent band structure has no substantial effect on the temperature-dependent XMR, as our measurements do not show band structure changes upon increasing the sample temperature between 20 and 130 K. We further observe an electronlike surface state, dispersing in such a way that it connects the top of bulk holelike band to the bottom of bulk electronlike band. Interestingly, similarly to bulk states, the surface state is also mostly intact with the sample temperature. Our results provide valuable information in shaping the mechanism of temperature-dependent XMR in WTe2.

  13. Noninvasive detection of concealed explosives: depth profiling through opaque plastics by time-resolved Raman spectroscopy.

    Science.gov (United States)

    Petterson, Ingeborg E Iping; López-López, María; García-Ruiz, Carmen; Gooijer, Cees; Buijs, Joost B; Ariese, Freek

    2011-11-15

    The detection of explosives concealed behind opaque, diffusely scattering materials is a challenge that requires noninvasive analytical techniques for identification without having to manipulate the package. In this context, this study focuses on the application of time-resolved Raman spectroscopy (TRRS) with a picosecond pulsed laser and an intensified charge-coupled device (ICCD) detector for the noninvasive identification of explosive materials through several millimeters of opaque polymers or plastic packaging materials. By means of a short (250 ps) gate which can be delayed several hundred picoseconds after the laser pulse, the ICCD detector allows for the temporal discrimination between photons from the surface of a sample and those from deeper layers. TRRS was applied for the detection of the two main isomers of dinitrotoluene, 2,4-dinitrotoluene, and 2,6-dinitrotoluene as well as for various other components of explosive mixtures, including akardite II, diphenylamine, and ethyl centralite. Spectra were obtained through different diffuse scattering white polymer materials: polytetrafluoroethylene (PTFE), polyoxymethylene (POM), and polyethylene (PE). Common packaging materials of various thicknesses were also selected, including polystyrene (PS) and polyvinyl chloride (PVC). With the demonstration of the ability to detect concealed, explosives-related compounds through an opaque first layer, this study may have important applications in the security and forensic fields.

  14. Possible observation of parametrically amplified coherent phasons in K0.3MoO3 using time-resolved extreme-ultraviolet angle-resolved photoemission spectroscopy

    Science.gov (United States)

    Liu, H. Y.; Gierz, I.; Petersen, J. C.; Kaiser, S.; Simoncig, A.; Cavalieri, A. L.; Cacho, C.; Turcu, I. C. E.; Springate, E.; Frassetto, F.; Poletto, L.; Dhesi, S. S.; Xu, Z.-A.; Cuk, T.; Merlin, R.; Cavalleri, A.

    2013-07-01

    We use time- and angle-resolved photoemission spectroscopy in the extreme ultraviolet to measure the time- and momentum-dependent electronic structures of photoexcited K0.3MoO3. Prompt depletion of the charge-density wave condensate launches coherent oscillations of the amplitude mode, observed as a 1.7-THz-frequency modulation of the bonding band position. In contrast, the antibonding band oscillates at about half this frequency. We attribute these oscillations to coherent excitation of phasons via parametric amplification of phase fluctuations.

  15. Review of the theoretical description of time-resolved angle-resolved photoemission spectroscopy in electron-phonon mediated superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Kemper, A.F. [Department of Physics, North Carolina State University, Raleigh, NC (United States); Sentef, M.A. [Max Planck Institute for the Structure and Dynamics of Matter, Center for Free Electron Laser Science, Hamburg (Germany); Moritz, B. [Stanford Institute for Materials and Energy Sciences (SIMES), SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Devereaux, T.P. [Stanford Institute for Materials and Energy Sciences (SIMES), SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA (United States); Freericks, J.K. [Department of Physics, Georgetown University, Washington, DC (United States)

    2017-09-15

    We review recent work on the theory for pump/probe photoemission spectroscopy of electron-phonon mediated superconductors in both the normal and the superconducting states. We describe the formal developments that allow one to solve the Migdal-Eliashberg theory in nonequilibrium for an ultrashort laser pumping field, and explore the solutions which illustrate the relaxation as energy is transferred from electrons to phonons. We focus on exact results emanating from sum rules and approximate numerical results which describe rules of thumb for relaxation processes. In addition, in the superconducting state, we describe how Anderson-Higgs oscillations can be excited due to the nonlinear coupling with the electric field and describe mechanisms where pumping the system enhances superconductivity. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Fast beam studies of free radical photodissociation

    Energy Technology Data Exchange (ETDEWEB)

    Cyr, Douglas Robert [Univ. of California, Berkeley, CA (United States)

    1993-11-01

    The photodissociation of free radicals is studied in order to characterize the spectroscopy and dissociation dynamics of the dissociative electronic states in these species. To accomplish this, a novel method of radical production, based on the photodetachment of the corresponding negative ion, has been combined with a highly complementary form of photofragment translational spectroscopy. The optical spectroscopy of transitions to dissociative states is determined by monitoring the total photofragment yield as a function of dissociation photon energy. Branching ratios to various product channels, internal energy distributions of the fragments, bond dissociation energies, and the translational energy-dependent photofragment recoil angular distributions are then determined at selected excitation energies. A detailed picture of the dissociation dynamics can then be formulated, allowing insight concerning the interactions of potential energy surfaces involved in the dissociation. After an introduction to the concepts and techniques mentioned above, the experimental apparatus used in these experiments is described in detail. The basis and methods used in the treatment of data, especially in the dissociation dynamics experiments, are then put forward.

  17. Investigations of suspension stability of iron oxide nanoparticles using time-resolved UV-visible spectroscopy

    Science.gov (United States)

    Vikram, S.; Vasanthakumari, R.; Tsuzuki, Takuya; Rangarajan, Murali

    2016-09-01

    This study examines the suspension stability of iron oxide nanoparticles of different sizes, magnetic susceptibility, and saturation magnetization over long time scales in dilute systems using time-resolved UV-visible spectroscopy. The effects of citric acid as a chelating agent and applied external magnetic field are also studied. UV-visible spectra are obtained at different times for citric-acid-stabilized nanoparticles dispersed in water, and the peak absorbance is tracked with time, in the presence and absence of external magnetic fields. It is seen that the nanoparticles sediment slowly even in the absence of chain formation, with the phenomenon occurring in two-to-three regimes for the systems studied. Sedimentation exhibits either exponential or power-law behavior of maximum absorbance with time. In the dilute dispersions studied, thermal dispersion is about two orders of magnitude stronger than van der Waals interactions, and chain formation is not easy. Yet, it is likely that local anisotropic structures of the nanoparticles form, through which the attractive interactions result in sedimentation. Citric acid gradually stabilizes the aggregating particles; after an initial faster sedimentation, electrostatic repulsion causes the particles to segregate, as observed by a linear increase in the concentration of the nanoparticles at long times. In the presence of magnetic field, stabilization effects are significantly reduced. It is seen that though the attractive force between the nanoparticles and the external field is smaller than Brownian forces, together with van der Waals interactions, these attractive forces likely act as directing agents facilitating sedimentation. This study demonstrates that aggregation-induced sedimentation of magnetic nanoparticles is likely to play a significant role in magnetic drug targeting even when the particles are stabilized with chelating agents.

  18. Investigations of suspension stability of iron oxide nanoparticles using time-resolved UV–visible spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Vikram, S.; Vasanthakumari, R. [B. S. Abdur Rahman University, Polymer Nanotechnology Centre (India); Tsuzuki, Takuya [Australian National University, Research School of Engineering, College of Engineering and Computer Science (Australia); Rangarajan, Murali, E-mail: r-murali@cb.amrita.edu [Amrita University, Center of Excellence in Advanced Materials and Green Technologies, Amrita School of Engineering Coimbatore (India)

    2016-09-15

    This study examines the suspension stability of iron oxide nanoparticles of different sizes, magnetic susceptibility, and saturation magnetization over long time scales in dilute systems using time-resolved UV–visible spectroscopy. The effects of citric acid as a chelating agent and applied external magnetic field are also studied. UV–visible spectra are obtained at different times for citric-acid-stabilized nanoparticles dispersed in water, and the peak absorbance is tracked with time, in the presence and absence of external magnetic fields. It is seen that the nanoparticles sediment slowly even in the absence of chain formation, with the phenomenon occurring in two-to-three regimes for the systems studied. Sedimentation exhibits either exponential or power-law behavior of maximum absorbance with time. In the dilute dispersions studied, thermal dispersion is about two orders of magnitude stronger than van der Waals interactions, and chain formation is not easy. Yet, it is likely that local anisotropic structures of the nanoparticles form, through which the attractive interactions result in sedimentation. Citric acid gradually stabilizes the aggregating particles; after an initial faster sedimentation, electrostatic repulsion causes the particles to segregate, as observed by a linear increase in the concentration of the nanoparticles at long times. In the presence of magnetic field, stabilization effects are significantly reduced. It is seen that though the attractive force between the nanoparticles and the external field is smaller than Brownian forces, together with van der Waals interactions, these attractive forces likely act as directing agents facilitating sedimentation. This study demonstrates that aggregation-induced sedimentation of magnetic nanoparticles is likely to play a significant role in magnetic drug targeting even when the particles are stabilized with chelating agents.Graphical abstract.

  19. Time-resolved terahertz spectroscopy of charge carrier dynamics in the chalcogenide glass As30Se30Te40 [Invited

    DEFF Research Database (Denmark)

    Wang, Tianwu; Romanova, Elena A.; Abdel-Moneim, Nabil

    2016-01-01

    Broadband (1.6-18 THz) terahertz time-domain spectroscopy (THz-TDS) and time-resolved terahertz spectroscopy (TRTS) were performed on a 54 mu m thick chalcogenide glass (As30Se30Te40) sample with a two-color laser-induced air plasma THz system in transmission and reflection modes, respectively. Two...... by the Drude-Smith conductivity model with a carrier scattering time of 12-17 fs, and we observe significant carrier localization effects. A fast refractive index change was observed 100 fs before the conductivity reached its maximum, with 2 orders of magnitude larger amplitude than expected for the optically...

  20. Anisotropic electric conductivity of delafossite PdCoO2 studied by angle-resolved photoemission spectroscopy.

    Science.gov (United States)

    Noh, Han-Jin; Jeong, Jinwon; Jeong, Jinhwan; Cho, En-Jin; Kim, Sung Baek; Kim, Kyoo; Min, B I; Kim, Hyeong-Do

    2009-06-26

    An explicit connection between the electronic structure and the anisotropic high conductivity of delafossite-type PdCoO2 has been established by angle-resolved photoemission spectroscopy (ARPES) and core-level x-ray photoemission spectroscopy. The ARPES spectra show that a large hexagonal electronlike Fermi surface (FS) consists of very dispersive Pd 4d states. The carrier velocity and lifetime are determined from the ARPES data, and the conductivity is calculated by a solution of the Boltzmann equation, which demonstrates that the high anisotropic conductivity originates from the high carrier velocity, the large two-dimensional FS, and the long lifetime of the carriers.

  1. Ultrafast optical responses of {beta}-carotene and lycopene probed by sub-20-fs time-resolved coherent spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, M.; Sugisaki, M. [CREST-JST and Department of Physics, Osaka City University, Osaka 558-8585 (Japan); Gall, A.; Robert, B. [CEA, Institut de Biologie et Technologies de Saclay, and CNRS, Gif-sur-Yvette F-91191 (France); Cogdell, R.J. [IBLS, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow G12 8QQ, Scotland (United Kingdom); Hashimoto, H., E-mail: hassy@sci.osaka-cu.ac.j [CREST-JST and Department of Physics, Osaka City University, Osaka 558-8585 (Japan)

    2009-12-15

    We investigate how structural distortions in carotenoid cause decoherences of its high-frequency vibrational modes by applying the sub-20-fs time-resolved transient grating spectroscopy to {beta}-carotene and lycopene. The results indicate that the C=C central stretching mode shows significant loss of coherence under the effects of the steric hindrance between {beta}-ionone ring and polyene backbone, whereas the other high-frequency modes do not show such dependency on the structural distortions.

  2. Quantification of joint inflammation in rheumatoid arthritis by time-resolved diffuse optical spectroscopy and tracer kinetic modeling

    Science.gov (United States)

    Ioussoufovitch, Seva; Morrison, Laura B.; Lee, Ting-Yim; St. Lawrence, Keith; Diop, Mamadou

    2015-03-01

    Rheumatoid arthritis (RA) is characterized by chronic synovial inflammation, which can cause progressive joint damage and disability. Diffuse optical spectroscopy (DOS) and imaging have the potential to become potent monitoring tools for RA. We devised a method that combined time-resolved DOS and tracer kinetics modeling to rapidly and reliably quantify blood flow in the joint. Preliminary results obtained from two animals show that the technique can detect joint inflammation as early as 5 days after onset.

  3. System for time-resolved laser absorption spectroscopy and its application to high-power impulse magnetron sputtering

    Czech Academy of Sciences Publication Activity Database

    Adámek, Petr; Olejníček, Jiří; Hubička, Zdeněk; Čada, Martin; Kment, Štěpán; Kohout, Michal; Do, H.T.

    2017-01-01

    Roč. 88, č. 2 (2017), 1-8, č. článku 023105. ISSN 0034-6748 R&D Projects: GA TA ČR(CZ) TF01000084; GA ČR(CZ) GA15-00863S Institutional support: RVO:68378271 Keywords : plasma diagnostics * HiPIMS * time resolved measurement * laser absorption spectroscopy Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.515, year: 2016

  4. Spectrally Resolved and Functional Super-resolution Microscopy via Ultrahigh-Throughput Single-Molecule Spectroscopy.

    Science.gov (United States)

    Yan, Rui; Moon, Seonah; Kenny, Samuel J; Xu, Ke

    2018-02-14

    As an elegant integration of the spatial and temporal dimensions of single-molecule fluorescence, single-molecule localization microscopy (SMLM) overcomes the diffraction-limited resolution barrier of optical microscopy by localizing single molecules that stochastically switch between fluorescent and dark states over time. While this type of super-resolution microscopy (SRM) technique readily achieves remarkable spatial resolutions of ∼10 nm, it typically provides no spectral information. Meanwhile, current scanning-based single-location approaches for mapping the positions and spectra of single molecules are limited by low throughput and are difficult to apply to densely labeled (bio)samples. In this Account, we summarize the rationale, design, and results of our recent efforts toward the integration of the spectral dimension of single-molecule fluorescence with SMLM to achieve spectrally resolved SMLM (SR-SMLM) and functional SRM (f-SRM). By developing a wide-field scheme for spectral measurement and implementing single-molecule fluorescence on-off switching typical of SMLM, we first showed that in densely labeled (bio)samples it is possible to record the fluorescence spectra and positions of millions of single molecules synchronously within minutes, giving rise to ultrahigh-throughput single-molecule spectroscopy and SR-SMLM. This allowed us to first show statistically that for many dyes, single molecules of the same species exhibit near identical emission in fixed cells. This narrow distribution of emission wavelengths, which contrasts markedly with previous results at solid surfaces, allowed us to unambiguously identify single molecules of spectrally similar dyes. Crosstalk-free, multiplexed SRM was thus achieved for four dyes that were merely 10 nm apart in emission spectrum, with the three-dimensional SRM images of all four dyes being automatically aligned within one image channel. The ability to incorporate single-molecule fluorescence measurement with

  5. Detection of rhodopsin dimerization in situ by PIE-FCCS, a time-resolved fluorescence spectroscopy.

    Science.gov (United States)

    Smith, Adam W

    2015-01-01

    Rhodopsin self-associates in the plasma membrane. At low concentrations, the interactions are consistent with a monomer-dimer equilibrium (Comar et al., J Am Chem Soc 136(23):8342-8349, 2014). At high concentrations in native tissue, higher-order clusters have been observed (Fotiadis et al., Nature 421:127-128, 2003). The physiological role of rhodopsin dimerization is still being investigated, but it is clear that a quantitative assessment is essential to determining the function of rhodopsin clusters in vision. To quantify rhodopsin interactions, I will outline the theory and methodology of a specialized time-resolved fluorescence spectroscopy for measuring membrane protein-protein interactions called pulsed-interleaved excitation fluorescence cross-correlation spectroscopy (PIE-FCCS). The strength of this technique is its ability to quantify rhodopsin interactions in situ (i.e., a live cell plasma membrane). There are two reasons for restricting the scope to live cell membranes. First, the compositional heterogeneity of the plasma membrane creates a complex milieu with thousands of lipid, protein, and carbohydrate species. This makes it difficult to infer quaternary interactions from detergent solubilized samples or construct a model phospholipid bilayer that recapitulates all of the interactions present in native membranes. Second, organizational structure and dynamics is a key feature of the plasma membrane, and fixation techniques like formaldehyde cross-linking and vitrification will modulate the interactions. PIE-FCCS is based on two-color fluorescence imaging with time-correlated single-photon counting (TCSPC) (Becker et al., Rev Sci Instrum 70:1835-1841, 1999). By time-tagging every detected photon, the data can be analyzed as a fluorescence intensity distribution, fluorescence lifetime histogram, or fluorescence (cross-)correlation spectra (FCS/FCCS) (Becker, Advanced time-correlated single-photon counting techniques, Springer, Berlin, 2005). These

  6. Photodissociation of OH in interstellar clouds

    NARCIS (Netherlands)

    Dishoeck, van E.F.; Dalgarno, A.

    1984-01-01

    Calculations are presented of the lifetime of OH against photodissociation by the interstellar radiation field as a function of depth into interstellar clouds containing grains of various scattering properties. The effectiveness of the different photodissociation channels changes with depth into a

  7. Temperature Measurements in Reacting Flows Using Time-Resolved Femtosecond Coherent Anti-Stokes Raman Scattering (fs-CARS) Spectroscopy (Postprint)

    National Research Council Canada - National Science Library

    Roy, Sukesh; Kinnius, Paul J; Lucht, Robert P; Gord, James R

    2007-01-01

    Time-resolved femtosecond coherent anti-Stokes Raman scattering (fs-CARS) spectroscopy of the nitrogen molecule is used for the measurement of temperature in atmospheric-pressure, near-adiabatic, hydrogen-air diffusion flames...

  8. Effects of Cosmetic Therapy on Cognitive Function in Elderly Women Evaluated by Time-Resolved Spectroscopy Study.

    Science.gov (United States)

    Machida, A; Shirato, M; Tanida, M; Kanemaru, C; Nagai, S; Sakatani, K

    2016-01-01

    With the rapid increase in dementia in developed countries, it is important to establish methods for maintaining or improving cognitive function in elderly people. To resolve such problems, we have been developing a cosmetic therapy (CT) program for elderly women. However, the mechanism and limitations of CT are not yet clear. In order to clarify these issues, we employed time-resolved spectroscopy (TRS) to evaluate the effect of CT on prefrontal cortex (PFC) activity in elderly females with various levels of cognitive impairment. Based on the Mini-Mental State Examination (MMSE) score, the subjects were classified into mild (mean MMSE score: 24.1±3.8) and moderate (mean MMSE score: 10.3±5.8) cognitive impairment (CI) groups (p0.05). These results suggest that CT affects cognitive function by altering PFC activity in elderly women with mild CI, but not moderate CI.

  9. Native point defect formation in flash sintered ZnO studied by depth-resolved cathodoluminescence spectroscopy

    Science.gov (United States)

    Gao, Hantian; Asel, Thaddeus J.; Cox, Jon W.; Zhang, Yuanyao; Luo, Jian; Brillson, L. J.

    2016-09-01

    Depth-resolved cathodoluminescence spectroscopy studies of flash sintered ZnO reveal that thermal runaway induces the formation of native point defects inside individual grains. Defects associated with oxygen vacancies (VO) form preferentially, contributing additional donors that increase conductivity within the grains of the polycrystalline material. Hyperspectral imaging of the granular cross sections shows filaments of increased VO following thermal runaway between the capacitor anode and cathode, supporting a heating mechanism localized on a granular scale. Within the grains, these defects form preferentially inside rather than at their boundaries, further localizing the dominant heating mechanism.

  10. Electronic states localized at surface defects on Cu(755) studied by angle-resolved ultraviolet photoelectron spectroscopy using synchrotron radiation

    CERN Document Server

    Ogawa, K; Namba, H

    2003-01-01

    'Regularly stepped' and 'defective' surfaces of Cu(755) were prepared by low- and high-temperature annealing, respectively, of a clean specimen. Electronic states on both surfaces were studied by angle-resolved ultraviolet photoelectron spectroscopy using synchrotron radiation. On the defective Cu(755), we found a new photoelectron peak due to surface defects just below the Fermi level. The dispersion profile of the defect state is derived to be almost flat, which demonstrates the localized nature of the defects. High activity to oxygen adsorption of the defect state was revealed. (author)

  11. Time-resolved photoelectron spectroscopy of polyatomic molecules using 42-nm vacuum ultraviolet laser based on high harmonics generation

    Science.gov (United States)

    Nishitani, Junichi; West, Christopher W.; Higashimura, Chika; Suzuki, Toshinori

    2017-09-01

    Time-resolved photoelectron spectroscopy (TRPES) of gaseous polyatomic molecules using 266-nm (4.7 eV) pump and 42-nm (29.5 eV) probe pulses is presented. A 1-kHz Ti:sapphire laser with a 35 fs pulse duration is employed to generate high harmonics in Kr gas, and the 19th harmonic (42-nm) was selected using two SiC/Mg mirrors. Clear observation of the ultrafast electronic dephasing in pyrazine and photoisomerization of 1,3-cyclohexadiene demonstrates the feasibility of TRPES with the UV pump and VUV probe pulses under weak excitation conditions in the perturbation regime.

  12. Temporally resolved diagnosis of an atmospheric-pressure pulse-modulated argon surface wave plasma by optical emission spectroscopy

    Science.gov (United States)

    Chen, Chuan-Jie; Li, Shou-Zhe; Zhang, Jialiang; Liu, Dongping

    2018-01-01

    A pulse-modulated argon surface wave plasma generated at atmospheric pressure is characterized by means of temporally resolved optical emission spectroscopy (OES). The temporal evolution of the gas temperature, the electron temperature and density, the radiative species of atomic Ar, and the molecular band of OH(A) and N2(C) are investigated experimentally by altering the instantaneous power, pulse repetitive frequency, and duty ratio. We focused on the physical phenomena occurring at the onset of the time-on period and after the power interruption at the start of the time-off period. Meanwhile, the results are discussed qualitatively for an in-depth insight of its dynamic evolution.

  13. Soft X-ray angle-resolved photoemission spectroscopy of heavily boron-doped superconducting diamond films

    Directory of Open Access Journals (Sweden)

    T. Yokoya, T. Nakamura, T. Matushita, T. Muro, H. Okazaki, M. Arita, K. Shimada, H. Namatame, M. Taniguchi, Y. Takano, M. Nagao, T. Takenouchi, H. Kawarada and T. Oguchi

    2006-01-01

    Full Text Available We have performed soft X-ray angle-resolved photoemission spectroscopy (SXARPES of microwave plasma-assisted chemical vapor deposition diamond films with different B concentrations in order to study the origin of the metallic behavior of superconducting diamond. SXARPES results clearly show valence band dispersions with a bandwidth of ~23 eV and with a top of the valence band at gamma point in the Brillouin zone, which are consistent with the calculated valence band dispersions of pure diamond. Boron concentration-dependent band dispersions near the Fermi level (EF exhibit a systematic shift of EF, indicating depopulation of electrons due to hole doping. These SXARPES results indicate that diamond bands retain for heavy boron doping and holes in the diamond band are responsible for the metallic states leading to superconductivity at low temperature. A high-resolution photoemission spectroscopy spectrum near EF of a heavily boron-doped diamond superconductor is also presented.

  14. Photodissociation of H2S and the HS radical at 193.3 nm

    Science.gov (United States)

    Continetti, R. E.; Balko, B. A.; Lee, Y. T.

    1991-08-01

    Photodissociation of H2S has been studied at 193.3 nm using H atom photofragment-translational spectroscopy with mass-spectrometric detection. H + HS(v) product branching ratios are reported which are not in quantitative agreement with other recent experimental results. Secondary photodissociation of HS radicals has also been observed, showing that both S(3P) and S(1D) are produced via perpendicular transition. The HS bond energy was found to be 3.62 ± 0.03 eV.

  15. Time-resolved photoelectron nano-spectroscopy of individual silver particles: Perspectives and limitations

    DEFF Research Database (Denmark)

    Rohmer, Martin; Bauer, Michael; Leissner, Till

    2010-01-01

    Simultaneous time- and energy-resolved two-photon photoemission with nanometer resolution is demonstrated for the first time. We monitor the energy dependence of the decay dynamics of electron excitations in individual silver particles, which were deposited from a gas aggregation cluster source o...

  16. Time-resolved Spectroscopy of a Sheared Flow Stabilized Z-pinch Plasma

    Science.gov (United States)

    Forbes, Eleanor

    2016-10-01

    The ZaP Flow Z-pinch Project investigates the use of sheared-axial flows to stabilize an otherwise unstable plasma configuration. Diagnostics with sub-microsecond resolution are required to obtain accurate time-resolved data since the plasma pulse is approximately 100 μs. Analyzing the Doppler shift of impurity line radiation from the pinch provides a measure of the velocity profile and is a reliable method of determining the plasma sheared flow. The velocity profile is spatially resolved through the use of a 20-chord fiber bundle. The ZaP-HD experiment has used a PI-MAX intensified CCD array to record a single time-resolved spectrum per plasma pulse. Obtaining the evolution of the velocity profile using this method required spectra acquired over hundreds of pulses with identical initial parameters and varying acquisition times. The use of a Kirana 05M ultra-fast framing camera is investigated for recording time-resolved velocity profiles during a single pulse. The Kirana utilizes an ultraviolet intensifier to record 180 frames of UV light at up to 2 million frames per second. An ultraviolet optics system is designed to couple the exit port of an Acton SP-500i spectrometer to the Kirana UV intensifier and focus spectra at the camera detector plane. This work is supported by US DoE FES, NNSA, and ARPA-E ALPHA.

  17. Angle-Resolved Photoemission Spectroscopy on Electronic Structure and Electron-Phonon Coupling in Cuprate Superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, X.J.

    2010-04-30

    In addition to the record high superconducting transition temperature (T{sub c}), high temperature cuprate superconductors are characterized by their unusual superconducting properties below T{sub c}, and anomalous normal state properties above T{sub c}. In the superconducting state, although it has long been realized that superconductivity still involves Cooper pairs, as in the traditional BCS theory, the experimentally determined d-wave pairing is different from the usual s-wave pairing found in conventional superconductors. The identification of the pairing mechanism in cuprate superconductors remains an outstanding issue. The normal state properties, particularly in the underdoped region, have been found to be at odd with conventional metals which is usually described by Fermi liquid theory; instead, the normal state at optimal doping fits better with the marginal Fermi liquid phenomenology. Most notable is the observation of the pseudogap state in the underdoped region above T{sub c}. As in other strongly correlated electrons systems, these unusual properties stem from the interplay between electronic, magnetic, lattice and orbital degrees of freedom. Understanding the microscopic process involved in these materials and the interaction of electrons with other entities is essential to understand the mechanism of high temperature superconductivity. Since the discovery of high-T{sub c} superconductivity in cuprates, angle-resolved photoemission spectroscopy (ARPES) has provided key experimental insights in revealing the electronic structure of high temperature superconductors. These include, among others, the earliest identification of dispersion and a large Fermi surface, an anisotropic superconducting gap suggestive of a d-wave order parameter, and an observation of the pseudogap in underdoped samples. In the mean time, this technique itself has experienced a dramatic improvement in its energy and momentum resolutions, leading to a series of new discoveries not

  18. Light harvesting, light adaptation and photoprotection in aquatic photosynthesis studies by time-resolved fluorescence spectroscopy

    OpenAIRE

    Chukhutsina, V.

    2015-01-01

    Summary Aquatic photosynthetic organisms unavoidably experience light fluctuations that vary in amplitude, duration and origin, compromising their photosynthetic efficiency. Weather conditions and underwater flow cause continuous changes in irradiance to which the organisms have to adapt. Many light-adaptation strategies of photosynthetic organisms, such as light acclimation, photoprotection and state transitions are still not well understood. In this thesis, time-resolved fluorescence s...

  19. Cyclohexene photo-oxidation over vanadia catalyst analyzed by time resolvedATR-FT-IT spectroscopy

    NARCIS (Netherlands)

    Mul, Guido; Wasylenko, W.; Sameh Hamdy, M.; Frei, H.

    2008-01-01

    Vanadia was incorporated in the 3-D mesoporous material TUD-1 with a loading of 2% w/w vanadia. The performance in the selective photo-oxidation of liquid cyclohexene was investigated using ATR-FT-IR spectroscopy. Under continuous illumination at 458 nm a significant amount of product,

  20. Ultrabroadband time-resolved THz spectroscopy of polymer-based solar cells

    DEFF Research Database (Denmark)

    Cooke, David G.; Krebs, Frederik C; Jepsen, Peter Uhd

    2011-01-01

    We have developed ultrabroadband THz spectroscopy in reflection mode for characterization of conductivity dynamics in conductive polymer samples used in organic solar cells. The spectrometer is designed to have a time resolution limited only by the duration of the optical pump pulse, thus enabling...... the investigation of charge generation processes on the sub-100-fs time scale....

  1. Use of time-resolved spectroscopy as a method to monitor carotenoids present in tomato extract obtained using ultrasound treatment.

    Science.gov (United States)

    Bot, Francesca; Anese, Monica; Lemos, M Adília; Hungerford, Graham

    2016-01-01

    Compounds exhibiting antioxidant activity have received much interest in the food industry because of their potential health benefits. Carotenoids such as lycopene, which in the human diet mainly derives from tomatoes (Solanum lycopersicum), have attracted much attention in this aspect and the study of their extraction, processing and storage procedures is of importance. Optical techniques potentially offer advantageous non-invasive and specific methods to monitor them. To obtain both fluorescence and Raman information to ascertain if ultrasound assisted extraction from tomato pulp has a detrimental effect on lycopene. Use of time-resolved fluorescence spectroscopy to monitor carotenoids in a hexane extract obtained from tomato pulp with application of ultrasound treatment (583 kHz). The resultant spectra were a combination of scattering and fluorescence. Because of their different timescales, decay associated spectra could be used to separate fluorescence and Raman information. This simultaneous acquisition of two complementary techniques was coupled with a very high time-resolution fluorescence lifetime measurement of the lycopene. Spectroscopic data showed the presence of phytofluene and chlorophyll in addition to lycopene in the tomato extract. The time-resolved spectral measurement containing both fluorescence and Raman data, coupled with high resolution time-resolved measurements, where a lifetime of ~5 ps was attributed to lycopene, indicated lycopene appeared unaltered by ultrasound treatment. Detrimental changes were, however, observed in both chlorophyll and phytofluene contributions. Extracted lycopene appeared unaffected by ultrasound treatment, while other constituents (chlorophyll and phytofluene) were degraded. Copyright © 2015 John Wiley & Sons, Ltd.

  2. State-Resolved Dynamics of the CN(B2Sigma+) and CH(A2Delta)Excited Products Resulting from the VUV Photodissociation of CH3CN

    Energy Technology Data Exchange (ETDEWEB)

    Howle, Chris R.; Arrowsmith, Alan N.; Chikan, Viktor; Leone,Stephen R.

    2007-01-18

    Fourier transform visible spectroscopy, in conjunction withVUV photons produced by a synchrotron, is employed to investigate thephotodissociation of CH3CN. Emission is observed from both theCN(B2Sigma+ - X2Sigma+) and CH(A2Delta - X2PI) transitions; only theformer is observed in spectra recorded at 10.2 and 11.5 eV, whereas bothare detected in the 16 eV spectrum. The rotational and vibrationaltemperatures of both the CN(B2Sigma+) and CH(A2Delta) radical productsare derived using a combination of spectral simulations and Boltzmannplots. The CN(B2Sigma+) fragment displays a bimodal rotationaldistribution in all cases. Trot(CN(B2Sigma+)) ranges from 375 to 600 K atlower K' and from 1840 to 7700 K at higher K' depending on the photonenergy used. Surprisal analyses indicate clear bimodal rotationaldistributions, suggesting CN(B2Sigma+) is formed via either linear orbent transition states, respectively, depending on the extent ofrotational excitation in this fragment. CH(A2Delta) has a singlerotational distribution when produced at 16 eV which results inTrot(CH(A2Delta)) = 4895 +- 140 K in nu' = 0 and 2590 +- 110 K in nu' =1. From thermodynamic calculations, it is evident that CH(A2Delta) isproduced along with CN(X2Sigma+) + H2. These products can be formed by atwo step mechanism (via excited CH3* and ground state CN(X2Sigma+) or aprocess similar to the "roaming" atom mechanism; the data obtained hereare insufficient to definitively conclude whether either pathway occurs.A comparison of the CH(A2Delta) and CN(B2Sigma+) rotational distributionsproduced by 16 eV photons allows the ratio between the two excitedfragments at this energy to be determined. An expression that considersthe rovibrational populations of both band systems results in aCH(A2Delta):CN(B2Sigma+) ratio of (1.2 +- 0.1):1 at 16 eV, therebyindicating that production of CH(A2Delta) is significant at 16eV.

  3. Phase-Resolved Heterodyne-Detected Transient Grating Enhances the Capabilities of 2D IR Echo Spectroscopy.

    Science.gov (United States)

    Jin, Geun Young; Kim, Yung Sam

    2017-02-09

    2D IR echo spectroscopy, with high sensitivity and femtosecond time resolution, enables us to understand structure and ultrafast dynamics of molecular systems. Application of this experimental technique on weakly absorbing samples, however, had been limited by the precise and unambiguous phase determination of the echo signals. In this study, we propose a new experimental scheme that significantly increases the phase stability of the involved IR pulses. We have demonstrated that the incorporation of phase-resolved heterodyne-detected transient grating (PR-HDTG) spectroscopy greatly enhances the capabilities of 2D IR spectroscopy. The new experimental scheme has been used to obtain 2D IR spectra on weakly absorbing azide ions (N3-) in H2O (absorbance ∼0.025), free of phase ambiguity even at large waiting times. We report the estimated spectral diffusion time scale (1.056 ps) of azide ions in aqueous solution from the 2D IR spectra and the vibrational lifetime (750 ± 3 fs) and the reorientation time (1108 ± 24 fs) from the PR-HDTG spectra.

  4. Spatially resolved Raman spectroscopy on indium-catalyzed core-shell germanium nanowires: size effects

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Y; Zardo, I; Garma, T; Heiss, M; Fontcuberta i Morral, A [Walter Schottky Institut, Physik Department, Technische Universitaet Muenchen, Am Coulombwall 3, D-85748 Garching (Germany); Cao, L Y; Brongersma, M L [Geballe Laboratory for Advanced Materials, 476 Lomita Mall, Stanford University, Stanford, CA 94305 (United States); Morante, J R; Arbiol, J [Departament d' Electronica, Universitat de Barcelona, 08028 Barcelona, CAT (Spain)

    2010-03-12

    The structure of indium-catalyzed germanium nanowires is investigated by atomic force microscopy, scanning confocal Raman spectroscopy and transmission electron microscopy. The nanowires are formed by a crystalline core and an amorphous shell. We find that the diameter of the crystalline core varies along the nanowire, down to few nanometers. Phonon confinement effects are observed in the regions where the crystalline region is the thinnest. The results are consistent with the thermally insulating behavior of the core-shell nanowires.

  5. Super-resolved FT-IR spectroscopy: Strategies, challenges, and opportunities for membrane biophysics.

    Science.gov (United States)

    Li, Jessica J; Yip, Christopher M

    2013-10-01

    Direct correlation of molecular conformation with local structure is critical to studies of protein- and peptide-membrane interactions, particularly in the context of membrane-facilitated aggregation, and disruption or disordering. Infrared spectroscopy has long been a mainstay for determining molecular conformation, following folding dynamics, and characterizing reactions. While tremendous advances have been made in improving the spectral and temporal resolution of infrared spectroscopy, it has only been with the introduction of scanned-probe techniques that exploit the raster-scanning tip as either a source, scattering tool, or measurement probe that researchers have been able to obtain sub-diffraction limit IR spectra. This review will examine the history of correlated scanned-probe IR spectroscopies, from their inception to their use in studies of molecular aggregates, membrane domains, and cellular structures. The challenges and opportunities that these platforms present for examining dynamic phenomena will be discussed. This article is part of a Special Issue entitled: FTIR in membrane proteins and peptide studies. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Interlayer Interaction and Electronic Screening in Multilayer Graphene Investigated with Angle-Resolved Photoemission Spectroscopy

    Science.gov (United States)

    Ohta, Taisuke; Bostwick, Aaron; McChesney, J. L.; Seyller, Thomas; Horn, Karsten; Rotenberg, Eli

    2007-05-01

    The unusual transport properties of graphene are the direct consequence of a peculiar band structure near the Dirac point. We determine the shape of the π bands and their characteristic splitting, and find the transition from two-dimensional to bulk character for 1 to 4 layers of graphene by angle-resolved photoemission. By detailed measurements of the π bands we derive the stacking order, layer-dependent electron potential, screening length, and strength of interlayer interaction by comparison with tight binding calculations, yielding a comprehensive description of multilayer graphene’s electronic structure.

  7. Spatially resolved x-ray spectroscopy investigation of femtosecond laser irradiated Ar clusters.

    Science.gov (United States)

    Junkel-Vives, G C; Abdallah, J; Auguste, T; D'Oliveira, P; Hulin, S; Monot, P; Dobosz, S; Faenov, A Ya; Magunov, A I; Pikuz, T A; Skobelev, I Yu; Boldarev, A S; Gasilov, V A

    2002-03-01

    High temperature plasmas have been created by irradiating Ar clusters with high intensity 60-fs laser pulses. Detailed spectroscopic analysis of spatially resolved, high resolution x-ray data near the He(alpha) line of Ar is consistent with a two-temperature collisional-radiative model incorporating the effects of highly energetic electrons. The results of the spectral analysis are compared with a theoretical hydrodynamic model of cluster production, as well as interferometric data. The plasma parameters are notably uniform over one Rayleigh length (600 microm).

  8. Vibrational Cooling in A Cold Ion Trap: Vibrationally Resolved Photoelectron Spectroscopy of Cold C60- Anions

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xue B.; Woo, Hin-koon; Wang, Lai S.

    2005-08-01

    We demonstrate vibrational cooling of anions via collisions with a background gas in an ion trap attached to a cryogenically controlled cold head (10 ? 400 K). Photoelectron spectra of vibrationally cold C60- anions, produced by electrospray ionization and cooled in the cold ion trap, have been obtained. Relative to spectra taken at room temperature, vibrational hot bands are completely eliminated, yielding well resolved vibrational structures and a more accurate electron affinity for neutral C60. The electron affinity of C60 is measured to be 2.683 ? 0.008 eV. The cold spectra reveal complicated vibrational structures for the transition to the C60 ground state due to the Jahn-Teller effect in the ground state of C60-. Vibrational excitations in the two Ag modes and eight Hg modes are observed, providing ideal data to assess the vibronic couplings in C60-.

  9. Operation mechanism of a molecular machine revealed using time-resolved vibrational spectroscopy.

    Science.gov (United States)

    Panman, Matthijs R; Bodis, Pavol; Shaw, Daniel J; Bakker, Bert H; Newton, Arthur C; Kay, Euan R; Brouwer, Albert M; Buma, Wybren Jan; Leigh, David A; Woutersen, Sander

    2010-06-04

    Rotaxanes comprise macrocycles that can shuttle between docking stations along an axle. We explored the nanosecond shuttling mechanism by reversing the relative binding affinities of two stations through ultraviolet-induced transient reduction. We monitored the ensuing changes in the CO-stretching bands of the two stations and the shuttling macrocycle by means of an infrared probing pulse. Because hydrogen-bond scission and formation at the initial and final stations led to well-resolved changes in the respective CO-stretch frequencies, the departure and arrival of the macrocycle could be observed separately. We found that the shuttling involves two steps: thermally driven escape from the initial station, followed by rapid motion along the track ending either at the initial or final station. By varying the track's length, we found that the rapid motion approximates a biased one-dimensional random walk. However, surprisingly, the direction of the overall motion is opposite that of the bias.

  10. Tunable vacuum ultraviolet laser based spectrometer for angle resolved photoemission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Rui; Mou, Daixiang; Wu, Yun; Huang, Lunan; Kaminski, Adam [Division of Materials Science and Engineering, Ames Laboratory, Ames, Iowa 50011 (United States); Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011 (United States); McMillen, Colin D.; Kolis, Joseph [Department of Chemistry, Clemson University, Clemson, South Carolina 29634 (United States); Giesber, Henry G.; Egan, John J. [Advanced Photonic Crystals LLC, Fort Mill, South Carolina 29708 (United States)

    2014-03-15

    We have developed an angle-resolved photoemission spectrometer with tunable vacuum ultraviolet laser as a photon source. The photon source is based on the fourth harmonic generation of a near IR beam from a Ti:sapphire laser pumped by a CW green laser and tunable between 5.3 eV and 7 eV. The most important part of the set-up is a compact, vacuum enclosed fourth harmonic generator based on potassium beryllium fluoroborate crystals, grown hydrothermally in the US. This source can deliver a photon flux of over 10{sup 14} photon/s. We demonstrate that this energy range is sufficient to measure the k{sub z} dispersion in an iron arsenic high temperature superconductor, which was previously only possible at synchrotron facilities.

  11. Spatially resolved spectroscopy and electrical characterization of microplasmas and switchable microplasma arrays

    Science.gov (United States)

    Hoskinson, Alan R.; Hopwood, Jeffrey

    2014-02-01

    Microwave resonators are used to generate microplasmas in atmospheric-pressure argon. We present spectroscopic and electrical measurements of these microplasmas for both a single resonator and a five-element resonator array with dc voltage-switchable power distribution. These measurements include gas temperatures from fits to rotational emission spectra and electron densities from Stark broadening, both resolved in two spatial dimensions. Peak gas temperatures are found to be near 900 K in the centre of the microplasmas, while electron densities peak near 3 × 1014 cm-3. Spectroscopically derived plasma densities are validated by comparison with electrical measurements of the complex plasma impedances. The plasma impedances shift the resonant frequencies and quality factors of the individual resonators, which in turn influence power distribution to the resonators. Data suggest that this feedback loop reinforces the electrical switching mechanism.

  12. Time-resolved photoluminescence spectroscopy and imaging: new approaches to the analysis of cultural heritage and its degradation.

    Science.gov (United States)

    Nevin, Austin; Cesaratto, Anna; Bellei, Sara; D'Andrea, Cosimo; Toniolo, Lucia; Valentini, Gianluca; Comelli, Daniela

    2014-04-02

    Applications of time-resolved photoluminescence spectroscopy (TRPL) and fluorescence lifetime imaging (FLIM) to the analysis of cultural heritage are presented. Examples range from historic wall paintings and stone sculptures to 20th century iconic design objects. A detailed description of the instrumentation developed and employed for analysis in the laboratory or in situ is given. Both instruments rely on a pulsed laser source coupled to a gated detection system, but differ in the type of information they provide. Applications of FLIM to the analysis of model samples and for the in-situ monitoring of works of art range from the analysis of organic materials and pigments in wall paintings, the detection of trace organic substances on stone sculptures, to the mapping of luminescence in late 19th century paintings. TRPL and FLIM are employed as sensors for the detection of the degradation of design objects made in plastic. Applications and avenues for future research are suggested.

  13. On the intrinsic photophysics of indigo: a time-resolved photoelectron spectroscopy study of the indigo carmine dianion.

    Science.gov (United States)

    Chatterley, Adam S; Horke, Daniel A; Verlet, Jan R R

    2012-12-14

    The intrinsic photophysics of indigo has been studied using gas-phase time-resolved photoelectron imaging of the indigo carmine dianion (InC(2-)). The action spectrum reveals that the gas-phase absorption spectrum arising from the S(1) indigo. Femtosecond spectroscopy shows that the S(1) state decays on a 1.4 ps timescale. Through isotopic substitution, the primary mechanism on the S(1) excited state can be assigned to an intra-molecular proton transfer, which is the same as that which has been observed in solution. However, the excited state lifetime is significantly shorter in vacuum. These similarities and differences are discussed in terms of recent theoretical investigations of the S(1) excited state of indigo.

  14. In situ characterization of ZnTe epilayer irradiation via time-resolved and power-density-dependent Raman spectroscopy

    Science.gov (United States)

    Wiedemeier, V.; Berth, G.; Zrenner, A.; Larramendi, E. M.; Woggon, U.; Lischka, K.; Schikora, D.

    2011-10-01

    Laser irradiation damage in ZnTe epilayers was analyzed in situ by power-density-dependent and time-resolved micro-Raman spectroscopy. Damage by ablation or compound decomposition on the sample surface was revealed by the decrease of the ZnTe-nLO mode intensity with the increase of laser power density. The appearance of the peaks associated with the stronger crystalline-tellurium modes, tellurium aggregates and second-order Raman scattering at room temperature μ-Raman spectra was observed for higher power densities than 4.4 × 105 W cm-2. The Raman signal time transients of ZnTe-nLO and crystalline-tellurium modes reveal an exponential evolution of the laser irradiation damage and a fast formation of crystalline tellurium aggregates on the layer surface.

  15. Time-Resolved Fluorescence Spectroscopy and Fluorescence Lifetime Imaging Microscopy for Characterization of Dendritic Polymer Nanoparticles and Applications in Nanomedicine.

    Science.gov (United States)

    Boreham, Alexander; Brodwolf, Robert; Walker, Karolina; Haag, Rainer; Alexiev, Ulrike

    2016-12-24

    The emerging field of nanomedicine provides new approaches for the diagnosis and treatment of diseases, for symptom relief and for monitoring of disease progression. One route of realizing this approach is through carefully constructed nanoparticles. Due to the small size inherent to the nanoparticles a proper characterization is not trivial. This review highlights the application of time-resolved fluorescence spectroscopy and fluorescence lifetime imaging microscopy (FLIM) for the analysis of nanoparticles, covering aspects ranging from molecular properties to particle detection in tissue samples. The latter technique is particularly important as FLIM allows for distinguishing of target molecules from the autofluorescent background and, due to the environmental sensitivity of the fluorescence lifetime, also offers insights into the local environment of the nanoparticle or its interactions with other biomolecules. Thus, these techniques offer highly suitable tools in the fields of particle development, such as organic chemistry, and in the fields of particle application, such as in experimental dermatology or pharmaceutical research.

  16. Time-resolved spectroscopy and fluorescence resonance energy transfer in the study of excimer laser damage of chromatin

    Energy Technology Data Exchange (ETDEWEB)

    Radu, L. [Department of Molecular Genetics and Radiobiology, Babes National Institute, Bucharest (Romania)], E-mail: lilianajradu@yahoo.fr; Mihailescu, I. [Department of Lasers, Laser, Plasma and Radiation Physics Institute, Bucharest (Romania); Radu, S. [Department of Computer Science, Polytechnics University, Bucharest (Romania); Gazdaru, D. [Department of Biophysics, Bucharest University (Romania)

    2007-09-21

    The analysis of chromatin damage produced by a 248 nm excimer laser radiation, for doses of 0.3-3 MJ/m{sup 2} was carried out by time-resolved spectroscopy and fluorescence resonance energy transfer (FRET). The chromatin was extracted from a normal and a tumoral tissue of Wistar rats. The decrease with laser dose of the relative contribution of the excited state lifetimes of ethidium bromide (EtBr) bounded to chromatin constitutes an evidence of the reduction of chromatin deoxyribonucleic acid (DNA) double-strand structure. FRET was performed from dansyl chloride to acridine orange, both coupled to chromatin. The increase of the average distance between these ligands, under the action of laser radiation, reflects a loosening of the chromatin structure. The radiosensitivity of tumor tissue chromatin is higher than that of a normal tissue. The determination of the chromatin structure modification in an excimer laser field can be of interest in laser therapy.

  17. Time-Resolved Photoluminescence Spectroscopy and Imaging: New Approaches to the Analysis of Cultural Heritage and Its Degradation

    Directory of Open Access Journals (Sweden)

    Austin Nevin

    2014-04-01

    Full Text Available Applications of time-resolved photoluminescence spectroscopy (TRPL and fluorescence lifetime imaging (FLIM to the analysis of cultural heritage are presented. Examples range from historic wall paintings and stone sculptures to 20th century iconic design objects. A detailed description of the instrumentation developed and employed for analysis in the laboratory or in situ is given. Both instruments rely on a pulsed laser source coupled to a gated detection system, but differ in the type of information they provide. Applications of FLIM to the analysis of model samples and for the in-situ monitoring of works of art range from the analysis of organic materials and pigments in wall paintings, the detection of trace organic substances on stone sculptures, to the mapping of luminescence in late 19th century paintings. TRPL and FLIM are employed as sensors for the detection of the degradation of design objects made in plastic. Applications and avenues for future research are suggested.

  18. Time-Resolved Fluorescence Spectroscopy and Fluorescence Lifetime Imaging Microscopy for Characterization of Dendritic Polymer Nanoparticles and Applications in Nanomedicine

    Directory of Open Access Journals (Sweden)

    Alexander Boreham

    2016-12-01

    Full Text Available The emerging field of nanomedicine provides new approaches for the diagnosis and treatment of diseases, for symptom relief and for monitoring of disease progression. One route of realizing this approach is through carefully constructed nanoparticles. Due to the small size inherent to the nanoparticles a proper characterization is not trivial. This review highlights the application of time-resolved fluorescence spectroscopy and fluorescence lifetime imaging microscopy (FLIM for the analysis of nanoparticles, covering aspects ranging from molecular properties to particle detection in tissue samples. The latter technique is particularly important as FLIM allows for distinguishing of target molecules from the autofluorescent background and, due to the environmental sensitivity of the fluorescence lifetime, also offers insights into the local environment of the nanoparticle or its interactions with other biomolecules. Thus, these techniques offer highly suitable tools in the fields of particle development, such as organic chemistry, and in the fields of particle application, such as in experimental dermatology or pharmaceutical research.

  19. Time-resolved detection of temperature, concentration, and pressure in a shock tube by intracavity absorption spectroscopy

    Science.gov (United States)

    Fjodorow, Peter; Fikri, Mustapha; Schulz, Christof; Hellmig, Ortwin; Baev, Valery M.

    2016-06-01

    In this paper, we demonstrate the first application of intracavity absorption spectroscopy (ICAS) for monitoring species concentration, total pressure, and temperature in shock-tube experiments. ICAS with a broadband Er3+-doped fiber laser is applied to time-resolved measurements of absorption spectra of shock-heated C2H2. The measurements are performed in a spectral range between 6512 and 6542 cm-1, including many absorption lines of C2H2, with a time resolution of 100 µs and an effective absorption path length of 15 m. Up to 18-times increase of the total pressure and a temperature rise of up to 1200 K have been monitored. Due to the ability of simultaneously recording many absorption lines in a broad spectral range, the presented technique can also be applied to multi-component analysis of transient single-shot processes in reactive gas mixtures in shock tubes, pulse detonation engines, or explosions.

  20. Modified diglycol-amides for actinide separation: solvent extraction and time-resolved laser fluorescence spectroscopy complexation studies

    Energy Technology Data Exchange (ETDEWEB)

    Wilden, A.; Modolo, G.; Lange, S.; Sadowski, F.; Bosbach, D. [Foschungszentrum Juelich GmbH, IEK-6, Juelich (Germany); Beele, B.B.; Panak, P.J. [Ruprecht-Karls-Universitaet Heidelberg, Physikalisch Chemisces Institut - PCI, Heidelberg (Germany); Karlsruher Institut fuer Technologie - INE, Karlsruhe (Germany); Skerencak-Frech, A.; Geist, A. [Karlsruher Institut fuer Technologie - INE, Karlsruhe (Germany); Iqbal, M. [University of Twente, Laboratory of Molecular Nanofabrication, Enschede (Netherlands); Department of Chemistry, University of Sargodha, Sargodha 40100 (Pakistan); Verboom, W. [University of Twente, Laboratory of Molecular Nanofabrication, Enschede (Netherlands)

    2013-07-01

    In this work, the back-bone of the diglycolamide-structure of the TODGA extractant was modified by adding one or two methyl groups to the central methylene carbon-atoms. The influence of these structural modifications on the extraction behavior of trivalent actinides and lanthanides and other fission products was studied in solvent extraction experiments. The addition of methyl groups to the central methylene carbon atoms leads to reduced distribution ratios, also for Sr(II). This reduced extraction efficiency for Sr(II) is beneficial for process applications, as the co-extraction of Sr(II) can be avoided, resulting in an easier process design. The use of these modified diglycol-amides in solvent extraction processes is discussed. Furthermore, the complexation of Cm(III) and Eu(III) to the ligands was studied using Time-Resolved-Laser-Fluorescence-Spectroscopy (TRLFS). The complexes were characterized by slope analysis and conditional stability constants were determined.

  1. The detection of discrete cyclotron emission features in phase-resolved optical spectroscopy of V1500 Cygni

    Science.gov (United States)

    Harrison, Thomas E.; Campbell, Ryan K.

    2018-02-01

    We have obtained phase-resolved optical spectroscopy of the old nova and asynchronous polar V1500 Cyg. These new data reveal discrete cyclotron humps from two different strength magnetic fields. One region has B = 72 MG, while the other has B ≃ 105 MG. With the detection of these features, we revisit the optical/near-infrared light curves presented in Harrison & Campbell, and find that the large photometric excesses observed in those data are fully reconcilable with cyclotron emission. These results, when combined with the X-ray observations that appeared to have maxima that repeated on the orbital period, imply that V1500 Cyg has reverted back to a synchronous polar. Using existing theory, we show that the strong field strengths found here can explain the rapid spin-down time.

  2. Wide-field time-resolved luminescence imaging and spectroscopy to decipher obliterated documents in forensic science

    Science.gov (United States)

    Suzuki, Mototsugu; Akiba, Norimitsu; Kurosawa, Kenji; Kuroki, Kenro; Akao, Yoshinori; Higashikawa, Yoshiyasu

    2016-01-01

    We applied a wide-field time-resolved luminescence (TRL) method with a pulsed laser and a gated intensified charge coupled device (ICCD) for deciphering obliterated documents for use in forensic science. The TRL method can nondestructively measure the dynamics of luminescence, including fluorescence and phosphorescence lifetimes, which prove to be useful parameters for image detection. First, we measured the TRL spectra of four brands of black porous-tip pen inks on paper to estimate their luminescence lifetimes. Next, we acquired the TRL images of 12 obliterated documents at various delay times and gate times of the ICCD. The obliterated contents were revealed in the TRL images because of the difference in the luminescence lifetimes of the inks. This method requires no pretreatment, is nondestructive, and has the advantage of wide-field imaging, which makes it is easy to control the gate timing. This demonstration proves that TRL imaging and spectroscopy are powerful tools for forensic document examination.

  3. The study of polyplex formation and stability by time-resolved fluorescence spectroscopy of SYBR Green I-stained DNA.

    Science.gov (United States)

    D'Andrea, Cosimo; Pezzoli, Daniele; Malloggi, Chiara; Candeo, Alessia; Capelli, Giulio; Bassi, Andrea; Volonterio, Alessandro; Taroni, Paola; Candiani, Gabriele

    2014-12-01

    Polyplexes are nanoparticles formed by the self-assembly of DNA/RNA and cationic polymers specifically designed to deliver exogenous genetic material to cells by a process called transfection. There is a general consensus that a subtle balance between sufficient extracellular protection and intracellular release of nucleic acids is a key factor for successful gene delivery. Therefore, there is a strong need to develop suitable tools and techniques for enabling the monitoring of the stability of polyplexes in the biological environment they face during transfection. In this work we propose time-resolved fluorescence spectroscopy in combination with SYBR Green I-DNA dye as a reliable tool for the in-depth characterization of the DNA/vector complexation state. As a proof of concept, we provide essential information on the assembly and disassembly of complexes formed between DNA and each of three cationic polymers, namely a novel promising chitosan-graft-branched polyethylenimine copolymer (Chi-g-bPEI), one of its building block 2 kDa bPEI and the gold standard transfectant 25 kDa bPEI. Our results highlight the higher information content provided by the time-resolved studies of SYBR Green I/DNA, as compared to conventional steady state measurements of ethidium bromide/DNA that enabled us to draw relationships among fluorescence lifetime, polyplex structural changes and transfection efficiency.

  4. Time-resolved granular dynamics of a rotating drum in a slumping regime as revealed by speckle visibility spectroscopy

    Directory of Open Access Journals (Sweden)

    Zivkovic V.

    2017-01-01

    Full Text Available Granular materials in rotating drums are of wide interest not only because of their extensive use in the industrial contexts, but also as model systems in the study of natural disasters, such as avalanches or landslides. Most of available experimental methods are restricted to surface layer flows and dilute systems whilst the remainder can only resolve the granular dynamics to a fine scale with relatively poor temporal resolution or vice versa. In contrast, speckle visibility spectroscopy (SVS is able to resolve the average of the three components of motion of grains in dense systems in small volume of granular media several layer deep with spatio-temporal resolutions that allow the probing of the granular micro-dynamics. We have used this technique to study granular dynamics of surface avalanche flow in the slumping regime using both spherical glass and irregular sand particles. Although results are very similar, we determined that visually observed compaction at the beginning of avalanche process for irregular sand particles influence time evolution of the particle fluctuation velocity during avalanches.

  5. Time-resolved spectroscopy of excitons and carriers in GaN and InGaN

    CERN Document Server

    Kyhm, K

    2001-01-01

    delocalised electron-hole pairs from the lowest confined level are responsible for the gain in our sample. The polarization dependence of biexcitonic signals and quantum beats between A-excitons (X sub A) and A-biexcitons (X sub A X sub A) in a high-quality GaN epilayer are measured by spectrally-resolved and time-integrated four-wave mixing measurements. We also measured the polarization dependent B-biexciton (X sub B X sub B) signal. The emission mechanisms in GaN and ln sub x Ga sub 1 sub - sub x N is systematically studied to investigate carrier and exciton dynamics. Reflectance, time-integrated luminescence, and time-resolved reflectance spectroscopy are used to study exciton transitions in GaN, and the saturation of the exciton resonances with increasing carrier density has been measured in the case of resonant and non-resonant excitations. The coincidence between the density for the onset of the stimulated emission and the Mott density leads us to the conclusion that the stimulated emission mechanism i...

  6. Time-resolved granular dynamics of a rotating drum in a slumping regime as revealed by speckle visibility spectroscopy

    Science.gov (United States)

    Zivkovic, V.; Yang, H.; Zheng, G.; Biggs, M.

    2017-06-01

    Granular materials in rotating drums are of wide interest not only because of their extensive use in the industrial contexts, but also as model systems in the study of natural disasters, such as avalanches or landslides. Most of available experimental methods are restricted to surface layer flows and dilute systems whilst the remainder can only resolve the granular dynamics to a fine scale with relatively poor temporal resolution or vice versa. In contrast, speckle visibility spectroscopy (SVS) is able to resolve the average of the three components of motion of grains in dense systems in small volume of granular media several layer deep with spatio-temporal resolutions that allow the probing of the granular micro-dynamics. We have used this technique to study granular dynamics of surface avalanche flow in the slumping regime using both spherical glass and irregular sand particles. Although results are very similar, we determined that visually observed compaction at the beginning of avalanche process for irregular sand particles influence time evolution of the particle fluctuation velocity during avalanches.

  7. Spatially resolved laser-induced breakdown spectroscopy in laminar premixed methane-air flames

    Science.gov (United States)

    Tian, Zhaohua; Dong, Meirong; Li, Shishi; Lu, Jidong

    2017-10-01

    Laser-induced breakdown spectroscopy was evaluated for the analysis of the structure of laminar premixed methane-air flames. Firstly, breakdown threshold pulse energy and plasma energy in different areas of the flame were measured simultaneously, and an approximate linear relation between them was detected. Secondly, a new approach was proposed to qualitatively characterize the flame temperature distributions based on the plasma energy distributions. Finally, combination of the spatial analysis of the spectrum intensity, plasma energy and equivalence ratio, the laminar premixed flames structure was investigated deeply, including the distribution of the flame temperature, the width and distribution of different flame region (e.g. premixed combustion regions, high temperature regions.),as well as the location of the flame front.

  8. Time-resolved and steady-state fluorescence spectroscopy for the assessment of skin photoaging process

    Science.gov (United States)

    D´Almeida, Camila de Paula; Campos, Carolina; Saito Nogueira, Marcelo; Pratavieira, Sebastião.; Kurachi, Cristina

    2015-06-01

    pathology. The optical properties of these intrinsic fluorophores respond to the microenvironment and the metabolic status, thus making fluorescence spectroscopy a valuable tool to study the conditions of biological tissues. The purpose of this study is to investigate the hairless mice skin metabolic changes during the photoaging process through lifetime and fluorescence measurements targeting NADH and FAD. Two lasers centered at 378 nm and 445 nm, respectively, perform excitation of NADH and FAD. The fluorescence acquisition is carried out at mice dorsal and ventral regions throughout the photoaging protocol and aging process. Differences in fluorescence and lifetime data between young and photoaged mice measurements were observed. The endogenous fluorescence spectrum of photoaged dorsal skin showed an increase compared to young and aged skin. Lifetime of bound NADH and free FAD presented an increase in the first week that continued until the end of the protocol. Aging process is being investigated to complement the information obtained from fluorescence data and lifetime of photoaging process.

  9. Time-resolved ultrafast spectroscopy of wide-gap II-VI semiconductor quantum wells

    CERN Document Server

    Brown, G

    2001-01-01

    proposal is supported through the development of a phenomenological model describing the dynamic evolution of exciton spin populations. The inclusion of higher order Coulomb interaction terms within current many-body theory is limited by the analytical complexity This work provides valuable experimental observations, which invite further theoretical endeavour within this field. Ultrafast spectroscopic techniques have been used out to investigate both coherent and incoherent exciton dynamics within zinc selenide-based multiple quantum wells. Time-integrated four-wave-mixing experiments were carried out to investigate exciton dephasing due to exciton-phonon scattering. In particular experiments on multiple quantum well structures with a range of well widths demonstrated that exciton-acoustic phonon scattering was found to reach a maximum when the quantum confinement within the well was also maximised. The technique of pump-continuum probe spectroscopy has been enhanced giving improved resolution of absorption d...

  10. Site-selective time resolved laser fluorescence spectroscopy of Eu and Cm doped LaPO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Holliday, K.S.; Walther, C. [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany). Inst. fuer Nukleare Entsorgung; Babelot, C.; Neumeier, S.; Bosbach, D. [Forschungszentrum Juelich GmbH (DE). Inst. fuer Energie und Klimaforschung (IEK), Nukleare Entsorgung und Reaktorsicherheit (IEK-6); Stumpf, T. [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany). Inst. fuer Nukleare Entsorgung; Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany). Inst. fuer Anorganische Chemie

    2012-07-01

    Samples of LaPO{sub 4} doped with Eu{sup 3+} or Cm{sup 3+} were synthesized by a hydrothermal process which resulted in a solid solution at temperatures less than conventional processing. Time resolved laser fluorescence spectroscopy was used to probe the incorporated Eu{sup 3+} or Cm{sup 3+} in order to gain structural information on its local environment. This revealed that Eu{sup 3+} and Cm{sup 3+} incorporate on the La site as expected. The emission spectrum of Eu{sup 3+} resolves the fully degenerate 5-fold splitting of the peaks in the F{sub 2} transition due to the low symmetry of the site, confirming previous calculations. A minor site in the Eu{sup 3+} doped sample is identified as coordinated with hydroxide contamination. Direct excitation of Cm{sup 3+} doped samples show the presence of 'satellite' species. Although these spectral features have been observed in Cm{sup 3+} doped LuPO{sub 4} and YPO{sub 4}, this is the first time that these satellites are resolved into their individual species. These are hypothesized to be due to a disturbance in the ideal structure which creates a break in the equivalence of the four lanthanum sites within a unit cell. The 4-fold ground state splitting of all species is identical, although slightly shifted, indicating similar environments. The fluorescence lifetimes were long (1.2 ms for Cm and 3.6 ms for Eu) indicating an absence of water in the immediate coordination sphere due to the incorporation of the doping ion. (orig.)

  11. Determination of glucose concentration in tissue-like material using spatially resolved steady-state diffuse reflectance spectroscopy

    Science.gov (United States)

    Hjalmarsson, Pär; Thennadil, Suresh N.

    2008-02-01

    An important parameter in medical diagnostic and one of the most frequently determined analyte in the hospitals is blood glucose. Fast and accurate methods of measuring blood glucose concentrations could therefore be significant. We will in this paper investigate the feasibility of using a spatially resolved steady-state diffuse reflectance spectroscopy in the wavelength region 1000-1700nm, where glucose has two absorption peaks at around 1250nm and 1600nm, to quickly determine the concentration of glucose in tissue-like material. This method could later be transferred to estimate the amount of glucose in blood both in vivo e.g. the forearm and in vitro e.g. on blood samples. The novel spatially resolved system that is used for this study is based around a 2D InGaAs detector and a fibre probe with 10 fibres, one as a source and 9 to collect the diffuse reflected light at distances between 0.3-2.7mm from the source. An inversion method using Monte Carlo generated diffuse reflectance profiles is used to estimate the absolute absorption coefficient (μ a) and reduced scattering coefficient (μ s') which could be used to estimate the glucose concentration in the tissue-like phantoms. The method was investigated by performing spatially resolved measurements on turbid gelatin phantoms containing mixtures of water and D IIO as absorbers, Intralipid as a scatterer and glucose. The phantoms were made with four different glucose concentrations spanning the range of 0-5000 mg/dl.

  12. SPATIALLY RESOLVED HST GRISM SPECTROSCOPY OF A LENSED EMISSION LINE GALAXY AT z {approx} 1

    Energy Technology Data Exchange (ETDEWEB)

    Frye, Brenda L. [Steward Observatory, Department of Astronomy, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Hurley, Mairead [School of Physical Sciences, Dublin City University, Glasnevin, Dublin 9 (Ireland); Bowen, David V. [Department of Astrophysical Sciences, Peyton Hall, Princeton University, Princeton, NJ 08540 (United States); Meurer, Gerhardt [International Centre for Radio Astronomy Research, The University of Western Australia M468, 35 Stirling Highway, Crawley, WA 6009 (Australia); Sharon, Keren [Department of Astronomy and Astrophysics, The University of Chicago, Chicago, IL 60637 (United States); Straughn, Amber [Astrophysics Science Division, Goddard Space Flight Center, Code 665, Greenbelt, MD 20771 (United States); Coe, Dan [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Broadhurst, Tom [Ikerbasque, Basque Foundation for Science, E-48011 Bilbao (Spain); Guhathakurta, Puragra, E-mail: bfrye@as.arizona.edu [UCO/Lick Observatory, Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2012-07-20

    We take advantage of gravitational lensing amplification by A1689 (z 0.187) to undertake the first space-based census of emission line galaxies (ELGs) in the field of a massive lensing cluster. Forty-three ELGs are identified to a flux of i{sub 775} = 27.3 via slitless grism spectroscopy. One ELG (at z = 0.7895) is very bright owing to lensing magnification by a factor of Almost-Equal-To 4.5. Several Balmer emission lines (ELs) detected from ground-based follow-up spectroscopy signal the onset of a major starburst for this low-mass galaxy (M{sub *} Almost-Equal-To 2 Multiplication-Sign 10{sup 9} M{sub Sun }) with a high specific star formation rate ( Almost-Equal-To 20 Gyr{sup -1}). From the blue ELs we measure a gas-phase oxygen abundance consistent with solar (12+log(O/H) = 8.8 {+-} 0.2). We break the continuous line-emitting region of this giant arc into seven {approx}1 kpc bins (intrinsic size) and measure a variety of metallicity-dependent line ratios. A weak trend of increasing metal fraction is seen toward the dynamical center of the galaxy. Interestingly, the metal line ratios in a region offset from the center by {approx}1 kpc have a placement on the blue H II region excitation diagram with f ([O III])/f (H{beta}) and f ([Ne III])/f (H{beta}) that can be fitted by an active galactic nucleus (AGN). This asymmetrical AGN-like behavior is interpreted as a product of shocks in the direction of the galaxy's extended tail, possibly instigated by a recent galaxy interaction.

  13. Fourier resolved spectroscopy of 4U 1543-47 during the 2002 outburst

    Science.gov (United States)

    Reig, P.; Papadakis, I. E.; Shrader, C. R.; Kazanas, D.

    2006-01-01

    We have obtained Fourier-resolved spectra of the black-hole binary 4U 1543-47 in the canonical states (high/soft, very high, intermediate and low/hard) observed in this source during the decay of an outburst that took place in 2002. Our objective is to investigate the variability of the spectral components generally used to describe the energy spectra of black-hole systems, namely a disk component, a power-law component attributed to Comptonization by a hot corona and the contribution of the iron line due to reprocessing of the high energy (E greater than or approx, equal to 7 keV) radiation. We find that i) the disk component is not variable on time scales shorter than approx. 100 seconds, ii) the reprocessing emission as manifest by the variability of the Fe K(alpha) line responds to the primary radiation variations down to time scales of approx. 70 ms in the high and very-high states, but longer than 2 s in the low state, iii) the low-frequency QPOs are associated with variations of the X-ray power law spectral component and not to the disk component and iv) the spectra corresponding to the highest Fourier frequency are the hardest (show the flatter spectra) at a given spectral state. These results questions the models that explain the observed power spectra as due to modulations of the accretion rate only.

  14. Estimation of optical properties by spatially resolved reflectance spectroscopy in the subdiffusive regime.

    Science.gov (United States)

    Naglic, Peter; Pernuš, Franjo; Likar, Boštjan; Bürmen, Miran

    2016-09-01

    We propose and objectively evaluate an inverse Monte Carlo model for estimation of absorption and reduced scattering coefficients and similarity parameter ? from spatially resolved reflectance (SRR) profiles in the subdiffusive regime. The similarity parameter ? carries additional information on the phase function that governs the angular properties of scattering in turbid media. The SRR profiles at five source-detector separations were acquired with an optical fiber probe. The inverse Monte Carlo model was based on a cost function that enabled robust estimation of optical properties from a few SRR measurements without a priori knowledge about spectral dependencies of the optical properties. Validation of the inverse Monte Carlo model was performed on synthetic datasets and measured SRR profiles of turbid phantoms comprising molecular dye and polystyrene microspheres. We observed that the additional similarity parameter ? substantially reduced the reflectance variability arising from the phase function properties and significantly improved the accuracy of the inverse Monte Carlo model. However, the observed improvement of the extended inverse Monte Carlo model was limited to reduced scattering coefficients exceeding ?15??cm?1, where the relative root-mean-square errors of the estimated optical properties were well within 10%.

  15. Glow discharge optical emission spectroscopy for accurate and well resolved analysis of coatings and thin films

    KAUST Repository

    Wilke, Marcus

    2011-12-01

    In the last years, glow discharge optical emission spectrometry (GDOES) gained more and more acceptance in the analysis of functional coatings. GDOES thereby represents an interesting alternative to common depth profiling techniques like AES and SIMS, based on its unique combination of high erosion rates and erosion depths, sensitivity, analysis of nonconductive layers and easy quantification even for light elements such as C, N, O and H. Starting with the fundamentals of GDOES, a short overview on new developments in instrument design for accurate and well resolved thin film analyses is presented. The article focuses on the analytical capabilities of glow discharge optical emission spectrometry in the analysis of metallic coatings and thin films. Results illustrating the high depth resolution, confirmation of stoichiometry, the detection of light elements in coatings as well as contamination on the surface or interfaces will be demonstrated by measurements of: a multilayer system Cr/Ti on silicon, interface contamination on silicon during deposition of aluminum, Al2O3-nanoparticle containing conversion coatings on zinc for corrosion resistance, Ti3SiC2 MAX-phase coatings by pulsed laser deposition and hydrogen detection in a V/Fe multilayer system. The selected examples illustrate that GDOES can be successfully adopted as an analytical tool in the development of new materials and coatings. A discussion of the results as well as of the limitations of GDOES is presented. © 2011 Elsevier B.V.

  16. SPATIALLY RESOLVED SPECTROSCOPY OF EUROPA: THE DISTINCT SPECTRUM OF LARGE-SCALE CHAOS

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, P. D.; Brown, M. E. [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Hand, K. P., E-mail: pfischer@caltech.edu [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)

    2015-11-15

    We present a comprehensive analysis of spatially resolved moderate spectral resolution near-infrared spectra obtained with the adaptive optics system at the Keck Observatory. We identify three compositionally distinct end member regions: the trailing hemisphere bullseye, the leading hemisphere upper latitudes, and a third component associated with leading hemisphere chaos units. We interpret the composition of the three end member regions to be dominated by irradiation products, water ice, and evaporite deposits or salt brines, respectively. The third component is associated with geological features and distinct from the geography of irradiation, suggesting an endogenous identity. Identifying the endogenous composition is of particular interest for revealing the subsurface composition. However, its spectrum is not consistent with linear mixtures of the salt minerals previously considered relevant to Europa. The spectrum of this component is distinguished by distorted hydration features rather than distinct spectral features, indicating hydrated minerals but making unique identification difficult. In particular, it lacks features common to hydrated sulfate minerals, challenging the traditional view of an endogenous salty component dominated by Mg-sulfates. Chloride evaporite deposits are one possible alternative.

  17. Picosecond Time-Resolved Temperature and Density Measurements with K-Shell Spectroscopy

    Science.gov (United States)

    Stillman, C. R.; Nilson, P. M.; Ivancic, S. T.; Mileham, C.; Froula, D. H.; Golovkin, I. E.

    2017-10-01

    The thermal x-ray emission from rapidly heated solid targets containing a buried-aluminum layer was measured to track the evolution of the bulk plasma conditions. The targets were driven by high-contrast 1 ω laser pulses at focused intensities up to 1 × 1019 W/cm2. A streaked x-ray spectrometer recorded the AlHeα and lithium-like satellite lines with 2-ps temporal resolution and moderate resolving power (E E ΔE 1000 ΔE 1000) . Time-integrated measurements over the same spectral range were used to correct the streaked data for variations in photocathode sensitivity. Linewidths and intensity ratios from the streaked data were interpreted using a collisional radiative atomic kinetics model to provide the average plasma conditions in the buried layer as a function of time. Experimental uncertainties in the measured plasma conditions are quantified within a consistent model-dependent framework. The data demonstrate the production of a 330 +/-56 eV, 0.9 +/-0.3 g/cm3 plasma that evolves slowly during peak Heα emission. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  18. Probing the hydrogen-bond network of water via time-resolved soft x-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Huse, Nils; Wen, Haidan; Nordlund, Dennis; Szilagyi, Erzsi; Daranciang, Dan; Miller, Timothy A.; Nilsson, Anders; Schoenlein, Robert W.; Lindenberg, Aaron M.

    2009-04-24

    We report time-resolved studies of hydrogen bonding in liquid H2O, in response to direct excitation of the O-H stretch mode at 3 mu m, probed via soft x-ray absorption spectroscopy at the oxygen K-edge. This approach employs a newly developed nanofluidic cell for transient soft x-ray spectroscopy in liquid phase. Distinct changes in the near-edge spectral region (XANES) are observed, and are indicative of a transient temperature rise of 10K following transient laser excitation and rapid thermalization of vibrational energy. The rapid heating occurs at constant volume and the associated increase in internal pressure, estimated to be 8MPa, is manifest by distinct spectral changes that differ from those induced by temperature alone. We conclude that the near-edge spectral shape of the oxygen K-edge is a sensitive probe of internal pressure, opening new possibilities for testing the validity of water models and providing new insight into the nature of hydrogen bonding in water.

  19. Insights into gas-phase structural conformers of hydrated rubidium and cesium cations, M(+)(H2O)(n)Ar (M = Rb, Cs; n = 3-5), using infrared photodissociation spectroscopy.

    Science.gov (United States)

    Ke, Haochen; van der Linde, Christian; Lisy, James M

    2014-02-27

    Infrared photodissociation (IRPD) spectra of M(+)(H2O)nAr (M = Rb, Cs; n = 3-5) with simultaneous monitoring of [Ar] and [Ar+H2O] fragmentation channels are reported. The comparison between the spectral features in the two channels and corresponding energy analysis provide spectral assignments of the stable structural conformers and insight into the competition between ion-water electrostatic and water-water hydrogen bonding interactions. Results show that as the level of hydration increases, the water-water interaction exhibits the tendency to dominate over the ion-water interaction. Cyclic water tetramer and water pentamer substructures appear in Cs(+)(H2O)4Ar and Cs(+)(H2O)5Ar systems, respectively. However, cyclic water tetramer and pentamer structures were not observed for Rb(+)(H2O)4Ar and Rb(+)(H2O)5Ar systems, respectively, due to the stronger influence of the rubidium ion-water electrostatic interaction. The energy analysis, including the available internal energy and the IR photon energy, helped provide an experimental estimate of water binding energies.

  20. Photoelectron spectroscopy at a free-electron laser. Investigation of space-charge effects in angle-resolved and core-level spectroscopy and realizaton of a time-resolved core-level photoemission experiment

    Energy Technology Data Exchange (ETDEWEB)

    Marczynski-Buehlow, Martin

    2012-01-30

    The free-electron laser (FEL) in Hamburg (FLASH) is a very interesting light source with which to perform photoelectron spectroscopy (PES) experiments. Its special characteristics include highly intense photon pulses (up to 100 J/pulse), a photon energy range of 30 eV to 1500 eV, transverse coherence as well as pulse durations of some ten femtoseconds. Especially in terms of time-resolved PES (TRPES), the deeper lying core levels can be reached with photon energies up to 1500 eV with acceptable intensity now and, therefore, element-specific, time-resolved core-level PES (XPS) is feasible at FLASH. During the work of this thesis various experimental setups were constructed in order to realize angle-resolved (ARPES), core-level (XPS) as well as time-resolved PES experiments at the plane grating monochromator beamline PG2 at FLASH. Existing as well as newly developed systems for online monitoring of FEL pulse intensities and generating spatial and temporal overlap of FEL and optical laser pulses for time-resolved experiments are successfully integrated into the experimental setup for PES. In order to understand space-charge effects (SCEs) in PES and, therefore, being able to handle those effects in future experiments using highly intense and pulsed photon sources, the origin of energetic broadenings and shifts in photoelectron spectra are studied by means of a molecular dynamic N-body simulation using a modified Treecode Algorithm for sufficiently fast and accurate calculations. It turned out that the most influencing parameter is the ''linear electron density'' - the ratio of the number of photoelectrons to the diameter of the illuminated spot on the sample. Furthermore, the simulations could reproduce the observations described in the literature fairly well. Some rules of thumb for XPS and ARPES measurements could be deduced from the simulations. Experimentally, SCEs are investigated by means of ARPES as well as XPS measurements as a function of

  1. Photophysical characterization and time-resolved spectroscopy of a anthradithiophene dimer: exploring the role of conformation in singlet fission

    KAUST Repository

    Dean, Jacob C.

    2017-08-18

    Quantitative singlet fission has been observed for a variety of acene derivatives such as tetracene and pentacene, and efforts to extend the library of singlet fission compounds is of current interest. Preliminary calculations suggest anthradithiophenes exhibit significant exothermicity between the first optically-allowed singlet state, S1, and 2 × T1 with an energy difference of >5000 cm−1. Given the fulfillment of this ingredient for singlet fission, here we investigate the singlet fission capability of a difluorinated anthradithiophene dimer (2ADT) covalently linked by a (dimethylsilyl)ethane bridge and derivatized by triisobutylsilylethynyl (TIBS) groups. Photophysical characterization of 2ADT and the single functionalized ADT monomer were carried out in toluene and acetone solution via absorption and fluorescence spectroscopy, and their photo-initiated dynamics were investigated with time-resolved fluorescence (TRF) and transient absorption (TA) spectroscopy. In accordance with computational predictions, two conformers of 2ADT were observed via fluorescence spectroscopy and were assigned to structures with the ADT cores trans or cis to one another about the covalent bridge. The two conformers exhibited markedly different excited state deactivation mechanisms, with the minor trans population being representative of the ADT monomer showing primarily radiative decay, while the dominant cis population underwent relaxation into an excimer geometry before internally converting to the ground state. The excimer formation kinetics were found to be solvent dependent, yielding time constants of ∼1.75 ns in toluene, and ∼600 ps in acetone. While the difference in rates elicits a role for the solvent in stabilizing the excimer structure, the rate is still decidedly long compared to most singlet fission rates of analogous dimers, suggesting that the excimer is neither a kinetic nor a thermodynamic trap, yet singlet fission was still not observed. The result

  2. Time Resolved Energy Transfer and Photodissociation of Vibrationally Excited Molecules

    National Research Council Canada - National Science Library

    Crim, F. F

    2007-01-01

    ...) in solution and in the gas phase. This second experiment is one of the few direct comparisons of intramolecular vibrational energy flow in a solvated molecule with that in the same molecule isolated in a gas...

  3. Time resolved and label free monitoring of extracellular metabolites by surface enhanced Raman spectroscopy.

    Directory of Open Access Journals (Sweden)

    Victoria Shalabaeva

    Full Text Available Metabolomics is an emerging field of cell biology that aims at the comprehensive identification of metabolite levels in biological fluids or cells in a specific functional state. Currently, the major tools for determining metabolite concentrations are mass spectrometry coupled with chromatographic techniques and nuclear magnetic resonance, which are expensive, time consuming and destructive for the samples. Here, we report a time resolved approach to monitor metabolite dynamics in cell cultures, based on Surface Enhanced Raman Scattering (SERS. This method is label-free, easy to use and provides the opportunity to simultaneously study a broad range of molecules, without the need to process the biological samples. As proof of concept, NIH/3T3 cells were cultured in vitro, and the extracellular medium was collected at different time points to be analyzed with our engineered SERS substrates. By identifying individual peaks of the Raman spectra, we showed the simultaneous detection of several components of the conditioned medium, such as L-tyrosine, L-tryptophan, glycine, L-phenylalanine, L-histidine and fetal bovine serum proteins, as well as their intensity changes during time. Furthermore, analyzing the whole Raman data set with the Principal Component Analysis (PCA, we demonstrated that the Raman spectra collected at different days of culture and clustered by similarity, described a well-defined trajectory in the principal component plot. This approach was then utilized to determine indirectly the functional state of the macrophage cell line Raw 264.7, stimulated with the lipopolysaccharide (LPS for 24 hours. The collected spectra at different time points, clustered by the PCA analysis, followed a well-defined trajectory, corresponding to the functional change of cells toward the activated pro-inflammatory state induced by the LPS. This study suggests that our engineered SERS surfaces can be used as a versatile tool both for the characterization

  4. Infrared absorption of CH3OSO detected with time-resolved Fourier-transform spectroscopy.

    Science.gov (United States)

    Chen, Jin-Dah; Lee, Yuan-Pern

    2011-03-07

    A step-scan Fourier-transform spectrometer coupled with a multipass absorption cell was employed to detect temporally resolved infrared absorption spectra of CH(3)OSO produced upon irradiation of a flowing gaseous mixture of CH(3)OS(O)Cl in N(2) or CO(2) at 248 nm. Two intense transient features with origins near 1152 and 994 cm(-1) are assigned to syn-CH(3)OSO; the former is attributed to overlapping bands at 1154 ± 3 and 1151 ± 3 cm(-1), assigned to the S=O stretching mixed with CH(3) rocking (ν(8)) and the S=O stretching mixed with CH(3) wagging (ν(9)) modes, respectively, and the latter to the C-O stretching (ν(10)) mode at 994 ± 6 cm(-1). Two weak bands at 2991 ± 6 and 2956 ± 3 cm(-1) are assigned as the CH(3) antisymmetric stretching (ν(2)) and symmetric stretching (ν(3)) modes, respectively. Observed vibrational transition wavenumbers agree satisfactorily with those predicted with quantum-chemical calculations at level B3P86∕aug-cc-pVTZ. Based on rotational parameters predicted at that level, the simulated rotational contours of these bands agree satisfactorily with experimental results. The simulation indicates that the S=O stretching mode of anti-CH(3)OSO near 1164 cm(-1) likely makes a small contribution to the observed band near 1152 cm(-1). A simple kinetic model of self-reaction is employed to account for the decay of CH(3)OSO and yields a second-order rate coefficient k=(4 ± 2)×10(-10) cm(3)molecule(-1)s(-1). © 2011 American Institute of Physics.

  5. Variation in LOV Photoreceptor Activation Dynamics Probed by Time Resolved Infrared Spectroscopy

    KAUST Repository

    Iuliano, James N.

    2017-12-14

    The light, oxygen, voltage (LOV) domain proteins are blue light photoreceptors that utilize a non-covalently bound flavin mononucleotide (FMN) cofactor as the chromophore. The modular nature of these proteins has led to their wide adoption in the emerging fields of optogenetics and optobiology, where the LOV domain has been fused to a variety of output domains leading to novel light-controlled applications. In the present work, we extend our studies of the sub-picosecond to several hundred microsecond transient infrared spectroscopy of the isolated LOV domain AsLOV2 to three full-length photoreceptors in which the LOV domain is fused to an output domain: the LOV-STAS protein, YtvA, the LOV-HTH transcription factor, EL222, and the LOV-histidine kinase, LovK. Despite differences in tertiary structure, the overall pathway leading to cysteine adduct formation from the FMN triplet state is highly conserved, although there are slight variations in rate. However significant differences are observed in the vibrational spectra and kinetics after adduct formation, which are directly linked to the specific output function of the LOV domain. While the rate of adduct formation varies by only 3.6-fold amongst the proteins, the subsequent large-scale structural changes in the full-length LOV photoreceptors occur over the micro- to sub-millisecond timescales and vary by orders of magnitude depending on the different output function of each LOV domain.

  6. Time-Resolved Spectroscopy Diagnostic of Laser-Induced Optical Breakdown

    Directory of Open Access Journals (Sweden)

    Christian G. Parigger

    2010-01-01

    Full Text Available Transient laser plasma is generated in laser-induced optical breakdown (LIOB. Here we report experiments conducted with 10.6-micron CO2 laser radiation, and with 1.064-micron fundamental, 0.532-micron frequency-doubled, 0.355-micron frequency-tripled Nd:YAG laser radiation. Characterization of laser induced plasma utilizes laser-induced breakdown spectroscopy (LIBS techniques. Atomic hydrogen Balmer series emissions show electron number density of 1017 cm−3 measured approximately 10 μs and 1 μs after optical breakdown for CO2 and Nd:YAG laser radiation, respectively. Recorded molecular recombination emission spectra of CN and C2 Swan bands indicate an equilibrium temperature in excess of 7000 Kelvin, inferred for these diatomic molecules. Reported are also graphite ablation experiments where we use unfocused laser radiation that is favorable for observation of neutral C3 emission due to reduced C3 cation formation. Our analysis is based on computation of diatomic molecular spectra that includes accurate determination of rotational line strengths, or Hönl-London factors.

  7. Characterization of human immunodeficiency virus-1 (HIV-1) rev by (time-resolved) fluorescence spectroscopy.

    Science.gov (United States)

    Kungl, A J; Seidel, C; Schilk, A; Daly, T J; Kauffmann, H F; Auer, M

    1994-12-01

    Fluorescence spectroscopy has been applied to the single tryptophan-containing regulatory protein Rev of human immunodeficiency virus (HIV-1). The fluorescence emission was found to have a maximum at 336 nm which refers to a surrounding of the chromophore of intermediate polarity. Fluorescence transients recorded at the maximum of fluorescence were found to decay nonexponentially. A bimodal lifetime distribution is obtained from exponential series analysis (ESM) with centers at 1.7 and 4.5 ns. Two microenvironments for tryptophan are suggested to be responsible for the two lifetime distributions. No innerfilter effect occurred in a Rev solution up to a concentration of 40 μM. A data quality study of ESM analysis as function of collected counts in the peak channel maximum (CIM) showed that, for reliable reconvolution, at least 15,000 CIM are necessary. The widths of the two distributions are shown to be temperature dependent. The broadening of the lifetime distributions when the temperature is raised to 50°C is interpreted as extension of the number of conformational substates which do not interconvert on the fluorescence time scale. The thermal deactivation (temperature quenching) is reflected in a constant decrease in the center of the short-lived lifetime distribution.

  8. Structural dynamics of membrane proteins - time-resolved and surface-enhanced IR spectroscopy

    Science.gov (United States)

    Heberle, Joachim

    2013-03-01

    Membrane proteins are the target of more than 50% of all drugs and are encoded by about 30% of the human genome. Electrophysiological techniques, like patch-clamp, unravelled many functional aspects of membrane proteins but suffer from structural sensitivity. We have developed Surface Enhanced Infrared Difference Absorption Spectroscopy (SEIDAS) to probe potential-induced structural changes of a protein on the level of a monolayer. A novel concept is introduced to incorporate membrane proteins into solid supported lipid bilayers in an orientated manner via the affinity of the His-tag to the Ni-NTA terminated gold surface. General applicability of the methodological approach is shown by tethering photosystem II to the gold surface. In conjunction with hydrogenase, the basis is set towards a biomimetic system for hydrogen production. Recently, we succeeded to record IR difference spectra of a monolayer of sensory rhodopsin II under voltage-clamp conditions. This approach opens an avenue towards mechanistic studies of voltage-gated ion channels with unprecedented structural and temporal sensitivity. Initial vibrational studies on the novel light-gated channelrhodopsin-2 (ChR2) will be presented. ChR2 represents a versatile tool in the new field of optogenetics where physiological reactions are controlled by light.

  9. Proximity Effect between Two Superconductors Spatially Resolved by Scanning Tunneling Spectroscopy

    Directory of Open Access Journals (Sweden)

    V. Cherkez

    2014-03-01

    Full Text Available We present a combined experimental and theoretical study of the proximity effect in an atomic-scale controlled junction between two different superconductors. Elaborated on a Si(111 surface, the junction comprises a Pb nanocrystal with an energy gap Δ_{1}=1.2  meV, connected to a crystalline atomic monolayer of lead with Δ_{2}=0.23  meV. Using in situ scanning tunneling spectroscopy, we probe the local density of states of this hybrid system both in space and in energy, at temperatures below and above the critical temperature of the superconducting monolayer. Direct and inverse proximity effects are revealed with high resolution. Our observations are precisely explained with the help of a self-consistent solution of the Usadel equations. In particular, our results demonstrate that in the vicinity of the Pb islands, the Pb monolayer locally develops a finite proximity-induced superconducting order parameter, well above its own bulk critical temperature. This leads to a giant proximity effect where the superconducting correlations penetrate inside the monolayer a distance much larger than in a nonsuperconducting metal.

  10. Spatially resolved electron tunneling spectroscopy on single crystalline Rb{sub 3}C{sub 60}

    Energy Technology Data Exchange (ETDEWEB)

    Jess, P.; Hubler, U. [Institute of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland); Behler, S. [Lawrence Berkeley Laboratory, University of California--Berkeley, Berkeley, California 94720 (United States); Thommen-Geiser, V.; Lang, H.P.; Guentherodt, H. [Institute of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland)

    1996-03-01

    A Rb{sub 3}C{sub 60} single crystal ({ital T}{sub {ital c}}=30.5 K) is investigated in the superconducting state at 2.8 K by scanning tunneling microscopy and scanning tunneling spectroscopy (STS). STS data reveals a spatial variation of the superconducting energy gap {Delta} on a scale of 50 nm ({Delta}=2.6{endash}5.2 meV; 2{Delta}/{ital k}{sub {ital BT}}{sub {ital c}}=2.0{endash}4.0). This behavior is attributed to varying stoichiometry on the sample surface. An investigation of a Rb{sub 3}C{sub 60} facet shows that {ital I}({ital V}) characteristics even vary on molecular scale. {ital I}({ital V}) curves acquired between fullerene molecules exhibit a nonvanishing slope at zero bias whereas {ital I}({ital V}) characteristics measured above molecules exhibit vanishing slope at zero bias. {copyright} {ital 1996 American Vacuum Society}

  11. Information processing in parallel through directionally resolved molecular polarization components in coherent multidimensional spectroscopy

    Science.gov (United States)

    Yan, Tian-Min; Fresch, Barbara; Levine, R. D.; Remacle, F.

    2015-08-01

    We propose that information processing can be implemented by measuring the directional components of the macroscopic polarization of an ensemble of molecules subject to a sequence of laser pulses. We describe the logic operation theoretically and demonstrate it by simulations. The measurement of integrated stimulated emission in different phase matching spatial directions provides a logic decomposition of a function that is the discrete analog of an integral transform. The logic operation is reversible and all the possible outputs are computed in parallel for all sets of possible multivalued inputs. The number of logic variables of the function is the number of laser pulses used in sequence. The logic function that is computed depends on the chosen chromophoric molecular complex and on its interactions with the solvent and on the two time intervals between the three pulses and the pulse strengths and polarizations. The outputs are the homodyne detected values of the polarization components that are measured in the allowed phase matching macroscopic directions, kl, k l = ∑ i l i k i where ki is the propagation direction of the ith pulse and {li} is a set of integers that encodes the multivalued inputs. Parallelism is inherently implemented because all the partial polarizations that define the outputs are processed simultaneously. The outputs, which are read directly on the macroscopic level, can be multivalued because the high dynamical range of partial polarization measurements by nonlinear coherent spectroscopy allows for fine binning of the signals. The outputs are uniquely related to the inputs so that the logic is reversible.

  12. TIME-RESOLVED ULTRAVIOLET SPECTROSCOPY OF THE M-DWARF GJ 876 EXOPLANETARY SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    France, Kevin; Froning, Cynthia S. [Center for Astrophysics and Space Astronomy, University of Colorado, 389 UCB, Boulder, CO 80309 (United States); Linsky, Jeffrey L. [JILA, University of Colorado and NIST, 440 UCB, Boulder, CO 80309 (United States); Tian, Feng [Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO 80309 (United States); Roberge, Aki, E-mail: kevin.france@colorado.edu [Exoplanets and Stellar Astrophysics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2012-05-10

    Extrasolar planets orbiting M-stars may represent our best chance to discover habitable worlds in the coming decade. The ultraviolet spectrum incident upon both Earth-like and Jovian planets is critically important for proper modeling of their atmospheric heating and chemistry. In order to provide more realistic inputs for atmospheric models of planets orbiting low-mass stars, we present new near- and far-ultraviolet (NUV and FUV) spectroscopy of the M-dwarf exoplanet host GJ 876 (M4V). Using the COS and STIS spectrographs on board the Hubble Space Telescope, we have measured the 1150-3140 A spectrum of GJ 876. We have reconstructed the stellar H I Ly{alpha} emission line profile, and find that the integrated Ly{alpha} flux is roughly equal to the rest of the integrated flux (1150-1210 A + 1220-3140 A) in the entire ultraviolet bandpass (F(Ly{alpha})/F(FUV+NUV) Almost-Equal-To 0.7). This ratio is {approx}2500 Multiplication-Sign greater than the solar value. We describe the ultraviolet line spectrum and report surprisingly strong fluorescent emission from hot H{sub 2} (T(H{sub 2}) > 2000 K). We show the light curve of a chromospheric + transition region flare observed in several far-UV emission lines, with flare/quiescent flux ratios {>=}10. The strong FUV radiation field of an M-star (and specifically Ly{alpha}) is important for determining the abundance of O{sub 2}-and the formation of biomarkers-in the lower atmospheres of Earth-like planets in the habitable zones of low-mass stars.

  13. Time-Resolved Ultraviolet Spectroscopy of The M-Dwarf GJ 876 Exoplanetary System

    Science.gov (United States)

    France, Kevin; Linsky, Jeffrey L.; Tian, Feng; Froning, Cynthia S.; Roberge, Aki

    2012-01-01

    Extrasolar planets orbiting M-stars may represent our best chance to discover habitable worlds in the coming decade. The ultraviolet spectrum incident upon both Earth-like and Jovian planets is critically important for proper modeling of their atmospheric heating and chemistry. In order to provide more realistic inputs for atmospheric models of planets orbiting low-mass stars, we present new near- and far-ultraviolet (NUV and FUV) spectroscopy of the M-dwarf exoplanet host GJ 876 (M4V). Using the COS and STIS spectrographs on board the Hubble Space Telescope, we have measured the 1150-3140 A spectrum of GJ 876. We have reconstructed the stellar H1 Ly alpha emission line profile, and find that the integrated Ly alpha flux is roughly equal to the rest of the integrated flux (1150-1210 A + 1220-3140 A) in the entire ultraviolet bandpass (F(Ly alpha)/F(FUV+NUV) equals approximately 0.7). This ratio is approximately 2500x greater than the solar value. We describe the ultraviolet line spectrum and report surprisingly strong fluorescent emission from hot H2 (T(H2) greater than 2000 K). We show the light curve of a chromospheric + transition region flare observed in several far-UV emission lines, with flare/quiescent flux ratios greater than or equal to 10. The strong FUV radiation field of an M-star (and specifically Ly alpha) is important for determining the abundance of O2--and the formation of biomarkers-in the lower atmospheres of Earth-like planets in the habitable zones of low-mass stars.

  14. Spatially Resolved X-ray Spectroscopy of the Large Magellanic Cloud Supernova Remnant N132D

    Science.gov (United States)

    Plucinsky, Paul; Sharda, Piyush; Gaetz, Terrance; Kashyap, Vinay

    2018-01-01

    We perform detailed X-ray spectroscopy of the brightest Supernova Remnant (SNR), N132D, in the Large Magellanic Cloud (LMC) using observations taken by the Advanced CCD Imaging Spectrometer (ACIS) on the Chandra X-ray Observatory (Chandra). By studying the spectra of regions on the well-defined rim running from NW to NE, we determine an average abundance set for O, Ne, Mg, Si, S and Fe for the local LMC environment. We note that the elements other than Fe and Ne show significant trends across this region, implying they cannot be approximated by a single, constant value. We characterize the blast wave properties and find a simple plane parallel shock model is sufficient to explain the X-ray spectrum of the forward shock moving into ambient LMC material, with a shock velocity near 800 km/s and a shock age of 600-1100 years. We find evidence of enhanced Si near the western blast wave which would imply an asymmetric explosion. We fit a region near the central, optical O-rich knots which exhibits enhanced abundances of O, Ne, Mg, Si, and Fe. Comparison to nucleosynthesis models of the ratios of these elements indicates a progenitor mass of 28-35 solar masses, consistent with most previous estimates. Lastly, we find an intriguing presence of a very hot plasma with a temperature of ~4.5 keV (assuming a non-equilibrium ionization model) to explain the Fe-K emission which is centrally concentrated in the lower half of the remnant.

  15. Holographic Spectroscopy for Rapid Electron Bunch Analysis: Development of an Instrument with THZ Resolved Optical Gating

    Energy Technology Data Exchange (ETDEWEB)

    Sievers, Albert

    2011-10-28

    The main thrust of our project was to apply the concepts of holographic spectroscopy, developed earlier in the visible and near IR spectral regions for satellite mapping, to the THz region in order to measure the spectral signature of the coherent radiation emanating from a relativistic electron bunch to obtain the bunch length itself. There were four major discoveries. (1) In the course of this ground-breaking work we developed and built the first static THz interferometer suitable for the realization of such a holographic Fourier transform spectrometer. Experimental tests and analysis of the observed results have provided the necessary foundation for future development of THz detector arrays optimized for spectroscopic applications. (2) Since such detectors do not exist at the present time our next effort was to find an alternative approach. We explored the electro-optic (EO) detection of the THz pulse using the short pulse of a visible diode laser synchronized to the bunch with the long-term goal aimed at single bunch measurement capability. The main hurdle was found to be the parasitic scattering of the diode radiation in the EO medium. By using the optical Fourier transform of the THz interference pattern the effects of this background were suppressed enough to obtain the spectrum using multiple shot acquisition. During our experiments at the FLASH facility at DESY we determined that for single bunch measurement capability the diode laser has to be able to produce sub 100 ps pulses with peak power of at least 1 W. Since these parameters are quite feasible at the current stage of diode laser science this combination of techniques can be used for single shot measurement of a short electron bunch. (3) In carrying out the above effort a simpler measurement possibility was uncovered involving the visible/nearIR pulse of incoherent radiation produced by the same bunch. This observation made possible the cross-correlation of the THz coherent and visible incoherent

  16. Near-infrared spatially resolved spectroscopy of (136108) Haumea's multiple system

    Science.gov (United States)

    Gourgeot, F.; Carry, B.; Dumas, C.; Vachier, F.; Merlin, F.; Lacerda, P.; Barucci, M. A.; Berthier, J.

    2016-08-01

    Context. The transneptunian region of the solar system is populated by a wide variety of icy bodies showing great diversity in orbital behavior, size, surface color, and composition. Aims: The dwarf planet (136108) Haumea is among the largest transneptunian objects (TNOs) and is a very fast rotator (~3.9 h). This dwarf planet displays a highly elongated shape and hosts two small moons that are covered with crystalline water ice, similar to their central body. A particular region of interest is the Dark Red Spot (DRS) identified on the surface of Haumea from multiband light-curve analysis (Lacerda et al. 2008). Haumea is also known to be the largest member of the sole TNO family known to date, and an outcome of a catastrophic collision that is likely responsible for the unique characteristics of Haumea. Methods: We report here on the analysis of a new set of near-infrared Laser Guide Star assisted observations of Haumea obtained with the Integral Field Unit (IFU) Spectrograph for INtegral Field Observations in the Near Infrared (SINFONI) at the European Southern Observatory (ESO) Very Large Telescope (VLT) Observatory. Combined with previous data published by Dumas et al. (2011), and using light-curve measurements in the optical and far infrared to associate each spectrum with its corresponding rotational phase, we were able to carry out a rotationally resolved spectroscopic study of the surface of Haumea. Results: We describe the physical characteristics of the crystalline water ice present on the surface of Haumea for both regions, in and out of the DRS, and analyze the differences obtained for each individual spectrum. The presence of crystalline water ice is confirmed over more than half of the surface of Haumea. Our measurements of the average spectral slope (1.45 ± 0.82% by 100 nm) confirm the redder characteristic of the spot region. Detailed analysis of the crystalline water-ice absorption bands do not show significant differences between the DRS and the

  17. A Decrease in Spatially Resolved Near-Infrared Spectroscopy-Determined Frontal Lobe Tissue Oxygenation by Phenylephrine Reflects Reduced Skin Blood Flow

    DEFF Research Database (Denmark)

    Ogoh, Shigehiko; Sato, Kohei; Okazaki, Kazunobu

    2014-01-01

    BACKGROUND: Spatially resolved near-infrared spectroscopy-determined frontal lobe tissue oxygenation (ScO2) is reduced with administration of phenylephrine, while cerebral blood flow may remain unaffected. We hypothesized that extracranial vasoconstriction explains the effect of phenylephrine on Sc...

  18. Nondestructive assessment of fruit biological age in Brazilian mangoes by time-resolved reflectance spectroscopy in the 540-900 nm spectral range

    NARCIS (Netherlands)

    Spinelli, L.; Rizzolo, A.; Vanoli, M.; Grassi, M.; Eccher Zerbini, P.C.; Meirelles de Azevedo Pementel, A.; Torricelli, A.

    2013-01-01

    Time-resolved Reflectance Spectroscopy (TRS) in the 540–900 nm spectral range has been tested in order to assess nondestructively the biological age of Brazilian mangoes. To this purpose a TRS set-up has been used to measure absorption and scattering coefficients of 60 intact mango fruits (cultivar

  19. Excited state non-adiabatic dynamics of pyrrole: A time-resolved photoelectron spectroscopy and quantum dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Guorong [National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6 (Canada); State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Neville, Simon P.; Worth, Graham A., E-mail: g.a.worth@bham.ac.uk [School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Schalk, Oliver [National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6 (Canada); Department of Physics, AlbaNova University Center, Stockholm University, Roslagstullsbacken 21, 109 61 Stockholm (Sweden); Sekikawa, Taro [National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6 (Canada); Department of Applied Physics, Hokkaido University, Kita-13 Nishi-8, Kita-ku, Sapporo 060-8628 (Japan); Ashfold, Michael N. R. [School of Chemistry, University of Bristol, Bristol BS8 1TS (United Kingdom); Stolow, Albert, E-mail: astolow@uottawa.ca [National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6 (Canada); Departments of Chemistry and Physics, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5 (Canada)

    2015-02-21

    The dynamics of pyrrole excited at wavelengths in the range 242-217 nm are studied using a combination of time-resolved photoelectron spectroscopy and wavepacket propagations performed using the multi-configurational time-dependent Hartree method. Excitation close to the origin of pyrrole’s electronic spectrum, at 242 and 236 nm, is found to result in an ultrafast decay of the system from the ionization window on a single timescale of less than 20 fs. This behaviour is explained fully by assuming the system to be excited to the A{sub 2}(πσ{sup ∗}) state, in accord with previous experimental and theoretical studies. Excitation at shorter wavelengths has previously been assumed to result predominantly in population of the bright A{sub 1}(ππ{sup ∗}) and B{sub 2}(ππ{sup ∗}) states. We here present time-resolved photoelectron spectra at a pump wavelength of 217 nm alongside detailed quantum dynamics calculations that, together with a recent reinterpretation of pyrrole’s electronic spectrum [S. P. Neville and G. A. Worth, J. Chem. Phys. 140, 034317 (2014)], suggest that population of the B{sub 1}(πσ{sup ∗}) state (hitherto assumed to be optically dark) may occur directly when pyrrole is excited at energies in the near UV part of its electronic spectrum. The B{sub 1}(πσ{sup ∗}) state is found to decay on a timescale of less than 20 fs by both N-H dissociation and internal conversion to the A{sub 2}(πσ{sup ∗}) state.

  20. Investigation of Co nanoparticle formation using time-dependent and spatially-resolved X-ray absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zinoveva, S.

    2008-04-15

    A crucial step towards controlled synthesis of nanoparticles is the detailed understanding of the various chemical processes that take place during the synthesis. X-ray Absorption Spectroscopy (XAS) is especially suitable for elucidating the type and structure of the intermediate metal species. It is applicable to materials that have no long range order and provides information on both electronic and geometric structures. Here a comparative study is reported of the formation of cobalt nanoparticles via thermolysis of two organometallic precursors dicobalt octacarbonyl (DCO) and alkyne-bridged dicobalt hexacarbonyl (ADH) in the presence of aluminum organics. Using time-dependent XAS a reaction pathway different from both the atom based La Mer model and the Watzky and Finsky autocatalytic surface growth model is observed. Where prior to the nucleation several intermediates are formed and the initial nucleus is composed of Co atoms coordinated with ligands Co{sub n}(CO){sub m} with n=2-3, m=3-5. The formation of Co nanoparticles was also investigated using a reaction different from thermolysis of cobalt carbonyls, namely reduction of Co (II) acetate by sodium borohydrate. Here the combination of microreactor system and spatially resolved XAS allowed ''in situ'' monitoring of the wet chemical synthesis. Several steps of the reaction were spatially resolved in the microreactor. The vertical size of the X-ray beam (50 {mu}m) focused with Kirkpatrick-Baez mirror system, determines the time resolution (better than 2 ms). The results provide direct insight into rapid process of nanoparticles formation and demonstrate the potential of this new technique for the fundamental studies of such type of processes where miniaturization and timeresolution are important. Like in the carbonyls thermolysis no evidence for the reduction of the starting complex to isolated Co{sup 0} atoms followed by nucleation of Co{sup 0} atoms was observed. (orig.)

  1. Time-resolved terahertz spectroscopy of electrically conductive metal-organic frameworks doped with redox active species

    Science.gov (United States)

    Alberding, Brian G.; Heilweil, Edwin J.

    2015-09-01

    Metal-Organic Frameworks (MOFs) are three-dimensional coordination polymers that are well known for large pore surface area and their ability to adsorb molecules from both the gaseous and solution phases. In general, MOFs are electrically insulating, but promising opportunities for tuning the electronic structure exist because MOFs possess synthetic versatility; the metal and organic ligand subunits can be exchanged or dopant molecules can be introduced into the pore space. Two such MOFs with demonstrated electrical conductivity are Cu3(1,3,5-benzenetricarboxylate)2, a.k.a HKUST-1, and Cu[Ni(pyrazine-2,3-dithiolate)2]. Herein, these two MOFs have been infiltrated with the redox active species 7,7,8,8-tetracyanoquinodimethane (TCNQ) and iodine under solution phase conditions and shown to produce redox products within the MOF pore space. Vibrational bands assignable to TCNQ anion and triiodide anion have been observed in the Mid-IR and Terahertz ranges using FTIR Spectroscopy. The MOF samples have been further investigated by Time-Resolved Terehertz Spectroscopy (TRTS). Using this technique, the charge mobility, separation, and recombination dynamics have been followed on the picosecond time scale following photoexcitation with visible radiation. The preliminary results show that the MOF samples have small inherent photoconductivity with charge separation lifetimes on the order of a few picoseconds. In the case of HKUST-1, the MOF can also be supported by a TiO2 film and initial results show that charge injection into the TiO2 layer occurs with a comparable efficiency to the dye sensitizer N3, [cis-Bis(isothiocyanato)-bis(2,2'-bipyridyl-4,4'-dicarboxylato ruthenium(II)], and therefore this MOF has potential as a new light absorbing and charge conducting material in photovoltaic devices.

  2. Influence of cutaneous and muscular circulation on spatially resolved versus standard Beer-Lambert near-infrared spectroscopy.

    Science.gov (United States)

    Messere, Alessandro; Roatta, Silvestro

    2013-12-01

    The potential interference of cutaneous circulation on muscle blood volume and oxygenation monitoring by near-infrared spectroscopy (NIRS) remains an important limitation of this technique. Spatially resolved spectroscopy (SRS) was reported to minimize the contribution of superficial tissue layers in cerebral monitoring but this characteristic has never been documented in muscle tissue monitoring. This study aims to compare SRS with the standard Beer-Lambert (BL) technique in detecting blood volume changes selectively induced in muscle and skin. In 16 healthy subjects, the biceps brachii was investigated during isometric elbow flexion at 70% of the maximum voluntary contractions lasting 10 sec, performed before and after exposure of the upper arm to warm air flow. From probes applied over the muscle belly the following variables were recorded: total hemoglobin index (THI, SRS-based), total hemoglobin concentration (tHb, BL-based), tissue oxygenation index (TOI, SRS-based), and skin blood flow (SBF), using laser Doppler flowmetry. Blood volume indices exhibited similar changes during muscle contraction but only tHb significantly increased during warming (+5.2 ± 0.7 μmol/L·cm, an effect comparable to the increase occurring in postcontraction hyperemia), accompanying a 10-fold increase in SBF. Contraction-induced changes in tHb and THI were not substantially affected by warming, although the tHb tracing was shifted upward by (5.2 ± 3.5 μmol/L·cm, P < 0.01). TOI was not affected by cutaneous warming. In conclusion, SRS appears to effectively reject interference by SBF in both muscle blood volume and oxygenation monitoring. Instead, BL-based parameters should be interpreted with caution, whenever changes in cutaneous perfusion cannot be excluded.

  3. Influence of cutaneous and muscular circulation on spatially resolved versus standard Beer–Lambert near‐infrared spectroscopy

    Science.gov (United States)

    Messere, Alessandro; Roatta, Silvestro

    2013-01-01

    Abstract The potential interference of cutaneous circulation on muscle blood volume and oxygenation monitoring by near‐infrared spectroscopy (NIRS) remains an important limitation of this technique. Spatially resolved spectroscopy (SRS) was reported to minimize the contribution of superficial tissue layers in cerebral monitoring but this characteristic has never been documented in muscle tissue monitoring. This study aims to compare SRS with the standard Beer–Lambert (BL) technique in detecting blood volume changes selectively induced in muscle and skin. In 16 healthy subjects, the biceps brachii was investigated during isometric elbow flexion at 70% of the maximum voluntary contractions lasting 10 sec, performed before and after exposure of the upper arm to warm air flow. From probes applied over the muscle belly the following variables were recorded: total hemoglobin index (THI, SRS‐based), total hemoglobin concentration (tHb, BL‐based), tissue oxygenation index (TOI, SRS‐based), and skin blood flow (SBF), using laser Doppler flowmetry. Blood volume indices exhibited similar changes during muscle contraction but only tHb significantly increased during warming (+5.2 ± 0.7 μmol/L·cm, an effect comparable to the increase occurring in postcontraction hyperemia), accompanying a 10‐fold increase in SBF. Contraction‐induced changes in tHb and THI were not substantially affected by warming, although the tHb tracing was shifted upward by (5.2 ± 3.5 μmol/L·cm, P < 0.01). TOI was not affected by cutaneous warming. In conclusion, SRS appears to effectively reject interference by SBF in both muscle blood volume and oxygenation monitoring. Instead, BL‐based parameters should be interpreted with caution, whenever changes in cutaneous perfusion cannot be excluded. PMID:24744858

  4. Time-resolved and steady-state studies of biologically and chemically relevant systems using laser, absorption, and fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, Charles Ashley [Iowa State Univ., Ames, IA (United States)

    2014-12-20

    In Chapter 2 several experimental and data analysis methods used in this thesis are described. In Chapter 3 steady-state fluorescence spectroscopy was used to determine the concentration of the efflux pump inhibitors (EPIs), pheophorbide a and pyropheophorbide a, in the feces of animals and it was found that their levels far exceed those reported to be inhibitory to efflux pumps. In Chapter 4 the solvation dynamics of 6-Propionyl-2-(N,Ndimethyl) aminonaphthalene (PRODAN) was studied in reverse micelles. The two fluorescent states of PRODAN solvate on different time scales and as such care must be exercised in solvation dynamic studies involving it and its analogs. In Chapter 5 we studied the experimental and theoretical solvation dynamics of coumarin 153 (C153) in wild-type (WT) and modified myoglobins. Based on the nuclear magnetic resonance (NMR) spectroscopy and time-resolved fluorescence studies, we have concluded that it is important to thoroughly characterize the structure of a protein and probe system before comparing the theoretical and experimental results. In Chapter 6 the photophysical and spectral properties of a derivative of the medically relevant compound curcumin called cyclocurcumin was studied. Based on NMR, fluorescence, and absorption studies, the ground- and excited-states of cyclocurcumin are complicated by the existence of multiple structural isomers. In Chapter 7 the hydrolysis of cellulose by a pure form of cellulase in an ionic liquid, HEMA, and its aqueous mixtures at various temperatures were studied with the goal of increasing the cellulose to glucose conversion for biofuel production. It was found that HEMA imparts an additional stability to cellulase and can allow for faster conversion of cellulose to glucose using a pre-treatment step in comparison to only buffer.

  5. The photodissociation and chemistry of interstellar CO

    NARCIS (Netherlands)

    Dishoeck, van E.F.; Black, J.H.

    1988-01-01

    Recent work on the vacuum UV absorption spectrum of CO to the description of the photodissociation of interstellar CO and its principal isotopic varieties is discussed. The effects of line broadening, self-shielding, shielding by H and H2, and isotope-selective shielding are examined as functions of

  6. Sol-to-Gel Transition in Fast Evaporating Systems Observed by in Situ Time-Resolved Infrared Spectroscopy.

    Science.gov (United States)

    Innocenzi, Plinio; Malfatti, Luca; Carboni, Davide; Takahashi, Masahide

    2015-06-22

    The in situ observation of a sol-to-gel transition in fast evaporating systems is a challenging task and the lack of a suitable experimental design, which includes the chemistry and the analytical method, has limited the observations. We synthesise an acidic sol, employing only tetraethylorthosilicate, SiCl4 as catalyst and deuterated water; the absence of water added to the sol allows us to follow the absorption from the external environment and the evaporation of deuterated water. The time-resolved data, obtained by attenuated total reflection infrared spectroscopy on an evaporating droplet, enables us to identify four different stages during evaporation. They are linked to specific hydrolysis and condensation rates that affect the uptake of water from external environment. The second stage is characterized by a decrease in hydroxyl content, a fast rise of condensation rate and an almost stationary absorption of water. This stage has been associated with the sol-to-gel transition. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. The primary photophysics of the Avena sativa phototropin 1 LOV2 domain observed with time-resolved emission spectroscopy.

    Science.gov (United States)

    van Stokkum, Ivo H M; Gauden, Magdalena; Crosson, Sean; van Grondelle, Rienk; Moffat, Keith; Kennis, John T M

    2011-01-01

    The phototropins are blue-light receptors that base their light-dependent action on the reversible formation of a covalent bond between a flavin mononucleotide (FMN) cofactor and a conserved cysteine in light, oxygen or voltage (LOV) domains. The primary reactions of the Avena sativa phototropin 1 LOV2 domain were investigated by means of time-resolved and low-temperature fluorescence spectroscopy. Synchroscan streak camera experiments revealed a fluorescence lifetime of 2.2 ns in LOV2. A weak long-lived component with emission intensity from 600 to 650 nm was assigned to phosphorescence from the reactive FMN triplet state. This observation allowed determination of the LOV2 triplet state energy level at physiological temperature at 16600 cm(-1). FMN dissolved in aqueous solution showed pH-dependent fluorescence lifetimes of 2.7 ns at pH 2 and 3.9-4.1 ns at pH 3-8. Here, too, a weak phosphorescence band was observed. The fluorescence quantum yield of LOV2 increased from 0.13 to 0.41 upon cooling the sample from 293 to 77 K. A pronounced phosphorescence emission around 600 nm was observed in the LOV2 domain between 77 and 120 K in the steady-state emission. © 2011 The Authors. Photochemistry and Photobiology © 2011 The American Society of Photobiology.

  8. Excited state non-adiabatic dynamics of N-methylpyrrole: A time-resolved photoelectron spectroscopy and quantum dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Guorong [National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6 (Canada); State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023 (China); Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Neville, Simon P. [Department of Chemistry, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5 (Canada); Schalk, Oliver [National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6 (Canada); Department of Physics, AlbaNova University Center, Stockholm University, Roslagstullsbacken 21, 106 91 Stockholm (Sweden); Sekikawa, Taro [Department of Applied Physics, Hokkaido University, Kita-13 Nishi-8, Kita-ku, Sapporo 060-8628 (Japan); Ashfold, Michael N. R. [School of Chemistry, University of Bristol, Bristol BS8 1TS (United Kingdom); Worth, Graham A. [School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Stolow, Albert, E-mail: astolow@uottawa.ca [National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6 (Canada); Department of Chemistry, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5 (Canada); Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario K1N 6N5 (Canada)

    2016-01-07

    The dynamics of N-methylpyrrole following excitation at wavelengths in the range 241.5-217.0 nm were studied using a combination of time-resolved photoelectron spectroscopy (TRPES), ab initio quantum dynamics calculations using the multi-layer multi-configurational time-dependent Hartree method, as well as high-level photoionization cross section calculations. Excitation at 241.5 and 236.2 nm results in population of the A{sub 2}(πσ{sup ∗}) state, in agreement with previous studies. Excitation at 217.0 nm prepares the previously neglected B{sub 1}(π3p{sub y}) Rydberg state, followed by prompt internal conversion to the A{sub 2}(πσ{sup ∗}) state. In contrast with the photoinduced dynamics of pyrrole, the lifetime of the wavepacket in the A{sub 2}(πσ{sup ∗}) state was found to vary with excitation wavelength, decreasing by one order of magnitude upon tuning from 241.5 nm to 236.2 nm and by more than three orders of magnitude when excited at 217.0 nm. The order of magnitude difference in lifetimes measured at the longer excitation wavelengths is attributed to vibrational excitation in the A{sub 2}(πσ{sup ∗}) state, facilitating wavepacket motion around the potential barrier in the N–CH{sub 3} dissociation coordinate.

  9. Determination of Absolute Orientation of Protein α-Helices at Interfaces Using Phase-Resolved Sum Frequency Generation Spectroscopy.

    Science.gov (United States)

    Schmüser, Lars; Roeters, Steven; Lutz, Helmut; Woutersen, Sander; Bonn, Mischa; Weidner, Tobias

    2017-07-06

    Understanding the structure of proteins at surfaces is key in fields such as biomaterials research, biosensor design, membrane biophysics, and drug design. A particularly important factor is the orientation of proteins when bound to a particular surface. The orientation of the active site of enzymes or protein sensors and the availability of binding pockets within membrane proteins are important design parameters for engineers developing new sensors, surfaces, and drugs. Recently developed methods to probe protein orientation, including immunoessays and mass spectrometry, either lack structural resolution or require harsh experimental conditions. We here report a new method to track the absolute orientation of interfacial proteins using phase-resolved sum frequency generation spectroscopy in combination with molecular dynamics simulations and theoretical spectral calculations. As a model system we have determined the orientation of a helical lysine-leucine peptide at the air-water interface. The data show that the absolute orientation of the helix can be reliably determined even for orientations almost parallel to the surface.

  10. Single-shot Raman spectroscopy and time-resolved reflectivity of a shocked TATB-based explosive

    Science.gov (United States)

    Hebert, Philippe; Saint-Amans, Charles; Doucet, Michel; de Resseguier, Thibaut

    2015-06-01

    Single-shot Raman spectroscopy experiments under shockwave loading were performed in order to get information on the initiation mechanisms that can lead to sustained detonation of a TATB-based explosive. Shocks up to 30 GPa were generated using a two-stage laser-driven flyer plate generator. The samples were confined by an optical window and shock pressure was maintained for at least 30 ns. Photon Doppler Velocimetry measurements were performed at the explosive/window interface to determine the shock pressure profile. Raman spectra were recorded as a function of shock pressure and the shifts of the principal modes were compared to static high-pressure measurements performed in a diamond anvil cell. Our shock data indicate the role of temperature effects on the H-bonding network present in TATB. Our Raman spectra also show a progressive extinction of the signal which disappears around 9 GPa. High-speed photography images reveal a simultaneous progressive darkening of the sample surface up to total opacity at 9 GPa. Time-resolved reflectivity measurements under shock compression seem to indicate that this opacity is due to a broadening of the absorption spectrum over the entire visible region.

  11. Communication: Ultrafast time-resolved ion photofragmentation spectroscopy of photoionization-induced proton transfer in phenol-ammonia complex

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Ching-Chi; Tsai, Tsung-Ting; Ho, Jr-Wei; Chen, Yi-Wei; Cheng, Po-Yuan, E-mail: pycheng@mx.nthu.edu.tw [Department of Chemistry, National Tsing Hua University, Hsinchu 30043, Taiwan (China)

    2014-11-07

    Photoionization-induced proton transfer (PT) in phenol-ammonia (PhOH-NH{sub 3}) complex has been studied using ultrafast time-resolved ion photofragmentation spectroscopy. Neutral PhOH-NH{sub 3} complexes prepared in a free jet are photoionized by femtosecond [1+1] resonance-enhanced multiphoton ionization via the S{sub 1} state, and the subsequent dynamics occurring in the cations is probed by delayed pulses that result in ion fragmentation. The observed temporal evolutions of the photofragmentation spectra are consistent with an intracomplex PT reaction. The experiments revealed that PT in [PhOH-NH{sub 3}]{sup +} cation proceeds in two distinct steps: an initial impulsive wave-packet motion in ∼70 fs followed by a slower relaxation of about 1 ps that stabilizes the system into the final PT configuration. These results indicate that for a barrierless PT system, even though the initial PT motions are impulsive and ultrafast, the reaction may take a much longer time scale to complete.

  12. Extended wavelength anisotropy resolved multidimensional emission spectroscopy (ARMES) measurements: better filters, validation standards, and Rayleigh scatter removal methods

    Science.gov (United States)

    Casamayou-Boucau, Yannick; Ryder, Alan G.

    2017-09-01

    Anisotropy resolved multidimensional emission spectroscopy (ARMES) provides valuable insights into multi-fluorophore proteins (Groza et al 2015 Anal. Chim. Acta 886 133-42). Fluorescence anisotropy adds to the multidimensional fluorescence dataset information about the physical size of the fluorophores and/or the rigidity of the surrounding micro-environment. The first ARMES studies used standard thin film polarizers (TFP) that had negligible transmission between 250 and 290 nm, preventing accurate measurement of intrinsic protein fluorescence from tyrosine and tryptophan. Replacing TFP with pairs of broadband wire grid polarizers enabled standard fluorescence spectrometers to accurately measure anisotropies between 250 and 300 nm, which was validated with solutions of perylene in the UV and Erythrosin B and Phloxine B in the visible. In all cases, anisotropies were accurate to better than ±1% when compared to literature measurements made with Glan Thompson or TFP polarizers. Better dual wire grid polarizer UV transmittance and the use of excitation-emission matrix measurements for ARMES required complete Rayleigh scatter elimination. This was achieved by chemometric modelling rather than classical interpolation, which enabled the acquisition of pure anisotropy patterns over wider spectral ranges. In combination, these three improvements permit the accurate implementation of ARMES for studying intrinsic protein fluorescence.

  13. Interaction of europium and nickel with calcite studied by Rutherford Backscattering Spectrometry and Time-Resolved Laser Fluorescence Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sabau, A. [Agence Nationale pour la gestion des Déchets RAdioactifs, 1-7 rue J. Monnet, Parc de la Croix Blanche, 92298 Châtenay-Malabry Cedex (France); Université de Nice Sophia Antipolis, Ecosystèmes Côtiers Marins et Réponses aux Stress (ECOMERS), 28 avenue Valrose, 06108 Nice Cedex 2 (France); Pipon, Y., E-mail: pipon@ipnl.in2p3.fr [Institut de Physique Nucléaire de Lyon (IPNL), Université Lyon 1, CNRS/IN2P3, 4 rue Enrico Fermi, 69 622 Villeurbanne Cedex (France); Institut Universitaire de Technologie (IUT) Lyon-1, Université Claude Bernard Lyon 1, 69 622 Villeurbanne Cedex (France); Toulhoat, N. [Institut de Physique Nucléaire de Lyon (IPNL), Université Lyon 1, CNRS/IN2P3, 4 rue Enrico Fermi, 69 622 Villeurbanne Cedex (France); CEA/DEN, Saclay, 91191 Gif sur Yvette (France); Lomenech, C. [Université de Nice Sophia Antipolis, Ecosystèmes Côtiers Marins et Réponses aux Stress (ECOMERS), 28 avenue Valrose, 06108 Nice Cedex 2 (France); Jordan, N. [Helmholtz Zentrum Dresden Rossendorf (HZDR), Institute of Resource Ecology (IRE) (Germany); Moncoffre, N. [Institut de Physique Nucléaire de Lyon (IPNL), Université Lyon 1, CNRS/IN2P3, 4 rue Enrico Fermi, 69 622 Villeurbanne Cedex (France); Barkleit, A. [Helmholtz Zentrum Dresden Rossendorf (HZDR), Institute of Resource Ecology (IRE) (Germany); and others

    2014-08-01

    This study aims at elucidating the mechanisms regulating the interaction of Eu and Ni with calcite (CaCO{sub 3}). Calcite powders or single crystals (some mm sized) were put into contact with Eu or Ni solutions at concentrations ranging from 10{sup −3} to 10{sup −5} mol L{sup −1} for Eu and 10{sup −3} mol L{sup −1} for Ni. The sorption durations ranged from 1 week to 1 month. Rutherford Backscattering Spectrometry (RBS) well adapted to discriminate incorporation processes such as: (i) adsorption or co precipitation at the mineral surfaces or, (ii) incorporation into the mineral structure (through diffusion for instance), has been carried out. Moreover, using the fluorescence properties of europium, the results have been compared to those obtained by Time-Resolved Laser Fluorescence Spectroscopy (TRLFS) on calcite powders. For the single crystals, complementary SEM observations of the mineral surfaces at low voltage were also performed. Results showed that Ni accumulates at the calcite surface whereas Eu is also incorporated at a greater depth. Eu seems therefore to be incorporated into two different states in calcite: (i) heterogeneous surface accumulation and (ii) incorporation at depth greater than 160 nm after 1 month of sorption. Ni was found to accumulate at the surface of calcite without incorporation.

  14. Influence of cost functions and optimization methods on solving the inverse problem in spatially resolved diffuse reflectance spectroscopy

    Science.gov (United States)

    Rakotomanga, Prisca; Soussen, Charles; Blondel, Walter C. P. M.

    2017-03-01

    Diffuse reflectance spectroscopy (DRS) has been acknowledged as a valuable optical biopsy tool for in vivo characterizing pathological modifications in epithelial tissues such as cancer. In spatially resolved DRS, accurate and robust estimation of the optical parameters (OP) of biological tissues is a major challenge due to the complexity of the physical models. Solving this inverse problem requires to consider 3 components: the forward model, the cost function, and the optimization algorithm. This paper presents a comparative numerical study of the performances in estimating OP depending on the choice made for each of the latter components. Mono- and bi-layer tissue models are considered. Monowavelength (scalar) absorption and scattering coefficients are estimated. As a forward model, diffusion approximation analytical solutions with and without noise are implemented. Several cost functions are evaluated possibly including normalized data terms. Two local optimization methods, Levenberg-Marquardt and TrustRegion-Reflective, are considered. Because they may be sensitive to the initial setting, a global optimization approach is proposed to improve the estimation accuracy. This algorithm is based on repeated calls to the above-mentioned local methods, with initial parameters randomly sampled. Two global optimization methods, Genetic Algorithm (GA) and Particle Swarm Optimization (PSO), are also implemented. Estimation performances are evaluated in terms of relative errors between the ground truth and the estimated values for each set of unknown OP. The combination between the number of variables to be estimated, the nature of the forward model, the cost function to be minimized and the optimization method are discussed.

  15. Time-resolved X-Ray Absorption Spectroscopy of a Cobalt-Based Hydrogen Evolution System for Artificial Photosynthesis

    Science.gov (United States)

    Moonshiram, Dooshaye; Gimbert, Carolina; Lehmann, Carl; Southworth, Stephen; Llobet, Antoni; Argonne National Laboratory Team; Institut Català d'Investigació Química Collaboration

    2015-03-01

    Production of cost-effective hydrogen gas through solar power is an important challenge of the Department of Energy among other global industry initiatives. In natural photosynthesis, the oxygen evolving complex(OEC) can carry out four-electron water splitting to hydrogen with an efficiency of around 60%. Although, much progress has been carried out in determining mechanistic pathways of the OEC, biomimetic approaches have not duplicated Nature's efficiency in function. Over the past years, we have witnessed progress in developments of light harvesting modules, so called chromophore/catalytic assemblies. In spite of reportedly high catalytic activity of these systems, quantum yields of hydrogen production are below 40 % when using monochromatic light. Proper understanding of kinetics and bond making/breaking steps has to be achieved to improve efficiency of hydrogen evolution systems. This project shows the timing implementation of ultrafast X-ray absorption spectroscopy to visualize in ``real time'' the photo-induced kinetics accompanying a sequence of redox reactions in a cobalt-based molecular photocatalytic system. Formation of a Co(I) species followed by a Co(III) hydride species all the way towards hydrogen evolution is shown through time-resolved XANES.

  16. Quinones in the A1 binding site in photosystem I studied using time-resolved FTIR difference spectroscopy.

    Science.gov (United States)

    Makita, Hiroki; Rohani, Leyla; Zhao, Nan; Hastings, Gary

    2017-09-01

    Time-resolved step-scan FTIR difference spectroscopy at low temperature (77 K) has been used to study photosystem I particles with phylloquinone (2-methyl-3-phytyl-1,4-naphthaquinone) and menadione (2-methyl-1,4-naphthaquinone) incorporated into the A1 binding site. By subtracting spectra for PSI with phylloquinone incorporated from spectra for PSI with menadione incorporated a (menadione - phylloquinone) double difference spectrum was constructed. In the double difference spectrum bands associated with protein vibrational modes effectively cancel, and the bands in the spectrum are primarily associated with the neutral and reduced states of the two quinones in the A1 binding site. To aid in the assignment of bands in the experimental double difference spectrum, a double difference spectrum was calculated using three-layer ONIOM methods. The calculated and experimental spectra agree well, allowing unambiguous band assignments to be made. The ONIOM calculations show that both quinones in the A1 binding site are similarly oriented, with only a single hydrogen bond between the C4=O quinone carbonyl group and the backbone NH group of a leucine residue. For the semi-quinone species, but not for the neutral species, this hydrogen bond appears to be very strong. Finally, we have for the first time been able to unmask and identify infrared difference bands associated with neutral naphthoquinone species occupying the A1 binding site in PSI. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Femtosecond time-resolved X-ray absorption spectroscopy of anatase TiO2 nanoparticles using XFEL

    Directory of Open Access Journals (Sweden)

    Yuki Obara

    2017-07-01

    Full Text Available The charge-carrier dynamics of anatase TiO2 nanoparticles in an aqueous solution were studied by femtosecond time-resolved X-ray absorption spectroscopy using an X-ray free electron laser in combination with a synchronized ultraviolet femtosecond laser (268 nm. Using an arrival time monitor for the X-ray pulses, we obtained a temporal resolution of 170 fs. The transient X-ray absorption spectra revealed an ultrafast Ti K-edge shift and a subsequent growth of a pre-edge structure. The edge shift occurred in ca. 100 fs and is ascribed to reduction of Ti by localization of generated conduction band electrons into shallow traps of self-trapped polarons or deep traps at penta-coordinate Ti sites. Growth of the pre-edge feature and reduction of the above-edge peak intensity occur with similar time constants of 300–400 fs, which we assign to the structural distortion dynamics near the surface.

  18. Photodissociation of methyl formate: Conical intersections, roaming and triple fragmentation

    Energy Technology Data Exchange (ETDEWEB)

    Lin, King-Chuen; Tsai, Po-Yu [Department of Chemistry, National Taiwan University, Taipei 106, Taiwan (China); Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan (China); Chao, Meng-Hsuan [Department of Chemistry, National Taiwan University, Taipei 106, Taiwan (China); Kasai, Toshio [Department of Chemistry, National Taiwan University, Taipei 106, Taiwan (China); Graduate School of Science, Department of Chemistry, Osaka University, Toyonaka, 560-0043 Osaka (Japan); Lombardi, Andrea [Dipartimento di Chimica, Università di Perugia, 06123 Perugia (Italy); Palazzetti, Federico [Scuola Normale Superiore, 56126 Pisa (Italy); Aquilanti, Vincenzo [Dipartimento di Chimica, Università di Perugia, 06123 Perugia (Italy); Consiglio Nazionale delle Ricerche, Istituto di Struttura della Materia, 00016 Roma (Italy)

    2015-12-31

    The photodissociation channels of methyl formate have been extensively investigated by two different advanced experimental techniques, ion imaging and Fourier-Transform-Infrared emission spectroscopy, combined with quantum chemical calculations and molecular dynamics simulations. Our aim is to characterize the role of alternative routes to the conventional transition-state mediated pathway: the roaming and the triple fragmentation processes. The photolysis experiments, carried out at a range of laser wavelengths in the vicinity of the triple fragmentation threshold, beside the simulation of large bunches of classical trajectories with different initial conditions, have shown that both mechanisms share a common path that involves a conical intersection during the relaxation process from the electronic excited state S{sub 1} to the ground state S{sub 0}.

  19. Spectral characterization of crude oil using fluorescence (synchronous and time-resolved) and NIR (Near Infrared Spectroscopy); Caracterizacao espectral do petroleo utilizando fluorescencia (sincronizada e resolvida no tempo) e NIR (Near Infrared Spectroscopy)

    Energy Technology Data Exchange (ETDEWEB)

    Falla Sotelo, F.; Araujo Pantoja, P.; Lopez-Gejo, J.; Le Roux, G.A.C.; Nascimento, C.A.O. [Universidade de Sao Paulo (USP), SP (Brazil). Dept. de Engenharia Quimica. Lab. de Simulacao e Controle de Processos; Quina, F.H. [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Quimica. Centro de Capacitacao e Pesquisa em Meio Ambiente (CEPEMA)

    2008-07-01

    The objective of the present work is to evaluate the performance of two spectroscopic techniques employed in the crude oil characterization: NIR spectroscopy and fluorescence spectroscopy (Synchronous fluorescence - SF and Time Resolved Fluorescence - TRF) for the development of correlation models between spectral profiles of crude oil samples and both physical properties (viscosity and API density) and physico-chemical properties (SARA analysis: Saturated, Aromatic, Resins and Asphaltenes). The better results for viscosity and density were obtained using NIR whose prediction capacity was good (1.5 cP and 0.5 deg API, respectively). For SARA analysis, fluorescence spectroscopy revealed its potential in the model calibration showing good results (R2 coefficients greater than 0.85). TRF spectroscopy had better performance than SF spectroscopy. (author)

  20. IR photodissociation spectroscopy of (OCS){sub n}{sup +} and (OCS){sub n}{sup −} cluster ions: Similarity and dissimilarity in the structure of CO{sub 2}, OCS, and CS{sub 2} cluster ions

    Energy Technology Data Exchange (ETDEWEB)

    Inokuchi, Yoshiya, E-mail: y-inokuchi@hiroshima-u.ac.jp; Ebata, Takayuki [Department of Chemistry, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526 (Japan)

    2015-06-07

    Infrared photodissociation (IRPD) spectra of (OCS){sub n}{sup +} and (OCS){sub n}{sup −} (n = 2–6) cluster ions are measured in the 1000–2300 cm{sup −1} region; these clusters show strong CO stretching vibrations in this region. For (OCS){sub 2}{sup +} and (OCS){sub 2}{sup −}, we utilize the messenger technique by attaching an Ar atom to measure their IR spectra. The IRPD spectrum of (OCS){sub 2}{sup +}Ar shows two bands at 2095 and 2120 cm{sup −1}. On the basis of quantum chemical calculations, these bands are assigned to a C{sub 2} isomer of (OCS){sub 2}{sup +}, in which an intermolecular semi-covalent bond is formed between the sulfur ends of the two OCS components by the charge resonance interaction, and the positive charge is delocalized over the dimer. The (OCS){sub n}{sup +} (n = 3–6) cluster ions show a few bands assignable to “solvent” OCS molecules in the 2000–2080 cm{sup −1} region, in addition to the bands due to the (OCS){sub 2}{sup +} ion core at ∼2090 and ∼2120 cm{sup −1}, suggesting that the dimer ion core is kept in (OCS){sub 3–6}{sup +}. For the (OCS){sub n}{sup −} cluster anions, the IRPD spectra indicate the coexistence of a few isomers with an OCS{sup −} or (OCS){sub 2}{sup −} anion core over the cluster range of n = 2–6. The (OCS){sub 2}{sup −}Ar anion displays two strong bands at 1674 and 1994 cm{sup −1}. These bands can be assigned to a C{sub s} isomer with an OCS{sup −} anion core. For the n = 2–4 anions, this OCS{sup −} anion core form is dominant. In addition to the bands of the OCS{sup −} core isomer, we found another band at ∼1740 cm{sup −1}, which can be assigned to isomers having an (OCS){sub 2}{sup −} ion core; this dimer core has C{sub 2} symmetry and {sup 2}A electronic state. The IRPD spectra of the n = 3–6 anions show two IR bands at ∼1660 and ∼2020 cm{sup −1}. The intensity of the latter component relative to that of the former one becomes stronger and stronger with

  1. Vibrational cooling dynamics of a [FeFe]-hydrogenase mimic probed by time-resolved infrared spectroscopy.

    Science.gov (United States)

    Caplins, Benjamin W; Lomont, Justin P; Nguyen, Son C; Harris, Charles B

    2014-12-11

    Picosecond time-resolved infrared spectroscopy (TRIR) was performed for the first time on a dithiolate bridged binuclear iron(I) hexacarbonyl complex ([Fe₂(μ-bdt)(CO)₆], bdt = benzene-1,2-dithiolate) which is a structural mimic of the active site of the [FeFe]-hydrogenase enzyme. As these model active sites are increasingly being studied for their potential in photocatalytic systems for hydrogen production, understanding their excited and ground state dynamics is critical. In n-heptane, absorption of 400 nm light causes carbonyl loss with low quantum yield (<10%), while the majority (ca. 90%) of the parent complex is regenerated with biexponential kinetics (τ₁ = 21 ps and τ₂ = 134 ps). In order to understand the mechanism of picosecond bleach recovery, a series of UV-pump TRIR experiments were performed in different solvents. The long time decay (τ₂) of the transient spectra is seen to change substantially as a function of solvent, from 95 ps in THF to 262 ps in CCl₄. Broadband IR-pump TRIR experiments were performed for comparison. The measured vibrational lifetimes (T₁(avg)) of the carbonyl stretches were found to be in excellent correspondence to the observed τ₂ decays in the UV-pump experiments, signifying that vibrationally excited carbonyl stretches are responsible for the observed longtime decays. The fast spectral evolution (τ₁) was determined to be due to vibrational cooling of low frequency modes anharmonically coupled to the carbonyl stretches that were excited after electronic internal conversion. The results show that cooling of both low and high frequency vibrational modes on the electronic ground state give rise to the observed picosecond TRIR transient spectra of this compound, without the need to invoke electronically excited states.

  2. Angle resolved x-ray photoelectron spectroscopy (ARXPS) analysis of lanthanum oxide for micro-flexography printing

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, S., E-mail: suhaimihas@uthm.edu.my; Yusof, M. S., E-mail: mdsalleh@uthm.edu.my; Maksud, M. I., E-mail: midris1973@gmail.com [Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia, 86400 Batu Pahat, Johor (Malaysia); Embong, Z., E-mail: zaidi@uthm.edu.my [Faculty of Science, Technology and Human Development, Universiti Tun Hussein Onn Malaysia, 86400 Batu Pahat, Johor (Malaysia)

    2016-01-22

    Micro-flexography printing was developed in patterning technique from micron to nano scale range to be used for graphic, electronic and bio-medical device on variable substrates. In this work, lanthanum oxide (La{sub 2}O{sub 3}) has been used as a rare earth metal candidate as depositing agent. This metal deposit was embedded on Carbon (C) and Silica (Si) wafer substrate using Magnetron Sputtering technique. The choose of Lanthanum as a target is due to its wide application in producing electronic devices such as thin film battery and printed circuit board. The La{sub 2}O{sub 3} deposited on the surface of Si wafer substrate was then analyzed using Angle Resolve X-Ray Photoelectron Spectroscopy (ARXPS). The position for each synthetic component in the narrow scan of Lanthanum (La) 3d and O 1s are referred to the electron binding energy (eV). The La 3d narrow scan revealed that the oxide species of this particular metal is mainly contributed by La{sub 2}O{sub 3} and La(OH){sub 3}. The information of oxygen species, O{sup 2-} component from O 1s narrow scan indicated that there are four types of species which are contributed from the bulk (O{sup 2−}), two chemisorb component (La{sub 2}O{sub 3}) and La(OH){sub 3} and physisorp component (OH). Here, it is proposed that from the adhesive and surface chemical properties of La, it is suitable as an alternative medium for micro-flexography printing technique in printing multiple fine solid lines at nano scale. Hence, this paper will describe the capability of this particular metal as rare earth metal for use in of micro-flexography printing practice. The review of other parameters contributing to print fine lines will also be described later.

  3. Angle resolved x-ray photoelectron spectroscopy (ARXPS) analysis of lanthanum oxide for micro-flexography printing

    Science.gov (United States)

    Hassan, S.; Yusof, M. S.; Embong, Z.; Maksud, M. I.

    2016-01-01

    Micro-flexography printing was developed in patterning technique from micron to nano scale range to be used for graphic, electronic and bio-medical device on variable substrates. In this work, lanthanum oxide (La2O3) has been used as a rare earth metal candidate as depositing agent. This metal deposit was embedded on Carbon (C) and Silica (Si) wafer substrate using Magnetron Sputtering technique. The choose of Lanthanum as a target is due to its wide application in producing electronic devices such as thin film battery and printed circuit board. The La2O3 deposited on the surface of Si wafer substrate was then analyzed using Angle Resolve X-Ray Photoelectron Spectroscopy (ARXPS). The position for each synthetic component in the narrow scan of Lanthanum (La) 3d and O 1s are referred to the electron binding energy (eV). The La 3d narrow scan revealed that the oxide species of this particular metal is mainly contributed by La2O3 and La(OH)3. The information of oxygen species, O2- component from O 1s narrow scan indicated that there are four types of species which are contributed from the bulk (O2-), two chemisorb component (La2O3) and La(OH)3 and physisorp component (OH). Here, it is proposed that from the adhesive and surface chemical properties of La, it is suitable as an alternative medium for micro-flexography printing technique in printing multiple fine solid lines at nano scale. Hence, this paper will describe the capability of this particular metal as rare earth metal for use in of micro-flexography printing practice. The review of other parameters contributing to print fine lines will also be described later.

  4. Visualizing chemical states and defects induced magnetism of graphene oxide by spatially-resolved-X-ray microscopy and spectroscopy.

    Science.gov (United States)

    Wang, Y F; Singh, Shashi B; Limaye, Mukta V; Shao, Y C; Hsieh, S H; Chen, L Y; Hsueh, H C; Wang, H T; Chiou, J W; Yeh, Y C; Chen, C W; Chen, C H; Ray, Sekhar C; Wang, J; Pong, W F; Takagi, Y; Ohigashi, T; Yokoyama, T; Kosugi, N

    2015-10-20

    This investigation studies the various magnetic behaviors of graphene oxide (GO) and reduced graphene oxides (rGOs) and elucidates the relationship between the chemical states that involve defects therein and their magnetic behaviors in GO sheets. Magnetic hysteresis loop reveals that the GO is ferromagnetic whereas photo-thermal moderately reduced graphene oxide (M-rGO) and heavily reduced graphene oxide (H-rGO) gradually become paramagnetic behavior at room temperature. Scanning transmission X-ray microscopy and corresponding X-ray absorption near-edge structure spectroscopy were utilized to investigate thoroughly the variation of the C 2p(π*) states that are bound with oxygen-containing and hydroxyl groups, as well as the C 2p(σ*)-derived states in flat and wrinkle regions to clarify the relationship between the spatially-resolved chemical states and the magnetism of GO, M-rGO and H-rGO. The results of X-ray magnetic circular dichroism further support the finding that C 2p(σ*)-derived states are the main origin of the magnetism of GO. Based on experimental results and first-principles calculations, the variation in magnetic behavior from GO to M-rGO and to H-rGO is interpreted, and the origin of ferromagnetism is identified as the C 2p(σ*)-derived states that involve defects/vacancies rather than the C 2p(π*) states that are bound with oxygen-containing and hydroxyl groups on GO sheets.

  5. Electronic band structure of ReS2 by high-resolution angle-resolved photoemission spectroscopy

    Science.gov (United States)

    Webb, James L.; Hart, Lewis S.; Wolverson, Daniel; Chen, Chaoyu; Avila, Jose; Asensio, Maria C.

    2017-09-01

    The rhenium-based transition metal dichalcogenides (TMDs) are atypical of the TMD family due to their highly anisotropic crystalline structure and are recognized as promising materials for two-dimensional heterostructure devices. The nature of the band gap (direct or indirect) for bulk, few-, and single-layer forms of ReS2 is of particular interest, due to its comparatively weak interplanar interaction. However, the degree of interlayer interaction and the question of whether a transition from indirect to direct gap is observed on reducing thickness (as in other TMDs) are controversial. We present a direct determination of the valence band structure of bulk ReS2 using high-resolution angle-resolved photoemission spectroscopy. We find a clear in-plane anisotropy due to the presence of chains of Re atoms, with a strongly directional effective mass which is larger in the direction orthogonal to the Re chains (2.2 me ) than along them (1.6 me ). An appreciable interplane interaction results in an experimentally measured difference of ≈100 -200 meV between the valence band maxima at the Z point (0,0,1/2 ) and the Γ point (0,0,0) of the three-dimensional Brillouin zone. This leads to a direct gap at Z and a close-lying but larger gap at Γ , implying that bulk ReS2 is marginally indirect. This may account for recent conflicting transport and photoluminescence measurements and the resulting uncertainty about the nature of the band gap in this material.

  6. Electronic structure of R Sb (R =Y , Ce, Gd, Dy, Ho, Tm, Lu) studied by angle-resolved photoemission spectroscopy

    Science.gov (United States)

    Wu, Yun; Lee, Yongbin; Kong, Tai; Mou, Daixiang; Jiang, Rui; Huang, Lunan; Bud'ko, S. L.; Canfield, P. C.; Kaminski, Adam

    2017-07-01

    We use high-resolution angle-resolved photoemission spectroscopy (ARPES) and electronic structure calculations to study the electronic properties of rare-earth monoantimonides RSb (R = Y, Ce, Gd, Dy, Ho, Tm, Lu). The experimentally measured Fermi surface (FS) of RSb consists of at least two concentric hole pockets at the Γ point and two intersecting electron pockets at the X point. These data agree relatively well with the electronic structure calculations. Detailed photon energy dependence measurements using both synchrotron and laser ARPES systems indicate that there is at least one Fermi surface sheet with strong three-dimensionality centered at the Γ point. Due to the "lanthanide contraction", the unit cell of different rare-earth monoantimonides shrinks when changing the rare-earth ion from CeSb to LuSb. This results in the differences in the chemical potentials in these compounds, which are demonstrated by both ARPES measurements and electronic structure calculations. Interestingly, in CeSb, the intersecting electron pockets at the X point seem to be touching the valence bands, forming a fourfold-degenerate Dirac-like feature. On the other hand, the remaining rare-earth monoantimonides show significant gaps between the upper and lower bands at the X point. Furthermore, similar to the previously reported results of LaBi, a Dirac-like structure was observed at the Γ point in YSb, CeSb, and GdSb, compounds showing relatively high magnetoresistance. This Dirac-like structure may contribute to the unusually large magnetoresistance in these compounds.

  7. Confocal depth-resolved fluorescence micro-X-ray absorption spectroscopy for the study of cultural heritage materials: a new mobile endstation at the Beijing Synchrotron Radiation Facility.

    Science.gov (United States)

    Chen, Guang; Chu, Shengqi; Sun, Tianxi; Sun, Xuepeng; Zheng, Lirong; An, Pengfei; Zhu, Jian; Wu, Shurong; Du, Yonghua; Zhang, Jing

    2017-09-01

    A confocal fluorescence endstation for depth-resolved micro-X-ray absorption spectroscopy is described. A polycapillary half-lens defines the incident beam path and a second polycapillary half-lens at 90° defines the probe sample volume. An automatic alignment program based on an evolutionary algorithm is employed to make the alignment procedure efficient. This depth-resolved system was examined on a general X-ray absorption spectroscopy (XAS) beamline at the Beijing Synchrotron Radiation Facility. Sacrificial red glaze (AD 1368-1644) china was studied to show the capability of the instrument. As a mobile endstation to be applied on multiple beamlines, the confocal system can improve the function and flexibility of general XAS beamlines, and extend their capabilities to a wider user community.

  8. Confocal depth-resolved fluorescence micro-X-ray absorption spectroscopy for the study of cultural heritage materials: a new mobile endstation at the Beijing Synchrotron Radiation Facility

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Guang; Chu, Shengqi; Sun, Tianxi; Sun, Xuepeng; Zheng, Lirong; An, Pengfei; Zhu, Jian; Wu, Shurong; Du, Yonghua; Zhang, Jing

    2017-08-10

    A confocal fluorescence endstation for depth-resolved micro-X-ray absorption spectroscopy is described. A polycapillary half-lens defines the incident beam path and a second polycapillary half-lens at 90° defines the probe sample volume. An automatic alignment program based on an evolutionary algorithm is employed to make the alignment procedure efficient. This depth-resolved system was examined on a general X-ray absorption spectroscopy (XAS) beamline at the Beijing Synchrotron Radiation Facility. Sacrificial red glaze (AD 1368–1644) china was studied to show the capability of the instrument. As a mobile endstation to be applied on multiple beamlines, the confocal system can improve the function and flexibility of general XAS beamlines, and extend their capabilities to a wider user community.

  9. Ultrafast laser photolysis study on photodissociation dynamics of a hexaarylbiimidazole derivative

    Science.gov (United States)

    Satoh, Yusuke; Ishibashi, Yukihide; Ito, Syoji; Nagasawa, Yutaka; Miyasaka, Hiroshi; Chosrowjan, Haik; Taniguchi, Seiji; Mataga, Noboru; Kato, Daisuke; Kikuchi, Azusa; Abe, Jiro

    2007-11-01

    Dynamics of the photodissociation process of a hexaarylbiimidazole derivative, 2,2'-di( ortho-chlorophenyl)-4,4',5,5'-tetraphenylbiimidazole ( o-Cl-HABI), in benzene solution was investigated by means of the femtosecond-nanosecond laser spectroscopy. The time evolution of the transient absorption of the lophyl radical, the product of the photodissociation, was biphasic with the faster and the slower time constants of 80 fs and 1.9 ps, respectively. The faster time constant was ascribable to the formation of the lophyl radical through the bond fission after the excitation, and the slower time constant may be attributed to the conformational change and/or vibrational cooling of nascent radicals.

  10. The Photodissociation of CH_3OCl to CH_3O + Cl at 248 nm

    Science.gov (United States)

    Krisch, M. J.; McCunn, L. R.; Takematsu, K.; Butler, L. J.; Blase, F. R.; Shu, J.

    2004-03-01

    We investigate the 248 nm photodissociation of methyl hypochlorite (CH_3OCl), an atmospheric chlorine reservoir species. Photofragment translational spectroscopy with a crossed laser-molecular beam apparatus, coupled with tunable VUV photoionization detection, identifies the primary photodissociation channel as cleavage of the O-Cl bond to produce Cl atoms and CH_3O radicals. This result is consistent with the direct dissociation mechanism suggested by other computational and experimental studies of alkyl hypohalites. The measured recoil kinetic energy distribution of the products shows that the CH_3O product is formed with a very narrow range of internal energies. A simple model predicts from conservation of angular momentum that nearly all of the internal energy is in rotational excitation. CH_3OCl thus serves as a photolytic precursor of CH_3O radicals with high and well-defined rotational and translational energies.

  11. Ultrafast studies of photodissociation in solution: Dissociation, recombination and relaxation

    Energy Technology Data Exchange (ETDEWEB)

    King, Jason Christopher [Univ. of California, Berkeley, CA (United States)

    1995-05-01

    Photodissociation of M(CO)6 (M=Cr,Mo,W) and the formation of solvated M(CO)5•S complex was studied in cyclohexane; rate-limiting step is vibrational energy relaxation from the new bond to the solvent. For both M=Cr and Mo, the primary relaxation occurs in 18 ps; for Cr, there is an additional vibrational relaxation (150 ps time scale) of a CO group poorly coupled to other modes. Relaxation of M=W occurs in 42 ps; several possible mechanisms for the longer cooling are discussed. Vibrational relaxation is also investigated for I2- and IBr- in nonpolar and slightly polar solvents. Attempts were made to discover the mechanism for the fast energy transfer in nonpolar solvent. The longer time scale dynamics of I3- and IBr2- were also studied; both formed a metastable complex following photodissociation and 90-95% return to ground state in 100 ps, implying a barrier to recombination of 4.3 kcal/mol and a barrier to escape of ≥5.5 kcal/mol. The more complex photochemistry of M3(CO)12 (M=Fe,Ru) is also investigated, using visible and ultraviolet radiations, dissociation, geminate recombination, vibrational relaxation, and bridging structures and their reactions were studied. Attempts were made to extend ultrafast spectroscopy into the mid-infrared, but signal-to-noise was poor.

  12. Effect of ouabain on metabolic oxidative state in living cardiomyocytes evaluated by time-resolved spectroscopy of endogenous NAD(P)H fluorescence

    Science.gov (United States)

    Chorvatova, Alzbeta; Elzwiei, Fathia; Mateasik, Anton; Chorvat, Dusan

    2012-10-01

    Time-resolved spectrometry of endogenous nicotinamide dinucleotide phosphate [NAD(P)H] fluorescence is a useful method to evaluate metabolic oxidative state in living cells. Ouabain is a well-known pharmaceutical drug used in the treatment of cardiovascular disease, the effects of which on myocardial metabolism were recently demonstrated. Mechanisms implicated in these actions are still poorly understood. We investigate the effect of ouabain on the metabolic oxidative state of living cardiac cells identified by time-resolved fluorescence spectroscopy of mitochondrial NAD(P)H. Spectral unmixing is used to resolve individual NAD(P)H fluorescence components. Ouabain decreased the integral intensity of NAD(P)H fluorescence, leading to a reduced component amplitudes ratio corresponding to a change in metabolic state. We also noted that lactate/pyruvate, affecting the cytosolic NADH gradient, increased the effect of ouabain on the component amplitudes ratio. Cell oxidation levels, evaluated as the percentage of oxidized NAD(P)H, decreased exponentially with rising concentrations of the cardiac glycoside. Ouabain also stimulated the mitochondrial NADH production. Our study sheds a new light on the role that ouabain plays in the regulation of metabolic state, and presents perspective on a noninvasive, pharmaceutical approach for testing the effect of drugs on the mitochondrial metabolism by means of time-resolved fluorescence spectroscopy in living cells.

  13. Time-resolved FTIR spectroscopy for monitoring protein dynamics exemplified by functional studies of Ras protein bound to a lipid bilayer

    Energy Technology Data Exchange (ETDEWEB)

    Koetting, Carsten, E-mail: carsten.koetting@rub.de [Lehrstuhl fuer Biophysik, Ruhr-Universitaet Bochum, D-44780 Bochum (Germany); Gueldenhaupt, Joern [Lehrstuhl fuer Biophysik, Ruhr-Universitaet Bochum, D-44780 Bochum (Germany); Gerwert, Klaus, E-mail: gerwert@bph.rub.de [Lehrstuhl fuer Biophysik, Ruhr-Universitaet Bochum, D-44780 Bochum (Germany)

    2012-03-02

    Graphical abstract: The first time resolved FTIR investigation of a GTPase reaction of a protein anchored at a single lipid bilayer. Display Omitted Highlights: Black-Right-Pointing-Pointer FTIR difference spectroscopy monitors protein dynamics with atomic detail. Black-Right-Pointing-Pointer ATR-FTIR allows the measurement of a monolayer sample. Black-Right-Pointing-Pointer Membrane proteins can be investigated near physiological conditions. Black-Right-Pointing-Pointer The hydrolysis reaction of Ras was investigated in this condition for the first time. - Abstract: Time-resolved Fourier transform infrared (FTIR) difference spectroscopy is a valuable tool for monitoring the dynamics of protein reactions and interactions. Absorbance changes can be monitored with time resolutions down to nanoseconds and followed for time periods that range over nine orders of magnitude. Membrane proteins bound to solid supported lipid bilayers can be investigated in near physiological conditions with the attenuated total reflection (ATR) technique. Here, we review the basics of time-resolved FTIR with a focus on Ras, a GTPase that is mutated in 25% of human tumors. We show the first time-resolved measurements of membrane anchored Ras and observed the switching between its activated and its inactivated state. We compared those measurements with measurements of the truncated Ras in solution. We found that both the kinetics and the functional groups involved were very similar. This suggested that the membrane did not have a major influence on the hydrolysis reaction.

  14. Magnetism and magneto-transport in the chiral helimagnet Cr1/3NbS2: Microscopic insights from angle-resolved photoemission and time-resolved optical spectroscopy

    Science.gov (United States)

    Sirica, Nicholas; Vilmercati, Paolo; Koehler, Michael; Sopkota, Deepak; Mandrus, David; Mannella, Norman; Bondino, Federica; Pis, Igor; Nappini, Silvia; Das, Pranab; Vobornik, Ivana; Fujii, Jun; Hedayat, Hamoon; Bugini, Davide; Dellera, Claudia; Carpene, Ettore; Mo, Sung-Kwan; Parker, David

    The recent discovery of the soliton lattice, and the intriguing interplay between magnetic and transport degrees of freedom, make the chiral helimagnet Cr1/3NbS2 a very promising material both for technological applications, and for elucidating the connection between non-trivial spin textures and the microscopic interactions allowed in a crystalline lattice lacking in inversion symmetry. In this talk, we present recent results of photoemission and time-resolved optical spectroscopy on Cr1/3NbS2. Most notably, the data reveal that the Fermi surface is partially composed of Cr states, and that such states may give rise to a possible half metallicity as suggested by the characteristically long demagnetization dynamic measured from time-resolved magneto-optical Kerr effect (MOKE). Finally, it will be discussed how these findings are inconsistent with a description of magnetism and magnetotransport in this material based solely on spin ordering arguments.

  15. Spatially resolved medium resolution spectroscopy of an interacting E+A (post-starburst) system with the Subaru Telescope

    Science.gov (United States)

    Goto, Tomotsugu; Yagi, Masafumi; Yamauchi, Chisato

    2008-12-01

    We have performed spatially resolved medium resolution long-slit spectroscopy of a nearby E+A (post-starburst) galaxy system, SDSSJ161330.18+510335.5, with the FOCAS spectrograph mounted on the Subaru Telescope. This E+A galaxy has an obvious companion galaxy 14kpc in front with the velocity difference of 61.8kms-1. Both galaxies have obviously disturbed morphology. Thus, this E+A system provides us with a perfect opportunity to investigate the relation between the post-starburst phenomena and galaxy-galaxy interaction. We have found that the Hδ equivalent width (EW) of the E+A galaxy is greater than 7Å galaxy wide (8.5kpc) with no significant spatial variation. The E+A galaxy has a weak [OIII] emission (EW ~ 1Å) offset by ~2.6kpc from the peak of the Balmer absorption lines. We detected a rotational velocity in the companion galaxy of >175kms-1. The progenitor of the companion may have been a rotationally supported, but yet passive S0 galaxy. We did not detect significant rotation on the E+A galaxy. A metallicity estimate based on the r - H colour suggests Z = 0.008 and 0.02, for the E+A and the companion galaxies, respectively. Assuming these metallicity estimates, the age of the E+A galaxy after quenching the star formation is estimated to be 100-500Myr, with its centre having a slightly younger stellar population. The companion galaxy is estimated to have an older stellar population of >2Gyr of age with no significant spatial variation. These findings are inconsistent with a simple picture where the dynamical interaction creates infall of the gas reservoir that causes the central starburst/post-starburst. Instead, our results present an important example where the galaxy-galaxy interaction can trigger a galaxy-wide post-starburst phenomenon. Based on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan. E-mail: tomo@ifa.hawaii.edu ‡ Japan Society for the Promotion of Science (JSPS) SPD Fellow.

  16. The structural and magnetic properties of Fe/native-oxide systems resolved by x-ray scattering and spectroscopy methods

    Energy Technology Data Exchange (ETDEWEB)

    Couet, Sebastien

    2008-12-15

    Since the discovery of the giant magnetoresistance (GMR) effect in metallic magnetic multilayers and its industrial application in magnetic read heads, the data storage density and reading speed of hard disks steadily increased. But now the point is reached where conventional conductive multilayer structures suffer from parasitic eddy currents which decrease the signal to noise ratio of the system. To tackle this problem, new classes of materials have to be studied. One approach is to introduce ultra thin oxide layers in a metallic iron structure to reduce the conductivity while keeping a high net magnetization. This can be achieved by alternating metal deposition and controlled oxidation to produce metal/metal-oxide multilayers. However, the magnetic structure that forms in such multilayer is still rather unexplored. The aim of this work was to achieve a better understanding of the magnetic structure that forms in such iron/native-oxide multilayers. For that purpose, X-ray and neutron scattering experiments were carried out to determine the magnetic structure and its evolution in ex-situ and in-situ experiments, respectively. It was found that a non-collinear magnetic coupling appears between the metal layers, which is mediated by the antiferromagnetically ordered oxide layer in between. The use of isotope sensitive scattering techniques (namely nuclear resonant scattering and neutron reflectometry) allowed to resolve the magnetic depth profile of the system, showing that the buried oxide carries a net magnetic moment. The chemical and magnetic structure of the buried oxide was studied by in-situ X-ray absorption spectroscopy and nuclear resonant scattering. After oxidation, the layer exhibits a mixture of different oxide phases and incorporates 10 to 15% of Fe with metallic character. Upon deposition of only one atomic layer of metallic Fe, the layer reduces to a single phase FeO-like oxide. This structural change does not lead to a magnetically ordered oxide

  17. Application of an InGaAsP diode laser to probe photodissociation dynamics - I(asterisk) quantum yields from n- and i-C3F7I and CH3I by laser gain vs absorption spectroscopy

    Science.gov (United States)

    Hess, W. P.; Kohler, S. J.; Haugen, H. K.; Leone, S. R.

    1986-01-01

    Initial measurements on I-asterisk yields of alkyl iodides at 266 nm are reported using gain vs. absorption spectroscopy with an InGaAsP diode probe laser. The results are 102 percent + or - 4 percent, 102 percent + or - 7 percent, and 73 percent + or - 4 percent for n-C3F7I, i-C3F7I, and CH3I respectively. Future prospects for the development of diode laser systems and for their use in dynamical studies are discussed.

  18. Photodissociation rates of molecules by the interstellar radiation field

    Science.gov (United States)

    Lee, L. C.

    1984-01-01

    The photodissociation rates of CO, NO, H2O, HCN, NO2, SO2, CS2, OCS, NH3, CH4, H2O2, and C2H2 dissociated by the interstellar ultraviolet background in the solar neighborhood are calculated for the 106-200 nm wavelength region. The processes for photodissociation of various interstellar molecules into fragments are discussed.

  19. Mapping of calf muscle oxygenation and haemoglobin content during dynamic plantar flexion exercise by multi-channel time-resolved near-infrared spectroscopy.

    Science.gov (United States)

    Torricelli, Alessandro; Quaresima, Valentina; Pifferi, Antonio; Biscotti, Giovanni; Spinelli, Lorenzo; Taroni, Paola; Ferrari, Marco; Cubeddu, Rinaldo

    2004-03-07

    A compact and fast multi-channel time-resolved near-infrared spectroscopy system for tissue oximetry was developed. It employs semiconductor laser and fibre optics for delivery of optical signals. Photons are collected by eight 1 mm fibres and detected by a multianode photomultiplier. A time-correlated single photon counting board is used for the parallel acquisition of time-resolved reflectance curves. Estimate of the reduced scattering coefficient is achieved by fitting with a standard model of diffusion theory, while the modified Lambert-Beer law is used to assess the absorption coefficient. In vivo measurements were performed on five healthy volunteers to monitor spatial changes in calf muscle (medial and lateral gastrocnemius; MG, LG) oxygen saturation (SmO2) and total haemoglobin concentration (tHb) during dynamic plantar flexion exercise performed at 50% of the maximal voluntary contraction. At rest SmO2 was 73.0 +/- 0.9 and 70.5 +/- 1.7% in MG and LG, respectively (P = 0.045). At the end of the exercise, SmO2 decreased (69.1 +/- 1.8 and 63.8 +/- 2.1% in MG and LG, respectively; P < 0.01). The LG desaturation was greater than the MG desaturation (P < 0.02). These results strengthen the role of time-resolved near-infrared spectroscopy as a powerful tool for investigating the spatial and temporal features of muscle SmO2 and tHb.

  20. Electronic structure studies of ferro-pnictide superconductors and their parent compounds using angle-resolved photoemission spectroscopy (ARPES)

    Energy Technology Data Exchange (ETDEWEB)

    Setti, Thirupathaiah

    2011-07-14

    The discovery of high temperature superconductivity in the iron pnictide compound LaO{sub 1-x}F{sub x}FeAs with T{sub c} = 26 K as created enormous interest in the high-T{sub c} superconductor community. So far, four prototypes of crystal structures have been found in the Fe-pnictide family. All four show a structural deformation followed or accompanied by a magnetic transition from a high temperature paramagnetic conductor to a low temperature antiferromagnetic metal whose transition temperature T{sub N} varies between the compounds. Charge carrier doping, isovalent substitution of the As atoms or the application of pressure suppresses the antiferromagnetic spin density wave (SDW) order and leads to a superconducting phase. More recently high Tc superconductivity has been also detected in iron chalchogenides with similar normal state properties. Since superconductivity is instability of the normal state, the study of normal state electronic structure in comparison with superconducting state could reveal important information on the pairing mechanism. Therefore, it is most important to study the electronic structure of these new superconductors, i.e., to determine Fermi surfaces and band dispersions near the Fermi level at the high symmetry points in order to obtain a microscopic understanding of the superconducting properties. Using the technique angle-resolved photoemission spectroscopy (ARPES) one measures the electrons ejected from a sample when photons impinge on it. In this way one can map the Fermi surface which provides useful information regarding the physics behind the Fermi surface topology of high T{sub c} superconductors. Furthermore, this technique provides information on the band dispersion, the orbital character of the bands, the effective mass, the coupling to bosonic excitations, and the superconducting gap. This emphasizes the importance of studying the electronic structure of the newly discovered Fe-pnictides using ARPES. In this work we have

  1. Absorption Spectrum of a Ru(II)-Aquo Complex in Vacuo: Resolving Individual Charge-Transfer Transitions.

    Science.gov (United States)

    Xu, Shuang; Weber, J Mathias

    2015-11-25

    Ruthenium(II) complexes are of great interest as homogeneous catalysts and as photosensitizers; however, their absorption spectra are typically very broad and offer only little insight into their electronic structure. We present the electronic spectrum of the aquo complex [(trpy)(bipy)Ru(II)-OH2](2+) measured by photodissociation spectroscopy of mass-selected ions in vacuo (bipy = 2,2'-bipyridine and trpy = 2,2':6',2″-terpyridine). In the visible and near-UV, [(trpy)(bipy)Ru(II)-OH2](2+) has several electronic bands that are not resolved in absorption spectra of this complex in solution but are partially resolved in vacuo. The experimental results are compared with results from time-dependent density functional theory calculations.

  2. Direct probing of charge carrier behavior in multilayered organic light-emitting diode devices by time-resolved electric-field-induced sum-frequency generation spectroscopy

    Science.gov (United States)

    Miyamae, Takayuki; Takada, Noriyuki; Ohata, Hiroshi; Tsutsui, Tetsuo

    2017-10-01

    Time-resolved electric-field-induced sum-frequency generation (EFI-SFG) spectroscopy was employed to study the charge behavior of multilayer organic light-emitting diodes (OLEDs). Through application of the square wave pulse bias to the OLEDs, compensation for the polarization charges in the electron transport layer and the generation of 4,4‧-bis[N-(1-naphthyl-N-phenylamino)-biphenyl] (α-NPD) cations were observed. When the pulse voltage was turned off, the α-NPD cations immediately disappeared, confirming that charge recombination occurs at the interfaces. We therefore concluded that time-resolved EFI-SFG is useful for directly probing the carrier behavior in OLEDs in addition to identifying the origin of the charge carriers present in OLEDs.

  3. Angle-resolved photoemission spectroscopy with 9-eV photon-energy pulses generated in a gas-filled hollow-core photonic crystal fiber

    Energy Technology Data Exchange (ETDEWEB)

    Bromberger, H., E-mail: Hubertus.Bromberger@mpsd.mpg.de; Liu, H.; Chávez-Cervantes, M.; Gierz, I. [Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg (Germany); Ermolov, A.; Belli, F.; Abdolvand, A.; Russell, P. St. J.; Travers, J. C. [Max Planck Institute for the Science of Light, Günther-Scharowsky-Str. 1, 91058 Erlangen (Germany); Calegari, F. [Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg (Germany); Institute for Photonics and Nanotechnologies, IFN-CNR, Piazza Leonardo da Vinci 32, I-20133 Milano (Italy); Li, M. T.; Lin, C. T. [Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart (Germany); Cavalleri, A. [Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg (Germany); Clarendon Laboratory, Department of Physics, University of Oxford, Parks Rd. Oxford OX1 3PU (United Kingdom)

    2015-08-31

    A recently developed source of ultraviolet radiation, based on optical soliton propagation in a gas-filled hollow-core photonic crystal fiber, is applied here to angle-resolved photoemission spectroscopy (ARPES). Near-infrared femtosecond pulses of only few μJ energy generate vacuum ultraviolet radiation between 5.5 and 9 eV inside the gas-filled fiber. These pulses are used to measure the band structure of the topological insulator Bi{sub 2}Se{sub 3} with a signal to noise ratio comparable to that obtained with high order harmonics from a gas jet. The two-order-of-magnitude gain in efficiency promises time-resolved ARPES measurements at repetition rates of hundreds of kHz or even MHz, with photon energies that cover the first Brillouin zone of most materials.

  4. Clocking the Melting Transition of Charge and Lattice Order in 1T-TaS2 with Ultrafast Extreme-Ultraviolet Angle-Resolved Photoemission Spectroscopy

    Science.gov (United States)

    Petersen, J. C.; Kaiser, S.; Dean, N.; Simoncig, A.; Liu, H. Y.; Cavalieri, A. L.; Cacho, C.; Turcu, I. C. E.; Springate, E.; Frassetto, F.; Poletto, L.; Dhesi, S. S.; Berger, H.; Cavalleri, A.

    2011-10-01

    We use time- and angle-resolved photoemission spectroscopy with sub-30-fs extreme-ultraviolet pulses to map the time- and momentum-dependent electronic structure of photoexcited 1T-TaS2. This compound is a two-dimensional Mott insulator with charge-density wave ordering. Charge order, evidenced by splitting between occupied subbands at the Brillouin zone boundary, melts well before the lattice responds. This challenges the view of a charge-density wave caused by electron-phonon coupling and Fermi-surface nesting alone, and suggests that electronic correlations play a key role in driving charge order.

  5. The hidden order transition in URu{sub 2}Si{sub 2} investigated by high-resolution angle-resolved photoemission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Trinckauf, Jan; Haenke, Torben; Geck, Jochen [IFW Dresden (Germany); Shai, Daniel; Harter, John; Shen, Kyle [Cornell University, Ithaca (United States); Luke, Graeme [McMaster Univerity, Hamilton (Canada)

    2012-07-01

    We present a study of the hidden order transition in URu{sub 2}Si{sub 2} by means of high-resolution angle-resolved photoemission spectroscopy (ARPES). In particular, we find a strong excitation energy dependence of a flat quasi particle band that is associated with and strongly affected by the hidden order transition. We compare our ARPES data to density functional theory (DFT) calculations in the local density approximation (LDA)+U to simulate various degrees of 5f localization.

  6. Compact all-fiber quartz-enhanced photoacoustic spectroscopy sensor with a 30.72 kHz quartz tuning fork and spatially resolved trace gas detection

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Yufei, E-mail: mayufei@hit.edu.cn [National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin 150001 (China); Post-doctoral Mobile Station of Power Engineering and Engineering Thermophysics, Harbin Institute of Technology, Harbin 150001 (China); He, Ying; Yu, Xin; Zhang, Jingbo [National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin 150001 (China); Sun, Rui [Post-doctoral Mobile Station of Power Engineering and Engineering Thermophysics, Harbin Institute of Technology, Harbin 150001 (China); Tittel, Frank K. [Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, Texas 77005 (United States)

    2016-02-29

    An ultra compact all-fiber quartz-enhanced photoacoustic spectroscopy (QEPAS) sensor using quartz tuning fork (QTF) with a low resonance frequency of 30.72 kHz was demonstrated. Such a sensor architecture has the advantages of easier optical alignment, lower insertion loss, lower cost, and more compact compared with a conventional QEPAS sensor using discrete optical components for laser delivery and coupling to the QTF. A fiber beam splitter and three QTFs were employed to perform multi-point detection and demonstrated the potential of spatially resolved measurements.

  7. Compact all-fiber quartz-enhanced photoacoustic spectroscopy sensor with a 30.72 kHz quartz tuning fork and spatially resolved trace gas detection

    Science.gov (United States)

    Ma, Yufei; He, Ying; Yu, Xin; Zhang, Jingbo; Sun, Rui; Tittel, Frank K.

    2016-02-01

    An ultra compact all-fiber quartz-enhanced photoacoustic spectroscopy (QEPAS) sensor using quartz tuning fork (QTF) with a low resonance frequency of 30.72 kHz was demonstrated. Such a sensor architecture has the advantages of easier optical alignment, lower insertion loss, lower cost, and more compact compared with a conventional QEPAS sensor using discrete optical components for laser delivery and coupling to the QTF. A fiber beam splitter and three QTFs were employed to perform multi-point detection and demonstrated the potential of spatially resolved measurements.

  8. The near ultraviolet photodissociation dynamics of 2- and 3-substituted thiophenols: Geometric vs. electronic structure effects

    Science.gov (United States)

    Marchetti, Barbara; Karsili, Tolga N. V.; Cipriani, Maicol; Hansen, Christopher S.; Ashfold, Michael N. R.

    2017-07-01

    The near ultraviolet spectroscopy and photodissociation dynamics of two families of asymmetrically substituted thiophenols (2- and 3-YPhSH, with Y = F and Me) have been investigated experimentally (by H (Rydberg) atom photofragment translational spectroscopy) and by ab initio electronic structure calculations. Photoexcitation in all cases populates the 11ππ* and/or 11πσ* excited states and results in S-H bond fission. Analyses of the experimentally obtained total kinetic energy release (TKER) spectra yield the respective parent S-H bond strengths, estimates of ΔE(A ˜ -X ˜ ), the energy splitting between the ground (X ˜ ) and first excited (A ˜ ) states of the resulting 2-(3-)YPhS radicals, and reveal a clear propensity for excitation of the C-S in-plane bending vibration in the radical products. The companion theory highlights roles for both geometric (e.g., steric effects and intramolecular H-bonding) and electronic (i.e., π (resonance) and σ (inductive)) effects in determining the respective parent minimum energy geometries, and the observed substituent and position-dependent trends in S-H bond strength and ΔE(A ˜ -X ˜ ). 2-FPhSH shows some clear spectroscopic and photophysical differences. Intramolecular H-bonding ensures that most 2-FPhSH molecules exist as the syn rotamer, for which the electronic structure calculations return a substantial barrier to tunnelling from the photoexcited 11ππ* state to the 11πσ* continuum. The 11ππ* ← S0 excitation spectrum of syn-2-FPhSH thus exhibits resolved vibronic structure, enabling photolysis studies with a greater parent state selectivity. Structure apparent in the TKER spectrum of the H + 2-FPhS products formed when exciting at the 11ππ* ← S0 origin is interpreted by assuming unintended photoexcitation of an overlapping resonance associated with syn-2-FPhSH(v33 = 1) molecules. The present data offer tantalising hints that such out-of-plane motion influences non-adiabatic coupling in the vicinity

  9. Hilbert-space treatment of incoherent, time-resolved spectroscopy. I. Formalism, a tensorial classification of high-order orientational gratings and generalized MUPPETS "echoes".

    Science.gov (United States)

    Berg, Mark A

    2010-04-14

    Time-resolved spectroscopy that uses more than one incoherent excitation, and thus has multiple periods of time evolution, is becoming more common. A recent example is multiple population-period transient spectroscopy (MUPPETS), which is implemented as a high-order transient grating. In this paper, a formalism is developed to treat these types of incoherent spectroscopy in a manner that parallels the Liouville-pathway formalism used to treat multidimensional coherent spectroscopy. A Hilbert space of incoherent (population) states is defined and general expressions for transition and time-evolution operators acting on these states are derived from the corresponding quantum operators. This formalism describes incoherent experiments that involve an arbitrary number of temporal dimensions in terms of pathways through the Hilbert space. Each pathway is associated with a multiple-time rate-correlation function. Previous work has shown that these multiple-time correlation functions can measure heterogeneity in electronic-relaxation rates. Thus, they are an analog of coherent "echo" experiments, which measure heterogeneity in frequencies. We show that similar "MUPPETS echo" experiments can be done on any incoherent variable. For a dilute molecular solute, the Hilbert-space method leads to a systematic treatment of multidimensional transient gratings. The extension of irreducible-tensor methods to the incoherent Hilbert space results in a classification of orientational gratings of arbitrary order. The general methods developed in this paper are applied more specifically to single-photon, dipole transitions in the following paper.

  10. Probing the influence of X-rays on aqueous copper solutions using time-resolved in situ combined video/X-ray absorption near-edge/ultraviolet-visible spectroscopy

    NARCIS (Netherlands)

    Mesu, J. Gerbrand; Beale, Andrew M.|info:eu-repo/dai/nl/325802068; de Groot, Frank M. F.|info:eu-repo/dai/nl/08747610X; Weckhuysen, Bert M.|info:eu-repo/dai/nl/285484397

    2006-01-01

    Time-resolved in situ video monitoring and ultraviolet-visible spectroscopy in combination with X-ray absorption near-edge spectroscopy (XANES) have been used for the first time in a combined manner to study the effect of synchrotron radiation on a series of homogeneous aqueous copper solutions in a

  11. Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hellman, Hal

    1968-01-01

    This booklet discusses spectroscopy, the study of absorption of radiation by matter, including X-ray, gamma-ray, microwave, mass spectroscopy, as well as others. Spectroscopy has produced more fundamental information to the study of the detailed structure of matter than any other tools.

  12. Spectroscopy

    CERN Document Server

    Walker, S

    1976-01-01

    The three volumes of Spectroscopy constitute the one comprehensive text available on the principles, practice and applications of spectroscopy. By giving full accounts of those spectroscopic techniques only recently introduced into student courses - such as Mössbauer spectroscopy and photoelectron spectroscopy - in addition to those techniques long recognised as being essential in chemistry teaching - sucha as e.s.r. and infrared spectroscopy - the book caters for the complete requirements of undergraduate students and at the same time provides a sound introduction to special topics for graduate students.

  13. Non-invasive measurement of blood glucose level by time-resolved transmission spectroscopy: A feasibility study

    Science.gov (United States)

    Sun, Meixiu; Chen, Nanguang

    2012-03-01

    An optical spectroscopic method is investigated theoretically for in vivo measurement of blood glucose concentration. This method is based on dynamic dual wavelength (610 nm and 810 nm) time-resolved measurements under a condition of artificial blood flow kinetics in a human finger. The influence of glucose concentration on absorption and reduced scattering coefficients of the whole blood is simulated using the T-matrix method. The scattering centers, RBC aggregation, under the artificial — kinetics condition are modeled as spheroid. The modified parametric slopes were derived from the Laplace transformed data of the time-resolved transmittance. The results show that an appropriate selection of the Laplace parameter can lead to enhanced sensitivity for glucose measurement.

  14. Determination of blood oxygenation in the brain by time-resolved reflectance spectroscopy: influence of the skin, skull, and meninges

    Science.gov (United States)

    Hielscher, Andreas H.; Liu, Hanli; Wang, Lihong; Tittel, Frank K.; Chance, Britton; Jacques, Steven L.

    1994-07-01

    Near infrared light has been used for the determination of blood oxygenation in the brain but little attention has been paid to the fact that the states of blood oxygenation in arteries, veins, and capillaries differ substantially. In this study, Monte Carlo simulations for a heterogeneous system were conducted, and near infrared time-resolved reflectance measurements were performed on a heterogeneous tissue phantom model. The model was made of a solid polyester resin, which simulates the tissue background. A network of tubes was distributed uniformly through the resin to simulate the blood vessels. The time-resolved reflectance spectra were taken with different absorbing solutions filled in the network. Based on the simulation and experimental results, we investigated the dependence of the absorption coefficient obtained from the heterogeneous system on the absorption of the actual absorbing solution filled in the tubes. We show that light absorption by the brain should result from the combination of blood and blood-free tissue background.

  15. Exploration of CdTe quantum dots as mesoscale pressure sensors via time-resolved shock-compression photoluminescent emission spectroscopy

    Science.gov (United States)

    Kang, Zhitao; Banishev, Alexandr A.; Lee, Gyuhyon; Scripka, David A.; Breidenich, Jennifer; Xiao, Pan; Christensen, James; Zhou, Min; Summers, Christopher J.; Dlott, Dana D.; Thadhani, Naresh N.

    2016-07-01

    The nanometer size of CdTe quantum dots (QDs) and their unique optical properties, including size-tunable narrow photoluminescent emission, broad absorption, fast photoluminescence decay, and negligible light scattering, are ideal features for spectrally tagging the shock response of localized regions in highly heterogeneous materials such as particulate media. In this work, the time-resolved laser-excited photoluminescence response of QDs to shock-compression was investigated to explore their utilization as mesoscale sensors for pressure measurements and in situ diagnostics during shock loading experiments. Laser-driven shock-compression experiments with steady-state shock pressures ranging from 2.0 to 13 GPa were performed on nanocomposite films of CdTe QDs dispersed in a soft polyvinyl alcohol polymer matrix and in a hard inorganic sodium silicate glass matrix. Time-resolved photoluminescent emission spectroscopy was used to correlate photoluminescence changes with the history of shock pressure and the dynamics of the matrix material surrounding the QDs. The results revealed pressure-induced blueshifts in emitted wavelength, decreases in photoluminescent emission intensity, reductions in peak width, and matrix-dependent response times. Data obtained for these QD response characteristics serve as indicators for their use as possible time-resolved diagnostics of the dynamic shock-compression response of matrix materials in which such QDs are embedded as in situ sensors.

  16. Time-resolved multi-mass ion imaging: Femtosecond UV-VUV pump-probe spectroscopy with the PImMS camera

    Science.gov (United States)

    Forbes, Ruaridh; Makhija, Varun; Veyrinas, Kévin; Stolow, Albert; Lee, Jason W. L.; Burt, Michael; Brouard, Mark; Vallance, Claire; Wilkinson, Iain; Lausten, Rune; Hockett, Paul

    2017-07-01

    The Pixel-Imaging Mass Spectrometry (PImMS) camera allows for 3D charged particle imaging measurements, in which the particle time-of-flight is recorded along with (x, y) position. Coupling the PImMS camera to an ultrafast pump-probe velocity-map imaging spectroscopy apparatus therefore provides a route to time-resolved multi-mass ion imaging, with both high count rates and large dynamic range, thus allowing for rapid measurements of complex photofragmentation dynamics. Furthermore, the use of vacuum ultraviolet wavelengths for the probe pulse allows for an enhanced observation window for the study of excited state molecular dynamics in small polyatomic molecules having relatively high ionization potentials. Herein, preliminary time-resolved multi-mass imaging results from C2F3I photolysis are presented. The experiments utilized femtosecond VUV and UV (160.8 nm and 267 nm) pump and probe laser pulses in order to demonstrate and explore this new time-resolved experimental ion imaging configuration. The data indicate the depth and power of this measurement modality, with a range of photofragments readily observed, and many indications of complex underlying wavepacket dynamics on the excited state(s) prepared.

  17. Exploration of CdTe quantum dots as mesoscale pressure sensors via time-resolved shock-compression photoluminescent emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Zhitao [Georgia Tech Research Institute, Georgia Institute of Technology, Atlanta, Georgia 30332-0826 (United States); School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245 (United States); Banishev, Alexandr A.; Christensen, James; Dlott, Dana D. [School of Chemical Sciences and Fredrick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Lee, Gyuhyon; Scripka, David A.; Breidenich, Jennifer; Summers, Christopher J.; Thadhani, Naresh N., E-mail: naresh.thadhani@mse.gatech.edu [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245 (United States); Xiao, Pan [LNM, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China); George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0405 (United States); Zhou, Min [George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0405 (United States)

    2016-07-28

    The nanometer size of CdTe quantum dots (QDs) and their unique optical properties, including size-tunable narrow photoluminescent emission, broad absorption, fast photoluminescence decay, and negligible light scattering, are ideal features for spectrally tagging the shock response of localized regions in highly heterogeneous materials such as particulate media. In this work, the time-resolved laser-excited photoluminescence response of QDs to shock-compression was investigated to explore their utilization as mesoscale sensors for pressure measurements and in situ diagnostics during shock loading experiments. Laser-driven shock-compression experiments with steady-state shock pressures ranging from 2.0 to 13 GPa were performed on nanocomposite films of CdTe QDs dispersed in a soft polyvinyl alcohol polymer matrix and in a hard inorganic sodium silicate glass matrix. Time-resolved photoluminescent emission spectroscopy was used to correlate photoluminescence changes with the history of shock pressure and the dynamics of the matrix material surrounding the QDs. The results revealed pressure-induced blueshifts in emitted wavelength, decreases in photoluminescent emission intensity, reductions in peak width, and matrix-dependent response times. Data obtained for these QD response characteristics serve as indicators for their use as possible time-resolved diagnostics of the dynamic shock-compression response of matrix materials in which such QDs are embedded as in situ sensors.

  18. Mapping of calf muscle oxygenation and haemoglobin content during dynamic plantar flexion exercise by multi-channel time-resolved near-infrared spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Torricelli, Alessandro [INFM-Dipartimento di Fisica and IFN-CNR, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milan (Italy); Quaresima, Valentina [Department of Biomedical Sciences and Technologies, University of L' Aquila, I-67100 L' Aquila (Italy); Pifferi, Antonio [INFM-Dipartimento di Fisica and IFN-CNR, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milan (Italy); Biscotti, Giovanni [INFM-Dipartimento di Fisica and IFN-CNR, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milan (Italy); Spinelli, Lorenzo [INFM-Dipartimento di Fisica and IFN-CNR, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milan (Italy); Taroni, Paola [INFM-Dipartimento di Fisica and IFN-CNR, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milan (Italy); Ferrari, Marco [Department of Biomedical Sciences and Technologies, University of L' Aquila, I-67100 L' Aquila (Italy); Cubeddu, Rinaldo [INFM-Dipartimento di Fisica and IFN-CNR, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milan (Italy)

    2004-03-07

    A compact and fast multi-channel time-resolved near-infrared spectroscopy system for tissue oximetry was developed. It employs semiconductor laser and fibre optics for delivery of optical signals. Photons are collected by eight 1 mm fibres and detected by a multianode photomultiplier. A time-correlated single photon counting board is used for the parallel acquisition of time-resolved reflectance curves. Estimate of the reduced scattering coefficient is achieved by fitting with a standard model of diffusion theory, while the modified Lambert-Beer law is used to assess the absorption coefficient. In vivo measurements were performed on five healthy volunteers to monitor spatial changes in calf muscle (medial and lateral gastrocnemius; MG, LG) oxygen saturation (SmO{sub 2}) and total haemoglobin concentration (tHb) during dynamic plantar flexion exercise performed at 50% of the maximal voluntary contraction. At rest SmO{sub 2} was 73.0 {+-} 0.9 and 70.5 {+-} 1.7% in MG and LG, respectively (P = 0.045). At the end of the exercise, SmO{sub 2} decreased (69.1 {+-} 1.8 and 63.8 {+-} 2.1% in MG and LG, respectively; P < 0.01). The LG desaturation was greater than the MG desaturation (P < 0.02). These results strengthen the role of time-resolved near-infrared spectroscopy as a powerful tool for investigating the spatial and temporal features of muscle SmO{sub 2} and tHb.

  19. Hilbert-space treatment of incoherent, time-resolved spectroscopy. II. Pathway description of optical multiple population-period transient spectroscopy.

    Science.gov (United States)

    Berg, Mark A

    2010-04-14

    This paper applies the general methods developed in the previous paper (Paper I) to the case of one-photon, dipole transitions of a molecular solute. The results generalize transient-grating spectroscopy to an arbitrarily number of dimensions. Transition and detection operators are derived, and their matrix elements are calculated in the complex-valued basis set developed in Paper I. Selection rules make it possible to analyze which incoherent pathways, and thus which correlation functions, contribute to an N-dimensional multiple population-period transient spectroscopy experiment. Irreducible-tensor methods allow the amplitudes of the contributing orientational-correlation functions to be calculated for arbitrary polarization conditions. A second-rank polarization tensor is used to describe the polarization of the pair of beams creating or detecting a grating. Several known results for one-dimensional experiments are rederived in this formalism to provide examples of its use.

  20. Comparison of TiO₂ and ZnO solar cells sensitized with an indoline dye: time-resolved laser spectroscopy studies of partial charge separation processes.

    Science.gov (United States)

    Sobuś, Jan; Burdziński, Gotard; Karolczak, Jerzy; Idígoras, Jesús; Anta, Juan A; Ziółek, Marcin

    2014-03-11

    Time-resolved laser spectroscopy techniques in the time range from femtoseconds to seconds were applied to investigate the charge separation processes in complete dye-sensitized solar cells (DSC) made with iodide/iodine liquid electrolyte and indoline dye D149 interacting with TiO2 or ZnO nanoparticles. The aim of the studies was to explain the differences in the photocurrents of the cells (3-4 times higher for TiO2 than for ZnO ones). Electrochemical impedance spectroscopy and nanosecond flash photolysis studies revealed that the better performance of TiO2 samples is not due to the charge collection and dye regeneration processes. Femtosecond transient absorption results indicated that after first 100 ps the number of photoinduced electrons in the semiconductor is 3 times higher for TiO2 than for ZnO solar cells. Picosecond emission studies showed that the lifetime of the D149 excited state is about 3 times longer for ZnO than for TiO2 samples. Therefore, the results indicate that lower performance of ZnO solar cells is likely due to slower electron injection. The studies show how to correlate the laser spectroscopy methodology with global parameters of the solar cells and should help in better understanding of the behavior of alternative materials for porous electrodes for DSC and related devices.

  1. Time-resolved photoemission spectroscopy of electronic cooling and localization in CH3NH3PbI3 crystals

    Science.gov (United States)

    Chen, Zhesheng; Lee, Min-i.; Zhang, Zailan; Diab, Hiba; Garrot, Damien; Lédée, Ferdinand; Fertey, Pierre; Papalazarou, Evangelos; Marsi, Marino; Ponseca, Carlito; Deleporte, Emmanuelle; Tejeda, Antonio; Perfetti, Luca

    2017-09-01

    We measure the surface of CH3NH3PbI3 single crystals by making use of two-photon photoemission spectroscopy. Our method monitors the electronic distribution of photoexcited electrons, explicitly discriminating the initial thermalization from slower dynamical processes. The reported results disclose the fast-dissipation channels of hot carriers (0.25 ps), set an upper bound to the surface-induced recombination velocity (solar cells to the theoretical limit.

  2. Time-resolved characterization of a filamentary argon discharge at atmospheric pressure in a capillary using emission and absorption spectroscopy

    Science.gov (United States)

    Schröter, Sandra; Pothiraja, Ramasamy; Awakowicz, Peter; Bibinov, Nikita; Böke, Marc; Niermann, Benedikt; Winter, Jörg

    2013-11-01

    An argon/nitrogen (0.999/0.001) filamentary pulsed discharge operated at atmospheric pressure in a quartz tube is characterized using voltage-current measurements, microphotography, optical emission spectroscopy (OES) and absorption spectroscopy. Nitrogen is applied as a sensor gas for the purpose of OES diagnostic. The density of argon metastable atoms Ar(3P2) is determined using tunable diode laser absorption spectroscopy (TDLAS). Using a plasma chemical model the measured OES data are applied for the characterization of the plasma conditions. Between intense positive pulses the discharge current oscillates with a damped amplitude. It is established that an electric current flows in this discharge not only through a thin plasma filament that is observed in the discharge image but also through the whole cross section of the quartz tube. A diffuse plasma fills the quartz tube during a time between intense current pulses. Ionization waves are propagating in this plasma between the spike and the grounded area of the tube producing thin plasma channels. The diameter of these channels increases during the pause between the propagation of ionization waves probably because of thermal expansion and diffusion. Inside the channels electron densities of ˜2 × 1013 cm-3, argon metastable densities ˜1014 cm-3 and a reduced electric field about 10 Td are determined.

  3. Guest–Host Interactions Investigated by Time-Resolved X-ray Spectroscopies and Scattering at MHz Rates

    DEFF Research Database (Denmark)

    Haldrup, Martin Kristoffer; Vanko, G.; Gawelda, W.

    2012-01-01

    We have studied the photoinduced low spin (LS) to high spin (HS) conversion of [Fe(bipy)3]2+ in aqueous solution. In a laser pump/X-ray probe synchrotron setup permitting simultaneous, time-resolved X-ray diffuse scattering (XDS) and X-ray spectroscopic measurements at a 3.26 MHz repetition rate,...... of the caging solvent, in particular, a decrease in the number of water molecules in the first solvation shell is inferred, as predicted by recent theoretical work....

  4. Fast spatially resolved exhaust gas recirculation (EGR) distribution measurements in an internal combustion engine using absorption spectroscopy.

    Science.gov (United States)

    Yoo, Jihyung; Prikhodko, Vitaly; Parks, James E; Perfetto, Anthony; Geckler, Sam; Partridge, William P

    2015-09-01

    Exhaust gas recirculation (EGR) in internal combustion engines is an effective method of reducing NOx emissions while improving efficiency. However, insufficient mixing between fresh air and exhaust gas can lead to cycle-to-cycle and cylinder-to-cylinder non-uniform charge gas mixtures of a multi-cylinder engine, which can in turn reduce engine performance and efficiency. A sensor packaged into a compact probe was designed, built and applied to measure spatiotemporal EGR distributions in the intake manifold of an operating engine. The probe promotes the development of more efficient and higher-performance engines by resolving high-speed in situ CO2 concentration at various locations in the intake manifold. The study employed mid-infrared light sources tuned to an absorption band of CO2 near 4.3 μm, an industry standard species for determining EGR fraction. The calibrated probe was used to map spatial EGR distributions in an intake manifold with high accuracy and monitor cycle-resolved cylinder-specific EGR fluctuations at a rate of up to 1 kHz.

  5. Probing organometallic reactions by time-resolved infrared spectroscopy in solution and in the solid state using quantum cascade lasers.

    Science.gov (United States)

    Calladine, James A; Horvath, Raphael; Davies, Andrew J; Wriglesworth, Alisdair; Sun, Xue-Zhong; George, Michael W

    2015-05-01

    The photochemistry and photophysics of metal carbonyl compounds (W(CO)6, Cp*Rh(CO)2 (Cp* = η(5)-C5Me5), and fac-[Re(CO)3(4,4'-bpy)2Br] [bpy = bipyridine]) have been examined on the nanosecond timescale using a time-resolved infrared spectrometer with an external cavity quantum cascade laser (QCL) as the infrared source. We show the photochemistry of W(CO)6 in alkane solution is easily monitored, and very sensitive measurements are possible with this approach, meaning it can monitor small transients with absorbance changes less than 10(-6) ΔOD. The C-H activation of Cp*Rh(CO)(C6H12) to form Cp*Rh(CO)(C6H11)H occurs within the first few tens of nanoseconds following photolysis, and we demonstrate that kinetics obtained following deconvolution are in excellent agreement with those measured using an ultrafast laser-based spectrometer. We also show that the high flux and tunability of QCLs makes them suited for solid-state and time-resolved measurements.

  6. Photodissociation of NO2 in the (2) (2)B2 state: the O((1)D2) dissociation channel.

    Science.gov (United States)

    Wilkinson, Iain; de Miranda, Marcelo P; Whitaker, Benjamin J

    2009-08-07

    Direct current slice and crush velocity map imaging has been used to probe the photodissociation dynamics of nitrogen dioxide above the second dissociation limit. The paper is a companion to a previous publication [J. Chem. Phys. 128, 164318 (2008)] in which we reported results for the O((3)P(J)) + NO((2)Pi(Omega)) adiabatic product channel. Here we examine the O((1)D(2)) + NO((2)Pi(Omega)) diabatic product channel at similar excitation energies. Using one- and two-color imaging experiments to observe the velocity distributions of state selected NO fragments and O atoms, respectively, we are able to build a detailed picture of the dissociation dynamics. We show that by combining the information obtained from velocity map imaging studies with mass-resolved resonantly enhanced multiphoton ionization spectroscopy it is possible to interpret and fully assign the NO images. By recording two-color images of the O((1)D(2)) photofragments with different polarization combinations of the pump and probe laser fields we also measure the orbital angular momentum alignment in the atomic fragment. We find that the entire O((1)D(2)) photofragment distribution is similarly aligned with most of the population in the M(J) = +/-1 magnetic sublevels. The similarity of the fragment polarizations is interpreted as a signature of all of the O((1)D(2)) atoms being formed via the same avoided crossing. At the photolysis energy of 5.479 52 eV we find that the NO fragments are preferentially formed in v = 1 and that the vibrationally excited fragments exhibit a bimodal rotational distribution. This is in contrast to the unimodal rotational profile of the NO fragments in v = 0. We discuss these observations in terms of the calculated topology of the adiabatic potential energy surfaces and attribute the vibrational inversion and rotational bimodality of the v = 1 fragments to the symmetric stretch and bending motion generated on excitation to the (2) (2)B(2) state.

  7. Charge Carriers Modulate the Bonding of Semiconductor Nanoparticle Dopants As Revealed by Time-Resolved X-ray Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Asra; Zhang, Xiaoyi; Liu, Xiaohan; Rowland, Clare E. [Department; Jawaid, Ali M.; Chattopadhyay, Soma; Gulec, Ahmet; Shamirian, Armen; Zuo, Xiaobing; Klie, Robert F.; Schaller, Richard D. [Department; Snee, Preston T.

    2017-08-31

    Understanding the electronic structure of doped semiconductors is essential to realize advancements in electronics and in the rational design of nanoscale devices. Reported here are the results of time-resolved X-ray absorption studies on copper-doped cadmium sulfide nanoparticles that provide an explicit description of the electronic dynamics of the dopants. The interaction of a dopant ion and an excess charge carrier is unambiguously observed via monitoring the oxidation state. The experimental data combined with DFT calculations demonstrate that dopant bonding to the host matrix is modulated by its interaction with charge carriers. Furthermore, the transient photoluminescence and the kinetics of dopant oxidation reveal the presence of two types of surface-bound ions that create mid-gap states.

  8. Time-resolved soft X-ray absorption spectroscopy in transmission mode on liquids at MHz repetition rates

    Directory of Open Access Journals (Sweden)

    Mattis Fondell

    2017-09-01

    Full Text Available We present a setup combining a liquid flatjet sample delivery and a MHz laser system for time-resolved soft X-ray absorption measurements of liquid samples at the high brilliance undulator beamline UE52-SGM at Bessy II yielding unprecedented statistics in this spectral range. We demonstrate that the efficient detection of transient absorption changes in transmission mode enables the identification of photoexcited species in dilute samples. With iron(II-trisbipyridine in aqueous solution as a benchmark system, we present absorption measurements at various edges in the soft X-ray regime. In combination with the wavelength tunability of the laser system, the set-up opens up opportunities to study the photochemistry of many systems at low concentrations, relevant to materials sciences, chemistry, and biology.

  9. Investigation of verbal and visual working memory by multi-channel time-resolved functional near-infrared spectroscopy

    Science.gov (United States)

    Contini, D.; Caffini, M.; Re, R.; Zucchelli, L.; Spinelli, L.; Basso Moro, S.; Bisconti, S.; Ferrari, M.; Quaresima, V.; Cutini, S.; Torricelli, A.

    2013-03-01

    Working memory (WM) is fundamental for a number of cognitive processes, such as comprehension, reasoning and learning. WM allows the short-term maintenance and manipulation of the information selected by attentional processes. The goal of this study was to examine by time-resolved fNIRS neural correlates of the verbal and visual WM during forward and backward digit span (DF and DB, respectively) tasks, and symbol span (SS) task. A neural dissociation was hypothesised between the maintenance and manipulation processes. In particular, a dorsolateral/ventrolateral prefrontal cortex (DLPFC/VLPFC) recruitment was expected during the DB task, whilst a lateralised involvement of Brodmann Area (BA) 10 was expected during the execution of the DF task. Thirteen subjects were monitored by a multi-channel, dual-wavelength (690 and 829 nm) time-resolved fNIRS system during 3 minutes long DF and DB tasks and 4 minutes long SS task. The participants' mean memory span was calculated for each task: DF: 6.46+/-1.05 digits; DB: 5.62+/-1.26 digits; SS: 4.69+/-1.32 symbols. No correlation was found between the span level and the heart rate data (measured by pulse oximeter). As expected, DB elicited a broad activated area, in the bilateral VLPFC and the right DLPFC, whereas a more localised activation was observed over the right hemisphere during either DF (BA 10) or SS (BA 10 and 44). The robust involvement of the DLPFC during DB, compared to DF, is compatible with previous findings and with the key role of the central executive subserving in manipulating processes.

  10. Communication: Photodissociation of CH3CHO at 308 nm: Observation of H-roaming, CH3-roaming, and transition state pathways together along the ground state surface

    Science.gov (United States)

    Li, Hou-Kuan; Tsai, Po-Yu; Hung, Kai-Chan; Kasai, Toshio; Lin, King-Chuen

    2015-01-01

    Following photodissociation of acetaldehyde (CH3CHO) at 308 nm, the CO(v = 1-4) fragment is acquired using time-resolved Fourier-transform infrared emission spectroscopy. The CO(v = 1) rotational distribution shows a bimodal feature; the low- and high-J components result from H-roaming around CH3CO core and CH3-roaming around CHO radical, respectively, in consistency with a recent assignment by Kable and co-workers (Lee et al., Chem. Sci. 5, 4633 (2014)). The H-roaming pathway disappears at the CO(v ≥ 2) states, because of insufficient available energy following bond-breaking of H + CH3CO. By analyzing the CH4 emission spectrum, we obtained a bimodal vibrational distribution; the low-energy component is ascribed to the transition state (TS) pathway, consistent with prediction by quasiclassical trajectory calculations, while the high-energy component results from H- and CH3-roamings. A branching fraction of H-roaming/CH3-roaming/TS contribution is evaluated to be (8% ± 3%)/(68% ± 10%)/(25% ± 5%), in which the TS pathway was observed for the first time. The three pathways proceed concomitantly along the electronic ground state surface.

  11. Femtosecond dynamics of electronic states in the Mott insulator 1T-TaS{sub 2} by time resolved photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Perfetti, L; Loukakos, P A; Lisowski, M; Bovensiepen, U; Wolf, M [Fachbereich Physik, Freie Universitaet Berlin, Arnimallee 14, 14195 Berlin (Germany); Berger, H [Institut de Physique de la Matiere Complexe, EPFL, CH-1015 Lausanne (Switzerland); Biermann, S; Georges, A [Centre de Physique Theorique, Ecole Polytechnique, 91128 Palaiseau Cedex (France)], E-mail: perfetti@physik.fu-berlin.de

    2008-05-15

    Photoexcitation of the Mott insulator 1T-TaS{sub 2} by an intense laser pulse leads to an ultrafast transition toward a gapless phase. Besides the collapse of the electronic gap, the sudden excitation of the charge density wave (CDW) mode results in periodic oscillations of the electronic states. We employ time resolved photoelectron spectroscopy to monitor the rich dynamics of electrons and phonons during the relaxation toward equilibrium. The qualitative difference between the oscillatory dynamics of the CDW and the monotonic recovery of the electronic gap proves that 1T-TaS{sub 2} is indeed a Mott insulator. Moreover the quasi-instantaneous build-up of mid gap states is in contrast with the retarded response expected from a Peierls insulating phase. Interestingly, the photoinduced electronic states in the midgap spectral region display a weak resonance that is reminiscent of a quasiparticle peak.

  12. Anomalous asymmetry in the Fermi surface of the high-temperature superconductor YBa2Cu4O8 revealed by angle-resolved photoemission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, Takeshi; Khasanov, R.; Sassa, Y.; Bendounan, A.; Paihes, S.; Chang, J.; Mesot, J.; Keller, H.; Zhigadlo, N.D.; Shi, M.; Bukowski, Z.; Karpinski, J.; Kaminski, A.

    2009-09-15

    We use microprobe angle-resolved photoemission spectroscopy to study the Fermi surface and band dispersion of the CuO{sub 2} planes in the high-temperature superconductor, YBa{sub 2}Cu{sub 4}O{sub 8}. We find a strong in-plane asymmetry of the electronic structure between directions along a and b axes. The saddle point of the antibonding band lies at a significantly higher energy in the a direction ({pi},0) than the b direction (0,{pi}), whereas the bonding band displays the opposite behavior. We demonstrate that the abnormal band shape is due to a strong asymmetry of the bilayer band splitting, likely caused by a nontrivial hybridization between the planes and chains. This asymmetry has an important implication for interpreting key properties of the Y-Ba-Cu-O family, especially the superconducting gap, transport, and results of inelastic neutron scattering.

  13. Time-resolved soft-x-ray spectroscopy of a magnetic octupole transition in nickel-like xenon, cesium, and barium ions

    Energy Technology Data Exchange (ETDEWEB)

    Trabert, E; Beiersdorfer, P; Brown, G V; Boyce, K; Kelley, R L; Kilbourne, C A; Porter, F S; Szymkowiak, A

    2005-11-11

    A microcalorimeter with event mode capability for time-resolved soft-x-ray spectroscopy, and a high-resolution flat-field EUV spectrometer have been employed at the Livermore EBIT-I electron beam ion trap for observations and wavelength measurements of M1, E2, and M3 decays of long-lived levels in the Ni-like ions Xe{sup 26+}, Cs{sup 27+}, and Ba{sup 28+}. Of particular interest is the lowest excited level, 3d{sup 9}4s {sup 3}D{sub 3}, which can only decay via a magnetic octupole (M3) transition. For this level in Xe an excitation energy of (590.40 {+-} 0.03eV) and a level lifetime of (11.5 {+-} 0.5 ms) have been determined.

  14. High-resolution metallic magnetic calorimeters for {beta}-spectroscopy on {sup 187}rhenium and position resolved X-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Porst, Jan-Patrick

    2011-02-01

    This thesis describes the development of metallic magnetic calorimeters (MMCs) for high resolution spectroscopy. MMCs are energy dispersive particle detectors based on the calorimetric principle which are typically operated at temperatures below 100 mK. The detectors make use of a paramagnetic temperature sensor to transform the temperature rise upon the absorption of a particle in the detector into a measurable magnetic flux change in a dc-SQUID. The application of MMCs for neutrino mass measurements and their advantages with respect to other approaches are discussed. In view of this application the development of an MMC optimized for {beta}-endpoint spectroscopy on {sup 187}rhenium is presented. A fully micro-fabricated X-ray detector is characterized and performs close to design values. Furthermore, a new technique to more efficiently couple rhenium absorbers mechanically and thermally to the sensor was developed and successfully tested. By employing a metallic contact, signal rise times faster than 5 {mu}s could be observed with superconducting rhenium absorbers. In addition to the single pixel detectors, an alternative approach of reading out multiple pixels was developed in this work, too. Here, the individual absorbers have a different thermal coupling to only one temperature sensor resulting in a distribution of different pulse shapes. Straightforward position discrimination by means of rise time analysis is demonstrated for a four pixel MMC and a thermal model of the detector is provided. Unprecedented so far, an energy resolution of less than {delta}E{sub FWHM}<5 eV for 5.9 keV X-rays was achieved across all absorbers. (orig.)

  15. Static and time-resolved mid-infrared spectroscopy of Hg0.95Cd0.05Cr2Se4 spinel

    Science.gov (United States)

    Barsaume, S.; Telegin, A. V.; Sukhorukov, Yu P.; Stavrias, N.; Fedorov, V. A.; Menshchikova, T. K.; Kimel, A. V.

    2017-08-01

    Static and time-resolved mid-infrared spectroscopy of ferromagnetic single crystal Hg0.95Cd0.05Cr2Se4 was performed below the absorption edge, in order to reveal the origin of the electronic transitions contributing to the magneto-optical properties of this material. The mid-infrared spectroscopy reveals a strong absorption peak around 0.236 eV which formerly was assigned to a transition within the selenide-chromium complexes (ν Se-Cr2+). To reveal the sensitivity of the transition to the magnetic order, we performed the studies in a temperature range across the Curie temperature and magnetic fields across the value at which the saturation of ferromagnetic magnetization occurs. Despite the fact that the Curie temperature of this ferromagnetic semiconductor is around 107 K, the intensity of the mid-infrared transition reduces substantially increasing the temperature, so that already at 70 K the absorption peak is hardly visible. Such a dramatic decrease of the oscillator strength is observed simultaneously with the strong red-shift of the absorption edge in the magnetic semiconductor. Employing a time-resolved pump-and-probe technique enabled us to determine the lifetime of the electrons in the excited state of this optical transition. In the temperature range from 7 K to 80 K, the lifetime changes from 3 ps to 6 ps. This behavior agrees with the phenomenon of giant oscillator strength described earlier for weakly bound excitons in nonmagnetic semiconductors.

  16. Kinetics of the laser-induced solid phase crystallization of amorphous silicon-Time-resolved Raman spectroscopy and computer simulations

    Science.gov (United States)

    Očenášek, J.; Novák, P.; Prušáková, L.

    2017-01-01

    This study demonstrates that a laser-induced crystallization instrumented with Raman spectroscopy is, in general, an effective tool to study the thermally activated crystallization kinetics. It is shown, for the solid phase crystallization of an amorphous silicon thin film, that the integral intensity of Raman spectra corresponding to the crystalline phase grows linearly in the time-logarithmic scale. A mathematical model, which assumes random nucleation and crystal growth, was designed to simulate the crystallization process in the non-uniform temperature field induced by laser. The model is based on solving the Eikonal equation and the Arhenius temperature dependence of the crystal nucleation and the growth rate. These computer simulations successfully approximate the crystallization process kinetics and suggest that laser-induced crystallization is primarily thermally activated.

  17. Time- and space-resolved X-ray absorption spectroscopy of aluminum irradiated by a subpicosecond high-power laser

    Science.gov (United States)

    Tzortzakis, S.; Audebert, P.; Renaudin, P.; Bastiani-Ceccotti, S.; Geindre, J. P.; Chenais-Popovics, C.; Nagels, V.; Gary, S.; Shepherd, R.; Girard, F.; Matsushima, I.; Peyrusse, O.; Gauthier, J.-C.

    2006-05-01

    The ionization and recombination dynamics of transient aluminum plasmas was measured using point projection K-shell absorption spectroscopy. An aluminum plasma was produced with a subpicosecond beam of the 100-TW laser at the LULI facility and probed at different times with a picosecond X-ray backlighter created with a synchronized subpicosecond laser beam. Fourier-Domain-Interferometry (FDI) was used to measure the electron temperature at the peak of the heating laser pulse. Absorption X-ray spectra at early times are characteristic of a dense and rather homogeneous plasma, with limited longitudinal gradients as shown by hydrodynamic simulations. The shift of the Al K-edge was measured in the cold dense plasma located at the edge of the heated plasma. From the 1s 2p absorption spectra, the average ionization was measured as a function of time and was also modeled with a collisional-radiative atomic physics code coupled with hydrodynamic simulations.

  18. Time- and space-resolved X-ray absorption spectroscopy of aluminum irradiated by a subpicosecond high-power laser

    Energy Technology Data Exchange (ETDEWEB)

    Tzortzakis, S. [Laboratoire pour l' Utilisation des Lasers Intenses (LULI), UMR 7605, CNRS-CEA-Universite Paris VI-Ecole Polytechnique, 91128 Palaiseau (France)]. E-mail: gauthier@celia.ubordeaux1.fr; Audebert, P. [Laboratoire pour l' Utilisation des Lasers Intenses (LULI), UMR 7605, CNRS-CEA-Universite Paris VI-Ecole Polytechnique, 91128 Palaiseau (France); Renaudin, P. [Commissariat a l' Energie Atomique, 91680 Bruyeres-le-Chatel Cedex (France); Bastiani-Ceccotti, S. [Laboratoire pour l' Utilisation des Lasers Intenses (LULI), UMR 7605, CNRS-CEA-Universite Paris VI-Ecole Polytechnique, 91128 Palaiseau (France); Geindre, J.P. [Laboratoire pour l' Utilisation des Lasers Intenses (LULI), UMR 7605, CNRS-CEA-Universite Paris VI-Ecole Polytechnique, 91128 Palaiseau (France); Chenais-Popovics, C. [Laboratoire pour l' Utilisation des Lasers Intenses (LULI), UMR 7605, CNRS-CEA-Universite Paris VI-Ecole Polytechnique, 91128 Palaiseau (France); Nagels, V. [Laboratoire pour l' Utilisation des Lasers Intenses (LULI), UMR 7605, CNRS-CEA-Universite Paris VI-Ecole Polytechnique, 91128 Palaiseau (France); Gary, S. [Commissariat a l' Energie Atomique, 91680 Bruyeres-le-Chatel Cedex (France); Shepherd, R. [Lawrence Livermore National Laboratory, University of California, Livermore, CA 94550 (United States); Girard, F. [Commissariat a l' Energie Atomique, 91680 Bruyeres-le-Chatel Cedex (France); Matsushima, I. [National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 3058568 (Japan); Peyrusse, O. [CELIA, UMR 5107, CNRS-CEA-Universite Bordeaux 1, 33405 Talence (France); Gauthier, J.-C. [CELIA, UMR 5107, CNRS-CEA-Universite Bordeaux 1, 33405 Talence (France)

    2006-05-15

    The ionization and recombination dynamics of transient aluminum plasmas was measured using point projection K-shell absorption spectroscopy. An aluminum plasma was produced with a subpicosecond beam of the 100-TW laser at the LULI facility and probed at different times with a picosecond X-ray backlighter created with a synchronized subpicosecond laser beam. Fourier-Domain-Interferometry (FDI) was used to measure the electron temperature at the peak of the heating laser pulse. Absorption X-ray spectra at early times are characteristic of a dense and rather homogeneous plasma, with limited longitudinal gradients as shown by hydrodynamic simulations. The shift of the Al K-edge was measured in the cold dense plasma located at the edge of the heated plasma. From the 1s-2p absorption spectra, the average ionization was measured as a function of time and was also modeled with a collisional-radiative atomic physics code coupled with hydrodynamic simulations.

  19. Space Resolved XUV Spectroscopy and Shearing Interferometry from a 10 ps KrF Laser-Produced-Plasma

    Science.gov (United States)

    Iglesias, E. J.; Griem, H. R.; Elton, R. C.; Scott, H. A.; Moreno, J. C.

    1999-11-01

    We produced a plasma using 50 mJ, 10 ps pulses from a KrF laser on boron-carbide targets, with a focal spot size of ≈. 30 μm. We achieved an ≈ 30 μm spatial resolution (along the plasma axis) on spectra obtained using a crossed slit equipped 1 m grazing-incidence spectrograph. We added also a shearing interferometer with an air wedge [Sarkisov, G. S Instruments and Experimental Techniques Vol39, Iss. 5 ,727, 1996] to produce interferograms of the plasma with an ≈ 45 μm background fringe spacing. Correlations between estimated electron densities using both methods: interferometry and emission spectroscopy of Hidrogen and Helium-like Boron and Carbon, will be presented. We will also discuss comparisons between experimental spectra and predicted results using the atomic physics postprocessor CRETIN integrated with TOTAL, a line broadening code.

  20. Tunable, Liquid Resistant Tip Enhanced Raman Spectroscopy Probes: Toward Label-Free Nano-Resolved Imaging of Biological Systems.

    Science.gov (United States)

    Scherger, Jacob D; Foster, Mark D

    2017-08-08

    Tip enhanced Raman spectroscopy (TERS) has been established as a powerful, noninvasive technique for chemical identification at the nanoscale. However, difficulties, including the degradation of probes, limit its use in liquid systems. Here TERS probes for studies in aqueous environments have been demonstrated using titanium nitride coatings with an alumina protective layer. The probes show enhancement in signal intensity as high as 380% in liquid measurements, and the probe resonance can be tuned by varying deposition conditions to optimize performance for different laser sources and types of samples. This development of inexpensively produced probes suited for studies in aqueous environments enables its wider use for fields such as biology and biomedicine in which aqueous environments are the norm.

  1. Spatially-Resolved HST GRISM Spectroscopy of a Lensed Emission Line Galaxy at Z to approximately 1

    Science.gov (United States)

    Frye, Brenda L.; Hurley, Mairead; Bowen, David V.; Meurer, Gerhardt; Sharon, Keren; Straughn, Amber; Coe, Dan; Broadhurst, Tom; Guhathakurta, Puragra

    2012-01-01

    We take advantage of gravitational lensing amplification by Abell 1689 (z=0.187) to undertake the first space-based census of emission line galaxies (ELGs) in the field of a massive lensing cluster. Forty-three ELGs are identified to a flux of i(sub 775)=27.3 via slitless grism spectroscopy. One ELG (at z=0.7895) is very bright owing to lensing magnification by a factor of approx = 4.5. Several Balmer emission lines detected from ground-based follow-up spectroscopy signal the onset of a major starburst for this low-mass galaxy (M(sub star) approx = 2 x 10(exp 9)Solar Mass) with a high specific star formation rate (approx = 20/ Gyr). From the blue emission lines we measure a gas-phase oxygen abundance consistent with solar (12+log(O /H)=8.8 +/- O.2). We break the continuous line-emitting region of this giant arc into seven approx 1 kpc bins (intrinsic size) and measure a variety of metallicity dependent line ratios. A weak trend of increasing metal fraction is seen toward the dynamical center of the galaxy. Interestingly, the metal line ratios in a region offset from the center by -lkpc have a placement on the blue HI! region excitation diagram with f([OIII]/ f(H-Beta) and f([NeIII/ f(H-Beta) that can be fit by an AGN. This asymmetrical AGN-like behavior is interpreted as a product of shocks in the direction of the galaxy's extended tail, possibly instigated by a recent galaxy interaction.

  2. Spectroscopy

    DEFF Research Database (Denmark)

    Berg, Rolf W.

    This introductory booklet covers the basics of molecular spectroscopy, infrared and Raman methods, instrumental considerations, symmetry analysis of molecules, group theory and selection rules, as well as assignments of fundamental vibrational modes in molecules.......This introductory booklet covers the basics of molecular spectroscopy, infrared and Raman methods, instrumental considerations, symmetry analysis of molecules, group theory and selection rules, as well as assignments of fundamental vibrational modes in molecules....

  3. Time-Resolved FT-IR Spectroscopy of CO Hydrogenation overSupported Ru Catalyst at 700K

    Energy Technology Data Exchange (ETDEWEB)

    Wasylenko, Walter; Frei, Heinz

    2006-02-13

    Time-resolved FT-IR spectra of carbon monoxide hydrogenation over alumina-supported ruthenium were recorded on the millisecond timescale at 703 K using various H{sub 2} concentrations (1 atm total pressure). Adsorbed carbon monoxide was detected along with gas phase products methane (3016 and 1306 cm{sup -1}), water (sharp bands from 1900 - 1300 cm{sup -1}), and carbon dioxide (2348 cm{sup -1}). No other surface species were detected other than adsorbed carbon monoxide. The rate of formation of methane (2.5 {+-} 0.4 s{sup -1}) coincides with the rate of formation of carbon dioxide (3.4 {+-} 0.6 s{sup -1}), and bands due to water are observed to grow in over time. These results establish that methane and carbon dioxide originate from the same intermediate. The adsorbed carbon monoxide band is broad and unsymmetrical with a maximum at 2010 cm{sup -1} in spectra observed at 36 ms that shifts over 3000 ms to 1960 cm{sup -1} due to decreasing amounts of adsorbed carbon monoxide. Kinetic analysis of the adsorbed carbon monoxide band reveals that only a portion of the band can be temporally linked to gas phase products that we observe over the first 1000 ms of catalysis. This result suggests that we are observing dispersive kinetics, which is most likely due to heterogeneity of the surface environment.

  4. TEMPO: a New Insertion Device Beamline at SOLEIL for Time Resolved Photoelectron Spectroscopy Experiments on Solids and Interfaces

    Science.gov (United States)

    Polack, F.; Silly, M.; Chauvet, C.; Lagarde, B.; Bergeard, N.; Izquierdo, M.; Chubar, O.; Krizmancic, D.; Ribbens, M.; Duval, J.-P.; Basset, C.; Kubsky, S.; Sirotti, F.

    2010-06-01

    A new insertion device beamline is now operational on straight section 8 at the SOLEIL synchrotron radiation source in France. The beamline and the experimental station were developed to optimize the study of the dynamics of electronic and magnetic properties of materials. Here we present the main technical characteristics of the installation and the general principles behind them. The source is composed of two APPLE II type insertion devices. The monochromator with plane gratings and spherical mirrors is working in the energy range 40-1500 eV. It is equipped with VLS, VGD gratings to allow the user optimization of flux or higher harmonics rejection. The observed resonance structures measured in gas phase enable us to determine the available energy resolution: a resolving power higher than 10000 is obtained at the Ar 2p, N 1s and Ne K-edges when using all the optical elements at full aperture. The total flux as a function of the measured photon energy and the characterization of the focal spot size complete the beamline characterization.

  5. The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII): Spatially Resolved Spectroscopy in the Far-Infrared

    Science.gov (United States)

    Rinehart, Stephen

    2009-01-01

    Astronomical studies at infrared wavelengths have dramatically improved our understanding of the universe, and observations with Spitzer, the upcoming Herschel mission, and SOFIA will continue to provide exciting new discoveries. The relatively low angular resolution of these missions, however, is insufficient to resolve the physical scale on which mid-to far-infrared emission arises, resulting in source and structure ambiguities that limit our ability to answer key science questions. Interferometry enables high angular resolution at these wavelengths - a powerful tool for scientific discovery. We will build the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII), an eight-meter baseline Michelson stellar interferometer to fly on a high-altitude balloon. BETTII's spectral-spatial capability, provided by an instrument using double-Fourier techniques, will address key questions about the nature of disks in young star clusters and active galactic nuclei and the envelopes of evolved stars. BETTII will also lay the technological groundwork for future space interferometers and for suborbital programs optimized for studying extrasolar planets.

  6. Application of high-resolution photoelectron spectroscopy: Vibrational resolved C 1s and O 1s spectra of CO adsorbed on Ni(100)

    Energy Technology Data Exchange (ETDEWEB)

    Foehlisch, A.; Nilsson, A.; Martensson, N. [Uppsala Univ. (Sweden)] [and others

    1997-04-01

    There are various effects which determine the line shape of a core-level electron spectrum. These are due to the finite life-time of the core hole, inelastic scattering of the outgoing photoelectron, electronic shake-up and shake-off processes and vibrational excitations. For free atoms and molecules the different contributions to the observed line shapes can often be well separated. For solids, surfaces and adsorbates the line shapes are in general much broader and it has in the past been assumed that no separation of the various contributions can be made. In the present report the authors will show that this is indeed not the case. Surprisingly, the vibrational fine structure of CO adsorbed on Ni(100) can be resolved in the C 1s and O 1s electron spectra. This was achieved by the combination of highly monochromatized soft X-rays from B18.0 with a high resolution Scienta 200 mm photoelectron spectrometer. X-ray photoelectron spectroscopy (XPS) with tunable excitation energy yields as a core level spectroscopy atomic and site-specific information. The presented measurements allow for a determination of internuclear distances and potential energy curves in corehole ionized adsorbed molecules. The authors analysis of the c(2x2) phase CO/Ni(100) on {open_quotes}top{close_quotes} yielded a vibrational splitting of 217 +/- 2 meV for C 1s ionization. For O 1s ionization a splitting of 173 +/- 8 meV was found.

  7. Diffusion and molecular interactions in a methanol/polyimide system probed by coupling time-resolved FTIR spectroscopy with gravimetric measurements.

    Science.gov (United States)

    Musto, Pellegrino; Galizia, Michele; La Manna, Pietro; Pannico, Marianna; Mensitieri, Giuseppe

    2014-01-01

    In this contribution the diffusion of methanol in a commercial polyimide (PMDA-ODA) is studied by coupling gravimetric measurements with in-situ, time-resolved FTIR spectroscopy. The spectroscopic data have been treated with two complementary techniques, i.e., difference spectroscopy (DS) and least-squares curve fitting (LSCF). These approaches provided information about the overall diffusivity, the nature of the molecular interactions among the system components and the dynamics of the various molecular species. Additional spectroscopic measurements on thin film samples (about 2 μm) allowed us to identify the interaction site on the polymer backbone and to propose likely structures for the H-bonding aggregates. Molar absorptivity values from a previous literature report allowed us to estimate the population of first-shell and second-shell layers of methanol in the polymer matrix. In terms of diffusion kinetics, the gravimetric and spectroscopic estimates of the diffusion coefficients were found to be in good agreement with each other and with previous literature reports. A Fickian behavior was observed throughout, with diffusivity values markedly affected by the total concentration of sorbed methanol.

  8. Lifetime, mobility, and diffusion of photoexcited carriers in ligand-exchanged lead selenide nanocrystal films measured by time-resolved terahertz spectroscopy.

    Science.gov (United States)

    Guglietta, Glenn W; Diroll, Benjamin T; Gaulding, E Ashley; Fordham, Julia L; Li, Siming; Murray, Christopher B; Baxter, Jason B

    2015-02-24

    Colloidal semiconductor nanocrystals have been used as building blocks for electronic and optoelectronic devices ranging from field-effect transistors to solar cells. Properties of the nanocrystal films depend sensitively on the choice of capping ligand to replace the insulating synthesis ligands. Thus far, ligands leading to the best performance in transistors result in poor solar cell performance, and vice versa. To gain insight into the nature of this dichotomy, we used time-resolved terahertz spectroscopy measurements to study the mobility and lifetime of PbSe nanocrystal films prepared with five common ligand-exchange reagents. Noncontact terahertz spectroscopy measurements of conductivity were corroborated by contacted van der Pauw measurements of the same samples. The films treated with different displacing ligands show more than an order of magnitude difference in the peak conductivities and a bifurcation of time dynamics. Inorganic chalcogenide ligand exchanges with sodium sulfide (Na2S) or ammonium thiocyanate (NH4SCN) show high mobilities but nearly complete decay of transient photocurrent in 1.4 ns. In contrast, ligand exchanges with 1,2-ethylenediamine (EDA), 1,2-ethanedithiol (EDT), and tetrabutylammonium iodide (TBAI) show lower mobilities but longer carrier lifetimes, resulting in longer diffusion lengths. This bifurcated behavior may explain the divergent performance of field-effect transistors and photovoltaics constructed from nanocrystal building blocks with different ligand exchanges.

  9. Study on the interaction of phthalate esters to human serum albumin by steady-state and time-resolved fluorescence and circular dichroism spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Xiaoyun [National Key Laboratory of Organic Chemistry, Lanzhou University, Lanzhou 730000 (China); College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000 (China); Wang, Zhaowei [College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000 (China); Zhou, Ximin; Wang, Xiaoru [National Key Laboratory of Organic Chemistry, Lanzhou University, Lanzhou 730000 (China); Chen, Xingguo, E-mail: chenxg@lzu.edu.cn [National Key Laboratory of Organic Chemistry, Lanzhou University, Lanzhou 730000 (China); Department of Chemistry, Lanzhou University, Lanzhou 730000 (China)

    2011-09-15

    Highlights: {center_dot} Molecular docking revealed PAEs to be located in the hydrophobic pocket of HSA. {center_dot} HSA-DMP had one class of binding sites while HSA-BBP and HSA-DEHP had two types. {center_dot} Hydrophobic and hydrogen interactions dominated in the association of HSA-PAEs. {center_dot} The lifetime of Trp residue of HSA decreased after the addition of PAEs. {center_dot} The presences of PAEs could alter the second structure of HSA. - Abstract: Phthalate esters (PAEs) are globally pervasive contaminants that are considered to be endocrine disruptor chemicals and toxic environmental priority pollutants. In this paper, the interactions between PAEs and human serum albumin (HSA) were examined by molecular modelling, steady state and time-resolved fluorescence, ultraviolet-visible spectroscopy (UV-vis) and circular dichroism spectroscopy (CD). The association constants between PAEs and HSA were determined using the Stern-Volmer and Scatchard equations. The binding of dimethyl phthalate (DMP) to HSA has a single class of binding site and its binding constants (K) are 4.08 x 10{sup 3}, 3.97 x 10{sup 3}, 3.45 x 10{sup 3}, and 3.20 x 10{sup 3} L mol{sup -1} at 289, 296, 303, and 310 K, respectively. The Stern-Volmer and Scatchard plots both had two regression curves for HSA-butylbenzyl phthalate (BBP) and HSA-di-2-ethylhexyl phthalate (DEHP), which indicated that these bindings were via two types of binding sites: the numbers of binding site for the first type were lower than for the second type. The binding constants of the first type binding site were higher than those of the second type binding site at corresponding temperatures, the results suggesting that the first type of binding site had high affinity and the second binding site involved other sites with lower binding affinity and selectivity. The thermodynamic parameters of the binding reactions ({Delta}G{sup o}, {Delta}H{sup o} and {Delta}S{sup o}) were measured, and they indicated the presences

  10. The photodissociation of CO in circumstellar envelopes

    Science.gov (United States)

    Groenewegen, M. A. T.

    2017-10-01

    Carbon monoxide is the most abundant molecule after H2 and is important for chemistry in circumstellar envelopes around late-type stars. The size of the envelope is important when modelling low-J transition lines and deriving mass-loss rates from such lines. Now that ALMA is coming to full power the extent of the CO emitting region can be measured directly for nearby asymptotic giant branch (AGB) stars. In parallel, it has become obvious in the past few years that the strength of the interstellar radiation field (ISRF) can have a significant impact on the interpretation of the emission lines. In this paper an update and extension of the classical Mamon et al. (1988, ApJ, 328, 797) paper is presented; these authors provided the CO abundance profile, described by two parameters, as a function of mass-loss rate and expansion velocity. Following recent work an improved numerical method and updated H2 and CO shielding functions are used and a larger grid is calculated that covers more parameter space, including the strength of the ISRF. The effect of changing the photodissociation radius on the low-J CO line intensities is illustrated in two cases. Full Table 1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/606/A67

  11. Photodissociation of ethylene at 193 nm

    Science.gov (United States)

    Balko, B. A.; Zhang, J.; Lee, Y. T.

    1992-07-01

    The photodissociation of ethylene at 193 nm was studied by measuring the product translational energy distributions for the H+C2H3 and H2+C2H2 channels. In agreement with previous workers, it was determined that atomic and molecular elimination occur in relatively equal amounts. Using 1,1 D2CCH2 and 1,2 cis HDCCDH, it was shown that both acetylene and vinylidene are formed and that the acetylene/vinylidene ratio is approximately 2/3 in the molecular elimination. This H2 elimination channel has a translational energy distribution peaked at around 20 kcal/mol, indicating that it is a concerted process with a substantial exit barrier. It was found that the H atom elimination channel is best described as a simple bond rupture occurring after internal conversion of the electronically excited molecule to the vibrationally excited ground state ethylene. Some of the primary C2H3 product has sufficient internal energy to spontaneously decompose to H+HC≡CH. At higher laser intensity a large fraction of the C2H3, however, absorbs another photon and fragments to H+H2C=C: (1A1 and 3B2).

  12. Photodissociation of ethylene at 193 nm

    Energy Technology Data Exchange (ETDEWEB)

    Balko, B.A.; Zhang, J.; Lee, Y.T. (Department of Chemistry, University of California at Berkeley and Chemical Sciences Division, Lawrence Berkeley Laboratory, Berkeley, California 94720 (United States))

    1992-07-15

    The photodissociation of ethylene at 193 nm was studied by measuring the product translational energy distributions for the H+C{sub 2}H{sub 3} and H{sub 2}+C{sub 2}H{sub 2} channels. In agreement with previous workers, it was determined that atomic and molecular elimination occur in relatively equal amounts. Using 1,1 D{sub 2}CCH{sub 2} and 1,2 {ital cis} HDCCDH, it was shown that both acetylene and vinylidene are formed and that the acetylene/vinylidene ratio is approximately 2/3 in the molecular elimination. This H{sub 2} elimination channel has a translational energy distribution peaked at around 20 kcal/mol, indicating that it is a concerted process with a substantial exit barrier. It was found that the H atom elimination channel is best described as a simple bond rupture occurring after internal conversion of the electronically excited molecule to the vibrationally excited ground state ethylene. Some of the primary C{sub 2}H{sub 3} product has sufficient internal energy to spontaneously decompose to H+HC{equivalent to}CH. At higher laser intensity a large fraction of the C{sub 2}H{sub 3}, however, absorbs another photon and fragments to H+H{sub 2}C=C: ({sup 1}{ital A}{sub 1} and {sup 3}{ital B}{sub 2}).

  13. Real-time baseline correction technique for MWIR and LWIR time-resolved photoluminescence spectroscopy (Presentation Recording)

    Science.gov (United States)

    Lin, Zhi-Yuan; Zhang, Yong-Hang

    2015-08-01

    The time-resolved photoluminescence (TRPL) measurement provides rich information about carrier dynamics and recombination mechanisms. However, TRPL measurements are quite challenging in mid-wave infrared (MWIR) and long-wave infrared (LWIR) regimes due to noise in photodetectors and data acquisition systems. Our analysis and experimental results show that the noise in a conventional TRPL system using a traditional averaging method is dominated by 1/f noise from 10 Hz to 3 kHz. The signal is also mixed with sub-Hertz noise associated with the boxcar baseline oscillation, commonly known as the "baseline drift" issue which results from numerous fluctuations in the system. A real-time baseline correction method is proposed and demonstrated to suppress these low frequency noise sources. The real-time baseline correction method is realized by modulating the signal. The modulation can be achieved by either electrical, mechanical, or optical approaches. Analysis indicates that the noise of this method is proportional to the noise spectral density at the modulation frequency, this argument is confirmed by the simulation results. The simulated noise achieved by the real-time baseline correction method is much lower than the traditional method. Experimental results show that the low frequency baseline oscillations associated with the traditional TRPL experiments are absent using the real-time baseline correction technique, and the noise of the measurement is significantly reduced. This work establishes a more efficient experimental method for TRPL measurements on weak MWIR and LWIR PL signals, such as the InAs/InAsSb type-II superlattice samples which are used here to demonstrate the proposed method.

  14. Kinetics of the laser-induced solid phase crystallization of amorphous silicon—Time-resolved Raman spectroscopy and computer simulations

    Energy Technology Data Exchange (ETDEWEB)

    Očenášek, J., E-mail: ocenasek@ntc.zcu.cz; Novák, P.; Prušáková, L.

    2017-01-15

    Highlights: • Mathematical model for crystallization in a non-uniform temp. field was designed. • Quantitative analyses of Raman spectra are presented. • Analyses of the crystallization kinetics using laser irradiation are introduced. • Laser-induced crystallization kinetics of a-Si thin film was analyzed in detail. - Abstract: This study demonstrates that a laser-induced crystallization instrumented with Raman spectroscopy is, in general, an effective tool to study the thermally activated crystallization kinetics. It is shown, for the solid phase crystallization of an amorphous silicon thin film, that the integral intensity of Raman spectra corresponding to the crystalline phase grows linearly in the time-logarithmic scale. A mathematical model, which assumes random nucleation and crystal growth, was designed to simulate the crystallization process in the non-uniform temperature field induced by laser. The model is based on solving the Eikonal equation and the Arhenius temperature dependence of the crystal nucleation and the growth rate. These computer simulations successfully approximate the crystallization process kinetics and suggest that laser-induced crystallization is primarily thermally activated.

  15. Sub-picosecond time resolved infrared spectroscopy of high-spin state formation in Fe(II) spin crossover complexes

    DEFF Research Database (Denmark)

    Døssing, Anders Rørbæk; Wolf, Matthias M. N.; Gross, Ruth

    2008-01-01

      The photoinduced low-spin (S = 0) to high-spin (S = 2) transition of the iron(II) spin-crossover systems [Fe(btpa)](PF6)2 and [Fe(b(bdpa))](PF6)2 in solution have been studied for the first time by means of ultrafast transient infrared spectroscopy at room temperature. Negative and positive...... infrared difference bands between 1000 and 1065 cm-1 that appear within the instrumental system response time of 350 fs after excitation at 387 nm display the formation of the vibrationally unrelaxed and hot high-spin 5T2 state. Vibrational relaxation is observed and characterized by the time constants 9.......4 ± 0.7 ps for [Fe(btpa)](PF6)2/acetone and 12.7 ± 0.7 ps for both [Fe(btpa)](PF6)2/acetonitrile and [Fe(b(bdpa)](PF6)2/acetonitrile. Vibrational analysis has been performed via DFT calculations of the low-spin and high-spin state normal modes of both compounds as well as their respective infrared...

  16. Photoexcitation Dynamics of Thymine in Acetonitrile and an Ionic Liquid Probed by Time-resolved Infrared Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Manna, Arpan; Park, Seongchul; Lee, Taegon; Lim, Manho [Pusan National University, Busan(Korea, Republic of)

    2016-07-15

    Femtosecond transient IR absorption spectroscopy was used to probe the decay mechanism of electronically excited thymine (a naturally occurring pyrimidine base in DNA) dissolved in an ionic liquid ([Bmim][BF{sub 4}]) or CD{sub 3}CN after the absorption of UV light (267 nm). In both solvents, an absorption band grew on a picosecond timescale, along with decaying bleach and evolving red-shifted absorption signals. A population analysis of the observed kinetic data suggested that most of the photoexcited thymine underwent a sub-picosecond non-radiative relaxation to the vibrationally hot ground electronic state. About 4% (16%) of the excited thymine in the ionic liquid (CD{sub 3}CN) relaxed to an intermediate electronic state, which relaxed into a low-lying triplet state by intersystem crossing (ISC) (ISC did not relax to the ground electronic state within the experimental period (1 ns)). The low ISC yield for thymine in an ionic liquid was correlated with molecular properties of the solvent. This observation is significant because the ISC to triplet state transition for excited thymine has been considered as a precursor to cyclobutane-pyrimidine dimer formation, which led to functional damage of the base after UV absorption. This finding may shed light on the photostability of DNA in ionic liquids.

  17. Probing the UV-Induced Photodissociation of CH3I and C6H3F2I with Femtosecond Time-Resolved Coulomb Explosion Imaging at FLASH

    DEFF Research Database (Denmark)

    Savelyev, Evgeny; Amini, Kasra; Brauße, Felix

    2017-01-01

    We explore time-resolved Coulomb explosion induced by intense, extreme ultraviolet (XUV) femtosecond pulses from the FLASH free-electron laser as a method to image photo-induced molecular dynamics in two molecules, iodomethane and difluoroiodobenzene. At an excitation wavelength of 267 nm, the do...

  18. High-resolution soft X-ray beamline ADRESS at the Swiss Light Source for resonant inelastic X-ray scattering and angle-resolved photoelectron spectroscopies

    Science.gov (United States)

    Strocov, V. N.; Schmitt, T.; Flechsig, U.; Schmidt, T.; Imhof, A.; Chen, Q.; Raabe, J.; Betemps, R.; Zimoch, D.; Krempasky, J.; Wang, X.; Grioni, M.; Piazzalunga, A.; Patthey, L.

    2010-01-01

    The concepts and technical realisation of the high-resolution soft X-ray beamline ADRESS operating in the energy range from 300 to 1600 eV and intended for resonant inelastic X-ray scattering (RIXS) and angle-resolved photoelectron spectroscopy (ARPES) are described. The photon source is an undulator of novel fixed-gap design where longitudinal movement of permanent magnetic arrays controls not only the light polarization (including circular and 0–180° rotatable linear polarizations) but also the energy without changing the gap. The beamline optics is based on the well established scheme of plane-grating monochromator operating in collimated light. The ultimate resolving power E/ΔE is above 33000 at 1 keV photon energy. The choice of blazed versus lamellar gratings and optimization of their profile parameters is described. Owing to glancing angles on the mirrors as well as optimized groove densities and profiles of the gratings, the beamline is capable of delivering high photon flux up to 1 × 1013 photons s−1 (0.01% BW)−1 at 1 keV. Ellipsoidal refocusing optics used for the RIXS endstation demagnifies the vertical spot size down to 4 µm, which allows slitless operation and thus maximal transmission of the high-resolution RIXS spectrometer delivering E/ΔE > 11000 at 1 keV photon energy. Apart from the beamline optics, an overview of the control system is given, the diagnostics and software tools are described, and strategies used for the optical alignment are discussed. An introduction to the concepts and instrumental realisation of the ARPES and RIXS endstations is given. PMID:20724785

  19. Hybrid plasmonic gap modes in metal film-coupled dimers and their physical origins revealed by polarization resolved dark field spectroscopy

    Science.gov (United States)

    Li, Guang-Can; Zhang, Yong-Liang; Lei, Dang Yuan

    2016-03-01

    Plasmonic gap modes sustained by metal film-coupled nanostructures have recently attracted extensive research attention due to flexible control over their spectral response and significantly enhanced field intensities at the particle-film junction. In this work, by adopting an improved dark field spectroscopy methodology - polarization resolved spectral decomposition and colour decoding - we are able to ``visualize'' and distinguish unambiguously the spectral and far field radiation properties of the complex plasmonic gap modes in metal film-coupled nanosphere monomers and dimers. Together with full-wave numerical simulation results, it is found that while the monomer-film system supports two hybridized dipole-like plasmon modes having different oscillating orientations and resonance strengths, the scattering spectrum of the dimer-film system features two additional peaks, one strong yet narrow resonant mode corresponding to a bonding dipolar moment and one hybridized higher order resonant mode, both polarized along the dimer axis. In particular, we demonstrate that the polarization dependent scattering radiation of the film-coupled nanosphere dimer can be used to optically distinguish from monomers and concurrently determine the spatial orientation of the dimer with significantly improved accuracy at the single-particle level, illustrating a simple yet highly sensitive plasmon resonance based nanometrology method.Plasmonic gap modes sustained by metal film-coupled nanostructures have recently attracted extensive research attention due to flexible control over their spectral response and significantly enhanced field intensities at the particle-film junction. In this work, by adopting an improved dark field spectroscopy methodology - polarization resolved spectral decomposition and colour decoding - we are able to ``visualize'' and distinguish unambiguously the spectral and far field radiation properties of the complex plasmonic gap modes in metal film

  20. "Structure and dynamics in complex chemical systems: Gaining new insights through recent advances in time-resolved spectroscopies.” ACS Division of Physical Chemistry Symposium presented at the Fall National ACS Meeting in Boston, MA, August 2015

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, Daniel [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)

    2016-09-26

    8-Session Symposium on STRUCTURE AND DYNAMICS IN COMPLEX CHEMICAL SYSTEMS: GAINING NEW INSIGHTS THROUGH RECENT ADVANCES IN TIME-RESOLVED SPECTROSCOPIES. The intricacy of most chemical, biochemical, and material processes and their applications are underscored by the complex nature of the environments in which they occur. Substantial challenges for building a global understanding of a heterogeneous system include (1) identifying unique signatures associated with specific structural motifs within the heterogeneous distribution, and (2) resolving the significance of each of multiple time scales involved in both small- and large-scale nuclear reorganization. This symposium focuses on the progress in our understanding of dynamics in complex systems driven by recent innovations in time-resolved spectroscopies and theoretical developments. Such advancement is critical for driving discovery at the molecular level facilitating new applications. Broad areas of interest include: Structural relaxation and the impact of structure on dynamics in liquids, interfaces, biochemical systems, materials, and other heterogeneous environments.

  1. Quantifying time-of-flight-resolved optical field dynamics in turbid media with interferometric near-infrared spectroscopy (iNIRS) (Conference Presentation)

    Science.gov (United States)

    Borycki, Dawid; Kholiqov, Oybek; Zhou, Wenjun; Srinivasan, Vivek J.

    2017-03-01

    Sensing and imaging methods based on the dynamic scattering of coherent light, including laser speckle, laser Doppler, and diffuse correlation spectroscopy quantify scatterer motion using light intensity (speckle) fluctuations. The underlying optical field autocorrelation (OFA), rather than being measured directly, is typically inferred from the intensity autocorrelation (IA) through the Siegert relationship, by assuming that the scattered field obeys Gaussian statistics. In this work, we demonstrate interferometric near-infrared spectroscopy (iNIRS) for measurement of time-of-flight (TOF) resolved field and intensity autocorrelations in fluid tissue phantoms and in vivo. In phantoms, we find a breakdown of the Siegert relationship for short times-of-flight due to a contribution from static paths whose optical field does not decorrelate over experimental time scales, and demonstrate that eliminating such paths by polarization gating restores the validity of the Siegert relationship. Inspired by these results, we developed a method, called correlation gating, for separating the OFA into static and dynamic components. Correlation gating enables more precise quantification of tissue dynamics. To prove this, we show that iNIRS and correlation gating can be applied to measure cerebral hemodynamics of the nude mouse in vivo using dynamically scattered (ergodic) paths and not static (non-ergodic) paths, which may not be impacted by blood. More generally, correlation gating, in conjunction with TOF resolution, enables more precise separation of diffuse and non-diffusive contributions to OFA than is possible with TOF resolution alone. Finally, we show that direct measurements of OFA are statistically more efficient than indirect measurements based on IA.

  2. Photo-Induced Spin-State Conversion in Solvated Transition Metal Complexes Probed via Time-Resolved Soft X-ray Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Huse, Nils; Kim, Tae Kyu; Jamula, Lindsey; McCusker, James K.; de Groot, Frank M. F.; Schoenlein, Robert W.

    2010-04-30

    Solution-phase photoinduced low-spin to high-spin conversion in the FeII polypyridyl complex [Fe(tren(py)3)]2+ (where tren(py)3 is tris(2-pyridylmethyliminoethyl)amine) has been studied via picosecond soft X-ray spectroscopy. Following 1A1 --> 1MLCT (metal-to-ligand charge transfer) excitation at 560 nm, changes in the iron L2- and L3-edges were observed concomitant with formation of the transient high-spin 5T2 state. Charge-transfer multiplet calculations coupled with data acquired on low-spin and high-spin model complexes revealed a reduction in ligand field splitting of 1 eV in the high-spin state relative to the singlet ground state. A significant reduction in orbital overlap between the central Fe-3d and the ligand N-2p orbitals was directly observed, consistent with the expected ca. 0.2 Angstrom increase in Fe-N bond length upon formation of the high-spin state. The overall occupancy of the Fe-3d orbitals remains constant upon spin crossover, suggesting that the reduction in sigma-donation is compensated by significant attenuation of pi-back-bonding in the metal-ligand interactions. These results demonstrate the feasibility and unique potential of time-resolved soft X-ray absorption spectroscopy to study ultrafast reactions in the liquid phase by directly probing the valence orbitals of first-row metals as well as lighter elements during the course of photochemical transformations.

  3. Coulomb-explosion imaging of concurrent CH2BrI photodissociation dynamics

    Science.gov (United States)

    Burt, Michael; Boll, Rebecca; Lee, Jason W. L.; Amini, Kasra; Köckert, Hansjochen; Vallance, Claire; Gentleman, Alexander S.; Mackenzie, Stuart R.; Bari, Sadia; Bomme, Cédric; Düsterer, Stefan; Erk, Benjamin; Manschwetus, Bastian; Müller, Erland; Rompotis, Dimitrios; Savelyev, Evgeny; Schirmel, Nora; Techert, Simone; Treusch, Rolf; Küpper, Jochen; Trippel, Sebastian; Wiese, Joss; Stapelfeldt, Henrik; de Miranda, Barbara Cunha; Guillemin, Renaud; Ismail, Iyas; Journel, Loïc; Marchenko, Tatiana; Palaudoux, Jérôme; Penent, Francis; Piancastelli, Maria Novella; Simon, Marc; Travnikova, Oksana; Brausse, Felix; Goldsztejn, Gildas; Rouzée, Arnaud; Géléoc, Marie; Geneaux, Romain; Ruchon, Thierry; Underwood, Jonathan; Holland, David M. P.; Mereshchenko, Andrey S.; Olshin, Pavel K.; Johnsson, Per; Maclot, Sylvain; Lahl, Jan; Rudenko, Artem; Ziaee, Farzaneh; Brouard, Mark; Rolles, Daniel

    2017-10-01

    The dynamics following laser-induced molecular photodissociation of gas-phase CH2BrI at 271.6 nm were investigated by time-resolved Coulomb-explosion imaging using intense near-IR femtosecond laser pulses. The observed delay-dependent photofragment momenta reveal that CH2BrI undergoes C-I cleavage, depositing 65.6% of the available energy into internal product states, and that absorption of a second UV photon breaks the C-Br bond of CH2Br . Simulations confirm that this mechanism is consistent with previous data recorded at 248 nm, demonstrating the sensitivity of Coulomb-explosion imaging as a real-time probe of chemical dynamics.

  4. An atomic perspective of the photodissociation and geminate recombination of triiodide in condensed phases

    Energy Technology Data Exchange (ETDEWEB)

    Xian, Rui

    2016-11-15

    The thesis presents progress made towards a thorough understanding of the photodissociation and geminate recombination of triiodide anion (I{sub 3}{sup -}) in solution and solid state using novel time-resolved spectroscopic and structural methods that have matured in the past decade. An isolated I{sub 3}{sup -} has only three degrees of freedom, but in the condensed phase, the case of an open quantum system, its chemistry is transformed because other degrees of freedom from the surroundings (the bath) need to be fully taken into account. This system is a textbook example for understanding dissociation and recombination processes in condensed phases, but unresolved issues about the reaction pathways remain. To probe the issues, firstly, mid-UV pulse shaper-based closed-loop adaptive control as well as open-loop power and chirp control schemes were used in conjunction with single-color pump-probe detection of the yield of the photoproduct diiodide (I{sub 2}{sup -.}) to study the above reaction in ethanol solution. The experiments revealed a strong pump-chirp dependence of the I{sub 2}{sup -.}-yield (as much as 40% change). Subsequently, two possible mechanisms involving additional reaction channels were postulated in order to explain such effect. Secondly, pump-supercontinuum-probe spectroscopy and ultrafast electron diffraction were performed separately on solid state triiodide compound n-(C{sub 4}H{sub 9}){sub 4}NI{sub 3} (TBAT). This system was chosen to provide a well-defined lattice for the bath and to avail atomic resolution of the condensed phase reaction dynamics. In the optical experiment, coherent oscillations were observed within a probe delay of 1 ps that bear strong resemblance to the stretching modes of ground-state I{sub 3}{sup -} and I{sub 2}{sup -.} fragment, which makes it the first to reliably distinguish the two species in a single measurement. In addition, the spectroscopic signature of a novel intermediate, the tetraiodide anion (I{sub 4}{sup

  5. A comparative transmission electron microscopy, energy dispersive x-ray spectroscopy and spatially resolved micropillar compression study of the yttria partially stabilised zirconia - porcelain interface in dental prosthesis

    Energy Technology Data Exchange (ETDEWEB)

    Lunt, Alexander J.G., E-mail: alexander.lunt@chch.ox.ac.uk [Department of Engineering Science, University of Oxford, Parks Road, Oxford, Oxfordshire OX1 3PJ (United Kingdom); Mohanty, Gaurav, E-mail: gaurav.mohanty@empa.ch [EMPA Materials Science & Technology, Feuerwerkerstrasse 39, CH-3602 Thun (Switzerland); Ying, Siqi, E-mail: siqi.ying@eng.ox.ac.uk [Department of Engineering Science, University of Oxford, Parks Road, Oxford, Oxfordshire OX1 3PJ (United Kingdom); Dluhoš, Jiří, E-mail: jiri.dluhos@tescan.cz [TESCAN Brno, s.r.o., Libušina tř. 1, 623 00 Brno-Kohoutovice (Czech Republic); Sui, Tan, E-mail: tan.sui@eng.ox.ac.uk [Department of Engineering Science, University of Oxford, Parks Road, Oxford, Oxfordshire OX1 3PJ (United Kingdom); Neo, Tee K., E-mail: neophyte@singnet.com.sg [Specialist Dental Group, Mount Elizabeth Orchard, 3 Mount Elizabeth, #08-03/08-08/08-10, 228510 (Singapore); Michler, Johann, E-mail: johann.michler@empa.ch [EMPA Materials Science & Technology, Feuerwerkerstrasse 39, CH-3602 Thun (Switzerland); Korsunsky, Alexander M., E-mail: alexander.korsunsky@eng.ox.ac.uk [Department of Engineering Science, University of Oxford, Parks Road, Oxford, Oxfordshire OX1 3PJ (United Kingdom)

    2015-12-01

    μm. - Highlights: • Cross section of yttria partially stabilised zirconia (YPSZ)–porcelain prosthesis • Energy dispersive X-ray spectroscopy shows 2–6 μm elemental diffusion zone. • Transmission electron microscopy shows voids in near interface porcelain. • Complex near interface YPSZ microstructure shows grains embedded in porcelain. • Spatially resolved micropillar compression reveals modulus and strength variation.

  6. Time-resolved photoluminescence and photoreflectance spectroscopy of GaN layers grown on SiN-treated sapphire substrate: Optical properties evolution at different growth stages

    Science.gov (United States)

    Bouzidi, M.; Soltani, S.; Chine, Z.; Rebey, A.; Shakfa, M. K.

    2017-11-01

    In this paper, we present a systematic study of the optical properties evolution of GaN films during the complete growth process on SiN-treated sapphire substrates by atmospheric pressure metalorganic vapor phase epitaxy. The growth process was monitored using in-situ laser reflectometry and was interrupted at different stages to obtain the studied samples. The obtained samples were ex-situ characterized by means of photoluminescence (PL), photoreflectance (PR) and time-resolved PL (TRPL) spectroscopies. The PL emission from the samples of the initial growth stages originates from nano-crystallite and defect states due to the 3D growth mode. However, with increasing layer thickness, the 2D growth mode is established, and the PL spectrum is dominated by free-exciton emission. The electric field extracted by applying the Franz-Keldysh oscillation (FKO) theory on the PR spectra shows a trend to decrease as the GaN layer thickness is increased. For fully coalesced layers, the FKO totally disappears, and the PR spectrum is dominated by free-exciton transitions. TRPL measurements demonstrate the contribution of two processes to the PL decay, i.e., fast and slow components. While the slow decay time reveals the same sensitivity to different types of dislocations (twist and tilt mosaics), the fast decay time is more affected by the twist mosaic than by the tilt one.

  7. Surface speciation of Eu3+ adsorbed on kaolinite by time-resolved laser fluorescence spectroscopy (TRLFS) and parallel factor analysis (PARAFAC).

    Science.gov (United States)

    Ishida, Keisuke; Saito, Takumi; Aoyagi, Noboru; Kimura, Takaumi; Nagaishi, Ryuji; Nagasaki, Shinya; Tanaka, Satoru

    2012-05-15

    Time-resolved laser fluorescence spectroscopy (TRLFS) is an effective speciation technique for fluorescent metal ions and can be further extended by the parallel factor analysis (PARAFAC). The adsorption of Eu(3+) on kaolinite as well as gibbsite as a reference mineral was investigated by TRLFS together with batch adsorption measurements. The PAFAFAC modeling provided the fluorescence spectra, decay lifetimes, and relative intensity profiles of three Eu(3+) surface complexes with kaolinite; an outer-sphere (factor A) complex and two inner-sphere (factors B and C) complexes. Their intensity profiles qualitatively explained the measured adsorption of Eu(3+). Based on the TRLFS results in varied H(2)O/D(2)O media, it was shown that the outer-sphere complex exhibited more rapid fluorescence decay than Eu(3+) aquo ion, because of the energy transfer to the surface. Factor B was an inner-sphere complex, which became dominant at relatively high pH, high salt concentration and low Eu(3+) concentration. Its spectrum and lifetime were similar to those of Eu(3+) adsorbed on gibbsite, suggesting its occurrence on the edge face of the gibbsite layer of kaolinite. From the comparison with the spectra and lifetimes of crystalline or aqueous Eu(OH)(3), factor C was considered as a poly-nuclear surface complex of Eu(3+) formed at relatively high Eu(3+) concentration. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Conformation transition in silk protein films monitored by time-resolved Fourier transform infrared spectroscopy: effect of potassium ions on Nephila spidroin films.

    Science.gov (United States)

    Chen, Xin; Knight, David P; Shao, Zhengzhong; Vollrath, Fritz

    2002-12-17

    We used time-resolved Fourier transform infrared spectroscopy (FTIR) to follow a conformation transition in Nephila spidroin film from random coil and/or helical structures to beta-sheet induced by the addition of KCl from 0.01 to 1.0 mol/L in D(2)O. Time series difference spectra showed parallel increases in absorption at 1620 and 1691 cm(-)(1), indicating formation of beta-sheet, together with a coincident loss of intensity of approximately 1650 cm(-)(1), indicating decrease of random coil and/or helical structures. Increase in KCl concentration produced an increased rate of the conformation transition that may attributable to weakening of hydrogen bonds within spidroin macromolecules. The conformation transition was a biphasic process with [KCl] > or = 0.3 mol/L but monophasic with [KCl] < or = 0.1 mol/L. This suggests that, at high KCl concentrations, segments of the molecular chain are adjusted first and then the whole molecule undergoes rearrangement. We discuss the possible significance of these findings to an understanding of the way that spiders spin silk.

  9. Band alignment between PEALD-AlNO and AlGaN/GaN determined by angle-resolved X-ray photoelectron spectroscopy

    Science.gov (United States)

    Wang, Qian; Cheng, Xinhong; Zheng, Li; Ye, Peiyi; Li, Menglu; Shen, Lingyan; Li, Jingjie; Zhang, Dongliang; Gu, Ziyue; Yu, Yuehui

    2017-11-01

    The energy band alignment of AlNO grown by plasma enhanced atomic layer deposited (PEALD) on the AlGaN/GaN heterojunction was analyzed by high resolution angle-resolved X-ray photoelectron spectroscopy (AR-XPS). AlNO was fabricated by alternate growth of AlN and Al2O3 nano-laminations using trimethylaluminum (TMA) and NH3/O2 plasma as precursors in a PEALD chamber. The binding energy (BE) of Ga 3d in AlGaN decreased and the corresponding extracted valence band offset (VBO) increased with increasing take-off angle θ, which indicated upward band bending towards the AlNO/AlGaN interface. The band bending and the potential variation across the AlNO/AlGaN interface were investigated and taken into the calculation for the band alignment. The extracted VBO and conduction band offset (CBO) across the AlNO/AlGaN interface were 1.29 eV and 1.51 eV, respectively, which offered competitive barrier heights (>1 eV) for both electrons and holes. These results indicated AlNO could act as an excellent gate dielectric for AlGaN/GaN high electron mobility transistors (HEMTs).

  10. Vibrational Spectrum of an Excited State and Huang-Rhys Factors by Coherent Wave Packets in Time-Resolved Fluorescence Spectroscopy.

    Science.gov (United States)

    Lee, Gyeongjin; Kim, Junwoo; Kim, So Young; Kim, Dong Eon; Joo, Taiha

    2017-03-17

    Coherent nuclear wave packet motions in an electronic excited state of a molecule are measured directly by time-resolved spontaneous fluorescence spectroscopy with an unprecedented time resolution by using two-photon absorption excitation and fluorescence upconversion by noncollinear sum frequency generation. With an estimated time resolution of approximately 25 fs, wave packet motions of vibrational modes up to 1600 cm(-1) are recorded for coumarin 153 in ethanol. Two-color transient absorption at 13 fs time resolution are measured to confirm the result. Vibrational displacements between the ground and excited states and Huang-Rhys factors (HRFs) are calculated by quantum mechanical methods and are compared with the experimental results. HRFs calculated by density functional theory (DFT) and time-dependent DFT reproduce the experiment adequately. This fluorescence-based method provides a unique and direct way to obtain the vibrational spectrum of a molecule in an electronic excited state and the HRFs, as well as the dynamics of excited states, and it might provide information on the structure of an excited state through the HRFs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Analysis of time resolved femtosecond and femtosecond/picosecond coherent anti-Stokes Raman spectroscopy: Application to toluene and Rhodamine 6G

    Science.gov (United States)

    Niu, Kai; Lee, Soo-Y.

    2012-02-01

    The third-order polarization for coherent anti-Stokes Raman scattering (CARS) from a pure state is described by 48 terms in perturbation theory, but only 4 terms satisfy the rotating wave approximation. They are represented by Feynman dual time-line diagrams and four-wave mixing energy level diagrams. In time-resolved (tr) fs and fs/ps CARS from the ground vibrational state, one resonant diagram, which is the typical CARS term, with three field interactions—pump, Stokes, followed by probe—on the ket is dominant. Using the separable, displaced harmonic oscillators approximation, an analytic result is obtained for the four-time correlation function in the CARS third-order polarization. Dlott's phenomenological expression for off-resonance CARS from the ground vibrational state is derived using a three-state model. We calculated the tr fs and fs/ps CARS for toluene and Rhodamine 6G (R6G), initially in the ground vibrational state, to compare with experimental results. The observed vibrational features and major peaks for both tr fs and fs/ps CARS, from off-resonance (for toluene) to resonance (for R6G) pump wavelengths, can be well reproduced by the calculations. The connections between fs/ps CARS, fs stimulated Raman spectroscopy, and impulsive stimulated scattering for toluene and R6G are discussed.

  12. Investigation on Surface Polarization of Al2O3-capped GaN/AlGaN/GaN Heterostructure by Angle-Resolved X-ray Photoelectron Spectroscopy

    Science.gov (United States)

    Duan, Tian Li; Pan, Ji Sheng; Wang, Ning; Cheng, Kai; Yu, Hong Yu

    2017-08-01

    The surface polarization of Ga-face gallium nitride (GaN) (2 nm)/AlGaN (22 nm)/GaN channel (150 nm)/buffer/Si with Al2O3 capping layer is investigated by angle-resolved X-ray photoelectron spectroscopy (ARXPS). It is found that the energy band varies from upward bending to downward bending in the interface region, which is believed to be corresponding to the polarization variation. An interfacial layer is formed between top GaN and Al2O3 due to the occurrence of Ga-N bond break and Ga-O bond forming during Al2O3 deposition via the atomic layer deposition (ALD). This interfacial layer is believed to eliminate the GaN polarization, thus reducing the polarization-induced negative charges. Furthermore, this interfacial layer plays a key role for the introduction of the positive charges which lead the energy band downward. Finally, a N2 annealing at 400 °C is observed to enhance the interfacial layer growth thus increasing the density of positive charges.

  13. Electronic structure and polar catastrophe at the surface of LixCoO2 studied by angle-resolved photoemission spectroscopy

    Science.gov (United States)

    Okamoto, Y.; Matsumoto, R.; Yagihara, T.; Iwai, C.; Miyoshi, K.; Takeuchi, J.; Horiba, K.; Kobayashi, M.; Ono, K.; Kumigashira, H.; Saini, N. L.; Mizokawa, T.

    2017-09-01

    We report an angle-resolved photoemission spectroscopy (ARPES) study of LixCoO2 single crystals which have a hole-doped CoO2 triangular lattice. Similar to NaxCoO2 , the Co 3 d a1 g band crosses the Fermi level with strongly renormalized band dispersion while the Co 3 d eg' bands are fully occupied in LixCoO2 (x =0.46 and 0.71). At x =0.46 , the Fermi surface area is consistent with the bulk hole concentration indicating that the ARPES result represents the bulk electronic structure. On the other hand, at x =0.71 , the Fermi surface area is larger than the expectation which can be associated with the inhomogeneous distribution of Li reported in the previous scanning tunneling microscopy study by Iwaya et al. [Phys. Rev. Lett. 111, 126104 (2013), 10.1103/PhysRevLett.111.126104]. However, the Co 3 d peak is systematically shifted towards the Fermi level with hole doping excluding phase separation between hole rich and hole poor regions in the bulk. Therefore, the deviation of the Fermi surface area at x =0.71 can be attributed to hole redistribution at the surface avoiding polar catastrophe. The bulk Fermi surface of Co 3 d a1 g is very robust around x =0.5 even in the topmost CoO2 layer due to the absence of the polar catastrophe.

  14. Fulvic acid complexation of Eu(III) and Cm(III) at elevated temperatures studied by time-resolved laser fluorescence spectroscopy.

    Science.gov (United States)

    Fröhlich, Daniel R; Skerencak-Frech, Andrej; Gast, Michael; Panak, Petra J

    2014-11-07

    The interaction of Eu(III) and Cm(III) with three different aquatic fulvic acids (FA) was studied as a function of the temperature (T = 20-80 °C) in 0.1 M NaCl solution by time-resolved laser fluorescence spectroscopy. The speciation of both trivalent metal ions was determined by peak deconvolution of the recorded fluorescence spectra. For each studied metal ion-FA system only one complexed species is formed under the given experimental conditions. The stability constants at 20, 40, 60 and 80 °C (log β'(T)) were determined according to the charge neutralization model. The log β' (20 °C) for the different FAs show similar values (log β(20 °C) = 5.60-6.29). The stability constants increase continuously with increasing temperature by approximately 0.3-1.0 orders of magnitude. The reaction enthalpies and entropies are derived from the integrated Van't Hoff equation. The results show that all investigated complexation reactions are endothermic and entropy-driven.

  15. Photodissociation pathways and lifetimes of protonated peptides and their dimers

    DEFF Research Database (Denmark)

    Gopalan, Aravind; Klærke, Benedikte; Rajput, Jyoti

    2012-01-01

    rate constants also confirmed a statistical nature of the photodissociation processes in the dipeptide monomers and dimers. The classical RRKM expression gives a rate constant as an analytical function of the number of active vibrational modes in the system, estimated separately on the basis...

  16. Photodissociation and photoionization studies of the OH free radical

    NARCIS (Netherlands)

    Radenovi´c, Dragana C.

    2007-01-01

    In this PhD thesis photodissociation, photoionization and fluorescence emission of the hydroxyl (OH) free radical is studied. The hydroxyl radical, as in intermediate species in many chemical reactions, play a key role in astrophysics,atmospheric chemistry, combustion and many other chemical

  17. Physical conditions in Photo-Dissociation Regions around Planetary Nebulae

    NARCIS (Netherlands)

    Bernard-Salas, J; Tielens, AGGM

    We present observations of the infrared fine-structure lines of [Si II] (34.8 mum), [O I] (63.2 and 145.5 mum) and [C II] (157.7 mum) obtained with the ISO SWS and LWS spectrographs of nine Planetary Nebulae (PNe). These lines originate in the Photo-Dissociation Regions (PDRs) associated with the

  18. Pickup and Photodissociation of Hydrogen Halides in Floppy Neon Clusters

    Czech Academy of Sciences Publication Activity Database

    Slavíček, Petr; Jungwirth, Pavel; Lewerenz, M.; Nahler, N. H.; Fárnik, M.; Buck, U.

    2003-01-01

    Roč. 107, - (2003), s. 7743-7754 ISSN 1089-5639 R&D Projects: GA MŠk LN00A032 Institutional research plan: CEZ:AV0Z4040901 Keywords : photodissociation * neon clusters Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.792, year: 2003

  19. Controlling the branching ratio of photodissociation using aligned molecules

    DEFF Research Database (Denmark)

    Larsen, J.J.; Wendt-Larsen, I.; Stapelfeldt, H.

    1999-01-01

    Using a sample of iodine molecules, aligned by a strong, linearly polarized laser pulse, we control the branching ratio of the I+I and I+I* photodissociation channels by a factor of 26. The control relies on selective photoexcitation of two potential curves that each correlate adiabatically...

  20. HCN and HCO+ images of the Orion Bar photodissociation region

    NARCIS (Netherlands)

    Owl, RCY; Meixner, MM; Wolfire, M; Tielens, AGGM; Tauber, J

    2000-01-01

    The Orion Bar is an ideal astrophysical laboratory for studying photodissociation regions because of its nearly edge-on orientation in the observer's line of sight. High angular resolution (similar to 9") maps of the Orion Bar in the J = 1-0 emission lines of HCO+ and HCN have been made by combining

  1. Infrared Photodissociation Cluster Studies on CO_{2} Interaction with Titanium Oxide Catalyst Models

    Science.gov (United States)

    Dodson, Leah G.; Thompson, Michael C.; Weber, J. Mathias

    2017-06-01

    Titanium oxide catalysts are some of the most promising photocatalyst candidates for renewable energy storage applications via production of solar fuels. To contribute to a molecular-level understanding of the interaction of CO_{2} with titanium oxide, we turn to cluster models in order to circumvent the challenges posed by speciation in the condensed phase. In this work, we use infrared photodissociation spectroscopy (950-2400 cm^{-1}) in concert with density functional theory calculations to identify and characterize [TiO_{x}(CO_{2})_{y}]^{-} (x = 1-3, y = 3-7) clusters. We use these model systems to study the interaction of CO_{2} with TiO, TiO_{2}, and TiO_{3}, and we find that each species exhibits unique infrared signatures and binding motifs. We will discuss the structures of these cluster ions, and how the coordination of the titanium atom plays a role in reduction of CO_{2}.

  2. Folding dynamics of the Trp-cage miniprotein: evidence for a native-like intermediate from combined time-resolved vibrational spectroscopy and molecular dynamics simulations.

    Science.gov (United States)

    Meuzelaar, Heleen; Marino, Kristen A; Huerta-Viga, Adriana; Panman, Matthijs R; Smeenk, Linde E J; Kettelarij, Albert J; van Maarseveen, Jan H; Timmerman, Peter; Bolhuis, Peter G; Woutersen, Sander

    2013-10-03

    Trp-cage is a synthetic 20-residue miniprotein which folds rapidly and spontaneously to a well-defined globular structure more typical of larger proteins. Due to its small size and fast folding, it is an ideal model system for experimental and theoretical investigations of protein folding mechanisms. However, Trp-cage's exact folding mechanism is still a matter of debate. Here we investigate Trp-cage's relaxation dynamics in the amide I' spectral region (1530-1700 cm(-1)) using time-resolved infrared spectroscopy. Residue-specific information was obtained by incorporating an isotopic label ((13)C═(18)O) into the amide carbonyl group of residue Gly11, thereby spectrally isolating an individual 310-helical residue. The folding-unfolding equilibrium is perturbed using a nanosecond temperature-jump (T-jump), and the subsequent re-equilibration is probed by observing the time-dependent vibrational response in the amide I' region. We observe bimodal relaxation kinetics with time constants of 100 ± 10 and 770 ± 40 ns at 322 K, suggesting that the folding involves an intermediate state, the character of which can be determined from the time- and frequency-resolved data. We find that the relaxation dynamics close to the melting temperature involve fast fluctuations in the polyproline II region, whereas the slower process can be attributed to conformational rearrangements due to the global (un)folding transition of the protein. Combined analysis of our T-jump data and molecular dynamics simulations indicates that the formation of a well-defined α-helix precedes the rapid formation of the hydrophobic cage structure, implying a native-like folding intermediate, that mainly differs from the folded conformation in the orientation of the C-terminal polyproline II helix relative to the N-terminal part of the backbone. We find that the main free-energy barrier is positioned between the folding intermediate and the unfolded state ensemble, and that it involves the formation of

  3. Hot Exoplanet Atmospheres Resolved with Transit Spectroscopy (HEARTS). I. Detection of hot neutral sodium at high altitudes on WASP-49b

    Science.gov (United States)

    Wyttenbach, A.; Lovis, C.; Ehrenreich, D.; Bourrier, V.; Pino, L.; Allart, R.; Astudillo-Defru, N.; Cegla, H. M.; Heng, K.; Lavie, B.; Melo, C.; Murgas, F.; Santerne, A.; Ségransan, D.; Udry, S.; Pepe, F.

    2017-06-01

    High-resolution optical spectroscopy during the transit of HD 189733b, a prototypical hot Jupiter, allowed the resolution of the Na I D sodium lines in the planet, giving access to the extreme conditions of the planet upper atmosphere. We have undertaken HEARTS, a spectroscopic survey of exoplanet upper atmospheres, to perform a comparative study of hot gas giants and determine how stellar irradiation affect them. Here, we report on the first HEARTS observations of the hot Saturn-mass planet WASP-49b. We observed the planet with the HARPS high-resolution spectrograph at ESO 3.6 m telescope. We collected 126 spectra of WASP-49, covering three transits of WASP-49b. We analyzed and modeled the planet transit spectrum, while paying particular attention to the treatment of potentially spurious signals of stellar origin. We spectrally resolve the Na I D lines in the planet atmosphere and show that these signatures are unlikely to arise from stellar contamination. The large contrasts of 2.0 ± 0.5% (D2) and 1.8 ± 0.7% (D1) require the presence of hot neutral sodium ( K) at high altitudes ( 1.5 planet radius or 45 000 km). From estimating the cloudiness index of WASP-49b, we determine its atmosphere to be cloud free at the altitudes probed by the sodium lines. WASP-49b is close to the border of the evaporation desert and exhibits an enhanced thermospheric signature with respect to a farther-away planet such as HD 189733b. Based on observations made at ESO 3.6 m telescope at the La Silla Observatory under ESO program 096.C-0331.

  4. Reduction of V̇O2 slow component by priming exercise: novel mechanistic insights from time-resolved near-infrared spectroscopy.

    Science.gov (United States)

    Fukuoka, Yoshiyuki; Poole, David C; Barstow, Thomas J; Kondo, Narihiko; Nishiwaki, Masato; Okushima, Dai; Koga, Shunsaku

    2015-06-01

    Novel time-resolved near-infrared spectroscopy (TR-NIRS), with adipose tissue thickness correction, was used to test the hypotheses that heavy priming exercise reduces the V̇O2 slow component (V̇O2SC) (1) by elevating microvascular [Hb] volume at multiple sites within the quadriceps femoris (2) rather than reducing the heterogeneity of muscle deoxygenation kinetics. Twelve subjects completed two 6-min bouts of heavy work rate exercise, separated by 6 min of unloaded cycling. Priming exercise induced faster overall V̇O2 kinetics consequent to a substantial reduction in the V̇O2SC (0.27 ± 0.12 vs. 0.11 ± 0.09 L·min(-1), P primed bout [total (Hb + Mb)] (197.5 ± 21.6 vs. 210.7 ± 22.5 μmol L(-1), P multiple sites within the quadriceps femoris, priming exercise reduced the baseline and slowed the increase in [deoxy (Hb + Mb)]. Changes in the intersite coefficient of variation in the time delay and time constant of [deoxy (Hb + Mb)] during the second bout were not correlated with the V̇O2SC reduction. These results support a mechanistic link between priming exercise-induced increase in muscle [Hb] volume and the reduced V̇O2SC that serves to speed overall V̇O2 kinetics. However, reduction in the heterogeneity of muscle deoxygenation kinetics does not appear to be an obligatory feature of the priming response. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  5. Time-resolved photoelectron spectroscopy of a dinuclear Pt(II) complex: Tunneling autodetachment from both singlet and triplet excited states of a molecular dianion

    Energy Technology Data Exchange (ETDEWEB)

    Winghart, Marc-Oliver, E-mail: marc-oliver.winghart@kit.edu; Unterreiner, Andreas-Neil [Institute of Physical Chemistry, Karlsruhe Institute of Technology, P.O. Box 6980, 76049 Karlsruhe (Germany); Yang, Ji-Ping [Institute of Physical Chemistry, Karlsruhe Institute of Technology, P.O. Box 6980, 76049 Karlsruhe (Germany); School of Sciences, Hefei University of Technology, Hefei 230009 (China); Vonderach, Matthias [Centre for Proteome Research, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB (United Kingdom); Huang, Dao-Ling; Wang, Lai-Sheng [Department of Chemistry, Brown University, Providence, Rhode Island 02912 (United States); Kruppa, Sebastian; Riehn, Christoph [Fachbereich Chemie und Landesforschungszentrum OPTIMAS, Technische Universität Kaiserslautern, Erwin-Schrödinger-Str. 52–54, 67663 Kaiserslautern (Germany); Kappes, Manfred M., E-mail: manfred.kappes@kit.edu [Institute of Physical Chemistry, Karlsruhe Institute of Technology, P.O. Box 6980, 76049 Karlsruhe (Germany); Institute of Nanotechnology, Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe (Germany)

    2016-02-07

    Time-resolved pump-probe photoelectron spectroscopy has been used to study the relaxation dynamics of gaseous [Pt{sub 2}(μ-P{sub 2}O{sub 5}H{sub 2}){sub 4} + 2H]{sup 2−} after population of its first singlet excited state by 388 nm femtosecond laser irradiation. In contrast to the fluorescence and phosphorescence observed in condensed phase, a significant fraction of the photoexcited isolated dianions decays by electron loss to form the corresponding monoanions. Our transient photoelectron data reveal an ultrafast decay of the initially excited singlet {sup 1}A{sub 2u} state and concomitant rise in population of the triplet {sup 3}A{sub 2u} state, via sub-picosecond intersystem crossing (ISC). We find that both of the electronically excited states are metastably bound behind a repulsive Coulomb barrier and can decay via delayed autodetachment to yield electrons with characteristic kinetic energies. While excited state tunneling detachment (ESETD) from the singlet {sup 1}A{sub 2u} state takes only a few picoseconds, ESETD from the triplet {sup 3}A{sub 2u} state is much slower and proceeds on a time scale of hundreds of nanoseconds. The ISC rate in the gas phase is significantly higher than in solution, which can be rationalized in terms of changes to the energy dissipation mechanism in the absence of solvent molecules. [Pt{sub 2}(μ-P{sub 2}O{sub 5}H{sub 2}){sub 4} + 2H]{sup 2−} is the first example of a photoexcited multianion for which ESETD has been observed following ISC.

  6. Measurement of the dynamic charge response of materials using low-energy, momentum-resolved electron energy-loss spectroscopy (M-EELS

    Directory of Open Access Journals (Sweden)

    Sean Vig, Anshul Kogar, Matteo Mitrano, Ali A. Husain, Vivek Mishra, Melinda S. Rak, Luc Venema, Peter D. Johnson, Genda D. Gu, Eduardo Fradkin, Michael R. Norman, Peter Abbamonte

    2017-10-01

    Full Text Available One of the most fundamental properties of an interacting electron system is its frequency- and wave-vector-dependent density response function, $\\chi({\\bf q},\\omega$. The imaginary part, $\\chi''({\\bf q},\\omega$, defines the fundamental bosonic charge excitations of the system, exhibiting peaks wherever collective modes are present. $\\chi$ quantifies the electronic compressibility of a material, its response to external fields, its ability to screen charge, and its tendency to form charge density waves. Unfortunately, there has never been a fully momentum-resolved means to measure $\\chi({\\bf q},\\omega$ at the meV energy scale relevant to modern electronic materials. Here, we demonstrate a way to measure $\\chi$ with quantitative momentum resolution by applying alignment techniques from x-ray and neutron scattering to surface high-resolution electron energy-loss spectroscopy (HR-EELS. This approach, which we refer to here as ``M-EELS" allows direct measurement of $\\chi''({\\bf q},\\omega$ with meV resolution while controlling the momentum with an accuracy better than a percent of a typical Brillouin zone. We apply this technique to finite-{\\bf q} excitations in the optimally-doped high temperature superconductor, Bi$_2$Sr$_2$CaCu$_2$O$_{8+x}$ (Bi2212, which exhibits several phonons potentially relevant to dispersion anomalies observed in ARPES and STM experiments. Our study defines a path to studying the long-sought collective charge modes in quantum materials at the meV scale and with full momentum control.

  7. Time resolved infrared spectroscopy of femtosecond proton dynamics in the liquid phase; Spectroscopie infrarouge resolue en temps pour l'etude de la dynamique femtoseconde du proton en phase liquide

    Energy Technology Data Exchange (ETDEWEB)

    Amir, W

    2003-12-15

    This work of thesis aims to understand the strong mobility of protons in water. Water is fundamental to life and mediates many chemical and biological processes. However this liquid is poorly understood at the molecular level. The richness of interdisciplinary sciences allows us to study the properties which make it so unique. The technique used for this study was the femtosecond time resolved vibrational spectroscopy. Several experiments were carried out to characterize the femtosecond proton dynamics in water. The visualization of the rotation of water molecules obtained by anisotropy measurements will be presented. This experiment is carried out in isotopic water HDO/D{sub 2}O for reasons of experimental and theoretical suitability. However this is not water. Pure water H{sub 2}O was also studied without thermal effects across vibrations modes. An intermolecular energy resonant transfer was observed. Finally the localized structure of the proton in water (called Eigen form) was clearly experimentally observed. This molecule is implicated in the abnormal mobility of the proton in water (Grotthuss mechanism). (author)

  8. Tuning the ultrafast photodissociation dynamics of CH3Br on ultrathin MgO films by reducing the layer thickness to the 2D limit

    Science.gov (United States)

    Vaida, Mihai E.; Bernhardt, Thorsten M.

    2017-11-01

    The femtosecond-laser induced photodissociation of CH3Br adsorbed at sub-monolayer coverage on a solid surface was investigated by time-resolved pump-probe mass spectrometry. To tune the interaction of the CH3Br molecules with the substrate, an Mo(1 0 0) surface was covered with ultrathin insulating MgO layers of variable thickness. By gradually decreasing the magnesia layer thickness to the 2D limit the photodissociation dynamics observed by detection of the methyl fragment indicates an energetic lowering of the relevant methyl bromide excited states due to the increasing spatial proximity of the metallic support. Potential orientational effects of the methyl bromide adsorption geometry are also considered.

  9. Photodissociation of HBr. 1. Electronic structure, photodissociation dynamics, and vector correlation coefficients.

    Science.gov (United States)

    Smolin, Andrey G; Vasyutinskii, Oleg S; Balint-Kurti, Gabriel G; Brown, Alex

    2006-04-27

    Ab initio potential energy curves, transition dipole moments, and spin-orbit coupling matrix elements are computed for HBr. These are then used, within the framework of time-dependent quantum-mechanical wave-packet calculations, to study the photodissociation dynamics of the molecule. Total and partial integral cross sections, the branching fraction for the formation of excited-state bromine atoms Br(2P(1/2)), and the lowest order anisotropy parameters, beta, for both ground and excited-state bromine are calculated as a function of photolysis energy and compared to experimental and theoretical data determined previously. Higher order anisotropy parameters are computed for the first time for HBr and compared to recent experimental measurements. A new expression for the Re[a1(3) (parallel, perpendicular)] parameter describing coherent parallel and perpendicular production of ground-state bromine in terms of the dynamical functions is given. Although good agreement is obtained between the theoretical predictions and the experimental measurements, the discrepancies are analyzed to establish how improvements might be achieved. Insight is obtained into the nonadiabatic dynamics by comparing the results of diabatic and fully adiabatic calculations.

  10. An Attosecond Transient Absorption Spectroscopy Setup with a Water Window Attosecond source

    Science.gov (United States)

    Chew, Andrew; Yin, Yanchun; Li, Jie; Ren, Xiaoming; Wang, Yang; Wu, Yi; Chang, Zenghu

    2017-04-01

    Attosecond transient absorption, or time-resolved pump-probe spectroscopy, are excellent tools that can be used to investigate fast electron dynamics for a given atomic or molecular system. Recent push for high energy long wavelength few cycle laser sources has resulted in the production of x-ray spectra that would allow the probing of electron dynamics at the carbon k-edge in molecules such as CH4 and CO2. The motion of charges can be caused by photo-dissociation and charge migration. We present here the first results from our experimental setup where we produce a broadband attosecond pulse with spectra that stretches into the water window. National Science Foundation (1068604), Army Research Oce (W911NF-14-1-0383), Air Force Oce of Scientic Research (FA9550-15-1-0037, FA9550-16-1-0013) and the DARPA PULSE program by a Grant from AMRDEC (W31P4Q1310017).

  11. Combined time-resolved laser fluorescence spectroscopy and extended X-ray absorption fine structure spectroscopy study on the complexation of trivalent actinides with chloride at T = 25-200 °C.

    Science.gov (United States)

    Skerencak-Frech, Andrej; Fröhlich, Daniel R; Rothe, Jörg; Dardenne, Kathy; Panak, Petra J

    2014-01-21

    The complexation of trivalent actinides (An(III)) with chloride is studied in the temperature range from 25 to 200 °C by spectroscopic methods. Time-resolved laser fluorescence spectroscopy (TRLFS) is applied to determine the thermodynamic data of Cm(III)-Cl(-) complexes, while extended X-ray absorption fine structure spectroscopy (EXAFS) is used to determine the structural data of the respective Am(III) complexes. The experiments are performed in a custom-built high-temperature cell which is modified for the respective spectroscopic technique. The TRLFS results show that at 25 °C the speciation is dominated mainly by the Cm(3+) aquo ion. Only a minor fraction of the CmCl(2+) complex is present in solution. As the temperature increases, the fraction of this species decreases further. Simultaneously, the fraction of the CmCl2(+) complex increases strongly with the temperature. Also, the CmCl3 complex is formed to a minor extent at T > 160 °C. The conditional stability constant log β'2 is determined as a function of the temperature and extrapolated to zero ionic strength with the specific ion interaction theory approach. The log β°2(T) values increase by more than 3 orders of magnitude in the studied temperature range. The temperature dependency of log β°2 is fitted by the extended van't Hoff equation to determine ΔrH°m, ΔrS°m, and ΔrC°p,m. The EXAFS results support these findings. The results confirm the absence of americium(III) chloride complexes at T = 25 and 90 °C ([Am(III)] = 10(-3) m, [Cl(-)] = 3.0 m), and the spectra are described by 9-10 oxygen atoms at a distance of 2.44-2.48 Å. At T = 200 °C two chloride ligands are present in the inner coordination sphere of Am(III) at a distance of 2.78 Å.

  12. Observation of atomic carbon during photodissociation of nitrotoluenes in the vapor phase

    Science.gov (United States)

    Eilers, Hergen; Diez-y-Riega, Helena

    2014-05-01

    We perform laser-induced photodissociation fluorescence spectroscopy on mononitrotoluenes (MNTs) and dinitrotoluenes (DNTs) in the vapor phase and observe the spectrally overlapping fluorescence from nitric oxide (NO) and carbon (C). Energy-dispersive x-ray spectroscopy (EDS) and Raman spectroscopy of deposits found in the sample chamber confirm the presence of carbon. By comparing the observed fluorescence intensities with the Franck-Condon factors for NO, we are able to identify the presence or absence of fluorescence from carbon. 2-nitrotoluene and 4- nitrotoluene show carbon fluorescence for gate delays of up to 500 ns, while 2,4-dinitrotolune, 3,4-dinitrotolune, and 2,6-dinitrotolune show carbon fluorescence for gate delays of at least up to 1500 ns. The spectroscopic signal from atomic carbon in the vapor phase is observed at concentrations as low as 10 ppt. Based upon the observed S/N, detection at even lower concentrations appears feasible. Several non-nitrotoluene molecules including nitrobenzene, benzene, toluene, and CO2, are tested under identical conditions, but do not show any carbon emission. The presence of extra NO (simulation of NO pollutants) in the samples improves the S/N ratio for the detection of carbon. Energy transfer from laser-excited molecular nitrogen to NO, multiple decomposition channels in the electronic excited state of the nitrotoluene molecules, and interaction of NO with the excited-state decomposition process of the nitrotoluene molecules may all play a role.

  13. Photodissociation of ultracold diatomic strontium molecules with quantum state control.

    Science.gov (United States)

    McDonald, M; McGuyer, B H; Apfelbeck, F; Lee, C-H; Majewska, I; Moszynski, R; Zelevinsky, T

    2016-07-07

    Chemical reactions at ultracold temperatures are expected to be dominated by quantum mechanical effects. Although progress towards ultracold chemistry has been made through atomic photoassociation, Feshbach resonances and bimolecular collisions, these approaches have been limited by imperfect quantum state selectivity. In particular, attaining complete control of the ground or excited continuum quantum states has remained a challenge. Here we achieve this control using photodissociation, an approach that encodes a wealth of information in the angular distribution of outgoing fragments. By photodissociating ultracold (88)Sr2 molecules with full control of the low-energy continuum, we access the quantum regime of ultracold chemistry, observing resonant and nonresonant barrier tunnelling, matter-wave interference of reaction products and forbidden reaction pathways. Our results illustrate the failure of the traditional quasiclassical model of photodissociation and instead are accurately described by a quantum mechanical model. The experimental ability to produce well-defined quantum continuum states at low energies will enable high-precision studies of long-range molecular potentials for which accurate quantum chemistry models are unavailable, and may serve as a source of entangled states and coherent matter waves for a wide range of experiments in quantum optics.

  14. Hot atom reactive scattering and photodissociation experiments with acetylene and ethylene

    Energy Technology Data Exchange (ETDEWEB)

    Balko, B.A. (California Univ., Berkeley, CA (USA). Dept. of Chemistry Lawrence Berkeley Lab., CA (USA))

    1991-04-01

    Two different experimental techniques, chemical activation and photofragment translational spectroscopy, are used to study acetylene, ethylene, and their associated radicals: C{sub 2}, C{sub 2}H, C{sub 2}H{sub 3}, and C{sub 2}H{sub 5}. The experiments are done on a molecular beams apparatus with mass spectrometric detection. The first type of experiment uses a photolytic D atom source to look at the dynamics of the D + C{sub 2}H{sub 2}/C{sub 2}H{sub 4} {yields} (C{sub 2}H{sub 2}D/C{sub 2}H{sub 4}D) {yields} C{sub 2}HD/C{sub 2}H{sub 3}D + H substitution reactions at 20 kcal/mole collision energy. The derived product center-of-mass angular and translational energy distributions show that, for both hydrocarbons, the reaction is direct and has an exit barrier. These observations are compared with RRKM estimates of the lifetimes of the complexes. The other type of experiment involves 193 nm photodissociation of C{sub 2}H{sub 2}, C{sub 2}H{sub 4}, and C{sub 2}H{sub 2}F{sub 2}. The acetylene photodissociation studies give a new measurement for the H-CCH bond energy. The H atom time-of-flight spectrum shows structure from the formation of vibrationally and electronically exited C{sub 2}H. It is also found that internally excited C{sub 2}H preferentially absorbs a photon and dissociates to yield C{sub 2} photofragments in high electronic states. 139 refs., 76 figs., 6 tabs.

  15. Ultrafast relaxation and reaction of diiodide anion after photodissociation of triiodide in room-temperature ionic liquids.

    Science.gov (United States)

    Nishiyama, Yoshio; Terazima, Masahide; Kimura, Yoshifumi

    2012-08-02

    Vibrational dephasing, vibrational relaxation, and rotational relaxation of diiodide (I(2)(-)) after photodissociation of triiodide (I(3)(-)) in room-temperature ionic liquids (RTILs) were investigated by ultrafast transient absorption spectroscopy. The vibrational energy relaxation (VER) rate of I(2)(-) produced by the photodissociation reaction of I(3)(-) was determined from the spectral profile of the transient absorption. The rates in RTILs were slightly slower than those in conventional liquids. On the other hand, the coherent vibration of I(2)(-) was not observed in RTILs, and the vibrational dephasing of the photoproduced I(2)(-) was accelerated. This was explained by the interaction between I(2)(-) and I consisting of a caged contact pair in RTILs. The orientational relaxation time of I(2)(-) determined by the transient absorption anisotropy was much longer in RTILs than in conventional liquids due to their high viscosities although the relaxation time was shorter than the prediction from the Stokes-Einstein-Debye (SED) theory. The deviation from the SED prediction was interpreted by the frequency dependence of the shear stress acting on the molecule. The dynamics of I(2)(-) in 1-butyl-3-methylimidazolium iodide ([BMIm]I) were quite different from those in other conventional RTILs: the coherent vibration of I(2)(-) was observed for the time profile of the transient absorption and the initial value of the anisotropy was reduced to 0.31 from 0.36 in conventional RTILs. These results suggest that an ultrafast reaction between the photofragment I and the solvent I(-) may occur during the photodissociation process of I(3)(-). The anomaly in the ground state coherent vibration and steady state Raman spectrum of I(3)(-) also suggest the possibility that I(3)(-) and I(-) can be located in vicinity and interact strongly with each other in [BMIm]I.

  16. Time-Resolved Study of Nanomorphology and Nanomechanic Change of Early-Stage Mineralized Electrospun Poly(lactic acid) Fiber by Scanning Electron Microscopy, Raman Spectroscopy and Atomic Force Microscopy.

    Science.gov (United States)

    Wang, Mengmeng; Cai, Yin; Zhao, Bo; Zhu, Peizhi

    2017-08-17

    In this study, scanning electron microscopy (SEM), Raman spectroscopy and high-resolution atomic force microscopy (AFM) were used to reveal the early-stage change of nanomorphology and nanomechanical properties of poly(lactic acid) (PLA) fibers in a time-resolved manner during the mineralization process. Electrospun PLA nanofibers were soaked in simulated body fluid (SBF) for different periods of time (0, 1, 3, 5, 7 and 21 days) at 10 °C, much lower than the conventional 37 °C, to simulate the slow biomineralization process. Time-resolved Raman spectroscopy analysis can confirm that apatites were deposited on PLA nanofibers after 21 days of mineralization. However, there is no significant signal change among several Raman spectra before 21 days. SEM images can reveal the mineral deposit on PLA nanofibers during the process of mineralization. In this work, for the first time, time-resolved AFM was used to monitor early-stage nanomorphology and nanomechanical changes of PLA nanofibers. The Surface Roughness and Young's Modulus of the PLA nanofiber quantitatively increased with the time of mineralization. The electrospun PLA nanofibers with delicate porous structure could mimic the extracellular matrix (ECM) and serve as a model to study the early-stage mineralization. Tested by the mode of PLA nanofibers, we demonstrated that AFM technique could be developed as a potential diagnostic tool to monitor the early onset of pathologic mineralization of soft tissues.

  17. Electronic structure of single crystal UPd{sub 3}, UGe{sub 2}, and USb{sub 2} from hard X-ray and angle-resolved photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Beaux, M.F., E-mail: mbeaux@lanl.gov [MPA Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Durakiewicz, T. [MPA Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Moreschini, L.; Grioni, M. [IPN, Ecole Polytechnique Federale (EPFL), CH-1015 Lausanne (Switzerland); Offi, F. [CNISM and Dipartimento de Fisica, Universita Roma Tre, Via della Vasca Navale 84, 1-00146 Rome (Italy); Monaco, G. [European Synchrotron Radiation Facility, B.P. 220, F-38042 Grenoble (France); Panaccione, G. [Istituto Officina dei Materiali CNR, Laboratorio TASC, Area Science Park, Basovizza S.S. 14 Km 163.5, I-34012 Trieste, 9 (Italy); Joyce, J.J.; Bauer, E.D.; Sarrao, J.L. [MPA Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Butterfield, M.T. [KLA-Tencor, 1 Technology Drive, Milpitas, CA (United States); Guziewicz, E. [Institute of Physics, Polish Academy of Sciences, Warsaw (Poland)

    2011-11-15

    Highlights: {yields} Electronic structure of single crystal UPd{sub 3}, UGe{sub 2}, and USb{sub 2} was measured by hard X-ray and angle-resolved photoemission spectroscopy. {yields} Angle resolved photoemission results demonstrate hybridization between U 5f and Pd 4d electrons within UPd{sub 3}. {yields} HAXPES probing of bulk features within of UPd{sub 3}, UGe{sub 2}, and USb{sub 2} samples with native oxide contamination demonstrated. {yields} Two distinct spectral features identified for Sb I and Sb II sites within USb{sub 2} HAXPES spectrum. {yields} Line shape analysis reveals correlations between Doniach-Sunjic asymmetry coefficients and 5f localization. - Abstract: Electronic structure of single crystal UPd{sub 3}, UGe{sub 2}, and USb{sub 2} has been measured from hard X-ray photoelectron spectroscopy (HAXPES) with 7.6 keV photons at the European Synchrotron Radiation Facility (ESRF). Lower photon energy angle-resolved photoelectron spectroscopy (ARPES) was also performed at the Synchrotron Radiation Center (SRC). Herein the following results are presented: (i) ARPES results demonstrate hybridization between the U 5f and Pd 4d electrons within UPd{sub 3}. (ii) The greatly reduced surface sensitivity of HAXPES enabled observation of the bulk core levels in spite of surface oxidation. Photoelectron mean-free-path versus oxide layer thickness considerations were used to model the effectiveness of HAXPES for probing bulk features of in-air cleaved samples. (iii) Two distinct features separated by 800 meV were observed for the Sb 3d core level. These two features are attributed to manifestations of two distinct Sb sites within the USb{sub 2} single crystal as supported by consideration of interatomic distances and enthalpy-of-formation. (iv) Doniach-Sunjic line shape analysis of core level spectral features revealed correlations between asymmetry coefficients and 5f localization.

  18. A study of relaxation mechanisms in the A{sup 2}{Sigma}{sup +} state of nitric oxide by time resolved double resonant polarization spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Stampanoni-Panariello, A.; Bombach, R.; Hemmerling, B.; Hubschmid, W. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    Double resonant polarization labeling spectroscopy is applied to detect nitric oxide in flames and to characterize rotational energy transfer and orientation changing collisions in its first excited electronic state. (author) 4 figs., 3 refs.

  19. Photodissociation of Gaseous Ions Formed by Laser Desorption.

    Science.gov (United States)

    1986-09-20

    produced by separate pathways from the (M-I)- ion or from consecutive photodissociations. Hesperidin : In the negative ion LD mass spectrum of this compound...an ion of m/z r𔃼 was produced from the sodium salt of hesperidin phosphoric acid ester. This ion was observed to dissociate by loss of the attached...Experimental conditions are same as in the top spectrum. Figure 8. Top. Negative ions formed by laser desorption from Na-salt of hesperidin phosphoric acid ester

  20. Photodissociation and photoionisation of atoms and molecules of astrophysical interest

    Science.gov (United States)

    Heays, A. N.; Bosman, A. D.; van Dishoeck, E. F.

    2017-06-01

    A new collection of photodissociation and photoionisation cross sections for 102 atoms and molecules of astrochemical interest has been assembled, along with a brief review of the basic physical processes involved. These have been used to calculate dissociation and ionisation rates, with uncertainties, in a standard ultraviolet interstellar radiation field (ISRF) and for other wavelength-dependent radiation fields, including cool stellar and solar radiation, Lyman-α dominated radiation, and a cosmic-ray induced ultraviolet flux. The new ISRF rates generally agree within 30% with our previous compilations, with a few notable exceptions. Comparison with other databases such as PHIDRATES is made. The reduction of rates in shielded regions was calculated as a function of dust, molecular and atomic hydrogen, atomic C, and self-shielding column densities. The relative importance of these shielding types depends on the atom or molecule in question and the assumed dust optical properties. All of the new data are publicly available from the Leiden photodissociation and ionisation database. Sensitivity of the calculated rates to variation of temperature and isotope, and uncertainties in measured or calculated cross sections, are tested and discussed. Tests were conducted on the new rates with an interstellar-cloud chemical model, and find general agreement (within a factor of two) in abundances obtained with the previous iteration of the Leiden database assuming an ISRF, and order-of-magnitude variations assuming various kinds of stellar radiation. The newly parameterised dust-shielding factors makes a factor-of-two difference to many atomic and molecular abundances relative to parameters currently in the UDfA and KIDA astrochemical reaction databases. The newly-calculated cosmic-ray induced photodissociation and ionisation rates differ from current standard values up to a factor of 5. Under high temperature and cosmic-ray-flux conditions the new rates alter the equilibrium

  1. Vacuum ultraviolet photoionization and photodissociation of polyatomic molecules and radicals

    Energy Technology Data Exchange (ETDEWEB)

    Ng, C.Y. [Iowa State Univ., Ames (United States)

    1993-12-01

    In the past decade, tremendous progress has been made in understanding the photodissociation (PD) dynamics of triatomic molecules. However, the PD study of radicals, especially polyatomic radicals, has remained essentially an unexplored research area. Detailed state-to-state PD cross sections for radicals in the UV and VUV provide challenges not only for dynamical calculations, but also for ab initio quantum chemical studies. The authors have developed a laser based pump-probe apparatus for the measurement of absolute PD cross sections for CH{sub 3}S and HS is summarized.

  2. Product vibrational distributions in CH 3Br photodissociation

    Science.gov (United States)

    Escure, Christelle; Leininger, Thierry; Lepetit, Bruno

    2009-09-01

    We performed a theoretical study of the photodissociation dynamics of CH 3Br in the A˜ band using a wavepacket propagation technique on coupled ab initio potential energy surfaces corresponding to the 3Q 1 and 1Q 1 states correlated at large distance with the Br ground spin-orbit state, as well as the 3Q 0 and 4E states correlated to the excited one. The methyl umbrella vibrational product state distributions are found in very good agreement with experimental results. They are hotter for Br than for Br ∗, and this is related to the shapes of the 3Q 0 and 1Q 1 potentials.

  3. Structural differences in the two agonist binding sites of the Torpedo nicotinic acetylcholine receptor revealed by time-resolved fluorescence spectroscopy

    DEFF Research Database (Denmark)

    Martinez, K. L.; Corringer, P. J.; Edelstein, S. J.

    2000-01-01

    The nicotinic acetylcholine receptor (nAChR) from Torpedo marmorata carries two nonequivalent agonist binding sites at the αδ and αγ subunit interfaces. These sites have been characterized by time-resolved fluorescence with the partial nicotinic agonist dansyl-C6-choline (Dnscho). When bound...

  4. Role of molecular photodissociation in ultrafast laser surgery

    Science.gov (United States)

    Wang, Jenny; Schuele, Georg; Huie, Phil; Palanker, Daniel V.

    2015-03-01

    Transparent ocular tissues such as cornea and crystalline lens can be precisely ablated or dissected using ultrafast ultraviolet, visible, and infrared lasers. In refractive or cataract surgery, cutting of the cornea, lens, and lens capsule is typically produced by dielectric breakdown in the focus of a short-pulse laser which results in explosive vaporization of the interstitial water and mechanically ruptures the surrounding tissue. Here, we report that tissue can also be disrupted below the threshold of bubble appearance using 400 nm femtosecond pulses with minimal mechanical damage. Using gel electrophoresis and liquid chromatography/mass spectrometry, we assessed photodissociation of proteins and polypeptides by 400 nm femtosecond pulses both below and above the cavitation bubble threshold. Negligible protein dissociation was observed with 800 nm femtosecond lasers even above the threshold of dielectric breakdown. Scanning electron microscopy of the cut edges in porcine lens capsule demonstrated that plasma-mediated cutting results in the formation of grooves. Below the cavitation bubble threshold, precise cutting could still be produced with 400 nm femtosecond pulses, possibly due to molecular photodissociation of the tissue structural proteins.

  5. Time-resolved terahertz spectroscopy reveals the influence of charged sensitizing quantum dots on the electron dynamics in ZnO

    Czech Academy of Sciences Publication Activity Database

    Bamini, S.N.; Němec, Hynek; Žídek, Karel; Abdellah, M.; Al-Marri, M.J.; Chábera, P.; Ponseca, C.; Zheng, K.; Pullerits, T.

    2017-01-01

    Roč. 19, č. 8 (2017), s. 6006-6012 ISSN 1463-9076 R&D Projects: GA ČR GA17-03662S Institutional support: RVO:68378271 ; RVO:61389021 Keywords : sensitized semiconductors * ultrafast dynamics * terahertz spectroscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.123, year: 2016

  6. Time-resolved fluorescence spectroscopy investigation of the effect of 4-hydroxynonenal on endogenous NAD(P)H in living cardiac myocytes.

    Science.gov (United States)

    Chorvatova, Alzbeta; Aneba, Swida; Mateasik, Anton; Chorvat, Dusan; Comte, Blandine

    2013-06-01

    Lipid peroxidation is a major biochemical consequence of the oxidative deterioration of polyunsaturated lipids in cell membranes and causes damage to membrane integrity and loss of protein function. 4-hydroxy-2-nonenal (HNE), one of the most reactive products of n-6 polyunsaturated fatty acid peroxidation of membrane phospholipids, has been shown to be capable of affecting both nicotinamide adenine dinucleotide (phosphate) reduced [NAD(P)H] as well as NADH production. However, the understanding of its effects in living cardiac cells is still lacking. Our goal was to therefore investigate HNE effects on NAD(P)H noninvasively in living cardiomyocytes. Spectrally resolved lifetime detection of endogenous fluorescence, an innovative noninvasive technique, was employed. Individual fluorescence components were resolved by spectral linear unmixing approach. Gathered results revealed that HNE reduced the amplitude of both resolved NAD(P)H components in a concentration-dependent manner. In addition, HNE increased flavoprotein fluorescence and responsiveness of the NAD(P)H component ratio to glutathione reductase (GR) inhibitor. HNE also increased the percentage of oxidized nucleotides and decreased maximal NADH production. Presented data indicate that HNE provoked an important cell oxidation by acting on NAD(P)H regulating systems in cardiomyocytes. Understanding the precise role of oxidative processes and their products in living cells is crucial for finding new noninvasive tools for biomedical diagnostics of pathophysiological states.

  7. RESOLVE and ECO: Survey Design

    Science.gov (United States)

    Kannappan, Sheila; Moffett, Amanda J.; Norris, Mark A.; Eckert, Kathleen D.; Stark, David; Berlind, Andreas A.; Snyder, Elaine M.; Norman, Dara J.; Hoversten, Erik A.; RESOLVE Team

    2016-01-01

    The REsolved Spectroscopy Of a Local VolumE (RESOLVE) survey is a volume-limited census of stellar, gas, and dynamical mass as well as star formation and galaxy interactions within >50,000 cubic Mpc of the nearby cosmic web, reaching down to dwarf galaxies of baryonic mass ~10^9 Msun and spanning multiple large-scale filaments, walls, and voids. RESOLVE is surrounded by the ~10x larger Environmental COntext (ECO) catalog, with matched custom photometry and environment metrics enabling analysis of cosmic variance with greater statistical power. For the ~1500 galaxies in its two equatorial footprints, RESOLVE goes beyond ECO in providing (i) deep 21cm data with adaptive sensitivity ensuring HI mass detections or upper limits <10% of the stellar mass and (ii) 3D optical spectroscopy including both high-resolution ionized gas or stellar kinematic data for each galaxy and broad 320-725nm spectroscopy spanning [OII] 3727, Halpha, and Hbeta. RESOLVE is designed to complement other radio and optical surveys in providing diverse, contiguous, and uniform local/global environment data as well as unusually high completeness extending into the gas-dominated dwarf galaxy regime. RESOLVE also offers superb reprocessed photometry including full, deep NUV coverage and synergy with other equatorial surveys as well as unique northern and southern facilities such as Arecibo, the GBT, and ALMA. The RESOLVE and ECO surveys have been supported by funding from NSF grants AST-0955368 and OCI-1156614.

  8. Differences between GaAs/GaInP and GaAs/AlInP interfaces grown by movpe revealed by depth profiling and angle-resolved X-ray photoelectron spectroscopies

    Energy Technology Data Exchange (ETDEWEB)

    López-Escalante, M.C., E-mail: mclopez@uma.es [Nanotech Unit, Laboratorio de Materiales y Superficies, Departamento de Ingeniería Química, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga (Spain); Gabás, M. [The Nanotech Unit, Depto. de Física Aplicada I, Andalucía Tech, Universidad de Málaga, Campus de Teatinos s/n, 29071 Málaga Spain (Spain); García, I.; Barrigón, E.; Rey-Stolle, I.; Algora, C. [Instituto de Energía Solar, Universidad Politécnica de Madrid, Avda. Complutense 30, 28040 Madrid Spain (Spain); Palanco, S.; Ramos-Barrado, J.R. [The Nanotech Unit, Depto. de Física Aplicada I, Andalucía Tech, Universidad de Málaga, Campus de Teatinos s/n, 29071 Málaga Spain (Spain)

    2016-01-01

    Graphical abstract: - Highlights: • GaAs, AlInP and GaInP epi-layers grown in a MOVPE facility. • GaAs/GaInP and GaAs/AlInP interfaces studied through the combination of angle resolved and depth profile X-ray photoelectros spectroscopies. • GaAs/GaInP interface shows no features appart from GaAs, GaInP and mixed GaInAs or GaInAsP phases. • GaAs/AlInP interface shows traces of an anomalous P environment, probably due to P-P clusters. - Abstract: GaAs/GaInP and GaAs/AlInP interfaces have been studied using photoelectron spectroscopy tools. The combination of depth profile through Ar{sup +} sputtering and angle resolved X-ray photoelectron spectroscopy provides reliable information on the evolution of the interface chemistry. Measurement artifacts related to each particular technique can be ruled out on the basis of the results obtained with the other technique. GaAs/GaInP interface spreads out over a shorter length than GaAs/AlInP interface. The former could include the presence of the quaternary GaInAsP in addition to the nominal GaAs and GaInP layers. On the contrary, the GaAs/AlInP interface exhibits a higher degree of compound mixture. Namely, traces of P atoms in a chemical environment different to the usual AlInP coordination were found at the top of the GaAs/AlInP interface, as well as mixed phases like AlInP, GaInAsP or AlGaInAsP, located at the interface.

  9. Hydrogen migration in formation of NH(A{sup 3}Π) radicals via superexcited states in photodissociation of isoxazole molecules

    Energy Technology Data Exchange (ETDEWEB)

    Zubek, Mariusz, E-mail: mazub@mif.pg.gda.pl; Wasowicz, Tomasz J. [Department of Physics of Electronic Phenomena, Gdańsk University of Technology, 80-233 Gdańsk (Poland); Dąbkowska, Iwona [Department of Chemistry, University of Gdańsk, 80-952 Gdańsk (Poland); Kivimäki, Antti [CNR-IOM, Laboratorio TASC, 34149 Trieste (Italy); Gas Phase beamline@Elettra, Basovizza Area Science Park, 34149 Trieste (Italy); Coreno, Marcello [Gas Phase beamline@Elettra, Basovizza Area Science Park, 34149 Trieste (Italy); CNR-IMIP, Monterotondo, 00016 Roma (Italy)

    2014-08-14

    Formation of the excited NH(A{sup 3}Π) free radicals in the photodissociation of isoxazole (C{sub 3}H{sub 3}NO) molecules has been studied over the 14-22 eV energy range using photon-induced fluorescence spectroscopy. The NH(A{sup 3}Π) is produced through excitation of the isoxazole molecules into higher-lying superexcited states. Observation of the NH radical, which is not a structural unit of the isoxazole molecule, corroborates the hydrogen atom (or proton) migration within the molecule prior to dissociation. The vertical excitation energies of the superexcited states were determined and the dissociation mechanisms of isoxazole are discussed. The density functional and ab initio quantum chemical calculations have been performed to study the mechanism of the NH formation.

  10. Ion Pair Structure and Photodissociation Dynamics of Ionic Liquid [EMIM][TF2N

    Science.gov (United States)

    Stearns, Jaime A.; Cooper, Russell; Sporleder, David; Zolot, Alexander M.; Boatz, Jerry

    2014-06-01

    The Air Force has a pressing need to find new means of spacecraft propulsion, enabling cheaper, safer, more efficient maneuvering on orbit. Ionic liquids are a potential replacement for hydrazine in hypergolic combustion propellant systems and for xenon in electric propulsion systems. However, both applications require considerable further development, leading us to study the fundamental structural and optical properties of candidate systems. Our benchmark measurements will provide validation of theoretical models of all types, from ab initio methods up to codes describing full thruster plumes. Using standard supersonic jet time-of-flight spectroscopy techniques, we have measured the ultraviolet and infrared spectra of ion pairs of the only space-qualified ionic liquid, [emim][Tf2N]. The ultraviolet photodissociation spectrum, though broad and essentially featureless, reveals rich underlying photodynamics involving both single- and multi-photon excitations and a wealth of interacting excited states. The infrared spectrum and MP2 calculations establish the structure as one in which the cation and anion are stacked on top of one another rather than sitting in the same plane, answering a long-standing question in this field. The complexity of the infrared spectrum and its behavior under varying jet temperatures indicates the presence of multiple conformations and likely contributions from Fermi resonance.

  11. Probing the Aggregation Behavior of Neat Imidazolium-Based Alkyl Sulfate (Alkyl = Ethyl, Butyl, Hexyl, and Octyl) Ionic Liquids through Time Resolved Florescence Anisotropy and NMR and Fluorescence Correlation Spectroscopy Study.

    Science.gov (United States)

    Majhi, Debashis; Pabbathi, Ashok; Sarkar, Moloy

    2016-01-14

    Aggregation behavior of a series of neat 1-ethyl 3-methylimidazolium alkyl sulfate (alkyl = ethyl, butyl, hexyl, and octyl) ionic liquids has been investigated through combined time-resolved fluorescence spectroscopy, 1-D and 2-D NMR spectroscopy, and fluorescence correlation spectroscopy (FCS). Interestingly, experimentally measured rotational relaxation times (τr) for ethyl, butyl, hexyl and octyl systems are measured to be 2.25, 1.64, 1.36, and 1.32 times higher than the estimated (from Stokes-Einstein-Debye theory) values for the same respective systems. This indicates that the emitting species is not the monomeric imidazolium moiety rather an associated species, and volume of the rotating fluorescing species decreases even though the length of the alkyl moiety on the anions is increased. The shift in the (1)H proton signal as well as a change in the width of the same signal upon dilution of the neat ionic liquids indicates that ionic liquids exist in the aggregated form. Further investigation through the 2D-ROESY experiment shows that interaction between imidazolium and sulfate is relatively stronger in the ethyl system than that of the longer octyl system. FCS measurements independently show that the hydrodynamic volume decreases with an increase in the anion chain length. The NMR and FCS results are consistent with the findings of the fluorescence anisotropy study.

  12. Folding of a Zinc-Finger ββα-Motif Investigated Using Two-Dimensional and Time-Resolved Vibrational Spectroscopy.

    Science.gov (United States)

    Meuzelaar, Heleen; Panman, Matthijs R; van Dijk, Chris N; Woutersen, Sander

    2016-11-03

    Small proteins provide good model systems for studying the fundamental forces that control protein folding. Here, we investigate the folding dynamics of the 28-residue zinc-finger mutant FSD-1, which is designed to form a metal-independent folded ββα-motif, and which provides a testing ground for proteins containing a mixed α/β fold. Although the folding of FSD-1 has been actively studied, the folding mechanism remains largely unclear. In particular, it is unclear in what stage of folding the α-helix is formed. To address this issue we investigate the folding mechanism of FSD-1 using a combination of temperature-dependent UV circular dichroism (UV-CD), Fourier transform infrared (FTIR) spectroscopy, two-dimensional infrared (2D-IR) spectroscopy, and temperature-jump (T-jump) transient-IR spectroscopy. Our UV-CD and FTIR data show different thermal melting transitions, indicating multistate folding behavior. Temperature-dependent 2D-IR spectra indicate that the α-helix is the most stable structural element of FSD-1. To investigate the folding/unfolding re-equilibration dynamics of FSD-1, the conformational changes induced by a nanosecond T-jump are probed with transient-IR and transient dispersed-pump-probe (DPP) IR spectroscopy. We observe biexponential T-jump relaxation kinetics (with time constants of 80 ± 13 ns and 1300 ± 100 ns at 322 K), confirming that the folding involves an intermediate state. The IR and dispersed-pump-probe IR spectra associated with the two kinetic components suggest that the folding of FSD-1 involves early formation of the α-helix, followed by the formation of the β-hairpin and hydrophobic contacts.

  13. Anisotropic electron-phonon coupling and dynamical nesting on the graphene sheets in superconducting CaC6 using angle-resolved photoemission spectroscopy.

    Science.gov (United States)

    Valla, T; Camacho, J; Pan, Z-H; Fedorov, A V; Walters, A C; Howard, C A; Ellerby, M

    2009-03-13

    We present the first angle-resolved photoemission studies of electronic structure in CaC6, a superconducting graphite intercalation compound with T_{c}=11.6 K. We find that, contrary to theoretical models, the electron-phonon coupling on the graphene-derived Fermi sheets with high-frequency graphene-derived phonons is surprisingly strong and anisotropic. The shape of the Fermi surface is found to favor a dynamical intervalley nesting via exchange of high-frequency phonons. Our results suggest that graphene sheets play a crucial role in superconductivity in graphite intercalation compounds.

  14. Non-invasive determination of the CO contents in tuna fish using polarization resolved resonance Raman scattering and/or Rayleigh spectroscopy

    DEFF Research Database (Denmark)

    Hassing, Søren

    Carbon monoxide (CO) is used for Modified Atmosphere Packaging of fresh fish and meat. CO is added because it binds to the Myoglobin of the muscle tissue with high affinity resulting in a bright, cherry-red colored carboxy-Myoglobin complex. The product will because of the red color appear...... with polarization resolved resonance Raman spectra of these molecules, can form the basis of the development of a fast and non-invasive method for the screening of the presence of CO in tuna fish and meat....

  15. Resonant multiphoton ionisation probe of the photodissociation dynamics of ammonia.

    Science.gov (United States)

    Smith, Adam D; Watts, Hannah M; Jager, Edward; Horke, Daniel A; Springate, Emma; Alexander, Oliver; Cacho, Cephise; Chapman, Richard T; Minns, Russell S

    2016-10-12

    The dissociation dynamics of the Ã-state of ammonia have been studied using a resonant multiphoton ionisation probe in a photoelectron spectroscopy experiment. The use of a resonant intermediate in the multiphoton ionisation process changes the ionisation propensity, allowing access to different ion states when compared with equivalent single photon ionisation experiments. Ionisation through the E' 1A1' Rydberg intermediate means we maintain overlap with the ion state for an extended period, allowing us to monitor the excited state population for several hundred femtoseconds. The vibrational states in the photoelectron spectrum show two distinct timescales, 200 fs and 320 fs, that we assign to the non-adiabatic and adiabatic dissociation processes respectively. The different timescales derive from differences in the wavepacket trajectories for the two dissociation pathways that resonantly excite different vibrational states in the intermediate Rydberg state. The timescales are similar to those obtained from time resolved ion kinetic energy release measurements, suggesting we can measure the different trajectories taken out to the region of conical intersection.

  16. Photodissociation of HBr/LiF(001) - A quantum mechanical model

    Science.gov (United States)

    Seideman, Tamar

    1993-01-01

    The photodissociation dynamics of HBr adsorbed on an LiF(001) surface is studied using time-independent quantum mechanics. The photodissociation line shape and the Br(2P(1/2))/Br(2P(3/2)) yield ratio are computed and compared with the corresponding quantities for gas phase photodissociation. The angular distribution of the hydrogen photofragments following excitation of adsorbed HBr is computed and found to agree qualitatively with experimental data. The effect of polarization of the photon is illustrated and discussed. We find the field polarization to affect significantly the magnitude of the photodissociation signal but not the angular dependence of the photofragment distribution, in agreement with experiment and in accord with expectations for a strongly aligned adsorbed phase.

  17. Photodissociation of HBr/LiF(001): A quantum mechanical model

    Science.gov (United States)

    Seideman, Tamar

    1993-01-01

    The photodissociation dynamics of HBr adsorbed on a LiF(001) surface is studied using time-independent quantum mechanics. The photodissociation lineshape and the Br(P(sub 1/2)-2)/Br(P(sub 3/2)-2) yield ratio are computed and compared with the corresponding quantities for gas phase photodissociation. The angular distribution of the hydrogen photofragments following excitation of adsorbed HBr is computed and found to agree qualitatively with experimental data. The effect of polarization of the photon is illustrated and discussed. The field polarization is found to affect significantly the magnitude of the photodissociation signal but not the angular dependence of the photofragment distribution, in agreement with experiment and in accord with expectations for a strongly aligned adsorbed phase.

  18. Investigation of local thermodynamic equilibrium of laser induced Al2O3–TiC plasma in argon by spatially resolved optical emission spectroscopy

    Directory of Open Access Journals (Sweden)

    K. Alnama

    2016-06-01

    Full Text Available Plasma plume of Al2O3–TiC is generated by third harmonic Q-switched Nd:YAG nanosecond laser. It is characterized using Optical Emission Spectroscopy (OES at different argon background gas pressures 10, 102, 103, 104 and 105 Pa. Spatial evolution of excitation and ionic temperatures is deduced from spectral data analysis. Temporal evolution of Ti I emission originated from different energy states is probed. The correlation between the temporal behavior and the spatial temperature evolution are investigated under LTE condition for the possibility to use the temporal profile of Ti I emission as an indicator for LTE validity in the plasma.

  19. Femtosecond time-resolved absorption spectroscopy of main-form and high-salt peridinin-chlorophyll a-proteins at low temperatures.

    Science.gov (United States)

    Ilagan, Robielyn P; Koscielecki, Jeremy F; Hiller, Roger G; Sharples, Frank P; Gibson, George N; Birge, Robert R; Frank, Harry A

    2006-11-28

    Steady-state and femtosecond time-resolved optical methods have been used to compare the spectroscopic features and energy transfer dynamics of two systematically different light-harvesting complexes from the dinoflagellate Amphidinium carterae: main-form (MFPCP) and high-salt (HSPCP) peridinin-chlorophyll a-proteins. Pigment analysis and X-ray diffraction structure determinations [Hofmann, E., Wrench, P. M., Sharples, F. P., Hiller, R. G., Welte, W., Diederichs, K. (1996) Science 272, 1788-1791; T. Schulte, F. P. Sharples, R. G. Hiller, and E. Hofmann, unpublished results] have revealed the composition and geometric arrangements of the protein-bound chromophores. The MFPCP contains eight peridinins and two chlorophyll (Chl) a, whereas the HSPCP has six peridinins and two Chl a, but both have very similar pigment orientations. Analysis of the absorption spectra has shown that the peridinins and Chls absorb at different wavelengths in the two complexes. Also, in the HSPCP complex, the Qy transitions of the Chls are split into two well-resolved bands. Quantum computations by modified neglect of differential overlap with partial single and double configuration interaction (MNDO-PSDCI) methods have revealed that charged amino acid residues within 8 A of the pigment molecules are responsible for the observed spectral shifts. Femtosecond time-resolved optical spectroscopic kinetic data from both complexes show ultrafast (<130 fs) and slower (approximately 2 ps) pathways for energy transfer from the peridinin excited singlet states to Chl. The Chl-to-Chl energy transfer rate constant for both complexes was measured and is discussed in terms of the Förster mechanism. It was found that, upon direct Chl excitation, the Chl-to-Chl energy transfer rate constant for MFPCP was a factor of 4.2 larger than for HSPCP. It is suggested that this difference arises from a combination of factors including distance between Chls, spectral overlap, and the presence of two additional

  20. Modeling the rovibrationally excited C2H4OH radicals from the photodissociation of 2-bromoethanol at 193 nm.

    Science.gov (United States)

    Ratliff, B J; Womack, C C; Tang, X N; Landau, W M; Butler, L J; Szpunar, D E

    2010-04-15

    This study photolytically generates, from 2-bromoethanol photodissociation, the 2-hydroxyethyl radical intermediate of the OH + ethene reaction and measures the velocity distribution of the stable radicals. We introduce an impulsive model to characterize the partitioning of internal energy in the C(2)H(4)OH fragment. It accounts for zero-point and thermal vibrational motion to determine the vibrational energy distribution of the nascent C(2)H(4)OH radicals and the distribution of total angular momentum, J, as a function of the total recoil kinetic energy imparted in the photodissociation. We render this system useful for the study of the subsequent dissociation of the 2-hydroxyethyl radical to the possible asymptotic channels of the OH + ethene reaction. The competition between these channels depends on the internal energy and the J distribution of the radicals. First, we use velocity map imaging to separately resolve the C(2)H(4)OH + Br((2)P(3/2)) and C(2)H(4)OH + Br((2)P(1/2)) photodissociation channels, allowing us to account for the 10.54 kcal/mol partitioned to the Br((2)P(1/2)) cofragment. We determine an improved resonance enhanced multiphoton ionization (REMPI) line strength for the Br transitions at 233.681 nm (5p (4)P(1/2) distribution of total internal energy, rotational and vibrational, in the C(2)H(4)OH radicals. Then, using 10.5 eV photoionization, we measure the velocity distribution of the radicals that are stable to subsequent dissociation. The onset of dissociation occurs at internal energies much higher than those predicted by theoretical methods and reflects the significant amount of rotational energy imparted to the C(2)H(4)OH photofragment. Instead of estimating the mean rotational energy with an impulsive model from the equilibrium geometry of 2-bromoethanol, our model explicitly includes weighting over geometries across the quantum wave function with zero, one, and two quanta in the harmonic mode that most strongly alters the exit impact

  1. Amine-functionalized lanthanide-doped zirconia nanoparticles: optical spectroscopy, time-resolved fluorescence resonance energy transfer biodetection, and targeted imaging.

    Science.gov (United States)

    Liu, Yongsheng; Zhou, Shanyong; Tu, Datao; Chen, Zhuo; Huang, Mingdong; Zhu, Haomiao; Ma, En; Chen, Xueyuan

    2012-09-12

    Ultrasmall inorganic oxide nanoparticles doped with trivalent lanthanide ions (Ln(3+)), a new and huge family of luminescent bioprobes, remain nearly untouched. Currently it is a challenge to synthesize biocompatible ultrasmall oxide bioprobes. Herein, we report a new inorganic oxide bioprobe based on sub-5 nm amine-functionalized tetragonal ZrO(2)-Ln(3+) nanoparticles synthesized via a facile solvothermal method and ligand exchange. By utilizing the long-lived luminescence of Ln(3+), we demonstrate its application as a sensitive time-resolved fluorescence resonance energy transfer (FRET) bioprobe to detect avidin with a record-low detection limit of 3.0 nM. The oxide nanoparticles also exhibit specific recognition of cancer cells overexpressed with urokinase plasminogen activator receptor (uPAR, an important marker of tumor biology and metastasis) and thus may have great potentials in targeted bioimaging.

  2. Time-resolved spark-source mass spectroscopy: the effect of spark duration on relative sensitivity factors, ion intensity and precision of analysis

    Energy Technology Data Exchange (ETDEWEB)

    Franklin, James Curry [Univ. of Tennessee, Knoxville, TN (United States)

    1971-01-29

    A radio-frequency, high-voltage spark ion source in conjunction with a double-focusing mass spectrometer has been used to measure the relative sensitivity factors for several elements in matrices of tin, iron, beryllium oxide, uranium, and steels. The sensitivity factors were examined for concentration and matrix effects. No significant variations were found for the concentration ranges studied, but there were very large sensitivity variations with changes in the matrix type. In order to accomplish this study, circuits were designed and installed to synchronize the ion-beam chopping circuits with the radio-frequency spark pulses so that time-resolved spectra were obtained at different periods in the spark pulse.

  3. Acetylene weak bands at 2.5 μm from intracavity Cr:ZnSe laser absorption observed with time-resolved Fourier transform spectroscopy.

    Science.gov (United States)

    Girard, Véronique; Farrenq, Robert; Sorokin, Evgeni; Sorokina, Irina T; Guelachvili, Guy; Picqué, Nathalie

    2006-02-26

    The spectral dynamics of a mid-infrared multimode Cr(2+):ZnSe laser located in a vacuum sealed chamber containing acetylene at low pressure is analyzed by a stepping-mode high-resolution time-resolved Fourier transform interferometer. Doppler-limited absorption spectra of C(2)H(2) in natural isotopic abundance are recorded around 4000 cm(-1) with kilometric absorption path lengths and sensitivities better than 3 10(-8) cm(-1). Two cold bands are newly identified and assigned to the ν(1)+ν(4) (1) and ν(3)+ν(5) (1) transitions of (12)C(13)CH(2). The ν(1)+ν(5) (1) band of (12)C(2)HD and fourteen (12)C(2)H(2) bands are observed, among which for the first time ν(2)+2ν(4) (2)+ν(5) (-1).

  4. Acetylene weak bands at 2.5 μm from intracavity Cr2+:ZnSe laser absorption observed with time-resolved Fourier transform spectroscopy

    Science.gov (United States)

    Girard, Véronique; Farrenq, Robert; Sorokin, Evgeni; Sorokina, Irina T.; Guelachvili, Guy; Picqué, Nathalie

    2010-01-01

    The spectral dynamics of a mid-infrared multimode Cr2+:ZnSe laser located in a vacuum sealed chamber containing acetylene at low pressure is analyzed by a stepping-mode high-resolution time-resolved Fourier transform interferometer. Doppler-limited absorption spectra of C2H2 in natural isotopic abundance are recorded around 4000 cm−1 with kilometric absorption path lengths and sensitivities better than 3 10−8 cm−1. Two cold bands are newly identified and assigned to the ν1+ν41 and ν3+ν51 transitions of 12C13CH2. The ν1+ν51 band of 12C2HD and fourteen 12C2H2 bands are observed, among which for the first time ν2+2ν42+ν5−1. PMID:21151826

  5. Type I photosensitized reactions of oxopurines. Kinetics and thermodynamics of the reaction with triplet benzophenone by time-resolved photoacoustic spectroscopy

    Science.gov (United States)

    Murgida, Daniel H.; Erra Balsells, Rosa; Crippa, Pier Raimondo; Viappiani, Cristiano

    1998-09-01

    Benzophenone photosensitized reactions of caffeine, theophylline and theobromine were investigated in acetonitrile by time-resolved laser-induced photoacoustics. In the three cases global quenching rate constants of triplet benzophenone were measured as a function of temperature and it was observed that this is a non-activated process. Besides, for theobromine and theophylline heats for NH hydrogen abstraction reactions were determined. In agreement with semiempirical calculation predictions, hydrogen abstraction is thermodynamically more favorable and faster for theophylline (Δ H=-265 kJ mol -1, kr=9.6×10 8 M -1 s -1) than for theobromine (Δ H=-168 kJ mol -1, kr=3.7×10 8 M -1 s -1).

  6. Development of laser-ion beam photodissociation methods. Progress report, December 1, 1992--November 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Russell, D.H.

    1992-08-01

    Research efforts were concentrated on developing the tandem magnetic sector (EB)/reflection-time-of-flight (TOF) instrument, preliminary experiments with tandem TOF/TOF instruments, developing method for performing photodissociation with pulsed lasers, experiments with laser ionization of aerosol particles, matrix-assisted laser desorption ionization (MALDI), and ion-molecule reaction chemistry of ground and excited state transition metal ions. This progress report is divided into: photodissociation, MALDI (including aerosols), and ion chemistry fundamentals.

  7. Substrate interactions with suspended and supported monolayer MoS2 : Angle-resolved photoemission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Wencan; Yeh, Po-Chun; Zaki, Nader; Zhang, Datong; Liou, Jonathan T.; Sadowski, Jerzy T.; Barinov, Alexey; Yablonskikh, Mikhail; Dadap, Jerry I.; Sutter, Peter; Herman, Irving P.; Osgood, Richard M.

    2015-03-17

    We report the directly measured electronic structure of exfoliated monolayer molybdenum disulfide ( Mo S 2 ) using micrometer-scale angle-resolved photoemission spectroscopy. Measurements of both suspended and supported monolayer Mo S 2 elucidate the effects of interaction with a substrate. A suggested relaxation of the in-plane lattice constant is found for both suspended and supported monolayer Mo S 2 crystals. For suspended Mo S 2 , a careful investigation of the measured uppermost valence band gives an effective mass at $\\bar{Γ}$ and $\\bar{K}$ of 2.00 m 0 and 0.43 m 0 , respectively. We also measure an increase in the band linewidth from the midpoint of $\\bar{Γ}$ K to the vicinity of $\\bar{K}$ and briefly discuss its possible origin.

  8. High-power, narrow-band, high-repetition-rate, 5.9 eV coherent light source using passive optical cavity for laser-based angle-resolved photoelectron spectroscopy.

    Science.gov (United States)

    Omachi, J; Yoshioka, K; Kuwata-Gonokami, M

    2012-10-08

    We demonstrate a scheme for efficient generation of a 5.9 eV coherent light source with an average power of 23 mW, 0.34 meV linewidth, and 73 MHz repetition rate from a Ti: sapphire picosecond mode-locked laser with an output power of 1 W. Second-harmonic light is generated in a passive optical cavity by a BiB(3)O(6) crystal with a conversion efficiency as high as 67%. By focusing the second-harmonic light transmitted from the cavity into a β-BaB(2)O(4) crystal, we obtain fourth-harmonic light at 5.9 eV. This light source offers stable operation for at least a week. We discuss the suitability of the laser light source for high-resolution angle-resolved photoelectron spectroscopy by comparing it with other sources (synchrotron radiation facilities and gas discharge lamp).

  9. Application of time-of-flight near-infrared spectroscopy to fruits: analysis of absorption and scattering conditions of near-infrared radiation using cross-correlation of the time-resolved profile.

    Science.gov (United States)

    Kurata, Yohei; Tsuchikawa, Satoru

    2009-03-01

    The absorption and scattering conditions of near-infrared radiation in a grapefruit, a popular thick-peeled fruit, were investigated by time-of-flight near-infrared spectroscopy (TOF-NIRS). The cross-correlation function was introduced to obtain fine spectroscopic information from the time-resolved profile. Variation of the optical parameters in both the time-resolved profile and the cross-correlation function showed that the NIR radiation was largely absorbed in the peel and considerably scattered in the flesh of the fruit. It also reflected the straightness of the input pulsed laser. The substantial optical path length of the grapefruit estimated from the cross-correlation function was approximately 4 to 5 times as long as the nominal optical path length (NOPL). The cross-correlation function was an effective tool to analyze the absorption/scattering conditions of NIR radiation in a sample where an unstable light source such as a Nd:YAG laser with high output energy was employed.

  10. Quasiparticle dynamics across the full Brillouin zone of Bi2Sr2CaCu2O8+δ traced with ultrafast time and angle-resolved photoemission spectroscopy.

    Science.gov (United States)

    Dakovski, Georgi L; Durakiewicz, Tomasz; Zhu, Jian-Xin; Riseborough, Peter S; Gu, Genda; Gilbertson, Steve M; Taylor, Antoinette; Rodriguez, George

    2015-09-01

    A hallmark in the cuprate family of high-temperature superconductors is the nodal-antinodal dichotomy. In this regard, angle-resolved photoemission spectroscopy (ARPES) has proven especially powerful, providing band structure information directly in energy-momentum space. Time-resolved ARPES (trARPES) holds great promise of adding ultrafast temporal information, in an attempt to identify different interaction channels in the time domain. Previous studies of the cuprates using trARPES were handicapped by the low probing energy, which significantly limits the accessible momentum space. Using 20.15 eV, 12 fs pulses, we show for the first time the evolution of quasiparticles in the antinodal region of Bi2Sr2CaCu2O8+δ and demonstrate that non-monotonic relaxation dynamics dominates above a certain fluence threshold. The dynamics is heavily influenced by transient modification of the electron-phonon interaction and phase space restrictions, in stark contrast to the monotonic relaxation in the nodal and off-nodal regions.

  11. Quasiparticle dynamics across the full Brillouin zone of Bi2Sr2CaCu2O8+δ traced with ultrafast time and angle-resolved photoemission spectroscopy

    Directory of Open Access Journals (Sweden)

    Georgi L. Dakovski

    2015-09-01

    Full Text Available A hallmark in the cuprate family of high-temperature superconductors is the nodal-antinodal dichotomy. In this regard, angle-resolved photoemission spectroscopy (ARPES has proven especially powerful, providing band structure information directly in energy-momentum space. Time-resolved ARPES (trARPES holds great promise of adding ultrafast temporal information, in an attempt to identify different interaction channels in the time domain. Previous studies of the cuprates using trARPES were handicapped by the low probing energy, which significantly limits the accessible momentum space. Using 20.15 eV, 12 fs pulses, we show for the first time the evolution of quasiparticles in the antinodal region of Bi2Sr2CaCu2O8+δ and demonstrate that non-monotonic relaxation dynamics dominates above a certain fluence threshold. The dynamics is heavily influenced by transient modification of the electron-phonon interaction and phase space restrictions, in stark contrast to the monotonic relaxation in the nodal and off-nodal regions.

  12. Time-resolved spectral characterization of ring cavity surface emitting and ridge-type distributed feedback quantum cascade lasers by step-scan FT-IR spectroscopy.

    Science.gov (United States)

    Brandstetter, Markus; Genner, Andreas; Schwarzer, Clemens; Mujagic, Elvis; Strasser, Gottfried; Lendl, Bernhard

    2014-02-10

    We present the time-resolved comparison of pulsed 2nd order ring cavity surface emitting (RCSE) quantum cascade lasers (QCLs) and pulsed 1st order ridge-type distributed feedback (DFB) QCLs using a step-scan Fourier transform infrared (FT-IR) spectrometer. Laser devices were part of QCL arrays and fabricated from the same laser material. Required grating periods were adjusted to account for the grating order. The step-scan technique provided a spectral resolution of 0.1 cm(-1) and a time resolution of 2 ns. As a result, it was possible to gain information about the tuning behavior and potential mode-hops of the investigated lasers. Different cavity-lengths were compared, including 0.9 mm and 3.2 mm long ridge-type and 0.97 mm (circumference) ring-type cavities. RCSE QCLs were found to have improved emission properties in terms of line-stability, tuning rate and maximum emission time compared to ridge-type lasers.

  13. Analysis of the optical properties of Er{sup 3+}-doped strontium barium niobate nanocrystals using time-resolved laser spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kowalska, D.; Haro-Gonzalez, P. [Universidad de La Laguna, Departamento de Fisica Fundamental, Experimental, Electronica y Sistemas, La Laguna, Tenerife (Spain); Martin, I.R. [Universidad de La Laguna, Departamento de Fisica Fundamental, Experimental, Electronica y Sistemas, La Laguna, Tenerife (Spain); Malta Consolider Team, La Laguna, Tenerife (Spain); Caceres, J.M. [Universidad de La Laguna, Departamento de Edafologia y Geologia, La Laguna, Tenerife (Spain)

    2010-06-15

    This paper reports the results obtained in strontium barium niobate (SBN) nanocrystals in glasses doped with 1, 2.5 and 5 mol% of Er{sup 3+} ions. The melt-quenching method was applied to fabricate the glasses with composition SrO-BaO-Nb{sub 2}O{sub 5}-B{sub 2}O{sub 3} and further thermal treatment was used to obtain glass ceramic samples from the glass precursor. X-ray diffraction patterns confirmed the formation of SBN nanocrystals with an average size of about 50 nm in diameter. Time-resolved fluorescence spectra for the emission of Er{sup 3+} ions at 1550 nm have been analyzed in order to confirm the incorporation of the Er{sup 3+} ions into the nanocrystals. Green frequency upconversion emission under excitation at 975 nm coming from the ions in the nanocrystals has been obtained. This intense upconversion is about a factor of 500 higher than that obtained from the ions which reside in the glassy phase. Moreover, temporal evolution studies have been carried out with the purpose of determining the involved upconversion mechanism and the importance of these processes as a source of losses for the optical amplification at 1550 nm. (orig.)

  14. Time-resolved UV-IR pump-stimulated emission pump spectroscopy to probe collisional relaxation of $8p\\,^2P_{3/2}$ Cs I

    CERN Document Server

    Salahuddin, Mohammed; McFarland, Jacob; Bayram, S Burcin

    2015-01-01

    We describe and use a time-resolved pump-stimulated emission pump spectroscopic technique to measure collisional relaxation in a high-lying energy level of atomic cesium. Aligned $8p\\,^2P_{3/2}$ cesium atoms were produced by a pump laser. A second laser, the stimulated emission pump, promoted the population exclusively to the $5d\\,^2D_{5/2}$ level. The intensity of the $5d\\,^2D_{5/2}\\rightarrow6s\\,^2S_{1/2}$ cascade fluorescence at 852.12 nm was monitored. The linear polarization dependence of the $6s\\,^2S_{1/2}\\rightarrow8p\\,^2P_{3/2}\\rightarrow5d\\,^2S_{5/2}$ transition was measured in the presence of argon gas at various pressures. From the measurement, we obtained the disalignment cross section value for the $8p\\,^2P_{3/2}$ level due to collisions with ground-level argon atoms.

  15. Strong anisotropy of Dirac cones in SrMnBi2 and CaMnBi2 revealed by angle-resolved photoemission spectroscopy.

    Science.gov (United States)

    Feng, Ya; Wang, Zhijun; Chen, Chaoyu; Shi, Youguo; Xie, Zhuojin; Yi, Hemian; Liang, Aiji; He, Shaolong; He, Junfeng; Peng, Yingying; Liu, Xu; Liu, Yan; Zhao, Lin; Liu, Guodong; Dong, Xiaoli; Zhang, Jun; Chen, Chuangtian; Xu, Zuyan; Dai, Xi; Fang, Zhong; Zhou, X J

    2014-06-20

    The Dirac materials, such as graphene and three-dimensional topological insulators, have attracted much attention because they exhibit novel quantum phenomena with their low energy electrons governed by the relativistic Dirac equations. One particular interest is to generate Dirac cone anisotropy so that the electrons can propagate differently from one direction to the other, creating an additional tunability for new properties and applications. While various theoretical approaches have been proposed to make the isotropic Dirac cones of graphene into anisotropic ones, it has not yet been met with success. There are also some theoretical predictions and/or experimental indications of anisotropic Dirac cone in novel topological insulators and AMnBi2 (A = Sr and Ca) but more experimental investigations are needed. Here we report systematic high resolution angle-resolved photoemission measurements that have provided direct evidence on the existence of strongly anisotropic Dirac cones in SrMnBi2 and CaMnBi2. Distinct behaviors of the Dirac cones between SrMnBi2 and CaMnBi2 are also observed. These results have provided important information on the strong anisotropy of the Dirac cones in AMnBi2 system that can be governed by the spin-orbital coupling and the local environment surrounding the Bi square net.

  16. Impulse-induced compression rheo-optics study of polymers using attenuated total reflection based step-scan Fourier transform infrared time-resolved spectroscopy.

    Science.gov (United States)

    Nishikawa, Yuji; Nakano, Tatsuhiko; Noda, Isao

    2008-09-01

    An impulse-induced attenuated total reflection (ATR) based dynamic compression step-scan time-resolved Fourier transform rheo-optical system has been developed. This system was used to observe different viscoelastic properties of poly(ethylene terephthalate) (PET), poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHx), and carbon-black-filled polyester-polyamide blend. In the case of PET, almost no viscoelastic response extending beyond 15 ms was observed in the dynamic absorbance difference time domain spectrum. In contrast, PHBHx showed apparently different viscoelastic responses in the dynamic absorbance difference spectrum, especially in the C=O stretching band region. A long relaxation tail of the 1723 cm(-1) band lasting about 2.7 milliseconds was clearly seen. The tail corresponds to the structural or morphological reorganization of a less ordered crystalline form (Type II) under compressive perturbation. The carbon-black-filled polyester-polyamide blend film also shows different viscoelastic response tails. In this case, the amide C=O stretching vibration band does not show distinct viscoelastic responses, suggesting that the polyamide component does not contribute much to the viscoelastic properties. The present method shows promise for characterizing a wide variety of viscoelastic materials, including polymer alloys, blends, composites, copolymers, and semicrystalline polymers.

  17. Polarization-Resolved Near-Field Spectroscopy of Localized States in m -Plane InxGa1 -xN /Ga N Quantum Wells

    Science.gov (United States)

    Ivanov, Ruslan; Marcinkevičius, Saulius; Mensi, Mounir D.; Martinez, Oscar; Kuritzky, Leah Y.; Myers, Daniel J.; Nakamura, Shuji; Speck, James S.

    2017-06-01

    We present a polarization, spectrally, and spatially resolved near-field photoluminescence (PL) measurement technique and apply it to the study of wide m -plane InxGa1 -xN /GaN quantum wells grown on on-axis and miscut GaN substrates. It is found that PL originates from localized states; nevertheless, its degree of linear polarization (DLP) is high with little spatial variation. This allows an unambiguous assignment of the localized states to InxGa1 -xN composition-related band potential fluctuations. Spatial PL variations, occurring due to morphology features of the on-axis samples, play a secondary role compared to the variations of the alloy composition. The large PL peak wavelength difference for polarizations parallel and perpendicular to the c axis, the weak correlation between the peak PL wavelength and the DLP, and the temperature dependence of the DLP suggest that effective potential variations and the hole mass in the second valence-band level are considerably smaller than that for the first level. DLP maps for the long wavelength PL tails have revealed well-defined regions with a small DLP, which have been attributed to a partial strain relaxation around dislocations.

  18. Spin-resolved photoelectron spectroscopy of Mn{sub 6}Cr single-molecule-magnets and of manganese compounds as reference layers

    Energy Technology Data Exchange (ETDEWEB)

    Helmstedt, Andreas; Gryzia, Aaron; Dohmeier, Niklas; Mueller, Norbert; Brechling, Armin; Sacher, Marc; Heinzmann, Ulrich [Faculty of Physics, Bielefeld University (Germany); Hoeke, Veronika; Glaser, Thorsten [Faculty of Chemistry, Bielefeld University (Germany); Fonin, Mikhail; Ruediger, Ulrich [Department of Physics, University of Konstanz (Germany); Neumann, Manfred [Department of Physics, Osnabrueck University (Germany)

    2011-07-01

    The properties of the manganese-based single-molecule-magnet (SMM) Mn{sub 6}Cr are studied. This molecule exhibits a large spin ground state of S{sub T}=21/2. It contains six manganese centres arranged in two bowl-shaped Mn{sub 3}-triplesalen building blocks linked by a hexacyanochromate. The Mn{sub 6}Cr complex can be isolated with different counterions which compensate for its triply positive charge. The spin polarization of photoelectrons emitted from the manganese centres in Mn{sub 6}Cr SMM after resonant excitation with circularly polarized synchrotron radiation has been measured at selected energies corresponding to the prominent Mn L{sub 3}VV and L{sub 3}M{sub 2,3}V Auger peaks. Spin-resolved photoelectron spectra of the reference substances MnO, Mn{sub 2}O{sub 3} and Mn(II)acetate recorded after resonant excitation at the Mn-L{sub 3}-edge around 640eV are presented as well. The spin polarization value obtained from MnO at room temperature in the paramagnetic state is compared to XMCD measurements of Mn(II)-compounds at 5K and a magnetic field of 5T.

  19. Photodissociation and stability of carbon clusters; Photodissociation et stabilite d`agregats de carbone

    Energy Technology Data Exchange (ETDEWEB)

    Bouyer, R.

    1995-04-01

    This work is devoted to the study of the dissociation of ionised carbon clusters (containing 16 to 36 atoms) after photoexcitation by a UV-visible laser pulse. It contributes to experimental studies on formation mechanisms of carbon clusters, and particularly fullerenes. Its first aim is the knowledge of the internal energy of the clusters before dissociation. In the first part, a general overview summarizes the theoretical and experimental studies devoted to energetics (structure, stability, dissociation) of carbon clusters containing less than 60 atoms. In the second part, two techniques for producing mass-selected carbon clusters are described. The particular characteristics for such a production in a direct vaporization source are compared to those in a collisional-cooled source. The question of stability of intermediate-size clusters is asked. We study the photoabsorption spectroscopy of carbon clusters in the third part. A model for sequential absorption of several photons is developed, and used to analyze cluster dissociation versus the photoexcitation laser fluence. The absolute photoabsorption cross sections, and the number of absorbed photons are deduced. For some cluster sizes, laser wavelength scanning leads to evidence for existence of several clusters structures (or so-called isomers). The last part deals with photo dissociation mechanisms. Dissociation is found to occur after single-photon absorption, or after vibrational heating of the clusters. In that latter case, a statistical model including restricted intramolecular vibrational energy redistribution is used to calculate dissociation energies from measured fragmentation times of well-defined internal energy states. These energies, which are characteristic of cyclic structures, are then used to a better understanding of carbon cluster formation in a direct vaporization source. (Author). 76 refs., 63 figs., 23 tabs.

  20. Soft X-ray Laser Microscopy of Lipid Rafts towards GPCR-Based Drug Discovery Using Time-Resolved FRET Spectroscopy

    Directory of Open Access Journals (Sweden)

    Tatsuhiko Kodama

    2011-03-01

    Full Text Available Many signaling molecules involved in G protein-mediated signal transduction, which are present in the lipid rafts and believed to be controlled spatially and temporally, influence the potency and efficacy of neurotransmitter receptors and transporters. This has focus interest on lipid rafts and the notion that these microdomains acts as a kind of signaling platform and thus have an important role in the expression of membrane receptor-mediated signal transduction, cancer, immune responses, neurotransmission, viral infections and various other phenomena due to specific and efficient signaling according to extracellular stimuli. However, the real structure of lipid rafts has not been observed so far due to its small size and a lack of sufficiently sophisticated observation systems. A soft X-ray microscope using a coherent soft X-ray laser in the water window region (2.3–4.4 nm should prove to be a most powerful tool to observe the dynamic structure of lipid rafts of several tens of nanometers in size in living cells. We have developed for the X-ray microscope a new compact soft X-ray laser using strongly induced plasma high harmonic resonance. We have also developed a time-resolved highly sensitive fluorescence resonance energy transfer (FRET system and confirmed protein-protein interactions coupled with ligands. The simultaneous use of these new tools for observation of localization of G-protein coupled receptors (GPCRs in rafts has become an important and optimum tool system to analyze the dynamics of signal transduction through rafts as signaling platform. New technology to visualize rafts is expected to lead to the understanding of those dynamics and innovative development of drug discovery that targets GPCRs localized in lipid rafts.

  1. Direct Observation of the Kinetically Relevant Site of CO Hydrogenation on Supported Ru Catalyst at 700 K by Time-Resolved FT-IR Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Frei, Heinz; Wasylenko, Walter; Frei, Heinz

    2008-06-04

    Time-resolved FT-IR spectra of carbon monoxide hydrogenation over alumina-supported ruthenium particles were recorded on themillisecond time scale at 700 K using pulsed release of CO and a continuous flow of H2/N2 (ratio 0.067 or 0.15, 1 atm total pressure). Adsorbed carbon monoxide was detected along with gas phase products methane (3016 and 1306 cm-1), water (1900 +- 1300 cm-1), and carbon dioxide (2348 cm-1). Aside from adsorbed CO, no other surface species were observed. The rate of formation of methane is 2.5 +- 0.4 s-1 and coincides with the rate of carbon dioxide growth (3.4 +- 0.6 s-1), thus indicating that CH4 and CO2 originate from a common intermediate. The broad band of adsorbed carbon monoxide has a maximum at 2010 cm-1 at early times (36 ms) that shifts gradually to 1960 cm-1 over a period of 3 s as a result of the decreasing surface concentration of CO. Kinetic analysis of the adsorbed carbon monoxide reveals that surface sites absorbing at the high frequency end of the infrared band are temporally linked to gas phase product growth. Specifically, a (linear) CO site at 2026 cm-1 decays with a rate constant of 2.9 +- 0.1 s-1, which coincides with the rise constant of CH4. This demonstrates that the linear CO site at 2026 cm-1 is the kinetically most relevant one for the rate-determining CO dissociation step under reaction conditions at 700 K.

  2. Simultaneous characterization of elemental segregation and cementite networks in high carbon steel products by spatially-resolved laser-induced breakdown spectroscopy

    Science.gov (United States)

    Boué-Bigne, Fabienne

    2014-06-01

    The reliable characterization of the level of elemental segregation and of the extent of grain-boundary cementite networks in high carbon steel products is a prerequisite for checking product quality, for the purpose of product release to customers, and to investigate the presence of defects that may have led to mechanical property failure of the product. Current methods for the characterization of segregation and cementite networks rely on two different methods of sample etching followed by visual observation, where quality scores are given based on human perception and judgment. With the continuous demand on increasing quality, some of the conventional characterization methods and their associated scoring boards have lost relevance for the precision of characterization that is required today to distinguish between a product that will perform well and one that will not. In order to move away from a qualitative, human perception based situation for the scoring of the severity of segregation and cementite networks, a new method of data evaluation based on spatially-resolved LIBS measurements was developed to provide quantitative and simultaneous characterization of both types of defects. The quantitative assessment of segregation and cementite networks is based on the acquisition of carbon concentration maps. The ability to produce rapid scanning measurements of micro and macro-scale features with adequate spatial resolution makes LIBS the measurement method of preference for this purpose. The characterization of both different defects is extracted simultaneously and from the same carbon concentration map following a series of statistical treatment and data extraction rules. LIBS results were validated against recognized methods and were applied to a significant number of routine samples. The new LIBS method offers a step change improvement in reliability for the characterization of segregation and cementite networks in steel products over the conventional methods

  3. Changing Hydrogen-Bond Structure during an Aqueous Liquid-Liquid Transition Investigated with Time-Resolved and Two-Dimensional Vibrational Spectroscopy.

    Science.gov (United States)

    Bruijn, Jeroen R; van der Loop, Tibert H; Woutersen, Sander

    2016-03-03

    We investigate the putative liquid-liquid phase transition in aqueous glycerol solution, using the OD-stretch mode in dilute OD/OH isotopic mixtures to probe the hydrogen-bond structure. The conversion exhibits Avrami kinetics with an exponent of n = 2.9 ± 0.1 (as opposed to n = 1.7 observed upon inducing ice nucleation and growth in the same sample), which indicates a transition from one liquid phase to another. Two-dimensional infrared (2D-IR) spectroscopy shows that the initial and final phases have different hydrogen-bond structures: the former has a single Gaussian distribution of hydrogen-bond lengths, whereas the latter has a bimodal distribution consisting of a broad distribution and a narrower, ice-like distribution. The 2D-IR spectrum of the final phase is identical to that of ice/glycerol at the same temperature. Combined with the kinetic data this suggests that the liquid-liquid transformation is immediately followed by a rapid formation of small (probably nanometer-sized) ice crystals.

  4. Time-Resolved Quantitative Measurement of OH HO2 and CH2O in Fuel Oxidation Reactions by High Resolution IR Absorption Spectroscopy.

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Haifeng; Rotavera, Brandon; Taatjes, Craig A.

    2014-08-01

    Combined with a Herriott-type multi-pass slow flow reactor, high-resolution differential direct absorption spectroscopy has been used to probe, in situ and quantitatively, hydroxyl (OH), hydroperoxy (HO 2 ) and formaldehyde (CH 2 O) molecules in fuel oxidation reactions in the reactor, with a time resolution of about 1 micro-second. While OH and CH 2 O are probed in the mid-infrared (MIR) region near 2870nm and 3574nm respectively, HO 2 can be probed in both regions: near-infrared (NIR) at 1509nm and MIR at 2870nm. Typical sensitivities are on the order of 10 10 - 10 11 molecule cm -3 for OH at 2870nm, 10 11 molecule cm -3 for HO 2 at 1509nm, and 10 11 molecule cm -3 for CH 2 O at 3574nm. Measurements of multiple important intermediates (OH and HO 2 ) and product (CH 2 O) facilitate to understand and further validate chemical mechanisms of fuel oxidation chemistry.

  5. Simultaneous in situ characterisation of bubble dynamics and a spatially resolved concentration profile: a combined Mach–Zehnder holography and confocal Raman-spectroscopy sensor system

    Directory of Open Access Journals (Sweden)

    J. Guhathakurta

    2017-05-01

    Full Text Available For a reaction between a gaseous phase and a liquid phase, the interaction between the hydrodynamic conditions, mass transport and reaction kinetics plays a crucial role with respect to the conversion and selectivity of the process. Within this work, a sensor system was developed to simultaneously characterise the bubble dynamics and the localised concentration measurement around the bubbles. The sensor system is a combination of a digital Mach–Zehnder holography subsystem to measure bubble dynamics and a confocal Raman-spectroscopy subsystem to measure localised concentration. The combined system was used to investigate the chemical absorption of CO2 bubbles in caustic soda in microchannels. The proposed set-up is explained and characterised in detail and the experimental results are presented, illustrating the capability of the sensor system to simultaneously measure the localised concentration of the carbonate ion with a good limit of detection and the 3-D position of the bubble with respect to the spot where the concentration was measured.

  6. Multimode Surface Functional Group Determination: Combining Steady-State and Time-Resolved Fluorescence with X-ray Photoelectron Spectroscopy and Absorption Measurements for Absolute Quantification.

    Science.gov (United States)

    Fischer, Tobias; Dietrich, Paul M; Unger, Wolfgang E S; Rurack, Knut

    2016-01-19

    The quantitative determination of surface functional groups is approached in a straightforward laboratory-based method with high reliability. The application of a multimode BODIPY-type fluorescence, photometry, and X-ray photoelectron spectroscopy (XPS) label allows estimation of the labeling ratio, i.e., the ratio of functional groups carrying a label after reaction, from the elemental ratios of nitrogen and fluorine. The amount of label on the surface is quantified with UV/vis spectrophotometry based on the molar absorption coefficient as molecular property. The investigated surfaces with varying density are prepared by codeposition of 3-(aminopropyl)triethoxysilane (APTES) and cyanoethyltriethoxysilane (CETES) from vapor. These surfaces show high functional group densities that result in significant fluorescence quenching of surface-bound labels. Since alternative quantification of the label on the surface is available through XPS and photometry, a novel method to quantitatively account for fluorescence quenching based on fluorescence lifetime (τ) measurements is shown. Due to the complex distribution of τ on high-density surfaces, the stretched exponential (or Kohlrausch) function is required to determine representative mean lifetimes. The approach is extended to a commercial Rhodamine B isothiocyanate (RITC) label, clearly revealing the problems that arise from such charged labels used in conjunction with silane surfaces.

  7. Theoretical study of ultraviolet induced photodissociation dynamics of sulfuric acid

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Tatsuhiro; Ohta, Ayumi; Suzuki, Tomoya; Ikeda, Kumiko [Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-Cho, Chiyoda-ku, Tokyo 102-8554 (Japan); Danielache, Sebastian O. [Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-Cho, Chiyoda-ku, Tokyo 102-8554 (Japan); Earth-Life Science Institute (ELSI), Tokyo Institute of Technology (Japan); Department of Environmental Science and Techonology, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Yoohama 226-8502 (Japan); Nanbu, Shinkoh, E-mail: shinkoh.nanbu@sophia.ac.jp [Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-Cho, Chiyoda-ku, Tokyo 102-8554 (Japan)

    2015-05-01

    Highlights: • Photodissociation dynamics of H{sub 2}SO{sub 4} at low-lying electronically excited states were investigated. • Photochemical processes were simulated by on-the-fly ab initio MD. • Sulfuric acid after the excitation to the S{sub 1} state dissociated to HSO{sub 4}(1{sup 2}A″) + H({sup 2}S). • Sulfuric acid after the excitation to the S{sub 2} state dissociated to HSO{sub 4}(2{sup 2}A″) + H({sup 2}S). • The energy region of the UV spectra where NMD fractionation may occur is predicted. - Abstract: Photodissociation dynamics of sulfuric acid after excitation to the first and second excited states (S{sub 1} and S{sub 2}) were studied by an on-the-fly ab initio molecular dynamics simulations based on the Zhu–Nakamura version of the trajectory surface hopping (ZN-TSH). Forces acting on the nuclear motion were computed on-the-fly by CASSCF method with Dunning’s augmented cc-pVDZ basis set. It was newly found that the parent molecule dissociated into two reaction-channels (i) HSO{sub 4}(1{sup 2}A″) + H({sup 2}S) by S{sub 1}-excitation, and (ii) HSO{sub 4}(2{sup 2}A″) + H({sup 2}S) by S{sub 2}-excitation. The direct dissociation dynamics yield products different from the SO{sub 2} + 2OH fragments often presented in the literature. Both channels result in the same product and differs only in the electronic state of the HSO{sub 4} fragment{sub .} The trajectories running on S{sub 2} do not hop with S{sub 0} and a nonadiabatic transition happens at the S{sub 2}–S{sub 1} conical intersection located at a longer OH bond-length than the S{sub 1}–S{sub 0} intersection producing an electronic excited state (2{sup 2}A″) of HSO{sub 4} product.

  8. Proton transfer and protein conformation dynamics in photosensitive proteins by time-resolved step-scan Fourier-transform infrared spectroscopy.

    Science.gov (United States)

    Lórenz-Fonfría, Víctor A; Heberle, Joachim

    2014-06-27

    Monitoring the dynamics of protonation and protein backbone conformation changes during the function of a protein is an essential step towards understanding its mechanism. Protonation and conformational changes affect the vibration pattern of amino acid side chains and of the peptide bond, respectively, both of which can be probed by infrared (IR) difference spectroscopy. For proteins whose function can be repetitively and reproducibly triggered by light, it is possible to obtain infrared difference spectra with (sub)microsecond resolution over a broad spectral range using the step-scan Fourier transform infrared technique. With -10(2)-10(3) repetitions of the photoreaction, the minimum number to complete a scan at reasonable spectral resolution and bandwidth, the noise level in the absorption difference spectra can be as low as -10(-) (4), sufficient to follow the kinetics of protonation changes from a single amino acid. Lower noise levels can be accomplished by more data averaging and/or mathematical processing. The amount of protein required for optimal results is between 5-100 µg, depending on the sampling technique used. Regarding additional requirements, the protein needs to be first concentrated in a low ionic strength buffer and then dried to form a film. The protein film is hydrated prior to the experiment, either with little droplets of water or under controlled atmospheric humidity. The attained hydration level (g of water / g of protein) is gauged from an IR absorption spectrum. To showcase the technique, we studied the photocycle of the light-driven proton-pump bacteriorhodopsin in its native purple membrane environment, and of the light-gated ion channel channelrhodopsin-2 solubilized in detergent.

  9. Gas-phase chloroiodomethane short-time photodissociation dynamics in the A-band absorption and a comparison with the solution phase short-time photodissociation dynamics

    Science.gov (United States)

    Kwok, Wai Ming; Phillips, David Lee

    A gas-phase resonance Raman spectrum of chloroiodomethane has been obtained with excitation in the A-band absorption with similar resolution and the same experimental apparatus used to obtain solution-phase A-band resonance Raman spectra of chloroiodomethane reported previously. This allows a careful and detailed comparison of the gasand solution-phase chloroiodomethane A-band resonance Raman spectra and their associated short-time photodissociation dynamics. The gas-phase A-band resonance Raman spectrum has four Franck-Condon active vibrational modes and a noticeable degree of multidimensionality in its photodissociation reaction. The A-band gas-phase resonance Raman intensities and absorption spectrum were simulated using a simple model and time-dependent wave-packet calculations. The motion of the wave packet on the excited state gas-phase potential surface was converted from dimensionless normal coordinates into easy-to-visualize internal coordinates using the results of normal coordinate calculations. The A-band early-time photodissociation dynamics are very similar to those of the solution phase in that the C-I bond lengthens, the I-C-Cl and H-C-I angles become smaller, and the H-C-Cl angles become larger. These short-time photodissociation dynamics are consistent with a simple impulsive 'semirigid' radical model description of the photodissociation. A comparison of the gas-phase and solution-phase short-time photodissociation dynamics suggests that solvation effects are not important for internal coordinate motions such as the C-I stretch and I-C-Cl angle where there are strong intramolecular forces but that solvation effects are noticeable for internal coordinate motions such as H-C-H angle and H-C-Cl angles which are weakly involved in the dissociation coordinate and have relatively weak intramolecular forces that are more easily perturbed by the solvent-solute forces. This implies that 'static' or mean-field solvation effects may be more significant for

  10. Photodissociation dynamics of nitromethane at 226 and 271 nm at both nanosecond and femtosecond time scales.

    Science.gov (United States)

    Guo, Y Q; Bhattacharya, A; Bernstein, E R

    2009-01-08

    Photodissociation of nitromethane has been investigated for decades both theoretically and experimentally; however, as a whole picture, the dissociation dynamics for nitromethane are still not clear, although many different mechanisms have been proposed. To make a complete interpretation of these different mechanisms, photolysis of nitromethane at 226 and 271 nm under both collisional and collisionless conditions is investigated at nanosecond and femtosecond time scales. These two laser wavelengths correspond to the pi* laser induced fluorescence spectroscopy; the CH(3)O product is only observed under collisional conditions. In femtosecond 226 nm experiments, CH(3), NO(2), and NO products are observed. These results confirm that rupture of C-N bond should be the main primary process for the photolysis of nitromethane after the pi* autocorrelation of the laser pulse, indicating the dissociation of nitromethane in the pi pi* excited state is faster than the laser pulse duration (180 fs). In nanosecond 271 nm (pi* laser experiments, the nitromethane parent ion is observed with major intensity, together with CH(3), NO(2), and NO fragment ions with only minor intensities. Pump-probe transients for both nitromethane parent and fragment ions at 271 nm excitation and 406.5 nm ionization display a fast exponential decay with a constant time of 36 fs, which we suggest to be the lifetime of the excited n pi* state of nitromethane. Combined with the 271 nm nanosecond pump-probe experiments, in which none of the CH(3), NO(2), CH(3)O, or OH fragment is observed, we suggest that all the fragment ions generated in 271 nm femtosecond laser experiments are derived from the parent ion, and dissociation of nitromethane from the n pi* excited electronic state does not occur in a supersonic molecular beam under collisionless conditions.

  11. Three-body dissociations: The photodissociation of dimethyl sulfoxide at 193 nm

    Energy Technology Data Exchange (ETDEWEB)

    Blank, D.A.; North, S.W.; Stranges, D. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    When a molecule with two equivalent chemical bonds is excited above the threshold for dissociation of both bonds, how the rupture of the two bonds is temporally coupled becomes a salient question. Following absorption at 193 nm dimethyl sulfoxide (CH{sub 3}SOCH{sub 3}) contains enough energy to rupture both C-S bonds. This can happen in a stepwise (reaction 1) or concerted (reaction 2) fashion where the authors use rotation of the SOCH{sub 3} intermediate prior to dissociation to define a stepwise dissociation: (1) CH{sub 3}SOCH{sub 3} {r_arrow} 2CH{sub 3} + SO; (2a) CH{sub 3}SOCH{sub 3} {r_arrow} CH{sub 3} + SOCH{sub 3}; and (2b) SOCH{sub 3} {r_arrow} SO + CH{sub 3}. Recently, the dissociation of dimethyl sulfoxide following absorption at 193 nm was suggested to involve simultaneous cleavage of both C-S bonds on an excited electronic surface. This conclusion was inferred from laser induced fluorescence (LIF) and resonant multiphoton ionization (2+1 REMPI) measurements of the internal energy content in the CH{sub 3} and SO photoproducts and a near unity quantum yield measured for SO. Since this type of concerted three body dissociation is very interesting and a rather rare event in photodissociation dynamics, the authors chose to investigate this system using the technique of photofragment translational spectroscopy at beamline 9.0.2.1. The soft photoionization provided by the VUV undulator radiation allowed the authors to probe the SOCH{sub 3} intermediate which had not been previously observed and provided good evidence that the dissociation of dimethyl sulfoxide primarily proceeds via a two step dissociation, reaction 2.

  12. Photodissociation of hexaarylbiimidazole. 2. Direct and senitized dissociation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, An-Dong; Trifunac, A.D. [Argonne National Lab., IL (United States); Krongauz, V.V. [E.I. du Pont de Nemours and Company, Wilmington, DE (United States)

    1992-01-09

    Photodissociation of a widely used photopolymerization initiator, 2-chlorohexaarylbiimidazole (o-Cl-HABI), is studied in dichloromethane solution in the absence and presence of the visible light photosensitizing dye, 2,5-bis[(2,3,6,7-tetrahydro-1H,5H-benzo[ij]quinolizin-1-yl) methylene]cyclopentanone (JAW). Laser flash photolysis at 480 nm is employed. In the absence of JAW, the o-Cl-HABI dissociates into triarylimidazolyl radicals (L*). In the presence of JAW, an increase in L* formation is observed. The mechanism of this photosensitization of dissociation is explored. It is concluded that this increase occurs by the dissociation of the o-Cl-HABI radical anion formed by electron transfer from the excited singlet state of JAW to o-Cl-HABI. The observed formation of L* radicals exhibits a linear dependence on o-Cl-HABI concentration. The rate constant of electron transfer obtained from this dependence is equal to (2.2 {plus_minus} 0.4) {times} 10{sup 9} M{sup {minus}1} s{sup {minus}1}. No reaction between the excited triplet state of JAW and p-Cl-HABI is found. 22 refs., 10 figs.

  13. Isentropic thermal instability in atomic surface layers of photodissociation regions

    Science.gov (United States)

    Krasnobaev, K. V.; Tagirova, R. R.

    2017-08-01

    We consider the evolution of an isentropic thermal instability in the atomic zone of a photodissociation region (PDR). In this zone, gas heating and cooling are associated mainly with photoelectric emission from dust grains and fine-structure lines ([C II] 158, [O I] 63 and [O I] 146 μm), respectively. The instability criterion has a multi-parametric dependence on the conditions of the interstellar medium. We found that instability occurs when the intensity of the incident far-ultraviolet field G0 and gas density n are high. For example, we have 3 × 103 360 waves is L ˜ 10-3-5 × 10-2 pc. For objects that are older than tinst and have sizes of the atomic zone larger than L, we expect that instability influences the PDR structure significantly. The presence of multiple shock waves, turbulent velocities of several kilometres per second and inhomogeneities with higher density and temperature than the surrounding medium can characterize isentropic thermal instability in PDRs.

  14. Photodissociation dynamics of methoxybenzoic acid at 193 nm

    Science.gov (United States)

    Ho, Yu-Chieh; Dyakov, Yuri A.; Hsu, Wen-Hsin; Ni, Chi-Kung; Sun, Yi-Lun; Hu, Wei-Ping

    2012-11-01

    The theoretical prediction and experimental confirmation of the 1πσ* repulsive excited state along O-H bond of phenol have large impact on the interpretation of phenol and tyrosine photochemistry. In this work, we investigated the photodissociation dynamics of 2-, 3-, and 4-methoxybenzoic acid (MOBA) in a molecular beam at 193 nm using multimass ion imaging techniques. In addition, the ground state and the excited state potential energy surfaces of MOBA were investigated using ab initio calculations, and branching ratios were predicted by Rice-Ramsperger-Kassel-Marcus theory. The results show that (1) the excited state potential of 1πσ* along O-CH3 bond remains similar to that of phenol and anisole, (2) CH3 elimination is the major channel for three MOBA isomers, and (3) photofragment translational energy distributions show bimodal distributions, representing the dissociation on the ground state and repulsive excited state, respectively. Comparison to the study of hydroxbenzoic acid [Y. L. Yang, Y. A. Dyakov, Y. T. Lee, C. K. Ni, Y. L. Sun, and W. P. Hu, J. Chem. Phys. 134, 034314 (2011), 10.1063/1.3526059] shows that only the intramolecular hydrogen bonding has significant effects on the excited state dynamics of phenol chromophores.

  15. Angle Resolved Photoemission Spectroscopy Studies of the Mott Insulator to Superconductor Evolution in Ca2-xNaxCuO2Cl2

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Kyle Michael

    2005-09-02

    It is widely believed that many of the exotic physical properties of the high-T{sub c} cuprate superconductors arise from the proximity of these materials to the strongly correlated, antiferromagnetic Mott insulating state. Therefore, one of the fundamental questions in the field of high-temperature superconductivity is to understand the insulator-to-superconductor transition and precisely how the electronic structure of Mott insulator evolves as the first holes are doped into the system. This dissertation presents high-resolution, doping dependent angle-resolved photoemission (ARPES) studies of the cuprate superconductor Ca{sub 2-x}Na{sub x}CuO{sub 2}Cl{sub 2}, spanning from the undoped parent Mott insulator to a high-temperature superconductor with a T{sub c} of 22 K. A phenomenological model is proposed to explain how the spectral lineshape, the quasiparticle band dispersion, and the chemical potential all progress with doping in a logical and self-consistent framework. This model is based on Franck-Condon broadening observed in polaronic systems where strong electron-boson interactions cause the quasiparticle residue, Z, to be vanishingly small. Comparisons of the low-lying states to different electronic states in the valence band strongly suggest that the coupling of the photohole to the lattice (i.e. lattice polaron formation) is the dominant broadening mechanism for the lower Hubbard band states. Combining this polaronic framework with high-resolution ARPES measurements finally provides a resolution to the long-standing controversy over the behavior of the chemical potential in the high-T{sub c} cuprates. This scenario arises from replacing the conventional Fermi liquid quasiparticle interpretation of the features in the Mott insulator by a Franck-Condon model, allowing the reassignment of the position of the quasiparticle pole. As a function of hole doping, the chemical potential shifts smoothly into the valence band while spectral weight is transferred

  16. Probing of the local environment and calculation of J.O. parameters for Eu{sup 3+} CMPO functionalized pillararene complexes by time resolved fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sengupta, Arijit, E-mail: arijita@barc.gov.in [Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Fang, Yuyu; Yuan, Xiangyang; Yuan, Lihua [Key Laboratory for Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University, Chengdu 610064 (China)

    2015-10-15

    An attempt was made to understand the complexation of Eu{sup 3+} with structurally modified CMPO-functionalized pillararenes by luminescence spectroscopy. Formation of single species with different numbers of inner sphere water molecules was found to be present for all the complexes. On increasing spacer length between ligating moieties and supramolecular pillararenes, the stereo-chemical crowding around ligating oxygen decreased. Therefore, strong covalent metal–oxygen bond was formed which was reflected in the increasing trend of the computed Ω{sub 2} values (Judd–Offelt parameter): LI (4.66×10{sup −20})LII (3.19 ms)>LIII (2.94 ms) while the branching ratio values for all three complexes followed the same trend as β{sub 2}>β{sub 4}>β{sub 1}. The other photo-physical constants like asymmetric factor, quantum efficiency, magnetic and electric dipole transition probabilities were also computed. - Highlights: • Probing of the local environment of Eu{sup 3+} complex with three structurally modified CMPO functionalized pillararenes. • J.O. parameter Ω{sub 2} followed the trend: LI (4.66E−20)

  17. Vibrational spectrum of Ar3+ and relative importance of linear and perpendicular isomers in its photodissociation

    Science.gov (United States)

    Karlický, František; Lepetit, Bruno; Kalus, René; Gadéa, Florent Xavier

    2011-02-01

    The photodissociation dynamics of the argon ionized trimer Ar_3^+ is revisited in the light of recent experimental results of Lepère et al. [J. Chem. Phys. 134, 194301 (2009)], which show that the fragment with little kinetic energy is always a neutral one, thus the available energy is shared by a neutral and ionic fragments as in Ar_2^+. We show that these results can be interpreted as the photodissociation of the linear isomer of the system. We perform a 3D quantum computation of the vibrational spectrum of the system and study the relative populations of the linear (trimer-core) and perpendicular (dimer-core) isomers. We then show that the charge initially located on the central atom in the ground electronic state of the linear isomer migrates toward the extreme ones in the photoexcitation process such that photodissociation of the linear isomer produces a neutral central atom at rest in agreement with measured product state distributions.

  18. Vibrational spectrum of Ar3(+) and relative importance of linear and perpendicular isomers in its photodissociation.

    Science.gov (United States)

    Karlický, Frantisek; Lepetit, Bruno; Kalus, René; Gadéa, Florent Xavier

    2011-02-28

    The photodissociation dynamics of the argon ionized trimer Ar(3)(+) is revisited in the light of recent experimental results of Lepère et al. [J. Chem. Phys. 134, 194301 (2009)], which show that the fragment with little kinetic energy is always a neutral one, thus the available energy is shared by a neutral and ionic fragments as in Ar(2)(+). We show that these results can be interpreted as the photodissociation of the linear isomer of the system. We perform a 3D quantum computation of the vibrational spectrum of the system and study the relative populations of the linear (trimer-core) and perpendicular (dimer-core) isomers. We then show that the charge initially located on the central atom in the ground electronic state of the linear isomer migrates toward the extreme ones in the photoexcitation process such that photodissociation of the linear isomer produces a neutral central atom at rest in agreement with measured product state distributions.

  19. Communication: Direct measurements of nascent O({sup 3}P{sub 0,1,2}) fine-structure distributions and branching ratios of correlated spin-orbit resolved product channels CO(ã{sup 3}Π; v) + O({sup 3}P{sub 0,1,2}) and CO(Χ{sup ~1}Σ{sup +}; v) + O({sup 3}P{sub 0,1,2}) in VUV photodissociation of CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Zhou; Chang, Yih Chung; Gao, Hong; Benitez, Yanice; Song, Yu; Ng, C. Y., E-mail: cyng@chem.ucdavis.edu, E-mail: wmjackson@ucdavis.edu; Jackson, W. M., E-mail: cyng@chem.ucdavis.edu, E-mail: wmjackson@ucdavis.edu [Department of Chemistry, University of California, Davis, Davis, California 95616 (United States)

    2014-06-21

    We present a generally applicable experimental method for the direct measurement of nascent spin-orbit state distributions of atomic photofragments based on the detection of vacuum ultraviolet (VUV)-excited autoionizing-Rydberg (VUV-EAR) states. The incorporation of this VUV-EAR method in the application of the newly established VUV-VUV laser velocity-map-imaging-photoion (VMI-PI) apparatus has made possible the branching ratio measurement for correlated spin-orbit state resolved product channels, CO(ã{sup 3}Π; v) + O({sup 3}P{sub 0,1,2}) and CO(Χ{sup ~1}Σ{sup +}; v) + O({sup 3}P{sub 0,1,2}), formed by VUV photoexcitation of CO{sub 2} to the 4s(1{sub 0}{sup 1}) Rydberg state at 97,955.7 cm{sup −1}. The total kinetic energy release (TKER) spectra obtained from the O{sup +} VMI-PI images of O({sup 3}P{sub 0,1,2}) reveal the formation of correlated CO(ã{sup 3}Π; v = 0–2) with well-resolved v = 0–2 vibrational bands. This observation shows that the dissociation of CO{sub 2} to form the spin-allowed CO(ã{sup 3}Π; v = 0–2) + O({sup 3}P{sub 0,1,2}) channel has no potential energy barrier. The TKER spectra for the spin-forbidden CO(Χ{sup ~1}Σ{sup +}; v) + O({sup 3}P{sub 0,1,2}) channel were found to exhibit broad profiles, indicative of the formation of a broad range of rovibrational states of CO(Χ{sup ~1}Σ{sup +})  with significant vibrational populations for v = 18–26. While the VMI-PI images for the CO(ã{sup 3}Π; v = 0–2) + O({sup 3}P{sub 0,1,2}) channel are anisotropic, indicating that the predissociation of CO{sub 2} 4s(1{sub 0}{sup 1}) occurs via a near linear configuration in a time scale shorter than the rotational period, the angular distributions for the CO(Χ{sup ~1}Σ{sup +}; v) + O({sup 3}P{sub 0,1,2}) channel are close to isotropic, revealing a slower predissociation process, which possibly occurs on a triplet surface via an intersystem crossing mechanism.

  20. Time-Resolved Laser Fluorescence Spectroscopy Study of the Coordination Chemistry of a Hydrophilic CHON [1,2,3-Triazol-4-yl]pyridine Ligand with Cm(III) and Eu(III).

    Science.gov (United States)

    Wagner, Christoph; Mossini, Eros; Macerata, Elena; Mariani, Mario; Arduini, Arturo; Casnati, Alessandro; Geist, Andreas; Panak, Petra J

    2017-02-20

    The complexation of Cm(III) and Eu(III) with the novel i-SANEX complexing agent 2,6-bis[1-(propan-1-ol)-1,2,3-triazol-4-yl]pyridine (PTD) was studied by time-resolved laser fluorescence spectroscopy (TRLFS). The formation of 1:3, 1:2, and 1:1 metal/ligand complexes was identified upon increasing PTD concentration in 10(-3) mol/L HClO4 and in 0.44 mol/L HNO3 solutions. For all these complexes, stability constants were determined at different acid concentrations. Though under the extraction conditions proposed for an An/Ln separation process, that is, for 0.08 mol/L PTD in 0.44 mol/L HNO3, 1:3 complexes represent the major species, a significant fraction of 1:2 complexes was found. This is caused by ligand protonation, and results in lower Eu(III)/Am(III) separation factors compared to SO3-Ph-BTP, until now considered the i-SANEX reference ligand. Focused extraction studies performed at lower proton concentration, where the 1:3 complex is formed exclusively, confirm this assumption.

  1. orbital selective correlation reduce in collapse tetragonal phase of CaFe2(As0.935P0.065)2 and electronic structure reconstruction studied by angel resolved photoemission spectroscopy

    Science.gov (United States)

    Zeng, Lingkun

    We performed an angle-resolved photoemission spectroscopy (ARPES) study of the CaFe2(As0.935P0.065)2 in the collapse tetragonal(CT) phase and uncollapse tetragonal(UCT) phase. We find in the CT phase the electronic correlation dramatically reduces respective to UCT phase. Meanwhile, the reduction of correlation in CT phase show an orbital selective effect: correlation in dxy reduces the most, and then dxz/yz, while the one in dz2-r2 almost keeps the same. In CT phase, almost all bands sink downwards to higher binding energy, leading to the hole like bands around Brillouin zone(BZ) center sink below EF compared with UCT phase. However, the electron pocket around Brillouin Zone(BZ) corner(M) in UCT phase, forms a hole pocket around BZ center(Z point) in CT phase. Moreover, the dxy exhibits larger movement down to higher binding energy, resulting in farther away from dyz/xz and closer to dxy.We propose the electron filling ,namely high spin state in UCT phase to low spin state in CT phase(due to competing between crystal structure field and Hund's coupling), other than the Fermi surface nesting might be responsible for the absent of magnetic ordering.

  2. Uptake Of Trivalent Actinides (Cm(III)) And Lanthanides (Eu(III)) By Cement-Type Minerals: A Wet Chemistry And Time-Resolved Laser Fluorescence Spectroscopy (TRLFS) Study

    Energy Technology Data Exchange (ETDEWEB)

    Tits, J.; Stumpf, T; Wieland, E.; Fanghaenel, T

    2003-03-01

    The interaction of the two chemical homologues Cm (III) and Eu(III) with calcium silicate hydrates at pH 13.3 has been investigated in batch-type sorption studies using Eu(III), and complemented with time-resolved laser fluorescence spectroscopy using Cm(III). The sorption data for Eu(III) reveal fast sorption kinetics, and a strong uptake by CSH phases, with distribution ratios of 6({+-}3)*105 L kg-1. Three different types of sorbed Cm(III) species have been identified: a non-fluorescing species, which was identified as Cm cluster present either as surface precipitate or as Cm(III) colloid in solution, and two sorbed fluorescing species. The sorbed fluorescing species have characteristic emission spectra (main peak maxima at 618.9 nm and 620.9 nm) and fluorescence emission lifetimes (289 {+-} 11 ms and 1482{+-} 200 ms). From the fluorescence lifetimes, it appears that the two fluorescing Cm(III) species have, respectively, one to two or no water molecules left in their first coordination sphere, suggesting that these species are incorporated into the CSH structure. A structural model for Cm(III) and Eu(III) incorporation into CSH phases is proposed based on the substitution of Ca at two different types of sites in the CSH structure. (author)

  3. The Time-resolved and Extreme-conditions XAS (TEXAS) facility at the European Synchrotron Radiation Facility: the energy-dispersive X-ray absorption spectroscopy beamline ID24

    Science.gov (United States)

    Pascarelli, S.; Mathon, O.; Mairs, T.; Kantor, I.; Agostini, G.; Strohm, C.; Pasternak, S.; Perrin, F.; Berruyer, G.; Chappelet, P.; Clavel, C.; Dominguez, M. C.

    2016-01-01

    The European Synchrotron Radiation Facility has recently made available to the user community a facility totally dedicated to Time-resolved and Extreme-conditions X-ray Absorption Spectroscopy – TEXAS. Based on an upgrade of the former energy-dispersive XAS beamline ID24, it provides a unique experimental tool combining unprecedented brilliance (up to 1014 photons s−1 on a 4 µm × 4 µm FWHM spot) and detection speed for a full EXAFS spectrum (100 ps per spectrum). The science mission includes studies of processes down to the nanosecond timescale, and investigations of matter at extreme pressure (500 GPa), temperature (10000 K) and magnetic field (30 T). The core activities of the beamline are centered on new experiments dedicated to the investigation of extreme states of matter that can be maintained only for very short periods of time. Here the infrastructure, optical scheme, detection systems and sample environments used to enable the mission-critical performance are described, and examples of first results on the investigation of the electronic and local structure in melts at pressure and temperature conditions relevant to the Earth’s interior and in laser-shocked matter are given. PMID:26698085

  4. Changes of evoked cerebral blood oxygenation and optical pathlength in the frontal lobe during language tasks: a study by multi-channel, time-resolved near-infrared spectroscopy and functional MRI.

    Science.gov (United States)

    Murata, Yoshihiro; Sakatani, Kaoru; Hoshino, Tatsuya; Fujiwara, Norio; Katayama, Yoichi; Yamashita, Daisuke; Yamanaka, Takeshi; Oda, Motoki; Yamashita, Yutaka

    2010-01-01

    To determine the alterations in optical characteristics and cerebral blood oxygenation (CBO) in the frontal lobe during language tasks, we evaluated the changes in mean optical pathlength (MOP) and CBO induced by a verbal fluency task (VFT) in the right and left frontal lobes in normal adults (n = 9, mean age = 29.6 +/- 4.8 years). We employed a newly developed 8-channel time-resolved near-infrared spectroscopy (TRS) instrument. The results demonstrated differences in MOP in the fronto-temporal areas with subject and wavelength; however, there was no significant difference between the right and left sides (p > 0.05). Also, the VFT did not affect the MOP significantly as compared to that before the tasks (p > 0.05). In all of the recording regions, the VFT caused increases in concentration of oxyhemoglobin and total hemoglobin associated with a decrease in deoxyhemoglobin concentration, indicating that these cortical areas were activated by the VFT. However, the mean concentration changes of oxyhemoglobin and total hemoglobin on the left side were larger than those on the right side. In addition, functional MRI demonstrated that the inferior frontal gyrus on the left side was activated in the subjects who exhibited increases in oxyhemoglobin concentration in these areas. These results suggest that TRS may be useful to study language function and to assess hemispheric dominance for language.

  5. The Time-resolved and Extreme-conditions XAS (TEXAS) facility at the European Synchrotron Radiation Facility: the energy-dispersive X-ray absorption spectroscopy beamline ID24.

    Science.gov (United States)

    Pascarelli, S; Mathon, O; Mairs, T; Kantor, I; Agostini, G; Strohm, C; Pasternak, S; Perrin, F; Berruyer, G; Chappelet, P; Clavel, C; Dominguez, M C

    2016-01-01

    The European Synchrotron Radiation Facility has recently made available to the user community a facility totally dedicated to Time-resolved and Extreme-conditions X-ray Absorption Spectroscopy--TEXAS. Based on an upgrade of the former energy-dispersive XAS beamline ID24, it provides a unique experimental tool combining unprecedented brilliance (up to 10(14) photons s(-1) on a 4 µm × 4 µm FWHM spot) and detection speed for a full EXAFS spectrum (100 ps per spectrum). The science mission includes studies of processes down to the nanosecond timescale, and investigations of matter at extreme pressure (500 GPa), temperature (10000 K) and magnetic field (30 T). The core activities of the beamline are centered on new experiments dedicated to the investigation of extreme states of matter that can be maintained only for very short periods of time. Here the infrastructure, optical scheme, detection systems and sample environments used to enable the mission-critical performance are described, and examples of first results on the investigation of the electronic and local structure in melts at pressure and temperature conditions relevant to the Earth's interior and in laser-shocked matter are given.

  6. RESOLVE Project

    Science.gov (United States)

    Parker, Ray O.

    2012-01-01

    The RESOLVE project is a lunar prospecting mission whose primary goal is to characterize water and other volatiles in lunar regolith. The Lunar Advanced Volatiles Analysis (LAVA) subsystem is comprised of a fluid subsystem that transports flow to the gas chromatograph- mass spectrometer (GC-MS) instruments that characterize volatiles and the Water Droplet Demonstration (WDD) that will capture and display water condensation in the gas stream. The LAVA Engineering Test Unit (ETU) is undergoing risk reduction testing this summer and fall within a vacuum chamber to understand and characterize C!Jmponent and integrated system performance. Ray will be assisting with component testing of line heaters, printed circuit heaters, pressure transducers, temperature sensors, regulators, and valves in atmospheric and vacuum environments. He will be developing procedures to guide these tests and test reports to analyze and draw conclusions from the data. In addition, he will gain experience with preparing a vacuum chamber with fluid and electrical connections. Further testing will include integrated testing of the fluid subsystem with the gas supply system, near-infrared spectrometer, WDD, Sample Delivery System, and GC-MS in the vacuum chamber. This testing will provide hands-on exposure to a flight forward spaceflight subsystem, the processes associated with testing equipment in a vacuum chamber, and experience working in a laboratory setting. Examples of specific analysis Ray will conduct include: pneumatic analysis to calculate the WOO's efficiency at extracting water vapor from the gas stream to form condensation; thermal analysis of the conduction and radiation along a line connecting two thermal masses; and proportional-integral-derivative (PID) heater control analysis. In this Research and Technology environment, Ray will be asked to problem solve real-time as issues arise. Since LAVA is a scientific subsystem, Ray will be utilizing his chemical engineering background to

  7. Time Resolved Spectroscopy of Cepheid Variable Stars

    Science.gov (United States)

    Hartman, Katherine; Beaton, Rachael L.; SDSS-IV APOGEE-2 Team

    2018-01-01

    Galactic Cepheid variable stars have been used for over a century as standard candles and as the first rung of the cosmic distance ladder, integral to the calculation of the Hubble constant. However, it is challenging to observe Cepheids within the Milky Way Galaxy because of extinction, and there are still uncertainties in the Cepheid period-luminosity relation (or Leavitt Law) that affect these important distance calculations. The Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey has provided spectra for a large sample of Galactic Cepheids, but the standard chemical abundance pipeline (ASPCAP) processing is not well-suited to pulsational variables, preventing us from using them to study metallicity effect in the Leavitt Law with standard processing. Using a standalone version of the ASPCAP pipeline, we present an analysis of individual visit spectra from a test sample of nine APOGEE Cepheids, and we compare its output to the stars’ literature abundance values. Based on the results of this comparison, we will be able to improve the standard analysis and process the entirety of APOGEE’s Cepheid catalogue to improve its abundance measurements. The resulting abundance data will allow us to constrain the effect of metallicity on the Leavitt Law and thus allow for more accurate Cepheid distance measurements for the determination of the Hubble constant.

  8. Direct angle resolved photoemission spectroscopy and ...

    Indian Academy of Sciences (India)

    It is generally recognized that even after 20 years of research and more than 70,000 publications, the mechanism of high-Tc superconductivity in cuprates remains a highly controversial topic [1–4], partly due to the fact that most groups do not fabricate and/or fully control and analyse their (non-trivial) perovskite samples.

  9. Spatially resolved spectroscopy on carbon nanotubes

    NARCIS (Netherlands)

    Janssen, J.W.

    2001-01-01

    Carbon nanotubes are small cylindrical molecules with a typical diameter of 1 nm and lengths of up to micrometers. These intriguing molecules exhibit, depending on the exact atomic structure, either semiconducting or metallic behavior. This makes them ideal candidates for possible future molecular

  10. Chromatin dynamics resolved with force spectroscopy

    NARCIS (Netherlands)

    Chien, Fan-Tso

    2011-01-01

    In eukaryotic cells, genomic DNA is organized in chromatin fibers composed of nucleosomes as structural units. A nucleosome contains 1.7 turns of DNA wrapped around a histone octamer and is connected to the adjacent nucleosomes with linker DNA. The folding of chromatin fibers effectively increases

  11. Spin resolved photoelectron spectroscopy of [Mn{sub 6}{sup III}Cr{sup III}]{sup 3+} single-molecule magnets and of manganese compounds as reference layers

    Energy Technology Data Exchange (ETDEWEB)

    Helmstedt, Andreas; Mueller, Norbert; Gryzia, Aaron; Dohmeier, Niklas; Brechling, Armin; Sacher, Marc D; Heinzmann, Ulrich [Fakultaet fuer Physik, Universitaet Bielefeld, Universitaetsstrasse 25, 33615 Bielefeld (Germany); Hoeke, Veronika; Krickemeyer, Erich; Glaser, Thorsten [Fakultaet fuer Chemie, Universitaet Bielefeld, Universitaetsstrasse 25, 33615 Bielefeld (Germany); Bouvron, Samuel; Fonin, Mikhail [Fachbereich Physik, Universitaet Konstanz, Universitaetsstrasse 10, 78457 Konstanz (Germany); Neumann, Manfred, E-mail: andreas.helmstedt@uni-bielefeld.de [Fachbereich Physik, Universitaet Osnabrueck, Barbarastrasse 7, 49069 Osnabrueck (Germany)

    2011-07-06

    Properties of the manganese-based single-molecule magnet [Mn{sup III}{sub 6}Cr{sup III}]{sup 3+} are studied. It contains six Mn{sup III} ions arranged in two bowl-shaped trinuclear triplesalen building blocks linked by a hexacyanochromate and exhibits a large spin ground state of S{sub t} = 21/2. The dominant structures in the electron emission spectra of [Mn{sup III}{sub 6}Cr{sup III}]{sup 3+} resonantly excited at the L{sub 3}-edge are the L{sub 3}M{sub 2,3}M{sub 2,3}, L{sub 3}M{sub 2,3}V and L{sub 3}VV Auger emission groups following the decay of the primary p{sub 3/2} core hole state. Significant differences of the Auger spectra from intact and degraded [Mn{sup III}{sub 6}Cr{sup III}]{sup 3+} show up. First measurements of the electron spin polarization in the L{sub 3}M{sub 2,3}V and L{sub 3}VV Auger emission peaks from the manganese constituents in [Mn{sup III}{sub 6}Cr{sup III}]{sup 3+} resonantly excited at the L{sub 3}-edge near 640 eV by circularly polarized synchrotron radiation are reported. In addition spin resolved Auger electron spectra of the reference substances MnO, Mn{sub 2}O{sub 3} and Mn{sup II}(acetate){sub 2{center_dot}}4H{sub 2}O are given. The applicability of spin resolved electron spectroscopy for characterizing magnetic states of constituent atoms compared to magnetic circular dichroism (MCD) is verified: the spin polarization obtained from Mn{sup II}(acetate){sub 2{center_dot}}4H{sub 2}O at room temperature in the paramagnetic state compares to the MCD asymmetry revealed for a star-shaped molecule with a Mn{sub 4}{sup II}O{sub 6} core at 5 K in an external magnetic field of 5 T.

  12. Photodissociation dynamics of superexcited O2: Dissociation channels O(5S) vs. O(3S)

    Science.gov (United States)

    Zhou, Yiyong; Meng, Qingnan; Mo, Yuxiang

    2014-07-01

    The photodissociation dynamics of O2, O2 + hυ → O(3P) + O(2p3(4S)3s, 3S/5S), has been studied by combining the XUV laser pump / UV laser probe and velocity map imaging methods in the photon energy range 14.64-15.20 eV. The fragment yield spectra of O(3S) and O(5S) and their velocity map images have been recorded using the state-selective (1+1) REMPI method to detect the fragments. The fragment yield spectra show resolved fine structure that arises from the predissociated Rydberg states I, I' and I″ (3ΠΩ = 0,1,2). The branching ratios between the two decay channels have been measured by one-photon ionization of the fragments O(3S) and O(5S) simultaneously. It is surprising to find that the dissociation cross sections for the production of O(5S) are larger than, or comparable to, those of O(3S) for the I and I' states, while the cross sections for the production of O(5S) are smaller than those of O(3S) for the I″ state. All fragments O(5S) arise from perpendicular transitions, which provides direct experimental evidence about the symmetry assignments of the states I, I' and I″ excited in this energy region. Although most of the fragments O(3S) arise from perpendicular transitions, some of them are from parallel transitions. Based on the calculated ab initio potential energy curves, we propose that the neutral dissociation into O(3P) + O(3S) occurs mainly via the interaction of the Rydberg states I, I', and I″ with the vibrational continuum of the diabatic 83Πu state (1π _u^{ - 1} (a^4 {Π}_u {)3}sσ _g ,^3 Π_u), while the neutral dissociation into O(3P) + O(5S) occurs mainly via the interaction of Rydberg states I, I', and I″ with the diabatic 73Πu (1π _g^{ - 1} (X^2 {Π}_g {)3}p{σ }_u ,^3 Π_u).

  13. Laser induced fluorescence spectrum analysis of OH from photo-dissociation of water in gas phase

    Science.gov (United States)

    Li, Guohua; Ye, Jingfeng; Zhang, Zhengrong; Wang, Sheng; Hu, Zhiyun; Zhao, Xinyan

    2017-05-01

    The OH can be generated from photo-dissociation of water in the gas phase, and the generated OH has served in tagging velocimetry using the time-flight method. The hydroxyl tagging mechanism has the advantages of non-seeding, kindly flow following character, but its application in the reaction region is limited for the fluorescence interference from nascent OH. In this paper, we explored the laser induced fluorescence spectrum of OH both from burning and photodissociation. A photo-dissociation laser induced fluorescence (PD-LIF) system with optical multichannel analysis instrument (OMA) for spectrum analysis was developed. Based on multichannel mechanism, the LIF spectrum of OH from photo-dissociation and burning were acquired simultaneously. The temporal spectrum profiles of dissociation OH both in flame and air were taken by varying the pump-probe delay. The normalized emission spectrum in flame showed a process of rotational relaxation while in air the spectrum was almost not changed. The fluorescence intensity was precisely proportional to the base states population, so we can get certain states that the OH from dissociation was predominant from the fluorescence intensity ratio of OH. This result can be further utilized for hydroxyl tagging velocimetry technology (HTV) which was less affected by burning OH.

  14. Photodissociation in quantum chaotic systems: Random-matrix theory of cross-section fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Fyodorov, Y.V. [Fachbereich Physik, Universitaet-GH Essen, D-45117 Essen (Germany); Alhassid, Y. [Center for Theoretical Physics, Sloane Physics Laboratory, Yale University, New Haven, Connecticut 06520 (United States)

    1998-11-01

    Using the random matrix description of open quantum chaotic systems we calculate in closed form the universal autocorrelation function and the probability distribution of the total photodissociation cross section in the regime of quantum chaos. {copyright} {ital 1998} {ital The American Physical Society}

  15. Pulse-periodic iodine photodissociation laser pumped with radiation from magnetoplasma compressors

    Science.gov (United States)

    Kashnikov, G. N.; Orlov, V. K.; Panin, A. N.; Piskunov, A. K.; Reznikov, V. A.

    1980-09-01

    The design and operation of an iodine photodissociation laser, pumped by radiation from magnetoplasma compressors, are described. The laser uses a closed-circulation system with C3F7I as the working gas. Repetitive-pulse operation has been achieved with an interval between pulses of 1 minute, a lasing energy of 110 J, and a pulse duration of 30 microseconds.

  16. The Wigner method applied to the photodissociation of CH3I

    DEFF Research Database (Denmark)

    Henriksen, Niels Engholm

    1985-01-01

    The Wigner method is applied to the Shapiro-Bersohn model of the photodissociation of CH3I. The partial cross sections obtained by this semiclassical method are in very good agreement with results of exact quantum calculations. It is also shown that a harmonic approximation to the vibrational...

  17. Testing models of low-excitation photodissociation regions with far-infrared observations of reflection nebulae

    NARCIS (Netherlands)

    Owl, RCY; Meixner, MM; Fong, D; Haas, MR; Rudolph, AL; Tielens, AGGM

    2002-01-01

    This paper presents Kuiper Airborne Observatory observations of the photodissociation regions ( PDRs) in nine reflection nebulae. These observations include the far-infrared atomic fine-structure lines of [O I] 63 and 145 mum, [C II] 158 mum, and [Si II] 35 mum and the adjacent far-infrared

  18. The effects of polycyclic aromatic hydrocarbons on the chemistry of photodissociation regions

    NARCIS (Netherlands)

    Bakes, ELO; Tielens, AGGM

    1998-01-01

    We have investigated the effects of including polycylic aromatic hydrocarbons (PAHs) on the abundance of neutral atoms and molecules for two typical photodissociation regions (PDRs): a high-density case (the Orion complex) and a low-density case. PAHs provide a large surface area for chemistry

  19. O(P-3(J)) alignment from the photodissociation of SO2 at 193 nm

    NARCIS (Netherlands)

    Brouard, M.; Cireasa, D.R.; Clark, A.P.; Preston, T.J.; Vallance, C.; Groenenboom, G.C.; Vasyutinskii, O.S.

    2004-01-01

    The 193-nm photodissociation Of SO2 has been studied using the resonantly enhanced multiphoton ionization of ground-state O(P-3(J)), coupled with velocity-map ion imaging. The dependence of the ion images on the linear polarization of pump and probe radiation has been used to determine the

  20. Photodissociation of OCS: Deviations between theory and experiment, and the importance of higher order correlation effects

    DEFF Research Database (Denmark)

    Schmidt, Johan Albrecht; Olsen, Jógvan Magnus Haugaard

    2014-01-01

    The photodissociation of carbonyl sulfide (OCS) was investigated theoretically in a series of studies by Schmidt and co-workers. Initial studies [J. A. Schmidt, M. S. Johnson, G. C. McBane, and R. Schinke, J. Chem. Phys.136, 131101 (2012);J. A. Schmidt, M. S. Johnson, G. C. McBane, and R. Schinke...

  1. Applications of laser-induced gratings to spectroscopy and dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Rohlfing, E.A. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    This program has traditionally emphasized two principal areas of research. The first is the spectroscopic characterization of large-amplitude motion on the ground-state potential surface of small, transient molecules. The second is the reactivity of carbonaceous clusters and its relevance to soot and fullerene formation in combustion. Motivated initially by the desire to find improved methods of obtaining stimulated emission pumping (SEP) spectra of transients, most of our recent work has centered on the use of laser-induced gratings or resonant four-wave mixing in free-jet expansions. These techniques show great promise for several chemical applications, including molecular spectroscopy and photodissociation dynamics. The author describes recent applications of two-color laser-induced grating spectroscopy (LIGS) to obtain background-free SEP spectra of transients and double resonance spectra of nonfluorescing species, and the use of photofragment transient gratings to probe photodissociation dynamics.

  2. Synthesis and characterization of Ag doped ZnS quantum dots for enhanced photocatalysis of Strychnine asa poison: Charge transfer behavior study by electrochemical impedance and time-resolved photoluminescence spectroscopy.

    Science.gov (United States)

    Gupta, Vinod Kumar; Fakhri, Ali; Azad, Mona; Agarwal, Shilpi

    2018-01-15

    In this study, the photocatalytic degradation of Strychnine was investigated by ZnS quantum dots and doped with silver in UV systems. ZnS and Ag-ZnS quantum dots were synthesized by chemical method and characterized by powder X-ray diffraction, transmission electron microscopy, UV-vis spectra and photoluminescence. The charge transfer process on the semicon-ductor/electrolyte interface was investigated via electrochemical impedance spectroscopy (EIS) and time-resolved photoluminescence. The average diameters of ZnS and Ag doped ZnS QDs were 3.0-5.0nm and 3.0-5.3nm, respectively. The band gap of ZnS and Ag-ZnS QDs was computed as 3.47 and 3.1eV, respectively. The surface area values of ZnS and Ag-ZnS QDs have been found as 78.25 and 89.54m2/g, respectively. The influences of key operating parameters such as initial pH, catalyst dosage, UV radiation intensity, reaction time as well as the effect of initial Strychnine concentration on mineralization extents were studied. The results of the study showed that the maximum removal efficiency of Strychnine had been achieved by un-doped and Ag-doped ZnS QDs at radiation intensity of 100W/m2, at time of 60min, pH of 3 and initial Strychnine concentration of 20mg/ml. Also the observations clearly showed that the photocatalysis process with Ag doped ZnS QDs are more effective than un-doped ZnS QDs. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Determination of high-molecular weight polycyclic aromatic hydrocarbons in high performance liquid chromatography fractions of coal tar standard reference material 1597a via solid-phase nanoextraction and laser-excited time-resolved Shpol'skii spectroscopy.

    Science.gov (United States)

    Wilson, Walter B; Alfarhani, Bassam; Moore, Anthony F T; Bisson, Cristina; Wise, Stephen A; Campiglia, Andres D

    2016-02-01

    This article presents an alternative approach for the analysis of high molecular weight - polycyclic aromatic hydrocarbons (HMW-PAHs) with molecular mass 302 Da in complex environmental samples. This is not a trivial task due to the large number of molecular mass 302 Da isomers with very similar chromatographic elution times and similar, possibly even virtually identical, mass fragmentation patterns. The method presented here is based on 4.2K laser-excited time-resolved Shpol'skii spectroscopy, a high resolution spectroscopic technique with the appropriate selectivity for the unambiguous determination of PAHs with the same molecular mass. The potential of this approach is demonstrated here with the analysis of a coal tar standard reference material (SRM) 1597a. Liquid chromatography fractions were submitted to the spectroscopic analysis of five targeted isomers, namely dibenzo[a,l]pyrene, dibenzo[a,e]pyrene, dibenzo[a,i]pyrene, naphtho[2,3-a]pyrene and dibenzo[a,h]pyrene. Prior to analyte determination, the liquid chromatographic fractions were pre-concentrated with gold nanoparticles. Complete analysis was possible with microliters of chromatographic fractions and organic solvents. The limits of detection varied from 0.05 (dibenzo[a,l]pyrene) to 0.24 µg L(-1) (dibenzo[a,e]pyrene). The excellent analytical figures of merit associated to its non-destructive nature, which provides ample opportunity for further analysis with other instrumental methods, makes this approach an attractive alternative for the determination of PAH isomers in complex environmental samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Gamma-aminobutyric acid and glutamic acid levels in the auditory pathway of rats with chronic tinnitus: A direct determination using high resolution point-resolved proton magnetic resonance spectroscopy (1H-MRS

    Directory of Open Access Journals (Sweden)

    Thomas J Brozoski

    2012-02-01

    Full Text Available Damage to the auditory system following high-level sound exposure reduces afferent input. Homeostatic mechanisms appear to compensate for the loss. Overcompensation may produce the sensation of sound without an objective physical correlate, i.e., tinnitus. Several potential compensatory neural processes have been identified, such as increased spontaneous activity. The cellular mechanisms enabling such compensatory processes may involve down-regulation of inhibitory neurotransmission mediated by γ-amino butyric acid (GABA, and/or up-regulation of excitatory neurotransmission, mediated by glutamic acid (Glu. Because central processing systems are integrated and well regulated, compensatory changes in one system may produce reactive changes in others. Some or all may be relevant to tinnitus. To examine the roles of GABA and Glu in tinnitus, high-resolution point resolved proton magnetic-resonance spectroscopy (1H-MRS was used to quantify their levels in the dorsal cochlear nucleus (DCN, inferior colliculus (IC, medial geniculate body( (MGB, and primary auditory cortex (A1 of rats. Chronic tinnitus was produced by a single high-level unilateral exposure to noise, and was measured using a psychophysical procedure sensitive to tinnitus. Decreased GABA levels were evident only in the MGB, with the greatest decrease, relative to unexposed controls, obtained in the contralateral MGB. Small GABA increases may have been present bilaterally in A1 and in the contralateral DCN. Although Glu levels showed considerable variation, Glu was moderately and bilaterally elevated both in the DCN and in A1. In the MGB Glu was increased ipsilaterally but decreased contralaterally. These bidirectional and region-specific alterations in GABA and Glu may reflect large-scale changes in inhibitory and excitatory equilibrium accompanying chronic tinnitus. The present results also suggest that targeting both neurotransmitter systems may be optimal in developing more effective

  5. Ultraviolet photochemical reaction of [Fe(III(C2O43]3− in aqueous solutions studied by femtosecond time-resolved X-ray absorption spectroscopy using an X-ray free electron laser

    Directory of Open Access Journals (Sweden)

    Y. Ogi

    2015-05-01

    Full Text Available Time-resolved X-ray absorption spectroscopy was performed for aqueous ammonium iron(III oxalate trihydrate solutions using an X-ray free electron laser and a synchronized ultraviolet laser. The spectral and time resolutions of the experiment were 1.3 eV and 200 fs, respectively. A femtosecond 268 nm pulse was employed to excite [Fe(III(C2O43]3− in solution from the high-spin ground electronic state to ligand-to-metal charge transfer state(s, and the subsequent dynamics were studied by observing the time-evolution of the X-ray absorption spectrum near the Fe K-edge. Upon 268 nm photoexcitation, the Fe K-edge underwent a red-shift by more than 4 eV within 140 fs; however, the magnitude of the redshift subsequently diminished within 3 ps. The Fe K-edge of the photoproduct remained lower in energy than that of [Fe(III(C2O43]3−. The observed red-shift of the Fe K-edge and the spectral feature of the product indicate that Fe(III is upon excitation immediately photoreduced to Fe(II, followed by ligand dissociation from Fe(II. Based on a comparison of the X-ray absorption spectra with density functional theory calculations, we propose that the dissociation proceeds in two steps, forming first [(CO2•Fe(II(C2O42]3− and subsequently [Fe(II(C2O42]2−.

  6. Photoelectron and photodissociation studies of free atoms and molecules, using synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Medhurst, L.J.

    1991-11-01

    High resolution synchrotron radiation and Zero-Kinetic-Energy Photoelectron spectroscopy were used to study two-electron transitions in atomic systems at their ionization thresholds. Using this same technique the core-ionized mainline and satellite states of N{sub 2} and CO were studied with vibrational resolution. Vibrationally resolved synchrotron radiation was used to study the dissociation of N{sub 2}, C{sub 2}H{sub 4}, and CH{sub 3}Cl near the N 1s and C 1s thresholds. The photoelectron satellites of the argon 3s, krypton 4s and xenon 4d subshells were studied with zero kinetic energy photoelectron spectroscopy at their ionization thresholds. In all of these cases, satellites with lower binding energies are enhanced at their thresholds while those closer to the double ionization threshold are suppressed relative to their intensities at high incident light energies.

  7. Photoelectron and photodissociation studies of free atoms and molecules, using synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Medhurst, Laura Jane [Univ. of California, Berkeley, CA (United States)

    1991-11-01

    High resolution synchrotron radiation and Zero-Kinetic-Energy Photoelectron spectroscopy were used to study two-electron transitions in atomic systems at their ionization thresholds. Using this same technique the core-ionized mainline and satellite states of N2 and CO were studied with vibrational resolution. Vibrationally resolved synchrotron radiation was used to study the dissociation of N2, C2H4, and CH3Cl near the N 1s and C 1s thresholds. The photoelectron satellites of the argon 3s, krypton 4s and xenon 4d subshells were studied with zero kinetic energy photoelectron spectroscopy at their ionization thresholds. In all of these cases, satellites with lower binding energies are enhanced at their thresholds while those closer to the double ionization threshold are suppressed relative to their intensities at high incident light energies.

  8. Electronic nose to detect volatile compound profile and quality changes in 'spring Belle' peach (Prunus persica L.) during cold storage in relation to fruit optical properties measured by time-resolved reflectance spectroscopy.

    Science.gov (United States)

    Rizzolo, Anna; Bianchi, Giulia; Vanoli, Maristella; Lurie, Susan; Spinelli, Lorenzo; Torricelli, Alessandro

    2013-02-27

    The aim of this research was to study the relationships between electronic nose (E-nose) pattern, maturity class of peaches assessed at harvest by means of absorption coefficient at 670 nm (μ(a)670) measured in fruit pulp by time-resolved reflectance spectroscopy (TRS), and quality evolution during a 4 week cold storage. 'Spring Belle' peaches were measured for μ(a)670 by TRS, ranked according to decreasing μ(a)670 value, divided into three TRS maturity classes (less (LeM), medium (MeM), and more (MoM) mature), and randomized into 9 samples of 30 fruit each, so that fruits from the whole μ(a)670 range were present in each sample. At harvest and after 1, 2, 3, and 4 weeks of storage at 0 and 4 °C, fruits of each sample were evaluated for firmness, expressible juice, μ(a)670, and ethylene production. LeM and MoM peaches of each sample were analyzed for aroma pattern by a commercial electronic nose and by static HS-GC and for sugar (glucose, fructose, sucrose, and sorbitol) and organic acid (quinic, malic, and citric acids) compositions by HPLC. Principal component analysis (PCA) of electronic nose data emphasized the ability of the E-nose to assess the ripening stage of fruit associated with maturity class, storage time, and storage temperature. The sensors having the highest influence on the pattern were W5S in PC-1, W1S in PC-2, and W2S in PC-3. From linear correlation analysis between PCs and firmness, flavor, and volatile compounds, it was found that PC-1 was related to ethylene production and volatile compounds (mainly acetate esters and ethanol); the highest PC-1 scores were found for fruit belonging to the MoM class after 2 weeks of storage at 4 °C, which showed the rise in ethylene production coupled with the highest total volatile production and sugar and acid composition of ripe peach fruits. PC-2 correlated with hexanal, ethyl acetate, and sugar composition, and PC-3 was mainly related to flavor compounds; both functions significantly changed with

  9. The Photodissociation of HCN and HNC: Effects on the HNC/HCN Abundance Ratio in the Interstellar Medium

    Energy Technology Data Exchange (ETDEWEB)

    Aguado, Alfredo [Departamento de Química Física Aplicada (UAM), Unidad Asociada a IFF-CSIC, Facultad de Ciencias Módulo 14, Universidad Autónoma de Madrid, E-28049, Madrid (Spain); Roncero, Octavio; Zanchet, Alexandre [Instituto de Física Fundamental (IFF-CSIC), C.S.I.C., Serrano 123, E-28006 Madrid (Spain); Agúndez, Marcelino; Cernicharo, José, E-mail: octavio.roncero@csic.es [Instituto de Ciencia de Materiales de Madrid, CSIC, C/ Sor Juana Inés de la Cruz 3, Cantoblanco E-28049 (Spain)

    2017-03-20

    The impact of the photodissociation of HCN and HNC isomers is analyzed in different astrophysical environments. For this purpose, the individual photodissociation cross sections of HCN and HNC isomers have been calculated in the 7–13.6 eV photon energy range for a temperature of 10 K. These calculations are based on the ab initio calculation of three-dimensional adiabatic potential energy surfaces of the 21 lower electronic states. The cross sections are then obtained using a quantum wave packet calculation of the rotational transitions needed to simulate a rotational temperature of 10 K. The cross section calculated for HCN shows significant differences with respect to the experimental one, and this is attributed to the need to consider non-adiabatic transitions. Ratios between the photodissociation rates of HCN and HNC under different ultraviolet radiation fields have been computed by renormalizing the rates to the experimental value. It is found that HNC is photodissociated faster than HCN by a factor of 2.2 for the local interstellar radiation field and 9.2 for the solar radiation field, at 1 au. We conclude that to properly describe the HNC/HCN abundance ratio in astronomical environments illuminated by an intense ultraviolet radiation field, it is necessary to use different photodissociation rates for each of the two isomers, which are obtained by integrating the product of the photodissociation cross sections and ultraviolet radiation field over the relevant wavelength range.

  10. The Photodissociation of HCN and HNC: Effects on the HNC/HCN Abundance Ratio in the Interstellar Medium.

    Science.gov (United States)

    Aguado, Alfredo; Roncero, Octavio; Zanchet, Alexandre; Agúndez, Marcelino; Cernicharo, José

    2017-03-20

    The impact of the photodissociation of HCN and HNC isomers is analyzed in different astrophysical environments. For this purpose, the individual photodissociation cross section of HCN and HNC isomers have been calculated in the 7-13.6 eV photon energy range for a temperature of 10 K. These calculations are based on the ab initio calculation of three-dimensional adiabatic potential energy surfaces of the 21 lower electronic states. The cross sections are then obtained using a quantum wave packet calculation of the rotational transitions needed to simulate a rotational temperature of 10 K. The cross section calculated for HCN shows significant differences with respect to the experimental one, and this is attributed to the need of considering non-adiabatic transitions. Ratios between the photodissociation rates of HCN and HNC under different ultraviolet radiation fields have been computed by renormalizing the rates to the experimental one. It is found that HNC is photodissociated faster than HCN by a factor of 2.2, for the local interstellar radiation field, and 9.2, for the solar radiation field at 1 au. We conclude that to properly describe the HNC/HCN abundance ratio in astronomical environments illuminated by an intense ultraviolet radiation field it is necessary to use different photodissociation rates for each of the two isomers, obtained by integrating the product of the photodissociation cross sections and ultraviolet radiation field over the relevant wavelength range.

  11. VUV Photodissociation Dynamics of Nitrous Oxide: The O((1)SJ=0) and O((3)PJ=2,1,0) Product Channels.

    Science.gov (United States)

    Yu, Shengrui; Yuan, Daofu; Chen, Wentao; Yang, Xueming; Wang, Xingan

    2015-07-23

    Vacuum ultraviolet photodissociation dynamics of nitrous oxide was investigated using the time-sliced velocity ion imaging technique. Images of the O((1)SJ=0) and the O((3)PJ=2,1,0) products were measured at nine photolysis wavelengths from 124.44 to 133.20 nm, respectively. Three main dissociation channels: O((1)S0) + N2(X(1)Σg(+)), O((3)PJ=2,1,0) + N2(A(3)Σu(+)), and O((3)PJ=2,1,0) + N2(B(3)Πg) were observed and identified in the product images where vibrational states of N2 were fully resolved. Product total kinetic energy releases and angular distributions were acquired. In all product channels, the branching ratios of vibrational states of N2 products were determined. In addition, the O((3)PJ=2,1,0) + N2(A(3)Σu(+))/O((3)PJ=2,1,0) + N2(B(3)Πg) branching ratios were determined. We found that in the O((3)PJ=2,1,0) channels the O((3)PJ=2,1,0) + N2(B(3)Πg) channel becomes dominant at long photolysis wavelength, indicating a strong coupling between the singlet D((1)Σg(+)) state and the triplet (3)Π state. For both O((1)S0) and O((3)PJ=2,1,0) products, the derived angular anisotropy parameters (β values) are very close to 2 at lower vibrational states of the correlated N2 electronic states and gradually decrease with the increasing vibrational quantum number. These behaviors suggest that the photodissociation processes are primarily governed by a fast dissociation in a linear geometry, while the N2 products at excited vibrational states are very likely produced via a more bent transition state.

  12. Photodissociation thresholds of OH produced from CH sub 3 OH in solid neon and argon

    CERN Document Server

    Cheng, B M; Lo, W J; Lee, Y P

    2001-01-01

    Photodissociation thresholds of OH from CH sub 3 OH in solid Ne and Ar were determined via photolysis of CH sub 3 OH/Ne and CH sub 3 OH/Ar (1/200) samples in situ at 4 K. The samples were irradiated with VUV synchrotron radiation after dispersion by a Seya-Namioka monochromator. The OH photo-product was detected by means of laser-induced fluorescence technique. The increase of fluorescent intensity of OH was monitored and recorded after the matrix sample was irradiated at different wavelengths for 3-5 min. Photodissociation threshold energies of 7.13+-0.02 eV (174.0+-0.5 nm) and 7.08+-0.04 eV (175.0+-1.0 nm) were measured for OH production of CH sub 3 OH in solid Ne and Ar, respectively.

  13. Photodissociation of NaH using time-dependent Fourier grid method

    Indian Academy of Sciences (India)

    Photodissociation of NaH where N d is the grid point from which damping starts, N is the total number of grid points,. Zmin is a constant factor. Zmin and N d can be determined by the method described in Vibok et al [10]. 3. Calculations. We have used the one-dimensional Fourier grid program of Balint–Kurti to find the pho-.

  14. BRIEF COMMUNICATIONS: Pulse-periodic iodine photodissociation laser pumped with radiation from magnetoplasma compressors

    Science.gov (United States)

    Kashnikov, G. N.; Orlov, V. K.; Panin, A. N.; Piskunov, A. K.; Reznikov, Vladimir A.

    1980-09-01

    A study was made of the characteristics of an iodine photodissociation laser pumped by radiation emitted from magnetoplasma compressors. A closed system for circulating the working gas C3F7I was employed in this laser. Pulse-periodic operation with an interval of 1 min between the pulses was achieved; the output energy was 110 J and the pulse duration was 30 μ sec.

  15. IR and UV Photodissociation as Analytical Tools for Characterizing Lipid A Structures

    OpenAIRE

    Madsen, James A.; Cullen, Thomas W.; Trent, M. Stephen; Brodbelt, Jennifer S.

    2011-01-01

    The utility of 193 nm ultraviolet photodissociation (UVPD) and 10.6 μm infrared multiphoton dissociation (IRMPD) for characterization of lipid A structures was assessed in an ion trap mass spectrometer. The fragmentation behavior of lipid A species was also evaluated by activated – electron photodetachment (a-EPD), which uses 193 nm photons to create charge reduced radicals that are subsequently dissociated by collisional activation. In contrast to collision induced dissociation (CID), IRMPD ...

  16. A measurement of the photoionization cross section of CH2Cl via photofragment translational spectroscopy of dichloromethane

    Science.gov (United States)

    Scrape, Preston G.; Xu, Rosalind J.; Adams, Jonathan D.; Lee, Shih-Huang; Butler, Laurie J.

    2017-11-01

    We characterize the 157 nm photodissociation of dichloromethane (CH2Cl2) using photofragment translational spectroscopy, detecting the products with photoionization mass spectrometry. The major photodissociation products are Cl + CH2Cl and HCl + CHCl. Comparing the integrated ion signal at m/e = 35 (Cl+) and m/e = 49 (CH2Cl+) gives the partial photoionization cross section of CH2Cl to parent ion to be σ = 26.6 Mb at 13.7 eV. This value is a quantitative anchor point of the energy-dependent photoionization cross section. In recent work we used this result to quantify the product branching to HCO + CH2Cl in the photodissociation of 2-chloroacetaldehyde.

  17. Oxygen isotope fractionation in the vacuum ultraviolet photodissociation of carbon monoxide: Wavelength, pressure and temperature dependency.

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Subrata; Davis, Ryan; Ahmed, Musahid; Jackson, Teresa L.; Thiemens, Mark H.

    2012-01-03

    Several absorption bands exist in the VUV region of Carbon monoxide (CO). Emission spectra indicate that these bands are all predissociative. An experimental investigation of CO photodissociation by vacuum ultraviolet photons (90 to 108 nm; ~13 to 11 eV) from the Advanced Light Source Synchrotron and direct measurement of the associated oxygen isotopic composition of the products are presented here. A wavelength dependency of the oxygen isotopic composition in the photodissociation product was observed. Slope values (δ'{sup 18}O/ δ'{sup 17}O) ranging from 0.76 to 1.32 were observed in oxygen three-isotope space (δ'{sup 18}O vs. δ'{sup 17}O) which correlated with increasing synchrotron photon energy, and indicate a dependency of the upper electronic state specific dissociation dynamics (e.g., perturbation and coupling associated with a particular state). An unprecedented magnitude in isotope separation was observed for photodissociation at the 105 and 107 nm synchrotron bands and are found to be associated with accidental predissociation of the vibrational states ({nu} = 0 and 1) of the upper electronic state E{sup 1}Π. For each synchrotron band, a large (few hundred per mil) extent of isotopic fractionation was observed and the range of fractionation is a combination of column density and exposure time. A significant temperature dependency in oxygen isotopic fractionation was observed, indicating a rotational level dependency in the predissociation process.

  18. Near-UV photodissociation of oriented CH3I adsorbed on Cu(110)-I

    Science.gov (United States)

    Jensen, E. T.

    2005-11-01

    Methyl iodide adsorbed on a Cu(110)-I surface has been found to be highly orientationally ordered. We have exploited this orientation to select different CH3I excited states for photodissociation by using polarized near-UV light at wavelengths of 308, 248, and 222nm. Using p-polarized light at all three wavelengths, we find that dissociation proceeds largely via the Q03 state, consistent with the picture from gas-phase photolysis. In contrast, using s-polarized light we find contributions from the Q13 state at λ =308nm, the Q11 state at λ =248nm, and the (E,1) state at λ =222nm—the latter being a state that has not been implicated in gas-phase studies of CH3I A-band photolysis. We also note the contribution to surface photodissociation from low-energy photoelectrons causing dissociative electron attachment to adsorbed CH3I and have identified the promotion of direct photodissociation pathways during λ =308nm photolysis.

  19. Photodissociation of metal-silicon clusters: encapsulated versus surface-bound metal.

    Science.gov (United States)

    Jaeger, J B; Jaeger, T D; Duncan, M A

    2006-08-03

    Metal-silicon cluster cations of the form MSi(n)+ (M = Cu, Ag, Cr) are produced in a molecular beam with pulsed laser vaporization. These species are mass-selected in a reflectron time-of-flight spectrometer and studied with laser photodissociation at 532 and 355 nm. For the noble metals copper and silver, photodissociation of the n = 7 and 10 clusters proceeds primarily by the loss of metal atoms, indicating that the metal is not located within the interior of silicon cages, and that metal-silicon bonding is weaker than silicon-silicon bonding. Chromium-silicon clusters for n = 7 also lose primarily the metal atom, but at n = 15 and 16 these dissociate via the loss of silicon, producing smaller metal-silicon species. This behavior is consistent with stronger metal-silicon bonding and encapsulated metal structures, as suggested previously by theory. MSi6(+) cations are produced efficiently in all of these photodissociation processes, indicating that these species have enhanced stability compared to other small clusters. Improved values are obtained for the ionization potentials of Si7 and Si10.

  20. Semiclassical Wigner theory of photodissociation in three dimensions: Shedding light on its basis

    Energy Technology Data Exchange (ETDEWEB)

    Arbelo-González, W. [Max Planck Institut für Kohlenforschung, Mülheim an der Ruhr (Germany); CNRS, Institut des Sciences Moléculaires, UMR 5255, 33405 Talence (France); Université Bordeaux, Institut des Sciences Moléculaires, UMR 5255, 33405 Talence (France); Bonnet, L., E-mail: claude-laurent.bonnet@u-bordeaux.fr [CNRS, Institut des Sciences Moléculaires, UMR 5255, 33405 Talence (France); Université Bordeaux, Institut des Sciences Moléculaires, UMR 5255, 33405 Talence (France); García-Vela, A. [Instituto de Física Fundamental, C.S.I.C., Serrano 123, 28006 Madrid (Spain)

    2015-04-07

    The semiclassical Wigner theory (SCWT) of photodissociation dynamics, initially proposed by Brown and Heller [J. Chem. Phys. 75, 186 (1981)] in order to describe state distributions in the products of direct collinear photodissociations, was recently extended to realistic three-dimensional triatomic processes of the same type [Arbelo-González et al., Phys. Chem. Chem. Phys. 15, 9994 (2013)]. The resulting approach, which takes into account rotational motions in addition to vibrational and translational ones, was applied to a triatomic-like model of methyl iodide photodissociation and its predictions were found to be in nearly quantitative agreement with rigorous quantum results, but at a much lower computational cost, making thereby SCWT a potential tool for the study of polyatomic reaction dynamics. Here, we analyse the main reasons for this agreement by means of an elementary model of fragmentation explicitly dealing with the rotational motion only. We show that our formulation of SCWT makes it a semiclassical approximation to an approximate planar quantum treatment of the dynamics, both of sufficient quality for the whole treatment to be satisfying.

  1. Study of the interaction of trivalent actinide and lanthanide ions with human serum transferrin by means of time-resolved laser-fluorescence spectroscopy; Untersuchung der Wechselwirkung trivalenter Actinid- und Lanthanidionen mit humanem Serumtransferrin mittels zeitaufgeloester Laserfluoreszenzspektroskopie

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Nicole

    2015-04-27

    In the present work the complexation of Cm(III), Eu(III) and Am(III) with human serum transferrin is studied. The aim of this work was the identification and the spectroscopic and thermodynamic characterization of An(III) and Ln(III) transferrin complex species. Different speciation methods, such as time-resolved laser fluorescence spectroscopy (TRLFS), luminescence spectroscopy and EXAFS (Extended X-Ray Absorption Fine Structure) spectroscopy were applied. Using TRLFS two unambiguously different Cm(III) transferrin species were identified for the first time. In the pH range from 3.5 to 9.7 the Cm(III) transferrin species I is formed revealing complexation of the metal ion at a nonspecific site of the protein surface. In case of the Cm(III) transferrin species II Cm(III) is bound at the Fe(III) binding site of the protein resulting in a 4-fold coordination via amino acid groups of the protein (His, Asp, 2 x Tyr) and coordination of two water molecules and three additional ligands, e.g. OH{sup -} or CO{sub 3}{sup 2-}. Due to the kinetic and thermodynamic differences of the binding sites of the N- and C-lobe, the experimental conditions ensure exclusive coordination of Cm(III) at the C-terminal binding site. In addition to the complexation studies of Cm(III) with transferrin, the interaction with the recombinant N-lobe of human serum transferrin (hTf/2N) as a model component for the transferrin N-lobe was investigated. At pH≥7.4 a Cm(III) hTf/2N species with Cm(III) bound at the Fe(III) binding site is formed which is comparable to the Cm(III) transferrin species II. An increase of the temperature from room temperature (T=296 K) to physiological temperature (T=310 K) favors the complexation of Cm(III) with both transferrin and hTf/2N. The complexation of Cm(III) with transferrin was investigated at three different carbonate concentrations (c(carbonate){sub tot}=0 mM, 0,23 mM und 25 mM (physiological carbonate concentration)). An increase of the total carbonate

  2. Photodissociation Region Models of Photoevaporating Circumstellar Disks and Application to the Proplyds in Orion

    Science.gov (United States)

    Störzer, H.; Hollenbach, D.

    1999-04-01

    We have modeled the neutral flows emerging from circumstellar disks or small clumps of size r0 illuminated by an external source of ultraviolet radiation. The models are applied to the disks (proplyds) in the Orion Nebula, most of which are illuminated by θ1C Ori. Our models improve upon the simpler models of Johnstone, Hollenbach, & Ballyby including the results of both equilibrium and nonequilibrium photodissociation region (PDR) codes, and by treating the flow speed off the disk surface in a more consistent manner. We present a study that delineates the parameter space (G0, r0, and σext) in which far-ultraviolet (FUV)-dominated, as opposed to extreme-ultraviolet (EUV)-dominated, flows exist. G0 is the FUV (6 eVincident on the neutral flow at the ionization front (IF), and σext is the dust FUV extinction cross section per H nucleus in the flow region. FUV-dominated flows are extended with sizes of the IF rIF>~2r0, have a shock between the disk surface and IF, and the mass-loss rates are determined by FUV photons. For σext=8×10-22 cm2 and a UV source similar to θ1 C Ori, the FUV-dominated region extends from G0~5×104 to G0~2×107 (or distances from θ1 C Ori of 0.3-0.01 pc), for disk or clump size of r0~1014-1015 cm. Outside this parameter space, hydrogen-ionizing EUV photons dominate the photoevaporation, and the IF is close to the disk surface (rIFmass-loss rates are roughly 10-7 Msolar yr-1. We have determined the disk masses for circular and radial proplyd orbits. For circular orbits around θ1C Ori, the disk masses range between 0.005 and 0.04 (ti/105 yr) Msolar, where ti is the illumination timescale. Comparison with millimeter observations of the disk masses (mass and shrink is ~105 yr. If the disks cross the Trapezium cluster on radial orbits, the proplyd masses range between 0.002 and 0.01 Msolar. For radial orbits, the lifetime of the proplyds can be as large as the age of the Orion Cluster (~1 Myr), and θ1C Ori can be significantly older than

  3. Selective phosphatidylcholine double bond fragmentation and localisation using Paternò-Büchi reactions and ultraviolet photodissociation.

    Science.gov (United States)

    Wäldchen, Fabian; Becher, Simon; Esch, Patrick; Kompauer, Mario; Heiles, Sven

    2017-12-04

    The effect of double bond functionalisation for selective double bond localisation by ultraviolet photodissociation of phosphatidylcholines is investigated. Paternò-Büchi reactions in nanoESI emitter tips enable attachment of acetophenone to double bonds of unsaturated phosphatidylcholines after 100 s of 254 nm light irradiation with about 50-80% reaction yield. Functionalized phosphatidylcholines dissociate upon 266 nm irradiation yielding double bond selective fragment ions in contrast to results for ultraviolet photodissociation of unmodified lipids. Ultraviolet photodissociation of Paternò-Büchi modified lipids results in a selectivity increase of up to 2.2 towards double bond localisation compared collision-induced dissociation experiments. Double bond localisation is also possible with ultraviolet photodissociation when alkali metal ion attachment to Paternò-Büchi modified phosphatidylcholines occurs in contrast to classic collision-induced dissociation experiments. The developed methodology is used to differentiate lipid double bond isomers and applied to phosphatidylcholines from egg yolk to identify 15 phosphatidylcholines. Results from this study demonstrate that locally depositing energy in close vicinity to cleavable bonds via ultraviolet photodissociation can result in increased dissociation selectivity. This method can help to disentangle contributions from different structural elements in complex tandem mass spectra of lipids and aid to the structural characterization of phospholipids in a "top-down" approach.

  4. Enantiomeric Excess Determination for Monosaccharides Using Chiral Transmission to Cold Gas-Phase Tryptophan in Ultraviolet Photodissociation

    Science.gov (United States)

    Fujihara, Akimasa; Maeda, Naoto; Doan, Thuc N.; Hayakawa, Shigeo

    2017-02-01

    Chiral transmission between monosaccharides and amino acids via photodissociation in the gas phase was examined using a tandem mass spectrometer fitted with an electrospray ionization source and a cold ion trap in order to investigate the origin of the homochirality of biomolecules in molecular clouds. Ultraviolet photodissociation mass spectra of cold gas-phase noncovalent complexes of the monosaccharide enantiomers glucose (Glc) and galactose (Gal) with protonated l-tryptophan H+( l-Trp) were obtained by photoexcitation of the indole ring of l-Trp. l-Trp dissociated via Cα-Cβ bond cleavage when noncovalently complexed with d-Glc; however, no dissociation of l-Trp occurred in the homochiral H+( l-Trp)( l-Glc) noncovalent complex, where the energy absorbed by l-Trp was released through the evaporation of l-Glc. This enantioselective photodissociation of Trp was due to the transmission of chirality from Glc to Trp via photodissociation in the gas-phase noncovalent complexes, and was applied to the quantitative chiral analysis of monosaccharides. The enantiomeric excess of monosaccharides in solution could be determined by measuring the relative abundance of the two product ions in a single photodissociation mass spectrum of the cold gas-phase noncovalent complex with H+( l-Trp), and by referring to the linear relationships derived in this work.

  5. Time resolved fluorescence of naproxen in organogel medium

    Science.gov (United States)

    Burguete, M. Isabel; Izquierdo, M. Angeles; Galindo, Francisco; Luis, Santiago V.

    2008-07-01

    The interaction between non-steroidal anti-inflammatory drug naproxen and the self assembled fibrillar network created by a low molecular weight organogelator has been probed by means of time resolved fluorescence spectroscopy.

  6. Photodissociation of N-methylformamide isolated in solid parahydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Ruzi, Mahmut; Anderson, David T. [Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071 (United States)

    2012-11-21

    We report FTIR studies of the 193 nm photodecomposition of N-methylformamide (NMF) isolated in solid parahydrogen (pH{sub 2}) matrices at 1.9 K. By studying the detailed photokinetics we can distinguish between primary and secondary photoproducts. We observe single exponential decay of the NMF precursor upon irradiation and identify three competing primary dissociation channels: HCO + NHCH{sub 3}; H + CONHCH{sub 3}; and CO + CH{sub 3}NH{sub 2} with branching ratios of 0.46(7):0.032(8):0.51(6), respectively. Two of the primary photoproducts (NHCH{sub 3} and CONHCH{sub 3}) are observed for the first time using IR spectroscopy and assigned via ab initio calculations of the vibrational frequencies and intensities of these radicals. The dominant radical formation channel HCO + NHCH{sub 3} is consistent with efficient C-N peptide bond fission at this wavelength and escape of the nascent radical pair from the pH{sub 2} solvent cage. The significant branching 0.51(6) measured for the molecular channel CO + CH{sub 3}NH{sub 2} is unexpected and raises important questions about the details of the in situ photochemistry. Starting from the NMF precursor, we observe and characterize spectroscopically a wide variety of secondary photoproducts including CH{sub 2}NH, HCN, HNC, HNCO, CH{sub 3}NCO, CH{sub 4}, and NH{sub 3}.

  7. Laser detection of spin-polarized hydrogen from HCl and HBr photodissociation: comparison of H- and halogen-atom polarizations.

    Science.gov (United States)

    Sofikitis, Dimitris; Rubio-Lago, Luis; Bougas, Lykourgos; Alexander, Andrew J; Rakitzis, T Peter

    2008-10-14

    Thermal HCl and HBr molecules were photodissociated using circularly polarized 193 nm light, and the speed-dependent spin polarization of the H-atom photofragments was measured using polarized fluorescence at 121.6 nm. Both polarization components, described by the a(0)(1)(perpendicular) and Re[a(1)(1)(parallel, perpendicular)] parameters which arise from incoherent and coherent dissociation mechanisms, are measured. The values of the a(0)(1)(perpendicular) parameter, for both HCl and HBr photodissociation, are within experimental error of the predictions of both ab initio calculations and of previous measurements of the polarization of the halide cofragments. The experimental and ab initio theoretical values of the Re[a(1)(1)(parallel, perpendicular)] parameter show some disagreement, suggesting that further theoretical investigations are required. Overall, good agreement occurs despite the fact that the current experiments photodissociate molecules at 295 K, whereas previous measurements were conducted at rotational temperatures of about 15 K.

  8. Femtosecond photoelectron spectroscopy: a new tool for the study of anion dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Greenblatt, Benjamin J. [Univ. of California, Berkeley, CA (United States)

    1999-02-01

    A new experimental technique for the time-resolved study of anion reactions is presented. Using femtosecond laser pulses, which provide extremely fast (~100 fs) time resolution, in conjunction with photoelectron spectroscopy, which reveals differences between anion and neutral potential energy surfaces, a complex anion reaction can be followed from its inception through the formation of asymptotic products. Experimental data can be modeled quantitatively using established theoretical approaches, allowing for the refinement of potential energy surfaces as well as dynamical models. After a brief overview, a detailed account of the construction of the experimental apparatus is presented. Documentation of the data acquisition program is contained in the Appendix. The first experimental demonstration of the technique is then presented for I2- photodissociation, modeled using a simulation program which is also detailed in the Appendix. The investigation of I2- photodissociation in several size-selected I2-(Ar)n (n = 6-20) and I2-(CO2)n (n = 4-16) clusters forms the heart of the dissertation. In a series of chapters, the numerous effects of solvation on this fundamental bond-breaking reaction are explored, the most notable of which is the recombination of I2- on the ground $\\tilde{X}$(2Σu+) state in sufficiently large clusters. Recombination and trapping of I2- on the excited $\\tilde{A}$(2π3/2,g) state is also observed in both types of clusters. The studies have revealed electronic state transitions, the first step in recombination, on a ~500 fs to ~10 ps timescale. Accompanying the changes in electronic state is solvent reorganization, which occurs on a similar timescale. Over longer periods (~1 ps to >200 ps), energy is transferred from vibrationally

  9. A tunable mechanism to control photo-dissociation with invariant tori with variable energies

    Science.gov (United States)

    Forlevesi, M. D.; Egydio de Carvalho, R.; de Lima, E. F.

    2018-01-01

    In this work, we investigate the classical dynamics of a polar diatomic molecule under the action of a space and time-dependent laser field. In the absence of laser fields, the phase space consists of a bound and an unbound region divided by a separatrix. When an interacting laser field is present, some surviving invariant tori are deformed. Therefore, the initial conditions in the bound region which are over the surviving tori may visit the unbound region but still undergoing a bounded motion. Based on this analysis, we propose a mechanism to control the photo-dissociation process using the driven Morse oscillator as a model.

  10. Experimental Study of the Laser-Induced Oxyhemoglobin Photodissociation in Cutaneous Blood Vessels

    Directory of Open Access Journals (Sweden)

    Gisbrecht Alexander

    2015-11-01

    Full Text Available A new optical method for reduction of local tissue hypoxia is proposed. It is shown that this method of phototherapy allows the control of a local oxygen concentration in tissue. Different aspects of biomedical application of this phenomenon are discussed. The results of in vivo experimental investigation of the laser-induced photodissociation of oxyhemoglobin in cutaneous blood vessels and its role in tissue oxygenation are presented. The rates of oxygen saturation SpO2 in blood and their dependence on the wavelength of the transcutaneous laser irradiation have been experimentally measured.

  11. Quantum yields of the photodissociation of HbO2 in the visible and near IR spectral region

    Science.gov (United States)

    Mamilov, S. A.; Esman, S. S.; Asimov, M. M.; Gisbrecht, A. I.

    2015-01-01

    The efficiency of the laser radiation effect on the oxyhemoglobin in blood vessels and its dependence on the wavelength of the irradiation are investigated. In vivo experimental measurements of the quantum yield of the laser-induced photodissociation of oxyhemoglobin in cutaneous blood vessels in the visible spectral range are presented. The spectral effectiveness of the photodissociation approximately correlates with their absorption spectrum and the transmission spectrum of skin tissue. Different aspects of biomedical application of this phenomenon are discussed. Non-invasive three-wavelength technique for determination of oxyhemoglobin concentrations in blood is also developed.

  12. Spatially resolved analyses of uranium species using a coupled system made up of confocal laser-scanning microscopy (CLSM) and laser induced fluorescence spectroscopy (LIFS); Ortsaufgeloeste Analyse von Uranspezies mittels einem Gekoppelten System aus Konfokaler Laser-Scanning Mikroskopie (CLSM) und Laser Induzierter Fluoreszenzspektroskopie (LIFS)

    Energy Technology Data Exchange (ETDEWEB)

    Brockmann, S. [Verein fuer Kernverfahrenstechnik und Analytik Rossendorf e.V. (VKTA), Dresden (Germany); Grossmann, K.; Arnold, T. [Helmholtz-Zentrum Dresden-Rossendorf e.V. (Germany). Inst. fuer Ressourcenoekologie

    2014-01-15

    The fluorescent properties of uranium when excited by UV light are used increasingly for spectroscope analyses of uranium species within watery samples. Here, alongside the fluorescent properties of the hexavalent oxidation phases, the tetra and pentavalent oxidation phases also play an increasingly important role. The detection of fluorescent emission spectrums on solid and biological samples using (time-resolved) laser induced fluorescence spectroscopy (TRLFS or LIFS respectively) has, however, the disadvantage that no statements regarding the spatial localisation of the uranium can be made. However, particularly in complex, biological samples, such statements on the localisation of the uranium enrichment in the sample are desired, in order to e.g. be able to distinguish between intra and extra-cellular uranium bonds. The fluorescent properties of uranium (VI) compounds and minerals can also be used to detect their localisation within complex samples. So the application of fluorescent microscopic methods represents one possibility to localise and visualise uranium precipitates and enrichments in biological samples, such as biofilms or cells. The confocal laser-scanning microscopy (CLSM) is especially well suited to this purpose. Coupling confocal laser-scanning microscopy (CLSM) with laser induced fluorescence spectroscopy (LIFS) makes it possible to localise and visualise fluorescent signals spatially and three-dimensionally, while at the same time being able to detect spatially resolved, fluorescent-spectroscopic data. This technology is characterised by relatively low detection limits from up to 1.10{sup -6} M for uranium (VI) compounds within the confocal volume. (orig.)

  13. Precise and Rapid Detection of Optical Activity for Accumulative Femtosecond Spectroscopy

    Directory of Open Access Journals (Sweden)

    Nuernberger P.

    2013-03-01

    Full Text Available We present a fast and sensitive polarimeter combining common-path optical heterodyne interferometry and accumulative spectroscopy to detect rotatory power. The sensitivity of rotatory detection is determined to be 0.10 milli-degrees for a measurement time of only one second and an interaction length of 250 μm. Its suitability for femtosecond studies is demonstrated in a non-resonant two-photon photodissociation experiment.

  14. Subsequent radical fragmentation reactions of N, N-diethylamino-substituted azobenzene derivatives in a Fourier transform ion cyclotron resonance mass spectrometer using collision-induced dissociation and photodissociation.

    Science.gov (United States)

    Clemen, Martin; Grotemeyer, Jürgen

    2017-12-01

    The fragmentation behavior of N, N-diethylamino-substituted azobenzene derivatives is investigated by high-resolving mass spectrometry using a Fourier transform ion cyclotron resonance mass spectrometer. Former investigations by photodissociation as well as collision-induced dissociation experiments used to induce a loss of C 3 H 8 from the diethylamino group. The position of the additional proton in [M + H] + ions is important due to the sequences of radical fragmentation reactions. Two possibilities arise. First, a charge is located at the azo group leading to a methyl radical loss. The second possibility is that the charge has been located on the aniline nitrogen of the molecule resulting in an ethyl radical loss. Only o-ethyl red has shown the overall loss of C 3 H 8 in a two-step radical reaction mechanism. Nevertheless, p-ethyl red and ethyl yellow have shown systematic fragmentation reactions as well. Loss of C 3 H 8 has not been likely regarding both these molecules. All experimental findings together with quantum chemical calculations as well as kinetic calculations support the proposed fragmentation mechanisms of the three azo dyes.

  15. Ultraviolet, Infrared, and High-Low Energy Photodissociation of Post-Translationally Modified Peptides

    Science.gov (United States)

    Halim, Mohammad A.; MacAleese, Luke; Lemoine, Jérôme; Antoine, Rodolphe; Dugourd, Philippe; Girod, Marion

    2017-10-01

    Mass spectrometry-based methods have made significant progress in characterizing post-translational modifications in peptides and proteins; however, certain aspects regarding fragmentation methods must still be improved. A good technique is expected to provide excellent sequence information, locate PTM sites, and retain the labile PTM groups. To address these issues, we investigate 10.6 μm IRMPD, 213 nm UVPD, and combined UV and IR photodissociation, known as HiLoPD (high-low photodissociation), for phospho-, sulfo-, and glyco-peptide cations. IRMPD shows excellent backbone fragmentation and produces equal numbers of N- and C-terminal ions. The results reveal that 213 nm UVPD and HiLoPD methods can provide diverse backbone fragmentation producing a/x, b/y, and c/z ions with excellent sequence coverage, locate PTM sites, and offer reasonable retention efficiency for phospho- and glyco-peptides. Excellent sequence coverage is achieved for sulfo-peptides and the position of the SO3 group can be pinpointed; however, widespread SO3 losses are detected irrespective of the methods used herein. Based on the overall performance achieved, we believe that 213 nm UVPD and HiLoPD can serve as alternative options to collision activation and electron transfer dissociations for phospho- and glyco-proteomics.

  16. A 10-watt CW photodissociation laser with IODO perfluoro-tert-butane

    Science.gov (United States)

    Tabibi, Bagher; Venable, Demetrius D.

    1989-01-01

    NASA has been investigating the feasibility of direct solar-pumped laser systems for power beaming in space. Among the various gas, liquid, and solid laser systems being proposed as candidates for solar-pumped lasers, the iodine photodissociation gas laser has demonstrated its potential for space application. Of immediate attention is the determination of system requirements and the choice of lasants to improve the system efficiency. The development of an efficient iodine laser depends on the availability of a suitable iodide which has favorable laser kinetics, chemically reversibility, and solar energy utilization. Among the various alkyliodide lasants comparatively tested in a long-pulse system, perfluoro- tert-butyl iodide, T-C4F9I, was found to be the best. However, the operating conditions for the laser medium in a continuously pumped and continuous-flow iodine laser differ considerably from those in the pulsed regime. The results of the continuous wave (CW)) laser performance from t-C4F9I are reported. Perfluoro- n-propyl iodide, n-C3F7I is used for comparison because of its universal use in photodissociation iodine lasers.

  17. Development of laser-ion beam photodissociation methods. Progress report, December 1991--November 1994

    Energy Technology Data Exchange (ETDEWEB)

    Russell, D.H.

    1994-06-01

    This project emphasizes the development of laser mass spectrometry methods for fundamental and applied studies of gas-phase processes. The current studies are focussed on the photochemistry and photophysics of peptides and other biological molecules. Matrix-assisted laser desorption ionization (MALDI) is used to produce ions that are subsequently subjected to photoexcitation and dissociation. MALDI is still very much in the developmental stages, thus a significant portion of this research focusses on fundamental studies of the MALDI ion formation/energy transfer process. The authors view is that excited state H+-transfer reactions play an important role in MALDI, consequently a significant portion of their research activities are focussed on such studies. Fundamental studies of the role of the matrix in MALDI are an integral part of this project. A new MALDI experiment, MALDI of aerosol particles generated from solutions, has been demonstrated and new developmental research in this area is planned. The authors are also actively pursuing a research program on gas-phase H+-transfer processes that mimic the MALDI process. In addition, they are developing photodissociation experiments, based on tandem time-of-flight mass spectrometers, for structural characterization of complex organic molecules. The photodissociation studies use MALDI as the ionization method. These research areas involve the development of new instrumentation, new instrument methodologies, and data processing.

  18. Vibronic couplings in the C 1s-Rydberg and valence excitations of C{sub 2}H{sub 2}, revealed by angle-resolved photoion yield spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Masuda, Suomi [Graduate School for Advanced Studies, Institute for Molecular Science, Okazaki 444-8585 (Japan); Gejo, Tatsuo [University of Hyogo, Kamigori-cho 678-1297 (Japan); Hiyama, Miyabi [Graduate School for Advanced Studies, Institute for Molecular Science, Okazaki 444-8585 (Japan); Kosugi, Nobuhiro [Graduate School for Advanced Studies, Institute for Molecular Science, Okazaki 444-8585 (Japan)]. E-mail: kosugi@ims.ac.jp

    2005-06-15

    High resolution angle-resolved ion-yield spectra are reported for the C1s->Rydberg excitations of acetylene. Vibronic coupling features are found in the energy regions of 3s{sigma}{sub g}/3{sigma}{sub u}*, 3p{sigma}{sub u}, and near threshold. By increasing retarding potentials for ion detectors to select more energetic fragmentation channels, the feature observed in the 90{sup o} direction is assigned to the C1s->3{sigma}{sub u}* valence state coupled with the C1s->1{pi}{sub g}* excited state via cis bending ({pi}{sub u}) vibrational mode.

  19. Further studies into the photodissociation pathways of 2-bromo-2-nitropropane and the dissociation channels of the 2-nitro-2-propyl radical intermediate.

    Science.gov (United States)

    Booth, Ryan S; Brynteson, Matthew D; Lee, Shih-Huang; Lin, J J; Butler, Laurie J

    2014-07-03

    These experiments investigate the decomposition mechanisms of geminal dinitro energetic materials by photolytically generating two key intermediates: 2-nitropropene and 2-nitro-2-propyl radicals. To characterize the unimolecular dissociation of each intermediate, we form them under collision-free conditions using the photodissociation of 2-bromo-2-nitropropane; the intermediates are formed at high internal energies and undergo a multitude of subsequent unimolecular dissociation events investigated herein. Complementing our prior work on this system, the new data obtained with a crossed-laser molecular beam scattering apparatus with VUV photoionization detection at Taiwan's National Synchrotron Radiation Research Center (NSRRC) and new velocity map imaging data better characterize two of the four primary 193 nm photodissociation channels. The C-Br photofission channel forming the 2-nitro-2-propyl radicals has a trimodal recoil kinetic energy distribution, P(ET), suggesting that the 2-nitro-2-propyl radicals are formed both in the ground electronic state and in two low-lying excited electronic states. The new data also revise the HBr photoelimination P(ET) forming the 2-nitropropene intermediate. We then resolved the multiple competing unimolecular dissociation channels of each photoproduct, confirming many of the channels detected in the prior study, but not all. The new data detected HONO product at m/e = 47 using 11.3 eV photoionization from both intermediates; analysis of the momentum-matched products allows us to establish that both 2-nitro-2-propyl → HONO + CH3CCH2 and 2-nitropropene → HONO + C3H4 occur. Photoionization at 9.5 eV allowed us to detect the mass 71 coproduct formed in OH loss from 2-nitro-2-propyl; a channel missed in our prior study. The dynamics of the highly exothermic 2-nitro-2-propyl → NO + acetone dissociation is also better characterized; it evidences a sideways scattered angular distribution. The detection of some stable 2

  20. Control of HOD photodissociation dynamics via bond-selective infrared multiphoton excitation and a femtosecond ultraviolet laser pulse

    DEFF Research Database (Denmark)

    Amstrup, Bjarne; Henriksen, Niels Engholm

    1992-01-01

    A scheme for controlling the outcome of a photodissociation process is studied. It involves two lasers—one intense laser in the infrared region which is supposed to excite a particular bond in the electronic ground state, and a second short laser pulse in the ultraviolet region which, at the righ...