WorldWideScience

Sample records for resolved in-situ measurements

  1. In situ, rapid, and temporally resolved measurements of cellulase adsorption onto lignocellulosic substrates by UV-vis spectrophotometry

    Science.gov (United States)

    Hao Liu; J. Y. Zhu; X. S. Chai

    2011-01-01

    This study demonstrated two in situ UV-vis spectrophotometric methods for rapid and temporally resolved measurements of cellulase adsorption onto cellulosic and lignocellulosic substrates during enzymatic hydrolysis. The cellulase protein absorption peak at 280 nm was used for quantification. The spectral interferences from light scattering by small fibers (fines) and...

  2. Reactor for in situ measurements of spatially resolved kinetic data in heterogeneous catalysis

    Science.gov (United States)

    Horn, R.; Korup, O.; Geske, M.; Zavyalova, U.; Oprea, I.; Schlögl, R.

    2010-06-01

    The present work describes a reactor that allows in situ measurements of spatially resolved kinetic data in heterogeneous catalysis. The reactor design allows measurements up to temperatures of 1300 °C and 45 bar pressure, i.e., conditions of industrial relevance. The reactor involves reactants flowing through a solid catalyst bed containing a sampling capillary with a side sampling orifice through which a small fraction of the reacting fluid (gas or liquid) is transferred into an analytical device (e.g., mass spectrometer, gas chromatograph, high pressure liquid chromatograph) for quantitative analysis. The sampling capillary can be moved with μm resolution in or against flow direction to measure species profiles through the catalyst bed. Rotation of the sampling capillary allows averaging over several scan lines. The position of the sampling orifice is such that the capillary channel through the catalyst bed remains always occupied by the capillary preventing flow disturbance and fluid bypassing. The second function of the sampling capillary is to provide a well which can accommodate temperature probes such as a thermocouple or a pyrometer fiber. If a thermocouple is inserted in the sampling capillary and aligned with the sampling orifice fluid temperature profiles can be measured. A pyrometer fiber can be used to measure the temperature profile of the solid catalyst bed. Spatial profile measurements are demonstrated for methane oxidation on Pt and methane oxidative coupling on Li/MgO, both catalysts supported on reticulated α -Al2O3 foam supports.

  3. Time Resolved Deposition Measurements in NSTX

    International Nuclear Information System (INIS)

    Skinner, C.H.; Kugel, H.; Roquemore, A.L.; Hogan, J.; Wampler, W.R.

    2004-01-01

    Time-resolved measurements of deposition in current tokamaks are crucial to gain a predictive understanding of deposition with a view to mitigating tritium retention and deposition on diagnostic mirrors expected in next-step devices. Two quartz crystal microbalances have been installed on NSTX at a location 0.77m outside the last closed flux surface. This configuration mimics a typical diagnostic window or mirror. The deposits were analyzed ex-situ and found to be dominantly carbon, oxygen, and deuterium. A rear facing quartz crystal recorded deposition of lower sticking probability molecules at 10% of the rate of the front facing one. Time resolved measurements over a 4-week period with 497 discharges, recorded 29.2 (micro)g/cm 2 of deposition, however surprisingly, 15.9 (micro)g/cm 2 of material loss occurred at 7 discharges. The net deposited mass of 13.3 (micro)g/cm 2 matched the mass of 13.5 (micro)g/cm 2 measured independently by ion beam analysis. Monte Carlo modeling suggests that transient processes are likely to dominate the deposition

  4. Early stages of spinodal decomposition in Fe-Cr resolved by in-situ small-angle neutron scattering

    Science.gov (United States)

    Hörnqvist, M.; Thuvander, M.; Steuwer, A.; King, S.; Odqvist, J.; Hedström, P.

    2015-02-01

    In-situ, time-resolved small-angle neutron scattering (SANS) investigations of the early stages of the spinodal decomposition process in Fe-35Cr were performed at 773 and 798 K. The kinetics of the decomposition, both in terms of characteristic distance and peak intensity, followed a power-law behaviour from the start of the heat treatment (a'= 0.10-0.11 and a″ = 0.67-0.86). Furthermore, the method allows tracking of the high-Q slope, which is a sensitive measure of the early stages of decomposition. Ex-situ SANS and atom probe tomography were used to verify the results from the in-situ investigations. Finally, the in-situ measurement of the evolution of the characteristic distance at 773 K was compared with the predictions from the Cahn-Hilliard-Cook model, which showed good agreement with the experimental data (a'= 0.12-0.20 depending on the assumed mobility).

  5. Early stages of spinodal decomposition in Fe–Cr resolved by in-situ small-angle neutron scattering

    International Nuclear Information System (INIS)

    Hörnqvist, M.; Thuvander, M.; Steuwer, A.; King, S.; Odqvist, J.; Hedström, P.

    2015-01-01

    In-situ, time-resolved small-angle neutron scattering (SANS) investigations of the early stages of the spinodal decomposition process in Fe–35Cr were performed at 773 and 798 K. The kinetics of the decomposition, both in terms of characteristic distance and peak intensity, followed a power-law behaviour from the start of the heat treatment (a′   = 0.10–0.11 and a″ = 0.67–0.86). Furthermore, the method allows tracking of the high–Q slope, which is a sensitive measure of the early stages of decomposition. Ex-situ SANS and atom probe tomography were used to verify the results from the in-situ investigations. Finally, the in-situ measurement of the evolution of the characteristic distance at 773 K was compared with the predictions from the Cahn-Hilliard-Cook model, which showed good agreement with the experimental data (a′   = 0.12–0.20 depending on the assumed mobility)

  6. Early stages of spinodal decomposition in Fe–Cr resolved by in-situ small-angle neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Hörnqvist, M., E-mail: magnus.hornqvist@chalmers.se; Thuvander, M. [Department of Applied Physics, Chalmers University of Technology, Fysikgränd 3, S-412 96 Gothenburg (Sweden); Steuwer, A. [MAX IV Laboratory, Lund University, S-221 00 Lund (Sweden); Nelson Mandela Metropolitan University, Gardham Ave., Port Elizabeth 6031 (South Africa); King, S. [ISIS Facility, Rutherford Appleton Laboratory, Chilton, OX11 0QX Didcot (United Kingdom); Odqvist, J.; Hedström, P. [Materials Science and Engineering, KTH Royal Institute of Technology, Brinellvägen 23, S-100 44 Stockholm (Sweden)

    2015-02-09

    In-situ, time-resolved small-angle neutron scattering (SANS) investigations of the early stages of the spinodal decomposition process in Fe–35Cr were performed at 773 and 798 K. The kinetics of the decomposition, both in terms of characteristic distance and peak intensity, followed a power-law behaviour from the start of the heat treatment (a′{sup  }= 0.10–0.11 and a″ = 0.67–0.86). Furthermore, the method allows tracking of the high–Q slope, which is a sensitive measure of the early stages of decomposition. Ex-situ SANS and atom probe tomography were used to verify the results from the in-situ investigations. Finally, the in-situ measurement of the evolution of the characteristic distance at 773 K was compared with the predictions from the Cahn-Hilliard-Cook model, which showed good agreement with the experimental data (a′{sup  }= 0.12–0.20 depending on the assumed mobility)

  7. Nitrogen budget of the northwestern Black Sea shelf inferred from modeling studies and in situ benthic measurements

    NARCIS (Netherlands)

    Grégoire, M.; Friedrich, J.

    2004-01-01

    A 3D eddy-resolving coupled biogeochemical-hydrodynamical model and in situ observations are used to investigate benthic processes on the Black Sea's NW shelf. Measurements of benthic fluxes (oxygen, nutrients, redox compounds) with in situ flux chambers are analyzed in regard to sediment dynamics

  8. In situ distributed diagnostics of flowable electrode systems: resolving spatial and temporal limitations.

    Science.gov (United States)

    Dennison, C R; Gogotsi, Y; Kumbur, E C

    2014-09-14

    In this study, we have developed an in situ distributed diagnostics tool to investigate spatial and temporal effects in electrochemical systems based on flowable electrodes. Specifically, an experimental approach was developed that enables spatially-resolved voltage measurements to be obtained in situ, in real-time. To extract additional data from these distributed measurements, an experimentally-parameterized equivalent circuit model with a new 'flow capacitor' circuit element was developed to predict the distributions of various system parameters during operation. As a case study, this approach was applied to investigate the behavior of the suspension electrodes used in an electrochemical flow capacitor under flowing and static conditions. The volumetric capacitance is reduced from 15.6 F ml(-1) to 1.1 F ml(-1) under flowing conditions. Results indicate that the majority of the charging in suspension electrodes occurs within ∼750 μm of the current collectors during flow, which gives rise to significant state-of-charge gradients across the cell, as well as underutilization of the available active material. The underlying cause of this observation is attributed to the relatively high electrical resistance of the slurry coupled with a stratified charging regime and insufficient residence time. The observations highlight the need to develop more conductive slurries and to design cells with reduced charge transport lengths.

  9. In situ Measurements of Phytoplankton Fluorescence Using Low Cost Electronics

    Directory of Open Access Journals (Sweden)

    Dana L. Wright

    2013-06-01

    Full Text Available Chlorophyll a fluorometry has long been used as a method to study phytoplankton in the ocean. In situ fluorometry is used frequently in oceanography to provide depth-resolved estimates of phytoplankton biomass. However, the high price of commercially manufactured in situ fluorometers has made them unavailable to some individuals and institutions. Presented here is an investigation into building an in situ fluorometer using low cost electronics. The goal was to construct an easily reproducible in situ fluorometer from simple and widely available electronic components. The simplicity and modest cost of the sensor makes it valuable to students and professionals alike. Open source sharing of architecture and software will allow students to reconstruct and customize the sensor on a small budget. Research applications that require numerous in situ fluorometers or expendable fluorometers can also benefit from this study. The sensor costs US$150.00 and can be constructed with little to no previous experience. The sensor uses a blue LED to excite chlorophyll a and measures fluorescence using a silicon photodiode. The sensor is controlled by an Arduino microcontroller that also serves as a data logger.

  10. In-situ straining and time-resolved electron tomography data acquisition in a transmission electron microscope.

    Science.gov (United States)

    Hata, S; Miyazaki, S; Gondo, T; Kawamoto, K; Horii, N; Sato, K; Furukawa, H; Kudo, H; Miyazaki, H; Murayama, M

    2017-04-01

    This paper reports the preliminary results of a new in-situ three-dimensional (3D) imaging system for observing plastic deformation behavior in a transmission electron microscope (TEM) as a directly relevant development of the recently reported straining-and-tomography holder [Sato K et al. (2015) Development of a novel straining holder for transmission electron microscopy compatible with single tilt-axis electron tomography. Microsc. 64: 369-375]. We designed an integrated system using the holder and newly developed straining and image-acquisition software and then developed an experimental procedure for in-situ straining and time-resolved electron tomography (ET) data acquisition. The software for image acquisition and 3D visualization was developed based on the commercially available ET software TEMographyTM. We achieved time-resolved 3D visualization of nanometer-scale plastic deformation behavior in a Pb-Sn alloy sample, thus demonstrating the capability of this system for potential applications in materials science. © The Author 2016. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Underwater in situ measurements of radionuclides in selected submarine groundwater springs, Mediterranean sea

    International Nuclear Information System (INIS)

    Tsabaris, C.; Scholten, J.; Karageorgis, A. P.; Comanducci, J. F.; Georgopoulos, D.; Liong Wee Kwong, L.; Patiris, D. L.; Papathanassiou, E.

    2010-01-01

    The application of the in situ measurement system 'KATERINA' for monitoring of radon progenies in submarine groundwater discharge (SGD) was investigated at different locations in the Mediterranean Sea (Chalkida, Stoupa, Korfos and Cabbe). At Chalkida and Stoupa radon progenies concentration exhibited almost constant values of 1.2±0.1 and 2.5±0.2 Bq l -1 , respectively. At Korfos these activities ranged between 1.4±0.1 and 2.3±0.2 Bq l -1 exhibiting inverse relationship with salinity. At Cabbe the in situ measured data were compared with radon measurements obtained by liquid scintillation counter. The system also resolved radon progeny variations of SGD on time scales above 1 h. The radioactivity levels of radon progenies from all sites were found considerably lower (approximately 2 orders of magnitude) than the commonly accepted limits for radon in drinking water. (authors)

  12. The Oxford-Diamond In Situ Cell for studying chemical reactions using time-resolved X-ray diffraction

    Science.gov (United States)

    Moorhouse, Saul J.; Vranješ, Nenad; Jupe, Andrew; Drakopoulos, Michael; O'Hare, Dermot

    2012-08-01

    A versatile, infrared-heated, chemical reaction cell has been assembled and commissioned for the in situ study of a range of chemical syntheses using time-resolved energy-dispersive X-ray diffraction (EDXRD) on Beamline I12 at the Diamond Light Source. Specialized reactor configurations have been constructed to enable in situ EDXRD investigation of samples under non-ambient conditions. Chemical reactions can be studied using a range of sample vessels such as alumina crucibles, steel hydrothermal autoclaves, and glassy carbon tubes, at temperatures up to 1200 °C.

  13. HSRL-2 aerosol optical measurements and microphysical retrievals vs. airborne in situ measurements during DISCOVER-AQ 2013: an intercomparison study

    Directory of Open Access Journals (Sweden)

    P. Sawamura

    2017-06-01

    Full Text Available We present a detailed evaluation of remotely sensed aerosol microphysical properties obtained from an advanced, multi-wavelength high-spectral-resolution lidar (HSRL-2 during the 2013 NASA DISCOVER-AQ field campaign. Vertically resolved retrievals of fine-mode aerosol number, surface-area, and volume concentration as well as aerosol effective radius are compared to 108 collocated, airborne in situ measurement profiles in the wintertime San Joaquin Valley, California, and in summertime Houston, Texas. An algorithm for relating the dry in situ aerosol properties to those obtained by the HSRL at ambient relative humidity is discussed. We show that the HSRL-2 retrievals of ambient fine-mode aerosol surface-area and volume concentrations agree with the in situ measurements to within 25 and 10 %, respectively, once hygroscopic growth adjustments have been applied to the dry in situ data. Despite this excellent agreement for the microphysical properties, extinction and backscatter coefficients at ambient relative humidity derived from the in situ aerosol measurements using Mie theory are consistently smaller than those measured by the HSRL, with average differences of 31 ± 5 % and 53 ± 11 % for California and Texas, respectively. This low bias in the in situ estimates is attributed to the presence of coarse-mode aerosol that are detected by HSRL-2 but that are too large to be well sampled by the in situ instrumentation. Since the retrieval of aerosol volume is most relevant to current regulatory efforts targeting fine particle mass (PM2. 5, these findings highlight the advantages of an advanced 3β + 2α HSRL for constraining the vertical distribution of the aerosol volume or mass loading relevant for air quality.

  14. Fixed target matrix for femtosecond time-resolved and in situ serial micro-crystallography

    Directory of Open Access Journals (Sweden)

    C. Mueller

    2015-09-01

    Full Text Available We present a crystallography chip enabling in situ room temperature crystallography at microfocus synchrotron beamlines and X-ray free-electron laser (X-FEL sources. Compared to other in situ approaches, we observe extremely low background and high diffraction data quality. The chip design is robust and allows fast and efficient loading of thousands of small crystals. The ability to load a large number of protein crystals, at room temperature and with high efficiency, into prescribed positions enables high throughput automated serial crystallography with microfocus synchrotron beamlines. In addition, we demonstrate the application of this chip for femtosecond time-resolved serial crystallography at the Linac Coherent Light Source (LCLS, Menlo Park, California, USA. The chip concept enables multiple images to be acquired from each crystal, allowing differential detection of changes in diffraction intensities in order to obtain high signal-to-noise and fully exploit the time resolution capabilities of XFELs.

  15. In Situ TEM Electrical Measurements

    DEFF Research Database (Denmark)

    Canepa, Silvia; Alam, Sardar Bilal; Ngo, Duc-The

    2016-01-01

    understanding of complex physical and chemical interactions in the pursuit to optimize nanostructure function and device performance. Recent developments of sample holder technology for TEM have enabled a new field of research in the study of functional nanomaterials and devices via electrical stimulation...... influence the sample by external stimuli, e.g. through electrical connections, the TEM becomes a powerful laboratory for performing quantitative real time in situ experiments. Such TEM setups enable the characterization of nanostructures and nanodevices under working conditions, thereby providing a deeper...... and measurement of the specimen. Recognizing the benefits of electrical measurements for in situ TEM, many research groups have focused their effort in this field and some of these methods have transferred to ETEM. This chapter will describe recent advances in the in situ TEM investigation of nanostructured...

  16. In-situ radiation measurements of the C1 and C2 waste storage tank vault

    International Nuclear Information System (INIS)

    Yong, L.K.; Womble, P.C.; Weems, L.D.

    1996-09-01

    In August of 1996, the Applied Radiation Measurements Department (ARMD) of the Waste Management and Remedial Action Division (WMRAD) at Oak Ridge National Laboratory (ORNL) was tasked with characterizing the radiation fields in the C 1 and C 2 Liquid Low Level Waste (LLLW) tank vault located at ORNL. These in-situ measurements were made to provide data for evaluating the potential radiological conditions for personnel working in or around the vault during future planned activities. This report describes the locations where measurements were made, the types of radiation detection instruments used, the methods employed, the problems encountered and resolved, and discusses the results obtained

  17. Grain-resolved elastic strains in deformed copper measured by three-dimensional X-ray diffraction

    DEFF Research Database (Denmark)

    Oddershede, Jette; Schmidt, Søren; Poulsen, Henning Friis

    2011-01-01

    This X-ray diffraction study reports the grain-resolved elastic strains in about 1000 randomly oriented grains embedded in a polycrystalline copper sample. Diffraction data were collected in situ in the undeformed state and at a plastic strain of 1.5% while the sample was under tensile load...

  18. Multiple-reflection time-of-flight mass spectrometry for in situ applications

    International Nuclear Information System (INIS)

    Dickel, T.; Plaß, W.R.; Lang, J.; Ebert, J.; Geissel, H.; Haettner, E.; Jesch, C.; Lippert, W.; Petrick, M.; Scheidenberger, C.; Yavor, M.I.

    2013-01-01

    Highlights: • MR-TOF-MS: huge potential in chemistry, medicine, space science, homeland security. • Compact MR-TOF-MS (length ∼30 cm) with very high mass resolving powers (10 5 ). • Combination of high resolving power (>10 5 ), mobility, API for in situ measurements. • Envisaged applications of mobile MR-TOF-MS. -- Abstract: Multiple-reflection time-of-flight mass spectrometers (MR-TOF-MS) have recently been installed at different low-energy radioactive ion beam facilities. They are used as isobar separators with high ion capacity and as mass spectrometers with high mass resolving power and accuracy for short-lived nuclei. Furthermore, MR-TOF-MS have a huge potential for applications in other fields, such as chemistry, biology, medicine, space science, and homeland security. The development, commissioning and results of an MR-TOF-MS is presented, which serves as proof-of-principle to show that very high mass resolving powers (∼10 5 ) can be achieved in a compact device (length ∼30 cm). Based on this work, an MR-TOF-MS for in situ application has been designed. For the first time, this device combines very high mass resolving power (>10 5 ), mobility, and an atmospheric pressure inlet in one instrument. It will enable in situ measurements without sample preparation at very high mass accuracy. Envisaged applications of this mobile MR-TOF-MS are discussed

  19. Multiple-reflection time-of-flight mass spectrometry for in situ applications

    Energy Technology Data Exchange (ETDEWEB)

    Dickel, T., E-mail: t.dickel@gsi.de [II. Physikalisches Institut, Justus-Liebig-Universität Gießen, 35392 Gießen (Germany); GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt (Germany); Plaß, W.R. [II. Physikalisches Institut, Justus-Liebig-Universität Gießen, 35392 Gießen (Germany); GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt (Germany); Lang, J.; Ebert, J. [II. Physikalisches Institut, Justus-Liebig-Universität Gießen, 35392 Gießen (Germany); Geissel, H.; Haettner, E. [II. Physikalisches Institut, Justus-Liebig-Universität Gießen, 35392 Gießen (Germany); GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt (Germany); Jesch, C.; Lippert, W.; Petrick, M. [II. Physikalisches Institut, Justus-Liebig-Universität Gießen, 35392 Gießen (Germany); Scheidenberger, C. [II. Physikalisches Institut, Justus-Liebig-Universität Gießen, 35392 Gießen (Germany); GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt (Germany); Yavor, M.I. [Institute for Analytical Instrumentation, Russian Academy of Sciences, 190103 St. Petersburg (Russian Federation)

    2013-12-15

    Highlights: • MR-TOF-MS: huge potential in chemistry, medicine, space science, homeland security. • Compact MR-TOF-MS (length ∼30 cm) with very high mass resolving powers (10{sup 5}). • Combination of high resolving power (>10{sup 5}), mobility, API for in situ measurements. • Envisaged applications of mobile MR-TOF-MS. -- Abstract: Multiple-reflection time-of-flight mass spectrometers (MR-TOF-MS) have recently been installed at different low-energy radioactive ion beam facilities. They are used as isobar separators with high ion capacity and as mass spectrometers with high mass resolving power and accuracy for short-lived nuclei. Furthermore, MR-TOF-MS have a huge potential for applications in other fields, such as chemistry, biology, medicine, space science, and homeland security. The development, commissioning and results of an MR-TOF-MS is presented, which serves as proof-of-principle to show that very high mass resolving powers (∼10{sup 5}) can be achieved in a compact device (length ∼30 cm). Based on this work, an MR-TOF-MS for in situ application has been designed. For the first time, this device combines very high mass resolving power (>10{sup 5}), mobility, and an atmospheric pressure inlet in one instrument. It will enable in situ measurements without sample preparation at very high mass accuracy. Envisaged applications of this mobile MR-TOF-MS are discussed.

  20. Self-contained in-vacuum in situ thin film stress measurement tool

    Science.gov (United States)

    Reinink, J.; van de Kruijs, R. W. E.; Bijkerk, F.

    2018-05-01

    A fully self-contained in-vacuum device for measuring thin film stress in situ is presented. The stress was measured by measuring the curvature of a cantilever on which the thin film was deposited. For this, a dual beam laser deflectometer was used. All optics and electronics needed to perform the measurement are placed inside a vacuum-compatible vessel with the form factor of the substrate holders of the deposition system used. The stand-alone nature of the setup allows the vessel to be moved inside a deposition system independently of optical or electronic feedthroughs while measuring continuously. A Mo/Si multilayer structure was analyzed to evaluate the performance of the setup. A radius of curvature resolution of 270 km was achieved. This allows small details of the stress development to be resolved, such as the interlayer formation between the layers and the amorphous-to-crystalline transition of the molybdenum which occurs at around 2 nm. The setup communicates with an external computer via a Wi-Fi connection. This wireless connection allows remote control over the acquisition and the live feedback of the measured stress. In principle, the vessel can act as a general metrology platform and add measurement capabilities to deposition setups with no modification to the deposition system.

  1. Error-measure for anisotropic grid-adaptation in turbulence-resolving simulations

    Science.gov (United States)

    Toosi, Siavash; Larsson, Johan

    2015-11-01

    Grid-adaptation requires an error-measure that identifies where the grid should be refined. In the case of turbulence-resolving simulations (DES, LES, DNS), a simple error-measure is the small-scale resolved energy, which scales with both the modeled subgrid-stresses and the numerical truncation errors in many situations. Since this is a scalar measure, it does not carry any information on the anisotropy of the optimal grid-refinement. The purpose of this work is to introduce a new error-measure for turbulence-resolving simulations that is capable of predicting nearly-optimal anisotropic grids. Turbulent channel flow at Reτ ~ 300 is used to assess the performance of the proposed error-measure. The formulation is geometrically general, applicable to any type of unstructured grid.

  2. In situ measurement of conductivity during nanocomposite film deposition

    International Nuclear Information System (INIS)

    Blattmann, Christoph O.; Pratsinis, Sotiris E.

    2016-01-01

    Highlights: • Flame-made nanosilver dynamics are elucidated in the gas-phase & on substrates. • The resistance of freshly depositing nanosilver layers is monitored. • Low T g polymers facilitate rapid synthesis of conductive films. • Conductive nanosilver films form on top of or within the polymer depending on MW. - Abstract: Flexible and electrically conductive nanocomposite films are essential for small, portable and even implantable electronic devices. Typically, such film synthesis and conductivity measurement are carried out sequentially. As a result, optimization of filler loading and size/morphology characteristics with respect to film conductivity is rather tedious and costly. Here, freshly-made Ag nanoparticles (nanosilver) are made by scalable flame aerosol technology and directly deposited onto polymeric (polystyrene and poly(methyl methacrylate)) films during which the resistance of the resulting nanocomposite is measured in situ. The formation and gas-phase growth of such flame-made nanosilver, just before incorporation onto the polymer film, is measured by thermophoretic sampling and microscopy. Monitoring the nanocomposite resistance in situ reveals the onset of conductive network formation by the deposited nanosilver growth and sinternecking. The in situ measurement is much faster and more accurate than conventional ex situ four-point resistance measurements since an electrically percolating network is detected upon its formation by the in situ technique. Nevertheless, general resistance trends with respect to filler loading and host polymer composition are consistent for both in situ and ex situ measurements. The time lag for the onset of a conductive network (i.e., percolation) depends linearly on the glass transition temperature (T g ) of the host polymer. This is attributed to the increased nanoparticle-polymer interaction with decreasing T g . Proper selection of the host polymer in combination with in situ resistance monitoring

  3. Space resolved x-ray diffraction measurements of the supercooled state of polymers

    International Nuclear Information System (INIS)

    Asano, Tsutomu; Yoshida, Shinya; Nishida, Akira; Mina, M.F.

    2002-01-01

    In order to measure an ordering process of polymers, the supercooled state near the crystallizing surface was observed by a space resolved X-ray diffraction method at Photon Factory (PF). Using temperature slope crystallization, low density polyethylene and even-number paraffins were examined during crystallization from the melt state. The results indicate that polyethylene shows a sharp b-axis orientation where the lamellar normal and crystalline c-axis are perpendicular to the temperature slope. The crystalline lamellae are well-developed with lamellar thickness of 180 A. The supercooled melt state just above the crystallizing plane shows some diffraction in the small angle region without any crystalline reflection in the wide angle. This fact suggests that a long-range ordering (lamellar structure) appears prior to the short-range one (crystalline structure). The in-situ crystallizing surface was observed by an optical microscope connected to a TV system. The crystallizing surface of even-number paraffins moves to upwards in the temperature slope. In-situ X-ray measurements at PF revealed that the crystalline c-axis and lamellar normal of the even number paraffins are parallel to the temperature slope. From these results, the crystalline ordering and the surface movement of even number paraffins are explained using special nucleation mechanism including a screw dislocation. (author)

  4. [A new measurement method of time-resolved spectrum].

    Science.gov (United States)

    Shi, Zhi-gang; Huang, Shi-hua; Liang, Chun-jun; Lei, Quan-sheng

    2007-02-01

    A new method for measuring time-resolved spectrum (TRS) is brought forward. Programming with assemble language controlled the micro-control-processor (AT89C51), and a kind of peripheral circuit constituted the drive circuit, which drived the stepping motor to run the monochromator. So the light of different kinds of expected wavelength could be obtained. The optical signal was transformed to electrical signal by optical-to-electrical transform with the help of photomultiplier tube (Hamamatsu 1P28). The electrical signal of spectrum data was transmitted to the oscillograph. Connecting the two serial interfaces of RS232 between the oscillograph and computer, the electrical signal of spectrum data could be transmitted to computer for programming to draw the attenuation curve and time-resolved spectrum (TRS) of the swatch. The method for measuring time-resolved spectrum (TRS) features parallel measurement in time scale but serial measurement in wavelength scale. Time-resolved spectrum (TRS) and integrated emission spectrum of Tb3+ in swatch Tb(o-BBA)3 phen were measured using this method. Compared with the real time-resolved spectrum (TRS). It was validated to be feasible, credible and convenient. The 3D spectra of fluorescence intensity-wavelength-time, and the integrated spectrum of the swatch Tb(o-BBA)3 phen are given.

  5. Feasibility of in situ beta ray measurements in underwater environment.

    Science.gov (United States)

    Park, Hye Min; Park, Ki Hyun; Kang, Sung Won; Joo, Koan Sik

    2017-09-01

    We describe an attempt at the development of an in situ detector for beta ray measurements in underwater environment. The prototype of the in situ detector is based on a CaF2: Eu scintillator using crystal light guide and Si photomultiplier. Tests were conducted using various reference sources for evaluating the linearity and stability of the detector in underwater environment. The system is simple and stable for long-term monitoring, and consumes low power. We show here an effective detection distance of 7 mm and a 2.273 MeV end-point energy spectrum of 90 Sr/ 90 Y when using the system underwater. The results demonstrate the feasibility of in situ beta ray measurements in underwater environment and can be applied for designing an in situ detector for radioactivity measurement in underwater environment. The in situ detector can also have other applications such as installation on the marine monitoring platform and quantitative analysis of radionuclides. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Time-resolved absorption measurements on OMEGA

    International Nuclear Information System (INIS)

    Jaanimagi, P.A.; DaSilva, L.; Delettrez, J.; Gregory, G.G.; Richardson, M.C.

    1986-01-01

    Time-resolved measurements of the incident laser light that is scattered and/or refracted from targets irradiated by the 24 uv-beam OMEGA laser at LLE, have provided some interesting features related to time-resolved absorption. The decrease in laser absorption characteristic of irradiating a target that implodes during the laser pulse has been observed. The increase in absorption expected as the critical density surface moves from a low to a high Z material in the target has also been noted. The detailed interpretation of these results is made through comparisons with simulation using the code LILAC, as well as with streak data from time-resolved x-ray imaging and spectroscopy. In addition, time and space-resolved imaging of the scattered light yields information on laser irradiation uniformity conditions on the target. The report consists of viewgraphs

  7. Time-resolved brightness measurements by streaking

    Science.gov (United States)

    Torrance, Joshua S.; Speirs, Rory W.; McCulloch, Andrew J.; Scholten, Robert E.

    2018-03-01

    Brightness is a key figure of merit for charged particle beams, and time-resolved brightness measurements can elucidate the processes involved in beam creation and manipulation. Here we report on a simple, robust, and widely applicable method for the measurement of beam brightness with temporal resolution by streaking one-dimensional pepperpots, and demonstrate the technique to characterize electron bunches produced from a cold-atom electron source. We demonstrate brightness measurements with 145 ps temporal resolution and a minimum resolvable emittance of 40 nm rad. This technique provides an efficient method of exploring source parameters and will prove useful for examining the efficacy of techniques to counter space-charge expansion, a critical hurdle to achieving single-shot imaging of atomic scale targets.

  8. Multi-sensor in situ observations to resolve the sub-mesoscale features in the stratified Gulf of Finland, Baltic Sea

    Science.gov (United States)

    Lips, Urmas; Kikas, Villu; Liblik, Taavi; Lips, Inga

    2016-05-01

    High-resolution numerical modeling, remote sensing, and in situ data have revealed significant role of sub-mesoscale features in shaping the distribution pattern of tracers in the ocean's upper layer. However, in situ measurements are difficult to conduct with the required resolution and coverage in time and space to resolve the sub-mesoscale, especially in such relatively shallow basins as the Gulf of Finland, where the typical baroclinic Rossby radius is 2-5 km. To map the multi-scale spatiotemporal variability in the gulf, we initiated continuous measurements with autonomous devices, including a moored profiler and Ferrybox system, which were complemented by dedicated research-vessel-based surveys. The analysis of collected high-resolution data in the summers of 2009-2012 revealed pronounced variability at the sub-mesoscale in the presence of mesoscale upwelling/downwelling, fronts, and eddies. The horizontal wavenumber spectra of temperature variance in the surface layer had slopes close to -2 between the lateral scales from 10 to 0.5 km. Similar tendency towards the -2 slopes of horizontal wavenumber spectra of temperature variance was found in the seasonal thermocline between the lateral scales from 10 to 1 km. It suggests that the ageostrophic sub-mesoscale processes could contribute considerably to the energy cascade in such a stratified sea basin. We showed that the intrusions of water with different salinity, which indicate the occurrence of a layered flow structure, could appear in the process of upwelling/downwelling development and relaxation in response to variable wind forcing. We suggest that the sub-mesoscale processes play a major role in feeding surface blooms in the conditions of coupled coastal upwelling and downwelling events in the Gulf of Finland.

  9. In-situ neutron diffraction measurements of temperature and stresses during friction stir welding of 6061-T6 aluminum alloy

    International Nuclear Information System (INIS)

    Woo, Wan Chuck; Feng, Zhili; Wang, Xun-Li; Brown, D.W.; Clausen, B.; An, Ke; Choo, Hahn; Hubbard, Camden R.; David, Stan A.

    2007-01-01

    The evolution of temperature and thermal stresses during friction stir welding of Al6061-T6 was investigated by means of in-situ, time-resolved neutron diffraction technique. A method is developed to deconvolute the temperature and stress from the lattice spacing changes measured by neutron diffraction. The deep penetration capability of neutrons made it possible for the first time to obtain the temperature and thermal stresses inside a friction stir weld

  10. Kinematic analysis of in situ measurement during chemical mechanical planarization process

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hongkai; Wang, Tongqing; Zhao, Qian; Meng, Yonggang; Lu, Xinchun, E-mail: xclu@tsinghua.edu.cn [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China)

    2015-10-15

    Chemical mechanical planarization (CMP) is the most widely used planarization technique in semiconductor manufacturing presently. With the aid of in situ measurement technology, CMP tools can achieve good performance and stable productivity. However, the in situ measurement has remained unexplored from a kinematic standpoint. The available related resources for the kinematic analysis are very limited due to the complexity and technical secret. In this paper, a comprehensive kinematic analysis of in situ measurement is provided, including the analysis model, the measurement trajectory, and the measurement time of each zone of wafer surface during the practical CMP process. In addition, a lot of numerical calculations are performed to study the influences of main parameters on the measurement trajectory and the measurement velocity variation of the probe during the measurement process. All the efforts are expected to improve the in situ measurement system and promote the advancement in CMP control system.

  11. Fast spatially resolved exhaust gas recirculation (EGR) distribution measurements in an internal combustion engine using absorption spectroscopy.

    Science.gov (United States)

    Yoo, Jihyung; Prikhodko, Vitaly; Parks, James E; Perfetto, Anthony; Geckler, Sam; Partridge, William P

    2015-09-01

    Exhaust gas recirculation (EGR) in internal combustion engines is an effective method of reducing NOx emissions while improving efficiency. However, insufficient mixing between fresh air and exhaust gas can lead to cycle-to-cycle and cylinder-to-cylinder non-uniform charge gas mixtures of a multi-cylinder engine, which can in turn reduce engine performance and efficiency. A sensor packaged into a compact probe was designed, built and applied to measure spatiotemporal EGR distributions in the intake manifold of an operating engine. The probe promotes the development of more efficient and higher-performance engines by resolving high-speed in situ CO2 concentration at various locations in the intake manifold. The study employed mid-infrared light sources tuned to an absorption band of CO2 near 4.3 μm, an industry standard species for determining EGR fraction. The calibrated probe was used to map spatial EGR distributions in an intake manifold with high accuracy and monitor cycle-resolved cylinder-specific EGR fluctuations at a rate of up to 1 kHz.

  12. In-situ measurements of soil-water conductivity

    International Nuclear Information System (INIS)

    Murphy, C.E.

    1978-01-01

    Radionuclides and other environmentally important materials often move in association with water. In terrestrial ecosystems, the storage and movement of water in the soil is of prime importance to the hydrologic cycle of the ecosystem. The soil-water conductivity (the rate at which water moves through the soil) is a necessary input to models of soil-water movement. In situ techniques for measurement of soil-water conductivity have the advantage of averaging soil-water properties over larger areas than most laboratory methods. The in situ techniques also cause minimum disturbance of the soil under investigation. Results of measurements using a period of soil-water drainage after initial wetting indicate that soil-water conductivity and its variation with soil-water content can be determined with reasonable accuracy for the plot where the measurements were made. Further investigations are being carried out to look at variability between plots within a soil type

  13. In situ spectrophotometric measurement of dissolved inorganic carbon in seawater

    Science.gov (United States)

    Liua, Xuewu; Byrne, Robert H.; Adornato, Lori; Yates, Kimberly K.; Kaltenbacher, Eric; Ding, Xiaoling; Yang, Bo

    2013-01-01

    Autonomous in situ sensors are needed to document the effects of today’s rapid ocean uptake of atmospheric carbon dioxide (e.g., ocean acidification). General environmental conditions (e.g., biofouling, turbidity) and carbon-specific conditions (e.g., wide diel variations) present significant challenges to acquiring long-term measurements of dissolved inorganic carbon (DIC) with satisfactory accuracy and resolution. SEAS-DIC is a new in situ instrument designed to provide calibrated, high-frequency, long-term measurements of DIC in marine and fresh waters. Sample water is first acidified to convert all DIC to carbon dioxide (CO2). The sample and a known reagent solution are then equilibrated across a gas-permeable membrane. Spectrophotometric measurement of reagent pH can thereby determine the sample DIC over a wide dynamic range, with inherent calibration provided by the pH indicator’s molecular characteristics. Field trials indicate that SEAS-DIC performs well in biofouling and turbid waters, with a DIC accuracy and precision of ∼2 μmol kg–1 and a measurement rate of approximately once per minute. The acidic reagent protects the sensor cell from biofouling, and the gas-permeable membrane excludes particulates from the optical path. This instrument, the first spectrophotometric system capable of automated in situ DIC measurements, positions DIC to become a key parameter for in situ CO2-system characterizations.

  14. Assessment of In Situ Time Resolved Shock Experiments at Synchrotron Light Sources*

    Science.gov (United States)

    Belak, J.; Ilavsky, J.; Hessler, J. P.

    2005-07-01

    Prior to fielding in situ time resolved experiments of shock wave loading at the Advanced Photon Source, we have performed feasibility experiments assessing a single photon bunch. Using single and poly-crystal Al, Ti, V and Cu shock to incipient spallation on the gas gun, samples were prepared from slices normal to the spall plane of thickness 100-500 microns. In addition, single crystal Al of thickness 500 microns was shocked to incipient spallation and soft recovered using the LLNL e-gun mini-flyer system. The e-gun mini-flyer impacts the sample target producing a 10's ns flat-top shock transient. Here, we present results for imaging, small-angle scattering (SAS), and diffraction. In particular, there is little SAS away from the spall plane and significant SAS at the spall plane, demonstrating the presence of sub-micron voids. * Use of the Advanced Photon Source was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. W-31-109-Eng-38 and work performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

  15. Time-resolved measurements of the hot-electron population in ignition-scale experiments on the National Ignition Facility (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Hohenberger, M., E-mail: mhoh@lle.rochester.edu; Stoeckl, C. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Albert, F.; Palmer, N. E.; Döppner, T.; Divol, L.; Dewald, E. L.; Bachmann, B.; MacPhee, A. G.; LaCaille, G.; Bradley, D. K. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Lee, J. J. [National Security Technologies LLC, Livermore, California 94551 (United States)

    2014-11-15

    In laser-driven inertial confinement fusion, hot electrons can preheat the fuel and prevent fusion-pellet compression to ignition conditions. Measuring the hot-electron population is key to designing an optimized ignition platform. The hot electrons in these high-intensity, laser-driven experiments, created via laser-plasma interactions, can be inferred from the bremsstrahlung generated by hot electrons interacting with the target. At the National Ignition Facility (NIF) [G. H. Miller, E. I. Moses, and C. R. Wuest, Opt. Eng. 43, 2841 (2004)], the filter-fluorescer x-ray (FFLEX) diagnostic–a multichannel, hard x-ray spectrometer operating in the 20–500 keV range–has been upgraded to provide fully time-resolved, absolute measurements of the bremsstrahlung spectrum with ∼300 ps resolution. Initial time-resolved data exhibited significant background and low signal-to-noise ratio, leading to a redesign of the FFLEX housing and enhanced shielding around the detector. The FFLEX x-ray sensitivity was characterized with an absolutely calibrated, energy-dispersive high-purity germanium detector using the high-energy x-ray source at NSTec Livermore Operations over a range of K-shell fluorescence energies up to 111 keV (U K{sub β}). The detectors impulse response function was measured in situ on NIF short-pulse (∼90 ps) experiments, and in off-line tests.

  16. In situ gamma-ray spectrometric measurements of uranium in phosphates soil

    International Nuclear Information System (INIS)

    Lavi, N.; Ne'eman, E.; Brenner, S.; Haquin, G.; Nir-El, Y.

    1997-01-01

    Abstract Radioactivity concentration of 238 U in a phosphate ores quarry was measured in situ. Independently, soil samples collected in the site were measured in the laboratory. It was disclosed that radon emanation from the soil lowers in situ results that are derived from radon daughters. Uranium concentration was found to be 121.6±1.9 mg kg -1 (authors)

  17. Spectrometer and Radiative Transfer Model Comparison using High Sun In-Situ Observations in Pretoria

    CSIR Research Space (South Africa)

    Lysko, MD

    2012-08-01

    Full Text Available There is need for reliable in-situ spectral solar irradiance measurements. For instance, the spectrally resolved irradiance may be used to infer its influence on radiative forcing of climate and in solar energy applications. In any case, reliable...

  18. In situ measurements reveal extremely low pH in soil

    DEFF Research Database (Denmark)

    Nielsen, Knud Erik; Loibide, Amaia Irixar; Nielsen, Lars Peter

    2017-01-01

    We measured pH in situ in the top organic soil horizons in heathland and pine forest and found values between 2.6 and 3.2. This was 0.5e0.8 units lower than concurrent laboratory pH measurements of the same soil, which raises questions about the interpretation of pH measurements. We propose that ...... that the higher pH recorded by standard laboratory methods may be due to buffering ions from soil biota released from drying, grinding and rewetting of soil samples, whereas the in situ pH reflects the correct level of acidification....

  19. Time-resolved measurement of global synchronization in the dust acoustic wave

    Science.gov (United States)

    Williams, J. D.

    2014-10-01

    A spatially and temporally resolved measurement of the synchronization of the naturally occurring dust acoustic wave to an external drive and the relaxation from the driven wave mode back to the naturally occuring wave mode is presented. This measurement provides a time-resolved measurement of the synchronization of the self-excited dust acoustic wave with an external drive and the return to the self-excited mode. It is observed that the wave synchronizes to the external drive in a distinct time-dependent fashion, while there is an immediate loss of synchronization when the external modulation is discontinued.

  20. Probing the influence of X-rays on aqueous copper solutions using time-resolved in situ combined video/X-ray absorption near-edge/ultraviolet-visible spectroscopy

    NARCIS (Netherlands)

    Mesu, J. Gerbrand; Beale, Andrew M.; de Groot, Frank M. F.; Weckhuysen, Bert M.

    2006-01-01

    Time-resolved in situ video monitoring and ultraviolet-visible spectroscopy in combination with X-ray absorption near-edge spectroscopy (XANES) have been used for the first time in a combined manner to study the effect of synchrotron radiation on a series of homogeneous aqueous copper solutions in a

  1. Radial Growth of Self-Catalyzed GaAs Nanowires and the Evolution of the Liquid Ga-Droplet Studied by Time-Resolved in Situ X-ray Diffraction.

    Science.gov (United States)

    Schroth, Philipp; Jakob, Julian; Feigl, Ludwig; Mostafavi Kashani, Seyed Mohammad; Vogel, Jonas; Strempfer, Jörg; Keller, Thomas F; Pietsch, Ullrich; Baumbach, Tilo

    2018-01-10

    We report on a growth study of self-catalyzed GaAs nanowires based on time-resolved in situ X-ray structure characterization during molecular-beam-epitaxy in combination with ex situ scanning-electron-microscopy. We reveal the evolution of nanowire radius and polytypism and distinguish radial growth processes responsible for tapering and side-wall growth. We interpret our results using a model for diameter self-stabilization processes during growth of self-catalyzed GaAs nanowires including the shape of the liquid Ga-droplet and its evolution during growth.

  2. In-situ position and vibration measurement of rough surfaces using laser Doppler distance sensors

    Science.gov (United States)

    Czarske, J.; Pfister, T.; Günther, P.; Büttner, L.

    2009-06-01

    In-situ measurement of distances and shapes as well as dynamic deformations and vibrations of fast moving and especially rotating objects, such as gear shafts and turbine blades, is an important task at process control. We recently developed a laser Doppler distance frequency sensor, employing two superposed fan-shaped interference fringe systems with contrary fringe spacing gradients. Via two Doppler frequency evaluations the non-incremental position (i.e. distance) and the tangential velocity of rotating bodies are determined simultaneously. The distance uncertainty is in contrast to e.g. triangulation in principle independent of the object velocity. This unique feature allows micrometer resolutions of fast moved rough surfaces. The novel sensor was applied at turbo machines in order to control the tip clearance. The measurements at a transonic centrifugal compressor were performed during operation at up to 50,000 rpm, i.e. 586 m/s velocity of the blade tips. Due to the operational conditions such as temperatures of up to 300 °C, a flexible and robust measurement system with a passive fiber-coupled sensor, using diffractive optics, has been realized. Since the tip clearance of individual blades could be temporally resolved an analysis of blade vibrations was possible. A Fourier transformation of the blade distances results in an average period of 3 revolutions corresponding to a frequency of 1/3 of the rotary frequency. Additionally, a laser Doppler distance sensor using two tilted fringe systems and phase evaluation will be presented. This phase sensor exhibits a minimum position resolution of σz = 140 nm. It allows precise in-situ shape measurements at grinding and turning processes.

  3. Time-resolved measurements of luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Collier, Bradley B. [Department of Biomedical Engineering, 408 Mechanical Engineering Office Building, Spence Street, Texas A and M University, College Station, TX 77843 (United States); McShane, Michael J., E-mail: mcshane@tamu.edu [Department of Biomedical Engineering, 408 Mechanical Engineering Office Building, Spence Street, Texas A and M University, College Station, TX 77843 (United States); Materials Science and Engineering Program, 408 Mechanical Engineering Office Building, Spence Street, Texas A and M University, College Station, TX 77843 (United States)

    2013-12-15

    Luminescence sensing and imaging has become more widespread in recent years in a variety of industries including the biomedical and environmental fields. Measurements of luminescence lifetime hold inherent advantages over intensity-based response measurements, and advances in both technology and methods have enabled their use in a broader spectrum of applications including real-time medical diagnostics. This review will focus on recent advances in analytical methods, particularly calculation techniques, including time- and frequency-domain lifetime approaches as well as other time-resolved measurements of luminescence. -- Highlights: • Developments in technology have led to widespread use of luminescence lifetime. • Growing interest for sensing and imaging applications. • Recent advances in approaches to lifetime calculations are reviewed. • Advantages and disadvantages of various methods are weighed. • Other methods for measurement of luminescence lifetime also described.

  4. Time-resolved measurements of luminescence

    International Nuclear Information System (INIS)

    Collier, Bradley B.; McShane, Michael J.

    2013-01-01

    Luminescence sensing and imaging has become more widespread in recent years in a variety of industries including the biomedical and environmental fields. Measurements of luminescence lifetime hold inherent advantages over intensity-based response measurements, and advances in both technology and methods have enabled their use in a broader spectrum of applications including real-time medical diagnostics. This review will focus on recent advances in analytical methods, particularly calculation techniques, including time- and frequency-domain lifetime approaches as well as other time-resolved measurements of luminescence. -- Highlights: • Developments in technology have led to widespread use of luminescence lifetime. • Growing interest for sensing and imaging applications. • Recent advances in approaches to lifetime calculations are reviewed. • Advantages and disadvantages of various methods are weighed. • Other methods for measurement of luminescence lifetime also described

  5. Development of portable HPGe spectrometer for in situ measurements

    Directory of Open Access Journals (Sweden)

    Kail Artjoms

    2015-01-01

    Full Text Available In situ applications require a very high level of portability of high-resolution spectrometric equipment. Usage of HPGe detectors for radioactivity measurements in the environment or for nuclear safeguard applications, to combat illicit trafficking of nuclear materials or uranium and plutonium monitoring in nuclear wastes, has become a norm in the recent years. Portable HPGe-based radionuclide spectrometer with electrical cooling has lately appeared on the market for in situ applications. At the same time deterioration of energy resolution associated with vibrations produced by cryocooler or high weight of the instrument, short time of autonomous operation and high price of these spectrometers are limiting their usage in many cases. In this paper we present development results of ultra compact hand held all-in-one spectrometer for in situ measurements based on HPGe detector cooled by liquid nitrogen without listing the above disadvantages.

  6. Comparison between ex situ and in situ measurement methods for the assessment of radioactively contaminated land. Comparison between measurement methods for the characterisation of radioactively contaminated land

    International Nuclear Information System (INIS)

    Rostron, Peter D.; Ramsey, Michael H.; Heathcote, John A.

    2012-01-01

    In the UK, it is estimated that there may be 20,000,000 cubic metres of contaminated land at Sellafield alone. Harwell and Dounreay are known to have significant amounts of radioactive or nonradioactive contaminated land (NDA, 2006). It is therefore important to devise optimal methods for the characterisation of areas of land for radionuclide content, in order to enable cost-effective decommissioning. With chemical contaminants, ex situ measurements are made on a larger volume of soil than are in situ measurements, such as PXRF. However, the opposite is often true for the characterisation of radioactive contamination, when this involves the detection of penetrating radiation from γ-emitting radionuclides. This means that when investigating for hotspots of radioactive contamination at or near the ground surface, better coverage can be obtained using in situ methods. This leads to the question, what is the optimal strategy (e.g. percentage coverage, counting time) for in situ characterisation of radioactively contaminated land' Surveys on light-moderate contaminated areas of ground were conducted at Dounreay in order to compare the relative effectiveness of in situ and ex situ methods, both for the detection of radioactive hotspots and also for estimating the average radionuclide content of an area of ground. These surveys suggest that continuous coverage by in situ devices is more effective at hotspot detection, with ex situ laboratory measurements being less effective, although in one case elevated activity below 10 cm depth that was identified by ex situ measurement was not located by in situ measurement. The surveys also highlighted that careful choice of an appropriate spatial model is critical to the estimation of activity concentrations over averaging areas. Whereas continuous coverage may be considered necessary for hotspot identification, in the particular case of the detection of hot particles (where the particle is very small compared to the sampling

  7. In situ high-pressure measurement of crystal solubility by using neutron diffraction

    Science.gov (United States)

    Chen, Ji; Hu, Qiwei; Fang, Leiming; He, Duanwei; Chen, Xiping; Xie, Lei; Chen, Bo; Li, Xin; Ni, Xiaolin; Fan, Cong; Liang, Akun

    2018-05-01

    Crystal solubility is one of the most important thermo-physical properties and plays a key role in industrial applications, fundamental science, and geoscientific research. However, high-pressure in situ measurements of crystal solubility remain very challenging. Here, we present a method involving high-pressure neutron diffraction for making high-precision in situ measurements of crystal solubility as a function of pressure over a wide range of pressures. For these experiments, we designed a piston-cylinder cell with a large chamber volume for high-pressure neutron diffraction. The solution pressures are continuously monitored in situ based on the equation of state of the sample crystal. The solubility at a high pressure can be obtained by applying a Rietveld quantitative multiphase analysis. To evaluate the proposed method, we measured the high-pressure solubility of NaCl in water up to 610 MPa. At a low pressure, the results are consistent with the previous results measured ex situ. At a higher pressure, more reliable data could be provided by using an in situ high-pressure neutron diffraction method.

  8. Multiple-reflection time-of-flight mass spectrometry for in situ applications

    Science.gov (United States)

    Dickel, T.; Plaß, W. R.; Lang, J.; Ebert, J.; Geissel, H.; Haettner, E.; Jesch, C.; Lippert, W.; Petrick, M.; Scheidenberger, C.; Yavor, M. I.

    2013-12-01

    Multiple-reflection time-of-flight mass spectrometers (MR-TOF-MS) have recently been installed at different low-energy radioactive ion beam facilities. They are used as isobar separators with high ion capacity and as mass spectrometers with high mass resolving power and accuracy for short-lived nuclei. Furthermore, MR-TOF-MS have a huge potential for applications in other fields, such as chemistry, biology, medicine, space science, and homeland security. The development, commissioning and results of an MR-TOF-MS is presented, which serves as proof-of-principle to show that very high mass resolving powers (∼105) can be achieved in a compact device (length ∼30 cm). Based on this work, an MR-TOF-MS for in situ application has been designed. For the first time, this device combines very high mass resolving power (>105), mobility, and an atmospheric pressure inlet in one instrument. It will enable in situ measurements without sample preparation at very high mass accuracy. Envisaged applications of this mobile MR-TOF-MS are discussed.

  9. Application of in-situ measurement to determine 137Cs in the Swiss Alps

    International Nuclear Information System (INIS)

    Schaub, M.; Konz, N.; Meusburger, K.; Alewell, C.

    2010-01-01

    Establishment of 137 Cs inventories is often used to gain information on soil stability. The latter is crucial in mountain systems, where ecosystem stability is tightly connected to soil stability. In-situ measurements of 137 Cs in steep alpine environments are scarce. Most studies have been carried out in arable lands and with Germanium (Ge) detectors. Sodium Iodide (NaI) detector system is an inexpensive and easy to handle field instrument, but its validity on steep alpine environments has not been tested yet. In this study, a comparison of laboratory measurements with GeLi detector and in-situ measurements with NaI detector of 137 Cs gamma soil radiation has been done in an alpine catchment with high 137 Cs concentration (Urseren Valley, Switzerland). The aim of this study was to calibrate the in-situ NaI detector system for application on steep alpine slopes. Replicate samples from an altitudinal transect through the Urseren Valley, measured in the laboratory with a GeLi detector, showed a large variability in 137 Cs activities at a meter scale. This small-scale heterogeneity determined with the GeLi detector is smoothed out by uncollimated in-situ measurements with the NaI detector, which provides integrated estimates of 137 Cs within the field of view (3.1 m 2 ) of each measurement. There was no dependency of 137 Cs on pH, clay content and carbon content, but a close relationship was determined between measured 137 Cs activities and soil moisture. Thus, in-situ data must be corrected for soil moisture. Close correlation (R 2 = 0.86, p 137 Cs activities (in Bq kg -1 ) estimated with in-situ (NaI detector) and laboratory (GeLi detector) methods. We thus concluded that the NaI detector system is a suitable tool for in-situ measurements in alpine environments. This paper describes the calibration of the NaI detector system for field application under elevated 137 Cs activities originating from Chernobyl fallout.

  10. In situ time-resolved X-ray near-edge absorption spectroscopy of selenite reduction by siderite

    International Nuclear Information System (INIS)

    Badaut, V.; Schlegel, M.L.; Descostes, M.; Moutiers, G.

    2012-01-01

    The reduction oxidation-reaction between aqueous selenite (SeO 3 2- ) and siderite (FeCO 3 (s)) was monitored by in situ, time-resolved X-ray absorption near-edge structure (XANES) spectroscopy at the selenium K edge in a controlled electrochemical environment. Spectral evolutions showed that more than 60% of selenite was reduced at the siderite surface after 20 h of experiment, at which time the reaction was still incomplete. Fitting of XANES spectra by linear combination of reference spectra showed that selenite reaction with siderite is essentially a two-step process, selenite ions being immobilized on siderite surface prior to their reduction. A kinetic model of the reduction step is proposed, allowing to identify the specific contribution of surface reduction. These results have strong implications for the retention of selenite by corrosion products in nuclear waste repositories and in a larger extent for the fate of selenium in the environment. (authors)

  11. In situ measurement of tritium permeation through stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Luscher, Walter G., E-mail: walter.luscher@pnnl.gov [Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99352 (United States); Senor, David J., E-mail: david.senor@pnnl.gov [Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99352 (United States); Clayton, Kevin K., E-mail: kevin.clayton@inl.gov [Idaho National Laboratory, 2525 Fremont Ave., Idaho Falls, ID 83415 (United States); Longhurst, Glen R., E-mail: glenlonghurst@suu.edu [Idaho National Laboratory, 2525 Fremont Ave., Idaho Falls, ID 83415 (United States)

    2013-06-15

    Highlights: ► In situ tritium permeation measurements collected over broad pressure range. ► Test conditions relevant to 316 SS in commercial light water reactors. ► Comparisons between in- and ex-reactor measurements provided. ► Correlation between tritium permeation, temperature, and pressure developed. -- Abstract: The TMIST-2 irradiation experiment was conducted in the Advanced Test Reactor at Idaho National Laboratory to evaluate tritium permeation through Type 316 stainless steel (316 SS). The interior of a 316 SS seamless tube specimen was exposed to a {sup 4}He carrier gas mixed with a specified quantity of tritium (T{sub 2}) to yield partial pressures of 0.1, 5, and 50 Pa at 292 °C and 330 °C. In situ tritium permeation measurements were made by passing a He–Ne sweep gas over the outer surface of the specimen to carry the permeated tritium to a bubbler column for liquid scintillation counting. Results from in situ permeation measurements were compared with predictions based on an ex-reactor permeation correlation in the literature. In situ permeation data were also used to derive an in-reactor permeation correlation as a function of temperature and pressure over the ranges considered in this study. In addition, the triton recoil contribution to tritium permeation, which results from the transmutation of {sup 3}He to T, was also evaluated by introducing a {sup 4}He carrier gas mixed with {sup 3}He at a partial pressure of 1013 Pa at 330 °C. Less than 3% of the tritium resulting from {sup 3}He transmutation contributed to tritium permeation.

  12. Sol-to-Gel Transition in Fast Evaporating Systems Observed by in Situ Time-Resolved Infrared Spectroscopy.

    Science.gov (United States)

    Innocenzi, Plinio; Malfatti, Luca; Carboni, Davide; Takahashi, Masahide

    2015-06-22

    The in situ observation of a sol-to-gel transition in fast evaporating systems is a challenging task and the lack of a suitable experimental design, which includes the chemistry and the analytical method, has limited the observations. We synthesise an acidic sol, employing only tetraethylorthosilicate, SiCl4 as catalyst and deuterated water; the absence of water added to the sol allows us to follow the absorption from the external environment and the evaporation of deuterated water. The time-resolved data, obtained by attenuated total reflection infrared spectroscopy on an evaporating droplet, enables us to identify four different stages during evaporation. They are linked to specific hydrolysis and condensation rates that affect the uptake of water from external environment. The second stage is characterized by a decrease in hydroxyl content, a fast rise of condensation rate and an almost stationary absorption of water. This stage has been associated with the sol-to-gel transition. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Indoor Measurement of Angle Resolved Light Absorption by Black Silicon

    DEFF Research Database (Denmark)

    Amdemeskel, Mekbib Wubishet; Iandolo, Beniamino; Davidsen, Rasmus Schmidt

    2017-01-01

    Angle resolved optical spectroscopy of photovoltaic (PV) samples gives crucial information on PV panels under realistic working conditions. Here, we introduce measurements of angle resolved light absorption by PV cells, performed indoors using a collimated high radiance broadband light source. Our...... indoor method offers a significant simplification as compared to measurements by solar trackers. As a proof-of-concept demonstration, we show characterization of black silicon solar cells. The experimental results showed stable and reliable optical responses that makes our setup suitable for indoor......, angle resolved characterization of solar cells....

  14. On the cross-sensitivity between water vapor mixing ratio and stable isotope measurements of in-situ analyzers

    KAUST Repository

    Parkes, Stephen

    2015-04-01

    In recent years there has been an increasing amount of water vapor stable isotope data collected using in-situ instrumentation. A number of papers have characterized the performance of these in-situ analyzers and suggested methods for calibrating raw measurements. The cross-sensitivity of the isotopic measurements on the mixing ratio has been shown to be a major uncertainty and a variety of techniques have been suggested to characterize this inaccuracy. However, most of these are based on relating isotopic ratios to water vapor mixing ratios from in-situ analyzers when the mixing ratio is varied and the isotopic composition kept constant. An additional correction for the span of the isotopic ratio scale is then applied by measuring different isotopic standards. Here we argue that the water vapor cross-sensitivity arises from different instrument responses (span and offset) of the parent H2O isotope and the heavier isotopes, rather than spectral overlap that could cause a true variation in the isotopic ratio with mixing ratio. This is especially relevant for commercial laser optical instruments where absorption lines are well resolved. Thus, the cross-sensitivity determined using more conventional techniques is dependent on the isotopic ratio of the standard used for the characterization, although errors are expected to be small. Consequently, the cross-sensitivity should be determined by characterizing the span and zero offset of each isotope mixing ratio. In fact, this technique makes the span correction for the isotopic ratio redundant. In this work we model the impact of changes in the span and offset of the heavy and light isotopes and illustrate the impact on the cross-sensitivity of the isotopic ratios on water vapor. This clearly shows the importance of determining the zero offset for the two isotopes. The cross-sensitivity of the isotopic ratios on water vapor is then characterized by determining the instrument response for the individual isotopes for a

  15. On the cross-sensitivity between water vapor mixing ratio and stable isotope measurements of in-situ analyzers

    KAUST Repository

    Parkes, Stephen; Wang,  Lixin; McCabe, Matthew

    2015-01-01

    In recent years there has been an increasing amount of water vapor stable isotope data collected using in-situ instrumentation. A number of papers have characterized the performance of these in-situ analyzers and suggested methods for calibrating raw measurements. The cross-sensitivity of the isotopic measurements on the mixing ratio has been shown to be a major uncertainty and a variety of techniques have been suggested to characterize this inaccuracy. However, most of these are based on relating isotopic ratios to water vapor mixing ratios from in-situ analyzers when the mixing ratio is varied and the isotopic composition kept constant. An additional correction for the span of the isotopic ratio scale is then applied by measuring different isotopic standards. Here we argue that the water vapor cross-sensitivity arises from different instrument responses (span and offset) of the parent H2O isotope and the heavier isotopes, rather than spectral overlap that could cause a true variation in the isotopic ratio with mixing ratio. This is especially relevant for commercial laser optical instruments where absorption lines are well resolved. Thus, the cross-sensitivity determined using more conventional techniques is dependent on the isotopic ratio of the standard used for the characterization, although errors are expected to be small. Consequently, the cross-sensitivity should be determined by characterizing the span and zero offset of each isotope mixing ratio. In fact, this technique makes the span correction for the isotopic ratio redundant. In this work we model the impact of changes in the span and offset of the heavy and light isotopes and illustrate the impact on the cross-sensitivity of the isotopic ratios on water vapor. This clearly shows the importance of determining the zero offset for the two isotopes. The cross-sensitivity of the isotopic ratios on water vapor is then characterized by determining the instrument response for the individual isotopes for a

  16. In situ measurement of diffusivity

    International Nuclear Information System (INIS)

    Berne, F.; Pocachard, J.

    2004-01-01

    The mechanism of molecular diffusion controls the migration of contaminants in very low-permeability porous media, like underground facilities for the storage of hazardous waste. Determining of relevant diffusion coefficients is therefore of prime importance. A few techniques exist for in situ measurement of the quantity, but they suffer from many handicaps (duration, complexity and cost of the experiments). We propose here two innovative methods that have some potential to improve the situation. So far, we have found them feasible on the basis of design calculations and laboratory experiments. This work is presently protected by a patent. (author)

  17. In situ measurement of diffusivity

    International Nuclear Information System (INIS)

    Berne, Ph.; Pocachard, J.

    2005-01-01

    The mechanism of molecular diffusion controls the migration of contaminants in very low-permeability porous media, like underground facilities for the storage of hazardous waste. Determining the relevant diffusion coefficients is, therefore, of prime importance. A few techniques exist for the in situ measurement of that quantity, but they suffer from many handicaps (duration, complexity and cost of the experiments). We propose here two innovative methods that have some potential to improve this situation. So far, we have found them feasible on the basis of design calculations and laboratory experiments. This work is presently protected by a patent. (author)

  18. Mechanically activated SHS reaction in the Fe-Al system: in-situ time resolved diffraction using synchrotron radiation

    International Nuclear Information System (INIS)

    Gaffet, E.; Charlot, F.; Klein, D.; Bernard, F.; Niepce, J.C.

    1998-01-01

    The mechanical activation self propagating high temperature synthesis (M.A.S.H.S.) processing is a new way to produce nanocrystalline iron aluminide intermetallic compounds. This process is maily the combination of two steps; in the one hand, a mechanical activation where the Fe - Al powder mixture was milled during a short time at given energy and frequency of shocks and in the other hand, a self propagating high temperature synthesis (S.H.S.) reaction, for which the exothermicity of the Fe + Al reaction is used. This fast propagated MASHS reaction has been in-situ investigated using the time resolved X-ray diffraction (TRXRD) using a X-ray synchrotron beam and an infrared thermography camera, allowing the coupling of the materials structure and the temperature field. The effects of the initial mean compositions, of the milling conditions as well as of the compaction parameters on the MASHS reaction are reported. (orig.)

  19. Time-resolved temperature measurements in a rapid compression machine using quantum cascade laser absorption in the intrapulse mode

    KAUST Repository

    Nasir, Ehson Fawad

    2016-07-16

    A temperature sensor based on the intrapulse absorption spectroscopy technique has been developed to measure in situ temperature time-histories in a rapid compression machine (RCM). Two quantum-cascade lasers (QCLs) emitting near 4.55μm and 4.89μm were operated in pulsed mode, causing a frequency "down-chirp" across two ro-vibrational transitions of carbon monoxide. The down-chirp phenomenon resulted in large spectral tuning (δν ∼2.8cm-1) within a single pulse of each laser at a high pulse repetition frequency (100kHz). The wide tuning range allowed the application of the two-line thermometry technique, thus making the sensor quantitative and calibration-free. The sensor was first tested in non-reactive CO-N2 gas mixtures in the RCM and then applied to cases of n-pentane oxidation. Experiments were carried out for end of compression (EOC) pressures and temperatures ranging 9.21-15.32bar and 745-827K, respectively. Measured EOC temperatures agreed with isentropic calculations within 5%. Temperature rise measured during the first-stage ignition of n-pentane is over-predicted by zero-dimensional kinetic simulations. This work presents, for the first time, highly time-resolved temperature measurements in reactive and non-reactive rapid compression machine experiments. © 2016 Elsevier Ltd.

  20. Time-resolved wave profile measurements in copper to Megabar pressures

    Energy Technology Data Exchange (ETDEWEB)

    Chhabildas, L C; Asay, J R

    1981-01-01

    Many time-resolved techniques have been developed which have greatly aided in the understanding of dynamic material behavior such as the high pressure-dynamic strength of materials. In the paper, time-resolved measurements of copper (at shock-induced high pressures and temperatures) are used to illustrate the capability of using such techniques to investigate high pressure strength. Continuous shock loading and release wave profiles have been made in copper to 93 GPa using velocity interferometric techniques. Fine structure in the release wave profiles from the shocked state indicates an increase in shear strength of copper to 1.5 GPa at 93 GPa from its ambient value of 0.08 GPa.

  1. In-situ measurements in Vesivehmaa air field - STUK team

    Energy Technology Data Exchange (ETDEWEB)

    Markkanen, M.; Honkamaa, T.; Niskala, P. [Finnish Centre for Radiation and Nuclear Safety, Helsinki (Finland)

    1997-12-31

    Nineteen in-situ gamma-ray spectrometric measurements were performed in Vesivehmaa air field on 17th August 1995. The results for {sup 137}Cs and natural radionuclides are in good agreement with the results from soil sampling and laboratory analyses. (au).

  2. In-situ measurements in Vesivehmaa air field - STUK team

    Energy Technology Data Exchange (ETDEWEB)

    Markkanen, M; Honkamaa, T; Niskala, P [Finnish Centre for Radiation and Nuclear Safety, Helsinki (Finland)

    1998-12-31

    Nineteen in-situ gamma-ray spectrometric measurements were performed in Vesivehmaa air field on 17th August 1995. The results for {sup 137}Cs and natural radionuclides are in good agreement with the results from soil sampling and laboratory analyses. (au).

  3. In situ calibration of an interferometric velocity sensor for measuring small scale flow structures using a Talbot-pattern

    Science.gov (United States)

    König, Jörg; Czarske, Jürgen

    2017-10-01

    Small scale flow phenomena play an important role across engineering, biological and chemical sciences. To gain deeper understanding of the influence of those flow phenomena involved, measurement techniques with high spatial resolution are often required, presuming a calibration of very low uncertainty. To enable such measurements, a method for the in situ calibration of an interferometric flow velocity profile sensor is presented. This sensor, with demonstrated spatial resolution better than 1 μm, allows for spatially-resolving measurements with low velocity uncertainty in flows with high velocity gradients, on condition that the spatial behavior of the interference fringe systems is well-known by calibration with low uncertainty, especially challenging to obtain at applications with geometries difficult to access. The calibration method described herein uses three interfering beams to form the interference fringe systems of the sensor, yielding Doppler burst signals exhibiting two peaks in the frequency domain whose amplitude ratio varies periodically along the measurement volume major z-axis, giving a further independent value of the axial tracer particle position that can be used to determine the calibration functions of the sensor during the flow measurement. A flow measurement in a microchannel experimentally validates that the presented approach allows for simultaneously estimating the calibration functions and the velocity profile, providing flow measurements with very low systematic measurement errors of the particle position of less than 400 nm (confidence interval 95%). In that way, the interferometric flow velocity profile sensor utilizing the in situ self-calibration method promises valuable insights on small scale flow phenomena, such as those given in shear and boundary layer flows, by featuring reliable flow measurements due to minimum systematic and statistical measurement errors.

  4. Spatially-resolved measurement of optically stimulated luminescence and time-resolved luminescence

    International Nuclear Information System (INIS)

    Bailiff, I.K.; Mikhailik, V.B.

    2003-01-01

    Spatially-resolved measurements of optically stimulated luminescence (OSL) were performed using a two-dimensional scanning system designed for use with planar samples. The scanning system employs a focused laser beam to stimulate a selected area of the sample, which is moved under the beam by a motorised stage. Exposure of the sample is controlled by an electronic shutter. Mapping of the distribution of OSL using a continuous wave laser source was obtained with sub-millimeter resolution for samples of sliced brick, synthetic single crystal quartz, concrete and dental ceramic. These revealed sporadic emission in the case of brick or concrete and significant spatial variation of emission for quartz and dental ceramic slices. Determinations of absorbed dose were performed for quartz grains within a slice of modern brick. Reconfiguration of the scanner with a pulsed laser source enabled quartz and feldspathic minerals within a ceramic sample to be thinner region. about 6 nm from the extrapolation of themeasuring the time-resolved luminescence spectrum

  5. Blending Satellite Observed, Model Simulated, and in Situ Measured Soil Moisture over Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    Yijian Zeng

    2016-03-01

    Full Text Available The inter-comparison of different soil moisture (SM products over the Tibetan Plateau (TP reveals the inconsistency among different SM products, when compared to in situ measurement. It highlights the need to constrain the model simulated SM with the in situ measured data climatology. In this study, the in situ soil moisture networks, combined with the classification of climate zones over the TP, were used to produce the in situ measured SM climatology at the plateau scale. The generated TP scale in situ SM climatology was then used to scale the model-simulated SM data, which was subsequently used to scale the SM satellite observations. The climatology-scaled satellite and model-simulated SM were then blended objectively, by applying the triple collocation and least squares method. The final blended SM can replicate the SM dynamics across different climatic zones, from sub-humid regions to semi-arid and arid regions over the TP. This demonstrates the need to constrain the model-simulated SM estimates with the in situ measurements before their further applications in scaling climatology of SM satellite products.

  6. Comparison of GRACE with in situ hydrological measurement data ...

    African Journals Online (AJOL)

    Comparison of GRACE with in situ hydrological measurement data shows storage depletion in Hai River basin, Northern China. ... of the world, their application in conjunction with hydrological models could improve hydrological studies.

  7. Method for in situ carbon deposition measurement for solid oxide fuel cells

    Science.gov (United States)

    Kuhn, J.; Kesler, O.

    2014-01-01

    Previous methods to measure carbon deposition in solid oxide fuel cell (SOFC) anodes do not permit simultaneous electrochemical measurements. Electrochemical measurements supplemented with carbon deposition quantities create the opportunity to further understand how carbon affects SOFC performance and electrochemical impedance spectra (EIS). In this work, a method for measuring carbon in situ, named here as the quantification of gasified carbon (QGC), was developed. TGA experiments showed that carbon with a 100 h residence time in the SOFC was >99.8% gasified. Comparison of carbon mass measurements between the TGA and QGC show good agreement. In situ measurements of carbon deposition in SOFCs at varying molar steam/carbon ratios were performed to further validate the QGC method, and suppression of carbon deposition with increasing steam concentration was observed, in agreement with previous studies. The technique can be used to investigate in situ carbon deposition and gasification behavior simultaneously with electrochemical measurements for a variety of fuels and operating conditions, such as determining conditions under which incipient carbon deposition is reversible.

  8. In situ deuterium inventory measurements of a-C:D layers on tungsten in TEXTOR by laser induced ablation spectroscopy

    International Nuclear Information System (INIS)

    Gierse, N; Brezinsek, S; Coenen, J W; Huber, A; Laengner, M; Möller, S; Nonhoff, M; Philipps, V; Pospieszczyk, A; Schweer, B; Sergienko, G; Xiao, Q; Zlobinski, M; Samm, U; Giesen, T F

    2014-01-01

    Laser induced ablation spectroscopy (LIAS) is a diagnostic to provide temporally and spatially resolved in situ measurements of tritium retention and material migration in order to characterize the status of the first wall in future fusion devices. In LIAS, a ns-laser pulse ablates the first nanometres of the first wall plasma-facing components into the plasma edge. The resulting line radiation by plasma excitation is observed by spectroscopy. In the case of the full ionizing plasma and with knowledge of appropriate photon efficiencies for the corresponding line emission the amount of ablated material can be measured in situ. We present the photon efficiency for the deuterium Balmer α-line resulting from ablation in TEXTOR by performing LIAS on amorphous hydrocarbon (a-C:D) layers deposited on tungsten substrate of thicknesses between 0.1 and 1.1 μm. An experimental inverse photon efficiency of [(D/(XB))] D α (EXP) a-C:D→ LIAS D =75.9±23.4 was determined. This value is a factor 5 larger than predicted values from the ADAS database for atomic injection of deuterium under TEXTOR plasma edge conditions and about twice as high, assuming normal wall recycling and release of molecular deuterium and break-up of D 2 via the molecular ion which is usually observed at the high temperature tokamak edge (T e  > 30 eV). (paper)

  9. In-situ measurement of mechanical properties of structural components using cyclic ball indentation technique

    International Nuclear Information System (INIS)

    Chatterjee, S.; Madhusoodanan, K.; Panwar, Sanjay; Rupani, B.B.

    2007-01-01

    Material properties of components change during service due to environmental conditions. Measurement of mechanical properties of the components is important for assessing their fitness for service. In many instances, it is not possible to remove sizable samples from the component for doing the measurement in laboratory. In-situ technique for measurement of mechanical properties has great significance in such cases. One of the nondestructive methods that can be adopted for in-situ application is based on cyclic ball indentation technique. It involves multiple indentation cycles (at the same penetration location) on a metallic surface by a spherical indenter. Each cycle consists of indentation, partial unload and reload sequences. Presently, commercial systems are available for doing indentation test on structural component for limited applications. But, there is a genuine need of remotely operable compact in-situ property measurement system. Considering the importance of such applications Reactor Engineering Division of BARC has developed an In-situ Property Measurement System (IProMS), which can be used for in-situ measurement of mechanical properties of a flat or tubular component. This paper highlights the basic theory of measurement, qualification tests on IProMS and results from tests done on flat specimens and tubular component. (author)

  10. Resolving Key Uncertainties in Subsurface Energy Recovery: One Role of In Situ Experimentation and URLs (Invited)

    Science.gov (United States)

    Elsworth, D.

    2013-12-01

    Significant uncertainties remain and influence the recovery of energy from the subsurface. These uncertainties include the fate and transport of long-lived radioactive wastes that result from the generation of nuclear power and have been the focus of an active network of international underground research laboratories dating back at least 35 years. However, other nascent carbon-free energy technologies including conventional and EGS geothermal methods, carbon-neutral methods such as carbon capture and sequestration and the utilization of reduced-carbon resources such as unconventional gas reservoirs offer significant challenges in their effective deployment. We illustrate the important role that in situ experiments may play in resolving behaviors at extended length- and time-scales for issues related to chemical-mechanical interactions. Significantly, these include the evolution of transport and mechanical characteristics of stress-sensitive fractured media and their influence of the long-term behavior of the system. Importantly, these interests typically relate to either creating reservoirs (hydroshearing in EGS reservoirs, artificial fractures in shales and coals) or maintaining seals at depth where the permeating fluids may include mixed brines, CO2, methane and other hydrocarbons. Critical questions relate to the interaction of these various fluid mixtures and compositions with the fractured substrate. Important needs are in understanding the roles of key processes (transmission, dissolution, precipitation, sorption and dynamic stressing) on the modification of effective stresses and their influence on the evolution of permeability, strength and induced seismicity on the resulting development of either wanted or unwanted fluid pathways. In situ experimentation has already contributed to addressing some crucial issues of these complex interactions at field scale. Important contributions are noted in understanding the fate and transport of long-lived wastes

  11. In situ measurement of tritium permeation through stainless steel

    Science.gov (United States)

    Luscher, Walter G.; Senor, David J.; Clayton, Kevin K.; Longhurst, Glen R.

    2013-06-01

    The TMIST-2 irradiation experiment was conducted in the Advanced Test Reactor at Idaho National Laboratory to evaluate tritium permeation through Type 316 stainless steel (316 SS). The interior of a 316 SS seamless tube specimen was exposed to a 4He carrier gas mixed with a specified quantity of tritium (T2) to yield partial pressures of 0.1, 5, and 50 Pa at 292 °C and 330 °C. In situ tritium permeation measurements were made by passing a He-Ne sweep gas over the outer surface of the specimen to carry the permeated tritium to a bubbler column for liquid scintillation counting. Results from in situ permeation measurements were compared with predictions based on an ex-reactor permeation correlation in the literature. In situ permeation data were also used to derive an in-reactor permeation correlation as a function of temperature and pressure over the ranges considered in this study. In addition, the triton recoil contribution to tritium permeation, which results from the transmutation of 3He to T, was also evaluated by introducing a 4He carrier gas mixed with 3He at a partial pressure of 1013 Pa at 330 °C. Less than 3% of the tritium resulting from 3He transmutation contributed to tritium permeation.

  12. The Potassium-Argon Laser Experiment (KArLE): In Situ Geochronology for Planetary Robotic Missions

    Science.gov (United States)

    Cohen, Barbara

    2016-01-01

    The Potassium (K) - Argon (Ar) Laser Experiment (KArLE) will make in situ noble-gas geochronology measurements aboard planetary robotic landers and roverss. Laser-Induced Breakdown Spectroscopy (LIBS) is used to measure the K abun-dance in a sample and to release its noble gases; the evolved Ar is measured by mass spectrometry (MS); and rela-tive K content is related to absolute Ar abundance by sample mass, determined by optical measurement of the ablated volume. KArLE measures a whole-rock K-Ar age to 10% or better for rocks 2 Ga or older, sufficient to resolve the absolute age of many planetary samples. The LIBS-MS approach is attractive because the analytical components have been flight proven, do not require further technical development, and provide complementary measurements as well as in situ geochronology.

  13. Environmental gamma-ray measurements using in situ and core sampling techniques

    International Nuclear Information System (INIS)

    Dickson, H.W.; Kerr, G.D.; Perdue, P.T.; Abdullah, S.A.

    1976-01-01

    Dose rates from natural radionuclides and 137 Cs in soils of the Oak Ridge area have been determined from in situ and core sample measurements. In situ γ-ray measurements were made with a transportable spectrometer. A tape of spectral data and a soil core sample from each site were returned to ORNL for further analysis. Information on soil composition, density and moisture content and on the distribution of cesium in the soil was obtained from the core samples. In situ spectra were analyzed by a computer program which identified and assigned energies to peaks, integrated the areas under the peaks, and calculated radionuclide concentrations based on a uniform distribution in the soil. The assumption of a uniform distribution was adequate only for natural radionuclides, but simple corrections can be made to the computer calculations for man-made radionuclides distributed on the surface or exponentially in the soil. For 137 Cs a correction was used based on an exponential function fitted to the distribution measured in core samples. At typical sites in Oak Ridge, the dose rate determined from these measurements was about 5 μrad/hr. (author)

  14. In-situ measurement of environment radioactivity by mobile nuclear field laboratory (MNFL)

    International Nuclear Information System (INIS)

    Gopalani, Deepak; Mathur, A.P.; Rawat, D.K.; Barala, S.S.; Singhal, K.P.; Singh, G.P.; Samant, R.P.

    2008-01-01

    In-situ measurement of environment radioactivity is useful tool for determine the unusual increase of radioactivity at any place due to any nuclear eventuality take place. A mobile nuclear field laboratory has been designed and developed for in-situ measurement of environment radioactivity at any desired location. This vehicle is equipped with different monitoring and analysis instruments. These equipment can be operated while vehicle is moving. The measured data can be stored in computer. This vehicle has the space for storage of various environmental matrices of affected area and these can analysis in laboratory. (author)

  15. XRMON-GF: A novel facility for solidification of metallic alloys with in situ and time-resolved X-ray radiographic characterization in microgravity conditions

    Science.gov (United States)

    Nguyen-Thi, H.; Reinhart, G.; Salloum Abou Jaoude, G.; Mathiesen, R. H.; Zimmermann, G.; Houltz, Y.; Voss, D.; Verga, A.; Browne, D. J.; Murphy, A. G.

    2013-07-01

    As most of the phenomena involved during the growth of metallic alloys from the melt are dynamic, in situ and time-resolved X-ray imaging should be retained as the method of choice for investigating the solidification front evolution. On Earth, the gravity force is the major source of various disturbing effects (natural convection, buoyancy/sedimentation, and hydrostatic pressure) which can significantly modify or mask certain physical mechanisms. Therefore solidification under microgravity is an efficient way to eliminate such perturbations to provide unique benchmark data for the validation of models and numerical simulations. Up to now, in situ observation during microgravity solidification experiments were limited to the investigations on transparent organic alloys, using optical methods. On the other hand, in situ observation on metallic alloys generally required synchrotron facilities. This paper reports on a novel facility we have designed and developed to investigate directional solidification on metallic alloys in microgravity conditions with in situ X-ray radiography observation. The facility consists of a Bridgman furnace and an X-ray radiography device specifically devoted to the study of Al-based alloys. An unprecedented experiment was recently performed on board a sounding rocket, with a 6 min period of microgravity. Radiographs were successfully recorded during the entire experiment including the melting and solidification phases of the sample, with a Field-of-View of about 5 mm×5 mm, a spatial resolution of about 4 µm and a frequency of 2 frames per second. Some preliminary results are presented on the solidification of the Al-20 wt% Cu sample, which validate the apparatus and confirm the potential of in situ X-ray characterization for the investigation of dynamical phenomena in materials processing, and particularly for the studying of metallic alloys solidification.

  16. In situ radiation measurements at the former Soviet Nuclear Test Site

    International Nuclear Information System (INIS)

    Tipton, W.J.

    1996-06-01

    A team from the Remote Sensing Laboratory conducted a series of in situ radiological measurements at the former Soviet Nuclear Test Site near Semipalatinsk, Kazakhstan, during the period of July 21-30, 1994. The survey team measured the terrestrial gamma radiation at selected areas on the site to determine the levels of natural and man-made radiation. The survey was part of a cooperative effort between the United States team and teams of radiation scientists from the National Nuclear Center of the Republic of Kazakhstan and the V.G. Khlopin Radium Institute in St. Petersburg, Russia. In addition to in situ radiation measurements made by the United States and Russian teams, soil samples were collected and analyzed by the Russian and Kazakhstani teams. All teams conducted their measurements at ten locations within the test site. The United States team also made a number of additional measurements to locate and verify the positions of three potential fallout plumes containing plutonium contamination from nonnuclear tests. In addition, the United States team made several measurements in Kurchatov City, the housing area used by personnel and their families who work(ed) at the test sites. Comparisons between the United States and Russian in situ measurements and the soil sample results are presented as well as comparisons with a Soviet aerial survey conducted in 1990-1991. The agreement between the different types of measurements made by all three countries was quite good

  17. In situ measurements of Merensky pillar behaviour at Impala Platinum

    CSIR Research Space (South Africa)

    Watson, BP

    2009-12-01

    Full Text Available to stabilize the stoping excavations. This paper describes the in situ measurement, of stress within a Merensky pillar from Impala Platinum. These measurements were used to derive a stress-strain curve that includes pre and post failure behaviour. 2D FLAC...

  18. Nanosecond-resolved temperature measurements using magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Wenbiao; Zhang, Pu [School of Automation, Huazhong University of Science and Technology, Wuhan 430074 (China); Liu, Wenzhong, E-mail: lwz7410@hust.edu.cn [School of Automation, Huazhong University of Science and Technology, Wuhan 430074 (China); Key Laboratory of Image Processing and Intelligent Control, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2016-05-15

    Instantaneous and noninvasive temperature measurements are important when laser thermotherapy or welding is performed. A noninvasive nanosecond-resolved magnetic nanoparticle (MNP) temperature measurement system is described in which a transient change in temperature causes an instantaneous change in the magnetic susceptibilities of the MNPs. These transient changes in the magnetic susceptibilities are rapidly recorded using a wideband magnetic measurement system with an upper frequency limit of 0.5 GHz. The Langevin function (the thermodynamic model characterizing the MNP magnetization process) is used to obtain the temperature information. Experiments showed that the MNP DC magnetization temperature-measurement system can detect a 14.4 ns laser pulse at least. This method of measuring temperature is likely to be useful for acquiring the internal temperatures of materials irradiated with lasers, as well as in other areas of research.

  19. Radiation-induced polymerization monitored in situ by time-resolved fluorescence of probe molecules in methyl methacrylate

    International Nuclear Information System (INIS)

    Frahn, Mark S.; Abellon, Ruben D.; Luthjens, Leonard H.; Vermeulen, Martien J.W.; Warman, John M.

    2003-01-01

    A technique is presented for monitoring radiation-induced polymerizations in situ based on the measurement of the fluorescence lifetime of molecular probes dissolved in the polymerizing medium. This method is illustrated with results on methyl methacrylate (MMA) using two fluorogenic probe molecules; N-(2-anthracene)methacrylamide (AnMA) and maleimido-fluoroprobe (MFP), a molecule which has a highly dipolar excited state

  20. New layout of time resolved beam energy spectrum measurement for dragon-I

    International Nuclear Information System (INIS)

    Liao Shuqing; Zhang Kaizhi; Shi Jinshui

    2010-01-01

    A new layout of time resolved beam energy spectrum measurement is proposed for Dragon-I by a new method named RBS (rotating beams in solenoids). The basic theory of RBS and the new layout are presented and the measuring error is also discussed. The derived time resolved beam energy spectrum is discrete and is determined by measuring the beam's rotating angle and expanding width through a group of solenoids at the export of Dragon-I. (authors)

  1. Savannah River Site Experiences in In Situ Field Measurements of Radioactive Materials

    International Nuclear Information System (INIS)

    Moore, F.S.

    1999-01-01

    This paper discusses some of the field gamma-ray measurements made at the Savannah River Site, the equipment used for the measurements, and lessons learned during in situ identification and characterization of radioactive materials

  2. Application of in situ measurement for site remediation and final status survey of decommissioning KRR site

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sang Bum; Nam, Jong Soo; Choi, Yong Suk; Seo, Bum Kyoung; Moon, Jei Kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-06-15

    In situ gamma spectrometry has been used to measure environmental radiation, assumptions are usually made about the depth distribution of the radionuclides of interest in the soil. The main limitation of in situ gamma spectrometry lies in determining the depth distribution of radionuclides. The objective of this study is to develop a method for subsurface characterization by in situ measurement. The peak to valley method based on the ratio of counting rate between the photoelectric peak and Compton region was applied to identify the depth distribution. The peak to valley method could be applied to establish the relation between the spectrally derived coefficients (Q) with relaxation mass per unit area (β) for various depth distribution in soil. The in situ measurement results were verified by MCNP simulation and calculated correlation equation. In order to compare the depth distributions and contamination levels in decommissioning KRR site, in situ measurement and sampling results were compared. The in situ measurement results and MCNP simulation results show a good correlation for laboratory measurement. The simulation relationship between Q and source burial for the source layers have exponential relationship for a variety depth distributions. We applied the peak to valley method to contaminated decommissioning KRR site to determine a depth distribution and initial activity without sampling. The observed results has a good correlation, relative error between in situ measurement with sampling result is around 7% for depth distribution and 4% for initial activity. In this study, the vertical activity distribution and initial activity of {sup 137}Cs could be identifying directly through in situ measurement. Therefore, the peak to valley method demonstrated good potential for assessment of the residual radioactivity for site remediation in decommissioning and contaminated site.

  3. In-situ gamma spectroscopic measurement of natural waters in Bulgaria

    International Nuclear Information System (INIS)

    Manushev, B.; Mandzhukov, I.; Tsankov, L.; Boshkova, T.; Gurev, V.; Mandzhukova, B.; Kozhukharov, I.; Grozev, G.

    1983-01-01

    In-situ gamma spectrometric measurements are carried out to record differences higher than the errors of measurement in the gamma-field spectra in various basins in Bulgaria - two high mountain lakes, dam and the Black sea. A standard scintillation gamma spectrometer, consisting of a scintillation detector ND-424 type, a channel analyzer NP-424 and a 128 channel Al-128 type analyzer, has been used. The sensitivity of the procedure used is sufficient to detect the transfer of nuclides by dissolution from rocks, forming the bottom and the water-collecting region of the water basin. The advancement of the experimental techniques defines the future use of the procedure. In-situ gamma spectrometric determination may be used in cases of continuous and automated control of the radiation purity of the cooling water in atomic power plants or the water basins located close to such plants and of radioactive contamination of the sea and ocean water

  4. Estimation of the in situ degradation of the washout fraction of starch by using a modified in situ protocol and in vitro measurements

    NARCIS (Netherlands)

    Jonge, de L.H.; Laar, van H.; Dijkstra, J.

    2015-01-01

    The in situ degradation of the washout fraction of starch in six feed ingredients (i.e. barley, faba beans, maize, oats, peas and wheat) was studied by using a modified in situ protocol and in vitro measurements. In comparison with the washing machine method, the modified protocol comprises a milder

  5. Field instruments for real time in-situ crude oil concentration measurements

    International Nuclear Information System (INIS)

    Fuller, C.B.; Bonner, J.S.; Page, C.A.; Arrambide, G.; Sterling, M.C.Jr.; Ojo, T.O.

    2003-01-01

    Accidental oil spills, contaminant release during resuspension, storms, and harmful algal blooms are all episodic events that can effect coastal margins. It is important to quantitatively describe water and ecological quality evolution and predict the impact to these areas by such events, but traditional sampling methods miss environmental activity during cyclical events. This paper presents a new sampling approach that involves continuous, real-time in-situ monitoring to provide data for development of comprehensive modeling protocols. It gives spill response coordinators greater assurance in making decisions using the latest visualization tools which are based on a good understanding of the physical processes at work in pulsed events. Five sensors for rapid monitoring of crude oil concentrations in aquatic systems were described. The in-situ and ex-situ sensors can measure plume transport and estimate polycyclic aromatic hydrocarbon exposure concentrations to assess risk of toxicity. A brief description and evaluation of the following 5 sensors was provided: the LISST-100 by Sequoia Instrument, a submersible multi-angle laser scattering instrument; the AU-10 field fluorometer by Turner Designs, an ex-situ single wavelength fluorometer; the Flashlamp by WET Labs Inc., an in-situ single wavelength fluorometer; and, the ECO-FL3 and SAFire by WET Labs Inc., two in-situ multiple wavelength fluorometers. These instruments were used to analyze crude oil emissions of various concentrations. All of the instruments followed a linear response within the tested concentration range. At the lowest concentrations the LISST-100 was not as effective as the fluorometers because of limited particle volume for scatter. For the AU-10 field fluorometer, the highest concentrations tested were above the measurement range of the instrument. 6 refs., 5 figs

  6. Time-resolved spectral measurements above 80 A

    International Nuclear Information System (INIS)

    Kauffman, R.L.; Ceglio, N.; Medecki, H.

    1983-01-01

    We have made time-resolved spectral measurements above 80 A from laser-produced plasmas. These are made using a transmission grating spectrograph whose primary components are a cylindrically-curved x-ray mirror for light collection, a transmission grating for spectral dispersions, and an x-ray streak camera for temporal resolution. A description of the instrument and an example of the data are given

  7. Calibration and application of a HPGe gamma spectrometer for in-situ measurements

    International Nuclear Information System (INIS)

    Xiao Xuefu; Yue Qingyu

    1992-02-01

    The principle and methods of the calibration for an in-situ γ spectrometer are introduced. The calibration for a portable HPGe γ spectrometer has been completed. The N f /A(peak count rate per unit activity in soil) and N f /D(peak count rate per unit absorbed dose rate in the air) are listed. The uncertainties of the calibration factors are estimated. The in-situ measurements have been carried out in surroundings near the nuclear facilities and the data are compared with those measured by other methods

  8. Use of tensiometer for in situ measurement of nitrate leaching

    Energy Technology Data Exchange (ETDEWEB)

    Li, K.; Reddy, M.R.

    1999-07-01

    In order to monitor nitrate leaching from non-point source pollution, this study used tensiometers to measure in situ nitrate concentration and soil-moisture potential. Instead of filling the tensiometers with pure water, the study filled the tensiometers with nitrate ionic strength adjuster (ISA, 1 M (NH{sub 4}){sub 2}SO{sub 4}). After the installation of the tensiometers at various depths along soil profiles, a portable pressure transducer was used to measure the soil moisture potential, and a nitrate electrode attached to an ion analyzer was used to measure the nitrate concentration in situ. The measurement was continuous and non-destructive. To test this method in the laboratory, eight bottles filled with pure sand were treated with known nitrate solutions, and a tensiometer was placed in each bottle. Measurements were taken every day for 30 days. Laboratory test showed a linear relationship between the known nitrate concentration and the tensiometer readings (R{sup 2} = 0.9990). Then a field test was conducted in a watermelon field with green manure mulch. Field data indicated a potential of nitrate leaching below the soil depth of 100 cm when crop uptake of nutrients was low.

  9. In situ Micrometeorological Measurements during RxCADRE

    Science.gov (United States)

    Clements, C. B.; Hiers, J. K.; Strenfel, S. J.

    2009-12-01

    The Prescribed Fire Combustion and Atmospheric Dynamics Research Experiment (RxCADRE) was a collaborative research project designed to fully instrument prescribed fires in the Southeastern United States. Data were collected on pre-burn fuel loads, post burn consumption, ambient weather, in situ atmospheric dynamics, plume dynamics, radiant heat release (both from in-situ and remote sensors), in-situ fire behavior, and select fire effects. The sampling was conducted at Eglin Air Force Base, Florida, and the Joseph W. Jones Ecological Research Center in Newton, Georgia, from February 29 to March 6, 2008. Data were collected on 5 prescribed burns, totaling 4458 acres. The largest aerial ignition totaled 2,290 acres and the smallest ground ignition totaled 104 acres. Quantifying fire-atmospheric interactions is critical for understanding wildland fire dynamics and enhancing modeling of smoke plumes. During Rx-CADRE, atmospheric soundings using radiosondes were made at each burn prior to ignition. In situ micrometeorological measurements were made within each burn unit using five portable, 10-m towers equipped with sonic and prop anemometers, fine-wire thermocouples, and a carbon dioxide probes. The towers were arranged within the burn units to capture the wind and temperature fields as the fire front and plume passed the towers. Due to the interaction of fire lines following ignition, several of the fire fronts that passed the towers were backing fires and thus less intense. Preliminary results indicate that the average vertical velocities associated with the fire front passage were on the order of 3-5 m s-1 and average plume temperatures were on the order of 30-50 °C above ambient. During two of the experimental burns, radiosondes were released into the fire plumes to determine the vertical structure of the plume temperature, humidity, and winds. A radiosonde released into the plume during the burn conducted on 3 March 2008 indicated a definite plume boundary in the

  10. Phased-Resolved Strain Measuremetns in Hydrated Ordinary Portland Cement Using Synchrotron x-Rays (Prop. 2003-033)

    International Nuclear Information System (INIS)

    Biernacki, Joseph J.; Watkins, Thomas R.; Parnham, C.J.; Hubbard, Camden R.; Bai, J.

    2006-01-01

    X-ray diffraction methods developed for the determination of residual stress states in crystalline materials have been applied to study residual strains and strains because of mechanical loading of ordinary portland cement paste. Synchrotron X-rays were used to make in situ measurements of interplanar spacings in the calcium hydroxide (CH) phase of hydrated neat portland cement under uniaxial compression. The results indicate that strains on the order of 1/100 000 can be resolved providing an essentially new technique by which to measure the phase-resolved meso-scale mechanical behavior of cement under different loading conditions. Evaluation of these strain data in view of published elastic parameters for CH suggests that the CH carries a large fraction of the applied stress and that plastic interactions with the matrix are notable.

  11. Long Term Validation of Land Surface Temperature Retrieved from MSG/SEVIRI with Continuous in-Situ Measurements in Africa

    Directory of Open Access Journals (Sweden)

    Frank-M. Göttsche

    2016-05-01

    Full Text Available Since 2005, the Land Surface Analysis Satellite Application Facility (LSA SAF operationally retrieves Land Surface Temperature (LST for the Spinning Enhanced Visible and Infrared Imager (SEVIRI on board Meteosat Second Generation (MSG. The high temporal resolution of the Meteosat satellites and their long term availability since 1977 make their data highly valuable for climate studies. In order to ensure that the LSA SAF LST product continuously meets its target accuracy of 2 °C, it is validated with in-situ measurements from four dedicated LST validation stations. Three stations are located in highly homogenous areas in Africa (semiarid bush, desert, and Kalahari semi-desert and typically provide thousands of monthly match-ups with LSA SAF LST, which are used to perform seasonally resolved validations. An uncertainty analysis performed for desert station Gobabeb yielded an estimate of total in-situ LST uncertainty of 0.8 ± 0.12 °C. Ignoring rainy seasons, the results for the period 2009–2014 show that LSA SAF LST consistently meets its target accuracy: the highest mean root-mean-square error (RMSE for LSA SAF LST over the African stations was 1.6 °C while mean absolute bias was 0.1 °C. Nighttime and daytime biases were up to 0.7 °C but had opposite signs: when evaluated together, these partially compensated each other.

  12. Paloma: In-Situ Measurement of the Isotopic Composition of Mars Atmosphere

    Science.gov (United States)

    Jambon, A.; Quemerais, E.; Chassiefiere, E.; Berthelier, J. J.; Agrinier, P.; Cartigny, P.; Javoy, M.; Moreira, M.; Sabroux, J. -C.; Sarda, P.; Pineau, J. -F.

    2000-07-01

    Scientific objectives for an atmospheric analysis of Mars are presented in the DREAM project. Among the information presently available most are fragmentary or limited in their precision for both major element (H, C, O, N) and noble gas isotopes. These data are necessary for the understanding and modelling of Mars atmospheric formation and evolution, and consequently for other planets, particularly the Earth. To fulfill the above requirements, two approaches can be envisonned: 1) analysis of a returned sample (DREAM project) or 2) in situ analysis, e.g. PALOMA project presented here. Among the advantages of in situ analysis, we notice: the minimal terrestrial contamination, the unlimited availability of gas to be analyzed and the possibility of multiple analyses (replicates, daynight... ). Difficulties specific to in situ analyses are of a very different kind to those of returned samples. In situ analysis could also be viewed as a preparation to future analysis of returned samples. Finally, some of the measurements will not be possible on Earth: for instance, radon and its short lived decay products, will provide complementary information to 4-He analysis and can only be obtained in situ, independently of analytical capabilities.

  13. Development of in situ time-resolved Raman spectroscopy facility for dynamic shock loading in materials

    Science.gov (United States)

    Chaurasia, S.; Rastogi, V.; Rao, U.; Sijoy, C. D.; Mishra, V.; Deo, M. N.

    2017-11-01

    The transient state of excitation and relaxation processes in materials under shock compression can be investigated by coupling the laser driven shock facility with Raman spectroscopy. For this purpose, a time resolved Raman spectroscopy setup has been developed to monitor the physical and the chemical changes such as phase transitions, chemical reactions, molecular kinetics etc., under shock compression with nanosecond time resolution. This system consist of mainly three parts, a 2 J/8 ns Nd:YAG laser system used for generation of pump and probe beams, a Raman spectrometer with temporal and spectral resolution of 1.2 ns and 3 cm-1 respectively and a target holder in confinement geometry assembly. Detailed simulation for the optimization of confinement geometry targets is performed. Time resolved measurement of polytetrafluoroethylene (PTFE) targets at focused laser intensity of 2.2 GW/cm2 has been done. The corresponding pressure in the Aluminum and PTFE are 3.6 and 1.7 GPa respectively. At 1.7 GPa in PTFE, a red shift of 5 cm-1 is observed for the CF2 twisting mode (291 cm-1). Shock velocity in PTFE is calculated by measuring rate of change of ratios of the intensity of Raman lines scattered from shocked volume to total volume of sample in the laser focal spot along the laser axis. The calculated shock velocity in PTFE is found to be 1.64 ± 0.16 km/s at shock pressure of 1.7 GPa, for present experimental conditions.

  14. Combining Space-Based and In-Situ Measurements to Track Flooding in Thailand

    Science.gov (United States)

    Chien, Steve; Doubleday, Joshua; Mclaren, David; Tran, Daniel; Tanpipat, Veerachai; Chitradon, Royal; Boonya-aaroonnet, Surajate; Thanapakpawin, Porranee; Khunboa, Chatchai; Leelapatra, Watis; hide

    2011-01-01

    We describe efforts to integrate in-situ sensing, space-borne sensing, hydrological modeling, active control of sensing, and automatic data product generation to enhance monitoring and management of flooding. In our approach, broad coverage sensors and missions such as MODIS, TRMM, and weather satellite information and in-situ weather and river gauging information are all inputs to track flooding via river basin and sub-basin hydrological models. While these inputs can provide significant information as to the major flooding, targetable space measurements can provide better spatial resolution measurements of flooding extent. In order to leverage such assets we automatically task observations in response to automated analysis indications of major flooding. These new measurements are automatically processed and assimilated with the other flooding data. We describe our ongoing efforts to deploy this system to track major flooding events in Thailand.

  15. Modular enrichment measurement system for in-situ enrichment assay

    International Nuclear Information System (INIS)

    Stewart, J.P.

    1976-01-01

    A modular enrichment measurement system has been designed and is in operation within General Electric's Nuclear Fuel Fabrication Facility for the in-situ enrichment assay of uranium-bearing materials in process containers. This enrichment assay system, which is based on the ''enrichment meter'' concept, is an integral part of the site's enrichment control program and is used in the in-situ assay of the enrichment of uranium dioxide (UO 2 ) powder in process containers (five gallon pails). The assay system utilizes a commercially available modular counting system and a collimnator designed for compatability with process container transport lines and ease of operator access. The system has been upgraded to include a microprocessor-based controller to perform system operation functions and to provide data acquisition and processing functions. Standards have been fabricated and qualified for the enrichment assay of several types of uranium-bearing materials, including UO 2 powders. The assay system has performed in excess of 20,000 enrichment verification measurements annually and has significantly contributed to the facility's enrichment control program

  16. Novel thermosyphon driven hydrothermal flow-through cell for in situ and time resolved neutron diffraction studies

    International Nuclear Information System (INIS)

    Xia, Fang; Qian, Gujie; Etschmann, Barbara; University of Adelaide, South Australia, Australia; University of Adelaide, South Australia, Australia; Studer, Andrew; Olsen, Scott

    2009-01-01

    Full text: A flow-through cell for hydrothermal phase transformation studies by in situ and time-resolved neutron diffraction has been designed and constructed. The cell has a large internal volume of 320 m L and can work at up to 300 degree Centigrade under autogeneous vapour pressures (-85 bar). The fluid flow is driven by thermosyphon which is realized by the proper design of temperature difference around the closed loop[1,2). The main body of the cell is made of stainless steel (316 type), but the sample compartment is constructed from non-scattering Ti/Zr alloy. We have successfully commissioned the cell on Australia's new high intensity powder diffractometer WOMBAT in ANSTO, using a simple transformation reaction from leucite (KAISi 2 O 6 ) to analcime (NaAISi 2 O 6H2O ) and then back from analcime to leucite. The demonstration proved that the cell is an excellent tool for probing hydrothermal phase transformations. By collecting diffraction data every 5 min, it was clearly seen that leucite was progressively transformed to analcime in a NaCI solution, and the produced analcime was progressively transformed back to leucite in a K 2 CO 3 solution.

  17. Seeing the light: Applications of in situ optical measurements for understanding DOM dynamics in river systems (Invited)

    Science.gov (United States)

    Pellerin, B. A.; Bergamaschi, B. A.; Downing, B. D.; Saraceno, J.; Fleck, J.; Shanley, J. B.; Aiken, G.; Boss, E.; Fujii, R.

    2009-12-01

    A critical challenge for understanding the sources, character and cycling of dissolved organic matter (DOM) is making measurements at the time scales in which changes occur in aquatic systems. Traditional approaches for data collection (daily to monthly discrete sampling) are often limited by analytical and field costs, site access and logistical challenges, particularly for long-term sampling at a large number of sites. The ability to make optical measurements of DOM in situ has been known for more than 50 years, but much of the work on in situ DOM absorbance and fluorescence using commercially-available instruments has taken place in the last few years. Here we present several recent examples that highlight the application of in situ measurements for understanding DOM dynamics in riverine systems at intervals of minutes to hours. Examples illustrate the utility of in situ optical sensors for studies of DOM over short-duration events of days to weeks (diurnal cycles, tidal cycles, storm events and snowmelt periods) as well as longer-term continuous monitoring for months to years. We also highlight the application of in situ optical DOM measurements as proxies for constituents that are significantly more difficult and expensive to measure at high frequencies (e.g. methylmercury, trihalomethanes). Relatively simple DOM absorbance and fluorescence measurements made in situ could be incorporated into short and long-term ecological research and monitoring programs, resulting in advanced understanding of organic matter sources, character and cycling in riverine systems.

  18. Quantitative comparison of in situ soil CO2 flux measurement methods

    Science.gov (United States)

    Jennifer D. Knoepp; James M. Vose

    2002-01-01

    Development of reliable regional or global carbon budgets requires accurate measurement of soil CO2 flux. We conducted laboratory and field studies to determine the accuracy and comparability of methods commonly used to measure in situ soil CO2 fluxes. Methods compared included CO2...

  19. Dynamical observation of lithium insertion/extraction reaction during charge-discharge processes in Li-ion batteries by in situ spatially resolved electron energy-loss spectroscopy.

    Science.gov (United States)

    Shimoyamada, Atsushi; Yamamoto, Kazuo; Yoshida, Ryuji; Kato, Takehisa; Iriyama, Yasutoshi; Hirayama, Tsukasa

    2015-12-01

    All-solid-state Li-ion batteries (LIBs) with solid electrolytes are expected to be the next generation devices to overcome serious issues facing conventional LIBs with liquid electrolytes. However, the large Li-ion transfer resistance at the electrode/solid-electrolyte interfaces causes low power density and prevents practical use. In-situ-formed negative electrodes prepared by decomposing the solid electrolyte Li(1+x+3z)Alx(Ti,Ge)(2-x)Si(3z)P(3-z)O12 (LASGTP) with an excess Li-ion insertion reaction are effective electrodes providing low Li-ion transfer resistance at the interfaces. Prior to our work, however, it had still been unclear how the negative electrodes were formed in the parent solid electrolytes. Here, we succeeded in dynamically visualizing the formation by in situ spatially resolved electron energy-loss spectroscopy in a transmission electron microscope mode (SR-TEM-EELS). The Li-ions were gradually inserted into the solid electrolyte region around 400 nm from the negative current-collector/solid-electrolyte interface in the charge process. Some of the ions were then extracted in the discharge process, and the rest were diffused such that the distribution was almost flat, resulting in the negative electrodes. The redox reaction of Ti(4+)/Ti(3+) in the solid electrolyte was also observed in situ during the Li insertion/extraction processes. The in situ SR-TEM-EELS revealed the mechanism of the electrochemical reaction in solid-state batteries. © The Author 2015. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. A flexible gas flow reaction cell for in situ x-ray absorption spectroscopy studies

    Energy Technology Data Exchange (ETDEWEB)

    Kroner, Anna B., E-mail: anna.kroner@diamond.ac.uk; Gilbert, Martin; Duller, Graham; Cahill, Leo; Leicester, Peter; Woolliscroft, Richard; Shotton, Elizabeth J. [Diamond Light Source Ltd., Diamond House, Harwell Science and Innovation Campus, Chilton, Oxfordshire, OX110DE (United Kingdom); Mohammed, Khaled M. H. [UK Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory, Chilton, Oxfordshire, OX110FA (United Kingdom); School of Chemistry, University of Southampton, Southampton, SO17 1BJ (United Kingdom)

    2016-07-27

    A capillary-based sample environment with hot air blower and integrated gas system was developed at Diamond to conduct X-ray absorption spectroscopy (XAS) studies of materials under time-resolved, in situ conditions. The use of a hot air blower, operating in the temperature range of 298-1173 K, allows introduction of other techniques e.g. X-ray diffraction (XRD), Raman spectroscopy for combined techniques studies. The flexibility to use either quartz or Kapton capillaries allows users to perform XAS measurement at energies as low as 5600 eV. To demonstrate performance, time-resolved, in situ XAS results of Rh catalysts during the process of activation (Rh K-edge, Ce L{sub 3}-edge and Cr K-edge) and the study of mixed oxide membrane (La{sub 0.6}Sr{sub 0.4}Co{sub 0.2}Fe{sub 0.8}O{sub 3−δ}) under various partial oxygen pressure conditions are described.

  1. Spatially resolved remote measurement of temperature by neutron resonance absorption

    Energy Technology Data Exchange (ETDEWEB)

    Tremsin, A.S., E-mail: ast@ssl.berkeley.edu [Space Sciences Laboratory, University of California at Berkeley, 7 Gauss Way, Berkeley, CA 94720 (United States); Kockelmann, W.; Pooley, D.E. [STFC, Rutherford Appleton Laboratory, ISIS Facility, Didcot OX11 0QX (United Kingdom); Feller, W.B. [NOVA Scientific, Inc., 10 Picker Road, Sturbridge, MA 01566 (United States)

    2015-12-11

    Deep penetration of neutrons into most engineering materials enables non-destructive studies of their bulk properties. The existence of sharp resonances in neutron absorption spectra enables isotopically-resolved imaging of elements present in a sample, as demonstrated by previous studies. At the same time the Doppler broadening of resonance peaks provides a method of remote measurement of temperature distributions within the same sample. This technique can be implemented at a pulsed neutron source with a short initial pulse allowing for the measurement of the energy of each registered neutron by the time of flight technique. A neutron counting detector with relatively high timing and spatial resolution is used to demonstrate the possibility to obtain temperature distributions across a 100 µm Ta foil with ~millimeter spatial resolution. Moreover, a neutron transmission measurement over a wide energy range can provide spatially resolved sample information such as temperature, elemental composition and microstructure properties simultaneously.

  2. Matrix diffusion studies by electrical conductivity methods. Comparison between laboratory and in-situ measurements

    International Nuclear Information System (INIS)

    Ohlsson, Y.; Neretnieks, I.

    1998-01-01

    Traditional laboratory diffusion experiments in rock material are time consuming, and quite small samples are generally used. Electrical conductivity measurements, on the other hand, provide a fast means for examining transport properties in rock and allow measurements on larger samples as well. Laboratory measurements using electrical conductivity give results that compare well to those from traditional diffusion experiments. The measurement of the electrical resistivity in the rock surrounding a borehole is a standard method for the detection of water conducting fractures. If these data could be correlated to matrix diffusion properties, in-situ diffusion data from large areas could be obtained. This would be valuable because it would make it possible to obtain data very early in future investigations of potentially suitable sites for a repository. This study compares laboratory electrical conductivity measurements with in-situ resistivity measurements from a borehole at Aespoe. The laboratory samples consist mainly of Aespoe diorite and fine-grained granite and the rock surrounding the borehole of Aespoe diorite, Smaaland granite and fine-grained granite. The comparison shows good agreement between laboratory measurements and in-situ data

  3. Direct angle resolved photoemission spectroscopy and ...

    Indian Academy of Sciences (India)

    Since 1997 we systematically perform direct angle resolved photoemission spectroscopy (ARPES) on in-situ grown thin (< 30 nm) cuprate films. Specifically, we probe low-energy electronic structure and properties of high-c superconductors (HTSC) under different degrees of epitaxial (compressive vs. tensile) strain.

  4. Time resolved measurements of cathode fall in high frequency fluorescent lamps

    International Nuclear Information System (INIS)

    Hadrath, S; Garner, R C; Lieder, G H; Ehlbeck, J

    2007-01-01

    Measurements are presented of the time resolved cathode and anode falls of high frequency fluorescent lamps for a range of discharge currents typically encountered in dimming mode. Measurements were performed with the movable anode technique. Supporting spectroscopic emission measurements were made of key transitions (argon 420.1 nm and mercury 435.8 nm), whose onset coincide with cathode fall equalling the value associated with the energy, relative to the ground state, of the upper level of the respective transition. The measurements are in general agreement with the well-known understanding of dimmed lamp operation: peak cathode fall decreases with increasing lamp current and with increasing auxiliary coil heating. However, the time dependence of the measurements offers additional insight

  5. In situ mechanical TEM: seeing and measuring under stress with electrons

    International Nuclear Information System (INIS)

    Legros, M.

    2014-01-01

    From the first observation of moving dislocations in 1956 to the latest developments of piezo-actuated sample holders and direct electron sensing cameras in modern transmission electron microscopes (TEM), in situ mechanical testing has brought an unequaled view of the involved mechanisms during the plastic deformation of materials. Although MEMS-based or load-cell equipped holders provide an almost direct measure of these quantities, deriving stress and strain from in situ TEM experiments has an extensive history. Nowadays, the realization of a complete mechanical test while observing the evolution of a dislocation structure is possible, and it constitutes the perfect combination to explore size effects in plasticity. New cameras, data acquisition rates and intrinsic image-related techniques, such as holography, should extend the efficiency and capabilities of in situ deformation inside a TEM. (author)

  6. Dehydrogenation kinetics of pure and nickel-doped magnesium hydride investigated by in situ time-resolved powder X-ray diffraction

    DEFF Research Database (Denmark)

    Jensen, T.R.; Andreasen, A.; Vegge, Tejs

    2006-01-01

    The dehydrogenation kinetics of pure and nickel (Ni)-doped (2w/w%) magnesium hydride (MgH2) have been investigated by in situ time-resolved powder X-ray diffraction (PXD). Deactivated samples, i.e. air exposed, are investigated in order to focus on the effect of magnesium oxide (MgO) surface layers......, which might be unavoidable for magnesium (Mg)-based storage media for mobile applications. A curved position-sensitive detector covering 120 degrees in 20 and a rotating anode X-ray source provide a time resolution of 45 s and up to 90 powder pattems collected during an experiment under isothermal...... by the Johnson-Mehi-Avrami formalism in order to derive rate constants at different temperatures. The apparent activation energies for dehydrogenation of pure and Ni-doped magnesium hydride were E-A approximate to 300 and 250 kJ/mol, respectively. Differential scanning calorimetry gave, E-A = 270 k...

  7. Reliable cost effective technique for in situ ground stress measurements in deep gold mines.

    CSIR Research Space (South Africa)

    Stacey, TR

    1995-07-01

    Full Text Available on these requirements, an in situ stress measurement technique which will be practically applicable in the deep gold mines, has been developed conceptually. Referring to the figure on the following page, this method involves: • a borehole-based system, using... level mines have not been developed. 2 This is some of the background to the present SIMRAC research project, the title ofwhich is “Reliable cost effective technique for in-situ ground stress measurements in deep gold mines”. A copy of the research...

  8. In situ measurement of some gamma-emitting radionuclides in plant communities of the South Carolina coastal plain

    International Nuclear Information System (INIS)

    Ragsdale, H.L.; Tanner, B.K.; Coleman, R.N.; Palms, J.M.; Wood, R.E.

    1978-01-01

    In situ and laboratory gamma-ray spectroscopy measurements were taken in nine scrub oak forests and nine old fields to determine the applicability of in situ analysis in the coastal plain. Data collected at each of the 18 sites included a 2-hr count, soil density and moisture estimates, and vegetation measurements. Samples returned to the laboratory for radiometric analysis included litter and herbaceous vegetation and soil cores. Analysis of the gamma-emitter detection frequencies, concentrations, and burdens showed good to excellent agreement between laboratory and in situ methods. Generally, forests were determined to be superior in situ sampling systems. Laboratory analysis of collected samples may be a superior technique for gamma emitters with low energies, low concentrations, or nonuniform distributions in the soil. Three potential uses of in situ Ge(Li) spectrometers were identified and discussed in terms of their limits and of the replicate ecosystems appropriate for in situ analyses. Although the variety and the biogeochemical cycling regimes of southeastern coastal plain ecosystems complicate in situ analyses, it was concluded that comparable and probably accurate results can be achieved using in situ technology

  9. Space resolved measurements of neutrons and ion emission on plasma focus

    International Nuclear Information System (INIS)

    Jaeger, U.

    1980-05-01

    This report describes space-resolved measurements of neutrons and of accelerated charged particles, emitted by a plasmafocus-device. The neutron source has been measured with one and two-dimensional paraffin collimators. The space resolution is 5 mm along the axis and the radius, with a time resolution of 10 ns. In order to make quantitative statements about the neutron yield, neutron-scattering, absorption and nuclear reactions were taken into account. Part of the neutron measurements are carried out together with time and space resolved measurements of the electron density to study possible correlations between nsub(e) and Ysub(n). The following results about the neutron measurement were obtained: The neutron emission reaches its maximum between 40 and 60 ns after the maximum compression. The emission region is limited to a well defined range of 0 50 ns it has been observed a broadening of the emission region in + z-direction. The emission profiles in lower and in higher pressure regimes are almost the same. (orig./HT) [de

  10. Monitoring groundwater variation by satellite and implications for in-situ gravity measurements

    International Nuclear Information System (INIS)

    Fukuda, Yoichi; Yamamoto, Keiko; Hasegawa, Takashi; Nakaegawa, Toshiyuki; Nishijima, Jun; Taniguchi, Makoto

    2009-01-01

    In order to establish a new technique for monitoring groundwater variations in urban areas, the applicability of precise in-situ gravity measurements and extremely high precision satellite gravity data via GRACE (Gravity Recovery and Climate Experiment) was tested. Using the GRACE data, regional scale water mass variations in four major river basins of the Indochina Peninsula were estimated. The estimated variations were compared with Soil-Vegetation-Atmosphere Transfer Scheme (SVATS) models with a river flow model of 1) globally uniform river velocity, 2) river velocity tuned by each river basin, 3) globally uniform river velocity considering groundwater storage, and 4) river velocity tuned by each river basin considering groundwater storage. Model 3) attained the best fit to the GRACE data, and the model 4) yielded almost the same values. This implies that the groundwater plays an important role in estimating the variation of total terrestrial storage. It also indicates that tuning river velocity, which is based on the in-situ measurements, needs further investigations in combination with the GRACE data. The relationships among GRACE data, SVATS models, and in-situ measurements were also discussed briefly.

  11. Experimental Measurement of In Situ Stress

    Science.gov (United States)

    Tibbo, Maria; Milkereit, Bernd; Nasseri, Farzine; Schmitt, Douglas; Young, Paul

    2016-04-01

    The World Stress Map data is determined by stress indicators including earthquake focal mechanisms, in situ measurement in mining, oil and gas boreholes as well as the borehole cores, and geologic data. Unfortunately, these measurements are not only infrequent but sometimes infeasible, and do not provide nearly enough data points with high accuracy to correctly infer stress fields in deep mines around the world. Improvements in stress measurements of Earth's crust is fundamental to several industries such as oil and gas, mining, nuclear waste management, and enhanced geothermal systems. Quantifying the state of stress and the geophysical properties of different rock types is a major complication in geophysical monitoring of deep mines. Most stress measurement techniques involve either the boreholes or their cores, however these measurements usually only give stress along one axis, not the complete stress tensor. The goal of this project is to investigate a new method of acquiring a complete stress tensor of the in situ stress in the Earth's crust. This project is part of a comprehensive, exploration geophysical study in a deep, highly stressed mine located in Sudbury, Ontario, Canada, and focuses on two boreholes located in this mine. These boreholes are approximately 400 m long with NQ diameters and are located at depths of about 1300 - 1600 m and 1700 - 2000 m. Two borehole logging surveys were performed on both boreholes, October 2013 and July 2015, in order to perform a time-lapse analysis of the geophysical changes in the mine. These multi-parameter surveys include caliper, full waveform sonic, televiewer, chargeability (IP), and resistivity. Laboratory experiments have been performed on borehole core samples of varying geologies from each borehole. These experiments have measured the geophysical properties including elastic modulus, bulk modulus, P- and S-wave velocities, and density. The apparatus' used for this project are geophysical imaging cells capable

  12. Time resolved electron microscopy for in situ experiments

    International Nuclear Information System (INIS)

    Campbell, Geoffrey H.; McKeown, Joseph T.; Santala, Melissa K.

    2014-01-01

    Transmission electron microscopy has functioned for decades as a platform for in situ observation of materials and processes with high spatial resolution. Yet, the dynamics often remain elusive, as they unfold too fast to discern at these small spatial scales under traditional imaging conditions. Simply shortening the exposure time in hopes of capturing the action has limitations, as the number of electrons will eventually be reduced to the point where noise overtakes the signal in the image. Pulsed electron sources with high instantaneous current have successfully shortened exposure times (thus increasing the temporal resolution) by about six orders of magnitude over conventional sources while providing the necessary signal-to-noise ratio for dynamic imaging. We describe here the development of this new class of microscope and the principles of its operation, with examples of its application to problems in materials science

  13. Time resolved electron microscopy for in situ experiments

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Geoffrey H., E-mail: ghcampbell@llnl.gov; McKeown, Joseph T.; Santala, Melissa K. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2014-12-15

    Transmission electron microscopy has functioned for decades as a platform for in situ observation of materials and processes with high spatial resolution. Yet, the dynamics often remain elusive, as they unfold too fast to discern at these small spatial scales under traditional imaging conditions. Simply shortening the exposure time in hopes of capturing the action has limitations, as the number of electrons will eventually be reduced to the point where noise overtakes the signal in the image. Pulsed electron sources with high instantaneous current have successfully shortened exposure times (thus increasing the temporal resolution) by about six orders of magnitude over conventional sources while providing the necessary signal-to-noise ratio for dynamic imaging. We describe here the development of this new class of microscope and the principles of its operation, with examples of its application to problems in materials science.

  14. In-situ measurements of the secondary electron yield in an accelerator environment: Instrumentation and methods

    International Nuclear Information System (INIS)

    Hartung, W.H.; Asner, D.M.; Conway, J.V.; Dennett, C.A.; Greenwald, S.; Kim, J.-S.; Li, Y.; Moore, T.P.; Omanovic, V.; Palmer, M.A.; Strohman, C.R.

    2015-01-01

    The performance of a particle accelerator can be limited by the build-up of an electron cloud (EC) in the vacuum chamber. Secondary electron emission from the chamber walls can contribute to EC growth. An apparatus for in-situ measurements of the secondary electron yield (SEY) in the Cornell Electron Storage Ring (CESR) was developed in connection with EC studies for the CESR Test Accelerator program. The CESR in-situ system, in operation since 2010, allows for SEY measurements as a function of incident electron energy and angle on samples that are exposed to the accelerator environment, typically 5.3 GeV counter-rotating beams of electrons and positrons. The system was designed for periodic measurements to observe beam conditioning of the SEY with discrimination between exposure to direct photons from synchrotron radiation versus scattered photons and cloud electrons. The samples can be exchanged without venting the CESR vacuum chamber. Measurements have been done on metal surfaces and EC-mitigation coatings. The in-situ SEY apparatus and improvements to the measurement tools and techniques are described

  15. In-situ measurements of the secondary electron yield in an accelerator environment: Instrumentation and methods

    Energy Technology Data Exchange (ETDEWEB)

    Hartung, W.H., E-mail: wh29@cornell.edu; Asner, D.M.; Conway, J.V.; Dennett, C.A.; Greenwald, S.; Kim, J.-S.; Li, Y.; Moore, T.P.; Omanovic, V.; Palmer, M.A.; Strohman, C.R.

    2015-05-21

    The performance of a particle accelerator can be limited by the build-up of an electron cloud (EC) in the vacuum chamber. Secondary electron emission from the chamber walls can contribute to EC growth. An apparatus for in-situ measurements of the secondary electron yield (SEY) in the Cornell Electron Storage Ring (CESR) was developed in connection with EC studies for the CESR Test Accelerator program. The CESR in-situ system, in operation since 2010, allows for SEY measurements as a function of incident electron energy and angle on samples that are exposed to the accelerator environment, typically 5.3 GeV counter-rotating beams of electrons and positrons. The system was designed for periodic measurements to observe beam conditioning of the SEY with discrimination between exposure to direct photons from synchrotron radiation versus scattered photons and cloud electrons. The samples can be exchanged without venting the CESR vacuum chamber. Measurements have been done on metal surfaces and EC-mitigation coatings. The in-situ SEY apparatus and improvements to the measurement tools and techniques are described.

  16. Review of RDC Soft Computing Techniques for Accurate Measurement of Resolver Rotor Angle

    Directory of Open Access Journals (Sweden)

    Chandra Mohan Reddy Sivappagari

    2013-03-01

    Full Text Available A resolver is a position sensor or transducer that measures the instantaneous angular position of the rotating shaft to which it is attached. Resolver produces two amplitude modulated signals; SIN and COS as output signals. These two signals need to be demodulated and converted to digital signals before they can be used for control. There are several techniques available in the literature to measure the rotor shaft angle. This paper focuses on the design of both hardware and software based resolver to digital converter (RDC techniques available in the literature. This literature review helps the researchers to know about all these methods and plan future work on RDCs to improve the angle tracking performance.

  17. Methyl mercury dynamics in a tidal wetland quantified using in situ optical measurements

    Science.gov (United States)

    Bergamaschi, B.A.; Fleck, J.A.; Downing, B.D.; Boss, E.; Pellerin, B.; Ganju, N.K.; Schoellhamer, D.H.; Byington, A.A.; Heim, W.A.; Stephenson, M.; Fujii, R.

    2011-01-01

    We assessed monomethylmercury (MeHg) dynamics in a tidal wetland over three seasons using a novel method that employs a combination of in situ optical measurements as concentration proxies. MeHg concentrations measured over a single spring tide were extended to a concentration time series using in situ optical measurements. Tidal fluxes were calculated using modeled concentrations and bi-directional velocities obtained acoustically. The magnitude of the flux was the result of complex interactions of tides, geomorphic features, particle sorption, and random episodic events such as wind storms and precipitation. Correlation of dissolved organic matter quality measurements with timing of MeHg release suggests that MeHg is produced in areas of fluctuating redox and not limited by buildup of sulfide. The wetland was a net source of MeHg to the estuary in all seasons, with particulate flux being much higher than dissolved flux, even though dissolved concentrations were commonly higher. Estimated total MeHg yields out of the wetland were approximately 2.5 μg m−2 yr−1—4–40 times previously published yields—representing a potential loading to the estuary of 80 g yr−1, equivalent to 3% of the river loading. Thus, export from tidal wetlands should be included in mass balance estimates for MeHg loading to estuaries. Also, adequate estimation of loads and the interactions between physical and biogeochemical processes in tidal wetlands might not be possible without long-term, high-frequency in situ measurements.

  18. Direct observation of spin-resolved full and empty electron states in ferromagnetic surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Berti, G., E-mail: giulia.berti@polimi.it; Calloni, A.; Brambilla, A.; Bussetti, G.; Duò, L.; Ciccacci, F. [Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133, Milano (Italy)

    2014-07-15

    We present a versatile apparatus for the study of ferromagnetic surfaces, which combines spin-polarized photoemission and inverse photoemission spectroscopies. Samples can be grown by molecular beam epitaxy and analyzed in situ. Spin-resolved photoemission spectroscopy analysis is done with a hemispherical electron analyzer coupled to a 25 kV-Mott detector. Inverse photoemission spectroscopy experiments are performed with GaAs crystals as spin-polarized electron sources and a UV bandpass photon detector. As an example, measurements on the oxygen passivated Fe(100)-p(1×1)O surface are presented.

  19. Measuring the x-ray resolving power of bent potassium acid phthalate diffraction crystals

    International Nuclear Information System (INIS)

    Haugh, M. J.; Jacoby, K. D.; Wu, M.; Loisel, G. P.

    2014-01-01

    This report presents the results from measuring the X-ray resolving power of a curved potassium acid phthalate (KAP(001)) spectrometer crystal using two independent methods. It is part of a continuing effort to measure the fundamental diffraction properties of bent crystals that are used to study various characteristics of high temperature plasmas. Bent crystals like KAP(001) do not usually have the same diffraction properties as corresponding flat crystals. Models that do exist to calculate the effect of bending the crystal on the diffraction properties have simplifying assumptions and their accuracy limits have not been adequately determined. The type of crystals that we measured is being used in a spectrometer on the Z machine at Sandia National Laboratories in Albuquerque, New Mexico. The first technique for measuring the crystal resolving power measures the X-ray spectral line width of the characteristic lines from several metal anodes. The second method uses a diode X-ray source and a double crystal diffractometer arrangement to measure the reflectivity curve of the KAP(001) crystal. The width of that curve is inversely proportional to the crystal resolving power. The measurement results are analyzed and discussed

  20. Measuring the x-ray resolving power of bent potassium acid phthalate diffraction crystals

    Energy Technology Data Exchange (ETDEWEB)

    Haugh, M. J., E-mail: haughmj@nv.doe.gov; Jacoby, K. D. [National Security Technologies, LLC, Livermore, California 94550 (United States); Wu, M.; Loisel, G. P. [Sandia National Laboratories, Albuquerque, New Mexico 87123 (United States)

    2014-11-15

    This report presents the results from measuring the X-ray resolving power of a curved potassium acid phthalate (KAP(001)) spectrometer crystal using two independent methods. It is part of a continuing effort to measure the fundamental diffraction properties of bent crystals that are used to study various characteristics of high temperature plasmas. Bent crystals like KAP(001) do not usually have the same diffraction properties as corresponding flat crystals. Models that do exist to calculate the effect of bending the crystal on the diffraction properties have simplifying assumptions and their accuracy limits have not been adequately determined. The type of crystals that we measured is being used in a spectrometer on the Z machine at Sandia National Laboratories in Albuquerque, New Mexico. The first technique for measuring the crystal resolving power measures the X-ray spectral line width of the characteristic lines from several metal anodes. The second method uses a diode X-ray source and a double crystal diffractometer arrangement to measure the reflectivity curve of the KAP(001) crystal. The width of that curve is inversely proportional to the crystal resolving power. The measurement results are analyzed and discussed.

  1. Analysis of In Situ Thermal Ion Measurements from the MICA Sounding Rocket

    Science.gov (United States)

    Fernandes, P. A.; Lynch, K. A.; Zettergren, M. D.; Hampton, D. L.; Fisher, L. E.; Powell, S. P.

    2014-12-01

    The MICA sounding rocket launched on 19 Feb. 2012 into several discrete, localized arcs in the wake of a westward traveling surge. In situ and ground-based observations provide a measured response of the ionosphere to preflight and localized auroral drivers. Initial analysis of the in situ thermal ion data indicate possible measurement of an ion conic at low altitude (< 325 km). In the low-energy regime, the response of the instrument varies from the ideal because the measured thermal ion population is sensitive to the presence of the instrument. The plasma is accelerated in the frame of the instrument due to flows, ram, and acceleration through the sheath which forms around the spacecraft. The energies associated with these processes are large compared to the thermal energy. Correct interpretation of thermal plasma measurements requires accounting for all of these plasma processes and the non-ideal response of the instrument in the low-energy regime. This is an experimental and modeling project which involves thorough analysis of ionospheric thermal ion data from the MICA campaign. Analysis includes modeling and measuring the instrument response in the low-energy regime as well as accounting for the complex sheath formed around the instrument. This results in a forward model in which plasma parameters of the thermal plasma are propagated through the sheath and instrument models, resulting in an output which matches the in situ measurement. In the case of MICA, we are working toward answering the question of the initiating source processes that result, at higher altitudes, in well-developed conics and outflow on auroral field lines.

  2. In-situ ionic conductivity measurement of lithium ceramics under high energy heavy ion irradiation

    International Nuclear Information System (INIS)

    Nakazawa, Tetsuya; Noda, Kenji; Ishii, Yoshinobu; Ohno, Hideo; Watanabe, Hitoshi; Matsui, Hisayuki.

    1992-01-01

    To obtain fundamental information regarding the radiation damage in some lithium ceramics, e.g. Li 2 O, Li 4 SiO 4 etc., candidate of breeder materials exposed to severe irradiation environment, an in-situ experiment technique for the ionic conductivity measurement, which allows the specimen temperature control and the beam current monitoring, have been developed. This paper describes the features of an apparatus to measure in situ the ionic conductivity under the irradiation environment and presents some results of ionic conductivity measured for typical ceramic breeders using this apparatus. (J.P.N.)

  3. Time- and Site-Resolved Dynamics in a Topological Circuit

    Directory of Open Access Journals (Sweden)

    Jia Ningyuan

    2015-06-01

    Full Text Available From studies of exotic quantum many-body phenomena to applications in spintronics and quantum information processing, topological materials are poised to revolutionize the condensed-matter frontier and the landscape of modern materials science. Accordingly, there is a broad effort to realize topologically nontrivial electronic and photonic materials for fundamental science as well as practical applications. In this work, we demonstrate the first simultaneous site- and time-resolved measurements of a time-reversal-invariant topological band structure, which we realize in a radio-frequency photonic circuit. We control band-structure topology via local permutation of a traveling-wave capacitor-inductor network, increasing robustness by going beyond the tight-binding limit. We observe a gapped density of states consistent with a modified Hofstadter spectrum at a flux per plaquette of ϕ=π/2. In situ probes of the band gaps reveal spatially localized bulk states and delocalized edge states. Time-resolved measurements reveal dynamical separation of localized edge excitations into spin-polarized currents. The radio-frequency circuit paradigm is naturally compatible with nonlocal coupling schemes, allowing us to implement a Möbius strip topology inaccessible in conventional systems. This room-temperature experiment illuminates the origins of topology in band structure, and when combined with circuit quantum electrodynamics techniques, it provides a direct path to topologically ordered quantum matter.

  4. Time and energy resolved runaway measurements in TFR from induced radioactivity

    International Nuclear Information System (INIS)

    1983-09-01

    A time and energy resolved measurement of the radioactivity induced by runaway electrons in proper samples has been developped in TFR. The data give an information on the confinement time of these electrons, which appears to be strongly dependent on the toroidal field, suggesting the onset of a magnetic turbulence at lower fields. Observations showing that the runaway electrons deeply penetrate into the limiter shadow are also reported

  5. Measuring in-situ stress in deep boreholes

    International Nuclear Information System (INIS)

    1985-08-01

    The hydrofracturing method of in-situ stress measurement is the only technique which has been proven to be reliable in boreholes below depths of 300 m. The method has been used in a variety of applications at depths of up to 5000m, and in a range of borehole diameters. The equipment used is composed of standard components from proven and long-established oil industry well-logging tools and is simple to operate. This is preferable to the delicate electrical devices used in the overcoring stress measurement method. Electrical components are difficult to waterproof, very small strains are monitored and the tendency of electrical circuits to drift, due to a variety of effects, makes interpretation of the results difficult. However, the interpretation of hydrofracturing test results is often not easy. Many factors can prevent ideal fracturing behaviour from occurring, in which case conventional analyses will yield incorrect answers. The complete state of stress can often not be determined and sweeping assumptions are commonly made about principal stress direction, which cannot always be subsequently verified. (author)

  6. Investigation of the Interaction between Perovskite Films with Moisture via in Situ Electrical Resistance Measurement.

    Science.gov (United States)

    Hu, Long; Shao, Gang; Jiang, Tao; Li, Dengbing; Lv, Xinlin; Wang, Hongya; Liu, Xinsheng; Song, Haisheng; Tang, Jiang; Liu, Huan

    2015-11-18

    Organometal halide perovskites have recently emerged as outstanding semiconductors for solid-state optoelectronic devices. Their sensitivity to moisture is one of the biggest barriers to commercialization. In order to identify the effect of moisture in the degradation process, here we combined the in situ electrical resistance measurement with time-resolved X-ray diffraction analysis to investigate the interaction of CH3NH3PbI(3-x)Cl(x) perovskite films with moisture. Upon short-time exposure, the resistance of the perovskite films decreased and it could be fully recovered, which were ascribed to a mere chemisorption of water molecules, followed by the reversible hydration into CH3NH3PbI(3-x)Cl(x)·H2O. Upon long-time exposure, however, the resistance became irreversible due to the decomposition into PbI2. The results demonstrated the formation of monohydrated intermediate phase when the perovskites interacted with moisture. The role of moisture in accelerating the thermal degradation at 85 °C was also demonstrated. Furthermore, our study suggested that the perovskite films with fewer defects may be more inherently resistant to moisture.

  7. In situ measurement on TSV-Cu deformation with hotplate system based on sheet resistance

    Science.gov (United States)

    Sun, Yunna; Wang, Bo; Wang, Huiying; Wu, Kaifeng; Yang, Shengyong; Wang, Yan; Ding, Guifu

    2017-12-01

    The in situ measurement of TSVs deformation at different temperature is meaningful for learning more about the thermal deformation schemes of 3D TSVs in the microelectronic devices. An efficient and smart hotplate based on sheet resistance is designed for offering more heat, producing a uniform temperature distribution, relieving thermal stress and heat concentration issues, and reducing room space, which was optimized by the finite element method (FEM). The fabricated hotplate is efficient and smart (2.5 cm  ×  2.0 cm  ×  0.5 cm) enough to be located in the limited space during measuring. The thermal infrared imager was employed as the temperature sensor for monitoring the temperature distribution of TSVs sample. The 3D profilometry was adopted as the observer for TSVs profiles survey. The in situ 2D top surface profiles and 3D displacement profiles of TSVs sample at the different temperature were measured by 3D profilometer. The in situ average relative deformation and effective plastic deformation of the TSV sample were measured. With optical measurement method, 3D profilometry, the TSV sample can be tested repeatedly.

  8. Monitoring dynamic electrochemical processes with in situ ptychography

    Science.gov (United States)

    Kourousias, George; Bozzini, Benedetto; Jones, Michael W. M.; Van Riessen, Grant A.; Dal Zilio, Simone; Billè, Fulvio; Kiskinova, Maya; Gianoncelli, Alessandra

    2018-03-01

    The present work reports novel soft X-ray Fresnel CDI ptychography results, demonstrating the potential of this method for dynamic in situ studies. Specifically, in situ ptychography experiments explored the electrochemical fabrication of Co-doped Mn-oxide/polypyrrole nanocomposites for sustainable and cost-effective fuel-cell air-electrodes. Oxygen-reduction catalysts based on Mn-oxides exhibit relatively high activity, but poor durability: doping with Co has been shown to improve both reduction rate and stability. In this study, we examine the chemical state distribution of the catalytically crucial Co dopant to elucidate details of the Co dopant incorporation into the Mn/polymer matrix. The measurements were performed using a custom-made three-electrode thin-layer microcell, developed at the TwinMic beamline of Elettra Synchrotron during a series of experiments that were continued at the SXRI beamline of the Australian Synchrotron. Our time-resolved ptychography-based investigation was carried out in situ after two representative growth steps, controlled by electrochemical bias. In addition to the observation of morphological changes, we retrieved the spectroscopic information, provided by multiple ptychographic energy scans across Co L3-edge, shedding light on the doping mechanism and demonstrating a general approach for the molecular-level investigation complex multimaterial electrodeposition processes.

  9. In-situ Measurements and Analysis of Naturally Occurring Radioactive Materials

    International Nuclear Information System (INIS)

    Mueller, W.F.; Ilie, G.; Russ, W.R.; Lange, H.J.; Rotty, M.

    2013-06-01

    The measurement and quantification of naturally occurring radioactive materials (NORM) is an important element of workplace radioprotection in key industries such as oil and gas production, heavy metals mining and refining, coal burning waste, and water treatment. Monitoring of NORM content in home building materials is another challenge for human safety in the prevention of chronic dose uptake. Materials are classified NORM in case they contain significant amounts of the decay chains of U-238 (Ra-226 as a long lived daughter), U-235 or Th- 232 or the primordial nuclide K-40. Due to the decay of the radionuclides, gamma rays with a signature in the energy range from 45 keV up to 2615 keV are emitted. The most accurate method to measure NORM in a sample is to use a high resolution spectrometric instrument such as a germanium detector in a well-shielded laboratory environment. The shield is used to prevent background with the same signature from the building material of the laboratory. There are occasions in which one is required to assay samples in the field. These in situ field applications may require performing measurements with reduced (or no) background shielding conditions, or involve the use of medium resolution spectrometric instruments such as LaBr 3 or NaI detectors. In-situ analyses such as these have increased complexity. The reduced shielding enforces the subtraction of NORM events produced from the environment but the sample material and container can also shield the detector against this background thus biasing the measured results if not appropriately accounted. The use of medium resolution detectors has additional complications that the multiplicity of gamma-rays from NORM materials is such that most of the gamma-rays are interfering and thus require a very careful quantitative analysis. In this presentation, we will discuss the details of the NORM source term both in the environment and what could potentially be in the sample. We will also discuss

  10. Development of a method for the in situ measurement of polycyclic aromatic hydrocarbons with time resolved laser fluorescence spectroscopy. Final report

    International Nuclear Information System (INIS)

    Jaeger, E.; Weissbach, A.; Koenig, F.; Paul, T.

    1994-01-01

    A method was developed for the detection of polycyclic aromatic hydrocarbons (PAH) in water on the basis of time resolved laser fluorescence spectroscopy. The detection of the sum of PAH in ground- and surfacewater is possible with high sensitivity and selectivity. The fluorescence of other substances like chlorophyll or dissolved organic matter is suppressed by a special choice of spectral and temporal windows. The method works without any sample preparation and gives the results in a very short time. On the basis of this method a first device was built with a sensitivity of 0,1 μg/1 PAH in water. The measuring time was less than one minute. The on site use of this prototype is possible because of the use of a battery driven nitrogen laser together with a notebook computer for system control The application of fiberoptic cables up to 30 meter length makes it possible to use the system for screening and monitoring of polluted areas both in existing wells and without any well by using geological probe techniques. (orig.) [de

  11. Cu-Ti Formation in Nb-Ti/Cu Superconducting Strand Monitored by in situ Techniques

    CERN Document Server

    Pong, I; Pong, Ian; Gerardin, Alexandre; Scheuerlein, Christian; Bottura, Luca

    2010-01-01

    In order to investigate the high temperature exposure effect on Nb-Ti/Cu superconducting strands, as might be encountered in joining by soldering and in cabling annealing, X-ray diffraction and resistometry measurements were performed in situ during heat treatment, and complemented by conventional metallography, mechanical tests and superconducting properties measurements. Changes of the Nb-Ti nanostructure at temperatures above 300 degrees C are manifested in the degradation of critical current in an applied external magnetic field, although degradation at self field was insignificant up to 400 degrees C for several minutes. Above 500 degrees C, the formation of various Cu-Ti intermetallic compounds, due to Ti diffusion from Nb-Ti into Cu, is detected by in situ XRD albeit not resolvable by SEM-EDS. There is a ductile to brittle transition near 600 degrees C, and liquid formation is observed below 900 degrees C. The formation of Cu-Ti causes a delayed reduction of the residual resistivity ratio (RRR) and adv...

  12. Spectrum resolving power of hearing: measurements, baselines, and influence of maskers

    Directory of Open Access Journals (Sweden)

    Alexander Ya. Supin

    2011-06-01

    Full Text Available Contemporary methods of measurement of frequency tuning in the auditory system are reviewed. Most of them are based on the frequency-selective masking paradigm and require multi-point measurements (a number of masked thresholds should be measured to obtain a single frequency-tuning estimate. Therefore, they are rarely used for practical needs. As an alternative approach, frequency-selective properties of the auditory system may be investigated using probes with complex frequency spectrum patterns, in particular, rippled noise that is characterized by a spectrum with periodically alternating maxima and minima. The maximal ripple density discriminated by the auditory system is  a convenient measure of the spectrum resolving power (SRP. To find the highest resolvable ripple density, a phase-reversal test has been suggested. Using this technique, normal SRP, its dependence on probe center frequency, spectrum contrast, and probe level were measured. The results were not entirely predictable by frequency-tuning data obtained by masking methods. SRP is influenced by maskers, with on- and off-frequency maskers influencing SRP very differently. Dichotic separation of the probe and masker results in almost complete release of SRP from influence of maskers.

  13. Determining the infrared radiative effects of Saharan dust: a radiative transfer modelling study based on vertically resolved measurements at Lampedusa

    Science.gov (United States)

    Meloni, Daniela; di Sarra, Alcide; Brogniez, Gérard; Denjean, Cyrielle; De Silvestri, Lorenzo; Di Iorio, Tatiana; Formenti, Paola; Gómez-Amo, José L.; Gröbner, Julian; Kouremeti, Natalia; Liuzzi, Giuliano; Mallet, Marc; Pace, Giandomenico; Sferlazzo, Damiano M.

    2018-03-01

    Detailed measurements of radiation, atmospheric and aerosol properties were carried out in summer 2013 during the Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region (ADRIMED) campaign in the framework of the Chemistry-Aerosol Mediterranean Experiment (ChArMEx) experiment. This study focusses on the characterization of infrared (IR) optical properties and direct radiative effects of mineral dust, based on three vertical profiles of atmospheric and aerosol properties and IR broadband and narrowband radiation from airborne measurements, made in conjunction with radiosonde and ground-based observations at Lampedusa, in the central Mediterranean. Satellite IR spectra from the Infrared Atmospheric Sounder Interferometer (IASI) are also included in the analysis. The atmospheric and aerosol properties are used as input to a radiative transfer model, and various IR radiation parameters (upward and downward irradiance, nadir and zenith brightness temperature at different altitudes) are calculated and compared with observations. The model calculations are made for different sets of dust particle size distribution (PSD) and refractive index (RI), derived from observations and from the literature. The main results of the analysis are that the IR dust radiative forcing is non-negligible and strongly depends on PSD and RI. When calculations are made using the in situ measured size distribution, it is possible to identify the refractive index that produces the best match with observed IR irradiances and brightness temperatures (BTs). The most appropriate refractive indices correspond to those determined from independent measurements of mineral dust aerosols from the source regions (Tunisia, Algeria, Morocco) of dust transported over Lampedusa, suggesting that differences in the source properties should be taken into account. With the in situ size distribution and the most appropriate refractive index the estimated dust IR radiative forcing

  14. Time resolved Thomson scattering measurements on a high pressure mercury lamp

    NARCIS (Netherlands)

    Vries, de N.; Zhu, Xiao-Yan; Kieft, E.R.; Mullen, van der J.J.A.M.

    2005-01-01

    Time resolved Thomson scattering (TS) measurements have been performed on an ac driven high pressure mercury lamp. For this high intensity discharge (HID) lamp, TS is coherent and a coherent fitting routine, including rotational Raman calibration, was used to determine ne and Te from the measured

  15. In situ measurements and transmission electron microscopy of carbon nanotube field-effect transistors

    International Nuclear Information System (INIS)

    Kim, Taekyung; Kim, Seongwon; Olson, Eric; Zuo Jianmin

    2008-01-01

    We present the design and operation of a transmission electron microscopy (TEM)-compatible carbon nanotube (CNT) field-effect transistor (FET). The device is configured with microfabricated slits, which allows direct observation of CNTs in a FET using TEM and measurement of electrical transport while inside the TEM. As demonstrations of the device architecture, two examples are presented. The first example is an in situ electrical transport measurement of a bundle of carbon nanotubes. The second example is a study of electron beam radiation effect on CNT bundles using a 200 keV electron beam. In situ electrical transport measurement during the beam irradiation shows a signature of wall- or tube-breakdown. Stepwise current drops were observed when a high intensity electron beam was used to cut individual CNT bundles in a device with multiple bundles

  16. An in-situ measuring method for planar straightness error

    Science.gov (United States)

    Chen, Xi; Fu, Luhua; Yang, Tongyu; Sun, Changku; Wang, Zhong; Zhao, Yan; Liu, Changjie

    2018-01-01

    According to some current problems in the course of measuring the plane shape error of workpiece, an in-situ measuring method based on laser triangulation is presented in this paper. The method avoids the inefficiency of traditional methods like knife straightedge as well as the time and cost requirements of coordinate measuring machine(CMM). A laser-based measuring head is designed and installed on the spindle of a numerical control(NC) machine. The measuring head moves in the path planning to measure measuring points. The spatial coordinates of the measuring points are obtained by the combination of the laser triangulation displacement sensor and the coordinate system of the NC machine, which could make the indicators of measurement come true. The method to evaluate planar straightness error adopts particle swarm optimization(PSO). To verify the feasibility and accuracy of the measuring method, simulation experiments were implemented with a CMM. Comparing the measurement results of measuring head with the corresponding measured values obtained by composite measuring machine, it is verified that the method can realize high-precise and automatic measurement of the planar straightness error of the workpiece.

  17. Measurements of Turbulent Convection Speeds in Multistream Jets Using Time-Resolved PIV

    Science.gov (United States)

    Bridges, James; Wernet, Mark P.

    2017-01-01

    Convection speeds of turbulent velocities in jets, including multi-stream jets with and without flight stream, were measured using an innovative application of time-resolved particle image velocimetry. The paper describes the unique instrumentation and data analysis that allows the measurement to be made. Extensive data is shown that relates convection speed, mean velocity, and turbulent velocities for multiple jet cases. These data support the overall observation that the local turbulent convection speed is roughly that of the local mean velocity, biased by the relative intensity of turbulence.

  18. Measurements of Turbulence Convection Speeds in Multistream Jets Using Time-Resolved PIV

    Science.gov (United States)

    Bridges, James; Wernet, Mark P.

    2017-01-01

    Convection speeds of turbulent velocities in jets, including multi-stream jets with and without flight stream, were measured using an innovative application of time-resolved particle image velocimetry. The paper describes the unique instrumentation and data analysis that allows the measurement to be made. Extensive data is shown that relates convection speed, mean velocity, and turbulent velocities for multiple jet cases. These data support the overall observation that the local turbulent convection speed is roughly that of the local mean velocity, biased by the relative intensity of turbulence.

  19. Reliable practical technique for in-situ rock stress measurements in deep gold mines.

    CSIR Research Space (South Africa)

    Stacey, TR

    1998-03-01

    Full Text Available The proposed primary output of this research project is the development of a set of equipment and method of in situ stress measurements in a high stress environment typical of the deep level gold mines....

  20. Robust depth selectivity in mesoscopic scattering regimes using angle-resolved measurements.

    Science.gov (United States)

    González-Rodríguez, P; Kim, A D; Moscoso, M

    2013-03-01

    We study optical imaging of tissues in the mesoscopic scattering regime in which light multiply scatters in tissues but is not fully diffusive. We use the radiative transport equation to model light propagation and an ℓ1-optimization method to solve the inverse source problem. We show that recovering the location and strength of several point-like sources that are close to each other is not possible when using angle-averaged measurements. The image reliability is limited by a spatial scale that is on the order of the transport mean-free path, even under the most ideal conditions. However, by using just a few angle-resolved measurements, the proposed method is able to overcome this limitation.

  1. IN SITU MEASUREMENT OF BEDROCK EROSION

    Directory of Open Access Journals (Sweden)

    D. H. Rieke-Zapp

    2012-07-01

    Full Text Available While long term erosion rates of bedrock material may be estimated by dating methods, current day erosion rates are – if at all available – based on rough estimates or on point measurements. Precise quantification of short term erosion rates are required to improve our understanding of short term processes, for input in landscape evolution models, as well as for studying the mechanics and efficiency of different erosion processes in varying geomorphological settings. Typical current day erosion rates in the European Alps range from sub-millimetre to several millimetres per year depending on the dominant erosion processes. The level of surveying accuracy required for recurring sub-millimetre to millimetre measurements in the field is demanding. A novel surveying setup for in-situ measurement of bedrock erosion was tested recently in three different locations in Switzerland. Natural bedrock was investigated in the Gornera gorge close to Zermatt. Further on, bedrock samples were installed in exposed locations in the Erlenbach research watershed close to Einsiedeln, and in the Illgraben debris flow channel, located in the Canton Schwyz and Valais, respectively. A twofold measurement approach was chosen for all locations. For the first setup control points providing an absolute reference frame for recurrent measurements were embedded close to the area of interest. Close range photogrammetry was applied to measure surface changes on the bedrock samples. The precision for surface measurements in the field was 0.1 mm (1 σ and thus suitable for the application. The equipment needed for the surveys can easily be carried to the field. At one field site a structured light scanner was used along with the photogrammetric setup. Although the current generation of structured light scanners appeared less suitable for field application, data acquisition was much faster and checking the data for completeness in the field was straight forward. The latest

  2. In Situ Measurement of Bedrock Erosion

    Science.gov (United States)

    Rieke-Zapp, D. H.; Beer, A.; Turowski, J. M.; Campana, L.

    2012-07-01

    While long term erosion rates of bedrock material may be estimated by dating methods, current day erosion rates are - if at all available - based on rough estimates or on point measurements. Precise quantification of short term erosion rates are required to improve our understanding of short term processes, for input in landscape evolution models, as well as for studying the mechanics and efficiency of different erosion processes in varying geomorphological settings. Typical current day erosion rates in the European Alps range from sub-millimetre to several millimetres per year depending on the dominant erosion processes. The level of surveying accuracy required for recurring sub-millimetre to millimetre measurements in the field is demanding. A novel surveying setup for in-situ measurement of bedrock erosion was tested recently in three different locations in Switzerland. Natural bedrock was investigated in the Gornera gorge close to Zermatt. Further on, bedrock samples were installed in exposed locations in the Erlenbach research watershed close to Einsiedeln, and in the Illgraben debris flow channel, located in the Canton Schwyz and Valais, respectively. A twofold measurement approach was chosen for all locations. For the first setup control points providing an absolute reference frame for recurrent measurements were embedded close to the area of interest. Close range photogrammetry was applied to measure surface changes on the bedrock samples. The precision for surface measurements in the field was 0.1 mm (1 σ) and thus suitable for the application. The equipment needed for the surveys can easily be carried to the field. At one field site a structured light scanner was used along with the photogrammetric setup. Although the current generation of structured light scanners appeared less suitable for field application, data acquisition was much faster and checking the data for completeness in the field was straight forward. The latest generation of compact

  3. Characterisation of lead-calcium alloys ageing in anisothermal conditions by calorimetric, resistance and hardness in-situ measurements

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, F.; Lambertin, M. [Arts et Metiers ParisTech, LaBoMaP, Cluny (France); Delfaut-Durut, L. [CEA, Centre de Valduc, (SEMP, LECM), Is-sur-Tille (France); Maitre, A. [SPCTS, UFR Sciences et techniques, Limoges (France); Vilasi, M. [LCSM, Univ. Nancy I, Vandoeuvre les Nancy (France)

    2010-02-15

    Transformations undergone by lead-calcium alloys are numerous and have different kinetics from a few minutes to a few years. Anisothermal calorimetric measurements were performed to be able to identify these transformations quickly. It was then possible to identify five transformations. Complementary measurements have enabled us to define transformations with an in-situ electrical resistance measurement to follow the evolution of the calcium in solid solution and with an in-situ hardness measurement to characterise the mechanical properties. The aim of these results is to simulate the ageing and overageing of the alloy in isothermal conditions. (orig.)

  4. Real-Time Observation of Platinum Redispersion on Ceria-Based Oxide by In-situ Turbo-XAS in Fluorescence Mode

    International Nuclear Information System (INIS)

    Nagai, Yasutaka; Dohmae, Kazuhiko; Tanabe, Toshitaka; Shinjoh, Hirofumi; Takagi, Nobuyuki; Ikeda, Yasuo; Guilera, Gemma; Pascarelli, Sakura; Newton, Mark; Matsumoto, Shin'ichi

    2007-01-01

    A real-time observation of the redispersion behavior of sintered Pt on ceria-based oxide was made possible by in-situ time-resolved Turbo-XAS in fluorescence mode. 2 wt% Pt/Ce-Zr-Y mixed oxide samples were prepared, and then treated under an aging condition. The average Pt particle size measured by CO absorption method after aging was 7 nm. Redispersion treatments of the previously aged catalyst were carried out at 600 deg. C within an in-situ XAS cell in a cyclical flow of reducing/oxidizing gases. Pt L3-edge XANES spectra were collected every 1.1 second under in-situ conditions. From a change in the XANES spectra, we observed that the Pt particle size of the aged catalyst decreased from 7 to 5 nm after 60 seconds and then to 3 nm after 1000 seconds

  5. Early in-situ measurements program for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Wowak, W.E.

    1979-06-01

    The technical basis and description of measurements for the early in-situ measurements program at the WIPP are described and a proposed organizational structure is presented. Measurements are needed for verification of design predictions and also for a prelude to the main experiment program. The design verification measurements will be concentrated in the first shaft and the underground support and access areas. Early experiments will be concentrated in the test drifts on the storage horizons. Recommendations are made to DOE for appropriate division of responsibility among Bechtel, the technical support contractor, the instrumentation contractor, and Sandia

  6. Manipulation of Samples at Extreme Temperatures for Fast in-situ Synchrotron Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Richard [Materials Development, Inc., Arlington Heights, IL (United States)

    2016-04-22

    An aerodynamic sample levitation system with laser beam heating was integrated with the APS beamlines 6 ID-D, 11 ID-C and 20 BM-B. The new capability enables in-situ measurements of structure and XANES at extreme temperatures (300-3500 °C) and in conditions that completely avoid contact with container surfaces. In addition to maintaining a high degree of sample purity, the use of aerodynamic levitation enables deep supercooling and greatly enhanced glass formation from a wide variety of melts and liquids. Development and integration of controlled extreme sample environments and new measurement techniques is an important aspect of beamline operations and user support. Processing and solidifying liquids is a critical value-adding step in manufacturing semiconductors, optical materials, metals and in the operation of many energy conversion devices. Understanding structural evolution is of fundamental importance in condensed materials, geology, and biology. The new capability provides unique possibilities for materials research and helps to develop and maintain a competitive materials manufacturing and energy utilization industry. Test samples were used to demonstrate key features of the capability including experiments on hot crystalline materials, liquids at temperatures from about 500 to 3500 °C. The use of controlled atmospheres using redox gas mixtures enabled in-situ changes in the oxidation states of cations in melts. Significant innovations in this work were: (i) Use of redox gas mixtures to adjust the oxidation state of cations in-situ (ii) Operation with a fully enclosed system suitable for work with nuclear fuel materials (iii) Making high quality high energy in-situ x-ray diffraction measurements (iv) Making high quality in-situ XANES measurements (v) Publishing high impact results (vi) Developing independent funding for the research on nuclear materials This SBIR project work led to a commercial instrument product for the niche market of processing and

  7. Stability of silver nanoparticle monolayers determined by in situ streaming potential measurements

    International Nuclear Information System (INIS)

    Morga, Maria; Adamczyk, Zbigniew; Oćwieja, Magdalena

    2013-01-01

    A silver particle suspension obtained by a chemical reduction was used in this work. Monolayers of these particles (average size 28 nm) on mica modified by poly(allylamine hydrochloride) were produced under diffusion-controlled transport. Monolayer coverages, quantitatively determined by atomic force microscopy (AFM) and SEM, was regulated by adjusting the nanoparticle deposition time and the suspension concentration. The zeta potential of the monolayers was determined by streaming potential measurements carried out under in situ (wet) conditions. These measurements performed for various ionic strengths and pH were interpreted in terms of the three-dimensional (3D) electrokinetic model. The stability of silver monolayers was also investigated using streaming potential and the AFM methods. The decrease in the surface coverage of particles as a function of time and ionic strength varied between 10 −1 and 10 −4  M was investigated. This allowed one to determine the equilibrium adsorption constant K a and the binding energy of silver particles (energy minima depth). Energy minima depth were calculated that varied between −18 kT for I = 10 −1  M and −19 kT for I = 10 −4 for pH 5.5 and T = 298 K. Our investigations suggest that the interactions between surface and nanoparticles are controlled by the electrostatic interactions among ion pairs. It was also shown that the in situ electrokinetic measurements are in accordance with those obtained by more tedious ex situ AFM measurements. This confirmed the utility of the streaming potential method for direct kinetic studies of nanoparticle deposition/release processes.Graphical Abstract

  8. Intercomparison of MODIS Albedo Retrievals and In Situ Measurements Across the Global FLUXNET Network

    Science.gov (United States)

    Cescatti, Alessandro; Marcolla, Barbara; Vannan, Suresh K. Santhana; Pan, Jerry Yun; Roman, Miguel O.; Yang, Xiaoyuan; Ciais, Philippe; Cook, Robert B.; Law, Beverly E.; Matteucci, Girogio; hide

    2012-01-01

    Surface albedo is a key parameter in the Earth's energy balance since it affects the amount of solar radiation directly absorbed at the planet surface. Its variability in time and space can be globally retrieved through the use of remote sensing products. To evaluate and improve the quality of satellite retrievals, careful intercomparisons with in situ measurements of surface albedo are crucial. For this purpose we compared MODIS albedo retrievals with surface measurements taken at 53 FLUXNET sites that met strict conditions of land cover homogeneity. A good agreement between mean yearly values of satellite retrievals and in situ measurements was found (R(exp 2)= 0.82). The mismatch is correlated to the spatial heterogeneity of surface albedo, stressing the relevance of land cover homogeneity when comparing point to pixel data. When the seasonal patterns of MODIS albedo is considered for different plant functional types, the match with surface observation is extremely good at all forest sites. On the contrary, in non-forest sites satellite retrievals underestimate in situ measurements across the seasonal cycle. The mismatch observed at grasslands and croplands sites is likely due to the extreme fragmentation of these landscapes, as confirmed by geostatistical attributes derived from high resolution scenes.

  9. Retrievals of Cloud Droplet Size from the RSP Data: Validation Using in Situ Measurements

    Science.gov (United States)

    Alexandrov, Mikhail D.; Cairns, Brian; Sinclair, Kenneth; Wasilewski, Andrzej P.; Ziemba, Luke; Crosbie, Ewan; Hair, John; Hu, Yongxiang; Hostetler, Chris; Stamnes, Snorre

    2016-01-01

    We present comparisons of cloud droplet size distributions retrieved from the Research Scanning Polarimeter (RSP) data with correlative in situ measurements made during the North Atlantic Aerosols and Marine Ecosystems Study (NAAMES). This field experiment was based at St. Johns airport, Newfoundland, Canada with the latest deployment in May - June 2016. RSP was onboard the NASA C-130 aircraft together with an array of in situ and other remote sensing instrumentation. The RSP is an along-track scanner measuring polarized and total reflectances in9 spectral channels. Its unique high angular resolution allows for characterization of liquid water droplet size using the rainbow structure observed in the polarized reflectances in the scattering angle range between 135 and 165 degrees. A parametric fitting algorithm applied to the polarized reflectances provides retrievals of the droplet effective radius and variance assuming a prescribed size distribution shape (gamma distribution). In addition to this, we use a non-parametric method, Rainbow Fourier Transform (RFT), which allows us to retrieve the droplet size distribution (DSD) itself. The latter is important in the case of clouds with complex structure, which results in multi-modal DSDs. During NAAMES the aircraft performed a number of flight patterns specifically designed for comparison of remote sensing retrievals and in situ measurements. These patterns consisted of two flight segments above the same straight ground track. One of these segments was flown above clouds allowing for remote sensing measurements, while the other was at the cloud top where cloud droplets were sampled. We compare the DSDs retrieved from the RSP data with in situ measurements made by the Cloud Droplet Probe (CDP). The comparisons show generally good agreement with deviations explainable by the position of the aircraft within cloud and by presence of additional cloud layers in RSP view that do not contribute to the in situ DSDs. In the

  10. In situ recording of particle network formation in liquids by ion conductivity measurements.

    Science.gov (United States)

    Pfaffenhuber, Christian; Sörgel, Seniz; Weichert, Katja; Bele, Marjan; Mundinger, Tabea; Göbel, Marcus; Maier, Joachim

    2011-09-21

    The formation of fractal silica networks from a colloidal initial state was followed in situ by ion conductivity measurements. The underlying effect is a high interfacial lithium ion conductivity arising when silica particles are brought into contact with Li salt-containing liquid electrolytes. The experimental results were modeled using Monte Carlo simulations and tested using confocal fluorescence laser microscopy and ζ-potential measurements.

  11. 3D shape measurements with a single interferometric sensor for in-situ lathe monitoring

    Science.gov (United States)

    Kuschmierz, R.; Huang, Y.; Czarske, J.; Metschke, S.; Löffler, F.; Fischer, A.

    2015-05-01

    Temperature drifts, tool deterioration, unknown vibrations as well as spindle play are major effects which decrease the achievable precision of computerized numerically controlled (CNC) lathes and lead to shape deviations between the processed work pieces. Since currently no measurement system exist for fast, precise and in-situ 3d shape monitoring with keyhole access, much effort has to be made to simulate and compensate these effects. Therefore we introduce an optical interferometric sensor for absolute 3d shape measurements, which was integrated into a working lathe. According to the spindle rotational speed, a measurement rate of 2,500 Hz was achieved. In-situ absolute shape, surface profile and vibration measurements are presented. While thermal drifts of the sensor led to errors of several mµm for the absolute shape, reference measurements with a coordinate machine show, that the surface profile could be measured with an uncertainty below one micron. Additionally, the spindle play of 0.8 µm was measured with the sensor.

  12. Taking the pulse of snowmelt: in situ sensors reveal seasonal, event and diurnal patterns of nitrate and dissolved organic matter variability in an upland forest stream

    Science.gov (United States)

    Brian A. Pellerin; John Franco Saraceno; James B. Shanley; Stephen D. Sebestyen; George R. Aiken; Wilfred M. Wollheim; Brian A. Bergamaschi

    2012-01-01

    Highly resolved time series data are useful to accurately identify the timing, rate, and magnitude of solute transport in streams during hydrologically dynamic periods such as snowmelt. We used in situ optical sensors for nitrate (NO3-) and chromophoric dissolved organic matter fluorescence (FDOM) to measure surface water...

  13. Factors influencing in situ gamma-ray measurements

    Science.gov (United States)

    Loonstra, E. H.; van Egmond, F. M.

    2009-04-01

    Introduction In situ passive gamma-ray sensors are very well suitable for mapping physical soil properties. In order to make a qualitative sound soil map, high quality input parameters for calibration are required. This paper will focus on the factors that affect the output of in situ passive gamma-ray sensors, the primary source, soil, not taken into account. Factors The gamma-ray spectrum contains information of naturally occurring nuclides 40K, 238U and 232Th and man-made nuclides like 137Cs, as well as the total count rate. Factors that influence the concentration of these nuclides and the count rate can be classified in 3 categories. These are sensor design, environmental conditions and operational circumstances. Sensor design The main elements of an in situ gamma-ray sensor that influence the outcome and quality of the output are the crystal and the spectrum analysis method. Material and size of the crystal determine the energy resolution. Though widely used, NaI crystals are not the most efficient capturer of gamma radiation. Alternatives are BGO and CsI. BGO has a low peak resolution, which prohibits use in cases where man-made nuclides are subject of interest. The material is expensive and prone to temperature instability. CsI is robust compared to NaI and BGO. The density of CsI is higher than NaI, yielding better efficiency, especially for smaller crystal sizes. More volume results in higher energy efficiency. The reduction of the measured spectral information into concentration of radionuclides is mostly done using the Windows analysis method. In Windows, the activities of the nuclides are found by summing the intensities of the spectrum found in a certain interval surrounding a peak. A major flaw of the Windows method is the limited amount of spectral information that is incorporated into the analysis. Another weakness is the inherent use of ‘stripping factors' to account for contributions of radiation from nuclide A into the peak of nuclide B. This

  14. Time-resolved UV-excited microarray reader for fluorescence energy transfer (FRET) measurements

    Science.gov (United States)

    Orellana, Adelina; Hokkanen, Ari P.; Pastinen, Tomi; Takkinen, Kristina; Soderlund, Hans

    2001-05-01

    Analytical systems based on immunochemistry are largely used in medical diagnostics and in biotechnology. There is a significant pressure to develop the present assay formats to become easier to use, faster, and less reagent consuming. Further developments towards high density array--like multianalyte measurement systems would be valuable. To this aim we have studied the applicability of fluorescence resonance energy transfer and time-resolved fluorescence resonance energy transfer in immunoassays on microspots and in microwells. We have used engineered recombinant antibodies detecting the pentameric protein CRP as a model analyte system, and tested different assay formats. We describe also the construction of a time-resolved scanning epifluorometer with which we could measure the FRET interaction between the slow fluorescence decay from europium chelates and its energy transfer to the rapidly decaying fluorophore Cy5.

  15. Spatially Resolved Gas Temperature Measurements in an Atmospheric Pressure DC Glow Microdischarge with Raman Scattering

    Science.gov (United States)

    Belostotskiy, S.; Wang, Q.; Donnelly, V.; Economou, D.; Sadeghi, N.

    2006-10-01

    Spatially resolved rotational Raman spectroscopy of ground state nitrogen N2(X^1σg^+) was used to measure the gas temperature (Tg) in a nitrogen dc glow microdischarge (gap between electrodes d˜500 μm). An original backscattering, confocal optical system was developed for collecting Raman spectra. Stray laser light and Raleigh scattering were blocked by using a triple grating monochromator and spatial filters, designed specifically for these experiments. The optical system provided a spatial resolution of electrodes, Tg increased linearly with jd, reaching 500 K at 1000 mA/cm^2 jd for a pressure of 720 Torr. Spatially resolved gas temperature measurements will also be presented and discussed in combination with a mathematical model for gas heating in the microplasma. This work is supported by DoE/NSF.

  16. In situ microscopy of the self-assembly of branched nanocrystals in solution

    Science.gov (United States)

    Sutter, Eli; Sutter, Peter; Tkachenko, Alexei V.; Krahne, Roman; de Graaf, Joost; Arciniegas, Milena; Manna, Liberato

    2016-04-01

    Solution-phase self-assembly of nanocrystals into mesoscale structures is a promising strategy for constructing functional materials from nanoscale components. Liquid environments are key to self-assembly since they allow suspended nanocrystals to diffuse and interact freely, but they also complicate experiments. Real-time observations with single-particle resolution could have transformative impact on our understanding of nanocrystal self-assembly. Here we use real-time in situ imaging by liquid-cell electron microscopy to elucidate the nucleation and growth mechanism and properties of linear chains of octapod-shaped nanocrystals in their native solution environment. Statistical mechanics modelling based on these observations and using the measured chain-length distribution clarifies the relative importance of dipolar and entropic forces in the assembly process and gives direct access to the interparticle interaction. Our results suggest that monomer-resolved in situ imaging combined with modelling can provide unprecedented quantitative insight into the microscopic processes and interactions that govern nanocrystal self-assembly in solution.

  17. In situ measurement of erosion/deposition in the DIII-D divertor by colorimetry

    International Nuclear Information System (INIS)

    Weschenfelder, F.; Wienhold, P.; Winter, J.

    1996-01-01

    Colorimetry was introduced into the DIII-D tokamak to measure in situ the growth and erosion of transparent wall coatings (a-C:H) on the divertor. The colorimetric measurement system consisting of a halogen light source, a set of three filters and a black/white camera is described together with a first erosion measurement. An insertable graphite sample with a diameter of 4.7 cm was precoated with a 300 nm thick amorphous carbon film and was exposed in the divertor for several discharges with its surface coplanar to the surrounding graphite tiles. For each of the discharges the plasma strike point was moved onto the sample for 1 s to erode the coating. Between the discharges a camera signal with each filter was recorded and the film thickness was evaluated along a radial line across the DIMES sample. Thus it has been possible for the first time to measure erosion and deposition of divertor material in situ and shot-by-shot. The average peak heat flux with the strike point on DIMES was about 110 W cm -2 . The measurement shows a strong decrease in the film thickness almost over the entire sample with an average erosion rate of ∼ 9 nm s -1 . (Author)

  18. Drag balance Cubesat attitude motion effects on in-situ thermosphere density measurements

    Science.gov (United States)

    Felicetti, Leonard; Santoni, Fabio

    2014-08-01

    The dynamics of Cubesats carrying a drag balance instrument (DBI) for in situ atmosphere density measurements is analyzed. Atmospheric drag force is measured by the displacement of two light plates exposed to the incoming particle flow. This system is well suited for a distributed sensor network in orbit, to get simultaneous in situ local (non orbit averaged) measurements in multiple positions and orbit heights, contributing to the development and validation of global atmosphere models. The implementation of the DBI leads to orbit normal pointing spinning two body system. The use of a spin-magnetic attitude control system is suggested, based only on magnetometer readings, contributing to making the system simple, inexpensive, and reliable. It is shown, by an averaging technique, that this system provides for orbit normal spin axis pointing. The effect of the coupling between the attitude dynamics and the DBI is evaluated, analyzing its frequency content and showing that no frequency components arise, affecting the DBI performance. The analysis is confirmed by Monte Carlo numerical simulation results.

  19. 'In situ' straining in the HVEM of neutron irradiated copper crystals

    International Nuclear Information System (INIS)

    Johnson, E.; Hirsch, P.B.

    1976-01-01

    High energy neutron irradiated copper single crystals strained 'in situ' in the high voltage electron microscope are observed to yield in relatively few strongly developed slip bands. The deformation in the slip bands is caused by glide of inclined dislocations close to screw orientation belonging to the primary slip system. Radiation induced point defect clusters are swept up by the dislocations whereby superjogs are formed. Some of the jogs will be sessile and act as pinning points for the gliding dislocations, which bow out under the applied stress to form perfect dipoles mainly of edge nature, as well as faulted dipoles, which are finally pinched off. The effective stress measured from the radius of curvature of the bowed-out dislocations is in agreement with resolved flow stress measurements from irradiated bulk crystals. (Auth.)

  20. An improved in situ measurement of offset phase shift towards quantitative damping-measurement with AFM

    International Nuclear Information System (INIS)

    Minary-Jolandan, Majid; Yu Minfeng

    2008-01-01

    An improved approach is introduced in damping measurement with atomic force microscope (AFM) for the in situ measurement of the offset phase shift needed for determining the intrinsic mechanical damping in nanoscale materials. The offset phase shift is defined and measured at a point of zero contact force according to the deflection part of the AFM force plot. It is shown that such defined offset phase shift is independent of the type of sample material, varied from hard to relatively soft materials in this study. This improved approach allows the self-calibrated and quantitative damping measurement with AFM. The ability of dynamic mechanical analysis for the measurement of damping in isolated one-dimensional nanostructures, e.g. individual multiwalled carbon nanotubes, was demonstrated

  1. RESOLVE's Field Demonstration on Mauna Kea, Hawaii 2010

    Science.gov (United States)

    Captain, Janine; Quinn, Jacqueline; Moss, Thomas; Weis, Kyle

    2010-01-01

    In cooperation with the Canadian Space Agency, and the Northern Centre for Advanced Technology, Inc., NASA has undertaken the In-Situ Resource Utilization (ISRU) project called RESOLVE (Regolith and Environment Science & Oxygen and Lunar Volatile Extraction). This project is an Earth-based lunar precursor demonstration of a system that could be sent to explore permanently shadowed polar lunar craters, where it would drill into regolith, quantify the volatiles that are present, and extract oxygen by hydrogen reduction of iron oxides. The resulting water could be electrolyzed into oxygen to support exploration and hydrogen, which would be recycled through the process. The RESOLVE chemical processing system was mounted on a Canadian Space Agency mobility chasis and successfully demonstrated on Hawaii's Mauna Kea volcano in February 2010. The RESOLVE unit is the initial prototype of a robotic prospecting mission to the Moon. RESOLVE is designed to go to the poles of the Moon to "ground truth" the form and concentration of the hydrogen/water/hydroxyl that has been seen from orbit (M3, Lunar Prospector and LRO) and to test technologies to extract oxygen from the lunar regolith. RESOLVE has the ability to capture a one-meter core sample of lunar regolith and heat it to determine the volatiles that may be released and then demonstrate the production of oxygen from minerals found in the regolith. The RESOLVE project, which is led by KSC, is a multi-center and multi-organizational effort that includes representatives from KSC, JSC, GRC, the Canadian Space Agency, and the Northern Center for Advanced Technology (NORCAT). This paper details the results obtained from four days of lunar analog testing that included gas chromatograph analysis for volatile components, remote control of chemistry and drilling operations via satalite communications, and real-time water quantification using a novel capacitance measurement technique.

  2. Time-resolved blood flow measurement in the in vivo mouse model by optical frequency domain imaging

    Science.gov (United States)

    Walther, Julia; Mueller, Gregor; Meissner, Sven; Cimalla, Peter; Homann, Hanno; Morawietz, Henning; Koch, Edmund

    2009-07-01

    In this study, we demonstrate that phase-resolved Doppler optical frequency domain imaging (OFDI) is very suitable to quantify the pulsatile blood flow within a vasodynamic measurement in the in vivo mouse model. For this, an OFDI-system with a read-out rate of 20 kHz and a center wavelength of 1320 nm has been used to image the time-resolved murine blood flow in 300 μμm vessels. Because OFDI is less sensitive to fringe washout due to axial sample motion, it is applied to analyze the blood flow velocities and the vascular dynamics in six-week-old C57BL/6 mice compared to one of the LDLR knockout strain kept under sedentary conditions or with access to voluntary wheel running. We have shown that the systolic as well as the diastolic phase of the pulsatile arterial blood flow can be well identified at each vasodynamic state. Furthermore, the changes of the flow velocities after vasoconstriction and -dilation were presented and interpreted in the entire physiological context. With this, the combined measurement of time-resolved blood flow and vessel diameter provides the basis to analyze the vascular function and its influence on the blood flow of small arteries of different mouse strains in response to different life styles.

  3. Reaction-time-resolved measurements of laser-induced fluorescence in a shock tube with a single laser pulse

    Science.gov (United States)

    Zabeti, S.; Fikri, M.; Schulz, C.

    2017-11-01

    Shock tubes allow for the study of ultra-fast gas-phase reactions on the microsecond time scale. Because the repetition rate of the experiments is low, it is crucial to gain as much information as possible from each individual measurement. While reaction-time-resolved species concentration and temperature measurements with fast absorption methods are established, conventional laser-induced fluorescence (LIF) measurements with pulsed lasers provide data only at a single reaction time. Therefore, fluorescence methods have rarely been used in shock-tube diagnostics. In this paper, a novel experimental concept is presented that allows reaction-time-resolved LIF measurements with one single laser pulse using a test section that is equipped with several optical ports. After the passage of the shock wave, the reactive mixture is excited along the center of the tube with a 266-nm laser beam directed through a window in the end wall of the shock tube. The emitted LIF signal is collected through elongated sidewall windows and focused onto the entrance slit of an imaging spectrometer coupled to an intensified CCD camera. The one-dimensional spatial resolution of the measurement translates into a reaction-time-resolved measurement while the species information can be gained from the spectral axis of the detected two-dimensional image. Anisole pyrolysis was selected as the benchmark reaction to demonstrate the new apparatus.

  4. Time-resolved spectroscopy in synchrotron radiation

    International Nuclear Information System (INIS)

    Rehn, V.; Stanford Univ., CA

    1980-01-01

    Synchrotron radiation (SR) from large-diameter storage rings has intrinsic time structure which facilitates time-resolved measurements form milliseconds to picoseconds and possibly below. The scientific importance of time-resolved measurements is steadily increasing as more and better techniques are discovered and applied to a wider variety of scientific problems. This paper presents a discussion of the importance of various parameters of the SR facility in providing for time-resolved spectroscopy experiments, including the role of beam-line optical design parameters. Special emphasis is placed on the requirements of extremely fast time-resolved experiments with which the effects of atomic vibrational or relaxation motion may be studied. Before discussing the state-of-the-art timing experiments, we review several types of time-resolved measurements which have now become routine: nanosecond-range fluorescence decay times, time-resolved emission and excitation spectroscopies, and various time-of-flight applications. These techniques all depend on a short SR pulse length and a long interpulse period, such as is provided by a large-diameter ring operating in a single-bunch mode. In most cases, the pulse shape and even the stability of the pulse shape is relatively unimportant as long as the pulse length is smaller than the risetime of the detection apparatus, typically 1 to 2 ns. For time resolution smaller than 1 ns, the requirements on the pulse shape become more stringent. (orig./FKS)

  5. An approach to spin-resolved molecular gas microscopy

    Science.gov (United States)

    Covey, Jacob P.; De Marco, Luigi; Acevedo, Óscar L.; Rey, Ana Maria; Ye, Jun

    2018-04-01

    Ultracold polar molecules are an ideal platform for studying many-body physics with long-range dipolar interactions. Experiments in this field have progressed enormously, and several groups are pursuing advanced apparatus for manipulation of molecules with electric fields as well as single-atom-resolved in situ detection. Such detection has become ubiquitous for atoms in optical lattices and tweezer arrays, but has yet to be demonstrated for ultracold polar molecules. Here we present a proposal for the implementation of site-resolved microscopy for polar molecules, and specifically discuss a technique for spin-resolved molecular detection. We use numerical simulation of spin dynamics of lattice-confined polar molecules to show how such a scheme would be of utility in a spin-diffusion experiment.

  6. In situ prompt gamma-ray measurement of river water salinity in northern Taiwan using HPGe-252Cf probe

    International Nuclear Information System (INIS)

    Jiunnhsing Chao; Chien Chung

    1991-01-01

    A portable HPGe- 252 Cf probe dedicated to in situ survey of river water salinity was placed on board a fishing boat to survey the Tamsui River in northern Taiwan. The variation of water salinity is surveyed by measuring the 6111 keV chlorine prompt photopeak along the river. Results indicate that the probe can be used as a salinometer for rapid, in situ measurement in polluted rivers or sea. (author)

  7. In situ stress measurements at 250m gallery off the ventilation shaft

    International Nuclear Information System (INIS)

    Nakamura, Takahiro; Sanada, Hiroyuki; Sugita, Yutaka; Kato, Harumi

    2011-06-01

    From FY2000 to FY2005, JAEA had been making research at ground surface of Horonobe town for repository of high-level radioactive waste. During this period, geological investigation, hydrogeology investigation, rock mechanics investigation, geochemical investigation using boreholes were carried out in Hokushin area which is about 3kmx3km in surface area of Horonobe town in order to construct a geological environment model and to confirm the methodology for safety assessment. Now the research program proceeds to the next stage where the underground drifts and shafts are under construction. In the underground rock mass, in situ stress is the sum of tectonic stress as well as overlying stress due to gravity. In situ stresses enter into excavation design and are required in order to predict the response of rock masses to the disturbance associated with those structures. For these reasons, JAEA has carried out in situ stress measurements using vertical boreholes drilled from ground surface to evaluate the state of horizontal stress in the area. In the research during the underground construction, comparison between the stress measurements carried out at surface and at underground is conducted. And if inconsistency between these two measurements is found, the state of stress will be updated based on more reliable information. In order to study the 3D in situ state of stress around Horonobe Underground Research Laboratory, hydraulic fracturing tests and stress relief method (Conical-ended borehole method) were conducted at the 250m gallery located near the bottom of the ventilation shaft. Three 20.0m long boreholes, 09-V250-M01(slightly upwards), 09-V250-M02(slightly upwards) and 09-V250-M03(vertical), were drilled from the gallery using 76mm diameter bit. The results of the measurements are summarized as follows: (1) Hydraulic fracturing technique. Hydraulic fracturing technique using the test equipment with sufficiently small compliance was carried out in the three

  8. In situ electromagnetic field diagnostics with an electron plasma in a Penning-Malmberg trap

    CERN Document Server

    Amole, C; Baquero-Ruiz, M.; Bertsche, W.; Butler, E.; Capra, A.; Cesar, C.L.; Charlton, M.; Deller, A.; Evetts, N.; Eriksson, S.; Fajans, J.; Friesen, T.; Fujiwara, M.C.; Gill, D.R.; Gutierrez, A.; Hangst, J.S.; Hardy, W.N.; Hayden, M.E.; Isaac, C.A.; Jonsell, S.; Kurchaninov, L.; Little, A.; Madsen, N.; McKenna, J.T.K.; Menary, S.; Napoli, S.C.; Olchanski, K.; Olin, A.; Pusa, P.; Rasmussen, C.; Robicheaux, F.; Sarid, E.; Silveira, D.M.; So, C.; Stracka, S.; Tharp, T.; Thompson, R.I.; van der Werf, D.P.; Wurtele, J.S.

    2014-01-01

    We demonstrate a novel detection method for the cyclotron resonance frequency of an electron plasma in a Penning-Malmberg trap. With this technique, the electron plasma is used as an in situ diagnostic tool for measurement of the static magnetic field and the microwave electric field in the trap. The cyclotron motion of the electron plasma is excited by microwave radiation and the temperature change of the plasma is measured non-destructively by monitoring the plasma's quadrupole mode frequency. The spatially-resolved microwave electric field strength can be inferred from the plasma temperature change and the magnetic field is found through the cyclotron resonance frequency. These measurements were used extensively in the recently reported demonstration of resonant quantum interactions with antihydrogen.

  9. In-situ measurement of the electrical conductivity of aluminum oxide in HFIR

    Energy Technology Data Exchange (ETDEWEB)

    Zinkle, S.J.; White, D.P.; Snead, L.L. [Oak Ridge National Lab., TN (United States)] [and others

    1996-10-01

    A collaborative DOE/Monbusho irradiation experiment has been completed which measured the in-situ electrical resistivity of 12 different grades of aluminum oxide during HFIR neutron irradiation at 450{degrees}C. No evidence for bulk RIED was observed following irradiation to a maximum dose of 3 dpa with an applied dc electric field of 200 V/mm.

  10. Contact sponge water absorption test implemented for in situ measures

    Science.gov (United States)

    Gaggero, Laura; Scrivano, Simona

    2016-04-01

    The contact sponge method is a non-destructive in-situ methodology used to estimate a water uptake coefficient. The procedure, unlike other in-situ measurement was proven to be directly comparable to the water uptake laboratory measurements, and was registered as UNI 11432:2011. The UNI Normal procedure requires to use a sponge with known density, soaked in water, weighed, placed on the material for 1 minute (UNI 11432, 2011; Pardini & Tiano, 2004), then weighed again. Difficulties arise in operating on test samples or on materials with porosity varied for decay. While carrying on the test, fluctuations in the bearing of the environmental parameters were negligible, but not the pressure applied to the surface, that induced the release of different water amounts towards the material. For this reason we designed a metal piece of the same diameter of the plate carrying the sponge, to be screwed at the tip of a pocket penetrometer. With this instrument the sponge was kept in contact with the surface for 1 minute applying two different loads, at first pushed with 0.3 kg/cm2 in order to press the sponge, but not its holder, against the surface. Then, a load of 1.1 kg/ cm2 was applied, still avoiding deviating the load to the sponge holder. We applied both the current and our implemented method to determine the water absorption by contact sponge on 5 fresh rock types (4 limestones: Fine - and Coarse grained Pietra di Vicenza, Rosso Verona, Breccia Aurora, and the silicoclastic Macigno sandstone). The results show that 1) the current methodology imply manual skill and experience to produce a coherent set of data; the variable involved are in fact not only the imposed pressure but also the compression mechanics. 2) The control on the applied pressure allowed reproducible measurements. Moreover, 3) the use of a thicker sponge enabled to apply the method even on rougher surfaces, as the device holding the sponge is not in contact with the tested object. Finally, 4) the

  11. In-situ optical and acoustical measurements of the buoyant cyanobacterium p. Rubescens: spatial and temporal distribution patterns.

    Directory of Open Access Journals (Sweden)

    Hilmar Hofmann

    Full Text Available Optical (fluorescence and acoustic in-situ techniques were tested in their ability to measure the spatial and temporal distribution of plankton in freshwater ecosystems with special emphasis on the harmful and buoyant cyanobacterium P. rubescens. Fluorescence was measured with the multi-spectral FluoroProbe (Moldaenke FluoroProbe, MFP and a Seapoint Chlorophyll Fluorometer (SCF. In-situ measurements of the acoustic backscatter strength (ABS were conducted with three different acoustic devices covering multiple acoustic frequencies (614 kHz ADCP, 2 MHz ADP, and 6 MHz ADV. The MFP provides a fast and reliable technique to measure fluorescence at different wavelengths in situ, which allows discriminating between P. rubescens and other phytoplankton species. All three acoustic devices are sensitive to P. rubescens even if other scatterers, e.g., zooplankton or suspended sediment, are present in the water column, because P. rubescens containing gas vesicles has a strong density difference and hence acoustic contrast to the ambient water and other scatterers. After calibration, the combination of optical and acoustical measurements not only allows qualitative and quantitative observation of P. rubescens, but also distinction between P. rubescens, other phytoplankton, and zooplankton. As the measuring devices can sample in situ at high rates they enable assessment of plankton distributions at high temporal (minutes and spatial (decimeters resolution or covering large temporal (seasonal and spatial (basin scale scales.

  12. In-situ stress measurements in the earth's crust in the eastern United States

    International Nuclear Information System (INIS)

    Rundle, T.A.; Singh, M.M.; Baker, C.H.

    1987-04-01

    The US Nuclear Regulatory Commission requires that the design basis for vibratory ground motion should be determined through correlation of seismicity with tectonic structures or provinces (10CFR100, Appendix A). Such criteria are difficult to apply in the eastern United States, which experiences persistent low level seismicity, with occasional moderate to large earthquakes. This report presents the results of in-situ stress measurements conducted towards reducing this uncertainty at three (3) seismically active sites in the region, namely, near Moodus, Connecticut, around the Ramapo fault zone in New York and New Jersey, and in central Virginia. As far as possible, at each location one bore hole was drilled close to the ''apparent'' epicenter of the seismic activity and one outside the ''known'' seismic zone, so that the data obtained could be compared. The results obtained were very consistent both as to magnitude and direction. No attempt was made to correlate the in-situ stress measurements with the tectonic setting or seismic activity, since this was beyond the scope of this project. Extensive appendices report experimental data. 35 refs

  13. Spectrally resolved measurements of the terahertz beam profile generated from a two-color air plasma

    DEFF Research Database (Denmark)

    Pedersen, Pernille Klarskov; Zalkovskij, Maksim; Strikwerda, Andrew

    2014-01-01

    Using a THz camera and THz bandpass filters, we measure the frequency - resolved beam profile emitted from a two - color air plasma. We observe a frequency - independent emission angle from the plasma .......Using a THz camera and THz bandpass filters, we measure the frequency - resolved beam profile emitted from a two - color air plasma. We observe a frequency - independent emission angle from the plasma ....

  14. Applications of in situ optical measurements in ecological and biogeochemical studies - a framework for a user-driven national network

    Science.gov (United States)

    Bergamaschi, B. A.; Pellerin, B. A.; Downing, B. D.; Saraceno, J.; Aiken, G.; Stumpner, P.

    2010-12-01

    A critical challenge for understanding the dynamics between water quality, and ecological processes is obtaining data at time scales in which changes occur. Traditional, discrete sampling, approaches for data collection are often limited by analytical and field costs, site access, and logistical challenges, for long-term sampling at a large number of sites. The timescales of change, however, are often minutes, hours, or years. In situ optical (absorbance and fluorescence) instruments offer opportunities to help overcome these difficulties by directly or indirectly measuring constituents of interest. In situ optical instrumentation have been in use in oceanographic studies for well over 50 years, and as advances in the science, engineering and technology of these sensors have improved, optical sensors have become more commercially viable and available for research. We present several examples that highlight applications of in situ optical measurements for understanding dynamics in stream, river, and estuary systems. Examples illustrate the utility of in situ optical sensors for studies over short-duration events of days to weeks (diurnal cycles, tidal cycles, storm events and snowmelt periods) as well as longer-term continuous monitoring for months to years. We also highlight applied in situ optical measurements as proxies for constituents that are difficult and expensive to measure at high spatiotemporal resolution, for example, dissolved organic carbon, dissolved organic nitrogen, mercury and methylmercury, trihalomethane precursors, harmful algal blooms, and others. We propose that relatively simple absorbance and fluorescence measurements made in situ could be incorporated into short and long-term ecological research and monitoring programs, resulting in advanced understanding of sources that contribute to water quality improvements or degradation, contaminant and carbon cycling, and the occurrence and persistence of harmful algal blooms. Linking these efforts

  15. In Situ Observation of the Dislocation Structure Evolution During a Strain Path Change in Copper

    DEFF Research Database (Denmark)

    Wejdemann, Christian; Poulsen, Henning Friis; Lienert, Ulrich

    2013-01-01

    The evolution of deformation structures in individual grains embedded in polycrystalline copper specimens during strain path changes is observed in situ by high-resolution reciprocal space mapping with high-energy synchrotron radiation. A large number of individual subgrains is resolved; their be......The evolution of deformation structures in individual grains embedded in polycrystalline copper specimens during strain path changes is observed in situ by high-resolution reciprocal space mapping with high-energy synchrotron radiation. A large number of individual subgrains is resolved...... and orientation of the resolved subgrains change only slightly, while their elastic stresses are significantly altered. This indicates the existence of a microplastic regime during which only the subgrains deform plastically and no yielding of the dislocation walls occurs. After reloading above 0.3% strain......, the elastic stresses of individual subgrains are about the same as in unidirectionally deformed reference specimens. They increase only slightly during further straining—accompanied by occasional emergence of new subgrains, abundant orientation changes, and disappearance of existing subgrains....

  16. Measurement techniques for in situ stresses around underground constructions in a deep clay formation

    Directory of Open Access Journals (Sweden)

    Li X.L.

    2010-06-01

    Full Text Available Disposal in deep underground geological formations is internationally recognized as the most viable option for the long-term management of high-level radioactive waste. In Belgium, the Boom clay formation is extensively studied in this context, in particular at the 225 m deep HADES Underground Research Facility in Mol. A cost-effective design of deep underground structures requires an accurate assessment of the in situ stresses; a good estimation of these stresses is also essential when interpreting in situ experiments regarding the hydro-mechanical behaviour of the host formation. Different measurement techniques are available to provide data on the stress evolution and other mechanical properties of the geological formation. The measurement can be direct (measurement of total pressure, or it can be an indirect technique, deriving the stress from related quantities such as strain (changes in structural members. Most total stress measurements are performed through permanently installed sensors; also once-only measurements are performed through specific methods (e.g. pressuremeter. Direct measurement of the stress state is challenging due to the complex mechanical behaviour of the clay, and the fact that the sensor installation inevitably disturbs the original stress field. This paper describes ways to deal with these problems and presents the results obtained using different techniques at HADES.

  17. Time-resolved measurements of supersonic fuel sprays using synchrotron X-rays.

    Science.gov (United States)

    Powell, C F; Yue, Y; Poola, R; Wang, J

    2000-11-01

    A time-resolved radiographic technique has been developed for probing the fuel distribution close to the nozzle of a high-pressure single-hole diesel injector. The measurement was made using X-ray absorption of monochromatic synchrotron-generated radiation, allowing quantitative determination of the fuel distribution in this optically impenetrable region with a time resolution of better than 1 micros. These quantitative measurements constitute the most detailed near-nozzle study of a fuel spray to date.

  18. In-situ-gamma ray spectrometry for measurements of environmental radioactivity

    Energy Technology Data Exchange (ETDEWEB)

    Winkelmann, I

    1994-12-31

    A detailed description of the method is presented. The range of application is shown. The calibration of the in-situ gamma ray spectrometer with a HPGe semiconductor detector and the evaluation of the spectra are described. A measuring time of about 15-30 min is sufficient to determine the specific natural and man-made radioactivity of the soil of some ten Bq/m{sup 2}. The results of soil contamination measurements in Germany after the Chernobyl accident are reported. A total of 22 nuclides are detected. The measured contamination for the first days after the accident was as follows: {sup 132}Te/{sup 132}I - 100 kBq/m{sup 2}, and {sup 131}I - 70 kBq/m{sup 2}. 6 figs., 4 tabs. (orig.).

  19. Rapid characterization of agglomerate aerosols by in situ mass-mobility measurements.

    Science.gov (United States)

    Scheckman, Jacob H; McMurry, Peter H; Pratsinis, Sotiris E

    2009-07-21

    Transport and physical/chemical properties of nanoparticle agglomerates depend on primary particle size and agglomerate structure (size, fractal dimension, and dynamic shape factor). This research reports on in situ techniques for measuring such properties. Nanoparticle agglomerates of silica were generated by oxidizing hexamethyldisiloxane in a methane/oxygen diffusion flame. Upon leaving the flame, agglomerates of known electrical mobility size were selected with a differential mobility analyzer (DMA), and their mass was measured with an aerosol particle mass analyzer (APM), resulting in their mass fractal dimension, D(f), and dynamic shape factor, chi. Scanning and transmission electron microscopy (SEM/TEM) images were used to determine primary particle diameter and to qualitatively investigate agglomerate morphology. The DMA-APM measurements were reproducible within 5%, as determined by multiple measurements on different days under the same flame conditions. The effects of flame process variables (oxygen flow rate and mass production rate) on particle characteristics (D(f), and chi) were determined. All generated particles were fractal-like agglomerates with average primary particle diameters of 12-93 nm and D(f) = 1.7-2.4. Increasing the oxygen flow rate decreased primary particle size and D(f), while it increased chi. Increasing the production rate increased the agglomerate and primary particle sizes, and decreased chi without affecting D(f). The effects of oxygen flow rate and particle production rate on primary particle size reported here are in agreement with ex situ measurements in the literature, while the effect of process variables on agglomerate shape (chi) is demonstrated for the first time to our knowledge.

  20. Comparison of AOD, AAOD and column single scattering albedo from AERONET retrievals and in situ profiling measurements

    Science.gov (United States)

    Andrews, Elisabeth; Ogren, John A.; Kinne, Stefan; Samset, Bjorn

    2017-05-01

    Here we present new results comparing aerosol optical depth (AOD), aerosol absorption optical depth (AAOD) and column single scattering albedo (SSA) obtained from in situ vertical profile measurements with AERONET ground-based remote sensing from two rural, continental sites in the US. The profiles are closely matched in time (within ±3 h) and space (within 15 km) with the AERONET retrievals. We have used Level 1.5 inversion retrievals when there was a valid Level 2 almucantar retrieval in order to be able to compare AAOD and column SSA below AERONET's recommended loading constraint (AOD > 0.4 at 440 nm). While there is reasonable agreement for the AOD comparisons, the direct comparisons of in situ-derived to AERONET-retrieved AAOD (or SSA) reveal that AERONET retrievals yield higher aerosol absorption than obtained from the in situ profiles for the low aerosol optical depth conditions prevalent at the two study sites. However, it should be noted that the majority of SSA comparisons for AOD440 > 0.2 are, nonetheless, within the reported SSA uncertainty bounds. The observation that, relative to in situ measurements, AERONET inversions exhibit increased absorption potential at low AOD values is generally consistent with other published AERONET-in situ comparisons across a range of locations, atmospheric conditions and AOD values. This systematic difference in the comparisons suggests a bias in one or both of the methods, but we cannot assess whether the AERONET retrievals are biased towards high absorption or the in situ measurements are biased low. Based on the discrepancy between the AERONET and in situ values, we conclude that scaling modeled black carbon concentrations upwards to match AERONET retrievals of AAOD should be approached with caution as it may lead to aerosol absorption overestimates in regions of low AOD. Both AERONET retrievals and in situ measurements suggest there is a systematic relationship between SSA and aerosol amount (AOD or aerosol light

  1. Monitoring of In-Situ Remediation By Time Lapse 3D Geo-Electric Measurements

    Science.gov (United States)

    Kanli, A. I.; Tildy, P.; Neducza, B.; Nagy, P.; Hegymegi, C.

    2017-12-01

    Injection of chemical oxidant solution to degrade the subsurface contaminants can be used for hydrocarbon contamination remediation. In this study, we developed a non-destructive measurement strategy to monitor oxidative in-situ remediation processes. The difficulties of the presented study originate from the small volume of conductive solution that can be used due to environmental considerations. Due to the effect of conductive groundwater and the high clay content of the targeted layer and the small volume of conductive solution that can be used due to environmental considerations, a site specific synthetic modelling is necessary for measurement design involving the results of preliminary 2D ERT measurements, electrical conductivity measurements of different active agents and expected resistivity changes calculated by soil resistivity modelling. Because of chemical biodegradation, the results of soil resistivity modelling have suggested that the reagent have complex effects on contaminated soils. As a result the plume of resistivity changes caused by the injected agent was determined showing strong fracturing effect because of the high pressure of injection. 3D time-lapse geo-electric measurements were proven to provide a usable monitoring tool for in-situ remediation as a result of our sophisticated tests and synthetic modelling.

  2. Development of Field Angle Resolved Specific Heat Measurement System for Unconventional Superconductors

    International Nuclear Information System (INIS)

    Kitamura, Yasuhiro; Matsubara, Takeshi; Machida, Yo; Izawa, Koichi; Onuki, Yoshichika; Salce, Bernard; Flouquet, Jacques

    2015-01-01

    We developed a measurement system for field angle resolved specific heat under multiple extreme conditions at low temperature down to 50 mK, in magnetic field up to 7 T, and under high pressure up to 10 GPa. We demonstrated the performance of our developed system by measuring field angle dependence of specific heat of pressure induced unconventional superconductor CeIrSi 3

  3. Pitch angle resolved measurements of escaping charged fusion products in TFTR

    Energy Technology Data Exchange (ETDEWEB)

    Zweben, S.J.

    1989-01-01

    Measurements of the flux of charged fusion products escaping from the TFTR plasma have been made with a new type of detector which can resolve the particle flux vs. pitch angle, energy, and time. The design of this detector is described, and results from the 1987 TFTR run are presented. These results are roughly consistent with predictions from a simple first-orbit particle loss model with respect to the pitch angle, energy, time, and plasma current dependence of the signals. 11 refs., 9 figs.

  4. Pitch angle resolved measurements of escaping charged fusion products in TFTR

    International Nuclear Information System (INIS)

    Zweben, S.J.

    1989-01-01

    Measurements of the flux of charged fusion products escaping from the TFTR plasma have been made with a new type of detector which can resolve the particle flux vs. pitch angle, energy, and time. The design of this detector is described, and results from the 1987 TFTR run are presented. These results are roughly consistent with predictions from a simple first-orbit particle loss model with respect to the pitch angle, energy, time, and plasma current dependence of the signals. 11 refs., 9 figs

  5. Applications of synergistic combination of remote sensing and in-situ measurements on urban monitoring of air quality

    Science.gov (United States)

    Diaz, Adrian; Dominguez, Victor; Campmier, Mark; Wu, Yonghua; Arend, Mark; Vladutescu, Daniela Viviana; Gross, Barry; Moshary, Fred

    2017-08-01

    In this study, multiple remote sensing and in-situ measurements are combined in order to obtain a comprehensive understanding of the aerosol distribution in New York City. Measurement of the horizontal distribution of aerosols is performed using a scanning eye-safe elastic-backscatter micro-pulse lidar. Vertical distribution of aerosols is measured with a co-located ceilometer. Furthermore, our analysis also includes in-situ measurements of particulate matter and wind speed and direction. These observations combined show boundary layer dynamics as well as transport and inhomogeneous spatial distribution of aerosols, which are of importance for air quality monitoring.

  6. Janus: Graphical Software for Analyzing In-Situ Measurements of Solar-Wind Ions

    Science.gov (United States)

    Maruca, B.; Stevens, M. L.; Kasper, J. C.; Korreck, K. E.

    2016-12-01

    In-situ observations of solar-wind ions provide tremendous insights into the physics of space plasmas. Instrument on spacecraft measure distributions of ion energies, which can be processed into scientifically useful data (e.g., values for ion densities and temperatures). This analysis requires a strong, technical understanding of the instrument, so it has traditionally been carried out by the instrument teams using automated software that they had developed for that purpose. The automated routines are optimized for typical solar-wind conditions, so they can fail to capture the complex (and scientifically interesting) microphysics of transient solar-wind - such as coronal mass ejections (CME's) and co-rotating interaction regions (CIR's) - which are often better analyzed manually.This presentation reports on the ongoing development of Janus, a new software package for processing in-situ measurement of solar-wind ions. Janus will provide user with an easy-to-use graphical user interface (GUI) for carrying out highly customized analyses. Transparent to the user, Janus will automatically handle the most technical tasks (e.g., the retrieval and calibration of measurements). For the first time, users with only limited knowledge about the instruments (e.g., non-instrumentalists and students) will be able to easily process measurements of solar-wind ions. Version 1 of Janus focuses specifically on such measurements from the Wind spacecraft's Faraday Cups and is slated for public release in time for this presentation.

  7. Test plan for in situ stress measurement system development

    International Nuclear Information System (INIS)

    Kim, K.

    1981-09-01

    The tests are to be performed to provide information regarding the state of stress of the basalt rock beneath the Hanford Site. This test series is designed to obtain information necessary to determine if hydrofracturing stress measurement is feasible in a fractured basalt medium. During the course of these field tests, it will be attempted to adapt the conventional hydrofracturing test method and analysis techniques to the basalt medium. If the test is shown to be feasible, more holes will be identified for testing. A comprehensive in situ stress determination program will be initiated. 2 figs

  8. Time-resolved measurements of supersonic fuel sprays using synchrotron x-rays

    International Nuclear Information System (INIS)

    Powell, C.F.; Yue, Y.; Poola, R.; Wang, J.

    2000-11-01

    A time-resolved radiographic technique has been developed for probing the fuel distribution close to the nozzle of a high-pressure single-hole diesel injector. The measurement was made using X-ray absorption of monochromatic synchrotron-generated radiation, allowing quantitative determination of the fuel distribution in this optically impenetrable region with a time resolution of better than 1 μs. These quantitative measurements constitute the most detailed near-nozzle study of a fuel spray to date

  9. Two dimensional numerical simulations of carrier dynamics during time-resolved photoluminescence decays in two-photon microscopy measurements in semiconductors

    International Nuclear Information System (INIS)

    Kanevce, Ana; Kuciauskas, Darius; Levi, Dean H.; Johnston, Steven W.; Allende Motz, Alyssa M.

    2015-01-01

    We use two-dimensional numerical simulations to analyze high spatial resolution time-resolved spectroscopy data. This analysis is applied to two-photon excitation time-resolved photoluminescence (2PE-TRPL) but is broadly applicable to all microscopic time-resolved techniques. By solving time-dependent drift-diffusion equations, we gain insight into carrier dynamics and transport characteristics. Accurate understanding of measurement results establishes the limits and potential of the measurement and enhances its value as a characterization method. Diffusion of carriers outside of the collection volume can have a significant impact on the measured decay but can also provide an estimate of carrier mobility as well as lifetime. In addition to material parameters, the experimental conditions, such as spot size and injection level, can impact the measurement results. Although small spot size provides better resolution, it also increases the impact of diffusion on the decay; if the spot size is much smaller than the diffusion length, it impacts the entire decay. By reproducing experimental 2PE-TRPL decays, the simulations determine the bulk carrier lifetime from the data. The analysis is applied to single-crystal and heteroepitaxial CdTe, material important for solar cells, but it is also applicable to other semiconductors where carrier diffusion from the excitation volume could affect experimental measurements

  10. In-situ geophysical measurements in marine sediments: Applications in seafloor acoustics and paleoceanography

    Science.gov (United States)

    Gorgas, Thomas Joerg

    Acoustic in-situ sound speeds and attenuation were measured on the Eel River shelf, CA, with the Acoustic Lance between 5 and 15 kHz to 2.0 meters below seafloor (mbsf). A comparison with laboratory ultrasonic geoacoustic data obtained at 400 kHz on cored sediments showed faster in-situ and ultrasonic sound speeds in coarse-grained deposits in water depths to 60 m than in fine-grained deposits below that contour line. Ultrasonic attenuation was often greater than in-situ values and remained almost constant below 0.4 mbsf in these heterogeneous deposits. In-situ attenuation decreased with depth. These observations partly agree with results from other field studies, and with theoretical models that incorporate intergranular friction and dispersion from viscosity as main controls on acoustic wave propagation in marine sediments. Deviations among in-situ and laboratory acoustic data from the Eel Margin with theoretical studies were linked to scattering effects. Acoustic Lance was also deployed in homogeneous, fine-grained sediments on the inner shelf of SE Korea, where free gas was identified in late-September, but not in mid-September 1999. Free gas was evidenced by an abrupt decrease of in-situ sound speed and by characteristic changes in acoustic waveforms. These results suggest the presence of a gassy sediment layer as shallow as 2 mbsf along the 70 m bathymetry line, and was attributed to a variable abundance of free gas on short-term and/or small-regional scales on the SE Korea shelf. Bulk density variations in marine sediments obtained along the Walvis Ridge/Basin, SW Africa, at Ocean Drilling Program (ODP) Sites 1081 to 1084 were spectral-analyzed to compute high-resolution sedimentation rates (SRs) in both the time- and age domains by correctly identifying Milankovitch cycles (MCs). SRs for the ODP sites yielded age-depth models that often correlate positively with biostratigraphic data and with organic mass accumulation rates (MAR Corg), a proxy for

  11. Straylight measurements in laser in situ keratomileusis and laser-assisted subepithelial keratectomy for myopia

    NARCIS (Netherlands)

    Lapid-Gortzak, Ruth; van der Linden, Jan Willem; van der Meulen, Ivanka; Nieuwendaal, Carla; van den Berg, Tom

    2010-01-01

    PURPOSE: To compare straylight values before and 3 months after laser in situ keratomileusis (LASIK) and laser-assisted subepithelial keratectomy (LASEK) and to analyze the causes of any change. SETTING: Private refractive surgery clinic, Driebergen, The Netherlands. METHODS: Straylight was measured

  12. Exploration of CdTe quantum dots as mesoscale pressure sensors via time-resolved shock-compression photoluminescent emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Zhitao [Georgia Tech Research Institute, Georgia Institute of Technology, Atlanta, Georgia 30332-0826 (United States); School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245 (United States); Banishev, Alexandr A.; Christensen, James; Dlott, Dana D. [School of Chemical Sciences and Fredrick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Lee, Gyuhyon; Scripka, David A.; Breidenich, Jennifer; Summers, Christopher J.; Thadhani, Naresh N., E-mail: naresh.thadhani@mse.gatech.edu [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245 (United States); Xiao, Pan [LNM, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China); George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0405 (United States); Zhou, Min [George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0405 (United States)

    2016-07-28

    The nanometer size of CdTe quantum dots (QDs) and their unique optical properties, including size-tunable narrow photoluminescent emission, broad absorption, fast photoluminescence decay, and negligible light scattering, are ideal features for spectrally tagging the shock response of localized regions in highly heterogeneous materials such as particulate media. In this work, the time-resolved laser-excited photoluminescence response of QDs to shock-compression was investigated to explore their utilization as mesoscale sensors for pressure measurements and in situ diagnostics during shock loading experiments. Laser-driven shock-compression experiments with steady-state shock pressures ranging from 2.0 to 13 GPa were performed on nanocomposite films of CdTe QDs dispersed in a soft polyvinyl alcohol polymer matrix and in a hard inorganic sodium silicate glass matrix. Time-resolved photoluminescent emission spectroscopy was used to correlate photoluminescence changes with the history of shock pressure and the dynamics of the matrix material surrounding the QDs. The results revealed pressure-induced blueshifts in emitted wavelength, decreases in photoluminescent emission intensity, reductions in peak width, and matrix-dependent response times. Data obtained for these QD response characteristics serve as indicators for their use as possible time-resolved diagnostics of the dynamic shock-compression response of matrix materials in which such QDs are embedded as in situ sensors.

  13. Exploration of CdTe quantum dots as mesoscale pressure sensors via time-resolved shock-compression photoluminescent emission spectroscopy

    International Nuclear Information System (INIS)

    Kang, Zhitao; Banishev, Alexandr A.; Christensen, James; Dlott, Dana D.; Lee, Gyuhyon; Scripka, David A.; Breidenich, Jennifer; Summers, Christopher J.; Thadhani, Naresh N.; Xiao, Pan; Zhou, Min

    2016-01-01

    The nanometer size of CdTe quantum dots (QDs) and their unique optical properties, including size-tunable narrow photoluminescent emission, broad absorption, fast photoluminescence decay, and negligible light scattering, are ideal features for spectrally tagging the shock response of localized regions in highly heterogeneous materials such as particulate media. In this work, the time-resolved laser-excited photoluminescence response of QDs to shock-compression was investigated to explore their utilization as mesoscale sensors for pressure measurements and in situ diagnostics during shock loading experiments. Laser-driven shock-compression experiments with steady-state shock pressures ranging from 2.0 to 13 GPa were performed on nanocomposite films of CdTe QDs dispersed in a soft polyvinyl alcohol polymer matrix and in a hard inorganic sodium silicate glass matrix. Time-resolved photoluminescent emission spectroscopy was used to correlate photoluminescence changes with the history of shock pressure and the dynamics of the matrix material surrounding the QDs. The results revealed pressure-induced blueshifts in emitted wavelength, decreases in photoluminescent emission intensity, reductions in peak width, and matrix-dependent response times. Data obtained for these QD response characteristics serve as indicators for their use as possible time-resolved diagnostics of the dynamic shock-compression response of matrix materials in which such QDs are embedded as in situ sensors.

  14. Application of in-situ stress measurement on bursts disasters of rock and CO{sub 2} in coal mine

    Energy Technology Data Exchange (ETDEWEB)

    Lian-Jie Wang; Dong-Sheng Sun; Li-Rong Zhang; Guan-Wu Zhou [Ministry of Land and Resources, Beijing (China)

    2009-01-15

    For the purpose of reduction and prevention of rock burst disasters and CO{sub 2}, measurements were made of in-situ stress and mechanical parameters of rock in Yingcheng mine. Geological structure and gas measurements were studied and the stress field was simulated and distribution of stress field was obtained in this area. On the basis of the study, the danger areas of rockbursts and CO{sub 2} were predicted. Preventive measures were suggested to decrease gas pressure and in-situ stress in front of the working face with advance boreholes relieving blasting. 12 refs., 5 figs., 1 tab.

  15. In-situ measurement of magnetic field gradient in a magnetic shield by a spin-exchange relaxation-free magnetometer

    International Nuclear Information System (INIS)

    Fang Jian-Cheng; Wang Tao; Li Yang; Cai Hong-Wei; Zhang Hong

    2015-01-01

    A method of measuring in-situ magnetic field gradient is proposed in this paper. The magnetic shield is widely used in the atomic magnetometer. However, there is magnetic field gradient in the magnetic shield, which would lead to additional gradient broadening. It is impossible to use an ex-situ magnetometer to measure magnetic field gradient in the region of a cell, whose length of side is several centimeters. The method demonstrated in this paper can realize the in-situ measurement of the magnetic field gradient inside the cell, which is significant for the spin relaxation study. The magnetic field gradients along the longitudinal axis of the magnetic shield are measured by a spin-exchange relaxation-free (SERF) magnetometer by adding a magnetic field modulation in the probe beam’s direction. The transmissivity of the cell for the probe beam is always inhomogeneous along the pump beam direction, and the method proposed in this paper is independent of the intensity of the probe beam, which means that the method is independent of the cell’s transmissivity. This feature makes the method more practical experimentally. Moreover, the AC-Stark shift can seriously degrade and affect the precision of the magnetic field gradient measurement. The AC-Stark shift is suppressed by locking the pump beam to the resonance of potassium’s D1 line. Furthermore, the residual magnetic fields are measured with σ + - and σ – -polarized pump beams, which can further suppress the effect of the AC-Stark shift. The method of measuring in-situ magnetic field gradient has achieved a magnetic field gradient precision of better than 30 pT/mm. (paper)

  16. Improved design and in-situ measurements of new beam position monitors for Indus-2

    Science.gov (United States)

    Kumar, M.; Babbar, L. K.; Holikatti, A. C.; Yadav, S.; Tyagi, Y.; Puntambekar, T. A.; Senecha, V. K.

    2018-01-01

    Beam position monitors (BPM) are important diagnostic devices used in particle accelerators to monitor position of the beam for various applications. Improved version of button electrode BPM has been designed using CST Studio Suite for Indus-2 ring. The new BPMs are designed to replace old BPMs which were designed and installed more than 12 years back. The improved BPMs have higher transfer impedance, resonance free output signal, equal sensitivity in horizontal and vertical planes and fast decaying wakefield as compared to old BPMs. The new BPMs have been calibrated using coaxial wire method. Measurement of transfer impedance and time domain signals has also been performed in-situ with electron beam during Indus-2 operation. The calibration and beam based measurements results showed close agreement with the design parameters. This paper presents design, electromagnetic simulations, calibration result and in-situ beam based measurements of newly designed BPMs.

  17. Measurement of thermal conductivity and diffusivity in situ: Literature survey and theoretical modelling of measurements

    Energy Technology Data Exchange (ETDEWEB)

    Kukkonen, I.; Suppala, I. [Geological Survey of Finland, Espoo (Finland)

    1999-01-01

    In situ measurements of thermal conductivity and diffusivity of bedrock were investigated with the aid of a literature survey and theoretical simulations of a measurement system. According to the surveyed literature, in situ methods can be divided into `active` drill hole methods, and `passive` indirect methods utilizing other drill hole measurements together with cutting samples and petrophysical relationships. The most common active drill hole method is a cylindrical heat producing probe whose temperature is registered as a function of time. The temperature response can be calculated and interpreted with the aid of analytical solutions of the cylindrical heat conduction equation, particularly the solution for an infinite perfectly conducting cylindrical probe in a homogeneous medium, and the solution for a line source of heat in a medium. Using both forward and inverse modellings, a theoretical measurement system was analysed with an aim at finding the basic parameters for construction of a practical measurement system. The results indicate that thermal conductivity can be relatively well estimated with borehole measurements, whereas thermal diffusivity is much more sensitive to various disturbing factors, such as thermal contact resistance and variations in probe parameters. In addition, the three-dimensional conduction effects were investigated to find out the magnitude of axial `leak` of heat in long-duration experiments. The radius of influence of a drill hole measurement is mainly dependent on the duration of the experiment. Assuming typical conductivity and diffusivity values of crystalline rocks, the measurement yields information within less than a metre from the drill hole, when the experiment lasts about 24 hours. We propose the following factors to be taken as basic parameters in the construction of a practical measurement system: the probe length 1.5-2 m, heating power 5-20 Wm{sup -1}, temperature recording with 5-7 sensors placed along the probe, and

  18. Measurement of thermal conductivity and diffusivity in situ: Literature survey and theoretical modelling of measurements

    International Nuclear Information System (INIS)

    Kukkonen, I.; Suppala, I.

    1999-01-01

    In situ measurements of thermal conductivity and diffusivity of bedrock were investigated with the aid of a literature survey and theoretical simulations of a measurement system. According to the surveyed literature, in situ methods can be divided into 'active' drill hole methods, and 'passive' indirect methods utilizing other drill hole measurements together with cutting samples and petrophysical relationships. The most common active drill hole method is a cylindrical heat producing probe whose temperature is registered as a function of time. The temperature response can be calculated and interpreted with the aid of analytical solutions of the cylindrical heat conduction equation, particularly the solution for an infinite perfectly conducting cylindrical probe in a homogeneous medium, and the solution for a line source of heat in a medium. Using both forward and inverse modellings, a theoretical measurement system was analysed with an aim at finding the basic parameters for construction of a practical measurement system. The results indicate that thermal conductivity can be relatively well estimated with borehole measurements, whereas thermal diffusivity is much more sensitive to various disturbing factors, such as thermal contact resistance and variations in probe parameters. In addition, the three-dimensional conduction effects were investigated to find out the magnitude of axial 'leak' of heat in long-duration experiments. The radius of influence of a drill hole measurement is mainly dependent on the duration of the experiment. Assuming typical conductivity and diffusivity values of crystalline rocks, the measurement yields information within less than a metre from the drill hole, when the experiment lasts about 24 hours. We propose the following factors to be taken as basic parameters in the construction of a practical measurement system: the probe length 1.5-2 m, heating power 5-20 Wm -1 , temperature recording with 5-7 sensors placed along the probe, and

  19. Continuous Flow Hygroscopicity-Resolved Relaxed Eddy Accumulation (Hy-Res REA) Method of Measuring Size-Resolved Sea-Salt Particle Fluxes

    Science.gov (United States)

    Meskhidze, N.; Royalty, T. M.; Phillips, B.; Dawson, K. W.; Petters, M. D.; Reed, R.; Weinstein, J.; Hook, D.; Wiener, R.

    2017-12-01

    The accurate representation of aerosols in climate models requires direct ambient measurement of the size- and composition-dependent particle production fluxes. Here we present the design, testing, and analysis of data collected through the first instrument capable of measuring hygroscopicity-based, size-resolved particle fluxes using a continuous-flow Hygroscopicity-Resolved Relaxed Eddy Accumulation (Hy-Res REA) technique. The different components of the instrument were extensively tested inside the US Environmental Protection Agency's Aerosol Test Facility for sea-salt and ammoniums sulfate particle fluxes. The new REA system design does not require particle accumulation, therefore avoids the diffusional wall losses associated with long residence times of particles inside the air collectors of the traditional REA devices. The Hy-Res REA system used in this study includes a 3-D sonic anemometer, two fast-response solenoid valves, two Condensation Particle Counters (CPCs), a Scanning Mobility Particle Sizer (SMPS), and a Hygroscopicity Tandem Differential Mobility Analyzer (HTDMA). A linear relationship was found between the sea-salt particle fluxes measured by eddy covariance and REA techniques, with comparable theoretical (0.34) and measured (0.39) proportionality constants. The sea-salt particle detection limit of the Hy-Res REA flux system is estimated to be 6x105 m-2s-1. For the conditions of ammonium sulfate and sea-salt particles of comparable source strength and location, the continuous-flow Hy-Res REA instrument was able to achieve better than 90% accuracy of measuring the sea-salt particle fluxes. In principle, the instrument can be applied to measure fluxes of particles of variable size and distinct hygroscopic properties (i.e., mineral dust, black carbon, etc.).

  20. Model predictions of metal speciation in freshwaters compared to measurements by in situ techniques.

    NARCIS (Netherlands)

    Unsworth, Emily R; Warnken, Kent W; Zhang, Hao; Davison, William; Black, Frank; Buffle, Jacques; Cao, Jun; Cleven, Rob; Galceran, Josep; Gunkel, Peggy; Kalis, Erwin; Kistler, David; Leeuwen, Herman P van; Martin, Michel; Noël, Stéphane; Nur, Yusuf; Odzak, Niksa; Puy, Jaume; Riemsdijk, Willem van; Sigg, Laura; Temminghoff, Erwin; Tercier-Waeber, Mary-Lou; Toepperwien, Stefanie; Town, Raewyn M; Weng, Liping; Xue, Hanbin

    2006-01-01

    Measurements of trace metal species in situ in a softwater river, a hardwater lake, and a hardwater stream were compared to the equilibrium distribution of species calculated using two models, WHAM 6, incorporating humic ion binding model VI and visual MINTEQ incorporating NICA-Donnan. Diffusive

  1. In situ measurements of dose rates from terrestrial gamma rays

    International Nuclear Information System (INIS)

    Horng, M.C.; Jiang, S.H.

    2002-01-01

    A portable, high purity germanium (HPGe) detector was employed for the performance of in situ measurements of radionuclide activity concentrations in the ground in Taiwan, at altitudes ranging from sea level to 3900 m. The absolute peak efficiency of the HPGe detector for a gamma-ray source uniformly distributed in the semi-infinite ground was determined using a semi-empirical method. The gamma-ray dose rates from terrestrial radionuclides were calculated from the measured activity levels using recently published dose rate conversion factors. The absorbed dose rate in air due to cosmic rays was derived by subtracting the terrestrial gamma-ray dose rate from the overall absorbed dose rate in air measured using a high-pressure ionization chamber. The cosmic-ray dose rate calculated as a function of altitude, was found to be in good agreement with the data reported by UNSCEAR. (orig.)

  2. Stress map for ion irradiation: Depth-resolved dynamic competition between radiation-induced viscoelastic phenomena in SiO2

    International Nuclear Information System (INIS)

    Dillen, T. van; Siem, M.Y.S.; Polman, A.

    2004-01-01

    The dynamic competition between structural transformation, Newtonian viscous flow, and anisotropic strain generation during ion irradiation of SiO 2 , leads to strongly depth-dependent evolution of the mechanical stress, ranging between compressive and tensile. From independent in situ stress measurements during irradiation, generic expressions are derived of the nuclear stopping dependence of both the structural transformation rate and the radiation-induced viscosity. Using these data we introduce and demonstrate the concept of a 'stress map' that predicts the depth-resolved saturation stress in SiO 2 for any irradiation up to several MeV

  3. An optode sensor array for long term in situ Oxygen measurements in soil and sediment

    DEFF Research Database (Denmark)

    Rickelt, Lars F; Jensen, Louise Askær; Walpersdorf, Eva Christine

    2013-01-01

    Long-term measurements of molecular oxygen (O2) dynamics in wetlands are highly relevant for understanding the eff ects of water level changes on net greenhouse gas budgets in these ecosystems. However, such measurements have been limited due to a lack of suitable measuring equipment. We construc......Long-term measurements of molecular oxygen (O2) dynamics in wetlands are highly relevant for understanding the eff ects of water level changes on net greenhouse gas budgets in these ecosystems. However, such measurements have been limited due to a lack of suitable measuring equipment. We...... constructed an O2 optode sensor array for long-term in situ measurements in soil and sediment. Th e new device consists of a 1.3-m-long, cylindrical, spear-shaped rod equipped with 10 sensor spots along the shaft . Each spot contains a thermocouple fi xed with a robust fi beroptic O2 optode made...... characteristics of the sensor array system are presented along with a novel approach for temperature compensation of O2 optodes. During in situ application over several months in a peat bog, we used the new device to document pronounced variations in O2 distribution aft er marked shift s in water level. Th e...

  4. Utilizing The Synergy of Airborne Backscatter Lidar and In-Situ Measurements for Evaluating CALIPSO

    Directory of Open Access Journals (Sweden)

    Tsekeri Alexandra

    2016-01-01

    Full Text Available Airborne campaigns dedicated to satellite validation are crucial for the effective global aerosol monitoring. CALIPSO is currently the only active remote sensing satellite mission, acquiring the vertical profiles of the aerosol backscatter and extinction coefficients. Here we present a method for CALIPSO evaluation from combining lidar and in-situ airborne measurements. The limitations of the method have to do mainly with the in-situ instrumentation capabilities and the hydration modelling. We also discuss the future implementation of our method in the ICE-D campaign (Cape Verde, August 2015.

  5. Airborne remote sensing and in situ measurements of atmospheric CO2 to quantify point source emissions

    Science.gov (United States)

    Krings, Thomas; Neininger, Bruno; Gerilowski, Konstantin; Krautwurst, Sven; Buchwitz, Michael; Burrows, John P.; Lindemann, Carsten; Ruhtz, Thomas; Schüttemeyer, Dirk; Bovensmann, Heinrich

    2018-02-01

    Reliable techniques to infer greenhouse gas emission rates from localised sources require accurate measurement and inversion approaches. In this study airborne remote sensing observations of CO2 by the MAMAP instrument and airborne in situ measurements are used to infer emission estimates of carbon dioxide released from a cluster of coal-fired power plants. The study area is complex due to sources being located in close proximity and overlapping associated carbon dioxide plumes. For the analysis of in situ data, a mass balance approach is described and applied, whereas for the remote sensing observations an inverse Gaussian plume model is used in addition to a mass balance technique. A comparison between methods shows that results for all methods agree within 10 % or better with uncertainties of 10 to 30 % for cases in which in situ measurements were made for the complete vertical plume extent. The computed emissions for individual power plants are in agreement with results derived from emission factors and energy production data for the time of the overflight.

  6. In situ measurements of HO{sub x} in super- and subsonic aircraft exhaust plumes

    Energy Technology Data Exchange (ETDEWEB)

    Hanisco, T F; Wennberg, P O; Cohen, R C; Anderson, J G [Harvard Univ., Cambridge, MA (United States). Dept. of Chemistry; Fahey, D W; Keim, E R; Gao, R S; Wamsley, R C; Donnelly, S G; Del Negro, L A [National Oceanic and Atmospheric Administration, Boulder, CO (United States). Aeronomy Lab.; others, and

    1998-12-31

    Concentrations of HO{sub x} (OH and HO{sub 2}) have been obtained in the exhaust plumes of an Air France Concorde and a NASA ER-2 in the lower stratosphere and the NASA DC-8 in the upper troposphere using instruments aboard the NASA ER-2. These fast-time response in situ measurements are used in conjunction with simultaneous in situ measurements of other key exhaust species (NO, NO{sub 2}, NO{sub y}, H{sub 2}O, and CO) to analyze the emissions of HO{sub x} from each aircraft under a variety of conditions. The data are used to establish a general description of gas phase plume chemistry that is easily implemented in a photochemical model. This model is used to determine the amount of HO{sub x} emitted from the engines and the gas phase oxidation rates of nitrogen and sulfur species in the exhaust plumes. (author) 10 refs.

  7. In situ measurements of HO{sub x} in super- and subsonic aircraft exhaust plumes

    Energy Technology Data Exchange (ETDEWEB)

    Hanisco, T.F.; Wennberg, P.O.; Cohen, R.C.; Anderson, J.G. [Harvard Univ., Cambridge, MA (United States). Dept. of Chemistry; Fahey, D.W.; Keim, E.R.; Gao, R.S.; Wamsley, R.C.; Donnelly, S.G.; Del Negro, L.A. [National Oceanic and Atmospheric Administration, Boulder, CO (United States). Aeronomy Lab.; and others

    1997-12-31

    Concentrations of HO{sub x} (OH and HO{sub 2}) have been obtained in the exhaust plumes of an Air France Concorde and a NASA ER-2 in the lower stratosphere and the NASA DC-8 in the upper troposphere using instruments aboard the NASA ER-2. These fast-time response in situ measurements are used in conjunction with simultaneous in situ measurements of other key exhaust species (NO, NO{sub 2}, NO{sub y}, H{sub 2}O, and CO) to analyze the emissions of HO{sub x} from each aircraft under a variety of conditions. The data are used to establish a general description of gas phase plume chemistry that is easily implemented in a photochemical model. This model is used to determine the amount of HO{sub x} emitted from the engines and the gas phase oxidation rates of nitrogen and sulfur species in the exhaust plumes. (author) 10 refs.

  8. Applicability study of using in-situ gamma-ray spectrometry technique for 137Cs and 210Pbex inventories measurement in grassland environments

    International Nuclear Information System (INIS)

    Li Junjie; Li Yong; Wang Yanglin; Wu Jiansheng

    2010-01-01

    In-situ measurement of fallout radionuclides 137 Cs and 210 Pb ex has the potential to assess soil erosion and sedimentation rapidly. In this study, inventories of 137 Cs and 210 Pb ex in the soil of Inner Mongolia grassland were measured using an In-situ Object Counting System (ISOCS). The results from the field study indicate that in-situ gamma-ray spectrometry has the following advantages over traditional laboratory measurements: no extra time is required for sample collection, no reference inventories are required, more economic, prompt availability of the results, the ability to average radionuclide inventory over a large area, and high precision.

  9. Vertical profiles of aerosol mass concentration derived by unmanned airborne in situ and remote sensing instruments during dust events

    Science.gov (United States)

    Mamali, Dimitra; Marinou, Eleni; Sciare, Jean; Pikridas, Michael; Kokkalis, Panagiotis; Kottas, Michael; Binietoglou, Ioannis; Tsekeri, Alexandra; Keleshis, Christos; Engelmann, Ronny; Baars, Holger; Ansmann, Albert; Amiridis, Vassilis; Russchenberg, Herman; Biskos, George

    2018-05-01

    In situ measurements using unmanned aerial vehicles (UAVs) and remote sensing observations can independently provide dense vertically resolved measurements of atmospheric aerosols, information which is strongly required in climate models. In both cases, inverting the recorded signals to useful information requires assumptions and constraints, and this can make the comparison of the results difficult. Here we compare, for the first time, vertical profiles of the aerosol mass concentration derived from light detection and ranging (lidar) observations and in situ measurements using an optical particle counter on board a UAV during moderate and weak Saharan dust episodes. Agreement between the two measurement methods was within experimental uncertainty for the coarse mode (i.e. particles having radii > 0.5 µm), where the properties of dust particles can be assumed with good accuracy. This result proves that the two techniques can be used interchangeably for determining the vertical profiles of aerosol concentrations, bringing them a step closer towards their systematic exploitation in climate models.

  10. Temperature profiles by ground-based remote sensing and in situ measurements

    Energy Technology Data Exchange (ETDEWEB)

    Argentini, S; Pietroni, I; Conidi, A; Mastrantonio, G; Petenko, I; Viola, A [ISAC-CNR, Via del Fosso del Cavaliere, 100, 00133 Roma (Italy); Gariazzo, C; Pelliccioni, A; Amicarelli, A [ISPESL Dipartimento Insediamenti Produttivi e Interazione con l' Ambiente, Via Fontana Candida, 1, 00040 Monteporzio Catone (RM) (Italy)], E-mail: s.argentini@isac.cnr.it

    2008-05-01

    This study focuses on the accuracy of the temperature profiles measured with a Doppler Radio-Acoustic Sounding System and a Microwave Temperature Profiler during a period of about 3 months in winter 2007-2008. The experiment was carried on at the experimental facility of the Institute of Atmospheric Sciences and Climate (ISAC) of the Italian National Research Council (CNR). The temperature data measured with remote sensors were verified with in situ measurements on a mast as well as with tethered balloon data. The facsimile echograms obtained with the ISAC Doppler SODAR were analysed to understand to which extent the RASS and Radiometer temperature profiles behaviour can represent the real thermal structure of the atmosphere.

  11. Temperature profiles by ground-based remote sensing and in situ measurements

    International Nuclear Information System (INIS)

    Argentini, S; Pietroni, I; Conidi, A; Mastrantonio, G; Petenko, I; Viola, A; Gariazzo, C; Pelliccioni, A; Amicarelli, A

    2008-01-01

    This study focuses on the accuracy of the temperature profiles measured with a Doppler Radio-Acoustic Sounding System and a Microwave Temperature Profiler during a period of about 3 months in winter 2007-2008. The experiment was carried on at the experimental facility of the Institute of Atmospheric Sciences and Climate (ISAC) of the Italian National Research Council (CNR). The temperature data measured with remote sensors were verified with in situ measurements on a mast as well as with tethered balloon data. The facsimile echograms obtained with the ISAC Doppler SODAR were analysed to understand to which extent the RASS and Radiometer temperature profiles behaviour can represent the real thermal structure of the atmosphere

  12. Time-resolved measurements of the focused ion beams on PBFA II

    International Nuclear Information System (INIS)

    Mix, L.P.; Stygar, W.A.; Leeper, R.J.; Maenchen, J.E.; Wenger, D.F.

    1992-01-01

    A time-resolved camera has been developed to image the intense ion beam focus on PBFA II. Focused ions from a sector of the ion diode are Rutherford scattered from a thin gold foil on the diode axis and pinhole imaged onto an array of up to 49 PIN detectors to obtain the spatially and temporally resolved images. The signals from these detectors are combined to provide a movie of the beam focus with a time resolution of about 3 ns and a spatial resolution of 2 mm over a 12 mm field of view. Monte Carlo simulations of the camera response are used with the measured ion energy to account for the time-of-flight dispersion of the beam and to convert the recorded signals to an intensity. From measurements on an 81 degree sector of the diode, average intensities on a 6 mm sphere of about 5 TW/cm 2 and energies approaching 80 kJ/cm 2 are calculated for standard proton diodes. Corresponding numbers for a lithium diode are less than those measured with protons. The details of the analysis and image reconstruction will be presented along with scaled images from recent ion focusing experiments

  13. Resolving the 180-degree ambiguity in vector magnetic field measurements: The 'minimum' energy solution

    Science.gov (United States)

    Metcalf, Thomas R.

    1994-01-01

    I present a robust algorithm that resolves the 180-deg ambiguity in measurements of the solar vector magnetic field. The technique simultaneously minimizes both the divergence of the magnetic field and the electric current density using a simulated annealing algorithm. This results in the field orientation with approximately minimum free energy. The technique is well-founded physically and is simple to implement.

  14. Advanced In Situ I-V Measurements Used in the Study of Porous Structures Growth on Silicon

    Directory of Open Access Journals (Sweden)

    Amare Benor

    2017-01-01

    Full Text Available The rate of oxide formation during growth of pores structures on silicon was investigated by in situ I-V measurements. The measurements were designed to get two I-V curves in a short time (total time for the two measurements was 300 seconds taking into account the gap (in mA/cm2 for each corresponding voltage. The in situ I-V measurements were made at different pore depth/time, at the electrolyte-pore tip interface, while etching takes place based on p-type Si. The results showed increasing, decreasing, and constant I-V gap in time, for macropores, nanopores, and electropolishing regimes, respectively. This was related to the expected diffusion limitation of oxide forming (H2O molecules reaching the electrolyte-pore tip and the anodizing current, while etching takes place. The method can be developed further and has the potential to be applied in other electrochemically etched porous semiconductor materials.

  15. Calibration of HPGe detector for in situ measurements of 137Cs in soil by 'peak to valley' method

    International Nuclear Information System (INIS)

    Fueloep, M.

    2000-01-01

    The contamination of soil with gamma-ray emitters can be measured in two ways: soil sampling method and in situ spectrometry of the ambient gamma-ray radiation. The conventional soil sampling method has two disadvantages: samples may not be representative for a large areas and determination of the depth distribution of radionuclide requires the measurement of several samples taken from different depths. In situ measurement of a radionuclide activity in soil is more sensitive and provides more representative data than data obtained by soil sample collection and subsequent laboratory analysis. In emergency situations time to assess the contamination is critical. For rapid assessment of the deposited activity direct measurement of ambient gamma-ray radiation are used. In order to obtain accurate measurements of radionuclides in the soil, the detector should be placed on relatively even and open terrain. It is our customary practice to place the detector 1 m above the soil surface. At this height, a tripod-mounted detector can be handled easily and still provide a radius of view for gamma emitting sources out to about 10 m. The 'field of view' actually varies, being somewhat larger for higher sources. Depending upon source energy, the detector effectively sees down to a depth of 15-30 cm. Commonly used method for field gamma spectrometry is method by Beck (1). The most important disadvantages of in situ spectrometry by Beck are that the accuracy of the analysis depends on a separate knowledge of the radioactivity distribution with soil depth. This information can be obtained by calculations using data from in situ measurements and energy dependence of absorption and scattering of photons in soil and track length distribution of photons in soil (2). A method of in situ measurements of 137 Cs in soil where radionuclide distribution in soil profile is calculated by unfolding of detector responses in the full energy peak net area at 0.662 MeV and in the valley under the

  16. In situ measurement of inelastic light scattering in natural waters

    Science.gov (United States)

    Hu, Chuanmin

    Variation in the shape of solar absorption (Fraunhofer) lines are used to study the inelastic scattering in natural waters. In addition, oxygen absorption lines near 689nm are used to study the solar stimulated chlorophyll fluorescence. The prototype Oceanic Fraunhofer Line Discriminator (OFLD) has been further developed and improved by using a well protected fiber optic - wire conductor cable and underwater electronic housing. A Monte-Carlo code and a simple code have been modified to simulate the Raman scattering, DOM fluorescence and chlorophyll fluorescence. A series of in situ measurements have been conducted in clear ocean waters in the Florida Straits, in the turbid waters of Florida Bay, and in the vicinity of a coral reef in the Dry Tortugas. By comparing the reduced data with the model simulation results, the Raman scattering coefficient, b r with an excitation wavelength at 488nm, has been verified to be 2.6 × 10-4m-1 (Marshall and Smith, 1990), as opposed to 14.4 × 10- 4m-1 (Slusher and Derr, 1975). The wavelength dependence of b r cannot be accurately determined from the data set as the reported values (λ m-4 to λ m- 5) have an insignificant effect in the natural underwater light field. Generally, in clear water, the percentage of inelastic scattered light in the total light field at /lambda 510nm. At low concentrations (a y(/lambda = 380nm) less than 0.1m-1), DOM fluorescence plays a small role in the inelastic light field. However, chlorophyll fluorescence is much stronger than Raman scattering at 685nm. In shallow waters where a sea bottom affects the ambient light field, inelastic light is negligible for the whole visible band. Since Raman scattering is now well characterized, the new OFLD can be used to measure the solar stimulated in situ fluorescence. As a result, the fluorescence signals of various bottom surfaces, from coral to macrophytes, have been measured and have been found to vary with time possibly due to nonphotochemical quenching

  17. In situ measurement of some soil properties in paddy soil using visible and near-infrared spectroscopy.

    Directory of Open Access Journals (Sweden)

    Ji Wenjun

    Full Text Available In situ measurements with visible and near-infrared spectroscopy (vis-NIR provide an efficient way for acquiring soil information of paddy soils in the short time gap between the harvest and following rotation. The aim of this study was to evaluate its feasibility to predict a series of soil properties including organic matter (OM, organic carbon (OC, total nitrogen (TN, available nitrogen (AN, available phosphorus (AP, available potassium (AK and pH of paddy soils in Zhejiang province, China. Firstly, the linear partial least squares regression (PLSR was performed on the in situ spectra and the predictions were compared to those with laboratory-based recorded spectra. Then, the non-linear least-square support vector machine (LS-SVM algorithm was carried out aiming to extract more useful information from the in situ spectra and improve predictions. Results show that in terms of OC, OM, TN, AN and pH, (i the predictions were worse using in situ spectra compared to laboratory-based spectra with PLSR algorithm (ii the prediction accuracy using LS-SVM (R2>0.75, RPD>1.90 was obviously improved with in situ vis-NIR spectra compared to PLSR algorithm, and comparable or even better than results generated using laboratory-based spectra with PLSR; (iii in terms of AP and AK, poor predictions were obtained with in situ spectra (R2<0.5, RPD<1.50 either using PLSR or LS-SVM. The results highlight the use of LS-SVM for in situ vis-NIR spectroscopic estimation of soil properties of paddy soils.

  18. A computer program (COSTUM) to calculate confidence intervals for in situ stress measurements. V. 1

    International Nuclear Information System (INIS)

    Dzik, E.J.; Walker, J.R.; Martin, C.D.

    1989-03-01

    The state of in situ stress is one of the parameters required both for the design and analysis of underground excavations and for the evaluation of numerical models used to simulate underground conditions. To account for the variability and uncertainty of in situ stress measurements, it is desirable to apply confidence limits to measured stresses. Several measurements of the state of stress along a borehole are often made to estimate the average state of stress at a point. Since stress is a tensor, calculating the mean stress and confidence limits using scalar techniques is inappropriate as well as incorrect. A computer program has been written to calculate and present the mean principle stresses and the confidence limits for the magnitudes and directions of the mean principle stresses. This report describes the computer program, COSTUM

  19. In situ optoacoustic measurement of the pointing stability of femtosecond laser beams

    Science.gov (United States)

    Pushkarev, D.; Mitina, E.; Uryupina, D.; Volkov, R.; Karabytov, A.; Savel'ev, A.

    2018-02-01

    A new method for the in situ acoustic measurement of the beam pointing stability (BPS) of powerful pulsed lasers is tested. A broadband (~6 MHz) piezoelectric transducer placed a few millimeters from the laser spark produces an electric pulse. We show that variation in time of the position of this pulse can be used to assess the BPS down to 1 µrad in a few hundred laser shots. The estimated value coincides well with the BPS estimated using standard measurement in the far field.

  20. In situ surface roughness measurement using a laser scattering method

    Science.gov (United States)

    Tay, C. J.; Wang, S. H.; Quan, C.; Shang, H. M.

    2003-03-01

    In this paper, the design and development of an optical probe for in situ measurement of surface roughness are discussed. Based on this light scattering principle, the probe which consists of a laser diode, measuring lens and a linear photodiode array, is designed to capture the scattered light from a test surface with a relatively large scattering angle ϕ (=28°). This capability increases the measuring range and enhances repeatability of the results. The coaxial arrangement that incorporates a dual-laser beam and a constant compressed air stream renders the proposed system insensitive to movement or vibration of the test surface as well as surface conditions. Tests were conducted on workpieces which were mounted on a turning machine that operates with different cutting speeds. Test specimens which underwent different machining processes and of different surface finish were also studied. The results obtained demonstrate the feasibility of surface roughness measurement using the proposed method.

  1. In situ dehydration of yugawaralite

    DEFF Research Database (Denmark)

    Artioli, G.; Ståhl, Kenny; Cruciani, G.

    2001-01-01

    The structural response of the natural zeolite yugawaralite (CaAl2Si6O16. 4H(2)O) upon thermally induced dehydration has been studied by Rietveld analysis of temperature-resolved powder diffraction data collected in situ in the temperature range 315-791 K using synchrotron radiation. The room...... progressively disappearing as the dehydration proceeds. The yugawaralite structure reacts to the release of water molecules with small changes in the Ca-O bond distances and minor distortions of the tetrahedral framework up to about 695 K. Above this temperature the Ca coordination falls below 7 (four framework...

  2. Validity and reliability of in-situ air conduction thresholds measured through hearing aids coupled to closed and open instant-fit tips.

    Science.gov (United States)

    O'Brien, Anna; Keidser, Gitte; Yeend, Ingrid; Hartley, Lisa; Dillon, Harvey

    2010-12-01

    Audiometric measurements through a hearing aid ('in-situ') may facilitate provision of hearing services where these are limited. This study investigated the validity and reliability of in-situ air conduction hearing thresholds measured with closed and open domes relative to thresholds measured with insert earphones, and explored sources of variability in the measures. Twenty-four adults with sensorineural hearing impairment attended two sessions in which thresholds and real-ear-to-dial-difference (REDD) values were measured. Without correction, significantly higher low-frequency thresholds in dB HL were measured in-situ than with insert earphones. Differences were due predominantly to differences in ear canal SPL, as measured with the REDD, which were attributed to leaking low-frequency energy. Test-retest data yielded higher variability with the closed dome coupling due to inconsistent seals achieved with this tip. For all three conditions, inter-participant variability in the REDD values was greater than intra-participant variability. Overall, in-situ audiometry is as valid and reliable as conventional audiometry provided appropriate REDD corrections are made and ambient sound in the test environment is controlled.

  3. Comparison of ambient aerosol extinction coefficients obtained from in-situ, MAX-DOAS and LIDAR measurements at Cabauw

    Directory of Open Access Journals (Sweden)

    P. Zieger

    2011-03-01

    Full Text Available In the field, aerosol in-situ measurements are often performed under dry conditions (relative humidity RH<30–40%. Since ambient aerosol particles experience hygroscopic growth at enhanced RH, their microphysical and optical properties – especially the aerosol light scattering – are also strongly dependent on RH. The knowledge of this RH effect is of crucial importance for climate forcing calculations or for the comparison of remote sensing with in-situ measurements. Here, we will present results from a four-month campaign which took place in summer 2009 in Cabauw, The Netherlands. The aerosol scattering coefficient σsp(λ was measured dry and at various, predefined RH conditions between 20 and 95% with a humidified nephelometer. The scattering enhancement factor f(RH,λ is the key parameter to describe the effect of RH on σsp(λ and is defined as σsp(RH,λ measured at a certain RH divided by the dry σsp(dry,λ. The measurement of f(RH,λ together with the dry absorption measurement (assumed not to change with RH allows the determination of the actual extinction coefficient σep(RH,λ at ambient RH. In addition, a wide range of other aerosol properties were measured in parallel. The measurements were used to characterize the effects of RH on the aerosol optical properties. A closure study showed the consistency of the aerosol in-situ measurements. Due to the large variability of air mass origin (and thus aerosol composition a simple parameterization of f(RH,λ could not be established. If f(RH,λ needs to be predicted, the chemical composition and size distribution need to be known. Measurements of four MAX-DOAS (multi-axis differential optical absorption spectroscopy instruments were used to retrieve vertical profiles of σep(λ. The values of the lowest layer were compared to the in-situ values after conversion of the latter ones to ambient

  4. Exploratory study on a statistical method to analyse time resolved data obtained during nanomaterial exposure measurements

    International Nuclear Information System (INIS)

    Clerc, F; Njiki-Menga, G-H; Witschger, O

    2013-01-01

    Most of the measurement strategies that are suggested at the international level to assess workplace exposure to nanomaterials rely on devices measuring, in real time, airborne particles concentrations (according different metrics). Since none of the instruments to measure aerosols can distinguish a particle of interest to the background aerosol, the statistical analysis of time resolved data requires special attention. So far, very few approaches have been used for statistical analysis in the literature. This ranges from simple qualitative analysis of graphs to the implementation of more complex statistical models. To date, there is still no consensus on a particular approach and the current period is always looking for an appropriate and robust method. In this context, this exploratory study investigates a statistical method to analyse time resolved data based on a Bayesian probabilistic approach. To investigate and illustrate the use of the this statistical method, particle number concentration data from a workplace study that investigated the potential for exposure via inhalation from cleanout operations by sandpapering of a reactor producing nanocomposite thin films have been used. In this workplace study, the background issue has been addressed through the near-field and far-field approaches and several size integrated and time resolved devices have been used. The analysis of the results presented here focuses only on data obtained with two handheld condensation particle counters. While one was measuring at the source of the released particles, the other one was measuring in parallel far-field. The Bayesian probabilistic approach allows a probabilistic modelling of data series, and the observed task is modelled in the form of probability distributions. The probability distributions issuing from time resolved data obtained at the source can be compared with the probability distributions issuing from the time resolved data obtained far-field, leading in a

  5. Measurement of in-situ hydraulic conductivity in the Cretaceous Pierre Shale

    International Nuclear Information System (INIS)

    Neuzil, C.E.; Bredehoeft, J.D.

    1981-01-01

    A recent study of the hydrology of the Cretaceous Pierre Shale utilized three techniques for measuring the hydraulic conductivity of tight materials. Regional hydraulic conductivity was obtained from a hydrodynamic model analysis of the aquifer-aquitard system which includes the Pierre Shale. Laboratory values were obtained from consolidation tests on core samples. In-situ values of hydraulic conductivity were obtained by using a borehole slug test designed specifically for tight formations. The test is conducted by isolating a portion of the borehole with one or two packers, abruptly pressurizing the shut-in portion, and recording the pressure decay with time. The test utilizes the analytical solution for pressure decay as water flows into the surrounding formation. Consistent results were obtained using the test on three successively smaller portions of a borehole in the Pierre Shale. The in-situ tests and laboratory tests yielded comparable values; the regional hydraulic conductivity was two to three orders of magnitude larger. This suggests that the lower values represent intergranular hydraulic conductivity of the intact shale and the regional values represent secondary permeability due to fractures. Calculations based on fracture flow theory demonstrate that small fractures could account for the observed differences

  6. Developments in wireline in-situ rock stress measurement

    Energy Technology Data Exchange (ETDEWEB)

    Pedroso, Carlos [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil); Canas, Jesus A.; Holzberg, Bruno; Gmach, Helmut [Schlumberger Servicos de Petroleo Ltda., Rio de Janeiro, RJ (Brazil)

    2008-07-01

    This paper presents recent developments of in-situ stress measurements with wireline tools. The stress measurements are based on the micro hydraulic techniques that can be initialized when an interval is pressurized by pumping fluid until a tensile fracture begins or by packers fracturing (sleeve fracturing). Ultrasonic and Micro-resistivity borehole image logs (before and after the testes) are used as a complement, in order to observe the fractures created by the tests, evaluating the mechanical behavior of the formation. An offshore case study is presented, where shales and tight sandstones at depths deeper than 4500 meters depth were successfully evaluated. A workflow to succeed on stress measurements on such environments is proposed, what includes a planning phase: where breakdown pressures ranges are estimated and compared with the capacity of the tools, a Real Time Monitoring phase, where a decision tree is proposed to help on quick decisions while testing, and an interpretation phase, where appropriate techniques are indicated to evaluate the results. Also, the paper presents the main operational needs to succeed on such environments. Basically, such tests require an entirely software controlled, motorized and modular design tool consisting of dual packer (DP), pump out and flow control modules (Figure 1). These modules were upgraded for the present environment: conditions such as temperatures above 300 deg F, formation pressures above 10,000 psia, very low formation permeability, high pressure differential need and oil based mud (OBM) environment. (author)

  7. Orbitrap mass analyser for in situ characterisation of planetary environments: Performance evaluation of a laboratory prototype

    Science.gov (United States)

    Briois, Christelle; Thissen, Roland; Thirkell, Laurent; Aradj, Kenzi; Bouabdellah, Abdel; Boukrara, Amirouche; Carrasco, Nathalie; Chalumeau, Gilles; Chapelon, Olivier; Colin, Fabrice; Coll, Patrice; Cottin, Hervé; Engrand, Cécile; Grand, Noel; Lebreton, Jean-Pierre; Orthous-Daunay, François-Régis; Pennanech, Cyril; Szopa, Cyril; Vuitton, Véronique; Zapf, Pascal; Makarov, Alexander

    2016-10-01

    For decades of space exploration, mass spectrometry has proven to be a reliable instrumentation for the characterisation of the nature and energy of ionic and neutral, atomic and molecular species in the interplanetary medium and upper planetary atmospheres. It has been used as well to analyse the chemical composition of planetary and small bodies environments. The chemical complexity of these environments calls for the need to develop a new generation of mass spectrometers with significantly increased mass resolving power. The recently developed OrbitrapTM mass analyser at ultra-high resolution shows promising adaptability to space instrumentation, offering improved performances for in situ measurements. In this article, we report on our project named ;Cosmorbitrap; aiming at demonstrating the adaptability of the Orbitrap technology for in situ space exploration. We present the prototype that was developed in the laboratory for demonstration of both technical feasibility and analytical capabilities. A set of samples containing elements with masses ranging from 9 to 208 u has been used to evaluate the performance of the analyser, in terms of mass resolving power (reaching 474,000 at m/z 9) and ability to discriminate between isobaric interferences, accuracy of mass measurement (below 15 ppm) and determination of relative isotopic abundances (below 5%) of various samples. We observe a good agreement between the results obtained with the prototype and those of a commercial instrument. As the background pressure is a key parameter for in situ exploration of atmosphere planetary bodies, we study the effect of background gas on the performance of the Cosmorbitrap prototype, showing an upper limit for N2 in our set-up at 10-8 mbar. The results demonstrate the strong potential to adapt this technology to space exploration.

  8. In-situ real time measurements of net erosion rates of copper during hydrogen plasma exposure

    Science.gov (United States)

    Kesler, Leigh; Wright, Graham; Peterson, Ethan; Whyte, Dennis

    2013-10-01

    In order to properly understand the dynamics of net erosion/deposition in fusion reactors, such as tokamaks, a diagnostic measuring the real time rates of net erosion/deposition during plasma exposure is necessary. The DIONISOS experiment produces real time measurements of net erosion/deposition by using Rutherford backscattering spectroscopy (RBS) ion beam analysis simultaneously with plasma exposure from a helicon plasma source. This in-situ method improves on ex-situ weight loss measurements by allowing measurement of possible synergistic effects of high ion implantation rates and net erosion rate and by giving a real time response to changes in plasma parameters. Previous work has validated this new technique for measuring copper (Cu) erosion from helium (He) plasma ion bombardment. This technique is now extended to measure copper erosion due to deuterium and hydrogen plasma ion exposure. Targets used were a 1.5 μm Cu layer on an aluminum substrate. Cu layer thickness is tracked in real time using 1.2 MeV proton RBS. Measured erosion rates will be compared to results from literature and He erosion rates. Supported by US DoE award DE-SC00-02060.

  9. Infrared reflection properties and modelling of in situ reflection measurements on plasma-facing materials in Tore Supra

    International Nuclear Information System (INIS)

    Reichle, R; Desgranges, C; Faisse, F; Pocheau, C; Lasserre, J-P; Oelhoffen, F; Eupherte, L; Todeschini, M

    2009-01-01

    Tore Supra has-like ITER-reflecting internal surfaces, which can perturb the machine protection systems based on infrared (IR) thermography. To ameliorate this situation, we have measured and modelled in the 3-5 μm wavelength range the bi-directional reflection distribution function (BRDF) of wall material samples from Tore Supra and conducted in situ reflection measurements and simulated them with the CEA COSMOS code. BRDF results are presented for B 4 C and carbon fibre composite (CFC) tiles. The hemispherical integrated reflection ranges from 0.12 for the B 4 C sample to 0.39 for a CFC tile from the limiter erosion zone. In situ measurements of the IR reflection of a blackbody source off an ICRH and an LHCD antenna of Tore Supra are well reproduced by the simulation.

  10. Infrared reflection properties and modelling of in situ reflection measurements on plasma-facing materials in Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Reichle, R; Desgranges, C; Faisse, F; Pocheau, C [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Lasserre, J-P; Oelhoffen, F; Eupherte, L; Todeschini, M [CEA, DAM, CESTA, F-33114 Le Barp (France)

    2009-12-15

    Tore Supra has-like ITER-reflecting internal surfaces, which can perturb the machine protection systems based on infrared (IR) thermography. To ameliorate this situation, we have measured and modelled in the 3-5 {mu}m wavelength range the bi-directional reflection distribution function (BRDF) of wall material samples from Tore Supra and conducted in situ reflection measurements and simulated them with the CEA COSMOS code. BRDF results are presented for B{sub 4}C and carbon fibre composite (CFC) tiles. The hemispherical integrated reflection ranges from 0.12 for the B{sub 4}C sample to 0.39 for a CFC tile from the limiter erosion zone. In situ measurements of the IR reflection of a blackbody source off an ICRH and an LHCD antenna of Tore Supra are well reproduced by the simulation.

  11. Portable gamma spectrometry: measuring soil erosion in-situ at four Critical Zone Observatories in P. R. China

    Science.gov (United States)

    Sanderson, N. K.; Green, S. M.; Chen, Z.; Wang, J.; Wang, Y.; Wang, R.; Yu, K.; Tu, C.; Jia, X.; Li, G.; Peng, X.; Quine, T. A.

    2017-12-01

    Detecting patterns of soil erosion, redistribution, and/soil nutrient loss is important for long-term soil conservation and agricultural sustainability. Caesium-137 (137Cs) and other fallout radionuclide inventories have been used over the the last 50 years to track soil erosion, transport and deposition on a catchment scale, and have been shown to be useful for informing models of temporal/spatial soil redistribution. Traditional sampling methods usually involves coring, grinding, sieving, sub-sampling and laboratory analysis using HPGe detectors, all of which can be costly and time consuming. In-situ measurements can provide a mechanism for assessment of 137Cs over larger areas that integrate the spatial variability, and expand turnover of analyses. Here, we assess the applicability of an in-situ approach based on radionuclide principles, and provide a comparison of the two approaches: laboratory vs. in-situ. The UK-China Critical Zone Observatory (CZO) programme provides an ideal research platform to assess the in-situ approach to measuring soil erosion: using a portable gamma spectrometer to determine 137Cs inventories. Four extensive field slope surveys were conducted in the CZO's, which covers four ecosystem types in China: karst, red soil, peri-urban, and loess plateau. In each CZO, 3-6 plots were measured along 2 slope transects, with 3 replicated 1 hour counts of 137Cs in each plot. In addition, 137Cs soil depth and bulk density profiles were also sampled for each plot, and lab-derived inventories calculated using traditional methods for comparison. Accurately and rapidly measuring 137Cs inventories using a portable field detector allows for a greater coverage of sampling locations and the potential for small-scale spatial integration, as well as the ability to re-visit sites over time and continually adapt and improve soil erosion/redistribution models, thus more effectively targeting areas of interest with reduced cost and time constraints.

  12. In situ electrical measurements of polytypic silver nanowires

    International Nuclear Information System (INIS)

    Liu Xiaohua; Zhu Jing; Jin Chuanhong; Peng Lianmao; Tang Daiming; Cheng Huiming

    2008-01-01

    Novel 4H structure silver nanowires (4H-AgNWs) have been reported to coexist with the usual face-centered cubic (FCC) ones. Here we report the electrical properties of these polytypic AgNWs for the first time. AgNWs with either 4H or FCC structures in the diameter range of 20-80 nm were measured in situ inside a transmission electron microscope (TEM). Both kinds of AgNW in the diameter range show metallic conductance. The average resistivity of the 4H-AgNWs is 19.9 μΩ cm, comparable to the 11.9 μΩ cm of the FCC-AgNWs. The failure current density can be up to ∼10 8 A cm -2 for both 4H-and FCC-AgNWs. The maximum stable current density (MSCD) is introduced to estimate the AgNWs' current-carrying ability, which shows diameter-dependence with a peak around 34 nm in diameter. It is attributed to fast annihilation of the current-induced vacancies and the enhanced surface scattering. Our investigations also suggest that the magnetic field of the electromagnetic lens may also introduce some influence on the measurements inside the TEM

  13. Comparison of time-resolved and continuous-wave near-infrared techniques for measuring cerebral blood flow in piglets

    Science.gov (United States)

    Diop, Mamadou; Tichauer, Kenneth M.; Elliott, Jonathan T.; Migueis, Mark; Lee, Ting-Yim; Lawrence, Keith St.

    2010-09-01

    A primary focus of neurointensive care is monitoring the injured brain to detect harmful events that can impair cerebral blood flow (CBF), resulting in further injury. Since current noninvasive methods used in the clinic can only assess blood flow indirectly, the goal of this research is to develop an optical technique for measuring absolute CBF. A time-resolved near-infrared (TR-NIR) apparatus is built and CBF is determined by a bolus-tracking method using indocyanine green as an intravascular flow tracer. As a first step in the validation of this technique, CBF is measured in newborn piglets to avoid signal contamination from extracerebral tissue. Measurements are acquired under three conditions: normocapnia, hypercapnia, and following carotid occlusion. For comparison, CBF is concurrently measured by a previously developed continuous-wave NIR method. A strong correlation between CBF measurements from the two techniques is revealed with a slope of 0.79+/-0.06, an intercept of -2.2+/-2.5 ml/100 g/min, and an R2 of 0.810+/-0.088. Results demonstrate that TR-NIR can measure CBF with reasonable accuracy and is sensitive to flow changes. The discrepancy between the two methods at higher CBF could be caused by differences in depth sensitivities between continuous-wave and time-resolved measurements.

  14. In-situ permeability measurements with direct push techniques: Phase II topical report

    International Nuclear Information System (INIS)

    Lowry, W.; Mason, N.; Chipman, V.; Kisiel, K.; Stockton, J.

    1999-01-01

    This effort designed, fabricated, and field tested the engineering prototype of the Cone Permeametertrademark system. The integrated system includes the instrumented penetrometer probe, air and water pumps, flowrate controls, flow sensors, and a laptop-controlled data system. All of the equipment is portable and can be transported as luggage on airlines. The data system acquired and displays the process measurements (pressures, flows, and downhole temperature) in real time and calculates the resulting permeability. The measurement probe is a 2 inch diameter CPT rod section, incorporating a screened injection zone near the lower end of the rod and multiple sensitive absolute pressure sensors embedded in the probe at varying distances from the injection zone. Laboratory tests in a large test cell demonstrated the system's ability to measure nominally 1 Darcy permeability soil (30 to 40 Darcy material had been successfully measured in the Phase 1 effort). These tests also provided a shakedown of the system and identified minor instrument problems, which were resolved. Supplemental numerical modeling was conducted to evaluate the effects of layered permeability (heterogeneity) and anisotropy on the measurement system's performance. The general results of the analysis were that the Cone Permeameter could measure accurately, in heterogeneous media, the volume represented by the sample port radii if the outer pressure ports were used. Anisotropic permeability, while readily analyzed numerically, is more complicated to resolve with the simple analytical approach of the 1-D model, and will need further work to quantify. This phase culminated in field demonstrations at the DOE Savannah River Site. Saturated hydraulic conductivity measurements were completed at the D-Area Coal Pile Runoff Basin, and air permeability measurements were conducted at the M Area Integrated Demonstration Site and the 321 M area. The saturated hydraulic conductivity measurements were the most

  15. American National Standard: for safety in conducting subcritical neutron-multiplication measurements in-situ

    International Nuclear Information System (INIS)

    1983-01-01

    This standard provides safety guidance for conducting subcritical neutron-multiplication measurements where physical protection of personnel against the consequences of a criticality accident is not provided. The objectives of in-situ measurements are either to confirm an adequate safety margin or to improve an estimate of such a margin. The first objective may constitute a test of the criticality safety of a design that is based on calculations. The second may effect improved operating conditions by reducing the uncertainty of safety margins and providing guidance to new designs

  16. A New Technique for Deep in situ Measurements of the Soil Water Retention Behaviour

    DEFF Research Database (Denmark)

    Rocchi, Irene; Gragnano, Carmine Gerardo; Govoni, Laura

    2018-01-01

    In situ measurements of soil suction and water content in deep soil layers still represent an experimental challenge. Mostly developed within agriculture related disciplines, field techniques for the identification of soil retention behaviour have been so far employed in the geotechnical context ...

  17. Advanced Soil Moisture Network Technologies; Developments in Collecting in situ Measurements for Remote Sensing Missions

    Science.gov (United States)

    Moghaddam, M.; Silva, A. R. D.; Akbar, R.; Clewley, D.

    2015-12-01

    The Soil moisture Sensing Controller And oPtimal Estimator (SoilSCAPE) wireless sensor network has been developed to support Calibration and Validation activities (Cal/Val) for large scale soil moisture remote sensing missions (SMAP and AirMOSS). The technology developed here also readily supports small scale hydrological studies by providing sub-kilometer widespread soil moisture observations. An extensive collection of semi-sparse sensor clusters deployed throughout north-central California and southern Arizona provide near real time soil moisture measurements. Such a wireless network architecture, compared to conventional single points measurement profiles, allows for significant and expanded soil moisture sampling. The work presented here aims at discussing and highlighting novel and new technology developments which increase in situ soil moisture measurements' accuracy, reliability, and robustness with reduced data delivery latency. High efficiency and low maintenance custom hardware have been developed and in-field performance has been demonstrated for a period of three years. The SoilSCAPE technology incorporates (a) intelligent sensing to prevent erroneous measurement reporting, (b) on-board short term memory for data redundancy, (c) adaptive scheduling and sampling capabilities to enhance energy efficiency. A rapid streamlined data delivery architecture openly provides distribution of in situ measurements to SMAP and AirMOSS cal/val activities and other interested parties.

  18. In situ stress measurement with the new LVDT - Cell - method description and verification

    International Nuclear Information System (INIS)

    Hakala, M.; Christiansson, R.; Martin, D.; Siren, T.; Kemppainen, K.

    2013-11-01

    Posiva Oy and SKB (Svensk Kaernbraenslehantering AB) tested the suitability a new LVDT-cell (Linear Variable Differential Transducer cell) to measure the induced stresses in the vicinity of an excavated surface and further to use these results to interpret the in situ state of stress. It utilises the overcoring methodology, measuring the radial convergence of four diameters using eight LVDTs, and is similar in concept to the USBM-gauge. A 127 mm diameter pilot-hole is required and the overcore diameter is 200 mm. The minimum overcoring length is 350 mm, and hence a compact drill can be utilised. Extensive testing of the LVDT-cell shows it to be robust and suitable for use in an underground environment. Sensitivity tests also show that the cell can withstand a range of operating conditions and still provide acceptable results. The in situ stress at the measurement location can be solved by numerical inversion using the results of at least three overcoring measurements around the three-dimensional tunnel section. The large dimensions of the measurement tool and the ability to utilise multiple measurements at various locations in a tunnel section, provides flexibility in selecting an appropriate rock mass volume. Because the inversion technique relies on knowing the exact location of the measurements and the geometry profile of the tunnel, modern survey techniques such as Lidar or photogrammetric technology should be used. Checks using traditional surveying techniques should also be used to ensure adequate survey resolution, specially in case of sidecoring measurements. To evaluate the suitability of the LVDT-cell to provide the in situ state of stress, tests were carried out in the drill-and-blast TASS tunnel and TBM tunnel at the Aespoe Hard Rock Laboratory in Sweden. The state of stress established using the LVDT-cell was in agreement with the state of stress established previously using traditional overcoring and hydraulic fracturing methods. In this study, the

  19. In situ stress measurement with the new LVDT - Cell - method description and verification

    Energy Technology Data Exchange (ETDEWEB)

    Hakala, M. [KMS Hakala Oy, Nokia (Finland); Christiansson, R. [Svensk Kaernbraenslehantering AB, Stockholm (Sweden); Martin, D. [Univ. of Alberta, Edmonton (Canada); Siren, T.; Kemppainen, K.

    2013-11-15

    Posiva Oy and SKB (Svensk Kaernbraenslehantering AB) tested the suitability a new LVDT-cell (Linear Variable Differential Transducer cell) to measure the induced stresses in the vicinity of an excavated surface and further to use these results to interpret the in situ state of stress. It utilises the overcoring methodology, measuring the radial convergence of four diameters using eight LVDTs, and is similar in concept to the USBM-gauge. A 127 mm diameter pilot-hole is required and the overcore diameter is 200 mm. The minimum overcoring length is 350 mm, and hence a compact drill can be utilised. Extensive testing of the LVDT-cell shows it to be robust and suitable for use in an underground environment. Sensitivity tests also show that the cell can withstand a range of operating conditions and still provide acceptable results. The in situ stress at the measurement location can be solved by numerical inversion using the results of at least three overcoring measurements around the three-dimensional tunnel section. The large dimensions of the measurement tool and the ability to utilise multiple measurements at various locations in a tunnel section, provides flexibility in selecting an appropriate rock mass volume. Because the inversion technique relies on knowing the exact location of the measurements and the geometry profile of the tunnel, modern survey techniques such as Lidar or photogrammetric technology should be used. Checks using traditional surveying techniques should also be used to ensure adequate survey resolution, specially in case of sidecoring measurements. To evaluate the suitability of the LVDT-cell to provide the in situ state of stress, tests were carried out in the drill-and-blast TASS tunnel and TBM tunnel at the Aespoe Hard Rock Laboratory in Sweden. The state of stress established using the LVDT-cell was in agreement with the state of stress established previously using traditional overcoring and hydraulic fracturing methods. In this study, the

  20. Magnetic Resonance Microscopy for Assessment of Morphological Changes in Hydrating Hydroxypropylmethyl Cellulose Matrix Tablets In Situ

    OpenAIRE

    Kulinowski, Piotr; Młynarczyk, Anna; Dorożyński, Przemysław; Jasiński, Krzysztof; Gruwel, Marco L. H.; Tomanek, Bogusław; Węglarz, Władysław P.

    2012-01-01

    ABSTRACT Purpose To resolve contradictions found in morphology of hydrating hydroxypropylmethyl cellulose (HPMC) matrix as studied using Magnetic Resonance Imaging (MRI) techniques. Until now, two approaches were used in the literature: either two or three regions that differ in physicochemical properties were identified. Methods Multiparametric, spatially and temporally resolved T2 MR relaxometry in situ was applied to study the hydration progress in HPMC matrix tablets using a 11.7 T MRI sy...

  1. In Situ Planetary Mineralogy Using Simultaneous Time Resolved Fluorescence and Raman Spectroscopy

    Science.gov (United States)

    Blacksberg, J.; Rossman , G.R.

    2011-01-01

    Micro-Raman spectroscopy is one of the primary methods of mineralogical analysis in the laboratory, and more recently in the field. Because of its versatility and ability to interrogate rocks in their natural form it is one of the front runners for the next generation of in situ instruments designed to explore adverse set of solar system bodies (e.g. Mars, Venus, the Moon, and other primitive bodies such as asteroids and the Martian moons Phobos and Deimos), as well as for pre-selection of rock and soil samples for potential cache and return missions.

  2. A microscopy approach for in situ inspection of micro-coordinate measurement machine styli for contamination

    Science.gov (United States)

    Feng, Xiaobing; Pascal, Jonathan; Lawes, Simon

    2017-09-01

    During the process of measurement using a micro-coordinate measurement machine (µCMM) contamination gradually builds up on the surface of the stylus tip and affects the dimensional accuracy of the measurement. Regular inspection of the stylus for contamination is essential to determine the appropriate cleaning interval and prevent the dimensional error from becoming significant. However, in situ inspection of a µCMM stylus is challenging due to the size, spherical shape, material and surface properties of a typical stylus. To address this challenge, this study evaluates several non-contact measurement technologies for in situ stylus inspection and, based on those findings, proposes a cost-effective microscopy approach. The operational principle is then demonstrated by an automated prototype, coordinated directly by the CMM software MCOSMOS, with an effective threshold of detection as low as 400 nm and a large field of view and depth of field. The level of contamination on the stylus has been found to increase steadily with the number of measurement contacts made. Once excessive contamination is detected on the stylus, measurement should be stopped and a stylus cleaning procedure should be performed to avoid affecting measurement accuracy.

  3. A microscopy approach for in situ inspection of micro-coordinate measurement machine styli for contamination

    International Nuclear Information System (INIS)

    Feng, Xiaobing; Lawes, Simon; Pascal, Jonathan

    2017-01-01

    During the process of measurement using a micro-coordinate measurement machine (µCMM) contamination gradually builds up on the surface of the stylus tip and affects the dimensional accuracy of the measurement. Regular inspection of the stylus for contamination is essential to determine the appropriate cleaning interval and prevent the dimensional error from becoming significant. However, in situ inspection of a µCMM stylus is challenging due to the size, spherical shape, material and surface properties of a typical stylus. To address this challenge, this study evaluates several non-contact measurement technologies for in situ stylus inspection and, based on those findings, proposes a cost-effective microscopy approach. The operational principle is then demonstrated by an automated prototype, coordinated directly by the CMM software MCOSMOS, with an effective threshold of detection as low as 400 nm and a large field of view and depth of field. The level of contamination on the stylus has been found to increase steadily with the number of measurement contacts made. Once excessive contamination is detected on the stylus, measurement should be stopped and a stylus cleaning procedure should be performed to avoid affecting measurement accuracy. (paper)

  4. Resolving runaway electron distributions in space, time, and energy

    Science.gov (United States)

    Paz-Soldan, C.; Cooper, C. M.; Aleynikov, P.; Eidietis, N. W.; Lvovskiy, A.; Pace, D. C.; Brennan, D. P.; Hollmann, E. M.; Liu, C.; Moyer, R. A.; Shiraki, D.

    2018-05-01

    Areas of agreement and disagreement with present-day models of runaway electron (RE) evolution are revealed by measuring MeV-level bremsstrahlung radiation from runaway electrons (REs) with a pinhole camera. Spatially resolved measurements localize the RE beam, reveal energy-dependent RE transport, and can be used to perform full two-dimensional (energy and pitch-angle) inversions of the RE phase-space distribution. Energy-resolved measurements find qualitative agreement with modeling on the role of collisional and synchrotron damping in modifying the RE distribution shape. Measurements are consistent with predictions of phase-space attractors that accumulate REs, with non-monotonic features observed in the distribution. Temporally resolved measurements find qualitative agreement with modeling on the impact of collisional and synchrotron damping in varying the RE growth and decay rate. Anomalous RE loss is observed and found to be largest at low energy. Possible roles for kinetic instability or spatial transport to resolve these anomalies are discussed.

  5. Quality assurance of in-situ-gammaspectrometry. International comparison measurement at the K-RISK-phantom 2015; Qualitaetssicherung der In-situ-Gammaspektrometrie. Internationale Vergleichsmessung an der K-RISK-Phantomwand 2015

    Energy Technology Data Exchange (ETDEWEB)

    Haas, G.; Schupfner, R. [Regensburg Univ. (Germany). ZRN-URA-Lab.; Buss, K. [Bayerisches Landesamt fuer Umwelt, Kulmbach (Germany)

    2016-07-01

    During the last years the collimated in-situ-gammaspectrometry established itself as a powerful mean for free- release of buildings, parts of buildings, walls and ground area. To accomplish a suitable possibility for quality assurance of in-situ-gammaspectrometry, the K-RISK-phantom wall was developed and built at the University of Regensburg on the authority of the state office for environmental protection, Kulmbach. The K-RISK-phantom is a large surface calibration wall made of concrete which allows simulating different realistic three-dimensional wall contaminations. Contrary to many other calibration phantoms the K-RISK phantom permits completely reversible three-dimensional activity distributions. The comparison measurement is a useful tool for quality assurance and allows the participants to review their measurements relating to measurement, calibration or analysis. 19 institutions (industry, surveyor, authorities) from Germany, Austria and Switzerland participated at the comparison measurement.

  6. Time-resolved temperature measurements in a rapid compression machine using quantum cascade laser absorption in the intrapulse mode

    KAUST Repository

    Nasir, Ehson Fawad; Farooq, Aamir

    2016-01-01

    A temperature sensor based on the intrapulse absorption spectroscopy technique has been developed to measure in situ temperature time-histories in a rapid compression machine (RCM). Two quantum-cascade lasers (QCLs) emitting near 4.55μm and 4.89μm

  7. In situ measurements of oxygen dynamics in unsaturated archaeological deposits

    DEFF Research Database (Denmark)

    Matthiesen, Henning; Hollesen, Jørgen; Dunlop, Rory

    2015-01-01

    Oxygen is a key parameter in the degradation of archaeological material, but little is known of its dynamics in situ. In this study, 10 optical oxygen sensors placed in a 2 m deep test pit in the cultural deposits at Bryggen in Bergen have monitored oxygen concentrations every half hour for more ...... of the soil exceeds 10–15% vol, while oxygen dissolved in infiltrating rainwater is of less importance for the supply of oxygen in the unsaturated zone....... than a year. It is shown that there is a significant spatial and temporal variation in the oxygen concentration, which is correlated to measured soil characteristics, precipitation, soil water content and degradation of organic material. In these deposits oxygen typically occurs when the air content...

  8. Detection of rhodopsin dimerization in situ by PIE-FCCS, a time-resolved fluorescence spectroscopy.

    Science.gov (United States)

    Smith, Adam W

    2015-01-01

    Rhodopsin self-associates in the plasma membrane. At low concentrations, the interactions are consistent with a monomer-dimer equilibrium (Comar et al., J Am Chem Soc 136(23):8342-8349, 2014). At high concentrations in native tissue, higher-order clusters have been observed (Fotiadis et al., Nature 421:127-128, 2003). The physiological role of rhodopsin dimerization is still being investigated, but it is clear that a quantitative assessment is essential to determining the function of rhodopsin clusters in vision. To quantify rhodopsin interactions, I will outline the theory and methodology of a specialized time-resolved fluorescence spectroscopy for measuring membrane protein-protein interactions called pulsed-interleaved excitation fluorescence cross-correlation spectroscopy (PIE-FCCS). The strength of this technique is its ability to quantify rhodopsin interactions in situ (i.e., a live cell plasma membrane). There are two reasons for restricting the scope to live cell membranes. First, the compositional heterogeneity of the plasma membrane creates a complex milieu with thousands of lipid, protein, and carbohydrate species. This makes it difficult to infer quaternary interactions from detergent solubilized samples or construct a model phospholipid bilayer that recapitulates all of the interactions present in native membranes. Second, organizational structure and dynamics is a key feature of the plasma membrane, and fixation techniques like formaldehyde cross-linking and vitrification will modulate the interactions. PIE-FCCS is based on two-color fluorescence imaging with time-correlated single-photon counting (TCSPC) (Becker et al., Rev Sci Instrum 70:1835-1841, 1999). By time-tagging every detected photon, the data can be analyzed as a fluorescence intensity distribution, fluorescence lifetime histogram, or fluorescence (cross-)correlation spectra (FCS/FCCS) (Becker, Advanced time-correlated single-photon counting techniques, Springer, Berlin, 2005). These

  9. In situ heating test in Callovo-Oxfordian clay-stone: measurement and interpretation

    International Nuclear Information System (INIS)

    Conil, N.; Armand, G.; De La Vaissiere, R.; Morel, J.; Garitte, B.; Jobmann, M.; Jellouli, M.; Filippi, M.

    2012-01-01

    Document available in extended abstract form only. To study the thermo -hydro-mechanical effects of the early thermal phase on the clay host rock of a deep repository, Andra has performed a new in-situ heating test called TED experiment. This experiment is the second one being carried out in the Meuse/Haute-Marne Underground Research Laboratory The aim of the TED experiment is to measure the evolution of the temperature; deformation and pore pressure fields around several heaters and to back-analyse the thermo-hydro-mechanical properties of the rock. The TED experiment was also designed to estimate the overpressure generated by heat in the zero flux plan between several heaters and to study the evolution of the damaged zone due to heat. Analysis of the experimental results will help in calibrating numerical models which will be applied to the disposal cell cases. The test set-up consists of three boreholes containing the heaters and twenty one instrumented observation boreholes. Each heater is 4 m long and may generate a power of 1500 W. The distance between each heater is about 2.6 m, which is close to the ratio of the disposal cell geometry concept. The surrounding boreholes were strategically located to follow the anisotropic THM behavior of the clay-stone. There are twelve pore pressure measurement boreholes (a total of eighteen piezometers), nine temperature measurement boreholes (108 temperature sensors) and 2 strain measurement boreholes. In order to optimize the inverse problem analysis, special attention has been paid to the reduction of uncertainties regarding the sensors location in the boreholes. Possible sensors location errors were indeed found to be a problematic issue for analysis and parameter determination in the previous thermal experiment ([1]). The central heater was activated on January 25, 2010 starting with a relatively low heating power of 150 W, then the heating power was increased to 300 W and finally to 600 W. Each step was about four

  10. Quantitative Analysis of Oxygen Gas Exhausted from Anode through In Situ Measurement during Electrolytic Reduction

    Directory of Open Access Journals (Sweden)

    Eun-Young Choi

    2017-01-01

    Full Text Available Quantitative analysis by in situ measurement of oxygen gas evolved from an anode was employed to monitor the progress of electrolytic reduction of simulated oxide fuel in a molten Li2O–LiCl salt. The electrolytic reduction of 0.6 kg of simulated oxide fuel was performed in 5 kg of 1.5 wt.% Li2O–LiCl molten salt at 650°C. Porous cylindrical pellets of simulated oxide fuel were used as the cathode by loading a stainless steel wire mesh cathode basket. A platinum plate was employed as the anode. The oxygen gas evolved from the anode was exhausted to the instrumentation for in situ measurement during electrolytic reduction. The instrumentation consisted of a mass flow controller, pump, wet gas meter, and oxygen gas sensor. The oxygen gas was successfully measured using the instrumentation in real time. The measured volume of the oxygen gas was comparable to the theoretically calculated volume generated by the charge applied to the simulated oxide fuel.

  11. In situ measurement of solvent-mediated phase transformations during dissolution testing

    DEFF Research Database (Denmark)

    Aaltonen, Jaakko; Heinänen, Paula; Peltonen, Leena

    2006-01-01

    In this study, solvent-mediated phase transformations of theophylline (TP) and nitrofurantoin (NF) were measured in a channel flow intrinsic dissolution test system. The test set-up comprised simultaneous measurement of drug concentration in the dissolution medium (with UV-Vis spectrophotometry......) and measurement of the solid-state form of the dissolving solid (in situ with Raman spectroscopy). The solid phase transformations were also investigated off-line with scanning electron microscopy. TP anhydrate underwent a transformation to TP monohydrate, and NF anhydrate (form beta) to NF monohydrate (form II......). Transformation of TP anhydrate to TP monohydrate resulted in a clear decrease in the dissolution rate, while the transformation of NF anhydrate (form beta) to NF monohydrate (form II) could not be linked as clearly to changes in the dissolution rate. The transformation of TP was an order of magnitude faster than...

  12. In-situ Eh sensor measurement and calibration: application to seafloor observatories

    Science.gov (United States)

    Ding, K.; Seyfried, W. E.; Tan, C.

    2013-12-01

    Eh measurement is often used with manned submersible and AUV assets as an effective way to detect and locate seafloor hydrothermal activity. Eh can be fundamentally and sensitively linked to dissolved H 2 , which, in turn, serves as a key constraint on subseafloor redox reactions. Moreover, Eh is now being increasingly relied on for event detection and process monitoring efforts intrinsic to cabled seafloor observatories. Due to seawater interaction with electrochemical components fundamental to the operation of the Eh sensor, however, the quality and reliability of the measurements are often compromised by signal drift, especially when the sensor is used for long term deployment. To solve this problem, a calibration protocol was developed and added to our previously constructed pH 'calibrator'. Thus, the integrated electrochemical system now permits the combined in-situ measurement and calibration of pH and Eh of seafloor hydrothermal fluids. Key aspects of the design for this calibration system are: (1) the sensing electrodes can be kept preserved in fluid of known pH, Eh and NaCl concentration prior to use, thereby preventing deterioration of electrode response characteristics by chemical and biological activity; (2) the system consists of valves and pumps for flow control, and therefore can be operated remotely with power from the seafloor cabled observatory, or as a stand-alone device, using battery power for shorter-term deployments. In both cases, standardization with on-board fluids of known redox, pH, and NaCl activity can be activated at any time, providing enhanced reliability (3) the current development is aimed at deep sea environments, cold seeps, and hydrothermal diffuse flow fluids at the temperatures up to 100°C and depths up to 4500 m. The in-situ operation is especially well-suited for use with cabled observatory for real time intervention and event response owing to enabled power supply and two way communications. Field tests have been

  13. Experimental Determination of Drug Diffusion Coefficients in Unstirred Aqueous Environments by Temporally Resolved Concentration Measurements

    DEFF Research Database (Denmark)

    Di Cagno, Massimiliano Pio; Clarelli, Fabrizio; Vabenø, Jon

    2018-01-01

    or the need for dedicated instrumentation. In this work, a simple but reliable method based on time resolved concentration measurements by UV-visible spectroscopy in an unstirred aqueous environment was developed. This method is based on spectroscopic measurement of the variation of the local concentration...... characteristics (i.e. ionic strength and presence of complexing agents) on the diffusivity. The method can be employed in any research laboratory equipped with a standard UV-visible spectrophotometer, and could become a useful and straightforward tool in order to characterize diffusion coefficients...

  14. Temperature Measurements in Reacting Flows Using Time-Resolved Femtosecond Coherent Anti-Stokes Raman Scattering (fs-CARS) Spectroscopy (Postprint)

    National Research Council Canada - National Science Library

    Roy, Sukesh; Kinnius, Paul J; Lucht, Robert P; Gord, James R

    2007-01-01

    Time-resolved femtosecond coherent anti-Stokes Raman scattering (fs-CARS) spectroscopy of the nitrogen molecule is used for the measurement of temperature in atmospheric-pressure, near-adiabatic, hydrogen-air diffusion flames...

  15. Neutron reflectivity as method to study in-situ adsorption of phospholipid layers to solid-liquid interfaces

    DEFF Research Database (Denmark)

    Gutberlet, Thomas; Klösgen, Beate Maria; Krastev, Rumen

    2004-01-01

    variation. It was observed that the method was capable of visualizing the adsorption of phospholipid layers to different solid-liquid interfaces and to resolve structural details at Angstroem resolution. The results depended strongly on a sufficiently good signal-to-noise ratio of the specific measurements......The use of neutron reflectivity as a method to study in-situ adsorption of phospholipid layers to solid-liquid interfaces was analyzed. The most important advantage of neutron reflectometry is the possibility to very the refractive index of the specific sample by isotope exchange, called contrast...

  16. Husbandry Emissions Estimation: Fusion of Mobile Surface and Airborne Remote Sensing and Mobile Surface In Situ Measurements

    Science.gov (United States)

    Leifer, I.; Hall, J. L.; Melton, C.; Tratt, D. M.; Chang, C. S.; Buckland, K. N.; Frash, J.; Leen, J. B.; Van Damme, M.; Clarisse, L.

    2017-12-01

    Emissions of methane and ammonia from intensive animal husbandry are important drivers of climate and photochemical and aerosol pollution. Husbandry emission estimates are somewhat uncertain because of their dependence on practices, temperature, micro-climate, and other factors, leading to variations in emission factors up to an order-of-magnitude. Mobile in situ measurements are increasingly being applied to derive trace gas emissions by Gaussian plume inversion; however, inversion with incomplete information can lead to erroneous emissions and incorrect source location. Mobile in situ concentration and wind data and mobile remote sensing column data from the Chino Dairy Complex in the Los Angeles Basin were collected near simultaneously (within 1-10 s, depending on speed) while transecting plumes, approximately orthogonal to winds. This analysis included airborne remote sensing trace gas information. MISTIR collected vertical column FTIR data simultaneously with in situ concentration data acquired by the AMOG-Surveyor while both vehicles traveled in convoy. The column measurements are insensitive to the turbulence characterization needed in Gaussian plume inversion of concentration data and thus provide a flux reference for evaluating in situ data inversions. Four different approaches were used on inversions for a single dairy, and also for the aggregate dairy complex plume. Approaches were based on differing levels of "knowledge" used in the inversion from solely the in situ platform and a single gas to a combination of information from all platforms and multiple gases. Derived dairy complex fluxes differed significantly from those estimated by other studies of the Chino complex. Analysis of long term satellite data showed that this most likely results from seasonality effects, highlighting the pitfalls of applying annualized extensions of flux measurements to a single campaign instantiation.

  17. An in situ measurement of the radio-frequency attenuation in ice at Summit Station, Greenland

    OpenAIRE

    Avva, J.; Kovac, J. M.; Miki, C.; Saltzberg, D.; Vieregg, A. G.

    2014-01-01

    We report an in situ measurement of the electric field attenuation length Lα at radio frequencies for the bulk ice at Summit Station, Greenland, made by broadcasting radio-frequency signals vertically through the ice and measuring the relative power in the return ground bounce signal. We find the depth-averaged field attenuation length to be hLαi = 947+92 −85 m at 75 MHz. While this measurement has clear radioglaciological applications, the radio clarity of the ice also has implications for t...

  18. The retrieval of cloud microphysical properties using satellite measurements and an in situ database

    Directory of Open Access Journals (Sweden)

    C. Poix

    1996-01-01

    Full Text Available By combining AVHRR data from the NOAA satellites with information from a database of in situ measurements, large-scale maps can be generated of the microphysical parameters most immediately significant for the modelling of global circulation and climate. From the satellite data, the clouds can be classified into cumuliform, stratiform and cirrus classes and then into further sub-classes by cloud top temperature. At the same time a database of in situ measurements made by research aircraft is classified into the same sub-classes and a statistical analysis is used to derive relationships between the sub-classes and the cloud microphysical properties. These two analyses are then linked to give estimates of the microphysical properties of the satellite observed clouds. Examples are given of the application of this technique to derive maps of the probability of occurrence of precipitating clouds and of precipitating water content derived from a case study within the International Cirrus Experiment (ICE held in 1989 over the North Sea.

  19. The retrieval of cloud microphysical properties using satellite measurements and an in situ database

    Directory of Open Access Journals (Sweden)

    Christophe Poix

    Full Text Available By combining AVHRR data from the NOAA satellites with information from a database of in situ measurements, large-scale maps can be generated of the microphysical parameters most immediately significant for the modelling of global circulation and climate. From the satellite data, the clouds can be classified into cumuliform, stratiform and cirrus classes and then into further sub-classes by cloud top temperature. At the same time a database of in situ measurements made by research aircraft is classified into the same sub-classes and a statistical analysis is used to derive relationships between the sub-classes and the cloud microphysical properties. These two analyses are then linked to give estimates of the microphysical properties of the satellite observed clouds. Examples are given of the application of this technique to derive maps of the probability of occurrence of precipitating clouds and of precipitating water content derived from a case study within the International Cirrus Experiment (ICE held in 1989 over the North Sea.

  20. Path-length-resolved measurements of multiple scattered photons in static and dynamic turbid media using phase-modulated low-coherence interferometry

    NARCIS (Netherlands)

    Varghese, Babu; Rajan, Vinayakrishnan; van Leeuwen, Ton G.; Steenbergen, Wiendelt

    2007-01-01

    In optical Doppler measurements, the path length of the light is unknown. To facilitate quantitative measurements, we develop a phase-modulated Mach-Zehnder interferometer with separate fibers for illumination and detection. With this setup, path-length-resolved dynamic light scattering measurements

  1. Determination of the in situ modulus of the rockmass by the use of backfill measurements

    CSIR Research Space (South Africa)

    Gurtunca, RG

    1991-03-01

    Full Text Available In situ measurements and numerical modelling based on elastic theory showed that backfill stresses are considerably higher than originally thought. This has led to a change in understanding of rockmass behaviour. After describing previous work...

  2. RESOLVE: Bridge between early lunar ISRU and science objectives

    Science.gov (United States)

    Taylor, G.; Sanders, G.; Larson, W.; Johnson, K.

    2007-08-01

    THE NEED FOR RESOURCES: When mankind returns to the moon, there will be an aspect of the architecture that will totally change how we explore the solar system. We will take the first steps towards breaking our reliance on Earth supplied consumables by extracting resources from planetary bodies. Our first efforts in this area, known as In-Situ Resource Utilization (ISRU), will be to extract the abundant oxygen found in the lunar regolith. But the "holy grail" of lunar ISRU will be finding an exploitable source of lunar hydrogen. If we can find a source of extractable hydrogen, it would provide a foundation for true independence from Earth. With in-situ hydrogen (or water) and oxygen we can produce many of the major consumables needed to operate a lunar outpost. We would have water to drink, oxygen to breath, as well as rocket propellants and fuel cell reagents to enable extended access and operations on the moon. These items make up a huge percentage of the mass launched from the Earth. Producing them in-situ would significantly reduce the cost of operating a lunar outpost while increasing payload availability for science. PROSPECTING: The Lunar Prospector found evidence of elevated hydrogen at the lunar poles, and measurements made at these locations from the Clementine mission bistatic radar have been interpreted as correlating to water/ice concentrations. At the South Pole, there is reasonably strong correlation between the elevated areas of hydrogen and permanently shadowed craters. However, there is considerable debate on the form and concentration of this hydrogen since the orbiting satellites had limited resolution and their data can be interpreted in different ways. The varying interpretations are based on differing opinions and theories of lunar environment, evolution, and cometary bombardment within the lunar Science community. The only way to truly answer this question from both a Science and resource availability perspective is to go to the lunar poles

  3. Testing coordinate measuring arms with a geometric feature-based gauge: in situ field trials

    Science.gov (United States)

    Cuesta, E.; Alvarez, B. J.; Patiño, H.; Telenti, A.; Barreiro, J.

    2016-05-01

    This work describes in detail the definition of a procedure for calibrating and evaluating coordinate measuring arms (AACMMs or CMAs). CMAs are portable coordinate measuring machines that have been widely accepted in industry despite their sensitivity to the skill and experience of the operator in charge of the inspection task. The procedure proposed here is based on the use of a dimensional gauge that incorporates multiple geometric features, specifically designed for evaluating the measuring technique when CMAs are used, at company facilities (workshops or laboratories) and by the usual operators who handle these devices in their daily work. After establishing the procedure and manufacturing the feature-based gauge, the research project was complemented with diverse in situ field tests performed with the collaboration of companies that use these devices in their inspection tasks. Some of the results are presented here, not only comparing different operators but also comparing different companies. The knowledge extracted from these experiments has allowed the procedure to be validated, the defects of the methodologies currently used for in situ inspections to be detected, and substantial improvements for increasing the reliability of these portable instruments to be proposed.

  4. Testing coordinate measuring arms with a geometric feature-based gauge: in situ field trials

    International Nuclear Information System (INIS)

    Cuesta, E; Alvarez, B J; Patiño, H; Telenti, A; Barreiro, J

    2016-01-01

    This work describes in detail the definition of a procedure for calibrating and evaluating coordinate measuring arms (AACMMs or CMAs). CMAs are portable coordinate measuring machines that have been widely accepted in industry despite their sensitivity to the skill and experience of the operator in charge of the inspection task. The procedure proposed here is based on the use of a dimensional gauge that incorporates multiple geometric features, specifically designed for evaluating the measuring technique when CMAs are used, at company facilities (workshops or laboratories) and by the usual operators who handle these devices in their daily work. After establishing the procedure and manufacturing the feature-based gauge, the research project was complemented with diverse in situ field tests performed with the collaboration of companies that use these devices in their inspection tasks. Some of the results are presented here, not only comparing different operators but also comparing different companies. The knowledge extracted from these experiments has allowed the procedure to be validated, the defects of the methodologies currently used for in situ inspections to be detected, and substantial improvements for increasing the reliability of these portable instruments to be proposed. (paper)

  5. Operational Testing and Measurement of the Resolving Time of a Counting Assembly

    International Nuclear Information System (INIS)

    Manent, G.; Scheemaecker, J. de

    1968-01-01

    An experiment is described which constitutes a very sensitive test of the satisfactory operation of a counting assembly. It makes it possible to measure the resolving time of an assembly to an accuracy of 1 per cent. A certain number of examples are presented which show the sensitivity of the test. (author) [fr

  6. Airflow resistivity instrument for in situ measurement on the earth's ground surface

    Science.gov (United States)

    Zuckerwar, A. J.

    1983-01-01

    An airflow resistivity instrument features a novel specimen holder, especially designed for in situ measurement on the earth's ground surface. This capability eliminates the disadvantages of prior intrusive instruments, which necessitate the removal of a test specimen from the ground. A prototype instrument can measure airflow resistivities in the range 10-5000 cgs rayl/cm, at specimen depths up to 15.24 cm (6 in.), and at differential pressures up to 2490.8 dyn sq cm (1 in. H2O) across the specimen. Because of the close relationship between flow resistivity and acoustic impedance, this instrument should prove useful in acoustical studies of the earth's ground surface. Results of airflow resistivity measurements on an uncultivated grass field for varying values of moisture content are presented.

  7. Effect of In-situ Cure on Measurement of Glass Transition Temperatures in High-temperature Thermosetting Polymers

    Science.gov (United States)

    2015-01-01

    TEMPERATURES IN HIGH-TEMPERATURE THERMOSETTING POLYMERS 5a. CONTRACT NUMBER In-House 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...illustrated the difficulties inherent in measurement of the glass transition temperature of this high-temperature thermosetting polymer via dynamic...copyright protection in the United States. EFFECT OF IN-SITU CURE ON MEASUREMENT OF GLASS TRANSITION TEMPERATURES IN HIGH-TEMPERATURE THERMOSETTING

  8. Three types of photon detectors for in situ measurements

    Science.gov (United States)

    Helmer, R. G.; Gehrke, R. J.; Carpenter, M. V.

    1999-02-01

    The authors have been involved in the calibration and use of three types of γ- and X-ray detectors for in situ measurements of soil contamination. These three detectors are an N-type, thin-window Ge semiconductor detector (5.0 cm diam.× 2.0 cm deep), a plastic scintillator (30.5 cm × 30.5 cm × 3.8 cm thick), and an array of six CaF 2 detectors (each 7.6 cm × 7.6 cm × 0.15 cm thick). The latter two detectors have been used with scanning systems that allow significant areas (say, >100 m 2) to be surveyed completely with the aid of either laser-based triangulation or a global positioning system (GPS) to record the precise position for each measurement. Typically, these systems scan at a rate of 15-30 cm/s which allows an area of 100 m 2 to covered with the plastic scintillator in about 15 min. The data are telemetered or transferred via RS232 protocol to a computer, providing operators with real-time mapping of the area surveyed and of the measured detector count rate. The "efficiencies" of these detectors have been determined by a combination of measurements of calibrated planar sources and Monte Carlo transport calculations for a variety of source sizes and depths in soil, as well as by comparing these field measurements with independent laboratory sample analysis.

  9. Hazards and preventive measures of well deviation in well construction of in-situ leaching

    International Nuclear Information System (INIS)

    Zou Wenjie; Chen Shihe

    2006-01-01

    Whether the in-situ leaching method is successful depends on the quality of borehole engineering to a great extent. There are lots of factors that affect the quality, and the well deviation is one of notable problems. The hazards and causes of the well deviation are analyzed. The preventive measures and the methods of rectifying the deviation are put forward. (authors)

  10. Surface phenomena revealed by in situ imaging: studies from adhesion, wear and cutting

    Science.gov (United States)

    Viswanathan, Koushik; Mahato, Anirban; Yeung, Ho; Chandrasekar, Srinivasan

    2017-03-01

    Surface deformation and flow phenomena are ubiquitous in mechanical processes. In this work we present an in situ imaging framework for studying a range of surface mechanical phenomena at high spatial resolution and across a range of time scales. The in situ framework is capable of resolving deformation and flow fields quantitatively in terms of surface displacements, velocities, strains and strain rates. Three case studies are presented demonstrating the power of this framework for studying surface deformation. In the first, the origin of stick-slip motion in adhesive polymer interfaces is investigated, revealing a intimate link between stick-slip and surface wave propagation. Second, the role of flow in mediating formation of surface defects and wear particles in metals is analyzed using a prototypical sliding process. It is shown that conventional post-mortem observation and inference can lead to erroneous conclusions with regard to formation of surface cracks and wear particles. The in situ framework is shown to unambiguously capture delamination wear in sliding. Third, material flow and surface deformation in a typical cutting process is analyzed. It is shown that a long-standing problem in the cutting of annealed metals is resolved by the imaging, with other benefits such as estimation of energy dissipation and power from the flow fields. In closure, guidelines are provided for profitably exploiting in situ observations to study large-strain deformation, flow and friction phenomena at surfaces that display a variety of time-scales.

  11. Voxel-based measurement sensitivity of spatially resolved near-infrared spectroscopy in layered tissues.

    Science.gov (United States)

    Niwayama, Masatsugu

    2018-03-01

    We quantitatively investigated the measurement sensitivity of spatially resolved spectroscopy (SRS) across six tissue models: cerebral tissue, a small animal brain, the forehead of a fetus, an adult brain, forearm muscle, and thigh muscle. The optical path length in the voxel of the model was analyzed using Monte Carlo simulations. It was found that the measurement sensitivity can be represented as the product of the change in the absorption coefficient and the difference in optical path length in two states with different source-detector distances. The results clarified the sensitivity ratio between the surface layer and the deep layer at each source-detector distance for each model and identified changes in the deep measurement area when one of the detectors was close to the light source. A comparison was made with the results from continuous-wave spectroscopy. The study also identified measurement challenges that arise when the surface layer is inhomogeneous. Findings on the measurement sensitivity of SRS at each voxel and in each layer can support the correct interpretation of measured values when near-infrared oximetry or functional near-infrared spectroscopy is used to investigate different tissue structures. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  12. Development of conductivity probe and temperature probe for in-situ measurements in hydrological studies

    International Nuclear Information System (INIS)

    Chandra, U.; Galindo, B.J.; Castagnet, A.C.G.

    1981-05-01

    A conductivity probe and a temperature probe have been developed for in-situ measurements in various hydrological field studies. The conductivity probe has platinum electrodes and is powered with two 12 volt batteries. The sensing element of the temperature probe consists of a resistor of high coefficient of temperature. Response of the conductivity probe is measured in a milliampere mater while the resistance of the thermistor is read by a digital meter. The values of conductivity and temperature are derived from respective calibration. The probes are prototype and their range of measurement can be improved depending upon the requirement of the field problem. (Author) [pt

  13. In-situ measurements of the ATLAS large-radius jet response in 13 TeV pp collisions

    CERN Document Server

    The ATLAS collaboration

    2017-01-01

    The response of the ATLAS experiment to groomed large (R=1.0) radius jets is measured {\\em in-situ} with 33 fb−1 of "$\\sqrt$"=13 TeV LHC proton--proton collisions collected in 2016. Results from several methods are combined. The jet transverse momentum scale and resolution are measured in events where the jet recoils against a reference object, either a calibrated photon, another jet, or a recoiling system of jets. The jet mass is constrained using mass peaks formed by boosted W-bosons and top quarks and by comparison to the jet mass calculated with track jets. Generally, the Monte Carlo description is found to be adequate. Small discrepancies are incorporated as {\\em in-situ} corrections. The constraint on the transverse momentum scale is 1-2% for pT< 2 TeV, that on the mass scale 2-4%. The pT (mass) resolution is constrained to 10% (20%).

  14. Upgraded PMI diagnostic capabilities using Accelerator-based In-situ Materials Surveillance (AIMS) on Alcator C-Mod

    Science.gov (United States)

    Kesler, Leigh; Barnard, Harold; Hartwig, Zachary; Sorbom, Brandon; Lanza, Richard; Terry, David; Vieira, Rui; Whyte, Dennis

    2014-10-01

    The AIMS diagnostic was developed to rapidly and non-invasively characterize in-situ plasma material interactions (PMI) in a tokamak. Recent improvements are described which significantly expand this measurement capability on Alcator C-Mod. The detection time at each wall location is reduced from about 10 min to 30 s, via improved hardware and detection geometry. Detectors are in an augmented re-entrant tube to maximize the solid angle between detectors and diagnostic locations. Spatial range is expanded by using beam dynamics simulation to design upgraded B-field power supplies to provide maximal poloidal access, including a ~20° toroidal range in the divertor. Measurement accuracy is improved with angular and energy resolved cross section measurements obtained using a separate 0.9 MeV deuteron ion accelerator. Future improvements include the installation of recessed scintillator tiles as beam targets for calibration of the diagnostic. Additionally, implanted depth marker tiles will enable AIMS to observe the in-situ erosion and deposition of high-Z plasma-facing materials. This work is supported by U.S. DOE Grant No. DE-FG02-94ER54235 and Cooperative Agreement No. DE-FC02-99ER54512.

  15. Photoacoustic measurements of red blood cell oxygen saturation in blood bags in situ

    Science.gov (United States)

    Pinto, Ruben N.; Bagga, Karan; Douplik, Alexandre; Acker, Jason P.; Kolios, Michael C.

    2017-03-01

    Red blood cell (RBC) transfusion is a critical component of the health care services. RBCs are stored in blood bags in hypothermic temperatures for a maximum of 6 weeks post donation. During this in vitro storage period, RBCs have been documented to undergo changes in structure and function due to mechanical and biochemical stress. Currently, there are no assessment methods that monitor the quality of RBCs within blood bags stored for transfusion. Conventional assessment methods require the extraction of samples, consequently voiding the sterility of the blood bags and potentially rendering them unfit for transfusions. It is hypothesized that photoacoustic (PA) technology can provide a rapid and non-invasive indication of RBC quality. In this study, a novel PA setup was developed for the acquisition of oxygen saturation (SO2) of two blood bags in situ. These measurements were taken throughout the lifespan of the blood bags (42 days) and compared against the clinical gold standard method of the blood gas analyzer (BGA). SO2 values of the blood bags increased monotonically throughout the storage period. A strong correlation between PA SO2 and BGA SO2 was found, however, PA values were on average 3.5% lower. Both techniques found the bags to increase by an SO2 of approximately 20%, and measured very similar rates of SO2 change. Future work will be focused on determining the cause of discrepancy between SO2 values acquired from PA versus BGA, as well as establishing links between the measured SO2 increase and other changes in RBC in situ.

  16. Micro-four-point probes in a UHV scanning electron microscope for in-situ surface-conductivity measurements

    DEFF Research Database (Denmark)

    Shiraki, I.; Nagao, T.; Hasegawa, S.

    2000-01-01

    For in-situ measurements of surface conductivity in ultrahigh vacuum (UHV), we have installed micro-four-point probes (probe spacings down to 4 mum) in a UHV scanning electron microscope (SEM) combined with scanning reflection-high-energy electron diffraction (RHEED). With the aid of piezoactuators...

  17. In-Situ Measurement of Vitamin C Content in Commercial Tablet Products by Terahertz Time-Domain

    Science.gov (United States)

    Kang, JuHee; Song, Jeonghun; Jung, Tae Sub; Kwak, Kyungwon; Chun, Hyang Sook

    2018-04-01

    Terahertz time-domain spectroscopy (THz-TDS) was applied to investigate the feasibility of in-situ measuring vitamin C content in commercial tablet products without any pretreatments. Characteristic absorption peaks of vitamin C were analyzed with quantum mechanical calculation to reveal the molecular origin of them. The peak appearing at 1.08 THz was then selected and tested for its suitability as a fingerprint signal for analyzing the vitamin C content in dietary supplement tablets. There are a couple of factors influencing THz absorbance other than concentration. Among those, the effects of tablet thickness and types of excipients in the tablet products were found to be significant, and were corrected with the calibration curve to determine vitamin C concentration in tablet forms. Furthermore, commercial tablet products in the market were analyzed using THz-TDS and the measured vitamin C contents were in good agreement with those determined using a reference method (high-performance liquid chromatography). Thus, our results suggest that THz-TDS can be used for the in-situ analysis of vitamin C in commercial tablet products.

  18. Spatially resolved density and ionization measurements of shocked foams using x-ray fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, M. J.; Keiter, P. A.; Montgomery, D. S.; Scott, H. A.; Biener, M. M.; Fein, J. R.; Fournier, K. B.; Gamboa, E. J.; Kemp, G. E.; Klein, S. R.; Kuranz, C. C.; LeFevre, H. J.; Manuel, M. J. -E.; Wan, W. C.; Drake, R. P.

    2016-09-28

    We present experiments at the Trident laser facility demonstrating the use of x-ray fluorescence (XRF) to simultaneously measure density, ionization state populations, and electron temperature in shocked foams. An imaging x-ray spectrometer obtained spatially resolved measurements of Ti K-α emission. Density profiles were measured from K-α intensity. Ti ionization state distributions and electron temperatures were inferred by fitting K-α spectra to spectra from CRETIN simulations. This work shows that XRF provides a powerful tool to complement other diagnostics to make equation of state measurements of shocked materials containing a suitable tracer element.

  19. Techniques for sampling nuclear waste tank contents and in situ measurement of activity

    International Nuclear Information System (INIS)

    Lawrence, R.C.

    1978-04-01

    A study was conducted to develop suitable sampling equipment and techniques for characterizing the mechanical properties of nuclear wastes; identifying effective means of measuring radiation levels, temperatures, and neutron fluxes in situ in wastes; and developing a waste core sampler. A portable, stainless steel probe was developed which is placed in the tank through a riser. This probe is built for the insertion of instrumentation that can measure the contents of the tank at any level and take temperature, radiation, and neutron activation readings with reliable accuracy. A simple and reliable instrument for the in situ extraction of waste materials ranging from liquid to concrete-like substances was also developed. This portable, stainless steel waste core sampler can remove up to one liter of radioactive waste from tanks for transportation to hot cell laboratories for analysis of hardness, chemical form, and isotopic content. A cask for transporting the waste samples from the tanks to the laboratory under radiation-protected conditions was also fabricated. This cask was designed with a ''boot'' or inner-seal liner to contain any radioactive wastes that might remain on the outside of the waste core sampling device

  20. In situ flume measurements of resuspension in the North Sea

    Science.gov (United States)

    Thompson, C. E. L.; Couceiro, F.; Fones, G. R.; Helsby, R.; Amos, C. L.; Black, K.; Parker, E. R.; Greenwood, N.; Statham, P. J.; Kelly-Gerreyn, B. A.

    2011-07-01

    The in situ annular flume, Voyager II, was deployed at three sites in the North Sea in order to investigate resuspension events, to determine the physical characteristics of the seabed, to determine the threshold of resuspension of the bed and to quantify erosion rates and erosion depths. These are the first controlled, in situ flume experiments to study resuspension in the North Sea, and were combined with long-term measurements of waves and currents. Resuspension experiments were undertaken at two muddy, and one sandy site: north of the Dogger Bank (DG: water depths ˜80 m, very fine, poorly sorted, very fine-skewed sediment experiencing seasonal thermal stratification of the water column along with oxygen depletion); the Oyster Grounds (OG: ˜40 m, similar bed properties, year round water column thermal stratification, Atlantic forcing); and in the Sean Gas Field (SGF: ˜20 m, moderately sorted, very coarse-skewed sand, and well mixed water column). The erosion thresholds of the bed were found to be 0.66-1.04 Pa (DG) and 0.91-1.27 Pa (OG), with corresponding erosion depths of 0.1-0.15 mm and 0.02-0.06 mm throughout the experiments. Evaluation of a year of current velocities from 2007 indicated that at OG, resuspension of the consolidated bed was limited to on average ˜8% of the time as a result of tidal forcing alone for short (properties of the bed. Therefore, while complex variations in biogeophysical factors affected the critical threshold of erosion, once exceeded, erosion rates were related to the nature of the sediment.

  1. In situ measured elimination of Vibrio cholerae from brackish water.

    Science.gov (United States)

    Pérez, María Elena Martínez; Macek, Miroslav; Galván, María Teresa Castro

    2004-01-01

    In situ elimination of fluorescently labelled Vibrio cholerae (FLB) was measured in two saline water bodies in Mexico: in a brackish water lagoon, Mecoacán (Gulf of Mexico; State of Tabasco) and an athalassohaline lake, Alchichica (State of Puebla). Disappearance rates of fluorescently labelled V. cholera O1 showed that they were eliminated from the environment at an average rate of 32% and 63%/day, respectively (based on the bacterial standing stocks). The indirect immunofluorescence method confirmed the presence of V. cholerae O1 in the lagoon. However, the elimination of FLB was not directly related either to the presence or absence of the bacterium in the water body or to the phytoplankton concentration.

  2. The Dosepix detector—an energy-resolving photon-counting pixel detector for spectrometric measurements

    CERN Document Server

    Zang, A; Ballabriga, R; Bisello, F; Campbell, M; Celi, J C; Fauler, A; Fiederle, M; Jensch, M; Kochanski, N; Llopart, X; Michel, N; Mollenhauer, U; Ritter, I; Tennert, F; Wölfel, S; Wong, W; Michel, T

    2015-01-01

    The Dosepix detector is a hybrid photon-counting pixel detector based on ideas of the Medipix and Timepix detector family. 1 mm thick cadmium telluride and 300 μm thick silicon were used as sensor material. The pixel matrix of the Dosepix consists of 16 x 16 square pixels with 12 rows of (200 μm)2 and 4 rows of (55 μm)2 sensitive area for the silicon sensor layer and 16 rows of pixels with 220 μm pixel pitch for CdTe. Besides digital energy integration and photon-counting mode, a novel concept of energy binning is included in the pixel electronics, allowing energy-resolved measurements in 16 energy bins within one acquisition. The possibilities of this detector concept range from applications in personal dosimetry and energy-resolved imaging to quality assurance of medical X-ray sources by analysis of the emitted photon spectrum. In this contribution the Dosepix detector, its response to X-rays as well as spectrum measurements with Si and CdTe sensor layer are presented. Furthermore, a first evaluation wa...

  3. Development of novel sol-gel indicators (SGI's) for in-situ environmental measurements

    International Nuclear Information System (INIS)

    Livingston, R.R.; Wicks, G.G.; Baylor, L.C.; Whitaker, M.J.

    1993-01-01

    Organic indicator molecules have been incorporated in a porous sol- gel matrix coated on the end of a fiber-optic lens assembly to create sensors for in situ environmental measurements. Probes have been made that are sensitive to pH and uranyl concentration. The use of fiber optics allows the probe to be lowered into a well or bore hole, while support equipment such as a spectrophotometer and computer may be situated hundreds of meters away

  4. In situ measurement of electrostatic charge and charge distribution on flyash particles in power station exhaust stream

    Energy Technology Data Exchange (ETDEWEB)

    Guang, D.

    1992-01-01

    The electrostatic charges and charge distributions on individual flyash particles were experimentally measured in situ at four power stations in New South Wales and in the laboratory with an Electrostatic Charge Classifier. The global charge of these flyashes was also measured. The electrostatic charge on flyash particles of four power stations was found to be globally native. The median charge on the flyash particles varies linearly with particle diameter for all four flyashes. The electrostatic charge on the Tallawarra flyash particles was found to increase after passage through the air heater having huge metal surface areas, suggesting that triboelectrification was the primary charging mechanism for flyash particles. Distinctly different characteristics of the electrostatic charge, particle size and particle shape were found between the Eraring and the Tallawarra flyashes. The spherical Eraring ash has the highest proportion of lines and positively charged particles, but the lowest global charge level among the four flyashes. In contrast, the Tallawarra flyash has just the opposite. It is the distinct characteristics of the flyashes from Eraring and Tallawarra power stations that are responsible for the significant differences in their baghouse performance. The napping feature on the surface of the filter bags used in the Eraring and Tallawarra power stations provides an upstream surface of low fibre density above the fabric bulk. This feature presents and advantage to highly charged particles, like the Tallawarra flyash particles. Highly charged particles tend to deposit on such an upstream surface resulting in a porous dust cake with much less contact areas with the fabric medium than would otherwise be formed. This cake is easy to remove and provides less resistance to the gas flow. After singeing the naps on the filter bag surface at the Eraring power station, the problems of high pressure drop and retention of dust cake on the bas surface have been resolved.

  5. A flexible multi-stimuli in situ (S)TEM: Concept, optical performance, and outlook

    International Nuclear Information System (INIS)

    Börrnert, Felix; Müller, Heiko; Riedel, Thomas; Linck, Martin; Kirkland, Angus I.; Haider, Max.; Büchner, Bernd; Lichte, Hannes

    2015-01-01

    The progress in (scanning) transmission electron microscopy development had led to an unprecedented knowledge of the microscopic structure of functional materials at the atomic level. Additionally, although not widely used yet, electron holography is capable to map the electric and magnetic potential distributions at the sub-nanometer scale. Nevertheless, in situ studies inside a (scanning) transmission electron microscope ((S)TEM) are extremely challenging because of the much restricted size and accessibility of the sample space. Here, we introduce a concept for a dedicated in situ (S)TEM with a large sample chamber for flexible multi-stimuli experimental setups and report about the electron optical performance of the instrument. We demonstrate a maximum resolving power of about 1 nm in conventional imaging mode and substantially better than 5 nm in scanning mode while providing an effectively usable “pole piece gap” of 70 mm. - Highlights: • A concept for a (S)TEM with a large sample chamber is outlined. • An actual microscope is modified and has now a 70 mm high sample space. • The resolving power is about 1 nm in TEM and better than 5 nm in STEM mode. • Possible dedicated in situ microscopes with present technology are discussed

  6. A flexible multi-stimuli in situ (S)TEM: Concept, optical performance, and outlook

    Energy Technology Data Exchange (ETDEWEB)

    Börrnert, Felix, E-mail: felix.boerrnert@triebenberg.de [Speziallabor Triebenberg, Technische Universität Dresden, 01062 Dresden (Germany); IFW Dresden, PF 27 01 16, 01171 Dresden (Germany); Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Müller, Heiko; Riedel, Thomas; Linck, Martin [CEOS GmbH, Englerstraße 28, 69126 Heidelberg (Germany); Kirkland, Angus I. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Haider, Max. [CEOS GmbH, Englerstraße 28, 69126 Heidelberg (Germany); Büchner, Bernd [IFW Dresden, PF 27 01 16, 01171 Dresden (Germany); Lichte, Hannes [Speziallabor Triebenberg, Technische Universität Dresden, 01062 Dresden (Germany)

    2015-04-15

    The progress in (scanning) transmission electron microscopy development had led to an unprecedented knowledge of the microscopic structure of functional materials at the atomic level. Additionally, although not widely used yet, electron holography is capable to map the electric and magnetic potential distributions at the sub-nanometer scale. Nevertheless, in situ studies inside a (scanning) transmission electron microscope ((S)TEM) are extremely challenging because of the much restricted size and accessibility of the sample space. Here, we introduce a concept for a dedicated in situ (S)TEM with a large sample chamber for flexible multi-stimuli experimental setups and report about the electron optical performance of the instrument. We demonstrate a maximum resolving power of about 1 nm in conventional imaging mode and substantially better than 5 nm in scanning mode while providing an effectively usable “pole piece gap” of 70 mm. - Highlights: • A concept for a (S)TEM with a large sample chamber is outlined. • An actual microscope is modified and has now a 70 mm high sample space. • The resolving power is about 1 nm in TEM and better than 5 nm in STEM mode. • Possible dedicated in situ microscopes with present technology are discussed.

  7. Co-firing straw and coal in a 150-MWe utility boiler: in situ measurements

    DEFF Research Database (Denmark)

    Hansen, P. F.B.; Andersen, Karin Hedebo; Wieck-Hansen, K.

    1998-01-01

    A 2-year demonstration program is carried out by the Danish utility I/S Midtkraft at a 150-MWe PF-boiler unit reconstructed for co-firing straw and coal. As a part of the demonstration program, a comprehensive in situ measurement campaign was conducted during the spring of 1996 in collaboration...... with the Technical University of Denmark. Six sample positions have been established between the upper part of the furnace and the economizer. The campaign included in situ sampling of deposits on water/air-cooled probes, sampling of fly ash, flue gas and gas phase alkali metal compounds, and aerosols as well...... deposition propensities and high temperature corrosion during co-combustion of straw and coal in PF-boilers. Danish full scale results from co-firing straw and coal, the test facility and test program, and the potential theoretical support from the Technical University of Denmark are presented in this paper...

  8. Quantitative measurement of cerebral blood flow in a juvenile porcine model by depth-resolved near-infrared spectroscopy

    Science.gov (United States)

    Elliott, Jonathan T.; Diop, Mamadou; Tichauer, Kenneth M.; Lee, Ting-Yim; Lawrence, Keith St.

    2010-05-01

    Nearly half a million children and young adults are affected by traumatic brain injury each year in the United States. Although adequate cerebral blood flow (CBF) is essential to recovery, complications that disrupt blood flow to the brain and exacerbate neurological injury often go undetected because no adequate bedside measure of CBF exists. In this study we validate a depth-resolved, near-infrared spectroscopy (NIRS) technique that provides quantitative CBF measurement despite significant signal contamination from skull and scalp tissue. The respiration rates of eight anesthetized pigs (weight: 16.2+/-0.5 kg, age: 1 to 2 months old) are modulated to achieve a range of CBF levels. Concomitant CBF measurements are performed with NIRS and CT perfusion. A significant correlation between CBF measurements from the two techniques is demonstrated (r2=0.714, slope=0.92, p<0.001), and the bias between the two techniques is -2.83 mL.min-1.100 g-1 (CI0.95: -19.63 mL.min-1.100 g-1-13.9 mL.min-1.100 g-1). This study demonstrates that accurate measurements of CBF can be achieved with depth-resolved NIRS despite significant signal contamination from scalp and skull. The ability to measure CBF at the bedside provides a means of detecting, and thereby preventing, secondary ischemia during neurointensive care.

  9. Frequency-resolved interferometric measurement of local density fluctuations for turbulent combustion analysis

    International Nuclear Information System (INIS)

    Köberl, S; Giuliani, F; Woisetschläger, J; Fontaneto, F

    2010-01-01

    A validation of a novel interferometric measurement technique for the frequency-resolved detection of local density fluctuation in turbulent combustion analysis was performed in this work. Two laser vibrometer systems together with a signal analyser were used to obtain frequency spectra of density fluctuations across a methane-jet flame. Since laser vibrometry is based on interferometric techniques, the derived signals are path-integrals along the measurement beam. To obtain local frequency spectra of density fluctuations, long-time-averaged measurements from each of the two systems were performed using correlation functions and cross spectra. Results were compared to data recorded by standard interferometric techniques for validation purposes. Additionally, Raman scattering and laser Doppler velocimetry were used for flame characterization

  10. Improvements in brain activation detection using time-resolved diffuse optical means

    Science.gov (United States)

    Montcel, Bruno; Chabrier, Renee; Poulet, Patrick

    2005-08-01

    An experimental method based on time-resolved absorbance difference is described. The absorbance difference is calculated over each temporal step of the optical signal with the time-resolved Beer-Lambert law. Finite element simulations show that each step corresponds to a different scanned zone and that cerebral contribution increases with the arrival time of photons. Experiments are conducted at 690 and 830 nm with a time-resolved system consisting of picosecond laser diodes, micro-channel plate photo-multiplier tube and photon counting modules. The hemodynamic response to a short finger tapping stimulus is measured over the motor cortex. Time-resolved absorbance difference maps show that variations in the optical signals are not localized in superficial regions of the head, which testify for their cerebral origin. Furthermore improvements in the detection of cerebral activation is achieved through the increase of variations in absorbance by a factor of almost 5 for time-resolved measurements as compared to non-time-resolved measurements.

  11. Relasphone—Mobile and Participative In Situ Forest Biomass Measurements Supporting Satellite Image Mapping

    Directory of Open Access Journals (Sweden)

    Matthieu Molinier

    2016-10-01

    Full Text Available Due to the high cost of traditional forest plot measurements, the availability of up-to-date in situ forest inventory data has been a bottleneck for remote sensing image analysis in support of the important global forest biomass mapping. Capitalizing on the proliferation of smartphones, citizen science is a promising approach to increase spatial and temporal coverages of in situ forest observations in a cost-effective way. Digital cameras can be used as a relascope device to measure basal area, a forest density variable that is closely related to biomass. In this paper, we present the Relasphone mobile application with extensive accuracy assessment in two mixed forest sites from different biomes. Basal area measurements in Finland (boreal zone were in good agreement with reference forest inventory plot data on pine ( R 2 = 0 . 75 , R M S E = 5 . 33 m 2 /ha, spruce ( R 2 = 0 . 75 , R M S E = 6 . 73 m 2 /ha and birch ( R 2 = 0 . 71 , R M S E = 4 . 98 m 2 /ha, with total relative R M S E ( % = 29 . 66 % . In Durango, Mexico (temperate zone, Relasphone stem volume measurements were best for pine ( R 2 = 0 . 88 , R M S E = 32 . 46 m 3 /ha and total stem volume ( R 2 = 0 . 87 , R M S E = 35 . 21 m 3 /ha. Relasphone data were then successfully utilized as the only reference data in combination with optical satellite images to produce biomass maps. The Relasphone concept has been validated for future use by citizens in other locations.

  12. The time resolved measurement of ultrashort terahertz-band electric fields without an ultrashort probe

    International Nuclear Information System (INIS)

    Walsh, D. A.; Snedden, E. W.; Jamison, S. P.

    2015-01-01

    The time-resolved detection of ultrashort pulsed THz-band electric field temporal profiles without an ultrashort laser probe is demonstrated. A non-linear interaction between a narrow-bandwidth optical probe and the THz pulse transposes the THz spectral intensity and phase information to the optical region, thereby generating an optical pulse whose temporal electric field envelope replicates the temporal profile of the real THz electric field. This optical envelope is characterised via an autocorrelation based FROG (frequency resolved optical gating) measurement, hence revealing the THz temporal profile. The combination of a narrow-bandwidth, long duration, optical probe, and self-referenced FROG makes the technique inherently immune to timing jitter between the optical probe and THz pulse and may find particular application where the THz field is not initially generated via ultrashort laser methods, such as the measurement of longitudinal electron bunch profiles in particle accelerators

  13. Method for local temperature measurement in a nanoreactor for in situ high-resolution electron microscopy.

    Science.gov (United States)

    Vendelbo, S B; Kooyman, P J; Creemer, J F; Morana, B; Mele, L; Dona, P; Nelissen, B J; Helveg, S

    2013-10-01

    In situ high-resolution transmission electron microscopy (TEM) of solids under reactive gas conditions can be facilitated by microelectromechanical system devices called nanoreactors. These nanoreactors are windowed cells containing nanoliter volumes of gas at ambient pressures and elevated temperatures. However, due to the high spatial confinement of the reaction environment, traditional methods for measuring process parameters, such as the local temperature, are difficult to apply. To address this issue, we devise an electron energy loss spectroscopy (EELS) method that probes the local temperature of the reaction volume under inspection by the electron beam. The local gas density, as measured using quantitative EELS, is combined with the inherent relation between gas density and temperature, as described by the ideal gas law, to obtain the local temperature. Using this method we determined the temperature gradient in a nanoreactor in situ, while the average, global temperature was monitored by a traditional measurement of the electrical resistivity of the heater. The local gas temperatures had a maximum of 56 °C deviation from the global heater values under the applied conditions. The local temperatures, obtained with the proposed method, are in good agreement with predictions from an analytical model. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. In situ measurement of the energy gap of a semiconductor using a microcontroller-based system

    International Nuclear Information System (INIS)

    Mukaro, R; Taele, B M; Tinarwo, D

    2006-01-01

    This paper describes a microcontroller-based laboratory technique for automatic in situ measurement of the energy gap of germanium. The design is based on the original undergraduate laboratory experiment in which students manually measure the variation of the reverse saturation current of a germanium diode with temperature using a current-to-voltage converter. After collecting the results students later analyse them to determine the energy gap of the semiconductor. The objective of this work was to introduce interfacing and computerized measurement systems in the undergraduate laboratory. The microcontroller-based data acquisition system and its implementation in automatic in situ measurement of the band gap of germanium diode is presented. The system which uses an LM335 temperature sensor for measuring temperature transmits the measured data to the computer via the RS232 serial port while a C++ software program developed to run on the computer monitors the serial port for incoming information sent by the microcontroller. This information is displayed on the computer screen as it comes and automatically saved to a data file. Once all the data are received, the computer performs least-squares fit to the data to compute the energy gap which is displayed on the screen together with its error estimate. For the IN34A germanium diode used the value of the energy gap obtained was 0.50 ± 0.02 eV

  15. In situ measurement of the energy gap of a semiconductor using a microcontroller-based system

    Energy Technology Data Exchange (ETDEWEB)

    Mukaro, R [Department of Physics, Bindura University of Science, P/Bag 1020, Bindura (Zimbabwe); Taele, B M [Department of Physics and Electronics, National University of Lesotho, Roma 180 (Lesotho); Tinarwo, D [Department of Physics, Bindura University of Science, P/Bag 1020, Bindura (Zimbabwe)

    2006-05-01

    This paper describes a microcontroller-based laboratory technique for automatic in situ measurement of the energy gap of germanium. The design is based on the original undergraduate laboratory experiment in which students manually measure the variation of the reverse saturation current of a germanium diode with temperature using a current-to-voltage converter. After collecting the results students later analyse them to determine the energy gap of the semiconductor. The objective of this work was to introduce interfacing and computerized measurement systems in the undergraduate laboratory. The microcontroller-based data acquisition system and its implementation in automatic in situ measurement of the band gap of germanium diode is presented. The system which uses an LM335 temperature sensor for measuring temperature transmits the measured data to the computer via the RS232 serial port while a C++ software program developed to run on the computer monitors the serial port for incoming information sent by the microcontroller. This information is displayed on the computer screen as it comes and automatically saved to a data file. Once all the data are received, the computer performs least-squares fit to the data to compute the energy gap which is displayed on the screen together with its error estimate. For the IN34A germanium diode used the value of the energy gap obtained was 0.50 {+-} 0.02 eV.

  16. Cross-check of ex-situ and in-situ metrology of a bendable temperature stabilized KB mirror

    International Nuclear Information System (INIS)

    Yuan Sheng; Goldberg, Kenneth A.; Yashchuk, Valeriy V.; Celestre, Richard; McKinney, Wayne R.; Morrison, Gregory; Macdougall, James; Mochi, Iacopo; Warwick, Tony

    2011-01-01

    At the Advanced Light Source (ALS), we are developing broadly applicable, high-accuracy, in-situ, at-wavelength wavefront slope measurement techniques for Kirkpatrick-Baez (KB) mirror nano-focusing. In this paper, we report an initial cross-check of ex-situ and in-situ metrology of a bendable temperature stabilized KB mirror. This cross-check provides a validation of the in-situ shearing interferometry, currently under development at the ALS.

  17. CO2 laser interferometer for temporally and spatially resolved electron density measurements

    Science.gov (United States)

    Brannon, P. J.; Gerber, R. A.; Gerardo, J. B.

    1982-09-01

    A 10.6-μm Mach-Zehnder interferometer has been constructed to make temporally and spatially resolved measurements of electron densities in plasmas. The device uses a pyroelectric vidicon camera and video memory to record and display the two-dimensional fringe pattern and a Pockels cell to limit the pulse width of the 10.6-μm radiation. A temporal resolution of 14 ns has been demonstrated. The relative sensitivity of the device for electron density measurements is 2×1015 cm-2 (the line integral of the line-of-sight length and electron density), which corresponds to 0.1 fringe shift.

  18. CO2 laser interferometer for temporally and spatially resolved electron density measurements

    International Nuclear Information System (INIS)

    Brannon, P.J.; Gerber, R.A.; Gerardo, J.B.

    1982-01-01

    A 10.6-μm Mach--Zehnder interferometer has been constructed to make temporally and spatially resolved measurements of electron densities in plasmas. The device uses a pyroelectric vidicon camera and video memory to record and display the two-dimensional fringe pattern and a Pockels cell to limit the pulse width of the 10.6-μm radiation. A temporal resolution of 14 ns has been demonstrated. The relative sensitivity of the device for electron density measurements is 2 x 10 15 cm -2 (the line integral of the line-of-sight length and electron density), which corresponds to 0.1 fringe shift

  19. In-Situ Measurement of Hall Thruster Erosion Using a Fiber Optic Regression Probe

    Science.gov (United States)

    Polzin, Kurt; Korman, Valentin

    2009-01-01

    One potential life-limiting mechanism in a Hall thruster is the erosion of the ceramic material comprising the discharge channel. This is especially true for missions that require long thrusting periods and can be problematic for lifetime qualification, especially when attempting to qualify a thruster by analysis rather than a test lasting the full duration of the mission. In addition to lifetime, several analytical and numerical models include electrode erosion as a mechanism contributing to enhanced transport properties. However, there is still a great deal of dispute over the importance of erosion to transport in Hall thrusters. The capability to perform an in-situ measurement of discharge channel erosion is useful in addressing both the lifetime and transport concerns. An in-situ measurement would allow for real-time data regarding the erosion rates at different operating points, providing a quick method for empirically anchoring any analysis geared towards lifetime qualification. Erosion rate data over a thruster s operating envelope would also be useful in the modeling of the detailed physics inside the discharge chamber. There are many different sensors and techniques that have been employed to quantify discharge channel erosion in Hall thrusters. Snapshots of the wear pattern can be obtained at regular shutdown intervals using laser profilometry. Many non-intrusive techniques of varying complexity and sensitivity have been employed to detect the time-varying presence of erosion products in the thruster plume. These include the use quartz crystal microbalances, emission spectroscopy, laser induced flourescence, and cavity ring-down spectroscopy. While these techniques can provide a very accurate picture of the level of eroded material in the thruster plume, it is more difficult to use them to determine the location from which the material was eroded. Furthermore, none of the methods cited provide a true in-situ measure of erosion at the channel surface while

  20. Understanding optically stimulated charge movement in quartz and feldspar using time-resolved measurements

    International Nuclear Information System (INIS)

    Ankjaergaard, C.

    2010-02-01

    Thermoluminescence (TL) and optically stimulated luminescence (OSL) from quartz and feldspar are widely used in accident dosimetry and luminescence dating. In order to improve already existing methods or to develop new methods towards extending the current limits of the technique, it is important to understand the charge movement within these materials. Earlier studies have primarily focussed on examination of the trap behaviour; however, this only tells half of the story as OSL is a combination of charge stimulation and recombination. By using time-resolved OSL (TR-OSL), one can directly examine the recombination route(s), and thus obtain insight into the other half of the process involved in luminescence emission. This thesis studies the TR-OSL and optically stimulated phosphorescence signals from quartz and feldspars spanning several orders of magnitude in time (few ns to the seconds time scale) in order to identify various charge transport mechanisms in the different time regimes. The techniques employed are time-resolved OSL, continuous-wave OSL, TL, optically stimulated exo-electron (OSE) emission and time-resolved OSE. These different techniques are used in combination with variable thermal or optical stimulation energy. The thesis first delves into three main methodological developments, namely (i) research and development of the equipment for TR-OSL measurements, (ii) finding the best method for multiple-exponential analysis of a TR-OSL curve, and (iii) optimisation of the pulsing configuration for the best separation of quartz OSL from a mixed quarts-feldspar sample. It then proceeds to study the different charge transport mechanisms subsequent to an optical stimulation pulse in quartz and feldspars. The results obtained for quartz conclude that the main lifetime component in quartz represents an excited state lifetime of the recombination centre, and the more slowly decaying components on the millisecond to seconds time scale arise from charge recycling

  1. Understanding optically stimulated charge movement in quartz and feldspar using time-resolved measurements

    Energy Technology Data Exchange (ETDEWEB)

    Ankjaergaard, C.

    2010-02-15

    Thermoluminescence (TL) and optically stimulated luminescence (OSL) from quartz and feldspar are widely used in accident dosimetry and luminescence dating. In order to improve already existing methods or to develop new methods towards extending the current limits of the technique, it is important to understand the charge movement within these materials. Earlier studies have primarily focussed on examination of the trap behaviour; however, this only tells half of the story as OSL is a combination of charge stimulation and recombination. By using time-resolved OSL (TR-OSL), one can directly examine the recombination route(s), and thus obtain insight into the other half of the process involved in luminescence emission. This thesis studies the TR-OSL and optically stimulated phosphorescence signals from quartz and feldspars spanning several orders of magnitude in time (few ns to the seconds time scale) in order to identify various charge transport mechanisms in the different time regimes. The techniques employed are time-resolved OSL, continuous-wave OSL, TL, optically stimulated exo-electron (OSE) emission and time-resolved OSE. These different techniques are used in combination with variable thermal or optical stimulation energy. The thesis first delves into three main methodological developments, namely (i) research and development of the equipment for TR-OSL measurements, (ii) finding the best method for multiple-exponential analysis of a TR-OSL curve, and (iii) optimisation of the pulsing configuration for the best separation of quartz OSL from a mixed quarts-feldspar sample. It then proceeds to study the different charge transport mechanisms subsequent to an optical stimulation pulse in quartz and feldspars. The results obtained for quartz conclude that the main lifetime component in quartz represents an excited state lifetime of the recombination centre, and the more slowly decaying components on the millisecond to seconds time scale arise from charge recycling

  2. Voltammetric, in-situ spectroelectrochemical and in-situ electrocolorimetric characterization of phthalocyanines

    Energy Technology Data Exchange (ETDEWEB)

    Koca, Atif [Department of Chemical Engineering, Faculty of Engineering, Marmara University, Goeztepe, 34722 Istanbul (Turkey)], E-mail: akoca@eng.marmara.edu.tr; Bayar, Serife; Dincer, Hatice A. [Department of Chemistry, Technical University of Istanbul, Maslak, 34469 Istanbul (Turkey); Gonca, Erguen [Department of Chemistry, Fatih University, TR34500 B.Cekmece, Istanbul (Turkey)

    2009-04-01

    In this work, electrochemical, and in-situ spectroelectrochemical characterization of the metallophthalocyanines bearing tetra-(1,1-(dicarbethoxy)-2-(2-methylbenzyl))-ethyl 3,10,17,24-tetra chloro groups were performed. Voltammetric and in-situ spectroelectrochemical measurements show that while cobalt phthalocyanine complex gives both metal-based and ring-based redox processes, zinc and copper phthalocyanines show only ring-based reduction and oxidation processes. The redox processes are generally diffusion-controlled, reversible and one-electron transfer processes. Differently lead phthalocyanine demetallized during second oxidation reaction while it was stable during reduction processes. An in-situ electrocolorimetric method, based on the 1931 CIE (Commission Internationale de l'Eclairage) system of colorimetry, has been applied to investigate the color of the electro-generated anionic and cationic forms of the complexes for the first time in this study.

  3. Effects of quartz particle size and water-to-solid ratio on hydrothermal synthesis of tobermorite studied by in-situ time-resolved X-ray diffraction

    International Nuclear Information System (INIS)

    Kikuma, J.; Tsunashima, M.; Ishikawa, T.; Matsuno, S.; Ogawa, A.; Matsui, K.; Sato, M.

    2011-01-01

    Hydrothermal synthesis process of tobermorite (5CaO.6SiO 2 .5H 2 O) has been investigated by in-situ X-ray diffraction using high-energy X-rays from a synchrotron radiation source in combination with a purpose-build autoclave cell. Dissolution rates of quartz were largely affected by its particle size distribution in the starting mixtures. However, the composition (Ca/Si) of non-crystalline C-S-H at the start of tobermorite formation was identical regardless of the quartz dissolution rate. An effect of water-to-solid ratio (w/s) was investigated for samples using fine particle quartz. Tobermorite did not occur with w/s of 1.7 but occurred with w/s higher than 3.0. Surprisingly, however, the dissolution curves of quartz were nearly identical for all samples with w/s from 1.7 to 9, indicating that the dissolution rate is predominated by surface area. Possible reaction mechanism for tobermorite formation will be discussed in terms of Ca and/or silicate ion concentration in the liquid phase and distribution of Ca/Si in non-crystalline C-S-H. - Graphical abstract: Time-resolved XRD data set was obtained at up to 190 deg. C under a saturated steam pressure. Tobermorite (5CaO.6SiO 2 .5H 2 O) formation reaction was investigated in detail for several different starting materials. Highlights: → Hydrothermal formation of tobermorite was monitored by in-situ XRD. → Ca/Si of C-S-H at the start time of tobermorite formation was determined. → The Ca/Si value was identical regardless of the quartz particle size in the starting mixture.

  4. A single well pumping and recovery test to measure in situ acrotelm transmissivity in raised bogs

    NARCIS (Netherlands)

    Schaaf, van der S.

    2004-01-01

    A quasi-steady-state single pit pumping and recovery test to measure in situ the transmissivity of the highly permeable upper layer of raised bogs, the acrotelm, is described and discussed. The basic concept is the expanding depression cone during both pumping and recovery. It is shown that applying

  5. USE OF THE MOBILE NYLON BAG TECHNIQUE FOR MEASURING IN SITU DIGESTIBILITY OF SOME SUPPLIES FOOD AND AVOCADO IN PIGS

    Directory of Open Access Journals (Sweden)

    Julio Ly Carmenatti

    2015-08-01

    Full Text Available The mobile nylon bag technique was used for measuring in situ digestibility of conventional feeds and avocado (Persea americana Mills products in three 70 kg pigs fitted with a simple cannula in duodenum. One 3x3 Latin square was used for determining in situ digestibility of soybean, maize and sorghum meal and another 3x3 Latin square for measuring in situ digestibility of seed, peel plus seed meal and the entire Nayaritean avocado fruit of Hass type, as well as of the commercial diet given ad libitum to animals. In a preliminary test conducted with only bags containing a commercial feedstuff, it was found that in situ digestibility of DM was on average 73.01%. In conventional feeds, soybean meal samples showed higher (P0.05 for N digestibility among avocado products, which was generally low (between 28.02 and 34.58%. In situ organic matter digestibility was linked to that of MS (r = 0.915; P<0.001, both in percent, in 42 examined samples, by the following found equation: y = 2.076 + 0.926 x. The herein described studies concerning the utilization of the mobile bag showed that it is possible to obtain a fast response in connection to the nutritive value of non conventional, tropical alimentary resources for pigs. On the other hand, the continuation of studies relative to the nutritive value of avocado products for pigs is highly recommended.

  6. Model-based aviation advice on distal volcanic ash clouds by assimilating aircraft in situ measurements

    Directory of Open Access Journals (Sweden)

    G. Fu

    2016-07-01

    Full Text Available The forecast accuracy of distal volcanic ash clouds is important for providing valid aviation advice during volcanic ash eruption. However, because the distal part of volcanic ash plume is far from the volcano, the influence of eruption information on this part becomes rather indirect and uncertain, resulting in inaccurate volcanic ash forecasts in these distal areas. In our approach, we use real-life aircraft in situ observations, measured in the northwestern part of Germany during the 2010 Eyjafjallajökull eruption, in an ensemble-based data assimilation system combined with a volcanic ash transport model to investigate the potential improvement on the forecast accuracy with regard to the distal volcanic ash plume. We show that the error of the analyzed volcanic ash state can be significantly reduced through assimilating real-life in situ measurements. After a continuous assimilation, it is shown that the aviation advice for Germany, the Netherlands and Luxembourg can be significantly improved. We suggest that with suitable aircrafts measuring once per day across the distal volcanic ash plume, the description and prediction of volcanic ash clouds in these areas can be greatly improved.

  7. Quantification of in situ temperature measurements on a PBI-based high temperature PEMFC unit cell

    DEFF Research Database (Denmark)

    Lebæk, Jesper; Ali, Syed Talat; Møller, Per

    2010-01-01

    The temperature is a very important operating parameter for all types of fuel cells. In the present work distributed in situ temperature measurements are presented on a polybenzimidazole based high temperature PEM fuel cell (HT-PEM). A total of 16 T-type thermocouples were embedded on both the an...

  8. Spatially-resolved in-situ quantification of biofouling using optical coherence tomography (OCT) and 3D image analysis in a spacer filled channel

    KAUST Repository

    Fortunato, Luca

    2016-11-21

    The use of optical coherence tomography (OCT) to investigate biomass in membrane systems has increased with time. OCT is able to characterize the biomass in-situ and non-destructively. In this study, a novel approach to process three-dimensional (3D) OCT scans is proposed. The approach allows obtaining spatially-resolved detailed structural biomass information. The 3D biomass reconstruction enables analysis of the biomass only, obtained by subtracting the time zero scan to all images. A 3D time series analysis of biomass development in a spacer filled channel under representative conditions (cross flow velocity) for a spiral wound membrane element was performed. The flow cell was operated for five days with monitoring of ultrafiltration membrane performance: feed channel pressure drop and permeate flux. The biomass development in the flow cell was detected by OCT before a performance decline was observed. Feed channel pressure drop continuously increased with increasing biomass volume, while flux decline was mainly affected in the initial phase of biomass accumulation. The novel OCT imaging approach enabled the assessment of spatial biomass distribution in the flow cell, discriminating the total biomass volume between the membrane, feed spacer and glass window. Biomass accumulation was stronger on the feed spacer during the early stage of biofouling, impacting the feed channel pressure drop stronger than permeate flux.

  9. In Situ Stoichiometry in a Large River: Continuous Measurement of Doc, NO3 and PO4 in the Sacramento River

    Science.gov (United States)

    Downing, B. D.; Pellerin, B. A.; Bergamaschi, B. A.; Saraceno, J.

    2011-12-01

    Studying controls on geochemical processes in rivers and streams is difficult because concentration and composition often changes rapidly in response to physical and biological forcings. Understanding biogeochemical dynamics in rivers will improve current understanding of the role of watershed sources to carbon cycling, river and stream ecology, and loads to estuaries and oceans. Continuous measurements of dissolved organic carbon (DOC), nitrate (NO3-) and soluble reactive phosphate (SRP) concentrations are now possible, along with some information about DOC composition. In situ sensors designed to measure these constituents provide high frequency, real-time data that can elucidate hydrologic and biogeochemical controls which are difficult to detect using more traditional sampling approaches. Here we present a coupled approach, using in situ optical instrumentation with discharge measurements to provide quantitative estimates of constituent loads to investigate C, NO3- and SRP sources and processing in the Sacramento River, CA, USA. Continuous measurement of DOC concentration was conducted by use of a miniature in situ fluorometer (Turner Designs Cyclops) designed to measure chromophoric dissolved organic matter fluorescence (FDOM) over the course of an entire year. Nitrate was measured concurrently using a Satlantic SUNA and phosphate was measured using a WETLabs model Cycle-P instrument for a two week period in July 2011. Continuous measurement from these instruments paired with continuous measurement of physical water quality variables such as temperature, pH, specific conductance, dissolved oxygen, and turbidity, were used to investigate physical and chemical dynamics of DOC, NO3-, SRP over varying time scales. Deploying these instruments at pre-existing USGS discharge gages allowed for calculation of instantaneous and integrated constituent fluxes, as well as filling in gaps in our understanding biogeochemical processes and transport. Results from the study

  10. A diagnostic for time-resolved spatial profiles measurements on the ion temperature on JET

    International Nuclear Information System (INIS)

    Brocken, H.J.B.M.; Ven, H.W van der.

    1980-05-01

    A neutral particle scattering experiment for a continuous measurement of the ion temperature and ion density of the JET plasma in the hydrogen and deuterium phase is proposed. Space- and time-resolved measurements are possible by injection of a mono-energetic particle beam into the plasma and from the analysis of the velocity distribution of the scattered particles. The requirements on the injection system are specified and a suitable analyzer system is described

  11. In situ synchrotron X-ray studies during metal-organic chemical vapor deposition of semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Carol [Northern Illinois Univ., DeKalb, IL (United States); Argonne National Lab., Argonne, IL (United States); Highland, Matthew J.; Perret, Edith; Fuoss, Paul H.; Streiffer, Stephen K.; Stephenson, G. Brian [Argonne National Lab., Argonne, IL (United States); Richard, Marie-Ingrid [Universite Paul Cezanne Aix-Marseille, Marseille (France)

    2012-07-01

    In-situ, time-resolved techniques provide valuable insight into the complex interplay of surface structural and chemical evolution occurring during materials synthesis and processing of semiconductors. Our approach is to observe the evolution of surface structure and morphology at the atomic scale in real-time during metal organic vapor phase deposition (MOCVD) by using grazing incidence x-ray scattering and X-ray fluorescence, coupled with visible light scattering. Our vertical-flow MOCVD chamber is mounted on a 'z-axis' surface diffractometer designed specifically for these studies of the film growth, surface evolution and the interactions within a controlled growth environment. These techniques combine the ability of X-rays to penetrate a complex environment for measurements during growth and processing, with the sensitivity of surface scattering techniques to atomic and nanoscale structure. In this talk, we outline our program and discuss examples from our in-situ and real-time X-ray diffraction and fluorescence studies of InN, GaN, and InGaN growth on GaN(0001).

  12. Spatially and time-resolved element-specific in situ corrosion investigations with an online hyphenated microcapillary flow injection inductively coupled plasma mass spectrometry set-up

    International Nuclear Information System (INIS)

    Homazava, N.; Ulrich, A.; Kraehenbuehl, U.

    2008-01-01

    A novel technique for in situ spatial, time-resolved element-specific investigations of corrosion processes is developed. The technique is based on an online hyphenation of a specially designed microflow-capillary set-up to inductively coupled plasma mass spectrometry (ICP-MS) using flow injection sample introduction. Detailed aspects of the method development, optimization of the sample microflow introduction and flow injection characteristics for the localized corrosion analysis are described. Moreover, specific challenges of the ICP-MS analysis as applied to the analysis of corrosion sample probes, e.g. high matrix load and limited sample volume, are discussed. The efficiency of the developed technique is proved by corrosion susceptibility analysis of a commercial Al alloy. Results of the corrosion experiments of the aluminum alloy AA 6111 are presented to demonstrate the influence of various factors such as exposure time and pH value of the corrosive medium on the element-specific dissolution rates of the alloy. This novel technique provides new aspects in corrosion science and sheds new light on corrosion mechanisms

  13. Direct push driven in situ color logging tool (CLT): technique, analysis routines, and application

    Science.gov (United States)

    Werban, U.; Hausmann, J.; Dietrich, P.; Vienken, T.

    2014-12-01

    Direct push technologies have recently seen a broad development providing several tools for in situ parameterization of unconsolidated sediments. One of these techniques is the measurement of soil colors - a proxy information that reveals to soil/sediment properties. We introduce the direct push driven color logging tool (CLT) for real-time and depth-resolved investigation of soil colors within the visible spectrum. Until now, no routines exist on how to handle high-resolved (mm-scale) soil color data. To develop such a routine, we transform raw data (CIEXYZ) into soil color surrogates of selected color spaces (CIExyY, CIEL*a*b*, CIEL*c*h*, sRGB) and denoise small-scale natural variability by Haar and Daublet4 wavelet transformation, gathering interpretable color logs over depth. However, interpreting color log data as a single application remains challenging. Additional information, such as site-specific knowledge of the geological setting, is required to correlate soil color data to specific layers properties. Hence, we exemplary provide results from a joint interpretation of in situ-obtained soil color data and 'state-of-the-art' direct push based profiling tool data and discuss the benefit of additional data. The developed routine is capable of transferring the provided information obtained as colorimetric data into interpretable color surrogates. Soil color data proved to correlate with small-scale lithological/chemical changes (e.g., grain size, oxidative and reductive conditions), especially when combined with additional direct push vertical high resolution data (e.g., cone penetration testing and soil sampling). Thus, the technique allows enhanced profiling by means of providing another reproducible high-resolution parameter for analysis subsurface conditions. This opens potential new areas of application and new outputs for such data in site investigation. It is our intention to improve color measurements by means method of application and data

  14. In-Situ Measurement of Power Loss for Crystalline Silicon Modules Undergoing Thermal Cycling and Mechanical Loading Stress Testing

    DEFF Research Database (Denmark)

    Spataru, Sergiu; Hacke, Peter; Sera, Dezso

    We analyze the degradation of multi-crystalline silicon photovoltaic modules undergoing simultaneous thermal, mechanical, and humidity-freeze stress testing to develop a dark environmental chamber in-situ measurement procedure for determining module power loss. We analyze dark I-V curves measured...

  15. Thermal simulation of drift emplacement (TSS): In-situ instrumentation and numerical modeling of stress measurement methods

    International Nuclear Information System (INIS)

    Heusermann, S.

    1988-01-01

    In the course of the planned demonstration test Thermal Simulation of Drift Emplacement (TSS) BGR is carrying out in-situ-measurements of rock stresses, rock deformability and permeability of salt rock and backfill material. The following techniques developed and proved by BGR during the last years are planned to be used in the TSS project: overcoring technique, dilatometer technique, hard inclusion technique, slot-cutting techniques, large-flatjack technique, compensation tests in laboratory, vacuum tests, injection tests, and tracer tests. The purpose of measurements is to determine: the initial stress state; stress gradients around test drifts; stress change caused by mining activities, by creep and stress relaxation and by temperature; the in-situ load-deformation behavior of rock salt; the permeability of rock salt around test drifts; the compaction behavior of backfill material; and the load-deformation behavior of rock salt and borehole grout in laboratory tests

  16. Chromosome translocations measured by fluorescence in-situ hybridization: A promising biomarker

    International Nuclear Information System (INIS)

    Lucas, J.N.; Straume, T.

    1995-10-01

    A biomarker for exposure and risk assessment would be most useful if it employs an endpoint that is highly quantitative, is stable with time, and is relevant to human risk. Recent advances in chromosome staining using fluorescence in situ hybridization (FISH) facilitate fast and reliable measurement of reciprocal translocations, a kind of DNA damage linked to both prior exposure and risk. In contrast to other biomarkers available, the frequency of reciprocal translocations in individuals exposed to whole-body radiation is stable with time post exposure, has a rather small inter-individual variability, and can be measured accurately at the low levels. Here, the authors discuss results from their studies demonstrating that chromosome painting can be used to reconstruct radiation dose for workers exposed within the dose limits, for individuals exposed a long time ago, and even for those who have been diagnosed with leukemia but not yet undergone therapy

  17. In Situ Measurement of Discomfort Curves for Seated Subjects in a Car on the Four-Post Rig

    Directory of Open Access Journals (Sweden)

    T. Ibicek

    2014-01-01

    Full Text Available The aim of this study is to measure and quantify perceived intensity of discomfort due to vibration in a vehicle in situ considering complete vehicle dynamic behaviour. The shaker table based discomfort curves or the road test results may not accurately and universally indicate the true level of human discomfort in a vehicle. A new experimental method, using a seated human in a car on the four-post rig simulator, is proposed to quantify discomfort. The intensity of perception to vibration decreased with decreasing input and increasing frequency; the rate of change is different from the published literature; the difference is large for angular modes of inputs. Vehicle dynamic response is used to inform and analyse the results. The repeatability of the method and the fact that they are in situ measurements may eventually help reduce reliance on the road tests. Furthermore, discomfort curves obtained, subsequently, can be used in predictive models.

  18. Hysteresis in YHx films observed with in situ measurements

    International Nuclear Information System (INIS)

    Remhof, A.; Kerssemakers, J.W.J.; Molen, S.J. van der; Griessen, R.; Kooij, E.S.

    2002-01-01

    Giant hysteretic effects in the YH x hydrogen switchable mirror system are observed between x=1.9 and x=3 in pressure composition isotherms, optical and electrical properties, and mechanical stress. Polycrystalline Y films are studied by simultaneous in situ measurements of electrical resistivity, optical transmittance and x-ray diffractometry. These experiments are linked to optical microscopy of the samples. During hydrogen loading above x=1.9 the films stay in the metallic fcc phase until the optical transmittance reaches its minimum and the electrical resistance curve exhibits a characteristic feature at x=2.1. Upon further loading the system crosses the miscibility gap in which the fcc phase coexists with the hcp phase before hydrogen saturation is reached in the pure hcp phase. While the fcc phase stays at a concentration of x=2.1 in the coexistence region during loading, it remains at a concentration of x=1.9 during unloading. The hysteretic effects observed in optical transmission and electrical resistivity result from the different properties of the low concentration fcc phase YH 1.9 and the high concentration fcc phase YH 2.1 . They can be explained on the basis of the bulk phase diagram if the different stress states during loading and unloading are taken into account. These results contradict earlier interpretations of the hysteresis in thin film YH x , based on nonsimultaneous measurements of the optical and structural properties on different films

  19. Measurement and Modeling of Vertically Resolved Aerosol Optical Properties and Radiative Fluxes Over the ARM SGP Site

    Science.gov (United States)

    Schmid, B.; Arnott, P.; Bucholtz, A.; Colarco, P.; Covert, D.; Eilers, J.; Elleman, R.; Ferrare, R.; Flagan, R.; Jonsson, H.

    2003-01-01

    In order to meet one of its goals - to relate observations of radiative fluxes and radiances to the atmospheric composition - the Department of Energy's Atmospheric Radiation Measurement (ARM) program has pursued measurements and modeling activities that attempt to determine how aerosols impact atmospheric radiative transfer, both directly and indirectly. However, significant discrepancies between aerosol properties measured in situ or remotely remain. One of the objectives of the Aerosol Intensive Operational Period (TOP) conducted by ARM in May 2003 at the ARM Southern Great Plains (SGP) site in north central Oklahoma was to examine and hopefully reduce these differences. The IOP involved airborne measurements from two airplanes over the heavily instrumented SGP site. We give an overview of airborne results obtained aboard the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter aircraft. The Twin Otter performed 16 research flights over the SGP site. The aircraft carried instrumentation to perform in-situ measurements of aerosol absorption, scattering, extinction and particle size. This included such novel techniques as the photoacoustic and cavity ring-down methods for in-situ absorption (675 nm) and extinction (675 and 1550 nm) and a new multiwavelength, filter-based absorption photometer (467, 530, 660 nm). A newly developed instrument measured cloud condensation nucleus concentration (CCN) concentrations at two supersaturation levels. Aerosol optical depth and extinction (354-2139 nm) were measured with the NASA Ames Airborne Tracking 14-channel sunphotometer. Furthermore, up-and downwelling solar (broadband and spectral) and infrared radiation were measured using seven individual radiometers. Three up-looking radiometers werer mounted on a newly developed stabilized platform, keeping the instruments level up to aircraft pitch and roll angles of approximately 10(exp 0). This resulted in unprecedented continuous vertical profiles

  20. Reduction of Poisson noise in measured time-resolved data for time-domain diffuse optical tomography.

    Science.gov (United States)

    Okawa, S; Endo, Y; Hoshi, Y; Yamada, Y

    2012-01-01

    A method to reduce noise for time-domain diffuse optical tomography (DOT) is proposed. Poisson noise which contaminates time-resolved photon counting data is reduced by use of maximum a posteriori estimation. The noise-free data are modeled as a Markov random process, and the measured time-resolved data are assumed as Poisson distributed random variables. The posterior probability of the occurrence of the noise-free data is formulated. By maximizing the probability, the noise-free data are estimated, and the Poisson noise is reduced as a result. The performances of the Poisson noise reduction are demonstrated in some experiments of the image reconstruction of time-domain DOT. In simulations, the proposed method reduces the relative error between the noise-free and noisy data to about one thirtieth, and the reconstructed DOT image was smoothed by the proposed noise reduction. The variance of the reconstructed absorption coefficients decreased by 22% in a phantom experiment. The quality of DOT, which can be applied to breast cancer screening etc., is improved by the proposed noise reduction.

  1. Considerations and Optimization of Time-Resolved PIV Measurements near Complex Wind-Generated Air-Water Wave Interface

    Science.gov (United States)

    Stegmeir, Matthew; Markfort, Corey

    2017-11-01

    Time Resolved PIV measurements are applied on both sides of air-water interface in order to study the coupling between air and fluid motion. The multi-scale and 3-dimensional nature of the wave structure poses several unique considerations to generate optimal-quality data very near the fluid interface. High resolution and dynamic range in space and time are required to resolve relevant flow scales along a complex and ever-changing interface. Characterizing the two-way coupling across the air-water interface provide unique challenges for optical measurement techniques. Approaches to obtain near-boundary measurement on both sides of interface are discussed, including optimal flow seeding procedures, illumination, data analysis, and interface tracking. Techniques are applied to the IIHR Boundary-Layer Wind-Wave Tunnel and example results presented for both sides of the interface. The facility combines a 30m long recirculating water channel with an open-return boundary layer wind tunnel, allowing for the study of boundary layer turbulence interacting with a wind-driven wave field.

  2. Magnetic field effects on spectrally resolved lifetime of on-line oxygen monitoring using magneto-optic probes

    Science.gov (United States)

    Mermut, O.; Gallant, P.; Le Bouch, N.; Leclair, S.; Noiseux, I.; Vernon, M.; Morin, J.-F.; Diamond, K.; Patterson, M. S.; Samkoe, K.; Pogue, B.

    2009-02-01

    Multimodal agents that serve as both probes for contrast and light-activated effectors of cellular processes in diseased tissue were developed. These agents were introduced into multicellular tumor spheroids (3D tissue models) and in the chorioallantoic membrane (CAM) of a chicken embryo. The luminescence decay was examined using a novel technique involving a spectrally-resolved fluorescence lifetime apparatus integrated with a weak electromagnet. A spectrallyresolved lifetime setup was used to identify magneto-optic species sensitive to magnetic field effects and distinguish from background emissions. We demonstrate that the applied magnetic fields can alter reaction rates and product distribution of some dyes detected by time- and spectrally-resolved luminescence changes. We will discuss the use of exogenous magneto-optical probes taken up in tumors to both induce phototoxicity, a process that is governed by complex and dynamically evolving mechanisms involving reactive oxygen species, and monitor treatment progress. The magnetic field enhancement, measured over a range of weak fields (0-300 mT) is correlated to oxygenation and may be used to monitor dynamic changes occurring due to oxygen consumption over the course of photodynamic therapy. Such online measurements provide the possibility to derive real-time information about response to treatment via monitoring magnetic field enhancement/suppression of the time-resolved, spectrally-resolved luminescence of the probe at the site of the treatment directly. Magnetic perturbation of lifetime can serve as a status reporter, providing optical feedback of oxygen-mediated treatments in situ and allowing for real-time adjustment of a phototherapy treatment plan.

  3. In-situ biofouling assessment in spacer filled channels using optical coherence tomography (OCT): 3D biofilm thickness mapping

    KAUST Repository

    Fortunato, Luca

    2017-01-13

    Membrane systems for water purification can be seriously hampered by biofouling. The use of optical coherence tomography (OCT) to investigate biofilms in membrane systems has recently increased due to the ability to do the characterization in-situ and non-destructively The OCT biofilm thickness map is presented for the first time as a tool to assess biofilm spatial distribution on a surface. The map allows the visualization and evaluation of the biofilm formation and growth in membrane filtration systems through the use of a false color scale. The biofilm development was monitored with OCT to evaluate the suitability of the proposed approach. A 3D time series analysis of biofilm development in a spacer filled channel representative of a spiral-wound membrane element was performed. The biofilm thickness map enables the time-resolved and spatial-resolved evaluation and visualization of the biofilm deposition pattern in-situ non-destructively.

  4. In-Situ Investigation of Strain-Induced Martensitic Transformation Kinetics in an Austenitic Stainless Steel by Inductive Measurements

    Directory of Open Access Journals (Sweden)

    Carola Celada-Casero

    2017-07-01

    Full Text Available An inductive sensor developed by Philips ATC has been used to study in-situ the austenite (γ to martensite (α′ phase transformation kinetics during tensile testing in an AISI 301 austenitic stainless steel. A correlation between the sensor output signal and the volume fraction of α′-martensite has been found by comparing the results to the ex-situ characterization by magnetization measurements, light optical microscopy, and X-ray diffraction. The sensor has allowed for the observation of the stepwise transformation behavior, a not-well-understood phenomena that takes place in large regions of the bulk material and that so far had only been observed by synchrotron X-ray diffraction.

  5. IN-SITU MEASURING METHOD OF RADON AND THORON DIFFUSION COEFFICIENT IN SOIL

    Directory of Open Access Journals (Sweden)

    V.S. Yakovleva

    2014-06-01

    Full Text Available A simple and valid in-situ measurement method of effective diffusion coefficient of radon and thoron in soil and other porous materials was designed. The analysis of numerical investigation of radon and thoron transport in upper layers of soil revealed that thoron flux density from the earth surface does not depend on soil gas advective velocity and varies only with diffusion coefficient changes. This result showed the advantages of thoron using versus radon using in the suggested method. The comparison of the new method with existing ones previously developed. The method could be helpful for solving of problems of radon mass-transport in porous media and gaseous exchange between soil and atmosphere.

  6. Diurnal variability in riverine dissolved organic matter composition determined by in situ optical measurement in the San Joaquin River (California, USA)

    Science.gov (United States)

    Spencer, R.G.M.; Pellerin, B.A.; Bergamaschi, B.A.; Downing, B.D.; Kraus, T.E.C.; Smart, D.R.; Dahlgren, R.A.; Hernes, P.J.

    2007-01-01

    Dissolved organic matter (DOM) concentration and composition in riverine and stream systems are known to vary with hydrological and productivity cycles over the annual and interannual time scales. Rivers are commonly perceived as homogeneous with respect to DOM concentration and composition, particularly under steady flow conditions over short time periods. However, few studies have evaluated the impact of short term variability ( DOC) measurement alone. The in situ optical measurements described in this study clearly showed for the first time diurnal variations in DOM measurements, which have previously been related to both composition and concentration, even though diurnal changes were not well reflected in bulk DOC concentrations. An apparent asynchronous trend of DOM absorbance and chlorophyll-a in comparison to chromophoric dissolved organic matter (CDOM) fluorescence and spectral slope S290-350 suggests that no one specific CDOM spectrophotometric measurement explains absolutely DOM diurnal variation in this system; the measurement of multiple optical parameters is therefore recommended. The observed diurnal changes in DOM composition, measured by in situ optical instrumentation likely reflect both photochemical and biologically-mediated processes. The results of this study highlight that short-term variability in DOM composition may complicate trends for studies aiming to distinguish different DOM sources in riverine systems and emphasizes the importance of sampling specific study sites to be compared at the same time of day. The utilization of in situ optical technology allows short-term variability in DOM dynamics to be monitored and serves to increase our understanding of its processing and fundamental role in the aquatic environment. Copyright ?? 2007 John Wiley & Sons, Ltd.

  7. Space- and time-resolved measurements of ion energy distributions by neutral beam injection in TORTUR II

    International Nuclear Information System (INIS)

    Brocken, H.J.B.M.

    1981-10-01

    A method is described for the space- and time-resolved analysis of ion energy distributions in a plasma. A well-collimated neutral hydrogen beam is used to enhance the charge-exchange processes. The method is used in the TORTUR II tokamak to study the space and time evolution of the ion temperature profile of the plasma. The analytical background and the technique are described in detail. Examples of measurements on TORTUR II are presented

  8. In Situ Local Measurement of Austenite Mechanical Stability and Transformation Behavior in Third-Generation Advanced High-Strength Steels

    Science.gov (United States)

    Abu-Farha, Fadi; Hu, Xiaohua; Sun, Xin; Ren, Yang; Hector, Louis G.; Thomas, Grant; Brown, Tyson W.

    2018-05-01

    Austenite mechanical stability, i.e., retained austenite volume fraction (RAVF) variation with strain, and transformation behavior were investigated for two third-generation advanced high-strength steels (3GAHSS) under quasi-static uniaxial tension: a 1200 grade, two-phase medium Mn (10 wt pct) TRIP steel, and a 980 grade, three-phase TRIP steel produced with a quenching and partitioning heat treatment. The medium Mn (10 wt pct) TRIP steel deforms inhomogeneously via propagative instabilities (Lüders and Portevin Le Châtelier-like bands), while the 980 grade TRIP steel deforms homogenously up to necking. The dramatically different deformation behaviors of these steels required the development of a new in situ experimental technique that couples volumetric synchrotron X-ray diffraction measurement of RAVF with surface strain measurement using stereo digital image correlation over the beam impingement area. Measurement results with the new technique are compared to those from a more conventional approach wherein strains are measured over the entire gage region, while RAVF measurement is the same as that in the new technique. A determination is made as to the appropriateness of the different measurement techniques in measuring the transformation behaviors for steels with homogeneous and inhomogeneous deformation behaviors. Extension of the new in situ technique to the measurement of austenite transformation under different deformation modes and to higher strain rates is discussed.

  9. Industry-relevant magnetron sputtering and cathodic arc ultra-high vacuum deposition system for in situ x-ray diffraction studies of thin film growth using high energy synchrotron radiation

    OpenAIRE

    Schroeder, Jeremy; Thomson, W.; Howard, B.; Schell, N.; Näslund, Lars-Åke; Rogström, Lina; Johansson-Jöesaar, Mats P.; Ghafoor, Naureen; Odén, Magnus; Nothnagel, E.; Shepard, A.; Greer, J.; Birch, Jens

    2015-01-01

    We present an industry-relevant, large-scale, ultra-high vacuum (UHV) magnetron sputtering and cathodic arc deposition system purposefully designed for time-resolved in situ thin film deposition/annealing studies using high-energy (greater than50 keV), high photon flux (greater than10(12) ph/s) synchrotron radiation. The high photon flux, combined with a fast-acquisition-time (less than1 s) two-dimensional (2D) detector, permits time-resolved in situ structural analysis of thin film formation...

  10. Spatially resolved measurements of the magnetocaloric effect and the local magnetic field using thermography

    DEFF Research Database (Denmark)

    Christensen, Dennis; Bjørk, Rasmus; Nielsen, Kaspar Kirstein

    2010-01-01

    The magnetocaloric effect causes a magnetic material to change temperature upon application of a magnetic field. Here, spatially resolved measurements of the adiabatic temperature change are performed on a plate of gadolinium using thermography. The adiabatic temperature change is used to extract...... the corresponding change in the local magnetic field strength. The measured temperature change and local magnetic field strength are compared to results obtained with a numerical model, which takes demagnetization into account and employs experimental data....

  11. In situ viscometry by optical trapping interferometry

    DEFF Research Database (Denmark)

    Guzmán, C.; Flyvbjerg, Henrik; Köszali, R.

    2008-01-01

    We demonstrate quantitative in situ viscosity measurements by tracking the thermal fluctuations of an optically trapped microsphere subjected to a small oscillatory flow. The measured power spectral density of the sphere's positions displays a characteristic peak at the driving frequency of the f......We demonstrate quantitative in situ viscosity measurements by tracking the thermal fluctuations of an optically trapped microsphere subjected to a small oscillatory flow. The measured power spectral density of the sphere's positions displays a characteristic peak at the driving frequency...

  12. In situ stress and pore pressure in the Kumano Forearc Basin, offshore SW Honshu from downhole measurements during riser drilling

    Science.gov (United States)

    Saffer, D. M.; Flemings, P. B.; Boutt, D.; Doan, M.-L.; Ito, T.; McNeill, L.; Byrne, T.; Conin, M.; Lin, W.; Kano, Y.; Araki, E.; Eguchi, N.; Toczko, S.

    2013-05-01

    situ stress and pore pressure are key parameters governing rock deformation, yet direct measurements of these quantities are rare. During Integrated Ocean Drilling Program (IODP) Expedition #319, we drilled through a forearc basin at the Nankai subduction zone and into the underlying accretionary prism. We used the Modular Formation Dynamics Tester tool (MDT) for the first time in IODP to measure in situ minimum stress, pore pressure, and permeability at 11 depths between 729.9 and 1533.9 mbsf. Leak-off testing at 708.6 mbsf conducted as part of drilling operations provided a second measurement of minimum stress. The MDT campaign included nine single-probe (SP) tests to measure permeability and in situ pore pressure and two dual-packer (DP) tests to measure minimum principal stress. Permeabilities defined from the SP tests range from 6.53 × 10-17 to 4.23 × 10-14 m2. Pore fluid pressures are near hydrostatic throughout the section despite rapid sedimentation. This is consistent with the measured hydraulic diffusivity of the sediments and suggests that the forearc basin should not trap overpressures within the upper plate of the subduction zone. Minimum principal stresses are consistently lower than the vertical stress. We estimate the maximum horizontal stress from wellbore failures at the leak-off test and shallow MDT DP test depths. The results indicate a normal or strike-slip stress regime, consistent with the observation of abundant active normal faults in the seaward-most part of the basin, and a general decrease in fault activity in the vicinity of Site C0009.

  13. In situ investigation of catalysts for alcohol synthesis

    DEFF Research Database (Denmark)

    Duchstein, Linus Daniel Leonhard; Sharafutdinov, Irek; Wu, Qiongxiao

    consists of three complimentary in situ techniques: (1) Activity measurements based on a reactor connected to a gas chromatograph (GC), (2) In situ x-ray diffractometer (XRD) measurements based on a reactor cell connected to a mass spectrometer (MS), and (3) environmental TEM (ETEM) that allows...... distribution, measured both macroscopically (XRD) and microscopically (ETEM), with the catalytic activity....

  14. Assessing the small-strain soil stiffness for offshore wind turbines based on in situ seismic measurements

    NARCIS (Netherlands)

    Versteijlen, W.G.; Van Dalen, K.N.; Metrikine, A.; Hamre, L.

    2014-01-01

    In this contribution, in situ seismic measurements are used to derive the small-strain shear modulus of soil as input for two soil-structure interaction (SSI) models to assess the initial soil stiffness for offshore wind turbine foundations. This stiffness has a defining influence on the first

  15. The HUMSAT System: a CubeSat-based Constellation for In-situ and Inexpensive Environmental Measurements

    Science.gov (United States)

    Tubío-Pardavila, R.; Vigil, S. A.; Puig-Suari, J.; Aguado Agelet, F.

    2014-12-01

    There is a requirement for low cost in-situ measurements of environmental parameters such as air quality, meteorological data, and water quality in remote areas. Currently available solutions for such measurements include remote sensing from satellite and aircraft platforms, and in-situ measurements from mobile and aircraft platforms. Fixed systems such as eddy covariance networks, tall towers, and the Total Carbon Column Observing Network (TCCON) are providing precision greenhouse gas measurements. Within this context, the HUMSAT system designed by the University of Vigo (Spain) will complement existing high-precision measurement systems with low cost in-situ ground based sensors in remote locations using a constellation of CubeSats as a communications relay. The HUMSAT system standardizes radio communications in between deployed sensors and the CubeSats of the constellation, which act as store and forward satellites to ground stations for uploading to the internet. Current ground stations have been established at the University of Vigo (Spain) and California Polytechnic State University (Cal Poly). Users of the system may deploy their own environmental sensors to meet local requirements. The sensors will be linked to a low-cost satellite data transceiver using a standard HUMSAT protocol. The transceiver is capable of receiving data from the HUMSAT constellation to remotely reconfigure sensors without the need of physically going to the sensor location. This transceiver uses a UHF channel around 437 MHz to exchange short data messages with the sensors. These data messages can contain up to 32 bytes of useful information and are transmitted at a speed around 300 bps. The protocol designed for this system handles the access to the channel by all these elements and guarantees a correct transmission of the information in such an scenario. The University of Vigo has launched the first satellite of the constellation, the HUMSAT-D CubeSat in November 2013 and has

  16. Simultaneous temporally resolved DPIV and pressure measurements of symmetric oscillations in a scaled-up vocal fold model

    Science.gov (United States)

    Ringenberg, Hunter; Rogers, Dylan; Wei, Nathaniel; Krane, Michael; Wei, Timothy

    2017-11-01

    The objective of this study is to apply experimental data to theoretical framework of Krane (2013) in which the principal aeroacoustic source is expressed in terms of vocal fold drag, glottal jet dynamic head, and glottal exit volume flow, reconciling formal theoretical aeroacoustic descriptions of phonation with more traditional lumped-element descriptions. These quantities appear in the integral equations of motion for phonatory flow. In this way time resolved velocity field measurements can be used to compute time-resolved estimates of the relevant terms in the integral equations of motion, including phonation aeroacoustic source strength. A simplified 10x scale vocal fold model from Krane, et al. (2007) was used to examine symmetric, i.e. `healthy', oscillatory motion of the vocal folds. By using water as the working fluid, very high spatial and temporal resolution was achieved. Temporal variation of transglottal pressure was simultaneously measured with flow on the vocal fold model mid-height. Experiments were dynamically scaled to examine a range of frequencies corresponding to male and female voice. The simultaneity of the pressure and flow provides new insights into the aeroacoustics associated with vocal fold oscillations. Supported by NIH Grant No. 2R01 DC005642-11.

  17. Quality assurance of in-situ measurements of land surface albedo: A model-based approach

    Science.gov (United States)

    Adams, Jennifer; Gobron, Nadine; Widlowski, Jean-Luc; Mio, Corrado

    2016-04-01

    This paper presents the development of a model-based framework for assessing the quality of in-situ measurements of albedo used to validate land surface albedo products. Using a 3D Monte Carlo Ray Tracing (MCRT) radiative transfer model, a quality assurance framework is built based on simulated field measurements of albedo within complex 3D canopies and under various illumination scenarios. This method provides an unbiased approach in assessing the quality of field measurements, and is also able to trace the contributions of two main sources of uncertainty in field-measurements of albedo; those resulting from 1) the field measurement protocol, such as height or placement of field measurement within the canopy, and 2) intrinsic factors of the 3D canopy under specific illumination characteristics considered, such as the canopy structure and landscape heterogeneity, tree heights, ecosystem type and season.

  18. Integrating Multi-Sensor Remote Sensing and In-situ Measurements for Africa Drought Monitoring and Food Security Assessment

    Science.gov (United States)

    Hao, X.; Qu, J. J.; Motha, R. P.; Stefanski, R.; Malherbe, J.

    2015-12-01

    Drought is one of the most complicated natural hazards, and causes serious environmental, economic and social consequences. Agricultural production systems, which are highly susceptible to weather and climate extremes, are often the first and most vulnerable sector to be affected by drought events. In Africa, crop yield potential and grazing quality are already nearing their limit of temperature sensitivity, and, rapid population growth and frequent drought episodes pose serious complications for food security. It is critical to promote sustainable agriculture development in Africa under conditions of climate extremes. Soil moisture is one of the most important indicators for agriculture drought, and is a fundamentally critical parameter for decision support in crop management, including planting, water use efficiency and irrigation. While very significant technological advances have been introduced for remote sensing of surface soil moisture from space, in-situ measurements are still critical for calibration and validation of soil moisture estimation algorithms. For operational applications, synergistic collaboration is needed to integrate measurements from different sensors at different spatial and temporal scales. In this presentation, a collaborative effort is demonstrated for drought monitoring in Africa, supported and coordinated by WMO, including surface soil moisture and crop status monitoring. In-situ measurements of soil moisture, precipitation and temperature at selected sites are provided by local partners in Africa. Measurements from the Soil Moisture and Ocean Salinity (SMOS) and the Moderate Resolution Imaging Spectroradiometer (MODIS) are integrated with in-situ observations to derive surface soil moisture at high spatial resolution. Crop status is estimated through temporal analysis of current and historical MODIS measurements. Integrated analysis of soil moisture data and crop status provides both in-depth understanding of drought conditions and

  19. Fast time-resolved aerosol collector: proof of concept

    Science.gov (United States)

    Yu, X.-Y.; Cowin, J. P.; Iedema, M. J.; Ali, H.

    2010-10-01

    Atmospheric particles can be collected in the field on substrates for subsequent laboratory analysis via chemically sensitive single particle methods such as scanning electron microscopy with energy dispersive x-ray analysis. With moving substrates time resolution of seconds to minutes can be achieved. In this paper, we demonstrate how to increase the time resolution when collecting particles on a substrate to a few milliseconds to provide real-time information. Our fast time-resolved aerosol collector ("Fast-TRAC") microscopically observes the particle collection on a substrate and records an on-line video. Particle arrivals are resolved to within a single frame (4-17 ms in this setup), and the spatial locations are matched to the subsequent single particle analysis. This approach also provides in-situ information on particle size and number concentration. Applications are expected in airborne studies of cloud microstructure, pollution plumes, and surface long-term monitoring.

  20. A transportable magnetic resonance imaging system for in situ measurements of living trees: the Tree Hugger.

    Science.gov (United States)

    Jones, M; Aptaker, P S; Cox, J; Gardiner, B A; McDonald, P J

    2012-05-01

    This paper presents the design of the 'Tree Hugger', an open access, transportable, 1.1 MHz (1)H nuclear magnetic resonance imaging system for the in situ analysis of living trees in the forest. A unique construction employing NdFeB blocks embedded in a reinforced carbon fibre frame is used to achieve access up to 210 mm and to allow the magnet to be transported. The magnet weighs 55 kg. The feasibility of imaging living trees in situ using the 'Tree Hugger' is demonstrated. Correlations are drawn between NMR/MRI measurements and other indicators such as relative humidity, soil moisture and net solar radiation. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Comparison of in-situ gamma ray spectrometry measurements with conventional methods in determination natural and artificial nuclides in soil

    International Nuclear Information System (INIS)

    Al-Masri, M. S.; Doubal, A. W.

    2010-12-01

    Two nuclear analytical techniques (In-Situ Gamma ray spectrometry and laboratory gamma ray spectrometry) for determination of natural and artificial radionuclides in soil have been validated. The first technique depends on determination of radioactivity content of representative samples of the studied soil after laboratory preparation, while the second technique is based on direct determination of radioactivity content of soil using in-situ gamma-ray spectrometer. Analytical validation parameter such as detection limits, repeatability, reproducibility in addition to measurement uncertainties were estimated and compared for both techniques. Comparison results have shown that the determination of radioactivity in soil should apply the two techniques together where each of techniques is characterized by its low detection limit and uncertainty suitable for defined application of measurement. Radioactive isotopes in various locations were determined using the two methods by measuring 40 k, 238 U,and 137 Cs. The results showed that there are differences in attenuation factors due to soil moisture content differences; wet weight corrections should be applied when the two techniques are compared. (author)

  2. Micro-Membrane Electrode Assembly Design to Precisely Measure the in Situ Activity of Oxygen Reduction Reaction Electrocatalysts for PEMFC.

    Science.gov (United States)

    Long, Zhi; Li, Yankai; Deng, Guangrong; Liu, Changpeng; Ge, Junjie; Ma, Shuhua; Xing, Wei

    2017-06-20

    An in situ micro-MEA technique, which could precisely measure the performance of ORR electrocatalyst using Nafion as electrolyte, was designed and compared with regular thin-film rotating-disk electrode (TFRDE) (0.1 M HClO 4 ) and normal in situ membrane electrode assembly (MEA) tests. Compared to the traditional TFRDE method, the micro-MEA technique makes the acquisition of catalysts' behavior at low potential values easily achieved without being limited by the solubility of O 2 in water. At the same time, it successfully mimics the structure of regular MEAs and obtains similar results to a regular MEA, thus providing a new technique to simply measure the electrode activity without being bothered by complicated fabrication of regular MEA. In order to further understand the importance of in situ measurement, Fe-N-C as a typical oxygen reduction reaction (ORR) free-Pt catalyst was evaluated by TFRDE and micro-MEA. The results show that the half wave potential of Fe-N-C only shifted negatively by -135 mV in comparison with state-of-the-art Pt/C catalysts from TFRDE tests. However, the active site density, mass transfer of O 2 , and the proton transfer conductivity are found to strongly influence the catalyst activity in the micro-MEA, thereby resulting in a much lower limiting current density than Pt/C (8.7 times lower). Hence, it is suggested that the micro-MEA is better in evaluating the in situ ORR performance, where the catalysts are characterized more thoroughly in terms of intrinsic activity, active site density, proton transfer, and mass transfer properties.

  3. Observations of Bathymetry-Induced Ocean Roughness Modulation in In-situ Surface Slope Measurements and Coincident Airborne SAR Images

    NARCIS (Netherlands)

    Gommenginger, C.P.; Robinson, I.S.; Willoughby, J.; Greidanus, H.S.F.; Taylor, V.

    1999-01-01

    Empirical results from a field experiment in the southern North Sea have demonstrated the possibility to detect bathymetry-induced sea surface roughness modulation in the coastal zone using high frequency in-situ slope measurements provided by the Towed Laser Slopemeter. A strong correlation between

  4. Recent trends in spin-resolved photoelectron spectroscopy

    Science.gov (United States)

    Okuda, Taichi

    2017-12-01

    Since the discovery of the Rashba effect on crystal surfaces and also the discovery of topological insulators, spin- and angle-resolved photoelectron spectroscopy (SARPES) has become more and more important, as the technique can measure directly the electronic band structure of materials with spin resolution. In the same way that the discovery of high-Tc superconductors promoted the development of high-resolution angle-resolved photoelectron spectroscopy, the discovery of this new class of materials has stimulated the development of new SARPES apparatus with new functions and higher resolution, such as spin vector analysis, ten times higher energy and angular resolution than conventional SARPES, multichannel spin detection, and so on. In addition, the utilization of vacuum ultra violet lasers also opens a pathway to the realization of novel SARPES measurements. In this review, such recent trends in SARPES techniques and measurements will be overviewed.

  5. Application of hydraulic fracturing to determine virgin in situ stress state around Waste Isolation Pilot Plant - in situ measurements

    International Nuclear Information System (INIS)

    Wawersik, W.R.; Stone, C.M.

    1985-10-01

    Hydraulic fracturing tests were carried out in horizontal drillholes in rock salt in the Waste Isolation Pilot Plant (WIPP) near Carlsbad, NM. It was determined that the virgin in situ stress field is isotropic or nearly isotropic. The inferred magnitude of the isotropic in situ stress falls between bounds of 14.28 MPa and 17.9 MPa for the average breakdown/reopening pressures and driving pressures. The best estimate from instantaneous shut-in pressures is 16.61 MPa. Given some uncertainties about the interpretation of hydraulic fracturing data in salt, all of the foregoing values are in acceptable agreement with an average calculated isotropic in situ stress of 14.9 MPa at an average depth of 657 m below surface. Interpretations of breakdown and reopening pressures are based on finite element analyses of the relaxed stress field around a borehole in salt. This stress field varies little between approximately 50 and 200 days after drilling. The finite element analyses were also used to interpret the observed stable pressure-time signatures with little or no pressure drops during primary breakdown of the salt formation. The conclusion about the isotropic nature of the virgin in situ stress field is supported by observations of the induced fracture patterns. The report includes a comparison of the hydrofrac data in the WIPP with the published results of hydraulic fracturing tests in salt at three other locations. 75 refs., 21 figs., 4 tabs

  6. Characterization of Platinum Electrodes and In-situ Cell Confluency Measurement Based on Current Changes of Cell-Electrodes

    Directory of Open Access Journals (Sweden)

    Chin Fhong SOON

    2015-04-01

    Full Text Available This study aimed at the development of a biosensor to examine the growth confluency of human derived keratinocytes (HaCaT cell lines in-situ. The biosensor consists of a sputter- coated glass substrate with platinum patterns. Cells were grown on the conductive substrates and the confluency of the cells were monitored in-situ based on the conductivity changes of the substrates. Characterization of the cell proliferation and confluency were interrogated using electrical cell-substrate impedance sensing (ECIS techniques and current change of cells using a pico-ammeter. The investigation was followed by the electrical characterization of the platinum electrode (PE using a two probe I-V measurement system. The surface morphology of platinum electrodes were studied using an atomic force microscopy (AFM and the HaCaT cell morphology was studied using Field-Emission Scanning Electron Microscopy (FE-SEM. The microscopy results showed that the cells coupled and proliferated on the platinum electrodes. For monitoring the conductivity and impedance changes of the cell-electrode in-situ, the cover of a Petri dish was inserted with pogo pins to be in contact with the platinum electrodes. The impedance was sampled using the ECIS technique at a twenty-four hour interval. In our findings, the cell proliferation rate can be measured by observing the changes in capacitance or impedance measured at low ac frequencies ranged from 10 - 1 kHz. In good agreement, the current measured at micro-ampere range by the biosensor decreased as the cell coverage area increased over the time. Thus, the percent of cell confluence was shown inversely proportional to the current changes.

  7. The Magnetic Recoil Spectrometer for time-resolved neutron measurements (MRSt) at the NIF

    Science.gov (United States)

    Parker, C. E.; Frenje, J. A.; Wink, C. W.; Gatu Johnson, M.; Lahmann, B.; Li, C. K.; Seguin, F. H.; Petrasso, R. D.; Hilsabeck, T. J.; Kilkenny, J. D.; Bionta, R.; Casey, D. T.; Khater, H. Y.; Forrest, C. J.; Glebov, V. Yu.; Sorce, C.; Hares, J. D.; Siegmund, O. H. W.

    2017-10-01

    The next-generation Magnetic Recoil Spectrometer, called MRSt, will provide time-resolved measurements of the DT-neutron spectrum. These measurements will provide critical information about the time evolution of the fuel assembly, hot-spot formation, and nuclear burn in Inertial Confinement Fusion (ICF) implosions at the National Ignition Facility (NIF). The neutron spectrum in the energy range 12-16 MeV will be measured with high accuracy ( 5%), unprecedented energy resolution ( 100 keV) and, for the first time ever, time resolution ( 20 ps). An overview of the physics motivation, conceptual design for meeting these performance requirements, and the status of the offline tests for critical components will be presented. This work was supported in part by the U.S. DOE, LLNL, and LLE.

  8. Comparison of ambient aerosol extinction coefficients obtained from in-situ, MAX-DOAS and LIDAR measurements at Cabauw

    NARCIS (Netherlands)

    Zieger, P.; Weingartner, E.; Henzing, J.; Moerman, M.; Leeuw, G. de; Mikkilä, J.; Ehn, M.; Petäjä, T.; Clémer, K.; Roozendael, M. van; Yilmaz, S.; Frieß, U.; Irie, H.; Wagner, T.; Shaiganfar, R.; Beirle, S.; Apituley, A.; Wilson, K.; Baltensperger, U.

    2011-01-01

    In the field, aerosol in-situ measurements are often performed under dry conditions (relative humidity RH<30-40%). Since ambient aerosol particles experience hygroscopic growth at enhanced RH, their microphysical and optical properties especially the aerosol light scattering are also strongly

  9. In-plane resolved in-situ measurements of the membrane resistance in PEFCs

    Energy Technology Data Exchange (ETDEWEB)

    Buechi, F N; Scherer, G G [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    The conductivity of the membrane is a limiting factor for the efficiency and power density of PEFCs. Because this conductivity is strongly dependent on the membrane hydration, water management is an important aspect of PEFC optimisation. Single cell model experiments were made in order to determine the in-plane hydration of a Nafion{sup R} membrane under fuel cell conditions as function of the gas humidities. (author) 4 fig., 3 refs.

  10. Measurement of in-situ stress in salt and rock using NQR techniques

    International Nuclear Information System (INIS)

    Schempp, E.; Hirschfeld, T.; Klainer, S.

    1980-01-01

    A discussion of how stress and strain affect the quantities which can be measured in an NQR experiment shows that, for stresses of the magnitude to be expected at depths up to about 10,000 feet, quadrupole coupling constants will fall in the range of 1 to 10 kHz for both the sodium and chloride ions in NaCl. The most promising system involves pulsed nuclear double resonance detection; and alterative is to observe the quadrupolar splitting of the NMR signal. Choices to be made in the measurement and mapping techniques are discussed. The well-known perturbation of the homogenous stress field in the neighborhood of a borehole is shown to be advantageous from the point of view of obtaining directional information on the stress. Construction and operation of a borehole stress sensor are considered. The NQR technique seems feasible for measuring the magnitude and direction of underground stress with a resolution of about 25 psi, or 2.5% at 1000 psi. Downhole instrumentation suitable for in-situ determinations of stress appears within the state of the art. Additional tasks required on the project are identified

  11. In-pile Thermal Conductivity Characterization with Time Resolved Raman

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xinwei [Iowa State Univ., Ames, IA (United States). Dept. of Mechanical Engineering; Hurley, David H. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2018-03-19

    The project is designed to achieve three objectives: (1) Develop a novel time resolved Raman technology for direct measurement of fuel and cladding thermal conductivity. (2) Validate and improve the technology development by measuring ceramic materials germane to the nuclear industry. (3) Conduct instrumentation development to integrate optical fiber into our sensing system for eventual in-pile measurement. We have developed three new techniques: time-domain differential Raman (TD-Raman), frequency-resolved Raman (FR-Raman), and energy transport state-resolved Raman (ET-Raman). The TD-Raman varies the laser heating time and does simultaneous Raman thermal probing, the FR-Raman probes the material’s thermal response under periodical laser heating of different frequencies, and the ET-Raman probes the thermal response under steady and pulsed laser heating. The measurement capacity of these techniques have been fully assessed and verified by measuring micro/nanoscale materials. All these techniques do not need the data of laser absorption and absolute material temperature rise, yet still be able to measure the thermal conductivity and thermal diffusivity with unprecedented accuracy. It is expected they will have broad applications for in-pile thermal characterization of nuclear materials based on pure optical heating and sensing.

  12. Spin-resolved magnetic studies of focused ion beam etched nano-sized magnetic structures

    International Nuclear Information System (INIS)

    Li Jian; Rau, Carl

    2005-01-01

    Scanning ion microscopy with polarization analysis (SIMPA) is used to study the spin-resolved surface magnetic structure of nano-sized magnetic systems. SIMPA is utilized for in situ topographic and spin-resolved magnetic domain imaging as well as for focused ion beam (FIB) etching of desired structures in magnetic or non-magnetic systems. Ultra-thin Co films are deposited on surfaces of Si(1 0 0) substrates, and ultra-thin, tri-layered, bct Fe(1 0 0)/Mn/bct Fe(1 0 0) wedged magnetic structures are deposited on fcc Pd(1 0 0) substrates. SIMPA experiments clearly show that ion-induced electrons emitted from magnetic surfaces exhibit non-zero electron spin polarization (ESP), whereas electrons emitted from non-magnetic surfaces such as Si and Pd exhibit zero ESP, which can be used to calibrate sputtering rates in situ. We report on new, spin-resolved magnetic microstructures, such as magnetic 'C' states and magnetic vortices, found at surfaces of FIB patterned magnetic elements. It is found that FIB milling has a negligible effect on surface magnetic domain and domain wall structures. It is demonstrated that SIMPA can evolve into an important and efficient tool to study magnetic domain, domain wall and other structures as well as to perform magnetic depth profiling of magnetic nano-systems to be used in ultra-high density magnetic recording and in magnetic sensors

  13. A propagation tool to connect remote-sensing observations with in-situ measurements of heliospheric structures

    Science.gov (United States)

    Rouillard, A. P.; Lavraud, B.; Génot, V.; Bouchemit, M.; Dufourg, N.; Plotnikov, I.; Pinto, R. F.; Sanchez-Diaz, E.; Lavarra, M.; Penou, M.; Jacquey, C.; André, N.; Caussarieu, S.; Toniutti, J.-P.; Popescu, D.; Buchlin, E.; Caminade, S.; Alingery, P.; Davies, J. A.; Odstrcil, D.; Mays, L.

    2017-11-01

    The remoteness of the Sun and the harsh conditions prevailing in the solar corona have so far limited the observational data used in the study of solar physics to remote-sensing observations taken either from the ground or from space. In contrast, the 'solar wind laboratory' is directly measured in situ by a fleet of spacecraft measuring the properties of the plasma and magnetic fields at specific points in space. Since 2007, the solar-terrestrial relations observatory (STEREO) has been providing images of the solar wind that flows between the solar corona and spacecraft making in-situ measurements. This has allowed scientists to directly connect processes imaged near the Sun with the subsequent effects measured in the solar wind. This new capability prompted the development of a series of tools and techniques to track heliospheric structures through space. This article presents one of these tools, a web-based interface called the 'Propagation Tool' that offers an integrated research environment to study the evolution of coronal and solar wind structures, such as Coronal Mass Ejections (CMEs), Corotating Interaction Regions (CIRs) and Solar Energetic Particles (SEPs). These structures can be propagated from the Sun outwards to or alternatively inwards from planets and spacecraft situated in the inner and outer heliosphere. In this paper, we present the global architecture of the tool, discuss some of the assumptions made to simulate the evolution of the structures and show how the tool connects to different databases.

  14. Evaluation of a multimode fiber optic low coherence interferometer for path length resolved Doppler measurments of diffuse light

    NARCIS (Netherlands)

    Varghese, Babu; Rajan, Vinayakrishnan; van Leeuwen, Ton; Steenbergen, Wiendelt

    2007-01-01

    The performance of a graded index multimode fiber optic low coherence Mach-Zehnder interferometer with phase modulation is analyzed. Investigated aspects were its ability to measure path length distributions and to perform path length resolved Doppler measurements of multiple scattered photons in a

  15. Evaluation of a multimode fiber optic low coherence interferometer for path length resolved Doppler measurements of diffuse light

    NARCIS (Netherlands)

    Varghese, Babu; Rajan, Vinayakrishnan; van Leeuwen, Ton G.; Steenbergen, Wiendelt

    2007-01-01

    The performance of a graded index multimode fiber optic low coherence Mach-Zehnder interferometer with phase modulation is analyzed. Investigated aspects were its ability to measure path length distributions and to perform path length resolved Doppler measurements of multiple scattered photons in a

  16. In-situ measurement of texture and elastic strains with HIPPO-CRATES

    International Nuclear Information System (INIS)

    Hartig, Ch.; Vogel, S.C.; Mecking, H.

    2006-01-01

    In this paper, the micromechanical interaction between constituents of a metallic material during elastic and plastic deformation are analyzed by comparing experimental results with modeling predictions. This comparison aims at determining the locally acting internal stresses, the spatial distribution of strains and the rules allowing deriving the macroscopic behavior of the material from the behavior of its microscopic constituents. We report the application of a new deformation apparatus CRATES, which allows measuring texture and crystal lattice spacings, and from these crystal lattice strains, using neutron diffraction. From the in-situ measured elastic lattice strains ε hkl the corresponding local stresses can be derived. The deformation apparatus allows uni-axial tensile or compressive deformation up to 100 kN and is specifically designed for use in the HIPPO neutron time-of-flight diffractometer. In this paper, we report initial results on an iron-copper model system (Fe100, Fe33Cu67, Fe67Cu33, vol.%) and commercial magnesium alloys (Mg-AZ31 and Mg-AZ80). Finite element calculations using a crystal-plastic constitutive law, allowing for shear and hardening of crystallographic slip-systems, were used for the interpretation of the measurements

  17. In situ measurements of X-ray peak profile asymmetry from individual grains

    DEFF Research Database (Denmark)

    Wejdemann, Christian; Lienert, U.; Pantleon, Wolfgang

    2010-01-01

    Two copper samples, pre-deformed in tension to 5% plastic strain, are subjected to an in situ tensile deformation of 1% plastic strain while X-ray peak profiles from individual bulk grains are obtained. One sample is oriented with the in situ tensile axis parallel to the pre-deformation axis...

  18. Time-resolved investigations of the non-thermal ablation process of graphite induced by femtosecond laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Kalupka, C., E-mail: christian.kalupka@llt.rwth-aachen.de; Finger, J. [Chair for Laser Technology LLT, RWTH Aachen University, Aachen 52074 (Germany); Reininghaus, M. [Chair for Laser Technology LLT, RWTH Aachen University, Aachen 52074 (Germany); Fraunhofer Institute for Laser Technology ILT, Steinbachstraße 15, Aachen 52074 (Germany)

    2016-04-21

    We report on the in-situ analysis of the ablation dynamics of the, so-called, laser induced non-thermal ablation process of graphite. A highly oriented pyrolytic graphite is excited by femtosecond laser pulses with fluences below the classic thermal ablation threshold. The ablation dynamics are investigated by axial pump-probe reflection measurements, transversal pump-probe shadowgraphy, and time-resolved transversal emission photography. The combination of the applied analysis methods allows for a continuous and detailed time-resolved observation of the non-thermal ablation dynamics from several picoseconds up to 180 ns. Formation of large, μm-sized particles takes place within the first 3.5 ns after irradiation. The following propagation of ablation products and the shock wave front are tracked by transversal shadowgraphy up to 16 ns. The comparison of ablation dynamics of different fluences by emission photography reveals thermal ablation products even for non-thermal fluences.

  19. Hemodynamic measurements in deep brain tissues of humans by near-infrared time-resolved spectroscopy

    Science.gov (United States)

    Suzuki, Hiroaki; Oda, Motoki; Yamaki, Etsuko; Suzuki, Toshihiko; Yamashita, Daisuke; Yoshimoto, Kenji; Homma, Shu; Yamashita, Yutaka

    2014-03-01

    Using near-infrared time-resolved spectroscopy (TRS), we measured the human head in transmittance mode to obtain the optical properties, tissue oxygenation, and hemodynamics of deep brain tissues in 50 healthy adult volunteers. The right ear canal was irradiated with 3-wavelengths of pulsed light (760, 795, and 835nm), and the photons passing through the human head were collected at the left ear canal. Optical signals with sufficient intensity could be obtained from 46 of the 50 volunteers. By analyzing the temporal profiles based on the photon diffusion theory, we successfully obtained absorption coefficients for each wavelength. The levels of oxygenated hemoglobin (HbO2), deoxygenated hemoglobin (Hb), total hemoglobin (tHb), and tissue oxygen saturation (SO2) were then determined by referring to the hemoglobin spectroscopic data. Compared with the SO2 values for the forehead measurements in reflectance mode, the SO2 values of the transmittance measurements of the human head were approximately 10% lower, and tHb values of the transmittance measurements were always lower than those of the forehead reflectance measurements. Moreover, the level of hemoglobin and the SO2 were strongly correlated between the human head measurements in transmittance mode and the forehead measurements in the reflectance mode, respectively. These results demonstrated a potential application of this TRS system in examining deep brain tissues of humans.

  20. Indium hydroxide to oxide decomposition observed in one nanocrystal during in situ transmission electron microscopy studies

    International Nuclear Information System (INIS)

    Miehe, Gerhard; Lauterbach, Stefan; Kleebe, Hans-Joachim; Gurlo, Aleksander

    2013-01-01

    The high-resolution transmission electron microscopy (HR-TEM) is used to study, in situ, spatially resolved decomposition in individual nanocrystals of metal hydroxides and oxyhydroxides. This case study reports on the decomposition of indium hydroxide (c-In(OH) 3 ) to bixbyite-type indium oxide (c-In 2 O 3 ). The electron beam is focused onto a single cube-shaped In(OH) 3 crystal of {100} morphology with ca. 35 nm edge length and a sequence of HR-TEM images was recorded during electron beam irradiation. The frame-by-frame analysis of video sequences allows for the in situ, time-resolved observation of the shape and orientation of the transformed crystals, which in turn enables the evaluation of the kinetics of c-In 2 O 3 crystallization. Supplementary material (video of the transformation) related to this article can be found online at (10.1016/j.jssc.2012.09.022). After irradiation the shape of the parent cube-shaped crystal is preserved, however, its linear dimension (edge) is reduced by the factor 1.20. The corresponding spotted selected area electron diffraction (SAED) pattern representing zone [001] of c-In(OH) 3 is transformed to a diffuse strongly textured ring-like pattern of c-In 2 O 3 that indicates the transformed cube is no longer a single crystal but is disintegrated into individual c-In 2 O 3 domains with the size of about 5–10 nm. The induction time of approximately 15 s is estimated from the time-resolved Fourier transforms. The volume fraction of the transformed phase (c-In 2 O 3 ), calculated from the shrinkage of the parent c-In(OH) 3 crystal in the recorded HR-TEM images, is used as a measure of the kinetics of c-In 2 O 3 crystallization within the framework of Avrami–Erofeev formalism. The Avrami exponent of ∼3 is characteristic for a reaction mechanism with fast nucleation at the beginning of the reaction and subsequent three-dimensional growth of nuclei with a constant growth rate. The structural transformation path in reconstructive

  1. Mercury dynamics in a San Francisco estuary tidal wetland: assessing dynamics using in situ measurements

    Science.gov (United States)

    Bergamaschi, Brian A.; Fleck, Jacob A.; Downing, Bryan D.; Boss, Emmanuel; Pellerin, Brian A.; Ganju, Neil K.; Schoellhamer, David H.; Byington, Amy A.; Heim, Wesley A.; Stephenson, Mark; Fujii, Roger

    2012-01-01

    We used high-resolution in situ measurements of turbidity and fluorescent dissolved organic matter (FDOM) to quantitatively estimate the tidally driven exchange of mercury (Hg) between the waters of the San Francisco estuary and Browns Island, a tidal wetland. Turbidity and FDOM—representative of particle-associated and filter-passing Hg, respectively—together predicted 94 % of the observed variability in measured total mercury concentration in unfiltered water samples (UTHg) collected during a single tidal cycle in spring, fall, and winter, 2005–2006. Continuous in situ turbidity and FDOM data spanning at least a full spring-neap period were used to generate UTHg concentration time series using this relationship, and then combined with water discharge measurements to calculate Hg fluxes in each season. Wetlands are generally considered to be sinks for sediment and associated mercury. However, during the three periods of monitoring, Browns Island wetland did not appreciably accumulate Hg. Instead, gradual tidally driven export of UTHg from the wetland offset the large episodic on-island fluxes associated with high wind events. Exports were highest during large spring tides, when ebbing waters relatively enriched in FDOM, dissolved organic carbon (DOC), and filter-passing mercury drained from the marsh into the open waters of the estuary. On-island flux of UTHg, which was largely particle-associated, was highest during strong winds coincident with flood tides. Our results demonstrate that processes driving UTHg fluxes in tidal wetlands encompass both the dissolved and particulate phases and multiple timescales, necessitating longer term monitoring to adequately quantify fluxes.

  2. In-situ membrane hydration measurement of proton exchange membrane fuel cells

    Science.gov (United States)

    Lai, Yeh-Hung; Fly, Gerald W.; Clapham, Shawn

    2015-01-01

    Achieving proper membrane hydration control is one of the most critical aspects of PEM fuel cell development. This article describes the development and application of a novel 50 cm2 fuel cell device to study the in-situ membrane hydration by measuring the through-thickness membrane swelling via an array of linear variable differential transducers. Using this setup either as an air/air (dummy) cell or as a hydrogen/air (operating) cell, we performed a series of hydration and dehydration experiments by cycling the RH of the inlet gas streams at 80 °C. From the linear relationship between the under-the-land swelling and the over-the-channel water content, the mechanical constraint within the fuel cell assembly can suppress the membrane water uptake by 11%-18%. The results from the air/air humidity cycling test show that the membrane can equilibrate within 120 s for all RH conditions and that membrane can reach full hydration at a RH higher than 140% in spite of the use of a liquid water impermeable Carbel MP30Z microporous layer. This result confirms that the U.S. DOE's humidity cycling mechanical durability protocol induces sufficient humidity swings to maximize hygrothermal mechanical stresses. This study shows that the novel experimental technique can provide a robust and accurate means to study the in-situ hydration of thin membranes subject to a wide range of fuel cell conditions.

  3. Initial time-resolved particle beam profile measurements at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Yang, B.X.; Lumpkin, A.H.

    1995-01-01

    The commissioning of the 7-GeV Advanced Photon Source (APS) storage ring began in early 1995. Characterization of the stored particle beam properties involved time-resolved transverse and longitudinal profile measurements using optical synchrotron radiation (OSR) monitors. Early results include the observation of the beam on a single turn, measurements of the transverse beam sizes after damping using a 100 μs integration time (σ x ∼ 150 ± 25 μm, σ γ ∼ 65 ± 25 μm, depending on vertical coupling), and measurement of the bunch length (σ τ ∼ 25 to 55 ps, depending on the charge per bunch). The results are consistent with specifications and predictions based on the 8.2 nm-rad natural emittance, the calculated lattice parameters, and vertical coupling less than 10%. The novel, single-element focusing mirror for the photon transport line and the dual-sweep streak camera techniques which allow turn-by-turn measurements will also be presented. The latter measurements are believed to be the first of their kind on a storage ring in the USA

  4. First results from the in-situ temperature measurements by the newly developed downhole tool during the drilling cruise in the hydrothermal fields of the mid-Okinawa Trough

    Science.gov (United States)

    Kitada, K.; Wu, H. Y.; Miyazaki, J.; Akiyama, K.; Nozaki, T.; Ishibashi, J. I.; Kumagai, H.; Maeda, L.

    2016-12-01

    The Okinawa trough is an active backarc basin behind the Ryukyu subduction zone and exhibits active rifting associated with extension of the continental margin. The temperature measurement in this area is essential for understanding hydrothermal system and hydraulic structure. During the CK16-01 cruise this March, we have conducted the in-situ temperature measurements by the newly developed downhole tool, TRDT (Thermo-Resistant Downhole Thermometer) in hydrothermal fields of the mid-Okinawa Trough. The purpose of this measurement is to investigate the in-situ temperature structure in deep-hot zones and its variation after coring and/or drilling. TRDT was designed by JAMSTEC as a memory downhole tool to measure in-situ borehole temperature under the extreme high temperature environment. First trial was conducted in the CK14-04 cruise by the free fall deployment to reduce the operation time. However, there was no temperature data recorded due to the strong vibration during the operation. After CK14-04 cruise, TRDT was modified to improve the function against vibration and shock. The improved TRDT passed the high temperature, vibration and shock tests to ensure the data acquisition of borehole logging. During the CK16-01 cruise, we have first successfully collected the in-situ temperature data from hydrothermal borehole in the Iheya North Knoll with wireline system. The temperature at depth of 187mbsf continued to increase almost linearly from 220 to 245°C during the 20 minute measurements time. This suggests that the inside borehole was cooled down by pumping seawater through drill pipes during the coring and lowering down the TRDT tool to the bottom hole. The in-situ temperature were extrapolated with exponential curve using nonlinear least squares fitting and the estimated equilibrium temperature was 278°C. To recover the in-situ temperature more precisely, the measurement time should kept as long as possible by considering the temperature rating. The operational

  5. Size dependence of the wavefunction of self-assembled InAs quantum dots from time-resolved optical measurements

    DEFF Research Database (Denmark)

    Johansen, Jeppe; Stobbe, Søren; Nikolaev, Ivan S.

    2008-01-01

    and a theoretical model, we determine the striking dependence of the overlap of the electron and hole wavefunctions on the quantum dot size. We conclude that the optical quality is best for large quantum dots, which is important in order to optimally tailor quantum dot emitters for, e.g., quantum electrodynamics......The radiative and nonradiative decay rates of InAs quantum dots are measured by controlling the local density of optical states near an interface. From time-resolved measurements, we extract the oscillator strength and the quantum efficiency and their dependence on emission energy. From our results...

  6. Optimization and comprehensive characterization of metal hydride based hydrogen storage systems using in-situ Neutron Radiography

    Science.gov (United States)

    Börries, S.; Metz, O.; Pranzas, P. K.; Bellosta von Colbe, J. M.; Bücherl, T.; Dornheim, M.; Klassen, T.; Schreyer, A.

    2016-10-01

    For the storage of hydrogen, complex metal hydrides are considered as highly promising with respect to capacity, reversibility and safety. The optimization of corresponding storage tanks demands a precise and time-resolved investigation of the hydrogen distribution in scaled-up metal hydride beds. In this study it is shown that in situ fission Neutron Radiography provides unique insights into the spatial distribution of hydrogen even for scaled-up compacts and therewith enables a direct study of hydrogen storage tanks. A technique is introduced for the precise quantification of both time-resolved data and a priori material distribution, allowing inter alia for an optimization of compacts manufacturing process. For the first time, several macroscopic fields are combined which elucidates the great potential of Neutron Imaging for investigations of metal hydrides by going further than solely 'imaging' the system: A combination of in-situ Neutron Radiography, IR-Thermography and thermodynamic quantities can reveal the interdependency of different driving forces for a scaled-up sodium alanate pellet by means of a multi-correlation analysis. A decisive and time-resolved, complex influence of material packing density is derived. The results of this study enable a variety of new investigation possibilities that provide essential information on the optimization of future hydrogen storage tanks.

  7. Ground-Based Remote or In Situ Measurement of Vertical Profiles of Wind in the Lower Troposphere

    Energy Technology Data Exchange (ETDEWEB)

    Clifton, Andrew; Newman, Jennifer

    2017-02-24

    Knowledge of winds in the lower troposphere is essential for a range of applications, including weather forecasting, transportation, natural hazards, and wind energy. This presentation focuses on the measurement of vertical profiles of wind in the lower troposphere for wind energy applications. This presentation introduces the information that wind energy site development and operations require, how it used, and the benefits and problems of current measurements from in-situ measurements and remote sensing. The development of commercial Doppler wind lidar systems over the last 10 years are shown, along with the lessons learned from this experience. Finally, potential developments in wind profiling aimed at reducing uncertainty and increasing data availability are introduced.

  8. A Novel Two-Axis Load Sensor Designed for in Situ Scratch Testing inside Scanning Electron Microscopes

    Directory of Open Access Journals (Sweden)

    Chengli Shi

    2013-02-01

    Full Text Available Because of a lack of available miniaturized multiaxial load sensors to measure the normal load and the lateral load simultaneously, quantitative in situ scratch devices inside scanning electron microscopes and the transmission electron microscopes have barely been developed up to now. A novel two-axis load sensor was designed in this paper. With an I-shaped structure, the sensor has the function of measuring the lateral load and the normal load simultaneously, and at the same time it has compact dimensions. Finite element simulations were carried out to evaluate stiffness and modal characteristics. A decoupling algorithm was proposed to resolve the cross-coupling between the two-axis loads. Natural frequency of the sensor was tested. Linearity and decoupling parameters were obtained from the calibration experiments, which indicate that the sensor has good linearity and the cross-coupling between the two axes is not strong. Via the decoupling algorithm and the corresponding decoupling parameters, simultaneous measurement of the lateral load and the normal load can be realized via the developed two-axis load sensor. Preliminary applications of the load sensor for scratch testing indicate that the load sensor can work well during the scratch testing. Taking advantage of the compact structure, it has the potential ability for applications in quantitative in situ scratch testing inside SEMs.

  9. Mechanism of Particle Formation in Silver/Epoxy Nanocomposites Obtained through a Visible-Light-Assisted in Situ Synthesis.

    Science.gov (United States)

    dell'Erba, Ignacio E; Martínez, Francisco D; Hoppe, Cristina E; Eliçabe, Guillermo E; Ceolín, Marcelo; Zucchi, Ileana A; Schroeder, Walter F

    2017-10-03

    A detailed understanding of the processes taking place during the in situ synthesis of metal/polymer nanocomposites is crucial to manipulate the shape and size of nanoparticles (NPs) with a high level of control. In this paper, we report an in-depth time-resolved analysis of the particle formation process in silver/epoxy nanocomposites obtained through a visible-light-assisted in situ synthesis. The selected epoxy monomer was based on diglycidyl ether of bisphenol A, which undergoes relatively slow cationic ring-opening polymerization. This feature allowed us to access a full description of the formation process of silver NPs before this was arrested by the curing of the epoxy matrix. In situ time-resolved small-angle X-ray scattering investigation was carried out to follow the evolution of the number and size of the silver NPs as a function of irradiation time, whereas rheological experiments combined with near-infrared and ultraviolet-visible spectroscopies were performed to interpret how changes in the rheological properties of the matrix affect the nucleation and growth of particles. The analysis of the obtained results allowed us to propose consistent mechanisms for the formation of metal/polymer nanocomposites obtained by light-assisted one-pot synthesis. Finally, the effect of a thermal postcuring treatment of the epoxy matrix on the particle size in the nanocomposite was investigated.

  10. IN SITU density measurements oozy bottom of the access channel to the port of Santos, Sao Paulo, Brazil

    International Nuclear Information System (INIS)

    Minardi, P.S.P.

    1988-09-01

    The density of the bottom sediment of the access channel to the port of Santos, Sao Paulo, Brazil was measured. The in situ measurements aimed at verifying the use for navigation purposes of the layers with densities equal to or smaller than 1200 kg/m 3 . (F.E.). 3 refs, 55 figs, 3 tabs

  11. Numerical modeling to assess possible influence of the mine openings on far-field in-situ stress measurements at Stripa

    International Nuclear Information System (INIS)

    Chan, T.; Guvanasen, V.; Littlestone, N.

    1981-03-01

    Finite element analyses were carried out to assess the possible effects of the Stripa mine openings on the in-situ stress measured in a 400-m-deep borehole drilled from the surface. For this assessment, four 2-dimensional cases were modeled. These cases variously included two horizontal sections, and two separate, idealized vertical sections. An iron ore body in the mine was assumed to be completely extracted, thereby providing conservative estimates of stress concentration effects. Since no in-situ stress measurements were made before mining, overburden weight and horizontal stresses measured by hyrodfracturing were assumed to be the pre-mining state of stress. The stress state resulting from excavation of the mine was calculated by the finite element model. In the cases using horizontal sections, the model predicted a stress concentration factor at the borehole of approximately 1.15, which is negligible considering the difficulty of obtaining accurate stress measurements. For the vertical sections the model predicted higher stress concentration factors at depths less than 200 m. This was expected because the vertical sections chosen brought the borehole unrealistically close to the mine openings, thereby leading to overly conservative estimates. In general, deviations in the magnitudes and orientations of the calculated redistributed principal stresses from the assumed pre-mining state of stress were found to be comparable to the scatter of overcoring data. It is, therefore, recommended that, for near-field stress calculations, the vertical stress due to overburden weight and the horizontal stresses measured by hydrofracturing at the borehole be considered the unperturbed far-field in situ state of stress

  12. Time resolved techniques: An overview

    International Nuclear Information System (INIS)

    Larson, B.C.; Tischler, J.Z.

    1990-06-01

    Synchrotron sources provide exceptional opportunities for carrying out time-resolved x-ray diffraction investigations. The high intensity, high angular resolution, and continuously tunable energy spectrum of synchrotron x-ray beams lend themselves directly to carrying out sophisticated time-resolved x-ray scattering measurements on a wide range of materials and phenomena. When these attributes are coupled with the pulsed time-structure of synchrotron sources, entirely new time-resolved scattering possibilities are opened. Synchrotron beams typically consist of sub-nanosecond pulses of x-rays separated in time by a few tens of nanoseconds to a few hundred nanoseconds so that these beams appear as continuous x-ray sources for investigations of phenomena on time scales ranging from hours down to microseconds. Studies requiring time-resolution ranging from microseconds to fractions of a nanosecond can be carried out in a triggering mode by stimulating the phenomena under investigation in coincidence with the x-ray pulses. Time resolution on the picosecond scale can, in principle, be achieved through the use of streak camera techniques in which the time structure of the individual x-ray pulses are viewed as quasi-continuous sources with ∼100--200 picoseconds duration. Techniques for carrying out time-resolved scattering measurements on time scales varying from picoseconds to kiloseconds at present and proposed synchrotron sources are discussed and examples of time-resolved studies are cited. 17 refs., 8 figs

  13. Scattering influences in quantitative fission neutron radiography for the in situ analysis of hydrogen distribution in metal hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Börries, S., E-mail: stefan.boerries@hzg.de [Helmholtz-Zentrum Geesthacht, Centre for Materials and Coastal Research, Max-Planck-Strasse 1, D-21502 Geesthacht (Germany); Metz, O.; Pranzas, P.K. [Helmholtz-Zentrum Geesthacht, Centre for Materials and Coastal Research, Max-Planck-Strasse 1, D-21502 Geesthacht (Germany); Bücherl, T. [ZTWB Radiochemie München (RCM), Technische Universität München (TUM), Walther-Meissner-Str. 3, D-85748 Garching (Germany); Söllradl, S. [Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRMII), Technische Universität München (TUM), Lichtenbergstr. 1, D-85748 Garching (Germany); Dornheim, M.; Klassen, T.; Schreyer, A. [Helmholtz-Zentrum Geesthacht, Centre for Materials and Coastal Research, Max-Planck-Strasse 1, D-21502 Geesthacht (Germany)

    2015-10-11

    In situ neutron radiography allows for the time-resolved study of hydrogen distribution in metal hydrides. However, for a precise quantitative investigation of a time-dependent hydrogen content within a host material, an exact knowledge of the corresponding attenuation coefficient is necessary. Additionally, the effect of scattering has to be considered as it is known to violate Beer's law, which is used to determine the amount of hydrogen from a measured intensity distribution. Within this study, we used a metal hydride inside two different hydrogen storage tanks as host systems, consisting of steel and aluminum. The neutron beam attenuation by hydrogen was investigated in these two different setups during the hydrogen absorption process. A linear correlation to the amount of absorbed hydrogen was found, allowing for a readily quantitative investigation. Further, an analysis of scattering contributions on the measured intensity distributions was performed and is described in detail.

  14. Time resolved IR-LIGS experiments for gas-phase trace detection and temperature measurements

    Energy Technology Data Exchange (ETDEWEB)

    Fantoni, R.; Giorgi, M. [ENEA, Centro Ricerche Frascati, Rome (Italy). Dip. Innovazione; Snels, M. [CNR, Tito Scalo, Potenza (Italy). Istituto per i Materiali Speciali; Latzel, H.

    1997-01-01

    Time resolved Laser Induced Grating Spectroscopy (LIGS) has been performed to detect different gases in mixtures at atmospheric pressure or higher. The possibility of trace detection of minor species and of temperature measurements has been demonstrated for various molecular species either of environmental interest or involved in combustion processes. In view of the application of tracing unburned hydrocarbons in combustion chambers, the coupling of the IR-LIGS technique with imaging detection has been considered and preliminary results obtained in small size ethylene/air flames are shown.

  15. Velocity Field Measurements of Human Coughing Using Time Resolved Particle Image Velocimetry

    Science.gov (United States)

    Khan, T.; Marr, D. R.; Higuchi, H.; Glauser, M. N.

    2003-11-01

    Quantitative fluid mechanics analysis of human coughing has been carried out using new Time Resolved Particle Image Velocimetry (TRPIV). The study involves measurement of velocity vector time-histories and velocity profiles. It is focused on the average normal human coughing. Some work in the past on cough mechanics has involved measurement of flow rates, tidal volumes and sub-glottis pressure. However, data of unsteady velocity vector field of the exiting highly time-dependent jets is not available. In this study, human cough waveform data are first acquired in vivo using conventional respiratory instrumentation for various volunteers of different gender/age groups. The representative waveform is then reproduced with a coughing/breathing simulator (with or without a manikin) for TRPIV measurements and analysis. The results of this study would be useful not only for designing of indoor air quality and heating, ventilation and air conditioning systems, but also for devising means of protection against infectious diseases.

  16. Time-resolved measurements of coherent structures in the turbulent boundary layer

    Science.gov (United States)

    LeHew, J. A.; Guala, M.; McKeon, B. J.

    2013-04-01

    Time-resolved particle image velocimetry was used to examine the structure and evolution of swirling coherent structure (SCS), one interpretation of which is a marker for a three-dimensional coherent vortex structure, in wall-parallel planes of a turbulent boundary layer with a large field of view, 4.3 δ × 2.2 δ. Measurements were taken at four different wall-normal locations ranging from y/ δ = 0.08-0.48 at a friction Reynolds number, Re τ = 410. The data set yielded statistically converged results over a larger field of view than typically observed in the literature. The method for identifying and tracking swirling coherent structure is discussed, and the resulting trajectories, convection velocities, and lifespan of these structures are analyzed at each wall-normal location. The ability of a model in which the entirety of an individual SCS travels at a single convection velocity, consistent with the attached eddy hypothesis of Townsend (The structure of turbulent shear flows. Cambridge University Press, Cambridge, 1976), to describe the data is investigated. A methodology for determining whether such structures are "attached" or "detached" from the wall is also proposed and used to measure the lifespan and convection velocity distributions of these different structures. SCS were found to persist for longer periods of time further from the wall, particularly those inferred to be "detached" from the wall, which could be tracked for longer than 5 eddy turnover times.

  17. In situ growth rate measurements during plasma-enhanced chemical vapour deposition of vertically aligned multiwall carbon nanotube films

    International Nuclear Information System (INIS)

    Joensson, M; Nerushev, O A; Campbell, E E B

    2007-01-01

    In situ laser reflectivity measurements are used to monitor the growth of multiwalled carbon nanotube (MWCNT) films grown by DC plasma-enhanced chemical vapour deposition (PECVD) from an iron catalyst film deposited on a silicon wafer. In contrast to thermal CVD growth, there is no initial increase in the growth rate; instead, the initial growth rate is high (as much as 10 μm min -1 ) and then drops off rapidly to reach a steady level (2 μm min -1 ) for times beyond 1 min. We show that a limiting factor for growing thick films of multiwalled nanotubes (MWNTs) using PECVD can be the formation of an amorphous carbon layer at the top of the growing nanotubes. In situ reflectivity measurements provide a convenient technique for detecting the onset of the growth of this layer

  18. Comparisons of angularly and spectrally resolved Bremsstrahlung measurements to two-dimensional multi-stage simulations of short-pulse laser-plasma interactions

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C. D.; Kemp, A. J.; Pérez, F.; Link, A.; Key, M. H.; McLean, H.; Ping, Y.; Patel, P. K. [Lawrence Livermore National Laboratory (United States); Beg, F. N.; Chawla, S.; Sorokovikova, A.; Westover, B. [University of California, San Diego (United States); Morace, A. [University of Milan (Italy); Stephens, R. B. [General Atomics (United States); Streeter, M. [Imperial College London (United Kingdom)

    2013-05-15

    A 2-D multi-stage simulation model incorporating realistic laser conditions and a fully resolved electron distribution handoff has been developed and compared to angularly and spectrally resolved Bremsstrahlung measurements from high-Z planar targets. For near-normal incidence and 0.5-1 × 10{sup 20} W/cm{sup 2} intensity, particle-in-cell (PIC) simulations predict the existence of a high energy electron component consistently directed away from the laser axis, in contrast with previous expectations for oblique irradiation. Measurements of the angular distribution are consistent with a high energy component when directed along the PIC predicted direction, as opposed to between the target normal and laser axis as previously measured.

  19. DeepPIV: Measuring in situ Biological-Fluid Interactions from the Surface to Benthos

    Science.gov (United States)

    Katija, K.; Sherman, A.; Graves, D.; Kecy, C. D.; Klimov, D.; Robison, B. H.

    2015-12-01

    The midwater region of the ocean (below the euphotic zone and above the benthos) is one of the largest ecosystems on our planet, yet it remains one of the least explored. Little known marine organisms that inhabit midwater have developed strategies for swimming and feeding that ultimately contributes to their evolutionary success, and may inspire engineering solutions for societally relevant challenges. Fluid mechanics governs the interactions that midwater organisms have with their physical environment, but limited access to midwater depths and lack of non-invasive methods to measure in situ small-scale fluid motions prevent these interactions from being better understood. Significant advances in underwater vehicle technologies have only recently improved access to midwater. Unfortunately, in situ small-scale fluid mechanics measurement methods are still lacking in the oceanographic community. Here we present DeepPIV, an instrumentation package that can be affixed to remotely operated underwater vehicles that quantifies small-scale fluid motions from the surface of the ocean down to 4000 m depths. Utilizing ambient, suspended particulate in the coastal regions of Monterey Bay, fluid-structure interactions are evaluated on a range of marine organisms in midwater. Initial science targets include larvaceans, biological equivalents of flapping flexible foils, that create mucus houses to filter food. Little is known about the structure of these mucus houses and the function they play in selectively filtering particles, and these dynamics can serve as particle-mucus models for human health. Using DeepPIV, we reveal the complex structures and flows generated within larvacean mucus houses, and elucidate how these structures function.

  20. Flash X-Ray (FXR) Accelerator Optimization Electronic Time-Resolved Measurement of X-Ray Source Size

    International Nuclear Information System (INIS)

    Jacob, J; Ong, M; Wargo, P

    2005-01-01

    Lawrence Livermore National Laboratory (LLNL) is currently investigating various approaches to minimize the x-ray source size on the Flash X-Ray (FXR) linear induction accelerator in order to improve x-ray flux and increase resolution for hydrodynamic radiography experiments. In order to effectively gauge improvements to final x-ray source size, a fast, robust, and accurate system for measuring the spot size is required. Timely feedback on x-ray source size allows new and improved accelerator tunes to be deployed and optimized within the limited run-time constraints of a production facility with a busy experimental schedule; in addition, time-resolved measurement capability allows the investigation of not only the time-averaged source size, but also the evolution of the source size, centroid position, and x-ray dose throughout the 70 ns beam pulse. Combined with time-resolved measurements of electron beam parameters such as emittance, energy, and current, key limiting factors can be identified, modeled, and optimized for the best possible spot size. Roll-bar techniques are a widely used method for x-ray source size measurement, and have been the method of choice at FXR for many years. A thick bar of tungsten or other dense metal with a sharp edge is inserted into the path of the x-ray beam so as to heavily attenuate the lower half of the beam, resulting in a half-light, half-dark image as seen downstream of the roll-bar; by measuring the width of the transition from light to dark across the edge of the roll-bar, the source size can be deduced. For many years, film has been the imaging medium of choice for roll-bar measurements thanks to its high resolution, linear response, and excellent contrast ratio. Film measurements, however, are fairly cumbersome and require considerable setup and analysis time; moreover, with the continuing trend towards all-electronic measurement systems, film is becoming increasingly difficult and expensive to procure. Here, we shall

  1. In-situ real time measurements of thermal comfort and comparison with the adaptive comfort theory in Dutch residential dwellings

    NARCIS (Netherlands)

    Ioannou, A.; Itard, L.C.M.; Agarwal, Tushar

    2018-01-01

    Indoor thermal comfort is generally assessed using the PMV or the adaptive model. This research presents the results obtained by in-situ real time measurements of thermal comfort and thermal comfort perception in 17 residential dwellings in the Netherlands. The study demonstrates the new

  2. Retrieval of average CO2 fluxes by combining in situ CO2 measurements and backscatter lidar information

    Science.gov (United States)

    Gibert, Fabien; Schmidt, Martina; Cuesta, Juan; Ciais, Philippe; Ramonet, Michel; Xueref, IrèNe; Larmanou, Eric; Flamant, Pierre Henri

    2007-05-01

    The present paper deals with a boundary layer budgeting method which makes use of observations from various in situ and remote sensing instruments to infer regional average net ecosystem exchange (NEE) of CO2. Measurements of CO2 within and above the atmospheric boundary layer (ABL) by in situ sensors, in conjunction with a precise knowledge of the change in ABL height by lidar and radiosoundings, enable to infer diurnal and seasonal NEE variations. Near-ground in situ CO measurements are used to discriminate natural and anthropogenic contributions of CO2 diurnal variations in the ABL. The method yields mean NEE that amounts to 5 μmol m-2 s-1 during the night and -20 μmol m-2 s-1 in the middle of the day between May and July. A good agreement is found with the expected NEE accounting for a mixed wheat field and forest area during winter season, representative of the mesoscale ecosystems in the Paris area according to the trajectory of an air column crossing the landscape. Daytime NEE is seen to follow the vegetation growth and the change in the ratio diffuse/direct radiation. The CO2 vertical mixing flux during the rise of the atmospheric boundary layer is also estimated and seems to be the main cause of the large decrease of CO2 mixing ratio in the morning. The outcomes on CO2 flux estimate are compared to eddy-covariance measurements on a barley field. The importance of various sources of error and uncertainty on the retrieval is discussed. These errors are estimated to be less than 15%; the main error resulted from anthropogenic emissions.

  3. Evaluation of Modeling NO2 Concentrations Driven by Satellite-Derived and Bottom-Up Emission Inventories Using In-Situ Measurements Over China

    Science.gov (United States)

    Liu, Fei; van der A, Ronald J.; Eskes, Henk; Ding, Jieying; Mijling, Bas

    2018-01-01

    Chemical transport models together with emission inventories are widely used to simulate NO2 concentrations over China, but validation of the simulations with in situ measurements has been extremely limited. Here we use ground measurements obtained from the air quality monitoring network recently developed by the Ministry of Environmental Protection of China to validate modeling surface NO2 concentrations from the CHIMERE regional chemical transport model driven by the satellite-derived DECSO and the bottom-up MIX emission inventories. We applied a correction factor to the observations to account for the interferences of other oxidized nitrogen compounds (NOz), based on the modeled ratio of NO2 to NOz. The model accurately reproduces the spatial variability in NO2 from in situ measurements, with a spatial correlation coefficient of over 0.7 for simulations based on both inventories. A negative and positive bias is found for the simulation with the DECSO (slopeD0.74 and 0.64 for the daily mean and daytime only) and the MIX (slopeD1.3 and 1.1) inventories, respectively, suggesting an underestimation and overestimation of NOx emissions from corresponding inventories. The bias between observed and modeled concentrations is reduced, with the slope dropping from 1.3 to 1.0 when the spatial distribution of NOx emissions in the DECSO inventory is applied as the spatial proxy for the MIX inventory, which suggests an improvement of the distribution of emissions between urban and suburban or rural areas in the DECSO inventory compared to that used in the bottom-up inventory. A rough estimate indicates that the observed concentrations, from sites predominantly placed in the populated urban areas, may be 10-40% higher than the corresponding model grid cell mean. This reduces the estimate of the negative bias of the DECSO-based simulation to the range of -30 to 0% on average and more firmly establishes that the MIX inventory is biased high over major cities. The performance of

  4. Evaluation of modeling NO2 concentrations driven by satellite-derived and bottom-up emission inventories using in situ measurements over China

    Science.gov (United States)

    Liu, Fei; van der A, Ronald J.; Eskes, Henk; Ding, Jieying; Mijling, Bas

    2018-03-01

    Chemical transport models together with emission inventories are widely used to simulate NO2 concentrations over China, but validation of the simulations with in situ measurements has been extremely limited. Here we use ground measurements obtained from the air quality monitoring network recently developed by the Ministry of Environmental Protection of China to validate modeling surface NO2 concentrations from the CHIMERE regional chemical transport model driven by the satellite-derived DECSO and the bottom-up MIX emission inventories. We applied a correction factor to the observations to account for the interferences of other oxidized nitrogen compounds (NOz), based on the modeled ratio of NO2 to NOz. The model accurately reproduces the spatial variability in NO2 from in situ measurements, with a spatial correlation coefficient of over 0.7 for simulations based on both inventories. A negative and positive bias is found for the simulation with the DECSO (slope = 0.74 and 0.64 for the daily mean and daytime only) and the MIX (slope = 1.3 and 1.1) inventories, respectively, suggesting an underestimation and overestimation of NOx emissions from corresponding inventories. The bias between observed and modeled concentrations is reduced, with the slope dropping from 1.3 to 1.0 when the spatial distribution of NOx emissions in the DECSO inventory is applied as the spatial proxy for the MIX inventory, which suggests an improvement of the distribution of emissions between urban and suburban or rural areas in the DECSO inventory compared to that used in the bottom-up inventory. A rough estimate indicates that the observed concentrations, from sites predominantly placed in the populated urban areas, may be 10-40 % higher than the corresponding model grid cell mean. This reduces the estimate of the negative bias of the DECSO-based simulation to the range of -30 to 0 % on average and more firmly establishes that the MIX inventory is biased high over major cities. The

  5. Microcontroller based resonance tracking unit for time resolved continuous wave cavity-ringdown spectroscopy measurements.

    Science.gov (United States)

    Votava, Ondrej; Mašát, Milan; Parker, Alexander E; Jain, Chaithania; Fittschen, Christa

    2012-04-01

    We present in this work a new tracking servoloop electronics for continuous wave cavity-ringdown absorption spectroscopy (cw-CRDS) and its application to time resolved cw-CRDS measurements by coupling the system with a pulsed laser photolysis set-up. The tracking unit significantly increases the repetition rate of the CRDS events and thus improves effective time resolution (and/or the signal-to-noise ratio) in kinetics studies with cw-CRDS in given data acquisition time. The tracking servoloop uses novel strategy to track the cavity resonances that result in a fast relocking (few ms) after the loss of tracking due to an external disturbance. The microcontroller based design is highly flexible and thus advanced tracking strategies are easy to implement by the firmware modification without the need to modify the hardware. We believe that the performance of many existing cw-CRDS experiments, not only time-resolved, can be improved with such tracking unit without any additional modification to the experiment. © 2012 American Institute of Physics

  6. Fabrication and testing of an electrochemical microcell for in situ soft X-ray microspectroscopy measurements

    Science.gov (United States)

    Gianoncelli, A.; Kaulich, B.; Kiskinova, M.; Mele, C.; Prasciolu, M.; Sgura, I.; Bozzini, B.

    2013-03-01

    In this paper we report on the fabrication and testing of a novel concept of electrochemical microcell for in-situ soft X-ray microspectroscopy in transmission. The microcell, fabricated by electron-beam lithography, implements an improved electrode design, with optimal current density distribution and minimised ohmic drop, allowing the same three-electrode electrochemical control achievable with traditional cells. Moreover standard electroanalytical measurements, such as cyclic voltammetry, can be routinely performed. As far as the electrolyte is concerned, we selected a room-temperature ionic-liquid. Some of the materials belonging to this class, in addition to a broad range of outstanding electrochemical properties, feature two highlights that are crucial for in situ, soft X-ray transmission work: spinnability, enabling accurate thickness control, and stability to UHV, allowing operation of an open cell in the analysis chamber vacuum (10-6 mbar). The cell can, of course, be used also with non-vacuum stable electrolytes in the sealed version developed in previous work in our group. In this study, the microcell designed, fabricated and tested in situ by applying an anodic polarisation to a Au electrode and following the formation of a distribution of corrosion features. This specific material combination presented in this work does not limit the cell concept, that can implement any electrodic material grown by lithography, any liquid electrolyte and any spinnable solid electrolyte.

  7. In situ measurement of heavy metals in water using portable EDXRF and APDC pre-concentration methodology

    International Nuclear Information System (INIS)

    Melquiades, Fabio L.; Parreira, Paulo S.; Appoloni, Carlos R.; Silva, Wislley D.; Lopes, Fabio

    2007-01-01

    With the objective of identify and quantify metals in water and obtain results in the sampling place, Energy Dispersive X-Ray Fluorescence (EDXRF) methodology with a portable equipment was employed. In this work are presented metal concentration results for water samples from two points of Londrina city. The analysis were in situ, measuring in natura water and samples pre-concentrated in membranes. The work consisted on the use of a portable X-ray tube to excite the samples and a Si-Pin detector with the standard data acquisition electronics to register the spectra. The samples were filtered in membranes for suspended particulate matter retention. After this APDC precipitation methodology was applied for sample pre-concentration with posterior filtering in membranes. For in natura samples were found concentrations of total iron in Capivara River 254 ± 30 mg L -1 and at Igapo Lake 63 ± 9 mg L -1 . For membrane measurements, the results for particulate suspended matter at Capivara River were, in mg L -1 : 31.0 ± 2.5 (Fe), 0.17 ± 0.03 (Cu) and 0.93 ± 0.08 (Pb) and for dissolved iron was 0.038 ± 0.004. For Igapo Lake just Fe was quantified: 1.66 ±0.19 mg L -1 for particulate suspended iron and 0.79 ± 0.11 mg L -1 for dissolved iron. In 4 h of work at field it was possible to filter 14 membranes and measure around 16 samples. The performance of the equipment was very good and the results are satisfactory for in situ measurements employing a portable instrument. (author)

  8. Visualizing and measuring flow in shale matrix using in situ synchrotron X-ray microtomography

    Science.gov (United States)

    Kohli, A. H.; Kiss, A. M.; Kovscek, A. R.; Bargar, J.

    2017-12-01

    Natural gas production via hydraulic fracturing of shale has proliferated on a global scale, yet recovery factors remain low because production strategies are not based on the physics of flow in shale reservoirs. In particular, the physical mechanisms and time scales of depletion from the matrix into the simulated fracture network are not well understood, limiting the potential to optimize operations and reduce environmental impacts. Studying matrix flow is challenging because shale is heterogeneous and has porosity from the μm- to nm-scale. Characterizing nm-scale flow paths requires electron microscopy but the limited field of view does not capture the connectivity and heterogeneity observed at the mm-scale. Therefore, pore-scale models must link to larger volumes to simulate flow on the reservoir-scale. Upscaled models must honor the physics of flow, but at present there is a gap between cm-scale experiments and μm-scale simulations based on ex situ image data. To address this gap, we developed a synchrotron X-ray microscope with an in situ cell to simultaneously visualize and measure flow. We perform coupled flow and microtomography experiments on mm-scale samples from the Barnett, Eagle Ford and Marcellus reservoirs. We measure permeability at various pressures via the pulse-decay method to quantify effective stress dependence and the relative contributions of advective and diffusive mechanisms. Images at each pressure step document how microfractures, interparticle pores, and organic matter change with effective stress. Linking changes in the pore network to flow measurements motivates a physical model for depletion. To directly visualize flow, we measure imbibition rates using inert, high atomic number gases and image periodically with monochromatic beam. By imaging above/below X-ray adsorption edges, we magnify the signal of gas saturation in μm-scale porosity and nm-scale, sub-voxel features. Comparing vacuumed and saturated states yields image

  9. Analysis for In-situ Fission Rate Measurements using 4He Gas Scintillation Detectors

    International Nuclear Information System (INIS)

    Lewis, Jason M.; Raetz, Dominik; Jordan, Kelly A.; Murer, David

    2013-06-01

    Active neutron interrogation is a powerful NDA technique that relies on detecting and analyzing fission neutrons produced in a fuel sample by an interrogating high neutron flux. 4 He scintillation gas fast neutron detectors are investigated in this paper for use in a novel fission rate measurement technique The He-4 detectors have excellent gamma rejection, a fast response time, and give significant information on incident neutron energy allowing for energy cuts to be applied to the detected signal. These features are shown in this work to allow for the detection of prompt fission neutrons in-situ during active neutron interrogation of a 238 U sample. The energy spectrum from three different neutrons sources ( 252 Cf, AmBe, AmLi) is measured using the 4 He detection system and analyzed. An initial response matrix for the detector is determined using these measurements and the kinematic interaction properties of the elastic scattering with the 4 He. (authors)

  10. Outside-out "sniffer-patch" clamp technique for in situ measures of neurotransmitter release.

    Science.gov (United States)

    Muller-Chrétien, Emilie

    2014-01-01

    The mechanism underlying neurotransmitter release is a critical research domain for the understanding of neuronal network function; however, few techniques are available for the direct detection and measurement of neurotransmitter release. To date, the sniffer-patch clamp technique is mainly used to investigate these mechanisms from individual cultured cells. In this study, we propose to adapt the sniffer-patch clamp technique to in situ detection of neurosecretion. Using outside-out patches from donor cells as specific biosensors plunged in acute cerebral slices, this technique allows for proper detection and quantification of neurotransmitter release at the level of the neuronal network.

  11. Tropospheric Ozone Source Attribution in Southern California during Summer 2014 Based on Lidar Measurements and Model Simulations

    Science.gov (United States)

    Granados Munoz, Maria Jose; Johnson, Matthew S.; Leblanc, Thierry

    2016-01-01

    In the past decades, significant efforts have been made to increase tropospheric ozone long-term monitoring. A large number of ground-based, airborne and space-borne instruments are currently providing valuable data to contribute to better understand tropospheric ozone budget and variability. Nonetheless, most of these instruments provide in-situ surface and column-integrated data, whereas vertically resolved measurements are still scarce. Besides ozonesondes and aircraft, lidar measurements have proven to be valuable tropospheric ozone profilers. Using the measurements from the tropospheric ozone differential absorption lidar (DIAL) located at the JPL Table Mountain Facility, California, and the GEOS-Chem and GEOS-5 model outputs, the impact of the North American monsoon on tropospheric ozone during summer 2014 is investigated. The influence of the Monsoon lightning-induced NOx will be evaluated against other sources (e.g. local anthropogenic emissions and the stratosphere) using also complementary data such as backward-trajectories analysis, coincident water vapor lidar measurements, and surface ozone in-situ measurements.

  12. Review of current capabilities for the measurement of stress, displacement, and in situ deformation modulus

    International Nuclear Information System (INIS)

    Schrauf, T.W.; Pratt, H.R.

    1979-12-01

    Current capabilities for the measurement of stress, displacement, and in situ deformation modulus in rock masses are reviewed as to their accuracy, sensitivity, advantages, and limitations. Consideration is given to both the instruments themselves and the measurement technique. Recommendations concerning adaptation of existing measurement techniques to repository monitoring are also discussed. These recommendations include: (1) development of a modified borehole deformation gage with improved long-term stability and reliability and reduced thermal sensitivity; (2) development of a downhole transducer type of extensometer; (3) development of a rigid inclusion type gage; (4) development of an improved vibrating wire stressmeter with greater accuracy and simplified calibration and installation requirements; and (5) modification of standard rod extensometers to improve their sensitivity

  13. In situ measurement of the effect of LiOH on the stability of zircaloy-2 surface film in PWR water

    International Nuclear Information System (INIS)

    Saario, T.; Taehtinen, S.

    1997-01-01

    Surface films on the metals play a major role in corrosion assisted cracking. A new method called Contact Electric Resistance (CER) method has been recently developed for in situ measurement of the electric resistance of surface films in high temperature and high pressure environments. The technique has been used to determine in situ the electric resistance of films on metals when in contact with water and dissolved anions, during formation and destruction of oxides and hydrides and during electroplating of metals. Electric resistance data can be measured with a frequency of the order of one hertz, which makes it possible to investigate in situ the kinetics of surface film related processes which are dependent on the environment, temperature, pH and electrochemical potential. This paper presents the results of the CER investigation on the effects of LiOH on the stability of Zircaloy-2 surface film in water with 2000 ppm H 3 BO 3 . At 300 deg. C the LiOH concentrations higher than 10 -2 M (roughly 70 ppm of Li + ) were found to markedly reduce the electric resistance of the Zircaloy-2 surface film during a test period of less than two hours. The decrease of the film resistance is very abrupt, possibly indicating a phase transformation. Moreover, the advantages of the CER technique over the other competing techniques which rely on the measurement of current are discussed. (author)

  14. In situ measurement of the effect of LiOH on the stability of zircaloy-2 surface film in PWR water

    Energy Technology Data Exchange (ETDEWEB)

    Saario, T; Taehtinen, S [Technical Research Centre of Finland, Espoo (Finland)

    1997-02-01

    Surface films on the metals play a major role in corrosion assisted cracking. A new method called Contact Electric Resistance (CER) method has been recently developed for in situ measurement of the electric resistance of surface films in high temperature and high pressure environments. The technique has been used to determine in situ the electric resistance of films on metals when in contact with water and dissolved anions, during formation and destruction of oxides and hydrides and during electroplating of metals. Electric resistance data can be measured with a frequency of the order of one hertz, which makes it possible to investigate in situ the kinetics of surface film related processes which are dependent on the environment, temperature, pH and electrochemical potential. This paper presents the results of the CER investigation on the effects of LiOH on the stability of Zircaloy-2 surface film in water with 2000 ppm H{sub 3}BO{sub 3}. At 300 deg. C the LiOH concentrations higher than 10{sup -2} M (roughly 70 ppm of Li{sup +}) were found to markedly reduce the electric resistance of the Zircaloy-2 surface film during a test period of less than two hours. The decrease of the film resistance is very abrupt, possibly indicating a phase transformation. Moreover, the advantages of the CER technique over the other competing techniques which rely on the measurement of current are discussed. (author).

  15. In situ measurement of methane oxidation in groundwater by using natural-gradient tracer tests

    International Nuclear Information System (INIS)

    Smith, R.L.; Howes, B.L.; Garabedian, S.P.

    1991-01-01

    Methane oxidation was measured in an unconfined sand and gravel aquifer (Cape Cod, Mass.) by using in situ natural-gradient tracer tests at both a pristine, oxygenated site and an anoxic, sewage-contaminated site. The tracer sites were equipped with multilevel sampling devices to create target grids of sampling points; the injectate was prepared with groundwater from the tracer site to maintain the same geochemical conditions. Methane oxidation was calculated from breakthrough curves of methane relative to halide and inert gas (hexafluoroethane) tracers and was confirmed by the appearance of 13 C-enriched carbon dioxide in experiments in which 13 C-enriched methane was used as the tracer. A V max for methane oxidation could be calculated when the methane concentration was sufficiently high to result in zero-order kinetics throughout the entire transport interval. Methane breakthrough curves could be simulated by modifying a one-dimensional advection-dispersion transport model to include a Michaelis-Menten-based consumption term for methane oxidation. The K m values for methane oxidation that gave the best match for the breakthrough curve peaks were 6.0 and 9.0 μM for the uncontaminated and contaminated sites, respectively. Natural-gradient tracer tests are a promising approach for assessing microbial processes and for testing in situ bioremediation potential in groundwater systems

  16. Picosecond Time-Resolved Temperature and Density Measurements with K-Shell Spectroscopy

    Science.gov (United States)

    Stillman, C. R.; Nilson, P. M.; Ivancic, S. T.; Mileham, C.; Froula, D. H.; Golovkin, I. E.

    2017-10-01

    The thermal x-ray emission from rapidly heated solid targets containing a buried-aluminum layer was measured to track the evolution of the bulk plasma conditions. The targets were driven by high-contrast 1 ω laser pulses at focused intensities up to 1 × 1019 W/cm2. A streaked x-ray spectrometer recorded the AlHeα and lithium-like satellite lines with 2-ps temporal resolution and moderate resolving power (E E ΔE 1000 ΔE 1000) . Time-integrated measurements over the same spectral range were used to correct the streaked data for variations in photocathode sensitivity. Linewidths and intensity ratios from the streaked data were interpreted using a collisional radiative atomic kinetics model to provide the average plasma conditions in the buried layer as a function of time. Experimental uncertainties in the measured plasma conditions are quantified within a consistent model-dependent framework. The data demonstrate the production of a 330 +/-56 eV, 0.9 +/-0.3 g/cm3 plasma that evolves slowly during peak Heα emission. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  17. In situ quantification of Br and Cl in minerals and fluid inclusions by LA-ICP-MS: a powerful tool to identify fluid sources

    Science.gov (United States)

    Hammerli, Johannes; Rusk, Brian; Spandler, Carl; Emsbo, Poul; Oliver, Nicholas H.S.

    2013-01-01

    Bromine and chlorine are important halogens for fluid source identification in the Earth's crust, but until recently we lacked routine analytical techniques to determine the concentration of these elements in situ on a micrometer scale in minerals and fluid inclusions. In this study, we evaluate the potential of in situ Cl and Br measurements by LA-ICP-MS through analysis of a range of scapolite grains with known Cl and Br concentrations. We assess the effects of varying spot sizes, variable plasma energy and resolve the contribution of polyatomic interferences on Br measurements. Using well-characterised natural scapolite standards, we show that LA-ICP-MS analysis allows measurement of Br and Cl concentrations in scapolite, and fluid inclusions as small as 16 μm in diameter and potentially in sodalite and a variety of other minerals, such as apatite, biotite, and amphibole. As a demonstration of the accuracy and potential of Cl and Br analyses by LA-ICP-MS, we analysed natural fluid inclusions hosted in sphalerite and compared them to crush and leach ion chromatography Cl/Br analyses. Limit of detection for Br is ~8 μg g−1, whereas relatively high Cl concentrations (> 500 μg g−1) are required for quantification by LA-ICP-MS. In general, our LA-ICP-MS fluid inclusion results agree well with ion chromatography (IC) data. Additionally, combined cathodoluminescence and LA-ICP-MS analyses on natural scapolites within a well-studied regional metamorphic suite in South Australia demonstrate that Cl and Br can be quantified with a ~25 μm resolution in natural minerals. This technique can be applied to resolve a range of hydrothermal geology problems, including determining the origins of ore forming brines and ore deposition processes, mapping metamorphic and hydrothermal fluid provinces and pathways, and constraining the effects of fluid–rock reactions and fluid mixing.

  18. A new project, SPIRALE. Balloon-borne in situ multi-component measurement using infrared diode lasers

    Energy Technology Data Exchange (ETDEWEB)

    Moreau, G.; Pirre, M.; Robert, C. [Centre National de la Recherche Scientifique (CNRS), 45 - Orleans-la-Source (France); Rosier, B.; Louvet, Y.; Ramaroson, R. [Office National d`Etudes et de Recherches Aerospatiales, 91 - Palaiseau (France); Peyret, C.C. [Universite Pierre et Marie Curie, 75 - Paris (France); Macleod, Y. [Universite Pierreet Marie Curie, 75 - Paris (France); Courtois, D. [Reims Univ., 51 (France). Faculte des Sciences

    1997-12-31

    The scientific goals and the description of a new experiment for stratospheric studies SPIRALE are presented which is a balloon-borne instrument, able to measure in situ several air components (up to 10). Infrared diode laser spectroscopy is applied for monitoring simultaneously atmospheric trace gases at high rate. Its specificity, sensitivity, and wide range of compounds to which it can be applied is described. (R.P.) 5 refs.

  19. A new project, SPIRALE. Balloon-borne in situ multi-component measurement using infrared diode lasers

    Energy Technology Data Exchange (ETDEWEB)

    Moreau, G; Pirre, M; Robert, C [Centre National de la Recherche Scientifique (CNRS), 45 - Orleans-la-Source (France); Rosier, B; Louvet, Y; Ramaroson, R [Office National d` Etudes et de Recherches Aerospatiales, 91 - Palaiseau (France); Peyret, C C [Universite Pierre et Marie Curie, 75 - Paris (France); Macleod, Y [Universite Pierreet Marie Curie, 75 - Paris (France); Courtois, D [Reims Univ., 51 (France). Faculte des Sciences

    1998-12-31

    The scientific goals and the description of a new experiment for stratospheric studies SPIRALE are presented which is a balloon-borne instrument, able to measure in situ several air components (up to 10). Infrared diode laser spectroscopy is applied for monitoring simultaneously atmospheric trace gases at high rate. Its specificity, sensitivity, and wide range of compounds to which it can be applied is described. (R.P.) 5 refs.

  20. Approach to first principles model prediction of measured WIPP [Waste Isolation Pilot Plant] in situ room closure in salt

    International Nuclear Information System (INIS)

    Munson, D.E.; Fossum, A.F.; Senseny, P.E.

    1989-01-01

    The discrepancies between predicted and measured WIPP in situ Room D closures are markedly reduced through the use of a Tresca flow potential, an improved small strain constitutive model, an improved set of material parameters, and a modified stratigraphy. 17 refs., 8 figs., 1 tab

  1. In situ shape and distance measurements in neutron scattering and diffraction

    International Nuclear Information System (INIS)

    Fujiwara, Satoru; Mendelson, R.A.

    1994-01-01

    Neutron scattering combined with selective isotopic labeling and contrast matching is useful for obtaining in situ structural information about a selected particle, or particles, in a macromolecular complex. The observed intensities, however, may be distorted by inter-complex interference and by scattering-length-density fluctuations of the (otherwise) contrast-matched portions. Methods have been proposed to cancel out such distortions (Hoppe's method, the Statistical Labeling Method, and the Triple Isotopic Substitution Method). With these methods as well as related unmixed-sample methods, structural information about the selected particles can be obtained without these distortions. We have generalized these methods so that, in addition to globular particles in solution, they can be applied to in situ structures of systems having underlying symmetry and/or net orientation as well. The information obtainable from such experiments is discussed

  2. In-situ roundness measurement and correction for pin journals in oscillating grinding machines

    Science.gov (United States)

    Yu, Hongxiang; Xu, Mengchen; Zhao, Jie

    2015-01-01

    In the mass production of vehicle-engine crankshafts, pin chasing grinding using oscillating grinding machines is a widely accepted method to achieve flexible and efficient performance. However, the eccentric movement of pin journals makes it difficult to develop an in-process roundness measurement scheme for the improvement of contour precision. Here, a new in-situ roundness measurement strategy is proposed with high scanning speed. The measuring mechanism is composed of a V-block and an adaptive telescopic support. The swing pattern of the telescopic support and the V-block is analysed for an equal angle-interval signal sampling. Hence roundness error signal is extracted in frequency domain using a small-signal model of the V-block roundness measurement method and the Fast Fourier Transformation. To implement the roundness data in the CNC coordinate system of an oscillating grinding machine, a transformation function is derived according to the motion model of pin chasing grinding methodology. Computer simulation reveals the relationship between the rotational position of the crankshaft component and the scanning angle of the displacement probe on the V-block, as well as the influence introduced by the rotation centre drift. Prototype investigation indicates the validity of the theoretical analysis and the feasibility of the new strategy.

  3. Simulated plasma facing component measurements for an in situ surface diagnostic on Alcator C-Moda)

    Science.gov (United States)

    Hartwig, Z. S.; Whyte, D. G.

    2010-10-01

    The ideal in situ plasma facing component (PFC) diagnostic for magnetic fusion devices would perform surface element and isotope composition measurements on a shot-to-shot (˜10 min) time scale with ˜1 μm depth and ˜1 cm spatial resolution over large areas of PFCs. To this end, the experimental adaptation of the customary laboratory surface diagnostic—nuclear scattering of MeV ions—to the Alcator C-Mod tokamak is being guided by ACRONYM, a Geant4 synthetic diagnostic. The diagnostic technique and ACRONYM are described, and synthetic measurements of film thickness for boron-coated PFCs are presented.

  4. In situ SERS and X-ray photoelectron spectroscopy studies on the pH-dependant adsorption of anthraquinone-2-carboxylic acid on silver electrode

    Energy Technology Data Exchange (ETDEWEB)

    Li, Dan, E-mail: dany@sit.edu.cn [School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418 (China); Jia, Shaojie [School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418 (China); Fodjo, Essy Kouadio [Laboratory of Physical Chemistry, University Felix Houphouet Boigny, 22 BP 582, Abidjan 22, Cote d’Ivoire (Cote d' Ivoire); Xu, Hu [School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418 (China); Wang, Yuhong, E-mail: yuhong_wang502@sit.edu.cn [School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418 (China); Deng, Wei [School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418 (China)

    2016-03-30

    Graphical abstract: The orientation of anthraquinone-2-carboxylic acid (AQ-2-COOH) has been investigated by in situ surface-enhanced Raman scattering (in situ SERS) spectroelectrochemistry and angle-resolved X-ray photoelectron spectroscopy (AR-XPS) on silver surface. - Highlights: • The adsorption behavior of anthraquinone-2-carboxylic acid (AQ-2-COOH) on Ag electrode is influenced by the pH. • The pH-dependant adsorption of AQ-2-COOH has been confirmed by in situ surface-enhanced Raman scattering (in situ SERS) spectroelectrochemistry and angle-resolved X-ray photoelectron spectroscopy (AR-XPS). • The results can provide insights into electron transfer reactions of AQ-2-COOH in biological systems. - Abstract: In this study, in situ surface-enhanced Raman scattering (SERS) spectroelectrochemistry and angle-resolved X-ray photoelectron spectroscopy (AR-XPS) are used to investigate the redox reaction and adsorption behavior of anthraquinone-2-carboxylic acid (AQ-2-COOH) on an Ag electrode at different pH values. The obtained results indicate that AQ-2-COOH is adsorbed tilted on the Ag electrode through O-atom of ring carbonyl in a potential range from −0.3 to −0.5 V vs. SCE, but the orientation turns to more tilted orientation with both O-atom of the ring carbonyl and carboxylate group in positive potential region for pH 6.0 and 7.4. However, at pH 10.0, the orientation adopts tilted conformation constantly on the Ag electrode with both O-atom of the anthraquinone ring and carboxylate group in the potential range from −0.3 to −0.5 V vs. SCE or at positive potentials. Moreover, the adsorption behavior of AQ-2-COOH has been further confirmed by AR-XPS on the Ag surface. Proposed reasons for the observed changes in orientation are presented.

  5. Safety in conducting subcritical neutron-multiplication measurements in situ (Revision of N16.3-1969) - approved 1975

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    The standard provides safety guidance for conducting subcritical neutron-multiplication measurements where physical protection of personnel against the consequences of a criticality accident is not provided. The objectives of in situ measurements are either to confirm an adequate safety margin or to improve an estimate of such a margin. The first objective may constitute a test of the criticality safety of a design that is based on calculations. The second may effect improved operating conditions by reducing the uncertainty of safety margins and providing guidance to new designs

  6. In Situ Roughness Measurements for the Solar Cell Industry Using an Atomic Force Microscope

    Directory of Open Access Journals (Sweden)

    Higinio González-Jorge

    2010-04-01

    Full Text Available Areal roughness parameters always need to be under control in the thin film solar cell industry because of their close relationship with the electrical efficiency of the cells. In this work, these parameters are evaluated for measurements carried out in a typical fabrication area for this industry. Measurements are made using a portable atomic force microscope on the CNC diamond cutting machine where an initial sample of transparent conductive oxide is cut into four pieces. The method is validated by making a comparison between the parameters obtained in this process and in the laboratory under optimal conditions. Areal roughness parameters and Fourier Spectral Analysis of the data show good compatibility and open the possibility to use this type of measurement instrument to perform in situ quality control. This procedure gives a sample for evaluation without destroying any of the transparent conductive oxide; in this way 100% of the production can be tested, so improving the measurement time and rate of production.

  7. Timely resolved measurements on CdSe nanoparticles

    International Nuclear Information System (INIS)

    Holt, B.E. von

    2006-01-01

    By means of infrared spectroscopy the influence of the organic cover on structure and dynamics of CdSe nanoparticles was studied. First a procedure was developed, which allows to get from the static infrared spectrum informations on the quality of the organic cover and the binding behaviour of the ligands. On qualitatively high-grade and well characterized samples thereafter the dynamics of the lowest-energy electron level 1S e was time-resolvedly meausred in thew visible range. As reference served CdSe TOPO, which was supplemented by samples with the ligands octanthiole, octanic acid, octylamine, naphthoquinone, benzoquinone, and pyridine. The studied nanoparticles had a diameter of 4.86 nm. By means of the excitation-scanning or pump=probe procedure first measurements in the picosecond range were performed. The excitation wavelengths were thereby spectrally confined and so chosen that selectively the transitions 1S 3/2 -1S-e and 1P 3/2 -1P e but not the intermediately lyingt transition 2S 3/2 -1S e were excited. The excitation energies were kept so low that the excitation of several excitons in one crystal could be avoided. The scanning wavelength in the infrared corresponded to the energy difference between the electron levels 1S e and 1P e . The transients in the picosecond range are marked by a steep increasement of the signal, on which a multi-exponential decay follows. The increasement, which reproduces the popiulation of the excited state, isa inependent on the choice of the ligands. The influence of the organic cover is first visible in the different decay times of the excited electron levels. the decay of the measurement signal of CdSe TOPO can be approximatively described by three time constants: a decay constant in the early picosecond region, a time constant around hundert picoseconds, and a time constant of some nanoseconds. At increasing scanning wavelength the decay constants become longer. By directed excitation of the 1S 3/2 -1S e and the 1P 3

  8. In-situ Raman spectroscopy. A method to study and control the growth of microcrystalline silicon for thin-film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Muthmann, Stefan

    2012-08-22

    This work deals with the design and application of a novel experiment, which enables in-situ Raman measurements during the parallel plate plasma enhanced chemical vapor deposition (PECVD) of {mu}cSi:H. Measurements of the crystalline volume fraction (I{sub C}{sup RS}) and the temperature of a growing film are carried out using the novel setup. To enable in-situ Raman measurement of central regions of the coated substrate in a PECVD system, optical access under normal incidence is necessary. An experimental setup in which an optical feed-through was integrated into a PECVD electrode was developed. This setup introduces a disturbance to the electrical field which sustains the plasma. By designing metallic shields the impact of the feed through was reduced considerably at low optical losses. The homogeneity of films deposited with the novel setup in different growth regimes was studied. A correlation between the magnitude of the inhomogeneity caused by the feed-through and the characteristics of the deposition regimes is found. Raman spectroscopy demands the illumination of a sample with a laser and the collection of the scattered radiation. Due to absorption of the laser light the temperature of the illuminated film is increased. Since the temperature determines the properties of a growing film the laser-induced temperature increase was studied. By pulsing the laser radiation of minimal temperature increase at maximal signal intensity was obtained. The crystalline volume fraction of a growing {mu}cSi:H layer was determined in-situ with the novel setup. A minimal temporal resolution of less than 17.5 s at sufficient signal-to-noise-ratio was achieved, which corresponds to less than 9 nm of deposited material during one measurement interval at the industrial standard growth rate of 0.5 nm/s. The obtained results were compared to depth resolved measurements which were carried out after the deposition. An excellent agreement between both methods validates the reliability

  9. Development of time-resolved optical measurement and diagnostic system for parameters of high current and pulsed electron beam

    International Nuclear Information System (INIS)

    Jiang Xiaoguo; Wang Yuan; Yang Guojun; Xia Liansheng; Li Hong; Zhang Zhuo; Liao Shuqing; Shi Jinshui

    2013-01-01

    The beam parameters measurement is the most important work for the study of linear induction accelerator(LIA). The beam parameters are important to evaluate the character of the beam. The demands of beam parameters measurement are improving while the development of accelerator is improving. The measurement difficulty feature higher time-resolved ability, higher spatial resolution, larger dynamic range and higher intuitionistic view data. The measurement technology of beam spot, beam emittance, beam energy have been developed for the past several years. Some high performance equipment such as high speed framing camera are developed recently. Under this condition, the relative integrated optical measurement and diagnostic system for the beam parameters is developed based on several principles. The system features time-resolved ability of up to 2 ns, high sensitivity and large dynamic range. The processing program is compiled for the data process and the local real-time process is reached. The measurement and diagnostic system has provided full and accurate data for the debug work and has been put into applications. (authors)

  10. Characterizing the Asian Tropopause Aerosol Layer using in situ balloon measurements: the BATAL campaigns of 2014-2017

    Science.gov (United States)

    Fairlie, T. D.; Vernier, J. P.; Deshler, T.; Pandit, A. K.; Ratnam, M. V.; Gadhavi, H. S.; Liu, H.; Natarajan, M.; Jayaraman, A.; Kumar, S.; Singh, A. K.; Stenchikov, G. L.; Wienhold, F.; Vignelles, D.; Bedka, K. M.; Avery, M. A.

    2017-12-01

    We present in situ balloon observations of the Asian Tropopause Aerosol Layer (ATAL), a summertime accumulation of aerosols in the upper troposphere and lower stratosphere (UTLS), associated with Asian Summer Monsoon (ASM). The ATAL was first revealed by CALIPSO satellite data, and has been linked with deep convection of boundary layer pollution into the UTLS. The ATAL has potential implications for regional cloud properties, radiative transfer, and chemical processes in the UTLS. The "Balloon measurements of the Asian Tropopause Aerosol Layer (BATAL)" field campaigns to India and Saudi Arabia in were designed to characterize the physical and optical properties of the ATAL, to explore its composition, and its relationship with clouds in the UTLS. We launched 55 balloon flights from 4 locations, in summers 2014-2016. We return to India to make more balloon flights in summer 2017. Balloon payloads range from 500g to 50 kg, making measurements of meteorological parameters, ozone, water vapor, aerosol optical properties, concentration, volatility, and composition in the UTLS region. This project represents the most important effort to date to study UTLS aerosols during the ASM, given few in situ observations. We complement the in situ data presented with 3-d chemical transport simulations, designed to further explore the ATAL's chemical composition, the sensitivity of such to scavenging in parameterized deep convection, and the relative contribution of regional vs. rest-of-the-world pollution sources. The BATAL project has been a successful partnership between institutes in the US, India, Saudi Arabia, and Europe, and continues for the next 3-4 years, sponsored by the NASA Upper Atmosphere Research program. This partnership may provide a foundation for potential high-altitude airborne measurement studies during the ASM in the future.

  11. Powder agglomeration study in RF silane plasmas by in situ polarization-sensitive laser light scattering and TEM measurements

    Energy Technology Data Exchange (ETDEWEB)

    Courteille, C; Hollenstein, C; Dorier, J L; Gay, P; Schwarzenbach, W; Howling, A A [Ecole Polytechnique Federale, Lausanne (Switzerland). Centre de Recherche en Physique des Plasma (CRPP); Bertran, E; Viera, G [Barcelona Univ., Dep. de de Fisica Aplicada I Electronica, Barcelona (Spain); Martins, R; Macarico, A [FCTUNL, Materials Science Dep., Monte de Caparica (Portugal)

    1966-03-01

    To determine self-consistently the time evolution of particle size and their number density in situ multi-angle polarization laser light scattering was used. Cross-polarization intensities (incident and scattered light intensities with opposite polarization) measured at 135{sup o} and ex-situ TEM analysis demonstrate the existence of non-spherical agglomerates during the early phase of agglomeration. Later in the particle time development both techniques reveal spherical particles again. The presence of strong cross-polarization intensities is accompanied by low frequency instabilities detected on the scattered light intensities and plasma emission. It is found that the particle radius and particle number density during the agglomeration phase can be well described by the Brownian Free Molecule Coagulation model. Application of this neutral particle coagulation model is justified by calculation of the particle charge whereby it is shown that particles of a few tens of nanometer can be considered as neutral under our experimental conditions. The measured particle dispersion can be well described by a Brownian Free Molecule Coagulation model including a log-normal particle size distribution. (author) 11 figs., 48 refs.

  12. Powder agglomeration study in RF silane plasmas by in situ polarization-sensitive laser light scattering and TEM measurements

    International Nuclear Information System (INIS)

    Courteille, C.; Hollenstein, C.; Dorier, J.L.; Gay, P.; Schwarzenbach, W.; Howling, A.A.; Bertran, E.; Viera, G.; Martins, R.; Macarico, A.

    1966-03-01

    To determine self-consistently the time evolution of particle size and their number density in situ multi-angle polarization laser light scattering was used. Cross-polarization intensities (incident and scattered light intensities with opposite polarization) measured at 135 o and ex-situ TEM analysis demonstrate the existence of non-spherical agglomerates during the early phase of agglomeration. Later in the particle time development both techniques reveal spherical particles again. The presence of strong cross-polarization intensities is accompanied by low frequency instabilities detected on the scattered light intensities and plasma emission. It is found that the particle radius and particle number density during the agglomeration phase can be well described by the Brownian Free Molecule Coagulation model. Application of this neutral particle coagulation model is justified by calculation of the particle charge whereby it is shown that particles of a few tens of nanometer can be considered as neutral under our experimental conditions. The measured particle dispersion can be well described by a Brownian Free Molecule Coagulation model including a log-normal particle size distribution. (author) 11 figs., 48 refs

  13. The “Flexi-Chamber”: A Novel Cost-Effective In Situ Respirometry Chamber for Coral Physiological Measurements

    Science.gov (United States)

    Camp, Emma F.; Krause, Sophie-Louise; Santos, Lourianne M. F.; Naumann, Malik S.; Kikuchi, Ruy K. P.; Smith, David J.; Wild, Christian; Suggett, David J.

    2015-01-01

    Coral reefs are threatened worldwide, with environmental stressors increasingly affecting the ability of reef-building corals to sustain growth from calcification (G), photosynthesis (P) and respiration (R). These processes support the foundation of coral reefs by directly influencing biogeochemical nutrient cycles and complex ecological interactions and therefore represent key knowledge required for effective reef management. However, metabolic rates are not trivial to quantify and typically rely on the use of cumbersome in situ respirometry chambers and/or the need to remove material and examine ex situ, thereby fundamentally limiting the scale, resolution and possibly the accuracy of the rate data. Here we describe a novel low-cost in situ respirometry bag that mitigates many constraints of traditional glass and plexi-glass incubation chambers. We subsequently demonstrate the effectiveness of our novel “Flexi-Chamber” approach via two case studies: 1) the Flexi-Chamber provides values of P, R and G for the reef-building coral Siderastrea cf. stellata collected from reefs close to Salvador, Brazil, which were statistically similar to values collected from a traditional glass respirometry vessel; and 2) wide-scale application of obtaining P, R and G rates for different species across different habitats to obtain inter- and intra-species differences. Our novel cost-effective design allows us to increase sampling scale of metabolic rate measurements in situ without the need for destructive sampling and thus significantly expands on existing research potential, not only for corals as we have demonstrated here, but also other important benthic groups. PMID:26448294

  14. The ReactorSTM: Atomically resolved scanning tunneling microscopy under high-pressure, high-temperature catalytic reaction conditions

    Energy Technology Data Exchange (ETDEWEB)

    Herbschleb, C. T.; Tuijn, P. C. van der; Roobol, S. B.; Navarro, V.; Bakker, J. W.; Liu, Q.; Stoltz, D.; Cañas-Ventura, M. E.; Verdoes, G.; Spronsen, M. A. van; Bergman, M.; Crama, L.; Taminiau, I.; Frenken, J. W. M., E-mail: frenken@physics.leidenuniv.nl [Huygens-Kamerlingh Onnes Laboratory, Leiden University, P.O. box 9504, 2300 RA Leiden (Netherlands); Ofitserov, A.; Baarle, G. J. C. van [Leiden Probe Microscopy B.V., J.H. Oortweg 21, 2333 CH Leiden (Netherlands)

    2014-08-15

    To enable atomic-scale observations of model catalysts under conditions approaching those used by the chemical industry, we have developed a second generation, high-pressure, high-temperature scanning tunneling microscope (STM): the ReactorSTM. It consists of a compact STM scanner, of which the tip extends into a 0.5 ml reactor flow-cell, that is housed in a ultra-high vacuum (UHV) system. The STM can be operated from UHV to 6 bars and from room temperature up to 600 K. A gas mixing and analysis system optimized for fast response times allows us to directly correlate the surface structure observed by STM with reactivity measurements from a mass spectrometer. The in situ STM experiments can be combined with ex situ UHV sample preparation and analysis techniques, including ion bombardment, thin film deposition, low-energy electron diffraction and x-ray photoelectron spectroscopy. The performance of the instrument is demonstrated by atomically resolved images of Au(111) and atom-row resolution on Pt(110), both under high-pressure and high-temperature conditions.

  15. Spatially-resolved isotopic study of carbon trapped in ∼3.43 Ga Strelley Pool Formation stromatolites

    Science.gov (United States)

    Flannery, David T.; Allwood, Abigail C.; Summons, Roger E.; Williford, Kenneth H.; Abbey, William; Matys, Emily D.; Ferralis, Nicola

    2018-02-01

    The large isotopic fractionation of carbon associated with enzymatic carbon assimilation allows evidence for life's antiquity, and potentially the early operation of several extant metabolic pathways, to be derived from the stable carbon isotope record of sedimentary rocks. Earth's organic carbon isotope record extends to the Late Eoarchean-Early Paleoarchean: the age of the oldest known sedimentary rocks. However, complementary inorganic carbon reservoirs are poorly represented in the oldest units, and commonly reported bulk organic carbon isotope measurements do not capture the micro-scale isotopic heterogeneities that are increasingly reported from younger rocks. Here, we investigated the isotopic composition of the oldest paired occurrences of sedimentary carbonate and organic matter, which are preserved as dolomite and kerogen within textural biosignatures of the ∼3.43 Ga Strelley Pool Formation. We targeted least-altered carbonate phases in situ using microsampling techniques guided by non-destructive elemental mapping. Organic carbon isotope values were measured by spatially-resolved bulk analyses, and in situ using secondary ion mass spectrometry to target microscale domains of organic material trapped within inorganic carbon matrixes. Total observed fractionation of 13C ranges from -29 to -45‰. Our data are consistent with studies of younger Archean rocks that host biogenic stromatolites and organic-inorganic carbon pairs showing greater fractionation than expected for Rubisco fixation alone. We conclude that organic matter was fixed and/or remobilized by at least one metabolism in addition to the CBB cycle, possibly by the Wood-Ljungdahl pathway or methanogenesis-methanotrophy, in a shallow-water marine environment during the Paleoarchean.

  16. Decommissioning and dismantling: Qualification of gamma scanning method for decontrolling measurement of radioactive wastes. Final report

    International Nuclear Information System (INIS)

    Genrich, V.; Sattler, P.

    1998-01-01

    At the time being measurements for the release of buildings and parts of buildings are mainly performed with contamination monitors, free release equipment, wipe test a. s. o. The technical application of in-situ gamma-scanning systems for release measurement should be demonstrated with this research project. This method presents considerable advantages in comparison with standard procedures, as f. ex. reduction of radioactive waste or area covering investigation of the inspected building. A system with a NaI(Tl) and a HPGe-detector was applied. With the high-resolving system it can be shown that also low limit values can be kept with short measurement time. With the NaI(Tl)-detector system it was demonstrated that with limit values lower than 1 Bq/m 3 there may be problems observing the limit values. The investigation showed that especially the high-resolving system for the release measurement of buildings (f. ex. floors, walls, complete rooms) is well-suited. The in-situ gamma-scanning shows big advantages in its economy as f. ex. no sampling and only short measurement times are required. The sharp limitation of the existing contamination and the reduction of radioactive waste involved herewith are further advantages which justify the application of this measurement technique. (orig.)

  17. Measurement of mechanical properties of a reactor operated Zr–2.5Nb pressure tube using an in situ cyclic ball indentation system

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, S., E-mail: subrata@barc.gov.in; Panwar, Sanjay; Madhusoodanan, K.

    2015-07-15

    Highlights: • Measurement of mechanical properties of pressure tube is required for its fitness assessment. • Pressure tube removal from the core consumes large amount of radiation for laboratory test. • A remotely operable In situProperty Measurement System has been designed in house. • The tool head is capable to carry out in situ ball indentation trials inside pressure tube. • The paper describes the theory and results of the trials conducted on irradiated pressure tube. - Abstract: Periodic measurement of mechanical properties of pressure tubes of Indian Pressurised Heavy Water Reactors is required for assessment of their fitness for continued operation. Removal of pressure tube from the core for preparation of specimens to test for mechanical properties in laboratories consumes large amounts of radiation and hence is to be avoided as far as possible. In the field of in situ estimation of properties of materials, cyclic ball indentation is an emerging technique. Presently, commercial systems are available for doing indentation test either on outside surface of a component at site or on a test piece in a laboratory. However, these systems cannot be used inside a pressure tube for carrying out ball indentation trials under in situ condition. Considering this, a remotely operable hydraulic In situProperty Measurement System (IProMS) based on cyclic ball indentation technique has been designed and developed in house. The tool head of IProMS can be located inside a pressure tube at any axial location under in situ condition and the properties can be estimated from an analysis of the data on load and depth of indentation, recorded during the test. In order to qualify the system, a number of experimental trials have been conducted on spool pieces and specimens prepared from Zr–2.5Nb pressure tube having different mechanical properties. Based on the encouraging results obtained from the qualification trials, IProMS has been used inside a reactor operated

  18. Measurement of mechanical properties of a reactor operated Zr–2.5Nb pressure tube using an in situ cyclic ball indentation system

    International Nuclear Information System (INIS)

    Chatterjee, S.; Panwar, Sanjay; Madhusoodanan, K.

    2015-01-01

    Highlights: • Measurement of mechanical properties of pressure tube is required for its fitness assessment. • Pressure tube removal from the core consumes large amount of radiation for laboratory test. • A remotely operable In situProperty Measurement System has been designed in house. • The tool head is capable to carry out in situ ball indentation trials inside pressure tube. • The paper describes the theory and results of the trials conducted on irradiated pressure tube. - Abstract: Periodic measurement of mechanical properties of pressure tubes of Indian Pressurised Heavy Water Reactors is required for assessment of their fitness for continued operation. Removal of pressure tube from the core for preparation of specimens to test for mechanical properties in laboratories consumes large amounts of radiation and hence is to be avoided as far as possible. In the field of in situ estimation of properties of materials, cyclic ball indentation is an emerging technique. Presently, commercial systems are available for doing indentation test either on outside surface of a component at site or on a test piece in a laboratory. However, these systems cannot be used inside a pressure tube for carrying out ball indentation trials under in situ condition. Considering this, a remotely operable hydraulic In situProperty Measurement System (IProMS) based on cyclic ball indentation technique has been designed and developed in house. The tool head of IProMS can be located inside a pressure tube at any axial location under in situ condition and the properties can be estimated from an analysis of the data on load and depth of indentation, recorded during the test. In order to qualify the system, a number of experimental trials have been conducted on spool pieces and specimens prepared from Zr–2.5Nb pressure tube having different mechanical properties. Based on the encouraging results obtained from the qualification trials, IProMS has been used inside a reactor operated

  19. The complex ion structure of warm dense carbon measured by spectrally resolved x-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Kraus, D.; Barbrel, B.; Falcone, R. W. [Department of Physics, University of California, Berkeley, California 94720 (United States); Vorberger, J. [Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Straße 38, 01187 Dresden (Germany); Helfrich, J.; Frydrych, S.; Ortner, A.; Otten, A.; Roth, F.; Schaumann, G.; Schumacher, D.; Siegenthaler, K.; Wagner, F.; Roth, M. [Institut für Kernphysik, Technische Universität Darmstadt, Schlossgartenstraße 9, 64289 Darmstadt (Germany); Gericke, D. O.; Wünsch, K. [Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Bachmann, B.; Döppner, T. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Bagnoud, V.; Blažević, A. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt (Germany); and others

    2015-05-15

    We present measurements of the complex ion structure of warm dense carbon close to the melting line at pressures around 100 GPa. High-pressure samples were created by laser-driven shock compression of graphite and probed by intense laser-generated x-ray sources with photon energies of 4.75 keV and 4.95 keV. High-efficiency crystal spectrometers allow for spectrally resolving the scattered radiation. Comparing the ratio of elastically and inelastically scattered radiation, we find evidence for a complex bonded liquid that is predicted by ab-initio quantum simulations showing the influence of chemical bonds under these conditions. Using graphite samples of different initial densities we demonstrate the capability of spectrally resolved x-ray scattering to monitor the carbon solid-liquid transition at relatively constant pressure of 150 GPa. Showing first single-pulse scattering spectra from cold graphite of unprecedented quality recorded at the Linac Coherent Light Source, we demonstrate the outstanding possibilities for future high-precision measurements at 4th Generation Light Sources.

  20. IN SITU REKA PROBE MEASUREMENTS AT FRAN RIDGE AND IN THE ESF

    International Nuclear Information System (INIS)

    GEORGE DANKO; HARRY CREECH; JOHN PHILLIPS; SAI TIPPABHATLA

    1997-01-01

    A thermal probe method, called REKA (Rapid Evaluation of K and Alpha) has been used for determining thermal conductivity (K) and diffusivity (Alpha) at both the Large Heated Block Tests and in the ESF. The REKA method involves a single borehole probe with a heater and temperature measurement section. An elliptical temperature field is generated by the heater, and the temperature distribution along the length of the probe is recorded at several locations and at given time intervals for a period of 6 to 24 hours. A trial-and-error evaluation procedure is used to determine the unknown thermophysical properties by minimizing the RMS error between the measured and calculated temperature fields. If a conduction-only thermal model is used in the evaluation, the thermophysical properties will include the rockmass and the moisture effects, and the values will represent effective properties. If a hydrothermal model is also used, the difference between the effective and the rock matrix thermophysical properties can be related to hydrothermal characteristics. A reusable REKA probe can be applied to measure in situ rock properties in a short, open hole, e.g., in a rockbolt borehole, at low cost. A permanent REKA probe has to be grouted in the insertion hole, if an open hole is not acceptable due to the disturbance it may cause to other site characterization activities

  1. In situ shape and distance measurements in neutron scattering and diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, Satoru; Mendelson, R.A. [Univ. of California, San Francisco, CA (United States)

    1994-12-31

    Neutron scattering combined with selective isotopic labeling and contrast matching is useful for obtaining in situ structural information about a selected particle, or particles, in a macromolecular complex. The observed intensities, however, may be distorted by inter-complex interference and by scattering-length-density fluctuations of the (otherwise) contrast-matched portions. Methods have been proposed to cancel out such distortions (Hoppe`s method, the Statistical Labeling Method, and the Triple Isotopic Substitution Method). With these methods as well as related unmixed-sample methods, structural information about the selected particles can be obtained without these distortions. We have generalized these methods so that, in addition to globular particles in solution, they can be applied to in situ structures of systems having underlying symmetry and/or net orientation as well. The information obtainable from such experiments is discussed.

  2. A new ball-on-disk vacuum tribometer with in situ measurement of the wear track by digital holographic microscopy

    Science.gov (United States)

    Meylan, B.; Ciani, D.; Zhang, B.; Cuche, E.; Wasmer, K.

    2017-12-01

    This contribution presents a new ball-on-disk vacuum tribometer with in situ measurement of the wear track by digital holographic microscopy. This new tribometer allows observation of the evolution of the wear track in situ and in real-time. The method combines a high vacuum high temperature ball-on-disk tribometer with a digital holographic microscope (DHM). The machine was tested and validated by taking DHM images during wear tests at room temperature and in vacuum at 2 · 10-6 of polished 100Cr6 steel disks. We demonstrated that the DHM system is well suited to monitor the evolution of the wear track during sliding. We found that, with an acquisition time of 0.1 ms for the DHM, the maximal linear speed is 10 cm s-1 to have reliable images. We proved, via scanning electron microscope (SEM) pictures, that the lines in the sliding direction in all DHM images exist. We also validated the new tribometer by having an excellent correlation between the images and profiles of the wear track taken by the DHM with the ones from a confocal microscope. Finally, the new tribometer combined with the DHM has four advantages. It can test under vacuum and various atmospheric conditions. The evolution of the wear track is measured in situ and in real-time. Hence, the problem of replacing the sample is avoided. Thanks to the DHM technology, the vertical accuracy of the topographical measurement is 4 nm.

  3. Resolving fringe ambiguities of a wide-field Michelson interferometer using visibility measurements of a noncollimated laser beam.

    Science.gov (United States)

    Wan, Xiaoke; Wang, Ji; Ge, Jian

    2009-09-10

    An actively stabilized interferometer with a constant optical path difference is a key element in long-term astronomical observation, and resolving interference fringe ambiguities is important to produce high-precision results for the long term. We report a simple and reliable method of resolving fringe ambiguities of a wide-field Michelson interferometer by measuring the interference visibility of a noncollimated single-frequency laser beam. Theoretical analysis shows that the interference visibility is sensitive to a subfringe phase shift, and a wide range of beam arrangements is suitable for real implementation. In an experimental demonstration, a Michelson interferometer has an optical path difference of 7 mm and a converging monitoring beam has a numerical aperture of 0.045 with an incidental angle of 17 degrees. The resolution of visibility measurements corresponds to approximately 1/16 fringe in the interferometer phase shift. The fringe ambiguity-free region is extended over a range of approximately 100 fringes.

  4. Space- and time-resolved resistive measurements of liquid metal wall thickness

    Energy Technology Data Exchange (ETDEWEB)

    Mirhoseini, S. M. H.; Volpe, F. A., E-mail: fvolpe@columbia.edu [Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027 (United States)

    2016-11-15

    In a fusion reactor internally coated with liquid metal, it will be important to diagnose the thickness of the liquid at various locations in the vessel, as a function of time, and possibly respond to counteract undesired bulging or depletion. The electrical conductance between electrodes immersed in the liquid metal can be used as a simple proxy for the local thickness. Here a matrix of electrodes is shown to provide spatially and temporally resolved measurements of liquid metal thickness in the absence of plasma. First a theory is developed for m × n electrodes, and then it is experimentally demonstrated for 3 × 1 electrodes, as the liquid stands still or is agitated by means of a shaker. The experiments were carried out with Galinstan, but are easily extended to lithium or other liquid metals.

  5. Space- and time-resolved resistive measurements of liquid metal wall thickness

    International Nuclear Information System (INIS)

    Mirhoseini, S. M. H.; Volpe, F. A.

    2016-01-01

    In a fusion reactor internally coated with liquid metal, it will be important to diagnose the thickness of the liquid at various locations in the vessel, as a function of time, and possibly respond to counteract undesired bulging or depletion. The electrical conductance between electrodes immersed in the liquid metal can be used as a simple proxy for the local thickness. Here a matrix of electrodes is shown to provide spatially and temporally resolved measurements of liquid metal thickness in the absence of plasma. First a theory is developed for m × n electrodes, and then it is experimentally demonstrated for 3 × 1 electrodes, as the liquid stands still or is agitated by means of a shaker. The experiments were carried out with Galinstan, but are easily extended to lithium or other liquid metals.

  6. Colloid electrochemistry of conducting polymer: towards potential-induced in-situ drug release

    International Nuclear Information System (INIS)

    Sankoh, Supannee; Vagin, Mikhail Yu.; Sekretaryova, Alina N.; Thavarungkul, Panote; Kanatharana, Proespichaya; Mak, Wing Cheung

    2017-01-01

    Highlights: • Pulsed electrode potential induced an in-situ drug release from dispersion of conducting polymer microcapsules. • Fast detection of the released drug within the colloid microenvironment. • Improved the efficiency of localized drug release at the electrode interface. - Abstract: Over the past decades, controlled drug delivery system remains as one of the most important area in medicine for various diseases. We have developed a new electrochemically controlled drug release system by combining colloid electrochemistry and electro-responsive microcapsules. The pulsed electrode potential modulation led to the appearance of two processes available for the time-resolved registration in colloid microenvironment: change of the electronic charge of microparticles (from 0.5 ms to 0.1 s) followed by the drug release associated with ionic equilibration (1–10 s). The dynamic electrochemical measurements allow the distinction of drug release associated with ionic relaxation and the change of electronic charge of conducting polymer colloid microparticles. The amount of released drug (methylene blue) could be controlled by modulating the applied potential. Our study demonstrated a surface-potential driven controlled drug release of dispersion of conducting polymer carrier at the electrode interfaces, while the bulk colloids dispersion away from the electrode remains as a reservoir to improve the efficiency of localized drug release. The developed new methodology creates a model platform for the investigations of surface potential-induced in-situ electrochemical drug release mechanism.

  7. First in situ plasma and neutral gas measurements at comet Halley: initial VEGA results

    International Nuclear Information System (INIS)

    Gringauz, K.I.; Remizov, A.P.; Gombosi, T.I.

    1986-04-01

    The first in situ observations and a description of the large scale behaviour of comet Halley's plasma environment are presented. The scientific objectives of the PLASMAG-1 experiment were as follows: to study the change of plasma parameters and distributions as a function of cometocentric distance; to investigate the existence and structure of the cometary bow shock; to determine the change in chemical composition of the heavily mass loaded plasma as the spacecraft approached the comet; and to measure the neutral gas distribution along the spacecraft trajectory. (author)

  8. Repeatability and reproducibility of in situ measurements of sound reflection and airborne sound insulation index of noise barriers

    NARCIS (Netherlands)

    Garai, M.; Schoen, E.; Behler, G.; Bragado, B.; Chudalla, M.; Conter, M.; Defrance, J.; Demizieux, P.; Glorieux, C.; Guidorzi, P.

    2014-01-01

    In Europe, in situ measurements of sound reflection and airborne sound insulation of noise barriers are usually done according to CEN/TS 1793-5. This method has been improved substantially during the EU funded QUIESST collaborative project. Within the same framework, an inter-laboratory test has

  9. In situ measurement of the efficiency of filtration installations in the nuclear industry by the soda-fluorescein (uranin) aerosol method: AFNOR standard NFX 44.011

    International Nuclear Information System (INIS)

    Dupoux, J.

    1981-01-01

    The in situ measurement of the efficiency of filtering installations in the French nuclear industry using the soda-fluorescein (uraniun) aerosol method is presented. A brief description and the interest of the method are discussed. Its use for the location of defects in filter elements and for in situ control of casing with tandem HEPA filter stages is described

  10. Aeroacoustic analysis of a NACA 0015 airfoil with Gurney flap based on time-resolved PIV measurements

    NARCIS (Netherlands)

    Zhang, Xueqing; Sciacchitano, A.; Pröbsting, S.; von Estorff, O.; Kropp, W.; Schulte-Fortkamp, B.

    2016-01-01

    The present study investigates the feasibility of high-lift devices noise prediction based on measurements of time-resolved particle image velocimetry (TR-PIV). The model under investigation is a NACA 0015 airfoil with Gurney flap with height of 6% chord length. The velocity fields around and

  11. On-line in-situ measurements in the boundary layer: Manned hydrogen balloons as quasi Lagrange platforms

    Energy Technology Data Exchange (ETDEWEB)

    Rappengluck, B.; Fabian, P. [Ludwig-Maximilian Univ., Dept. of Bioclimatology and Emission Research, Munich (Germany); Euskirchen, J. [Inst. for Scientific Balloonflight e.V., Waidhofen (Germany)

    1999-11-01

    In-situ measurements of atmospheric trace constituents such as nitrogen dioxide, ozone, peroxy acetyl nitrate (PAN), and non-methane hydrocarbon compounds (NMHC) are essential parameters for understanding photochemical processes. This paper discusses some of the lessons learned and some of the results of a field measurement project dubbed BERLIOZ (for Berlin Ozone), carried out in July/August 1998 in the Greater Berlin Area to investigate several key questions concerning the evolution of photochemical smog within an urban plume, and the role of advection and turbulence for oxidants. A comprehensive network of ground-based measurement sites, vertical sounding techniques such as tethered balloons and laser-based radar, mobile stations for profile measurements, five aircraft and one manned free-balloon were used in the project. BERLIOZ was the first major atmospheric research project to use a hydrogen balloon platform for quasi-Lagrangian measurements. It confirmed the balloon`s suitability as a tool for better understanding of large area information gathered by remote sensing missions. 5 refs., 6 figs.

  12. Combining nanocalorimetry and dynamic transmission electron microscopy for in situ characterization of materials processes under rapid heating and cooling

    Energy Technology Data Exchange (ETDEWEB)

    Grapes, Michael D., E-mail: mgrapes1@jhu.edu [Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Materials Measurement Science Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); LaGrange, Thomas; Reed, Bryan W.; Campbell, Geoffrey H. [Condensed Matter and Materials Division, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Friedman, Lawrence H.; LaVan, David A., E-mail: david.lavan@nist.gov [Materials Measurement Science Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Weihs, Timothy P., E-mail: weihs@jhu.edu [Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States)

    2014-08-15

    Nanocalorimetry is a chip-based thermal analysis technique capable of analyzing endothermic and exothermic reactions at very high heating and cooling rates. Here, we couple a nanocalorimeter with an extremely fast in situ microstructural characterization tool to identify the physical origin of rapid enthalpic signals. More specifically, we describe the development of a system to enable in situ nanocalorimetry experiments in the dynamic transmission electron microscope (DTEM), a time-resolved TEM capable of generating images and electron diffraction patterns with exposure times of 30 ns–500 ns. The full experimental system consists of a modified nanocalorimeter sensor, a custom-built in situ nanocalorimetry holder, a data acquisition system, and the DTEM itself, and is capable of thermodynamic and microstructural characterization of reactions over a range of heating rates (10{sup 2} K/s–10{sup 5} K/s) accessible by conventional (DC) nanocalorimetry. To establish its ability to capture synchronized calorimetric and microstructural data during rapid transformations, this work describes measurements on the melting of an aluminum thin film. We were able to identify the phase transformation in both the nanocalorimetry traces and in electron diffraction patterns taken by the DTEM. Potential applications for the newly developed system are described and future system improvements are discussed.

  13. Reflective optical system for time-resolved electron bunch measurements at PITZ

    Energy Technology Data Exchange (ETDEWEB)

    Rosbach, K; Baehr, J [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Roensch-Schulenburg, J [Hamburg Univ. (Germany). Inst. fuer Experimentalphysik

    2011-01-15

    The Photo-Injector Test facility at DESY, Zeuthen site (PITZ), produces pulsed electron beams with low transverse emittance and is equipped with diagnostic devices for measuring various electron bunch properties, including the longitudinal and transverse electron phase space distributions. The longitudinal bunch structure is recorded using a streak camera located outside the accelerator tunnel, connected to the diagnostics in the beam-line stations by an optical system of about 30 m length. This system mainly consists of telescopes of achromatic lenses, which transport the light pulses and image them onto the entrance slit of the streak camera. Due to dispersion in the lenses, the temporal resolution degrades during transport. This article presents general considerations for time-resolving optical systems as well as simulations and measurements of specific candidate systems. It then describes the development of an imaging system based on mirror telescopes which will improve the temporal resolution, with an emphasis on off-axis parabolic mirror systems working at unit magnification. A hybrid system of lenses and mirrors will serve as a proof of principle. (orig.)

  14. High-resolution nuclear magnetic resonance measurements in inhomogeneous magnetic fields: A fast two-dimensional J-resolved experiment

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yuqing; Cai, Shuhui; Yang, Yu; Sun, Huijun; Lin, Yanqin, E-mail: linyq@xmu.edu.cn, E-mail: chenz@xmu.edu.cn; Chen, Zhong, E-mail: linyq@xmu.edu.cn, E-mail: chenz@xmu.edu.cn [Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005 (China); Lin, Yung-Ya [Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095 (United States)

    2016-03-14

    High spectral resolution in nuclear magnetic resonance (NMR) is a prerequisite for achieving accurate information relevant to molecular structures and composition assignments. The continuous development of superconducting magnets guarantees strong and homogeneous static magnetic fields for satisfactory spectral resolution. However, there exist circumstances, such as measurements on biological tissues and heterogeneous chemical samples, where the field homogeneity is degraded and spectral line broadening seems inevitable. Here we propose an NMR method, named intermolecular zero-quantum coherence J-resolved spectroscopy (iZQC-JRES), to face the challenge of field inhomogeneity and obtain desired high-resolution two-dimensional J-resolved spectra with fast acquisition. Theoretical analyses for this method are given according to the intermolecular multiple-quantum coherence treatment. Experiments on (a) a simple chemical solution and (b) an aqueous solution of mixed metabolites under externally deshimmed fields, and on (c) a table grape sample with intrinsic field inhomogeneity from magnetic susceptibility variations demonstrate the feasibility and applicability of the iZQC-JRES method. The application of this method to inhomogeneous chemical and biological samples, maybe in vivo samples, appears promising.

  15. Microstructure and property measurements on in situ TiB2/70Si–Al composite for electronic packaging applications

    International Nuclear Information System (INIS)

    Zhang, L.; Gan, G.S.; Yang, B.

    2012-01-01

    Highlights: ► 2.0 wt.%TiB 2 /70Si–Al composite is prepared by a novel reactive technique. ► In situ TiB 2 particles can refine effectively the primary Si phase. ► The composite exhibited attractive physical and mechanical properties. -- Abstract: A novel reactive technique has been employed in fabrication of 2.0 wt.%TiB 2 /70Si–Al composite for electronic packaging applications. The microstructure and properties of composite were studied using scanning electron microscopy, energy dispersive X-ray spectrometer, coefficient of thermal expansion and thermal conductivity measurements, and 3-point bending tests. The results indicate that the in situ TiB 2 particles can effectively refine the primary Si phase. The property measurements results indicate that the 2.0 wt.%TiB 2 /70Si–Al composite has advantageous physical and mechanical properties, including low density, low coefficient of thermal expansion, high thermal conductivity, high Flexural strength and Brinell hardness.

  16. In-situ high-pressure measurements and detailed numerical predictions of the catalytic reactivity of methane over platinum

    Energy Technology Data Exchange (ETDEWEB)

    Reinke, M.; Mantzaras, I.; Schaeren, R.; Bombach, R.; Inauen, A.; Schenker, S.

    2003-03-01

    The catalytic reactivity of methane over platinum at pressures of up to 14 bar was evaluated with in-situ Raman measurements and detailed numerical predictions from two different heterogeneous chemical reaction schemes. The best agreement to the measurements was achieved with Deutschmann's reaction scheme that yielded the correct trend for the pressure dependence of the catalytic reactivity, although in absolute terms the reactivity was overpredicted. The catalytic reactivity was consistently underpredicted at all pressures with the reaction scheme of Vlachos. (author)

  17. Laser-induced incandescence (LII) diagnostic for in situ monitoring of nanoparticle synthesis in a high-pressure arc discharge

    Science.gov (United States)

    Yatom, Shurik; Vekselman, Vladislav; Mitrani, James; Stratton, Brentley; Raitses, Yevgeny; LaboratoryPlasma Nanosynthesis Team

    2016-10-01

    A DC arc discharge is commonly used for synthesis of carbon nanoparticles, including buckyballs, carbon nanotubes, and graphene flakes. In this work we show the first results of nanoparticles monitored during the arc discharge. The graphite electrode is vaporized by high current (60 A) in a buffer Helium gas leading to nanoparticle synthesis in a low temperature plasma. The arc was shown to oscillate, which can possibly influence the nano-synthesis. To visualize the nanoparticles in-situ we employ the LII technique. The nanoparticles with radii >50 nm, emerging from the arc area are heated with a short laser pulse and incandesce. The resulting radiation is captured with an ICCD camera, showing the location of the generated nanoparticles. The images of incandescence are studied together with temporally synchronized fast-framing imaging of C2 emission, to connect the dynamics of arc instabilities, C2 molecules concentration and nanoparticles. The time-resolved incandescence signal is analyzed with combination of ex-situ measurements of the synthesized nanoparticles and LII modeling, to provide the size distribution of produced nanoparticles. This work was supported by US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.

  18. In-situ transmission electron microscopy growth of nanoparticles under extreme conditions

    International Nuclear Information System (INIS)

    Luce, F. P.; Azevedo, G. de M.; Baptista, D. L.; Zawislak, F. C.; Oliviero, E.; Fichtner, P. F. P.

    2016-01-01

    The formation and time resolved behavior of individual Pb nanoparticles embedded in silica have been studied by in-situ transmission electron microscopy observations at high temperatures (400–1100 °C) and under 200 keV electron irradiation. It is shown that under such extreme conditions, nanoparticles can migrate at long distances presenting a Brownian-like behavior and eventually coalesce. The particle migration phenomenon is discussed considering the influence of the thermal energy and the electron irradiation effects on the atomic diffusion process which is shown to control particle migration. These results and comparison with ex-situ experiments tackle the stability and the microstructure evolution of nanoparticles systems under extreme conditions. It elucidates on the effects of energetic particle irradiation-annealing treatments either as a tool or as a detrimental issue that could hamper their long-term applications in radiation-harsh environments such as in space or nuclear sectors

  19. Solvent exchange in a metal–organic framework single crystal monitored by dynamic in situ X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Cox, Jordan M.; Walton, Ian M.; Bateman, Gage; Benson, Cassidy A.; Mitchell, Travis; Sylvester, Eric; Chen, Yu-Sheng; Benedict, Jason B. (UC); (Buffalo)

    2017-07-25

    Understanding the processes by which porous solid-state materials adsorb and release guest molecules would represent a significant step towards developing rational design principles for functional porous materials. To elucidate the process of liquid exchange in these materials, dynamicin situX-ray diffraction techniques have been developed which utilize liquid-phase chemical stimuli. Using these time-resolved diffraction techniques, the ethanol solvation process in a flexible metal–organic framework [Co(AIP)(bpy)0.5(H2O)]·2H2O was examined. The measurements provide important insight into the nature of the chemical transformation in this system including the presence of a previously unreported neat ethanol solvate structure.

  20. An automated, noncontact laser profile meter for measuring soil roughness in situ

    International Nuclear Information System (INIS)

    Bertuzzi, P.; Caussignac, J.M.; Stengel, P.; Morel, G.; Lorendeau, J.Y.; Pelloux, G.

    1990-01-01

    This paper describes a new optical technique for measuring in situ soil surface roughness profiles using a laser profile meter. The described method uses a low-power HeNe (helium-neon) laser as a laser source and a matrix-array detector, as the laser image. The matrix-array detector gives a defect-of-focus laser image of the soil. Soil elevation is measured by projecting a laser beam normally onto the soil surface and measuring the ratio (Ir/It) on the matrix-array detector between the referenced intensity of the return Laser beam (Ir), measured by the central cell of the detector and the total intensity (It), measured by all the cells of the detector. The measured profile leads to 1001 sampled values (volt, range 0 to 10 V) of the surface height profile, at a constant increment of 0.002 m, registered automatically on a microcomputer. A calibration is made in the laboratory in order to convert the electrical measurements into elevation data. The method is universal and can be adapted to different scales of soil surface roughness. Changing the scale is done by changing the lens. Tests were carried out to improve this method for field use and to compare this technique with a method of reference. This technique is considerably quicker and causes no disturbance to the soil. The accuracy on height measurement depends on the choice of the lens. The small focal lens is convenient for smooth soil surfaces. The accuracy on height measurement is less than 0.75 mm. The wide focal lens is convenient for rough soil surfaces. The accuracy on height measurement is estimated at about 1.0 to 1.5 mm

  1. A radially accessible tubular in situ X-ray cell for spatially resolved operando scattering and spectroscopic studies of electrochemical energy storage devices

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hao; Allan, Phoebe K.; Borkiewicz, Olaf J.; Kurtz, Charles; Grey, Clare P.; Chapman, Karena W.; Chupas, Peter J.

    2016-09-16

    A tubularoperandoelectrochemical cell has been developed to allow spatially resolved X-ray scattering and spectroscopic measurements of individual cell components, or regions thereof, during device operation. These measurements are enabled by the tubular cell geometry, wherein the X-ray-transparent tube walls allow radial access for the incident and scattered/transmitted X-ray beam; by probing different depths within the electrode stack, the transformation of different components or regions can be resolved. The cell is compatible with a variety of synchrotron-based scattering, absorption and imaging methodologies. The reliability of the electrochemical cell and the quality of the resulting X-ray scattering and spectroscopic data are demonstrated for two types of energy storage: the evolution of the distribution of the state of charge of an Li-ion battery electrode during cycling is documented using X-ray powder diffraction, and the redistribution of ions between two porous carbon electrodes in an electrochemical double-layer capacitor is documented using X-ray absorption near-edge spectroscopy.

  2. In situ measurements of fuel retention by laser induced desorption spectroscopy in TEXTOR

    Science.gov (United States)

    Zlobinski, M.; Philipps, V.; Schweer, B.; Huber, A.; Stoschus, H.; Brezinsek, S.; Samm, U.; TEXTOR Team

    2011-12-01

    In future fusion devices such as ITER tritium retention due to tritium co-deposition in mixed material layers can be a serious safety problem. Laser induced desorption spectroscopy (LIDS) can measure the hydrogen content of hydrogenic carbon layers locally on plasma-facing components, while hydrogen is used as a tritium substitute. For several years, this method has been applied in the TEXTOR tokamak in situ during plasma operation to monitor the hydrogen content in space and time. This work shows the LIDS signal reproducibility and studies the effects of different plasma conditions, desorption distances from the plasma and different laser energies using a dedicated sample with constant hydrogen amount. Also the LIDS signal evaluation procedure is described in detail and the detection limits for different conditions in the TEXTOR tokamak are estimated.

  3. Time Resolved Scanning PIV measurements at fine scales in a turbulent jet

    International Nuclear Information System (INIS)

    Cheng, Y.; Torregrosa, M.M.; Villegas, A.; Diez, F.J.

    2011-01-01

    The temporal and spatial complexity of turbulent flows at intermediate and small scales has prevented the acquisition of full three-dimensional experimental data sets for validating classical turbulent theory and Direct Numerical Simulations (DNS). Experimental techniques like Particle Velocimetry, PIV, allow non-intrusive planar measurements of turbulent flows. The present work applied a Time Resolved Scanning PIV system, TRS-PIV, capable of obtaining three-dimensional two-component velocities to measure the small scales of a turbulent jet. When probing the small scales of these flows with PIV, the uncertainty of the measured turbulent properties are determined by the characteristics of the PIV system and specially the thickness of the laser sheet. A measurement of the particle distribution across the thickness of the laser sheet is proposed as a more detailed description of the PIV sheet thickness. The high temporal and spatial resolution of the TRS-PIV system allowed obtaining quasi-instantaneous volumetric vector fields at the far field of a round turbulent jet in water, albeit for a low Reynolds number of 1478 due to the speed limitations of the present camera and scanning system. Six of the nine components of the velocity gradient tensor were calculated from the velocity measurements. This allowed the visualization with near Kolmogorov-scale resolution of the velocity gradient structures in three-dimensional space. In general, these structures had a complex geometry corresponding to elongated shapes in the form of sheets and tubes. An analysis of the probability density function, pdf, of the velocity gradients calculated showed that the on-diagonal (off-diagonal) velocity gradient components were very similar to each other even for events at the tails of the pdfs, as required for homogeneous isotropy. The root mean square of the components of the velocity gradients is also calculated and their ratio of off-diagonal components to on-diagonal components

  4. Gravimetric and volumetric approaches adapted for hydrogen sorption measurements with in situ conditioning on small sorbent samples

    International Nuclear Information System (INIS)

    Poirier, E.; Chahine, R.; Tessier, A.; Bose, T.K.

    2005-01-01

    We present high sensitivity (0 to 1 bar, 295 K) gravimetric and volumetric hydrogen sorption measurement systems adapted for in situ sample conditioning at high temperature and high vacuum. These systems are designed especially for experiments on sorbents available in small masses (mg) and requiring thorough degassing prior to sorption measurements. Uncertainty analysis from instrumental specifications and hydrogen absorption measurements on palladium are presented. The gravimetric and volumetric systems yield cross-checkable results within about 0.05 wt % on samples weighing from (3 to 25) mg. Hydrogen storage capacities of single-walled carbon nanotubes measured at 1 bar and 295 K with both systems are presented

  5. i-anvils : in situ measurements of pressure, temperature and conductivity in diamond anvil cells

    Science.gov (United States)

    Munsch, P.; Bureau, H.; Kubsky, S.; Meijer, J.; Datchi, F.; Ninet, S.; Estève, I.

    2011-12-01

    The precise determination of the pressure and temperature conditions during diamond anvils cells (DAC) experiments is of primary importance. Such determinations are critical more especially for the fields corresponding to "low pressures" (micro-structures are implanted in the diamond anvil lattice a few micrometers below the surface, the sensors are located a few μm below the center of the diamond culet (sample chamber position). When conductive electrodes are implanted at the position of the sample chamber on the culet of the anvil, instead of P,T sensors, they allow in situ measurements of electrical properties of the loaded sample at high P,T conditions in a DAC. The principle consists of applying an electrical potential across the structures through external contacts placed on the slopes of the anvil. The resistivity of these structures is sensitive to pressure and temperature applied in the sample chamber. The electrical transport properties of the sample can be measured the same way when electrodes have been implanted on the culet. Here we will present our last progresses, more especially using the focus ion beam (FIB) technology to perform contacts and electrodes. Progresses about the i-anvils connexions with the electronic devices will also be shown. We will present the last P and T sensors calibrations. Furnaces are also introduced through Boron implantation into the anvils, allowing the possibility to reach intermediate temperatures between externally heated DAC (up to 1100°C) and laser heated DAC (from 1500°C to a few thousands). Preliminary tests and the interest of such devices will be discussed at the meeting. A new diamond anvil cell has been especially designed for this purpose. This DAC allows in situ spectroscopies and X-Ray characterisation of geological fluids in their equilibrium conditions in the crust and in the upper mantle. Preliminary results will be presented.

  6. Molecular Tagging Velocimetry Development for In-situ Measurement in High-Temperature Test Facility

    Science.gov (United States)

    Andre, Matthieu A.; Bardet, Philippe M.; Burns, Ross A.; Danehy, Paul M.

    2015-01-01

    The High Temperature Test Facility, HTTF, at Oregon State University (OSU) is an integral-effect test facility designed to model the behavior of a Very High Temperature Gas Reactor (VHTR) during a Depressurized Conduction Cooldown (DCC) event. It also has the ability to conduct limited investigations into the progression of a Pressurized Conduction Cooldown (PCC) event in addition to phenomena occurring during normal operations. Both of these phenomena will be studied with in-situ velocity field measurements. Experimental measurements of velocity are critical to provide proper boundary conditions to validate CFD codes, as well as developing correlations for system level codes, such as RELAP5 (http://www4vip.inl.gov/relap5/). Such data will be the first acquired in the HTTF and will introduce a diagnostic with numerous other applications to the field of nuclear thermal hydraulics. A laser-based optical diagnostic under development at The George Washington University (GWU) is presented; the technique is demonstrated with velocity data obtained in ambient temperature air, and adaptation to high-pressure, high-temperature flow is discussed.

  7. Solar Cycle dependence of 5-55 keV Cassini/INCA energetic neutral atom (ENA) images of the Heliosheath and in situ Voyager/LECP ion measurements

    Science.gov (United States)

    Krimigis, S. M.; Dialynas, K.; Mitchell, D. G.; Decker, R. B.; Roelof, E. C.

    2015-12-01

    The heliosheath has been identified as the most probable source of ENAs that INCA detects but its variability due to solar activity throughout the solar cycle (SC) has not been resolved to date. We show all-sky, 5-55 keV ENA H maps from the year 2003 to 2014 and compare the solar cycle variation of the ENAs in both the heliospheric nose (upstream) and anti-nose (downstream) directions with the > 30 keV ions measured within the heliosheath by the Low Energy Charged Particle (LECP) detector on Voyagers 1, 2 (V1, V2) where we measure protons in overlapping energy bands ~30-55 keV. We find that a) Toward the anti-nose direction the ENA-H intensities decline during SC23, i.e. after 2003 ENA intensities decreased by ~ x2 at all energies by the end of year 2011, ~1 year after the observed minimum in solar activity; b) This ENA decrease (5.2-55 keV) during 2009-2011 is consistent with the concurrent intensity decrease of the > 30 keV ions (by a factor of 2-3) observed in situ by V1 and V2 in the heliosheath; c) Toward the nose direction, minimum intensities in both INCA ENAs and the V2 ions at E > 28 keV occur during the year 2013, with a subsequent recovery from 2014 to date (by a factor of ~2 in the > 35 keV ENA data). These quantitative correlations between the decreases of INCA ENAs (in both the heliospheric nose and anti-nose directions) and the in situ V1 and V2 ion measurements (separated by > 130 AU) during the declining phase of SC23, along with their concurrent jointly shared recoveries at the onset of SC24, imply that: 1) the 5-55 keV ENAs are produced in the heliosheath (because their transit times over 100 AU are less than a few months at energies > 40 keV), thus proving that our ENA observations can provide the ground truth for constructing comprehensive global heliosphere models; 2) the global heliosheath responds promptly (within ~1-1.5 yrs) to outward-propagating solar wind changes throughout the solar cycle.

  8. Contribution to time resolved X-ray fluence and differential spectra measurement method improvement in 5-200 KeV range. Application to pulsed emission sources

    International Nuclear Information System (INIS)

    Vie, M.

    1983-09-01

    Two types of sensors have been developed to measure locally the time-resolved fluence and differential energetic spectrum of pulsed X-ray in the energy range 5 to 200 keV. Rise time of these sensors is very short (10 ns) in order to permit time-resolved measurements. Fluence sensors have been developed by putting filters in front of detector in order to make sensor response independent of X-ray energy and proportional to X-ray fluence. The energetic differential spectrum was calculated by way of a method similar to the ROSS method but using filters separated within a pair defining adjacent spectral width. A detailed analysis of uncertainties affecting calculated fluence and spectrum has been done [fr

  9. In situ beam angle measurement in a multi-wafer high current ion implanter

    International Nuclear Information System (INIS)

    Freer, B.S.; Reece, R.N.; Graf, M.A.; Parrill, T.; Polner, D.

    2005-01-01

    Direct, in situ measurement of the average angle and angular content of an ion beam in a multi-wafer ion implanter is reported for the first time. A new type of structure and method are described. The structures are located on the spinning disk, allowing precise angular alignment to the wafers. Current that passes through the structures is known to be within a range of angles and is detected behind the disk. By varying the angle of the disk around two axes, beam current versus angle is mapped and the average angle and angular spread are calculated. The average angle measured in this way is found to be consistent with that obtained by other techniques, including beam centroid offset and wafer channeling methods. Average angle of low energy beams, for which it is difficult to use other direct methods, is explored. A 'pencil beam' system is shown to give average angle repeatability of 0.13 deg. (1σ) or less, for two low energy beams under normal tuning variations, even though no effort was made to control the angle

  10. Time-resolved transglottal pressure measurements in a scaled up vocal fold model

    Science.gov (United States)

    Ringenberg, Hunter; Krane, Michael; Rogers, Dylan; Misfeldt, Mitchel; Wei, Timothy

    2016-11-01

    Experimental measurements of flow through a scaled up dynamic human vocal fold model are presented. The simplified 10x scale vocal fold model from Krane, et al. (2007) was used to examine fundamental features of vocal fold oscillatory motion. Of particular interest was the temporal variation of transglottal pressure multiplied by the volume flow rate through the glottis throughout an oscillation cycle. Experiments were dynamically scaled to examine a range of frequencies, 100 - 200 Hz, corresponding to the male and female voice. By using water as the working fluid, very high resolution, both spatial and temporal resolution, was achieved. Time resolved movies of flow through symmetrically oscillating vocal folds will be presented. Both individual realizations as well as phase-averaged data will be shown. Key features, such as randomness and development time of the Coanda effect, vortex shedding, and volume flow rate data have been presented in previous APS-DFD meetings. This talk will focus more on the relation between the flow and aeroacoustics associated with vocal fold oscillations. Supported by the NIH.

  11. Wireless network of stand-alone end effect probes for soil in situ permittivity measurements over the 100MHZ-6GHz frequency range

    Science.gov (United States)

    Demontoux, François; Bircher, Simone; Ruffié, Gilles; Bonnaudiin, Fabrice; Wigneron, Jean-Pierre; Kerr, Yann

    2017-04-01

    Microwave remote sensing and non-destructive analysis are a powerful way to provide properties estimation of materials. Numerous applications using microwave frequency behavior of materials (remote sensing above land surfaces, non-destructive analysis…) are strongly dependent on the material's permittivity (i.e. dielectric properties). This permittivity depends on numerous parameters such as moisture, texture, temperature, frequency or bulk density. Permittivity measurements are generally carried out in the laboratory. Additionally, dielectric mixing models allow, over a restricted range of conditions, the assessment of a material's permittivity. in-situ measurements are more difficult to obtain. Some in situ measurement probes based on permittivity properties of soil exist (e.g. Time Domain Reflectometers and Transmissometers, capacitance and impedance sensors). They are dedicated to the acquisition of soil moisture data based on permittivity (mainly the real part) estimations over a range of frequencies from around 50 MHz to 1 or 2 GHz. Other Dielectric Assessment Kits exist but they are expensive and they are rather dedicated to laboratory measurements. Furthermore, the user can't address specific issues related to particular materials (e.g. organic soils) or specific measurement conditions (in situ long time records). At the IMS Laboratory we develop probes for in situ soil permittivity measurements (real and imaginary parts) in the 0.5 - 6 GHz frequency range. They are based on the end effect phenomenon of a coaxial waveguide and so are called end effect probes in this paper. The probes can be connected to a portable Vector Network Analyzer (VNA, ANRITSU MS2026A) for the S11 coefficient measurements needed to compute permittivity. It is connected to a PC to record data using an USB connection. This measurement set-up is already used for in situ measurement of soil properties in the framework of the European Space Agency's (ESA) SMOS space mission. However

  12. In situ measurement of the mass concentration of flame-synthesized nanoparticles using quartz-crystal microbalance

    International Nuclear Information System (INIS)

    Hevroni, A; Golan, H; Fialkov, A; Tsionsky, V; Markovich, G; Cheskis, S; Rahinov, I

    2011-01-01

    A novel in situ method for measurement of mass concentration of nanoparticles (NPs) formed in flames is proposed. In this method, the deposition rate of NPs collected by a molecular beam sampling system is measured by quartz-crystal microbalance (QCM). It is the only existing method which allows direct measurement of NP mass concentration profiles in flames. The feasibility of the method was demonstrated by studying iron oxide NP formation in low-pressure methane/oxygen/nitrogen flames doped with iron pentacarbonyl. The system was tested under fuel-lean and fuel-rich flame conditions. Good agreement between measured QCM deposition rates and their estimations obtained by the transmission electron microscopy analysis of samples collected from the molecular beam has been demonstrated. The sensitivity of the method is comparable to that of particle mass spectrometry (PMS). Combination of the QCM technique with PMS and/or optical measurements can provide new qualitative information which is important for elucidation of the mechanisms governing the NP flame synthesis

  13. Magnetic, in situ, mineral characterization of Chelyabinsk meteorite thin section

    Science.gov (United States)

    Nabelek, Ladislav; Mazanec, Martin; Kdyr, Simon; Kletetschka, Gunther

    2015-06-01

    Magnetic images of Chelyabinsk meteorite's (fragment F1 removed from Chebarkul lake) thin section have been unraveled by a magnetic scanning system from Youngwood Science and Engineering (YSE) capable of resolving magnetic anomalies down to 10-3 mT range from about 0.3 mm distance between the probe and meteorite surface (resolution about 0.15 mm). Anomalies were produced repeatedly, each time after application of magnetic field pulse of varying amplitude and constant, normal or reversed, direction. This process resulted in both magnetizing and demagnetizing of the meteorite thin section, while keeping the magnetization vector in the plane of the thin section. Analysis of the magnetic data allows determination of coercivity of remanence (Bcr) for the magnetic sources in situ. Value of Bcr is critical for calculating magnetic forces applicable during missions to asteroids where gravity is compromised. Bcr was estimated by two methods. First method measured varying dipole magnetic field strength produced by each anomaly in the direction of magnetic pulses. Second method measured deflections of the dipole direction from the direction of magnetic pulses. Bcr of magnetic sources in Chelyabinsk meteorite ranges between 4 and 7 mT. These magnetic sources enter their saturation states when applying 40 mT external magnetic field pulse.

  14. Use of multiple sensor technologies for quality control of in situ biogeochemical measurements: A SeaCycler case study

    Science.gov (United States)

    Atamanchuk, Dariia; Koelling, Jannes; Lai, Jeremy; Send, Uwe; Wallace, Douglas

    2017-04-01

    Over the last two decades observing capacity for the global ocean has increased dramatically. Emerging sensor technologies for dissolved gases, nutrients and bio-optical properties in seawater are allowing extension of in situ observations beyond the traditionally measured salinity, temperature and pressure (CTD). However the effort to extend observations using autonomous instruments and platforms carries the risk of losing the level of data quality achievable through conventional water sampling techniques. We will present results from a case study with the SeaCycler profiling winch focusing on quality control of the in-situ measurements. A total of 13 sensors were deployed from May 2016 to early 2017 on SeaCycler's profiling sensor float, including CTD, dissolved oxygen (O2, 3 sensors), carbon dioxide (pCO2, 2 sensors), nutrients, velocity sensors, fluorometer, transmissometer, single channel PAR sensor, and others. We will highlight how multiple measurement technologies (e.g. for O2 and CO2) complement each other and result in a high quality data product. We will also present an initial assessment of the bio-optical data, their implications for seasonal phytoplankton dynamics and comparisons to climatologies and ocean-color data products obtained from the MODIS satellite.

  15. Using Continuous In-situ Measurement of Fluorescence to Reveal Hot Spots and Hot Moments of Dissolved Organic Matter Dynamics in a Forested Watershed

    Science.gov (United States)

    Ryan, K. A.; Hosen, J. D.; Raymond, P. A.; Stubbins, A.; Shanley, J. B.

    2017-12-01

    River systems serve as net carbon exporters from land to the ocean, fueling downstream aquatic ecosystem food webs. Fluorescence signatures of aquatic organic matter can be used as a proxy for dissolved organic carbon (DOC) concentration and can characterize DOC composition, reactivity, and source to improve our understanding of ecological processes. In-situ measurement of fluorescence using fifteen-minute interval data logging allows greater temporal resolution than laboratory studies. However, in-situ data must be corrected for interferences from temperature, absorbance and turbidity changes occurring in the field. We installed multiparameter water quality sondes (Eureka Mantas) and in-situ fluorometers (Turner Designs Cyclops) at sites nested within streams and riparian zones in the Sleepers River Research Watershed in Vermont in 2017. We coupled these measurements with simultaneous intensive field sampling campaigns and laboratory analysis of DOC and fluorescence Excitation-Emission Matrices. The data loggers from the nested sites recorded fluorescence peaks responding to discharge events and tracked changes in fluorescence occurring from upstream to downstream sites. Laboratory results confirm a nonlinear, hysteretic relationship between discharge and DOC where peak DOC lags peak discharge. This hysteresis is predicted to be controlled by multiple flow paths and DOC sources (i.e. groundwater, overland flow). We conclude that continuous in-situ records of river water fluorescence can be used to inform ecological processes and test new hypotheses concerning dissolved organic matter dynamics in watersheds.

  16. In-situ electrochemical impedance spectroscopy measurements of zirconium alloy oxide conductivity: Relationship to hydrogen pickup

    International Nuclear Information System (INIS)

    Couet, Adrien; Motta, Arthur T.; Ambard, Antoine; Livigni, Didier

    2017-01-01

    Highlights: • In-situ electrochemistry on zirconium alloys in 360 °C pure water show oxide layer resistivity changes during corrosion. • A linear relationship is observed between oxide resistivity and instantaneous hydrogen pickup fraction. • The resistivity of the oxide layer formed on Zircaloy-4 (and thus its hydrogen pickup fraction) is higher than on Zr-2.5Nb. - Abstract: Hydrogen pickup during nuclear fuel cladding corrosion is a critical life-limiting degradation mechanism for nuclear fuel. Following a program dedicated to zirconium alloys, corrosion, it has been hypothesized that oxide electronic resistivity determines hydrogen pickup. In-situ electrochemical impedance spectroscopy experiments were performed on Zircaloy-4 and Zr-2.5Nb alloys in 360 °C water. The oxide resistivity was measured as function of time. The results show that as the oxide resistivity increases so does the hydrogen pickup fraction. The resistivity of the oxide layer formed on Zircaloy-4 is higher than on Zr-2.5Nb, resulting in a higher hydrogen pickup fraction of Zircaloy-4, compared to Zr-2.5Nb.

  17. Structure-activity relationships of heterogeneous catalysts from time-resolved X-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Ressler, T.; Jentoft, R.E.; Wienold, J.; Girgsdies, F.; Neisius, T.; Timpe, O.

    2003-01-01

    Knowing the composition and the evolution of the bulk structure of a heterogeneous catalyst under working conditions (in situ) is a pre-requisite for understanding structure-activity relationships. X-ray absorption spectroscopy can be employed to study a catalytically active material in situ. In addition to steady-state investigations, the technique permits experiments with a time-resolution in the sub-second range to elucidate the solid-state kinetics of the reactions involved. Combined with mass spectrometry, the evolution of the short-range order structure of a heterogeneous catalyst, the average valence of the constituent metals, and the phase composition can be obtained. Here we present results obtained from time-resolved studies on the reduction of MoO 3 in propene and in propene and oxygen

  18. Factors affecting measurement of optic parameters by time-resolved near-infrared spectroscopy in breast cancer

    Science.gov (United States)

    Yoshizawa, Nobuko; Ueda, Yukio; Mimura, Tetsuya; Ohmae, Etsuko; Yoshimoto, Kenji; Wada, Hiroko; Ogura, Hiroyuki; Sakahara, Harumi

    2018-02-01

    The purpose of this study was to evaluate the effects of the thickness and depth of tumors on hemoglobin measurements in breast cancer by optical spectroscopy and to demonstrate tissue oxygen saturation (SO2) and reduced scattering coefficient (μs‧) in breast tissue and breast cancer in relation to the skin-to-chest wall distance. We examined 53 tumors from 44 patients. Total hemoglobin concentration (tHb), SO2, and μs‧ were measured by time-resolved spectroscopy (TRS). The skin-to-chest wall distance and the size and depth of tumors were measured by ultrasonography. There was a positive correlation between tHb and tumor thickness, and a negative correlation between tHb and tumor depth. SO2 in breast tissue decreased when the skin-to-chest wall distance decreased, and SO2 in tumors tended to be lower than in breast tissue. In breast tissue, there was a negative correlation between μs‧ and the skin-to-chest wall distance, and μs‧ in tumors was higher than in breast tissue. Measurement of tHb in breast cancer by TRS was influenced by tumor thickness and depth. Although SO2 seemed lower and μs‧ was higher in breast cancer than in breast tissue, the skin-to-chest wall distance may have affected the measurements.

  19. The conforming brain and deontological resolve.

    Science.gov (United States)

    Pincus, Melanie; LaViers, Lisa; Prietula, Michael J; Berns, Gregory

    2014-01-01

    Our personal values are subject to forces of social influence. Deontological resolve captures how strongly one relies on absolute rules of right and wrong in the representation of one's personal values and may predict willingness to modify one's values in the presence of social influence. Using fMRI, we found that a neurobiological metric for deontological resolve based on relative activity in the ventrolateral prefrontal cortex (VLPFC) during the passive processing of sacred values predicted individual differences in conformity. Individuals with stronger deontological resolve, as measured by greater VLPFC activity, displayed lower levels of conformity. We also tested whether responsiveness to social reward, as measured by ventral striatal activity during social feedback, predicted variability in conformist behavior across individuals but found no significant relationship. From these results we conclude that unwillingness to conform to others' values is associated with a strong neurobiological representation of social rules.

  20. The conforming brain and deontological resolve.

    Directory of Open Access Journals (Sweden)

    Melanie Pincus

    Full Text Available Our personal values are subject to forces of social influence. Deontological resolve captures how strongly one relies on absolute rules of right and wrong in the representation of one's personal values and may predict willingness to modify one's values in the presence of social influence. Using fMRI, we found that a neurobiological metric for deontological resolve based on relative activity in the ventrolateral prefrontal cortex (VLPFC during the passive processing of sacred values predicted individual differences in conformity. Individuals with stronger deontological resolve, as measured by greater VLPFC activity, displayed lower levels of conformity. We also tested whether responsiveness to social reward, as measured by ventral striatal activity during social feedback, predicted variability in conformist behavior across individuals but found no significant relationship. From these results we conclude that unwillingness to conform to others' values is associated with a strong neurobiological representation of social rules.

  1. Extinction-to-Backscatter Ratios of Saharan Dust Layers Derived from In-Situ Measurements and CALIPSO Overflights During NAMMA

    Science.gov (United States)

    Omar, Ali H.; Liu, Zhaoyan; Vaughan, Mark A.; Hu, Yongxiang; Ismail, Syed; Powell, Kathleen A.; Winker, David M.; Trepte, Charles R.; Anderson, Bruce E.

    2010-01-01

    We determine the aerosol extinction-to-backscatter (Sa) ratios of dust using airborne in-situ measurements of microphysical properties, and CALIPSO observations during the NASA African Monsoon Multidisciplinary Analyses (NAMMA). The NAMMA field experiment was conducted from Sal, Cape Verde during Aug-Sept 2006. Using CALIPSO measurements of the attenuated backscatter of lofted Saharan dust layers, we apply the transmittance technique to estimate dust Sa ratios at 532 nm and a 2-color method to determine the corresponding 1064 nm Sa. Using this method, we found dust Sa ratios of 39.8 plus or minus 1.4 sr and 51.8 plus or minus 3.6 sr at 532 nm and 1064 nm, respectively. Secondly, Sa ratios at both wavelengths is independently calculated using size distributions measured aboard the NASA DC-8 and estimates of Saharan dust complex refractive indices applied in a T-Matrix scheme. We found Sa ratios of 39.1 plus or minus 3.5 sr and 50.0 plus or minus 4 sr at 532 nm and 1064 nm, respectively, using the T-Matrix calculations applied to measured size spectra. Finally, in situ measurements of the total scattering (550 nm) and absorption coefficients (532 nm) are used to generate an extinction profile that is used to constrain the CALIPSO 532 nm extinction profile.

  2. An in-situ RBS system for measuring nuclides adsorbed at the liquid-solid interface

    Energy Technology Data Exchange (ETDEWEB)

    Morita, K; Yuhara, J; Ishigami, R [Nagoya Univ. (Japan). School of Engineering; and others

    1997-03-01

    An in-situ RBS system has been developed in which heavier nuclides adsorbed at the inner surface of a thin lighter window specimen of liquid container in order to determine the rate constants for their sorption and release at the interface. The testing of a thin silicon window of the sample assembly, in which Xe gas of one atmosphere was enclosed, against the bombardment of the probing ion beam has been performed. A desorption behavior of a lead layer adsorbed at the SiO{sub 2} layer of silicon window surface into deionized water has been measured as a preliminary experiment. (author)

  3. Multi-scale mechanics of granular solids from grain-resolved X-ray measurements

    Science.gov (United States)

    Hurley, R. C.; Hall, S. A.; Wright, J. P.

    2017-11-01

    This work discusses an experimental technique for studying the mechanics of three-dimensional (3D) granular solids. The approach combines 3D X-ray diffraction and X-ray computed tomography to measure grain-resolved strains, kinematics and contact fabric in the bulk of a granular solid, from which continuum strains, grain stresses, interparticle forces and coarse-grained elasto-plastic moduli can be determined. We demonstrate the experimental approach and analysis of selected results on a sample of 1099 stiff, frictional grains undergoing multiple uniaxial compression cycles. We investigate the inter-particle force network, elasto-plastic moduli and associated length scales, reversibility of mechanical responses during cyclic loading, the statistics of microscopic responses and microstructure-property relationships. This work serves to highlight both the fundamental insight into granular mechanics that is furnished by combined X-ray measurements and describes future directions in the field of granular materials that can be pursued with such approaches.

  4. An optical technique to measure distortion in heat-treated parts in-situ

    Science.gov (United States)

    Sciammarella, Federico; Nash, Phillip

    2005-05-01

    Improvements in the properties of aluminum alloys have made them more popular for structural applications. Using the different heat treatments that are available, aluminum alloys can have a wide variation in properties for different types of applications. The appropriate heat treatments of these alloys are vital in providing the properties needed for their particular applications. Moreover, understanding the effects of heat treatments that may cause distortion to a part is critical. Most of the work carried out in this field is in the form of pre- and post-treatment analysis of a part. In this study, in-situ measurements of the distortions that a heat-treated part undergoes when subjected to rapid heating to temperatures near melting followed by slow cooling were carried out. A numerical model was built to simulate the experiment and the results are compared. This study will provide much-needed insight into the complex occurrences that aluminum parts undergo during heat treatment.

  5. Gravity Recovery and Climate Experiment (GRACE) detection of water storage changes in the Three Gorges Reservoir of China and comparison with in situ measurements

    Science.gov (United States)

    Wang, Xianwei; de Linage, Caroline; Famiglietti, James; Zender, Charles S.

    2011-12-01

    Water impoundment in the Three Gorges Reservoir (TGR) of China caused a large mass redistribution from the oceans to a concentrated land area in a short time period. We show that this mass shift is captured by the Gravity Recovery and Climate Experiment (GRACE) unconstrained global solutions at a 400 km spatial resolution after removing correlated errors. The WaterGAP Global Hydrology Model (WGHM) is selected to isolate the TGR contribution from regional water storage changes. For the first time, this study compares the GRACE (minus WGHM) estimated TGR volume changes with in situ measurements from April 2002 to May 2010 at a monthly time scale. During the 8 year study period, GRACE-WGHM estimated TGR volume changes show an increasing trend consistent with the TGR in situ measurements and lead to similar estimates of impounded water volume. GRACE-WGHM estimated total volume increase agrees to within 14% (3.2 km3) of the in situ measurements. This indicates that GRACE can retrieve the true amplitudes of large surface water storage changes in a concentrated area that is much smaller than the spatial resolution of its global harmonic solutions. The GRACE-WGHM estimated TGR monthly volume changes explain 76% (r2 = 0.76) of in situ measurement monthly variability and have an uncertainty of 4.62 km3. Our results also indicate reservoir leakage and groundwater recharge due to TGR filling and contamination from neighboring lakes are nonnegligible in the GRACE total water storage changes. Moreover, GRACE observations could provide a relatively accurate estimate of global water volume withheld by newly constructed large reservoirs and their impacts on global sea level rise since 2002.

  6. Technical issues associated with in situ vitrification of the INEL Subsurface Disposal Area

    International Nuclear Information System (INIS)

    Stoots, C.M.; Bates, S.O.; Callow, R.A.; Campbell, K.A.; Farnsworth, R.K.; Gratson, G.K.; McKellar, M.G.; Nickelson, D.F.; Slater, C.E.

    1991-12-01

    In situ vitrification (ISV) has been identified as an alternative technology for remediation of the Acid Pit and Transuranic Pits and Trenches (TRU-PTs) that are present at the Idaho National Engineering Laboratory (INEL) Subsurface Disposal Area (SDA). However, a number of technical issues exist that must be resolved before ISV can be considered applicable to these waste sites. To assist in the ISV technology evaluation, an ISV Steering Committee was formed to identify, prioritize, and develop closure roadmaps for technical issues associated with ISV application at the INEL SDA. The activities of the ISV Steering Committee are summarized in three volumes of this report. This document, Volume 1, identifies the systematic approach used to identify and prioritize the ISV technical issues, and briefly discusses the methodology that will be employed to resolve these issues

  7. In situ method for measurements of community clearance rate on shallow water bivalve populations

    DEFF Research Database (Denmark)

    Hansen, Benni W.; Dolmer, Per; Vismann, Bent

    2011-01-01

    An open-top chamber was designed for measuring ambient community clearance rate on undisturbed bivalve populations in the field. The chamber was pressed 5-10 cm down in the sediment on the mussel bed. It holds approximately 30-40 cm water column equal to a volume of 43-77 L. It was provided...... with an air lift connected to a SCUBA diver pressure tank generating a continuous and gentle water circulation. This ensures a complete mixture of suspended particles, and thereby, a maximum filtration by the bivalves. An in situ fluorometer was mounted to record plant pigment reduction due to mussel...

  8. Technical issues associated with in situ vitrification of the INEL Subsurface Disposal Area

    International Nuclear Information System (INIS)

    Stoots, C.M.; Bates, S.O.; Callow, R.A.; Campbell, K.A.; Farnsworth, R.K.; Gratson, G.K.; McKellar, M.G.; Nickelson, D.F.; Slater, C.E.

    1992-01-01

    In situ vitrification (ISV) has been identified as an alternative technology for remediation of the Acid Pit and Transuranic Pits and Trenches (TRU-PTs) that are present at the Idaho National Engineering Laboratory (INEL) Subsurface Disposal Area (SDA). However, a number of technical issues exist that must be resolved before ISV can be considered applicable to these waste sites. To assist in the ISV technology evaluation, an ISV Steering Committee was formed to identify, prioritize, and develop closure roadmaps for technical issues associated with ISV application at the INEL SDA. The activities of the ISV Steering Committee are summarized in three volumes of this report. Volume 1 identifies the systematic approach used to identify and prioritize the ISV technical issues, and briefly discusses the methodology that will be employed to resolve these issues. This document Volume 2 and Volume 3 discusses each technical issue in greater detail and suggest specific closure roadmaps to be used in resolving technical issues associated with ISV at the SDA Acid Pit and TRU-PTs, respectively

  9. A comparison of analytical laboratory and optical in situ methods for the measurement of nitrate in north Florida water bodies

    Science.gov (United States)

    Rozin, A. G.; Clark, M. W.

    2013-12-01

    Assessing the impact of nutrient concentrations on aquatic ecosystems requires an in depth understanding of dynamic biogeochemical cycles that are often a challenge to monitor at the high spatial and temporal resolution necessary to understand these complex processes. Traditional sampling approaches involving discrete samples and laboratory analyses can be constrained by analytical costs, field time, and logistical details that can fail to accurately capture both spatial and temporal changes. Optical in situ instruments may provide the opportunity to continuously monitor a variety of water quality parameters at a high spatial or temporal resolution. This work explores the suitability of a Submersible Ultraviolet Nitrate Analyzer (SUNA), produced by Satlantic, to accurately assess in situ nitrate concentration in several freshwater systems in north Florida. The SUNA was deployed to measure nitrate at five different water bodies selected to represent a range of watershed land uses and water chemistry in the region. In situ nitrate measurements were compared to standard laboratory methods to evaluate the effectiveness of the SUNA's operation. Other optical sensors were used to measure the spectral properties of absorbance, fluorescence, and turbidity (scatter) in the same Florida water bodies. Data from these additional sensors were collected to quantify possible interferences that may affect SUNA performance. In addition, data from the SUNA and other sensors are being used to infer information about the quality and quantity of aqueous constituents besides nitrate. A better understanding of the capabilities and possible limitations of these relatively new analytical instruments will allow researchers to more effectively investigate biogeochemical processes and nutrient transport and enhance decision-making to protect our water bodies.

  10. Optimum method to determine radioactivity in large tracts of land. In-situ gamma spectroscopy or sampling followed by laboratory measurement

    International Nuclear Information System (INIS)

    Bronson, Frazier

    2008-01-01

    In the process of decommissioning contaminated facilities, and in the conduct of normal operations involving radioactive material, it is frequently required to show that large areas of land are not contaminated, or if contaminated that the amount is below an acceptable level. However, it is quite rare for the radioactivity in the soil to be uniformly distributed. Rather it is generally in a few isolated and probably unknown locations. One way to ascertain the status of the land concentration is to take soil samples for subsequent measurement in the laboratory. Another way is to use in-situ gamma spectroscopy. In both cases, the non-uniform distribution of radioactivity can greatly compromise the accuracy of the assay, and makes uncertainty estimates much more complicated than simple propagation of counting statistics. This paper examines the process of determining the best way to estimate the activity on the tract of land, and gives quantitative estimates of measurement uncertainty for various conditions of radioactivity. When the distribution of radioactivity in the soil is not homogeneous, the sampling uncertainty is likely to be larger than the in-situ measurement uncertainty. (author)

  11. Low-temperature thermal reduction of graphene oxide: In situ correlative structural, thermal desorption, and electrical transport measurements

    Science.gov (United States)

    Lipatov, Alexey; Guinel, Maxime J.-F.; Muratov, Dmitry S.; Vanyushin, Vladislav O.; Wilson, Peter M.; Kolmakov, Andrei; Sinitskii, Alexander

    2018-01-01

    Elucidation of the structural transformations in graphene oxide (GO) upon reduction remains an active and important area of research. We report the results of in situ heating experiments, during which electrical, mass spectrometry, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and transmission electron microscopy (TEM) measurements were carried out correlatively. The simultaneous electrical and temperature programmed desorption measurements allowed us to correlate the onset of the increase in the electrical conductivity of GO by five orders of magnitude at about 150 °C with the maxima of the rates of desorption of H2O, CO, and CO2. Interestingly, this large conductivity change happens at an intermediate level of the reduction of GO, which likely corresponds to the point when the graphitic domains become large enough to enable percolative electronic transport. We demonstrate that the gas desorption is intimately related to (i) the changes in the chemical structure of GO detected by XPS and Raman spectroscopy and (ii) the formation of nanoscopic holes in GO sheets revealed by TEM. These in situ observations provide a better understanding of the mechanism of the GO thermal reduction.

  12. Insights into soil carbon dynamics across climatic and geologic gradients from temporally-resolved radiocarbon measurements

    Science.gov (United States)

    van der Voort, T. S.; Hagedorn, F.; Mannu, U.; Walthert, L.; McIntyre, C.; Eglinton, T. I.

    2016-12-01

    Soil carbon constitutes the largest terrestrial reservoir of organic carbon, and therefore quantifying soil organic matter dynamics (carbon turnover, stocks and fluxes) across spatial gradients is essential for an understanding of the carbon cycle and the impacts of global change. In particular, links between soil carbon dynamics and different climatic and compositional factors remains poorly understood. Radiocarbon constitutes a powerful tool for unraveling soil carbon dynamics. Temporally-resolved radiocarbon measurements, which take advantage of "bomb-radiocarbon"-driven changes in atmospheric 14C, enable further constraints to be placed on C turnover times. These in turn can yield more precise flux estimates for both upper and deeper soil horizons. This project combines bulk radiocarbon measurements on a suite of soil profiles spanning strong climatic (MAT 1.3-9.2°C, MAP 600 to 2100 mm m-2y-1) and geologic gradients with a more in-depth approach for a subset of locations. For this subset, temporal and carbon-fraction specific radiocarbon data has been acquired for both topsoil and deeper soils. These well-studied sites are part of the Long-Term Forest Ecosystem Research (LWF) program of the Swiss Federal Institute for Forest, Snow and Landscape research (WSL). Resulting temporally-resolved turnover estimates are coupled to carbon stocks, fluxes across this wide range of forest ecosystems and are examined in the context of environmental drivers (temperature, precipitation, primary production and soil moisture) as well as composition (sand, silt and clay content). Statistical analysis on the region-scale - correlating radiocarbon signature with climatic variables such as temperature, precipitation, primary production and elevation - indicates that composition rather than climate is a key driver of ­­Δ14C signatures. Estimates of carbon turnover, stocks and fluxes derived from temporally-resolved measurements highlight the pivotal role of soil moisture as a

  13. Effect of In-Situ Cure on Measurement of Glass Transition Temperatures in High-Temperature Thermosetting Polymers (Briefing Charts)

    Science.gov (United States)

    2015-05-20

    TEMPERATURES IN HIGH-TEMPERATURE THERMOSETTING POLYMERS 5a. CONTRACT NUMBER In-House 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d...temperature thermosetting polymer via dynamic mechanical analysis alone. These difficulties result from the residual cure of samples heated beyond their...98) Prescribed by ANSI Std. 239.18 Effect of In-Situ Cure on Measurement of Glass Transition Temperatures in High-Temperature Thermosetting

  14. Simulation of salt behavior using in situ response

    International Nuclear Information System (INIS)

    Li, W.T.

    1986-01-01

    The time-dependent nonlinear structural behavior in a salt formation around the openings can be obtained by either performing computational analysis of measuring in situ responses. However, analysis using laboratory test data may often deviate from the actual in situ conditions and geomechanical instruments can provide information only up to the time when the measurements were taken. A method has been suggested for simulating the salt behavior by utilizing the steady-state portion of in situ response history. Governing equations for computational analysis were normalized to the creep constant, the equations were solved, and the analytical response history was then computed in terms of normalized time. By synchronizing the response history obtained from the analysis to the one measured at the site, the creep constant was determined. Then the structural response of the salt was computed. This paper presents an improved method for simulating the salt behavior. In this method, the governing equations are normalized to the creep function, which represents the transient and the steady-state creep behavior. Both the transient and the steady-state portions of in situ response history are used in determining the creep function. Finally, a nonlinear mapping process relating the normalized and real time domains determines the behavior of the salt

  15. A Novel Optical Diagnostic for In Situ Measurements of Lithium Polysulfides in Battery Electrolytes.

    Science.gov (United States)

    Saqib, Najmus; Silva, Cody J; Maupin, C Mark; Porter, Jason M

    2017-07-01

    An optical diagnostic technique to determine the order and concentration of lithium polysulfides in lithium-sulfur (Li-S) battery electrolytes has been developed. One of the major challenges of lithium-sulfur batteries is the problem of polysulfide shuttling between the electrodes, which leads to self-discharge and loss of active material. Here we present an optical diagnostic for quantitative in situ measurements of lithium polysulfides using attenuated total reflection Fourier transform infrared (FT-IR) spectroscopy. Simulated infrared spectra of lithium polysulfide molecules were generated using computational quantum chemistry routines implemented in Gaussian 09. The theoretical spectra served as a starting point for experimental characterization of lithium polysulfide solutions synthesized by the direct reaction of lithium sulfide and sulfur. Attenuated total reflection FT-IR spectroscopy was used to measure absorption spectra. The lower limit of detection with this technique is 0.05 M. Measured spectra revealed trends with respect to polysulfide order and concentration, consistent with theoretical predictions, which were used to develop a set of equations relating the order and concentration of lithium polysulfides in a sample to the position and area of a characteristic infrared absorption band. The diagnostic routine can measure the order and concentration to within 5% and 0.1 M, respectively.

  16. Time-Resolved Particle Image Velocimetry Measurements with Wall Shear Stress and Uncertainty Quantification for the FDA Nozzle Model.

    Science.gov (United States)

    Raben, Jaime S; Hariharan, Prasanna; Robinson, Ronald; Malinauskas, Richard; Vlachos, Pavlos P

    2016-03-01

    We present advanced particle image velocimetry (PIV) processing, post-processing, and uncertainty estimation techniques to support the validation of computational fluid dynamics analyses of medical devices. This work is an extension of a previous FDA-sponsored multi-laboratory study, which used a medical device mimicking geometry referred to as the FDA benchmark nozzle model. Experimental measurements were performed using time-resolved PIV at five overlapping regions of the model for Reynolds numbers in the nozzle throat of 500, 2000, 5000, and 8000. Images included a twofold increase in spatial resolution in comparison to the previous study. Data was processed using ensemble correlation, dynamic range enhancement, and phase correlations to increase signal-to-noise ratios and measurement accuracy, and to resolve flow regions with large velocity ranges and gradients, which is typical of many blood-contacting medical devices. Parameters relevant to device safety, including shear stress at the wall and in bulk flow, were computed using radial basis functions. In addition, in-field spatially resolved pressure distributions, Reynolds stresses, and energy dissipation rates were computed from PIV measurements. Velocity measurement uncertainty was estimated directly from the PIV correlation plane, and uncertainty analysis for wall shear stress at each measurement location was performed using a Monte Carlo model. Local velocity uncertainty varied greatly and depended largely on local conditions such as particle seeding, velocity gradients, and particle displacements. Uncertainty in low velocity regions in the sudden expansion section of the nozzle was greatly reduced by over an order of magnitude when dynamic range enhancement was applied. Wall shear stress uncertainty was dominated by uncertainty contributions from velocity estimations, which were shown to account for 90-99% of the total uncertainty. This study provides advancements in the PIV processing methodologies over

  17. Optical sensor system for time-resolved quantification of methane concentrations: Validation measurements in a rapid compression machine

    Science.gov (United States)

    Bauke, Stephan; Golibrzuch, Kai; Wackerbarth, Hainer; Fendt, Peter; Zigan, Lars; Seefeldt, Stefan; Thiele, Olaf; Berg, Thomas

    2018-05-01

    Lowering greenhouse gas emissions is one of the most challenging demands of today's society. Especially, the automotive industry struggles with the development of more efficient internal combustion (IC) engines. As an alternative to conventional fuels, methane has the potential for a significant emission reduction. In methane fuelled engines, the process of mixture formation, which determines the properties of combustion after ignition, differs significantly from gasoline and diesel engines and needs to be understood and controlled in order to develop engines with high efficiency. This work demonstrates the development of a gas sensing system that can serve as a diagnostic tool for measuring crank-angle resolved relative air-fuel ratios in methane-fuelled near-production IC engines. By application of non-dispersive infrared absorption spectroscopy at two distinct spectral regions in the ν3 absorption band of methane around 3.3 μm, the system is able to determine fuel density and temperature simultaneously. A modified spark plug probe allows for straightforward application at engine test stations. Here, the application of the detection system in a rapid compression machine is presented, which enables validation and characterization of the system on well-defined gas mixtures under engine-like dynamic conditions. In extension to a recent proof-of-principle study, a refined data analysis procedure is introduced that allows the correction of artefacts originating from mechanical distortions of the sensor probe. In addition, the measured temperatures are compared to data obtained with a commercially available system based on the spectrally resolved detection of water absorption in the near infrared.

  18. In situ measurements of contributions to the global electrical circuit by a thunderstorm in southeastern Brazil

    Science.gov (United States)

    Thomas, J.N.; Holzworth, R.H.; McCarthy, M.P.

    2009-01-01

    The global electrical circuit, which maintains a potential of about 280??kV between the earth and the ionosphere, is thought to be driven mainly by thunderstorms and lightning. However, very few in situ measurements of electrical current above thunderstorms have been successfully obtained. In this paper, we present dc to very low frequency electric fields and atmospheric conductivity measured in the stratosphere (30-35??km altitude) above an active thunderstorm in southeastern Brazil. From these measurements, we estimate the mean quasi-static conduction current during the storm period to be 2.5 ?? 1.25??A. Additionally, we examine the transient conduction currents following a large positive cloud-to-ground (+ CG) lightning flash and typical - CG flashes. We find that the majority of the total current is attributed to the quasi-static thundercloud charge, rather than lightning, which supports the classical Wilson model for the global electrical circuit.

  19. Measurement of in situ sulfur isotopes by laser ablation multi-collector ICPMS: opening Pandora’s Box

    Science.gov (United States)

    Ridley, William I.; Pribil, Michael; Koenig, Alan E.; Slack, John F.

    2015-01-01

    Laser ablation multi-collector ICPMS is a modern tool for in situ measurement of S isotopes. Advantages of the technique are speed of analysis and relatively minor matrix effects combined with spatial resolution sufficient for many applications. The main disadvantage is a more destructive sampling mechanism relative to the ion microprobe technique. Recent advances in instrumentation allow precise measurement with spatial resolutions down to 25 microns. We describe specific examples from economic geology where increased spatial resolution has greatly expanded insights into the sources and evolution of fluids that cause mineralization and illuminated genetic relations between individual deposits in single mineral districts.

  20. The management of scarce water resources using GNSS, InSAR and in-situ micro gravity measurements as monitoring tools

    CSIR Research Space (South Africa)

    Wonnacott, R

    2015-08-01

    Full Text Available of Geomatics, Vol. 4, No. 3, August 2015 213  The management of scarce water resources using GNSS, InSAR and in-situ micro gravity measurements as monitoring tools Richard Wonnacott1, Chris Hartnady1, Jeanine Engelbrecht2 1Umvoto Africa (Pty) Ltd... shown to provide a useful tool for the measurement and monitoring of ground subsidence resulting from numerous natural and anthropogenic causes including the abstraction of groundwater and gas. Zerbini et al (2007) processed and combined data from a...

  1. In situ laser-induced breakdown spectroscopy measurements of chemical compositions in stainless steels during tungsten inert gas welding

    Science.gov (United States)

    Taparli, Ugur Alp; Jacobsen, Lars; Griesche, Axel; Michalik, Katarzyna; Mory, David; Kannengiesser, Thomas

    2018-01-01

    A laser-induced breakdown spectroscopy (LIBS) system was combined with a bead-on-plate Tungsten Inert Gas (TIG) welding process for the in situ measurement of chemical compositions in austenitic stainless steels during welding. Monitoring the weld pool's chemical composition allows governing the weld pool solidification behavior, and thus enables the reduction of susceptibility to weld defects. Conventional inspection methods for weld seams (e.g. ultrasonic inspection) cannot be performed during the welding process. The analysis system also allows in situ study of the correlation between the occurrence of weld defects and changes in the chemical composition in the weld pool or in the two-phase region where solid and liquid phase coexist. First experiments showed that both the shielding Ar gas and the welding arc plasma have a significant effect on the selected Cr II, Ni II and Mn II characteristic emissions, namely an artificial increase of intensity values via unspecific emission in the spectra. In situ investigations showed that this artificial intensity increase reached a maximum in presence of weld plume. Moreover, an explicit decay has been observed with the termination of the welding plume due to infrared radiation during sample cooling. Furthermore, LIBS can be used after welding to map element distribution. For austenitic stainless steels, Mn accumulations on both sides of the weld could be detected between the heat affected zone (HAZ) and the base material.

  2. Broadband time-resolved elliptical crystal spectrometer for X-ray spectroscopic measurements in laser-produced plasmas

    International Nuclear Information System (INIS)

    Wang Rui-Rong; Jia Guo; Fang Zhi-Heng; Wang Wei; Meng Xiang-Fu; Xie Zhi-Yong; Zhang Fan

    2014-01-01

    The X-ray spectrometer used in high-energy-density plasma experiments generally requires both broad X-ray energy coverage and high temporal, spatial, and spectral resolutions for overcoming the difficulties imposed by the X-ray background, debris, and mechanical shocks. By using an elliptical crystal together with a streak camera, we resolve this issue at the SG-II laser facility. The carefully designed elliptical crystal has a broad spectral coverage with high resolution, strong rejection of the diffuse and/or fluorescent background radiation, and negligible source broadening for extended sources. The spectra that are Bragg reflected (23° < θ < 38°) from the crystal are focused onto a streak camera slit 18 mm long and about 80 μm wide, to obtain a time-resolved spectrum. With experimental measurements, we demonstrate that the quartz(1011) elliptical analyzer at the SG-II laser facility has a single-shot spectral range of (4.64–6.45) keV, a typical spectral resolution of E/ΔE = 560, and an enhanced focusing power in the spectral dimension. For titanium (Ti) data, the lines of interest show a distribution as a function of time and the temporal variations of the He-α and Li-like Ti satellite lines and their spatial profiles show intensity peak red shifts. The spectrometer sensitivity is illustrated with a temporal resolution of better than 25 ps, which satisfies the near-term requirements of high-energy-density physics experiments. (atomic and molecular physics)

  3. An in situ survey of the Paducah Gaseous Diffusion Plant and surrounding area

    International Nuclear Information System (INIS)

    Hoover, R.A.

    1994-02-01

    An in situ survey of the area surrounding the Paducah Gaseous Diffusion Plant was conducted between May 17 and 24, 1990. The survey consisted of in situ measurements and of ground sampling. A High Purity Germanium detector was used for the in situ measurements. The ground samples were taken to the, laboratory at EG ampersand G Energy Measurements, Inc., in Santa Barbara, California, for a radionuclide assay on a laboratory system. Results of the in situ measurements found evidence of naturally occurring radioisotopes, cesium-137 from international fallout, and some evidence of anomalous uranium-238. The soil sampling results show only the presence of naturally occurring radioisotopes, cesium-137, and also anomalous uranium-238

  4. In situ stress measurements at the Spent Fuel Test-Climax facility

    International Nuclear Information System (INIS)

    Creveling, J.B.; Shuri, F.S.; Foster, K.M.; Mills, S.V.

    1984-05-01

    The status of the following studies is given: in situ state of stress; stress gradient into rib from south heater drift; pillar stresses; and rock deformational properties. 11 references, 38 figures, 12 tables

  5. In situ real-time measurement of physical characteristics of airborne bacterial particles

    Science.gov (United States)

    Jung, Jae Hee; Lee, Jung Eun

    2013-12-01

    Bioaerosols, including aerosolized bacteria, viruses, and fungi, are associated with public health and environmental problems. One promising control method to reduce the harmful effects of bioaerosols is thermal inactivation via a continuous-flow high-temperature short-time (HTST) system. However, variations in bioaerosol physical characteristics - for example, the particle size and shape - during the continuous-flow inactivation process can change the transport properties in the air, which can affect particle deposition in the human respiratory system or the filtration efficiency of ventilation systems. Real-time particle monitoring techniques are a desirable alternative to the time-consuming process of microscopic analysis that is conventionally used in sampling and particle characterization. Here, we report in situ real-time optical scattering measurements of the physical characteristics of airborne bacteria particles following an HTST process in a continuous-flow system. Our results demonstrate that the aerodynamic diameter of bacterial aerosols decreases when exposed to a high-temperature environment, and that the shape of the bacterial cells is significantly altered. These variations in physical characteristics using optical scattering measurements were found to be in agreement with the results of scanning electron microscopy analysis.

  6. A Green Microbial Fuel Cell-Based Biosensor for In Situ Chromium (VI) Measurement in Electroplating Wastewater.

    Science.gov (United States)

    Wu, Li-Chun; Tsai, Teh-Hua; Liu, Man-Hai; Kuo, Jui-Ling; Chang, Yung-Chu; Chung, Ying-Chien

    2017-10-27

    The extensive use of Cr(VI) in many industries and the disposal of Cr(VI)-containing wastes have resulted in Cr(VI)-induced environmental contamination. Cr(VI) compounds are associated with increased cancer risks; hence, the detection of toxic Cr(VI) compounds is crucial. Various methods have been developed for Cr(VI) measurement, but they are often conducted offsite and cannot provide real-time toxicity monitoring. A microbial fuel cell (MFC) is an eco-friendly and self-sustaining device that has great potential as a biosensor for in situ Cr(VI) measurement, especially for wastewater generated from different electroplating units. In this study, Exiguobacterium aestuarii YC211, a facultatively anaerobic, Cr(VI)-reducing, salt-tolerant, and exoelectrogenic bacterium, was isolated and inoculated into an MFC to evaluate its feasibility as a Cr(VI) biosensor. The Cr(VI) removal efficiency of E. aestuarii YC211 was not affected by the surrounding environment (pH 5-9, 20-35 °C, coexisting ions, and salinity of 0-15 g/L). The maximum power density of the MFC biosensor was 98.3 ± 1.5 mW/m² at 1500 Ω. A good linear relationship ( r ² = 0.997) was observed between the Cr(VI) concentration (2.5-60 mg/L) and the voltage output. The developed MFC biosensor is a simple device that can accurately measure Cr(VI) concentrations in the actual electroplating wastewater that is generated from different electroplating units within 30 min with low deviations (-6.1% to 2.2%). After treating the actual electroplating wastewater with the MFC, the predominant family in the biofilm was found to be Bacillaceae (95.3%) and was further identified as the originally inoculated E. aestuarii YC211 by next generation sequencing (NGS). Thus, the MFC biosensor can measure Cr(VI) concentrations in situ in the effluents from different electroplating units, and it can potentially help in preventing the violation of effluent regulations.

  7. Kinetics of methane-ethane gas replacement in clathrate-hydrates studied by time-resolved neutron diffraction and Raman spectroscopy.

    Science.gov (United States)

    Murshed, M Mangir; Schmidt, Burkhard C; Kuhs, Werner F

    2010-01-14

    The kinetics of CH(4)-C(2)H(6) replacement in gas hydrates has been studied by in situ neutron diffraction and Raman spectroscopy. Deuterated ethane structure type I (C(2)H(6) sI) hydrates were transformed in a closed volume into methane-ethane mixed structure type II (CH(4)-C(2)H(6) sII) hydrates at 5 MPa and various temperatures in the vicinity of 0 degrees C while followed by time-resolved neutron powder diffraction on D20 at ILL, Grenoble. The role of available surface area of the sI starting material on the formation kinetics of sII hydrates was studied. Ex situ Raman spectroscopic investigations were carried out to crosscheck the gas composition and the distribution of the gas species over the cages as a function of structure type and compared to the in situ neutron results. Raman micromapping on single hydrate grains showed compositional and structural gradients between the surface and core of the transformed hydrates. Moreover, the observed methane-ethane ratio is very far from the one expected for a formation from a constantly equilibrated gas phase. The results also prove that gas replacement in CH(4)-C(2)H(6) hydrates is a regrowth process involving the nucleation of new crystallites commencing at the surface of the parent C(2)H(6) sI hydrate with a progressively shrinking core of unreacted material. The time-resolved neutron diffraction results clearly indicate an increasing diffusion limitation of the exchange process. This diffusion limitation leads to a progressive slowing down of the exchange reaction and is likely to be responsible for the incomplete exchange of the gases.

  8. In-situ BrO measurements in the upper troposphere / lower stratosphere. Validation of the ENVISAT satellite measurements and photochemical model studies

    Energy Technology Data Exchange (ETDEWEB)

    Hrechanyy, S.

    2007-04-15

    Inorganic bromine species form the second most important halogen family affecting stratospheric ozone (WMO, 2003). Although the stratospheric bromine mixing ratio is about two orders of magnitude lower than the chlorine one, bromine has much higher ozone depleting potential (factor of about 45) compared to chlorine. This study reports and discusses atmospheric bromine monoxide, BrO, measurements in the altitude range 15-30 km performed by the balloon-borne instrument TRIPLE and aircraft instrument HALOX employing the chemical conversion resonance fluorescence technique, which is the only proven in-situ technique for the measurements of BrO. 57 HALOX flights have been performed in the frame of five field campaigns ranging from the Arctic to tropics. Three TRIPLE flights were carried out at high and mid latitudes in the frame of the SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY) validation. Calibration, consistency checks, data analysis, and error assessment for the in-situ measurements are described. The balloon measurements have yielded vertical profiles of BrO between 15 and 30 km altitude at northern mid- and at arctic latitudes. From the aircraft measurements a meridional BrO distribution from tropical to the arctic latitudes between 15 and 20 km altitude was obtained. In order to check the reliability of the bromine chemistry in the CLaMS model the BrO profile measured by TRIPLE on June 9, 2003 in Arctic spring/summer conditions was compared to a simulated BrO profile. For the simulation the model was initialized with appropriate satellite and balloon measurements and with a total stratospheric bromine of 18.4 pptv. Very good agreement between the TRIPLE measurements and model results was found. Measurements of BrO in the tropical tropopause layer (TTL) are well suited to investigate the contribution of very short-lived bromine species (VSLS) to the inorganic bromine, Bry. Since tropical HALOX BrO measurements from TROCCINOX

  9. Time resolved measurement of laser-ablated particles by LAPXAS (Laser Plasma Soft X-ray Absorption Spectroscopy)

    International Nuclear Information System (INIS)

    Miyashita, Atsumi; Yoda, Osamu; Murakami, Kouichi

    1999-01-01

    The time- and spatially-resolved properties of laser ablated carbon, boron and silicon particles were measured by LAPXAS (Laser Plasma Soft X-ray Absorption Spectroscopy). The maximum speed of positively charged ions is higher than those of neutral atoms and negatively charged ions. The spatial distributions of the laser-ablated particles in the localized rare gas environment were measured. In helium gas environment, by the helium cloud generated on the top of ablation plume depressed the ablation plume. There is no formation of silicon clusters till 15 μs after laser ablation in the argon gas environment. (author)

  10. IN SITU density measurements oozy bottom of the access channel to the port of Santos, Sao Paulo, Brazil; Medicoes de densidade IN SITU em fundo vasoso do canal de acesso ao Porto de Santos/SP

    Energy Technology Data Exchange (ETDEWEB)

    Minardi, P S.P.

    1988-09-01

    The density of the bottom sediment of the access channel to the port of Santos, Sao Paulo, Brazil was measured. The in situ measurements aimed at verifying the use for navigation purposes of the layers with densities equal to or smaller than 1200 kg/m{sup 3}. (F.E.). 3 refs, 55 figs, 3 tabs.

  11. Cluster tool for in situ processing and comprehensive characteriza tion of thin films at high temperatures.

    Science.gov (United States)

    Wenisch, Robert; Lungwitz, Frank; Hanf, Daniel; Heller, Rene; Zscharschuch, Jens; Hübner, René; von Borany, Johannes; Abrasonis, Gintautas; Gemming, Sibylle; Escobar-Galindo, Ramon; Krause, Matthias

    2018-05-31

    A new cluster tool for in situ real-time processing and depth-resolved compositional, structural and optical characterization of thin films at temperatures from -100 to 800 °C is described. The implemented techniques comprise magnetron sputtering, ion irradiation, Rutherford backscattering spectrometry, Raman spectroscopy and spectroscopic ellipsometry. The capability of the cluster tool is demonstrated for a layer stack MgO/ amorphous Si (~60 nm)/ Ag (~30 nm), deposited at room temperature and crystallized with partial layer exchange by heating up to 650°C. Its initial and final composition, stacking order and structure were monitored in situ in real time and a reaction progress was defined as a function of time and temperature.

  12. Retrieval of Water Constituents from Hyperspectral In-Situ Measurements under Variable Cloud Cover—A Case Study at Lake Stechlin (Germany

    Directory of Open Access Journals (Sweden)

    Anna Göritz

    2018-01-01

    Full Text Available Remote sensing and field spectroscopy of natural waters is typically performed under clear skies, low wind speeds and low solar zenith angles. Such measurements can also be made, in principle, under clouds and mixed skies using airborne or in-situ measurements; however, variable illumination conditions pose a challenge to data analysis. In the present case study, we evaluated the inversion of hyperspectral in-situ measurements for water constituent retrieval acquired under variable cloud cover. First, we studied the retrieval of Chlorophyll-a (Chl-a concentration and colored dissolved organic matter (CDOM absorption from in-water irradiance measurements. Then, we evaluated the errors in the retrievals of the concentration of total suspended matter (TSM, Chl-a and the absorption coefficient of CDOM from above-water reflectance measurements due to highly variable reflections at the water surface. In order to approximate cloud reflections, we extended a recent three-component surface reflectance model for cloudless atmospheres by a constant offset and compared different surface reflectance correction procedures. Our findings suggest that in-water irradiance measurements may be used for the analysis of absorbing compounds even under highly variable weather conditions. The extended surface reflectance model proved to contribute to the analysis of above-water reflectance measurements with respect to Chl-a and TSM. Results indicate the potential of this approach for all-weather monitoring.

  13. Beamline electrostatic levitator for in situ high energy x-ray diffraction studies of levitated solids and liquids

    Energy Technology Data Exchange (ETDEWEB)

    Gangopadhyay, A.K.; Lee, G.W.; Kelto, K.F.; Rogers, J.R.; Goldman, A.I.; Robinson, D.S.; Rathz, T.J.; Hyers, R.W. (WU); (UAB); (NASA); (UMASS, Amherst)

    2010-07-19

    Determinations of the phase formation sequence, crystal structures and the thermo-physical properties of materials at high temperatures are hampered by contamination from the sample container and environment. Containerless processing techniques, such as electrostatic (ESL), electromagnetic, aerodynamic, and acoustic levitation, are most suitable for these studies. An adaptation of ESL for in situ structural studies of a wide range of materials using high energy (30-130 keV) x rays at a synchrotron source is described here. This beamline ESL (BESL) allows the in situ determination of the atomic structures of equilibrium solid and liquid phases, undercooled liquids and time-resolved studies of solid-solid and liquid-solid phase transformations. The use of area detectors enables the rapid acquisition of complete diffraction patterns over a wide range (0.5-14 {angstrom}{sup -1}) of reciprocal space. The wide temperature range (300-2500 K), containerless processing environment under high vacuum (10{sup -7}-10{sup -8} Torr), and fast data acquisition capability, make BESL particularly well suited for phase stability studies of high temperature solids and liquids. An additional, but important, feature of BESL is the capability for simultaneous measurements of a host of thermo-physical properties including the specific heat, enthalpy of transformation, solidus and liquidus temperatures, density, viscosity, and surface tension, all on the same sample during the structural measurements.

  14. Beveled fiber-optic probe couples a ball lens for improving depth-resolved fluorescence measurements of layered tissue: Monte Carlo simulations

    International Nuclear Information System (INIS)

    Jaillon, Franck; Zheng Wei; Huang Zhiwei

    2008-01-01

    In this study, we evaluate the feasibility of designing a beveled fiber-optic probe coupled with a ball lens for improving depth-resolved fluorescence measurements of epithelial tissue using Monte Carlo (MC) simulations. The results show that by using the probe configuration with a beveled tip collection fiber and a flat tip excitation fiber associated with a ball lens, discrimination of fluorescence signals generated in different tissue depths is achievable. In comparison with a flat-tip collection fiber, the use of a large bevel angled collection fiber enables a better differentiation between the shallow and deep tissue layers by changing the excitation-collection fiber separations. This work suggests that the beveled fiber-optic probe coupled with a ball lens has the potential to facilitate depth-resolved fluorescence measurements of epithelial tissues

  15. Imaging by Electrochemical Scanning Tunneling Microscopy and Deconvolution Resolving More Details of Surfaces Nanomorphology

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov

    observed in high-resolution images of metallic nanocrystallites may be effectively deconvoluted, as to resolve more details of the crystalline morphology (see figure). Images of surface-crystalline metals indicate that more than a single atomic layer is involved in mediating the tunneling current......Upon imaging, electrochemical scanning tunneling microscopy (ESTM), scanning electrochemical micro-scopy (SECM) and in situ STM resolve information on electronic structures and on surface topography. At very high resolution, imaging processing is required, as to obtain information that relates...... to crystallographic-surface structures. Within the wide range of new technologies, those images surface features, the electrochemical scanning tunneling microscope (ESTM) provides means of atomic resolution where the tip participates actively in the process of imaging. Two metallic surfaces influence ions trapped...

  16. In Situ Focused Beam Reflectance Measurement (FBRM, Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR and Raman Characterization of the Polymorphic Transformation of Carbamazepine

    Directory of Open Access Journals (Sweden)

    Sohrab Rohani

    2012-02-01

    Full Text Available The objective of this work was to study the polymorphic transformation of carbamazepine from Form II to Form III in 1-propanol during seeded isothermal batch crystallization. First, the pure Form II and Form III were obtained and characterized. Then their solubilities and metastable zone limits were measured by in-situ attenuated total reflectance Fourier transform infrared (ATR-FTIR spectroscopy and focused beam reflectance measurement (FBRM. A transition temperature at about 34.2 °C was deduced suggesting the enantiotropic nature of this compound over the studied temperature range. To quantify the polymorph ratio during the transformation process, a new in-situ quantitative method was developed to measure the fraction of Form II by Raman spectroscopy. Successful tracking of the nucleation of the stable form and the transformation from Form II to Form III during isothermal crystallization was achieved by Raman spectroscopy and FBRM. The results from these three in-situ techniques, FBRM, FTIR and Raman were consistent with each other. The results showed a strong dependency on the amount of seeds added during isothermal crystallization.

  17. An instrument for in situ time-resolved X-ray imaging and diffraction of laser powder bed fusion additive manufacturing processes

    Science.gov (United States)

    Calta, Nicholas P.; Wang, Jenny; Kiss, Andrew M.; Martin, Aiden A.; Depond, Philip J.; Guss, Gabriel M.; Thampy, Vivek; Fong, Anthony Y.; Weker, Johanna Nelson; Stone, Kevin H.; Tassone, Christopher J.; Kramer, Matthew J.; Toney, Michael F.; Van Buuren, Anthony; Matthews, Manyalibo J.

    2018-05-01

    In situ X-ray-based measurements of the laser powder bed fusion (LPBF) additive manufacturing process produce unique data for model validation and improved process understanding. Synchrotron X-ray imaging and diffraction provide high resolution, bulk sensitive information with sufficient sampling rates to probe melt pool dynamics as well as phase and microstructure evolution. Here, we describe a laboratory-scale LPBF test bed designed to accommodate diffraction and imaging experiments at a synchrotron X-ray source during LPBF operation. We also present experimental results using Ti-6Al-4V, a widely used aerospace alloy, as a model system. Both imaging and diffraction experiments were carried out at the Stanford Synchrotron Radiation Lightsource. Melt pool dynamics were imaged at frame rates up to 4 kHz with a ˜1.1 μm effective pixel size and revealed the formation of keyhole pores along the melt track due to vapor recoil forces. Diffraction experiments at sampling rates of 1 kHz captured phase evolution and lattice contraction during the rapid cooling present in LPBF within a ˜50 × 100 μm area. We also discuss the utility of these measurements for model validation and process improvement.

  18. Resolved discrepancies between visible spontaneous Raman cross-section and direct near-infrared Raman gain measurements in TeO2-based glasses.

    Science.gov (United States)

    Rivero, Clara; Stegeman, Robert; Couzi, Michel; Talaga, David; Cardinal, Thierry; Richardson, Kathleen; Stegeman, George

    2005-06-13

    Disagreements on the Raman gain response of different tellurite-based glasses, measured at different wavelengths, have been recently reported in the literature. In order to resolve this controversy, a multi-wavelength Raman cross-section experiment was conducted on two different TeO2-based glass samples. The estimated Raman gain response of the material shows good agreement with the directly-measured Raman gain data at 1064 nm, after correction for the dispersion and wavelength-dependence of the Raman gain process.

  19. In Situ Measurement of Alkali Metals in an MSW Incinerator Using a Spontaneous Emission Spectrum

    Directory of Open Access Journals (Sweden)

    Weijie Yan

    2017-03-01

    Full Text Available This paper presents experimental investigations of the in situ diagnosis of the alkali metals in the municipal solid waste (MSW flame of an industrial grade incinerator using flame emission spectroscopy. The spectral radiation intensities of the MSW flame were obtained using a spectrometer. A linear polynomial fitting method is proposed to uncouple the continuous spectrum and the characteristic line. Based on spectra processing and a non-gray emissivity model, the flame temperature, emissivity, and intensities of the emission of alkali metals were calculated by means of measuring the spectral radiation intensities of the MSW flame. Experimental results indicate that the MSW flame contains alkali metals, including Na, K, and even Rb, and it demonstrates non-gray characteristics in a wavelength range from 500 nm to 900 nm. Peak intensities of the emission of the alkali metals were found to increase when the primary air was high, and the measured temperature varied in the same way as the primary air. The temperature and peak intensities of the lines of emission of the alkali metals may be used to adjust the primary airflow and to manage the feeding of the MSW to control the alkali metals in the MSW flame. It was found that the peak intensity of the K emission line had a linear relationship with the peak intensity of the Na emission line; this correlation may be attributed to their similar physicochemical characteristics in the MSW. The variation trend of the emissivity of the MSW flame and the oxygen content in the flue gas were almost opposite because the increased oxygen content suppressed soot formation and decreased soot emissivity. These results prove that the flame emission spectroscopy technique is feasible for monitoring combustion in the MSW incinerator in situ.

  20. Thin film thermocouples for in situ membrane electrode assembly temperature measurements in a polybenzimidazole-based high temperature proton exchange membrane unit cell

    DEFF Research Database (Denmark)

    Ali, Syed Talat; Lebæk, Jesper; Nielsen, Lars Pleth

    2010-01-01

    m thick layer of TFTCs on 75 mu m thick Kapton foil. The Kapton foil was treated with in situ argon plasma etching to improve the adhesion between TFTCs and the Kapton substrate. The TFTCs were covered with a 7 mu m liquid Kapton layer using spin coating technique to protect them from environmental......This paper presents Type-T thin film thermocouples (TFTCs) fabricated on Kapton (polyimide) substrate for measuring the internal temperature of PBI(polybenzimidazole)-based high temperature proton exchange membrane fuel cell (HT-PEMFC). Magnetron sputtering technique was employed to deposit a 2 mu...... degradation. This Kapton foil with deposited TFTCs was used as sealing inside a PBI (polybenzimidazole)-based single cell test rig, which enabled measurements of in situ temperature variations of the working fuel cell MEA. The performance of the TFTCs was promising with minimal interference to the operation...