WorldWideScience

Sample records for resolution x-ray image

  1. High Resolution Energetic X-ray Imager (HREXI)

    Science.gov (United States)

    Grindlay, Jonathan

    We propose to design and build the first imaging hard X-ray detector system that incorporates 3D stacking of closely packed detector readouts in finely-spaced imaging arrays with their required data processing and control electronics. In virtually all imaging astronomical detectors, detector readout is done with flex connectors or connections that are not vertical but rather horizontal , requiring loss of focal plane area. For high resolution pixel detectors needed for high speed event-based X-ray imaging, from low energy applications (CMOS) with focusing X-ray telescopes, to hard X-ray applications with pixelated CZT for large area coded aperture telescopes, this new detector development offers great promise. We propose to extend our previous and current APRA supported ProtoEXIST program that has developed the first large area imaging CZT detectors and demonstrated their astrophysical capabilities on two successful balloon flight to a next generation High Resolution Energetic X-ray Imager (HREXI), which would incorporate microvia technology for the first time to connect the readout ASIC on each CZT crystal directly to its control and data processing system. This 3-dimensional stacking of detector and readout/control system means that large area (>2m2) imaging detector planes for a High Resolution Wide-field hard X-ray telescope can be built with initially greatly reduced detector gaps and ultimately with no gaps. This increases detector area, efficiency, and simplicity of detector integration. Thus higher sensitivity wide-field imagers will be possible at lower cost. HREXI will enable a post-Swift NASA mission such as the EREXS concept proposed to PCOS to be conducted as a future MIDEX mission. This mission would conduct a high resolution (<2 arcmin) , broad band (5 200 keV) hard X-ray survey of black holes on all scales with ~10X higher sensitivity than Swift. In the current era of Time Domain Astrophysics, such a survey capability, in conjunction with a n

  2. Structured scintillators for X-ray imaging with micrometre resolution

    DEFF Research Database (Denmark)

    Olsen, Ulrik Lund; Schmidt, Søren; Poulsen, Henning Friis

    2009-01-01

    A 3D X-ray detector for imaging of 30–200 keV photons is described. It comprises a stack of semitransparent structured scintillators, where each scintillator is a regular array of waveguides in silicon, and with pores filled with CsI. The performance of the detector is described theoretically...

  3. Gas scintillation glass GEM detector for high-resolution X-ray imaging and CT

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, T., E-mail: fujiwara-t@aist.go.jp [Research Institute for Measurement and Analytical Instrumentation, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Mitsuya, Y. [Nuclear Professional School, The University of Tokyo, Tokai, Naka, Ibaraki 319-1188 (Japan); Fushie, T. [Radiment Lab. Inc., Setagaya, Tokyo 156-0044 (Japan); Murata, K.; Kawamura, A.; Koishikawa, A. [XIT Co., Naruse, Machida, Tokyo 194-0045 (Japan); Toyokawa, H. [Research Institute for Measurement and Analytical Instrumentation, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Takahashi, H. [Institute of Engineering Innovation, School of Engineering, The University of Tokyo, Bunkyo, Tokyo 113-8654 (Japan)

    2017-04-01

    A high-spatial-resolution X-ray-imaging gaseous detector has been developed with a single high-gas-gain glass gas electron multiplier (G-GEM), scintillation gas, and optical camera. High-resolution X-ray imaging of soft elements is performed with a spatial resolution of 281 µm rms and an effective area of 100×100 mm. In addition, high-resolution X-ray 3D computed tomography (CT) is successfully demonstrated with the gaseous detector. It shows high sensitivity to low-energy X-rays, which results in high-contrast radiographs of objects containing elements with low atomic numbers. In addition, the high yield of scintillation light enables fast X-ray imaging, which is an advantage for constructing CT images with low-energy X-rays.

  4. Two-energy twin image removal in atomic-resolution x-ray holography

    International Nuclear Information System (INIS)

    Nishino, Y.; Ishikawa, T.; Hayashi, K.; Takahashi, Y.; Matsubara, E.

    2002-01-01

    We propose a two-energy twin image removal algorithm for atomic-resolution x-ray holography. The validity of the algorithm is shown in a theoretical simulation and in an experiment of internal detector x-ray holography using a ZnSe single crystal. The algorithm, compared to the widely used multiple-energy algorithm, allows efficient measurement of holograms, and is especially important when the available x-ray energies are fixed. It enables twin image free holography using characteristic x rays from laboratory generators and x-ray pulses of free-electron lasers

  5. High Spectral Resolution, High Cadence, Imaging X-ray Microcalorimeters for Solar Physics - Phase 2 Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Microcalorimeter x-ray instruments are non-dispersive, high spectral resolution, broad-band, high cadence imaging spectrometers. We have been developing these...

  6. High resolution x-ray stereomicroscopy: True three-dimensional imaging of biological samples

    International Nuclear Information System (INIS)

    Loo, B.W.Jr.; Williams, S.; Meizel, S.; Rothman, S.S.; Univ. of California, Berkeley/San Francisco, CA; Univ. of California, San Francisco, CA

    1993-01-01

    X-ray microscopy has the potential to become a powerful tool for the study of biological samples, allowing the imaging of intact cells and subcellular organelles in an aqueous environment at resolutions previously achievable only by electron microscopy. The ability to examine a relatively thick sample raises the issue of superposition of objects from multiple planes within the sample, making difficult the interpretation of conventional, orthogonally projected images. This paper describes early attempts at developing three-dimensional methods for x-ray microimaging: the first to use x-ray optics, and to the authors' knowledge, the first demonstrating sub-visible resolutions and natural contrast. These studies were performed using the scanning transmission x-ray microscope (STXM) at the National Synchrotron Light Source, Brookhaven National Laboratory

  7. High-resolution X-ray imaging - a powerful nondestructive technique for applications in semiconductor industry

    International Nuclear Information System (INIS)

    Zschech, Ehrenfried; Yun, Wenbing; Schneider, Gerd

    2008-01-01

    The availability of high-brilliance X-ray sources, high-precision X-ray focusing optics and very efficient CCD area detectors has contributed essentially to the development of transmission X-ray microscopy (TXM) and X-ray computed tomography (XCT) with sub-50 nm resolution. Particularly, the fabrication of high aspect ratio Fresnel zone plates with zone widths approaching 15 nm has contributed to the enormous improvement in spatial resolution during the previous years. Currently, Fresnel zone plates give the ability to reach spatial resolutions of 15 to 20 nm in the soft and of about 30 to 50 nm in the hard X-ray energy range. X-ray microscopes with rotating anode X-ray sources that can be installed in an analytical lab next to a semiconductor fab have been developed recently. These unique TXM/XCT systems provide an important new capability of nondestructive 3D imaging of internal circuit structures without destructive sample preparation such as cross sectioning. These lab systems can be used for failure localization in micro- and nanoelectronic structures and devices, e.g., to visualize voids and residuals in on-chip metal interconnects without physical modification of the chip. Synchrotron radiation experiments have been used to study new processes and materials that have to be introduced into the semiconductor industry. The potential of TXM using synchrotron radiation in the soft X-ray energy range is shown for the nondestructive in situ imaging of void evolution in embedded on-chip copper interconnect structures during electromigration and for the imaging of different types of insulating thin films between the on-chip interconnects (spectromicroscopy). (orig.)

  8. Development of the super high angular resolution principle for X-ray imaging

    International Nuclear Information System (INIS)

    Zhang Chen; Zhang Shuangnan

    2011-01-01

    Development of the Super High Angular Resolution Principle (SHARP) for coded-mask X-ray imaging is presented. We prove that SHARP can be considered as a generalized coded mask imaging method with a coding pattern comprised of diffraction-interference fringes in the mask pattern. The angular resolution of SHARP can be improved by detecting the fringes more precisely than the mask's element size, i.e. by using a detector with a pixel size smaller than the mask's element size. The proposed mission SHARP-X for solar X-ray observations is also briefly discussed. (research papers)

  9. Spatial resolution of imaging plate with flash X-rays and its utilization for radiography

    Energy Technology Data Exchange (ETDEWEB)

    Shaikh, A. M., E-mail: shaikham@barc.gov.in [Physics Group, Bhabha Atomic Research Centre, Mumbai-400085 (India); Romesh, C.; Kolage, T. S.; Sharma, Archana [Accelerator and Pulsed Power Division, Bhabha Atomic Research Centre, Mumbai-400085 (India)

    2015-06-24

    A flash X-ray source developed using pulsed electron accelerator with electron energy range of 400keV to 1030keV and a field emission cathode is characterized using X-ray imaging plates. Spatial resolution of the imaging system is measured using edge spread function fitted to data obtained from radiograph of Pb step wedge. A spatial resolution of 150±6 µm is obtained. The X-ray beam size is controlled by the anode-cathode configuration. Optimum source size of ∼13±2 mm diameter covering an area with intensity of ∼27000 PSL/mm{sup 2} is obtained on the imaging plate kept at a distance of ∼200 mm from the tip of the anode. It is used for recording radiographs of objects like satellite cable cutter, aero-engine turbine blade and variety of pyro-devices used in aerospace industry.

  10. Phase contrast enhanced high resolution X-ray imaging and tomography of soft tissue

    International Nuclear Information System (INIS)

    Jakubek, Jan; Granja, Carlos; Dammer, Jiri; Hanus, Robert; Holy, Tomas; Pospisil, Stanislav; Tykva, Richard; Uher, Josef; Vykydal, Zdenek

    2007-01-01

    A tabletop system for digital high resolution and high sensitivity X-ray micro-radiography has been developed for small-animal and soft-tissue imaging. The system is based on a micro-focus X-ray tube and the semiconductor hybrid position sensitive Medipix2 pixel detector. Transmission radiography imaging, conventionally based only on absorption, is enhanced by exploiting phase-shift effects induced in the X-ray beam traversing the sample. Phase contrast imaging is realized by object edge enhancement. DAQ is done by a novel fully integrated USB-based readout with online image generation. Improved signal reconstruction techniques make use of advanced statistical data analysis, enhanced beam hardening correction and direct thickness calibration of individual pixels. 2D and 3D micro-tomography images of several biological samples demonstrate the applicability of the system for biological and medical purposes including in-vivo and time dependent physiological studies in the life sciences

  11. Computerized tomography using high resolution X-ray imaging system with a microfocus source

    International Nuclear Information System (INIS)

    Zaprazny, Z.; Korytar, D.; Konopka, P.; Ac, V.; Bielecki, J.

    2011-01-01

    In recent years there is an effort to image an internal structure of an object by using not only conventional 2D X-ray radiography but also using high resolution 3D tomography which is based on reconstruction of multiple 2D projections at various angular positions of the object. We have previously reported [1] the development and basic parameters of a high resolution x-ray imaging system with a microfocus source. We report the recent progress using this high resolution X-ray laboratory system in this work. These first findings show that our system is particularly suitable for light weight and nonmetallic objects such as biological objects, plastics, wood, paper, etc. where phase contrast helps to increase the visibility of the finest structures of the object. Phase-contrast X-ray Computerized Tomography is of our special interest because it is an emerging imaging technique that can be implemented at third generation synchrotron radiation sources and also in laboratory conditions using a microfocus X-ray tube or beam conditioning optics. (authors)

  12. On the limitations and optimisation of high-resolution 3D medical X-ray imaging systems

    International Nuclear Information System (INIS)

    Zhou Shuang; Brahme, Anders

    2011-01-01

    Based on a quantitative analysis of both attenuation and refractive properties of X-ray propagation in human body tissues and the introduction of a mathematical model for image quality analysis, some limitations and optimisation of high-resolution three-dimensional (3D) medical X-ray imaging techniques are studied. A comparison is made of conventional attenuation-based X-ray imaging methods with the phase-contrast X-ray imaging modalities that have been developed recently. The results indicate that it is theoretically possible through optimal design of the X-ray imaging system to achieve high spatial resolution (<100 μm) in 3D medical X-ray imaging of the human body at a clinically acceptable dose level (<10 mGy) by introducing a phase-contrast X-ray imaging technique.

  13. A Chandra High-Resolution X-ray Image of Centaurus A.

    Science.gov (United States)

    Kraft; Forman; Jones; Kenter; Murray; Aldcroft; Elvis; Evans; Fabbiano; Isobe; Jerius; Karovska; Kim; Prestwich; Primini; Schwartz; Schreier; Vikhlinin

    2000-03-01

    We present first results from a Chandra X-Ray Observatory observation of the radio galaxy Centaurus A with the High-Resolution Camera. All previously reported major sources of X-ray emission including the bright nucleus, the jet, individual point sources, and diffuse emission are resolved or detected. The spatial resolution of this observation is better than 1&arcsec; in the center of the field of view and allows us to resolve X-ray features of this galaxy not previously seen. In particular, we resolve individual knots of emission in the inner jet and diffuse emission between the knots. All of the knots are diffuse at the 1&arcsec; level, and several exhibit complex spatial structure. We find the nucleus to be extended by a few tenths of an arcsecond. Our image also suggests the presence of an X-ray counterjet. Weak X-ray emission from the southwest radio lobe is also seen, and we detect 63 pointlike galactic sources (probably X-ray binaries and supernova remnants) above a luminosity limit of approximately 1.7x1037 ergs s-1.

  14. A new X-ray pinhole camera for energy dispersive X-ray fluorescence imaging with high-energy and high-spatial resolution

    Energy Technology Data Exchange (ETDEWEB)

    Romano, F.P., E-mail: romanop@lns.infn.it [IBAM, CNR, Via Biblioteca 4, 95124 Catania (Italy); INFN-LNS, Via S. Sofia 62, 95123 Catania (Italy); Altana, C. [INFN-LNS, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Fisica e Astronomia, Università di Catania, Via S. Sofia 64, 95123 Catania (Italy); Cosentino, L.; Celona, L.; Gammino, S.; Mascali, D. [INFN-LNS, Via S. Sofia 62, 95123 Catania (Italy); Pappalardo, L. [IBAM, CNR, Via Biblioteca 4, 95124 Catania (Italy); INFN-LNS, Via S. Sofia 62, 95123 Catania (Italy); Rizzo, F. [INFN-LNS, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Fisica e Astronomia, Università di Catania, Via S. Sofia 64, 95123 Catania (Italy)

    2013-08-01

    A new X-ray pinhole camera for the Energy Dispersive X-ray Fluorescence (ED-XRF) imaging of materials with high-energy and high-spatial resolution, was designed and developed. It consists of a back-illuminated and deep depleted CCD detector (composed of 1024 × 1024 pixels with a lateral size of 13 μm) coupled to a 70 μm laser-drilled pinhole-collimator, positioned between the sample under analysis and the CCD. The X-ray pinhole camera works in a coaxial geometry allowing a wide range of magnification values. The characteristic X-ray fluorescence is induced on the samples by irradiation with an external X-ray tube working at a maximum power of 100 W (50 kV and 2 mA operating conditions). The spectroscopic capabilities of the X-ray pinhole camera were accurately investigated. Energy response and energy calibration of the CCD detector were determined by irradiating pure target-materials emitting characteristic X-rays in the energy working-domain of the system (between 3 keV and 30 keV). Measurements were performed by using a multi-frame acquisition in single-photon counting. The characteristic X-ray spectra were obtained by an automated processing of the acquired images. The energy resolution measured at the Fe–Kα line is 157 eV. The use of the X-ray pinhole camera for the 2D resolved elemental analysis was investigated by using reference-patterns of different materials and geometries. The possibility of the elemental mapping of samples up to an area of 3 × 3 cm{sup 2} was demonstrated. Finally, the spatial resolution of the pinhole camera was measured by analyzing the profile function of a sharp-edge. The spatial resolution determined at the magnification values of 3.2 × and 0.8 × (used as testing values) is about 90 μm and 190 μm respectively. - Highlights: • We developed an X-ray pinhole camera for the 2D X-ray fluorescence imaging. • X-ray spectra are obtained by a multi-frame acquisition in single photon mode. • The energy resolution in the X-ray

  15. Fine-pitch glass GEM for high-resolution X-ray imaging

    International Nuclear Information System (INIS)

    Fujiwara, T.; Toyokawa, H.; Mitsuya, Y.

    2016-01-01

    We have developed a fine-pitch glass gas electron multiplier (G-GEM) for high-resolution X-ray imaging. The fine-pitch G-GEM is made of a 400 μm thick photo-etchable glass substrate with 150 μm pitch holes. It is fabricated using the same wet etching technique as that for the standard G-GEM. In this work, we present the experimental results obtained with a single fine-pitch G-GEM with a 50 × 50 mm 2 effective area. We recorded an energy resolution of 16.2% and gas gain up to 5,500 when the detector was irradiated with 5.9 keV X-rays. We present a 50 × 50 mm 2 X-ray radiograph image acquired with a scintillation gas and optical readout system.

  16. Simulation of high-resolution X-ray microscopic images for improved alignment

    International Nuclear Information System (INIS)

    Song Xiangxia; Zhang Xiaobo; Liu Gang; Cheng Xianchao; Li Wenjie; Guan Yong; Liu Ying; Xiong Ying; Tian Yangchao

    2011-01-01

    The introduction of precision optical elements to X-ray microscopes necessitates fine realignment to achieve optimal high-resolution imaging. In this paper, we demonstrate a numerical method for simulating image formation that facilitates alignment of the source, condenser, objective lens, and CCD camera. This algorithm, based on ray-tracing and Rayleigh-Sommerfeld diffraction theory, is applied to simulate the X-ray microscope beamline U7A of National Synchrotron Radiation Laboratory (NSRL). The simulations and imaging experiments show that the algorithm is useful for guiding experimental adjustments. Our alignment simulation method is an essential tool for the transmission X-ray microscope (TXM) with optical elements and may also be useful for the alignment of optical components in other modes of microscopy.

  17. High resolution x-ray lensless imaging by differential holographic encoding

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, D.; Guizar-Sicairos, M.; Wu, B.; Scherz, A.; Acremann, Y.; Tylisczcak, T.; Fischer, P.; Friedenberger, N.; Ollefs, K.; Farle, M.; Fienup, J. R.; Stohr, J.

    2009-11-02

    X-ray free electron lasers (X-FEL{sub s}) will soon offer femtosecond pulses of laterally coherent x-rays with sufficient intensity to record single-shot coherent scattering patterns for nanoscale imaging. Pulse trains created by splitand-delay techniques even open the door for cinematography on unprecedented nanometer length and femtosecond time scales. A key to real space ultrafast motion pictures is fast and reliable inversion of the recorded reciprocal space scattering patterns. Here we for the first time demonstrate in the x-ray regime the power of a novel technique for lensless high resolution imaging, previously suggested by Guizar-Sicairos and Fienup termed holography with extended reference by autocorrelation linear differential operation, HERALD0. We have achieved superior resolution over conventional x-ray Fourier transform holography (FTH) without sacrifices in SNR or significant increase in algorithmic complexity. By combining images obtained from individual sharp features on an extended reference, we further show that the resolution can be even extended beyond the reference fabrication limits. Direct comparison to iterative phase retrieval image reconstruction and images recorded with stateof- the-art zone plate microscopes is presented. Our results demonstrate the power of HERALDO as a favorable candidate for robust inversion of single-shot coherent scattering patterns.

  18. High-Resolution X-Ray Lensless Imaging by Differential Holographic Encoding

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Diling [Stanford Univ., CA (United States). Dept. of Applied Physics; SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Inst. for Material and Energy Science; Guizar-Sicairos, Manuel [Univ. of Rochester, NY (United States). Inst. of Optics; Wu, Benny [Stanford Univ., CA (United States). Dept. of Applied Physics; SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Inst. for Material and Energy Science; Scherz, Andreas [SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Inst. for Material and Energy Science; Acremann, Yves [SLAC National Accelerator Lab., Menlo Park, CA (United States). Photon Ultrafast Laser Science and Engineering Inst. (PULSE); Tyliszczak, Tolek [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS); Fischer, Peter [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Center for X-ray Optics; Friedenberger, Nina [Universitat Duisburg-Essen (Germany). Dept. of Physics and Center for Nanointegration Duisburg-Essen (CeNIDE); Ollefs, Katharina [Universitat Duisburg-Essen (Germany). Dept. of Physics and Center for Nanointegration Duisburg-Essen (CeNIDE); Farle, Michael [Universitat Duisburg-Essen (Germany). Dept. of Physics and Center for Nanointegration Duisburg-Essen (CeNIDE); Fienup, James R. [Univ. of Rochester, NY (United States). Inst. of Optics; Stöhr, Joachim [SLAC National Accelerator Lab., Menlo Park, CA (United States). Linac Coherent Light Source (LCLS)

    2010-07-01

    X-ray free electron lasers (X-FELs) will soon offer femtosecond pulses of laterally coherent x-rays with sufficient intensity to record single-shot coherent scattering patterns for nanoscale imaging. Pulse trains created by split and- delay techniques even open the door for cinematography on unprecedented nanometer length and femtosecond time scales. A key to real space ultrafast motion pictures is fast and reliable inversion of the recorded reciprocal space scattering patterns. Here we for the first time demonstrate in the x-ray regime the power of a novel technique for lensless high resolution imaging, previously suggested by Guizar-Sicairos and Fienup termed holography with extended reference by autocorrelation linear differential operation, HERALD0. We have achieved superior resolution over conventional x-ray Fourier transform holography (FTH) without sacrifices in SNR or significant increase in algorithmic complexity. By combining images obtained from individual sharp features on an extended reference, we further show that the resolution can be even extended beyond the reference fabrication limits. Direct comparison to iterative phase retrieval image reconstruction and images recorded with state of-the-art zone plate microscopes is presented. Our results demonstrate the power of HERALDO as a favorable candidate for robust inversion of single-shot coherent scattering patterns.

  19. High resolution monochromatic X-ray imaging system based on spherically bent crystals

    International Nuclear Information System (INIS)

    Aglitskiy, Y.; Lehecka, T.; Obenschain, S.; Bodner, S.; Pawley, C.; Gerber, K.; Sethian, J.; Brown, C.M.; Seely, J.; Feldman, U.; Holland, G.

    1997-01-01

    We have developed a new X-ray imaging system based on spherically curved crystals. It is designed and used for diagnostics of targets ablatively accelerated by the Nike KrF laser [1,2]. The imaging system is used for plasma diagnostics of the main target and for characterization of potential backlighters. A spherically curved quartz crystal (2d=6.687 Angstrom, R=200mm) is used to produce monochromatic backlit images with the He-like Si resonance line (1865 eV) as the source of radiation. The spatial resolution of the X-ray optical system is 3 endash 4 μm. Time resolved backlit monochromatic images of CH planar targets driven by the Nike facility have been obtained with 6 endash 7 μm spatial resolution. copyright 1997 American Institute of Physics

  20. High resolution monochromatic X-ray imaging system based on spherically bent crystals

    International Nuclear Information System (INIS)

    Aglitskiy, Y.; Lehecka, T.; Obenschain, S.; Bodner, S.; Pawley, C.; Gerber, K.; Sethian, J.; Brown, C. M.; Seely, J.; Feldman, U.; Holland, G.

    1997-01-01

    We have developed a new X-ray imaging system based on spherically curved crystals. It is designed and used for diagnostics of targets ablatively accelerated by the Nike KrF laser. The imaging system is used for plasma diagnostics of the main target and for characterization of potential backlighters. A spherically curved quartz crystal (2d=6.687 A, R=200 mm) is used to produce monochromatic backlit images with the He-like Si resonance line (1865 eV) as the source of radiation. The spatial resolution of the X-ray optical system is 3-4 μm. Time resolved backlit monochromatic images of CH planar targets driven by the Nike facility have been obtained with 6-7 μm spatial resolution

  1. High-resolution monochromatic x-ray imaging system based on spherically bent crystals

    International Nuclear Information System (INIS)

    Aglitskiy, Y.; Lehecka, T.; Obenschain, S.; Bodner, S.; Pawley, C.; Gerber, K.; Sethian, J.; Brown, C.M.; Seely, J.; Feldman, U.; Holland, G.

    1998-01-01

    We have developed an improved x-ray imaging system based on spherically curve crystals. It is designed and used for diagnostics of targets ablatively accelerated by the Nike KrF laser. A spherically curved quartz crystal (2d=6.687 Angstrom, R=200 mm) has been used to produce monochromatic backlit images with the He-like Si resonance line (1865 eV) as the source of radiation. The spatial resolution of the x-ray optical system is 1.7 μm in selected places and 2 - 3 μm over a larger area. Time-resolved backlit monochromatic images of polystyrene planar targets driven by the Nike facility have been obtained with a spatial resolution of 2.5 μm in selected places and 5 μm over the focal spot of the Nike laser. copyright 1998 Optical Society of America

  2. Design and image-quality performance of high resolution CMOS-based X-ray imaging detectors for digital mammography

    Science.gov (United States)

    Cha, B. K.; Kim, J. Y.; Kim, Y. J.; Yun, S.; Cho, G.; Kim, H. K.; Seo, C.-W.; Jeon, S.; Huh, Y.

    2012-04-01

    In digital X-ray imaging systems, X-ray imaging detectors based on scintillating screens with electronic devices such as charge-coupled devices (CCDs), thin-film transistors (TFT), complementary metal oxide semiconductor (CMOS) flat panel imagers have been introduced for general radiography, dental, mammography and non-destructive testing (NDT) applications. Recently, a large-area CMOS active-pixel sensor (APS) in combination with scintillation films has been widely used in a variety of digital X-ray imaging applications. We employed a scintillator-based CMOS APS image sensor for high-resolution mammography. In this work, both powder-type Gd2O2S:Tb and a columnar structured CsI:Tl scintillation screens with various thicknesses were fabricated and used as materials to convert X-ray into visible light. These scintillating screens were directly coupled to a CMOS flat panel imager with a 25 × 50 mm2 active area and a 48 μm pixel pitch for high spatial resolution acquisition. We used a W/Al mammographic X-ray source with a 30 kVp energy condition. The imaging characterization of the X-ray detector was measured and analyzed in terms of linearity in incident X-ray dose, modulation transfer function (MTF), noise-power spectrum (NPS) and detective quantum efficiency (DQE).

  3. High-resolution 3D X-ray imaging of intracranial nitinol stents

    International Nuclear Information System (INIS)

    Snoeren, Rudolph M.; With, Peter H.N. de; Soederman, Michael; Kroon, Johannes N.; Roijers, Ruben B.; Babic, Drazenko

    2012-01-01

    To assess an optimized 3D imaging protocol for intracranial nitinol stents in 3D C-arm flat detector imaging. For this purpose, an image quality simulation and an in vitro study was carried out. Nitinol stents of various brands were placed inside an anthropomorphic head phantom, using iodine contrast. Experiments with objects were preceded by image quality and dose simulations. We varied X-ray imaging parameters in a commercially interventional X-ray system to set 3D image quality in the contrast-noise-sharpness space. Beam quality was varied to evaluate contrast of the stents while keeping absorbed dose below recommended values. Two detector formats were used, paired with an appropriate pixel size and X-ray focus size. Zoomed reconstructions were carried out and snapshot images acquired. High contrast spatial resolution was assessed with a CT phantom. We found an optimal protocol for imaging intracranial nitinol stents. Contrast resolution was optimized for nickel-titanium-containing stents. A high spatial resolution larger than 2.1 lp/mm allows struts to be visualized. We obtained images of stents of various brands and a representative set of images is shown. Independent of the make, struts can be imaged with virtually continuous strokes. Measured absorbed doses are shown to be lower than 50 mGy Computed Tomography Dose Index (CTDI). By balancing the modulation transfer of the imaging components and tuning the high-contrast imaging capabilities, we have shown that thin nitinol stent wires can be reconstructed with high contrast-to-noise ratio and good detail, while keeping radiation doses within recommended values. Experimental results compare well with imaging simulations. (orig.)

  4. Detection of pulmonary nodules on lung X-ray images. Studies on multi-resolutional filter and energy subtraction images

    International Nuclear Information System (INIS)

    Sawada, Akira; Sato, Yoshinobu; Kido, Shoji; Tamura, Shinichi

    1999-01-01

    The purpose of this work is to prove the effectiveness of an energy subtraction image for the detection of pulmonary nodules and the effectiveness of multi-resolutional filter on an energy subtraction image to detect pulmonary nodules. Also we study influential factors to the accuracy of detection of pulmonary nodules from viewpoints of types of images, types of digital filters and types of evaluation methods. As one type of images, we select an energy subtraction image, which removes bones such as ribs from the conventional X-ray image by utilizing the difference of X-ray absorption ratios at different energy between bones and soft tissue. Ribs and vessels are major causes of CAD errors in detection of pulmonary nodules and many researches have tried to solve this problem. So we select conventional X-ray images and energy subtraction X-ray images as types of images, and at the same time select ∇ 2 G (Laplacian of Guassian) filter, Min-DD (Minimum Directional Difference) filter and our multi-resolutional filter as types of digital filters. Also we select two evaluation methods and prove the effectiveness of an energy subtraction image, the effectiveness of Min-DD filter on a conventional X-ray image and the effectiveness of multi-resolutional filter on an energy subtraction image. (author)

  5. New X-ray beam position monitors with submicron resolution utilizing imaging of scattered X-rays at CHESS

    International Nuclear Information System (INIS)

    Revesz, Peter; Temnykh, Alexander B.; Pauling, Alan K.

    2011-01-01

    At CHESS' A, F and G wiggler beam lines three new video beam position monitors (VBPMs) have been commissioned. These new VBPMs utilize X-rays scattered from the graphite filter (A and F line) or from a beryllium window (G-line) as the white wiggler beam passes through them. As the X-rays scatter in all directions from the scattering medium, a slit camera creates an image of the beam's footprint on a fluorescent screen. This image is then viewed by a CCD camera and analyzed using a computer program to calculate the intensity centroid, the beam profile and integrated intensity. These data are delivered to the CHESS signal archiving system for storage and display. The new systems employ digital cameras. These cameras are free of the noise inherent to the analog systems with long video signal connections. As a result, the beam position data delivered by the new systems are more reliable and accurate as shown by beam position traces using different beam position monitors on the same beam line.

  6. New X-ray beam position monitors with submicron resolution utilizing imaging of scattered X-rays at CHESS

    Energy Technology Data Exchange (ETDEWEB)

    Revesz, Peter, E-mail: pr20@cornell.edu [Cornell University, Cornell High Energy Synchrotron Source, Ithaca 14850, NY (United States); Temnykh, Alexander B. [Cornell University, Laboratory for Elem-Particle Physics, Ithaca 14850, NY (United States); Pauling, Alan K. [Cornell University, Cornell High Energy Synchrotron Source, Ithaca 14850, NY (United States)

    2011-09-01

    At CHESS' A, F and G wiggler beam lines three new video beam position monitors (VBPMs) have been commissioned. These new VBPMs utilize X-rays scattered from the graphite filter (A and F line) or from a beryllium window (G-line) as the white wiggler beam passes through them. As the X-rays scatter in all directions from the scattering medium, a slit camera creates an image of the beam's footprint on a fluorescent screen. This image is then viewed by a CCD camera and analyzed using a computer program to calculate the intensity centroid, the beam profile and integrated intensity. These data are delivered to the CHESS signal archiving system for storage and display. The new systems employ digital cameras. These cameras are free of the noise inherent to the analog systems with long video signal connections. As a result, the beam position data delivered by the new systems are more reliable and accurate as shown by beam position traces using different beam position monitors on the same beam line.

  7. X-ray fluorescence in Member States (Italy): Full field X-ray fluorescence imaging with high-energy and high-spatial resolution

    Energy Technology Data Exchange (ETDEWEB)

    Romano, F. P.; Masini, N.; Pappalardo, L., E-mail: romanop@lns.infn.it [IBAM, CNR, Via Biblioteca 4, 95124 Catania (Italy); Cosentino, L.; Gammino, S.; Mascali, D.; Rizzo, F. [INFN-LNS, Via S. Sofia 62, 95123 Catania (Italy)

    2014-02-15

    A full field X-ray camera for the X-Ray Fluorescence imaging of materials with high-energy and high-spatial resolution was designed and developed. The system was realized by coupling a pinhole collimator with a positionsensitive CCD detector. X-Ray fluorescence is induced on the samples by irradiation with an external X-ray tube. The characteristic X-ray spectra of the investigated materials are obtained by using a multi-frames acquisition in single-photon counting. The energy resolution measured at the Fe-Kα line was 157 eV. The spatial resolution of the system was determined by the analysis of a sharp-edge at different magnification values; it was estimated to be 90 μm at a magnification value of 3.2x and 190 μm at 0.8x. The present set-up of the system is suited to analyze samples with dimensions up to 5x4 cm{sup 2}. Typical measurement time is in the range between 1h to 4 h. (author)

  8. High-resolution imaging of coronary calcifications by intense low-energy fluoroscopic X-ray obtained from synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Ohtsuka, S.; Sugishita, Y.; Takeda, T.; Itai, Y.; Tada, J.; Hyodo, K.; Ando, M. [Inst. of Clinical Medicine, Univ. of Tsukuba, Ibaraki (Japan). Dept. of Cardiology

    2000-07-01

    In order to obtain an intense monochromatic low-energy X-ray from synchrotron radiation (SR) and apply it to detect coronary calcifications, the SR beam was reflected with a silicon crystal to be expanded (150 mm in height and 80 mm in width) and to be monochromatized at an energy level of 37 keV. The X-ray was intermittently irradiated to obtain dynamic imaging of 30 images/s. Images were recorded by a digital fluorography system. The low-energy X-ray from SR sharply visualized calcification of coronary arteries, while conventional X-ray could not visualize coronary calcification. The intense monochromatic low-energy X-ray from SR is sensitive, has high-resolution for imaging coronary calcification and may serve as a screening method for coronary artery disease.

  9. X-ray phase-contrast tomography for high-spatial-resolution zebrafish muscle imaging

    Science.gov (United States)

    Vågberg, William; Larsson, Daniel H.; Li, Mei; Arner, Anders; Hertz, Hans M.

    2015-11-01

    Imaging of muscular structure with cellular or subcellular detail in whole-body animal models is of key importance for understanding muscular disease and assessing interventions. Classical histological methods for high-resolution imaging methods require excision, fixation and staining. Here we show that the three-dimensional muscular structure of unstained whole zebrafish can be imaged with sub-5 μm detail with X-ray phase-contrast tomography. Our method relies on a laboratory propagation-based phase-contrast system tailored for detection of low-contrast 4-6 μm subcellular myofibrils. The method is demonstrated on 20 days post fertilization zebrafish larvae and comparative histology confirms that we resolve individual myofibrils in the whole-body animal. X-ray imaging of healthy zebrafish show the expected structured muscle pattern while specimen with a dystrophin deficiency (sapje) displays an unstructured pattern, typical of Duchenne muscular dystrophy. The method opens up for whole-body imaging with sub-cellular detail also of other types of soft tissue and in different animal models.

  10. Taheri-Saramad x-ray detector (TSXD): a novel high spatial resolution x-ray imager based on ZnO nano scintillator wires in polycarbonate membrane.

    Science.gov (United States)

    Taheri, A; Saramad, S; Ghalenoei, S; Setayeshi, S

    2014-01-01

    A novel x-ray imager based on ZnO nanowires is designed and fabricated. The proposed architecture is based on scintillation properties of ZnO nanostructures in a polycarbonate track-etched membrane. Because of higher refractive index of ZnO nanowire compared to the membrane, the nanowire acts as an optical fiber that prevents the generated optical photons to spread inside the detector. This effect improves the spatial resolution of the imager. The detection quantum efficiency and spatial resolution of the fabricated imager are 11% and <6.8 μm, respectively.

  11. Taheri-Saramad x-ray detector (TSXD): A novel high spatial resolution x-ray imager based on ZnO nano scintillator wires in polycarbonate membrane

    Energy Technology Data Exchange (ETDEWEB)

    Taheri, A., E-mail: at1361@aut.ac.ir; Saramad, S.; Ghalenoei, S.; Setayeshi, S. [Department of Energy Engineering and Physics, Amirkabir University of Technology, Tehran 15875-4413 (Iran, Islamic Republic of)

    2014-01-15

    A novel x-ray imager based on ZnO nanowires is designed and fabricated. The proposed architecture is based on scintillation properties of ZnO nanostructures in a polycarbonate track-etched membrane. Because of higher refractive index of ZnO nanowire compared to the membrane, the nanowire acts as an optical fiber that prevents the generated optical photons to spread inside the detector. This effect improves the spatial resolution of the imager. The detection quantum efficiency and spatial resolution of the fabricated imager are 11% and <6.8 μm, respectively.

  12. High-resolution x-ray imaging using a structured scintillator

    Energy Technology Data Exchange (ETDEWEB)

    Hormozan, Yashar, E-mail: hormozan@kth.se; Sychugov, Ilya; Linnros, Jan [Materials and Nano Physics, School of Information and Communication Technology, KTH Royal Institute of Technology, Electrum 229, Kista, Stockholm SE-16440 (Sweden)

    2016-02-15

    Purpose: In this study, the authors introduce a new generation of finely structured scintillators with a very high spatial resolution (a few micrometers) compared to conventional scintillators, yet maintaining a thick absorbing layer for improved detectivity. Methods: Their concept is based on a 2D array of high aspect ratio pores which are fabricated by ICP etching, with spacings (pitches) of a few micrometers, on silicon and oxidation of the pore walls. The pores were subsequently filled by melting of powdered CsI(Tl), as the scintillating agent. In order to couple the secondary emitted photons of the back of the scintillator array to a CCD device, having a larger pixel size than the pore pitch, an open optical microscope with adjustable magnification was designed and implemented. By imaging a sharp edge, the authors were able to calculate the modulation transfer function (MTF) of this finely structured scintillator. Results: The x-ray images of individually resolved pores suggest that they have been almost uniformly filled, and the MTF measurements show the feasibility of a few microns spatial resolution imaging, as set by the scintillator pore size. Compared to existing techniques utilizing CsI needles as a structured scintillator, their results imply an almost sevenfold improvement in resolution. Finally, high resolution images, taken by their detector, are presented. Conclusions: The presented work successfully shows the functionality of their detector concept for high resolution imaging and further fabrication developments are most likely to result in higher quantum efficiencies.

  13. Simulation study of spatial resolution in phase-contrast X-ray imaging with Takagi-Taupin equation

    International Nuclear Information System (INIS)

    Koyama, Ichiro; Momose, Atsushi

    2003-01-01

    To evaluate attainable spatial resolution of phase-contrast X-ray imaging using an LLL X-ray interferometer with a thin crystal wafer, a computer simulation study with Takagi-Taupin equation was performed. Modulation transfer function of the wafer for X-ray phase was evaluated. For a polyester film whose thickness is 0.1 mm, it was concluded that the spatial resolution can be improved up to 3 μm by thinning the wafer, under our experimental condition

  14. High resolution X-ray fluorescence imaging for a microbeam radiation therapy treatment planning system

    Science.gov (United States)

    Chtcheprov, Pavel; Inscoe, Christina; Burk, Laurel; Ger, Rachel; Yuan, Hong; Lu, Jianping; Chang, Sha; Zhou, Otto

    2014-03-01

    Microbeam radiation therapy (MRT) uses an array of high-dose, narrow (~100 μm) beams separated by a fraction of a millimeter to treat various radio-resistant, deep-seated tumors. MRT has been shown to spare normal tissue up to 1000 Gy of entrance dose while still being highly tumoricidal. Current methods of tumor localization for our MRT treatments require MRI and X-ray imaging with subject motion and image registration that contribute to the measurement error. The purpose of this study is to develop a novel form of imaging to quickly and accurately assist in high resolution target positioning for MRT treatments using X-ray fluorescence (XRF). The key to this method is using the microbeam to both treat and image. High Z contrast media is injected into the phantom or blood pool of the subject prior to imaging. Using a collimated spectrum analyzer, the region of interest is scanned through the MRT beam and the fluorescence signal is recorded for each slice. The signal can be processed to show vascular differences in the tissue and isolate tumor regions. Using the radiation therapy source as the imaging source, repositioning and registration errors are eliminated. A phantom study showed that a spatial resolution of a fraction of microbeam width can be achieved by precision translation of the mouse stage. Preliminary results from an animal study showed accurate iodine profusion, confirmed by CT. The proposed image guidance method, using XRF to locate and ablate tumors, can be used as a fast and accurate MRT treatment planning system.

  15. Empirical electro-optical and x-ray performance evaluation of CMOS active pixels sensor for low dose, high resolution x-ray medical imaging

    International Nuclear Information System (INIS)

    Arvanitis, C. D.; Bohndiek, S. E.; Royle, G.; Blue, A.; Liang, H. X.; Clark, A.; Prydderch, M.; Turchetta, R.; Speller, R.

    2007-01-01

    Monolithic complementary metal oxide semiconductor (CMOS) active pixel sensors with high performance have gained attention in the last few years in many scientific and space applications. In order to evaluate the increasing capabilities of this technology, in particular where low dose high resolution x-ray medical imaging is required, critical electro-optical and physical x-ray performance evaluation was determined. The electro-optical performance includes read noise, full well capacity, interacting quantum efficiency, and pixels cross talk. The x-ray performance, including x-ray sensitivity, modulation transfer function, noise power spectrum, and detection quantum efficiency, has been evaluated in the mammographic energy range. The sensor is a 525x525 standard three transistor CMOS active pixel sensor array with more than 75% fill factor and 25x25 μm pixel pitch. Reading at 10 f/s, it is found that the sensor has 114 electrons total additive noise, 10 5 electrons full well capacity with shot noise limited operation, and 34% interacting quantum efficiency at 530 nm. Two different structured CsI:Tl phosphors with thickness 95 and 115 μm, respectively, have been optically coupled via a fiber optic plate to the array resulting in two different system configurations. The sensitivity of the two different system configurations was 43 and 47 electrons per x-ray incident on the sensor. The MTF at 10% of the two different system configurations was 9.5 and 9 cycles/mm with detective quantum efficiency of 0.45 and 0.48, respectively, close to zero frequency at ∼0.44 μC/kg (1.72 mR) detector entrance exposure. The detector was quantum limited at low spatial frequencies and its performance was comparable with high resolution a:Si and charge coupled device based x-ray imagers. The detector also demonstrates almost an order of magnitude lower noise than active matrix flat panel imagers. The results suggest that CMOS active pixel sensors when coupled to structured CsI:Tl can

  16. A high resolution, high counting rate bidimensional, MWPC imaging detector for small angle X-ray diffraction studies

    International Nuclear Information System (INIS)

    Bateman, J.E.; Connolly, J.F.; Sawyer, E.C.; Stephenson, R.

    1981-07-01

    The performance is reported of a 200 mm x 200 mm X-ray imaging MWPC aimed at applications in small angle X-ray diffraction and scattering. With quantum energies of approximately 8 keV high spatial resolution (+- 0.5 mm x +- 0.14 mm) with a capability for data taking at >approximately 350 kHz is reported. The detection efficiency is approximately 75% and the detector operates as a sealed unit with a long lifetime. (author)

  17. Simbol-X: Imaging The Hard X-ray Sky with Unprecedented Spatial Resolution and Sensitivity

    Science.gov (United States)

    Tagliaferri, Gianpiero; Simbol-X Joint Scientific Mission Group

    2009-01-01

    Simbol-X is a hard X-ray mission, with imaging capability in the 0.5-80 keV range. It is based on a collaboration between the French and Italian space agencies with participation of German laboratories. The launch is foreseen in late 2014. It relies on a formation flight concept, with two satellites carrying one the mirror module and the other one the focal plane detectors. The mirrors will have a 20 m focal length, while the two focal plane detectors will be put one on top of the other one. This combination will provide over two orders of magnitude improvement in angular resolution and sensitivity in the hard X-ray range with respect to non-focusing techniques. The Simbol-X revolutionary instrumental capabilities will allow us to elucidate outstanding questions in high energy astrophysics such as those related to black-holes accretion physics and census, and to particle acceleration mechanisms. We will give an overall description of the mission characteristics, performances and scientific objectives.

  18. Improvement of density resolution in short-pulse hard x-ray radiographic imaging using detector stacks

    Energy Technology Data Exchange (ETDEWEB)

    Borm, B.; Gärtner, F.; Khaghani, D. [GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt (Germany); Johann Wolfgang Goethe-Universität, Frankfurt am Main (Germany); Neumayer, P. [GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt (Germany)

    2016-09-15

    We demonstrate that stacking several imaging plates (IPs) constitutes an easy method to increase hard x-ray detection efficiency. Used to record x-ray radiographic images produced by an intense-laser driven hard x-ray backlighter source, the IP stacks resulted in a significant improvement of the radiograph density resolution. We attribute this to the higher quantum efficiency of the combined detectors, leading to a reduced photon noise. Electron-photon transport simulations of the interaction processes in the detector reproduce the observed contrast improvement. Increasing the detection efficiency to enhance radiographic imaging capabilities is equally effective as increasing the x-ray source yield, e.g., by a larger drive laser energy.

  19. Diagnostic imaging of gout: comparison of high-resolution US versus conventional X-ray

    Energy Technology Data Exchange (ETDEWEB)

    Rettenbacher, Thomas; Ennemoser, Sybille; Weirich, Harald [Innsbruck Medical University, Department of Radiology, Innsbruck (Austria); Ulmer, Hanno [Innsbruck Medical University, Department of Medical Statistics, Informatics, and Health Economics, Innsbruck (Austria); Hartig, Frank; Klotz, Werner; Herold, Manfred [Innsbruck Medical University, Department of Internal Medicine, Innsbruck (Austria)

    2008-03-15

    The aim was to compare X-ray and ultrasound (US) in diagnosing gout. In a prospective study, 105 consecutive patients with clinical suspicion of gout underwent conventional X-ray und high-resolution US in order to help in arriving at a definite diagnosis. X-ray findings suggestive of gout included soft-tissue opacifications with densities between soft tissue and bone, articular and periarticular bone erosions, and osteophytes at the margins of opacifications or erosions. US findings suggestive of gout included bright stippled foci and hyperechoic soft-tissue areas. Fifty-five patients had a definite diagnosis of gout (102 involved sites), 31 patients were diagnosed as having another disease (59 involved sites), and 19 patients were excluded from the study because a definite diagnosis could not be established. X-ray suggested gout with a sensitivity of 31% (32/102) and a specificity of 93% (55/59), whereas US suggested gout with a sensitivity of 96% (98/102) and a specificity of 73% (43/59). US was much more sensitive than conventional X-ray but less specific. Our data show that US often provided additional diagnostic information in patients with clinical suspicion of gout when laboratory findings and X-ray results were negative or inconclusive and should therefore be used in these cases. (orig.)

  20. Diagnostic imaging of gout: comparison of high-resolution US versus conventional X-ray

    International Nuclear Information System (INIS)

    Rettenbacher, Thomas; Ennemoser, Sybille; Weirich, Harald; Ulmer, Hanno; Hartig, Frank; Klotz, Werner; Herold, Manfred

    2008-01-01

    The aim was to compare X-ray and ultrasound (US) in diagnosing gout. In a prospective study, 105 consecutive patients with clinical suspicion of gout underwent conventional X-ray und high-resolution US in order to help in arriving at a definite diagnosis. X-ray findings suggestive of gout included soft-tissue opacifications with densities between soft tissue and bone, articular and periarticular bone erosions, and osteophytes at the margins of opacifications or erosions. US findings suggestive of gout included bright stippled foci and hyperechoic soft-tissue areas. Fifty-five patients had a definite diagnosis of gout (102 involved sites), 31 patients were diagnosed as having another disease (59 involved sites), and 19 patients were excluded from the study because a definite diagnosis could not be established. X-ray suggested gout with a sensitivity of 31% (32/102) and a specificity of 93% (55/59), whereas US suggested gout with a sensitivity of 96% (98/102) and a specificity of 73% (43/59). US was much more sensitive than conventional X-ray but less specific. Our data show that US often provided additional diagnostic information in patients with clinical suspicion of gout when laboratory findings and X-ray results were negative or inconclusive and should therefore be used in these cases. (orig.)

  1. X-ray image intensifier tube

    International Nuclear Information System (INIS)

    1981-01-01

    An improved real-time x-ray image intensifier tube of the proximity type used for medical x-ray fluoroscopy is described. It is claimed that this intensifier is of sufficient gain and resolution whilst remaining convenient to use and that the design is such that the patient dosage is minimized whilst the x-ray image information content at the scintillator-photocathode screen is maximized. (U.K.)

  2. X-ray diffractometry with spatial resolution

    International Nuclear Information System (INIS)

    Zeiner, K.

    1981-04-01

    X-ray diffractometry is one of the extensively used methods for investigation of the crystalline structure of materials. Line shape and position of a diffracted line are influenced by grain size, deformation and stress. Spatial resolution of one of these specimen characteristics is usually achieved by point-focused X-ray beams and subsequently analyzing different specimen positions. This work uses the method of image reconstruction from projections for the generation of distribution maps. Additional experimental requirements when using a conventional X-ray goniometer are a specimen scanning unit and a computer. The scanning unit repeatedly performs a number of translation steps followed by a rotation step in a fixed X-ray tube/detector (position sensitive detector) arrangement. At each specimen position a diffraction line is recorded using a line-shaped X-ray beam. This network of diffraction lines (showing line resolution) is mathematically converted to a distribution map of diffraction lines and going thus a point resolution. Specimen areas of up to several cm 2 may be analyzed with a linear resolution of 0.1 to 1 mm. Image reconstruction from projections must be modified for generation of ''function-maps''. This theory is discussed and demonstrated by computer simulations. Diffraction line analysis is done for specimen deformation using a deconvolution procedure. The theoretical considerations are experimentally verified. (author)

  3. Traditional x-ray imaging

    International Nuclear Information System (INIS)

    Hay, G.A.

    1982-01-01

    Methods of imaging x-rays, with particular reference to medicine, are reviewed. The history and nature of x-rays, their production and spectra, contrast, shapes and fine structure, image transducers, including fluorescent screens, radiography, fluoroscopy, and image intensifiers, image detection, perception and enhancement and clinical applications are considered. (U.K.)

  4. Iodine imaging in thyroid by fluorescent X-ray CT with 0.05 mm spatial resolution

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, T. E-mail: ttakeda@md.tsukuba.ac.jp; Yu, Q.; Yashiro, T.; Zeniya, T.; Wu, J.; Hasegawa, Y.; Thet Thet Lwin; Hyodo, K.; Yuasa, T.; Dilmanian, F.A.; Akatsuka, T.; Itai, Y

    2001-07-21

    Fluorescent X-ray computed tomography (FXCT) at a 0.05 mm in-plane spatial resolution and 0.05 mm slice thickness depicted the cross sectional distribution of endogenous iodine within thyroid. The distribution obtained from the FXCT image correlated closely to that obtained from the pathological pictures.

  5. Imaging of hard X-rays with sub-millimetre spatial resolution by means of a xenon filled MWPC

    International Nuclear Information System (INIS)

    Bateman, J.E.; Connolly, J.F.

    1979-11-01

    Results are presented showing that a beam of Eu K X-rays (41.5 keV) can be imaged in a xenon filled (NTP) MWPC with sub-millimetre spatial resolution. In the best case (at low data rates) the predicted physical limit of 0.5 mm fwhm is observed. (author)

  6. High-resolution dichroic imaging of magnetic flux distributions in superconductors with scanning x-ray microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ruoss, Stephen; Stahl, Claudia; Weigand, Markus; Schuetz, Gisela [Max-Planck-Institut fuer Intelligente Systeme, Stuttgart (Germany); Albrecht, Joachim [Research Institute for Innovative Surfaces, FINO, Aalen University (Germany)

    2015-07-01

    The penetration of magnetic flux into the high-temperature superconductor YBCO has been observed using a new high-resolution technique based on X-ray magnetic circular dichroism (XMCD). Superconductors coated with thin soft magnetic layers of CoFeB are observed in a scanning x-ray microscope providing cooling of the sample down to 83 K under the influence of external magnetic fields. Resulting electrical currents create an inhomogeneous magnetic field distribution above the superconductor which leads to a local reorientation of the ferromagnetic layer. X-ray absorption measurements with circular polarized radiation allows the analysis of the magnetic flux distribution in the superconductor via the ferromagnetic layer. In this work we present first images taken at 83K with high spatial resolution in the nanoscale.

  7. TU-G-207-03: High Spatial Resolution and High Sensitivity X-Ray Fluorescence Imaging

    International Nuclear Information System (INIS)

    Xing, L.

    2015-01-01

    Last few years has witnessed the development of novel of X-ray imaging modalities, such as spectral CT, phase contrast CT, and X-ray acoustic/fluorescence/luminescence imaging. This symposium will present the recent advances of these emerging X-ray imaging modalities and update the attendees with knowledge in various related topics, including X-ray photon-counting detectors, X-ray physics underlying the emerging applications beyond the traditional X-ray imaging, image reconstruction for the novel modalities, characterization and evaluation of the systems, and their practical implications. In addition, the concept and practical aspects of X-ray activatable targeted nanoparticles for molecular X-ray imaging will be discussed in the context of X-ray fluorescence and luminescence CT. Learning Objectives: Present background knowledge of various emerging X-ray imaging techniques, such as spectral CT, phase contrast CT and X-ray fluorescence/luminescence CT. Discuss the practical need, technical aspects and current status of the emerging X-ray imaging modalities. Describe utility and future impact of the new generation of X-ray imaging applications

  8. X-ray imaging system

    International Nuclear Information System (INIS)

    Houston, J.M.

    1980-01-01

    A novel, high-speed apparatus for use in X-ray computerised tomography is described in detail. It consists of a semi-circular array of X-ray sources, collimators and an ion chamber array for detection of the X-rays. The X-ray sources may be pulsed in salvos such that the corresponding detectors in the array are only illuminated by one source. The use of computer controlled salvos speeds up the image processing by at least a factor of two. The ion chamber array is designed to have a constant detection efficiency for varying angles of X-ray incidence. A detailed description of the detector construction and suggested gaseous fillings are given. It is claimed that the present tomographic system allows fast and accurate imaging of internal body organs and is insensitive to the blurring effects which motion of these organs tends to produce. (UK)

  9. New techniques for resolution enhancement of 3D x-ray tomographic imaging from incomplete data

    International Nuclear Information System (INIS)

    Vengrinovich, V.; Zolotarev, S.; Denkevich, Y.; Tillack, G.-R.

    2004-01-01

    Accurate evaluation of dimensions directly from tomographic images, restored from only few x-ray projections, made in a limited observation sector, is considered exploiting pipes wall thickness assessment like a typical example. Both experiments and simulations are used to extract main errors sources. It is taken from as known, that neglecting of the scattered radiation and beam hardening effects results in image blurring, strong artifacts and finally inaccurate sizing. The computerized technique is developed to simulate the contribution of scattered radiation and beam hardening for the purpose of their further extraction from projected data. After those accompanying effects extraction the iterative Bayesian techniques are applied to reconstruct images from the projections, using volumetric and/or shell representation of the objects like pipes. The achieved error of virtual pipe wall thickness assessment from 3D images can be as small as 300μk comparing to 1mm provided by modern techniques. Finally the conclusion was drawn that standard projection techniques using X- or Gamma rays in combination with X-ray film or imaging plates can be applied for the data acquisition to reconstruct finally wall thickness profiles in an in-field environment. (author)

  10. New Optimizations of Microcalorimeter Arrays for High-Resolution Imaging X-ray Spectroscopy

    Science.gov (United States)

    Kilbourne, Caroline

    We propose to continue our successful research program in developing arrays of superconducting transition-edge sensors (TES) for x-ray astrophysics. Our standard 0.3 mm TES pixel achieves better than 2.5-eV resolution, and we now make 32x32 arrays of such pixels. We have also achieved better than 1-eV resolution in smaller pixels, and promising performance in a range of position-sensitive designs. We propose to continue to advance the designs of both the single-pixel and position-sensitive microcalorimeters so that we can produce arrays suitable for several x-ray spectroscopy observatories presently in formulation. We will also investigate various array and pixel optimizations such as would be needed for large arrays for surveys, large- pixel arrays for diffuse soft x-ray measurements, or sub-arrays of fast pixels optimized for neutron-star burst spectroscopy. In addition, we will develop fabrication processes for integrating sub-arrays with very different pixel designs into a monolithic focal-plane array to simplify the design of the focal-plane assembly and make feasible new detector configurations such as the one currently baselined for AXSIO. Through a series of measurements on test devices, we have improved our understanding of the weak-link physics governing the observed resistive transitions in TES detectors. We propose to build on that work and ultimately use the results to improve the immunity of the detector to environmental magnetic fields, as well as its fundamental performance, in each of the targeted optimizations we are developing.

  11. X-ray imaging: Status and trends

    International Nuclear Information System (INIS)

    Ryon, R.W.; Martz, H.E.; Hernandez, J.M.; Haskins, J.J.; Day, R.A.; Brase, J.M.; Cross, B.; Wherry, D.

    1987-08-01

    There is a veritable renaissance occurring in x-ray imaging. X-ray imaging by radiography has been a highly developed technology in medicine and industry for many years. However, high resolution imaging has not generally been practical because sources have been relatively dim and diffuse, optical elements have been nonexistent for most applications, and detectors have been slow and of low resolution. Materials analysis needs have therefore gone unmet. Rapid progress is now taking place because we are able to exploit developments in microelectronics and related material fabrication techniques, and because of the availability of intense x-ray sources. This report describes the methods and uses of x-ray imaging along with a discussion of technology advances in these areas

  12. X-ray imaging with sub-micron resolution using large-area photon counting detectors Timepix

    Science.gov (United States)

    Dudak, J.; Karch, J.; Holcova, K.; Zemlicka, J.

    2017-12-01

    As X-ray micro-CT became a popular tool for scientific purposes a number of commercially available CT systems have emerged on the market. Micro-CT systems have, therefore, become widely accessible and the number of research laboratories using them constantly increases. However, even when CT scans with spatial resolution of several micrometers can be performed routinely, data acquisition with sub-micron precision remains a complicated task. Issues come mostly from prolongation of the scan time inevitably connected with the use of nano-focus X-ray sources. Long exposure time increases the noise level in the CT projections. Furthermore, considering the sub-micron resolution even effects like source-spot drift, rotation stage wobble or thermal expansion become significant and can negatively affect the data. The use of dark-current free photon counting detectors as X-ray cameras for such applications can limit the issue of increased image noise in the data, however the mechanical stability of the whole system still remains a problem and has to be considered. In this work we evaluate the performance of a micro-CT system equipped with nano-focus X-ray tube and a large area photon counting detector Timepix for scans with effective pixel size bellow one micrometer.

  13. High-resolution 3D imaging of polymerized photonic crystals by lab-based x-ray nanotomography with 50-nm resolution

    Science.gov (United States)

    Yin, Leilei; Chen, Ying-Chieh; Gelb, Jeff; Stevenson, Darren M.; Braun, Paul A.

    2010-09-01

    High resolution x-ray computed tomography is a powerful non-destructive 3-D imaging method. It can offer superior resolution on objects that are opaque or low contrast for optical microscopy. Synchrotron based x-ray computed tomography systems have been available for scientific research, but remain difficult to access for broader users. This work introduces a lab-based high-resolution x-ray nanotomography system with 50nm resolution in absorption and Zernike phase contrast modes. Using this system, we have demonstrated high quality 3-D images of polymerized photonic crystals which have been analyzed for band gap structures. The isotropic volumetric data shows excellent consistency with other characterization results.

  14. Spatial resolution measurements of the advanced radiographic capability x-ray imaging system at energies relevant to Compton radiography

    Energy Technology Data Exchange (ETDEWEB)

    Hall, G. N., E-mail: hall98@llnl.gov; Izumi, N.; Landen, O. L.; Tommasini, R.; Holder, J. P.; Hargrove, D.; Bradley, D. K.; Lumbard, A.; Cruz, J. G.; Piston, K.; Bell, P. M.; Carpenter, A. C.; Palmer, N. E.; Felker, B.; Rekow, V.; Allen, F. V. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States); Lee, J. J.; Romano, E. [National Security Technologies LLC, 161 S Vasco Rd., Livermore, California 94551 (United States)

    2016-11-15

    Compton radiography provides a means to measure the integrity, ρR and symmetry of the DT fuel in an inertial confinement fusion implosion near peak compression. Upcoming experiments at the National Ignition Facility will use the ARC (Advanced Radiography Capability) laser to drive backlighter sources for Compton radiography experiments and will use the newly commissioned AXIS (ARC X-ray Imaging System) instrument as the detector. AXIS uses a dual-MCP (micro-channel plate) to provide gating and high DQE at the 40–200 keV x-ray range required for Compton radiography, but introduces many effects that contribute to the spatial resolution. Experiments were performed at energies relevant to Compton radiography to begin characterization of the spatial resolution of the AXIS diagnostic.

  15. Understanding X-ray cargo imaging

    International Nuclear Information System (INIS)

    Chen Gongyin

    2005-01-01

    Cargo imaging is the field of imaging large objects, usually cargo containers, trains, trucks or boats. Transmission imaging with photons, especially X-rays of up to 9 MV is the dominant current technique, providing compelling details of the contents of objects this large. This paper discusses the physics aspects of a good X-ray cargo imaging system. The basic performance requirements, such as penetration, contrast and resolution and the components of a cargo imaging system are introduced. The imaging process is divided in this paper into three stages: forming information (probing the object), recording information and presenting information (image display). Their impact on performance is analyzed

  16. High-Resolution Detector For X-Ray Diffraction

    Science.gov (United States)

    Carter, Daniel C.; Withrow, William K.; Pusey, Marc L.; Yost, Vaughn H.

    1988-01-01

    Proposed x-ray-sensitive imaging detector offers superior spatial resolution, counting-rate capacity, and dynamic range. Instrument based on laser-stimulated luminescence and reusable x-ray-sensitive film. Detector scans x-ray film line by line. Extracts latent image in film and simultaneously erases film for reuse. Used primarily for protein crystallography. Principle adapted to imaging detectors for electron microscopy and fluorescence spectroscopy and general use in astronomy, engineering, and medicine.

  17. Imaging cells and sub-cellular structures with ultrahigh resolution full-field X-ray microscopy.

    Science.gov (United States)

    Chien, C C; Tseng, P Y; Chen, H H; Hua, T E; Chen, S T; Chen, Y Y; Leng, W H; Wang, C H; Hwu, Y; Yin, G C; Liang, K S; Chen, F R; Chu, Y S; Yeh, H I; Yang, Y C; Yang, C S; Zhang, G L; Je, J H; Margaritondo, G

    2013-01-01

    Our experimental results demonstrate that full-field hard-X-ray microscopy is finally able to investigate the internal structure of cells in tissues. This result was made possible by three main factors: the use of a coherent (synchrotron) source of X-rays, the exploitation of contrast mechanisms based on the real part of the refractive index and the magnification provided by high-resolution Fresnel zone-plate objectives. We specifically obtained high-quality microradiographs of human and mouse cells with 29 nm Rayleigh spatial resolution and verified that tomographic reconstruction could be implemented with a final resolution level suitable for subcellular features. We also demonstrated that a phase retrieval method based on a wave propagation algorithm could yield good subcellular images starting from a series of defocused microradiographs. The concluding discussion compares cellular and subcellular hard-X-ray microradiology with other techniques and evaluates its potential impact on biomedical research. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. High speed gated x-ray imagers

    International Nuclear Information System (INIS)

    Kilkenny, J.D.; Bell, P.; Hanks, R.; Power, G.; Turner, R.E.; Wiedwald, J.

    1988-01-01

    Single and multi-frame gated x-ray images with time-resolution as fast as 150 psec are described. These systems are based on the gating of microchannel plates in a stripline configuration. The gating voltage comes from the avalanche breakdown of reverse biased p-n junction producing high power voltage pulses as short as 70 psec. Results from single and four frame x-ray cameras used on Nova are described. 8 refs., 9 figs

  19. High-resolution x-ray imaging of planar foils irradiated by the Nike KrF laser

    International Nuclear Information System (INIS)

    Brown, C.; Seely, J.; Feldman, U.; Obenschain, S.; Bodner, S.; Pawley, C.; Gerber, K.; Sethian, J.; Mostovych, A.; Aglitskiy, Y.; Lehecka, T.; Holland, G.

    1997-01-01

    Thin plastic (CH) foils were irradiated by the Naval Research Laboratory Nike [Obenschain et al., Phys. Plasmas 3, 2098 (1996)] KrF laser and were imaged in the x-ray and extreme ultraviolet regions with two-dimensional spatial resolution in the 3 endash 10 μm range. The CH foils were backlit by a silicon plasma. A spherically curved quartz crystal produced monochromatic images of the Si +12 resonance line radiation with energy 1865 eV that was transmitted by the CH foils. Instabilities that were seeded by linear ripple patterns on the irradiated sides of CH foils were observed. The ripple patterns had periods in the 31 endash 125 μm range and amplitudes in the 0.25 endash 5.0 μm range. The silicon backlighter emission was recorded by an x-ray spectrometer, and the 1865 eV resonance line emission was recorded by a fast x-ray diode. The multilayer mirror telescope recorded images of the C +3 1550 Angstrom emission (energy 8.0 eV) from the backside of the CH foils. copyright 1997 American Institute of Physics

  20. X-ray image coding

    International Nuclear Information System (INIS)

    1974-01-01

    The invention aims at decreasing the effect of stray radiation in X-ray images. This is achieved by putting a plate between source and object with parallel zones of alternating high and low absorption coefficients for X-radiation. The image is scanned with the help of electronic circuits which decode the signal space coded by the plate, thus removing the stray radiation

  1. Imaging X-ray astronomy

    International Nuclear Information System (INIS)

    Elvis, M.

    1990-01-01

    The launch of the High Energy Astrophysical Observatory, more appealingly called the Einstein Observatory, marked one of the most revolutionary steps taken in astrophysics this century. Its greater sensitivity compared with earlier satellites and its ability to make high spacial and spectral resolution observations transformed X-ray astronomy. This book is based on a Symposium held in Cambridge, Massachusetts, to celebrate a decade of Einstein Observatory's achievements. It discusses the contributions that this satellite has made to each area of modern astrophysics and the diversity of the ongoing work based on Einstein data. There is a guide to each of the main data bases now coming on-line to increase the availability and to preserve this valuable archive for the future. A review of NASA's next big X-ray mission, AXAF, and a visionary program for novel X-ray astronomy satellites by Riccardo Giacconi conclude this wide-ranging volume. (author)

  2. High-Resolution X-ray Emission and X-ray Absorption Spectroscopy

    NARCIS (Netherlands)

    Groot, F.M.F. de

    2000-01-01

    In this review, high-resolution X-ray emission and X-ray absorption spectroscopy will be discussed. The focus is on the 3d transition-metal systems. To understand high-resolution X-ray emission and reso-nant X-ray emission, it is first necessary to spend some time discussing the X-ray absorption

  3. Phosphor Scanner For Imaging X-Ray Diffraction

    Science.gov (United States)

    Carter, Daniel C.; Hecht, Diana L.; Witherow, William K.

    1992-01-01

    Improved optoelectronic scanning apparatus generates digitized image of x-ray image recorded in phosphor. Scanning fiber-optic probe supplies laser light stimulating luminescence in areas of phosphor exposed to x rays. Luminescence passes through probe and fiber to integrating sphere and photomultiplier. Sensitivity and resolution exceed previously available scanners. Intended for use in x-ray crystallography, medical radiography, and molecular biology.

  4. X-ray directional dark-field contrast for sub-pixel resolution imaging of bone microstructures

    Energy Technology Data Exchange (ETDEWEB)

    Biernath, Thomas; Malecki, Andreas; Potdevin, Guillaume; Bech, Martin; Pfeiffer, Franz [Department of Physics (E17) and Institute of Medical Engineering (IMETUM), Technische Universitaet Muenchen (Germany); Jensen, Torben [Niels Bohr Institute, University of Copenhagen (Denmark)

    2011-07-01

    The basic principles of X-ray image formation in radiography have remained essentially unchanged since Roentgen first discovered X-rays over a hundred years ago. The conventional approach relies on X-ray absorption as the sole source of contrast and thus gives an information about the density changes in the sample. The recently introduced X-ray dark field imaging technique (DFI) yields a fundamentally different signal: DFI is a measure of the sample small angle scattering signal and thus yields information about the sample microstructure. Such measurements can be effectively performed thanks to a Laue-Talbot grating interferometer. This presentation shows recent experimental directional dark-field imaging results of various samples both from synchrotron and classical X-ray tube sources.

  5. High Energy Resolution Hyperspectral X-Ray Imaging for Low-Dose Contrast-Enhanced Digital Mammography.

    Science.gov (United States)

    Pani, Silvia; Saifuddin, Sarene C; Ferreira, Filipa I M; Henthorn, Nicholas; Seller, Paul; Sellin, Paul J; Stratmann, Philipp; Veale, Matthew C; Wilson, Matthew D; Cernik, Robert J

    2017-09-01

    Contrast-enhanced digital mammography (CEDM) is an alternative to conventional X-ray mammography for imaging dense breasts. However, conventional approaches to CEDM require a double exposure of the patient, implying higher dose, and risk of incorrect image registration due to motion artifacts. A novel approach is presented, based on hyperspectral imaging, where a detector combining positional and high-resolution spectral information (in this case based on Cadmium Telluride) is used. This allows simultaneous acquisition of the two images required for CEDM. The approach was tested on a custom breast-equivalent phantom containing iodinated contrast agent (Niopam 150®). Two algorithms were used to obtain images of the contrast agent distribution: K-edge subtraction (KES), providing images of the distribution of the contrast agent with the background structures removed, and a dual-energy (DE) algorithm, providing an iodine-equivalent image and a water-equivalent image. The high energy resolution of the detector allowed the selection of two close-by energies, maximising the signal in KES images, and enhancing the visibility of details with the low surface concentration of contrast agent. DE performed consistently better than KES in terms of contrast-to-noise ratio of the details; moreover, it allowed a correct reconstruction of the surface concentration of the contrast agent in the iodine image. Comparison with CEDM with a conventional detector proved the superior performance of hyperspectral CEDM in terms of the image quality/dose tradeoff.

  6. Toward atomic resolution diffractive imaging of isolated molecules with x-ray free-electron lasers

    DEFF Research Database (Denmark)

    Stern, Stephan; Holmegaard, Lotte; Filsinger, Frank

    2014-01-01

    We give a detailed account of the theoretical analysis and the experimental results of an x-ray-diffraction experiment on quantum-state selected and strongly laser-aligned gas-phase ensembles of the prototypical large asymmetric rotor molecule 2,5-diiodobenzonitrile, performed at the Linac Cohere...

  7. High-resolution chemical imaging of gold nanoparticles using hard x-ray ptychography

    DEFF Research Database (Denmark)

    Hoppe, R.; Reinhardt, J.; Hofmann, G.

    2013-01-01

    We combine resonant scattering with (ptychographic) scanning coherent diffraction microscopy to determine the chemical state of gold nanoparticles with high spatial resolution. Ptychographic images of the sample are recorded for a series of energies around the gold L3 absorption edge. From these ...

  8. High resolution time- and 2-dimensional space-resolved x-ray imaging of plasmas at NOVA

    International Nuclear Information System (INIS)

    Landen, O.L.

    1992-01-01

    A streaked multiple pinhole camera technique, first used by P. Choi et al. to record time- and 2-D space-resolved soft X-ray images of plasma pinches, has been implemented on laser plasmas at NOVA. The instrument is particularly useful for time-resolved imaging of small sources ( 2.5 key imaging, complementing the existing 1--3 key streaked X-ray microscope capabilities at NOVA

  9. Using high resolution X-ray computed tomography to create an image based model of a lymph node.

    Science.gov (United States)

    Cooper, L J; Zeller-Plumhoff, B; Clough, G F; Ganapathisubramani, B; Roose, T

    2018-07-14

    Lymph nodes are an important part of the immune system. They filter the lymphatic fluid as it is transported from the tissues before being returned to the blood stream. The fluid flow through the nodes influences the behaviour of the immune cells that gather within the nodes and the structure of the node itself. Measuring the fluid flow in lymph nodes experimentally is challenging due to their small size and fragility. In this paper, we present high resolution X-ray computed tomography images of a murine lymph node. The impact of the resulting visualized structures on fluid transport are investigated using an image based model. The high contrast between different structures within the lymph node provided by phase contrast X-ray computed tomography reconstruction results in images that, when related to the permeability of the lymph node tissue, suggest an increased fluid velocity through the interstitial channels in the lymph node tissue. Fluid taking a direct path from the afferent to the efferent lymphatic vessel, through the centre of the node, moved faster than the fluid that flowed around the periphery of the lymph node. This is a possible mechanism for particles being moved into the cortex. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. High-resolution non-invasive 3D imaging of paint microstructure by synchrotron-based X-ray laminography

    International Nuclear Information System (INIS)

    Reischig, Peter; Helfen, Lukas; Wallert, Arie; Baumbach, Tilo; Dik, Joris

    2013-01-01

    The characterisation of the microstructure and micromechanical behaviour of paint is key to a range of problems related to the conservation or technical art history of paintings. Synchrotron-based X-ray laminography is demonstrated in this paper to image the local sub-surface microstructure in paintings in a non-invasive and non-destructive way. Based on absorption and phase contrast, the method can provide high-resolution 3D maps of the paint stratigraphy, including the substrate, and visualise small features, such as pigment particles, voids, cracks, wood cells, canvas fibres etc. Reconstructions may be indicative of local density or chemical composition due to increased attenuation of X-rays by elements of higher atomic number. The paint layers and their interfaces can be distinguished via variations in morphology or composition. Results of feasibility tests on a painting mockup (oak panel, chalk ground, vermilion and lead white paint) are shown, where lateral and depth resolution of up to a few micrometres is demonstrated. The method is well adapted to study the temporal evolution of the stratigraphy in test specimens and offers an alternative to destructive sampling of original works of art. (orig.)

  11. High resolution x-ray microscope

    OpenAIRE

    Gary, C. K.; Park, H.; Lombardo, L. W.; Piestrup, M. A.; Cremer, J. T.; Pantell, R. H.; Dudchik, Y. I.

    2007-01-01

    The authors present x-ray images of grid meshes and biological material obtained using a microspot x-ray tube with a multilayer optic and a 92-element parabolic compound refractive lens CRL made of a plastic containing only hydrogen and carbon. Images obtained using this apparatus are compared with those using an area source with a spherical lens and a spherical lens with multilayer condenser. The authors found the best image quality using the multilayer condenser with a parabolic lens, com...

  12. Studying atomic-resolution by X-ray fluorescence holography

    International Nuclear Information System (INIS)

    Gao Hongyi; Chen Jianwen; Xie Honglan; Zhu Huafeng; Li Ruxin; Xu Zhizhan

    2005-01-01

    In this work, the results of numerical simulations of X-ray fluorescence holograms and the reconstructed atomic images for Fe single crystal are given. The influences of the recording angles ranges and the polarization effect on the reconstruction of the atomic images are discussed. The process for removing twin images by multiple energy fluorescence holography and expanding the energy range of the incident X-rays to improve the resolution of the reconstructed images is presented

  13. High-intensity x-ray holography: an approach to high-resolution snapshot imaging of biological specimens

    International Nuclear Information System (INIS)

    Solem, J.C.

    1982-08-01

    The crucial physical and technological issues pertaining to the holographic imaging of biological structures with a short-pulse, high-intensity, high-quantum-energy laser were examined. The limitations of x-ray optics are discussed. Alternative holographic techniques were considered, and it was concluded that far-field Fresnel transform holography (Fraunhofer holography) using a photoresist recording surface is most tractable with near term technology. The hydrodynamic expansion of inhomogeneities within the specimen is discussed. It is shown that expansion is the major source of image blurring. Analytic expressions were derived for the explosion of protein concentrations in an x-ray transparent cytoplasm, compared with numerical calculations, and corrections derived to account for the competitive transport processes by which these inhomogeneities lose energy. It is concluded that for the near term Fresnel transform holography, particularly, far-field or Fraunhofer holography, is more practical than Fourier transform holography. Of the alternative fine grain recording media for use with Fresnel transform holography, a photo-resist is most attractive. For best resolution, exposure times must be limited to a few picoseconds, and this calls for investigation of mechanisms to shutter the laser or gate the recording surface. The best contrast ratio between the nitrogen-bearing polymers (protein and the nucleic acids) and water is between the K-edges of oxygen and nitrogen

  14. High-intensity x-ray holography: an approach to high-resolution snapshot imaging of biological specimens

    Energy Technology Data Exchange (ETDEWEB)

    Solem, J.C.

    1982-08-01

    The crucial physical and technological issues pertaining to the holographic imaging of biological structures with a short-pulse, high-intensity, high-quantum-energy laser were examined. The limitations of x-ray optics are discussed. Alternative holographic techniques were considered, and it was concluded that far-field Fresnel transform holography (Fraunhofer holography) using a photoresist recording surface is most tractable with near term technology. The hydrodynamic expansion of inhomogeneities within the specimen is discussed. It is shown that expansion is the major source of image blurring. Analytic expressions were derived for the explosion of protein concentrations in an x-ray transparent cytoplasm, compared with numerical calculations, and corrections derived to account for the competitive transport processes by which these inhomogeneities lose energy. It is concluded that for the near term Fresnel transform holography, particularly, far-field or Fraunhofer holography, is more practical than Fourier transform holography. Of the alternative fine grain recording media for use with Fresnel transform holography, a photo-resist is most attractive. For best resolution, exposure times must be limited to a few picoseconds, and this calls for investigation of mechanisms to shutter the laser or gate the recording surface. The best contrast ratio between the nitrogen-bearing polymers (protein and the nucleic acids) and water is between the K-edges of oxygen and nitrogen.

  15. Improved spatial resolution and lower-dose pediatric CT imaging: a feasibility study to evaluate narrowing the X-ray photon energy spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Benz, Mark G. [Safer Pediatric Imaging and Engineering Horizons International, Lincoln, VT (United States); Benz, Matthew W. [Southboro Medical Group, Southboro, MA (United States); Birnbaum, Steven B. [Dartmouth Hitchcock Clinic Manchester, Department of Radiology, Manchester, NH (United States); Chason, Eric; Sheldon, Brian W. [Brown University, Division of Engineering, Materials Science and Engineering Program, Providence, RI (United States); McGuire, Dale [R and D Manager, C and G Technologies Inc., Jeffersonville, IN (United States)

    2014-08-15

    This feasibility study has shown that improved spatial resolution and reduced radiation dose can be achieved in pediatric CT by narrowing the X-ray photon energy spectrum. This is done by placing a hafnium filter between the X-ray generator and a pediatric abdominal phantom. A CT system manufactured in 1999 that was in the process of being remanufactured was used as the platform for this study. This system had the advantage of easy access to the X-ray generator for modifications to change the X-ray photon energy spectrum; it also had the disadvantage of not employing the latest post-imaging noise reduction iterative reconstruction technology. Because we observed improvements after changing the X-ray photon energy spectrum, we recommend a future study combining this change with an optimized iterative reconstruction noise reduction technique. (orig.)

  16. Multilayer X-ray imaging systems

    Science.gov (United States)

    Shealy, D. L.; Hoover, R. B.; Gabardi, D. R.

    1986-01-01

    An assessment of the imaging properties of multilayer X-ray imaging systems with spherical surfaces has been made. A ray trace analysis was performed to investigate the effects of using spherical substrates (rather than the conventional paraboloidal/hyperboloidal contours) for doubly reflecting Cassegrain telescopes. These investigations were carried out for mirrors designed to operate at selected soft X-ray/XUV wavelengths that are of significance for studies of the solar corona/transition region from the Stanford/MSFC Rocket X-Ray Telescope. The effects of changes in separation of the primary and secondary elements were also investigated. These theoretical results are presented as well as the results of ray trace studies to establish the resolution and vignetting effects as a function of field angle and system parameters.

  17. Research and Development of a portable microfocus x-ray system capable of providing ultra-high resolutions images of improvised explosive devices

    International Nuclear Information System (INIS)

    Korkala, G.

    1989-01-01

    The utilization of x-ray screening has long been a recognized valuable tool as a means to evaluate and identify suspect articles for possible improvised explosive devices. Recent bombings indicate an increase in technical sophistication by the terrorist which demand additional means to further the possibility of detecting these devices before they reach their target or detonate. This paper discusses history of the use of x-ray and the design parameters of a portable micro-focus x-ray system capable of providing ultra high resolution radiographs as well as being able to be used with additional state-of-the-art imaging systems

  18. X-ray detectors in medical imaging

    International Nuclear Information System (INIS)

    Spahn, Martin

    2013-01-01

    Healthcare systems are subject to continuous adaptation, following trends such as the change of demographic structures, the rise of life-style related and chronic diseases, and the need for efficient and outcome-oriented procedures. This also influences the design of new imaging systems as well as their components. The applications of X-ray imaging in the medical field are manifold and have led to dedicated modalities supporting specific imaging requirements, for example in computed tomography (CT), radiography, angiography, surgery or mammography, delivering projection or volumetric imaging data. Depending on the clinical needs, some X-ray systems enable diagnostic imaging while others support interventional procedures. X-ray detector design requirements for the different medical applications can vary strongly with respect to size and shape, spatial resolution, frame rates and X-ray flux, among others. Today, integrating X-ray detectors are in common use. They are predominantly based on scintillators (e.g. CsI or Gd 2 O 2 S) and arrays of photodiodes made from crystalline silicon (Si) or amorphous silicon (a-Si) or they employ semiconductors (e.g. Se) with active a-Si readout matrices. Ongoing and future developments of X-ray detectors will include optimization of current state-of-the-art integrating detectors in terms of performance and cost, will enable the usage of large size CMOS-based detectors, and may facilitate photon counting techniques with the potential to further enhance performance characteristics and foster the prospect of new clinical applications

  19. Characterization of scintillator-based detectors for few-ten-keV high-spatial-resolution x-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, Jakob C., E-mail: jakob.larsson@biox.kth.se; Lundström, Ulf; Hertz, Hans M. [Biomedical and X-ray Physics, Department of Applied Physics, KTH Royal Institute of Technology/Albanova, Stockholm 10691 (Sweden)

    2016-06-15

    Purpose: High-spatial-resolution x-ray imaging in the few-ten-keV range is becoming increasingly important in several applications, such as small-animal imaging and phase-contrast imaging. The detector properties critically influence the quality of such imaging. Here the authors present a quantitative comparison of scintillator-based detectors for this energy range and at high spatial frequencies. Methods: The authors determine the modulation transfer function, noise power spectrum (NPS), and detective quantum efficiency for Gadox, needle CsI, and structured CsI scintillators of different thicknesses and at different photon energies. An extended analysis of the NPS allows for direct measurements of the scintillator effective absorption efficiency and effective light yield as well as providing an alternative method to assess the underlying factors behind the detector properties. Results: There is a substantial difference in performance between the scintillators depending on the imaging task but in general, the CsI based scintillators perform better than the Gadox scintillators. At low energies (16 keV), a thin needle CsI scintillator has the best performance at all frequencies. At higher energies (28–38 keV), the thicker needle CsI scintillators and the structured CsI scintillator all have very good performance. The needle CsI scintillators have higher absorption efficiencies but the structured CsI scintillator has higher resolution. Conclusions: The choice of scintillator is greatly dependent on the imaging task. The presented comparison and methodology will assist the imaging scientist in optimizing their high-resolution few-ten-keV imaging system for best performance.

  20. High spatiotemporal resolution measurement of regional lung air volumes from 2D phase contrast x-ray images.

    Science.gov (United States)

    Leong, Andrew F T; Fouras, Andreas; Islam, M Sirajul; Wallace, Megan J; Hooper, Stuart B; Kitchen, Marcus J

    2013-04-01

    Described herein is a new technique for measuring regional lung air volumes from two-dimensional propagation-based phase contrast x-ray (PBI) images at very high spatial and temporal resolution. Phase contrast dramatically increases lung visibility and the outlined volumetric reconstruction technique quantifies dynamic changes in respiratory function. These methods can be used for assessing pulmonary disease and injury and for optimizing mechanical ventilation techniques for preterm infants using animal models. The volumetric reconstruction combines the algorithms of temporal subtraction and single image phase retrieval (SIPR) to isolate the image of the lungs from the thoracic cage in order to measure regional lung air volumes. The SIPR algorithm was used to recover the change in projected thickness of the lungs on a pixel-by-pixel basis (pixel dimensions ≈ 16.2 μm). The technique has been validated using numerical simulation and compared results of measuring regional lung air volumes with and without the use of temporal subtraction for removing the thoracic cage. To test this approach, a series of PBI images of newborn rabbit pups mechanically ventilated at different frequencies was employed. Regional lung air volumes measured from PBI images of newborn rabbit pups showed on average an improvement of at least 20% in 16% of pixels within the lungs in comparison to that measured without the use of temporal subtraction. The majority of pixels that showed an improvement was found to be in regions occupied by bone. Applying the volumetric technique to sequences of PBI images of newborn rabbit pups, it is shown that lung aeration at birth can be highly heterogeneous. This paper presents an image segmentation technique based on temporal subtraction that has successfully been used to isolate the lungs from PBI chest images, allowing the change in lung air volume to be measured over regions as small as the pixel size. Using this technique, it is possible to measure

  1. Soft x-ray Planetary Imager

    Data.gov (United States)

    National Aeronautics and Space Administration — The project is to prototype a soft X-ray Imager for planetary applications that has the sensitivity to observe solar system sources of soft  X-ray emission. A strong...

  2. Study of x-ray CCD image sensor and application

    Science.gov (United States)

    Wang, Shuyun; Li, Tianze

    2008-12-01

    In this paper, we expounded the composing, specialty, parameter, its working process, key techniques and methods for charge coupled devices (CCD) twice value treatment. Disposal process for CCD video signal quantification was expatiated; X-ray image intensifier's constitutes, function of constitutes, coupling technique of X-ray image intensifier and CCD were analyzed. We analyzed two effective methods to reduce the harm to human beings when X-ray was used in the medical image. One was to reduce X-ray's radiation and adopt to intensify the image penetrated by X-ray to gain the same effect. The other was to use the image sensor to transfer the images to the safe area for observation. On this base, a new method was presented that CCD image sensor and X-ray image intensifier were combined organically. A practical medical X-ray photo electricity system was designed which can be used in the records and time of the human's penetrating images. The system was mainly made up with the medical X-ray, X-ray image intensifier, CCD vidicon with high resolution, image processor, display and so on. Its characteristics are: change the invisible X-ray into the visible light image; output the vivid images; short image recording time etc. At the same time we analyzed the main aspects which affect the system's resolution. Medical photo electricity system using X-ray image sensor can reduce the X-ray harm to human sharply when it is used in the medical diagnoses. At last we analyzed and looked forward the system's application in medical engineering and the related fields.

  3. Phase-contrast X-ray imaging using an X-ray interferometer for biological imaging

    Energy Technology Data Exchange (ETDEWEB)

    Momose, Atsushi; Koyama, Ichiro [Tokyo Univ., Dept. of Applied Physics, Tokyo (Japan); Takeda, Tohoru; Itai, Yuji [Tsukuba Univ., Inst. of Clinical Medicine, Tsukuba, Ibaraki (Japan); Yoneyama, Akio [Hitachi Ltd., Advanced Research Laboratory, Saitama (Japan)

    2002-04-01

    The potential of phase-contrast X-ray imaging using an X-ray interferometer is discussed comparing with other phase-contrast X-ray imaging methods, and its principle of contrast generation is presented including the case of phase-contrast X-ray computed tomography. The status of current instrumentation is described and perspectives for practical applications are discussed. (author)

  4. Progress in high-resolution x-ray holographic microscopy

    International Nuclear Information System (INIS)

    Jacobsen, C.; Kirz, J.; Howells, M.; McQuaid, K.; Rothman, S.; Feder, R.; Sayre, D.

    1987-07-01

    Among the various types of x-ray microscopes that have been demonstrated, the holographic microscope has had the largest gap between promise and performance. The difficulties of fabricating x-ray optical elements have led some to view holography as the most attractive method for obtaining the ultimate in high resolution x-ray micrographs; however, we know of no investigations prior to 1987 that clearly demonstrated submicron resolution in reconstructed images. Previous efforts suffered from problems such as limited resolution and dynamic range in the recording media, low coherent x-ray flux, and aberrations and diffraction limits in visible light reconstruction. We have addressed the recording limitations through the use of an undulator x-ray source and high-resolution photoresist recording media. For improved results in the readout and reconstruction steps, we have employed metal shadowing and transmission electron microscopy, along with numerical reconstruction techniques. We believe that this approach will allow holography to emerge as a practical method of high-resolution x-ray microscopy. 30 refs., 4 figs

  5. Progress in high-resolution x-ray holographic microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jacobsen, C.; Kirz, J.; Howells, M.; McQuaid, K.; Rothman, S.; Feder, R.; Sayre, D.

    1987-07-01

    Among the various types of x-ray microscopes that have been demonstrated, the holographic microscope has had the largest gap between promise and performance. The difficulties of fabricating x-ray optical elements have led some to view holography as the most attractive method for obtaining the ultimate in high resolution x-ray micrographs; however, we know of no investigations prior to 1987 that clearly demonstrated submicron resolution in reconstructed images. Previous efforts suffered from problems such as limited resolution and dynamic range in the recording media, low coherent x-ray flux, and aberrations and diffraction limits in visible light reconstruction. We have addressed the recording limitations through the use of an undulator x-ray source and high-resolution photoresist recording media. For improved results in the readout and reconstruction steps, we have employed metal shadowing and transmission electron microscopy, along with numerical reconstruction techniques. We believe that this approach will allow holography to emerge as a practical method of high-resolution x-ray microscopy. 30 refs., 4 figs.

  6. Wavelength dispersive X-ray absorption fine structure imaging by parametric X-ray radiation

    International Nuclear Information System (INIS)

    Inagaki, Manabu; Sakai, Takeshi; Sato, Isamu; Hayakawa, Yasushi; Nogami, Kyoko; Tanaka, Toshinari; Hayakawa, Ken; Nakao, Keisuke

    2008-01-01

    The parametric X-ray radiation (PXR) generator system at Laboratory for Electron Beam Research and Application (LEBRA) in Nihon University is a monochromatic and coherent X-ray source with horizontal wavelength dispersion. The energy definition of the X-rays, which depends on the horizontal size of the incident electron beam on the generator target crystal, has been investigated experimentally by measuring the X-ray absorption near edge structure (XANES) spectra on Cu and CuO associated with conventional X-ray absorption imaging technique. The result demonstrated the controllability of the spectrum resolution of XANES by adjusting of the horizontal electron beam size on the target crystal. The XANES spectra were obtained with energy resolution of several eV at the narrowest case, which is in qualitative agreement with the energy definition of the PXR X-rays evaluated from geometrical consideration. The result also suggested that the wavelength dispersive X-ray absorption fine structure measurement associated with imaging technique is one of the promising applications of PXR. (author)

  7. High performance imaging of relativistic soft X-ray harmonics by sub-micron resolution LiF film detectors

    Energy Technology Data Exchange (ETDEWEB)

    Pikuz, Tatiana; Faenov, Anatoly [Quantum Beam Science Directorate, Japan Atomic Energy Agency, Kizugawa, Kyoto 619-0215 (Japan); Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow 125412 (Russian Federation); Pirozhkov, Alexander; Esirkepov, Timur; Koga, James; Nakamura, Tatsufumi; Bulanov, Sergei; Fukuda, Yuji; Hayashi, Yukio; Kotaki, Hideyuki; Kando, Masaki [Quantum Beam Science Directorate, Japan Atomic Energy Agency, Kizugawa, Kyoto 619-0215 (Japan); Astapov, Artem; Pikuz, Sergey Jr. [Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow 125412 (Russian Federation); Klushin, Georgy [Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow 125412 (Russian Federation); International Laser Center of M.V. Lomonosov Moscow State University, Moscow (Russian Federation); Nagorskiy, Nikolai; Magnitskiy, Sergei [International Laser Center of M.V. Lomonosov Moscow State University, Moscow (Russian Federation); Kato, Yoshiaki [The Graduate School for the Creation of New Photonics Industries, Hamamatsu, Shizuoka (Japan)

    2012-12-15

    The spectrum variation and the coherent properties of the high-order harmonics (HOH) generated by an oscillating electron spikes formed at the joint of the boundaries of a cavity and a bow wave, which are created by a relativistically self-focusing laser in underdense gas jet plasma, are investigated. This new mechanism for HOH generation efficiently produces emission from ultraviolet up to the XUV ''water window'' spectral range. To characterize such source in the wide spectral range a diffraction imaging technique is applied. High spatial resolution EUV and soft X-ray LiF film detector have been used for precise measurements of diffraction patterns. The measurements under observation angle of 8 to the axis of laser beam propagation have been performed. The diffraction patterns were observed on the detector clearly, when the square mesh was placed at the distance of 500 mm from the output of plasma and at the distance of 27.2 mm in front of the detector. It is shown that observed experimental patterns are well consistent with modeled ones for theoretical HOH spectrum, provided by particle-in-cell simulations of a relativistic-irradiance laser pulse interaction with underdense plasma (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. High-contrast differentiation resolution 3D imaging of rodent brain by X-ray computed microtomography

    Science.gov (United States)

    Zikmund, T.; Novotná, M.; Kavková, M.; Tesařová, M.; Kaucká, M.; Szarowská, B.; Adameyko, I.; Hrubá, E.; Buchtová, M.; Dražanová, E.; Starčuk, Z.; Kaiser, J.

    2018-02-01

    The biomedically focused brain research is largely performed on laboratory mice considering a high homology between the human and mouse genomes. A brain has an intricate and highly complex geometrical structure that is hard to display and analyse using only 2D methods. Applying some fast and efficient methods of brain visualization in 3D will be crucial for the neurobiology in the future. A post-mortem analysis of experimental animals' brains usually involves techniques such as magnetic resonance and computed tomography. These techniques are employed to visualize abnormalities in the brains' morphology or reparation processes. The X-ray computed microtomography (micro CT) plays an important role in the 3D imaging of internal structures of a large variety of soft and hard tissues. This non-destructive technique is applied in biological studies because the lab-based CT devices enable to obtain a several-micrometer resolution. However, this technique is always used along with some visualization methods, which are based on the tissue staining and thus differentiate soft tissues in biological samples. Here, a modified chemical contrasting protocol of tissues for a micro CT usage is introduced as the best tool for ex vivo 3D imaging of a post-mortem mouse brain. This way, the micro CT provides a high spatial resolution of the brain microscopic anatomy together with a high tissue differentiation contrast enabling to identify more anatomical details in the brain. As the micro CT allows a consequent reconstruction of the brain structures into a coherent 3D model, some small morphological changes can be given into context of their mutual spatial relationships.

  9. New intraoral x-ray fluorographic imaging for dentistry

    International Nuclear Information System (INIS)

    Higashi, T.; Osada, T.; Aoyama, W.; Iguchi, M.; Suzuki, S.; Kanno, M.; Moriya, K.; Yoshimura, M.; Tusuda, M.

    1983-01-01

    A new dental x-ray fluorographic unit has been developed. This unit is composed of small intraoral x-ray tube, a compact x-ray image intensifier, and a high-resolution TV system. The purposes for developing this equipment were to (1) directly observe the tooth during endodontic procedures and (2) reduce x-ray exposure to the patient and the dentist. The radiation exposure can be reduced to about 1/600 the exposure used with conventional dental film. In clinical trials, a satisfactory fluorographic dental image for endodontic treatment was obtained with this new device

  10. High-resolution high-efficiency X-ray imaging system based on the in-line Bragg magnifier and the Medipix detector

    Czech Academy of Sciences Publication Activity Database

    Vagovič, P.; Korytár, D.; Cecilia, A.; Hamann, E.; Švéda, L.; Pelliccia, D.; Hartwig, J.; Zápražný, Z.; Oberta, Peter; Dolbnya, I.; Shawney, K.; Flechsig, U.; Fiederle, M.; Baumbach, T.

    2013-01-01

    Roč. 20, č. 1 (2013), s. 153-159 ISSN 0909-0495. [International Workshop on X-Ray Damage to Biological Crystalline Samples /7./. Oxfordshire, 14.03.2012-16.03.2012] R&D Projects: GA MPO FR-TI1/412 Institutional support: RVO:68378271 Keywords : Bragg magnifie * germanium * holography * high resolution * in-line * X-ray imaging Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.022, year: 2013 http://onlinelibrary.wiley.com/doi/10.1107/S0909049512044366/pdf

  11. Active x-ray optics for high resolution space telescopes

    Science.gov (United States)

    Doel, Peter; Atkins, Carolyn; Brooks, D.; Feldman, Charlotte; Willingale, Richard; Button, Tim; Rodriguez Sanmartin, Daniel; Meggs, Carl; James, Ady; Willis, Graham; Smith, Andy

    2017-11-01

    The Smart X-ray Optics (SXO) Basic Technology project started in April 2006 and will end in October 2010. The aim is to develop new technologies in the field of X-ray focusing, in particular the application of active and adaptive optics. While very major advances have been made in active/adaptive astronomical optics for visible light, little was previously achieved for X-ray optics where the technological challenges differ because of the much shorter wavelengths involved. The field of X-ray astronomy has been characterized by the development and launch of ever larger observatories with the culmination in the European Space Agency's XMM-Newton and NASA's Chandra missions which are currently operational. XMM-Newton uses a multi-nested structure to provide modest angular resolution ( 10 arcsec) but large effective area, while Chandra sacrifices effective area to achieve the optical stability necessary to provide sub-arc second resolution. Currently the European Space Agency (ESA) is engaged in studies of the next generation of X-ray space observatories, with the aim of producing telescopes with increased sensitivity and resolution. To achieve these aims several telescopes have been proposed, for example ESA and NASA's combined International X-ray Observatory (IXO), aimed at spectroscopy, and NASA's Generation-X. In the field of X-ray astronomy sub 0.2 arcsecond resolution with high efficiency would be very exciting. Such resolution is unlikely to be achieved by anything other than an active system. The benefits of a such a high resolution would be important for a range of astrophysics subjects, for example the potential angular resolution offered by active X-ray optics could provide unprecedented structural imaging detail of the Solar Wind bowshock interaction of comets, planets and similar objects and auroral phenomena throughout the Solar system using an observing platform in low Earth orbit. A major aim of the SXO project was to investigate the production of thin

  12. X-ray elastography: Modification of x-ray phase contrast images using ultrasonic radiation pressure

    International Nuclear Information System (INIS)

    Hamilton, Theron J.; Bailat, Claude; Rose-Petruck, Christoph; Diebold, Gerald J.; Gehring, Stephan; Laperle, Christopher M.; Wands, Jack

    2009-01-01

    The high resolution characteristic of in-line x-ray phase contrast imaging can be used in conjunction with directed ultrasound to detect small displacements in soft tissue generated by differential acoustic radiation pressure. The imaging method is based on subtraction of two x-ray images, the first image taken with, and the second taken without the presence of ultrasound. The subtraction enhances phase contrast features and, to a large extent, removes absorption contrast so that differential movement of tissues with different acoustic impedances or relative ultrasonic absorption is highlighted in the image. Interfacial features of objects with differing densities are delineated in the image as a result of both the displacement introduced by the ultrasound and the inherent sensitivity of x-ray phase contrast imaging to density variations. Experiments with ex vivo murine tumors and human tumor phantoms point out a diagnostic capability of the method for identifying tumors.

  13. Image analysis in x-ray cinefluorography

    Energy Technology Data Exchange (ETDEWEB)

    Ikuse, J; Yasuhara, H; Sugimoto, H [Toshiba Corp., Kawasaki, Kanagawa (Japan)

    1979-02-01

    For the cinefluorographic image in the cardiovascular diagnostic system, the image quality is evaluated by means of MTF (Modulation Transfer Function), and object contrast by introducing the concept of x-ray spectrum analysis. On the basis of these results, further investigation is made of optimum X-ray exposure factors set for cinefluorography and the cardiovascular diagnostic system.

  14. Ultra high resolution X-ray detectors

    International Nuclear Information System (INIS)

    Hess, U.; Buehler, M.; Hentig, R. von; Hertrich, T.; Phelan, K.; Wernicke, D.; Hoehne, J.

    2001-01-01

    CSP Cryogenic Spectrometers GmbH is developing cryogenic energy dispersive X-ray spectrometers based on superconducting detector technology. Superconducting sensors exhibit at least a 10-fold improvement in energy resolution due to their low energy gap compared to conventional Si(Li) or Ge detectors. These capabilities are extremely valuable for the analysis of light elements and in general for the analysis of the low energy range of the X-ray spectrum. The spectrometer is based on a mechanical cooler needing no liquid coolants and an adiabatic demagnetization refrigerator (ADR) stage which supplies the operating temperature of below 100 mK for the superconducting sensor. Applications include surface analysis in semiconductor industry as well material analysis for material composition e.g. in ceramics or automobile industry

  15. Simulation, optimization and testing of a novel high spatial resolution X-ray imager based on Zinc Oxide nanowires in Anodic Aluminium Oxide membrane using Geant4

    Science.gov (United States)

    Esfandi, F.; Saramad, S.

    2015-07-01

    In this work, a new generation of scintillator based X-ray imagers based on ZnO nanowires in Anodized Aluminum Oxide (AAO) nanoporous template is characterized. The optical response of ordered ZnO nanowire arrays in porous AAO template under low energy X-ray illumination is simulated by the Geant4 Monte Carlo code and compared with experimental results. The results show that for 10 keV X-ray photons, by considering the light guiding properties of zinc oxide inside the AAO template and suitable selection of detector thickness and pore diameter, the spatial resolution less than one micrometer and the detector detection efficiency of 66% are accessible. This novel nano scintillator detector can have many advantages for medical applications in the future.

  16. Simulation, optimization and testing of a novel high spatial resolution X-ray imager based on Zinc Oxide nanowires in Anodic Aluminium Oxide membrane using Geant4

    International Nuclear Information System (INIS)

    Esfandi, F.; Saramad, S.

    2015-01-01

    In this work, a new generation of scintillator based X-ray imagers based on ZnO nanowires in Anodized Aluminum Oxide (AAO) nanoporous template is characterized. The optical response of ordered ZnO nanowire arrays in porous AAO template under low energy X-ray illumination is simulated by the Geant4 Monte Carlo code and compared with experimental results. The results show that for 10 keV X-ray photons, by considering the light guiding properties of zinc oxide inside the AAO template and suitable selection of detector thickness and pore diameter, the spatial resolution less than one micrometer and the detector detection efficiency of 66% are accessible. This novel nano scintillator detector can have many advantages for medical applications in the future

  17. Upgrades of imaging x-ray crystal spectrometers for high-resolution and high-temperature plasma diagnostics on EAST

    Energy Technology Data Exchange (ETDEWEB)

    Lyu, B., E-mail: blu@ipp.ac.cn; Wang, F. D.; Fu, J.; Li, Y. Y. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Pan, X. Y.; Chen, J.; Wan, B. N. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026 (China); Bitter, M.; Hill, K. W.; Delgado-Aparicio, L. F.; Pablant, N. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543-0451 (United States); Lee, S. G. [National Fusion Research Institute, 52 Eoeun-Dong, Yusung-Gu, Daejeon 305-333 (Korea, Republic of); Shi, Y. J. [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026 (China); WCI for Fusion Theory, National Fusion Research Institute, 52 Eoeun-Dong, Yusung-Gu, Daejeon 305-333 (Korea, Republic of); Ye, M. Y. [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2014-11-15

    Upgrade of the imaging X-ray crystal spectrometers continues in order to fulfill the high-performance diagnostics requirements on EAST. For the tangential spectrometer, a new large pixelated two-dimensional detector was deployed on tokamaks for time-resolved X-ray imaging. This vacuum-compatible detector has an area of 83.8 × 325.3 mm{sup 2}, a framing rate over 150 Hz, and water-cooling capability for long-pulse discharges. To effectively extend the temperature limit, a double-crystal assembly was designed to replace the previous single crystals for He-like argon line measurement. The tangential spectrometer employed two crystal slices attached to a common substrate and part of He- and H-like Ar spectra could be recorded on the same detector when crystals were chosen to have similar Bragg angles. This setup cannot only extend the measurable Te up to 10 keV in the core region, but also extend the spatial coverage since He-like argon ions will be present in the outer plasma region. Similarly, crystal slices for He-like iron and argon spectra were adopted on the poloidal spectrometer. Wavelength calibration for absolute rotation velocity measurement will be studied using cadmium characteristic L-shell X-ray lines excited by plasma radiation. A Cd foil is placed before the crystal and can be inserted and retracted for in situ wavelength calibration. The Geant4 code was used to estimate X-ray fluorescence yield and optimize the thickness of the foil.

  18. A super-high angular resolution principle for coded-mask X-ray imaging beyond the diffraction limit of a single pinhole

    International Nuclear Information System (INIS)

    Zhang Chen; Zhang Shuangnan

    2009-01-01

    High angular resolution X-ray imaging is always useful in astrophysics and solar physics. In principle, it can be performed by using coded-mask imaging with a very long mask-detector distance. Previously, the diffraction-interference effect was thought to degrade coded-mask imaging performance dramatically at the low energy end with its very long mask-detector distance. The diffraction-interference effect is described with numerical calculations, and the diffraction-interference cross correlation reconstruction method (DICC) is developed in order to overcome the imaging performance degradation. Based on the DICC, a super-high angular resolution principle (SHARP) for coded-mask X-ray imaging is proposed. The feasibility of coded mask imaging beyond the diffraction limit of a single pinhole is demonstrated with simulations. With the specification that the mask element size is 50 x 50 μm 2 and the mask-detector distance is 50 m, the achieved angular resolution is 0.32 arcsec above about 10 keV and 0.36 arcsec at 1.24 keV (λ = 1 nm), where diffraction cannot be neglected. The on-axis source location accuracy is better than 0.02 arcsec. Potential applications for solar observations and wide-field X-ray monitors are also briefly discussed. (invited reviews)

  19. High-speed classification of coherent X-ray diffraction patterns on the K computer for high-resolution single biomolecule imaging

    Energy Technology Data Exchange (ETDEWEB)

    Tokuhisa, Atsushi [RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Arai, Junya [The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Joti, Yasumasa [JASRI, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Ohno, Yoshiyuki; Kameyama, Toyohisa; Yamamoto, Keiji; Hatanaka, Masayuki; Gerofi, Balazs; Shimada, Akio; Kurokawa, Motoyoshi; Shoji, Fumiyoshi [RIKEN Advanced Institute for Computational Science, 7-1-26 Minatojima-minami-machi, Chuo-ku, Kobe, Hyogo 650-0047 (Japan); Okada, Kensuke [RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Sugimoto, Takashi [JASRI, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Yamaga, Mitsuhiro; Tanaka, Ryotaro [RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Yokokawa, Mitsuo; Hori, Atsushi [RIKEN Advanced Institute for Computational Science, 7-1-26 Minatojima-minami-machi, Chuo-ku, Kobe, Hyogo 650-0047 (Japan); Ishikawa, Yutaka, E-mail: ishikawa@is.s.u-tokyo.ac.jp [The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Hatsui, Takaki, E-mail: ishikawa@is.s.u-tokyo.ac.jp [RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Go, Nobuhiro [Japan Atomic Energy Agency, 8-1-7 Umemidai, Kizugawa, Kyoto 619-0215 (Japan)

    2013-11-01

    A code with an algorithm for high-speed classification of X-ray diffraction patterns has been developed. Results obtained for a set of 1 × 10{sup 6} simulated diffraction patterns are also reported. Single-particle coherent X-ray diffraction imaging using an X-ray free-electron laser has the potential to reveal the three-dimensional structure of a biological supra-molecule at sub-nanometer resolution. In order to realise this method, it is necessary to analyze as many as 1 × 10{sup 6} noisy X-ray diffraction patterns, each for an unknown random target orientation. To cope with the severe quantum noise, patterns need to be classified according to their similarities and average similar patterns to improve the signal-to-noise ratio. A high-speed scalable scheme has been developed to carry out classification on the K computer, a 10PFLOPS supercomputer at RIKEN Advanced Institute for Computational Science. It is designed to work on the real-time basis with the experimental diffraction pattern collection at the X-ray free-electron laser facility SACLA so that the result of classification can be feedback for optimizing experimental parameters during the experiment. The present status of our effort developing the system and also a result of application to a set of simulated diffraction patterns is reported. About 1 × 10{sup 6} diffraction patterns were successfully classificatied by running 255 separate 1 h jobs in 385-node mode.

  20. Monolithic CMOS imaging x-ray spectrometers

    Science.gov (United States)

    Kenter, Almus; Kraft, Ralph; Gauron, Thomas; Murray, Stephen S.

    2014-07-01

    The Smithsonian Astrophysical Observatory (SAO) in collaboration with SRI/Sarnoff is developing monolithic CMOS detectors optimized for x-ray astronomy. The goal of this multi-year program is to produce CMOS x-ray imaging spectrometers that are Fano noise limited over the 0.1-10keV energy band while incorporating the many benefits of CMOS technology. These benefits include: low power consumption, radiation "hardness", high levels of integration, and very high read rates. Small format test devices from a previous wafer fabrication run (2011-2012) have recently been back-thinned and tested for response below 1keV. These devices perform as expected in regards to dark current, read noise, spectral response and Quantum Efficiency (QE). We demonstrate that running these devices at rates ~> 1Mpix/second eliminates the need for cooling as shot noise from any dark current is greatly mitigated. The test devices were fabricated on 15μm, high resistivity custom (~30kΩ-cm) epitaxial silicon and have a 16 by 192 pixel format. They incorporate 16μm pitch, 6 Transistor Pinned Photo Diode (6TPPD) pixels which have ~40μV/electron sensitivity and a highly parallel analog CDS signal chain. Newer, improved, lower noise detectors have just been fabricated (October 2013). These new detectors are fabricated on 9μm epitaxial silicon and have a 1k by 1k format. They incorporate similar 16μm pitch, 6TPPD pixels but have ~ 50% higher sensitivity and much (3×) lower read noise. These new detectors have undergone preliminary testing for functionality in Front Illuminated (FI) form and are presently being prepared for back thinning and packaging. Monolithic CMOS devices such as these, would be ideal candidate detectors for the focal planes of Solar, planetary and other space-borne x-ray astronomy missions. The high through-put, low noise and excellent low energy response, provide high dynamic range and good time resolution; bright, time varying x-ray features could be temporally and

  1. High spatial resolution soft-x-ray microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Meyer-Ilse, W.; Medecki, H.; Brown, J.T. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    A new soft x-ray microscope (XM-1) with high spatial resolution has been constructed by the Center for X-ray Optics. It uses bending magnet radiation from beamline 6.1 at the Advanced Light Source, and is used in a variety of projects and applications in the life and physical sciences. Most of these projects are ongoing. The instrument uses zone plate lenses and achieves a resolution of 43 nm, measured over 10% to 90% intensity with a knife edge test sample. X-ray microscopy permits the imaging of relatively thick samples, up to 10 {mu}m thick, in water. XM-1 has an easy to use interface, that utilizes visible light microscopy to precisely position and focus the specimen. The authors describe applications of this device in the biological sciences, as well as in studying industrial applications including structured polymer samples.

  2. X-ray image intensifier photography

    International Nuclear Information System (INIS)

    Richter, K.; Angerstein, W.; Steinhardt, L.

    1980-01-01

    The present treatise on X-ray image intensifier photography starts with introductory remarks on the history of X-ray imaging and image intensifiers. In the physical-technological part especially the quality of image and the methods of its measurement are discussed in detail. The relevant equipment such as image intensifier cameras, X-ray television, video recorder and devices of display and evaluation of images are presented as well as problems of radiation doses and radiation protection. Based on 25,000 examinations of the digestive, the biliary and the urinary tract, resp., as well as of the blood vessels the applicability of the X-ray image intensifier photography and its diagnostic value are demonstrated in the medical part of the book

  3. Development of a High Resolution X-Ray Imaging Crystal Spectrometer for Measurement of Ion-Temperature and Rotation-Velocity Profiles in Fusion Energy Research Plasmas

    International Nuclear Information System (INIS)

    Hill, K.W.; Bitter, M.L.; Broennimann, Ch.; Eikenberry, E.F.; Ince-Cushman, A.; Lee, S.G.; Rice, J.E.; Scott, S.; Barnsley, R.

    2008-01-01

    A new imaging high resolution x-ray crystal spectrometer (XCS) has been developed to measure continuous profiles of ion temperature and rotation velocity in fusion plasmas. Following proof-of-principle tests on the Alcator C-Mod tokamak and the NSTX spherical tokamak, and successful testing of a new silicon, pixilated detector with 1MHz count rate capability per pixel, an imaging XCS is being designed to measure full profiles of T i and ν φ on C-Mod. The imaging XCS design has also been adopted for ITER. Ion-temperature uncertainty and minimum measurable rotation velocity are calculated for the C-Mod spectrometer. The affects of x-ray and nuclear-radiation background on the measurement uncertainties are calculated to predict performance on ITER

  4. X-ray imaging for security applications

    Science.gov (United States)

    Evans, J. Paul

    2004-01-01

    The X-ray screening of luggage by aviation security personnel may be badly hindered by the lack of visual cues to depth in an image that has been produced by transmitted radiation. Two-dimensional "shadowgraphs" with "organic" and "metallic" objects encoded using two different colors (usually orange and blue) are still in common use. In the context of luggage screening there are no reliable cues to depth present in individual shadowgraph X-ray images. Therefore, the screener is required to convert the 'zero depth resolution' shadowgraph into a three-dimensional mental picture to be able to interpret the relative spatial relationship of the objects under inspection. Consequently, additional cognitive processing is required e.g. integration, inference and memory. However, these processes can lead to serious misinterpretations of the actual physical structure being examined. This paper describes the development of a stereoscopic imaging technique enabling the screener to utilise binocular stereopsis and kinetic depth to enhance their interpretation of the actual nature of the objects under examination. Further work has led to the development of a technique to combine parallax data (to calculate the thickness of a target material) with the results of a basis material subtraction technique to approximate the target's effective atomic number and density. This has been achieved in preliminary experiments with a novel spatially interleaved dual-energy sensor which reduces the number of scintillation elements required by 50% in comparison to conventional sensor configurations.

  5. Submicron, soft x-ray fluorescence imaging

    International Nuclear Information System (INIS)

    La Fontaine, B.; MacDowell, A.A.; Tan, Z.; White, D.L.; Taylor, G.N.; Wood, O.R. II; Bjorkholm, J.E.; Tennant, D.M.; Hulbert, S.L.

    1995-01-01

    Submicron fluorescence imaging of soft x-ray aerial images, using a high resolution fluorescent crystal is reported. Features as small as 0.1 μm were observed using a commercially available single-crystal phosphor, STI-F10G (Star Tech Instruments Inc. P. O. Box 2536, Danbury, CT 06813-2536), excited with 139 A light. Its quantum efficiency was estimated to be 5--10 times that of sodium salicylate and to be constant over a broad spectral range from 30 to 400 A. A comparison with a terbium-activated yttrium orthosilicate fluorescent crystal is also presented. Several applications, such as the characterization of the aerial images produced by deep ultraviolet or extreme ultraviolet lithographic exposure tools, are envisaged

  6. Demonstrating Enabling Technologies for the High-Resolution Imaging Spectrometer of the Next NASA X-ray Astronomy Mission

    Science.gov (United States)

    Kilbourne, Caroline; Adams, J. S.; Bandler, S.; Chervenak, J.; Chiao, M.; Doriese, R.; Eckart, M.; Finkbeiner, F.; Fowler, J. W.; Hilton, G.; Irwin, K.; Kelley, R. L.; Moseley, S. J.; Porter, F. S.; Reintsema, C.; Sadleir, J.; Smith, S. J.; Swetz, D.; Ullom, J.

    2014-01-01

    NASA/GSFC and NIST-Boulder are collaborating on a program to advance superconducting transition-edge sensor (TES) microcalorimeter technology toward Technology Readiness Level (TRL) 6. The technology development for a TES imaging X-ray microcalorimeter spectrometer (TES microcalorimeter arrays and time-division multiplexed SQUID readout) is now at TRL 4, as evaluated by both NASA and the European Space Agency (ESA) during mission formulation for the International X-ray Observatory (IXO). We will present the status of the development program. The primary goal of the current project is to advance the core X-ray Microcalorimeter Spectrometer (XMS) detector-system technologies to a demonstration of TRL 5 in 2014. Additional objectives are to develop and demonstrate two important related technologies to at least TRL 4: position-sensitive TES devices and code-division multiplexing (CDM). These technologies have the potential to expand significantly the range of possible instrument optimizations; together they allow an expanded focal plane and higher per-pixel count rates without greatly increasing mission resources. The project also includes development of a design concept and critical technologies needed for the thermal, electrical, and mechanical integration of the detector and readout components into the focal-plane assembly. A verified design concept for the packaging of the focal-plane components will be needed for the detector system eventually to advance to TRL 6. Thus, the current project is a targeted development and demonstration program designed to make significant progress in advancing the XMS detector system toward TRL 6, establishing its readiness for a range of possible mission implementations.

  7. The X-ray imager on AXO

    DEFF Research Database (Denmark)

    Budtz-Jørgensen, Carl; Kuvvetli, Irfan; Westergaard, Niels Jørgen Stenfeldt

    2001-01-01

    DSRI has initiated a development program of CZT X-ray and gamma-ray detectors employing strip readout techniques. A dramatic improvement of the energy response was found operating the detectors as the so-called drift detectors. For the electronic readout, modern ASIC chips were investigated....... Modular design and the low-power electronics will make large area detectors using the drift strip method feasible. The performance of a prototype CZT system will be presented and discussed. One such detector system has been proposed for future space missions: the X-Ray Imager (XRI) on the Atmospheric X-ray...... Observatory (AXO), which is a mission proposed to the Danish Small Satellite Program and is dedicated to observations of X-ray generating processes in the Earth's atmosphere. Of special interest will be simultaneous optical and X-ray observations of sprites that are flashes appearing directly above an active...

  8. X-ray phase-contrast imaging

    Science.gov (United States)

    Endrizzi, Marco

    2018-01-01

    X-ray imaging is a standard tool for the non-destructive inspection of the internal structure of samples. It finds application in a vast diversity of fields: medicine, biology, many engineering disciplines, palaeontology and earth sciences are just few examples. The fundamental principle underpinning the image formation have remained the same for over a century: the X-rays traversing the sample are subjected to different amount of absorption in different parts of the sample. By means of phase-sensitive techniques it is possible to generate contrast also in relation to the phase shifts imparted by the sample and to extend the capabilities of X-ray imaging to those details that lack enough absorption contrast to be visualised in conventional radiography. A general overview of X-ray phase contrast imaging techniques is presented in this review, along with more recent advances in this fast evolving field and some examples of applications.

  9. Improvements in x-ray image converters and phosphors

    International Nuclear Information System (INIS)

    Rabatin, J.G.

    1981-01-01

    Improvements to an X-ray image converter comprising crystals of rare earth phosphor admixtures are described. The phosphor admixtures utilize thulium-activated lanthanum and/or gadolinium oxyhalide phosphor material to increase the relative speed and resolution of an X-ray image compared with conventional rare earth phosphors. Examples of various radiographic screens containing one or more of the phosphor materials are given. (U.K.)

  10. Ultrafast secondary emission x-ray imaging detectors

    International Nuclear Information System (INIS)

    Akkerman, A.; Gibrekhterman, A.; Majewski, S.

    1991-07-01

    Fast high accuracy, x-ray imaging at high photon flux can be achieved when coupling thin solid convertors to gaseous electron multipliers, operating at low gas pressures. Secondary electron emitted from the convertor foil are multiplied in several successive amplification elements. The obvious advantage of solid x-ray detectors, as compared to gaseous conversion, are the production of parallax-free images and the fast (subnanoseconds) response. These x-ray detectors have many potential applications in basic and applied research. Of particular interest is the possibility of an efficient and ultrafast high resolution imaging of transition radiation,with a reduced dE/dx background. We present experimental results on the operation of the secondary emission x-ray (SEX) detectors, their detection efficiency, localization and time resolution. The experimental work is accompanied by mathematical modelling and computer simulation of transition radiation detectors based on CsI transition radiation convertors. (author)

  11. Hard X-ray Microscopic Imaging Of Human Breast Tissues

    Science.gov (United States)

    Park, Sung H.; Kim, Hong T.; Kim, Jong K.; Jheon, Sang H.; Youn, Hwa S.

    2007-01-01

    X-ray microscopy with synchrotron radiation will be a useful tool for innovation of x-ray imaging in clinical and laboratory settings. It helps us observe detailed internal structure of material samples non-invasively in air. And, it also has the potential to solve some tough problems of conventional breast imaging if it could evaluate various conditions of breast tissue effectively. A new hard x-ray microscope with a spatial resolution better than 100 nm was installed at Pohang Light Source, a third generation synchrotron radiation facility in Pohang, Korea. The x-ray energy was set at 6.95 keV, and the x-ray beam was monochromatized by W/B4C monochromator. Condenser and objective zone plates were used as x-ray lenses. Zernike phase plate next to condenser zone plate was introduced for improved contrast imaging. The image of a sample was magnified 30 times by objective zone plate and 20 times by microscope objective, respectively. After additional 10 times digital magnification, the total magnifying power was up to 6000 times in the end. Phase contrast synchrotron images of 10-μm-thick female breast tissue of the normal, fibroadenoma, fibrocystic change and carcinoma cases were obtained. By phase contrast imaging, hard x-rays enable us to observe many structures of breast tissue without sample preparations such as staining or fixation.

  12. Hard X-ray Microscopic Imaging Of Human Breast Tissues

    International Nuclear Information System (INIS)

    Park, Sung H.; Kim, Hong T.; Kim, Jong K.; Jheon, Sang H.; Youn, Hwa S.

    2007-01-01

    X-ray microscopy with synchrotron radiation will be a useful tool for innovation of x-ray imaging in clinical and laboratory settings. It helps us observe detailed internal structure of material samples non-invasively in air. And, it also has the potential to solve some tough problems of conventional breast imaging if it could evaluate various conditions of breast tissue effectively. A new hard x-ray microscope with a spatial resolution better than 100 nm was installed at Pohang Light Source, a third generation synchrotron radiation facility in Pohang, Korea. The x-ray energy was set at 6.95 keV, and the x-ray beam was monochromatized by W/B4C monochromator. Condenser and objective zone plates were used as x-ray lenses. Zernike phase plate next to condenser zone plate was introduced for improved contrast imaging. The image of a sample was magnified 30 times by objective zone plate and 20 times by microscope objective, respectively. After additional 10 times digital magnification, the total magnifying power was up to 6000 times in the end. Phase contrast synchrotron images of 10-μm-thick female breast tissue of the normal, fibroadenoma, fibrocystic change and carcinoma cases were obtained. By phase contrast imaging, hard x-rays enable us to observe many structures of breast tissue without sample preparations such as staining or fixation

  13. Diffraction enhanced x-ray imaging

    International Nuclear Information System (INIS)

    Thomlinson, W.; Zhong, Z.; Johnston, R.E.; Sayers, D.

    1997-09-01

    Diffraction enhanced imaging (DEI) is a new x-ray radiographic imaging modality using synchrotron x-rays which produces images of thick absorbing objects that are almost completely free of scatter. They show dramatically improved contrast over standard imaging applied to the same phantoms. The contrast is based not only on attenuation but also the refraction and diffraction properties of the sample. The diffraction component and the apparent absorption component (absorption plus extinction contrast) can each be determined independently. This imaging method may improve the image quality for medical applications such as mammography

  14. A high resolution position sensitive X-ray MWPC for small angle X-ray diffraction

    International Nuclear Information System (INIS)

    Bateman, J.E.; Connolly, J.F.; Stephenson, R.; Tappern, G.J.

    1981-02-01

    A small sealed-off delay line readout MWPC X-ray detector has been designed and built for small angle X-ray diffraction applications. Featuring a sensitive area of 100 mm x 25 mm it yields a spatial resolution of 0.13 mm (standard deviation) with a high rate capability and good quantum efficiency for copper K radiation. (author)

  15. A simulation study of high-resolution x-ray computed tomography imaging using irregular sampling with a photon-counting detector

    International Nuclear Information System (INIS)

    Lee, Seungwan; Choi, Yu-Na; Kim, Hee-Joung

    2013-01-01

    The purpose of this study was to improve the spatial resolution for the x-ray computed tomography (CT) imaging with a photon-counting detector using an irregular sampling method. The geometric shift-model of detector was proposed to produce the irregular sampling pattern and increase the number of samplings in the radial direction. The conventional micro-x-ray CT system and the novel system with the geometric shift-model of detector were simulated using analytic and Monte Carlo simulations. The projections were reconstructed using filtered back-projection (FBP), algebraic reconstruction technique (ART), and total variation (TV) minimization algorithms, and the reconstructed images were compared in terms of normalized root-mean-square error (NRMSE), full-width at half-maximum (FWHM), and coefficient-of-variation (COV). The results showed that the image quality improved in the novel system with the geometric shift-model of detector, and the NRMSE, FWHM, and COV were lower for the images reconstructed using the TV minimization technique in the novel system with the geometric shift-model of detector. The irregular sampling method produced by the geometric shift-model of detector can improve the spatial resolution and reduce artifacts and noise for reconstructed images obtained from an x-ray CT system with a photon-counting detector. -- Highlights: • We proposed a novel sampling method based on a spiral pattern to improve the spatial resolution. • The novel sampling method increased the number of samplings in the radial direction. • The spatial resolution was improved by the novel sampling method

  16. High resolution projection X-ray microscope equipped with fluorescent X-ray analyzer and its applications

    International Nuclear Information System (INIS)

    Minami, K; Saito, Y; Kai, H; Shirota, K; Yada, K

    2009-01-01

    We have newly developed an open type fine-focus X-ray tube 'TX-510' to realize a spatial resolution of 50nm and to radiate low energy characteristic X-rays for giving high absorption contrast to images of microscopic organisms. The 'TX-510' employs a ZrO/W(100) Schottky emitter and an 'In-Lens Field Emission Gun'. The key points of the improvements are (1) reduced spherical aberration coefficient of magnetic objective lens, (2) easy and accurate focusing, (3) newly designed astigmatism compensator, (4) segmented thin film target for interchanging the target materials by electron beam shift and (5) fluorescent X-ray analysis system.

  17. X-ray imaging in the laser-fusion program

    International Nuclear Information System (INIS)

    McCall, G.H.

    1977-01-01

    Imaging devices which are used or planned for x-ray imaging in the laser-fusion program are discussed. Resolution criteria are explained, and a suggestion is made for using the modulation transfer function as a uniform definition of resolution for these devices

  18. Dilation x-ray imager a new∕faster gated x-ray imager for the NIF.

    Science.gov (United States)

    Nagel, S R; Hilsabeck, T J; Bell, P M; Bradley, D K; Ayers, M J; Barrios, M A; Felker, B; Smith, R F; Collins, G W; Jones, O S; Kilkenny, J D; Chung, T; Piston, K; Raman, K S; Sammuli, B; Hares, J D; Dymoke-Bradshaw, A K L

    2012-10-01

    As the yield on implosion shots increases it is expected that the peak x-ray emission reduces to a duration with a FWHM as short as 20 ps for ∼7 × 10(18) neutron yield. However, the temporal resolution of currently used gated x-ray imagers on the NIF is 40-100 ps. We discuss the benefits of the higher temporal resolution for the NIF and present performance measurements for dilation x-ray imager, which utilizes pulse-dilation technology [T. J. Hilsabeck et al., Rev. Sci. Instrum. 81, 10E317 (2010)] to achieve x-ray imaging with temporal gate times below 10 ps. The measurements were conducted using the COMET laser, which is part of the Jupiter Laser Facility at the Lawrence Livermore National Laboratory.

  19. Dilation x-ray imager a new/faster gated x-ray imager for the NIF

    Energy Technology Data Exchange (ETDEWEB)

    Nagel, S. R.; Bell, P. M.; Bradley, D. K.; Ayers, M. J.; Barrios, M. A.; Felker, B.; Smith, R. F.; Collins, G. W.; Jones, O. S.; Piston, K.; Raman, K. S. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States); Hilsabeck, T. J.; Kilkenny, J. D.; Chung, T.; Sammuli, B. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Hares, J. D.; Dymoke-Bradshaw, A. K. L. [Kentech Instruments Ltd., Wallingford, Oxfordshire OX10 (United Kingdom)

    2012-10-15

    As the yield on implosion shots increases it is expected that the peak x-ray emission reduces to a duration with a FWHM as short as 20 ps for {approx}7 Multiplication-Sign 10{sup 18} neutron yield. However, the temporal resolution of currently used gated x-ray imagers on the NIF is 40-100 ps. We discuss the benefits of the higher temporal resolution for the NIF and present performance measurements for dilation x-ray imager, which utilizes pulse-dilation technology [T. J. Hilsabeck et al., Rev. Sci. Instrum. 81, 10E317 (2010)] to achieve x-ray imaging with temporal gate times below 10 ps. The measurements were conducted using the COMET laser, which is part of the Jupiter Laser Facility at the Lawrence Livermore National Laboratory.

  20. High-resolution X-ray television and high-resolution video recorders

    International Nuclear Information System (INIS)

    Haendle, J.; Horbaschek, H.; Alexandrescu, M.

    1977-01-01

    The improved transmission properties of the high-resolution X-ray television chain described here make it possible to transmit more information per television image. The resolution in the fluoroscopic image, which is visually determined, depends on the dose rate and the inertia of the television pick-up tube. This connection is discussed. In the last few years, video recorders have been increasingly used in X-ray diagnostics. The video recorder is a further quality-limiting element in X-ray television. The development of function patterns of high-resolution magnetic video recorders shows that this quality drop may be largely overcome. The influence of electrical band width and number of lines on the resolution in the X-ray television image stored is explained in more detail. (orig.) [de

  1. Spectroscopic imaging, diffraction, and holography with x-ray photoemission

    International Nuclear Information System (INIS)

    1992-02-01

    X-ray probes are capable of determining the spatial structure of an atom in a specific chemical state, over length scales from about a micron all the way down to atomic resolution. Examples of these probes include photoemission microscopy, energy-dependent photoemission diffraction, photoelectron holography, and X-ray absorption microspectroscopy. Although the method of image formation, chemical-state sensitivity, and length scales can be very different, these X-ray techniques share a common goal of combining a capability for structure determination with chemical-state specificity. This workshop will address recent advances in holographic, diffraction, and direct imaging techniques using X-ray photoemission on both theoretical and experimental fronts. A particular emphasis will be on novel structure determinations with atomic resolution using photoelectrons

  2. Spectroscopic imaging, diffraction, and holography with x-ray photoemission

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    X-ray probes are capable of determining the spatial structure of an atom in a specific chemical state, over length scales from about a micron all the way down to atomic resolution. Examples of these probes include photoemission microscopy, energy-dependent photoemission diffraction, photoelectron holography, and X-ray absorption microspectroscopy. Although the method of image formation, chemical-state sensitivity, and length scales can be very different, these X-ray techniques share a common goal of combining a capability for structure determination with chemical-state specificity. This workshop will address recent advances in holographic, diffraction, and direct imaging techniques using X-ray photoemission on both theoretical and experimental fronts. A particular emphasis will be on novel structure determinations with atomic resolution using photoelectrons.

  3. X-ray image subtracting system

    International Nuclear Information System (INIS)

    Wesbey, W.H.; Keyes, G.S.; Georges, J.-P.J.

    1982-01-01

    An X-ray image subtracting system for making low contrast structures in the images more conspicuous is described. An X-ray source projects successive high and low energy X-ray beam pulses through a body and the resultant X-ray images are converted to optical images. Two image pick-up devices such as TV cameras that have synchronously operated shutters receive the alternate images and convert them to corresponding analog video signals. In some embodiments, the analog signals are converted to a matrix of digital pixel signals that are variously processed and subtracted and converted to signals for driving a TV monitor display and analog storage devices. In other embodiments the signals are processed and subtracted in analog form for display. The high and low energy pulses can follow each other immediately so good registration between subtracted images is obtainable even though the anatomy is in motion. The energy levels of the X-ray pulses are chosen to maximize the difference in attenuation between the anatomical structure which is to be subtracted out and that which remains. (author)

  4. Design of a normal incidence multilayer imaging X-ray microscope

    Science.gov (United States)

    Shealy, David L.; Gabardi, David R.; Hoover, Richard B.; Walker, Arthur B. C., Jr.; Lindblom, Joakim F.

    Normal incidence multilayer Cassegrain X-ray telescopes were flown on the Stanford/MSFC Rocket X-ray Spectroheliograph. These instruments produced high spatial resolution images of the sun and conclusively demonstrated that doubly reflecting multilayer X-ray optical systems are feasible. The images indicated that aplanatic imaging soft X-ray/EUV microscopes should be achievable using multilayer optics technology. A doubly reflecting normal incidence multilayer imaging X-ray microscope based on the Schwarzschild configuration has been designed. The design of the microscope and the results of the optical system ray trace analysis are discussed. High resolution aplanatic imaging X-ray microscopes using normal incidence multilayer X-ray mirrors should have many important applications in advanced X-ray astronomical instrumentation, X-ray lithography, biological, biomedical, metallurgical, and laser fusion research.

  5. X-ray imaging with toroidal mirror

    International Nuclear Information System (INIS)

    Aoki, Sadao; Sakayanagi, Yoshimi

    1978-01-01

    X-ray imaging is made with a single toroidal mirror or two successive toroidal mirrors. Geometrical images at the Gaussian image plane are described by the ray trace. Application of a single toroidal mirror to small-angle scattering is presented. (author)

  6. Spectral and imaging characterization of tabletop X-ray lasers

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, J.; Osterheld, A.L.; Moon, S.J.; Fournier, K.B.; Nilsen, J. [Lawrence Livermore National Lab., CA (United States); Faenov, A.Ya.; Pikuz, T.A.; Skobelev, I.Yu.; Magunov, A.I. [Lawrence Livermore National Lab., CA (United States); MISDC of VNIIFTRI, Mendeleevo (Russian Federation); Shlyaptsev, V.N. [Lawrence Livermore National Lab., CA (United States); California Univ., Davis, CA (United States). DAS

    2001-07-01

    We have performed L-shell spectroscopy and one-dimensional (1-D) imaging of a line focus plasma from a laser-heated Fe polished slab using the tabletop COMET laser system at the Lawrence Livermore National Laboratory. These plasmas are used to generate a Ne-like Fe transient gain X-ray laser that is recorded simultaneously. A spherically-curved crystal spectrometer gives high resolution X-ray spectra of the n=3-2 and n=4-2 resonance lines with 1-D spatial resolution along the line focus. Spectra are presented for different laser pulse conditions. In addition, a variety of X-ray imaging techniques are described. We discuss imaging results from a double-slit X-ray camera with a spherically-curved crystal spectrometer. We show a high resolution Fe K-{alpha} spectrum from the X-ray laser target that indicates the presence of hot electrons in the X-ray laser plasma. (orig.)

  7. Development of high resolution x-ray CT technique for irradiated fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Ishimi, Akihiro; Katsuyama, Kozo; Maeda, Koji; Asaga, Takeo [Japan Atomic Energy Agency, Oarai Research and Development Center, Oarai, Ibaraki (Japan)

    2012-03-15

    High X-ray CT technique was developed to observe the irradiation performance of FBR fuel assembly and MOX fuel. In this technique, the high energy X-ray pulse (12MeV) was used synchronizing detection system with the X-ray pulse to reduce the effect of the gamma ray emissions from the irradiated fuel assembly. In this study, this technique was upgraded to obtain high resolution X-ray CT image. In this upgrading, the collimator which had slit width of 0.1 mm and X-ray detector of a highly sensitive silicon semiconductor detector (100 channels) was introduced in the X-ray CT system. As a result of these developments, high resolution X-ray CT images could be obtained on the transverse cross section of irradiated fuel assembly. (author)

  8. X-ray imaging with compound refractive lens and microfocus X-ray tube

    OpenAIRE

    Pina, Ladislav; Dudchik, Yury; Jelinek, Vaclav; Sveda, Libor; Marsik, Jiri; Horvath, Martin; Petr, Ondrej

    2008-01-01

    Compound refractive lenses (CRL), consisting of a lot number in-line concave microlenses made of low-Z material were studied. Lenses with focal length 109 mm and 41 mm for 8-keV X-rays, microfocus X-ray tube and X-ray CCD camera were used in experiments. Obtained images show intensity distribution of magnified microfocus X-ray source focal spot. Within the experiments, one lens was also used as an objective lens of the X-ray microscope, where the copper anode X-ray microfocus tube served as a...

  9. Quantitative Phase Imaging Using Hard X Rays

    International Nuclear Information System (INIS)

    Nugent, K.A.; Gureyev, T.E.; Cookson, D.J.; Paganin, D.; Barnea, Z.

    1996-01-01

    The quantitative imaging of a phase object using 16keV xrays is reported. The theoretical basis of the techniques is presented along with its implementation using a synchrotron x-ray source. We find that our phase image is in quantitative agreement with independent measurements of the object. copyright 1996 The American Physical Society

  10. X-ray fluorescence imaging with polycapillary X-ray optics

    International Nuclear Information System (INIS)

    Yonehara, Tasuku; Yamaguchi, Makoto; Tsuji, Kouichi

    2010-01-01

    X-ray fluorescence spectrometry imaging is a powerful tool to provide information about the chemical composition and elemental distribution of a specimen. X-ray fluorescence spectrometry images were conventionally obtained by using a μ-X-ray fluorescence spectrometry spectrometer, which requires scanning a sample. Faster X-ray fluorescence spectrometry imaging would be achieved by eliminating the process of sample scanning. Thus, we developed an X-ray fluorescence spectrometry imaging instrument without sample scanning by using polycapillary X-ray optics, which had energy filter characteristics caused by the energy dependence of the total reflection phenomenon. In the present paper, we show that two independent straight polycapillary X-ray optics could be used as an energy filter of X-rays for X-ray fluorescence. Only low energy X-rays were detected when the angle between the two optical axes was increased slightly. Energy-selective X-ray fluorescence spectrometry images with projection mode were taken by using an X-ray CCD camera equipped with two polycapillary optics. It was shown that Fe Kα (6.40 keV) and Cu Kα (8.04 keV) could be discriminated for Fe and Cu foils.

  11. The Imaging X-ray Polarimetry Explorer (IXPE

    Directory of Open Access Journals (Sweden)

    Martin C. Weisskopf

    Full Text Available The Imaging X-ray Polarimetry Explorer (IXPE expands observation space by simultaneously adding polarization to the array of X-ray source properties currently measured (energy, time, and location. IXPE will thus open new dimensions for understanding how X-ray emission is produced in astrophysical objects, especially in systems under extreme physical conditions. Keywords: X-ray astronomy, X-ray polarimetry, X-ray imaging

  12. Simulation the spatial resolution of an X-ray imager based on zinc oxide nanowires in anodic aluminium oxide membrane by using MCNP and OPTICS Codes

    Science.gov (United States)

    Samarin, S. N.; Saramad, S.

    2018-05-01

    The spatial resolution of a detector is a very important parameter for x-ray imaging. A bulk scintillation detector because of spreading of light inside the scintillator does't have a good spatial resolution. The nanowire scintillators because of their wave guiding behavior can prevent the spreading of light and can improve the spatial resolution of traditional scintillation detectors. The zinc oxide (ZnO) scintillator nanowire, with its simple construction by electrochemical deposition in regular hexagonal structure of Aluminum oxide membrane has many advantages. The three dimensional absorption of X-ray energy in ZnO scintillator is simulated by a Monte Carlo transport code (MCNP). The transport, attenuation and scattering of the generated photons are simulated by a general-purpose scintillator light response simulation code (OPTICS). The results are compared with a previous publication which used a simulation code of the passage of particles through matter (Geant4). The results verify that this scintillator nanowire structure has a spatial resolution less than one micrometer.

  13. Multilayer optics for monochromatic high-resolution X-ray imaging diagnostic in a broad photon energy range from 2 keV to 22 keV

    International Nuclear Information System (INIS)

    Troussel, Ph.; Dennetiere, D.; Maroni, R.; Høghøj, P.; Hedacq, S.; Cibik, L.; Krumrey, M.

    2014-01-01

    The “Commissariat à l’énergie atomique et aux énergies alternatives” (CEA) studies and designs advanced X-ray diagnostics to probe dense plasmas produced at the future Laser MegaJoule (LMJ) facility. Mainly for X-ray imaging with high spatial resolution, different types of multilayer mirrors were developed to provide broadband X-ray reflectance at grazing incidence. These coatings are deposited on two toroidal mirror substrates that are then mounted into a Wolter-type geometry (working at a grazing angle of 0.45°) to realize an X-ray microscope. Non-periodic (depth graded) W/Si multilayer can be used in the broad photon energy range from 2 keV to 22 keV. A third flat mirror can be added for the spectral selection of the microscope. This mirror is coated with a Mo/Si multilayer for which the d-spacing varies in the longitudinal direction to satisfy the Bragg condition within the angular acceptance of the microscope and also to compensate the angular dispersion due to the field of the microscope. We present a study of such a so-called Göbel mirror which was optimized for photon energy of 10.35 keV. The three mirrors were coated using magnetron sputtering technology by Xenocs SA. The reflectance in the entire photon energy range was determined in the laboratory of the Physikalisch-Technische Bundesanstalt (PTB) at the synchrotron radiation facility BESSY II in Berlin

  14. Multilayer optics for monochromatic high-resolution X-ray imaging diagnostic in a broad photon energy range from 2 keV to 22 keV

    Energy Technology Data Exchange (ETDEWEB)

    Troussel, Ph., E-mail: philippe.troussel@cea.fr [CEA, DAM, DIF, F-91297 Arpajon (France); Dennetiere, D. [Synchrotron Soleil, L’orme des Merisiers, 91190 Saint-Aubin (France); Maroni, R. [CEA, DAM, DIF, F-91297 Arpajon (France); Høghøj, P.; Hedacq, S. [Xenocs SA, 19, rue François Blumet, F-38360 Sassenage (France); Cibik, L.; Krumrey, M. [Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, 10587 Berlin (Germany)

    2014-12-11

    The “Commissariat à l’énergie atomique et aux énergies alternatives” (CEA) studies and designs advanced X-ray diagnostics to probe dense plasmas produced at the future Laser MegaJoule (LMJ) facility. Mainly for X-ray imaging with high spatial resolution, different types of multilayer mirrors were developed to provide broadband X-ray reflectance at grazing incidence. These coatings are deposited on two toroidal mirror substrates that are then mounted into a Wolter-type geometry (working at a grazing angle of 0.45°) to realize an X-ray microscope. Non-periodic (depth graded) W/Si multilayer can be used in the broad photon energy range from 2 keV to 22 keV. A third flat mirror can be added for the spectral selection of the microscope. This mirror is coated with a Mo/Si multilayer for which the d-spacing varies in the longitudinal direction to satisfy the Bragg condition within the angular acceptance of the microscope and also to compensate the angular dispersion due to the field of the microscope. We present a study of such a so-called Göbel mirror which was optimized for photon energy of 10.35 keV. The three mirrors were coated using magnetron sputtering technology by Xenocs SA. The reflectance in the entire photon energy range was determined in the laboratory of the Physikalisch-Technische Bundesanstalt (PTB) at the synchrotron radiation facility BESSY II in Berlin.

  15. Multilayer optics for monochromatic high-resolution X-ray imaging diagnostic in a broad photon energy range from 2 keV to 22 keV

    Science.gov (United States)

    Troussel, Ph.; Dennetiere, D.; Maroni, R.; Høghøj, P.; Hedacq, S.; Cibik, L.; Krumrey, M.

    2014-12-01

    The "Commissariat à l'énergie atomique et aux énergies alternatives" (CEA) studies and designs advanced X-ray diagnostics to probe dense plasmas produced at the future Laser MegaJoule (LMJ) facility. Mainly for X-ray imaging with high spatial resolution, different types of multilayer mirrors were developed to provide broadband X-ray reflectance at grazing incidence. These coatings are deposited on two toroidal mirror substrates that are then mounted into a Wolter-type geometry (working at a grazing angle of 0.45°) to realize an X-ray microscope. Non-periodic (depth graded) W/Si multilayer can be used in the broad photon energy range from 2 keV to 22 keV. A third flat mirror can be added for the spectral selection of the microscope. This mirror is coated with a Mo/Si multilayer for which the d-spacing varies in the longitudinal direction to satisfy the Bragg condition within the angular acceptance of the microscope and also to compensate the angular dispersion due to the field of the microscope. We present a study of such a so-called Göbel mirror which was optimized for photon energy of 10.35 keV. The three mirrors were coated using magnetron sputtering technology by Xenocs SA. The reflectance in the entire photon energy range was determined in the laboratory of the Physikalisch-Technische Bundesanstalt (PTB) at the synchrotron radiation facility BESSY II in Berlin.

  16. Wide-area phase-contrast X-ray imaging using large X-ray interferometers

    Energy Technology Data Exchange (ETDEWEB)

    Momose, Atsushi E-mail: momose@exp.t.u-tokyo.ac.jp; Takeda, Tohoru; Yoneyama, Akio; Koyama, Ichiro; Itai, Yuji

    2001-07-21

    Large X-ray interferometers are developed for phase-contrast X-ray imaging aiming at medical applications. A monolithic X-ray interferometer and a separate one are studied, and currently a 25 mmx20 mm view area can be generated. This paper describes the strategy of our research program and some recent developments.

  17. Wide-area phase-contrast X-ray imaging using large X-ray interferometers

    Science.gov (United States)

    Momose, Atsushi; Takeda, Tohoru; Yoneyama, Akio; Koyama, Ichiro; Itai, Yuji

    2001-07-01

    Large X-ray interferometers are developed for phase-contrast X-ray imaging aiming at medical applications. A monolithic X-ray interferometer and a separate one are studied, and currently a 25 mm×20 mm view area can be generated. This paper describes the strategy of our research program and some recent developments.

  18. A theoretical and experimental evaluation of the microangiographic fluoroscope: A high-resolution region-of-interest x-ray imager

    International Nuclear Information System (INIS)

    Jain, Amit; Bednarek, D. R.; Ionita, Ciprian; Rudin, S.

    2011-01-01

    Purpose: The increasing need for better image quality and high spatial resolution for successful endovascular image-guided interventions (EIGIs) and the inherent limitations of the state-of-the-art detectors provide motivation to develop a detector system tailored to the specific, demanding requirements of neurointerventional applications.Method: A microangiographic fluoroscope (MAF) was developed to serve as a high-resolution, region-of-interest (ROI) x-ray imaging detector in conjunction with large lower-resolution full field-of-view (FOV) state-of-the-art x-ray detectors. The newly developed MAF is an indirect x-ray imaging detector capable of providing real-time images (30 frames per second) with high-resolution, high sensitivity, no lag and low instrumentation noise. It consists of a CCD camera coupled to a Gen 2 dual-stage microchannel plate light image intensifier (LII) through a fiber-optic taper. A 300 μm thick CsI(Tl) phosphor serving as the front end is coupled to the LII. The LII is the key component of the MAF and the large variable gain provided by it enables the MAF to operate as a quantum-noise-limited detector for both fluoroscopy and angiography. Results: The linear cascade model was used to predict the theoretical performance of the MAF, and the theoretical prediction showed close agreement with experimental findings. Linear system metrics such as MTF and DQE were used to gauge the detector performance up to 10 cycles/mm. The measured zero frequency DQE(0) was 0.55 for an RQA5 spectrum. A total of 21 stages were identified for the whole imaging chain and each stage was characterized individually. Conclusions: The linear cascade model analysis provides insight into the imaging chain and may be useful for further development of the MAF detector. The preclinical testing of the prototype detector in animal procedures is showing encouraging results and points to the potential for significant impact on EIGIs when used in conjunction with a state

  19. Digital X-ray imager

    International Nuclear Information System (INIS)

    1998-01-01

    The global objective of this cooperation was to lower the cost and improve the quality of breast health care in the United States. We planned to achieve it by designing a very high performance digital radiography unit for breast surgical specimen radiography in the operating room. These technical goals needed to be achieved at reasonable manufacturing costs to enable MedOptics to achieve high market penetration at a profit. Responsibility for overall project execution rested with MedOptics. MedOptics fabricated and demonstrated hardware, and selected components and handled the overall integration. After completion of this CRADA, MedOptics worked with collaborators to demonstrate clinical performance and utility. Finally, the company marketed the device. LLNL convened a multi-directorate expert panel for an intensive review of MedOptics point design. A written brief of panel conclusions and recommendations was prepared. In addition, LLNL was responsible for: computationally simulating the effects of varying source voltage and filtering (predicting the required dynamic range for the detector); evaluating CsI:Tl, CdWO4 and scintillating glass as image converters; recommending image enhancement algorithms. The LLNL modeling results guided the design and experimental elements of the project. The Laboratory's unique array of sources and detectors was employed to resolve specific technical questions. Our image processing expertise was applied to the selection of enhancement tools for image display

  20. Advanced imaging technology using carbon nanotube x ray source

    International Nuclear Information System (INIS)

    Choi, Hae Young; Seol, Seung Kown; Kim, Jaehoon; Yoo, Seung Hoon; Kim, Jong Uk

    2008-01-01

    Recently, X ray imaging technology is a useful and leading medical diagnostic tool for healthcare professionals to diagnose disease in human body. CNTs(i.e. carbon nanotubes)are used in many applications like FED, Micro wave amplifier, X ray source, etc. because of its suitable electrical, chemical and physical properties. Specially, CNTs are well used electron emitters for x ray source. Conventionally, thermionic type of tungsten filament x ray tube is widely employed in the field of bio medical and industrial application fields. However, intrinsic problems such as, poor emission efficiency and low imaging resolution cause the limitation of use of the x ray tube. To fulfill the current market requirement specifically for medical diagnostic field, we have developed rather a portable and compact CNT based x ray source in which high imaging resolution is provided. Electron sources used in X ray tubes should be well focused to the anode target for generation of high quality x ray. In this study, Pierce type x ray generation module was tested based its simulation results using by OPERA 3D code. Pierce type module is composed of cone type electrical lens with its number of them and inner angles of them that shows different results with these parameters. And some preliminary images obtained using the CNT x ray source were obtained. The represented images are the finger bone and teeth in human body. It is clear that the trabeculation shape is observed in finger bone. To obtain the finger bone image, tube currents of 250A at 42kV tube voltage was applied. The human tooth image, however, is somewhat unclear because the supplied voltage to the tube was limited to max. 50kV in the system developed. It should be noted that normally 60∼70kV of tube voltage is supplied in dental imaging. Considering these it should be emphasized that if the tube voltage is over 60kV then clearer image is possible. In this paper, we are discussed comparing between these experiment results and

  1. High-resolution X-ray diffraction studies of multilayers

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Hornstrup, Allan; Schnopper, H. W.

    1988-01-01

    High-resolution X-ray diffraction studies of the perfection of state-of-the-art multilayers are presented. Data were obtained using a triple-axis perfect-crystal X-ray diffractometer. Measurements reveal large-scale figure errors in the substrate. A high-resolution triple-axis set up is required...

  2. High-speed image converter x-ray studies

    International Nuclear Information System (INIS)

    Bryukhnevitch, G.I.; Kas'yanov, Yu.S.; Korobkin, V.V.; Prokhorov, A.M.; Stepanov, B.M.; Chevokin, V.K.; Schelev, M.Ya.

    1975-01-01

    Two X-ray high-speed image-converter cameras (ICC) have been developed. In the first one a soft X-ray radiation is converted into visible light with the aid of a 0.5ns response time, plastic scintillator. The second camera incorporates a photocathode which is sensitive to visible and X-ray radiation. Its calculated temporal resolution approaches 5 to 7ps. Both developed cameras were employed for studies of X-ray radiation emitted by laser plasma. For the smooth nanosecond excited laser pulses, a noticeable amplitude modulation was recorded in all laser pulses reflected by plasma as well as in each third pulse of X-ray plasma radiation. It was also observed that the duration of X-ray plasma radiation is 20 to 40% shorter than that of the incident nanosecond laser pulses and this duration being 3 to 6 times longer than that of the picosecond irradiating pulses. The half-width of the recorded X-ray plasma pulses was 30 to 60ps. (author)

  3. Ultra high resolution soft x-ray tomography

    International Nuclear Information System (INIS)

    Haddad, W.S.; Trebes, J.E.; Goodman, D.M.; Lee, H.R.; McNulty, I.; Zalensky, A.O.

    1995-01-01

    Ultra high resolution three dimensional images of a microscopic test object were made with soft x-rays using a scanning transmission x-ray microscope. The test object consisted of two different patterns of gold bars on silicon nitride windows that were separated by ∼5 microm. A series of nine 2-D images of the object were recorded at angles between -50 to +55 degrees with respect to the beam axis. The projections were then combined tomographically to form a 3-D image by means of an algebraic reconstruction technique (ART) algorithm. A transverse resolution of ∼ 1,000 angstrom was observed. Artifacts in the reconstruction limited the overall depth resolution to ∼ 6,000 angstrom, however some features were clearly reconstructed with a depth resolution of ∼ 1,000 angstrom. A specially modified ART algorithm and a constrained conjugate gradient (CCG) code were also developed as improvements over the standard ART algorithm. Both of these methods made significant improvements in the overall depth resolution, bringing it down to ∼ 1,200 angstrom overall. Preliminary projection data sets were also recorded with both dry and re-hydrated human sperm cells over a similar angular range

  4. Ultra high resolution soft x-ray tomography

    International Nuclear Information System (INIS)

    Haddad, W.S.; Trebes, J.E.; Goodman, D.M.

    1995-01-01

    Ultra high resolution three dimensional images of a microscopic test object were made with soft x-rays using a scanning transmission x-ray microscope. The test object consisted of two different patterns of gold bars on silicon nitride windows that were separated by ∼5μm. A series of nine 2-D images of the object were recorded at angles between -50 to +55 degrees with respect to the beam axis. The projections were then combined tomographically to form a 3-D image by means of an algebraic reconstruction technique (ART) algorithm. A transverse resolution of ∼1000 Angstrom was observed. Artifacts in the reconstruction limited the overall depth resolution to ∼6000 Angstrom, however some features were clearly reconstructed with a depth resolution of ∼1000 Angstrom. A specially modified ART algorithm and a constrained conjugate gradient (CCG) code were also developed as improvements over the standard ART algorithm. Both of these methods made significant improvements in the overall depth resolution bringing it down to ∼1200 Angstrom overall. Preliminary projection data sets were also recorded with both dry and re-hydrated human sperm cells over a similar angular range

  5. Pixel detectors for x-ray imaging spectroscopy in space

    International Nuclear Information System (INIS)

    Treis, J; Andritschke, R; Hartmann, R; Herrmann, S; Holl, P; Lauf, T; Lechner, P; Lutz, G; Meidinger, N; Porro, M; Richter, R H; Schopper, F; Soltau, H; Strueder, L

    2009-01-01

    Pixelated semiconductor detectors for X-ray imaging spectroscopy are foreseen as key components of the payload of various future space missions exploring the x-ray sky. Located on the platform of the new Spectrum-Roentgen-Gamma satellite, the eROSITA (extended Roentgen Survey with an Imaging Telescope Array) instrument will perform an imaging all-sky survey up to an X-ray energy of 10 keV with unprecedented spectral and angular resolution. The instrument will consist of seven parallel oriented mirror modules each having its own pnCCD camera in the focus. The satellite born X-ray observatory SIMBOL-X will be the first mission to use formation-flying techniques to implement an X-ray telescope with an unprecedented focal length of around 20 m. The detector instrumentation consists of separate high- and low energy detectors, a monolithic 128 x 128 DEPFET macropixel array and a pixellated CdZTe detector respectively, making energy band between 0.5 to 80 keV accessible. A similar concept is proposed for the next generation X-ray observatory IXO. Finally, the MIXS (Mercury Imaging X-ray Spectrometer) instrument on the European Mercury exploration mission BepiColombo will use DEPFET macropixel arrays together with a small X-ray telescope to perform a spatially resolved planetary XRF analysis of Mercury's crust. Here, the mission concepts and their scientific targets are briefly discussed, and the resulting requirements on the detector devices together with the implementation strategies are shown.

  6. Pixel detectors for x-ray imaging spectroscopy in space

    Science.gov (United States)

    Treis, J.; Andritschke, R.; Hartmann, R.; Herrmann, S.; Holl, P.; Lauf, T.; Lechner, P.; Lutz, G.; Meidinger, N.; Porro, M.; Richter, R. H.; Schopper, F.; Soltau, H.; Strüder, L.

    2009-03-01

    Pixelated semiconductor detectors for X-ray imaging spectroscopy are foreseen as key components of the payload of various future space missions exploring the x-ray sky. Located on the platform of the new Spectrum-Roentgen-Gamma satellite, the eROSITA (extended Roentgen Survey with an Imaging Telescope Array) instrument will perform an imaging all-sky survey up to an X-ray energy of 10 keV with unprecedented spectral and angular resolution. The instrument will consist of seven parallel oriented mirror modules each having its own pnCCD camera in the focus. The satellite born X-ray observatory SIMBOL-X will be the first mission to use formation-flying techniques to implement an X-ray telescope with an unprecedented focal length of around 20 m. The detector instrumentation consists of separate high- and low energy detectors, a monolithic 128 × 128 DEPFET macropixel array and a pixellated CdZTe detector respectively, making energy band between 0.5 to 80 keV accessible. A similar concept is proposed for the next generation X-ray observatory IXO. Finally, the MIXS (Mercury Imaging X-ray Spectrometer) instrument on the European Mercury exploration mission BepiColombo will use DEPFET macropixel arrays together with a small X-ray telescope to perform a spatially resolved planetary XRF analysis of Mercury's crust. Here, the mission concepts and their scientific targets are briefly discussed, and the resulting requirements on the detector devices together with the implementation strategies are shown.

  7. Pixel detectors for x-ray imaging spectroscopy in space

    Energy Technology Data Exchange (ETDEWEB)

    Treis, J; Andritschke, R; Hartmann, R; Herrmann, S; Holl, P; Lauf, T; Lechner, P; Lutz, G; Meidinger, N; Porro, M; Richter, R H; Schopper, F; Soltau, H; Strueder, L [MPI Semiconductor Laboratory, Otto-Hahn-Ring 6, D-81739 Munich (Germany)], E-mail: jft@hll.mpg.de

    2009-03-15

    Pixelated semiconductor detectors for X-ray imaging spectroscopy are foreseen as key components of the payload of various future space missions exploring the x-ray sky. Located on the platform of the new Spectrum-Roentgen-Gamma satellite, the eROSITA (extended Roentgen Survey with an Imaging Telescope Array) instrument will perform an imaging all-sky survey up to an X-ray energy of 10 keV with unprecedented spectral and angular resolution. The instrument will consist of seven parallel oriented mirror modules each having its own pnCCD camera in the focus. The satellite born X-ray observatory SIMBOL-X will be the first mission to use formation-flying techniques to implement an X-ray telescope with an unprecedented focal length of around 20 m. The detector instrumentation consists of separate high- and low energy detectors, a monolithic 128 x 128 DEPFET macropixel array and a pixellated CdZTe detector respectively, making energy band between 0.5 to 80 keV accessible. A similar concept is proposed for the next generation X-ray observatory IXO. Finally, the MIXS (Mercury Imaging X-ray Spectrometer) instrument on the European Mercury exploration mission BepiColombo will use DEPFET macropixel arrays together with a small X-ray telescope to perform a spatially resolved planetary XRF analysis of Mercury's crust. Here, the mission concepts and their scientific targets are briefly discussed, and the resulting requirements on the detector devices together with the implementation strategies are shown.

  8. Variation in the human ribs geometrical properties and mechanical response based on X-ray computed tomography images resolution.

    Science.gov (United States)

    Perz, Rafał; Toczyski, Jacek; Subit, Damien

    2015-01-01

    Computational models of the human body are commonly used for injury prediction in automobile safety research. To create these models, the geometry of the human body is typically obtained from segmentation of medical images such as computed tomography (CT) images that have a resolution between 0.2 and 1mm/pixel. While the accuracy of the geometrical and structural information obtained from these images depend greatly on their resolution, the effect of image resolution on the estimation of the ribs geometrical properties has yet to be established. To do so, each of the thirty-four sections of ribs obtained from a Post Mortem Human Surrogate (PMHS) was imaged using three different CT modalities: standard clinical CT (clinCT), high resolution clinical CT (HRclinCT), and microCT. The images were processed to estimate the rib cross-section geometry and mechanical properties, and the results were compared to those obtained from the microCT images by computing the 'deviation factor', a metric that quantifies the relative difference between results obtained from clinCT and HRclinCT to those obtained from microCT. Overall, clinCT images gave a deviation greater than 100%, and were therefore deemed inadequate for the purpose of this study. HRclinCT overestimated the rib cross-sectional area by 7.6%, the moments of inertia by about 50%, and the cortical shell area by 40.2%, while underestimating the trabecular area by 14.7%. Next, a parametric analysis was performed to quantify how the variations in the estimate of the geometrical properties affected the rib predicted mechanical response under antero-posterior loading. A variation of up to 45% for the predicted peak force and up to 50% for the predicted stiffness was observed. These results provide a quantitative estimate of the sensitivity of the response of the FE model to the resolution of the images used to generate it. They also suggest that a correction factor could be derived from the comparison between microCT and

  9. Femtosecond X-ray Fourier holography imaging of freeflying nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Gorkhover, Tais; Ulmer, Anatoli; Ferguson, Ken R.; Bucher, Max; Maia, Filipe R.N.C.; Bielecki, Johan; Ekeberg, Tomas; Hantke, Max F.; Daurer, Benedikt J.; Bostedt, Christoph

    2018-02-26

    Ultrafast X-ray imaging on individual fragile specimens such as aerosols1, metastable particles2, superfluid quantum systems3 and live biospecimen4 provides high resolution information, which is inaccessible with conventional imaging techniques. Coherent X-ray diffractive imag- 2 ing, however, suffers from intrinsic loss of phase, and therefore structure recovery is often complicated and not always uniquely-defined4, 5. Here, we introduce the method of in-flight holography, where we use nanoclusters as reference X-ray scatterers in order to encode relative phase information into diffraction patterns of a virus. The resulting hologram contains an unambiguous three-dimensional map of a virus and two nanoclusters with the highest lateral resolution so far achieved via single shot X-ray holography. Our approach unlocks the benefits of holography for ultrafast X-ray imaging of nanoscale, non-periodic systems and paves the way to direct observation of complex electron dynamics down to the attosecond time scale.

  10. Dilation x-ray imager a new/faster gated x-ray imager for the NIF [DIXI (Dilation x-ray imager) a new/faster gated x-ray imager for the NIF

    Energy Technology Data Exchange (ETDEWEB)

    Nagel, S. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hilsabeck, T. J.; Bell, P. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bradley, D. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ayers, M. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Barrios, M. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Felker, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Smith, R. F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Collins, G. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Jones, O. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kilkenny, J. D. [General Atomics, San Diego, CA (United States); Chung, T. [General Atomics, San Diego, CA (United States); Piston, K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Raman, K. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sammuli, B. [General Atomics, San Diego, CA (United States); Hares, J. D. [Kentech Instruments Ltd., Wallingford, Oxfordshire (United Kingdom); Dymoke-Bradshaw, A. K. L. [Kentech Instruments Ltd., Wallingford, Oxfordshire (United Kingdom)

    2012-07-19

    As the yield on implosion shots increases it is expected that the peak x-ray emission reduces to a duration with a FWHM as short as 20 ps for ~7 1018 neutron yield. However, the temporal resolution of currently used gated x-ray imagers on the NIF is 40-100 ps. We discuss the benefits of the higher temporal resolution for the NIF and present performance measurements for DIXI, which utilizes pulse-dilation technology [1] to achieve x-ray imaging with temporal gate times below 10 ps. Lastly, the measurements were conducted using the COMET laser, which is part of the Jupiter Laser Facility at the Lawrence Livermore National Laboratory.

  11. Soft x-ray scanning microtomography with submicron resolution

    International Nuclear Information System (INIS)

    McNulty, I.; Haddad, W.S.; Trebes, J.E.; Anderson, E.H.

    1994-01-01

    Scanning soft x-ray microtomography was used to obtain high-resolution three-dimensional images of a microfabricated test object. Using a special rotation stage mounted on the scanning transmission x-ray microscope at the XIA Beamline at the National Synchrotron Light Source, we recorded nine two-dimensional projections of the 3D test object over an angular range of -50 degrees to +55 degrees. The x-ray wavelength was 3.6 nm and the radiation dose to the object per projection was approximately 2 x 10 6 Gy. The object consisted of two gold patterns supported on transparent silicon nitride membranes, separated by 4.75 Jim, with 100 to 300-nm wide and 65-nm thick features. We reconstructed a volumetric data set of the test object from the two-dimensional projections using an algebraic reconstruction technique algorithm. Features of the test object were resolved to ∼100 nm in transverse and longitudinal extent in three-dimensional images rendered from the volumetric set

  12. Soft x-ray scanning microtomography with submicrometer resolution

    International Nuclear Information System (INIS)

    McNulty, I.; Haddad, W.S.; Trebes, J.E.; Anderson, E.H.

    1995-01-01

    Scanning soft x-ray microtomography was used to obtain high-resolution three-dimensional images of a microfabricated test object. Using a special rotation stage mounted on the scanning transmission x-ray microscope at the X1A beamline at the National Synchrotron Light Source, we recorded nine two-dimensional projections of the 3D test object over an angular range of -50 degree to +55 degree. The x-ray wavelength was 3.6 nm and the radiation dose to the object per projection was approximately 2x10 6 Gy. The object consisted of two gold patterns supported on transparent silicon nitride membranes, separated by 4.75 μm, with 100- to 300-nm-wide and 65-nm-thick features. We reconstructed a volumetric data set of the test object from the two-dimensional projections using an algebraic reconstruction technique algorithm. Features of the test object were resolved to ∼100 nm in transverse and longitudinal extent with low artifact in three-dimensional images rendered from the volumetric set

  13. Healing X-ray scattering images

    Directory of Open Access Journals (Sweden)

    Jiliang Liu

    2017-07-01

    Full Text Available X-ray scattering images contain numerous gaps and defects arising from detector limitations and experimental configuration. We present a method to heal X-ray scattering images, filling gaps in the data and removing defects in a physically meaningful manner. Unlike generic inpainting methods, this method is closely tuned to the expected structure of reciprocal-space data. In particular, we exploit statistical tests and symmetry analysis to identify the structure of an image; we then copy, average and interpolate measured data into gaps in a way that respects the identified structure and symmetry. Importantly, the underlying analysis methods provide useful characterization of structures present in the image, including the identification of diffuse versus sharp features, anisotropy and symmetry. The presented method leverages known characteristics of reciprocal space, enabling physically reasonable reconstruction even with large image gaps. The method will correspondingly fail for images that violate these underlying assumptions. The method assumes point symmetry and is thus applicable to small-angle X-ray scattering (SAXS data, but only to a subset of wide-angle data. Our method succeeds in filling gaps and healing defects in experimental images, including extending data beyond the original detector borders.

  14. (U) Estimating the Photonics Budget, Resolution, and Signal Requirements for a Multi-Monochromatic X-ray Imager

    Energy Technology Data Exchange (ETDEWEB)

    Tregillis, Ian Lee [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-22

    This document examines the performance of a generic flat-mirror multimonochromatic imager (MMI), with special emphasis on existing instruments at NIF and Omega. We begin by deriving the standard equation for the mean number of photons detected per resolution element. The pinhole energy bandwidth is a contributing factor; this is dominated by the finite size of the source and may be considerable. The most common method for estimating the spatial resolution of such a system (quadrature addition) is, technically, mathematically invalid for this case. However, under the proper circumstances it may produce good estimates compared to a rigorous calculation based on the convolution of point-spread functions. Diffraction is an important contribution to the spatial resolution. Common approximations based on Fraunhofer (farfield) diffraction may be inappropriate and misleading, as the instrument may reside in multiple regimes depending upon its configuration or the energy of interest. It is crucial to identify the correct diffraction regime; Fraunhofer and Fresnel (near-field) diffraction profiles are substantially different, the latter being considerably wider. Finally, we combine the photonics and resolution analyses to derive an expression for the minimum signal level such that the resulting images are not dominated by photon statistics. This analysis is consistent with observed performance of the NIF MMI.

  15. Nanoscale X-Ray Microscopic Imaging of Mammalian Mineralized Tissue

    OpenAIRE

    Andrews, Joy C.; Almeida, Eduardo; van der Meulen, Marjolein C.H.; Alwood, Joshua S.; Lee, Chialing; Liu, Yijin; Chen, Jie; Meirer, Florian; Feser, Michael; Gelb, Jeff; Rudati, Juana; Tkachuk, Andrei; Yun, Wenbing; Pianetta, Piero

    2010-01-01

    A novel hard transmission X-ray microscope (TXM) at the Stanford Synchrotron Radiation Light-source operating from 5 to 15 keV X-ray energy with 14 to 30 µm2 field of view has been used for high-resolution (30–40 nm) imaging and density quantification of mineralized tissue. TXM is uniquely suited for imaging of internal cellular structures and networks in mammalian mineralized tissues using relatively thick (50 µm), untreated samples that preserve tissue micro- and nanostructure. To test this...

  16. Development of the water window imaging x-ray microscope

    International Nuclear Information System (INIS)

    Hoover, R.B.; Shealy, D.L.; Baker, P.C.; Barbee, T.W. Jr.; Walker, A.B.C. Jr.

    1991-01-01

    This paper reports on the Water Window Imaging X-ray Microscopy which is currently being developed by a consortium from the Marshall Space Flight Center, the University of Alabama at Birmingham, Baker Consulting, the Lawrence Livermore National Laboratory, and Stanford University. The high quality solar images achieved during the Stanford/MSFC/LLNL Rocket X-ray Spectroheliograph flight conclusively established that excellent imaging could be obtained with doubly reflecting multilayer optical systems. Theoretical studies carried out as part of the MSFC X-ray Microscopy Program, demonstrated that high quality, high resolution multilayer x-ray imaging microscopes could be achieved with spherical optics in the Schwarzschild configuration and with Aspherical optical systems. Advanced Flow Polishing methods have been used to fabricate substrates for multilayer optics. On hemlite grade Sapphire, the authors have achieved microscopy mirror substrates on concave and convex spherical surfaces with 0.5 Angstrom rms surface smoothness, as measured by the Zygo profilometer. In this paper the authors report on the current status of fabrication and testing of the optical and mechanical subsystems for the Water Window Imaging X-ray Microscope

  17. High energy resolution off-resonant X-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wojciech, Blachucki [Univ. of Fribourg (Switzerland). Dept. of Physics

    2015-10-16

    This work treats of the high energy resolution off-resonant X-ray spectroscopy (HEROS) method of determining the density of unoccupied electronic states in the vicinity of the absorption edge. HEROS is an alternative to the existing X-ray absorption spectroscopy (XAS) methods and opens the way for new studies not achievable before.

  18. Applications of phase-contrast x-ray imaging to medicine using an x-ray interferometer

    Science.gov (United States)

    Momose, Atsushi; Yoneyama, Akio; Takeda, Tohoru; Itai, Yuji; Tu, Jinhong; Hirano, Keiichi

    1999-10-01

    We are investigating possible medical applications of phase- contrast X-ray imaging using an X-ray interferometer. This paper introduces the strategy of the research project and the present status. The main subject is to broaden the observation area to enable in vivo observation. For this purpose, large X-ray interferometers were developed, and 2.5 cm X 1.5 cm interference patterns were generated using synchrotron X-rays. An improvement of the spatial resolution is also included in the project, and an X-ray interferometer designed for high-resolution phase-contrast X-ray imaging was fabricated and tested. In parallel with the instrumental developments, various soft tissues are observed by phase- contrast X-ray CT to find correspondence between the generated contrast and our histological knowledge. The observation done so far suggests that cancerous tissues are differentiated from normal tissues and that blood can produce phase contrast. Furthermore, this project includes exploring materials that modulate phase contrast for selective imaging.

  19. Present status and future prospect of x-ray microscopes. Is it possible to realize x-ray 1 nm imaging?

    International Nuclear Information System (INIS)

    Aoki, Sadao

    2010-01-01

    High resolution X-ray imaging has been developed by using various optical elements and optical systems. In the soft X-ray region (∼3 nm) about 20 nm spatial resolution has been obtained, while in the hard X-ray (∼0.1 nm) about 50 nm. In the research frontier the spatial resolution better than 10 nm has been reported. The possibility to approach 1 nm spatial resolution is presented. (author)

  20. TH-CD-207B-03: How to Quantify Temporal Resolution in X-Ray MDCT Imaging?

    Energy Technology Data Exchange (ETDEWEB)

    Budde, A [University of Wisconsin, Madison, WI (United States); GE Healthcare Technologies, Madison, WI (United States); Li, Y; Chen, G [University of Wisconsin, Madison, WI (United States); Hsieh, J [GE Healthcare Technologies, Brookfield, WI (United States)

    2016-06-15

    Purpose: In modern CT scanners, a quantitative metric to assess temporal response, namely, to quantify the temporal resolution (TR), remains elusive. Rough surrogate metrics, such as half of the gantry rotation time for single source CT, a quarter of the gantry rotation time for dual source CT, or measurements of motion artifact’s size, shape, or intensity have previously been used. In this work, a rigorous framework which quantifies TR and a practical measurement method are developed. Methods: A motion phantom was simulated which consisted of a single rod that is in motion except during a static period at the temporal center of the scan, termed the TR window. If the image of the motion scan has negligible motion artifacts compared to an image from a totally static scan, then the system has a TR no worse than the TR window used. By repeating this comparison with varying TR windows, the TR of the system can be accurately determined. Motion artifacts were also visually assessed and the TR was measured across varying rod motion speeds, directions, and locations. Noiseless fan beam acquisitions were simulated and images were reconstructed with a short-scan image reconstruction algorithm. Results: The size, shape, and intensity of motion artifacts varied when the rod speed, direction, or location changed. TR measured using the proposed method, however, was consistent across rod speeds, directions, and locations. Conclusion: Since motion artifacts vary depending upon the motion speed, direction, and location, they are not suitable for measuring TR. In this work, a CT system with a specified TR is defined as having the ability to produce a static image with negligible motion artifacts, no matter what motion occurs outside of a static window of width TR. This framework allows for practical measurement of temporal resolution in clinical CT imaging systems. Funding support: GE Healthcare; Conflict of Interest: Employee, GE Healthcare.

  1. TH-CD-207B-03: How to Quantify Temporal Resolution in X-Ray MDCT Imaging?

    International Nuclear Information System (INIS)

    Budde, A; Li, Y; Chen, G; Hsieh, J

    2016-01-01

    Purpose: In modern CT scanners, a quantitative metric to assess temporal response, namely, to quantify the temporal resolution (TR), remains elusive. Rough surrogate metrics, such as half of the gantry rotation time for single source CT, a quarter of the gantry rotation time for dual source CT, or measurements of motion artifact’s size, shape, or intensity have previously been used. In this work, a rigorous framework which quantifies TR and a practical measurement method are developed. Methods: A motion phantom was simulated which consisted of a single rod that is in motion except during a static period at the temporal center of the scan, termed the TR window. If the image of the motion scan has negligible motion artifacts compared to an image from a totally static scan, then the system has a TR no worse than the TR window used. By repeating this comparison with varying TR windows, the TR of the system can be accurately determined. Motion artifacts were also visually assessed and the TR was measured across varying rod motion speeds, directions, and locations. Noiseless fan beam acquisitions were simulated and images were reconstructed with a short-scan image reconstruction algorithm. Results: The size, shape, and intensity of motion artifacts varied when the rod speed, direction, or location changed. TR measured using the proposed method, however, was consistent across rod speeds, directions, and locations. Conclusion: Since motion artifacts vary depending upon the motion speed, direction, and location, they are not suitable for measuring TR. In this work, a CT system with a specified TR is defined as having the ability to produce a static image with negligible motion artifacts, no matter what motion occurs outside of a static window of width TR. This framework allows for practical measurement of temporal resolution in clinical CT imaging systems. Funding support: GE Healthcare; Conflict of Interest: Employee, GE Healthcare.

  2. Computer simulation on spatial resolution of X-ray bright-field imaging by dynamical diffraction theory for a Laue-case crystal analyzer

    International Nuclear Information System (INIS)

    Suzuki, Yoshifumi; Chikaura, Yoshinori; Ando, Masami

    2011-01-01

    Recently, dark-field imaging (DFI) and bright-field imaging (BFI) have been proposed and applied to visualize X-ray refraction effects yielded in biomedical objects. In order to clarify the spatial resolution due to a crystal analyzer in Laue geometry, a program based on the Takagi-Taupin equation was modified to be used for carrying out simulations to evaluate the spatial resolution of images coming into a Laue angular analyzer (LAA). The calculation was done with a perfect plane wave for diffraction wave-fields, which corresponded to BFI, under the conditions of 35 keV and a diffraction index 440 for a 2100 μm thick LAA. As a result, the spatial resolution along the g-vector direction showed approximately 37.5 μm. 126 μm-thick LAA showed a spatial resolution better than 3.1 μm under the conditions of 13.7 keV and a diffraction index 220.

  3. Hard X-ray imaging with a slat collimated telescope

    International Nuclear Information System (INIS)

    Lu Zhuguo; Kotov, Yu.D.; Suslov, A.Yu.

    1995-01-01

    Imaging experiments with a slat collimated hard X-ray telescope are described in this paper demonstrating the feasibility of the direct demodulation imaging method used in hard X-ray scanning modulation experiments. On 25 September 1993 an X-ray raster scan observation of Cyg X-1 was performed in a balloon flight with the hard X-ray telescope HAPI-4. An experiment to image radioactive X-ray sources was performed in the laboratory before. In both experiments the expected X-ray images were obtained, confirming the imaging capability of this method. (orig.)

  4. Magnetic imaging by dichroic x-ray holography

    International Nuclear Information System (INIS)

    Eisebitt, S.; Loergen, M.; Eberhardt, W.; Luening, M.; Schlotter, W.F.; Stoehr, J.; Hellwig, O.

    2004-01-01

    Full text: While holography has evolved to a powerful technique in the visible spectral range, it is difficult to apply at shorter wavelength as no intrinsically coherent (soft) x-ray laser is available as a light source. The progression from visible light towards shorter wavelength is motivated by the increase in spatial resolution that can be achieved. Of equal importance is the possibility to exploit special contrast mechanisms provided by scattering in resonance with transitions between electronic core and valence levels. These contrast mechanisms can be utilized in x-ray holography to form a spectroscopic image of the sample, in analogy to spectromicroscopy. So far, successful x-ray spectroholography has not been reported due to the experimental difficulties associated with the short wavelength and the limited coherent photon flux available. We present images of magnetic domain patterns forming in thin film Co-Pt multilayers, obtained by spectroholography at a wavelength of 1.59 nm. At this wavelength, we exploit x ray magnetic dichroism at the Co 2p 3/2 level in a Fourier transform holography experiment. Holography at this wavelength was made possible by combining nanostructured masks with coherence l tered synchrotron radiation from an undulator source in the experimental setup. The magnetic multilayers have perpendicular anisotropy and are probed using circular polarized x-rays. Dichroic holograms are recorded by combining measurements with positive and negative helicities. The spectroholograms can be numerically inverted to show the pure magnetic sample structure, such as labyrinth or stripe domains. Currently, we achieve a spatial resolution of 100 nm in the magnetic image. The advantages and limitations of this technique will be compared to other lensless imaging techniques such as over sampling phasing. The future prospects of imaging techniques based on coherent scattering are discussed in the context of the current development of free electron x-ray

  5. In vivo quantification of plant starch reserves at micrometer resolution using X-ray microCT imaging and machine learning.

    Science.gov (United States)

    Earles, J Mason; Knipfer, Thorsten; Tixier, Aude; Orozco, Jessica; Reyes, Clarissa; Zwieniecki, Maciej A; Brodersen, Craig R; McElrone, Andrew J

    2018-03-08

    Starch is the primary energy storage molecule used by most terrestrial plants to fuel respiration and growth during periods of limited to no photosynthesis, and its depletion can drive plant mortality. Destructive techniques at coarse spatial scales exist to quantify starch, but these techniques face methodological challenges that can lead to uncertainty about the lability of tissue-specific starch pools and their role in plant survival. Here, we demonstrate how X-ray microcomputed tomography (microCT) and a machine learning algorithm can be coupled to quantify plant starch content in vivo, repeatedly and nondestructively over time in grapevine stems (Vitis spp.). Starch content estimated for xylem axial and ray parenchyma cells from microCT images was correlated strongly with enzymatically measured bulk-tissue starch concentration on the same stems. After validating our machine learning algorithm, we then characterized the spatial distribution of starch concentration in living stems at micrometer resolution, and identified starch depletion in live plants under experimental conditions designed to halt photosynthesis and starch production, initiating the drawdown of stored starch pools. Using X-ray microCT technology for in vivo starch monitoring should enable novel research directed at resolving the spatial and temporal patterns of starch accumulation and depletion in woody plant species. No claim to original US Government works New Phytologist © 2018 New Phytologist Trust.

  6. High Resolution Adjustable Mirror Control for X-ray Astronomy

    Science.gov (United States)

    Trolier-McKinstry, Susan

    We propose to build and test thin film transistor control circuitry for a new highresolution adjustable X-ray mirror technology. This control circuitry will greatly simplify the wiring scheme to address individual actuator cells. The result will be a transformative improvement for the X-ray Surveyor mission concept: mathematical models, which fit the experimental data quite well, indicate that 0.5 arcsecond imaging is feasible through this technique utilizing thin slumped glass substrates with uncorrected angular resolution of order 5-10 arcseconds. In order to correct for figures errors in a telescope with several square meters of collecting area, millions of actuator cells must be set and held at specific voltages. It is clearly not feasible to do this via millions of wires, each one connected to an actuator. Instead, we propose to develop and test thin-film technology that operates on the same principle as megapixel computer screens. We will develop the technologies needed to build thin film piezoelectric actuators, controlled by thin film ZnO transistors, on flexible polyimide films, and to connect those films to the back surfaces of X-ray mirrors on thin glass substrates without deforming the surface. These technologies represent a promising avenue of the development of mirrors for the X-Ray Surveyor mission concept. Such a telescope will make possible detailed studies of a wide variety of astrophysical sources. One example is the Warm-Hot Intergalactic Medium (WHIM), which is thought to account for a large fraction of the normal matter in the universe but which has not been detected unambiguously to date. Another is the growth of supermassive black holes in the early universe. This proposal supports NASA's goals of technical advancement of technologies suitable for future missions, and training of graduate students.

  7. Phase contrast imaging with coherent high energy X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Snigireva, I. [ESRF, Grenoble (France)

    1997-02-01

    X-ray imaging concern high energy domain (>6 keV) like a contact radiography, projection microscopy and tomography is used for many years to discern the features of the internal structure non destructively in material science, medicine and biology. In so doing the main contrast formation is absorption that makes some limitations for imaging of the light density materials and what is more the resolution of these techniques is not better than 10-100 {mu}m. It was turned out that there is now way in which to overcome 1{mu}m or even sub-{mu}m resolution limit except phase contrast imaging. It is well known in optics that the phase contrast is realised when interference between reference wave front and transmitted through the sample take place. Examples of this imaging are: phase contrast microscopy suggested by Zernike and Gabor (in-line) holography. Both of this techniques: phase contrast x-ray microscopy and holography are successfully progressing now in soft x-ray region. For imaging in the hard X-rays to enhance the contrast and to be able to resolve phase variations across the beam the high degree of the time and more importantly spatial coherence is needed. Because of this it was reasonable that the perfect crystal optics was involved like Bonse-Hart interferometry, double-crystal and even triple-crystal set-up using Laue and Bragg geometry with asymmetrically cut crystals.

  8. An exploratory study of contrast agents for soft tissue visualization by means of high resolution X-ray computed tomography imaging.

    Science.gov (United States)

    Pauwels, E; Van Loo, D; Cornillie, P; Brabant, L; Van Hoorebeke, L

    2013-04-01

    High resolution X-ray computed tomography (CT), or microCT, is a promising and already widely used technique in various scientific fields. Also for histological purposes it has great potential. Although microCT has proven to be a valuable technique for the imaging of bone structures, the visualization of soft tissue structures is still an important challenge due to their low inherent X-ray contrast. One way to achieve contrast enhancement is to make use of contrast agents. However, contrary to light and electron microscopy, knowledge about contrast agents and staining procedures is limited for X-ray CT. The purpose of this paper is to identify useful X-ray contrast agents for soft tissue visualization, which can be applied in a simple way and are also suited for samples larger than (1 cm)(3) . And 28 chemical substances have been investigated. All chemicals were applied in the form of concentrated aqueous solutions in which the samples were immersed. First, strips of green Bacon were stained to evaluate contrast enhancement between muscle and adipose tissue. Furthermore it was also tested whether the contrast agents remained fixed in the tissue after staining by re-immersing them in water. Based on the results, 12 contrast agents were selected for further testing on postmortem mice hind legs, containing a variety of different tissues, including muscle, fat, bone, cartilage and tendons. It was evaluated whether the contrast agents allowed a clearer distinction between the different soft tissue structures present. Finally also penetration depth was measured. And 26 chemicals resulted in contrast enhancement between muscle and adipose tissue in the Bacon strips. Mercury(II)chloride (HgCl2 ), phosphotungstic acid (PTA), phosphomolybdic acid (PMA) and ammonium orthomolybdate ((NH4 )2 MoO4 ) remained fixed after re-immersion in water. The penetration tests showed that potassium iodide (KI) and sodium tungstate can be most efficiently used for large samples of the order

  9. Three-Dimensional Imaging and Numerical Reconstruction of Graphite/Epoxy Composite Microstructure Based on Ultra-High Resolution X-Ray Computed Tomography

    Science.gov (United States)

    Czabaj, M. W.; Riccio, M. L.; Whitacre, W. W.

    2014-01-01

    A combined experimental and computational study aimed at high-resolution 3D imaging, visualization, and numerical reconstruction of fiber-reinforced polymer microstructures at the fiber length scale is presented. To this end, a sample of graphite/epoxy composite was imaged at sub-micron resolution using a 3D X-ray computed tomography microscope. Next, a novel segmentation algorithm was developed, based on concepts adopted from computer vision and multi-target tracking, to detect and estimate, with high accuracy, the position of individual fibers in a volume of the imaged composite. In the current implementation, the segmentation algorithm was based on Global Nearest Neighbor data-association architecture, a Kalman filter estimator, and several novel algorithms for virtualfiber stitching, smoothing, and overlap removal. The segmentation algorithm was used on a sub-volume of the imaged composite, detecting 508 individual fibers. The segmentation data were qualitatively compared to the tomographic data, demonstrating high accuracy of the numerical reconstruction. Moreover, the data were used to quantify a) the relative distribution of individual-fiber cross sections within the imaged sub-volume, and b) the local fiber misorientation relative to the global fiber axis. Finally, the segmentation data were converted using commercially available finite element (FE) software to generate a detailed FE mesh of the composite volume. The methodology described herein demonstrates the feasibility of realizing an FE-based, virtual-testing framework for graphite/fiber composites at the constituent level.

  10. Flexible digital x-ray technology for far-forward remote diagnostic and conformal x-ray imaging applications

    Science.gov (United States)

    Smith, Joseph; Marrs, Michael; Strnad, Mark; Apte, Raj B.; Bert, Julie; Allee, David; Colaneri, Nicholas; Forsythe, Eric; Morton, David

    2013-05-01

    Today's flat panel digital x-ray image sensors, which have been in production since the mid-1990s, are produced exclusively on glass substrates. While acceptable for use in a hospital or doctor's office, conventional glass substrate digital x-ray sensors are too fragile for use outside these controlled environments without extensive reinforcement. Reinforcement, however, significantly increases weight, bulk, and cost, making them impractical for far-forward remote diagnostic applications, which demand rugged and lightweight x-ray detectors. Additionally, glass substrate x-ray detectors are inherently rigid. This limits their use in curved or bendable, conformal x-ray imaging applications such as the non-destructive testing (NDT) of oil pipelines. However, by extending low-temperature thin-film transistor (TFT) technology previously demonstrated on plastic substrate- based electrophoretic and organic light emitting diode (OLED) flexible displays, it is now possible to manufacture durable, lightweight, as well as flexible digital x-ray detectors. In this paper, we discuss the principal technical approaches used to apply flexible display technology to two new large-area flexible digital x-ray sensors for defense, security, and industrial applications and demonstrate their imaging capabilities. Our results include a 4.8″ diagonal, 353 x 463 resolution, flexible digital x-ray detector, fabricated on a 6″ polyethylene naphthalate (PEN) plastic substrate; and a larger, 7.9″ diagonal, 720 x 640 resolution, flexible digital x-ray detector also fabricated on PEN and manufactured on a gen 2 (370 x 470 mm) substrate.

  11. High spectral resolution X-ray observations of AGN

    NARCIS (Netherlands)

    Kaastra, J.S.

    2008-01-01

    brief overview of some highlights of high spectral resolution X-ray observations of AGN is given, mainly obtained with the RGS of XMM-Newton. Future prospects for such observations with XMM-Newton are given.

  12. X-ray image signal generator

    International Nuclear Information System (INIS)

    Dalton, B.L.; Lill, B.H.

    1981-01-01

    This patent claim on behalf on EMI Ltd. relates to a flat plate X-ray detector which uses a plate detector exhibiting so-called permanent induced electric polarization in response to a pattern of radiation emergent from a patient to generate a polarization pattern which is scanned by means of a laser to cause discharge of the polarization through the plate and so generate electric signals representative of the X-ray image of the patient. In addition a second laser operating at a different wavelength e.g. infra-red, also scans or floods the plate detector to move 'dark polarisation'. The plate detector may be a phosphor screen or a phosphor screen in combination with a scintillator. (author)

  13. High resolution X-ray imaging of bone-implant interface by large area flat-panel detector

    International Nuclear Information System (INIS)

    Kytyr, D; Jirousek, O; Dammer, J

    2011-01-01

    The aim of the research was to investigate the cemented bone-implant interface behavior (cement layer degradation and bone-cement interface debonding) with emphasis on imaging techniques suitable to detect the early defects in the cement layer. To simulate in vivo conditions a human pelvic bone was implanted with polyurethane acetabular cup using commercial acrylic bone cement. The implanted cup was then loaded in a custom hip simulator to initiate fatigue crack propagation in the bone cement. The pelvic bone was then repetitively scanned in a micro-tomography device. Reconstructed tomography images showed failure processes that occurred in the cement layer during the first 250,000 cycles. A failure in cemented acetabular implant - debonding, crumbling and smeared cracks - has been found to be at the bone-cement interface. Use of micro-focus source and high resolution flat panel detector of large physical dimensions allowed to reconstruct the micro-structural models suitable for investigation of migration, micro-motions and consecutive loosening of the implant. The large area flat panel detector with physical dimensions 120 x 120mm with 50μm pixel size provided a superior image quality compared to clinical CT systems with 300-150μm pixel size.

  14. TH-AB-209-07: High Resolution X-Ray-Induced Acoustic Computed Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, L; Tang, S [University of Oklahoma, Norman, OK (United States); Ahmad, M [Stanford University, Palo Alto, CA (United States); Xing, L [Stanford University School of Medicine, Stanford, CA (United States)

    2016-06-15

    Purpose: X-ray radiographic absorption imaging is an invaluable tool in medical diagnostics, biology and materials science. However, the use of conventional CT is limited by two factors: the detection sensitivity to weak absorption material and the radiation dose from CT scanning. The purpose of this study is to explore X-ray induced acoustic computed tomography (XACT), a new imaging modality, which combines X-ray absorption contrast and high ultrasonic resolution to address these challenges. Methods: First, theoretical models was built to analyze the XACT sensitivity to X-ray absorption and calculate the minimal radiation dose in XACT imaging. Then, an XACT system comprised of an ultrashort X-ray pulse, a low noise ultrasound detector and a signal acquisition system was built to evaluate the X-ray induced acoustic signal generation. A piece of chicken bone and a phantom with two golden fiducial markers were exposed to 270 kVp X-ray source with 60 ns exposure time, and the X-ray induced acoustic signal was received by a 2.25MHz ultrasound transducer in 200 positions. XACT images were reconstructed by a filtered back-projection algorithm. Results: The theoretical analysis shows that X-ray induced acoustic signals have 100% relative sensitivity to X-ray absorption, but not to X-ray scattering. Applying this innovative technology to breast imaging, we can reduce radiation dose by a factor of 50 compared with newly FDA approved breast CT. The reconstructed images of chicken bone and golden fiducial marker phantom reveal that the spatial resolution of the built XACT system is 350µm. Conclusion: In XACT, the imaging sensitivity to X-ray absorption is improved and the imaging dose is dramatically reduced by using ultrashort pulsed X-ray. Taking advantage of the high ultrasonic resolution, we can also perform 3D imaging with a single X-ray pulse. This new modality has the potential to revolutionize x-ray imaging applications in medicine and biology.

  15. Two digital X-ray imaging systems for applications in X-ray diffraction

    International Nuclear Information System (INIS)

    Bateman, J.E.; Connolly, J.F.; Stephenson, R.; Flesher, A.C.; Tucker, P.A.; Swanton, S.W.

    1987-01-01

    Two digital X-ray imaging systems developed at the Rutherford Appleton Laboratory are described: the Mark I and the Mark II. Both use a bidimensionally sensitive multiwire proportional counter (MWPC) as the basic X-ray image transducer coupled, in the case of the Mark I to a Digital LSI 11-23 microcomputer system via CAMAC, and in the case of the Mark II to a Digital LSI 11-73 microcomputer system via custom-built data acquisition hardware mounted directly on the Q-bus of the microcomputer. The Mark I system provides the advantages of high speed, high sensitivity digital imaging directly into the computer with the potential for software control of the sample orientation and environment. The Mark II system adds the novel features of signal averaging and multiframe exposures. The dedicated digital memories have a resolution of 512x512 pixels of 16 bits, matching well to the spatial resolution of the xenon-filled MWPC (0.5 mm fwhm over an aperture of 200 mm x 200 mm). A 512x512x4 bit video graphics system displays the images in grey scales or colour. (orig.)

  16. Ultrahigh-speed X-ray imaging of hypervelocity projectiles

    Science.gov (United States)

    Miller, Stuart; Singh, Bipin; Cool, Steven; Entine, Gerald; Campbell, Larry; Bishel, Ron; Rushing, Rick; Nagarkar, Vivek V.

    2011-08-01

    High-speed X-ray imaging is an extremely important modality for healthcare, industrial, military and research applications such as medical computed tomography, non-destructive testing, imaging in-flight projectiles, characterizing exploding ordnance, and analyzing ballistic impacts. We report on the development of a modular, ultrahigh-speed, high-resolution digital X-ray imaging system with large active imaging area and microsecond time resolution, capable of acquiring at a rate of up to 150,000 frames per second. The system is based on a high-resolution, high-efficiency, and fast-decay scintillator screen optically coupled to an ultra-fast image-intensified CCD camera designed for ballistic impact studies and hypervelocity projectile imaging. A specially designed multi-anode, high-fluence X-ray source with 50 ns pulse duration provides a sequence of blur-free images of hypervelocity projectiles traveling at speeds exceeding 8 km/s (18,000 miles/h). This paper will discuss the design, performance, and high frame rate imaging capability of the system.

  17. New developments in simulating X-ray phase contrast imaging

    International Nuclear Information System (INIS)

    Peterzol, A.; Berthier, J.; Duvauchelle, P.; Babot, D.; Ferrero, C.

    2007-01-01

    A deterministic algorithm simulating phase contrast (PC) x-ray images for complex 3- dimensional (3D) objects is presented. This algorithm has been implemented in a simulation code named VXI (Virtual X-ray Imaging). The physical model chosen to account for PC technique is based on the Fresnel-Kirchhoff diffraction theory. The algorithm consists mainly of two parts. The first one exploits the VXI ray-tracing approach to compute the object transmission function. The second part simulates the PC image due to the wave front distortion introduced by the sample. In the first part, the use of computer-aided drawing (CAD) models enables simulations to be carried out with complex 3D objects. Differently from the VXI original version, which makes use of an object description via triangular facets, the new code requires a more 'sophisticated' object representation based on Non-Uniform Rational B-Splines (NURBS). As a first step we produce a spatial high resolution image by using a point and monochromatic source and an ideal detector. To simulate the polychromatic case, the intensity image is integrated over the considered x-ray energy spectrum. Then, in order to account for the system spatial resolution properties, the high spatial resolution image (mono or polychromatic) is convolved with the total point spread function of the imaging system under consideration. The results supplied by the presented algorithm are examined with the help of some relevant examples. (authors)

  18. X-ray phase contrast imaging at MAMI

    International Nuclear Information System (INIS)

    El-Ghazaly, M.; Backe, H.; Lauth, W.; Kube, G.; Kunz, P.; Sharafutdinov, A.; Weber, T.

    2006-01-01

    Experiments have been performed to explore the potential of the low emittance 855 MeV electron beam of the Mainz Microtron MAMI for imaging with coherent X-rays. Transition radiation from a micro-focused electron beam traversing a foil stack served as X-ray source with good transverse coherence. Refraction contrast radiographs of low absorbing materials, in particular polymer strings with diameters between 30 and 450 μm, were taken with a polychromatic transition radiation X-ray source with a spectral distribution in the energy range between 8 and about 40 keV. The electron beam spot size had standard deviation σ h =(8.6±0.1) μm in the horizontal and σ v =(7.5±0.1) μm in the vertical direction. X-ray films were used as detectors. The source-to-detector distance amounted to 11.4 m. The objects were placed in a distance of up to 6m from the X-ray film. Holograms of strings were taken with a beam spot size σ v =(0.50±0.05) μm in vertical direction, and a monochromatic X-ray beam of 6keV energy. A good longitudinal coherence has been obtained by the (111) reflection of a flat silicon single crystal in Bragg geometry. It has been demonstrated that a direct exposure CCD chip with a pixel size of 13 x 13 μm 2 provides a highly efficient on-line detector. Contrast images can easily be generated with a complete elimination of all parasitic background. The on-line capability allows a minimization of the beam spot size by observing the smallest visible interference fringe spacings or the number of visible fringes. It has been demonstrated that X-ray films are also very useful detectors. The main advantage in comparison with the direct exposure CCD chip is the resolution. For the Structurix D3 (Agfa) X-ray film the standard deviation of the resolution was measured to be σ f =(1.2±0.4) μm, which is about a factor of 6 better than for the direct exposure CCD chip. With the small effective X-ray spot size in vertical direction of σ v =(1.2±0.3)μm and a

  19. X-ray phase contrast imaging at MAMI

    Energy Technology Data Exchange (ETDEWEB)

    El-Ghazaly, M.; Backe, H.; Lauth, W.; Kube, G.; Kunz, P.; Sharafutdinov, A.; Weber, T. [Universitaet Mainz, Institut fuer Kernphysik, Mainz (Germany)

    2006-05-15

    Experiments have been performed to explore the potential of the low emittance 855 MeV electron beam of the Mainz Microtron MAMI for imaging with coherent X-rays. Transition radiation from a micro-focused electron beam traversing a foil stack served as X-ray source with good transverse coherence. Refraction contrast radiographs of low absorbing materials, in particular polymer strings with diameters between 30 and 450 {mu}m, were taken with a polychromatic transition radiation X-ray source with a spectral distribution in the energy range between 8 and about 40 keV. The electron beam spot size had standard deviation {sigma}{sub h}=(8.6{+-}0.1) {mu}m in the horizontal and {sigma}{sub v}=(7.5{+-}0.1) {mu}m in the vertical direction. X-ray films were used as detectors. The source-to-detector distance amounted to 11.4 m. The objects were placed in a distance of up to 6m from the X-ray film. Holograms of strings were taken with a beam spot size {sigma}{sub v}=(0.50{+-}0.05) {mu}m in vertical direction, and a monochromatic X-ray beam of 6keV energy. A good longitudinal coherence has been obtained by the (111) reflection of a flat silicon single crystal in Bragg geometry. It has been demonstrated that a direct exposure CCD chip with a pixel size of 13 x 13 {mu}m{sup 2} provides a highly efficient on-line detector. Contrast images can easily be generated with a complete elimination of all parasitic background. The on-line capability allows a minimization of the beam spot size by observing the smallest visible interference fringe spacings or the number of visible fringes. It has been demonstrated that X-ray films are also very useful detectors. The main advantage in comparison with the direct exposure CCD chip is the resolution. For the Structurix D3 (Agfa) X-ray film the standard deviation of the resolution was measured to be {sigma}{sub f}=(1.2{+-}0.4) {mu}m, which is about a factor of 6 better than for the direct exposure CCD chip. With the small effective X-ray spot size

  20. X-ray phase contrast imaging at MAMI

    Science.gov (United States)

    El-Ghazaly, M.; Backe, H.; Lauth, W.; Kube, G.; Kunz, P.; Sharafutdinov, A.; Weber, T.

    2006-05-01

    Experiments have been performed to explore the potential of the low emittance 855MeV electron beam of the Mainz Microtron MAMI for imaging with coherent X-rays. Transition radiation from a micro-focused electron beam traversing a foil stack served as X-ray source with good transverse coherence. Refraction contrast radiographs of low absorbing materials, in particular polymer strings with diameters between 30 and 450μm, were taken with a polychromatic transition radiation X-ray source with a spectral distribution in the energy range between 8 and about 40keV. The electron beam spot size had standard deviation σh = (8.6±0.1)μm in the horizontal and σv = (7.5±0.1)μm in the vertical direction. X-ray films were used as detectors. The source-to-detector distance amounted to 11.4m. The objects were placed in a distance of up to 6m from the X-ray film. Holograms of strings were taken with a beam spot size σv = (0.50±0.05)μm in vertical direction, and a monochromatic X-ray beam of 6keV energy. A good longitudinal coherence has been obtained by the (111) reflection of a flat silicon single crystal in Bragg geometry. It has been demonstrated that a direct exposure CCD chip with a pixel size of 13×13μm^2 provides a highly efficient on-line detector. Contrast images can easily be generated with a complete elimination of all parasitic background. The on-line capability allows a minimization of the beam spot size by observing the smallest visible interference fringe spacings or the number of visible fringes. It has been demonstrated that X-ray films are also very useful detectors. The main advantage in comparison with the direct exposure CCD chip is the resolution. For the Structurix D3 (Agfa) X-ray film the standard deviation of the resolution was measured to be σf = (1.2±0.4)μm, which is about a factor of 6 better than for the direct exposure CCD chip. With the small effective X-ray spot size in vertical direction of σv = (1.2±0.3)μm and a geometrical

  1. Dual-gate photo thin-film transistor: a “smart” pixel for high- resolution and low-dose X-ray imaging

    Science.gov (United States)

    Wang, Kai; Ou, Hai; Chen, Jun

    2015-06-01

    Since its emergence a decade ago, amorphous silicon flat panel X-ray detector has established itself as a ubiquitous platform for an array of digital radiography modalities. The fundamental building block of a flat panel detector is called a pixel. In all current pixel architectures, sensing, storage, and readout are unanimously kept separate, inevitably compromising resolution by increasing pixel size. To address this issue, we hereby propose a “smart” pixel architecture where the aforementioned three components are combined in a single dual-gate photo thin-film transistor (TFT). In other words, the dual-gate photo TFT itself functions as a sensor, a storage capacitor, and a switch concurrently. Additionally, by harnessing the amplification effect of such a thin-film transistor, we for the first time created a single-transistor active pixel sensor. The proof-of-concept device had a W/L ratio of 250μm/20μm and was fabricated using a simple five-mask photolithography process, where a 130nm transparent ITO was used as the top photo gate, and a 200nm amorphous silicon as the absorbing channel layer. The preliminary results demonstrated that the photocurrent had been increased by four orders of magnitude due to light-induced threshold voltage shift in the sub-threshold region. The device sensitivity could be simply tuned by photo gate bias to specifically target low-level light detection. The dependence of threshold voltage on light illumination indicated that a dynamic range of at least 80dB could be achieved. The "smart" pixel technology holds tremendous promise for developing high-resolution and low-dose X-ray imaging and may potentially lower the cancer risk imposed by radiation, especially among paediatric patients.

  2. Dual-gate photo thin-film transistor: a “smart” pixel for high- resolution and low-dose X-ray imaging

    International Nuclear Information System (INIS)

    Wang, Kai; Ou, Hai; Chen, Jun

    2015-01-01

    Since its emergence a decade ago, amorphous silicon flat panel X-ray detector has established itself as a ubiquitous platform for an array of digital radiography modalities. The fundamental building block of a flat panel detector is called a pixel. In all current pixel architectures, sensing, storage, and readout are unanimously kept separate, inevitably compromising resolution by increasing pixel size. To address this issue, we hereby propose a “smart” pixel architecture where the aforementioned three components are combined in a single dual-gate photo thin-film transistor (TFT). In other words, the dual-gate photo TFT itself functions as a sensor, a storage capacitor, and a switch concurrently. Additionally, by harnessing the amplification effect of such a thin-film transistor, we for the first time created a single-transistor active pixel sensor. The proof-of-concept device had a W/L ratio of 250μm/20μm and was fabricated using a simple five-mask photolithography process, where a 130nm transparent ITO was used as the top photo gate, and a 200nm amorphous silicon as the absorbing channel layer. The preliminary results demonstrated that the photocurrent had been increased by four orders of magnitude due to light-induced threshold voltage shift in the sub-threshold region. The device sensitivity could be simply tuned by photo gate bias to specifically target low-level light detection. The dependence of threshold voltage on light illumination indicated that a dynamic range of at least 80dB could be achieved. The 'smart' pixel technology holds tremendous promise for developing high-resolution and low-dose X-ray imaging and may potentially lower the cancer risk imposed by radiation, especially among paediatric patients. (paper)

  3. Coding aperture applied to X-ray imaging

    International Nuclear Information System (INIS)

    Brunol, J.; Sauneuf, R.; Gex, J.P.

    1980-05-01

    We present some X-ray images of grids and plasmas. These images were obtained by using a single circular slit (annular code) as coding aperture and a computer decoding process. The experimental resolution is better than 10μm and it is expected to be in the order of 2 or 3 μm with the same code and an improved decoding process

  4. 4D imaging and quantification of pore structure modifications inside natural building stones by means of high resolution X-ray CT.

    Science.gov (United States)

    Dewanckele, J; De Kock, T; Boone, M A; Cnudde, V; Brabant, L; Boone, M N; Fronteau, G; Van Hoorebeke, L; Jacobs, P

    2012-02-01

    Weathering processes have been studied in detail for many natural building stones. The most commonly used analytical techniques in these studies are thin-section petrography, SEM, XRD and XRF. Most of these techniques are valuable for chemical and mineralogical analysis of the weathering patterns. However, to obtain crucial quantitative information on structural evolutions like porosity changes and growth of weathering crusts in function of time, non-destructive techniques become necessary. In this study, a Belgian historical calcareous sandstone, the Lede stone, was exposed to gaseous SO(2) under wet surface conditions according to the European Standard NBN EN 13919 (2003). Before, during and after the strong acid test, high resolution X-ray tomography has been performed to visualize gypsum crust formation to yield a better insight into the effects of gaseous SO(2) on the pore modification in 3D. The tomographic scans were taken at the Centre for X-ray Tomography at Ghent University (UGCT). With the aid of image analysis, partial porosity changes were calculated in different stadia of the process. Increasing porosity has been observed visually and quantitatively below the new superficial formed layer of gypsum crystals. In some cases micro-cracks and dissolution zones were detected on the grain boundaries of quartz. By using Morpho+, an in-house developed image analysis program, radial porosity, partial porosity, ratio of open and closed porosity and equivalent diameter of individual pore structures have been calculated. The results obtained in this study are promising for a better understanding of gypsum weathering mechanisms, porosity changes and patterns on natural building stones in four dimensions. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Very high resolution UV and X-ray spectroscopy and imagery of solar active regions

    Science.gov (United States)

    Bruner, M.; Brown, W. A.; Haisch, B. M.

    1987-01-01

    A scientific investigation of the physics of the solar atmosphere, which uses the techniques of high resolution soft X-ray spectroscopy and high resolution UV imagery, is described. The experiments were conducted during a series of three sounding rocket flights. All three flights yielded excellent images in the UV range, showing unprecedented spatial resolution. The second flight recorded the X-ray spectrum of a solar flare, and the third that of an active region. A normal incidence multi-layer mirror was used during the third flight to make the first astronomical X-ray observations using this new technique.

  6. X-ray spectral decomposition imaging system

    Energy Technology Data Exchange (ETDEWEB)

    1977-07-27

    Projection measurements are made of the transmitted X-ray beam in low and high energy regions. These are combined in a non-linear processor to produce atomic-number-dependent and density-dependent projection information. This information is used to provide cross-sectional images which are free of spectral-shift artifacts and completely define the specific material properties. The invention described herein was made in the course of work under a grant from the Department of Health, Education, and Welfare.

  7. X-ray imaging bilinear staggered GaAs detectors

    Energy Technology Data Exchange (ETDEWEB)

    Achmadullin, R.A.; Dvoryankin, V.F. E-mail: vfd217@ire216.msk.su; Dvoryankina, G.G.; Dikaev, Y.M.Yu.M.; Krikunov, A.I.; Kudryashov, A.A.; Panova, T.M.; Petrov, A.G.; Telegin, A.A

    2004-09-21

    The multichannel bilinear X-ray detector based on epitaxial GaAs structures is developed to obtain a digital X-ray image. Each detector operates in photovoltaic mode without reverse bias that enables almost complete elimination of detector noise arising due to leakage currents. The sensitivity range of the epitaxial GaAs photovoltaic X-ray detector covers the effective energies from 8 to 120 keV. A maximum response of the detector operating in the short-circuit mode was observed at an energy of 35 keV and amounted to 30 {mu}A min/(Gy cm{sup 2}). The multichannel detector was made of 1024 pixels with pitch of 0.8 mm. The spatial resolution of double staggered sensor row is twice as high as the resolution of that of single sensor row with the same pitch. Measured spatial resolution is 1.2 line-pairs/mm, contrast sensitivity not worse 1% and dynamic range defined as the ratio of maximum detectable X-ray signal to electronic noise level more than 2000 are received.

  8. X-ray imaging bilinear staggered GaAs detectors

    International Nuclear Information System (INIS)

    Achmadullin, R.A.; Dvoryankin, V.F.; Dvoryankina, G.G.; Dikaev, Y.M.Yu.M.; Krikunov, A.I.; Kudryashov, A.A.; Panova, T.M.; Petrov, A.G.; Telegin, A.A.

    2004-01-01

    The multichannel bilinear X-ray detector based on epitaxial GaAs structures is developed to obtain a digital X-ray image. Each detector operates in photovoltaic mode without reverse bias that enables almost complete elimination of detector noise arising due to leakage currents. The sensitivity range of the epitaxial GaAs photovoltaic X-ray detector covers the effective energies from 8 to 120 keV. A maximum response of the detector operating in the short-circuit mode was observed at an energy of 35 keV and amounted to 30 μA min/(Gy cm 2 ). The multichannel detector was made of 1024 pixels with pitch of 0.8 mm. The spatial resolution of double staggered sensor row is twice as high as the resolution of that of single sensor row with the same pitch. Measured spatial resolution is 1.2 line-pairs/mm, contrast sensitivity not worse 1% and dynamic range defined as the ratio of maximum detectable X-ray signal to electronic noise level more than 2000 are received

  9. Aspergillosis - chest x-ray (image)

    Science.gov (United States)

    ... usually occurs in immunocompromised individuals. Here, a chest x-ray shows that the fungus has invaded the lung ... are usually seen as black areas on an x-ray. The cloudiness on the left side of this ...

  10. Imaging plate, a new type of x-ray area detector

    International Nuclear Information System (INIS)

    Kamiya, Nobuo; Amemiya, Yoshiyuki; Miyahara, Junji.

    1986-01-01

    In respective fields of X-ray crystallography, for the purpose of the efficient collection of reciprocal space information, two-dimensional X-ray detectors such as multiwire proportional chambers and X-ray television sets have been used together with conventional X-ray films. X-ray films are characterized by uniform sensitivity and high positional resolution over a wide area, but the sensitivity is low, and the range of action and the linearity of the sensitivity is problematic. They require the development process, accordingly lack promptitude. The MWPCs and X-ray television sets are superior in the sensitivity, its linearity, the range of action and promptitude, but interior in the uniformity and resolution to the films. Imaging plate is a new X-ray area detector developed by Fuji Photo Film Co., Ltd., for digital X-ray medical image diagnosis. This detector is superior in all the above mentioned performances, and it seems very useful also for X-ray crystallography. In this paper, the system composed of an imaging plate and its reader is described, and the basic performance as an X-ray area detector and the results of having recorded the diffraction images of protein crystals as the example of applying it to X-ray crystallography are reported. The imaging plate is that the crystalline fluorescent powder of BaFBr doped with Eu 2+ ions is applied on plastic films. (Kako, I.)

  11. Pick up screens for x-ray image intensifier tubes employing evaporated activated scintillator layer

    International Nuclear Information System (INIS)

    Spicer, W.E.

    1976-01-01

    The present invention relates in general to methods for making pick-up screens for x-ray image intensifier tubes and, more particularly, to an improved method wherein the x-ray fluorescent phosphor screen element is formed by evaporation of an alkali metal halide material in vacuum and condensing the evaporated material on an x-ray transparent portion of the x-ray intensifier tube, whereby a curved x-ray image pick-up screen is formed which has improved quantum efficiency and resolution. Such improved x-ray image intensifier tubes are especially useful for, but not limited in use to x-ray systems and for intensifying gamma ray images obtained in applications of nuclear medicine. 7 claims, 5 drawing figures

  12. Numerical simulation study for atomic-resolution x-ray fluorescence holography

    International Nuclear Information System (INIS)

    Xie Honglan; Gao Hongyi; Chen Jianwen; Xiong Shisheng; Xu Zhizhan; Wang Junyue; Zhu Peiping; Xian Dingchang

    2003-01-01

    Based on the principle of x-ray fluorescence holography, an iron single crystal model of a body-centred cubic lattice is numerically simulated. From the fluorescence hologram produced numerically, the Fe atomic images were reconstructed. The atomic images of the (001), (100), (010) crystallographic planes were consistent with the corresponding atomic positions of the model. The result indicates that one can obtain internal structure images of single crystals at atomic-resolution by using x-ray fluorescence holography

  13. Digital X-ray Imaging in Dentistry

    International Nuclear Information System (INIS)

    Kim, Eun Kyung

    1999-01-01

    In dentistry, Radio Visio Graphy was introduced as a first electronic dental x-ray imaging modality in 1989. Thereafter, many types of direct digital radiographic systems have been produced in the last decade. They are based either on charge-coupled device (CCD) or on storage phosphor technology. In addition, new types of digital radiographic system using amorphous selenium, image intensifier etc. are under development. Advantages of digital radiographic system are elimination of chemical processing, reduction in radiation dose, image processing, computer storage, electronic transfer of images and so on. Image processing includes image enhancement, image reconstruction, digital subtraction, etc. Especially digital subtraction and reconstruction can be applied in many aspects of clinical practice and research. Electronic transfer of images enables filmless dental hospital and teleradiology/teledentistry system. Since the first image management and communications system (IMACS) for dentomaxillofacial radiology was reported in 1992, IMACS in dental hospital has been increasing. Meanwhile, researches about computer-assisted diagnosis, such as structural analysis of bone trabecular patterns of mandible, feature extraction, automated identification of normal landmarks on cephalometric radiograph and automated image analysis for caries or periodontitis, have been performed actively in the last decade. Further developments in digital radiographic imaging modalities, image transmission system, imaging processing and automated analysis software will change the traditional clinical dental practice in the 21st century.

  14. Digital X-ray Imaging in Dentistry

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun Kyung [Dept. of Oral and Maxillofacial Radiology, College of Dentistry, Dankook University, Yongin (Korea, Republic of)

    1999-08-15

    In dentistry, Radio Visio Graphy was introduced as a first electronic dental x-ray imaging modality in 1989. Thereafter, many types of direct digital radiographic systems have been produced in the last decade. They are based either on charge-coupled device (CCD) or on storage phosphor technology. In addition, new types of digital radiographic system using amorphous selenium, image intensifier etc. are under development. Advantages of digital radiographic system are elimination of chemical processing, reduction in radiation dose, image processing, computer storage, electronic transfer of images and so on. Image processing includes image enhancement, image reconstruction, digital subtraction, etc. Especially digital subtraction and reconstruction can be applied in many aspects of clinical practice and research. Electronic transfer of images enables filmless dental hospital and teleradiology/teledentistry system. Since the first image management and communications system (IMACS) for dentomaxillofacial radiology was reported in 1992, IMACS in dental hospital has been increasing. Meanwhile, researches about computer-assisted diagnosis, such as structural analysis of bone trabecular patterns of mandible, feature extraction, automated identification of normal landmarks on cephalometric radiograph and automated image analysis for caries or periodontitis, have been performed actively in the last decade. Further developments in digital radiographic imaging modalities, image transmission system, imaging processing and automated analysis software will change the traditional clinical dental practice in the 21st century.

  15. A soft X-ray image of the Moon

    International Nuclear Information System (INIS)

    Schmitt, J.H.M.M.; Aschenbach, B.; Hasinger, G.; Pfeffermann, E.; Predehl, P.; Truemper, J.; Snowden, S.L.; Wisconsin Univ., Madison, WI

    1991-01-01

    A soft X-ray image of the Moon obtained by the Roentgen Observatory Satellite ROSAT clearly shows a sunlit crescent, demonstrating that the Moon's X-ray luminosity arises from backscattering of solar X-rays. The Moon's optically dark side is also X-ray dark, and casts a distinct shadow on the diffuse cosmic X-ray background. Unexpectedly, the dark side seems to emit X-rays at a level about one per cent that of the bright side; this emission very probably results from energetic solar-wind electrons striking the Moon's surface. (author)

  16. Recent developments in X-ray imaging detectors

    CERN Document Server

    Moy, J P

    2000-01-01

    The replacement of the radiographic film in medical imaging has been the driving force in X-ray imaging developments. It requires a approx 40 cm wide detector to cover all examinations, an equivalent noise level of 1-5 X-ray quanta per pixel, and spatial resolution in the range 100-150 mu m. The need for entirely electronic imaging equipments has fostered the development of many X-ray detectors, most of them based on an array of amorphous silicon pixels, which is the only technology capable to achieve such large areas. Essentially, two concepts have been implemented: - intermediate conversion of X-rays to light by a scintillator, detected by an array of light sensitive pixels, comprising a photodiode and a switching device, either a TFT or a diode. - conversion into electron-hole pairs in a photoconductor, collected by an array of electrodes and switches. In both cases, charge amplifiers read the generated charges line by line. Scintillator and photoconductor-based systems are now close to production. They ac...

  17. X-ray diagnostic installation for X-ray tomographic images

    International Nuclear Information System (INIS)

    Haendle, J.; Sklebitz, H.

    1984-01-01

    An exemplary embodiment includes at least one x-ray tube for the generation of an x-ray beam, a patient support, an image detector, and a control generator-connected with the x-ray tube and the image detector-for the purpose of moving the x-ray beam, and in opposition thereto, the image field of the image detector. There is connected to the control generator a layer height computer which calculates the enlargement from the geometric data for the tomogram. The image detector has a circuit-connected with the layer height computer-for the purpose of fading-in a marking for the dimensions in the layer plane

  18. An investigation of the potential of optical computed tomography for imaging of synchrotron-generated x-rays at high spatial resolution

    International Nuclear Information System (INIS)

    Doran, Simon J; Brochard, Thierry; Braeuer-Krisch, Elke; Adamovics, John; Krstajic, Nikola

    2010-01-01

    X-ray microbeam radiation therapy (MRT) is a novel form of treatment, currently in its preclinical stage, which uses microplanar x-ray beams from a synchrotron radiation source. It is important to perform accurate dosimetry on these microbeams, but, to date, there has been no accurate enough method available for making 3D dose measurements with isotropic, high spatial resolution to verify the results of Monte Carlo dose simulations. Here, we investigate the potential of optical computed tomography for satisfying these requirements. The construction of a simple optical CT microscopy (optical projection tomography) system from standard commercially available hardware is described. The measurement of optical densities in projection data is shown to be highly linear (r 2 = 0.999). The depth-of-field (DOF) of the imaging system is calculated based on the previous literature and measured experimentally using a commercial DOF target. It is shown that high quality images can be acquired despite the evident lack of telecentricity and despite DOF of the system being much lower than the sample diameter. Possible reasons for this are discussed. Results are presented for a complex irradiation of a 22 mm diameter cylinder of the radiochromic polymer PRESAGE(TM), demonstrating the exquisite 'dose-painting' abilities available in the MRT hutch of beamline ID-17 at the European Synchrotron Radiation Facility. Dose distributions in this initial experiment are equally well resolved on both an optical CT scan and a corresponding transmission image of radiochromic film, down to a line width of 83 μm (6 lp mm -1 ) with an MTF value of 0.40. A group of 33 μm wide lines was poorly resolved on both the optical CT and film images, and this is attributed to an incorrect exposure time calculation, leading to under-delivery of dose. Image artefacts in the optical CT scan are discussed. PRESAGE(TM) irradiated using the microbeam facility is proposed as a suitable material for producing

  19. Computer assisted analysis of medical x-ray images

    Science.gov (United States)

    Bengtsson, Ewert

    1996-01-01

    X-rays were originally used to expose film. The early computers did not have enough capacity to handle images with useful resolution. The rapid development of computer technology over the last few decades has, however, led to the introduction of computers into radiology. In this overview paper, the various possible roles of computers in radiology are examined. The state of the art is briefly presented, and some predictions about the future are made.

  20. Submicrovolt resolution X-ray monochromators

    International Nuclear Information System (INIS)

    Trammell, G.T.; Hannon, J.P.

    1984-01-01

    Two methods are available to obtain monochromatic x-radiation from a white source: wavelength selection and frequency selection. The resolution of wavelength selection methods is limited to 1-10 MeV in the E = 10 KeV range. To exceed this resolution frequency selection methods based on nuclear resonance scattering can be used. Devices which give strong nuclear resonance reflections but weak electronic reflections are candidates for components of frequency selection monochromates. Some examples are discussed

  1. Experimental demonstration of high resolution three-dimensional x-ray holography

    International Nuclear Information System (INIS)

    McNulty, I.; Trebes, J.E.; Brase, J.M.; Yorkey, T.J.; Levesque, R.; Szoke, H.; Anderson, E.H.; Jacobsen, C.

    1992-01-01

    Tomographic x-ray holography may make possible the imaging of biological objects at high resolution in three dimensions. We performed a demonstration experiment with soft x-rays to explore the feasibility of this technique. Coherent 3.2-nm undulator radiation was used to record Fourier transform holograms of a microfabricated test object from various illumination angles. The holograms were numerically reconstructed according to the principles of diffraction tomography, yielding images of the object that are well resolved in three dimensions

  2. X-ray framing cameras for > 5 keV imaging

    International Nuclear Information System (INIS)

    Landen, O.L.; Bell, P.M.; Costa, R.; Kalantar, D.H.; Bradley, D.K.

    1995-01-01

    Recent and proposed improvements in spatial resolution, temporal resolution, contrast, and detection efficiency for x-ray framing cameras are discussed in light of present and future laser-plasma diagnostic needs. In particular, improvements in image contrast above hard x-ray background levels is demonstrated by using high aspect ratio tapered pinholes

  3. High resolution X-ray imaging of bone-implant interface by large area flat-panel detector

    Czech Academy of Sciences Publication Activity Database

    Kytýř, Daniel; Jiroušek, Ondřej; Dammer, J.

    2011-01-01

    Roč. 6, č. 1 (2011), s. 1038-1043 ISSN 1748-0221 R&D Projects: GA ČR(CZ) GAP105/10/2305 Institutional research plan: CEZ:AV0Z20710524 Keywords : computed radiography * computerized tomography * medical-image reconstruction Subject RIV: JJ - Other Materials Impact factor: 1.869, year: 2011 http://iopscience.iop.org/1748-0221/6/01/C01038

  4. X-ray fluorescence method for trace analysis and imaging

    International Nuclear Information System (INIS)

    Hayakawa, Shinjiro

    2000-01-01

    X-ray fluorescence analysis has a long history as conventional bulk elemental analysis with medium sensitivity. However, with the use of synchrotron radiation x-ray fluorescence method has become a unique analytical technique which can provide tace elemental information with the spatial resolution. To obtain quantitative information of trace elemental distribution by using the x-ray fluorescence method, theoretical description of x-ray fluorescence yield is described. Moreover, methods and instruments for trace characterization with a scanning x-ray microprobe are described. (author)

  5. Transmission X-ray microscopy for full-field nano-imaging of biomaterials

    Science.gov (United States)

    ANDREWS, JOY C; MEIRER, FLORIAN; LIU, YIJIN; MESTER, ZOLTAN; PIANETTA, PIERO

    2010-01-01

    Imaging of cellular structure and extended tissue in biological materials requires nanometer resolution and good sample penetration, which can be provided by current full-field transmission X-ray microscopic techniques in the soft and hard X-ray regions. The various capabilities of full-field transmission X-ray microscopy (TXM) include 3D tomography, Zernike phase contrast, quantification of absorption, and chemical identification via X-ray fluorescence and X-ray absorption near edge structure (XANES) imaging. These techniques are discussed and compared in light of results from imaging of biological materials including microorganisms, bone and mineralized tissue and plants, with a focus on hard X-ray TXM at ≤ 40 nm resolution. PMID:20734414

  6. Transmission X-ray microscopy for full-field nano imaging of biomaterials.

    Science.gov (United States)

    Andrews, Joy C; Meirer, Florian; Liu, Yijin; Mester, Zoltan; Pianetta, Piero

    2011-07-01

    Imaging of cellular structure and extended tissue in biological materials requires nanometer resolution and good sample penetration, which can be provided by current full-field transmission X-ray microscopic techniques in the soft and hard X-ray regions. The various capabilities of full-field transmission X-ray microscopy (TXM) include 3D tomography, Zernike phase contrast, quantification of absorption, and chemical identification via X-ray fluorescence and X-ray absorption near edge structure imaging. These techniques are discussed and compared in light of results from the imaging of biological materials including microorganisms, bone and mineralized tissue, and plants, with a focus on hard X-ray TXM at ≤ 40-nm resolution. Copyright © 2010 Wiley-Liss, Inc.

  7. Apparatus and method X-ray image processing

    International Nuclear Information System (INIS)

    1984-01-01

    The invention relates to a method for X-ray image processing. The radiation passed through the object is transformed into an electric image signal from which the logarithmic value is determined and displayed by a display device. Its main objective is to provide a method and apparatus that renders X-ray images or X-ray subtraction images with strong reduction of stray radiation. (Auth.)

  8. X-ray diffraction imaging of material microstructures

    KAUST Repository

    Varga, Laszlo

    2016-10-20

    Various examples are provided for x-ray imaging of the microstructure of materials. In one example, a system for non-destructive material testing includes an x-ray source configured to generate a beam spot on a test item; a grid detector configured to receive x- rays diffracted from the test object; and a computing device configured to determine a microstructure image based at least in part upon a diffraction pattern of the x-rays diffracted from the test object. In another example, a method for determining a microstructure of a material includes illuminating a beam spot on the material with a beam of incident x-rays; detecting, with a grid detector, x-rays diffracted from the material; and determining, by a computing device, a microstructure image based at least in part upon a diffraction pattern of the x-rays diffracted from the material.

  9. Images of the laser entrance hole from the static x-ray imager at NIF.

    Science.gov (United States)

    Schneider, M B; Jones, O S; Meezan, N B; Milovich, J L; Town, R P; Alvarez, S S; Beeler, R G; Bradley, D K; Celeste, J R; Dixit, S N; Edwards, M J; Haugh, M J; Kalantar, D H; Kline, J L; Kyrala, G A; Landen, O L; MacGowan, B J; Michel, P; Moody, J D; Oberhelman, S K; Piston, K W; Pivovaroff, M J; Suter, L J; Teruya, A T; Thomas, C A; Vernon, S P; Warrick, A L; Widmann, K; Wood, R D; Young, B K

    2010-10-01

    The static x-ray imager at the National Ignition Facility is a pinhole camera using a CCD detector to obtain images of Hohlraum wall x-ray drive illumination patterns seen through the laser entrance hole (LEH). Carefully chosen filters, combined with the CCD response, allow recording images in the x-ray range of 3-5 keV with 60 μm spatial resolution. The routines used to obtain the apparent size of the backlit LEH and the location and intensity of beam spots are discussed and compared to predictions. A new soft x-ray channel centered at 870 eV (near the x-ray peak of a 300 eV temperature ignition Hohlraum) is discussed.

  10. Multiflash X ray with Image Detanglement for Single Image Isolation

    Science.gov (United States)

    2017-08-31

    known and separated into individual images. A proof-of- principle study was performed using 4 X-ray flashes and copper masks with sub-millimeter holes...Popular Science article.2 For decades, that basic concept dominated the color television market . Those were the days when a large color television...proof-of- principle study was performed using 4 X-ray flashes and copper masks with sub-millimeter holes that allowed development of the required image

  11. Microbeam high-resolution diffraction and x-ray standing wave methods applied to semiconductor structures

    International Nuclear Information System (INIS)

    Kazimirov, A; Bilderback, D H; Huang, R; Sirenko, A; Ougazzaden, A

    2004-01-01

    A new approach to conditioning x-ray microbeams for high angular resolution x-ray diffraction and scattering techniques is introduced. We combined focusing optics (one-bounce imaging capillary) and post-focusing collimating optics (miniature Si(004) channel-cut crystal) to generate an x-ray microbeam with a size of 10 μm and ultimate angular resolution of 14 μrad. The microbeam was used to analyse the strain in sub-micron thick InGaAsP epitaxial layers grown on an InP(100) substrate by the selective area growth technique in narrow openings between the oxide stripes. For the structures for which the diffraction peaks from the substrate and the film overlap, the x-ray standing wave technique was applied for precise measurements of the strain with a Δd/d resolution of better than 10 -4 . (rapid communication)

  12. SMART-X: Square Meter, Arcsecond Resolution Telescope for X-rays

    Science.gov (United States)

    Vikhlinin, Alexey; SMART-X Collaboration

    2013-04-01

    SMART-X is a concept for a next-generation X-ray observatory with large-area, 0.5" angular resolution grazing incidence adjustable X-ray mirrors, high-throughput critical angle transmission gratings, and X-ray microcalorimeter and CMOS-based imager in the focal plane. High angular resolution is enabled by new technology based on controlling the shape of mirror segments using thin film piezo actuators deposited on the back surface. Science applications include observations of growth of supermassive black holes since redshifts of ~10, ultra-deep surveys over 10's of square degrees, galaxy assembly at z=2-3, as well as new opportunities in the high-resolution X-ray spectroscopy and time domains. We also review the progress in technology development, tests, and mission design over the past year.

  13. Adenocarcinoma - chest x-ray (image)

    Science.gov (United States)

    This chest x-ray shows adenocarcinoma of the lung. There is a rounded light spot in the right upper lung (left side ... density. Diseases that may cause this type of x-ray result would be tuberculous or fungal granuloma, and ...

  14. High resolution X-ray diffraction studies on unirradiated

    Indian Academy of Sciences (India)

    High-resolution X-ray diffraction technique, employing a three-crystal monochromator–collimator combination is used to study the irradiation induced defects in flux grown Sr-hexaferrite crystals irradiated with 50 MeV Li3+ ion beams at room temperature with a fluence value of 1 × 1014 ions/cm2. The diffraction curves of the ...

  15. Hight resolution Si(Li) X ray detector

    International Nuclear Information System (INIS)

    Yuan Xianglin; Huang Naizhang; Lin Maocai; Li Zhiyong

    1985-01-01

    This paper describes the fabrication technology of GL1221 type Si(Li) X ray detector core and the pulse light feedback colded preamplifier fitted on the detector. The energy resolution of the detector system is 165 eV (At 5.89 KeV Mn-K α X ray); the counting rate is 1020 cps, and the electronics noise is 104 eV. The performace of the detector keeps up with the business level of a foreign product of the same kind

  16. High-resolution x-ray photoemission spectra of silver

    DEFF Research Database (Denmark)

    Barrie, A.; Christensen, N. E.

    1976-01-01

    An electron spectrometer fitted with an x-ray monochromator for Al Kα1,2 radiation (1486.6 eV) has been used to record high-resolution x-ray photoelectron spectra for the 4d valence band as well as the 3d spin doublet in silver. The core-level spectrum has a line shape that can be described...... successfully in terms of the many-body theory of Mahan, Nozières, and De Dominicis. The 4d spectrum agrees well with predictions based on a relativistic-augmented-plane-wave band-structure calculation....

  17. Automated processing of X-ray images in medicine

    International Nuclear Information System (INIS)

    Babij, Ya.S.; B'yalyuk, Ya.O.; Yanovich, I.A.; Lysenko, A.V.

    1991-01-01

    Theoretical and practical achievements in application of computing technology means for processing of X-ray images in medicine were generalized. The scheme of the main directions and tasks of processing of X-ray images was given and analyzed. The principal problems appeared in automated processing of X-ray images were distinguished. It is shown that for interpretation of X-ray images it is expedient to introduce a notion of relative operating characteristic (ROC) of a roentgenologist. Every point on ROC curve determines the individual criteria of roentgenologist to put a positive diagnosis for definite situation

  18. X-ray imaging with the PILATUS 100k detector

    DEFF Research Database (Denmark)

    Bech, Martin; Bunk, O.; David, C.

    2008-01-01

    We report on the application of the PILATUS 100K pixel detector for medical imaging. Experimental results are presented in the form of X-ray radiographs using standard X-ray absorption contrast and a recently developed phase contrast imaging method. The results obtained with the PILATUS detector...... are compared to results obtained with a conventional X-ray imaging system consisting of an X-ray scintillation screen, lens optics, and a charge coupled device. Finally, the results for both systems are discussed more quantitatively based on an image power spectrum analysis. Udgivelsesdato: April...

  19. Image Analysis for X-ray Imaging of Food

    DEFF Research Database (Denmark)

    Einarsdottir, Hildur

    for quality and safety evaluation of food products. In this effort the fields of statistics, image analysis and statistical learning are combined, to provide analytical tools for determining the aforementioned food traits. The work demonstrated includes a quantitative analysis of heat induced changes......X-ray imaging systems are increasingly used for quality and safety evaluation both within food science and production. They offer non-invasive and nondestructive penetration capabilities to image the inside of food. This thesis presents applications of a novel grating-based X-ray imaging technique...... and defect detection in food. Compared to the complex three dimensional analysis of microstructure, here two dimensional images are considered, making the method applicable for an industrial setting. The advantages obtained by grating-based imaging are compared to conventional X-ray imaging, for both foreign...

  20. A laboratory-based hard x-ray monochromator for high-resolution x-ray emission spectroscopy and x-ray absorption near edge structure measurements

    Energy Technology Data Exchange (ETDEWEB)

    Seidler, G. T., E-mail: seidler@uw.edu; Mortensen, D. R.; Remesnik, A. J.; Pacold, J. I.; Ball, N. A.; Barry, N.; Styczinski, M.; Hoidn, O. R. [Physics Department, University of Washington, Seattle, Washington 98195-1560 (United States)

    2014-11-15

    We report the development of a laboratory-based Rowland-circle monochromator that incorporates a low power x-ray (bremsstrahlung) tube source, a spherically bent crystal analyzer, and an energy-resolving solid-state detector. This relatively inexpensive, introductory level instrument achieves 1-eV energy resolution for photon energies of ∼5 keV to ∼10 keV while also demonstrating a net efficiency previously seen only in laboratory monochromators having much coarser energy resolution. Despite the use of only a compact, air-cooled 10 W x-ray tube, we find count rates for nonresonant x-ray emission spectroscopy comparable to those achieved at monochromatized spectroscopy beamlines at synchrotron light sources. For x-ray absorption near edge structure, the monochromatized flux is small (due to the use of a low-powered x-ray generator) but still useful for routine transmission-mode studies of concentrated samples. These results indicate that upgrading to a standard commercial high-power line-focused x-ray tube or rotating anode x-ray generator would result in monochromatized fluxes of order 10{sup 6}–10{sup 7} photons/s with no loss in energy resolution. This work establishes core technical capabilities for a rejuvenation of laboratory-based hard x-ray spectroscopies that could have special relevance for contemporary research on catalytic or electrical energy storage systems using transition-metal, lanthanide, or noble-metal active species.

  1. Soft X-ray Foucault test: A path to diffraction-limited imaging

    Science.gov (United States)

    Ray-Chaudhuri, A. K.; Ng, W.; Liang, S.; Cerrina, F.

    1994-08-01

    We present the development of a soft X-ray Foucault test capable of characterizing the imaging properties of a soft X-ray optical system at its operational wavelength and its operational configuration. This optical test enables direct visual inspection of imaging aberrations and provides real-time feedback for the alignment of high resolution soft X-ray optical systems. A first application of this optical test was carried out on a Mo-Si multilayer-coated Schwarzschild objective as part of the MAXIMUM project. Results from the alignment procedure are presented as well as the possibility for testing in the hard X-ray regime.

  2. Two digital X-ray imaging systems for applications in X-ray diffraction

    International Nuclear Information System (INIS)

    Bateman, J.E.; Connolly, J.F.; Stephenson, R.; Flesher, A.C.; Bryant, C.J.; Lincoln, A.D.; Tucker, P.A.; Swanton, S.W.

    1986-08-01

    Two digital X-ray imaging systems developed at the Rutherford Appleton Laboratory are described:- the Mark I and the Mark II. Both use a bidimensionally sensitive Multiwire proportional counter as the basic X-ray image transducer coupled to a digital microcomputer system. The Mark I system provides the advantages of high speed, high sensitivity digital imaging directly into the computer with the potential for software control of the sample orientation and environment. The Mark II system adds the novel features of signal averaging and multi-frame exposures. (author)

  3. The superconducting high-resolution soft X-ray spectrometer at the advanced biological and environmental X-ray facility

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, S. [Advanced Detector Group, Lawrence Livermore National Laboratory, 7000 East Avenue, L-188, Livermore, CA 94550 (United States); Advanced Biological and Environmental X-ray Facility, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 6-2100, Berkeley, CA 94720 (United States)], E-mail: Friedrich1@llnl.gov; Drury, O.B. [Advanced Detector Group, Lawrence Livermore National Laboratory, 7000 East Avenue, L-188, Livermore, CA 94550 (United States); Advanced Biological and Environmental X-ray Facility, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 6-2100, Berkeley, CA 94720 (United States); Biophysics Group, University of California, 1 Shields Avenue, EU-III, Davis, CA 95616 (United States); George, S.J. [Advanced Biological and Environmental X-ray Facility, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 6-2100, Berkeley, CA 94720 (United States); Cramer, S.P. [Advanced Biological and Environmental X-ray Facility, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 6-2100, Berkeley, CA 94720 (United States); Biophysics Group, University of California, 1 Shields Avenue, EU-III, Davis, CA 95616 (United States)

    2007-11-11

    We have built a 36-pixel superconducting tunnel junction X-ray spectrometer for chemical analysis of dilute samples in the soft X-ray band. It offers an energy resolution of {approx}10-20 eV FWHM below 1 keV, a solid angle coverage of {approx}10{sup -3}, and can be operated at total rates of up to {approx}10{sup 6} counts/s. Here, we describe the spectrometer performance in speciation measurements by fluorescence-detected X-ray absorption spectroscopy at the Advanced Biological and Environmental X-ray facility at the ALS synchrotron.

  4. High resolution x-ray microtomography of biological samples: Requirements and strategies for satisfying them

    Energy Technology Data Exchange (ETDEWEB)

    Loo, B.W. Jr. [Univ. of California, San Francisco, CA (United States)]|[Univ. of California, Davis, CA (United States)]|[Lawrence Berkeley National Lab., CA (United States); Rothman, S.S. [Univ. of California, San Francisco, CA (United States)]|[Lawrence Berkeley National Lab., CA (United States)

    1997-02-01

    High resolution x-ray microscopy has been made possible in recent years primarily by two new technologies: microfabricated diffractive lenses for soft x-rays with about 30-50 nm resolution, and high brightness synchrotron x-ray sources. X-ray microscopy occupies a special niche in the array of biological microscopic imaging methods. It extends the capabilities of existing techniques mainly in two areas: a previously unachievable combination of sub-visible resolution and multi-micrometer sample size, and new contrast mechanisms. Because of the soft x-ray wavelengths used in biological imaging (about 1-4 nm), XM is intermediate in resolution between visible light and electron microscopies. Similarly, the penetration depth of soft x-rays in biological materials is such that the ideal sample thickness for XM falls in the range of 0.25 - 10 {mu}m, between that of VLM and EM. XM is therefore valuable for imaging of intermediate level ultrastructure, requiring sub-visible resolutions, in intact cells and subcellular organelles, without artifacts produced by thin sectioning. Many of the contrast producing and sample preparation techniques developed for VLM and EM also work well with XM. These include, for example, molecule specific staining by antibodies with heavy metal or fluorescent labels attached, and sectioning of both frozen and plastic embedded tissue. However, there is also a contrast mechanism unique to XM that exists naturally because a number of elemental absorption edges lie in the wavelength range used. In particular, between the oxygen and carbon absorption edges (2.3 and 4.4 nm wavelength), organic molecules absorb photons much more strongly than does water, permitting element-specific imaging of cellular structure in aqueous media, with no artifically introduced contrast agents. For three-dimensional imaging applications requiring the capabilities of XM, an obvious extension of the technique would therefore be computerized x-ray microtomography (XMT).

  5. Tuberculosis, advanced - chest x-rays (image)

    Science.gov (United States)

    Tuberculosis is an infectious disease that causes inflammation, the formation of tubercules and other growths within tissue, ... death. These chest x-rays show advanced pulmonary tuberculosis. There are multiple light areas (opacities) of varying ...

  6. High-Resolution and Lightweight X-ray Optics for the X-Ray Surveyor

    Science.gov (United States)

    Zhang, William

    Envisioned in "Enduring Quest, Daring Visions" and under study by NASA as a potential major mission for the 2020s, the X-ray Surveyor mission will likely impose three requirements on its optics: (1) high angular resolution: 0.5 PSF, (2) large effective area: e10,000 cm2 or more, and (3) affordable production cost: $500M. We propose a technology that can meet these requirements by 2020. It will help the X-ray Surveyor secure the endorsement of the coming decadal survey and enable its implementation following WFIRST. The technology comprises four elements: (1) fabrication of lightweight single crystal silicon mirrors, (2) coating these mirrors with iridium to maximize effective area without figure degradation, (3) alignment and bonding of these mirrors to form meta-shells that will be integrated to make a mirror assembly, and (4) systems engineering to ensure that the mirror assembly meet all science performance and spaceflight environmental requirements. This approach grows out of our existing approach based on glass slumping. Using glass slumping technology, we have been able to routinely build and test mirror modules of 10half-power diameter (HPD). While comparable in HPD to XMM-Newtons electroformed nickel mirrors, these mirror modules are 10 times lighter. Likewise, while comparable in weight to Suzakus epoxy-replicated aluminum foil mirrors, these modules have 10 times better HPD. These modules represent the current state of the art of lightweight X-ray optics. Although both successful and mature, the glass slumping technology has reached its limit and cannot achieve sub-arc second HPD. Therefore, we are pursuing the new approach based on polishing single crystal silicon. The new approach will enable the building and testing of mirror modules, called meta-shells, capable of 3HPD by 2018 and 1HPD by 2020, and has the potential to reach diffraction limits ( 0.1) in the 2020s.

  7. Interferometric and optical tests of water window imaging x ray microscopes

    Science.gov (United States)

    Johnson, R. Barry

    1993-01-01

    Interferometric tests of Schwarzchild X-ray Microscope are performed to evaluate the optical properties and alignment of the components. Photographic measurements of the spatial resolution, focal properties, and vignetting characteristics of the prototype Water Window Imaging X-ray Microscope are made and analyzed.

  8. Dental x-ray image segmentation

    Science.gov (United States)

    Said, Eyad; Fahmy, Gamal F.; Nassar, Diaa; Ammar, Hany

    2004-08-01

    Law enforcement agencies have been exploiting biometric identifiers for decades as key tools in forensic identification. With the evolution in information technology and the huge volume of cases that need to be investigated by forensic specialists, it has become important to automate forensic identification systems. While, ante mortem (AM) identification, that is identification prior to death, is usually possible through comparison of many biometric identifiers, postmortem (PM) identification, that is identification after death, is impossible using behavioral biometrics (e.g. speech, gait). Moreover, under severe circumstances, such as those encountered in mass disasters (e.g. airplane crashers) or if identification is being attempted more than a couple of weeks postmortem, under such circumstances, most physiological biometrics may not be employed for identification, because of the decay of soft tissues of the body to unidentifiable states. Therefore, a postmortem biometric identifier has to resist the early decay that affects body tissues. Because of their survivability and diversity, the best candidates for postmortem biometric identification are the dental features. In this paper we present an over view about an automated dental identification system for Missing and Unidentified Persons. This dental identification system can be used by both law enforcement and security agencies in both forensic and biometric identification. We will also present techniques for dental segmentation of X-ray images. These techniques address the problem of identifying each individual tooth and how the contours of each tooth are extracted.

  9. The MAXIM Pathfinder Mission: X-Ray Imaging at 100 Micro-Arcseconds

    Science.gov (United States)

    Cash, Webster; White, Nick; Joy, Marshall

    2000-01-01

    We present the results of a study to show how it is possible to build a super high resolution x-ray imaging mission based on the principles of x-ray interferometry. The mission concept uses today's technology to specify a 1.4 meter baseline interferometer that will resolve features as fine as 100 micro-arcsecond imaging at 1keV. This resolution is sufficient to produce high quality images of the coronae of other stars.

  10. Comprehensive Non-Destructive Conservation Documentation of Lunar Samples Using High-Resolution Image-Based 3D Reconstructions and X-Ray CT Data

    Science.gov (United States)

    Blumenfeld, E. H.; Evans, C. A.; Oshel, E. R.; Liddle, D. A.; Beaulieu, K.; Zeigler, R. A.; Hanna, R. D.; Ketcham, R. A.

    2015-01-01

    Established contemporary conservation methods within the fields of Natural and Cultural Heritage encourage an interdisciplinary approach to preservation of heritage material (both tangible and intangible) that holds "Outstanding Universal Value" for our global community. NASA's lunar samples were acquired from the moon for the primary purpose of intensive scientific investigation. These samples, however, also invoke cultural significance, as evidenced by the millions of people per year that visit lunar displays in museums and heritage centers around the world. Being both scientifically and culturally significant, the lunar samples require a unique conservation approach. Government mandate dictates that NASA's Astromaterials Acquisition and Curation Office develop and maintain protocols for "documentation, preservation, preparation and distribution of samples for research, education and public outreach" for both current and future collections of astromaterials. Documentation, considered the first stage within the conservation methodology, has evolved many new techniques since curation protocols for the lunar samples were first implemented, and the development of new documentation strategies for current and future astromaterials is beneficial to keeping curation protocols up to date. We have developed and tested a comprehensive non-destructive documentation technique using high-resolution image-based 3D reconstruction and X-ray CT (XCT) data in order to create interactive 3D models of lunar samples that would ultimately be served to both researchers and the public. These data enhance preliminary scientific investigations including targeted sample requests, and also provide a new visual platform for the public to experience and interact with the lunar samples. We intend to serve these data as they are acquired on NASA's Astromaterials Acquisistion and Curation website at http://curator.jsc.nasa.gov/. Providing 3D interior and exterior documentation of astromaterial

  11. Quantitative cone beam X-ray luminescence tomography/X-ray computed tomography imaging

    International Nuclear Information System (INIS)

    Chen, Dongmei; Zhu, Shouping; Chen, Xueli; Chao, Tiantian; Cao, Xu; Zhao, Fengjun; Huang, Liyu; Liang, Jimin

    2014-01-01

    X-ray luminescence tomography (XLT) is an imaging technology based on X-ray-excitable materials. The main purpose of this paper is to obtain quantitative luminescence concentration using the structural information of the X-ray computed tomography (XCT) in the hybrid cone beam XLT/XCT system. A multi-wavelength luminescence cone beam XLT method with the structural a priori information is presented to relieve the severe ill-posedness problem in the cone beam XLT. The nanophosphors and phantom experiments were undertaken to access the linear relationship of the system response. Then, an in vivo mouse experiment was conducted. The in vivo experimental results show that the recovered concentration error as low as 6.67% with the location error of 0.85 mm can be achieved. The results demonstrate that the proposed method can accurately recover the nanophosphor inclusion and realize the quantitative imaging

  12. Lead foil in dental X-ray film: Backscattering rejection or image intensifier?

    International Nuclear Information System (INIS)

    Hönnicke, M.G.; Delben, G.J.; Godoi, W.C.; Swinka-Filho, V.

    2014-01-01

    Dental X-ray films are still largely used due to sterilization issues, simplicity and, mainly, economic reasons. These films almost always are double coated (double emulsion) and have a lead foil in contact with the film for X-ray backscattering rejection. Herein we explore the use of the lead foil as an image intensifier. In these studies, spatial resolution was investigated when images were acquired on the dental X-ray films with and without the lead foil. Also, the lead foil was subjected to atomic analysis (fluorescent measurements) and structure analysis (X-ray diffraction). We determined that the use of the lead foil reduces the exposure time, however, does not affect the spatial resolution on the acquired images. This suggests that the fluorescent radiation spread is smaller than the grain sizes of the dental X-ray films

  13. Lead foil in dental X-ray film: Backscattering rejection or image intensifier?

    Science.gov (United States)

    Hönnicke, M. G.; Delben, G. J.; Godoi, W. C.; Swinka-Filho, V.

    2014-11-01

    Dental X-ray films are still largely used due to sterilization issues, simplicity and, mainly, economic reasons. These films almost always are double coated (double emulsion) and have a lead foil in contact with the film for X-ray backscattering rejection. Herein we explore the use of the lead foil as an image intensifier. In these studies, spatial resolution was investigated when images were acquired on the dental X-ray films with and without the lead foil. Also, the lead foil was subjected to atomic analysis (fluorescent measurements) and structure analysis (X-ray diffraction). We determined that the use of the lead foil reduces the exposure time, however, does not affect the spatial resolution on the acquired images. This suggests that the fluorescent radiation spread is smaller than the grain sizes of the dental X-ray films.

  14. Design considerations for soft X-ray television imaging detectors

    International Nuclear Information System (INIS)

    Kalata, K.; Golub, L.

    1988-01-01

    Television sensors for X-rays can be coupled to converters and image intensifiers to obtain active areas, high flux capabilities, quantum efficiency, high time resolution, or ease of construction and operation that may not be obtained with a directly illuminated sensor. A general purpose system which makes use of these capabilities for a number of applications is decribed. Some of the performance characteristics of this type of system are examined, and the expected future developments for such systems are briefly addressed. 19 refs

  15. Compact x-ray microradiograph for in situ imaging of solidification processes: Bringing in situ x-ray micro-imaging from the synchrotron to the laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Rakete, C.; Baumbach, C.; Goldschmidt, A.; Samberg, D.; Schroer, C. G. [Institut fuer Strukturphysik, Technische Universitaet Dresden, D-01062 Dresden (Germany); Breede, F.; Stenzel, C. [Astrium-Space Transportation, Department: TO 611, Claude-Dornier-Strasse, D-88039 Friedrichshafen (Germany); Zimmermann, G.; Pickmann, C. [ACCESS e.V., Intzestrasse 5, D-52072 Aachen (Germany); Houltz, Y.; Lockowandt, C. [Science Services Division, SSC, Box 4207, SE-17104 Solna (Sweden); Svenonius, O.; Wiklund, P. [Scint-X AB, Torshamnsgatan 35, SE-164 40 Kista (Sweden); Mathiesen, R. H. [Inst. for Fysikk, NTNU, N-7491 Trondheim (Norway)

    2011-10-15

    A laboratory based high resolution x-ray radiograph was developed for the investigation of solidification dynamics in alloys. It is based on a low-power microfocus x-ray tube and is potentially appropriate for x-ray diagnostics in space. The x-ray microscope offers a high spatial resolution down to approximately 5 {mu}m. Dynamic processes can be resolved with a frequency of up to 6 Hz. In reference experiments, the setup was optimized to yield a high contrast for AlCu-alloys. With samples of about 150 {mu}m thickness, high quality image sequences of the solidification process were obtained with high resolution in time and space.

  16. Development of high-resolution x-ray CT system using parallel beam geometry

    Energy Technology Data Exchange (ETDEWEB)

    Yoneyama, Akio, E-mail: akio.yoneyama.bu@hitachi.com; Baba, Rika [Central Research Laboratory, Hitachi Ltd., Hatoyama, Saitama (Japan); Hyodo, Kazuyuki [Institute of Materials Science, High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan); Takeda, Tohoru [School of Allied Health Sciences, Kitasato University, Sagamihara, Kanagawa (Japan); Nakano, Haruhisa; Maki, Koutaro [Department of Orthodontics, School of Dentistry Showa University, Ota-ku, Tokyo (Japan); Sumitani, Kazushi; Hirai, Yasuharu [Kyushu Synchrotron Light Research Center, Tosu, Saga (Japan)

    2016-01-28

    For fine three-dimensional observations of large biomedical and organic material samples, we developed a high-resolution X-ray CT system. The system consists of a sample positioner, a 5-μm scintillator, microscopy lenses, and a water-cooled sCMOS detector. Parallel beam geometry was adopted to attain a field of view of a few mm square. A fine three-dimensional image of birch branch was obtained using a 9-keV X-ray at BL16XU of SPring-8 in Japan. The spatial resolution estimated from the line profile of a sectional image was about 3 μm.

  17. Arcsecond and Sub-arcsedond Imaging with X-ray Multi-Image Interferometer and Imager for (very) small sattelites

    Science.gov (United States)

    Hayashida, K.; Kawabata, T.; Nakajima, H.; Inoue, S.; Tsunemi, H.

    2017-10-01

    The best angular resolution of 0.5 arcsec is realized with the X-ray mirror onborad the Chandra satellite. Nevertheless, further better or comparable resolution is anticipated to be difficult in near future. In fact, the goal of ATHENA telescope is 5 arcsec in the angular resolution. We propose a new type of X-ray interferometer consisting simply of an X-ray absorption grating and an X-ray spectral imaging detector, such as X-ray CCDs or new generation CMOS detectors, by stacking the multi images created with the Talbot interferenece (Hayashida et al. 2016). This system, now we call Multi Image X-ray Interferometer Module (MIXIM) enables arcseconds resolution with very small satellites of 50cm size, and sub-arcseconds resolution with small sattellites. We have performed ground experiments, in which a micro-focus X-ray source, grating with pitch of 4.8μm, and 30 μm pixel detector placed about 1m from the source. We obtained the self-image (interferometirc fringe) of the grating for wide band pass around 10keV. This result corresponds to about 2 arcsec resolution for parrallel beam incidence. The MIXIM is usefull for high angular resolution imaging of relatively bright sources. Search for super massive black holes and resolving AGN torus would be the targets of this system.

  18. Imaging Macromolecules with X-ray laser pulses

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    The short wavelength of X-rays allows us to resolve atoms, but in practise for biological materials the achievable resolution is limited by the destruction of the sample by the radiation that forms the image.  For over 100 years, the workaround to this problem of radiation damage has been to average signals from repeating copies of the object arranged in a large crystal.  It is now possible to overcome damage limits by using intense X-ray pulses that vaporise the sample, but which are short enough in duration to freeze any motion of the sample on the atomic scale.  With the advent of X-ray FELs we have been able to confirm this principle, and are now applying it to overcoming a major bottleneck for protein crystallography, which is the need for large well-diffracting crystals.  The intense pulses also open up opportunities to help solve the crystallographic phase problem.  In particular we have found that commonly-occurring disordered crystals that are usually not ...

  19. X-ray microscopy with high resolution zone plates -- Recent developments

    International Nuclear Information System (INIS)

    Schneider, G.; Wilhein, T.; Niemann, B.; Guttmann, P.

    1995-01-01

    In order to expand the applications of X-ray microscopy, developments in the fields of zone plate technology, specimen preparation and imaging techniques have been made. A new cross-linked polymer chain electron beam resist allows to record zone plate pattern down to 19 nm outermost zone width. High resolution zone plates in germanium with outermost zone widths down to 19 nm have been developed. In addition, phase zone plates in nickel down to 30 nm zone width have been made by electroplating. In order to enhance the image contrast for weak absorbing objects, the phase contrast method for X-ray microscopy was developed and implemented on the Goettingen X-ray microscope at BESSY. The effects of X-ray absorption on the structure of biological specimen limits the maximum applicable radiation dose and therefore the achievable signal to noise ratio for an artifact-free X-ray image. To improve the stability especially of biological specimen, a cryogenic object chamber has been developed and tested. It turns out that at the operating temperature T ≤ 130 K unfixed biological specimen can be exposed to a radiation dose of 10 9 --10 10 Gy without any observable structural changes. A multiple-angle viewing stage allows to take stereoscopic images with the X-ray microscope, giving a 3D-impression of the object

  20. System for automatic x-ray-image analysis, measurement, and sorting of laser fusion targets

    International Nuclear Information System (INIS)

    Singleton, R.M.; Perkins, D.E.; Willenborg, D.L.

    1980-01-01

    This paper describes the Automatic X-Ray Image Analysis and Sorting (AXIAS) system which is designed to analyze and measure x-ray images of opaque hollow microspheres used as laser fusion targets. The x-ray images are first recorded on a high resolution film plate. The AXIAS system then digitizes and processes the images to accurately measure the target parameters and defects. The primary goals of the AXIAS system are: to provide extremely accurate and rapid measurements, to engineer a practical system for a routine production environment and to furnish the capability of automatically measuring an array of images for sorting and selection

  1. High resolution solar soft X-ray spectrometer

    International Nuclear Information System (INIS)

    Zhang Fei; Wang Huanyu; Peng Wenxi; Liang Xiaohua; Zhang Chunlei; Cao Xuelei; Jiang Weichun; Zhang Jiayu; Cui Xingzhu

    2012-01-01

    A high resolution solar soft X-ray spectrometer (SOX) payload onboard a satellite is developed. A silicon drift detector (SDD) is adopted as the detector of the SOX spectrometer. The spectrometer consists of the detectors and their readout electronics, a data acquisition unit and a payload data handling unit. A ground test system is also developed to test SOX. The test results show that the design goals of the spectrometer system have been achieved. (authors)

  2. Fourier domain image fusion for differential X-ray phase-contrast breast imaging

    International Nuclear Information System (INIS)

    Coello, Eduardo; Sperl, Jonathan I.; Bequé, Dirk; Benz, Tobias; Scherer, Kai; Herzen, Julia; Sztrókay-Gaul, Anikó; Hellerhoff, Karin; Pfeiffer, Franz; Cozzini, Cristina; Grandl, Susanne

    2017-01-01

    X-Ray Phase-Contrast (XPC) imaging is a novel technology with a great potential for applications in clinical practice, with breast imaging being of special interest. This work introduces an intuitive methodology to combine and visualize relevant diagnostic features, present in the X-ray attenuation, phase shift and scattering information retrieved in XPC imaging, using a Fourier domain fusion algorithm. The method allows to present complementary information from the three acquired signals in one single image, minimizing the noise component and maintaining visual similarity to a conventional X-ray image, but with noticeable enhancement in diagnostic features, details and resolution. Radiologists experienced in mammography applied the image fusion method to XPC measurements of mastectomy samples and evaluated the feature content of each input and the fused image. This assessment validated that the combination of all the relevant diagnostic features, contained in the XPC images, was present in the fused image as well.

  3. Fourier domain image fusion for differential X-ray phase-contrast breast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Coello, Eduardo, E-mail: eduardo.coello@tum.de [GE Global Research, Garching (Germany); Lehrstuhl für Informatikanwendungen in der Medizin & Augmented Reality, Institut für Informatik, Technische Universität München, Garching (Germany); Sperl, Jonathan I.; Bequé, Dirk [GE Global Research, Garching (Germany); Benz, Tobias [Lehrstuhl für Informatikanwendungen in der Medizin & Augmented Reality, Institut für Informatik, Technische Universität München, Garching (Germany); Scherer, Kai; Herzen, Julia [Lehrstuhl für Biomedizinische Physik, Physik-Department & Institut für Medizintechnik, Technische Universität München, Garching (Germany); Sztrókay-Gaul, Anikó; Hellerhoff, Karin [Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital, Munich (Germany); Pfeiffer, Franz [Lehrstuhl für Biomedizinische Physik, Physik-Department & Institut für Medizintechnik, Technische Universität München, Garching (Germany); Cozzini, Cristina [GE Global Research, Garching (Germany); Grandl, Susanne [Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital, Munich (Germany)

    2017-04-15

    X-Ray Phase-Contrast (XPC) imaging is a novel technology with a great potential for applications in clinical practice, with breast imaging being of special interest. This work introduces an intuitive methodology to combine and visualize relevant diagnostic features, present in the X-ray attenuation, phase shift and scattering information retrieved in XPC imaging, using a Fourier domain fusion algorithm. The method allows to present complementary information from the three acquired signals in one single image, minimizing the noise component and maintaining visual similarity to a conventional X-ray image, but with noticeable enhancement in diagnostic features, details and resolution. Radiologists experienced in mammography applied the image fusion method to XPC measurements of mastectomy samples and evaluated the feature content of each input and the fused image. This assessment validated that the combination of all the relevant diagnostic features, contained in the XPC images, was present in the fused image as well.

  4. Imaging escape gated MPWC for hard X-ray astronomy

    Energy Technology Data Exchange (ETDEWEB)

    Ubertini, P.; Bazzano, A.; Boccaccini, L.; La Padula, C.; Mastropietro, M.; Patriarca, R.; Polcaro, V.F.; Barbareschi, L.; Perotti, F.; Villa, G.

    1983-11-15

    A scientific forward step in the hard X-ray and soft gamma-ray astronomy will only be possible with the use of a new generation of space borne instruments. Their main characteristics have to be the two-dimensional imaging capability over a large collecting area and the fine spectral resolution in order to discriminate between the weak signal coming from cosmic sources to be detected and the strong background induced by cosmic rays, in the space environment, on the detector. To reach this goal we have developed a new hard X-ray position sensitive proportional counter operating with the escape gate technique in the range 15-150 keV, to be used together with a pseudo-random coded mask in order to obtain sky images. The detector is a high pressure (5 bar) xenon-argon-isobutane filled chamber with a spatial resolution of 30x2 mm and a spectral resolution of 5% at 60 keV on the sensitive area of 3000 cm/sup 2/.

  5. Differences of X-ray exposure between X-ray diagnostics with a conventional X-ray screen-system and with an image-intensifier-television-unit

    International Nuclear Information System (INIS)

    Loehr, H.; Vogel, H.; Reinhart, J.; Jantzen, R.

    1977-01-01

    During X-ray diagnostics of patients in the II. Medizinische Poliklinik the X-ray exposure was determined. It corresponded to the data described in literature. Two groups were compared: 518 patients examined with a conventional X-ray screen-system and 642 patients examined with an image-intensifier-television-system. The results demonstrated that with exception of thoracical X-ray examination the replacing of the old system by the television system brought a remarkable increase of the X-ray exposure. The doses depended of the patients constitution to a high degree. (orig.) [de

  6. Material Discriminated X-Ray CT System by Using New X-Ray Imager with Energy Discriminate Function

    Directory of Open Access Journals (Sweden)

    Toru Aoki

    2008-04-01

    Full Text Available Material discriminated X-ray CT system has been constructed by using conventional X-ray tube (white X-ray source and photon-counting X-ray imager as an application with energy band detection. We have already reported material identify X-ray CT using K-shell edge method elsewhere. In this report the principle of material discrimination was adapted the separation of electron-density and atomic number from attenuation coefficient mapping in X-ray CT reconstructed image in two wavelength X-ray CT method using white X-ray source and energy discriminated X-ray imager by using two monochrome X-ray source method. The measurement phantom was prepared as four kinds material rods (Carbon(C, Iron(Fe, Copper(Cu, Titanium(Ti rods of 3mm-diameter inside an aluminum(Al rod of 20mm-diameter. We could observed material discriminated X-ray CT reconstructed image, however, the discrimination properties were not good than two monochrome X-ray CT method. This results was could be explained because X-ray scattering, beam-hardening and so on based on white X-ray source, which could not observe in two monochrome X-ray CT method. However, since our developed CdTe imager can be detect five energy-bands at the same time, we can use multi-band analysis to decrease the least square error margin. We will be able to obtain more high separation in atomic number mapping in X-ray CT reconstructed image by using this system.

  7. Information extracting and processing with diffraction enhanced imaging of X-ray

    International Nuclear Information System (INIS)

    Chen Bo; Chinese Academy of Science, Beijing; Chen Chunchong; Jiang Fan; Chen Jie; Ming Hai; Shu Hang; Zhu Peiping; Wang Junyue; Yuan Qingxi; Wu Ziyu

    2006-01-01

    X-ray imaging at high energies has been used for many years in many fields. Conventional X-ray imaging is based on the different absorption within a sample. It is difficult to distinguish different tissues of a biological sample because of their small difference in absorption. The authors use the diffraction enhanced imaging (DEI) method. The authors took images of absorption, extinction, scattering and refractivity. In the end, the authors presented pictures of high resolution with all these information combined. (authors)

  8. Real-time digital x-ray subtraction imaging

    International Nuclear Information System (INIS)

    Mistretta, C.A.; Kruger, R.A.; Houk, T.L.

    1982-01-01

    A method of producing visible difference images derived from an x-ray image of an anatomical subject is described. X-rays are directed through the subject, and the image is converted into television fields comprising trains of analog video signals. The analog signals are converted into digital signals, which are then integrated over a predetermined time corresponding to several television fields. Difference video signals are produced by performing a subtraction between the ongoing video signals and the corresponding integrated signals, and are converted into visible television difference images representing changes in the x-ray image

  9. Image formation in diagnostic X-ray equipment

    International Nuclear Information System (INIS)

    Boer, J.A. den.

    1983-01-01

    This thesis deals with a physical description of the image formation in static radiographic shadow image X-ray equipment and an analysis of the optimization of such systems. For the latter criteria have been developed that take into account all relevant physical phenomena that relate to properties of the image and the radiation exposure of the patient. The discussion of image formation results in a number of relations between the X-ray system parameters on the one hand and properties of the X-ray image on the other. The three principal aspects considered are energy transfer, modulation transfer and noise. (Auth./C.F.)

  10. Magnetically-coupled microcalorimeter arrays for x-ray astrophysics with sub-eV spectral resolution and large format capability Project

    Data.gov (United States)

    National Aeronautics and Space Administration — "We propose to develop a revolutionary x-ray camera for astrophysical imaging spectroscopy. High-resolution x-ray spectroscopy is a powerful tool for studying the...

  11. X-ray tomography: Biological cells in 3-D at better than 50 nm resolution

    International Nuclear Information System (INIS)

    Larabell, C.; Le Gros, M.

    2004-01-01

    Full text: X-ray microscopy can be used to image whole, hydrated, specimens with a spatial resolution 5-10 times better than that obtained using visible light microscopy. X-ray imaging at photon energies below the K- absorption edge of oxygen, referred to as the water window, exploits the strong natural contrast for organic material embedded in a mostly water matrix. With a transmission X-ray microscope using Fresnel zone plate optics, specimens up to 10 microns thick can be examined. The highest X-ray transmission in hydrated samples is obtained at a wavelength of 2.4 nm but, due to the low numerical aperture of zone plate lenses operated in st order diffraction mode the structures resolved are much larger than the X-ray wavelength. Because of the low NA of X-ray lenses (NA=0.05), combined with the effect of polychromatic illumination and a wavelength dependant focal length, the effective depth of ld is large (6-10 microns). The experiments presented here were performed at the Advanced Light Source using the full ld transmission X-ray microscope, XM-1. This microscope employs a bend magnet X-ray source and zone plate condenser and objective lenses. The condenser zone plate acts as a monochromator and the X-ray images are recorded directly on a cooled, back-thinned 1024x1024 pixel CCD camera. The sample holder was a rotationally symmetric glass tube; the region containing the sample was 10 microns in diameter with a wall thickness of 200 nm. Live yeast cells were loaded into the tube, rapidly frozen by a blast of liquid nitrogen-cooled helium gas, and maintained at 140 deg C by a steady flow of cold helium. The image sequence spanned 180 deg and consisted of 45 images spaced by 4 deg. The images were aligned to a common axis and computed tomographic reconstruction was used to obtain the 3-D X-ray linear absorption coefficient. Volume rendering and animation of reconstructed data was performed using the 3-D program, Amira. Acquisition time for 90 images was 3 min

  12. Phase-contrast x-ray computed tomography for biological imaging

    Science.gov (United States)

    Momose, Atsushi; Takeda, Tohoru; Itai, Yuji

    1997-10-01

    We have shown so far that 3D structures in biological sot tissues such as cancer can be revealed by phase-contrast x- ray computed tomography using an x-ray interferometer. As a next step, we aim at applications of this technique to in vivo observation, including radiographic applications. For this purpose, the size of view field is desired to be more than a few centimeters. Therefore, a larger x-ray interferometer should be used with x-rays of higher energy. We have evaluated the optimal x-ray energy from an aspect of does as a function of sample size. Moreover, desired spatial resolution to an image sensor is discussed as functions of x-ray energy and sample size, basing on a requirement in the analysis of interference fringes.

  13. Metallic magnetic calorimeters for high resolution X-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Krantz, M.; Hengstler, D.; Geist, J.; Schoetz, C.; Hassel, K.; Hendricks, S.; Keller, M.; Kempf, S.; Gastaldo, L.; Fleischmann, A.; Enss, C. [Heidelberg Univ. (Germany). KIP

    2015-07-01

    We develop microfabricated, energy dispersive particle detector arrays based on metallic magnetic calorimeters (MMCs) for high resolution X-ray spectroscopy to challenge bound-state QED calculations. Our MMCs are operated at about T=30 mK and use a paramagnetic temperature sensor, read-out by a SQUID, to measure the energy deposited by single X-ray photons. We discuss the physics of MMCs, the detector performance and the cryogenic setups for two different detector arrays. We present their microfabrication layouts with focus on challenges like the heatsinking of each pixel of the detector and the overhanging absorbers. The maXs-20 detector is a linear 1x8-pixel array with excellent linearity in its designated energy range up to 20 keV and unsurpassed energy resolution of 1.6 eV for 6 keV x-rays. MaXs-20 operated in a highly portable pulse tube cooled ADR setup has already been used at the EBIT facilities of the MPI-K for new reference measurements of V-like and Ti-like tungsten. The maXs-30 detector currently in development is a 8x8-pixel 2d-array with an active detection area of 16 mm{sup 2} and is designed to detect X-rays up to 50 keV with a designated energy resolution below 5 eV. MaXs-30 will be operated in a cryogen free 3He/4He-dilution refrigerator at the tip of a 40 cm long cold finger at T=20 mK.

  14. Medical imaging: Material change for X-ray detectors

    Science.gov (United States)

    Rowlands, John A.

    2017-10-01

    The X-ray sensitivity of radiology instruments is limited by the materials used in their detectors. A material from the perovskite family of semiconductors could allow lower doses of X-rays to be used for medical imaging. See Letter p.87

  15. Evaluating fracture healing using digital x-ray image analysis

    African Journals Online (AJOL)

    2011-03-02

    Mar 2, 2011 ... with intensive imaging and modelling.6 dual energy X-ray ... techniques due to their high-quality digital output in ... the bone in the loaded X-ray is at an angular offset due to .... The research described in this article was carried ...

  16. X-ray diffraction imaging of material microstructures

    KAUST Repository

    Varga, Laszlo; Varga, Bonbien; Calo, Victor

    2016-01-01

    Various examples are provided for x-ray imaging of the microstructure of materials. In one example, a system for non-destructive material testing includes an x-ray source configured to generate a beam spot on a test item; a grid detector configured

  17. Infrared Radiography: Modeling X-ray Imaging without Harmful Radiation

    Science.gov (United States)

    Zietz, Otto; Mylott, Elliot; Widenhorn, Ralf

    2015-01-01

    Planar x-ray imaging is a ubiquitous diagnostic tool and is routinely performed to diagnose conditions as varied as bone fractures and pneumonia. The underlying principle is that the varying attenuation coefficients of air, water, tissue, bone, or metal implants within the body result in non-uniform transmission of x-ray radiation. Through the…

  18. Trends and Technological Developments in Medical X-ray Imaging

    International Nuclear Information System (INIS)

    Iacobovici, E.; Ben-Shlomo, A.

    2004-01-01

    Since the very beginning of X-rays discovery, about one hundred years ago, there has been an ongoing development of technological means, focusing on image quality and imaging capabilities improvement, as well as on awareness and radiation dosage reduction

  19. Comparing neutron and X-ray images from NIF implosions

    Directory of Open Access Journals (Sweden)

    Wilson D.C.

    2013-11-01

    Full Text Available Directly laser driven and X-radiation driven DT filled capsules differ in the relationship between neutron and X-ray images. Shot N110217, a directly driven DT-filled glass micro-balloon provided the first neutron images at the National Ignition Facility. As seen in implosions on the Omega laser, the neutron image can be enclosed inside time integrated X-ray images. HYDRA simulations show the X-ray image is dominated by emission from the hot glass shell while the neutron image arises from the DT fuel it encloses. In the absence of mix or jetting, X-ray images of a cryogenically layered THD fuel capsule should be dominated by emission from the hydrogen rather than the cooler plastic shell that is separated from the hot core by cold DT fuel. This cool, dense DT, invisible in X-ray emission, shows itself by scattering hot core neutrons. Germanium X-ray emission spectra and Ross pair filtered X-ray energy resolved images suggest that germanium doped plastic emits in the torus shaped hot spot, probably reducing the neutron yield.

  20. From Relativistic Electrons to X-ray Phase Contrast Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A. H. [Fermilab; Garson, A. B. [Washington U., St. Louis; Anastasio, M. A. [Washington U., St. Louis

    2017-10-09

    We report the initial demonstrations of the use of single crystals in indirect x-ray imaging for x-ray phase contrast imaging at the Washington University in St. Louis Computational Bioimaging Laboratory (CBL). Based on single Gaussian peak fits to the x-ray images, we observed a four times smaller system point spread function (21 μm (FWHM)) with the 25-mm diameter single crystals than the reference polycrystalline phosphor’s 80-μm value. Potential fiber-optic plate depth-of-focus aspects and 33-μm diameter carbon fiber imaging are also addressed.

  1. Human genome sequencing with direct x-ray holographic imaging

    International Nuclear Information System (INIS)

    Rhodes, C.K.

    1993-01-01

    Direct holographic imaging of biological materials is widely applicable to the study of the structure, properties and action of genetic material. This particular application involves the sequencing of the human genome where prospective genomic imaging technology is composed of three subtechnologies, name an x-ray holographic camera, suitable chemistry and enzymology for the preparation of tagged DNA samples, and the illuminator in the form of an x-ray laser. We report appropriate x-ray camera, embodied by the instrument developed by MCR, is available and that suitable chemical and enzymatic procedures exist for the preparation of the necessary tagged DNA strands. Concerning the future development of the x-ray illuminator. We find that a practical small scale x-ray light source is indeed feasible. This outcome requires the use of unconventional physical processes in order to achieve the necessary power-compression in the amplifying medium. The understanding of these new physical mechanisms is developing rapidly. Importantly, although the x-ray source does not currently exist, the understanding of these new physical mechanisms is developing rapidly and the research has established the basic scaling laws that will determine the properties of the x-ray illuminator. When this x-ray source becomes available, an extremely rapid and cost effective instrument for 3-D imaging of biological materials can be applied to a wide range of biological structural assays, including the base-pair sequencing of the human genome and many questions regarding its higher levels of organization

  2. Methods for studying the focal spot size and resolution of diagnostic X-ray tubes

    International Nuclear Information System (INIS)

    Fairbanks, R.; Doust, C.

    1979-01-01

    Attention is given to techniques appropriate for use in the clinical situation. The focal spot size is critical to geometric unsharpness and hence the quality of the finished radiograph, but pinhole imaging of the focal spot is extremely difficult in clinical practice. The resolution of an X-ray tube, although a function of focal spot size, is of more importance in radiography. A comparison is made of various resolution grids suitable for quality control use in X-ray departments. (U.K.)

  3. Optical systems for synchrotron radiation: lecture 4. Soft x-ray imaging systems

    International Nuclear Information System (INIS)

    Howells, M.R.

    1986-04-01

    The history and present techniques of soft x-ray imaging are reviewed briefly. The physics of x-ray imaging is described, including the temporal and spatial coherence of x-ray sources. Particular technologies described are: contact x-ray microscopy, zone plate imaging, scanned image zone plate microscopy, scanned image reflection microscopy, and soft x-ray holography and diffraction

  4. The development of high resolution silicon x-ray microcalorimeters

    Science.gov (United States)

    Porter, F. S.; Kelley, R. L.; Kilbourne, C. A.

    2005-12-01

    Recently we have produced x-ray microcalorimeters with resolving powers approaching 2000 at 5.9 keV using a spare XRS microcalorimeter array. We attached 400 um square, 8 um thick HgTe absorbers using a variety of attachment methods to an XRS array and ran the detector array at temperatures between 40 and 60 mK. The best results were for absorbers attached using the standard XRS absorber-pixel thermal isolation scheme utilizing SU8 polymer tubes. In this scenario we achieved a resolution of 3.2 eV FWHM at 5.9 keV. Substituting a silicon spacer for the SU8 tubes also yielded sub-4eV results. In contrast, absorbers attached directly to the thermistor produced significant position dependence and thus degraded resolution. Finally, we tested standard 640um-square XRS detectors at reduced bias power at 50mK and achieved a resolution of 3.7eV, a 50% improvement over the XRS flight instrument. Implanted silicon microcalorimeters are a mature flight-qualified technology that still has a substantial phase space for future development. We will discuss these new high resolution results, the various absorber attachment schemes, planned future improvements, and, finally, their relevance to future high resolution x-ray spectrometers including Constellation-X.

  5. Benchtop phase-contrast X-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Gundogdu, O. [Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom)], E-mail: o.gundogdu@surrey.ac.uk; Nirgianaki, E.; Che Ismail, E.; Jenneson, P.M.; Bradley, D.A. [Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom)

    2007-12-15

    Clinical radiography has traditionally been based on contrast obtained from absorption when X-rays pass through the body. The contrast obtained from traditional radiography can be rather poor, particularly when it comes to soft tissue. A wide range of media of interest in materials science, biology and medicine exhibit very weak absorption contrast, but they nevertheless produce significant phase shifts with X-rays. The use of phase information for imaging purposes is therefore an attractive prospect. Some of the X-ray phase-contrast imaging methods require highly monochromatic plane wave radiation and sophisticated X-ray optics. However, the propagation-based phase-contrast imaging method adapted in this paper is a relatively simple method to implement, essentially requiring only a microfocal X-ray tube and electronic detection. In this paper, we present imaging results obtained from two different benchtop X-ray sources employing the free space propagation method. X-ray phase-contrast imaging provides higher contrast in many samples, including biological tissues that have negligible absorption contrast.

  6. Advances in indirect detector systems for ultra high-speed hard X-ray imaging with synchrotron light

    Science.gov (United States)

    Olbinado, M. P.; Grenzer, J.; Pradel, P.; De Resseguier, T.; Vagovic, P.; Zdora, M.-C.; Guzenko, V. A.; David, C.; Rack, A.

    2018-04-01

    We report on indirect X-ray detector systems for various full-field, ultra high-speed X-ray imaging methodologies, such as X-ray phase-contrast radiography, diffraction topography, grating interferometry and speckle-based imaging performed at the hard X-ray imaging beamline ID19 of the European Synchrotron—ESRF. Our work highlights the versatility of indirect X-ray detectors to multiple goals such as single synchrotron pulse isolation, multiple-frame recording up to millions frames per second, high efficiency, and high spatial resolution. Besides the technical advancements, potential applications are briefly introduced and discussed.

  7. On the image formation in x-ray radiography using aligned carbon nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Okuyama, F., E-mail: okuya@mui.biglobe.ne.jp

    2017-04-11

    Evidence is presented that field electrons emitted from vertically-aligned carbon nanofibers (CNFs) yield clearer x-ray images than do thermionic electrons, under the identical electron-optical condition. Specifically, the same sample, an LSI circuit, mounted on the same x-ray chamber could be imaged far more sharply with a CNF emitter than with a thermionic one. It is hypothesized that electrons discharged from CNF tips hit the target to form “discrete focal points” thereon, thereby generating multiple x-ray beams that interplay to form a brilliant, sharply-delineated x-ray image. This hypothesis may stimulate open discussion on how to define the “focal point” for the x-ray imaging using nano-structured electron sources. Also, the improved resolution attained with CNFs might indicate that the heat generation originating in electron-target interactions is not so serious in the present field-emission mode. - Highlights: • Field-emission (FE) x-ray radiography (XR) is based on nanotechnology. • FE-XR surpasses thermionic XR in image resolution and brilliance. • Highly-resolved FE-XR images are due possibly to a discrete array of x-ray spots. • This hypothesis stimulates open discussion on how to define the focal-point in FE-XR.

  8. On the image formation in x-ray radiography using aligned carbon nanofibers

    International Nuclear Information System (INIS)

    Okuyama, F.

    2017-01-01

    Evidence is presented that field electrons emitted from vertically-aligned carbon nanofibers (CNFs) yield clearer x-ray images than do thermionic electrons, under the identical electron-optical condition. Specifically, the same sample, an LSI circuit, mounted on the same x-ray chamber could be imaged far more sharply with a CNF emitter than with a thermionic one. It is hypothesized that electrons discharged from CNF tips hit the target to form “discrete focal points” thereon, thereby generating multiple x-ray beams that interplay to form a brilliant, sharply-delineated x-ray image. This hypothesis may stimulate open discussion on how to define the “focal point” for the x-ray imaging using nano-structured electron sources. Also, the improved resolution attained with CNFs might indicate that the heat generation originating in electron-target interactions is not so serious in the present field-emission mode. - Highlights: • Field-emission (FE) x-ray radiography (XR) is based on nanotechnology. • FE-XR surpasses thermionic XR in image resolution and brilliance. • Highly-resolved FE-XR images are due possibly to a discrete array of x-ray spots. • This hypothesis stimulates open discussion on how to define the focal-point in FE-XR.

  9. Characterizing Complexity of Containerized Cargo X-ray Images

    International Nuclear Information System (INIS)

    Wang, Guangxing; Martz, Harry; Glenn, Steven; Divin, Charles; Birrer, Nat

    2016-01-01

    X-ray imaging can be used to inspect cargos imported into the United States. In order to better understand the performance of X-ray inspection systems, the X-ray characteristics (density, complexity) of cargo need to be quantified. In this project, an image complexity measure called integrated power spectral density (IPSD) was studied using both DNDO engineered cargos and stream-of-commerce (SOC) cargos. A joint distribution of cargo density and complexity was obtained. A support vector machine was used to classify the SOC cargos into four categories to estimate the relative fractions.

  10. Characterizing Complexity of Containerized Cargo X-ray Images

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guangxing [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Martz, Harry [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Glenn, Steven [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Divin, Charles [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Birrer, Nat [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-08-19

    X-ray imaging can be used to inspect cargos imported into the United States. In order to better understand the performance of X-ray inspection systems, the X-ray characteristics (density, complexity) of cargo need to be quantified. In this project, an image complexity measure called integrated power spectral density (IPSD) was studied using both DNDO engineered cargos and stream-of-commerce (SOC) cargos. A joint distribution of cargo density and complexity was obtained. A support vector machine was used to classify the SOC cargos into four categories to estimate the relative fractions.

  11. X-ray diffraction imaging of biological cells

    CERN Document Server

    Nakasako, Masayoshi

    2018-01-01

    In this book, the author describes the development of the experimental diffraction setup and structural analysis of non-crystalline particles from material science and biology. Recent advances in X-ray free electron laser (XFEL)-coherent X-ray diffraction imaging (CXDI) experiments allow for the structural analysis of non-crystalline particles to a resolution of 7 nm, and to a resolution of 20 nm for biological materials. Now XFEL-CXDI marks the dawn of a new era in structural analys of non-crystalline particles with dimensions larger than 100 nm, which was quite impossible in the 20th century. To conduct CXDI experiments in both synchrotron and XFEL facilities, the author has developed apparatuses, named KOTOBUKI-1 and TAKASAGO-6 for cryogenic diffraction experiments on frozen-hydrated non-crystalline particles at around 66 K. At the synchrotron facility, cryogenic diffraction experiments dramatically reduce radiation damage of specimen particles and allow tomography CXDI experiments. In addition, in XFEL ex...

  12. Ultrafast X-ray Imaging of Fuel Sprays

    Science.gov (United States)

    Wang, Jin

    2007-01-01

    Detailed analysis of fuel sprays has been well recognized as an important step for optimizing the operation of internal combustion engines to improve efficiency and reduce emissions. Ultrafast radiographic and tomographic techniques have been developed for probing the fuel distribution close to the nozzles of direct-injection diesel and gasoline injectors. The measurement was made using x-ray absorption of monochromatic synchrotron-generated radiation, allowing quantitative determination of the fuel distribution in this optically impenetrable region with a time resolution on the order of 1 μs. Furthermore, an accurate 3-dimensional fuel-density distribution, in the form of fuel volume fraction, was obtained by the time-resolved computed tomography. These quantitative measurements constitute the most detailed near-nozzle study of a fuel spray to date. With high-energy and high-brilliance x-ray beams available at the Advanced Photon Source, propagation-based phase-enhanced imaging was developed as a unique metrology technique to visualize the interior of an injection nozzle through a 3-mm-thick steel with a 10-μs temporal resolution, which is virtually impossible by any other means.

  13. Ultrafast X-ray Imaging of Fuel Sprays

    International Nuclear Information System (INIS)

    Wang Jin

    2007-01-01

    Detailed analysis of fuel sprays has been well recognized as an important step for optimizing the operation of internal combustion engines to improve efficiency and reduce emissions. Ultrafast radiographic and tomographic techniques have been developed for probing the fuel distribution close to the nozzles of direct-injection diesel and gasoline injectors. The measurement was made using x-ray absorption of monochromatic synchrotron-generated radiation, allowing quantitative determination of the fuel distribution in this optically impenetrable region with a time resolution on the order of 1 μs. Furthermore, an accurate 3-dimensional fuel-density distribution, in the form of fuel volume fraction, was obtained by the time-resolved computed tomography. These quantitative measurements constitute the most detailed near-nozzle study of a fuel spray to date. With high-energy and high-brilliance x-ray beams available at the Advanced Photon Source, propagation-based phase-enhanced imaging was developed as a unique metrology technique to visualize the interior of an injection nozzle through a 3-mm-thick steel with a 10-μs temporal resolution, which is virtually impossible by any other means

  14. X-ray imaging spectroscopic diagnostics on Nike

    Science.gov (United States)

    Aglitskiy, Y.; Karasik, M.; Serlin, V.; Weaver, J. L.; Oh, J.; Obenschain, S. P.; Ralchenko, Yu.

    2017-10-01

    Electron temperature and density diagnostics of the laser plasma produced within the focal spot of the NRL's Nike laser are being explored with the help of X-ray imaging spectroscopy. Spectra of He-like and H-like ions were taken by Nike focusing spectrometers in a range of lower (1.8 kev, Si XIV) and higher (6.7 kev, Fe XXV) x-ray energies. Data that were obtained with spatial resolution were translated into the temperature and density as functions of distance from the target. As an example electron density was determined from He-like satellites to Ly-alpha in Si XIV. The dielectronic satellites with intensity ratios that are sensitive to collisional transfer of population between different triplet groups of double-excited states 2l2l' in Si XIII were observed with high spatial and spectral resolution Lineouts taken at different axial distances from the planar Si target show changing spectral shapes due to the different electron densities as determined by supporting non-LTE simulations. These shapes are relatively insensitive to the plasma temperature which was measured using different spectral lines. This work was supported by the US DOE/NNSA.

  15. GOES-12 Solar X-ray Imager Archive

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The GOES Solar X-ray Imager is integrated into the GOES-12 satellite, whose primary mission is to provide Earth-weather monitoring. The SXI is operated by NOAA's...

  16. Correction of ring artifacts in X-ray tomographic images

    DEFF Research Database (Denmark)

    Lyckegaard, Allan; Johnson, G.; Tafforeau, P.

    2011-01-01

    Ring artifacts are systematic intensity distortions located on concentric circles in reconstructed tomographic X-ray images. When using X-ray tomography to study for instance low-contrast grain boundaries in metals it is crucial to correct for the ring artifacts in the images as they may have...... the same intensity level as the grain boundaries and thus make it impossible to perform grain segmentation. This paper describes an implementation of a method for correcting the ring artifacts in tomographic X-ray images of simple objects such as metal samples where the object and the background...... are separable. The method is implemented in Matlab, it works with very little user interaction and may run in parallel on a cluster if applied to a whole stack of images. The strength and robustness of the method implemented will be demonstrated on three tomographic X-ray data sets: a mono-phase β...

  17. X-ray detectors based on image sensors

    International Nuclear Information System (INIS)

    Costa, A.P.R.

    1983-01-01

    X-ray detectors based on image sensors are described and a comparison is made between the advantages and the disadvantages of such a kind of detectors with the position sensitive detectors. (L.C.) [pt

  18. X-ray Computed Tomography Image Quality Indicator (IQI) Development

    Data.gov (United States)

    National Aeronautics and Space Administration — Phase one of the program is to identify suitable x-ray Computed Tomography (CT) Image Quality Indicator (IQI) design(s) that can be used to adequately capture CT...

  19. X-ray phase imaging-From static observation to dynamic observation-

    International Nuclear Information System (INIS)

    Momose, A.; Yashiro, W.; Olbinado, M. P.; Harasse, S.

    2012-01-01

    We are attempting to expand the technology of X-ray grating phase imaging/tomography to enable dynamic observation. X-ray phase imaging has been performed mainly for static cases, and this challenge is significant since properties of materials (and hopefully their functions) would be understood by observing their dynamics in addition to their structure, which is an inherent advantage of X-ray imaging. Our recent activities in combination with white synchrotron radiation for this purpose are described. Taking advantage of the fact that an X-ray grating interferometer functions with X-rays of a broad energy bandwidth (and therefore high flux), movies of differential phase images and visibility images are obtained with a time resolution of a millisecond. The time resolution of X-ray phase tomography can therefore be a second. This study is performed as a part of a project to explore X-ray grating interferometry, and our other current activities are also briefly outlined.

  20. The Highest Resolution X-ray View of the Nuclear Region of NGC 4151

    Science.gov (United States)

    Wang, Junfeng; Fabbiano, G.; Karovska, M.; Elvis, M.; Risaliti, G.; Zezas, A.; Mundell, C. G.

    2009-09-01

    We report high resolution imaging of the nucleus of the Seyfert 1 galaxy NGC 4151 obtained with a 50 ks Chandra HRC observation. The HRC image resolves the emission on spatial scales of 0.5 arcsec (30 pc), showing an extended X-ray morphology overall consistent with the narrow line region seen in optical line emission. Removal of the bright point-like nuclear source and image deconvolution technique both reveal X-ray enhancements that closely match the substructures seen in the HST [OIII] image and prominent knots in the radio jet. We find that most of the NLR clouds in NGC 4151 have [OIII] to soft X-ray ratio consistent with the values observed in NLRs of some Seyfert 2 galaxies, which indicates a uniform ionization parameter even at large radii and a density dependence ∝ r^{-2} as expected in the disk wind scenario. We examine various X-ray emission mechanisms of the radio jet and consider thermal emission from interaction between radio outflow and the NLR clouds the most probable origin for the X-ray emission associated with the jet.

  1. Tomographic image reconstruction using x-ray phase information

    Science.gov (United States)

    Momose, Atsushi; Takeda, Tohoru; Itai, Yuji; Hirano, Keiichi

    1996-04-01

    We have been developing phase-contrast x-ray computed tomography (CT) to make possible the observation of biological soft tissues without contrast enhancement. Phase-contrast x-ray CT requires for its input data the x-ray phase-shift distributions or phase-mapping images caused by an object. These were measured with newly developed fringe-scanning x-ray interferometry. Phase-mapping images at different projection directions were obtained by rotating the object in an x-ray interferometer, and were processed with a standard CT algorithm. A phase-contrast x-ray CT image of a nonstained cancerous tissue was obtained using 17.7 keV synchrotron x rays with 12 micrometer voxel size, although the size of the observation area was at most 5 mm. The cancerous lesions were readily distinguishable from normal tissues. Moreover, fine structures corresponding to cancerous degeneration and fibrous tissues were clearly depicted. It is estimated that the present system is sensitive down to a density deviation of 4 mg/cm3.

  2. High resolution X-ray spectroscopy of laser generated plasmas

    International Nuclear Information System (INIS)

    Faenov, A.Ya.; Skobelev, I.Yu.; Rosmej, F.B.

    1999-01-01

    The application of recently developed spectroscopic instruments in laser produced plasmas with simultaneous high spectral and spatial resolution combined with high luminosity discovered new types of X-ray spectra. These new types are characterised by the disappearance of the resonance lines and the strong emission of dielectronic satellite spectra. Several types of transitions of highly charged ions are discovered which are unknown from usual sources employed in atomic physics. New theoretical models are developed and successfully applied for the interpretation and for plasma diagnostics. (orig.)

  3. High resolution X-ray spectroscopy of laser generated plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Faenov, A.Ya.; Skobelev, I.Yu. [Multicharged Ions Spectra Data Center of VNIIFTRI, Mendeleevo (Russian Federation); Rosmej, F.B. [Technische Hochschule Darmstadt (Germany). Inst. fuer Kernphysik

    1999-11-01

    The application of recently developed spectroscopic instruments in laser produced plasmas with simultaneous high spectral and spatial resolution combined with high luminosity discovered new types of X-ray spectra. These new types are characterised by the disappearance of the resonance lines and the strong emission of dielectronic satellite spectra. Several types of transitions of highly charged ions are discovered which are unknown from usual sources employed in atomic physics. New theoretical models are developed and successfully applied for the interpretation and for plasma diagnostics. (orig.) 28 refs.

  4. A hard x-ray spectrometer for high angular resolution observations of cosmic sources

    International Nuclear Information System (INIS)

    Hailey, C.J.; Ziock, K.P.; Harrison, F.; Kahn, S.M.; Liedahl, D.; Lubin, P.M.; Seiffert, M.

    1988-01-01

    LAXRIS (large area x-ray imaging spectrometer) is an experimental, balloon-borne, hard x-ray telescope that consists of a coaligned array of x-ray imaging spectrometer modules capable of obtaining high angular resolution (1--3 arcminutes) with moderate energy resolution in the 20- to 300-keV region. Each spectrometer module consists of a CsI(Na) crystal coupled to a position-sensitive phototube with a crossed-wire, resistive readout. Imaging is provided by a coded aperture mask with a 4-m focal length. The high angular resolution is coupled with rather large area (/approximately/800 cm 2 ) to provide good sensitivity. Results are presented on performance and overall design. Sensitivity estimates are derived from a Monte-Carlo code developed to model the LAXRIS response to background encountered at balloon altitudes. We discuss a variety of observations made feasible by high angular resolution. For instance, spatially resolving the nonthermal x-ray emission from clusters of galaxies is suggested as an ideal program for LAXRIS. 15 refs., 5 figs

  5. A sounding rocket payload for X-ray astronomy employing high-resolution microcalorimeters

    International Nuclear Information System (INIS)

    McCammon, D.; Almy, R.; Deiker, S.; Morgenthaler, J.; Kelley, R.L.; Marshall, F.J.; Moseley, S.H.; Stahle, C.K.; Szymkowiak, A.E.

    1996-01-01

    We have completed a sounding rocket payload that will use a 36 element array of microcalorimeters to obtain a high-resolution spectrum of the diffuse X-ray background between 0.1 and 1 keV. This experiment uses only mechanical collimation of the incoming X-rays, but the cryostat and detector assembly have been designed to be placed at the focus of a conical foil imaging mirror which will be employed on subsequent flights to do spatially resolved spectroscopy of supernova remnants and other extended objects. The detector system is a monolithic array of silicon calorimeters with ion-implanted thermometers and HgTe X-ray absorbers. The 1 mm 2 pixels achieve a resolution of about 8 eV FWHM operating at 60 mK. (orig.)

  6. The Advanced X-ray Spectroscopy and Imaging Observatory (AXSIO)

    Science.gov (United States)

    White, Nicholas E.; Bookbinder, Jay; Petre, Robert; Smith, Randall; Ptak, Andrew; Tananbaum, Harvey; Garcia, Michael

    2012-01-01

    Following recommendations from the 2010 "New Worlds, New Horizons" (NWNH) report, the Advanced X-ray Spectroscopy and Imaging Observatory (AXSIO) concept streamlines the International X-ray Observatory (IXO) mission to concentrate on the science objectives that are enabled by high-resolution spectroscopic capabilities. AXSIO will trace orbits close to the event horizon of black holes, measure black hole spin for tens of supermassive black holes (SMBH), use spectroscopy to characterize outflows and the environment of AGN during their peak activity, observe 5MBH out to redshift z=6, map bulk motions and turbulence in galaxy clusters, find the missing baryons in the cosmic web using background quasars, and observe the process of cosmic feedback where black holes and supernovae inject energy on galactic and intergalactic scales. These measurements are enabled by a 0.9 sq m collecting area at 1.25 keV, a micro calorimeter array providing high-resolution spectroscopic imaging and a deployable high efficiency grating spectrometer. AXSIO delivers a 30-fold increase in effective area for high resolution spectroscopy. The key simplifications are guided by recommendations in the NWNH panel report include a reduction in focal length from 20m to 10m, eliminating the extendable optical bench, and a reduction in the instrument complement from six to two, avoiding a movable instrument platform. A focus on spectroscopic science allows the spatial resolution requirement to be relaxed to 10 arc sec (with a 5 arc sec goal). These simplifications decrease the total mission cost to under the $2B cost to NASA recommended by NWNH. AXSIO will be available to the entire astronomical community with observing allocations based on peer-review.

  7. Ghost imaging with paired x-ray photons

    Science.gov (United States)

    Schori, A.; Borodin, D.; Tamasaku, K.; Shwartz, S.

    2018-06-01

    We report the experimental observation of ghost imaging with paired x-ray photons, which are generated by parametric downconversion. We use the one-to-one relation between the photon energies and the emission angles and the anticorrelation between the k -vectors of the signal and the idler photons to reconstruct the images of slits with nominally zero background levels. Further extension of our procedure can be used for the observation of various quantum phenomena at x-ray wavelengths.

  8. X-ray imaging and detection using plastic scintillating fibers

    CERN Document Server

    Ikhlef, A; Beddar, A S

    2000-01-01

    This paper discusses the application of plastic scintillating fiber array in X-ray imaging with low-energy radiation. This array is coupled to a multichannel intensified photocathode and then to a CCD detector via a fiber optics taper. The length of the fiber array is experimentally optimized for the radiation used. We found here that the length of the fibers (interaction medium) does not contribute too much in the degradation of the spatial resolution under 10 keV irradiation along the axis of the fiber array. Modulation Transfer Function (MTF) measurements of the PSF array are compared to the optics MTF of the imaging system (without the sample) and that cross-talk in the fiber array is found to be negligible for a fiber array thickness of 20 mm.

  9. Real-time digital X-ray subtraction imaging

    International Nuclear Information System (INIS)

    Mistretta, C.A.; Kruger, R.A.; Houk, T.L.

    1979-01-01

    A diagnostic anatomical X-ray apparatus comprising a converter and a television camera for converting an X-ray image of a subject into a series of television fields of video signals is described in detail. A digital memory system stores and integrates the video signals over a time interval corresponding to a plurality of successive television fields. The integrated video signals are recovered from storage and fed to a digital or analogue subtractor, the resulting output being displayed on a television monitor. Thus the display represents on-going changes in the anatomical X-ray image. In a modification, successive groups of fields are stored and integrated in three memories, cyclically, and subtractions are performed between successive pieces of integrated signals to provide a display of successive alterations in the X-ray image. For investigations of the heart, the integrating interval should be of the order of one cardiac cycle. (author)

  10. Translate rotate scanning method for X-ray imaging

    International Nuclear Information System (INIS)

    Eberhard, J.W.; Kwog Cheong Tam.

    1990-01-01

    Rapid x-ray inspection of objects larger than an x-ray detector array is based on a translate rotate scanning motion of the object related to the fan beam source and detector. The scan for computerized tomography imaging is accomplished by rotating the object through 360 degrees at two or more positions relative to the source and detector array, in moving to another position the object is rotated and the object or source and detector are translated. A partial set of x-ray data is acquired at every position which are combined to obtain a full data set for complete image reconstruction. X-ray data for digital radiography imaging is acquired by scanning the object vertically at a first position at one view angle, rotating and translating the object relative to the source and detector to a second position, scanning vertically, and so on to cover the object field of view, and combining the partial data sets. (author)

  11. Suitable post processing algorithms for X-ray imaging using oversampled displaced multiple images

    International Nuclear Information System (INIS)

    Thim, J; Reza, S; Nawaz, K; Norlin, B; O'Nils, M; Oelmann, B

    2011-01-01

    X-ray imaging systems such as photon counting pixel detectors have a limited spatial resolution of the pixels, based on the complexity and processing technology of the readout electronics. For X-ray imaging situations where the features of interest are smaller than the imaging system pixel size, and the pixel size cannot be made smaller in the hardware, alternative means of resolution enhancement require to be considered. Oversampling with the usage of multiple displaced images, where the pixels of all images are mapped to a final resolution enhanced image, has proven a viable method of reaching a sub-pixel resolution exceeding the original resolution. The effectiveness of the oversampling method declines with the number of images taken, the sub-pixel resolution increases, but relative to a real reduction of imaging pixel sizes yielding a full resolution image, the perceived resolution from the sub-pixel oversampled image is lower. This is because the oversampling method introduces blurring noise into the mapped final images, and the blurring relative to full resolution images increases with the oversampling factor. One way of increasing the performance of the oversampling method is by sharpening the images in post processing. This paper focus on characterizing the performance increase of the oversampling method after the use of some suitable post processing filters, for digital X-ray images specifically. The results show that spatial domain filters and frequency domain filters of the same type yield indistinguishable results, which is to be expected. The results also show that the effectiveness of applying sharpening filters to oversampled multiple images increase with the number of images used (oversampling factor), leaving 60-80% of the original blurring noise after filtering a 6 x 6 mapped image (36 images taken), where the percentage is depending on the type of filter. This means that the effectiveness of the oversampling itself increase by using sharpening

  12. Problems and image processing in X-ray film digitization

    International Nuclear Information System (INIS)

    Kato, Syousuke; Yoshita, Hisashi; Kuranishi, Makoto; Itoh, Hajime; Mori, Kouichi; Konishi, Minoru

    1992-01-01

    Aiming at the realization of PACS, a study was conducted on the present state of, and various problems associated with, X-ray film digitization using a He-Ne laser-type film digitizer. Image quality was evaluated physically and clinically. With regard to the gradation specificity, the linear specificity was shown in a dynamic range of 4 figures. With regard to resolution specificity, visual evaluation was performed using a Hawlet Chart, with almost no difference being found between the CRT and laser printer output images and the decrease in resolution becoming more pronounced as the sampling pitch became greater. Clinical evaluation was performed with reference to the literature. The general evaluation of the clinicians was that although there was some deterioration for all of the shadows, (I have read this many times, but could not understand the last part.) by performing each of the kinds of image-processing enhancement of diagnostic ability was achieved, with a diagnosis being possible. The problem of unhindered diagnosis due to the development of artifacts from optical interference of the grid images projected onto the clinical pictures and digitizer sampling pitch was studied. As countermeasures, the use of a high density grid and adoption of a low-pass filter were useful in impending the development of artifacts. Regarding the operating problems, the inputting of index information requires a considerable number of manhours and a method of automatic recognition from digital data was introduced to overcome this problem. As future-prospects, the concepts of a practical system of X-ray film digitization and a film-screen system adapted to digitization were described. (author)

  13. Problems and image processing in X-ray film digitization

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Syousuke; Yoshita, Hisashi; Kuranishi, Makoto; Itoh, Hajime; Mori, Kouichi; Konishi, Minoru (Toyama Medical and Pharmaceutical Univ. (Japan). Hospital)

    1992-11-01

    Aiming at the realization of PACS, a study was conducted on the present state of, and various problems associated with, X-ray film digitization using a He-Ne laser-type film digitizer. Image quality was evaluated physically and clinically. With regard to the gradation specificity, the linear specificity was shown in a dynamic range of 4 figures. With regard to resolution specificity, visual evaluation was performed using a Hawlet Chart, with almost no difference being found between the CRT and laser printer output images and the decrease in resolution becoming more pronounced as the sampling pitch became greater. Clinical evaluation was performed with reference to the literature. The general evaluation of the clinicians was that although there was some deterioration for all of the shadows, (I have read this many times, but could not understand the last part.) by performing each of the kinds of image-processing enhancement of diagnostic ability was achieved, with a diagnosis being possible. The problem of unhindered diagnosis due to the development of artifacts from optical interference of the grid images projected onto the clinical pictures and digitizer sampling pitch was studied. As countermeasures, the use of a high density grid and adoption of a low-pass filter were useful in impending the development of artifacts. Regarding the operating problems, the inputting of index information requires a considerable number of manhours and a method of automatic recognition from digital data was introduced to overcome this problem. As future-prospects, the concepts of a practical system of X-ray film digitization and a film-screen system adapted to digitization were described. (author).

  14. Preliminary study on X-ray phase contrast imaging using synchrotron radiation facility

    International Nuclear Information System (INIS)

    Xiong Zhuang; Wang Jianhua; Yu Yongqiang; Jiang Shiping; Chen Yang; Tian Yulian

    2006-01-01

    Objective: To study the methodology of X-ray phase contrast imaging using synchrotron radiation, and evaluate the quality of phase contrast images. Methods: Several experiments to obtain phase contrast images and absorption contrast images of various biological samples were conducted in Beijing Synchrotron Radiation Facility (BSRF), and then these images were interpreted to find out the difference between the two kinds of imaging methods. Results: Satisfactory phase contrast images of these various samples were obtained, and the quality of these images was superior to that obtained with absorption contrast imaging. The phase contrast formation is based on the phenomenon of fresnel diffraction which transforms phase shifts into intensity variations upon a simple act of free-space propagation, so it requires highly coherent X-rays and appropriate distance between sample and detector. This method of imaging is very useful in imaging of low-absorption objects or objects with little absorption variation, and its resolution is far higher than that of the conventional X-ray imaging. The photographs obtained showed very fine inner microstructure of the biological samples, and the smallest microstructure to be distinguished is within 30-40 μm. There is no doubt that phase contrast imaging has a practical applicability in medicine. Moreover, it improves greatly the efficiency and the resolution of the existing X-ray diagnostic techniques. Conclusions: X-ray phase contrast imaging can be performed with synchrotron radiation source and has some advantages over the conventional absorption contrast imaging. (authors)

  15. Calibrating the Regolith X-ray Imaging Spectrometer (REXIS)

    OpenAIRE

    McIntosh, Missy; Hong, Jaesub; Allen, Branden; Grindlay, Jonathan

    2014-01-01

    This paper describes the onboard calibration process of REXIS (the Regolith X-ray Imaging Spectrometer), an instrument on OSIRIS-REx. OSIRIS-REx, scheduled to be launched in 2016, is a planetary mission intending to return a regolith sample from a near Earth asteroid called Bennu. REXIS, a student-led collaboration between Harvard and MIT, is a soft X-ray (0.5-7.5 keV) coded-aperture telescope with four X-ray CCDs and a gold coated stainless steel mask. REXIS will measure the surface elementa...

  16. Characterization of ceramic archaeological by high resolution X ray microtomography

    International Nuclear Information System (INIS)

    Machado, Alessandra C.; Freitas, Renato; Calza, Cristiane F.; Lopes, Ricardo T.; Lima, Inaya; Carvalho, Daniele D.; Gaspar, Maria D.

    2013-01-01

    Characterization of ceramic fragments is a very important area of research in art and archeometry area because it enables a greater understanding of how ancient civilizations behave and what were their traditions and customs. Petrography and chemical analyses are commonly used, but these techniques are destructive, which is not interesting for this type of sample. Through the exchange of multidisciplinary scientific knowledge and new partnerships, high resolution X-ray microtomography has been introduced in archaeological area as a great possibility of 3D inspection in a non-destructive way. The goal of this work is to investigate the internal microstructures of four samples of archeological ceramic, from the Archaeological Site of Macacu - RJ. The X-ray microtomography were performed in a high resolution setup, and can be used to infer the nature of organic temper even with all plant remains completely burnt out during the firing process and also to ensure the homogeneity of samples envisaged for geochemical analyses, especially with respect to the distribution of chemically diverse fabric compounds. In this way this study intends to contribute to our understanding of the archaeological and historical formations of this region. (author)

  17. Characterization of ceramic archaeological by high resolution X ray microtomography

    Energy Technology Data Exchange (ETDEWEB)

    Machado, Alessandra C.; Freitas, Renato; Calza, Cristiane F.; Lopes, Ricardo T.; Lima, Inaya, E-mail: alecastro@lin.ufrj.br [Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Lab. de Instrumentacao Nuclear; Carvalho, Daniele D.; Gaspar, Maria D. [Museu Nacional (MN/UFRJ), RJ (Brazil). Centro de Tecnologia

    2013-07-01

    Characterization of ceramic fragments is a very important area of research in art and archeometry area because it enables a greater understanding of how ancient civilizations behave and what were their traditions and customs. Petrography and chemical analyses are commonly used, but these techniques are destructive, which is not interesting for this type of sample. Through the exchange of multidisciplinary scientific knowledge and new partnerships, high resolution X-ray microtomography has been introduced in archaeological area as a great possibility of 3D inspection in a non-destructive way. The goal of this work is to investigate the internal microstructures of four samples of archeological ceramic, from the Archaeological Site of Macacu - RJ. The X-ray microtomography were performed in a high resolution setup, and can be used to infer the nature of organic temper even with all plant remains completely burnt out during the firing process and also to ensure the homogeneity of samples envisaged for geochemical analyses, especially with respect to the distribution of chemically diverse fabric compounds. In this way this study intends to contribute to our understanding of the archaeological and historical formations of this region. (author)

  18. High resolution X-ray spectromicroscopy of laser produced plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Faenov, A.Ya. [Multi-charged Ions Spectra Data Center of VNIIFTRI (MISDC), Mendeleevo, Moscow region, (Russian Federation)

    2000-01-01

    In recent years new classes of X-ray spectroscopic instruments possessing both dispersive and focusing properties have been manufactured. Their principal advantage over more traditional instruments is that they combine very high luminosity with high spatial resolution, while preserving the highest possible spectral resolution of their dispersive elements. These instruments opened up the registration of plasmas in new regimes and surroundings. The measurements delivered new information about the properties of even previously studied traditional plasma objects (e.g. ns-laser produced plasmas). Also the detailed investigation of relatively new plasma laboratory sources with very small dimensions and low energy content (e.g. mJ fs-laser pulses) became possible. The purpose of this report is to give a short review of the experimental and theoretical results obtained in the past few years by MISDC (Multi-charged Ions Spectra Data Center) research team in the field of X-ray spectroscopy of a laser-produced plasma. Experimental spectra have been obtained at various laser installations with nanosecond, sub-nanosecond, picosecond and sub-picosecond pulses interacting with solid, gaseous or cluster targets in collaborations with research teams from Russia, USA, Germany, France, Poland, Belgium, Italy, China and Israel. Practically all results have been obtained with the help of spectrographs with spherically bent mica crystals operating in FSSR-1D, 2D schemes. (author)

  19. Micro-beam X-ray fluorescence and absorption imaging techniques at the IAEA Laboratories

    International Nuclear Information System (INIS)

    Wegrzynek, Dariusz; Markowicz, A.; Bamford, S.; Chinea-Cano, E.; Bogovac, M.

    2005-01-01

    X-ray tube based, micro-beam X-ray fluorescence scanning spectrometer has been equipped with two energy dispersive X-ray detectors. The two-detector configuration allows for simultaneous collection of X-ray fluorescence (XRF) and transmitted X-ray beam signals with a spatial resolution in the range of 10-50 μm, depending on the X-ray focussing element in use. The XRF signal is collected with a standard, liquid nitrogen cooled Si(Li) detector. The X-ray beam transmitted through the sample is acquired with a thermoelectrically cooled, silicon drift (SD) detector. The data acquisition is carried out in a fully automatic way under control of the SPECTOR-LOCATOR software. The software controls the scanning procedure and X-ray spectra acquisition during the scan. The energy dispersive X-ray spectra collected at every 'pixel' are stored for off-line processing. For selected regions of interest (ROI's), the element maps are constructed and displayed on-line. The spectrometer has been used for mapping elemental distributions and for performing 2D- and 3D-tomograpic imaging of minute objects in X-ray absorption and in X-ray fluorescence mode. A unique feature of the described system is simultaneous utilization of the two detectors, Si(Li) and SD, which adds new options for quantitative analysis and data interpretation. Examples of elemental mapping and 3D tomographic imaging as well as the advanced features of the SPECTOR-LOCATOR measurement control and data acquisition software are presented in this work

  20. Stress Free Multilayer Coating for High Resolution X-ray Mirrors

    Data.gov (United States)

    National Aeronautics and Space Administration — Most of X-ray optics research and development in the US is to build a high resolution, large collecting area and light-weight optic, namely an soft X-ray mirror for...

  1. Very high resolution UV and x-ray spectroscopy and imagery of solar active regions. Final report

    International Nuclear Information System (INIS)

    Bruner, M.; Brown, W.A.; Haisch, B.M.

    1987-01-01

    A scientific investigation of the physics of the solar atmosphere, which uses the techniques of high resolution soft x-ray spectroscopy and high resolution UV imagery, is described. The experiments were conducted during a series of three sounding rocket flights. All three flights yielded excellent images in the UV range, showing unprecedented spatial resolution. The second flight recorded the x-ray spectrum of a solar flare, and the third that of an active region. A normal incidence multi-layer mirror was used during the third flight to make the first astronomical x-ray observations using this new technique

  2. Biological imaging by soft X-ray diffraction microscopy

    Science.gov (United States)

    Shapiro, David

    We have developed a microscope for soft x-ray diffraction imaging of dry or frozen hydrated biological specimens. This lensless imaging system does not suffer from the resolution or specimen thickness limitations that other short wavelength microscopes experience. The microscope, currently situated at beamline 9.0.1 of the Advanced Light Source, can collect diffraction data to 12 nm resolution with 750 eV photons and 17 nm resolution with 520 eV photons. The specimen can be rotated with a precision goniometer through an angle of 160 degrees allowing for the collection of nearly complete three-dimensional diffraction data. The microscope is fully computer controlled through a graphical user interface and a scripting language automates the collection of both two-dimensional and three-dimensional data. Diffraction data from a freeze-dried dwarf yeast cell, Saccharomyces cerevisiae carrying the CLN3-1 mutation, was collected to 12 run resolution from 8 specimen orientations spanning a total rotation of 8 degrees. The diffraction data was phased using the difference map algorithm and the reconstructions provide real space images of the cell to 30 nm resolution from each of the orientations. The agreement of the different reconstructions provides confidence in the recovered, and previously unknown, structure and indicates the three dimensionality of the cell. This work represents the first imaging of the natural complex refractive contrast from a whole unstained cell by the diffraction microscopy method and has achieved a resolution superior to lens based x-ray tomographic reconstructions of similar specimens. Studies of the effects of exposure to large radiation doses were also carried out. It was determined that the freeze-dried cell suffers from an initial collapse, which is followed by a uniform, but slow, shrinkage. This structural damage to the cell is not accompanied by a diminished ability to see small features in the specimen. Preliminary measurements on frozen

  3. Device for congruent X-ray images of teeth

    International Nuclear Information System (INIS)

    Wegner, H.; Zeumer, H.

    1987-01-01

    This invention has to do with a device for congruent X-ray images of teeth by means of the long-tube parallel technique and the long-tube semi-angle technique. The aim is to have no disturbing lever forces in order to avoid mechanical tensions between patient and X-ray tube assembly and to achieve a true projection of teeth and jaw-bone part also under unfavourable anatomical conditions

  4. High Resolution Higher Energy X-ray Microscope for Mesoscopic Materials

    International Nuclear Information System (INIS)

    Snigireva, I; Snigirev, A

    2013-01-01

    We developed a novel X-ray microscopy technique to study mesoscopically structured materials, employing compound refractive lenses. The easily seen advantage of lens-based methodology is the possibility to retrieve high resolution diffraction pattern and real-space images in the same experimental setup. Methodologically the proposed approach is similar to the studies of crystals by high resolution transmission electron microscopy. The proposed microscope was applied for studying of mesoscopic materials such as natural and synthetic opals, inverted photonic crystals

  5. New insights into microstructural evolution of epitaxial Ni-Mn-Ga films on MgO (1 0 0) substrate by high-resolution X-ray diffraction and orientation imaging investigations

    Science.gov (United States)

    Sharma, Amit; Mohan, Sangeneni; Suwas, Satyam

    2018-04-01

    In this work, a detailed investigation has been performed on hetero-epitaxial growth and microstructural evolution in highly oriented Ni-Mn-Ga (1 0 0) films grown on MgO (1 0 0) substrate using high-resolution X-ray diffraction and orientation imaging microscopy. Mosaicity of the films has been analysed in terms of tilt angle, twist angle, lateral and vertical coherence length and threading dislocation densities by performing rocking curve measurements and reciprocal space mapping. Density of edge dislocations is found to be an order of magnitude higher than the density of screw dislocations, irrespective of film thickness. X-ray pole figure measurements have revealed an orientation relationship of ? || (1 0 0)MgO; ? || [0 0 1]MgO between the film and substrate. Microstructure predicted by X-ray diffraction is in agreement with that obtained from electron microscopy and atomic force microscopy. The evolution of microstructure in the film with increasing thickness has been explained vis-à-vis dislocation generation and growth mechanisms. Orientation imaging microscopy observations indicate evolutionary growth of film by overgrowth mechanism. Decrease in coercivity with film thickness has been explained as an interplay between stress field developed due to crystal defects and magnetic domain pinning due to surface roughness.

  6. High resolution, monochromatic x-ray topography capability at CHESS

    Energy Technology Data Exchange (ETDEWEB)

    Finkelstein, K. D., E-mail: kdf1@cornell.edu; Pauling, A.; Brown, Z. [CHESS, Cornell University, Ithaca, NY (United States); Jones, R. [Department of Physics, University of Connecticut, Storrs, CT (United States); Tarun, A.; Misra, D. S. [IIa Technologies (Singapore); Jupitz, S. [St. Mary’s College of Maryland, St. Mary’s City, MD (United States); Sagan, D. C. [CLASSE, Cornell University, Ithaca, NY (United States)

    2016-07-27

    CHESS has a monochromatic x-ray topography capability serving continually expanding user interest. The setup consists of a beam expanding monochromator, 6-circle diffactometer, and CHESS designed CMOS camera with real time sample-alignment capability. This provides rocking curve mapping with angle resolution as small as 2 µradians, spatial resolution to 3 microns, and field of view up to 7mm. Thus far the capability has been applied for: improving CVD-diamond growth, evaluating perfection of ultra-thin diamond membranes, correlating performance of diamond-based electronics with crystal defect structure, and defect analysis of single crystal silicon carbide. This paper describes our topography system, explains its capabilities, and presents experimental results from several applications.

  7. High resolution, monochromatic x-ray topography capability at CHESS

    International Nuclear Information System (INIS)

    Finkelstein, K. D.; Pauling, A.; Brown, Z.; Jones, R.; Tarun, A.; Misra, D. S.; Jupitz, S.; Sagan, D. C.

    2016-01-01

    CHESS has a monochromatic x-ray topography capability serving continually expanding user interest. The setup consists of a beam expanding monochromator, 6-circle diffactometer, and CHESS designed CMOS camera with real time sample-alignment capability. This provides rocking curve mapping with angle resolution as small as 2 µradians, spatial resolution to 3 microns, and field of view up to 7mm. Thus far the capability has been applied for: improving CVD-diamond growth, evaluating perfection of ultra-thin diamond membranes, correlating performance of diamond-based electronics with crystal defect structure, and defect analysis of single crystal silicon carbide. This paper describes our topography system, explains its capabilities, and presents experimental results from several applications.

  8. High resolution stationary digital breast tomosynthesis using distributed carbon nanotube x-ray source array.

    Science.gov (United States)

    Qian, Xin; Tucker, Andrew; Gidcumb, Emily; Shan, Jing; Yang, Guang; Calderon-Colon, Xiomara; Sultana, Shabana; Lu, Jianping; Zhou, Otto; Spronk, Derrek; Sprenger, Frank; Zhang, Yiheng; Kennedy, Don; Farbizio, Tom; Jing, Zhenxue

    2012-04-01

    The purpose of this study is to investigate the feasibility of increasing the system spatial resolution and scanning speed of Hologic Selenia Dimensions digital breast tomosynthesis (DBT) scanner by replacing the rotating mammography x-ray tube with a specially designed carbon nanotube (CNT) x-ray source array, which generates all the projection images needed for tomosynthesis reconstruction by electronically activating individual x-ray sources without any mechanical motion. The stationary digital breast tomosynthesis (s-DBT) design aims to (i) increase the system spatial resolution by eliminating image blurring due to x-ray tube motion and (ii) reduce the scanning time. Low spatial resolution and long scanning time are the two main technical limitations of current DBT technology. A CNT x-ray source array was designed and evaluated against a set of targeted system performance parameters. Simulations were performed to determine the maximum anode heat load at the desired focal spot size and to design the electron focusing optics. Field emission current from CNT cathode was measured for an extended period of time to determine the stable life time of CNT cathode for an expected clinical operation scenario. The source array was manufactured, tested, and integrated with a Selenia scanner. An electronic control unit was developed to interface the source array with the detection system and to scan and regulate x-ray beams. The performance of the s-DBT system was evaluated using physical phantoms. The spatially distributed CNT x-ray source array comprised 31 individually addressable x-ray sources covering a 30 angular span with 1 pitch and an isotropic focal spot size of 0.6 mm at full width at half-maximum. Stable operation at 28 kV(peak) anode voltage and 38 mA tube current was demonstrated with extended lifetime and good source-to-source consistency. For the standard imaging protocol of 15 views over 14, 100 mAs dose, and 2 × 2 detector binning, the projection

  9. The Wide Field Imager of the International X-ray Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Stefanescu, A., E-mail: astefan@hll.mpg.d [Max-Planck-Institut Halbleiterlabor, Otto-Hahn-Ring 6, 81739 Muenchen (Germany); Johannes Gutenberg-Universitaet, Inst. f. anorganische und analytische Chemie, 55099 Mainz (Germany); Bautz, M.W. [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139-4307 (United States); Burrows, D.N. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Bombelli, L.; Fiorini, C. [Politecnico di Milano, Dipartimento di Elettronica e Informazione, Milano (Italy); INFN Sezione di Milano, Milano (Italy); Fraser, G. [Space Research Centre, Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Heinzinger, K. [PNSensor GmbH, Roemerstr. 28, 80803 Muenchen (Germany); Herrmann, S. [Max-Planck-Institut Halbleiterlabor, Otto-Hahn-Ring 6, 81739 Muenchen (Germany); Max-Planck-Institut fuer extraterrestrische Physik, Giessenbachstr., 85748 Garching (Germany); Kuster, M. [Technische Universitaet Darmstadt, Institut fuer Kernphysik, Schlossgartenstr. 9, 64289 Darmstadt (Germany); Lauf, T. [Max-Planck-Institut Halbleiterlabor, Otto-Hahn-Ring 6, 81739 Muenchen (Germany); Max-Planck-Institut fuer extraterrestrische Physik, Giessenbachstr., 85748 Garching (Germany); Lechner, P. [PNSensor GmbH, Roemerstr. 28, 80803 Muenchen (Germany); Lutz, G. [Max-Planck-Institut Halbleiterlabor, Otto-Hahn-Ring 6, 81739 Muenchen (Germany); Max-Planck-Institut fuer Physik, Foehringer Ring 6, 80805 Muenchen (Germany); Majewski, P. [PNSensor GmbH, Roemerstr. 28, 80803 Muenchen (Germany); Meuris, A. [Max-Planck-Institut Halbleiterlabor, Otto-Hahn-Ring 6, 81739 Muenchen (Germany); Max-Planck-Institut fuer extraterrestrische Physik, Giessenbachstr., 85748 Garching (Germany); Murray, S.S. [Harvard/Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States)

    2010-12-11

    The International X-ray Observatory (IXO) will be a joint X-ray observatory mission by ESA, NASA and JAXA. It will have a large effective area (3 m{sup 2} at 1.25 keV) grazing incidence mirror system with good angular resolution (5 arcsec at 0.1-10 keV) and will feature a comprehensive suite of scientific instruments: an X-ray Microcalorimeter Spectrometer, a High Time Resolution Spectrometer, an X-ray Polarimeter, an X-ray Grating Spectrometer, a Hard X-ray Imager and a Wide-Field Imager. The Wide Field Imager (WFI) has a field-of-view of 18 ftx18 ft. It will be sensitive between 0.1 and 15 keV, offer the full angular resolution of the mirrors and good energy resolution. The WFI will be implemented as a 6 in. wafer-scale monolithical array of 1024x1024 pixels of 100x100{mu}m{sup 2} size. The DEpleted P-channel Field-Effect Transistors (DEPFET) forming the individual pixels are devices combining the functionalities of both detector and amplifier. Signal electrons are collected in a potential well below the transistor's gate, modulating the transistor current. Even when the device is powered off, the signal charge is collected and kept in the potential well below the gate until it is explicitly cleared. This makes flexible and fast readout modes possible.

  10. Integrated image presentation of transmission and fluorescent X-ray CT using synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Zeniya, T.; Takeda, T. E-mail: ttakeda@md.tsukuba.ac.jp; Yu, Q.; Hasegawa, Y.; Hyodo, K.; Yuasa, T.; Hiranaka, Y.; Itai, Y.; Akatsuka, T

    2001-07-21

    We have developed a computed tomography (CT) system with synchrotron radiation (SR) to detect fluorescent X-rays and transmitted X-rays simultaneously. Both SR transmission X-ray CT (SR-TXCT) and SR fluorescent X-ray CT (SR-FXCT) can describe cross-sectional images with high spatial and contrast resolutions as compared to conventional CT. TXCT gives morphological information and FXCT gives functional information of organs. So, superposed display system for SR-FXCT and SR-TXCT images has been developed for clinical diagnosis with higher reliability. Preliminary experiment with brain phantom was carried out and the superposition of both images was performed. The superposed SR-CT image gave us both functional and morphological information easily with high reliability, thus demonstrating the usefulness of this system.

  11. Integrated image presentation of transmission and fluorescent X-ray CT using synchrotron radiation

    Science.gov (United States)

    Zeniya, T.; Takeda, T.; Yu, Q.; Hasegawa, Y.; Hyodo, K.; Yuasa, T.; Hiranaka, Y.; Itai, Y.; Akatsuka, T.

    2001-07-01

    We have developed a computed tomography (CT) system with synchrotron radiation (SR) to detect fluorescent X-rays and transmitted X-rays simultaneously. Both SR transmission X-ray CT (SR-TXCT) and SR fluorescent X-ray CT (SR-FXCT) can describe cross-sectional images with high spatial and contrast resolutions as compared to conventional CT. TXCT gives morphological information and FXCT gives functional information of organs. So, superposed display system for SR-FXCT and SR-TXCT images has been developed for clinical diagnosis with higher reliability. Preliminary experiment with brain phantom was carried out and the superposition of both images was performed. The superposed SR-CT image gave us both functional and morphological information easily with high reliability, thus demonstrating the usefulness of this system.

  12. Hybrid lightweight X-ray optics for half arcsecond imaging

    Science.gov (United States)

    Reid, Paul

    This proposal is for the development of grazing incidence optics suitable to meet the 0.5 arcsec imaging and 2.3 square meter effective area requirements of the X-ray Surveyor mission concept, currently under study by NASA. Our approach is to combine two promising technologies, as yet individually unproven at the 0.5 arcsec level, into a hybrid mirror approach. The two technologies are thin piezoelectric film adjustable optics under development at SAO and PSU, and differential deposition under development at NASA MSFC. These technologies are complementary: adjustable optics are best suited to fixing low spatial frequency errors due to piezoelectric cell size limitations, and differential deposition is best suited for fixing mid-spatial frequency errors so as to limit the amount of material that must be deposited. Thus, the combination of the two techniques extends the bandwidth of figure errors that can be corrected beyond what it was for either individual technique. Both technologies will be applied to fabricate Wolter-I mirror segment from single thermally formed glass substrates. This work is directed at mirror segments only (not full shells), as we believe segments are the most appropriate for developing the 3 m diameter X-ray Surveyor high resolution mirror. In this program we will extend differential deposition to segment surfaces (from line profiles), investigate the most realistic error bandwidths for each technology, and determine the impacts of one technologys processing steps on the other to find if there is an optimal order to combining the technologies. In addition, we will also conduct a conical/cylindrical mirror metrology "round-robin," to cross-calibrate the different cylindrical metrology to one another as a means of minimizing systematic errors. Finally, we will examine the balancing and compensating of mirror stress due to the various thin films employed (piezoelectric layer, differential deposition, X-ray reflecting layer(s)) with an eye to

  13. Real-time digital x-ray subtraction imaging

    International Nuclear Information System (INIS)

    Mistretta, C.A.

    1982-01-01

    The invention provides a method of producing visible difference images derived from an X-ray image of an anatomical subject, comprising the steps of directing X-rays through the anatomical subject for producing an image, converting the image into television fields comprising trains of on-going video signals, digitally storing and integrating the on-going video signals over a time interval corresponding to several successive television fields and thereby producing stored and integrated video signals, recovering the video signals from storage and producing integrated video signals, producing video difference signals by performing a subtraction between the integrated video signals and the on-going video signals outside the time interval, and converting the difference signals into visible television difference images representing on-going changes in the X-ray image

  14. Image alignment for tomography reconstruction from synchrotron X-ray microscopic images.

    Directory of Open Access Journals (Sweden)

    Chang-Chieh Cheng

    Full Text Available A synchrotron X-ray microscope is a powerful imaging apparatus for taking high-resolution and high-contrast X-ray images of nanoscale objects. A sufficient number of X-ray projection images from different angles is required for constructing 3D volume images of an object. Because a synchrotron light source is immobile, a rotational object holder is required for tomography. At a resolution of 10 nm per pixel, the vibration of the holder caused by rotating the object cannot be disregarded if tomographic images are to be reconstructed accurately. This paper presents a computer method to compensate for the vibration of the rotational holder by aligning neighboring X-ray images. This alignment process involves two steps. The first step is to match the "projected feature points" in the sequence of images. The matched projected feature points in the x-θ plane should form a set of sine-shaped loci. The second step is to fit the loci to a set of sine waves to compute the parameters required for alignment. The experimental results show that the proposed method outperforms two previously proposed methods, Xradia and SPIDER. The developed software system can be downloaded from the URL, http://www.cs.nctu.edu.tw/~chengchc/SCTA or http://goo.gl/s4AMx.

  15. Image alignment for tomography reconstruction from synchrotron X-ray microscopic images.

    Science.gov (United States)

    Cheng, Chang-Chieh; Chien, Chia-Chi; Chen, Hsiang-Hsin; Hwu, Yeukuang; Ching, Yu-Tai

    2014-01-01

    A synchrotron X-ray microscope is a powerful imaging apparatus for taking high-resolution and high-contrast X-ray images of nanoscale objects. A sufficient number of X-ray projection images from different angles is required for constructing 3D volume images of an object. Because a synchrotron light source is immobile, a rotational object holder is required for tomography. At a resolution of 10 nm per pixel, the vibration of the holder caused by rotating the object cannot be disregarded if tomographic images are to be reconstructed accurately. This paper presents a computer method to compensate for the vibration of the rotational holder by aligning neighboring X-ray images. This alignment process involves two steps. The first step is to match the "projected feature points" in the sequence of images. The matched projected feature points in the x-θ plane should form a set of sine-shaped loci. The second step is to fit the loci to a set of sine waves to compute the parameters required for alignment. The experimental results show that the proposed method outperforms two previously proposed methods, Xradia and SPIDER. The developed software system can be downloaded from the URL, http://www.cs.nctu.edu.tw/~chengchc/SCTA or http://goo.gl/s4AMx.

  16. An autonomous CZT module for X-ray diffraction imaging

    International Nuclear Information System (INIS)

    Montemont, G.; Monnet, O.; Stanchina, S.; Verger, L.; Kosciesza, D.; Schlomka, J.P.

    2013-01-01

    We present the development of a CZT-based detection module dedicated to X-ray diffraction imaging. This kind of application requires a good energy and spatial resolution in order to resolve Bragg peaks. In a first part, we present the detector configuration used and dimensioning constraints. As the input energy range is comprised between 20 and 150 keV, we use 5 mm thick high resistivity CZT crystals. The 660 mm 2 detection area is segmented on both sides into 192 anodes and 12 cathodes. Signals from both sides are read jointly in order to perform multi parametric event corrections (depth of interaction, charge sharing, induction sharing). In order to be integrated easily inside an X-ray imaging system, the system has been conceived to be completely autonomous: it is powered by a single 12 V supply and is interfaced with the external system by Ethernet for communication and RS485 for synchronization. In a second part, we describe the system readout architecture and then the implementation of the data processing. An FPGA circuit embeds a digital processing chain that carries out readout ASIC interfacing and advanced multi parametric data corrections. Gain, offset but also depth of interaction and charge sharing are corrected on the flow. Incoming events from different channels are clustered together by comparing their location and time of occurrence. The FPGA also embeds a processor running an operating system that controls the system, carries out all calibrations, automated tests and acquisitions. Eventually, we show the results obtained and demonstrate the relative influence of depth of interaction and charge sharing. Homogeneity of detector behavior is also discussed and the reproducibility of the performance between modules is presented. The average energy resolution at 25 C is 2.4 % FWHM at 122 keV and 3.8 % FWHM at 60 keV and the average efficiency is 73 %. (authors)

  17. X-ray energy selected imaging with Medipix II

    International Nuclear Information System (INIS)

    Ludwig, J.; Zwerger, A.; Benz, K.-W.; Fiederle, M.; Braml, H.; Fauler, A.; Konrath, J.-P.

    2004-01-01

    Two different X-ray tube accelerating voltages (60 and 70 kV) are used for diagnosis of front teeth and molars. Different energy ranges are necessary as function of tooth thickness to obtain similar contrast for imaging. This technique drives the costs for the X-ray tube up and allows for just two optimized settings. Energy range selection for the detection of the penetrating X-rays would overcome these severe setbacks. The single photon counting chip MEDIPIX2 http://www.cern.ch/medipix exhibits exactly this feature. First simulations and measurements have been carried out using a dental X-ray source. As a demonstrator a real tooth has been used with different cavities and filling materials. Simulations showed in general larger improvements as compared to measurements regarding SNR and contrast: A beneficial factor of 4% wrt SNR and 25% for contrast, measurements showed factors of 2.5 and up to 10%, respectively

  18. X-ray energy selected imaging with Medipix II

    Science.gov (United States)

    Ludwig, J.; Zwerger, A.; Benz, K.-W.; Fiederle, M.; Braml, H.; Fauler, A.; Konrath, J.-P.

    2004-09-01

    Two different X-ray tube accelerating voltages (60 and 70kV) are used for diagnosis of front teeth and molars. Different energy ranges are necessary as function of tooth thickness to obtain similar contrast for imaging. This technique drives the costs for the X-ray tube up and allows for just two optimized settings. Energy range selection for the detection of the penetrating X-rays would overcome these severe setbacks. The single photon counting chip MEDIPIX2 http://www.cern.ch/medipix exhibits exactly this feature.First simulations and measurements have been carried out using a dental X-ray source. As a demonstrator a real tooth has been used with different cavities and filling materials. Simulations showed in general larger improvements as compared to measurements regarding SNR and contrast: A beneficial factor of 4% wrt SNR and 25% for contrast, measurements showed factors of 2.5 and up to 10%, respectively.

  19. X-ray imaging diagnostics for the inertial confinement fusion experiments

    International Nuclear Information System (INIS)

    Aglitskiy, Y.; Lehecka, T.; Obenschain, S.; Pawley, C.; Sethian, J.; Koch, J.A.; Holland, G.

    2000-01-01

    We report on our continued development of the advanced x-ray plasma diagnostics based on spherically curved crystals. The diagnostics include x-ray spectroscopy with 1-D spatial resolution, 2-D monochromatic self-imaging and back-lighting, and can be extended to the x-ray collimating and 2-D absorption and emission spectroscopy. The system is currently used, but not limited to the diagnostics of the targets ablatively accelerated by the NRL Nike KrF laser. In cooperation with LLNL a comprehensive test of the NIF prototype spherically curved crystal assembly has been performed on the Nova laser. (authors)

  20. Cylindrical Crystal Imaging Spectrometer (CCIS) for cosmic X-ray spectroscopy

    Science.gov (United States)

    Schnopper, H. W.; Taylor, P. O.

    1981-01-01

    A "stigmatic" focusing, Bragg crystal spectrometer was developed and used for high spectral resolution X-ray emission line diagnostics on hot laboratory plasmas. The concept be applied at the focal plane of an orbiting X-ray telescope where it offers several advantages over conventional spectrometers, i.e., mechanical simplicity, high resolving power and sensitivity, simultaneous measurement of an extended segment of spectrum, and good imaging properties. The instrument features a simple, unambiguous, non-scanning spectrum readout that is not adversely affected by either spacecraft pointing error or source extent. The performance of the instrument is estimated in the context of the Advanced X-Ray Astrophysical Facility mission.

  1. X-ray imaging diagnostics for the inertial confinement fusion experiments

    Energy Technology Data Exchange (ETDEWEB)

    Aglitskiy, Y.; Lehecka, T. [Science Applications International Corp., McLean, VA (United States); Obenschain, S.; Pawley, C.; Sethian, J. [Naval Research Lab., Washington, DC (United States). Plasma Physics Div; Brown, C.M.; Seely, J. [Naval Research Lab., Space Sciences Div, Washington, DC (United States); Koch, J.A. [Lawrence Livermore National Lab., CA (United States); Holland, G. [SFA, Landover MD (United States)

    2000-07-01

    We report on our continued development of the advanced x-ray plasma diagnostics based on spherically curved crystals. The diagnostics include x-ray spectroscopy with 1-D spatial resolution, 2-D monochromatic self-imaging and back-lighting, and can be extended to the x-ray collimating and 2-D absorption and emission spectroscopy. The system is currently used, but not limited to the diagnostics of the targets ablatively accelerated by the NRL Nike KrF laser. In cooperation with LLNL a comprehensive test of the NIF prototype spherically curved crystal assembly has been performed on the Nova laser. (authors)

  2. X-ray images in the digital mode

    International Nuclear Information System (INIS)

    Buchmann, F.; Balter, S.

    1981-01-01

    In addition to computed tomography which presents actually the most important processing and transfer procedure of digital X-ray images, application of real time addition and substraction of X-ray images in a digital mode has found considerable interest. An estimation of the information contents of both digital and analog images is made in close relation to applications. As example of an image processing system on digital base a recently developed system for intravenous arteriography is described: the Philips-DVI. (orig.) [de

  3. X-ray photoelectron spectroscopy, high-resolution X-ray diffraction ...

    Indian Academy of Sciences (India)

    the crystalline quality through full-width at half-maximum values. .... angular divergence of ∆α = 12 arc sec. X-rays generated from the monochromator were diffracted from (0 0 6) LiNbO3 atomic planes with the (+, −, −, +, +) geometry. [8].

  4. X-ray generation by femtosecond laser pulses and its application to soft X-ray imaging microscope

    International Nuclear Information System (INIS)

    Ikeda, Kenichi; Kotaki, Hideyuki; Nakajima, Kazuhisa

    2002-01-01

    We have developed laser-produced plasma X-ray sources using femtosecond laser pulses at 10Hz repetition rate in a table-top size in order to investigate basic mechanism of X-ray emission from laser-matter interactions and its application to a X-ray microscope. In a soft X-ray region over 5 nm wavelength, laser-plasma X-ray emission from a solid target achieved an intense flux of photons of the order of 1011 photons/rad per pulse with duration of a few 100 ps, which is intense enough to make a clear imaging in a short time exposure. As an application of laser-produced plasma X-ray source, we have developed a soft X-ray imaging microscope operating in the wavelength range around 14 nm. The microscope consists of a cylindrically ellipsoidal condenser mirror and a Schwarzshird objective mirror with highly-reflective multilayers. We report preliminary results of performance tests of the soft X-ray imaging microscope with a compact laser-produced plasma X-ray source

  5. Coherent x-ray diffraction imaging of paint pigment particles by scanning a phase plate modulator

    International Nuclear Information System (INIS)

    Chu, Y.S.; Chen, B.; Zhang, F.; Berenguer, F.; Bean, R.; Kewish, C.; Vila-Comamala, J.; Rodenburg, J.; Robinson, I.

    2011-01-01

    We have implemented a coherent x-ray diffraction imaging technique that scans a phase plate to modulate wave-fronts of the x-ray beam transmitted by samples. The method was applied to measure a decorative alkyd paint containing iron oxide red pigment particles. By employing an iterative algorithm for wave-front modulation phase retrieval, we obtained an image of the paint sample that shows the distribution of the pigment particles and is consistent with the result obtained from a transmission x-ray microscope. The technique has been experimentally proven to be a feasible coherent x-ray imaging method with about 120 nm spatial resolution and was shown to work well with industrially relevant specimens.

  6. Panel type X-ray image intensifier tube

    International Nuclear Information System (INIS)

    Wang, S.P.

    1977-01-01

    A panel shaped, proximity type, X-ray image intensifier tube for medical X-ray diagnostic is disclosed. It has all linear components and yet a high brightness gain, in the range of 500 to 20,000 cd-sec/m 2 -R, the tube being comprised of a rugged metallic tube envelope, an inwardly concave metallic input window of full size output display screen, an alkaline-halide scintillator photocathode screen suspended on insulators within the envelope and in between the input window and the output screen, and a high Z glass output window to reduce X-ray backscatter inside and outside of the tube. An X-ray sensitive photographic camera for medical diagnostic use is also disclosed which includes an X-ray sensitive image intensifier means of the proximity type and a reduction type optical system having an effective foral length in excess of 100mm for focusing the emage generated on the output display screen of the image intensifier tube onto a small size but directly viewable photographic film. The parameters of the image intensifier, the optics and the film are specified and linked to each other in a manner which maximizes the image quality for a camera system of this type and at the same time restricts the system speed of the camera to a range of 500 to 5,000 R -1 for the film to achieve a net density of 1.0. (Auth.)

  7. X-ray backscatter imaging with a spiral scanner

    International Nuclear Information System (INIS)

    Bossi, R.H.; Cline, J.L.; Friddell, K.D.

    1989-01-01

    X-ray backscatter imaging allows radiographic inspections to be performed with access to only one side of the object. A collimated beam of radiation striking an object will scatter x-rays by Compton scatter and x-ray fluorescence. A detector located on the source side of the part will measure the backscatter signal. By plotting signal strength as gray scale intensity vs. beam position on the object, an image of the object can be constructed. A novel approach to the motion of the collimated incident beam is a spiral scanner. The spiral scanner approach, described in this paper, can image an area of an object without the synchronized motion of the object or detector, required by other backscatter imaging techniques. X-ray backscatter is particularly useful for flaw detection in light element materials such as composites. The ease of operation and the ability to operate non-contact from one side of an object make x-ray backscatter imaging of increasing interest to industrial inspection problems

  8. Investigating high speed phenomena in laser plasma interactions using dilation x-ray imager (invited).

    Science.gov (United States)

    Nagel, S R; Hilsabeck, T J; Bell, P M; Bradley, D K; Ayers, M J; Piston, K; Felker, B; Kilkenny, J D; Chung, T; Sammuli, B; Hares, J D; Dymoke-Bradshaw, A K L

    2014-11-01

    The DIlation X-ray Imager (DIXI) is a new, high-speed x-ray framing camera at the National Ignition Facility (NIF) sensitive to x-rays in the range of ≈2-17 keV. DIXI uses the pulse-dilation technique to achieve a temporal resolution of less than 10 ps, a ≈10× improvement over conventional framing cameras currently employed on the NIF (≈100 ps resolution), and otherwise only attainable with 1D streaked imaging. The pulse-dilation technique utilizes a voltage ramp to impart a velocity gradient on the signal-bearing electrons. The temporal response, spatial resolution, and x-ray sensitivity of DIXI are characterized with a short x-ray impulse generated using the COMET laser facility at Lawrence Livermore National Laboratory. At the NIF a pinhole array at 10 cm from target chamber center (tcc) projects images onto the photocathode situated outside the NIF chamber wall with a magnification of ≈64×. DIXI will provide important capabilities for warm-dense-matter physics, high-energy-density science, and inertial confinement fusion, adding important capabilities to temporally resolve hot-spot formation, x-ray emission, fuel motion, and mix levels in the hot-spot at neutron yields of up to 10(17). We present characterization data as well as first results on electron-transport phenomena in buried-layer foil experiments.

  9. Investigating high speed phenomena in laser plasma interactions using dilation x-ray imager (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Nagel, S. R., E-mail: nagel7@llnl.gov; Bell, P. M.; Bradley, D. K.; Ayers, M. J.; Piston, K.; Felker, B. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States); Hilsabeck, T. J.; Kilkenny, J. D.; Chung, T.; Sammuli, B. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Hares, J. D.; Dymoke-Bradshaw, A. K. L. [Kentech Instruments Ltd., Wallingford, Oxfordshire OX10 (United Kingdom)

    2014-11-15

    The DIlation X-ray Imager (DIXI) is a new, high-speed x-ray framing camera at the National Ignition Facility (NIF) sensitive to x-rays in the range of ≈2–17 keV. DIXI uses the pulse-dilation technique to achieve a temporal resolution of less than 10 ps, a ≈10× improvement over conventional framing cameras currently employed on the NIF (≈100 ps resolution), and otherwise only attainable with 1D streaked imaging. The pulse-dilation technique utilizes a voltage ramp to impart a velocity gradient on the signal-bearing electrons. The temporal response, spatial resolution, and x-ray sensitivity of DIXI are characterized with a short x-ray impulse generated using the COMET laser facility at Lawrence Livermore National Laboratory. At the NIF a pinhole array at 10 cm from target chamber center (tcc) projects images onto the photocathode situated outside the NIF chamber wall with a magnification of ≈64×. DIXI will provide important capabilities for warm-dense-matter physics, high-energy-density science, and inertial confinement fusion, adding important capabilities to temporally resolve hot-spot formation, x-ray emission, fuel motion, and mix levels in the hot-spot at neutron yields of up to 10{sup 17}. We present characterization data as well as first results on electron-transport phenomena in buried-layer foil experiments.

  10. Novel X-ray imaging diagnostics of high energy nanosecond pulse accelerators

    International Nuclear Information System (INIS)

    Smith, Graham W.; Gallegos, Roque Rosauro; Hohlfelder, Robert James; Beutler, David Eric; Dudley, John; Seymour, Calvin L.G.; Bell, John D.

    2004-01-01

    Pioneering x-ray imaging has been undertaken on a number of AWE's and Sandia National Laboratories radiation effects x-ray simulators. These simulators typically yield a single very short (<50ns) pulse of high-energy (MeV endpoint energy bremsstrahlung) x-ray radiation with doses in the kilorad (krad(Si)) region. X-ray source targets vary in size from 2 to 25cm diameter, dependent upon the particular simulator. Electronic imaging of the source x-ray emission under dynamic conditions yields valuable information upon how the simulator is performing. The resultant images are of interest to the simulator designer who may configure new x-ray source converter targets and diode designs. The images can provide quantitative information about machine performance during radiation effects testing of components under active conditions. The effects testing program is a valuable interface for validation of high performance computer codes and models for the radiation effects community. A novel high-energy x-ray imaging spectrometer is described whereby the spectral energy (0.1 to 2.5MeV) profile may be discerned from the digitally recorded and viewable images via a pinhole/scintillator/CCD imaging system and knowledge of the filtration parameters. Unique images, analysis and a preliminary evaluation of the capability of the spectrometer are presented. Further, a novel time resolved imaging system is described that captures a sequence of high spatial resolution temporal images, with zero interframe time, in the nanosecond timeframe, of our source x-rays.

  11. Magnified hard x-ray microtomography: toward tomography with submicron resolution

    Science.gov (United States)

    Schroer, Christian G.; Benner, Boris; Guenzler, Til F.; Kuhlmann, Marion; Lengeler, Bruno; Rau, Christoph; Weitkamp, Timm; Snigirev, Anatoly A.; Snigireva, Irina

    2002-01-01

    Parabolic compound refractive lenses (PCRLs) are high quality imaging optics for hard x-rays that can be used as an objective lens in a new type of hard x-ray full field microscope. Using an aluminium PCRL, this new type of microscope has been shown to have a resolution of 350 nm. Further improvement of the resolution down to 50 nm can be expected using beryllium as a lens material. The large depth of field (several mm) of the microscope results in sharp projection images for samples that fit into the field of view of about 300 micrometers. This allows to combine magnified imaging with tomographic techniques. First results of magnified microtomography are shown. Contrast formation in the microscope and the consequences for tomographic reconstruction are discussed. An outlook on further developments is given.

  12. Image processing for x-ray inspection of pistachio nuts

    Science.gov (United States)

    Casasent, David P.

    2001-03-01

    A review is provided of image processing techniques that have been applied to the inspection of pistachio nuts using X-ray images. X-ray sensors provide non-destructive internal product detail not available from other sensors. The primary concern in this data is detecting the presence of worm infestations in nuts, since they have been linked to the presence of aflatoxin. We describe new techniques for segmentation, feature selection, selection of product categories (clusters), classifier design, etc. Specific novel results include: a new segmentation algorithm to produce images of isolated product items; preferable classifier operation (the classifier with the best probability of correct recognition Pc is not best); higher-order discrimination information is present in standard features (thus, high-order features appear useful); classifiers that use new cluster categories of samples achieve improved performance. Results are presented for X-ray images of pistachio nuts; however, all techniques have use in other product inspection applications.

  13. Ancient administrative handwritten documents: X-ray analysis and imaging

    International Nuclear Information System (INIS)

    Albertin, F.; Astolfo, A.; Stampanoni, M.; Peccenini, Eva; Hwu, Y.; Kaplan, F.; Margaritondo, G.

    2015-01-01

    The heavy-element content of ink in ancient administrative documents makes it possible to detect the characters with different synchrotron imaging techniques, based on attenuation or refraction. This is the first step in the direction of non-interactive virtual X-ray reading. Handwritten characters in administrative antique documents from three centuries have been detected using different synchrotron X-ray imaging techniques. Heavy elements in ancient inks, present even for everyday administrative manuscripts as shown by X-ray fluorescence spectra, produce attenuation contrast. In most cases the image quality is good enough for tomography reconstruction in view of future applications to virtual page-by-page ‘reading’. When attenuation is too low, differential phase contrast imaging can reveal the characters from refractive index effects. The results are potentially important for new information harvesting strategies, for example from the huge Archivio di Stato collection, objective of the Venice Time Machine project

  14. Ancient administrative handwritten documents: X-ray analysis and imaging

    Energy Technology Data Exchange (ETDEWEB)

    Albertin, F., E-mail: fauzia.albertin@epfl.ch [Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland); Astolfo, A. [Paul Scherrer Institut (PSI), Villigen (Switzerland); Stampanoni, M. [Paul Scherrer Institut (PSI), Villigen (Switzerland); ETHZ, Zürich (Switzerland); Peccenini, Eva [University of Ferrara (Italy); Technopole of Ferrara (Italy); Hwu, Y. [Academia Sinica, Taipei, Taiwan (China); Kaplan, F. [Ecole Polytechnique Fédérale de Lausanne (EPFL) (Switzerland); Margaritondo, G. [Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland)

    2015-01-30

    The heavy-element content of ink in ancient administrative documents makes it possible to detect the characters with different synchrotron imaging techniques, based on attenuation or refraction. This is the first step in the direction of non-interactive virtual X-ray reading. Handwritten characters in administrative antique documents from three centuries have been detected using different synchrotron X-ray imaging techniques. Heavy elements in ancient inks, present even for everyday administrative manuscripts as shown by X-ray fluorescence spectra, produce attenuation contrast. In most cases the image quality is good enough for tomography reconstruction in view of future applications to virtual page-by-page ‘reading’. When attenuation is too low, differential phase contrast imaging can reveal the characters from refractive index effects. The results are potentially important for new information harvesting strategies, for example from the huge Archivio di Stato collection, objective of the Venice Time Machine project.

  15. Energy weighted x-ray dark-field imaging.

    Science.gov (United States)

    Pelzer, Georg; Zang, Andrea; Anton, Gisela; Bayer, Florian; Horn, Florian; Kraus, Manuel; Rieger, Jens; Ritter, Andre; Wandner, Johannes; Weber, Thomas; Fauler, Alex; Fiederle, Michael; Wong, Winnie S; Campbell, Michael; Meiser, Jan; Meyer, Pascal; Mohr, Jürgen; Michel, Thilo

    2014-10-06

    The dark-field image obtained in grating-based x-ray phase-contrast imaging can provide information about the objects' microstructures on a scale smaller than the pixel size even with low geometric magnification. In this publication we demonstrate that the dark-field image quality can be enhanced with an energy-resolving pixel detector. Energy-resolved x-ray dark-field images were acquired with a 16-energy-channel photon-counting pixel detector with a 1 mm thick CdTe sensor in a Talbot-Lau x-ray interferometer. A method for contrast-noise-ratio (CNR) enhancement is proposed and validated experimentally. In measurements, a CNR improvement by a factor of 1.14 was obtained. This is equivalent to a possible radiation dose reduction of 23%.

  16. Transforming Our Understanding of the X-ray Universe: The Imaging X-ray Polarimeter Explorer (IXPE)

    Science.gov (United States)

    Weisskopf, Martin C.; Bellazzini, Ronaldo; Costa, Enrico; Matt, Giorgio; Marshall, Herman; ODell, Stephen L.; Pavlov, George; Ramsey, Brian; Romani, Roger

    2014-01-01

    Accurate X-ray polarimetry can provide unique information on high-energy-astrophysical processes and sources. As there have been no meaningful X-ray polarization measurements of cosmic sources since our pioneering work in the 1970's, the time is ripe to explore this new parameter space in X-ray astronomy. To accomplish this requires a well-calibrated and well understood system that-particularly for an Explorer mission-has technical, cost, and schedule credibility. The system that we shall present satisfies these conditions, being based upon completely calibrated imaging- and polarization-sensitive detectors and proven X-ray-telescope technology.

  17. X-ray imaging with monochromatic synchrotron radiation. Fluorescent and phase-contrast method

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Tohoru; Itai, Yuji [Tsukuba Univ., Ibaraki (Japan). Inst. of Clinical Medicine

    2002-05-01

    To obtain the high sensitive x-ray images of biomedical object, new x-ray imaging techniques using fluorescent x-ray and phase-contrast x-ray are being developed in Japan. Fluorescent x-ray CT can detect very small amounts of specific elements in the order of ppm at one pixel, whereas phase-contrast x-ray imaging with interferometer can detect minute differences of biological object. Here, our recent experimental results are presented. (author)

  18. Submicron hard X-ray fluorescence imaging of synthetic elements.

    Science.gov (United States)

    Jensen, Mark P; Aryal, Baikuntha P; Gorman-Lewis, Drew; Paunesku, Tatjana; Lai, Barry; Vogt, Stefan; Woloschak, Gayle E

    2012-04-13

    Synchrotron-based X-ray fluorescence microscopy (XFM) using hard X-rays focused into sub-micron spots is a powerful technique for elemental quantification and mapping, as well as microspectroscopic measurements such as μ-XANES (X-ray absorption near edge structure). We have used XFM to image and simultaneously quantify the transuranic element plutonium at the L(3) or L(2)-edge as well as Th and lighter biologically essential elements in individual rat pheochromocytoma (PC12) cells after exposure to the long-lived plutonium isotope (242)Pu. Elemental maps demonstrate that plutonium localizes principally in the cytoplasm of the cells and avoids the cell nucleus, which is marked by the highest concentrations of phosphorus and zinc, under the conditions of our experiments. The minimum detection limit under typical acquisition conditions with an incident X-ray energy of 18 keV for an average 202 μm(2) cell is 1.4 fg Pu or 2.9×10(-20) moles Pu μm(-2), which is similar to the detection limit of K-edge XFM of transition metals at 10 keV. Copper electron microscopy grids were used to avoid interference from gold X-ray emissions, but traces of strontium present in naturally occurring calcium can still interfere with plutonium detection using its L(α) X-ray emission. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. High resolution hard x-ray microscope on a second generation synchrotron source

    International Nuclear Information System (INIS)

    Tian Yangchao; Li Wenjie; Chen Jie; Liu Longhua; Liu Gang; Tian Jinping; Xiong Ying; Tkachuk, Andrei; Gelb, Jeff; Hsu, George; Yun Wenbing

    2008-01-01

    A full-field, transmission x-ray microscope (TXM) operating in the energy range of 7-11 keV has been installed at the U7A beamline at the National Synchrotron Radiation Laboratory, a second generation synchrotron source operating at 0.8 GeV. Although the photon flux at sample position in the operating energy range is significantly low due to its relatively large emittance, the TXM can get high quality x-ray images with a spatial resolution down to 50 nm with acceptable exposure time. This TXM operates in either absorption or Zernike phase contrast mode with similar resolution. This TXM is a powerful analytical tool for a wide range of scientific areas, especially studies on nanoscale phenomena and structural imaging in biology, materials science, and environmental science. We present here the property of the x-ray source, beamline design, and the operation and key optical components of the x-ray TXM. Plans to improve the throughput of the TXM will be discussed.

  20. A broad band X-ray imaging spectrophotometer for astrophysical studies

    Science.gov (United States)

    Lum, Kenneth S. K.; Lee, Dong Hwan; Ku, William H.-M.

    1988-01-01

    A broadband X-ray imaging spectrophotometer (BBXRIS) has been built for astrophysical studies. The BBXRIS is based on a large-imaging gas scintillation proportional counter (LIGSPC), a combination of a gas scintillation proportional counter and a multiwire proportional counter, which achieves 8 percent (FWHM) energy resolution and 1.5-mm (FWHM) spatial resolution at 5.9 keV. The LIGSPC can be integrated with a grazing incidence mirror and a coded aperture mask to provide imaging over a broad range of X-ray energies. The results of tests involving the LIGSPC and a coded aperture mask are presented, and possible applications of the BBXRIS are discussed.

  1. XIPE the X-Ray Imaging Polarimetry Explorer

    Science.gov (United States)

    Soffitta, Paolo; Barcons, Xavier; Bellazzini, Ronaldo; Braga, Joao; Costa, Enrico; Fraser, George W.; Gburek, Szymon; Huovelin, Juhani; Matt, Giorgio; Pearce, Mark; hide

    2013-01-01

    .7 arcmin 14.7 arcmin. The spectral resolution is 20 at 6 keV and the time resolution is 8 s. The imaging capabilities of the JET-X optics and of the GPD have been demonstrated by a recent calibration campaign at PANTER X-ray test facility of the Max-Planck-Institut fr extraterrestrische Physik (MPE, Germany). XIPE takes advantage of a low-earth equatorial orbit with Malindi as down-link station and of a Mission Operation Center (MOC) at INPE (Brazil). The data policy is organized with a Core Program that comprises three months of Science Verification Phase and 25 of net observing time in the following 2 years. A competitive Guest Observer program covers the remaining 75 of the net observing time.

  2. Resolving hot spot microstructure using x-ray penumbral imaging (invited)

    Science.gov (United States)

    Bachmann, B.; Hilsabeck, T.; Field, J.; Masters, N.; Reed, C.; Pardini, T.; Rygg, J. R.; Alexander, N.; Benedetti, L. R.; Döppner, T.; Forsman, A.; Izumi, N.; LePape, S.; Ma, T.; MacPhee, A. G.; Nagel, S.; Patel, P.; Spears, B.; Landen, O. L.

    2016-11-01

    We have developed and fielded x-ray penumbral imaging on the National Ignition Facility in order to enable sub-10 μm resolution imaging of stagnated plasma cores (hot spots) of spherically shock compressed spheres and shell implosion targets. By utilizing circular tungsten and tantalum apertures with diameters ranging from 20 μm to 2 mm, in combination with image plate and gated x-ray detectors as well as imaging magnifications ranging from 4 to 64, we have demonstrated high-resolution imaging of hot spot plasmas at x-ray energies above 5 keV. Here we give an overview of the experimental design criteria involved and demonstrate the most relevant influences on the reconstruction of x-ray penumbral images, as well as mitigation strategies of image degrading effects like over-exposed pixels, artifacts, and photon limited source emission. We describe experimental results showing the advantages of x-ray penumbral imaging over conventional Fraunhofer and photon limited pinhole imaging and showcase how internal hot spot microstructures can be resolved.

  3. Resolving hot spot microstructure using x-ray penumbral imaging (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Bachmann, B., E-mail: bachmann2@llnl.gov; Field, J.; Masters, N.; Pardini, T.; Rygg, J. R.; Benedetti, L. R.; Döppner, T.; Izumi, N.; LePape, S.; Ma, T.; MacPhee, A. G.; Nagel, S.; Patel, P.; Spears, B.; Landen, O. L. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Hilsabeck, T.; Reed, C.; Alexander, N.; Forsman, A. [General Atomics, San Diego, California 92186 (United States)

    2016-11-15

    We have developed and fielded x-ray penumbral imaging on the National Ignition Facility in order to enable sub-10 μm resolution imaging of stagnated plasma cores (hot spots) of spherically shock compressed spheres and shell implosion targets. By utilizing circular tungsten and tantalum apertures with diameters ranging from 20 μm to 2 mm, in combination with image plate and gated x-ray detectors as well as imaging magnifications ranging from 4 to 64, we have demonstrated high-resolution imaging of hot spot plasmas at x-ray energies above 5 keV. Here we give an overview of the experimental design criteria involved and demonstrate the most relevant influences on the reconstruction of x-ray penumbral images, as well as mitigation strategies of image degrading effects like over-exposed pixels, artifacts, and photon limited source emission. We describe experimental results showing the advantages of x-ray penumbral imaging over conventional Fraunhofer and photon limited pinhole imaging and showcase how internal hot spot microstructures can be resolved.

  4. Resolving hot spot microstructure using x-ray penumbral imaging (invited).

    Science.gov (United States)

    Bachmann, B; Hilsabeck, T; Field, J; Masters, N; Reed, C; Pardini, T; Rygg, J R; Alexander, N; Benedetti, L R; Döppner, T; Forsman, A; Izumi, N; LePape, S; Ma, T; MacPhee, A G; Nagel, S; Patel, P; Spears, B; Landen, O L

    2016-11-01

    We have developed and fielded x-ray penumbral imaging on the National Ignition Facility in order to enable sub-10 μm resolution imaging of stagnated plasma cores (hot spots) of spherically shock compressed spheres and shell implosion targets. By utilizing circular tungsten and tantalum apertures with diameters ranging from 20 μm to 2 mm, in combination with image plate and gated x-ray detectors as well as imaging magnifications ranging from 4 to 64, we have demonstrated high-resolution imaging of hot spot plasmas at x-ray energies above 5 keV. Here we give an overview of the experimental design criteria involved and demonstrate the most relevant influences on the reconstruction of x-ray penumbral images, as well as mitigation strategies of image degrading effects like over-exposed pixels, artifacts, and photon limited source emission. We describe experimental results showing the advantages of x-ray penumbral imaging over conventional Fraunhofer and photon limited pinhole imaging and showcase how internal hot spot microstructures can be resolved.

  5. Resolving hot spot microstructure using x-ray penumbral imaging (invited)

    International Nuclear Information System (INIS)

    Bachmann, B.; Field, J.; Masters, N.; Pardini, T.; Rygg, J. R.; Benedetti, L. R.; Döppner, T.; Izumi, N.; LePape, S.; Ma, T.; MacPhee, A. G.; Nagel, S.; Patel, P.; Spears, B.; Landen, O. L.; Hilsabeck, T.; Reed, C.; Alexander, N.; Forsman, A.

    2016-01-01

    We have developed and fielded x-ray penumbral imaging on the National Ignition Facility in order to enable sub-10 μm resolution imaging of stagnated plasma cores (hot spots) of spherically shock compressed spheres and shell implosion targets. By utilizing circular tungsten and tantalum apertures with diameters ranging from 20 μm to 2 mm, in combination with image plate and gated x-ray detectors as well as imaging magnifications ranging from 4 to 64, we have demonstrated high-resolution imaging of hot spot plasmas at x-ray energies above 5 keV. Here we give an overview of the experimental design criteria involved and demonstrate the most relevant influences on the reconstruction of x-ray penumbral images, as well as mitigation strategies of image degrading effects like over-exposed pixels, artifacts, and photon limited source emission. We describe experimental results showing the advantages of x-ray penumbral imaging over conventional Fraunhofer and photon limited pinhole imaging and showcase how internal hot spot microstructures can be resolved.

  6. Analyser-based x-ray imaging for biomedical research

    International Nuclear Information System (INIS)

    Suortti, Pekka; Keyriläinen, Jani; Thomlinson, William

    2013-01-01

    Analyser-based imaging (ABI) is one of the several phase-contrast x-ray imaging techniques being pursued at synchrotron radiation facilities. With advancements in compact source technology, there is a possibility that ABI will become a clinical imaging modality. This paper presents the history of ABI as it has developed from its laboratory source to synchrotron imaging. The fundamental physics of phase-contrast imaging is presented both in a general sense and specifically for ABI. The technology is dependent on the use of perfect crystal monochromator optics. The theory of the x-ray optics is developed and presented in a way that will allow optimization of the imaging for specific biomedical systems. The advancement of analytical algorithms to produce separate images of the sample absorption, refraction angle map and small-angle x-ray scattering is detailed. Several detailed applications to biomedical imaging are presented to illustrate the broad range of systems and body sites studied preclinically to date: breast, cartilage and bone, soft tissue and organs. Ultimately, the application of ABI in clinical imaging will depend partly on the availability of compact sources with sufficient x-ray intensity comparable with that of the current synchrotron environment. (paper)

  7. Direct comparison of soft x-ray images of organelles with optical fluorescence images

    International Nuclear Information System (INIS)

    Ishino, Masahiko; Kado, Masataka; Kishimoto, Maki; Nishikino, Masaharu; Ohba, Toshiyuki; Kaihori, Takeshi; Kawachi, Tetsuya; Tamotsu, Satoshi; Yasuda, Keiko; Mikata, Yuji; Shinohara, Kunio

    2011-01-01

    Soft x-ray microscopes operating in the water window region are capable of imaging living hydrated cells. Up to now, we have been able to take some soft x-ray images of living cells by the use of a contact x-ray microscope system with laser produced plasma soft x-ray source. Since the soft x-ray images are different from the optical images obtained with an ordinary microscope, it is very important to identify what is seen in the x-ray images. Hence, we have demonstrated the direct comparison between the images of organelles obtained with a fluorescence microscope and those with a soft x-ray microscope. Comparing the soft x-ray images to the fluorescence images, the fine structures of the organelles could be identified and observed. (author)

  8. Affordable and Lightweight High-Resolution X-ray Optics for Astronomical Missions

    Science.gov (United States)

    Zhang, W. W.; Biskach, M. P.; Bly, V. T.; Carter, J. M.; Chan, K. W.; Gaskin, J. A.; Hong, M.; Hohl, B. R.; Jones, W. D.; Kolodziejczak, J. J.

    2014-01-01

    Future x-ray astronomical missions require x-ray mirror assemblies that provide both high angular resolution and large photon collecting area. In addition, as x-ray astronomy undertakes more sensitive sky surveys, a large field of view is becoming increasingly important as well. Since implementation of these requirements must be carried out in broad political and economical contexts, any technology that meets these performance requirements must also be financially affordable and can be implemented on a reasonable schedule. In this paper we report on progress of an x-ray optics development program that has been designed to address all of these requirements. The program adopts the segmented optical design, thereby is capable of making both small and large mirror assemblies for missions of any size. This program has five technical elements: (1) fabrication of mirror substrates, (2) coating, (3) alignment, (4) bonding, and (5) mirror module systems engineering and testing. In the past year we have made progress in each of these five areas, advancing the angular resolution of mirror modules from 10.8 arc-seconds half-power diameter reported (HPD) a year ago to 8.3 arc-seconds now. These mirror modules have been subjected to and passed all environmental tests, including vibration, acoustic, and thermal vacuum. As such this technology is ready for implementing a mission that requires a 10-arc-second mirror assembly. Further development in the next two years would make it ready for a mission requiring a 5-arc-second mirror assembly. We expect that, by the end of this decade, this technology would enable the x-ray astrophysical community to compete effectively for a major x-ray mission in the 2020s that would require one or more 1-arc-second mirror assemblies for imaging, spectroscopic, timing, and survey studies.

  9. X-ray images in primary bone chondrosarcoma

    International Nuclear Information System (INIS)

    Syrtmadzhieva, S.; Andreev, I.; Velichkov, L.

    1982-01-01

    The X-ray images of primary bone chondrosarcomas in 76 patients are reviewed. The tumors have been localized largely in the long tubular bones - in some patients centrally or excentrically, in others superficially. The X-ray images presented with osteolytic, osteoplastic and mixed changes, intratumor calcifications and reactive bone and periosteal changes. The presence of any of these changes and their combinations, depending on the localization and the influence of a variety of other factors, resembled much many other primary and metastatic malignant bone tumors, benign bone tumors and tumor-like diseases. The X-ray images showed a major complexity in the development of the primary chondrosarcoma and its relations with the bone as organ. (author)

  10. Noise reduction in real time x-ray images

    International Nuclear Information System (INIS)

    Tsuda, Motohisa; Kimura, Yutaro

    1986-01-01

    The signal-to-noise ratio of real-time digital X-ray imaging systems consisting of an X-ray image intensifer-television chain was investigated while concentrating on the effect of the X-ray quantum nature. Along with conventional signal accumulation, logarithmic conversion and subtraction, a new technique called the peak hold method is introduced. Theoretical and simulational studies were made with practical parameters. Theory and simulation showed good agreement. An accumulation of signal is most effective for improving the signal-to-noise ratio; the peak-hold method comes next. The peak hold method, however, offers a new image-display mode. Moreover, this method is superior to signal accumulation for specific conditions. (author)

  11. X-ray scatter signatures for enhanced breast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kidane, Ghirmay; Speller, Robert; Royle, Gary [Medical Physics and Bioengineering Department, University College Landon, 11-20 Capper Street, London WC1E 6JA (United Kingdom)

    1999-12-31

    Conventional mammographic imaging suffers from a low specificity. The main cause is the small difference in the x-ray attenuation properties of healthy and diseased tissue leading to poor contrast in the image. It has been observed that additional information on breast tissue type can be obtained from x-ray diffraction effects. A study of excised normal and neoplastic breast tissue samples using x-ray diffraction apparatus has been observed that significant differences exist in the measured spectra between carcinoma and healthy tissue adjacent to the carcinoma. Such a difference allows tissue type to be characterised according to is diseased state. Furthermore the information can be applied to improve diagnosis. It is proposed that collection and analysis of the scattered x-rays present during a mammographic procedure can supply the additional information and be used to improve the image contrast. The ultimate aim of the project is to improve the specificity of x-ray mammography. (authors) 10 refs., 3 figs.

  12. Synchrotron X-ray imaging applied to solar photovoltaic silicon

    International Nuclear Information System (INIS)

    Lafford, T A; Villanova, J; Plassat, N; Dubois, S; Camel, D

    2013-01-01

    Photovoltaic (PV) cell performance is dictated by the material of the cell, its quality and purity, the type, quantity, size and distribution of defects, as well as surface treatments, deposited layers and contacts. A synchrotron offers unique opportunities for a variety of complementary X-ray techniques, given the brilliance, spectrum, energy tunability and potential for (sub-) micron-sized beams. Material properties are revealed within in the bulk and at surfaces and interfaces. X-ray Diffraction Imaging (X-ray Topography), Rocking Curve Imaging and Section Topography reveal defects such as dislocations, inclusions, misorientations and strain in the bulk and at surfaces. Simultaneous measurement of micro-X-Ray Fluorescence (μ-XRF) and micro-X-ray Beam Induced Current (μ-XBIC) gives direct correlation between impurities and PV performance. Together with techniques such as microscopy and Light Beam Induced Current (LBIC) measurements, the correlation between structural properties and photovoltaic performance can be deduced, as well as the relative influence of parameters such as defect type, size, spatial distribution and density (e.g [1]). Measurements may be applied at different stages of solar cell processing in order to follow the evolution of the material and its properties through the manufacturing process. Various grades of silicon are under study, including electronic and metallurgical grades in mono-crystalline, multi-crystalline and mono-like forms. This paper aims to introduce synchrotron imaging to non-specialists, giving example results on selected solar photovoltaic silicon samples.

  13. Hard X-ray Microscopy with sub 30 nm Spatial Resolution

    International Nuclear Information System (INIS)

    Tang, M.-T.; Song, Y.-F.; Yin, G.-C.; Chen, J.-H.; Chen, Y.-M.; Liang, Keng S.; Chen, F.-R.; Duewer, F.; Yun Wenbing

    2007-01-01

    A transmission X-ray microscope (TXM) has been installed at the BL01B beamline at National Synchrotron Radiation Research Center in Taiwan. This state-of-the-art TXM operational in a range 8-11 keV provides 2D images and 3D tomography with spatial resolution 60 nm, and with the Zernike-phase contrast mode for imaging light materials such as biological specimens. A spatial resolution of the TXM better than 30 nm, apparently the best result in hard X-ray microscopy, has been achieved by employing the third diffraction order of the objective zone plate. The TXM has been applied in diverse research fields, including analysis of failure mechanisms in microelectronic devices, tomographic structures of naturally grown photonic specimens, and the internal structure of fault zone gouges from an earthquake core. Here we discuss the scope and prospects of the project, and the progress of the TXM in NSRRC

  14. Development of a Wolter Optic X-ray Imager on Z

    Science.gov (United States)

    Fein, Jeffrey R.; Ampleford, David J.; Vogel, Julia K.; Kozioziemski, Bernie; Walton, Christopher C.; Wu, Ming; Ayers, Jay; Ball, Chris J.; Bourdon, Chris J.; Maurer, Andrew; Pivovaroff, Mike; Ramsey, Brian; Romaine, Suzanne

    2017-10-01

    A Wolter optic x-ray imager is being developed for the Z Machine to study the dynamics of warm x-ray sources with energies above 10 keV. The optic is adapted from observational astronomy and uses multilayer-coated, hyperbolic and parabolic x-ray mirrors to form a 2D image with predicted 100- μm resolution over a 5x5-mm field of view. The imager is expected to have several advantages over a simple pinhole camera. In particular, it can form quasi mono-energetic images due to the inherent band-pass nature of the x-ray mirrors from Bragg diffraction. As well, its larger collection solid angle can lead to an overall increase in efficiency for the x-rays in the desirable energy band. We present the design of the imaging system, which is initially optimized to view Mo K-alpha x-rays (17.5 keV). In addition, we will present preliminary measurements of the point-spread function as well as the spectral sensitivity of the instrument. Sandia National Laboratories is a multimission laboratory managed and operated by NTESS, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. DOE's NNSA under contract DE-NA-0003525.

  15. Multiframe, Single Line-of-Sight X-Ray Imager for Burning Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Kevin L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-01-28

    The purpose of this LDRD project was to demonstrate high spatial and temporal resolution x-ray imaging using optical detectors, and in particular the VISAR and OHRV diagnostics on the OMEGA laser. The x-ray source being imaged was a backlighter capsule being imploded by 39 beams of the OMEGA laser. In particular this approach utilized a semiconductor with the side facing the backlighter capsule coated with a thin aluminum layer to allow x rays to pass through the metal layer and then get absorbed in the semiconductor. The other side of the semiconductor was AR coated to allow the VISAR or OHRV probe beam to sample the phase change of the semiconductor as the x rays were absorbed in the semiconductor. This technique is capable of acquiring sub-picosecond 2-D or 1-D x-ray images, detector spatial resolution of better than 10 um and the ability to operate in a high neutron flux environment expected on ignition shots with burning plasmas. In addition to demonstrating this technique on the OMEGA laser, several designs were made to improve the phase sensitivity, temporal resolution and number of frames over the existing diagnostics currently implemented on the OMEGA laser. These designs included both 2-d imaging diagnostics as well as improved 1-D imaging diagnostics which were streaked in time.

  16. Rapid, low dose X-ray diffractive imaging of the malaria parasite Plasmodium falciparum

    International Nuclear Information System (INIS)

    Jones, Michael W.M.; Dearnley, Megan K.; Riessen, Grant A. van; Abbey, Brian; Putkunz, Corey T.; Junker, Mark D.; Vine, David J.; McNulty, Ian; Nugent, Keith A.; Peele, Andrew G.; Tilley, Leann

    2014-01-01

    Phase-diverse X-ray coherent diffractive imaging (CDI) provides a route to high sensitivity and spatial resolution with moderate radiation dose. It also provides a robust solution to the well-known phase-problem, making on-line image reconstruction feasible. Here we apply phase-diverse CDI to a cellular sample, obtaining images of an erythrocyte infected by the sexual stage of the malaria parasite, Plasmodium falciparum, with a radiation dose significantly lower than the lowest dose previously reported for cellular imaging using CDI. The high sensitivity and resolution allow key biological features to be identified within intact cells, providing complementary information to optical and electron microscopy. This high throughput method could be used for fast tomographic imaging, or to generate multiple replicates in two-dimensions of hydrated biological systems without freezing or fixing. This work demonstrates that phase-diverse CDI is a valuable complementary imaging method for the biological sciences and ready for immediate application. - Highlights: • Phase-diverse coherent X-ray diffraction microscopy provides high-resolution and high-contrast images of intact biological samples. • Rapid nanoscale resolution imaging is demonstrated at orders of magnitude lower dose than previously possible. • Phase-diverse coherent X-ray diffraction microscopy is a robust technique for rapid, quantitative, and correlative X-ray phase imaging

  17. Rapid, low dose X-ray diffractive imaging of the malaria parasite Plasmodium falciparum

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Michael W.M., E-mail: michael.jones@latrobe.edu.au [ARC Centre of Excellence for Coherent X-Ray Science, Department of Physics, La Trobe University, Victoria 3086 (Australia); Dearnley, Megan K. [ARC Centre of Excellence for Coherent X-Ray Science, Department of Biochemistry and Molecular Biology, Bio21 Institute, The University of Melbourne, Victoria 3010 (Australia); Riessen, Grant A. van [ARC Centre of Excellence for Coherent X-Ray Science, Department of Physics, La Trobe University, Victoria 3086 (Australia); Abbey, Brian [ARC Centre of Excellence for Coherent X-Ray Science, Department of Physics, La Trobe University, Victoria 3086 (Australia); Melbourne Centre for Nanofabrication, Victoria 3168 (Australia); Putkunz, Corey T. [ARC Centre of Excellence for Coherent X-Ray Science, School of Physics, The University of Melbourne, Victoria 3010 (Australia); Junker, Mark D. [ARC Centre of Excellence for Coherent X-Ray Science, Department of Physics, La Trobe University, Victoria 3086 (Australia); Vine, David J. [Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States); McNulty, Ian [Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States); Centre for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Nugent, Keith A. [ARC Centre of Excellence for Coherent X-Ray Science, Department of Physics, La Trobe University, Victoria 3086 (Australia); Peele, Andrew G. [ARC Centre of Excellence for Coherent X-Ray Science, Department of Physics, La Trobe University, Victoria 3086 (Australia); Australian Synchrotron, 800 Blackburn Road, Clayton 3168 (Australia); Tilley, Leann [ARC Centre of Excellence for Coherent X-Ray Science, Department of Biochemistry and Molecular Biology, Bio21 Institute, The University of Melbourne, Victoria 3010 (Australia)

    2014-08-01

    Phase-diverse X-ray coherent diffractive imaging (CDI) provides a route to high sensitivity and spatial resolution with moderate radiation dose. It also provides a robust solution to the well-known phase-problem, making on-line image reconstruction feasible. Here we apply phase-diverse CDI to a cellular sample, obtaining images of an erythrocyte infected by the sexual stage of the malaria parasite, Plasmodium falciparum, with a radiation dose significantly lower than the lowest dose previously reported for cellular imaging using CDI. The high sensitivity and resolution allow key biological features to be identified within intact cells, providing complementary information to optical and electron microscopy. This high throughput method could be used for fast tomographic imaging, or to generate multiple replicates in two-dimensions of hydrated biological systems without freezing or fixing. This work demonstrates that phase-diverse CDI is a valuable complementary imaging method for the biological sciences and ready for immediate application. - Highlights: • Phase-diverse coherent X-ray diffraction microscopy provides high-resolution and high-contrast images of intact biological samples. • Rapid nanoscale resolution imaging is demonstrated at orders of magnitude lower dose than previously possible. • Phase-diverse coherent X-ray diffraction microscopy is a robust technique for rapid, quantitative, and correlative X-ray phase imaging.

  18. X-ray CT core imaging of Oman Drilling Project on D/V CHIKYU

    Science.gov (United States)

    Michibayashi, K.; Okazaki, K.; Leong, J. A. M.; Kelemen, P. B.; Johnson, K. T. M.; Greenberger, R. N.; Manning, C. E.; Harris, M.; de Obeso, J. C.; Abe, N.; Hatakeyama, K.; Ildefonse, B.; Takazawa, E.; Teagle, D. A. H.; Coggon, J. A.

    2017-12-01

    We obtained X-ray computed tomography (X-ray CT) images for all cores (GT1A, GT2A, GT3A and BT1A) in Oman Drilling Project Phase 1 (OmanDP cores), since X-ray CT scanning is a routine measurement of the IODP measurement plan onboard Chikyu, which enables the non-destructive observation of the internal structure of core samples. X-ray CT images provide information about chemical compositions and densities of the cores and is useful for assessing sample locations and the quality of the whole-round samples. The X-ray CT scanner (Discovery CT 750HD, GE Medical Systems) on Chikyu scans and reconstructs the image of a 1.4 m section in 10 minutes and produces a series of scan images, each 0.625 mm thick. The X-ray tube (as an X-ray source) and the X-ray detector are installed inside of the gantry at an opposing position to each other. The core sample is scanned in the gantry with the scanning rate of 20 mm/sec. The distribution of attenuation values mapped to an individual slice comprises the raw data that are used for subsequent image processing. Successive two-dimensional (2-D) slices of 512 x 512 pixels yield a representation of attenuation values in three-dimensional (3-D) voxels of 512 x 512 by 1600 in length. Data generated for each core consist of core-axis-normal planes (XY planes) of X-ray attenuation values with dimensions of 512 × 512 pixels in 9 cm × 9 cm cross-section, meaning at the dimensions of a core section, the resolution is 0.176 mm/pixel. X-ray intensity varies as a function of X-ray path length and the linear attenuation coefficient (LAC) of the target material is a function of the chemical composition and density of the target material. The basic measure of attenuation, or radiodensity, is the CT number given in Hounsfield units (HU). CT numbers of air and water are -1000 and 0, respectively. Our preliminary results show that CT numbers of OmanDP cores are well correlated to gamma ray attenuation density (GRA density) as a function of chemical

  19. The Imaging X-Ray Polarimetry Explorer (IXPE)

    Science.gov (United States)

    Weisskopf, Martin C.; Ramsey, Brian; O’Dell, Stephen; Tennant, Allyn; Elsner, Ronald; Soffita, Paolo; Bellazzini, Ronaldo; Costa, Enrico; Kolodziejczak, Jeffery; Kaspi, Victoria; hide

    2016-01-01

    The Imaging X-ray Polarimetry Explorer (IXPE) is an exciting international collaboration for a scientific mission that dramatically brings together the unique talents of the partners to expand observation space by simultaneously adding polarization measurements to the array of source properties currently measured (energy, time, and location). IXPE uniquely brings to the table polarimetric imaging. IXPE will thus open new dimensions for understanding how X-ray emission is produced in astrophysical objects, especially systems under extreme physical conditions-such as neutron stars and black holes. Polarization singularly probes physical anisotropies-ordered magnetic fields, aspheric matter distributions, or general relativistic coupling to black-hole spin-that are not otherwise measurable. Hence, IXPE complements all other investigations in high-energy astrophysics by adding important and relatively unexplored information to the parameter space for studying cosmic X-ray sources and processes, as well as for using extreme astrophysical environments as laboratories for fundamental physics.

  20. Characterization of LiF-based soft X-ray imaging detectors by confocal fluorescence microscopy

    International Nuclear Information System (INIS)

    Bonfigli, F; Gaudio, P; Lupelli, I; Nichelatti, E; Richetta, M; Vincenti, M A; Montereali, R M

    2010-01-01

    X-ray microscopy represents a powerful tool to obtain images of samples with very high spatial resolution. The main limitation of this technique is represented by the poor spatial resolution of standard imaging detectors. We proposed an innovative high-performance X-ray imaging detector based on the visible photoluminescence of colour centres in lithium fluoride. In this work, a confocal microscope in fluorescence mode was used to characterize LiF-based imaging detectors measuring CC integrated visible fluorescence signals of LiF crystals and films (grown on several kinds of substrates) irradiated by soft X-rays produced by a laser plasma source in different exposure conditions. The results are compared with the CC photoluminescence spectra measured on the same samples and discussed.

  1. The display of X-ray images

    International Nuclear Information System (INIS)

    1974-01-01

    In order to decrease the radiation doses incurred by radiological investigation of patients, a method is developed to fix an image on a screen in a thermoluminescent phosphor and subsequently heating that phosphor by scanning the screen with a laser

  2. X-ray imaging of JET. A design study for a streak camera application

    International Nuclear Information System (INIS)

    Bateman, J.E.; Hobby, M.G.

    1980-03-01

    A single dimensional imaging system is proposed which will image a strip of the JET plasma up to 320 times per shot with a time resolution of better than 50 μs using the bremsstrahlung X-rays. The images are obtained by means of a pinhole camera followed by an X-ray image intensifier system the output of which is in turn digitised by a photodiode array. The information is stored digitally in a fast memory and is immediately available for display or analysis. (author)

  3. Diamond x-ray optics: Transparent, resilient, high-resolution, and wavefront preserving

    International Nuclear Information System (INIS)

    Shvyd’ko, Yuri; Blank, Vladimir; Terentyev, Sergey

    2017-01-01

    Diamond features a unique combination of outstanding physical properties perfect for numerous x-ray optics applications, where traditional materials such as silicon fail to perform. In the last two decades, impressive progress has been achieved in synthesizing diamond with high crystalline perfection, in manufacturing efficient, resilient, high-resolution, wavefront-preserving diamond optical components, and in implementing them in cutting-edge x-ray instruments. Diamond optics are essential for tailoring x-rays to the most challenging needs of x-ray research. Furthermore, they are becoming vital for the generation of fully coherent hard x-rays by seeded x-ray free-electron lasers. In this article, we review progress in manufacturing flawless diamond crystal components and their applications in diverse x-ray optical devices, such as x-ray monochromators, beam splitters, high-reflectance backscattering mirrors, lenses, phase plates, diffraction gratings, bent-crystal spectrographs, and windows.

  4. Soft X-ray imaging with axisymmetry microscope and electronic readout

    International Nuclear Information System (INIS)

    Sauneuf, A.; Cavailler, C.; Henry, Ph.; Launspach, J.; Mascureau, J. de; Rostaing, M.

    1984-11-01

    An axisymmetric microscope with 10 X magnification has been constructed; its resolution has been measured using severals grids, backlighted by an X-ray source and found to be near 25 μm. So it could be used to make images of laser driven plasmas in the soft X-ray region. In order to see rapidly those images we have associated it with a new detector. It is a small image converter tube with a soft X-ray photocathode and a P20 phosphor deposited on an optic fiber plate. The electronic image appearing on the screen is read by a CCD working in the spectral range. An electronic image readout chain, which is identical to those we use with streak cameras, then processes automatically and immediatly the images given by the microscope

  5. Applications of 'edge-on' illuminated porous plate detectors for diagnostic X-ray imaging

    CERN Document Server

    Shikhaliev, P M

    2002-01-01

    Scanning X-ray imaging systems for non-invasive diagnostics have several advantages over conventional imaging systems using area detectors. They significantly reduce the detected scatter radiation, cover large areas and potentially provide high spatial resolution. Applications of one-dimensional gaseous detectors and 'edge-on' illuminated silicon strip detectors for scanning imaging systems are currently under intensive investigation. The purpose of this work is to investigate 'edge-on' illuminated Porous Plate (PP) detectors for applications in diagnostic X-ray imaging. MicroChannel Plate (MCP), which is a common type of PP, has previously been investigated as a detector in surface-on illumination mode for medical X-ray imaging. However, its detection efficiency was too low for medical imaging applications. In the present study, the PP are used in the 'edge-on' illumination mode. Furthermore, the structural parameters of different PP types are optimized to improve the detection efficiency in the diagnostic X...

  6. Application of Image Texture Analysis for Evaluation of X-Ray Images of Fungal-Infected Maize Kernels

    DEFF Research Database (Denmark)

    Orina, Irene; Manley, Marena; Kucheryavskiy, Sergey V.

    2018-01-01

    The feasibility of image texture analysis to evaluate X-ray images of fungal-infected maize kernels was investigated. X-ray images of maize kernels infected with Fusarium verticillioides and control kernels were acquired using high-resolution X-ray micro-computed tomography. After image acquisition...... developed using partial least squares discriminant analysis (PLS-DA), and accuracies of 67 and 73% were achieved using first-order statistical features and GLCM extracted features, respectively. This work provides information on the possible application of image texture as method for analysing X-ray images......., homogeneity and contrast) were extracted from the side, front and top views of each kernel and used as inputs for principal component analysis (PCA). The first-order statistical image features gave a better separation of the control from infected kernels on day 8 post-inoculation. Classification models were...

  7. X-ray image amplifying tube

    International Nuclear Information System (INIS)

    1977-01-01

    The photo electrons from the picture on the fluorescent input screen are amplified by an electron optical system and produce an intensified image on the output screen. This can be photographed and shown on a TV screen. The effects of stray magnetic fields are reduced by covering the input screen with a grating made of strips of ferromagnetic material such as μ metal. (T.S.E.T.)

  8. Design of a prototype tri-electrode ion-chamber for megavoltage X-ray imaging

    International Nuclear Information System (INIS)

    Samant, Sanjiv S.; Gopal, Arun; Jain, Jinesh; Xia Junyi; DiBianca, Frank A.

    2007-01-01

    High-energy (megavoltage) X-ray imaging is widely used in industry (e.g., aerospace, construction, material sciences) as well as in health care (radiation therapy). One of the fundamental problems with megavoltage imaging is poor contrast and spatial resolution in the detected images due to the dominance of Compton scattering at megavoltage X-ray energies. Therefore, although megavoltage X-rays can be used to image highly attenuating objects that cannot be imaged at kilovoltage energies, the former does not provide the high image quality that is associated with the latter. A high contrast and spatial resolution detector for high-energy X-ray fields called the kinestatic charge detector (KCD) is presented here. The KCD is a tri-electrode ion-chamber based on highly pressurized noble gas. The KCD operates in conjunction with a strip-collimated X-ray beam (for high scatter rejection) to scan across the imaging field. Its thick detector design and unique operating principle provides enhanced charge signal integration for high quality imaging (quantum efficiency ∼50%) despite the unfavorable implications of high-energy X-ray interactions on image quality. The proposed design for a large-field prototype KCD includes a cylindrical pressure chamber along with 576 signal-collecting electrodes capable of resolving at 2 mm -1 . The collecting electrodes are routed out of the chamber through the flat end-cap, thereby optimizing the mechanical strength of the chamber. This article highlights the simplified design of the chamber using minimal components for simple assembly. In addition, fundamental imaging measurements and estimates of ion recombination that were performed on a proof-of-principle test chamber are presented. The imaging performance of the prototype KCD was found to be an order-of-magnitude greater than commercial phosphor screen based flat-panel systems, demonstrating the potential for high-quality megavoltage imaging for a variety of industrial applications

  9. Diffraction enhanced X-ray imaging of mammals crystalline lens

    International Nuclear Information System (INIS)

    Antunes, A.; Hoennicke, M.G.; Safatle, A.M.V.; Cusatis, C.; Moraes Barros, P.S.; Morelhao, S.L.

    2005-01-01

    Crystalline lenses are transparent biological materials where the organization of the lens fibers can also be affected by changes at molecular level, and therefore the structure and morphology of the tissue can be correlated to the loss of transparency of the lens. In this work, internal structure of mammal lenses regarding the long-range ordering of the fibers are investigated by diffraction enhanced X-ray imaging (DEI) radiography. Moreover, DEI and absorption X-ray synchrotron radiographs for healthy and cataractous crystalline lenses are compared. Significant differences in healthy and cataractous crystalline lenses are observed

  10. Gas microstrip detectors for X-ray tomographic flow imaging

    CERN Document Server

    Key, M J; Luggar, R D; Kundu, A

    2003-01-01

    A investigation into the suitability of gas microstrip detector technology for a high-speed industrial X-ray tomography system is reported. X-ray energies in the region 20-30 keV are well suited to the application, which involves imaging two-dimensional slices through gas/liquid multiphase pipeline flows for quantitative component fraction measurement. Stable operation over a period representing several hundred individual tomographic scans at gas gains of 500 is demonstrated using a Penning gas mixture of krypton/propylene.

  11. Image quality of medical X-ray systems

    International Nuclear Information System (INIS)

    Hoen, P.J. 't.

    1980-01-01

    The quality of images made by medical X-ray systems can only be properly described if the visual system is also taken into account. In this thesis, the visual threshold contrast of edges, bars and disks has been chosen as the criterion. Since these objects resemble medical objects like tumour-mass outlines, blood vessels and micro-calcifications, a correlation with X-ray practice is possible. Only the conventional X-ray systems are considered, but a brief analysis of computerized tomography is given. Considerable attention is paid to unsharpness and the minimization of its influence on the threshold contrast, to the influence of the noise on the threshold contrast, and to the contrast formation as such. The consequences for the dose administered to the patient are also briefly analysed. (Auth.)

  12. Microchannel plates as detectors and amplifiers of x-ray images

    International Nuclear Information System (INIS)

    Wiedwald, J.D.

    1992-08-01

    Two decades of development driven largely by military night vision applications has led to the availability of a wide selection of microchannel plates for use by the scientific community. Microchannel plates (MCPs) are electron multipliers which retain a high degree of spatial resolution making it possible to amplify electron images by factors of 1,000 or more. Plates having 40 mm diameter and intrinsic spatial resolution of 8 μm are readily available. By coating the front surface of a microchannel plate with an x-ray sensitive photocathode material, x-ray images can be detected and amplified. While the detective quantum efficiency is relatively low, the low noise of the MCP (including the ability to construct images by single photon detection) and its high dynamic range make it suitable for some x-ray microscopy applications. The principles of MCP operation and typical performance are discussed. Examples of related applications and commercial capabilities are also presented

  13. Atomic force microscopy employed as the final imaging stage for soft x-ray contact microscopy

    International Nuclear Information System (INIS)

    Cotton, R.A.; Stead, A.D.; Ford, T.W.; Fletcher, J.H.

    1993-01-01

    Soft X-ray contact microscopy (SXCM) enables a high resolution image of a living biological specimen to be recorded in an X-ray sensitive photoresist at unity magnification. Until recently scanning electron microscopes (SEM) have been employed to obtain the final magnified image. Although this has been successful in producing many high resolution images, this method of viewing the resist has several disadvantages. Firstly, a metallic coating has to be applied to the resist surface to provide electrical conductivity, rendering further development of the resist impossible. Also, electron beam damage to the resist surface can occur, in addition to poor resolution and image quality. Atomic force microscopy (AFM) allows uncoated resists to be imaged at a superior resolution, without damage to the surface. The use of AFM is seen as a major advancement in SXCM. The advantages and disadvantages of the two technologies are discussed, with illustrations from recent studies of a wide variety of hydrated biological specimens imaged using SXCM

  14. Evaluation of In-Vacuum Imaging Plate Detector for X-Ray Diffraction Microscopy

    International Nuclear Information System (INIS)

    Nishino, Yoshinori; Takahashi, Yukio; Yamamoto, Masaki; Ishikawa, Tetsuya

    2007-01-01

    We performed evaluation tests of a newly developed in-vacuum imaging plate (IP) detector for x-ray diffraction microscopy. IP detectors have advantages over direct x-ray detection charge-coupled device (CCD) detectors, which have been commonly used in x-ray diffraction microscopy experiments, in the capabilities for a high photon count and for a wide area. The detector system contains two IPs to make measurement efficient by recording data with the one while reading or erasing the other. We compared speckled diffraction patterns of single particles taken with the IP and a direct x-ray detection CCD. The IP was inferior to the CCD in spatial resolution and in signal-to-noise ratio at a low photon count

  15. The hard x-ray imager onboard IXO

    Science.gov (United States)

    Nakazawa, Kazuhiro; Takahashi, Tadayuki; Limousin, Olivier; Kokubun, Motohide; Watanabe, Shin; Laurent, Philippe; Arnaud, Monique; Tajima, Hiroyasu

    2010-07-01

    The Hard X-ray Imager (HXI) is one of the instruments onboard International X-ray Observatory (IXO), to be launched into orbit in 2020s. It covers the energy band of 10-40 keV, providing imaging-spectroscopy with a field of view of 8 x 8 arcmin2. The HXI is attached beneath the Wide Field Imager (WFI) covering 0.1-15 keV. Combined with the super-mirror coating on the mirror assembly, this configuration provides observation of X-ray source in wide energy band (0.1-40.0 keV) simultaneously, which is especially important for varying sources. The HXI sensor part consists of the semiconductor imaging spectrometer, using Si in the medium energy detector and CdTe in the high energy detector as its material, and an active shield covering its back to reduce background in orbit. The HXI technology is based on those of the Japanese-lead new generation X-ray observatory ASTRO-H, and partly from those developed for Simbol-X. Therefore, the technological development is in good progress. In the IXO mission, HXI will provide a major assets to identify the nature of the object by penetrating into thick absorbing materials and determined the inherent spectral shape in the energy band well above the structure around Fe-K lines and edges.

  16. A gas pixel detector for X-ray imaging

    International Nuclear Information System (INIS)

    Bateman, J.E.; Connolly, J.F.

    1991-11-01

    A simple, robust form of gas pixel detector is discussed which is based on the use of electronic connector pins as the gain elements. With a rate capability of >10 5 counts/s per pin, an X-ray imaging detector system capable of counting at global rates of the order of 10 10 counts/s is foreseen. (author)

  17. Phase contrast imaging using a micro focus x-ray source

    Science.gov (United States)

    Zhou, Wei; Majidi, Keivan; Brankov, Jovan G.

    2014-09-01

    Phase contrast x-ray imaging, a new technique to increase the imaging contrast for the tissues with close attenuation coefficients, has been studied since mid 1990s. This technique reveals the possibility to show the clear details of the soft tissues and tumors in small scale resolution. A compact and low cost phase contrast imaging system using a conventional x-ray source is described in this paper. Using the conventional x-ray source is of great importance, because it provides the possibility to use the method in hospitals and clinical offices. Simple materials and components are used in the setup to keep the cost in a reasonable and affordable range.Tungsten Kα1 line with the photon energy 59.3 keV was used for imaging. Some of the system design details are discussed. The method that was used to stabilize the system is introduced. A chicken thigh bone tissue sample was used for imaging followed by the image quality, image acquisition time and the potential clinical application discussion. High energy x-ray beam can be used in phase contrast imaging. Therefore the radiation dose to the patients can be greatly decreased compared to the traditional x-ray radiography.

  18. X-ray imaging using digital cameras

    Science.gov (United States)

    Winch, Nicola M.; Edgar, Andrew

    2012-03-01

    The possibility of using the combination of a computed radiography (storage phosphor) cassette and a semiprofessional grade digital camera for medical or dental radiography is investigated. We compare the performance of (i) a Canon 5D Mk II single lens reflex camera with f1.4 lens and full-frame CMOS array sensor and (ii) a cooled CCD-based camera with a 1/3 frame sensor and the same lens system. Both systems are tested with 240 x 180 mm cassettes which are based on either powdered europium-doped barium fluoride bromide or needle structure europium-doped cesium bromide. The modulation transfer function for both systems has been determined and falls to a value of 0.2 at around 2 lp/mm, and is limited by light scattering of the emitted light from the storage phosphor rather than the optics or sensor pixelation. The modulation transfer function for the CsBr:Eu2+ plate is bimodal, with a high frequency wing which is attributed to the light-guiding behaviour of the needle structure. The detective quantum efficiency has been determined using a radioisotope source and is comparatively low at 0.017 for the CMOS camera and 0.006 for the CCD camera, attributed to the poor light harvesting by the lens. The primary advantages of the method are portability, robustness, digital imaging and low cost; the limitations are the low detective quantum efficiency and hence signal-to-noise ratio for medical doses, and restricted range of plate sizes. Representative images taken with medical doses are shown and illustrate the potential use for portable basic radiography.

  19. X-ray photon-in/photon-out methods for chemical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Marcus, Matthew A.

    2010-03-24

    Most interesting materials in nature are heterogeneous, so it is useful to have analytical techniques with spatial resolution sufficient to resolve these heterogeneities.This article presents the basics of X-ray photon-in/photon-out chemical imaging. This family of methods allows one to derive images reflectingthe chemical state of a given element in a complex sample, at micron or deep sub-micron scale. X-ray chemical imaging is relatively non-destructiveand element-selective, and requires minimal sample preparation. The article presents the basic concepts and some considerations of data takingand data analysis, along with some examples.

  20. X-ray diffraction and imaging with a coherent beam: application to X-ray optical elements and to crystals exhibiting phase inhomogeneities

    International Nuclear Information System (INIS)

    Masiello, F.

    2011-05-01

    The exceptional properties of synchrotron light sources have been exploited in very different disciplines, from archaeology to chemistry, from material science to biology, from medicine to physics. Among these properties it is important to mention the high brilliance, continuum spectrum, high degree of polarization, time structure, small source size and divergence of the beam, the last resulting in a high transversal coherence of the produced radiation. This high transversal coherence of the synchrotron sources has permitted the development of new techniques, e.g. phase contrast imaging, X-ray photon correlation spectroscopy and coherent X-ray diffraction imaging (CXDI). This thesis work will consist essentially of three parts. In the first part it will be presented the work done as a member of the X-ray Optics Group of ESRF in the characterization of high quality diamond crystals foreseen as X-ray optical elements. The characterization has been done using different complementary X-ray techniques, such as high resolution diffraction, topography, grazing incidence diffraction, reflectivity and measurements of the coherence preservation using the Talbot effect. In the second part, I will show the result obtained in the study of the temperature behaviours of the domain in periodically poled ferroelectrics crystals. This type of measurements, based on Bragg-Fresnel diffraction, are possible only thanks to the high degree of coherence of the beam. In the third part, I will present the results obtained in the characterization of diamonds foreseen for applications other than X-ray optical elements. (author)

  1. Electronic roentgenographic images in presurgical X-ray diagnostics

    International Nuclear Information System (INIS)

    Haendle, J.; Hohmann, D.; Maass, W.; Siemens A.G., Erlangen

    1981-01-01

    An essential part of radiation exposure in surgery is due to devices and results from the required radiation time interval for continuous X-ray play-back up to the point at which all diagnostically relevant information can be retrieved from the screening image. With single-image storage and short exposure times as well as instant image play-back, this superfluous i.e. redundant radiation can be avoided. The electronic X-ray image is realized by means of a laboratory prototype and evaluated in hospitals. There is a report on clinical results and new technical developments. Remarkable are: the high radiation reduction that could be obtained, the problem - free instant image technique, and especially the advantages of automated exposure in direct film settings. The positive results yield the basis for the product development. (orig./MG) [de

  2. Ultraprecision motion control technique for high-resolution x-ray instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Shu, D.; Toellner, T. S.; Alp, E. E.

    2000-07-17

    With the availability of third-generation hard x-ray synchrotron radiation sources, such as the Advanced Photon Source (APS) at Argonne National Laboratory, x-ray inelastic scattering and x-ray nuclear resonant scattering provide powerful means for investigating the vibrational dynamics of a variety of materials and condensed matter systems. Novel high-resolution hard x-ray optics with meV energy resolution requires a compact positioning mechanism with 20--50-nrad angular resolution and stability. In this paper, the authors technical approach to this design challenge is presented. Sensitivity and stability test results are also discussed.

  3. Development of a hardened X-ray imager for the Megajoule Laser radiative environment

    International Nuclear Information System (INIS)

    Rousseau, A.

    2014-01-01

    Thermonuclear fusion experiments are led on Megajoule class laser facility by imploding a capsule filled with Deuterium and Tritium. In this context, it is necessary to diagnose the core size and the shape of the compressed target in order to provide valuable information and identify reasons for failure. State of the art X-ray imaging diagnostics cannot realize measurements without being perturbed by the nuclear background. The diagnostic that has been designed in this thesis combine high spatial resolution X-ray imaging at high energy and radiation tolerance to nuclear background. We have first guaranteed, theoretically and experimentally, survivability of X ray multilayer coating to energetic neutrons irradiation. Consequently, we have design the X-ray imaging system in order to achieve 5 μm resolution in a spectral range up to 95 keV. The X-ray image has then been converted into visible light in order to be easily transferred through a hardened optical relay to a protected area where the optical analyser is set. This analyser, combining light amplifier and pixelised detector, has also been studied and a novel method has been developed to reduce nuclear related transient perturbations on the device. This by parts design associated with Monte-Carlo Simulation (GEANT4) and experimental campaign on FCI facility (OMEGA) led to a coherent diagnostic architecture which will sustain high level of nuclear perturbation. (author) [fr

  4. Imaging X-Ray Polarimetry Explorer (IXPE) Risk Management

    Science.gov (United States)

    Alexander, Cheryl; Deininger, William D.; Baggett, Randy; Primo, Attina; Bowen, Mike; Cowart, Chris; Del Monte, Ettore; Ingram, Lindsey; Kalinowski, William; Kelley, Anthony; hide

    2018-01-01

    The Imaging X-ray Polarimetry Explorer (IXPE) project is an international collaboration to build and fly a polarization sensitive X-ray observatory. The IXPE Observatory consists of the spacecraft and payload. The payload is composed of three X-ray telescopes, each consisting of a mirror module optical assembly and a polarization-sensitive X-ray detector assembly; a deployable boom maintains the focal length between the optical assemblies and the detectors. The goal of the IXPE Mission is to provide new information about the origins of cosmic X-rays and their interactions with matter and gravity as they travel through space. IXPE will do this by exploiting its unique capability to measure the polarization of X-rays emitted by cosmic sources. The collaboration for IXPE involves national and international partners during design, fabrication, assembly, integration, test, and operations. The full collaboration includes NASA Marshall Space Flight Center (MSFC), Ball Aerospace, the Italian Space Agency (ASI), the Italian Institute of Astrophysics and Space Planetology (IAPS)/Italian National Institute of Astrophysics (INAF), the Italian National Institute for Nuclear Physics (INFN), the University of Colorado (CU) Laboratory for Atmospheric and Space Physics (LASP), Stanford University, McGill University, and the Massachusetts Institute of Technology. The goal of this paper is to discuss risk management as it applies to the IXPE project. The full IXPE Team participates in risk management providing both unique challenges and advantages for project risk management. Risk management is being employed in all phases of the IXPE Project, but is particularly important during planning and initial execution-the current phase of the IXPE Project. The discussion will address IXPE risk strategies and responsibilities, along with the IXPE management process which includes risk identification, risk assessment, risk response, and risk monitoring, control, and reporting.

  5. Basic studies in X-ray radiography and imaging techniques

    International Nuclear Information System (INIS)

    Vaidya, Paresh R.

    2000-01-01

    The aim of this research was to study the basic characteristics related to a new branch of radiography viz. the micro-focal radiography. The most important among them was to find methods of measurement of focal spot size of these X-ray sources. It is important to accomplish this because the design of such units is specifically meant to produce very fine source size. To this end. first the process of radiography test was introduced. Among other things. various properties of an image and image forming systems (like PSF, LSF, MTF etc.) were introduced and explained. Methods used for microfocus measurement of focal spot size in conventional units were reviewed. It was shown how they are not suitable for microfocal tubes. Next the microfocus X-ray unit meant for the study was installed and commissioned. Features which are different from conventional X-ray units were observed more carefully. Data was collected and analyzed for various aspects. Procedure for focussing the electron beam while getting the feed back about beam diameter from the oscilloscope was established by experiments. In addition, influence of change in tube voltage and tube current on the focal spot size was studied. Relationship between tube current and target current vis-a-vis focus size was established. Radiation zone was determined. Focal spot size was qualitatively compared with that of a conventional X-ray unit by taking radiographs of different wire meshes at different magnifications by both the units

  6. X-ray volume imaging in bladder radiotherapy verification

    International Nuclear Information System (INIS)

    Henry, Ann M.; Stratford, Julia; McCarthy, Claire; Davies, Julie; Sykes, Jonathan R.; Amer, Ali; Marchant, Tom; Cowan, Richard; Wylie, James; Logue, John; Livsey, Jacqueline; Khoo, Vincent S.; Moore, Chris; Price, Pat

    2006-01-01

    Purpose: To assess the clinical utility of X-ray volume imaging (XVI) for verification of bladder radiotherapy and to quantify geometric error in bladder radiotherapy delivery. Methods and Materials: Twenty subjects undergoing conformal bladder radiotherapy were recruited. X-ray volume images and electronic portal images (EPIs) were acquired for the first 5 fractions and then once weekly. X-ray volume images were co-registered with the planning computed tomography scan and clinical target volume coverage assessed in three dimensions (3D). Interfraction bladder volume change was described by quantifying changes in bladder volume with time. Bony setup errors were compared from both XVI and EPI. Results: The bladder boundary was clearly visible on coronal XVI views in nearly all images, allowing accurate 3D treatment verification. In 93.5% of imaged fractions, the clinical target volume was within the planning target volume. Most subjects displayed consistent bladder volumes, but 25% displayed changes that could be predicted from the first three XVIs. Bony setup errors were similar whether calculated from XVI or EPI. Conclusions: Coronal XVI can be used to verify 3D bladder radiotherapy delivery. Image-guided interventions to reduce geographic miss and normal tissue toxicity are feasible with this technology

  7. Operation of a separated-type x-ray interferometer for phase-contrast x-ray imaging

    Science.gov (United States)

    Yoneyama, Akio; Momose, Atsushi; Seya, Eiichi; Hirano, Keiichi; Takeda, Tohoru; Itai, Yuji

    1999-12-01

    Aiming at large-area phase-contrast x-ray imaging, a separated-type x-ray interferometer system was designed and developed to produce 25×20 mm interference patterns. The skew-symmetric optical system was adopted because of the feasibility of alignment. The rotation between the separated crystal blocks was controlled within a drift of 0.06 nrad using a feedback positioning system. This interferometer generated a 25×15 mm interference pattern with 0.07 nm synchrotron x-rays. A slice of a rabbit's kidney was observed, and its tubular structure could be revealed in a measured phase map.

  8. Toward Rapid Unattended X-ray Tomography of Large Planar Samples at 50-nm Resolution

    International Nuclear Information System (INIS)

    Rudati, J.; Tkachuk, A.; Gelb, J.; Hsu, G.; Feng, Y.; Pastrick, R.; Lyon, A.; Trapp, D.; Beetz, T.; Chen, S.; Hornberger, B.; Seshadri, S.; Kamath, S.; Zeng, X.; Feser, M.; Yun, W.; Pianetta, P.; Andrews, J.; Brennan, S.; Chu, Y. S.

    2009-01-01

    X-ray tomography at sub-50 nm resolution of small areas (∼15 μmx15 μm) are routinely performed with both laboratory and synchrotron sources. Optics and detectors for laboratory systems have been optimized to approach the theoretical efficiency limit. Limited by the availability of relatively low-brightness laboratory X-ray sources, exposure times for 3-D data sets at 50 nm resolution are still many hours up to a full day. However, for bright synchrotron sources, the use of these optimized imaging systems results in extremely short exposure times, approaching live-camera speeds at the Advanced Photon Source at Argonne National Laboratory near Chicago in the US These speeds make it possible to acquire a full tomographic dataset at 50 nm resolution in less than a minute of true X-ray exposure time. However, limits in the control and positioning system lead to large overhead that results in typical exposure times of ∼15 min currently.We present our work on the reduction and elimination of system overhead and toward complete automation of the data acquisition process. The enhancements underway are primarily to boost the scanning rate, sample positioning speed, and illumination homogeneity to performance levels necessary for unattended tomography of large areas (many mm 2 in size). We present first results on this ongoing project.

  9. The Focusing Optics X-ray Solar Imager (FOXSI) SMEX Mission

    Science.gov (United States)

    Christe, S.; Shih, A. Y.; Krucker, S.; Glesener, L.; Saint-Hilaire, P.; Caspi, A.; Allred, J. C.; Battaglia, M.; Chen, B.; Drake, J. F.; Gary, D. E.; Goetz, K.; Gburek, S.; Grefenstette, B.; Hannah, I. G.; Holman, G.; Hudson, H. S.; Inglis, A. R.; Ireland, J.; Ishikawa, S. N.; Klimchuk, J. A.; Kontar, E.; Kowalski, A. F.; Massone, A. M.; Piana, M.; Ramsey, B.; Schwartz, R.; Steslicki, M.; Turin, P.; Ryan, D.; Warmuth, A.; Veronig, A.; Vilmer, N.; White, S. M.; Woods, T. N.

    2017-12-01

    We present FOXSI (Focusing Optics X-ray Solar Imager), a Small Explorer (SMEX) Heliophysics mission that is currently undergoing a Phase A concept study. FOXSI will provide a revolutionary new perspective on energy release and particle acceleration on the Sun. FOXSI is a direct imaging X-ray spectrometer with higher dynamic range and better than 10x the sensitivity of previous instruments. Flown on a 3-axis-stabilized spacecraft in low-Earth orbit, FOXSI uses high-angular-resolution grazing-incidence focusing optics combined with state-of-the-art pixelated solid-state detectors to provide direct imaging of solar hard X-rays for the first time. FOXSI is composed of a pair of x-ray telescopes with a 14-meter focal length enabled by a deployable boom. Making use of a filter-wheel and high-rate-capable solid-state detectors, FOXSI will be able to observe the largest flares without saturation while still maintaining the sensitivity to detect x-ray emission from weak flares, escaping electrons, and hot active regions. This mission concept is made possible by past experience with similar instruments on two FOXSI sounding rocket flights, in 2012 and 2014, and on the HEROES balloon flight in 2013. FOXSI's hard X-ray imager has a field of view of 9 arcminutes and an angular resolution of better than 8 arcsec; it will cover the energy range from 3 up to 50-70 keV with a spectral resolution of better than 1 keV; and it will have sub-second temporal resolution.

  10. Trends in NOAA Solar X-ray Imager Performance

    Science.gov (United States)

    Hill, Steven M.; Darnell, John A.; Seaton, Daniel B.

    2016-05-01

    NOAA has provided operational soft X-ray imaging of the sun since the early 2000’s. After 15 years of observations by four different telescopes, it is appropriate to examine the data in terms of providing consistent context for scientific missions. In particular, this presentation examines over 7 million GOES Solar X-ray Imager (SXI) images for trends in performance parameters including dark current, response degradation, and inter-calibration. Because observations from the instrument have overlapped not only with each other, but also with research observations like Yohkoh SXT and Hinode XRT, relative performance comparisons can be made. The first GOES Solar X-ray Imager was launched in 2001 and entered operations in 2003. The current SXIs will remain in operations until approximately 2020, when a new series of Solar (extreme-)Ultraviolet Imagers (SUVIs) will replace them as the current satellites reach their end of life. In the sense that the SXIs are similar to Yokoh’s SXT and Hinode’s XRT, the SUVI instruments will be similar to SOHO’s EIT and SDO’s AIA. The move to narrowband EUV imagers will better support eventual operational estimation of plasma conditions. While NOAA’s principal use of these observations is real-time space weather forecasting, they will continue to provide a reliable context measurement for researchers for decades to come.

  11. Fast X-ray imaging of cavitating flows

    Energy Technology Data Exchange (ETDEWEB)

    Khlifa, Ilyass; Fuzier, Sylvie; Roussette, Olivier [Arts et Metiers ParisTech, Lille (France); Vabre, Alexandre [CEA Saclay, Gif-sur-Yvette (France); Hocevar, Marko [Faculty of Mechanical Engineering, University of Ljubljana, Ljubljana (Slovenia); Fezzaa, Kamel [Argonne National Laboratory, Advanced Photon Source, Lemont, IL (United States); Coutier-Delgosha, Olivier [Virginia Tech, Kevin T. Crofton Department of Aerospace and Ocean Engineering, Blacksburg, VA (United States)

    2017-11-15

    A new method based on ultra-fast X-ray imaging was developed in this work for the investigation of the dynamics and the structures of complex two-phase flows. In this paper, cavitation was created inside a millimetric 2D Venturi-type test section, while seeding particles were injected into the flow. Thanks to the phase-contrast enhancement technique provided by the APS (Advanced Photon Source) synchrotron beam, high definition X-ray images of the complex cavitating flows were obtained. These images contain valuable information about both the liquid and the gaseous phases. By means of image processing, the two phases were separated, and velocity fields of each phase were, therefore, calculated using image cross-correlations. The local vapour volume fractions were also obtained, thanks to the local intensity levels within the recorded images. These simultaneous measurements, provided by this new technique, afford more insight into the structure and the dynamic of two-phase flows as well as the interactions between them, and hence enable to improve our understanding of their behaviour. In the case of cavitating flows inside a Venturi-type test section, the X-ray measurements demonstrate, for the first time, the presence of significant slip velocities between the phases within sheet cavities for both steady and unsteady flow configurations. (orig.)

  12. Using x-ray computed tomography in hydrology: Systems, resolutions, and limitations

    DEFF Research Database (Denmark)

    Wildenschild, Dorthe; Hopmans, J.W.; Vaz, C.M.P.

    2002-01-01

    media, obtained with different scanning systems and sample sizes, to illustrate advantages and limitations of these various systems, including topics of spatial resolution and contrast. In addition, we present examples of our most recent three-dimensional high-resolution images, for which......A combination of advances in experimental techniques and mathematical analysis has made it possible to characterize phase distribution and pore geometry in porous media using non-destructive X-ray computed tomography (CT). We present qualitative and quantitative CT results for partially saturated...

  13. Imaging Local Polarization in Ferroelectric Thin Films by Coherent X-Ray Bragg Projection Ptychography

    Science.gov (United States)

    Hruszkewycz, S. O.; Highland, M. J.; Holt, M. V.; Kim, Dongjin; Folkman, C. M.; Thompson, Carol; Tripathi, A.; Stephenson, G. B.; Hong, Seungbum; Fuoss, P. H.

    2013-04-01

    We used x-ray Bragg projection ptychography (BPP) to map spatial variations of ferroelectric polarization in thin film PbTiO3, which exhibited a striped nanoscale domain pattern on a high-miscut (001) SrTiO3 substrate. By converting the reconstructed BPP phase image to picometer-scale ionic displacements in the polar unit cell, a quantitative polarization map was made that was consistent with other characterization. The spatial resolution of 5.7 nm demonstrated here establishes BPP as an important tool for nanoscale ferroelectric domain imaging, especially in complex environments accessible with hard x rays.

  14. A digital x-ray imaging MWPC detector system for precision absorptiometry

    International Nuclear Information System (INIS)

    Batemen, J.E.; Connolly, J.F.; Glasgow, W.

    1977-11-01

    An X-ray absorptiometric imaging system (based on a xenon-filled multiwire proportional counter) has been developed with high counting rate capability, good spatial resolution and linear mass response, aimed at permitting bone mass measurements to be made in the peripheral skeleton with precision approaching 1%. The system is described and preliminary results on test phantoms are presented. (author)

  15. The Imaging X-Ray Polarimetry Explorer (IXPE): Overview

    Science.gov (United States)

    O'Dell, Steve; Weisskopf, M.; Soffitta, P.; Baldini, L.; Bellazzini, R.; Costa, E.; Elsner, R.; Kaspi, V.; Kolodziejczak, J.; Latronico, L.; hide

    2017-01-01

    Mission background: Imaging x-ray polarimetry in 2–8 kiloelectronvolt band; NASA Astrophysics Small Explorer (SMEX) selected in 2017 January. Orbit: Pegasus-XL (airborne) launch in 2021, from Kwajalein; Equatorial circular orbit at greater than or approximately equal to 540 kilometers (620 kilometers, goal) altitude. Flight system: Spacecraft, payload structure, and integration by Ball Aerospace - Deployable payload boom from Orbital-ATK, under contract to Ball; X-ray Mirror Module Assemblies by NASA/MSFC; X-ray (polarization-sensitive) Instruments by IAPS/INAF (Istituto di Astrofisica e Planetologia Spaziali / Istituto Nazionale di Astrofisica) and INFN (Istituto Nazionale di Fisica Nucleare). Ground system: ASI (Agenzia Spaziale Italiana) Malindi ground station, with Singapore backup; Mission Operations Center at LASP (Laboratory for Atmospheric and Space Physics, University of Colorado); Science Operations Center at NASA/MSFC; Data archive at HEASARC (High Energy Astrophysics Science Archive Research Center), (NASA/GSFC), mirror at ASI Data Center. Science: Active galactic nuclei; Microquasars; Radio pulsars and pulsar wind nebulae; Supernova remnants; Magnetars; Accreting x-ray pulsars.

  16. Direct view panel type X-ray image intensifier tube

    International Nuclear Information System (INIS)

    Yang, S.-P.; Robbins, C.D.; Merrit, E.

    1977-01-01

    A panel shaped, proximity type, X-ray image intensifier tube for medical X-ray fluoroscopy use is described. It has all linear components and yet a high brightness gain, in excess of 4,000 cd-sec/m 2 -R, the tube being comprised of a rugged metallic tube envelope, an inwardly concave metallic input window, a directly viewable full size output display screen, and a scintillator-photocathode screen having a thickness of at least 200 microns for a high X-ray photon utilization ability as well as X-ray stopping power, the scintillator-photocathode screen being suspended on insulators within the envelope and in between the input window and the output screen. The scintillator-photocathode screen is spaced from the output screen by at least 8mm to allow the application of a high negative potential at the scintillator-photocathode screen with respect to the output screen for high gain with low field emission, since all of the remaining components within the tube envelope are at neutral potential with respect to the output display screen. (Auth.)

  17. 3D elemental sensitive imaging using transmission X-ray microscopy.

    Science.gov (United States)

    Liu, Yijin; Meirer, Florian; Wang, Junyue; Requena, Guillermo; Williams, Phillip; Nelson, Johanna; Mehta, Apurva; Andrews, Joy C; Pianetta, Piero

    2012-09-01

    Determination of the heterogeneous distribution of metals in alloy/battery/catalyst and biological materials is critical to fully characterize and/or evaluate the functionality of the materials. Using synchrotron-based transmission x-ray microscopy (TXM), it is now feasible to perform nanoscale-resolution imaging over a wide X-ray energy range covering the absorption edges of many elements; combining elemental sensitive imaging with determination of sample morphology. We present an efficient and reliable methodology to perform 3D elemental sensitive imaging with excellent sample penetration (tens of microns) using hard X-ray TXM. A sample of an Al-Si piston alloy is used to demonstrate the capability of the proposed method.

  18. X-ray image intensifier/television systems for digital skeletal radiography

    International Nuclear Information System (INIS)

    Rowlands, J.A.; Hynes, D.M.; Edmonds, E.W.; Porter, A.J.; Toth, B.J.

    1987-01-01

    The imaging criteria for skeletal radiography (high resolution and low noise) relevant to the use of x-ray image intensifier/TV digital systems are discussed. It is shown from the modulation transfer function (MTF), noise, and phantom evaluations that conventional x-ray image intensifiers in conjunction with a 1,000-line Plumbicon or Saticon TV camera are in most respects suitable for skeletal radiography. The optimum focal spot size depends on a trade-off with motion blurring through the x-ray exposure time and so is a function of the clinical problem. Since the skeletal system is readily immobilized, a 0.3-mm focal spot size is nearly optimum

  19. High-resolution accelerator alignment using x-ray optics

    Directory of Open Access Journals (Sweden)

    Bingxin Yang

    2006-03-01

    Full Text Available We propose a novel alignment technique utilizing the x-ray beam of an undulator in conjunction with pinholes and position-sensitive detectors for positioning components of the accelerator, undulator, and beam line in an x-ray free-electron laser. Two retractable pinholes at each end of the undulator define a stable and reproducible x-ray beam axis (XBA. Targets are precisely positioned on the XBA using a pinhole camera technique. Position-sensitive detectors responding to both x-ray and electron beams enable direct transfer of the position setting from the XBA to the electron beam. This system has the potential to deliver superior alignment accuracy (1–3   μm for target pinholes in the transverse directions over a long distance (200 m or longer. It can be used to define the beam axis of the electron-beam–based alignment, enabling high reproducibility of the latter. This x-ray–based concept should complement the electron-beam–based alignment and the existing survey methods to raise the alignment accuracy of long accelerators to an unprecedented level. Further improvement of the transverse accuracy using x-ray zone plates will be discussed. We also propose a concurrent measurement scheme during accelerator operation to allow real-time feedback for transverse position correction.

  20. X-ray beam splitting design for concurrent imaging at hard X-ray FELs and synchrotron facilities

    Czech Academy of Sciences Publication Activity Database

    Oberta, Peter; Mokso, R.

    2013-01-01

    Roč. 729, NOV (2013), s. 85-89 ISSN 0168-9002 R&D Projects: GA MPO FR-TI1/412 Institutional research plan: CEZ:AV0Z10100522 Keywords : diffractive-refractive optics * hard X-ray FEL * X-ray imaging Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.316, year: 2013 http://www.sciencedirect.com/science/article/pii/S0168900213009613

  1. Pollen structure visualization using high-resolution laboratory-based hard X-ray tomography.

    Science.gov (United States)

    Li, Qiong; Gluch, Jürgen; Krüger, Peter; Gall, Martin; Neinhuis, Christoph; Zschech, Ehrenfried

    2016-10-14

    A laboratory-based X-ray microscope is used to investigate the 3D structure of unstained whole pollen grains. For the first time, high-resolution laboratory-based hard X-ray microscopy is applied to study pollen grains. Based on the efficient acquisition of statistically relevant information-rich images using Zernike phase contrast, both surface- and internal structures of pine pollen - including exine, intine and cellular structures - are clearly visualized. The specific volumes of these structures are calculated from the tomographic data. The systematic three-dimensional study of pollen grains provides morphological and structural information about taxonomic characters that are essential in palynology. Such studies have a direct impact on disciplines such as forestry, agriculture, horticulture, plant breeding and biodiversity. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Novel Hybrid CMOS X-ray Detector Developments for Future Large Area and High Resolution X-ray Astronomy Missions

    Science.gov (United States)

    Falcone, Abe

    In the coming years, X-ray astronomy will require new soft X-ray detectors that can be read very quickly with low noise and can achieve small pixel sizes over a moderately large focal plane area. These requirements will be present for a variety of X-ray missions that will attempt to address science that was highly ranked by the 2010 Decadal Survey, including missions with science that overlaps with that of IXO and Athena, as well as other missions addressing science topics beyond those of IXO and Athena. An X-ray Surveyor mission was recently chosen by NASA for study by a Science & Technology Definition Team (STDT) so it can be considered as an option for an upcom-ing flagship mission. A mission such as this was endorsed by the NASA long term planning document entitled "Enduring Quests, Daring Visions," and a detailed description of one possible reali-zation of such a mission has been referred to as SMART-X, which was described in a recent NASA RFI response. This provides an example of a future mission concept with these requirements since it has high X-ray throughput and excellent spatial resolution. We propose to continue to modify current active pixel sensor designs, in particular the hybrid CMOS detectors that we have been working with for several years, and implement new in-pixel technologies that will allow us to achieve these ambitious and realistic requirements on a timeline that will make them available to upcoming X-ray missions. This proposal is a continuation of our program that has been work-ing on these developments for the past several years. The first 3 years of the program led to the development of a new circuit design for each pixel, which has now been shown to be suitable for a larger detector array. The proposed activity for the next four years will be to incorporate this pixel design into a new design of a full detector array (2k×2k pixels with digital output) and to fabricate this full-sized device so it can be thoroughly tested and

  3. First indirect x-ray imaging tests with an 88-mm diameter single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A. H. [Fermilab; Macrander, A. T. [Argonne

    2017-02-01

    Using the 1-BM-C beamline at the Advanced Photon Source (APS), we have performed the initial indirect x - ray imaging point-spread-function (PSF) test of a unique 88-mm diameter YAG:Ce single crystal of only 100 - micron thickness. The crystal was bonded to a fiber optic plat e (FOP) for mechanical support and to allow the option for FO coupling to a large format camera. This configuration resolution was compared to that of self - supported 25-mm diameter crystals, with and without an Al reflective coating. An upstream monochromator was used to select 17-keV x-rays from the broadband APS bending magnet source of synchrotron radiation. The upstream , adjustable Mo collimators were then used to provide a series of x-ray source transverse sizes from 200 microns down to about 15-20 microns (FWHM) at the crystal surface. The emitted scintillator radiation was in this case lens coupled to the ANDOR Neo sCMOS camera, and the indirect x-ray images were processed offline by a MATLAB - based image processing program. Based on single Gaussian peak fits to the x-ray image projected profiles, we observed a 10.5 micron PSF. This sample thus exhibited superior spatial resolution to standard P43 polycrystalline phosphors of the same thickness which would have about a 100-micron PSF. Lastly, this single crystal resolution combined with the 88-mm diameter makes it a candidate to support future x-ray diffraction or wafer topography experiments.

  4. Regolith X-Ray Imaging Spectrometer (REXIS) Aboard the OSIRIS-REx Asteroid Sample Return Mission

    Science.gov (United States)

    Masterson, R. A.; Chodas, M.; Bayley, L.; Allen, B.; Hong, J.; Biswas, P.; McMenamin, C.; Stout, K.; Bokhour, E.; Bralower, H.; Carte, D.; Chen, S.; Jones, M.; Kissel, S.; Schmidt, F.; Smith, M.; Sondecker, G.; Lim, L. F.; Lauretta, D. S.; Grindlay, J. E.; Binzel, R. P.

    2018-02-01

    The Regolith X-ray Imaging Spectrometer (REXIS) is the student collaboration experiment proposed and built by an MIT-Harvard team, launched aboard NASA's OSIRIS-REx asteroid sample return mission. REXIS complements the scientific investigations of other OSIRIS-REx instruments by determining the relative abundances of key elements present on the asteroid's surface by measuring the X-ray fluorescence spectrum (stimulated by the natural solar X-ray flux) over the range of energies 0.5 to 7 keV. REXIS consists of two components: a main imaging spectrometer with a coded aperture mask and a separate solar X-ray monitor to account for the Sun's variability. In addition to element abundance ratios (relative to Si) pinpointing the asteroid's most likely meteorite association, REXIS also maps elemental abundance variability across the asteroid's surface using the asteroid's rotation as well as the spacecraft's orbital motion. Image reconstruction at the highest resolution is facilitated by the coded aperture mask. Through this operation, REXIS will be the first application of X-ray coded aperture imaging to planetary surface mapping, making this student-built instrument a pathfinder toward future planetary exploration. To date, 60 students at the undergraduate and graduate levels have been involved with the REXIS project, with the hands-on experience translating to a dozen Master's and Ph.D. theses and other student publications.

  5. CMOS-sensors for energy-resolved X-ray imaging

    International Nuclear Information System (INIS)

    Doering, D.; Amar-Youcef, S.; Deveaux, M.; Linnik, B.; Müntz, C.; Stroth, Joachim; Baudot, J.; Dulinski, W.; Kachel, M.

    2016-01-01

    Due to their low noise, CMOS Monolithic Active Pixel Sensors are suited to sense X-rays with a few keV quantum energy, which is of interest for high resolution X-ray imaging. Moreover, the good energy resolution of the silicon sensors might be used to measure this quantum energy. Combining both features with the good spatial resolution of CMOS sensors opens the potential to build ''color sensitive' X-ray cameras. Taking such colored images is hampered by the need to operate the CMOS sensors in a single photon counting mode, which restricts the photon flux capability of the sensors. More importantly, the charge sharing between the pixels smears the potentially good energy resolution of the sensors. Based on our experience with CMOS sensors for charged particle tracking, we studied techniques to overcome the latter by means of an offline processing of the data obtained from a CMOS sensor prototype. We found that the energy resolution of the pixels can be recovered at the expense of reduced quantum efficiency. We will introduce the results of our study and discuss the feasibility of taking colored X-ray pictures with CMOS sensors

  6. Copper L X-ray spectra measured by a high resolution ion-induced X-ray spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Ryohei; Hamaguchi, Dai; Kageyama, Hiroyoshi [Kyoto Inst. of Tech. (Japan); and others

    1997-03-01

    High resolution L X-ray emission spectra of Cu have been measured by 0.75 MeV/u H, He, and F, 0.73 MeV/u Ar, 0.64 MeV/u Si, and 0.073 MeV/u Si ion impacts with a crystal spectrometer. The X-ray transition energies in the Cu target for L{iota}, L{eta}, L{alpha}{sub 1,2}, L{beta}{sub 1}, and L{beta}{sub 3,4} diagram lines induced by light ion impacts are determined, which are in good agreement with those given in the reference. The difference in L X-ray emission spectra produced by H, He, F, Si, and Ar ions are considered and the L{alpha}{sub 1,2} and L{beta}{sub 1} emission spectra are compared with the calculated ones based on the multiconfiguration Dirac-Fock method. (author)

  7. Innovative diffraction gratings for high-resolution resonant inelastic soft x-ray scattering spectroscopy

    International Nuclear Information System (INIS)

    Voronov, D.L.; Warwick, T.; Gullikson, E. M.; Salmassi, F.; Padmore, H. A.

    2016-01-01

    High-resolution Resonant Inelastic X-ray Scattering (RIXS) requires diffraction gratings with very exacting characteristics. The gratings should provide both very high dispersion and high efficiency which are conflicting requirements and extremely challenging to satisfy in the soft x-ray region for a traditional grazing incidence geometry. To achieve high dispersion one should increase the groove density of a grating; this however results in a diffraction angle beyond the critical angle range and results in drastic efficiency loss. The problem can be solved by use of multilayer coated blazed gratings (MBG). In this work we have investigated the diffraction characteristics of MBGs via numerical simulations and have developed a procedure for optimization of grating design for a multiplexed high resolution imaging spectrometer for RIXS spectroscopy to be built in sector 6 at the Advanced Light Source (ALS). We found that highest diffraction efficiency can be achieved for gratings optimized for 4"t"h or 5"t"h order operation. Fabrication of such gratings is an extremely challenging technological problem. We present a first experimental prototype of these gratings and report its performance. High order and high line density gratings have the potential to be a revolutionary new optical element that should have great impact in the area of soft x-ray RIXS.

  8. Direct observations of cracks and voids in structural materials by X-ray imaging using ultra-bright synchrotron radiation

    International Nuclear Information System (INIS)

    Nakayama, Takenori; Yuse, Fumio; Tsubokawa, Yoshiyuki; Matsui, Junji

    2003-01-01

    Refraction contrast X-ray imaging experiments were conducted on acrylic resin with an artificial cylindrical hole, A7075 aluminum alloy, A6063 aluminum castings, mild steel with cracks or voids, and low alloy steel with inclusions, using a ultra-bright synchrotron radiation X-ray beam in BL24XU hutch C of SPring-8. Conventional absorption contrast X-ray imaging experiments were also done for the comparison. The X-ray beam was controlled to be monochromatic by Si double-crystals and collimated by a slit. The distance between the sample and the detector was changed from 0 to 3 m, and the X-ray energy was 15 to 25 keV. Photographs were taken by X-ray film and/or X-ray CCD camera. As a result, the refraction imaging method gave a much more distinct image of the artificial cylindrical hole in acrylic resin as compared with the absorption method. The fatigue cracks in aluminum alloy and mild steel were also distinctly observed. The X-ray imaging revealed the presence of MnS nonmetallic inclusions in low alloy steel. Void defects in aluminum castings were clearly detected by the imaging. In addition, in-situ observation of tensile fracture of aluminum alloys using a high resolution X-ray CCD camera system wa successfully conducted. The observations by use of asymmetric reflection technique for X-ray imaging experiment were also well performed. From above, the X-ray imaging method using ultra-bright synchrotron radiation is concluded to be very useful for fracture research of materials. (author)

  9. Direct observations of cracks and voids in structural materials by X-ray imaging using ultra-bright synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Nakayama, Takenori; Yuse, Fumio [Kobe Steel, Ltd., Materials Research Laboratory, Kobe, Hyogo (Japan); Tsubokawa, Yoshiyuki [Kobelco Research Inst., Kobe, Hyogo (Japan); Matsui, Junji [Himeji Inst. of Technology, Kamigori, Hyogo (Japan)

    2003-04-01

    Refraction contrast X-ray imaging experiments were conducted on acrylic resin with an artificial cylindrical hole, A7075 aluminum alloy, A6063 aluminum castings, mild steel with cracks or voids, and low alloy steel with inclusions, using a ultra-bright synchrotron radiation X-ray beam in BL24XU hutch C of SPring-8. Conventional absorption contrast X-ray imaging experiments were also done for the comparison. The X-ray beam was controlled to be monochromatic by Si double-crystals and collimated by a slit. The distance between the sample and the detector was changed from 0 to 3 m, and the X-ray energy was 15 to 25 keV. Photographs were taken by X-ray film and/or X-ray CCD camera. As a result, the refraction imaging method gave a much more distinct image of the artificial cylindrical hole in acrylic resin as compared with the absorption method. The fatigue cracks in aluminum alloy and mild steel were also distinctly observed. The X-ray imaging revealed the presence of MnS nonmetallic inclusions in low alloy steel. Void defects in aluminum castings were clearly detected by the imaging. In addition, in-situ observation of tensile fracture of aluminum alloys using a high resolution X-ray CCD camera system wa successfully conducted. The observations by use of asymmetric reflection technique for X-ray imaging experiment were also well performed. From above, the X-ray imaging method using ultra-bright synchrotron radiation is concluded to be very useful for fracture research of materials. (author)

  10. A Soft X-ray Imager for MIRAX

    International Nuclear Information System (INIS)

    Zand, Jean in 't; Mels, Wim; Heise, John

    2006-01-01

    The flight spare model of the BeppoSAX Wide Field Cameras is being considered as the Soft X-ray Imager for MIRAX. A description is provided of this instrument, the performance of its siblings on BeppoSAX, and the prospects of flying it on MIRAX. Like on BeppoSAX, the instrument on MIRAX will excel in the study of transient phenomena lasting shorter than 1 day

  11. A Study of the Resolution of Dental Intraoral X-Ray Machines

    International Nuclear Information System (INIS)

    Kim, Seon Ju; Chung, Hyon De

    1990-01-01

    The purpose of this study was to assess the resolution and focal spot size of dental X-ray machines. Fifty dental X-ray machines were selected for measuring resolution and focal spot size. These machines were used in general dental clinics. The time on installation of the X-ray machine varies from 1 years to 10 years. The resolution of these machines was measured with the test pattern. The focal spot size of these machines was measured with the star test pattern. The following results were obtained: 1. The resolution of dental intraoral X-ray machines was not significantly changed in ten years. 2. The focal spot size of dental intraoral X-ray machines was not significantly increased in ten years. The statistical analysis between the mean focal spot size and nominal focal spot size was significant at the 0.05 level about the more than 3 years used machines.

  12. High-spatial resolution and high-spectral resolution detector for use in the measurement of solar flare hard x rays

    International Nuclear Information System (INIS)

    Desai, U.D.; Orwig, L.E.

    1988-01-01

    In the areas of high spatial resolution, the evaluation of a hard X-ray detector with 65 micron spatial resolution for operation in the energy range from 30 to 400 keV is proposed. The basic detector is a thick large-area scintillator faceplate, composed of a matrix of high-density scintillating glass fibers, attached to a proximity type image intensifier tube with a resistive-anode digital readout system. Such a detector, combined with a coded-aperture mask, would be ideal for use as a modest-sized hard X-ray imaging instrument up to X-ray energies as high as several hundred keV. As an integral part of this study it was also proposed that several techniques be critically evaluated for X-ray image coding which could be used with this detector. In the area of high spectral resolution, it is proposed to evaluate two different types of detectors for use as X-ray spectrometers for solar flares: planar silicon detectors and high-purity germanium detectors (HPGe). Instruments utilizing these high-spatial-resolution detectors for hard X-ray imaging measurements from 30 to 400 keV and high-spectral-resolution detectors for measurements over a similar energy range would be ideally suited for making crucial solar flare observations during the upcoming maximum in the solar cycle

  13. Using of a microcapillary refractive X-ray lens for focusing and imaging

    Energy Technology Data Exchange (ETDEWEB)

    Dudchik, Yu.I. [Institute of Applied Physics Problems, Kurchatova 7, 220064, Minsk (Belarus)], E-mail: dudchik@bsu.by; Komarov, F.F. [Institute of Applied Physics Problems, Kurchatova 7, 220064, Minsk (Belarus); Piestrup, M.A. [Adelphi Technology, 981-B Industrial Rd, San Carlos, 94070, California (United States)], E-mail: melpie@adelphitech.com; Gary, C.K.; Park, H.; Cremer, J.T. [Adelphi Technology, 981-B Industrial Rd, San Carlos, 94070, California (United States)

    2007-07-15

    The microcapillary lens, formed by air bubbles in a hollow core glass capillary filled with epoxy, is a novel design of a compound refractive lens for X-rays. The epoxy enclosed between two air bubbles has the form of a biconcave lens and acts as a positive lens for X-rays. Each individual lens is spherical with radius of curvature equal to the inner radius of the capillary. Up to 500 individual biconcave lenses can be formed in a single capillary with diameters from 50 to 500 {mu}m. Due to the small radius of curvatures that can be achieved, microcapillary lenses typically have shorter focal lengths than those made by compression or injection molding. For example, microcapillary lenses with a focal length about 5 cm for 8 keV X-rays and 50-micron aperture are readily available. We have produced a set of lenses in a 200-micron inner-diameter glass capillary with 100-350 individual microlenses and measured their parameters at the Stanford Synchrotron Radiation Laboratory and at the Advanced Photon Source. Our investigations have also shown that the lenses are suitable for imaging applications with an X-ray tube as a source of X-rays. A simple X-ray microscope is discussed. The microscope consists of a copper anode X-ray tube, X-ray lens and CCD-camera. The object, lens and CCD-camera were placed in-line at distances to satisfy the lens formula. It is shown that the field of view of the microscope is about 1 mm and resolution is equal to 3-5 {mu}m.

  14. Simulation study of two-energy X-ray fluorescence holograms reconstruction algorithm to remove twin images

    International Nuclear Information System (INIS)

    Xie Honglan; Hu Wen; Luo Hongxin; Deng Biao; Du Guohao; Xue Yanling; Chen Rongchang; Shi Shaomeng; Xiao Tiqiao

    2008-01-01

    Unlike traditional outside-source holography, X-ray fluorescence holography is carded out with fluorescent atoms in a sample as source light for holographic imaging. With the method, three-dimensional arrangement of atoms into crystals can be observed obviously. However, just like traditional outside-source holography, X-ray fluorescence holography suffers from the inherent twin-image problem, too. With a 27-Fe-atoms cubic lattice as model, we discuss in this paper influence of the photon energy of incident source in removing twin images in reconstructed atomic images by numerical simulation and reconstruction with two-energy X-ray fluorescence holography. The results indicate that incident X-rays of nearer energies have better effect of removing twin images. In the detector of X-ray holography, minimum difference of the two incident energies depends on energy resolution of the monochromator and detector, and for inside source X-ray holography, minimum difference of the two incident energies depends on difference of two neighboring fluorescent energies emitting from the element and energy resolution of detector. The spatial resolution of atomic images increases with the incident energies. This is important for experiments of X-ray fluorescence holography, which is being developed on Shanghai Synchrotron Radiation Facility. (authors)

  15. Recent progress of hard x-ray imaging microscopy and microtomography at BL37XU of SPring-8

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Yoshio, E-mail: yoshio@spring8.or.jp; Takeuchi, Akihisa; Terada, Yasuko; Uesugi, Kentaro [Japan Synchrotron Radiation Research Institute (JASRI/SPring-8), Sayo, Hyogo 679-5198 (Japan); Mizutani, Ryuta [Department of Applied Biochemistry, Tokai University, Hiratsuka, Kanagawa 259-1292 (Japan)

    2016-01-28

    A hard x-ray imaging microscopy and microtomography system is now being developed at the beamline 37XU of SPring-8. In the latest improvement, a spatial resolution of about 50 nm is achieved in two-dimensional imaging at 6 keV x-ray energy using a Fresnel zone plate objective with an outermost zone width of 35 nm. In the tomographic measurement, a spatial resolution of about 100 nm is achieved at 8 keV using an x-ray guide tube condenser optic and a Fresnel zone plate objective with an outermost zone width of 50 nm.

  16. Novel x-ray imaging methods at the Nova Laser Facility

    International Nuclear Information System (INIS)

    Ress, D.; DaSilva, L.B.; London, R.A.; Trebes, J.E.; Lerche, R.A.; Bradley, D.K.

    1994-01-01

    We are pursuing several novel x-ray imaging schemes to measure plasma parameters in inertial-confinement fusion experiments. This paper will review two quite successful approaches, the soft x-ray moire deflectometer, and the annular (ring) coded-aperture microscope. The deflectometer is the newer diagnostic, and this paper will concentrate on this topic. We will describe the operating principles of moire deflectometry, give the motivations for soft x-ray probing, describe the physical apparatus in detail, and present some sample images and results. The ring coded-aperture microscope has been described previously, so here we will only briefly review the principle of the instrument. We will concentrate on the signal-to-noise ratio calculations that motivate the use of annular coded apertures, and describe recent work to predict and measure the resolution of the instrument

  17. Collagen imaged by Coherent X-ray Diffraction: towards a complementary tool to conventional scanning SAXS

    International Nuclear Information System (INIS)

    Berenguer de la Cuesta, Felisa; Bean, Richard J; Bozec, Laurent; Robinson, Ian K; McCallion, Catriona; Wallace, Kris; Hiller, Jen C; Terrill, Nicholas J

    2010-01-01

    Third generation x-ray sources offer unique possibilities for exploiting coherence in the study of materials. New insights in the structure and dynamics of soft condensed matter and biological samples can be obtained by coherent x-ray diffraction (CXD). However, the experimental procedures for applying these methods to collagen tissues are still under development. We present here an investigation for the optimal procedure in order to obtain high quality CXD data from collagen tissues. Sample handling and preparation and adequate coherence defining apertures are among the more relevant factors to take into account. The impact of the results is also discussed, in particular in comparison with the information that can be extracted from conventional scanning small angle x-ray scattering (SAXS). Images of collagen tissues obtained by CXD reconstructions will give additional information about the local structure with higher resolution and will complement scanning SAXS images.

  18. Collagen imaged by Coherent X-ray Diffraction: towards a complementary tool to conventional scanning SAXS

    Energy Technology Data Exchange (ETDEWEB)

    Berenguer de la Cuesta, Felisa; Bean, Richard J; Bozec, Laurent; Robinson, Ian K [London Centre for Nanotechnology (LCN), University College London (UCL), London WC1H 0AH (United Kingdom); McCallion, Catriona; Wallace, Kris [Department of Physics and Astronomy, University College London (UCL), London WC1E 6BT (United Kingdom); Hiller, Jen C; Terrill, Nicholas J, E-mail: f.berenguer@ucl.ac.u [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom)

    2010-10-01

    Third generation x-ray sources offer unique possibilities for exploiting coherence in the study of materials. New insights in the structure and dynamics of soft condensed matter and biological samples can be obtained by coherent x-ray diffraction (CXD). However, the experimental procedures for applying these methods to collagen tissues are still under development. We present here an investigation for the optimal procedure in order to obtain high quality CXD data from collagen tissues. Sample handling and preparation and adequate coherence defining apertures are among the more relevant factors to take into account. The impact of the results is also discussed, in particular in comparison with the information that can be extracted from conventional scanning small angle x-ray scattering (SAXS). Images of collagen tissues obtained by CXD reconstructions will give additional information about the local structure with higher resolution and will complement scanning SAXS images.

  19. NASA Unveils First Images From Chandra X-Ray Observatory

    Science.gov (United States)

    1999-08-01

    Extraordinary first images from NASA's Chandra X-ray Observatory trace the aftermath of a gigantic stellar explosion in such stunning detail that scientists can see evidence of what may be a neutron star or black hole near the center. Another image shows a powerful X-ray jet blasting 200,000 light years into intergalactic space from a distant quasar. Released today, both images confirm that NASA's newest Great Observatory is in excellent health and its instruments and optics are performing up to expectations. Chandra, the world's largest and most sensitive X-ray telescope, is still in its orbital check-out and calibration phase. "When I saw the first image, I knew that the dream had been realized," said Dr. Martin Weisskopf, Chandra Project Scientist, NASA's Marshall Space Flight Center, Huntsville, AL. "This observatory is ready to take its place in the history of spectacular scientific achievements." "We were astounded by these images," said Harvey Tananbaum, Director of the Smithsonian Astrophysical Observatory's Chandra X- ray Center, Cambridge, MA. "We see the collision of the debris from the exploded star with the matter around it, we see shock waves rushing into interstellar space at millions of miles per hour, and, as a real bonus, we see for the first time a tantalizing bright point near the center of the remnant that could possibly be a collapsed star associated with the outburst." Chandra's PKS 0637-752 PKS 0637-752 After the telescope's sunshade door was opened last week, one of the first images taken was of the 320-year-old supernova remnant Cassiopeia A, which astronomers believe was produced by the explosion of a massive star. Material blasted into space from the explosion crashed into surrounding material at 10 million miles per hour. This collision caused violent shock waves, like massive sonic booms, creating a vast 50-million degree bubble of X-ray emitting gas. Heavy elements in the hot gas produce X-rays of specific energies. Chandra's ability

  20. A new streaked soft x-ray imager for the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Benstead, J., E-mail: james.benstead@awe.co.uk; Morton, J.; Guymer, T. M.; Garbett, W. J.; Rubery, M. S.; Skidmore, J. W. [AWE, Aldermaston, Reading, Berkshire RG7 4PR (United Kingdom); Moore, A. S.; Ahmed, M. F.; Soufli, R.; Pardini, T.; Hibbard, R. L.; Bailey, C. G.; Bell, P. M.; Hau-Riege, S. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Bedzyk, M.; Shoup, M. J.; Reagan, S.; Agliata, T.; Jungquist, R. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Schmidt, D. W. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); and others

    2016-05-15

    A new streaked soft x-ray imager has been designed for use on high energy-density (HED) physics experiments at the National Ignition Facility based at the Lawrence Livermore National Laboratory. This streaked imager uses a slit aperture, single shallow angle reflection from a nickel mirror, and soft x-ray filtering to, when coupled to one of the NIF’s x-ray streak cameras, record a 4× magnification, one-dimensional image of an x-ray source with a spatial resolution of less than 90 μm. The energy band pass produced depends upon the filter material used; for the first qualification shots, vanadium and silver-on-titanium filters were used to gate on photon energy ranges of approximately 300–510 eV and 200–400 eV, respectively. A two-channel version of the snout is available for x-ray sources up to 1 mm and a single-channel is available for larger sources up to 3 mm. Both the one and two-channel variants have been qualified on quartz wire and HED physics target shots.

  1. Benchmarking the x-ray phase contrast imaging for ICF DT ice characterization using roughened surrogates

    Energy Technology Data Exchange (ETDEWEB)

    Dewald, E; Kozioziemski, B; Moody, J; Koch, J; Mapoles, E; Montesanti, R; Youngblood, K; Letts, S; Nikroo, A; Sater, J; Atherton, J

    2008-06-26

    We use x-ray phase contrast imaging to characterize the inner surface roughness of DT ice layers in capsules planned for future ignition experiments. It is therefore important to quantify how well the x-ray data correlates with the actual ice roughness. We benchmarked the accuracy of our system using surrogates with fabricated roughness characterized with high precision standard techniques. Cylindrical artifacts with azimuthally uniform sinusoidal perturbations with 100 um period and 1 um amplitude demonstrated 0.02 um accuracy limited by the resolution of the imager and the source size of our phase contrast system. Spherical surrogates with random roughness close to that required for the DT ice for a successful ignition experiment were used to correlate the actual surface roughness to that obtained from the x-ray measurements. When comparing average power spectra of individual measurements, the accuracy mode number limits of the x-ray phase contrast system benchmarked against surface characterization performed by Atomic Force Microscopy are 60 and 90 for surrogates smoother and rougher than the required roughness for the ice. These agreement mode number limits are >100 when comparing matching individual measurements. We will discuss the implications for interpreting DT ice roughness data derived from phase-contrast x-ray imaging.

  2. Design of MiSolFA Hard X-Ray Imager

    Science.gov (United States)

    Lastufka, Erica; Casadei, Diego

    2017-08-01

    Advances in the study of coronal electron-accelerating regions have so far been limited by the dynamic range of X-ray instruments. A quick and economical alternative to desirable focusing optics technology is stereo observation. The micro-satellite MiSolFA (Micro Solar-Flare Apparatus) is designed both as a stand-alone X-ray imaging spectrometer and a complement to the Spectrometer/Telescope for Imaging X-rays (STIX) mission. These instruments will be the first pair of cross-calibrated X-ray imaging spectrometers to look at solar flares from very different points of view. MiSolFA will achieve indirect imaging between 10 and 60 keV and provide spectroscopy up to 100 keV, equipped with grids producing moiré patterns in a similar way to STIX. New manufacturing techniques produce gold gratings on a graphite or silicon substrate, with periods ranging from 15 to 225 micrometers, separated by a distance of 15.47 cm, to achieve a spatial resolutions from 10" to 60" (as compared to RHESSI's separation of 150 cm and 1" resolution). We present the progress of the imager design, the performance of the first prototypes, and reach out to the community for further scientific objectives to consider in optimizing the final design.

  3. Hard-x-ray phase-imaging microscopy using the self-imaging phenomenon of a transmission grating

    International Nuclear Information System (INIS)

    Yashiro, Wataru; Harasse, Sebastien; Momose, Atsushi; Takeuchi, Akihisa; Suzuki, Yoshio

    2010-01-01

    We report on a hard-x-ray imaging microscope consisting of a lens, a sample, and a transmission grating. After the theoretical framework of self-imaging phenomenon by the grating in the system is presented, equations for the electric field on the image plane are derived for ideal and real lenses and an equation for the intensity on the image plane for partially coherent illumination is derived. The equations are simple and similar to those applying to a projection microscope consisting of a transmission grating except that there is no defocusing effect, regardless of whether the grating is in front of or behind the lens. This means that x-ray phase-imaging microscopy can be done without the defocusing effect. It is also shown that, by resolving the self-image on the image plane, high-sensitive x-ray phase-imaging microscopy can be attained without degradation in the spatial resolution due to diffraction by the grating. Experimental results obtained using partially coherent illumination from a synchrotron x-ray source confirm that hard-x-ray phase-imaging microscopy can be quantitatively performed with high sensitivity and without the spatial resolution degradation.

  4. Simulating the x-ray image contrast to setup techniques with desired flaw detectability

    Science.gov (United States)

    Koshti, Ajay M.

    2015-04-01

    The paper provides simulation data of previous work by the author in developing a model for estimating detectability of crack-like flaws in radiography. The methodology is developed to help in implementation of NASA Special x-ray radiography qualification, but is generically applicable to radiography. The paper describes a method for characterizing the detector resolution. Applicability of ASTM E 2737 resolution requirements to the model are also discussed. The paper describes a model for simulating the detector resolution. A computer calculator application, discussed here, also performs predicted contrast and signal-to-noise ratio calculations. Results of various simulation runs in calculating x-ray flaw size parameter and image contrast for varying input parameters such as crack depth, crack width, part thickness, x-ray angle, part-to-detector distance, part-to-source distance, source sizes, and detector sensitivity and resolution are given as 3D surfaces. These results demonstrate effect of the input parameters on the flaw size parameter and the simulated image contrast of the crack. These simulations demonstrate utility of the flaw size parameter model in setting up x-ray techniques that provide desired flaw detectability in radiography. The method is applicable to film radiography, computed radiography, and digital radiography.

  5. Tolerance limits of X-ray image intensity

    International Nuclear Information System (INIS)

    Stargardt, A.; Juran, R.; Brandt, G.A.

    1985-01-01

    Evaluation of the tolerance limits of X-ray image density accepted by the radiologist shows that for different kinds of examinations, deviations of more than 50% from optimal density lead to images which cannot be used diagnostically. Within this range diagnostic accuracy shows a distinct maximum and diminishes to the limits by 20%. These figures are related to differences in the intensifying factor of screens, sensitivity of films, sensitometric parameters of film processing as well as the doses employed with automatic exposure control devices, measured in clinical conditions. Maximum permissible tolerance limits of the whole imaging system and of its constituents are discussed using the Gaussian law of error addition. (author)

  6. Evaluation of X ray attenuation by means of radiographic images

    International Nuclear Information System (INIS)

    Barros, Frieda Saicla; Paredes, Ramon S.C.; Godoi, Walmor C.; Souza, Gabriel Pinto de

    2011-01-01

    This paper's main goal is to adopt a qualitative methodology to evaluate the attenuation of x-radiation through X-ray images in polymeric materials plus residual lead. To determinate the images it was initially used an experimental setup at the Laboratory for Materials Diagnostics LACTEC. These results correspond to a more qualitative analysis, even with quantitative answers. Through analysis of radiographic images we can measure the intensity of radiation that goes through the plate, making possible to establish a relationship between the attenuation coefficient and the thickness of the material. (author)

  7. Microsecond-scale X-ray imaging with Controlled-Drift Detectors

    International Nuclear Information System (INIS)

    Castoldi, A.; Galimberti, A.; Guazzoni, C.; Rehak, P.; Strueder, L.

    2006-01-01

    The Controlled-Drift Detector is a fully-depleted silicon detector that allows 2-D position sensing and energy spectroscopy of X-rays in the range 0.5-20keV with excellent time resolution (few tens of μs) and limited readout channels. In this paper we review the Controlled-Drift Detector operating principle and we present the X-ray imaging and spectroscopic capabilities of Controlled Drift Detectors in microsecond-scale experiments and the more relevant applications fields

  8. Design of an imaging microscope for soft X-ray applications

    Science.gov (United States)

    Hoover, Richard B.; Shealy, David L.; Gabardi, David R.; Walker, Arthur B. C., Jr.; Lindblom, Joakim F.

    1988-01-01

    An imaging soft X-ray microscope with a spatial resolution of 0.1 micron and normal incidence multilayer optics is discussed. The microscope has a Schwarzschild configuration, which consists of two concentric spherical mirrors with radii of curvature which minimize third-order spherical aberration, coma, and astigmatism. The performance of the Stanford/MSFC Cassegrain X-ray telescope and its relevance to the present microscope are addressed. A ray tracing analysis of the optical system indicates that diffraction-limited performance can be expected for an object height of 0.2 mm.

  9. Ultrafast Coherent Diffraction Imaging with X-ray Free-Electron Lasers

    International Nuclear Information System (INIS)

    Chapman, H N; Bajt, S; Barty, A; Benner, W; Bogan, M; Frank, M; Hau-Riege, S; London, R; Marchesini, S; Spiller, E; Szoke, A; Woods, B; Boutet, S; Hodgson, K; Hajdu, J; Bergh, M; Burmeister, F; Caleman, C; Huldt, G; Maia, F; Seibert, M M; der Spoel, D v

    2006-01-01

    The ultrafast pulses from X-ray free-electron lasers will enable imaging of non-periodic objects at near-atomic resolution [1, Neutze]. These objects could include single molecules, protein complexes, or virus particles. The specimen would be completely destroyed by the pulse in a Coulomb explosion, but that destruction will only happen after the pulse. The scattering from the sample will give structural information about the undamaged object. There are many technical challenges that must be addressed before carrying out such experiments at an XFEL, which we are doing so with experiments at FLASH, the soft-X-ray FEL at DESY

  10. Full Field X-Ray Fluorescence Imaging Using Micro Pore Optics for Planetary Surface Exploration

    Science.gov (United States)

    Sarrazin, P.; Blake, D. F.; Gailhanou, M.; Walter, P.; Schyns, E.; Marchis, F.; Thompson, K.; Bristow, T.

    2016-01-01

    Many planetary surface processes leave evidence as small features in the sub-millimetre scale. Current planetary X-ray fluorescence spectrometers lack the spatial resolution to analyse such small features as they only provide global analyses of areas greater than 100 mm(exp 2). A micro-XRF spectrometer will be deployed on the NASA Mars 2020 rover to analyse spots as small as 120m. When using its line-scanning capacity combined to perpendicular scanning by the rover arm, elemental maps can be generated. We present a new instrument that provides full-field XRF imaging, alleviating the need for precise positioning and scanning mechanisms. The Mapping X-ray Fluorescence Spectrometer - "Map-X" - will allow elemental imaging with approximately 100µm spatial resolution and simultaneously provide elemental chemistry at the scale where many relict physical, chemical and biological features can be imaged in ancient rocks. The arm-mounted Map-X instrument is placed directly on the surface of an object and held in a fixed position during measurements. A 25x25 mm(exp 2) surface area is uniformly illuminated with X-rays or alpha-particles and gamma-rays. A novel Micro Pore Optic focusses a fraction of the emitted X-ray fluorescence onto a CCD operated at a few frames per second. On board processing allows measuring the energy and coordinates of each X-ray photon collected. Large sets of frames are reduced into 2d histograms used to compute higher level data products such as elemental maps and XRF spectra from selected regions of interest. XRF spectra are processed on the ground to further determine quantitative elemental compositions. The instrument development will be presented with an emphasis on the characterization and modelling of the X-ray focussing Micro Pore Optic. An outlook on possible alternative XRF imaging applications will be discussed.

  11. A novel lobster-eye imaging system based on Schmidt-type objective for X-ray-backscattering inspection

    International Nuclear Information System (INIS)

    Xu, Jie; Wang, Xin; Zhan, Qi; Huang, Shengling; Chen, Yifan; Mu, Baozhong

    2016-01-01

    This paper presents a novel lobster-eye imaging system for X-ray-backscattering inspection. The system was designed by modifying the Schmidt geometry into a treble-lens structure in order to reduce the resolution difference between the vertical and horizontal directions, as indicated by ray-tracing simulations. The lobster-eye X-ray imaging system is capable of operating over a wide range of photon energies up to 100 keV. In addition, the optics of the lobster-eye X-ray imaging system was tested to verify that they meet the requirements. X-ray-backscattering imaging experiments were performed in which T-shaped polymethyl-methacrylate objects were imaged by the lobster-eye X-ray imaging system based on both the double-lens and treble-lens Schmidt objectives. The results show similar resolution of the treble-lens Schmidt objective in both the vertical and horizontal directions. Moreover, imaging experiments were performed using a second treble-lens Schmidt objective with higher resolution. The results show that for a field of view of over 200 mm and with a 500 mm object distance, this lobster-eye X-ray imaging system based on a treble-lens Schmidt objective offers a spatial resolution of approximately 3 mm.

  12. IXPE - The Imaging X-Ray Polarimetry Explorer

    Science.gov (United States)

    Ramsey, Brian

    2014-01-01

    The Imaging X-ray Polarimetry Explorer (IXPE) is a Small Explorer Mission that will be proposed in response to NASA's upcoming Announcement of Opportunity. IXPE will transform our understanding of the most energetic and exotic astrophysical objects, especially neutron stars and black holes, by measuring the linear polarization of astronomical objects as a function of energy, time and, where relevant, position. As the first dedicated polarimetry observatory IXPE will add a new dimension to the study of cosmic sources, enlarging the observational phase space and providing answers to fundamental questions. IXPE will feature x-ray optics fabricated at NASA/MSFC and gas pixel focal plane detectors provided by team members in Italy (INAF and INFN). This presentation will give an overview of the proposed IXPE mission, detailing the payload configuration, the expected sensitivity, and a typical observing program.

  13. Equally sloped X-ray microtomography of living insects with low radiation dose and improved resolution capability

    International Nuclear Information System (INIS)

    Yao, Shengkun; Fan, Jiadong; Zong, Yunbing; Sun, Zhibin; Zhang, Jianhua; Jiang, Huaidong; He, You; Zhou, Guangzhao; Xiao, Tiqiao; Huang, Qingjie

    2016-01-01

    Three-dimensional X-ray imaging of living specimens is challenging due to the limited resolution of conventional absorption contrast X-ray imaging and potential irradiation damage of biological specimens. In this letter, we present microtomography of a living specimen combining phase-contrast imaging and a Fourier-based iterative algorithm termed equally sloped tomography. Non-destructive 3D imaging of an anesthetized living yellow mealworm Tenebrio molitor was demonstrated with a relatively low dose using synchrotron generated X-rays. Based on the high-quality 3D images, branching tracheoles and different tissues of the insect in a natural state were identified and analyzed, demonstrating a significant advantage of the technique over conventional X-ray radiography or histotomy. Additionally, the insect survived without problem after a 1.92-s X-ray exposure and subsequent absorbed radiation dose of ∼1.2 Gy. No notable physiological effects were observed after reviving the insect from anesthesia. The improved static tomographic method demonstrated in this letter shows advantage in the non-destructive structural investigation of living insects in three dimensions due to the low radiation dose and high resolution capability, and offers many potential applications in biological science.

  14. Equally sloped X-ray microtomography of living insects with low radiation dose and improved resolution capability

    Science.gov (United States)

    Yao, Shengkun; Fan, Jiadong; Zong, Yunbing; He, You; Zhou, Guangzhao; Sun, Zhibin; Zhang, Jianhua; Huang, Qingjie; Xiao, Tiqiao; Jiang, Huaidong

    2016-03-01

    Three-dimensional X-ray imaging of living specimens is challenging due to the limited resolution of conventional absorption contrast X-ray imaging and potential irradiation damage of biological specimens. In this letter, we present microtomography of a living specimen combining phase-contrast imaging and a Fourier-based iterative algorithm termed equally sloped tomography. Non-destructive 3D imaging of an anesthetized living yellow mealworm Tenebrio molitor was demonstrated with a relatively low dose using synchrotron generated X-rays. Based on the high-quality 3D images, branching tracheoles and different tissues of the insect in a natural state were identified and analyzed, demonstrating a significant advantage of the technique over conventional X-ray radiography or histotomy. Additionally, the insect survived without problem after a 1.92-s X-ray exposure and subsequent absorbed radiation dose of ˜1.2 Gy. No notable physiological effects were observed after reviving the insect from anesthesia. The improved static tomographic method demonstrated in this letter shows advantage in the non-destructive structural investigation of living insects in three dimensions due to the low radiation dose and high resolution capability, and offers many potential applications in biological science.

  15. Equally sloped X-ray microtomography of living insects with low radiation dose and improved resolution capability

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Shengkun; Fan, Jiadong; Zong, Yunbing; Sun, Zhibin; Zhang, Jianhua; Jiang, Huaidong, E-mail: hdjiang@sdu.edu.cn [State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100 (China); He, You; Zhou, Guangzhao; Xiao, Tiqiao [Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Huang, Qingjie [School of Information Science and Engineering, Shandong University, Jinan 250100 (China)

    2016-03-21

    Three-dimensional X-ray imaging of living specimens is challenging due to the limited resolution of conventional absorption contrast X-ray imaging and potential irradiation damage of biological specimens. In this letter, we present microtomography of a living specimen combining phase-contrast imaging and a Fourier-based iterative algorithm termed equally sloped tomography. Non-destructive 3D imaging of an anesthetized living yellow mealworm Tenebrio molitor was demonstrated with a relatively low dose using synchrotron generated X-rays. Based on the high-quality 3D images, branching tracheoles and different tissues of the insect in a natural state were identified and analyzed, demonstrating a significant advantage of the technique over conventional X-ray radiography or histotomy. Additionally, the insect survived without problem after a 1.92-s X-ray exposure and subsequent absorbed radiation dose of ∼1.2 Gy. No notable physiological effects were observed after reviving the insect from anesthesia. The improved static tomographic method demonstrated in this letter shows advantage in the non-destructive structural investigation of living insects in three dimensions due to the low radiation dose and high resolution capability, and offers many potential applications in biological science.

  16. Method of making tomographic images of X-rayed objects

    International Nuclear Information System (INIS)

    Eickel, R.

    1979-01-01

    A tomographic image of a selected layer of a stationary object is made by moving the source of X-rays along a first path at one side of the selected layer and by moving an ionography imaging chamber which contains a dielectric receptor sheet along a second path at the other side of the selected layer. The movement of the sheet is synchronized with movement of the source of X-rays and includes a translatory movement in a direction counter to the direction of movement of the source, a pivotal movement to maintain the sheet in a plane which is normal to the central beam of the bundle of X-rays, and a sidewise movement to vary the distance between the selected layer and the sheet so that the length of the projection of selected layer upon the sheet remains unchanged. If the sheet is rectangular, the pivotal movement is performed about an axis which is located in the plane of the selected layer and is parallel to the shorter sides of the sheet

  17. Next Generation Astronomical X-ray Optics: High Angular Resolution, Light Weight, and Low Production Cost

    Science.gov (United States)

    Zhang. W. W.; Biskach, M. P.; Blake, P. N.; Chan, K. W.; Gaskin, J. A.; Hong, M. L.; Jones, W. D.; Kolos, L. D.; Mazzarella, J. R.; McClelland, R. S.; hide

    2012-01-01

    X-ray astronomy depends on the availability of telescopes with high resolution and large photon collecting areas. Since x-ray observation can only be carried out above the atmosphere, these telescopes must be necessarily lightweight. Compounding the lightweight requirement is that an x-ray telescope consists of many nested concentric shells, which further require that x-ray mirrors must also be geometrically thin to achieve high packing efficiency. This double lightweight and geometrically thin requirement poses significant technical challenges in fabricating the mirrors and in integrating them into mirror assemblies. This paper reports on the approach, strategy and status of our x-ray optics development program whose objective is to meet these technical challenges at modest cost to enable future x-ray missions, including small Explorer missions in the near term, probe class missions in the medium term, and large flagship missions in the long term.

  18. Soft X-ray imaging of thick carbon-based materials using the normal incidence multilayer optics.

    Science.gov (United States)

    Artyukov, I A; Feschenko, R M; Vinogradov, A V; Bugayev, Ye A; Devizenko, O Y; Kondratenko, V V; Kasyanov, Yu S; Hatano, T; Yamamoto, M; Saveliev, S V

    2010-10-01

    The high transparency of carbon-containing materials in the spectral region of "carbon window" (lambda approximately 4.5-5nm) introduces new opportunities for various soft X-ray microscopy applications. The development of efficient multilayer coated X-ray optics operating at the wavelengths of about 4.5nm has stimulated a series of our imaging experiments to study thick biological and synthetic objects. Our experimental set-up consisted of a laser plasma X-ray source generated with the 2nd harmonics of Nd-glass laser, scandium-based thin-film filters, Co/C multilayer mirror and X-ray film UF-4. All soft X-ray images were produced with a single nanosecond exposure and demonstrated appropriate absorption contrast and detector-limited spatial resolution. A special attention was paid to the 3D imaging of thick low-density foam materials to be used in design of laser fusion targets.

  19. Development of Compton X-ray spectrometer for high energy resolution single-shot high-flux hard X-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, Sadaoki, E-mail: kojima-s@ile.osaka-u.ac.jp, E-mail: sfujioka@ile.osaka-u.ac.jp; Ikenouchi, Takahito; Arikawa, Yasunobu; Sakata, Shohei; Zhang, Zhe; Abe, Yuki; Nakai, Mitsuo; Nishimura, Hiroaki; Shiraga, Hiroyuki; Fujioka, Shinsuke, E-mail: kojima-s@ile.osaka-u.ac.jp, E-mail: sfujioka@ile.osaka-u.ac.jp; Azechi, Hiroshi [Institute of Laser Engineering, Osaka University, 2-6 Yamada-oka, Suita, Osaka 565-0871 (Japan); Ozaki, Tetsuo [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Miyamoto, Shuji; Yamaguchi, Masashi; Takemoto, Akinori [Laboratory of Advanced Science and Technology for Industry, University of Hyogo, 3-1-2 Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1205 (Japan)

    2016-04-15

    Hard X-ray spectroscopy is an essential diagnostics used to understand physical processes that take place in high energy density plasmas produced by intense laser-plasma interactions. A bundle of hard X-ray detectors, of which the responses have different energy thresholds, is used as a conventional single-shot spectrometer for high-flux (>10{sup 13} photons/shot) hard X-rays. However, high energy resolution (Δhv/hv < 0.1) is not achievable with a differential energy threshold (DET) X-ray spectrometer because its energy resolution is limited by energy differences between the response thresholds. Experimental demonstration of a Compton X-ray spectrometer has already been performed for obtaining higher energy resolution than that of DET spectrometers. In this paper, we describe design details of the Compton X-ray spectrometer, especially dependence of energy resolution and absolute response on photon-electron converter design and its background reduction scheme, and also its application to the laser-plasma interaction experiment. The developed spectrometer was used for spectroscopy of bremsstrahlung X-rays generated by intense laser-plasma interactions using a 200 μm thickness SiO{sub 2} converter. The X-ray spectrum obtained with the Compton X-ray spectrometer is consistent with that obtained with a DET X-ray spectrometer, furthermore higher certainly of a spectral intensity is obtained with the Compton X-ray spectrometer than that with the DET X-ray spectrometer in the photon energy range above 5 MeV.

  20. AXSIS: Exploring the frontiers in attosecond X-ray science, imaging and spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kärtner, F.X., E-mail: franz.kaertner@cfel.de [Center for Free-Electron Laser Science, Hamburg (Germany); Institute for Experimental Physics, University of Hamburg, Hamburg (Germany); The Hamburg Center for Ultrafast Imaging, Hamburg (Germany); DESY, Hamburg (Germany); Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA (United States); Ahr, F. [Center for Free-Electron Laser Science, Hamburg (Germany); Institute for Experimental Physics, University of Hamburg, Hamburg (Germany); DESY, Hamburg (Germany); Max Planck Institute for the Structure and Dynamics of Matter, Hamburg (Germany); Calendron, A.-L. [Center for Free-Electron Laser Science, Hamburg (Germany); Institute for Experimental Physics, University of Hamburg, Hamburg (Germany); The Hamburg Center for Ultrafast Imaging, Hamburg (Germany); DESY, Hamburg (Germany); Çankaya, H. [Center for Free-Electron Laser Science, Hamburg (Germany); The Hamburg Center for Ultrafast Imaging, Hamburg (Germany); DESY, Hamburg (Germany); Carbajo, S. [Center for Free-Electron Laser Science, Hamburg (Germany); Institute for Experimental Physics, University of Hamburg, Hamburg (Germany); DESY, Hamburg (Germany); Chang, G.; Cirmi, G. [Center for Free-Electron Laser Science, Hamburg (Germany); The Hamburg Center for Ultrafast Imaging, Hamburg (Germany); DESY, Hamburg (Germany); Dörner, K. [Center for Free-Electron Laser Science, Hamburg (Germany); DESY, Hamburg (Germany); Dorda, U. [DESY, Hamburg (Germany); Fallahi, A. [Center for Free-Electron Laser Science, Hamburg (Germany); DESY, Hamburg (Germany); Hartin, A. [Center for Free-Electron Laser Science, Hamburg (Germany); Institute for Experimental Physics, University of Hamburg, Hamburg (Germany); DESY, Hamburg (Germany); Hemmer, M. [Center for Free-Electron Laser Science, Hamburg (Germany); DESY, Hamburg (Germany); and others

    2016-09-01

    X-ray crystallography is one of the main methods to determine atomic-resolution 3D images of the whole spectrum of molecules ranging from small inorganic clusters to large protein complexes consisting of hundred-thousands of atoms that constitute the macromolecular machinery of life. Life is not static, and unravelling the structure and dynamics of the most important reactions in chemistry and biology is essential to uncover their mechanism. Many of these reactions, including photosynthesis which drives our biosphere, are light induced and occur on ultrafast timescales. These have been studied with high time resolution primarily by optical spectroscopy, enabled by ultrafast laser technology, but they reduce the vast complexity of the process to a few reaction coordinates. In the AXSIS project at CFEL in Hamburg, funded by the European Research Council, we develop the new method of attosecond serial X-ray crystallography and spectroscopy, to give a full description of ultrafast processes atomically resolved in real space and on the electronic energy landscape, from co-measurement of X-ray and optical spectra, and X-ray diffraction. This technique will revolutionize our understanding of structure and function at the atomic and molecular level and thereby unravel fundamental processes in chemistry and biology like energy conversion processes. For that purpose, we develop a compact, fully coherent, THz-driven attosecond X-ray source based on coherent inverse Compton scattering off a free-electron crystal, to outrun radiation damage effects due to the necessary high X-ray irradiance required to acquire diffraction signals. This highly synergistic project starts from a completely clean slate rather than conforming to the specifications of a large free-electron laser (FEL) user facility, to optimize the entire instrumentation towards fundamental measurements of the mechanism of light absorption and excitation energy transfer. A multidisciplinary team formed by laser

  1. TU-G-207-00: Emerging Applications of X-Ray Imaging

    International Nuclear Information System (INIS)

    2015-01-01

    Last few years has witnessed the development of novel of X-ray imaging modalities, such as spectral CT, phase contrast CT, and X-ray acoustic/fluorescence/luminescence imaging. This symposium will present the recent advances of these emerging X-ray imaging modalities and update the attendees with knowledge in various related topics, including X-ray photon-counting detectors, X-ray physics underlying the emerging applications beyond the traditional X-ray imaging, image reconstruction for the novel modalities, characterization and evaluation of the systems, and their practical implications. In addition, the concept and practical aspects of X-ray activatable targeted nanoparticles for molecular X-ray imaging will be discussed in the context of X-ray fluorescence and luminescence CT. Learning Objectives: Present background knowledge of various emerging X-ray imaging techniques, such as spectral CT, phase contrast CT and X-ray fluorescence/luminescence CT. Discuss the practical need, technical aspects and current status of the emerging X-ray imaging modalities. Describe utility and future impact of the new generation of X-ray imaging applications

  2. Real time 2 dimensional detector for charged particle and soft X-ray images

    International Nuclear Information System (INIS)

    Ishikawa, M.; Ito, M.; Endo, T.; Oba, K.

    1995-01-01

    The conventional instruments used in experiments for the soft X-ray region such as X-ray diffraction analysis are X-ray films or imaging plates. However, these instruments are not suitable for real time observation. In this paper, newly developed imaging devices will be presented, which have the capability to take X-ray images in real time with a high detection efficiency. Also, another capability, to take elementary particle tracking images, is described. (orig.)

  3. X-ray image intensifier camera tubes and semiconductor targets

    International Nuclear Information System (INIS)

    1979-01-01

    A semiconductor target for use in an image intensifier camera tube and a camera using the target are described. The semiconductor wafer for converting an electron image onto electrical signal consists mainly of a collector region, preferably n-type silicon. It has one side for receiving the electron image and an opposite side for storing charge carriers generated in the collector region by high energy electrons forming a charge image. The first side comprises a highly doped surface layer covered with a metal buffer layer permeable to the incident electrons and thick enough to dissipate some of the incident electron energy thereby improving the signal-to-noise ratio. This layer comprises beryllium on niobium on the highly doped silicon surface zone. Low energy Kα X-ray radiation is generated in the first layer, the radiation generated in the second layer (mainly Lα radiation) is strongly absorbed in the silicon layer. A camera tube using such a target with a photocathode for converting an X-ray image into an electron image, means to project this image onto the first side of the semiconductor wafer and means to read out the charge pattern on the second side are also described. (U.K.)

  4. Technology Requirements for a Square Meter, Arcsecond Resolution Telescope for X-Rays: The SMART-X Mission

    Science.gov (United States)

    Schwartz, Daniel A.; Allured, Ryan; Bookbinder, Jay A.; Cotroneo, Vincenzo; Forman, William R.; Freeman, Mark D.; McMuldroch, Stuart; Reid, Paul B.; Tananbaum, Harvey; Vikhlinin, Alexey A.; hide

    2014-01-01

    Addressing the astrophysical problems of the 2020's requires sub-arcsecond x-ray imaging with square meter effective area. Such requirements can be derived, for example, by considering deep x-ray surveys to find the young black holes in the early universe (large redshifts) which will grow into the first super-massive black holes. We have envisioned a mission, the Square Meter Arcsecond Resolution Telescope for X-rays (SMART-X), based on adjustable x-ray optics technology, incorporating mirrors with the required small ratio of mass to collecting area. We are pursuing technology which achieves sub-arcsecond resolution by on-orbit adjustment via thin film piezoelectric "cells" deposited directly on the non-reflecting sides of thin, slumped glass. While SMART-X will also incorporate state-of-the-art x-ray cameras, the remaining spacecraft systems have no requirements more stringent than those which are well understood and proven on the current Chandra X-ray Observatory.

  5. High resolution X-ray spectroscopy from the Einstein Observatory

    International Nuclear Information System (INIS)

    Winkler, P.F.; Canizares, C.R.; Clark, G.W.; Markert, T.H.; Berg, C.; Jernigan, J.G.; Schattenberg, M.L.; Massachusetts Inst. of Tech., Cambridge

    1980-01-01

    This paper is devoted to a discussion of some results which we have recently obtained from the fourth of the principal intruments on board the Einstein Observatory: M.I.T.'s Focal Plane Crystal Spectrometer (FPCS). We shall begin whith a few general remarks about X-ray spectroscopy, followed by a brief description of the FPCS instrument. The results we present here deal primarily with supernova remnants (SNRs): Puppis A and Cas A in the Galaxy, and N132D and N63A in the Large Magellanic Cloud. In addition we shall briefly discuss a member of the other class of thermal X-ray source under discussion at present; namely, to report our detection of oxygen emission from the vicinity of M87 in the Virgo Cluster. (orig.)

  6. Hard x-ray contact microscopy with 250 nm spatial resolution using a LiF film detector and a tabletop microsource

    International Nuclear Information System (INIS)

    Almaviva, S.; Bonfigli, F.; Franzini, I.; Lai, A.; Montereali, R. M.; Pelliccia, D.; Cedola, A.; Lagomarsino, S.

    2006-01-01

    An innovative route for deep-submicrometer spatial resolution hard x-ray microscopy with tabletop x-ray source is proposed. A film of lithium fluoride (LiF) was used as imaging detector in contact mode. We present here the x-ray images recorded on LiF films of a Fresnel zone plate with submicrometer gold structures and of an onion cataphyll. The images were read with an optical confocal microscope in fluorescence mode. The measured spatial resolution was about 250 nm, i.e., close to the resolution limit of the confocal microscope. The advantages and drawbacks, and the possible improvements, of this route are discussed

  7. Materials science with SR using x-ray imaging

    International Nuclear Information System (INIS)

    Kuriyama, Masao

    1990-01-01

    Some examples of applications of synchrotron radiation to materials science demonstrate the importance of microstructure information within structural as well as functional materials in order to control their properties and quality as designed for industrial purposes. To collect such information, x-ray imaging in quasi real time is required in either the microradiographic mode or the diffraction (in transmission) mode. New measurement technologies based on imaging are applied to polycrystalline materials, single crystal materials and multilayered device materials to illustrate what kind of synchrotron radiation facility is most desirable for materials science and engineering. (author)

  8. Non-scanning x-ray fluorescence microscope: application to real time micro-imaging

    International Nuclear Information System (INIS)

    Sakurai, K.; Eba, H.

    2000-01-01

    So far, x-ray fluorescence (XRF) micro-imaging has been performed by a 2D positional scan of a sample against a collimated beam. Obtaining information on specific elements in a nondestructive manner is an attractive prospect for many scientific applications. Furthermore, a synchrotron micro-beam can enhance the spatial resolution down to 0.1 μm. However, the total measuring time becomes quite long (a few hours to a half day), since one needs a number of scanning points in order to obtain a high-quality image. It is possible to obtain an x-ray image with 1 M pixels and with 20 μm resolution in a very short time of 20 sec - 3 min using a non-scanning XRF microscope, which is based on completely different concept. In the present report, we discuss the application of this technique to real time micro-imaging. The experiments were carried out at BL-4A, Photon Factory, Tsukuba, Japan. We employed a grazing-incidence arrangement to make primary x-rays illuminate the whole sample surface. We adopted parallel-beam optics and extremely-close-geometry in order to detect x-ray fluorescence with a CCD camera. The selective-excitation capability of tunable monochromatic synchrotron radiation is a feasible method for distinguishing the elements of interest. One can obtain an image of each element by differentiating the images obtained above and below the absorption edges of interest. The growth of metallic dendrites from a solution dropped on a substrate was studied successfully. Several different growth patterns, corresponding to concentration and other conditions for diffusion, were observed as x-ray images. Since the present technique requires only 40 sec for each shot, it is possible to record a growing process through repeated exposures like a movie. The authors would like to thank Prof. A. Iida (Photon Factory) for his valuable comments. (author)

  9. Moving-Article X-Ray Imaging System and Method for 3-D Image Generation

    Science.gov (United States)

    Fernandez, Kenneth R. (Inventor)

    2012-01-01

    An x-ray imaging system and method for a moving article are provided for an article moved along a linear direction of travel while the article is exposed to non-overlapping x-ray beams. A plurality of parallel linear sensor arrays are disposed in the x-ray beams after they pass through the article. More specifically, a first half of the plurality are disposed in a first of the x-ray beams while a second half of the plurality are disposed in a second of the x-ray beams. Each of the parallel linear sensor arrays is oriented perpendicular to the linear direction of travel. Each of the parallel linear sensor arrays in the first half is matched to a corresponding one of the parallel linear sensor arrays in the second half in terms of an angular position in the first of the x-ray beams and the second of the x-ray beams, respectively.

  10. X-ray fluorescence holography and multiple-energy x-ray holography: A critical comparison of atomic images

    International Nuclear Information System (INIS)

    Len, P.M.; Gog, T.; Fadley, C.S.; Materlik, G.

    1997-01-01

    We compare x-ray fluorescence holography (XFH) and multiple-energy x-ray holography (MEXH), two techniques that have recently been used to obtain experimental three-dimensional atomic images. For single-energy holograms, these methods are equivalent by virtue of the optical reciprocity theorem. However, XFH can only record holographic information at the characteristic fluorescence energies of the emitting species, while MEXH can record holographic information at any energy above the fluorescent edge of the emitter, thus enabling the suppression of real-twin overlaps and other aberrations and artifacts in atomic images. copyright 1997 The American Physical Society

  11. The x-ray laser as a tool for imaging plasmas

    International Nuclear Information System (INIS)

    Libby, S.B.; Da Silva, L.B.; Barbee, T.W. Jr.

    1995-07-01

    The x-ray laser is now being used at LLNL as a tool for measuring the behaviors of hot dense plasmas. In particular, we have used the 155 Angstrom yttrium laser to study transient plasmas by both radiography and moire deflectrometry. These techniques have been used to probe long scale length plasmas at electron densities exceeding 10 22 cm -3 . Recent advances in multilayer technology have made it possible to directly image ion densities in directly driven thin foils to an accuracy of 1--2 μm. In addition, we have constructed an x-ray laser Mach-Zehnder interferometer using multilayer beam-splitters. This interferometer yields direct 2D projections of electron densities in plasmas with micron spatial resolution. In addition, this interferometer can be used to measure spectral line shapes to high accuracy. Among the subject plasmas under study are laser irradiated planar targets, gold hohlraums, and x-ray lasers themselves

  12. 3D chemical imaging in the laboratory by hyperspectral X-ray computed tomography

    Science.gov (United States)

    Egan, C. K.; Jacques, S. D. M.; Wilson, M. D.; Veale, M. C.; Seller, P.; Beale, A. M.; Pattrick, R. A. D.; Withers, P. J.; Cernik, R. J.

    2015-01-01

    We report the development of laboratory based hyperspectral X-ray computed tomography which allows the internal elemental chemistry of an object to be reconstructed and visualised in three dimensions. The method employs a spectroscopic X-ray imaging detector with sufficient energy resolution to distinguish individual elemental absorption edges. Elemental distributions can then be made by K-edge subtraction, or alternatively by voxel-wise spectral fitting to give relative atomic concentrations. We demonstrate its application to two material systems: studying the distribution of catalyst material on porous substrates for industrial scale chemical processing; and mapping of minerals and inclusion phases inside a mineralised ore sample. The method makes use of a standard laboratory X-ray source with measurement times similar to that required for conventional computed tomography. PMID:26514938

  13. First images from the Stanford tabletop scanning soft x-ray microscope

    International Nuclear Information System (INIS)

    Trail, J.A.; Byer, R.L.

    1988-01-01

    The authors have constructed a scanning soft x-ray microscope which uses a laser-produced plasma as the soft x-ray source and normal incidence multilayer coated mirrors in a Schwarzschild configuration as the focusing optics. The microscope operates at a wavelength of 140 angstrom, has a spatial resolution of 0.5 μm, and has a soft x-ray photon flux through the focus of 10 4 s -1 when operated with only 170 mW of average laser power. The microscope is compact; the complete system, including the laser, fits on a single optical table. In this paper they describe the microscope and present images of metallic microstructures

  14. Depth Probing Soft X-ray Microprobe (DPSXRM) for High Resolution Probing of Earth's Microstructural Samples

    Science.gov (United States)

    Dikedi, P. N.

    2015-12-01

    The Cambrian explosion; occurrence of landslides in very dry weather conditions; rockslides; dead, shriveled-up and crumbled leaves possessing fossil records with the semblance of well preserved, flat leaves; abundance of trilobite tracks in lower and higher rock layers; and sailing stones are enigmas demanding demystifications. These enigmas could be elucidated when data on soil structure, texture and strength are provided by some device with submicrometre accuracy; for these and other reasons, the design of a Depth Probing Soft X-ray Microprobe (DPSXRM), is being proposed; it is expected to deliver soft X-rays, at spatial resolution, ϛ≥600nm and to probe at the depth of 0.5m in 17s. The microprobe is portable compared to a synchrotron radiation facility (Diamond Light Source has land size of 43,300m2); spatial resolution,ϛ , of the DPSXRM surpasses those of the X-ray Fluorescence microanalysis (10µm), electron microprobe (1-3µm) and ion microprobe (5->30µm); the DPSXRM has allowance for multiple targets. Vanadium and Manganese membranes are proposed owing to respective 4.952KeV VKα1 and 5.899KeV MnKα1 X-rays emitted, which best suits micro-probing of Earth's microstructural samples. Compound systems like the Kirk-Patrick and Baez and Wolter optics, aspheric mirrors like elliptical and parabolic optics, small apertures and Abbe sine condition are employed to reduce or remove astigmatism, obliquity, comatic and spherical aberrations—leading to good image quality. Results show that 5.899KeV MnKα1 and 4.952KeV VKα1 soft X-rays will travel a distance of 2.75mm to form circular patches of radii 2.2mm and 2.95mm respectively. Zone plate with nth zone radius of 1.5mm must be positioned 1.5mm and 2mm from the electron gun if circular patches must be formed from 4.952KeV VKα1 and 5.899KeV MnKα1 soft X-rays respectively. The focal lengths of 0.25μm≤ƒ≤1.50μm and 0.04μm≤ƒ≤0.2μm covered by 4.952KeV VKα1 and 5.899KeV Mn Kα1 soft X-Rays, will

  15. Image quality analysis of vibration effects In C-arm-flat panel X-ray imaging

    NARCIS (Netherlands)

    Snoeren, R.M.; Kroon, J.N.; With, de P.H.N.

    2011-01-01

    The motion of C-arm scanning X-ray systems may result in vibrations of the imaging sub-system. In this paper, we connect C-arm system vibrations to Image Quality (IQ) deterioration for 2D angiography and 3D cone beam X-ray imaging, using large Flat Panel detectors. Vibrations will affect the

  16. A highly sensitive x-ray imaging modality for hepatocellular carcinoma detection in vitro

    Science.gov (United States)

    Rand, Danielle; Walsh, Edward G.; Derdak, Zoltan; Wands, Jack R.; Rose-Petruck, Christoph

    2015-01-01

    Innovations that improve sensitivity and reduce cost are of paramount importance in diagnostic imaging. The novel x-ray imaging modality called spatial frequency heterodyne imaging (SFHI) is based on a linear arrangement of x-ray source, tissue, and x-ray detector, much like that of a conventional x-ray imaging apparatus. However, SFHI rests on a complete paradigm reversal compared to conventional x-ray absorption-based radiology: while scattered x-rays are carefully rejected in absorption-based x-ray radiology to enhance the image contrast, SFHI forms images exclusively from x-rays scattered by the tissue. In this study we use numerical processing to produce x-ray scatter images of hepatocellular carcinoma labeled with a nanoparticle contrast agent. We subsequently compare the sensitivity of SFHI in this application to that of both conventional x-ray imaging and magnetic resonance imaging (MRI). Although SFHI is still in the early stages of its development, our results show that the sensitivity of SFHI is an order of magnitude greater than that of absorption-based x-ray imaging and approximately equal to that of MRI. As x-ray imaging modalities typically have lower installation and service costs compared to MRI, SFHI could become a cost effective alternative to MRI, particularly in areas of the world with inadequate availability of MRI facilities.

  17. X-ray imaging of targets irradiated by the Nike KrF laser

    International Nuclear Information System (INIS)

    Brown, C.; Seely, J.; Feldman, U.; Obenschain, S.; Bodner, S.; Pawley, C.; Gerber, K.; Serlin, V.; Sethian, J.; Aglitskiy, Y.; Lehecka, T.; Holland, G.

    1997-01-01

    Foil targets irradiated by the Naval Research Laboratory Nike KrF laser were imaged in the x-ray region with two-dimensional spatial resolution in the 2 endash 10 μm range. The images revealed the smoothness of the emission from target and backlighter foils, the acceleration of the target foils, and the growth of Rayleigh endash Taylor instabilities that were seeded by patterns on the irradiated sides of CH foils

  18. In situ x-ray imaging of nanoparticle agglomeration in fluidized beds

    International Nuclear Information System (INIS)

    Jenneson, Paul Michael; Gundogdu, Ozcan

    2006-01-01

    A high spatial (down to 400 nm) and temporal resolution (down to 1 ms) x-ray imaging apparatus has been designed to study the agglomeration of arc plasma synthesized zinc oxide nanoparticles (average diameter of 50 nm) in fluidized beds under different gas flow velocities. The mean volume distribution of the nanoparticle agglomerates was determined with x-ray microtomography and found to correspond to a lognormal distribution with a mean value of 0.70x10 9 μm 3 and a variance of 3.6x10 21 (μm 3 ) 2 . The average density of the agglomerates was found to be 2.9 g cm -3 compared to 5.6 g cm -3 for the individual nanoparticles. The powder assembly was then dynamically imaged using an x-ray image intensifier coupled to a digital camera using a field of view of 24.20 mm by 32.25 mm and a temporal resolution of 40 ms. Sequential frames were captured into computer memory for a range of gas flow velocities from 0.026 ms -1 to 0.313 ms -1 . The breakup energy of the agglomerates was calculated to be approximately 2x10 -8 J using a combination of dynamic observations and physical properties of the agglomerate system extracted from the x-ray microtomographic data

  19. Spectromicroscope for the PHotoelectron Imaging of Nanostructures with X-rays (SPHINX): performance in biology, medicine and geology

    Energy Technology Data Exchange (ETDEWEB)

    Frazer, B.H.; Girasole, Marco; Wiese, L.M.; Franz, Torsten; De Stasio, G

    2004-05-15

    Several X-ray PhotoElectron Emission spectroMicroscopes (X-PEEMs) exist around the world at this time. We present recent performance and resolution tests of one of them, the Spectromicroscope for PHotoelectron Imaging of Nanostructures with X-rays (SPHINX) X-PEEM, installed at the University of Wisconsin Synchrotron Radiation Center. With this state-of-the-art instrument we demonstrate chemical analysis capabilities on conducting and insulating specimens of diverse interests, and an unprecedented lateral resolution of 10 nm with monochromatic X-rays and 7.2 nm with ultraviolet illumination.

  20. Bio-medical X-ray imaging with spectroscopic pixel detectors

    CERN Document Server

    Butler, A P H; Tipples, R; Cook, N; Watts, R; Meyer, J; Bell, A J; Melzer, T R; Butler, P H

    2008-01-01

    The aim of this study is to review the clinical potential of spectroscopic X-ray detectors and to undertake a feasibility study using a novel detector in a clinical hospital setting. Detectors currently in development, such as Medipix-3, will have multiple energy thresholds allowing for routine use of spectroscopic bio-medical imaging. We have coined the term MARS (Medipix All Resolution System) for bio-medical images that provide spatial, temporal, and energy information. The full clinical significance of spectroscopic X-ray imaging is difficult to predict but insights can be gained by examining both image reconstruction artifacts and the current uses of dual-energy techniques. This paper reviews the known uses of energy information in vascular imaging and mammography, clinically important fields. It then presents initial results from using Medipix-2, to image human tissues within a clinical radiology department. Detectors currently in development, such as Medipix-3, will have multiple energy thresholds allo...

  1. Detection of soft X-rays from α Lyrae and eta Bootis with an imaging X-ray telescope

    International Nuclear Information System (INIS)

    Topka, K.; Fabricant, D.; Harnden, F.R. Jr.; Gorenstein, P.; Rosner, R.

    1979-01-01

    Two nearby stars have been detected in the soft X-ray band with an imaging X-ray telescope flown aboard two sounding rockets. The exposure times were 4.8 and 4.5 s for the images of the AO V star α Lyrae (Vega) and the GO IV star eta Bootis, respectively. Laboratory measurements rule out the possibility that the observed signals were due to UV contamination. These X-ray observations imply luminosities of L/sub X/(0.2--0.8 keV) approx. =3 x 10 28 ergs s -1 for Vega and L/sub X/(0.15--1.5 keV) approx. =1 x 10 29 ergs s -1 for eta Boo. A coronal interpretation of the X-rays from Vega is in serious conflict with simple convective models for early-type main-sequence stars. Magnetic field activity may be responsible for heating the corona, as has been suggested for the Sun. In the case of eta Boo, a coronal interpretation is also favored; however, if the unseen companion of eta Boo is degenerate, the X-ray emission may instead originate in a stellar wind accreting upon a white dwarf or neutron star

  2. A high resolution small animal radiation research platform (SARRP) with x-ray tomographic guidance capabilities

    Science.gov (United States)

    Wong, John; Armour, Elwood; Kazanzides, Peter; Iordachita, Iulian; Tryggestad, Erik; Deng, Hua; Matinfar, Mohammad; Kennedy, Christopher; Liu, Zejian; Chan, Timothy; Gray, Owen; Verhaegen, Frank; McNutt, Todd; Ford, Eric; DeWeese, Theodore L.

    2008-01-01

    Purpose To demonstrate the CT imaging, conformal irradiation and treatment planning capabilities of a small animal radiation research platform (SARRP). Methods The SARRP employs a dual-focal spot, constant voltage x-ray source mounted on a gantry with a source-to-isocenter distance of 35 cm. Gantry rotation is limited to 120° from vertical. Eighty to 100 kVp x-rays from the smaller 0.4 mm focal spot are used for imaging. Both 0.4 mm and 3.0 mm focal spots operate at 225 kVp for irradiation. Robotic translate/rotate stages are used to position the animal. Cone-beam (CB) CT imaging is achieved by rotating the horizontal animal between the stationary x-ray source and a flat-panel detector. Radiation beams range from 0.5 mm in diameter to (60 × 60) mm2. Dosimetry is measured with radio-chromic films. Monte Carlo dose calculations are employed for treatment planning. The combination of gantry and robotic stage motions facilitate conformal irradiation. Results The SARRP spans 3 ft × 4 ft × 6 ft (WxLxH). Depending on filtration, the isocenter dose outputs at 1 cm depth in water range from 22 to 375 cGy/min from the smallest to the largest radiation fields. The 20% to 80% dose fall-off spans 0.16 mm. CBCT with (0.6 × 0.6 × 0.6) mm3 voxel resolution is acquired with less than 1 cGy. Treatment planning is performed at sub-mm resolution. Conclusions The capability of the SARRP to deliver highly focal beams to multiple animal model systems provides new research opportunities that more realistically bridge laboratory research and clinical translation. PMID:18640502

  3. In-line X-ray lensless imaging with lithium fluoride film detectors

    International Nuclear Information System (INIS)

    Bonfigli, F.; Cecilia, A.; Bateni, S. Heidari; Nichelatti, E.; Pelliccia, D.; Somma, F.; Vagovic, P.; Vincenti, M.A.; Baumbach, T.; Montereali, R.M.

    2013-01-01

    In this work, we present preliminary in-line X-ray lensless projection imaging results at a synchrotron facility by using novel solid-state detectors based on non-destructive readout of photoluminescent colour centres in lithium fluoride thin films. The peculiarities of LiF radiation detectors are high spatial resolution on a large field of view, wide dynamic range, versatility and simplicity of use. These properties offered the opportunity to test a broadband X-ray synchrotron source for lensless projection imaging experiments at the TopoTomo beamline of the ANKA synchrotron facility by using a white beam spectrum (3–40 keV). Edge-enhancement effects were observed for the first time on a test object; they are discussed and compared with simulations, on the basis of the colour centre photoluminescence linear response found in the investigated irradiation conditions. -- Highlights: ► We performed broadband X-ray imaging at synchrotron by novel LiF imaging detectors. ► X-ray phase contrast experiments on LiF crystals and thin films were performed. ► Photoluminescent high-quality X-images on a LiF film only 1 μm thick were obtained. ► Edge-enhancement effects were detected and compared with simulations. ► A linearity of colour centre fluorescence response of LiF film was found

  4. Real-time high-resolution X-ray imaging and nuclear magnetic resonance study of the hydration of pure and Na-doped C3A in the presence of sulfates

    KAUST Repository

    Kirchheim, A. P.

    2011-02-21

    This study details the differences in real-time hydration between pure tricalcium aluminate (cubic C3A or 3CaO·Al2O 3) and Na-doped tricalcium aluminate (orthorhombic C3A or Na2Ca8Al6O18), in aqueous solutions containing sulfate ions. Pure phases were synthesized in the laboratory to develop an independent benchmark for the reactions, meaning that their reactions during hydration in a simulated early age cement pore solution (saturated with respect to gypsum and lime) were able to be isolated. Because the rate of this reaction is extremely rapid, most microscopy methods are not adequate to study the early phases of the reactions in the early stages. Here, a high-resolution full-field soft X-ray imaging technique operating in the X-ray water window, combined with solution analysis by 27Al nuclear magnetic resonance (NMR) spectroscopy, was used to capture information regarding the mechanism of C3A hydration during the early stages. There are differences in the hydration mechanism between the two types of C3A, which are also dependent on the concentration of sulfate ions in the solution. The reactions with cubic C3A (pure) seem to be more influenced by higher concentrations of sulfate ions, forming smaller ettringite needles at a slower pace than the orthorhombic C3A (Na-doped) sample. The rate of release of aluminate species into the solution phase is also accelerated by Na doping. © 2011 American Chemical Society.

  5. Antibiofouling polymer coated gold nanoparticles as a dual modal contrast agent for X-ray and photoacoustic imaging

    International Nuclear Information System (INIS)

    Guojia Huang; Yi Yuan; Xing Da

    2011-01-01

    X-ray is one of the most useful diagnostic tools in hospitals in terms of frequency of use and cost, while photoacoustic (PA) imaging is a rapidly emerging non-invasive imaging technology that integrates the merits of high optical contrast with high ultrasound resolution. In this study, for the first time, we used gold nanoparticles (GNPs) as a dual modal contrast agent for X-ray and PA imaging. Soft gelatin phantoms with embedded tumor simulators of GNPs in various concentrations are clearly shown in both X-ray and PA imaging. With GNPs as a dual modal contrast agent, X-ray can fast detect the position of tumor and provide morphological information, whereas PA imaging has important potential applications in the image guided therapy of superficial tumors such as breast cancer, melanoma and Merkel cell carcinoma.

  6. Optimisation in X-ray and Molecular Imaging 2015

    International Nuclear Information System (INIS)

    Baath, Magnus; Hoeschen, Christoph; Mattsson, Soeren; Mansson, Lars Gunnar

    2016-01-01

    This issue of Radiation Protection Dosimetry is based on contributions to Optimisation in X-ray and Molecular Imaging 2015 - the 4. Malmoe Conference on Medical Imaging (OXMI 2015). The conference was jointly organised by members of former and current research projects supported by the European Commission EURATOM Radiation Protection Research Programme, in cooperation with the Swedish Society for Radiation Physics. The conference brought together over 150 researchers and other professionals from hospitals, universities and industries with interests in different aspects of the optimisation of medical imaging. More than 100 presentations were given at this international gathering of medical physicists, radiologists, engineers, technicians, nurses and educational researchers. Additionally, invited talks were offered by world-renowned experts on radiation protection, spectral imaging and medical image perception, thus covering several important aspects of the generation and interpretation of medical images. The conference consisted of 13 oral sessions and a poster session, as reflected by the conference title connected by their focus on the optimisation of the use ionising radiation in medical imaging. The conference included technology-specific topics such as computed tomography and tomosynthesis, but also generic issues of interest for the optimisation of all medical imaging, such as image perception and quality assurance. Radiation protection was covered by e.g. sessions on patient dose benchmarking and occupational exposure. Technically-advanced topics such as modelling, Monte Carlo simulation, reconstruction, classification, and segmentation were seen taking advantage of recent developments of hardware and software, showing that the optimisation community is at the forefront of technology and adapts well to new requirements. These peer-reviewed proceedings, representing a continuation of a series of selected reports from meetings in the field of medical imaging

  7. High resolution X-ray tomography for stationary multiphase flows

    International Nuclear Information System (INIS)

    Schmitz, D.; Reinecke, N.; Petritsch, G.; Mewes, D.

    1998-01-01

    The high resolution which can be obtained by computer assisted tomography is used to investigate the liquid distribution and void fraction in random and structured packing. With a spatial resolution of 0.4x0.4mm 2 it is possible even to detect thin liquid films on structured packings. The experimental set-up consists of a custom-built second generation tomograph. The imaged object consists of a column filled with either a random ceramic packing of spheres or a structured metal packing. The liquid and void fraction distribution in random and structured packings with a quiescent gaseous phase is visualized. The water/air system is used. The liquid distributor consists of a perforated plate. The experimental hold-up values averaged over the column cross-section are in good agreement with empirical equations. (author)

  8. Computed tomography of x-ray images using neural networks

    Science.gov (United States)

    Allred, Lloyd G.; Jones, Martin H.; Sheats, Matthew J.; Davis, Anthony W.

    2000-03-01

    Traditional CT reconstruction is done using the technique of Filtered Backprojection. While this technique is widely employed in industrial and medical applications, it is not generally understood that FB has a fundamental flaw. Gibbs phenomena states any Fourier reconstruction will produce errors in the vicinity of all discontinuities, and that the error will equal 28 percent of the discontinuity. A number of years back, one of the authors proposed a biological perception model whereby biological neural networks perceive 3D images from stereo vision. The perception model proports an internal hard-wired neural network which emulates the external physical process. A process is repeated whereby erroneous unknown internal values are used to generate an emulated signal with is compared to external sensed data, generating an error signal. Feedback from the error signal is then sued to update the erroneous internal values. The process is repeated until the error signal no longer decrease. It was soon realized that the same method could be used to obtain CT from x-rays without having to do Fourier transforms. Neural networks have the additional potential for handling non-linearities and missing data. The technique has been applied to some coral images, collected at the Los Alamos high-energy x-ray facility. The initial images show considerable promise, in some instances showing more detail than the FB images obtained from the same data. Although routine production using this new method would require a massively parallel computer, the method shows promise, especially where refined detail is required.

  9. Fabrication of High Resolution Lightweight X-ray Mirrors Using Mono-crystalline Silicon Project

    Data.gov (United States)

    National Aeronautics and Space Administration — "Three factors characterize an X-ray optics fabrication technology: angular resolution, effective area per unit mass, and production cost per unit effective...

  10. The pin pixel detector--X-ray imaging

    CERN Document Server

    Bateman, J E; Derbyshire, G E; Duxbury, D M; Marsh, A S; Simmons, J E; Stephenson, R

    2002-01-01

    The development and testing of a soft X-ray gas pixel detector, which uses connector pins for the anodes is reported. Based on a commercial 100 pin connector block, a prototype detector of aperture 25.4 mm centre dot 25.4 mm can be economically fabricated. The individual pin anodes all show the expected characteristics of small gas detectors capable of counting rates reaching 1 MHz per pin. A 2-dimensional resistive divide readout system has been developed to permit the imaging properties of the detector to be explored in advance of true pixel readout electronics.

  11. Improved fluorescent X-ray image intensifying screen

    International Nuclear Information System (INIS)

    Landeghem, W.K. van; Suys, A.R.

    1981-01-01

    An X-ray image intensifying screen is described, which includes at least one fluorescent layer comprising phosphor particles dispersed in a binder and on top of such layer a protective layer containing a crosslinked polymer mass obtained by an acid-catalyzed reaction of a polymer or mixture of polymers containing reactive hydrogen atoms and a cross-linking agent, the cross-linking agent being an organic compound containing a plurality of etherified N-methylol groups. Examples are given of appropriate polymers and cross-linking agents. (author)

  12. Multiframe digitization of x-ray (TV) images (abstract)

    Science.gov (United States)

    Karpenko, V. A.; Khil'chenko, A. D.; Lysenko, A. P.; Panchenko, V. E.

    1989-07-01

    The work in progress deals with the experimental search for a technique of digitizing x-ray TV images. The small volume of the buffer memory of the analog-to-digital (A/D) converter (ADC) we have previously used to detect TV signals made it necessary to digitize only one line at a time of the television raster and also to make use of gating to gain the video information contained in the whole frame. This paper is devoted to multiframe digitizing. The recorder of video signals comprises a broadband 8-bit A/D converter, a buffer memory having 128K words and a control circuit which forms a necessary sequence of advance pulses for the A/D converter and the memory relative to the input frame and line sync pulses (FSP and LSP). The device provides recording of video signals corresponding to one or a few frames following one after another, or to their fragments. The control circuit is responsible for the separation of the required fragment of the TV image. When loading the limit registers, the following input parameters of the control circuit are set: the skipping of a definite number of lines after the next FSP, the number of the lines of recording inside a fragment, the frequency of the information lines inside a fragment, the delay in the start of the ADC conversion relative to the arrival of the LSP, the length of the information section of a line, and the frequency of taking the readouts in a line. In addition, among the instructions given are the number of frames of recording and the frequency of their sequence. Thus, the A/D converter operates only inside a given fragment of the TV image. The information is introduced into the memory in sequence, fragment by fragment, without skipping and is then extracted as samples according to the addresses needed for representation in the required form, and processing. The video signal recorder governs the shortest time of the ADC conversion per point of 250 ns. As before, among the apparatus used were an image vidicon with

  13. Structure determination of spider silk from X-ray images

    Energy Technology Data Exchange (ETDEWEB)

    Ulrich, Stephan; Zippelius, Annette [Universitaet Goettingen, Institut fuer Theoretische Physik (Germany); Meling, Martin [Max-Planck-Institut fuer biophysikalische Chemie, Goettingen (Germany); Glisovic, Anja; Salditt, Tim [Universitaet Goettingen, Institut fuer Roentgenphysik (Germany)

    2008-07-01

    Spider silk consists of interconnected crystallites, which are typically aligned along the fiber axis. We present a method to systematically determine the structure of these crystallites. Hereby we introduce a model that calculates the scattering function G(q) which is fitted to the measured X-ray image (silk from nephila clavipes). With it, the crystallites' size, the constitution and dimensions of their unit cell, as well as their tilt with respect to the fiber axis is identified, and furthermore the effect of coherent scattering from different crystallites is investigated. The shown methods and the presented model can easily be generalized to a wide class of composite materials.

  14. Principles of image reconstruction in X-ray computer tomography

    International Nuclear Information System (INIS)

    Schwierz, G.; Haerer, W.; Ruehrnschopf, E.P.

    1978-01-01

    The presented geometrical interpretation elucidates the convergence behavior of the classical iteration technique in X-ray computer tomography. The filter techniques nowadays used in preference are derived from a concept of linear system theory which excels due to its particular clarity. The one-dimensional form of the filtering is of decisive importance for immediate image reproduction as realized by both Siemens systems, the SIRETOM 2000 head scanner and the SOMATOM whole-body machine, as such unique to date for whole-body machines. The equivalence of discrete and continuous filtering when dealing with frequency-band-limited projections is proved. (orig.) [de

  15. X-ray performance of a wafer-scale CMOS flat panel imager for applications in medical imaging and nondestructive testing

    International Nuclear Information System (INIS)

    Cha, Bo Kyung; Jeon, Seongchae; Seo, Chang-Woo

    2016-01-01

    This paper presents a wafer-scale complementary metal-oxide semiconductor (CMOS)-based X-ray flat panel detector for medical imaging and nondestructive testing applications. In this study, our proposed X-ray CMOS flat panel imager has been fabricated by using a 0.35 µm 1-poly/4-metal CMOS process. The pixel size is 100 µm×100 µm and the pixel array format is 1200×1200 pixels, which provide a field-of-view (FOV) of 120mm×120 mm. The 14.3-bit extended counting analog-to digital converter (ADC) with built-in binning mode was used to reduce the area and simultaneously improve the image resolution. The different screens such as thallium-doped CsI (CsI:Tl) and terbium gadolinium oxysulfide (Gd_2O_2S:Tb) scintillators were used as conversion materials for X-rays to visible light photons. The X-ray imaging performance such as X-ray sensitivity as a function of X-ray exposure dose, spatial resolution, image lag and X-ray images of various objects were measured under practical medical and industrial application conditions. This paper results demonstrate that our prototype CMOS-based X-ray flat panel imager has the significant potential for medical imaging and non-destructive testing (NDT) applications with high-resolution and high speed rate.

  16. X-ray performance of a wafer-scale CMOS flat panel imager for applications in medical imaging and nondestructive testing

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Bo Kyung, E-mail: goldrain99@kaist.ac.kr [Advanced Medical Device Research Center, Korea Electrotechnology Research Institute, Ansan (Korea, Republic of); Jeon, Seongchae [Advanced Medical Device Research Center, Korea Electrotechnology Research Institute, Ansan (Korea, Republic of); Seo, Chang-Woo [Department of Radiological Science, Yonsei University, Gangwon-do 220-710 (Korea, Republic of)

    2016-09-21

    This paper presents a wafer-scale complementary metal-oxide semiconductor (CMOS)-based X-ray flat panel detector for medical imaging and nondestructive testing applications. In this study, our proposed X-ray CMOS flat panel imager has been fabricated by using a 0.35 µm 1-poly/4-metal CMOS process. The pixel size is 100 µm×100 µm and the pixel array format is 1200×1200 pixels, which provide a field-of-view (FOV) of 120mm×120 mm. The 14.3-bit extended counting analog-to digital converter (ADC) with built-in binning mode was used to reduce the area and simultaneously improve the image resolution. The different screens such as thallium-doped CsI (CsI:Tl) and terbium gadolinium oxysulfide (Gd{sub 2}O{sub 2}S:Tb) scintillators were used as conversion materials for X-rays to visible light photons. The X-ray imaging performance such as X-ray sensitivity as a function of X-ray exposure dose, spatial resolution, image lag and X-ray images of various objects were measured under practical medical and industrial application conditions. This paper results demonstrate that our prototype CMOS-based X-ray flat panel imager has the significant potential for medical imaging and non-destructive testing (NDT) applications with high-resolution and high speed rate.

  17. Three-dimensional phase-contrast X-ray microtomography with scanning–imaging X-ray microscope optics

    International Nuclear Information System (INIS)

    Takeuchi, Akihisa; Uesugi, Kentaro; Suzuki, Yoshio

    2013-01-01

    A novel three-dimensional X-ray microtomographic micro-imaging system which enables simultaneous measurement of differential phase contrast and absorption contrast has been developed. The optical system consists of a scanning microscope with one-dimensional focusing device and an imaging microscope with one-dimensional objective. A three-dimensional (3D) X-ray tomographic micro-imaging system has been developed. The optical system is based on a scanning–imaging X-ray microscope (SIXM) optics, which is a hybrid system consisting of a scanning microscope optics with a one-dimensional (1D) focusing (line-focusing) device and an imaging microscope optics with a 1D objective. In the SIXM system, each 1D dataset of a two-dimensional (2D) image is recorded independently. An object is illuminated with a line-focused beam. Positional information of the region illuminated by the line-focused beam is recorded with the 1D imaging microscope optics as line-profile data. By scanning the object with the line focus, 2D image data are obtained. In the same manner as for a scanning microscope optics with a multi-pixel detector, imaging modes such as phase contrast and absorption contrast can be arbitrarily configured after the image data acquisition. By combining a tomographic scan method and the SIXM system, quantitative 3D imaging is performed. Results of a feasibility study of the SIXM for 3D imaging are shown

  18. X-ray imaging of spin currents and magnetisation dynamics at the nanoscale

    International Nuclear Information System (INIS)

    Bonetti, Stefano

    2017-01-01

    Understanding how spins move in time and space is the aim of both fundamental and applied research in modern magnetism. Over the past three decades, research in this field has led to technological advances that have had a major impact on our society, while improving the understanding of the fundamentals of spin physics. However, important questions still remain unanswered, because it is experimentally challenging to directly observe spins and their motion with a combined high spatial and temporal resolution. In this article, we present an overview of the recent advances in x-ray microscopy that allow researchers to directly watch spins move in time and space at the microscopically relevant scales. We discuss scanning x-ray transmission microscopy (STXM) at resonant soft x-ray edges, which is available at most modern synchrotron light sources. This technique measures magnetic contrast through the x-ray magnetic circular dichroism (XMCD) effect at the resonant absorption edges, while focusing the x-ray radiation at the nanometre scale, and using the intrinsic pulsed structure of synchrotron-generated x-rays to create time-resolved images of magnetism at the nanoscale. In particular, we discuss how the presence of spin currents can be detected by imaging spin accumulation, and how the magnetisation dynamics in thin ferromagnetic films can be directly imaged. We discuss how a direct look at the phenomena allows for a deeper understanding of the the physics at play, that is not accessible to other, more indirect techniques. Finally, we present an overview of the exciting opportunities that lie ahead to further understand the fundamentals of novel spin physics, opportunities offered by the appearance of diffraction limited storage rings and free electron lasers. (topical review)

  19. Comparison of x-ray computed tomography, through-transmission ultrasound, and low-kV x-ray imaging for characterizing green-state ceramics

    International Nuclear Information System (INIS)

    Roberts, R.A.; Ellingson, W.A.; Vannier, M.W.

    1985-06-01

    Green-state MgAl 2 O 4 compact disk specimens have been studied by x-ray computed tomography (CT), through-transmission pulsed ultrasound, and low-kV x-ray imaging to compare the abilities of these nondestructive evaluation (NDE) methods to detect flaws and density variations. X-ray computed tomographic images were obtained from a 125-kV (peak) imaging system with a 512 x 512 matrix and a pixel size of 100 μm. A 3- to 10- MHz focused-beam ultrasonic transducer was used, together with special immersion techniques, to obtain topographical maps of acoustic attenuation and phase velocity; a 30 x 30 matrix was used in the ultrasonic scans. A 35-kV x-ray system with high-resolution type RR film was used to obtain conventional radiographs. Large-scale nonuniform density gradients were detected with CT and ultrasonics in supposedly uniform ceramic disks. In addition, inclusions in the green-state samples were detected by all three methods, with each method providing certain advantages. The influence of grain structure and other ceramic powder characteristics will be examined in the future. 5 refs., 9 figs

  20. New opportunities for 3D materials science of polycrystalline materials at the micrometre lengthscale by combined use of X-ray diffraction and X-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, W., E-mail: ludwig@esrf.fr [Universite de Lyon, INSA-Lyon, MATEIS CNRS UMR 5510, 69621Villeurbanne (France); European Synchrotron Radiation Facility, BP220, 38043 Grenoble (France); King, A. [European Synchrotron Radiation Facility, BP220, 38043 Grenoble (France); School of Materials, University of Manchester, Manchester, M13 9PL (United Kingdom); Reischig, P. [European Synchrotron Radiation Facility, BP220, 38043 Grenoble (France); Herbig, M. [Universite de Lyon, INSA-Lyon, MATEIS CNRS UMR 5510, 69621Villeurbanne (France); Lauridsen, E.M.; Schmidt, S. [Riso National Laboratory for Sustainable Energy, Technical University of Denmark, P.O. Box 49, DK-4000 Roskilde (Denmark); Proudhon, H.; Forest, S. [MINES ParisTech, Centre des materiaux, CNRS UMR 7633, BP 87, 91003 Evry Cedex (France); Cloetens, P.; Roscoat, S. Rolland du [European Synchrotron Radiation Facility, BP220, 38043 Grenoble (France); Buffiere, J.Y. [Universite de Lyon, INSA-Lyon, MATEIS CNRS UMR 5510, 69621Villeurbanne (France); Marrow, T.J. [School of Materials, University of Manchester, Manchester, M13 9PL (United Kingdom); Poulsen, H.F. [Riso National Laboratory for Sustainable Energy, Technical University of Denmark, P.O. Box 49, DK-4000 Roskilde (Denmark)

    2009-10-25

    Non-destructive, three-dimensional (3D) characterization of the grain structure in mono-phase polycrystalline materials is an open challenge in material science. Recent advances in synchrotron based X-ray imaging and diffraction techniques offer interesting possibilities for mapping 3D grain shapes and crystallographic orientations for certain categories of polycrystalline materials. Direct visualisation of the three-dimensional grain boundary network or of two-phase (duplex) grain structures by means of absorption and/or phase contrast techniques may be possible, but is restricted to specific material systems. A recent extension of this methodology, termed X-ray diffraction contrast tomography (DCT), combines the principles of X-ray diffraction imaging, three-dimensional X-ray diffraction microscopy (3DXRD) and image reconstruction from projections. DCT provides simultaneous access to 3D grain shape, crystallographic orientation and local attenuation coefficient distribution. The technique applies to the larger range of plastically undeformed, polycrystalline mono-phase materials, provided some conditions on grain size and texture are fulfilled. The straightforward combination with high-resolution microtomography opens interesting new possibilities for the observation of microstructure related damage and deformation mechanisms in these materials.

  1. New opportunities for 3D materials science of polycrystalline materials at the micrometre lengthscale by combined use of X-ray diffraction and X-ray imaging

    International Nuclear Information System (INIS)

    Ludwig, W.; King, A.; Reischig, P.; Herbig, M.; Lauridsen, E.M.; Schmidt, S.; Proudhon, H.; Forest, S.; Cloetens, P.; Roscoat, S. Rolland du; Buffiere, J.Y.; Marrow, T.J.; Poulsen, H.F.

    2009-01-01

    Non-destructive, three-dimensional (3D) characterization of the grain structure in mono-phase polycrystalline materials is an open challenge in material science. Recent advances in synchrotron based X-ray imaging and diffraction techniques offer interesting possibilities for mapping 3D grain shapes and crystallographic orientations for certain categories of polycrystalline materials. Direct visualisation of the three-dimensional grain boundary network or of two-phase (duplex) grain structures by means of absorption and/or phase contrast techniques may be possible, but is restricted to specific material systems. A recent extension of this methodology, termed X-ray diffraction contrast tomography (DCT), combines the principles of X-ray diffraction imaging, three-dimensional X-ray diffraction microscopy (3DXRD) and image reconstruction from projections. DCT provides simultaneous access to 3D grain shape, crystallographic orientation and local attenuation coefficient distribution. The technique applies to the larger range of plastically undeformed, polycrystalline mono-phase materials, provided some conditions on grain size and texture are fulfilled. The straightforward combination with high-resolution microtomography opens interesting new possibilities for the observation of microstructure related damage and deformation mechanisms in these materials.

  2. Fast Fiber-Coupled Imaging of X-rays Events, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — HyperV Technologies Corp. proposes to construct a long-record-length, fiber-coupled, fast imaging diagnostic for recording X-ray back-lit material flows and X-ray...

  3. Possibility of single biomolecule imaging with coherent amplification of weak scattering x-ray photons.

    Science.gov (United States)

    Shintake, Tsumoru

    2008-10-01

    The number of photons produced by coherent x-ray scattering from a single biomolecule is very small because of its extremely small elastic-scattering cross section and low damage threshold. Even with a high x-ray flux of 3 x 10;{12} photons per 100-nm -diameter spot and an ultrashort pulse of 10 fs driven by a future x-ray free electron laser (x-ray FEL), it has been predicted that only a few 100 photons will be produced from the scattering of a single lysozyme molecule. In observations of scattered x rays on a detector, the transfer of energy from wave to matter is accompanied by the quantization of the photon energy. Unfortunately, x rays have a high photon energy of 12 keV at wavelengths of 1A , which is required for atomic resolution imaging. Therefore, the number of photoionization events is small, which limits the resolution of imaging of a single biomolecule. In this paper, I propose a method: instead of directly observing the photons scattered from the sample, we amplify the scattered waves by superimposing an intense coherent reference pump wave on it and record the resulting interference pattern on a planar x-ray detector. Using a nanosized gold particle as a reference pump wave source, we can collect 10;{4}-10;{5} photons in single shot imaging where the signal from a single biomolecule is amplified and recorded as two-dimensional diffraction intensity data. An iterative phase retrieval technique can be used to recover the phase information and reconstruct the image of the single biomolecule and the gold particle at the same time. In order to precisely reconstruct a faint image of the single biomolecule in Angstrom resolution, whose intensity is much lower than that of the bright gold particle, I propose a technique that combines iterative phase retrieval on the reference pump wave and the digital Fourier transform holography on the sample. By using a large number of holography data, the three-dimensional electron density map can be assembled.

  4. Single mimivirus particles intercepted and imaged with an X-ray laser

    Science.gov (United States)

    Seibert, M. Marvin; Ekeberg, Tomas; Maia, Filipe R. N. C.; Svenda, Martin; Andreasson, Jakob; Jönsson, Olof; Odić, Duško; Iwan, Bianca; Rocker, Andrea; Westphal, Daniel; Hantke, Max; DePonte, Daniel P.; Barty, Anton; Schulz, Joachim; Gumprecht, Lars; Coppola, Nicola; Aquila, Andrew; Liang, Mengning; White, Thomas A.; Martin, Andrew; Caleman, Carl; Stern, Stephan; Abergel, Chantal; Seltzer, Virginie; Claverie, Jean-Michel; Bostedt, Christoph; Bozek, John D.; Boutet, Sébastien; Miahnahri, A. Alan; Messerschmidt, Marc; Krzywinski, Jacek; Williams, Garth; Hodgson, Keith O.; Bogan, Michael J.; Hampton, Christina Y.; Sierra, Raymond G.; Starodub, Dmitri; Andersson, Inger; Bajt, Saša; Barthelmess, Miriam; Spence, John C. H.; Fromme, Petra; Weierstall, Uwe; Kirian, Richard; Hunter, Mark; Doak, R. Bruce; Marchesini, Stefano; Hau-Riege, Stefan P.; Frank, Matthias; Shoeman, Robert L.; Lomb, Lukas; Epp, Sascha W.; Hartmann, Robert; Rolles, Daniel; Rudenko, Artem; Schmidt, Carlo; Foucar, Lutz; Kimmel, Nils; Holl, Peter; Rudek, Benedikt; Erk, Benjamin; Hömke, André; Reich, Christian; Pietschner, Daniel; Weidenspointner, Georg; Strüder, Lothar; Hauser, Günter; Gorke, Hubert; Ullrich, Joachim; Schlichting, Ilme; Herrmann, Sven; Schaller, Gerhard; Schopper, Florian; Soltau, Heike; Kühnel, Kai-Uwe; Andritschke, Robert; Schröter, Claus-Dieter; Krasniqi, Faton; Bott, Mario; Schorb, Sebastian; Rupp, Daniela; Adolph, Marcus; Gorkhover, Tais; Hirsemann, Helmut; Potdevin, Guillaume; Graafsma, Heinz; Nilsson, Björn; Chapman, Henry N.; Hajdu, Janos

    2014-01-01

    X-ray lasers offer new capabilities in understanding the structure of biological systems, complex materials and matter under extreme conditions1–4. Very short and extremely bright, coherent X-ray pulses can be used to outrun key damage processes and obtain a single diffraction pattern from a large macromolecule, a virus or a cell before the sample explodes and turns into plasma1. The continuous diffraction pattern of non-crystalline objects permits oversampling and direct phase retrieval2. Here we show that high-quality diffraction data can be obtained with a single X-ray pulse from a non-crystalline biological sample, a single mimivirus particle, which was injected into the pulsed beam of a hard-X-ray free-electron laser, the Linac Coherent Light Source5. Calculations indicate that the energy deposited into the virus by the pulse heated the particle to over 100,000 K after the pulse had left the sample. The reconstructed exit wavefront (image) yielded 32-nm full-period resolution in a single exposure and showed no measurable damage. The reconstruction indicates inhomogeneous arrangement of dense material inside the virion. We expect that significantly higher resolutions will be achieved in such experiments with shorter and brighter photon pulses focused to a smaller area. The resolution in such experiments can be further extended for samples available in multiple identical copies. PMID:21293374

  5. 21 CFR 892.1650 - Image-intensified fluoroscopic x-ray system.

    Science.gov (United States)

    2010-04-01

    ... fluoroscopic x-ray system. (a) Identification. An image-intensified fluoroscopic x-ray system is a device... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Image-intensified fluoroscopic x-ray system. 892... equipment, patient and equipment supports, component parts, and accessories. (b) Classification. Class II...

  6. 21 CFR 892.1660 - Non-image-intensified fluoroscopic x-ray system.

    Science.gov (United States)

    2010-04-01

    ... fluoroscopic x-ray system. (a) Identification. A non-image-intensified fluoroscopic x-ray system is a device... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Non-image-intensified fluoroscopic x-ray system... display equipment, patient and equipment supports, component parts, and accessories. (b) Classification...

  7. Performance limitations of imaging microscopes for soft x-ray applications

    International Nuclear Information System (INIS)

    Lewotsky, K.L.; Kotha, A.; Harvey, J.E.

    1993-01-01

    Recent advances in the fabrication of nanometer-scale multilayer structures have yielded high-reflectance mirrors operating at near-normal incidence for soft X-ray wavelengths. These developments have stimulated renewed interest in high-resolution soft X-ray microscopy. The design of a Schwarzschild imaging microscope for soft X-ray applications has been reported by Hoover and Shealy. Based upon a geometrical ray-trace analysis of the residual design errors, diffraction-limited performance at a wavelength of 100 angstrom was predicted over an object size (diameter) of 0.4 mm. In this paper the authors expand upon the previous analysis of the Schwarzschild X-ray microscope design by determining the total image degradation due to diffraction, geometrical aberrations, alignment errors, and realistic assumptions concerning optical fabrication errors. NASA's Optical Surface Analysis Code (OSAC) is used to model the image degradation effects of residual surface irregularities over the entire range of relevant spatial frequencies. This includes small angle scattering effects due to mid spatial frequency surface errors falling between the traditional figure and finish specifications. Performance predictions are presented parametrically to provide some insight into the optical fabrication and alignment tolerances necessary to meet a particular image quality requirement

  8. Skull x-ray

    Science.gov (United States)

    X-ray - head; X-ray - skull; Skull radiography; Head x-ray ... There is low radiation exposure. X-rays are monitored and regulated to provide the minimum amount of radiation exposure needed to produce the image. Most ...

  9. Neck x-ray

    Science.gov (United States)

    X-ray - neck; Cervical spine x-ray; Lateral neck x-ray ... There is low radiation exposure. X-rays are monitored so that the lowest amount of radiation is used to produce the image. Pregnant women and ...

  10. The XM-1 high resolution x-ray microscope at the ALS

    International Nuclear Information System (INIS)

    Meyer-Ilse, W.; Johnson, L.E.; Bates, W.; Lucero, A.; Anderson, E.H.; Denbeaux, G.

    2000-01-01

    The XM-1 x-ray microscope was built to obtain a high throughput of high-resolution transmission images with a wide variety of thick (< 10 micron) samples. Modeled after a 'conventional' full-field microscope, the XM-1 makes use of zone plates (ZP) for the condenser and objective elements. We present an overview of the recent activities at XM-1. Over the past year many enhancements have taken place such as the use of more efficient zone plates and the development of a cryogenic sample stage. Moreover, we have been developing the spectromicroscopy capabilities of the microscope to distinguish different element and chemical states within a sample while obtaining high spatial resolution images. We report on these and other advances. Additionally, the microscope has been actively used in many fields including biology, environmental and material science. Some of these recent achievements will be highlighted as well

  11. Compression of the digitized X-ray images

    International Nuclear Information System (INIS)

    Terae, Satoshi; Miyasaka, Kazuo; Fujita, Nobuyuki; Takamura, Akio; Irie, Goro; Inamura, Kiyonari.

    1987-01-01

    Medical images are using an increased amount of space in the hospitals, while they are not accessed easily. Thus, suitable data filing system and precise data compression will be necessitated. Image quality was evaluated before and after image data compression, using local filing system (MediFile 1000, NEC Co.) and forty-seven modes of compression parameter. For this study X-ray images of 10 plain radiographs and 7 contrast examinations were digitized using a film reader of CCD sensor in MediFile 1000. Those images were compressed into forty-seven kinds of image data to save in an optical disc and then the compressed images were reconstructed. Each reconstructed image was compared with non-compressed images in respect to several regions of our interest by four radiologists. Compression and extension of radiological images were promptly made by employing the local filing system. Image quality was much more affected by the ratio of data compression than by the mode of parameter itself. In another word, the higher compression ratio became, the worse the image quality were. However, image quality was not significantly degraded until the compression ratio was about 15: 1 on plain radiographs and about 8: 1 on contrast studies. Image compression by this technique will be admitted by diagnostic radiology. (author)

  12. X-ray diagnostic device with an X-ray image amplifier, whose output image is fed into a movie camera, as well as a brightness control

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, H

    1978-02-09

    The X-ray relief appearing behind a patient is immediately or with amplificating foils converted into a latent film image. By using a X-ray image amplifier the X-ray relief is then converted into a reduced and brighter optical image and fed into a photographic or movie camera and shot. To avoid a reduction in the image quality by quantum noise and a too large patient and physician dose a brightness control is provided for the X-ray diagnostic device. The control only dims as far as a brightness per image is produced that avoids quantum noise. On the other side it opens more by strongly beam absorbing patients or a smaller imaging ratio of the X-ray image amplifier to obtain a desired irradiation.

  13. X-ray diagnostic device with an X-ray image amplifier, whose output image is fed into a movie camera, as well as a brightness control

    International Nuclear Information System (INIS)

    Lutz, H.

    1978-01-01

    The X-ray relief appearing behind a patient is immediately or with amplificating foils converted into a latent film image. By using a X-ray image amplifier the X-ray relief is then converted into a reduced and brighter optical image and fed into a photographic or movie camera and shot. To avoid a reduction in the image quality by quantum noise and a too large patient and physician dose a brightness control is provided for the X-ray diagnostic device. The control only dims as far as a brightness per image is produced that avoids quantum noise. On the other side it opens more by strongly beam absorbing patients or a smaller imaging ratio of the X-ray image amplifier to obtain a desired irradiation. (DG) [de

  14. Imaging properties and its improvements of scanning/imaging x-ray microscope

    International Nuclear Information System (INIS)

    Takeuchi, Akihisa; Uesugi, Kentaro; Suzuki, Yoshio

    2016-01-01

    A scanning / imaging X-ray microscope (SIXM) system has been developed at SPring-8. The SIXM consists of a scanning X-ray microscope with a one-dimensional (1D) X-ray focusing device and an imaging (full-field) X-ray microscope with a 1D X-ray objective. The motivation of the SIXM system is to realize a quantitative and highly-sensitive multimodal 3D X-ray tomography by taking advantages of both the scanning X-ray microscope using multi-pixel detector and the imaging X-ray microscope. Data acquisition process of a 2D image is completely different between in the horizontal direction and in the vertical direction; a 1D signal is obtained with the linear-scanning while the other dimensional signal is obtained with the imaging optics. Such condition have caused a serious problem on the imaging properties that the imaging quality in the vertical direction has been much worse than that in the horizontal direction. In this paper, two approaches to solve this problem will be presented. One is introducing a Fourier transform method for phase retrieval from one phase derivative image, and the other to develop and employ a 1D diffuser to produce an asymmetrical coherent illumination

  15. Spatial resolution in depth-controlled surface sensitive x-ray techniques

    International Nuclear Information System (INIS)

    Yun, W.B.; Viccaro, P.J.

    1992-01-01

    The spatial resolution along the surface normal and the total depth probed are two important parameters in depth-controlled surface sensitive X-ray techniques employing grazing incidence geometry. The two parameters are analyzed in terms of optical properties (refractive indices) of the media involved and parameters of the incident X-ray beam: beam divergence, X-ray energy, and spectral bandwidth. We derive analytical expressions of the required beam divergence and spectral bandwidth of the incident beam as a function of the two parameters. Sample calculations are made for X-ray energies between 0.1 and 100 keV and for solid Be, Cu, and Au, representing material matrices consisting of low, medium, and high atomic number elements. A brief discussion on obtaining the required beam divergence and spectral bandwidth from present X-ray sources and optics is given

  16. Temporal resolution limit estimation of x-ray streak cameras using a CsI photocathode

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiang; Gu, Li; Zong, Fangke; Zhang, Jingjin; Yang, Qinlao, E-mail: qlyang@szu.edu.cn [Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Institute of Optoelectronics, Shenzhen University, Shenzhen 518060 (China)

    2015-08-28

    A Monte Carlo model is developed and implemented to calculate the characteristics of x-ray induced secondary electron (SE) emission from a CsI photocathode used in an x-ray streak camera. Time distributions of emitted SEs are investigated with an incident x-ray energy range from 1 to 30 keV and a CsI thickness range from 100 to 1000 nm. Simulation results indicate that SE time distribution curves have little dependence on the incident x-ray energy and CsI thickness. The calculated time dispersion within the CsI photocathode is about 70 fs, which should be the temporal resolution limit of x-ray streak cameras that use CsI as the photocathode material.

  17. Effective high voltage at X-ray tube in hard X-ray chest imaging

    International Nuclear Information System (INIS)

    Klein, J.

    1987-01-01

    The FRG standard TGL 36 661 (March 1980) for synoptical chest pictures of large size in adults specifies the 120 kV voltage at the X-ray tube together with maximal, 100% use of the capacity of the tube (hard picture, short exposure time). By means of circular recording and by measuring the high voltage at the X-ray tube it was quantitatively shown that the effective voltage during exposure is (according to the exposure time and the attenuation phase of the generator) always lower than the set-up voltage of 120 kV. This phenomenon is the more marked the shorter the actual exposure time in comparison with the attenuation phase of the generator. The typical characteristic of a hard X-ray chest picture is thus not given only by the setting-up of voltage. The impact of the reduction in voltage is thus quantitatively shown also from the aspect of the radiation burden for the patient. (author). 7 figs., 8 refs

  18. Energy dispersive detector for white beam synchrotron x-ray fluorescence imaging

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Matthew D., E-mail: Matt.Wilson@stfc.ac.uk; Seller, Paul; Veale, Matthew C. [Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Campus,UK (United Kingdom); Connolley, Thomas [Diamond Light Source, I12 Beamline, Harwell Campus, Didcot, Oxfordshire (United Kingdom); Dolbnya, Igor P.; Malandain, Andrew; Sawhney, Kawal [Diamond Light Source, B16 Beamline, Harwell Campus, Didcot, Oxfordshire (United Kingdom); Grant, Patrick S.; Liotti, Enzo; Lui, Andrew [Department of Materials, University of Oxford Parks Road, Oxford (United Kingdom)

    2016-07-27

    A novel, “single-shot” fluorescence imaging technique has been demonstrated on the B16 beamline at the Diamond Light Source synchrotron using the HEXITEC energy dispersive imaging detector. A custom made furnace with 200µm thick metal alloy samples was positioned in a white X-ray beam with a hole made in the furnace walls to allow the transmitted beam to be imaged with a conventional X-ray imaging camera consisting of a 500 µm thick single crystal LYSO scintillator, mirror and lens coupled to an AVT Manta G125B CCD sensor. The samples were positioned 45° to the incident beam to enable simultaneous transmission and fluorescence imaging. The HEXITEC detector was positioned at 90° to the sample with a 50 µm pinhole 13 cm from the sample and the detector positioned 2.3m from pinhole. The geometric magnification provided a field of view of 1.1×1.1mm{sup 2} with one of the 80×80 pixels imaging an area equivalent to 13µm{sup 2}. Al-Cu alloys doped with Zr, Ag and Mo were imaged in transmission and fluorescence mode. The fluorescence images showed that the dopant metals could be simultaneously imaged with sufficient counts on all 80x80 pixels within 60 s, with the X-ray flux limiting the fluorescence imaging rate. This technique demonstrated that it is possible to simultaneously image and identify multiple elements on a spatial resolution scale ~10µm or higher without the time consuming need to scan monochromatic energies or raster scan a focused beam of X-rays. Moving to high flux beamlines and using an array of detectors could improve the imaging speed of the technique with element specific imaging estimated to be on a 1 s timescale.

  19. Energy dispersive detector for white beam synchrotron x-ray fluorescence imaging

    International Nuclear Information System (INIS)

    Wilson, Matthew D.; Seller, Paul; Veale, Matthew C.; Connolley, Thomas; Dolbnya, Igor P.; Malandain, Andrew; Sawhney, Kawal; Grant, Patrick S.; Liotti, Enzo; Lui, Andrew

    2016-01-01

    A novel, “single-shot” fluorescence imaging technique has been demonstrated on the B16 beamline at the Diamond Light Source synchrotron using the HEXITEC energy dispersive imaging detector. A custom made furnace with 200µm thick metal alloy samples was positioned in a white X-ray beam with a hole made in the furnace walls to allow the transmitted beam to be imaged with a conventional X-ray imaging camera consisting of a 500 µm thick single crystal LYSO scintillator, mirror and lens coupled to an AVT Manta G125B CCD sensor. The samples were positioned 45° to the incident beam to enable simultaneous transmission and fluorescence imaging. The HEXITEC detector was positioned at 90° to the sample with a 50 µm pinhole 13 cm from the sample and the detector positioned 2.3m from pinhole. The geometric magnification provided a field of view of 1.1×1.1mm"2 with one of the 80×80 pixels imaging an area equivalent to 13µm"2. Al-Cu alloys doped with Zr, Ag and Mo were imaged in transmission and fluorescence mode. The fluorescence images showed that the dopant metals could be simultaneously imaged with sufficient counts on all 80x80 pixels within 60 s, with the X-ray flux limiting the fluorescence imaging ra