WorldWideScience

Sample records for resolution spectrograph observations

  1. Spitzer/infrared spectrograph investigation of mipsgal 24 μm compact bubbles: low-resolution observations

    Energy Technology Data Exchange (ETDEWEB)

    Nowak, M. [Département de Physique, École Normale Supérieure de Cachan, 61 Avenue du Président Wilson, F-94235 Cachan (France); Flagey, N. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Noriega-Crespo, A.; Carey, S. J.; Van Dyk, S. D. [Spitzer Science Center, California Institute of Technology, 1200 East California Boulevard, MC 314-6, Pasadena, CA 91125 (United States); Billot, N. [Instituto de Radio Astronomía Milimétrica, Avenida Divina Pastora, 7, Local 20, E-18012 Granada (Spain); Paladini, R., E-mail: mathias.nowak@ens-cachan.fr [NASA Herschel Science Center, California Institute of Technology, Pasadena, CA 91125 (United States)

    2014-12-01

    We present Spitzer/InfraRed Spectrograph (IRS) low-resolution observations of 11 compact circumstellar bubbles from the MIPSGAL 24 μm Galactic plane survey. We find that this set of MIPSGAL bubbles (MBs) is divided into two categories and that this distinction correlates with the morphologies of the MBs in the mid-infrared (IR). The four MBs with central sources in the mid-IR exhibit dust-rich, low-excitation spectra, and their 24 μm emission is accounted for by the dust continuum. The seven MBs without central sources in the mid-IR have spectra dominated by high-excitation gas lines (e.g., [O IV] 26.0 μm, [Ne V] 14.3 and 24.3 μm, and [Ne III] 15.5 μm), and the [O IV] line accounts for 50% to almost 100% of the 24 μm emission in five of them. In the dust-poor MBs, the [Ne V] and [Ne III] line ratios correspond to high-excitation conditions. Based on comparisons with published IRS spectra, we suggest that the dust-poor MBs are highly excited planetary nebulae (PNs) with peculiar white dwarfs (e.g., Wolf-Rayet [WR] and novae) at their centers. The central stars of the four dust-rich MBs are all massive star candidates. Dust temperatures range from 40 to 100 K in the outer shells. We constrain the extinction along the lines of sight from the IRS spectra. We then derive distance, dust masses, and dust production rate estimates for these objects. These estimates are all consistent with the nature of the central stars. We summarize the identifications of MBs made to date and discuss the correlation between their mid-IR morphologies and natures. Candidate Be/B[e]/luminous blue variable and WR stars are mainly 'rings' with mid-IR central sources, whereas PNs are mostly 'disks' without mid-IR central sources. Therefore we expect that most of the 300 remaining unidentified MBs will be classified as PNs.

  2. The Low-Resolution Spectrograph of the Hobby-Eberly Telescope. II. Observations of Quasar Candidates from the Sloan Digital Sky Survey

    International Nuclear Information System (INIS)

    Schneider, D. P.; Hill, Gary J.; Fan, X.; Ramsey, L. W.; MacQueen, P. J.; Weedman, D. W.; Booth, J. A.; Eracleous, M.; Gunn, J. E.; Lupton, R. H.

    2000-01-01

    This paper describes spectra of quasar candidates acquired during the commissioning phase of the Low-Resolution Spectrograph of the Hobby-Eberly Telescope. The objects were identified as possible quasars from multicolor image data from the Sloan Digital Sky Survey. The 10 sources had typical r' magnitudes of 19-20, except for one extremely red object with r ' ≅23. The data, obtained with exposure times between 10 and 25 minutes, reveal that the spectra of four candidates are essentially featureless and are not quasars, five are quasars with redshifts between 2.92 and 4.15 (including one broad absorption line quasar), and the red source is a very late M star or early L dwarf. (c) (c) 2000. The Astronomical Society of the Pacific

  3. Spectroscopic Characterization of GEO Satellites with Gunma LOW Resolution Spectrograph

    Science.gov (United States)

    Endo, T.; Ono, H.; Hosokawa, M.; Ando, T.; Takanezawa, T.; Hashimoto, O.

    The spectroscopic observation is potentially a powerful tool for understanding the Geostationary Earth Orbit (GEO) objects. We present here the results of an investigation of energy spectra of GEO satellites obtained from a groundbased optical telescope. The spectroscopic observations were made from April to June 2016 with the Gunma LOW resolution Spectrograph and imager (GLOWS) at the Gunma Astronomical Observatory (GAO) in JAPAN. The observation targets consist of eleven different satellites: two weather satellites, four communications satellites, and five broadcasting satellites. All the spectra of those GEO satellites are inferred to be solar-like. A number of well-known absorption features such as H-alpha, H-beta, Na-D,water vapor and oxygen molecules are clearly seen in thewavelength range of 4,000 - 8,000 Å. For comparison, we calculated the intensity ratio of the spectra of GEO satellites to that of the Moon which is the natural satellite of the earth. As a result, the following characteristics were obtained. 1) Some variations are seen in the strength of absorption features of water vapor and oxygen originated by the telluric atmosphere, but any other characteristic absorption features were not found. 2) For all observed satellites, the intensity ratio of the spectrum of GEO satellites decrease as a function of wavelength or to be flat. It means that the spectral reflectance of satellite materials is bluer than that of the Moon. 3) A characteristic dip at around 4,800 Å is found in all observed spectra of a weather satellite. Based on these observations, it is indicated that the characteristics of the spectrum are mainly derived from the solar panels because the apparent area of the solar cell is probably larger than that of the satellite body.

  4. Successful "First Light" for VLT High-Resolution Spectrograph

    Science.gov (United States)

    1999-10-01

    Great Research Prospects with UVES at KUEYEN A major new astronomical instrument for the ESO Very Large Telescope at Paranal (Chile), the UVES high-resolution spectrograph, has just made its first observations of astronomical objects. The astronomers are delighted with the quality of the spectra obtained at this moment of "First Light". Although much fine-tuning still has to be done, this early success promises well for new and exciting science projects with this large European research facility. Astronomical instruments at VLT KUEYEN The second VLT 8.2-m Unit Telescope, KUEYEN ("The Moon" in the Mapuche language), is in the process of being tuned to perfection before it will be "handed" over to the astronomers on April 1, 2000. The testing of the new giant telescope has been successfully completed. The latest pointing tests were very positive and, from real performance measurements covering the entire operating range of the telescope, the overall accuracy on the sky was found to be 0.85 arcsec (the RMS-value). This is an excellent result for any telescope and implies that KUEYEN (as is already the case for ANTU) will be able to acquire its future target objects securely and efficiently, thus saving precious observing time. This work has paved the way for the installation of large astronomical instruments at its three focal positions, all prototype facilities that are capable of catching the light from even very faint and distant celestial objects. The three instruments at KUEYEN are referred to by their acronyms UVES , FORS2 and FLAMES. They are all dedicated to the investigation of the spectroscopic properties of faint stars and galaxies in the Universe. The UVES instrument The first to be installed is the Ultraviolet Visual Echelle Spectrograph (UVES) that was built by ESO, with the collaboration of the Trieste Observatory (Italy) for the control software. Complete tests of its optical and mechanical components, as well as of its CCD detectors and of the complex

  5. Spectrographic observations of solar microwave bursts in the 5.3-7.4 GHz range

    International Nuclear Information System (INIS)

    Kaverin, N.S.; Korshunov, A.I.; Shushunov, V.V.; Aurass, H.; Detlefs, H.; Hartmann, H.; Krueger, A.; Kurths, J.

    1983-01-01

    The first results of the Gorky-type microwave spectrograph of Tremsdorf solar radioastronomy observatory are given, observed after the reconstruction of the instrument to get a higher time resolution for the spectral observations. Two 5.3-7.4 GHz microwave burst spectral diagrams are shown having 20 s time resolution. Broad-bond spectral structures of the microwave burst development have been observed. Explanation of a 'pseudo-drift' phenomenon due to individual peaks is given. (D.Gy.)

  6. Spectrographic observations of high intensity discharges

    International Nuclear Information System (INIS)

    Breton, C.; Charon, J.; Hubert, P.; Yvon, P.

    1957-01-01

    During straight discharges in deuterium at low pressure, the production of X-rays and neutrons has been observed. Spectroscopic observation of the light emitted reveals a broadening of the Balmer lines. From this a mean ionic density of the order of several 10 16 ions/cm 3 is deduced. (author) [fr

  7. Programmable wide field spectrograph for earth observation

    Science.gov (United States)

    Zamkotsian, Frédéric; Lanzoni, Patrick; Liotard, Arnaud; Viard, Thierry; Costes, Vincent; Hébert, Philippe-Jean

    2017-11-01

    In Earth Observation, Universe Observation and Planet Exploration, scientific return of the instruments must be optimized in future missions. Micro-Opto-Electro-Mechanical Systems (MOEMS) could be key components in future generation of space instruments. These devices are based on the mature micro-electronics technology and in addition to their compactness, scalability, and specific task customization, they could generate new functions not available with current technologies. French and European space agencies, the Centre National d'Etudes Spatiales (CNES) and the European Space Agency (ESA) have initiated several studies with LAM and TAS for listing the new functions associated with several types of MEMS, and developing new ideas of instruments.

  8. Two Solar Tornadoes Observed with the Interface Region Imaging Spectrograph

    Science.gov (United States)

    Yang, Zihao; Tian, Hui; Peter, Hardi; Su, Yang; Samanta, Tanmoy; Zhang, Jingwen; Chen, Yajie

    2018-01-01

    The barbs or legs of some prominences show an apparent motion of rotation, which are often termed solar tornadoes. It is under debate whether the apparent motion is a real rotating motion, or caused by oscillations or counter-streaming flows. We present analysis results from spectroscopic observations of two tornadoes by the Interface Region Imaging Spectrograph. Each tornado was observed for more than 2.5 hr. Doppler velocities are derived through a single Gaussian fit to the Mg II k 2796 Å and Si IV 1393 Å line profiles. We find coherent and stable redshifts and blueshifts adjacent to each other across the tornado axes, which appears to favor the interpretation of these tornadoes as rotating cool plasmas with temperatures of 104 K–105 K. This interpretation is further supported by simultaneous observations of the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory, which reveal periodic motions of dark structures in the tornadoes. Our results demonstrate that spectroscopic observations can provide key information to disentangle different physical processes in solar prominences.

  9. First observations from a CCD all-sky spectrograph at Barentsburg (Spitsbergen

    Directory of Open Access Journals (Sweden)

    S. A. Chernouss

    2008-05-01

    Full Text Available A digital CCD all-sky spectrograph was made by the Polar Geophysical Institute (PGI to support IPY activity in auroral research. The device was tested at the Barentsburg observatory of PGI during the winter season of 2005–2006. The spectrograph is based on a cooled CCD and a transmission grating. The main features of this spectrograph are: a wide field of view (~180°, a wide spectral range (380–740 nm, a spectral resolution of 0.6 nm, a background level of about 100 R at 1-min exposure time. Several thousand spectra of nightglow and aurora were recorded during the observation season. It was possible to register both the strong auroral emissions, as well as weak ones. Spectra of aurora, including nitrogen and oxygen molecular and atomic emissions, as well as OH emissions of the nightglow are shown. A comparison has been conducted of auroral spectra obtained by the film all-sky spectral camera C-180-S at Spitsbergen during IGY, with spectra obtained at Barentsburg during the last winter season. The relationship between the red (630.0 nm and green (557.7 nm auroral emissions shows that the green emission is dominant near the minimum of the solar cycle activity (2005–2006. The opposite situation is observed during 1958–1959, with a maximum solar cycle activity.

  10. A High Resolution Solar Spectrograph for the Berkeley Undergraduate Astronomy Lab

    Science.gov (United States)

    Strickler, R.; Bresloff, C.; Graham, J.

    2005-05-01

    The discovery of extra-solar planets has stimulated interest amongst undergraduates. The Doppler method for detecting exoplanets requires extraction of signals at the 1/1000 of a pixel level. To illustrate this technique, we used a newly built spectrometer to extract sub-pixel Doppler shifts in the solar photosphere. We have used this spectrograph to measure the velocity gradient across the sun and hence infer the solar radius. The limb-to-limb Doppler shift is only 1.8 km/s. A spectral resolution > 100,000 would be required to manifest this motion. Achieving such high spectral resolution is unnecessary since even a small telescope can record high SNR (> 100) spectra. Within a few seconds it is possible to discern solar rotational Doppler shifts at resolutions as low as 10,000. We must also understand coordinate transformation to convert the Doppler signal along the observed diameter to the equatorial rotation speed assuming solid body rotation. The spectrograph system includes an 8-inch Schmidt-Cassegrain stationary telescope; a 100-micron diameter multi-mode fiber; aspheric f-number reformatting optics; a collimating lens; a 110 mm, 80 grooves/mm, θ blaze = 64.5 degree replica echelle grating; and an Apogee 1024 x 1024 thermo-electrically cooled CCD. The spectrometer optics are mounted on a 5-ft x 3-ft optical bench. Operating the spectrometer remotely using VNC and a wireless laptop, we pointed the telescope so that the fiber scanned across a diameter of the solar disk while the CCD took repeated exposures. Although we were "guinea pigs," using the spectrograph for the first time in a class, it worked remarkably well. Combining measurement of the solar radius with observation of the rotation period from sunspots, the earth-sun distance can be deduced. In the future, students may measure the eccentricity of earth's orbit by measuring the sun's radial velocity over the course of a year. This work was supported by the NSF through award DUE-0311536.

  11. bHROS: A New High-Resolution Spectrograph Available on Gemini South

    Science.gov (United States)

    Margheim, S. J.; Gemini bHROS Team

    2005-12-01

    The Gemini bench-mounted High-Resolution Spectrograph (bHROS) is available for science programs beginning in 2006A. bHROS is the highest resolution (R=150,000) optical echelle spectrograph optimized for use on an 8-meter telescope. bHROS is fiber-fed via GMOS-S from the Gemini South focal plane and is available in both a dual-fiber Object/Sky mode and a single (larger) Object-only mode. Instrument characteristics and sample data taken during commissioning will be presented.

  12. Performances of X-shooter, the new wide-band intermediate resolution spectrograph at the VLT

    NARCIS (Netherlands)

    Vernet, J.; Dekker, H.; D'Odorico, S.; Mason, E.; Di Marcantonio, P.; Downing, M.; Elswijk, E.; Finger, G.; Fischer, G.; Kerber, F.; Kern, L.; Lizon, J.-L.; Lucuix, C.; Mainieri, V.; Modigliani, A.; Patat, F.; Ramsay, S.; Santin, P.; Vidali, M.; Groot, P.; Guinouard, I.; Hammer, F.; Kaper, L.; Kjærgaard-Rasmussen, P.; Navarro, R.; Randich, S.; Zerbi, F.

    2010-01-01

    X-shooter is the first second-generation instrument newly commissioned a the VLT. It is a high efficiency single target intermediate resolution spectrograph covering the range 300 - 2500 nm in a single shot. We summarize the main characteristics of the instrument and present its performances as

  13. X-shooter, the new wide band intermediate resolution spectrograph at the ESO Very Large Telescope

    NARCIS (Netherlands)

    Vernet, J.; Dekker, H.; D'Odorico, S.; Kaper, L.; Kjaergaard, P.; Hammer, F.; Randich, S.; Zerbi, F.; Groot, P.J.; Hjorth, J.; Guinouard, I.; Navarro, R.; Adolfse, T.; Albers, P.W.; Amans, J.-P.; Andersen, J.J.; Andersen, M.I.; Binetruy, P.; Bristow, P.; Castillo, R.; Chemla, F.; Christensen, L.; Conconi, P.; Conzelmann, R.; Dam, J.; De Caprio, V.; de Ugarte Postigo, A.; Delabre, B.; Di Marcantonio, P.; Downing, M.; Elswijk, E.; Finger, G.; Fischer, G.; Flores, H.; François, P.; Goldoni, P.; Guglielmi, L.; Haigron, R.; Hanenburg, H.; Hendriks, I.; Horrobin, M.; Horville, D.; Jessen, N.C.; Kerber, F.; Kern, L.; Kiekebusch, M.; Kleszcz, P.; Klougart, J.; Kragt, J.; Larsen, H.H.; Lizon, J.-L.; Lucuix, C.; Mainieri, V.; Manuputy, R.; Martayan, C.; Mason, E.; Mazzoleni, R.; Michaelsen, N.; Modigliani, A.; Moehler, S.; Møller, P.; Norup Sørensen, A.; Nørregaard, P.; Péroux, C.; Patat, F.; Pena, E.; Pragt, J.; Reinero, C.; Rigal, F.; Riva, M.; Roelfsema, R.; Royer, F.; Sacco, G.; Santin, P.; Schoenmaker, T.; Spano, P.; Sweers, E.; ter Horst, R.; Tintori, M.; Tromp, N.; van Dael, P.; van Vliet, H.; Venema, L.; Vidali, M.; Vinther, J.; Vola, P.; Winters, R.; Wistisen, D.; Wulterkens, G.; Zacchei, A.

    2011-01-01

    X-shooter is the first 2nd generation instrument of the ESO Very Large Telescope (VLT). It is a very efficient, single-target, intermediate-resolution spectrograph that was installed at the Cassegrain focus of UT2 in 2009. The instrument covers, in a single exposure, the spectral range from 300 to

  14. X-shooter, the new wide band intermediate resolution spectrograph at the ESO Very Large Telescope

    DEFF Research Database (Denmark)

    Vernet, J.; Dekker, H.; D'Odorico, S.

    2011-01-01

    X-shooter is the first 2nd generation instrument of the ESO Very Large Telescope (VLT). It is a very efficient, single-target, intermediate-resolution spectrograph that was installed at the Cassegrain focus of UT2 in 2009. The instrument covers, in a single exposure, the spectral range from 300 t...

  15. Optical design of a versatile FIRST high-resolution near-IR spectrograph

    Science.gov (United States)

    Zhao, Bo; Ge, Jian

    2012-09-01

    We report the update optical design of a versatile FIRST high resolution near IR spectrograph, which is called Florida IR Silicon immersion grating spectromeTer (FIRST). This spectrograph uses cross-dispersed echelle design with white pupils and also takes advantage of the image slicing to increase the spectra resolution, while maintaining the instrument throughput. It is an extremely high dispersion R1.4 (blazed angle of 54.74°) silicon immersion grating with a 49 mm diameter pupil is used as the main disperser at 1.4μm -1.8μm to produce R=72,000 while an R4 echelle with the same pupil diameter produces R=60,000 at 0.8μm -1.35μm. Two cryogenic Volume Phase Holographic (VPH) gratings are used as cross-dispersers to allow simultaneous wavelength coverage of 0.8μm -1.8μm. The butterfly mirrors and dichroic beamsplitters make a compact folding system to record these two wavelength bands with a 2kx2k H2RG array in a single exposure. By inserting a mirror before the grating disperser (the SIG and the echelle), this spectrograph becomes a very efficient integral field 3-D imaging spectrograph with R=2,000-4,000 at 0.8μm-1.8μm by coupling a 10x10 telescope fiber bundle with the spectrograph. Details about the optical design and performance are reported.

  16. PEPSI, the High-Resolution Optical-IR Spectrograph for the LBT

    Science.gov (United States)

    Andersen, Michael; Strassmeier, Klaus; Hoffman, Axel; Woche, Manfred; Spano, Paolo

    PEPSI is a high resolution fibre feed optical-IR polarimetric echelle spectrograph for the Large Binocular Telescope (LBT). PEPSI utilizes the two 8.4m LBT apertures to simultaneously record four polarization states at a resolution of 120.000. The extension of the coverage towards the IR is mainly motivated by the larger Zeeman splitting of IR lines, which would allow to study weaker/fainter magnetic structures on stars. The two optical arms, which also have an integral light mode with R up to 300.000, are under construction, while the IR arm is being designed.

  17. Observations of the radial velocity of the Sun as measured with the novel SONG spectrograph

    DEFF Research Database (Denmark)

    Pallé, P. L.; Grundahl, F.; Hage, A. Triviño

    2013-01-01

    Deployment of the prototype node of the SONG project took place in April 2012 at Observatorio del Teide (Canary Islands). Its key instrument (echelle spectrograph) was installed and operational a few weeks later while its 1 m feeding telescope suffered a considerable delay to meet the required...... specifications. Using a fibre-feed, solar light could be fed to the spectrograph and we carried out a 1-week observing campaign in June 2012 to evaluate its performance for measuring precision radial velocities. In this work we present the first results of this campaign by comparing the sensitivity of the SONG...

  18. Design of FHiRE: the Fiber High Resolution Echelle Spectrograph

    Science.gov (United States)

    Pierce, Michael J.; McLane, Jacob N.; Pilachowski, C. A.; Kobulnicky, Henry; Jang-Condell, Hannah

    2018-01-01

    The enormous success of the Kepler mission in the discovery of transiting exoplanets implies that the majority of stars have planetary systems. NASA's upcomming Transiting Exoplanet Survey Satellite (TESS) is designed to survey the brightest stars over the entire sky, systems that are accessible to spectroscopic follow-up with mid-sized telescopes. We have undertaken the development of a precision radial velocity spectrograph with the goal of providing ground-based suppoert for TESS. The instrument, known as FHiRE (Fiber High Resolution Echelle spectrograph), is being developed in collaboration with Indiana University and will deployed at the 2.3-meter telescope of the Wyoming InfraRed Observatory (WIRO). FHiRE features a traditional white pupil echelle design with R ~ 60,000 that is fed via two optical fibers from the telescope. Both the science fiber and a simultaneously sampled Thorium-Argon comparison fiber will make use of double mode scramblers. FHiRE itself will be housed within a vacuum enclosure in order to minimize any temperatue variations of the instrument and maximize its radial velocity precision. Together, these two features should enable FHiRE to reach a long-term velocity precision of < 1 m/s. We present the design of FHiRE and its expected performance. In a companion poster (Jang-Condell et al.) we will present the exoplanet science goals of the project.

  19. The assembly, calibration, and preliminary results from the Colorado high-resolution Echelle stellar spectrograph (CHESS)

    Science.gov (United States)

    Hoadley, Keri; France, Kevin; Nell, Nicholas; Kane, Robert; Schultz, Ted; Beasley, Matthew; Green, James; Kulow, Jen; Kersgaard, Eliot; Fleming, Brian

    2014-07-01

    The Colorado High-resolution Echelle Stellar Spectrograph (CHESS) is a far ultraviolet (FUV) rocket-borne experiment designed to study the atomic-to-molecular transitions within translucent interstellar clouds. CHESS is an objective echelle spectrograph operating at f/12.4 and resolving power of 120,000 over a band pass of 100 - 160 nm. The echelle flight grating is the product of a research and development project with LightSmyth Inc. and was coated at Goddard Space Flight Center (GSFC) with Al+LiF. It has an empirically-determined groove density of 71.67 grooves/mm. At the Center for Astrophysics and Space Astronomy (CASA) at the University of Colorado (CU), we measured the efficiencies of the peak and adjacent dispersion orders throughout the 90 - 165 nm band pass to characterize the behavior of the grating for pre-flight calibrations and to assess the scattered-light behavior. The crossdispersing grating, developed and ruled by Horiba Jobin-Yvon, is a holographically-ruled, low line density (351 grooves/mm), powered optic with a toroidal surface curvature. The CHESS cross-disperser was also coated at GSFC; Cr+Al+LiF was deposited to enhance far-UV efficiency. Results from final efficiency and reflectivity measurements of both optics are presented. We utilize a cross-strip anode microchannel plate (MCP) detector built by Sensor Sciences to achieve high resolution (25 μm spatial resolution) and data collection rates (~ 106 photons/second) over a large format (40mm round, digitized to 8k x 8k) for the first time in an astronomical sounding rocket flight. The CHESS instrument was successfully launched from White Sands Missile Range on 24 May 2014. We present pre-flight sensitivity, effective area calculations, lab spectra and calibration results, and touch on first results and post-flight calibration plans.

  20. Stellar observations with the Voyager EUV objective grating spectrograph

    International Nuclear Information System (INIS)

    Holberg, J.B.; Polidan, R.S.; Barry, D.C.

    1986-01-01

    During the periods of interplanetary cruise the Voyager ultraviolet spectrometers are used to provide unique and otherwise unobtainable observations in the extreme ultraviolet (EUV, 500 to 1200) and the far ultraviolet (FUV, 912 to 1220 A). These observations include the spectra of hot stellar sources as well as emission from the interplanetary medium. Recent results of note include: (1) extensive spectrophotometric coverage of a superoutburst of the dwarf nova VW Hydri, which showed a clear 1/2 day delay in the outburst at 1000 A relative to that observed in the optical and a curious dip in the FUV light curve near maximum light. The Voyager observations were part of a comprehensive and highly successful campaign involving EXOSAT, IUE and ground based observations of this dwarf nova; (2) a comprehensive study of Be star spectra and variability. These results show the critical importance of FUV observations in the study of the effects of stellar rotation in hot stars; (3) the detection of a strong O VI absorption feature in the spectrum of the PG 1159-like object H1504+65. This detection along with the optical identification of weak O IV lines was a key to the interpretation of this object; which is of extremely high (>150,000K) temperature and appears to be a unique example of a stellar atmosphere devoid of H and He; (4) an analysis of an extremely long duration spectrum of the EUV and FUV sky background, which establishes important new upper limits on both continuum and line emission. This result also provide the first detection of interplanetary Lyman gamma

  1. Soft x-ray spectrographs for solar observations

    International Nuclear Information System (INIS)

    Bruner, M.E.

    1988-01-01

    This paper surveys some of the recent advances in the state of the art of soft X-ray spectrometers, particularly as they might be applied to Solar Observations. The discussions center on the windowless region from roughly 1 to 100 A, and covers both grating and crystal instruments. The author begins with a short discussion of the solar soft X-ray spectrum and its interpretation, followed by a few general comments on problems peculiar to soft X-ray instruments. The paper reviews of recent developments in spectrometer optical design, which has been a lively field during the last dozen years. This is particularly true in the case of grating spectrometers. The paper concludes with a short section on telescope considerations, and some remarks on future flight opportunities

  2. KiwiSpec - an advanced spectrograph for high resolution spectroscopy: prototype design and performance

    Science.gov (United States)

    Gibson, Steve; Barnes, Stuart I.; Hearnshaw, John; Nield, Kathryn; Cochrane, Dave; Grobler, Deon

    2012-09-01

    A new advanced high resolution spectrograph has been developed by Kiwistar Optics of Industrial Research Ltd., New Zealand. The instrument, KiwiSpec R4-100, is bench-mounted, bre-fed, compact (0.75m by 1.5m footprint), and is well-suited for small to medium-sized telescopes. The instrument makes use of several advanced concepts in high resolution spectrograph design. The basic design follows the classical white pupil concept in an asymmetric implementation and employs an R4 echelle grating illuminated by a 100mm diameter collimated beam for primary dispersion. A volume phase holographic grating (VPH) based grism is used for cross-dispersion. The design also allows for up to four camera and detector channels to allow for extended wavelength coverage at high eciency. A single channel prototype of the instrument has been built and successfully tested with a 1m telescope. Targets included various spectrophotometric standard stars and several radial velocity standard stars to measure the instrument's light throughput and radial velocity capabilities. The prototype uses a 725 lines/mm VPH grism, an off-the-shelf camera objective, and a 2k×2k CCD. As such, it covers the wavelength range from 420nm to 660nm and has a resolving power of R ≍ 40,000. Spectrophotometric and precision radial velocity results from the on-sky testing period will be reported, as well as results of laboratory-based measurements. The optical design of KiwiSpec, and the various multi-channel design options, will be presented elsewhere in these proceedings.

  3. High resolution solar observations

    International Nuclear Information System (INIS)

    Title, A.

    1985-01-01

    Currently there is a world-wide effort to develop optical technology required for large diffraction limited telescopes that must operate with high optical fluxes. These developments can be used to significantly improve high resolution solar telescopes both on the ground and in space. When looking at the problem of high resolution observations it is essential to keep in mind that a diffraction limited telescope is an interferometer. Even a 30 cm aperture telescope, which is small for high resolution observations, is a big interferometer. Meter class and above diffraction limited telescopes can be expected to be very unforgiving of inattention to details. Unfortunately, even when an earth based telescope has perfect optics there are still problems with the quality of its optical path. The optical path includes not only the interior of the telescope, but also the immediate interface between the telescope and the atmosphere, and finally the atmosphere itself

  4. The third flight of the Colorado high-resolution echelle stellar spectrograph (CHESS): improvements, calibrations, and preliminary results

    Science.gov (United States)

    Kruczek, Nicholas; Nell, Nicholas; France, Kevin; Hoadley, Keri; Fleming, Brian; Kane, Robert; Ulrich, Stefan; Egan, Arika; Beatty, Dawson

    2017-08-01

    In this proceeding, we describe the scientific motivation and technical development of the Colorado HighResolution Echelle Stellar Spectrograph (CHESS), focusing on the hardware advancements and testing of components for the third launch of the payload (CHESS-3). CHESS is a far ultraviolet rocket-borne instrument designed to study the atomic-to-molecular transitions within translucent cloud regions in the interstellar medium. CHESS is an objective echelle spectrograph, which uses a mechanically-ruled echelle and a powered (f/12.4) crossdispersing grating, and is designed to achieve a resolving power R > 100,000 over the bandpass λλ 1000-1600 Å. Results from final efficiency and reflectivity measurements for the optical components of CHESS-3 are presented. An important role of sounding rocket experiments is the testing and verification of the space flight capabilities of experimental technologies. CHESS-3 utilizes a 40mm-diameter cross-strip anode microchannel plate detector fabricated by Sensor Sciences LLC, capable of achieving high spatial resolution and a high global count rate (˜1 MHz). We present pre-flight laboratory spectra and calibration results, including wavelength solution and resolving power of the instrument. The fourth launch of CHESS (CHESS-4) will demonstrate a δ-doped CCD, assembled in collaboration with the Microdevices Laboratory at JPL and Arizona State University. In support of CHESS-4, the CHESS-3 payload included a photomultiplier tube, used as a secondary confirmation of the optical alignment of the payload during flight. CHESS-3 launched on 26 June 2017 aboard NASA/CU sounding rocket mission 36.323 UG. We present initial flight results for the CHESS-3 observation of the β1 Scorpii sightline.

  5. Optical design of the PEPSI high-resolution spectrograph at LBT

    Science.gov (United States)

    Andersen, Michael I.; Spano, Paolo; Woche, Manfred; Strassmeier, Klaus G.; Beckert, Erik

    2004-09-01

    PEPSI is a high-resolution, fiber fed echelle spectrograph with polarimetric capabilities for the LBT. In order to reach a maximum resolution R=120.000 in polarimetric mode and 300.000 in integral light mode with high efficiency in the spectral range 390-1050~nm, we designed a white-pupil configuration with Maksutov collimators. Light is dispersed by an R4 31.6 lines/mm monolithic echelle grating mosaic and split into two arms through dichroics. The two arms, optimized for the spectral range 390-550~nm and 550-1050~nm, respectively, consist of Maksutov transfer collimators, VPH-grism cross dispersers, optimized dioptric cameras and 7.5K x 7.5K 8~μ CCDs. Fibers of different core sizes coupled to different image-slicers allow a high throughput, comparable to that of direct feed instruments. The optical configuration with only spherical and cylindrical surfaces, except for one aspherical surface in each camera, reduces costs and guarantees high optical quality. PEPSI is under construction at AIP with first light expected in 2006.

  6. Use of an ultra-high resolution magnetic spectrograph for materials research

    NARCIS (Netherlands)

    Boerma, DO; Arnoldbik, WM; Wolfswinkel, W; Balogh, AG; Walter, G

    1997-01-01

    A brief description is given of a magnetic spectrograph for RBS and ERD analysis with MeV beams, delivered by a Tandem accelerator. With a number of examples of thin layer analysis it is shown that the spectrograph is uniquely suited for the measurement of concentration depth profiles up to a depth

  7. UNDERCOVER EUV SOLAR JETS OBSERVED BY THE INTERFACE REGION IMAGING SPECTROGRAPH

    Energy Technology Data Exchange (ETDEWEB)

    Chen, N.-H. [Korea Astronomy and Space Science Institute, Daejeon (Korea, Republic of); Innes, D. E. [Max-Planck-Institut für Sonnensystemforschung, D-37077 Göttingen (Germany)

    2016-12-10

    It is well-known that extreme ultraviolet (EUV) emission emitted at the solar surface is absorbed by overlying cool plasma. Especially in active regions, dark lanes in EUV images suggest that much of the surface activity is obscured. Simultaneous observations from the Interface Region Imaging Spectrograph, consisting of UV spectra and slit-jaw images (SJI), give vital information with sub-arcsecond spatial resolution on the dynamics of jets not seen in EUV images. We studied a series of small jets from recently formed bipole pairs beside the trailing spot of active region 11991, which occurred on 2014 March 5 from 15:02:21 UT to 17:04:07 UT. Collimated outflows with bright roots were present in SJI 1400 Å (transition region) and 2796 Å (upper chromosphere) that were mostly not seen in Atmospheric Imaging Assembly (AIA) 304 Å (transition region) and AIA 171 Å (lower corona) images. The Si iv spectra show a strong blue wing enhancement, but no red wing, in the line profiles of the ejecta for all recurrent jets, indicating outward flows without twists. We see two types of Mg ii line profiles produced by the jets spires: reversed and non-reversed. Mg ii lines remain optically thick, but turn optically thin in the highly Doppler shifted wings. The energy flux contained in each recurrent jet is estimated using a velocity differential emission measure technique that measures the emitting power of the plasma as a function of the line-of-sight velocity. We found that all the recurrent jets release similar energy (10{sup 8} erg cm{sup −2} s{sup −1}) toward the corona and the downward component is less than 3%.

  8. KiwiSpec: The Design and Performance of a High Resolution Echelle Spectrograph for Astronomy

    Science.gov (United States)

    Gibson, Steven Ross

    This document describes the design, analysis, construction and testing of KiwiSpec, a fibre-fed, high resolution astronomical spectrograph of an asymmetric white pupil design. The instrument employs an R4, 31.6 groove mm-1 échelle grating for primary dispersion and a 725 lines mm-1 volume phase holographic (VPH) based grism for cross-dispersion. Two versions of the prototype were designed and constructed: an 'in-air' prototype, and a prototype featuring a vacuum chamber (to increase the stability of the instrument). The KiwiSpec optical design is introduced, as well as a description of the theory behind a cross-dispersed échelle spectrograph. The results of tolerancing the optical design are reported for alignment, optical fabrication, and optical surface quality groups of parameters. The optical windows of an iodine cell are also toleranced. The opto-mechanical mounts of both prototypes are described in detail, as is the design of the vacuum chamber system. Given the goal of 1 m/s radial velocity stability, analyses were undertaken to determine the allowable amount of movement of the vacuum windows, and to determine the allowable changes in temperature and pressure within and outside of the vacuum chamber. The spectral efficiency of the instrument was estimated through a predictive model; this was calculated for the as-built instrument and also for an instrument with ideal, high-efficiency coatings. Measurements of the spectral efficiency of various components of the instrument are reported, as well as a description of the measurement system developed to test the efficiency of VPH gratings. On-sky efficiency measurements from use of KiwiSpec on the 1-m McLellan telescope at Mt John University Observatory are reported. Two possible exposure meter locations are explored via an efficiency model, and also through the measurement of the zero-order reflectivity of the échelle grating. Various stability aspects of the design are investigated. These include the

  9. PEPSI: The high-resolution échelle spectrograph and polarimeter for the Large Binocular Telescope

    Science.gov (United States)

    Strassmeier, K. G.; Ilyin, I.; Järvinen, A.; Weber, M.; Woche, M.; Barnes, S. I.; Bauer, S.-M.; Beckert, E.; Bittner, W.; Bredthauer, R.; Carroll, T. A.; Denker, C.; Dionies, F.; DiVarano, I.; Döscher, D.; Fechner, T.; Feuerstein, D.; Granzer, T.; Hahn, T.; Harnisch, G.; Hofmann, A.; Lesser, M.; Paschke, J.; Pankratow, S.; Plank, V.; Plüschke, D.; Popow, E.; Sablowski, D.

    2015-05-01

    PEPSI is the bench-mounted, two-arm, fibre-fed and stabilized Potsdam Echelle Polarimetric and Spectroscopic Instrument for the 2×8.4 m Large Binocular Telescope (LBT). Three spectral resolutions of either 43 000, 120 000 or 270 000 can cover the entire optical/red wavelength range from 383 to 907 nm in three exposures. Two 10.3k×10.3k CCDs with 9-μm pixels and peak quantum efficiencies of 94-96 % record a total of 92 échelle orders. We introduce a new variant of a wave-guide image slicer with 3, 5, and 7 slices and peak efficiencies between 92-96 %. A total of six cross dispersers cover the six wavelength settings of the spectrograph, two of them always simultaneously. These are made of a VPH-grating sandwiched by two prisms. The peak efficiency of the system, including the telescope, is 15 % at 650 nm, and still 11 % and 10 % at 390 nm and 900 nm, respectively. In combination with the 110 m2 light-collecting capability of the LBT, we expect a limiting magnitude of ≈ 20th mag in V in the low-resolution mode. The R = 120 000 mode can also be used with two, dual-beam Stokes IQUV polarimeters. The 270 000-mode is made possible with the 7-slice image slicer and a 100-μm fibre through a projected sky aperture of 0.74 arcsec, comparable to the median seeing of the LBT site. The 43 000-mode with 12-pixel sampling per resolution element is our bad seeing or faint-object mode. Any of the three resolution modes can either be used with sky fibers for simultaneous sky exposures or with light from a stabilized Fabry-Pérot étalon for ultra-precise radial velocities. CCD-image processing is performed with the dedicated data-reduction and analysis package PEPSI-S4S. Its full error propagation through all image-processing steps allows an adaptive selection of parameters by using statistical inferences and robust estimators. A solar feed makes use of PEPSI during day time and a 500-m feed from the 1.8 m VATT can be used when the LBT is busy otherwise. In this paper, we

  10. The science case of the PEPSI high-resolution echelle spectrograph and polarimeter for the LBT

    Science.gov (United States)

    Strassmeier, K. G.; Pallavicini, R.; Rice, J. B.; Andersen, M. I.

    2004-05-01

    We lay out the scientific rationale for and present the instrumental requirements of a high-resolution adaptive-optics Echelle spectrograph with two full-Stokes polarimeters for the Large Binocular Telescope (LBT) in Arizona. Magnetic processes just like those seen on the Sun and in the space environment of the Earth are now well recognized in many astrophysical areas. The application to other stars opened up a new field of research that became widely known as the solar-stellar connection. Late-type stars with convective envelopes are all affected by magnetic processes which give rise to a rich variety of phenomena on their surface and are largely responsible for the heating of their outer atmospheres. Magnetic fields are likely to play a crucial role in the accretion process of T-Tauri stars as well as in the acceleration and collimation of jet-like flows in young stellar objects (YSOs). Another area is the physics of active galactic nucleii (AGNs) , where the magnetic activity of the accreting black hole is now believed to be responsible for most of the behavior of these objects, including their X-ray spectrum, their notoriously dramatic variability, and the powerful relativistic jets they produce. Another is the physics of the central engines of cosmic gamma-ray bursts, the most powerful explosions in the universe, for which the extreme apparent energy release are explained through the collimation of the released energy by magnetic fields. Virtually all the physics of magnetic fields exploited in astrophysics is somehow linked to our understanding of the Sun's and the star's magnetic fields.

  11. The re-flight of the Colorado high-resolution Echelle stellar spectrograph (CHESS): improvements, calibrations, and post-flight results

    Science.gov (United States)

    Hoadley, Keri; France, Kevin; Kruczek, Nicholas; Fleming, Brian; Nell, Nicholas; Kane, Robert; Swanson, Jack; Green, James; Erickson, Nicholas; Wilson, Jacob

    2016-07-01

    In this proceeding, we describe the scientific motivation and technical development of the Colorado High- resolution Echelle Stellar Spectrograph (CHESS), focusing on the hardware advancements and testing supporting the second flight of the payload (CHESS-2). CHESS is a far ultraviolet (FUV) rocket-borne instrument designed to study the atomic-to-molecular transitions within translucent cloud regions in the interstellar medium (ISM). CHESS is an objective f/12.4 echelle spectrograph with resolving power > 100,000 over the band pass 1000 - 1600 Å. The spectrograph was designed to employ an R2 echelle grating with "low" line density. We compare the FUV performance of experimental echelle etching processes (lithographically by LightSmyth, Inc. and etching via electron-beam technology by JPL Microdevices Laboratory) with traditional, mechanically-ruled gratings (Bach Research, Inc. and Richardson Gratings). The cross-dispersing grating, developed and ruled by Horiba Jobin-Yvon, is a holographically-ruled, "low" line density, powered optic with a toroidal surface curvature. Both gratings were coated with aluminum and lithium fluoride (Al+LiF) at Goddard Space Flight Center (GSFC). Results from final efficiency and reflectivity measurements for the optical components of CHESS-2 are presented. CHESS-2 utilizes a 40mm-diameter cross-strip anode readout microchannel plate (MCP) detector fabricated by Sensor Sciences, Inc., to achieve high spatial resolution with high count rate capabilities (global rates 1 MHz). We present pre-flight laboratory spectra and calibration results. CHESS-2 launched on 21 February 2016 aboard NASA/CU sounding rocket mission 36.297 UG. We observed the intervening ISM material along the sightline to epsilon Per and present initial characterization of the column densities, temperature, and kinematics of atomic and molecular species in the observation.

  12. OBSERVATION AND ANALYSIS OF BALLISTIC DOWNFLOWS IN AN M-CLASS FLARE WITH THE INTERFACE REGION IMAGING SPECTROGRAPH

    Energy Technology Data Exchange (ETDEWEB)

    Brannon, Sean R. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States)

    2016-12-10

    Despite significant advances in instrumentation, there remain no studies that analyze observations of on-disk flare loop plasma flows covering the entire evolution from chromospheric evaporation, through plasma cooling, to draining downflows. We present results from an imaging and spectroscopic observation from the Interface Region Imaging Spectrograph ( IRIS ) of the SOL2015–03–12T11:50:00 M-class flare, at high spatial resolution and time cadence. Our analysis of this event reveals initial plasma evaporation at flare temperatures indicated by 100–200 km s{sup −1} blueshifts in the Fe xxi line. We subsequently observe plasma cooling into chromospheric lines (Si iv and O iv) with ∼11 minute delay, followed by loop draining at ∼40 km s{sup −1} as indicated by a “C”-shaped redshift structure and significant (∼60 km s{sup −1}) non-thermal broadening. We use density-sensitive lines to calculate a plasma density for the flare loops, and estimate a theoretical cooling time approximately equal to the observed delay. Finally, we use a simple elliptical free-fall draining model to construct synthetic spectra, and perform what we believe to be the first direct comparison of such synthetic spectra to observations of draining downflows in flare loops.

  13. Opto-mechanical design of a new cross dispersion unit for the CRIRES+ high resolution spectrograph for the VLT

    Science.gov (United States)

    Lizon, Jean Louis; Klein, Barbara; Oliva, Ernesto; Löwinger, Tom; Anglada Escude, Guillem; Baade, Dietrich; Bristow, Paul; Dorn, Reinhold J.; Follert, Roman; Grunhut, Jason; Hatzes, Artie; Heiter, Ulrike; Ives, Derek; Jung, Yves; Kerber, Florian; Lockhart, Matt; Marquart, Thomas; Origlia, Livia; Pasquini, Luca; Paufique, Jerome; Piskunov, N.; Pozna, Eszter; Reiners, Ansgar; Smette, Alain; Smoker, Jonathan; Seemann, Ulf; Stempels, Eric; Valenti, Elena

    2014-07-01

    CRIRES is one of the few IR (0.92-5.2 μm) high-resolution spectrographs in operation at the VLT since 2006. Despite good performance it suffers a limitation that significantly hampers its ability: a small spectral coverage per exposure. The CRIRES upgrade (CRIRES+) proposes to transform CRIRES into a cross-dispersed spectrograph while maintaining the high resolution (100000) and increasing the wavelength coverage by a factor 10 compared to the current capabilities. A major part of the upgrade is the exchange of the actual cryogenic pre-disperser module by a new cross disperser unit. In addition to a completely new optical design, a number of important changes are required on key components and functions like the slit unit and detectors units. We will outline the design of these new units fitting inside a predefined and restricted space. The mechanical design of the new functions including a description and analysis will be presented. Finally we will present the strategy for the implementation of the changes.

  14. Development of infrared Echelle spectrograph and mid-infrared heterodyne spectrometer on a small telescope at Haleakala, Hawaii for planetary observation

    Science.gov (United States)

    Sakanoi, Takeshi; Kasaba, Yasumasa; Kagitani, Masato; Nakagawa, Hiromu; Kuhn, Jeff; Okano, Shoichi

    2014-08-01

    We report the development of infrared Echelle spectrograph covering 1 - 4 micron and mid-infrared heterodyne spectrometer around 10 micron installed on the 60-cm telescope at the summit of Haleakala, Hawaii (alt.=3000m). It is essential to carry out continuous measurement of planetary atmosphere, such as the Jovian infrared aurora and the volcanoes on Jovian satellite Io, to understand its time and spatial variations. A compact and easy-to-use high resolution infrared spectrometer provide the good opportunity to investigate these objects continuously. We are developing an Echelle spectrograph called ESPRIT: Echelle Spectrograph for Planetary Research In Tohoku university. The main target of ESPRIT is to measure the Jovian H3+ fundamental line at 3.9 micron, and H2 nu=1 at 2.1 micron. The 256x256 pixel CRC463 InSb array is used. An appropriate Echelle grating is selected to optimize at 3.9 micron and 2.1 micron for the Jovian infrared auroral observations. The pixel scale corresponds to the atmospheric seeing (0.3 arcsec/pixel). This spectrograph is characterized by a long slit field-of-view of ~ 50 arcsec with a spectral resolution is over 20,000. In addition, we recently developed a heterodyne spectrometer called MILAHI on the 60 cm telescope. MILAHI is characterized by super high-resolving power (more than 1,500,000) covering from 7 - 13 microns. Its sensitivity is 2400 K at 9.6 micron with a MCT photo diode detector of which bandwidth of 3000 MHz. ESPRIT and MILAHI is planned to be installed on 60 cm telescope is planned in 2014.

  15. Structure and Dynamics of Cool Flare Loops Observed by the Interface Region Imaging Spectrograph

    Energy Technology Data Exchange (ETDEWEB)

    Mikuła, K.; Berlicki, A. [Astronomical Institute, University of Wrocław, Kopernika 11, 51–622 Wrocław (Poland); Heinzel, P.; Liu, W., E-mail: mikula@astro.uni.wroc.pl [Astronomical Institute, The Czech Academy of Sciences, 25165 Ondřejov (Czech Republic)

    2017-08-10

    Flare loops were well observed with the Interface Region Imaging Spectrograph ( IRIS ) during the gradual phase of two solar flares on 2014 March 29 and 2015 June 22. Cool flare loops are visible in various spectral lines formed at chromospheric and transition-region temperatures and exhibit large downflows which correspond to the standard scenario. The principal aim of this work is to analyze the structure and dynamics of cool flare loops observed in Mg ii lines. Synthetic profiles of the Mg ii h line are computed using the classical cloud model and assuming a uniform background intensity. In this paper, we study novel IRIS NUV observations of such loops in Mg ii h and k lines and also show the behavior of hotter lines detected in the FUV channel. We obtained the spatial evolution of the velocities: near the loop top, the flow velocities are small and they are increasing toward the loop legs. Moreover, from slit-jaw image (SJI) movies, we observe some plasma upflows into the loops, which are also detectable in Mg ii spectra. The brightness of the loops systematically decreases with increasing flow velocity, and we ascribe this to the effect of Doppler dimming, which works for Mg ii lines. Emission profiles of Mg ii were found to be extremely broad, and we explain this through the large unresolved non-thermal motions.

  16. Cool transition region loops observed by the Interface Region Imaging Spectrograph

    Science.gov (United States)

    Huang, Z.; Xia, L.; Li, B.; Madjarska, M. S.

    2015-12-01

    An important class of loops in the solar atmosphere, cool transition region loops, have received little attention mainly due to instrumental limitations. We analyze a cluster of these loops in the on-disk active region NOAA 11934 recorded in a Si IV 1402.8 Å spectral raster and 1400Å slit-jaw (SJ) images taken by the Interface Region Imaging Spectrograph. We divide these loops into three groups and study their dynamics, evolution and interaction.The first group comprises geometrically relatively stable loops, which are finely scaled with 382~626 km cross-sections. Siphon flows in these loops are suggested by the Doppler velocities gradually changing from -10 km/s (blue-shifts) in one end to 20 km/s (red-shifts) in the other. Nonthermal velocities from 15 to 25 km/s were determined. The obtained physical properties suggest that these loops are impulsively heated by magnetic reconnection occurring at the blue-shifted footpoints where magnetic cancellation with a rate of 1015 Mx/s is found. The released magnetic energy is redistributed by the siphon flows. The second group corresponds to two active footpoints rooted in mixed-magnetic-polarity regions. Magnetic reconnection in both footpoints is suggested by explosive-event line profiles with enhanced wings up to 200 km/s and magnetic cancellation with a rate of ~1015 Mx/s. In the third group, an interaction between two cool loop systems is observed. Mixed-magnetic polarities are seen in their conjunction area where explosive-event line profiles and magnetic cancellation with a rate of 3×1015 Mx/s are found. This is a clear indication that magnetic reconnection occurs between these two loop systems. Our observations suggest that the cool transition region loops are heated impulsively most likely by sequences of magnetic reconnection events.

  17. Spectrographic observations of high intensity discharges; Observation spectrographique de decharges a forte intensite

    Energy Technology Data Exchange (ETDEWEB)

    Breton, C; Charon, J; Hubert, P; Yvon, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1957-07-01

    During straight discharges in deuterium at low pressure, the production of X-rays and neutrons has been observed. Spectroscopic observation of the light emitted reveals a broadening of the Balmer lines. From this a mean ionic density of the order of several 10{sup 16} ions/cm{sup 3} is deduced. (author) [French] Au cours de decharges rectilignes dans le deuterium sous basse pression, la production de rayons X et de neutrons a ete observee. L'observation spectroscopique de la lumiere emise revele un elargissement des raies de Balmer. On en deduit une densite ionique moyenne de l'ordre de quelques 10{sup 16} ions/cm{sup 3}. (auteur)

  18. COSMIC ORIGINS SPECTROGRAPH OBSERVATIONS OF TRANSLUCENT CLOUDS: Cyg OB2 8A

    International Nuclear Information System (INIS)

    Snow, Theodore P.; Destree, Joshua D.; Burgh, Eric B.; Ferguson, Ryan M.; Danforth, Charles W.; Cordiner, Martin

    2010-01-01

    Data from the Cosmic Origins Spectrograph (COS) are presented for the first highly reddened target (Cyg OB2 8A) under the COS Science Team's guaranteed time allocation. Column densities of ionic, atomic, and molecular species are reported and implications are discussed. Data from Cyg OB2 8A demonstrate the ability to analyze highly reddened interstellar sight lines with the COS that were unavailable to previous UV instruments. Measured column densities indicate that the Cyg OB2 8A line of sight contains multiple diffuse clouds rather than a dominant translucent cloud.

  19. Super resolution for astronomical observations

    Science.gov (United States)

    Li, Zhan; Peng, Qingyu; Bhanu, Bir; Zhang, Qingfeng; He, Haifeng

    2018-05-01

    In order to obtain detailed information from multiple telescope observations a general blind super-resolution (SR) reconstruction approach for astronomical images is proposed in this paper. A pixel-reliability-based SR reconstruction algorithm is described and implemented, where the developed process incorporates flat field correction, automatic star searching and centering, iterative star matching, and sub-pixel image registration. Images captured by the 1-m telescope at Yunnan Observatory are used to test the proposed technique. The results of these experiments indicate that, following SR reconstruction, faint stars are more distinct, bright stars have sharper profiles, and the backgrounds have higher details; thus these results benefit from the high-precision star centering and image registration provided by the developed method. Application of the proposed approach not only provides more opportunities for new discoveries from astronomical image sequences, but will also contribute to enhancing the capabilities of most spatial or ground-based telescopes.

  20. Spectrographic analysis

    International Nuclear Information System (INIS)

    Quinn, C.A.

    1983-01-01

    The article deals with spectrographic analysis and the analytical methods based on it. The theory of spectrographic analysis is discussed as well as the layout of a spectrometer system. The infrared absorption spectrum of a compound is probably its most unique property. The absorption of infrared radiation depends on increasing the energy of vibration and rotation associated with a covalent bond. The infrared region is intrinsically low in energy thus the design of infrared spectrometers is always directed toward maximising energy throughput. The article also considers atomic absorption - flame atomizers, non-flame atomizers and the source of radiation. Under the section an emission spectroscopy non-electrical energy sources, electrical energy sources and electrical flames are discussed. Digital computers form a part of the development on spectrographic instrumentation

  1. Flare Ribbons Approach Observed by the Interface Region Imaging Spectrograph and the Solar Dynamics Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ting; Zhang, Jun; Hou, Yijun, E-mail: liting@nao.cas.cn [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2017-10-10

    We report flare ribbons approach (FRA) during a multiple-ribbon M-class flare on 2015 November 4 in NOAA AR 12443, obtained by the Interface Region Imaging Spectrograph and the Solar Dynamics Observatory. The flare consisted of a pair of main ribbons and two pairs of secondary ribbons. The two pairs of secondary ribbons were formed later than the appearance of the main ribbons, with respective time delays of 15 and 19 minutes. The negative-polarity main ribbon spread outward faster than the first secondary ribbon with the same polarity in front of it, and thus the FRA was generated. Just before their encounter, the main ribbon was darkening drastically and its intensity decreased by about 70% in 2 minutes, implying the suppression of main-phase reconnection that produced two main ribbons. The FRA caused the deflection of the main ribbon to the direction of secondary ribbon with a deflection angle of about 60°. A post-approach arcade was formed about 2 minutes later and the downflows were detected along the new arcade with velocities of 35–40 km s{sup −1}, indicative of the magnetic restructuring during the process of FRA. We suggest that there are three topological domains with footpoints outlined by the three pairs of ribbons. Close proximity of these domains leads to deflection of the ribbons, which is in agreement with the magnetic field topology.

  2. X-shooter: UV-to-IR intermediate-resolution high-efficiency spectrograph for the ESO VLT

    NARCIS (Netherlands)

    D'Odorico, S.; Andersen, M.I.; Conconi, P.; De Caprio, V.; Delabre, B.; Di Marcantonio, P.; Dekker, H.; Downing, M.D.; Finger, G.; Groot, P.; Hanenburg, H.H.; Hammer, F.; Horville, D.; Hjorth, J.; Kaper, L.; Klougart, J.; Kjaergaard-Rasmussen, P.; Lizon, J.-L.; Marteaud, M.; Mazzoleni, R.; Michaelsen, N.; Pallavicini, R.; Rigal, F.; Santin, P.; Norup Soerensen, A.; Spano, P.; Venema, L.; Vola, P.; Zerbi, F.M.; Hasinger, G.; Turner, M.J.L.

    2004-01-01

    X-shooter is a single target spectrograph for the Cassegrain focus of one of the VLT UTs. It covers in a single exposure the spectral range from the UV to the H band with a possible extension into part of the K band. It is designed to maximize the sensitivity in this spectral range through the

  3. Using commercial amateur astronomical spectrographs

    CERN Document Server

    Hopkins, Jeffrey L

    2014-01-01

    Amateur astronomers interested in learning more about astronomical spectroscopy now have the guide they need. It provides detailed information about how to get started inexpensively with low-resolution spectroscopy, and then how to move on to more advanced  high-resolution spectroscopy. Uniquely, the instructions concentrate very much on the practical aspects of using commercially-available spectroscopes, rather than simply explaining how spectroscopes work. The book includes a clear explanation of the laboratory theory behind astronomical spectrographs, and goes on to extensively cover the practical application of astronomical spectroscopy in detail. Four popular and reasonably-priced commercially available diffraction grating spectrographs are used as examples. The first is a low-resolution transmission diffraction grating, the Star Analyser spectrograph. The second is an inexpensive fiber optic coupled bench spectrograph that can be used to learn more about spectroscopy. The third is a newcomer, the ALPY ...

  4. Non-Maxwellian Analysis of the Transition-region Line Profiles Observed by the Interface Region Imaging Spectrograph

    Energy Technology Data Exchange (ETDEWEB)

    Dudík, Jaroslav; Dzifčáková, Elena [Astronomical Institute of the Czech Academy of Sciences, Fričova 298, 251 65 Ondřejov (Czech Republic); Polito, Vanessa; Testa, Paola [Smithsonian Astrophysical Observatory, 60 Garden Street, MS 58, Cambridge, MA 02138 (United States); Zanna, Giulio Del, E-mail: dudik@asu.cas.cz [Department of Applied Mathematics and Theoretical Physics, CMS, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom)

    2017-06-10

    We investigate the nature of the spectral line profiles for transition-region (TR) ions observed with the Interface Region Imaging Spectrograph (IRIS) . In this context, we analyzed an active-region observation performed by IRIS in its 1400 Å spectral window. The TR lines are found to exhibit significant wings in their spectral profiles, which can be well fitted with a non-Maxwellian κ distribution. The fit with a κ distribution can perform better than a double-Gaussian fit, especially for the strongest line, Si iv 1402.8 Å. Typical values of κ found are about 2, occurring in a majority of spatial pixels where the TR lines are symmetric, i.e., the fit can be performed. Furthermore, all five spectral lines studied (from Si iv, O iv, and S iv) appear to have the same full-width at half-maximum irrespective of whether the line is an allowed or an intercombination transition. A similar value of κ is obtained for the electron distribution by the fitting of the line intensities relative to Si iv 1402.8 Å, if photospheric abundances are assumed. The κ distributions, however, do not remove the presence of non-thermal broadening. Instead, they actually increase the non-thermal width. This is because, for κ distributions, TR ions are formed at lower temperatures. The large observed non-thermal width lowers the opacity of the Si iv line sufficiently enough for this line to become optically thin.

  5. Space Telescope and Optical Reverberation Mapping Project.I. Ultraviolet Observations of the Seyfert 1 Galaxy NGC 5548 with the Cosmic Origins Spectrograph on Hubble Space Telescope

    NARCIS (Netherlands)

    De Rosa, G.; Peterson, B.M.; Ely, J.; Kriss, G.A.; Crenshaw, D.M.; Horne, K.; Korista, K.T.; Netzer, H.; Pogge, R.W.; Arévalo, P.; Barth, A.J.; Bentz, M.C.; Brandt, W.N.; Breeveld, A.A.; Brewer, B.J.; Dalla Bontà, E.; De Lorenzo-Cáceres, A.; Denney, K.D.; Dietrich, M.; Edelson, R.; Evans, P.A.; Fausnaugh, M.M.; Gehrels, N.; Gelbord, J.M.; Goad, M.R.; Grier, C.J.; Grupe, D.; Hall, P.B.; Kaastra, J.; Kelly, B.C.; Kennea, J.A.; Kochanek, C.S.; Lira, P.; Mathur, S.; McHardy, I.M.; Nousek, J.A.; Pancoast, A.; Papadakis, I.; Pei, L.; Schimoia, J.S.; Siegel, M.; Starkey, D.; Treu, T.; Uttley, P.; Vaughan, S.; Vestergaard, M.; Villforth, C.; Yan, H.; Young, S.; Zu, Y.

    2015-01-01

    We describe the first results from a six-month long reverberation-mapping experiment in the ultraviolet based on 171 observations of the Seyfert 1 galaxy NGC 5548 with the Cosmic Origins Spectrograph on the Hubble Space Telescope. Significant correlated variability is found in the continuum and

  6. Propagating wave in active region-loops, located over the solar disk observed by the Interface Region Imaging Spectrograph

    Science.gov (United States)

    Zhang, B.; Hou, Y. J.; Zhang, J.

    2018-03-01

    Aims: We aim to ascertain the physical parameters of a propagating wave over the solar disk detected by the Interface Region Imaging Spectrograph (IRIS). Methods: Using imaging data from the IRIS and the Solar Dynamic Observatory (SDO), we tracked bright spots to determine the parameters of a propagating transverse wave in active region (AR) loops triggered by activation of a filament. Deriving the Doppler velocity of Si IV line from spectral observations of IRIS, we have determined the rotating directions of active region loops which are relevant to the wave. Results: On 2015 December 19, a filament was located on the polarity inversion line of the NOAA AR 12470. The filament was activated and then caused a C1.1 two-ribbon flare. Between the flare ribbons, two rotation motions of a set of bright loops were observed to appear in turn with opposite directions. Following the end of the second rotation, a propagating wave and an associated transverse oscillation were detected in these bright loops. In 1400 Å channel, there was bright material flowing along the loops in a wave-like manner, with a period of 128 s and a mean amplitude of 880 km. For the transverse oscillation, we tracked a given loop and determine the transverse positions of the tracking loop in a limited longitudinal range. In both of 1400 Å and 171 Å channels, approximately four periods are distinguished during the transverse oscillation. The mean period of the oscillation is estimated as 143 s and the displacement amplitude as between 1370 km and 690 km. We interpret these oscillations as a propagating kink wave and obtain its speed of 1400 km s-1. Conclusions: Our observations reveal that a flare associated with filament activation could trigger a kink propagating wave in active region loops over the solar disk. Movies associated to Figs. 1-4 are available at http://https://www.aanda.org

  7. Spitzer Infrared Spectrograph Observations of the Galactic Center: Quantifying the Extreme Ultraviolet/Soft X-ray Fluxes

    Science.gov (United States)

    Simpson, Janet P.

    2018-04-01

    It has long been shown that the extreme ultraviolet spectrum of the ionizing stars of H II regions can be estimated by comparing the observed line emission to detailed models. In the Galactic Center (GC), however, previous observations have shown that the ionizing spectral energy distribution (SED) of the local photon field is strange, producing both very low excitation ionized gas (indicative of ionization by late O stars) and also widespread diffuse emission from atoms too highly ionized to be found in normal H II regions. This paper describes the analysis of all GC spectra taken by Spitzer's Infrared Spectrograph and downloaded from the Spitzer Heritage Archive. In it, H II region densities and abundances are described, and serendipitously discovered candidate planetary nebulae, compact shocks, and candidate young stellar objects are tabulated. Models were computed with Cloudy, using SEDs from Starburst99 plus additional X-rays, and compared to the observed mid-infrared forbidden and recombination lines. The ages inferred from the model fits do not agree with recent proposed star formation sequences (star formation in the GC occurring along streams of gas with density enhancements caused by close encounters with the black hole, Sgr A*), with Sgr B1, Sgr C, and the Arches Cluster being all about the same age, around 4.5 Myr old, with similar X-ray requirements. The fits for the Quintuplet Cluster appear to give a younger age, but that could be caused by higher-energy photons from shocks from stellar winds or from a supernova.

  8. Gemini Near Infrared Field Spectrograph Observations of the Seyfert 2 Galaxy MRK 573: In Situ Acceleration of Ionized and Molecular Gas Off Fueling Flows

    Science.gov (United States)

    Fischer, Travis C.; Machuca, C.; Diniz, M. R.; Crenshaw, D. M.; Kraemer, S. B.; Riffel, R. A.; Schmitt, H. R.; Baron, F.; Storchi-Bergmann, T.; Straughn, A. N.; hide

    2016-01-01

    We present near-infrared and optical emission-line and stellar kinematics of the Seyfert 2 galaxy Mrk 573 using the Near-Infrared Field Spectrograph (NIFS) at Gemini North and Dual Imaging Spectrograph at Apache Point Observatory, respectively. By obtaining full kinematic maps of the infrared ionized and molecular gas and stellar kinematics in approximately 700 x 2100 pc(exp 2) circumnuclear region of Mrk 573, we find that kinematics within the Narrow-Line Region are largely due to a combination of both rotation and in situ acceleration of material originating in the host disk. Combining these observations with large-scale, optical long-slit spectroscopy that traces ionized gas emission out to several kpcs, we find that rotation kinematics dominate the majority of the gas. We find that outflowing gas extends to distances less than 1 kpc, suggesting that outflows in Seyfert galaxies may not be powerful enough to evacuate their entire bulges.

  9. Princeton Cyclotron QDDD spectrograph system

    International Nuclear Information System (INIS)

    Kouzes, R.T.

    1985-01-01

    A review of experiments involving the Princeton Quadrupole-Dipole-Dipole- Dipole (QDDD) spectrograph is given. The QDDD is a high resolution, large solid angle device which is combined with the azymuthally varying field (AVF) cyclotron. Some reactions involving 3 He beams are discussed

  10. Spatial Variability in the Ratio of Interstellar Atomic Deuterium to Hydrogen. II. Observations toward γ2 Velorum and ζ Puppis by the Interstellar Medium Absorption Profile Spectrograph

    Science.gov (United States)

    Sonneborn, George; Tripp, Todd M.; Ferlet, Roger; Jenkins, Edward B.; Sofia, U. J.; Vidal-Madjar, Alfred; Woźniak, Prezemysław R.

    2000-12-01

    High-resolution far-ultraviolet spectra of the early-type stars γ2 Vel and ζ Pup were obtained to measure the interstellar deuterium abundances in these directions. The observations were made with the Interstellar Medium Absorption Profile Spectrograph (IMAPS) during the ORFEUS-SPAS II mission in 1996. IMAPS spectra cover the wavelength range 930-1150 Å with λ/Δλ~80,000. The interstellar D I features are resolved and cleanly separated from interstellar H I in the Lyδ and Lyɛ profiles of both sight lines and also in the Lyγ profile of ζ Pup. The D I profiles were modeled using a velocity template derived from several N I lines in the IMAPS spectra recorded at higher signal-to-noise ratio. To find the best D I column density, we minimized χ2 for model D I profiles that included not only the N(D I) as a free parameter, but also the effects of several potential sources of systematic error, which were allowed to vary as free parameters. H I column densities were measured by analyzing Lyα absorption profiles in a large number of IUE high-dispersion spectra for each of these stars and applying this same χ2-minimization technique. Ultimately we found that D/H=2.18+0.36-0.31×10-5 for γ2 Vel and 1.42+0.25-0.23×10-5 for ζ Pup, values that contrast markedly with D/H derived in Paper I for δ Ori A (the stated errors are 90% confidence limits). Evidently, the atomic D/H ratio in the ISM, averaged over path lengths of 250-500 pc, exhibits significant spatial variability. Furthermore, the observed spatial variations in D/H do not appear to be anticorrelated with N/H, one measure of heavy-element abundances. We briefly discuss some hypotheses to explain the D/H spatial variability. Within the framework of standard big bang nucleosynthesis, the large value of D/H found toward γ2 Vel is equivalent to a cosmic baryon density of ΩBh2=0.023+/-0.002, which we regard as an upper limit since there is no correction for the destruction of deuterium in stars. This paper is

  11. The voltage optimization of a four-element lens used on a hemispherical spectrograph with virtual entry for highest energy resolution

    International Nuclear Information System (INIS)

    Sise, O.; Martínez, G.; Madesis, I.; Laoutaris, A.; Dimitriou, A.; Fernández-Martín, M.; Zouros, T.J.M.

    2016-01-01

    Highlights: • We investigate the voltage settings for the four-element injection lens of an HDA. • The two well-known approaches, BEM and FDM, in charged particle optics were used. • We tested optimal lens voltages from simulation on the actual experimental setup. • The measured FWHM were well modeled using realistic source parameters. • The results are helpful to experimenters. - Abstract: The methodology and results of a detailed four-element lens optimization analysis based on electron trajectory numerical simulations are presented for a hemispherical deflector analyzer (HDA), whose entry aperture size is determined by the injection lens itself and is therefore virtual. Trajectory calculations were performed using both the boundary-element method (BEM) and the finite-difference method (FDM) and results from these two different approaches were benchmarked against each other, to probe and confirm the accuracy of our results. Since the first and last electrode are held at fixed potentials, the two intermediate adjustable lens electrode voltages were varied over the entire available voltage space in a direct, systematic, brute-force approach, while minima in beam spot size on the 2-D position sensitive detector (PSD) at the exit of the HDA were investigated using a beam shaping approach. Lens voltages demonstrating improved energy resolution for the combined lens/HDA/PSD spectrograph system were sought with and without pre-retardation. The optimal voltages were then tested experimentally on the modeled HDA system using a hot-wire electron gun. The measured energy resolution was found to be in good overall agreement with our simulations, particularly at the highest resolution (∼0.05%) working conditions. These simulations also provide a detailed insight to the distinctive trajectory optics and positions of the first and second image planes, when the PSD has to be placed some distance away from the HDA exit plane, and is therefore not at the ideal optics

  12. The voltage optimization of a four-element lens used on a hemispherical spectrograph with virtual entry for highest energy resolution

    Energy Technology Data Exchange (ETDEWEB)

    Sise, O., E-mail: omersise@sdu.edu.tr [Department of Science Education, Faculty of Education, Suleyman Demirel University, 32260 Isparta (Turkey); Martínez, G. [Departamento de Física Aplicada III, Facultad de Física, UCM, 28040 Madrid (Spain); Madesis, I. [Department of Physics, University of Crete, P.O. Box 2208, GR, 71003 Heraklion (Greece); Tandem Accelerator Laboratory, INPP, NCSR Demokritos, GR, 15310 Ag Paraskevi (Greece); Laoutaris, A. [Tandem Accelerator Laboratory, INPP, NCSR Demokritos, GR, 15310 Ag Paraskevi (Greece); Department of Applied Physics, National Technical University of Athens, GR, 15780 Athens (Greece); Dimitriou, A. [Department of Physics, University of Crete, P.O. Box 2208, GR, 71003 Heraklion (Greece); Tandem Accelerator Laboratory, INPP, NCSR Demokritos, GR, 15310 Ag Paraskevi (Greece); Fernández-Martín, M. [Departamento de Física Aplicada III, Facultad de Física, UCM, 28040 Madrid (Spain); Zouros, T.J.M. [Department of Physics, University of Crete, P.O. Box 2208, GR, 71003 Heraklion (Greece); Tandem Accelerator Laboratory, INPP, NCSR Demokritos, GR, 15310 Ag Paraskevi (Greece)

    2016-08-15

    Highlights: • We investigate the voltage settings for the four-element injection lens of an HDA. • The two well-known approaches, BEM and FDM, in charged particle optics were used. • We tested optimal lens voltages from simulation on the actual experimental setup. • The measured FWHM were well modeled using realistic source parameters. • The results are helpful to experimenters. - Abstract: The methodology and results of a detailed four-element lens optimization analysis based on electron trajectory numerical simulations are presented for a hemispherical deflector analyzer (HDA), whose entry aperture size is determined by the injection lens itself and is therefore virtual. Trajectory calculations were performed using both the boundary-element method (BEM) and the finite-difference method (FDM) and results from these two different approaches were benchmarked against each other, to probe and confirm the accuracy of our results. Since the first and last electrode are held at fixed potentials, the two intermediate adjustable lens electrode voltages were varied over the entire available voltage space in a direct, systematic, brute-force approach, while minima in beam spot size on the 2-D position sensitive detector (PSD) at the exit of the HDA were investigated using a beam shaping approach. Lens voltages demonstrating improved energy resolution for the combined lens/HDA/PSD spectrograph system were sought with and without pre-retardation. The optimal voltages were then tested experimentally on the modeled HDA system using a hot-wire electron gun. The measured energy resolution was found to be in good overall agreement with our simulations, particularly at the highest resolution (∼0.05%) working conditions. These simulations also provide a detailed insight to the distinctive trajectory optics and positions of the first and second image planes, when the PSD has to be placed some distance away from the HDA exit plane, and is therefore not at the ideal optics

  13. GEMINI NEAR INFRARED FIELD SPECTROGRAPH OBSERVATIONS OF THE SEYFERT 2 GALAXY MRK 573: IN SITU ACCELERATION OF IONIZED AND MOLECULAR GAS OFF FUELING FLOWS

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Travis C.; Straughn, A. N. [Astrophysics Science Division, Goddard Space Flight Center, Code 665, Greenbelt, MD 20771 (United States); Machuca, C.; Crenshaw, D. M.; Baron, F.; Revalski, M.; Pope, C. L. [Department of Physics and Astronomy, Georgia State University, Astronomy Offices, 25 Park Place, Suite 605, Atlanta, GA 30303 (United States); Diniz, M. R.; Riffel, R. A. [Departamento de Física, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS (Brazil); Kraemer, S. B. [Institute for Astrophysics and Computational Sciences, Department of Physics, The Catholic University of America, Washington, DC 20064 (United States); Schmitt, H. R. [Naval Research Laboratory, Washington, DC 20375 (United States); Storchi-Bergmann, T., E-mail: travis.c.fischer@nasa.gov [Departamento de Astronomia, Universidade Federal do Rio Grande do Sul, IF, CP 15051, 91501-970 Porto Alegre, RS (Brazil)

    2017-01-01

    We present near-infrared and optical emission-line and stellar kinematics of the Seyfert 2 galaxy Mrk 573 using the Near-Infrared Field Spectrograph (NIFS) at Gemini North and Dual Imaging Spectrograph at Apache Point Observatory, respectively. By obtaining full kinematic maps of the infrared ionized and molecular gas and stellar kinematics in a ∼700 × 2100 pc{sup 2} circumnuclear region of Mrk 573, we find that kinematics within the Narrow-Line Region are largely due to a combination of both rotation and in situ acceleration of material originating in the host disk. Combining these observations with large-scale, optical long-slit spectroscopy that traces ionized gas emission out to several kpcs, we find that rotation kinematics dominate the majority of the gas. We find that outflowing gas extends to distances less than 1 kpc, suggesting that outflows in Seyfert galaxies may not be powerful enough to evacuate their entire bulges.

  14. A CCD fitted to the UV Prime spectrograph: Performance

    International Nuclear Information System (INIS)

    Boulade, O.

    1986-10-01

    A CCD camera was fitted to the 3.6 m French-Canadian telescope in Hawai. Performance of the system and observations of elliptic galaxies (stellar content and galactic evolution in a cluster) and quasars (absorption lines in spectra) are reported. In spite of its resolution being only average, the extremely rapid optics of the UV spectrograph gives good signal to noise ratios enabling redshifts and velocity scatter to be calculated with an accuracy better than 30 km/sec [fr

  15. Ultraviolet spectrographs for thermospheric and ionospheric remote sensing

    International Nuclear Information System (INIS)

    Dymond, K.F.; McCoy, R.P.

    1993-01-01

    The Naval Research Laboratory (NRL) has been developing far- and extreme-ultraviolet spectrographs for remote sensing the Earth's upper atmosphere and ionosphere. The first of these sensors, called the Special Sensor Ultraviolet Limb Imager (SSULI), will be flying on the Air Force's Defense Meteorological Satellite Program (DMSP) block 5D3 satellites as an operational sensor in the 1997-2010 time frame. A second sensor, called the High-resolution ionospheric and Thermospheric Spectrograph (HITS), will fly in late 1995 on the Air Force Space Test Program's Advanced Research and Global Observation Satellite (ARGOS, also known as P91-1) as part of NRL's High Resolution Airglow and Auroral Spectroscopy (HIRAAS) experiment. Both of these instruments are compact and do not draw much power and would be good candidates for small satellite applications. The instruments and their capabilities are discussed. Possible uses of these instruments in small satellite applications are also presented

  16. Giant quiescent solar filament observed with high-resolution spectroscopy

    Science.gov (United States)

    Kuckein, C.; Verma, M.; Denker, C.

    2016-05-01

    Aims: An extremely large filament was studied in various layers of the solar atmosphere. The inferred physical parameters and the morphological aspects are compared with smaller quiescent filaments. Methods: A giant quiet-Sun filament was observed with the high-resolution Echelle spectrograph at the Vacuum Tower Telescope at Observatorio del Teide, Tenerife, Spain, on 2011 November 15. A mosaic of spectra (ten maps of 100″ × 182″) was recorded simultaneously in the chromospheric absorption lines Hα and Na I D2. Physical parameters of the filament plasma were derived using cloud model (CM) inversions and line core fits. The spectra were complemented with full-disk filtergrams (He I λ10830 Å, Hα, and Ca II K) of the Chromospheric Telescope (ChroTel) and full-disk magnetograms of the Helioseismic and Magnetic Imager (HMI). Results: The filament had extremely large linear dimensions (~817 arcsec), which corresponds to about 658 Mm along a great circle on the solar surface. A total amount of 175119 Hα contrast profiles were inverted using the CM approach. The inferred mean line-of-sight (LOS) velocity, Doppler width, and source function were similar to previous works of smaller quiescent filaments. However, the derived optical thickness was higher. LOS velocity trends inferred from the Hα line core fits were in accord but weaker than those obtained with CM inversions. Signatures of counter-streaming flows were detected in the filament. The largest brightening conglomerates in the line core of Na I D2 coincided well with small-scale magnetic fields as seen by HMI. Mixed magnetic polarities were detected close to the ends of barbs. The computation of photospheric horizontal flows based on HMI magnetograms revealed flow kernels with a size of 5-8 Mm and velocities of 0.30-0.45 km s-1 at the ends of the filament. Conclusions: The physical properties of extremely large filaments are similar to their smaller counterparts, except for the optical thickness, which in

  17. LRS2: A New Integral Field Spectrograph for the HET

    Science.gov (United States)

    Tuttle, Sarah E.; Hill, Gary J.; Chonis, Taylor S.; Tonnesen, Stephanie

    2016-01-01

    Here we present LRS2 (Low Resolution Spectrograph) and highlight early science opportunities with the newly upgraded Hobby Eberly telescope (HET). LRS2 is a four-channel optical wavelength (370nm - 1micron) spectrograph based on two VIRUS unit spectrographs. This fiber-fed integral field spectrograph covers a 12" x 6" field of view, switched between the two units (one blue, and one red) at R~2000. We highlight design elements, including the fundamental modification to grisms (from VPH gratings in VIRUS) to access the higher resolution. We discuss early science opportunities, including investigating nearby "blue-bulge" spiral galaxies and their anomalous star formation distribution.

  18. MSE spectrograph optical design: a novel pupil slicing technique

    Science.gov (United States)

    Spanò, P.

    2014-07-01

    The Maunakea Spectroscopic Explorer shall be mainly devoted to perform deep, wide-field, spectroscopic surveys at spectral resolutions from ~2000 to ~20000, at visible and near-infrared wavelengths. Simultaneous spectral coverage at low resolution is required, while at high resolution only selected windows can be covered. Moreover, very high multiplexing (3200 objects) must be obtained at low resolution. At higher resolutions a decreased number of objects (~800) can be observed. To meet such high demanding requirements, a fiber-fed multi-object spectrograph concept has been designed by pupil-slicing the collimated beam, followed by multiple dispersive and camera optics. Different resolution modes are obtained by introducing anamorphic lenslets in front of the fiber arrays. The spectrograph is able to switch between three resolution modes (2000, 6500, 20000) by removing the anamorphic lenses and exchanging gratings. Camera lenses are fixed in place to increase stability. To enhance throughput, VPH first-order gratings has been preferred over echelle gratings. Moreover, throughput is kept high over all wavelength ranges by splitting light into more arms by dichroic beamsplitters and optimizing efficiency for each channel by proper selection of glass materials, coatings, and grating parameters.

  19. THE NATURE AND FREQUENCY OF THE GAS OUTBURSTS IN COMET 67P/CHURYUMOV–GERASIMENKO OBSERVED BY THE ALICE FAR-ULTRAVIOLET SPECTROGRAPH ON ROSETTA

    Energy Technology Data Exchange (ETDEWEB)

    Feldman, Paul D. [Department of Physics and Astronomy, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218 (United States); A’Hearn, Michael F.; Feaga, Lori M. [Astronomy Department, University of Maryland, College Park, MD 20742 (United States); Bertaux, Jean-Loup [LATMOS, CNRS/UVSQ/IPSL, 11 Boulevard d’Alembert, F-78280 Guyancourt (France); Noonan, John; Parker, Joel Wm.; Schindhelm, Eric; Steffl, Andrew J.; Stern, S. Alan [Southwest Research Institute, Department of Space Studies, Suite 300, 1050 Walnut Street, Boulder, CO 80302 (United States); Weaver, Harold A., E-mail: pfeldman@jhu.edu [Space Exploration Sector, Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723-6099 (United States)

    2016-07-01

    ALICE is a far-ultraviolet imaging spectrograph on board Rosetta that, among multiple objectives, is designed to observe emissions from various atomic and molecular species from within the coma of comet 67P/Churyumov–Gerasimenko. The initial observations, made following orbit insertion in 2014 August, showed emissions of atomic hydrogen and oxygen spatially localized close to the nucleus and attributed to photoelectron impact dissociation of H{sub 2}O vapor. Weaker emissions from atomic carbon were subsequently detected and also attributed to electron impact dissociation, of CO{sub 2}, the relative H i and C i line intensities reflecting the variation of CO{sub 2} to H{sub 2}O column abundance along the line of sight through the coma. Beginning in 2015 mid-April, Alice sporadically observed a number of outbursts above the sunward limb characterized by sudden increases in the atomic emissions, particularly the semi-forbidden O i λ 1356 multiplet, over a period of 10–30 minutes, without a corresponding enhancement in long-wavelength solar reflected light characteristic of dust production. A large increase in the brightness ratio O i λ 1356/O i λ 1304 suggests O{sub 2} as the principal source of the additional gas. These outbursts do not correlate with any of the visible images of outbursts taken with either OSIRIS or the navigation camera. Beginning in 2015 June the nature of the Alice spectrum changed considerably with CO Fourth Positive band emission observed continuously, varying with pointing but otherwise fairly constant in time. However, CO does not appear to be a major driver of any of the observed outbursts.

  20. The deterministic optical alignment of the HERMES spectrograph

    Science.gov (United States)

    Gers, Luke; Staszak, Nicholas

    2014-07-01

    The High Efficiency and Resolution Multi Element Spectrograph (HERMES) is a four channel, VPH-grating spectrograph fed by two 400 fiber slit assemblies whose construction and commissioning has now been completed at the Anglo Australian Telescope (AAT). The size, weight, complexity, and scheduling constraints of the system necessitated that a fully integrated, deterministic, opto-mechanical alignment system be designed into the spectrograph before it was manufactured. This paper presents the principles about which the system was assembled and aligned, including the equipment and the metrology methods employed to complete the spectrograph integration.

  1. First light results from the Hermes spectrograph at the AAT

    NARCIS (Netherlands)

    Sheinis, A.; Barden, S.; Birchall, M.; Carollo, D.; Bland-Hawthorn, J.; Brzeski, J.; Case, S.; Cannon, R.; Churilov, V.; Couch, W.; Dean, R.; De Silva, G.; D'Orazi, V.; Farrell, T.; Fiegert, K.; Freeman, K.; Frost, G.; Gers, L.; Goodwin, M.; Gray, D.; Heald, R.; Heijmans, J.A.C.; Jones, D.; Keller, S.; Klauser, U.; Kondrat, Y.; Lawrence, J.; Lee, S.; Mali, S.; Martell, S.; Mathews, D.; Mayfield, D.; Miziarski, S.; Muller, R.; Pai, N.; Patterson, R.; Penny, E.; Orr, D.; Shortridge, K.; Simpson, J.; Smedley, S.; Smith, G.; Stafford, D.; Staszak, N.; Vuong, M.; Waller, L.; Wylie de Boer, E.; Xavier, P.; Zheng, J.; Zhelem, R.; Zucker, D.

    2014-01-01

    The High Efficiency and Resolution Multi Element Spectrograph, HERMES is an facility-class optical spectrograph for the AAT. It is designed primarily for Galactic Archeology [21], the first major attempt to create a detailed understanding of galaxy formation and evolution by studying the history of

  2. High spectral resolution X-ray observations of AGN

    NARCIS (Netherlands)

    Kaastra, J.S.

    2008-01-01

    brief overview of some highlights of high spectral resolution X-ray observations of AGN is given, mainly obtained with the RGS of XMM-Newton. Future prospects for such observations with XMM-Newton are given.

  3. Improved Emission Spectrographic Facility

    International Nuclear Information System (INIS)

    Goergen, C.R.; Lethco, A.J.; Hosken, G.B.; Geckeler, D.R.

    1980-10-01

    The Savannah River Plant's original Emission Spectrographic Laboratory for radioactive samples had been in operation for 25 years. Due to the deteriorated condition and the fire hazard posed by the wooden glove box trains, a project to update the facility was funded. The new laboratory improved efficiency of operation and incorporated numerous safety and contamination control features

  4. Vacuum Predisperser For A Large Plane-Grating Spectrograph

    Science.gov (United States)

    Engleman, R.; Palmer, B. A.; Steinhaus, D. W.

    1980-11-01

    A plane grating predisperser has been constructed which acts as an "order-sorter" for a large plane-grating spectrograph. This combination can photograph relatively wide regions of spectra in a single exposure with no loss of resolution.

  5. SPRAT: Spectrograph for the Rapid Acquisition of Transients

    Science.gov (United States)

    Piascik, A. S.; Steele, Iain A.; Bates, Stuart D.; Mottram, Christopher J.; Smith, R. J.; Barnsley, R. M.; Bolton, B.

    2014-07-01

    We describe the development of a low cost, low resolution (R ~ 350), high throughput, long slit spectrograph covering visible (4000-8000) wavelengths. The spectrograph has been developed for fully robotic operation with the Liverpool Telescope (La Palma). The primary aim is to provide rapid spectral classification of faint (V ˜ 20) transient objects detected by projects such as Gaia, iPTF (intermediate Palomar Transient Factory), LOFAR, and a variety of high energy satellites. The design employs a volume phase holographic (VPH) transmission grating as the dispersive element combined with a prism pair (grism) in a linear optical path. One of two peak spectral sensitivities are selectable by rotating the grism. The VPH and prism combination and entrance slit are deployable, and when removed from the beam allow the collimator/camera pair to re-image the target field onto the detector. This mode of operation provides automatic acquisition of the target onto the slit prior to spectrographic observation through World Coordinate System fitting. The selection and characterisation of optical components to maximise photon throughput is described together with performance predictions.

  6. Tomographic extreme-ultraviolet spectrographs: TESS.

    Science.gov (United States)

    Cotton, D M; Stephan, A; Cook, T; Vickers, J; Taylor, V; Chakrabarti, S

    2000-08-01

    We describe the system of Tomographic Extreme Ultraviolet (EUV) SpectrographS (TESS) that are the primary instruments for the Tomographic Experiment using Radiative Recombinative Ionospheric EUV and Radio Sources (TERRIERS) satellite. The spectrographs were designed to make high-sensitivity {80 counts/s)/Rayleigh [one Rayleigh is equivalent to 10(6) photons/(4pi str cm(2)s)}, line-of-sight measurements of the oi 135.6- and 91.1-nm emissions suitable for tomographic inversion. The system consists of five spectrographs, four identical nightglow instruments (for redundancy and added sensitivity), and one instrument with a smaller aperture to reduce sensitivity and increase spectral resolution for daytime operation. Each instrument has a bandpass of 80-140 nm with approximately 2- and 1-nm resolution for the night and day instruments, respectively. They utilize microchannel-plate-based two-dimensional imaging detectors with wedge-and-strip anode readouts. The instruments were designed, fabricated, and calibrated at Boston University, and the TERRIERS satellite was launched on 18 May 1999 from Vandenberg Air Force Base, California.

  7. High-Resolution Infrared Spectroscopic Observations of the Upper Scorpius Eclipsing Binary EPIC 203868608

    Science.gov (United States)

    Johnson, Marshall C.; Mace, Gregory N.; Kim, Hwihyun; Kaplan, Kyle; McLane, Jacob; Sokal, Kimberly R.

    2017-06-01

    EPIC 203868608 is a source in the ~10 Myr old Upper Scorpius OB association. Using K2 photometry and ground-based follow-up observations, David et al. (2016) found that it consists of two brown dwarfs with a tertiary object at a projected separation of ~20 AU; the former objects appear to be a double-lined eclipsing binary with a period of 4.5 days. This is one of only two known eclipsing SB2s where both components are below the hydrogen-burning limit. We present additional follow-up observations of this system from the IGRINS high-resolution near-infrared spectrograph at McDonald Observatory. Our measured radial velocities do not follow the orbital solution presented by David et al. (2016). Instead, our combined IGRINS plus literature radial velocity dataset appears to indicate a period significantly different than that of the eclipsing binary obvious from the K2 light curve. We will discuss possible scenarios to account for the conflicting observations of this system.

  8. Magnetic spectrograph for the Holifield heavy ion research facility

    International Nuclear Information System (INIS)

    Ford, J.L.C. Jr.; Enge, H.A.; Erskine, J.R.; Hendrie, D.L.; LeVine, M.J.

    1977-01-01

    The need for a new generation magnetic spectrograph for the Holifield Heavy Ion Research Facility is discussed. The advantages of a magnetic spectrograph for heavy ion research are discussed, as well as some of the types of experiments for which such an instrument is suited. The limitations which the quality of the incident beam, target and spectrograph itself impose on high resolution heavy ion measurements are discussed. Desired features of an ideal new spectrograph are: (1) intrinsic resolving power E/ΔE greater than or equal to 3000; (2) maximum solid angle greater than or equal to 20 msr; (3) dispersion approx. 4-8m; (4) maximum energy interval approx. 30%; and (5) mass-energy product greater than or equal to 200. Various existing and proposed spectrographs are compared with the specifications for a new heavy ion magnet design

  9. Temporal Variations of Water Vapor in the Coma of 67P/Churyumov-Gerasimenko as Observed by Rosetta’s Alice FUV Spectrograph

    Science.gov (United States)

    Steffl, Andrew J.; Feaga, Lori M.; A'Hearn, Michael; Bertaux, Jean-Loup; Feldman, Paul D.; Keeney, Brian A.; Knight, Matthew M.; Medina, Richard; Noonan, John; Parker, Joel Wm.; Pineau, Jon; Schindhelm, Eric; Stern, S. Alan; Versteeg, Maarten H.; Vervack, Ronald J.; Weaver, Harold A.

    2017-10-01

    During the Rosetta mission, the Alice far-ultraviolet (FUV) imaging spectrograph obtained spatially-resolved spectra of the coma and nucleus of comet 67P/Churyumov-Gerasimenko over the wavelength range of 700-2050Å. Typically, Alice detected emissions from the neutral atomic daughter and granddaughter products (H, O, C, and S) of the primary molecular species in the coma: H2O, CO2, CO, and O2. However, during a six-month period centered near perihelion, Alice directly detected water vapor in absorption of sunlight reflected from the nucleus. We present here analyses of the water vapor column density as measured by the Alice FUV spectrograph. Alice is sensitive to water vapor at column densities greater than ~1016 cm-2 along the sum of the Sun-nucleus and nucleus-spacecraft lines of sight. Due to the excellent temporal coverage provided by the Alice instrument (exposures were typically obtained every 5-10 minutes), we are able to show variations of water vapor in the coma caused by the changing heliocentric distance of the comet, the comet’s ~12-hour rotation period, and short-term outbursts. We compare our water vapor column densities to those derived from other instruments aboard the Rosetta spacecraft and use models to estimate the water production rate.Rosetta is an ESA mission with contributions from its member states and NASA. The Alice team acknowledges continuing support from NASA’s Jet Propulsion Laboratory through contract 1336850 to the Southwest Research Institute.

  10. Second generation spectrograph for the Hubble Space Telescope

    Science.gov (United States)

    Woodgate, B. E.; Boggess, A.; Gull, T. R.; Heap, S. R.; Krueger, V. L.; Maran, S. P.; Melcher, R. W.; Rebar, F. J.; Vitagliano, H. D.; Green, R. F.; Wolff, S. C.; Hutchings, J. B.; Jenkins, E. B.; Linsky, J. L.; Moos, H. W.; Roesler, F.; Shine, R. A.; Timothy, J. G.; Weistrop, D. E.; Bottema, M.; Meyer, W.

    1986-01-01

    The preliminary design for the Space Telescope Imaging Spectrograph (STIS), which has been selected by NASA for definition study for future flight as a second-generation instrument on the Hubble Space Telescope (HST), is presented. STIS is a two-dimensional spectrograph that will operate from 1050 A to 11,000 A at the limiting HST resolution of 0.05 arcsec FWHM, with spectral resolutions of 100, 1200, 20,000, and 100,000 and a maximum field-of-view of 50 x 50 arcsec. Its basic operating modes include echelle model, long slit mode, slitless spectrograph mode, coronographic spectroscopy, photon time-tagging, and direct imaging. Research objectives are active galactic nuclei, the intergalactic medium, global properties of galaxies, the origin of stellar systems, stelalr spectral variability, and spectrographic mapping of solar system processes.

  11. An integral field spectrograph utilizing mirrorlet arrays

    Science.gov (United States)

    Chamberlin, Phillip C.; Gong, Qian

    2016-09-01

    An integral field spectrograph (IFS) has been developed that utilizes a new and novel optical design to observe two spatial dimensions simultaneously with one spectral dimension. This design employs an optical 2-D array of reflecting and focusing mirrorlets. This mirrorlet array is placed at the imaging plane of the front-end telescope to generate a 2-D array of tiny spots replacing what would be the slit in a traditional slit spectrometer design. After the mirrorlet in the optical path, a grating on a concave mirror surface will image the spot array and provide high-resolution spectrum for each spatial element at the same time; therefore, the IFS simultaneously obtains the 3-D data cube of two spatial and one spectral dimensions. The new mirrorlet technology is currently in-house and undergoing laboratory testing at NASA Goddard Space Flight Center. Section 1 describes traditional classes of instruments that are used in Heliophysics missions and a quick introduction to the new IFS design. Section 2 discusses the details of the most generic mirrorlet IFS, while section 3 presents test results of a lab-based instrument. An example application to a Heliophysics mission to study solar eruptive events in extreme ultraviolet wavelengths is presented in section 4 that has high spatial resolution (0.5 arc sec pixels) in the two spatial dimensions and high spectral resolution (66 mÅ) across a 15 Å spectral window. Section 4 also concludes with some other optical variations that could be employed on the more basic IFS for further capabilities of this type of instrument.

  12. An Integral Field Spectrograph Utilizing Mirrorlet Arrays

    Science.gov (United States)

    Chamberlin, Phillip C.; Gong, Qian

    2016-01-01

    An integral field spectrograph (IFS) has been developed that utilizes a new and novel optical design to observe two spatial dimensions simultaneously with one spectral dimension. This design employs an optical 2-D array of reflecting and focusing mirrorlets. This mirrorlet array is placed at the imaging plane of the front-end telescope to generate a 2-D array of tiny spots replacing what would be the slit in a traditional slit spectrometer design. After the mirrorlet in the optical path, a grating on a concave mirror surface will image the spot array and provide high-resolution spectrum for each spatial element at the same time; therefore, the IFS simultaneously obtains the 3-D data cube of two spatial and one spectral dimensions. The new mirrorlet technology is currently in-house and undergoing laboratory testing at NASA Goddard Space Flight Center. Section 1 describes traditional classes of instruments that are used in Heliophysics missions and a quick introduction to the new IFS design. Section 2 discusses the details of the most generic mirrorlet IFS, while section 3 presents test results of a lab-based instrument. An example application to a Heliophysics mission to study solar eruptive events in extreme ultraviolet wavelengths is presented in section 4 that has high spatial resolution (0.5 arc sec pixels) in the two spatial dimensions and high spectral resolution (66 m) across a 15 spectral window. Section 4 also concludes with some other optical variations that could be employed on the more basic IFS for further capabilities of this type of instrument.

  13. Sky Subtraction with Fiber-Fed Spectrograph

    Science.gov (United States)

    Rodrigues, Myriam

    2017-09-01

    "Historically, fiber-fed spectrographs had been deemed inadequate for the observation of faint targets, mainly because of the difficulty to achieve high accuracy on the sky subtraction. The impossibility to sample the sky in the immediate vicinity of the target in fiber instruments has led to a commonly held view that a multi-object fibre spectrograph cannot achieve an accurate sky subtraction under 1% contrary to their slit counterpart. The next generation of multi-objects spectrograph at the VLT (MOONS) and the planed MOS for the E-ELT (MOSAIC) are fiber-fed instruments, and are aimed to observed targets fainter than the sky continuum level. In this talk, I will present the state-of-art on sky subtraction strategies and data reduction algorithm specifically developed for fiber-fed spectrographs. I will also present the main results of an observational campaign to better characterise the sky spatial and temporal variations ( in particular the continuum and faint sky lines)."

  14. HIGH SPATIAL RESOLUTION OBSERVATIONS OF LOOPS IN THE SOLAR CORONA

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, David H.; Ugarte-Urra, Ignacio [College of Science, George Mason University, 4400 University Drive, Fairfax, VA 22030 (United States); Warren, Harry P. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Winebarger, Amy R. [NASA Marshall Space Flight Center, ZP 13, Huntsville, AL 35812 (United States)

    2013-08-01

    Understanding how the solar corona is structured is of fundamental importance to determine how the Sun's upper atmosphere is heated to high temperatures. Recent spectroscopic studies have suggested that an instrument with a spatial resolution of 200 km or better is necessary to resolve coronal loops. The High Resolution Coronal Imager (Hi-C) achieved this performance on a rocket flight in 2012 July. We use Hi-C data to measure the Gaussian widths of 91 loops observed in the solar corona and find a distribution that peaks at about 270 km. We also use Atmospheric Imaging Assembly data for a subset of these loops and find temperature distributions that are generally very narrow. These observations provide further evidence that loops in the solar corona are often structured at a scale of several hundred kilometers, well above the spatial scale of many proposed physical mechanisms.

  15. GALACTIC-SCALE ABSORPTION OUTFLOW IN THE LOW-LUMINOSITY QUASAR IRAS F04250-5718: HUBBLE SPACE TELESCOPE/COSMIC ORIGINS SPECTROGRAPH OBSERVATIONS

    International Nuclear Information System (INIS)

    Edmonds, Doug; Borguet, Benoit; Arav, Nahum; Dunn, Jay P.; Penton, Steve; Kriss, Gerard A.; Korista, Kirk; Bautista, Manuel; Costantini, Elisa; Kaastra, Jelle; Steenbrugge, Katrien; Ignacio Gonzalez-Serrano, J.; Benn, Chris; Aoki, Kentaro; Behar, Ehud; Micheal Crenshaw, D.; Everett, John; Gabel, Jack; Moe, Maxwell; Scott, Jennifer

    2011-01-01

    We present absorption line analysis of the outflow in the quasar IRAS F04250-5718. Far-ultraviolet data from the Cosmic Origins Spectrograph on board the Hubble Space Telescope reveal intrinsic narrow absorption lines from high ionization ions (e.g., C IV, N V, and O VI) as well as low ionization ions (e.g., C II and Si III). We identify three kinematic components with central velocities ranging from ∼-50 to ∼-230 km s -1 . Velocity-dependent, non-black saturation is evident from the line profiles of the high ionization ions. From the non-detection of absorption from a metastable level of C II, we are able to determine that the electron number density in the main component of the outflow is ∼ -3 . Photoionization analysis yields an ionization parameter log U H ∼ -1.6 ± 0.2, which accounts for changes in the metallicity of the outflow and the shape of the incident spectrum. We also consider solutions with two ionization parameters. If the ionization structure of the outflow is due to photoionization by the active galactic nucleus, we determine that the distance to this component from the central source is ∼>3 kpc. Due to the large distance determined for the main kinematic component, we discuss the possibility that this outflow is part of a galactic wind.

  16. Optical Design of the far Ultraviolet Imaging Spectrograph

    Directory of Open Access Journals (Sweden)

    K. S. Ryu

    1998-12-01

    Full Text Available We present the design specifications and the performance estimation of the FUVS (Far Ultraviolet Spectrograph proposed for the observations of aurora, day/night airglow and astronomical objects on small satelltes in the spectral range of . The design of FUVS is carried out with the full consideration of optical characteristics of the grating and the aspheric substrate. Two independent methods, ray-tracing and the wave front aberration theory, are employed to estimate the performance of the optical design and it is verified that both procedures yield the resolution of in the entire spectral range. MDF (Minimum Detectable Flux is also estimated using the known characteristics of the reflecting material and MCP, to study the feasibility of detection for faint emission lines from the hot interstellar plasmas. The results give that the observations from 1 day to 1 week, depending on the line intensity, can detect such faint emission lines from diffuse interstellar plasmas.

  17. High resolution solar observations from first principles to applications

    Science.gov (United States)

    Verdoni, Angelo P.

    2009-10-01

    The expression "high-resolution observations" in Solar Physics refers to the spatial, temporal and spectral domains in their entirety. High-resolution observations of solar fine structure are a necessity to answer many of the intriguing questions related to solar activity. However, a researcher building instruments for high-resolution observations has to cope with the fact that these three domains often have diametrically opposed boundary conditions. Many factors have to be considered in the design of a successful instrument. Modern post-focus instruments are more closely linked with the solar telescopes that they serve than in past. In principle, the quest for high-resolution observations already starts with the selection of the observatory site. The site survey of the Advanced Technology Solar Telescope (ATST) under the stewardship of the National Solar Observatory (NSO) has identified Big Bear Solar Observatory (BBSO) as one of the best sites for solar observations. In a first step, the seeing characteristics at BBSO based on the data collected for the ATST site survey are described. The analysis will aid in the scheduling of high-resolution observations at BBSO as well as provide useful information concerning the design and implementation of a thermal control system for the New Solar Telescope (NST). NST is an off-axis open-structure Gregorian-style telescope with a 1.6 m aperture. NST will be housed in a newly constructed 5/8-sphere ventilated dome. With optics exposed to the surrounding air, NST's open-structure design makes it particularly vulnerable to the effects of enclosure-related seeing. In an effort to mitigate these effects, the initial design of a thermal control system for the NST dome is presented. The goal is to remediate thermal related seeing effects present within the dome interior. The THermal Control System (THCS) is an essential component for the open-telescope design of NST to work. Following these tasks, a calibration routine for the

  18. High Spectral Resolution SOFIA/EXES Observations of C2H2 toward Orion IRc2

    Science.gov (United States)

    Rangwala, Naseem; Colgan, Sean W. J.; Le Gal, Romane; Acharyya, Kinsuk; Huang, Xinchuan; Lee, Timothy J.; Herbst, Eric; deWitt, Curtis; Richter, Matt; Boogert, Adwin; McKelvey, Mark

    2018-03-01

    We present high spectral resolution observations from 12.96 to 13.33 microns toward Orion IRc2 using the mid-infrared spectrograph, Echelon-Cross-Echelle Spectrograph (EXES), at Stratospheric Observatory for Infrared Astronomy (SOFIA). These observations probe the physical and chemical conditions of the Orion hot core, which is sampled by a bright, compact, mid-infrared background continuum source in the region, IRc2. All 10 of the rovibrational C2H2 transitions expected in our spectral coverage are detected with high signal-to-noise ratios (S/Ns), yielding continuous coverage of the R-branch lines from J = 9–8 to J = 18–17, including both ortho and para species. Eight of these rovibrational transitions are newly reported detections. The isotopologue, 13CCH2, is clearly detected with a high S/N. This enabled a direct measurement of the 12C/13C isotopic ratio for the Orion hot core of 14 ± 1 and an estimated maximum value of 21. We also detected several HCN rovibrational lines. The ortho and para C2H2 ladders are clearly separate, and tracing two different temperatures, 226 K and 164 K, respectively, with a non-equilibrium ortho to para ratio (OPR) of 1.7 ± 0.1. Additionally, the ortho and para V LSR values differ by about 1.8 ± 0.2 km s‑1, while the mean line widths differ by 0.7 ± 0.2 km s‑1, suggesting that these species are not uniformly mixed along the line of sight to IRc2. We propose that the abnormally low C2H2 OPR could be a remnant from an earlier, colder phase, before the density enhancement (now the hot core) was impacted by shocks generated from an explosive event 500 years ago.

  19. Observations of silicon carbide by high resolution transmission electron microscopy

    International Nuclear Information System (INIS)

    Smith, D.J.; Jepps, N.W.; Page, T.F.

    1978-01-01

    High resolution transmission electron microscopy techniques, principally involving direct lattice imaging, have been used as part of a study of the crystallography and phase transformation mechanics of silicon carbide polytypes. In particular, the 3C (cubic) and 6H (hexagonal) polytypes have been examined together with partially transformed structural mixtures. Although direct observation of two-dimensional atomic structures was not possible at an operating voltage of 100 kV, considerable microstructural information has been obtained by careful choice of the experimental conditions. In particular, tilted beam observations of the 0.25 nm lattice fringes have been made in the 3C polytype for two different brace 111 brace plane arrays in order to study the dimensions and coherency of finely-twinned regions together with brace 0006 brace and brace 1 0 bar1 2 brace lattice images in the 6H polytype which allow the detailed stacking operations to be resolved. Lower resolution lattice images formed with axial illumination have also been used to study the nature of the 3C → 6H transformation and results are presented showing that the transformation interface may originate with fine twinning of the 3C structure followed by growth of the resultant 6H regions. Observations have been made of the detailed stepped structure of this interface together with the stacking fault distribution in the resultant 6H material. (author)

  20. The Performance and Scientific Rationale for an Infrared Imaging Fourier Transform Spectrograph on a Large Space Telescope

    National Research Council Canada - National Science Library

    Graham, James R; Abrams, Mark; Bennett, C; Carr, J; Cook, K; Dey, A; Najita, J; Wishnow, E

    1998-01-01

    .... We consider the relationship between pixel size, spectral resolution, and diameter of the beam splitter for imaging and nonimaging Fourier transform spectrographs and give the condition required...

  1. Status and Performance Updates for the Cosmic Origins Spectrograph

    Science.gov (United States)

    Snyder, Elaine M.; De Rosa, Gisella; Fischer, William J.; Fix, Mees; Fox, Andrew; Indriolo, Nick; James, Bethan; Oliveira, Cristina M.; Penton, Steven V.; Plesha, Rachel; Rafelski, Marc; Roman-Duval, Julia; Sahnow, David J.; Sankrit, Ravi; Taylor, Joanna M.; White, James

    2018-01-01

    The Hubble Space Telescope's Cosmic Origins Spectrograph (COS) moved the spectra on the FUV detector from Lifetime Position 3 (LP3) to a new pristine location, LP4, in October 2017. The spectra were shifted in the cross-dispersion direction by -2.5" (roughly -31 pixels) from LP3, or -5" (roughly -62 pixels) from the original LP1. This move mitigates the adverse effects of gain sag on the spectral quality and accuracy of COS FUV observations. Here, we present updates regarding the calibration of FUV data at LP4, including the flat fields, flux calibrations, and spectral resolution. We also present updates on the time-dependent sensitivities and dark rates of both the NUV and FUV detectors.

  2. High spectral resolution infrared observations of V1057 Cygni

    International Nuclear Information System (INIS)

    Hartmann, L.; Kenyon, S.J.

    1987-01-01

    High-resolution near-infrared spectra of V1057 Cygni obtained in 1986 with the KPNO 4-m Fourier transform spectrometer provide support for a previously proposed accretion disk model. The model predicts that the observed rotational broadening of spectral lines should be smaller in the infrared than in the optical. The present observations show that V1057 Cyg rotates more slowly at 2.3 microns than at 6000 A by an amount quantitatively consistent with the simple disk models. The absence of any radial velocity variations in either the infrared or optical spectral regions supports the suggestion that the accreted material arises from a remnant disk of protostellar material. 19 references

  3. MEGARA: a new generation optical spectrograph for GTC

    Science.gov (United States)

    Gil de Paz, A.; Gallego, J.; Carrasco, E.; Iglesias-Páramo, J.; Cedazo, R.; Vílchez, J. M.; García-Vargas, M. L.; Arrillaga, X.; Carrera, M. A.; Castillo-Morales, A.; Castillo-Domínguez, E.; Eliche-Moral, M. C.; Ferrusca, D.; González-Guardia, E.; Lefort, B.; Maldonado, M.; Marino, R. A.; Martínez-Delgado, I.; Morales Durán, I.; Mujica, E.; Páez, G.; Pascual, S.; Pérez-Calpena, A.; Sánchez-Penim, A.; Sánchez-Blanco, E.; Tulloch, S.; Velázquez, M.; Zamorano, J.; Aguerri, A. L.; Barrado y Naváscues, D.; Bertone, E.; Cardiel, N.; Cava, A.; Cenarro, J.; Chávez, M.; García, M.; Guichard, J.; Gúzman, R.; Herrero, A.; Huélamo, N.; Hughes, D.; Jiménez-Vicente, J.; Kehrig, C.; Márquez, I.; Masegosa, J.; Mayya, Y. D.; Méndez-Abreu, J.; Mollá, M.; Muñoz-Tuñón, C.; Peimbert, M.; Pérez-González, P. G.; Pérez Montero, E.; Rodríguez, M.; Rodríguez-Espinosa, J. M.; Rodríguez-Merino, L.; Rosa-González, D.; Sánchez-Almeida, J.; Sánchez Contreras, C.; Sánchez-Blázquez, P.; Sánchez Moreno, F. M.; Sánchez, S. F.; Sarajedini, A.; Serena, F.; Silich, S.; Simón-Díaz, S.; Tenorio-Tagle, G.; Terlevich, E.; Terlevich, R.; Torres-Peimbert, S.; Trujillo, I.; Tsamis, Y.; Vega, O.; Villar, V.

    2014-07-01

    MEGARA (Multi-Espectrógrafo en GTC de Alta Resolución para Astronomía) is an optical Integral-Field Unit (IFU) and Multi-Object Spectrograph (MOS) designed for the GTC 10.4m telescope in La Palma. MEGARA offers two IFU fiber bundles, one covering 12.5x11.3 arcsec2 with a spaxel size of 0.62 arcsec (Large Compact Bundle; LCB) and another one covering 8.5x6.7 arcsec2 with a spaxel size of 0.42 arcsec (Small Compact Bundle; SCB). The MEGARA MOS mode will allow observing up to 100 objects in a region of 3.5x3.5 arcmin2 around the two IFU bundles. Both the LCB IFU and MOS capabilities of MEGARA will provide intermediate-to-high spectral resolutions (RFWHM~6,000, 12,000 and 18,700, respectively for the low-, mid- and high-resolution Volume Phase Holographic gratings) in the range 3650-9700ÅÅ. These values become RFWHM~7,000, 13,500, and 21,500 when the SCB is used. A mechanism placed at the pseudo-slit position allows exchanging the three observing modes and also acts as focusing mechanism. The spectrograph is a collimator-camera system that has a total of 11 VPHs simultaneously available (out of the 18 VPHs designed and being built) that are placed in the pupil by means of a wheel and an insertion mechanism. The custom-made cryostat hosts an E2V231-84 4kx4k CCD. The UCM (Spain) leads the MEGARA Consortium that also includes INAOE (Mexico), IAA-CSIC (Spain), and UPM (Spain). MEGARA is being developed under a contract between GRANTECAN and UCM. The detailed design, construction and AIV phases are now funded and the instrument should be delivered to GTC before the end of 2016.

  4. Laboratory Testing and Performance Verification of the CHARIS Integral Field Spectrograph

    Science.gov (United States)

    Groff, Tyler D.; Chilcote, Jeffrey; Kasdin, N. Jeremy; Galvin, Michael; Loomis, Craig; Carr, Michael A.; Brandt, Timothy; Knapp, Gillian; Limbach, Mary Anne; Guyon, Olivier; hide

    2016-01-01

    The Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS) is an integral field spectrograph (IFS) that has been built for the Subaru telescope. CHARIS has two imaging modes; the high-resolution mode is R82, R69, and R82 in J, H, and K bands respectively while the low-resolution discovery mode uses a second low-resolution prism with R19 spanning 1.15-2.37 microns (J+H+K bands). The discovery mode is meant to augment the low inner working angle of the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) adaptive optics system, which feeds CHARIS a coronagraphic image. The goal is to detect and characterize brown dwarfs and hot Jovian planets down to contrasts five orders of magnitude dimmer than their parent star at an inner working angle as low as 80 milliarcseconds. CHARIS constrains spectral crosstalk through several key aspects of the optical design. Additionally, the repeatability of alignment of certain optical components is critical to the calibrations required for the data pipeline. Specifically the relative alignment of the lens let array, prism, and detector must be highly stable and repeatable between imaging modes. We report on the measured repeatability and stability of these mechanisms, measurements of spectral crosstalk in the instrument, and the propagation of these errors through the data pipeline. Another key design feature of CHARIS is the prism, which pairs Barium Fluoride with Ohara L-BBH2 high index glass. The dispersion of the prism is significantly more uniform than other glass choices, and the CHARIS prisms represent the first NIR astronomical instrument that uses L-BBH2as the high index material. This material choice was key to the utility of the discovery mode, so significant efforts were put into cryogenic characterization of the material. The final performance of the prism assemblies in their operating environment is described in detail. The spectrograph is going through final alignment, cryogenic cycling, and is being

  5. Spectrographic analysis of plutonium (1960)

    International Nuclear Information System (INIS)

    Artaud, J.; Chaput, M.; Robichet, J.

    1960-01-01

    Various possibilities for the spectrographic determination of impurities in plutonium are considered. The application of the 'copper spark' method, of sparking on graphite and of fractional distillation in the arc are described and discussed in some detail (apparatus, accessories, results obtained). (author) [fr

  6. SOFIA/EXES High Spectral Resolution Observations of the Orion Hot Core

    Science.gov (United States)

    Rangwala, Naseem; Colgan, Sean; Le Gal, Romane; Acharya, Kinsuk; Huang, Xinchuan; Herbst, Eric; Lee, Timothy J.; Richter, Matthew J.; Boogert, Adwin

    2018-01-01

    The Orion hot core has one of the richest molecular chemistries observed in the ISM. In the MIR, the Orion hot core composition is best probed by the closest, compact, bright background continuum source in this region, IRc2. We present high-spectral resolution observations from 12.96 - 13.33 μm towards Orion IRc2 using the mid-infrared spectrograph, EXES, on SOFIA, to probe the physical and chemical conditions of the Orion hot core. All ten of the rovibrational C2H2 transitions expected in our spectral coverage, are detected with high S/N, yielding continuous coverage of the R-branch lines from J=9-8 to J=18-17, including both ortho and para species. Eight of these rovibrational transitions are newly reported detections. These data show distinct ortho and para ladders towards the Orion hot core for the first time, with an ortho to para ratio (OPR) of only 0.6 - much lower than the high temperature equilibrium value of 3. A non-equilibrium OPR is a further indication of the Orion hot core being heated externally by shocks likely resulting from a well-known explosive event which occurred 500 yrs ago. The OPR conversion timescales are much longer than the 500 yr shock timescale and thus a low OPR might be a remnant from an earlier colder pre-stellar phase before the density enhancement (now the hot core) was impacted by shocks.We will also present preliminary results from an on-going SOFIA Cycle-5 impact program to use EXES to conduct an unbiased, high-S/N, continuous, molecular line survey of the Orion hot core from 12.5 - 28.3 microns. This survey is expected to be 50 times better than ISO in detecting isolated, narrow lines to (a) resolve the ro-vibrational structure of the gas phase molecules and their kinematics, (b) detect new gas phase molecules missed by ISO, and (c) provide useful constraints on the hot core chemistry and the source of Orion hot core excitation. This survey will greatly enhance the inventory of resolved line features in the MIR for hot cores

  7. High resolution geomagnetic field observations at Terra Nova bay, Antarctica

    Directory of Open Access Journals (Sweden)

    P. Palangio

    1996-06-01

    Full Text Available he preliminary results obtained from the analysis in the micropulsation frequency range of high time resolution magnetic field data recorded at the Antarctic Italian geomagnetic observatory at Terra Nova Bay for 11 consecutive days in February 1994 are reported. The spectral index over the whole Pcl-Pc5 frequency range is of the order of 3.5 and its value significantly increases beyond about 50 mHz. Spectral peaks in the Pc3 frequency range are common, especially during the daytime hours, and are probably due to the direct penetration of upstream waves in the cusp region. From the local time distribution of the micro pulsation power, a signifi - cant activity enhancement around the local magnetic noon emerges, in agreement with previous observations. The analysis of the signal polarisation characteristics in the horizontal plane shows a predominant CW polarisation in the Pcl-Pc3 frequency ranges with the major axis of the polarisation ellipse in the first quadrant.

  8. XSST/TRC rocket observations of July 13, 1982 flare. [X-ray Spectrometer, Spectrograph and Telescope/Transition Region Camera

    Science.gov (United States)

    Foing, Bernard H.; Bonnet, Roger M.; Dame, Luc; Bruner, Marilyn; Acton, Loren W.

    1986-01-01

    The present analysis of UV filtergrams of the July 13, 1982 solar flare obtained by the XSST/TRC rocket experiments has used calibrated intensities of the flare components to directly estimate the Lyman-alpha line flux, C IV line flux, and excess 160-nm continuum temperature brighness over the underlying plage. The values obtained are small by comparison with other observed or calculated equivalent quantities from the Machado (1980) model of flare F1. The corresponding power required to heat up to the temperature minimum over the 1200 sq Mm area is found to be 3.6 x 10 to the 25th erg/sec for this small X-ray C6 flare, 7 min after the ground-based observed flare maximum.

  9. Opto-mechanical design of an image slicer for the GRIS spectrograph at GREGOR

    Science.gov (United States)

    Vega Reyes, N.; Esteves, M. A.; Sánchez-Capuchino, J.; Salaun, Y.; López, R. L.; Gracia, F.; Estrada Herrera, P.; Grivel, C.; Vaz Cedillo, J. J.; Collados, M.

    2016-07-01

    An image slicer has been proposed for the Integral Field Spectrograph [1] of the 4-m European Solar Telescope (EST) [2] The image slicer for EST is called MuSICa (Multi-Slit Image slicer based on collimator-Camera) [3] and it is a telecentric system with diffraction limited optical quality offering the possibility to obtain high resolution Integral Field Solar Spectroscopy or Spectro-polarimetry by coupling a polarimeter after the generated slit (or slits). Considering the technical complexity of the proposed Integral Field Unit (IFU), a prototype has been designed for the GRIS spectrograph at GREGOR telescope at Teide Observatory (Tenerife), composed by the optical elements of the image slicer itself, a scanning system (to cover a larger field of view with sequential adjacent measurements) and an appropriate re-imaging system. All these subsystems are placed in a bench, specially designed to facilitate their alignment, integration and verification, and their easy installation in front of the spectrograph. This communication describes the opto-mechanical solution adopted to upgrade GRIS while ensuring repeatability between the observational modes, IFU and long-slit. Results from several tests which have been performed to validate the opto-mechanical prototypes are also presented.

  10. High Resolution Active Optics Observations from the Kepler Follow-up Observation Program

    Science.gov (United States)

    Gautier, Thomas N.; Ciardi, D. R.; Marcy, G. W.; Hirsch, L.

    2014-01-01

    The ground based follow-up observation program for candidate exoplanets discovered with the Kepler observatory has supported a major effort for high resolution imaging of candidate host stars using adaptive optics wave-front correction (AO), speckle imaging and lucky imaging. These images allow examination of the sky as close as a few tenths of an arcsecond from the host stars to detect background objects that might be the source of the Kepler transit signal instead of the host star. This poster reports on the imaging done with AO cameras on the Keck, Palomar 5m and Shane 3m (Lick Observatory) which have been used to obtain high resolution images of over 500 Kepler Object of Interest (KOI) exoplanet candidate host stars. All observations were made at near infrared wavelengths in the J, H and K bands, mostly using the host target star as the AO guide star. Details of the sensitivity to background objects actually attained by these observations and the number of background objects discovered are presented. Implications to the false positive rate of the Kepler candidates are discussed.

  11. Spectrally resolved detection of sodium in the atmosphere of HD 189733b with the HARPS spectrograph

    Science.gov (United States)

    Wyttenbach, A.; Ehrenreich, D.; Lovis, C.; Udry, S.; Pepe, F.

    2015-05-01

    Context. Atmospheric properties of exoplanets can be constrained with transit spectroscopy. At low spectral resolution, this technique is limited by the presence of clouds. The signature of atomic sodium (Na i), known to be present above the clouds, is a powerful probe of the upper atmosphere, where it can be best detected and characterized at high spectral resolution. Aims: Our goal is to obtain a high-resolution transit spectrum of HD 189733b in the region around the resonance doublet of Na i at 589 nm, to characterize the absorption signature that was previously detected from space at low resolution. Methods: We analyzed archival transit data of HD 189733b obtained with the HARPS spectrograph (ℛ = 115 000) at the ESO 3.6-m telescope. We performed differential spectroscopy to retrieve the transit spectrum and light curve of the planet, implementing corrections for telluric contamination and planetary orbital motion. We compared our results to synthetic transit spectra calculated from isothermal models of the planetary atmosphere. Results: We spectrally resolve the Na i D doublet and measure line contrasts of 0.64 ± 0.07% (D2) and 0.40 ± 0.07% (D1) and FWHMs of 0.52 ± 0.08 Å. This corresponds to a detection at the 10σ level of excess of absorption of 0.32 ± 0.03% in a passband of 2 × 0.75 Å centered on each line. We derive temperatures of 2600 ± 600 K and 3270 ± 330 K at altitudes of 9800 ± 2800 and 12 700 ± 2600 km in the Na i D1 and D2 line cores, respectively. We measure a temperature gradient of ~0.2 K km-1 in the region where the sodium absorption dominates the haze absorption from a comparison with theoretical models. We also detect a blueshift of 0.16 ± 0.04 Å (4σ) in the line positions. This blueshift may be the result of winds blowing at 8 ± 2 km s-1 in the upper layers of the atmosphere. Conclusions: We demonstrate the relevance of studying exoplanet atmospheres with high-resolution spectrographs mounted on 4-m-class telescopes. Our

  12. The Mitchell Spectrograph: Studying Nearby Galaxies with the VIRUS Prototype

    Directory of Open Access Journals (Sweden)

    Guillermo A. Blanc

    2013-01-01

    Full Text Available The Mitchell Spectrograph (a.k.a. VIRUS-P on the 2.7 m Harlan J. Smith telescope at McDonald Observatory is currently the largest field of view (FOV integral field unit (IFU spectrograph in the world (1.7′×1.7′. It was designed as a prototype for the highly replicable VIRUS spectrograph which consists of a mosaic of IFUs spread over a 16′ diameter FOV feeding 150 spectrographs similar to the Mitchell. VIRUS will be deployed on the 9.2 meter Hobby-Eberly Telescope (HET and will be used to conduct the HET Dark Energy Experiment (HETDEX. Since seeing first light in 2007 the Mitchell Spectrograph has been widely used, among other things, to study nearby galaxies in the local universe where their internal structure and the spatial distribution of different physical parameters can be studied in great detail. These observations have provided important insight into many aspects of the physics behind the formation and evolution of galaxies and have boosted the scientific impact of the 2.7 meter telescope enormously. Here I review the contributions of the Mitchell Spectrograph to the study of nearby galaxies, from the investigation the spatial distribution of dark matter and the properties of supermassive black holes, to the studies of the process of star formation and the chemical composition of stars and gas in the ISM, which provide important information regarding the formation and evolution of these systems. I highlight the fact that wide field integral field spectrographs on small and medium size telescopes can be powerful cost effective tools to study the astrophysics of galaxies. Finally I briefly discuss the potential of HETDEX for conducting studies on nearby galaxies. The survey parameters make it complimentary and competitive to ongoing and future surveys like SAMI and MANGA.

  13. Reference resolution in multi-modal interaction: Preliminary observations

    NARCIS (Netherlands)

    González González, G.R.; Nijholt, Antinus

    2002-01-01

    In this paper we present our research on multimodal interaction in and with virtual environments. The aim of this presentation is to emphasize the necessity to spend more research on reference resolution in multimodal contexts. In multi-modal interaction the human conversational partner can apply

  14. High-resolution observation by double-biprism electron holography

    International Nuclear Information System (INIS)

    Harada, Ken; Tonomura, Akira; Matsuda, Tsuyoshi; Akashi, Tetsuya; Togawa, Yoshihiko

    2004-01-01

    High-resolution electron holography has been achieved by using a double-biprism interferometer implemented on a 1 MV field emission electron microscope. The interferometer was installed behind the first magnifying lens to narrow carrier fringes and thus enabled complete separation of sideband Fourier spectrum from center band in reconstruction process. Holograms of Au fine particles and single-crystalline thin films with the finest fringe spacing of 4.2 pm were recorded and reconstructed. The overall holography system including the reconstruction process performed well for holograms in which carrier fringes had a spacing of around 10 pm. High-resolution lattice images of the amplitude and phase were clearly reconstructed without mixing of the center band and sideband information. Additionally, entire holograms were recorded without Fresnel fringes normally generated by the filament electrode of the biprism, and the holograms were thus reconstructed without the artifacts caused by Fresnel fringes

  15. An echelle spectrograph for middle ultraviolet solar spectroscopy from rockets.

    Science.gov (United States)

    Tousey, R; Purcell, J D; Garrett, D L

    1967-03-01

    An echelle grating spectrograph is ideal for use in a rocket when high resolution is required becaus itoccupies a minimum of space. The instrument described covers the range 4000-2000 A with a resolution of 0.03 A. It was designed to fit into the solar biaxial pointing-control section of an Aerobee-150 rocket. The characteristics of the spectrograph are illustrated with laboratory spectra of iron and carbon are sources and with solar spectra obtained during rocket flights in 1961 and 1964. Problems encountered in analyzing the spectra are discussed. The most difficult design problem was the elimination of stray light when used with the sun. Of the several methods investigated, the most effective was a predispersing system in the form of a zero-dispersion double monochromator. This was made compact by folding the beam four times.

  16. Spectrographic analysis of stainless steels

    International Nuclear Information System (INIS)

    Sabato, S.F.; Lordello, A.R.

    1984-01-01

    Two spectrogaphyic solution techniques, 'Porous Cup' and 'Vacuum Cup', were investigated in order to determine the minor constituents (Cr, Ni, Mo, Mn, Cu and V) of stainless steels. Iron and cobalt were experimented as internal standards. The precision varied from 4 to 11% for both spectrographic techniques, in which cobalt was used as international standard. Certified standards from National Bureau of Standards and Instituto de Pesquisas Tecnologicas were analysed to verify the accuracy of both techniques. The best accuracy was obtained with the Vacuum Cup techniques. (Author) [pt

  17. Assimilation of Aircraft Observations in High-Resolution Mesoscale Modeling

    Directory of Open Access Journals (Sweden)

    Brian P. Reen

    2018-01-01

    Full Text Available Aircraft-based observations are a promising source of above-surface observations for assimilation into mesoscale model simulations. The Tropospheric Airborne Meteorological Data Reporting (TAMDAR observations have potential advantages over some other aircraft observations including the presence of water vapor observations. The impact of assimilating TAMDAR observations via observation nudging in 1 km horizontal grid spacing Weather Research and Forecasting model simulations is evaluated using five cases centered over California. Overall, the impact of assimilating the observations is mixed, with the layer with the greatest benefit being above the surface in the lowest 1000 m above ground level and the variable showing the most consistent benefit being temperature. Varying the nudging configuration demonstrates the sensitivity of the results to details of the assimilation, but does not clearly demonstrate the superiority of a specific configuration.

  18. NITROGEN ISOTOPIC RATIO OF COMETARY AMMONIA FROM HIGH-RESOLUTION OPTICAL SPECTROSCOPIC OBSERVATIONS OF C/2014 Q2 (LOVEJOY)

    Energy Technology Data Exchange (ETDEWEB)

    Shinnaka, Yoshiharu [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Kawakita, Hideyo, E-mail: yoshiharu.shinnaka@nao.ac.jp [Koyama Astronomical Observatory, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-Ku, Kyoto 603-8555 (Japan)

    2016-11-01

    The icy materials present in comets provide clues to the origin and evolution of our solar system and planetary systems. High-resolution optical spectroscopic observations of comet C/2014 Q2 (Lovejoy) were performed on 2015 January 11 (at 1.321 au pre-perihelion) with the High Dispersion Spectrograph mounted on the Subaru Telescope on Maunakea, Hawaii. We derive the {sup 14}N/{sup 15}N ratio of NH{sub 2} (126 ± 25), as well as the ortho-to-para abundance ratios (OPRs) of the H{sub 2}O{sup +} ion (2.77 ± 0.24) and NH{sub 2} (3.38 ± 0.07), which correspond to nuclear spin temperatures of >24 K (3 σ lower limit) and 27 ± 2 K, respectively. We also derive the intensity ratio of the green-to-red doublet of forbidden oxygen lines (0.107 ± 0.007). The ammonia in the comet must have formed under low-temperature conditions at ∼10 K or less to reproduce the observed {sup 14}N/{sup 15}N ratio in this molecule if it is assumed that the {sup 15}N-fractionation of ammonia occurred via ion–molecule chemical reactions. However, this temperature is inconsistent with the nuclear spin temperatures of water and ammonia estimated from the OPRs. The interpretation of the nuclear spin temperature as the temperature at molecular formation may therefore be incorrect. An isotope-selective photodissociation of molecular nitrogen by protosolar ultraviolet radiation might play an important role in the {sup 15}N-fractionation observed in cometary volatiles.

  19. Proton polarimetry using an Enge split-pole spectrograph

    Energy Technology Data Exchange (ETDEWEB)

    Moss, J M; Brown, D R; Cornelius, W D [Texas Agricultural and Mechanical Univ., College Station (USA). Cyclotron Inst.

    1976-05-15

    A high-efficiency (4 x 10/sup -5/ at A=0.4) high resolution (150 keV) polarimeter used in conjunction with an Enge split-pole spectrograph is described. This device permits for the first time polarization transfer studies in elastic scattering. Spectra are shown for /sup 11/B(p(pol),p(pol)')/sup 11/B (2.14 MeV)at Esub(p)=31 MeV.

  20. Far-ultraviolet Spectroscopy of Recent Comets with the Cosmic Origins Spectrograph on the Hubble Space Telescope

    Science.gov (United States)

    Feldman, Paul D.; Weaver, Harold A.; A’Hearn, Michael F.; Combi, Michael R.; Dello Russo, Neil

    2018-05-01

    Since its launch in 1990, the Hubble Space Telescope (HST) has served as a platform with unique capabilities for remote observations of comets in the far-ultraviolet region of the spectrum. Successive generations of imagers and spectrographs have seen large advances in sensitivity and spectral resolution enabling observations of the diverse properties of a representative number of comets during the past 25 years. To date, four comets have been observed in the far-ultraviolet by the Cosmic Origins Spectrograph (COS), the last spectrograph to be installed in HST, in 2009: 103P/Hartley 2, C/2009 P1 (Garradd), C/2012 S1 (ISON), and C/2014 Q2 (Lovejoy). COS has unprecedented sensitivity, but limited spatial information in its 2.″5 diameter circular aperture, and our objective was to determine the CO production rates from measurements of the CO Fourth Positive system in the spectral range of 1400–1700 Å. In the two brightest comets, 19 bands of this system were clearly identified. The water production rates were derived from nearly concurrent observations of the OH (0,0) band at 3085 Å by the Space Telescope Imaging Spectrograph. The derived CO/{{{H}}}2{{O}} production rate ratio ranged from ∼0.3% for Hartley 2 to ∼22% for Garradd. In addition, strong partially resolved emission features due to multiplets of S I, centered at 1429 Å and 1479 Å, and of C I at 1561 Å and 1657 Å, were observed in all four comets. Weak emission from several lines of the {{{H}}}2 Lyman band system, excited by solar Lyα and Lyβ pumped fluorescence, were detected in comet Lovejoy.

  1. Project overview of OPTIMOS-EVE: the fibre-fed multi-object spectrograph for the E-ELT

    NARCIS (Netherlands)

    Navarro, R.; Chemla, F.; Bonifacio, P.; Flores, H.; Guinouard, I.; Huet, J.-M.; Puech, M.; Royer, F.; Pragt, J.H.; Wulterkens, G.; Sawyer, E.C.; Caldwell, M.E.; Tosh, I.A.J.; Whalley, M.S.; Woodhouse, G.F.W.; Spanò, P.; Di Marcantonio, P.; Andersen, M.I.; Dalton, G.B.; Kaper, L.; Hammer, F.

    2010-01-01

    OPTIMOS-EVE (OPTical Infrared Multi Object Spectrograph - Extreme Visual Explorer) is the fibre fed multi object spectrograph proposed for the European Extremely Large Telescope (E-ELT), planned to be operational in 2018 at Cerro Armazones (Chile). It is designed to provide a spectral resolution of

  2. CRYSTALLINE SILICATES IN EVOLVED STARS. I. SPITZER/INFRARED SPECTROGRAPH SPECTROSCOPY OF IRAS 16456-3542, 18354-0638, AND 23239+5754

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, B. W.; Zhang, Ke [Department of Astronomy, Beijing Normal University, Beijing 100875 (China); Li, Aigen [Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211 (United States); Lisse, C. M., E-mail: bjiang@bnu.edu.cn, E-mail: kzhang@caltech.edu, E-mail: lia@missouri.edu, E-mail: carey.lisse@jhuapl.edu [Johns Hopkins University, Applied Physics Laboratory, Laurel, MD 20723 (United States)

    2013-03-01

    We report the Spitzer Infrared Spectrograph (IRS) observations of three evolved stars: IRAS 16456-3542, 18354-0638, and 23239+5754. The 9.9-37.2 {mu}m Spitzer/IRS high-resolution spectra of these three sources exhibit rich sets of enstatite-dominated crystalline silicate emission features. IRAS 16456-3542 is extremely rich in crystalline silicates, with >90% of its silicate mass in crystalline form, the highest to date ever reported for crystalline silicate sources.

  3. The SLICE, CHESS, and SISTINE Ultraviolet Spectrographs: Rocket-Borne Instrumentation Supporting Future Astrophysics Missions

    Science.gov (United States)

    France, Kevin; Hoadley, Keri; Fleming, Brian T.; Kane, Robert; Nell, Nicholas; Beasley, Matthew; Green, James C.

    2016-03-01

    NASA’s suborbital program provides an opportunity to conduct unique science experiments above Earth’s atmosphere and is a pipeline for the technology and personnel essential to future space astrophysics, heliophysics, and atmospheric science missions. In this paper, we describe three astronomy payloads developed (or in development) by the Ultraviolet Rocket Group at the University of Colorado. These far-ultraviolet (UV) (100-160nm) spectrographic instruments are used to study a range of scientific topics, from gas in the interstellar medium (accessing diagnostics of material spanning five orders of magnitude in temperature in a single observation) to the energetic radiation environment of nearby exoplanetary systems. The three instruments, Suborbital Local Interstellar Cloud Experiment (SLICE), Colorado High-resolution Echelle Stellar Spectrograph (CHESS), and Suborbital Imaging Spectrograph for Transition region Irradiance from Nearby Exoplanet host stars (SISTINE) form a progression of instrument designs and component-level technology maturation. SLICE is a pathfinder instrument for the development of new data handling, storage, and telemetry techniques. CHESS and SISTINE are testbeds for technology and instrument design enabling high-resolution (R>105) point source spectroscopy and high throughput imaging spectroscopy, respectively, in support of future Explorer, Probe, and Flagship-class missions. The CHESS and SISTINE payloads support the development and flight testing of large-format photon-counting detectors and advanced optical coatings: NASA’s top two technology priorities for enabling a future flagship observatory (e.g. the LUVOIR Surveyor concept) that offers factors of ˜50-100 gain in UV spectroscopy capability over the Hubble Space Telescope. We present the design, component level laboratory characterization, and flight results for these instruments.

  4. Spectrographical method for determining temperature variations of cosmic rays

    International Nuclear Information System (INIS)

    Dorman, L.I.; Krest'yannikov, Yu.Ya.; AN SSSR, Irkutsk. Sibirskij Inst. Zemnogo Magnetizma Ionosfery i Rasprostraneniya Radiovoln)

    1977-01-01

    A spectrographic method for determining [sigmaJsup(μ)/Jsup(μ)]sub(T) temperature variations in cosmic rays is proposed. The value of (sigmaJsup(μ)/Jsup(μ)]sub(T) is determined from three equations for neutron supermonitors and the equation for the muon component of cosmic rays. It is assumed that all the observation data include corrections for the barometric effect. No temperature effect is observed in the neutron component. To improve the reliability and accuracy of the results obtained the surface area of the existing devices and the number of spectrographic equations should be increased as compared with that of the unknown values. The value of [sigmaJsup(μ)/Jsup(μ)]sub(T) for time instants when the aerological probing was carried out, was determined from the data of observations of cosmic rays with the aid of a spectrographic complex of devices of Sib IZMIR. The r.m.s. dispersion of the difference is about 0.2%, which agrees with the expected dispersion. The agreement obtained can be regarded as an independent proof of the correctness of the theory of meteorological effects of cosmic rays. With the existing detection accuracy the spectrographic method can be used for determining the hourly values of temperature corrections for the muon component

  5. High resolution observations using adaptive optics: Achievements and future needs

    Science.gov (United States)

    Sankarasubramanian, K.; Rimmele, T.

    2008-06-01

    Over the last few years, several interesting observations were obtained with the help of solar Adaptive Optics (AO). In this paper, few observations made using the solar AO are enlightened and briefly discussed. A list of disadvantages with the current AO system are presented. With telescopes larger than 1.5 m expected during the next decade, there is a need to develop the existing AO technologies for large aperture telescopes. Some aspects of this development are highlighted. Finally, the recent AO developments in India are also presented.

  6. High-resolution Observations of Sympathetic Filament Eruptions by NVST

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shangwei; Su, Yingna; Zhou, Tuanhui; Ji, Haisheng [Key Laboratory for Dark Matter and Space Science, Purple Mountain Observatory, CAS, Nanjing 210008 (China); Van Ballegooijen, Adriaan [5001 Riverwood Avenue, Sarasota, FL 34231 (United States); Sun, Xudong, E-mail: ynsu@pmo.ac.cn [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States)

    2017-07-20

    We investigate two sympathetic filament eruptions observed by the New Vacuum Solar Telescope on 2015 October 15. The full picture of the eruptions is obtained from the corresponding Solar Dynamics Observatory ( SDO )/Atmospheric Imaging Assembly (AIA) observations. The two filaments start from active region NOAA 12434 in the north and end in one large quiescent filament channel in the south. The left filament erupts first, followed by the right filament eruption about 10 minutes later. Clear twist structure and rotating motion are observed in both filaments during the eruption. Both eruptions failed, since the filaments first rise up, then flow toward the south and merge into the southern large quiescent filament. We also observe repeated activations of mini filaments below the right filament after its eruption. Using magnetic field models constructed based on SDO /HMI magnetograms via the flux rope insertion method, we find that the left filament eruption is likely to be triggered by kink instability, while the weakening of overlying magnetic fields due to magnetic reconnection at an X-point between the two filament systems might play an important role in the onset of the right filament eruption.

  7. Pituitary gland and its stalk observed by high resolution CT

    International Nuclear Information System (INIS)

    Nakagawa, Yoshinobu; Fukami, Tsuneharu; Matsumoto, Keizo.

    1982-01-01

    It seemed to be important to recognize the CT findings of normal pituitary gland and the stalk for the acurate morphological diagnosis of pituitary microadenoma. In a consecutive series of normal 103 cases, the CT scans obtained by high resolution CT (CE-CT, Metrizamide CT) were analized and compared with 6 cases of microadenoma. The pituitary stalk demonstrated by the reconstructed coronal CT was examined and the inclination of the stalk was measured. The mean value of the inclination of pituitary stalk was 1.4 +- 1.7 0 in normal group and 9.3 +- 2.4 0 in microadenoma group. The form of the pituitary gland demonstrated by a reconstructed mid-saggital CT were classified into the following 3 types. Type I : The gland filling the whole pituitary fossa. Type II : The gland filled with small CSF space localized in the upper-anterior part in the pituitary fossa. Type III : The enlarged CSF space of more than half of the depth of pituitary fossa and the gland localized in the retro-lower part. As for the shape of pituitary gland, type I was revealed in 26 cases (7 cases in male and 19 cases in female), Type II was revealed in 31 cases (12 cases in male and 19 cases in female), Type III was revealed in 46 cases (25 cases in male and 21 cases in female). Type I was shown in female, especially in 10 years old young female. In 19 cases of 30 years to 40 years female, Type II was shown in 9 cases. In 44 male cases, Type I and Type II were shown in all ages. In the aged, Type III was shown in more than the other types. On the other hand, Type I was noted in 5 out of 6 cases of microadenoma group. (author)

  8. Spectrographic analysis of waste waters

    International Nuclear Information System (INIS)

    Alvarez Alduan, F.; Capdevila, C.

    1979-01-01

    The Influence of sodium and calcium, up to a maximum concentration of 1000 mg/1 Na and 300 mg/1 Ca, in the spectrographic determination of Cr, Cu, Fe,Mn and Pb in waste waters using graphite spark excitation has been studied. In order to eliminate this influence, each of the elements Ba, Cs, In, La, Li, Sr and Ti, as well as a mixture containing 5% Li-50% Ti, have been tested as spectrochemical buffers. This mixture allows to obtain an accuracy better than 25%. Sodium and calcium enhance the line intensities of impurities, when using graphite or gold electrodes, but they produce an opposite effect if copper or silver electrodes are used. (Author) 1 refs

  9. Fiber Scrambling for High Precision Spectrographs

    Science.gov (United States)

    Kaplan, Zachary; Spronck, J. F. P.; Fischer, D.

    2011-05-01

    The detection of Earth-like exoplanets with the radial velocity method requires extreme Doppler precision and long-term stability in order to measure tiny reflex velocities in the host star. Recent planet searches have led to the detection of so called "super-Earths” (up to a few Earth masses) that induce radial velocity changes of about 1 m/s. However, the detection of true Earth analogs requires a precision of 10 cm/s. One of the largest factors limiting Doppler precision is variation in the Point Spread Function (PSF) from observation to observation due to changes in the illumination of the slit and spectrograph optics. Thus, this stability has become a focus of current instrumentation work. Fiber optics have been used since the 1980's to couple telescopes to high-precision spectrographs, initially for simpler mechanical design and control. However, fiber optics are also naturally efficient scramblers. Scrambling refers to a fiber's ability to produce an output beam independent of input. Our research is focused on characterizing the scrambling properties of several types of fibers, including circular, square and octagonal fibers. By measuring the intensity distribution after the fiber as a function of input beam position, we can simulate guiding errors that occur at an observatory. Through this, we can determine which fibers produce the most uniform outputs for the severest guiding errors, improving the PSF and allowing sub-m/s precision. However, extensive testing of fibers of supposedly identical core diameter, length and shape from the same manufacturer has revealed the "personality” of individual fibers. Personality describes differing intensity patterns for supposedly duplicate fibers illuminated identically. Here, we present our results on scrambling characterization as a function of fiber type, while studying individual fiber personality.

  10. High-Resolution Observations of a Filament showing Activated Barb

    Science.gov (United States)

    Joshi, Anand; Martin, Sara F.; Mathew, Shibu; Srivastava, Nandita

    2012-07-01

    Analysis of a filament showing an activated barb using observations from the Dutch Open Telescope (DOT) on 2010 August 20 are presented. The DOT takes Doppler images in Hα, among other wavelengths, in a region about 110 × 110 arcsec^{2} in area, at a cadence of 30~seconds. The offline image restoration technique of speckle reconstruction is applied to obtain diffraction limited images. The filament developed a new barb in 10~minutes, which disappeared within the next 35~minutes. Such a rapid formation and disappearance of a filament barb is unusual, and has not been reported earlier. Line-of-sight velocity maps were constructed from the Doppler images of the target filament. We observe flows in the filament spine towards the barb location prior to its formation, and flows in the barb towards the spine during its disappearance. Photospheric magnetograms from Heliospheric Magnetic Imager on board the Solar Dynamics Observatory, at a cadence of 45~seconds, were used to determine the changes in magnetic flux in the region surrounding the barb location. The variation of magnetic flux in this duration supports the view that barbs are rooted in minor magnetic polarity. Our analysis shows that barbs can be short-lived and formation and disappearance of the barb was associated with cancellation of magnetic flux.

  11. 15x optical zoom and extreme optical image stabilisation: diffraction limited integral field spectroscopy with the Oxford SWIFT spectrograph

    OpenAIRE

    Tecza, Matthias; Thatte, Niranjan; Clarke, Fraser; Lynn, James; Freeman, David; Roberts, Jennifer; Dekany, Richard

    2012-01-01

    When commissioned in November 2008 at the Palomar 200 inch Hale Telescope, the Oxford SWIFT I and z band integral field spectrograph, fed by the adaptive optics system PALAO, provided a wide (3×) range of spatial resolutions: three plate scales of 235 mas, 160 mas, and 80 mas per spaxel over a contiguous field-of-view of 89×44 pixels. Depending on observing conditions and guide star brightness we can choose a seeing limited scale of 235 mas per spaxel, or 160 mas and 80 mas per spaxel for ver...

  12. A soft X-Ray flat field grating spectrograph and its experimental applications

    International Nuclear Information System (INIS)

    Ni Yuanlong; Mao Chusheng

    2001-01-01

    The principle, structure, and application results of a flat field grating spectrograph for X-ray laser research is presented. There are two kinds of the spectrograph. One uses a varied space grating with nominal line spacing 1200 l/mm, the spectral detection range is 5 - 50 nm, and another uses a 2400 l/mm varied line space grating, detection range is 1 - 10 nm. The experimental results of the former is introduced only. Both experimental results of this instrument using the soft X-ray film and a streak camera as the detecting elements are given. The spectral resolutions are 0.01 nm and 0.05 nm, respectively. The temporal resolution is 30 ps. Finally, the stigmatic structure of the spectrograph is introduced, which uses cylindrical mirror and spherical mirror as a focusing system. The magnification is 5, spatial resolution is 25 μm. The experimental results are given as well

  13. Megapixel Longwave Infrared SLS FPAs for High Spatial Resolution Earth Observing Missions, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Earth observing missions like NASA's LANDSAT Data Continuity Mission - Thermal Infrared Sensor (LDCM-TIRS) require greater spatial resolution of the earth than the ~...

  14. Megapixel Longwave Infrared SLS FPAs for High Spatial Resolution Earth Observing Missions, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Earth observing missions like NASA's LANDSAT Data Continuity Mission - Thermal Infrared Sensor (LDCM-TIRS) require greater spatial resolution of the earth than the ~...

  15. Zooming into local active galactic nuclei: the power of combining SDSS-IV MaNGA with higher resolution integral field unit observations

    Science.gov (United States)

    Wylezalek, Dominika; Schnorr Müller, Allan; Zakamska, Nadia L.; Storchi-Bergmann, Thaisa; Greene, Jenny E.; Müller-Sánchez, Francisco; Kelly, Michael; Liu, Guilin; Law, David R.; Barrera-Ballesteros, Jorge K.; Riffel, Rogemar A.; Thomas, Daniel

    2017-05-01

    Ionized gas outflows driven by active galactic nuclei (AGN) are ubiquitous in high-luminosity AGN with outflow speeds apparently correlated with the total bolometric luminosity of the AGN. This empirical relation and theoretical work suggest that in the range Lbol ˜ 1043-45 erg s-1 there must exist a threshold luminosity above which the AGN becomes powerful enough to launch winds that will be able to escape the galaxy potential. In this paper, we present pilot observations of two AGN in this transitional range that were taken with the Gemini North Multi-Object Spectrograph integral field unit (IFU). Both sources have also previously been observed within the Sloan Digital Sky Survey-IV (SDSS) Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey. While the MaNGA IFU maps probe the gas fields on galaxy-wide scales and show that some regions are dominated by AGN ionization, the new Gemini IFU data zoom into the centre with four times better spatial resolution. In the object with the lower Lbol we find evidence of a young or stalled biconical AGN-driven outflow where none was obvious at the MaNGA resolution. In the object with the higher Lbol we trace the large-scale biconical outflow into the nuclear region and connect the outflow from small to large scales. These observations suggest that AGN luminosity and galaxy potential are crucial in shaping wind launching and propagation in low-luminosity AGN. The transition from small and young outflows to galaxy-wide feedback can only be understood by combining large-scale IFU data that trace the galaxy velocity field with higher resolution, small-scale IFU maps.

  16. Design and realization of the real-time spectrograph controller for LAMOST based on FPGA

    Science.gov (United States)

    Wang, Jianing; Wu, Liyan; Zeng, Yizhong; Dai, Songxin; Hu, Zhongwen; Zhu, Yongtian; Wang, Lei; Wu, Zhen; Chen, Yi

    2008-08-01

    A large Schmitt reflector telescope, Large Sky Area Multi-Object Fiber Spectroscopic Telescope(LAMOST), is being built in China, which has effective aperture of 4 meters and can observe the spectra of as many as 4000 objects simultaneously. To fit such a large amount of observational objects, the dispersion part is composed of a set of 16 multipurpose fiber-fed double-beam Schmidt spectrographs, of which each has about ten of moveable components realtimely accommodated and manipulated by a controller. An industrial Ethernet network connects those 16 spectrograph controllers. The light from stars is fed to the entrance slits of the spectrographs with optical fibers. In this paper, we mainly introduce the design and realization of our real-time controller for the spectrograph, our design using the technique of System On Programmable Chip (SOPC) based on Field Programmable Gate Array (FPGA) and then realizing the control of the spectrographs through NIOSII Soft Core Embedded Processor. We seal the stepper motor controller as intellectual property (IP) cores and reuse it, greatly simplifying the design process and then shortening the development time. Under the embedded operating system μC/OS-II, a multi-tasks control program has been well written to realize the real-time control of the moveable parts of the spectrographs. At present, a number of such controllers have been applied in the spectrograph of LAMOST.

  17. NRES: The Network of Robotic Echelle Spectrographs

    Science.gov (United States)

    Siverd, Robert; Brown, Tim; Henderson, Todd; Hygelund, John; Barnes, Stuart; de Vera, Jon; Eastman, Jason; Kirby, Annie; Smith, Cary; Taylor, Brook; Tufts, Joseph; van Eyken, Julian

    2018-01-01

    Las Cumbres Observatory (LCO) is building the Network of Robotic Echelle Spectrographs (NRES), which will consist of four (up to six in the future) identical, optical (390 - 860 nm) high-precision spectrographs, each fiber-fed simultaneously by up to two 1-meter telescopes and a Thorium-Argon calibration source. We plan to install one at up to 6 observatory sites in the Northern and Southern hemispheres, creating a single, globally-distributed, autonomous spectrograph facility using up to ten 1-m telescopes. Simulations suggest we will achieve long-term radial velocity precision of 3 m/s in less than an hour for stars brighter than V = 11 or 12 once the system reaches full capability. Acting in concert, these four spectrographs will provide a new, unique facility for stellar characterization and precise radial velocities.Following a few months of on-sky evaluation at our BPL test facility, the first spectrograph unit was shipped to CTIO in late 2016 and installed in March 2017. After several more months of additional testing and commissioning, regular science operations began with this node in September 2017. The second NRES spectrograph was installed at McDonald Observatory in September 2017 and released to the network after its own brief commissioning period, extending spectroscopic capability to the Northern hemisphere. The third NRES spectrograph was installed at SAAO in November 2017 and released to our science community just before year's end. The fourth NRES unit shipped in October and is currently en route to Wise Observatory in Israel with an expected release to the science community in early 2018.We will briefly overview the LCO telescope network, the NRES spectrograph design, the advantages it provides, and development challenges we encountered along the way. We will further discuss real-world performance from our first three units, initial science results, and the ongoing software development effort needed to automate such a facility for a wide array of

  18. ELLERMAN BOMBS AT HIGH RESOLUTION. III. SIMULTANEOUS OBSERVATIONS WITH IRIS AND SST

    Energy Technology Data Exchange (ETDEWEB)

    Vissers, G. J. M.; Voort, L. H. M. Rouppe van der; Rutten, R. J.; Carlsson, M.; Pontieu, B. De, E-mail: g.j.m.vissers@astro.uio.no [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, NO-0315 Oslo (Norway)

    2015-10-10

    Ellerman bombs (EBs) are transient brightenings of the extended wings of the solar Balmer lines in emerging active regions. We describe their properties in the ultraviolet lines sampled by the Interface Region Imaging Spectrograph (IRIS), using simultaneous imaging spectroscopy in Hα with the Swedish 1-m Solar Telescope (SST) and ultraviolet images from the Solar Dynamics Observatory for Ellerman bomb detection and identification. We select multiple co-observed EBs for detailed analysis. The IRIS spectra strengthen the view that EBs mark reconnection between bipolar kilogauss fluxtubes with the reconnection and the resulting bi-directional jet located within the solar photosphere and shielded by overlying chromospheric fibrils in the cores of strong lines. The spectra suggest that the reconnecting photospheric gas underneath is heated sufficiently to momentarily reach stages of ionization normally assigned to the transition region and the corona. We also analyze similar outburst phenomena that we classify as small flaring arch filaments and ascribe to reconnection at a higher location. They have different morphologies and produce hot arches in million-Kelvin diagnostics.

  19. High-resolution Observations of Flares in an Arch Filament System

    Science.gov (United States)

    Su, Yingna; Liu, Rui; Li, Shangwei; Cao, Wenda; Ahn, Kwangsu; Ji, Haisheng

    2018-03-01

    We study five sequential solar flares (SOL2015-08-07) occurring in Active Region 12396 observed with the Goode Solar Telescope (GST) at the Big Bear Solar Observatory, complemented by Interface Region Imaging Spectrograph and SDO observations. The main flaring region is an arch filament system (AFS) consisting of multiple bundles of dark filament threads enclosed by semicircular flare ribbons. We study the magnetic configuration and evolution of the active region by constructing coronal magnetic field models based on SDO/HMI magnetograms using two independent methods, i.e., the nonlinear force-free field (NLFFF) extrapolation and the flux rope insertion method. The models consist of multiple flux ropes with mixed signs of helicity, i.e., positive (negative) in the northern (southern) region, which is consistent with the GST observations of multiple filament bundles. The footprints of quasi-separatrix layers (QSLs) derived from the extrapolated NLFFF compare favorably with the observed flare ribbons. An interesting double-ribbon fine structure located at the east border of the AFS is consistent with the fine structure of the QSL’s footprint. Moreover, magnetic field lines traced along the semicircular footprint of a dome-like QSL surrounding the AFS are connected to the regions of significant helicity and Poynting flux injection. The maps of magnetic twist show that positive twist became dominant as time progressed, which is consistent with the injection of positive helicity before the flares. We hence conclude that these circular shaped flares are caused by 3D magnetic reconnection at the QSLs associated with the AFS possessing mixed signs of helicity.

  20. Workshop for cascade project, physics using large acceptance spectrograph and its technical considerations

    International Nuclear Information System (INIS)

    1989-03-01

    The Workshop for Cascade, subtitled 'Physics Using Large Acceptance Spectrograph and Its Technical Considerations', was held on July 13, 1988 by the Nuclear Physics Research Center, Osaka University. The present proceedings carry a total of 18 reports, which are entitled 'RCNP Large Acceptance Spectrograph (plan)', 'Correlation Experiments with a System Consisting of a Small Number of Nucleons', 'Measurement of (d,d) and (d, 2 He) Reactions with Large Solid Angle Spectrograph', 'The (p,2p) and (p,pn) Reactions', 'Correlation Experiments with Large Acceptance Spectrograph', 'Efforts at Determination of Various Correlations in Alpha Particles', 'Two-Nucleon Correlation in Nucleus', 'A Study on Particle Migration Reaction with Broad-Band Spectrograph', 'Measurement of Response in Highly Excited State during Nucleon Migration Reaction', 'A Study on Δ-Excitation within Nucleus', 'A Few Problems Related with Response in Highly Excited State', 'Spin-Isospin Modes in Continuum', '(p,π) and (p,xπ) Reactions', 'Formation of π - in (p,2p) Reaction', 'Formation of π-Mesonic Atom with Consistent Momentum', 'Measurement of Excitation Functions by Means of 'Inconsistent' Dispersion in Magnetic Spectrograph', 'Deeply Bound π - States by 'π - Transfer' (n,p) Reactions', and 'On High Resolution (n,p) Facilities'. (N.K.)

  1. Study of the magnetic spectrograph BIG KARL on image errors and their causes

    International Nuclear Information System (INIS)

    Paul, D.

    1987-12-01

    The ionoptical aberrations of the QQDDQ spectrograph BIG KARL are measured and analyzed in order to improve resolution and transmission at large acceptance. The entrance phasespace is scanned in a cartesian grid by means of a narrow collimated beam of scattered deuterons. The distortions due to the nonlinear transformation by the system are measured in the detector plane. A model is developed which describes the measured distortions. The model allows to locate nonlinearities in the system responsible for the observed distortions. It gives a good understanding of geometrical nonlinearities up to the fifth order and chromatical nonlinearities up to the third order. To confirm the model, the magnetic field in the quadrupoles is measured including the fringe field region. Furthermore, nonlinearities appearing in ideal magnets are discussed and compared to experimental data. (orig.) [de

  2. Using Process Observation to Teach Alternative Dispute Resolution: Alternatives to Simulation.

    Science.gov (United States)

    Bush, Robert A. Barush

    1987-01-01

    A method of teaching alternative dispute resolution (ADR) involves sending students to observe actual ADR sessions, by agreement with the agencies conducting them, and then analyzing the students' observations in focused discussions to improve student insight and understanding of the processes involved. (MSE)

  3. X-ray spectrometer spectrograph telescope system. [for solar corona study

    Science.gov (United States)

    Bruner, E. C., Jr.; Acton, L. W.; Brown, W. A.; Salat, S. W.; Franks, A.; Schmidtke, G.; Schweizer, W.; Speer, R. J.

    1979-01-01

    A new sounding rocket payload that has been developed for X-ray spectroscopic studies of the solar corona is described. The instrument incorporates a grazing incidence Rowland mounted grating spectrograph and an extreme off-axis paraboloic sector feed system to isolate regions of the sun of order 1 x 10 arc seconds in size. The focal surface of the spectrograph is shared by photographic and photoelectric detection systems, with the latter serving as a part of the rocket pointing system control loop. Fabrication and alignment of the optical system is based on high precision machining and mechanical metrology techniques. The spectrograph has a resolution of 16 milliangstroms and modifications planned for future flights will improve the resolution to 5 milliangstroms, permitting line widths to be measured.

  4. Compact low resolution spectrograph, an imaging and long slit spectrograph for robotic telescopes

    Czech Academy of Sciences Publication Activity Database

    Rabaza, O.; Jelínek, M.; Castro-Tirado, A.J.; Cunniffe, R.; Zeman, Jiří; Hudec, René; Sabau-Graziati, L.; Ruedas-Sanchez, J.

    2013-01-01

    Roč. 84, č. 11 (2013), 114501/1-114501/10 ISSN 0034-6748 Grant - others:GA ČR(CZ) GA102/09/0997 Institutional support: RVO:67985815 Keywords : space telescope * mission Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 1.584, year: 2013

  5. High-resolution observation of phase contrast at 1MeV. Amorphous or crystalline objects

    International Nuclear Information System (INIS)

    Bourret, A.; Desseaux, J.

    1975-01-01

    Many authors have stressed the possibilities of high voltage to improve resolution, but owing to numerous experimental difficulties the resolution limit at 1MeV, which lies around 1A for conventional lenses, has so far been unattainable. Thus the phase contrast at 1MeV has not been studied on evaporated objects. On the other hand the fringes of crystal planes have been observed at 1MeV. the CEN-G microscope having been considerably modified it has been possible to observe the phase contrast of amorphous or crystalline objects [fr

  6. Curved VPH gratings for novel spectrographs

    Science.gov (United States)

    Clemens, J. Christopher; O'Donoghue, Darragh; Dunlap, Bart H.

    2014-07-01

    The introduction of volume phase holographic (VPH) gratings into astronomy over a decade ago opened new possibilities for instrument designers. In this paper we describe an extension of VPH grating technology that will have applications in astronomy and beyond: curved VPH gratings. These devices can disperse light while simultaneously correcting aberrations. We have designed and manufactured two different kinds of convex VPH grating prototypes for use in off-axis reflecting spectrographs. One type functions in transmission and the other in reflection, enabling Offnerstyle spectrographs with the high-efficiency and low-cost advantages of VPH gratings. We will discuss the design process and the tools required for modelling these gratings along with the recording layout and process steps required to fabricate them. We will present performance data for the first convex VPH grating produced for an astronomical spectrograph.

  7. Sensitivity Calibration of Far-Ultraviolet Imaging Spectrograph

    Directory of Open Access Journals (Sweden)

    I. -J. Kim

    2004-12-01

    Full Text Available We describe the in-flight sensitivity calibration of the Far ultraviolet Imaging Spectrograph (FIMS, also known as SPEAR onboard the first Korean science satellite, STSAT-1, which was launched in September 2003. The sensitivity calibration is based on a comparison of the FIMS observations of the hot white dwarf G191B2B, and two O-type stars Alpha-Cam, HD93521 with the HUT (Hopkins Ultraviolet Telescope observations. The FIMS observations for the calibration targets have been conducted from November 2003 through May 2004. The effective areas calculated from the targets are compared with each other.

  8. Time-resolved High Spectral Resolution Observation of 2MASSW J0746425+200032AB

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ji; Mawet, Dimitri [Department of Astronomy, California Institute of Technology, MC 249-17, 1200 E. California Boulevard, Pasadena, CA 91106 (United States); Prato, Lisa, E-mail: ji.wang@caltech.edu [Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001 (United States)

    2017-03-20

    Many brown dwarfs (BDs) exhibit photometric variability at levels from tenths to tens of percents. The photometric variability is related to magnetic activity or patchy cloud coverage, characteristic of BDs near the L–T transition. Time-resolved spectral monitoring of BDs provides diagnostics of cloud distribution and condensate properties. However, current time-resolved spectral studies of BDs are limited to low spectral resolution ( R ∼ 100) with the exception of the study of Luhman 16 AB at a resolution of 100,000 using the VLT+CRIRES. This work yielded the first map of BD surface inhomogeneity, highlighting the importance and unique contribution of high spectral resolution observations. Here, we report on the time-resolved high spectral resolution observations of a nearby BD binary, 2MASSW J0746425+200032AB. We find no coherent spectral variability that is modulated with rotation. Based on simulations, we conclude that the coverage of a single spot on 2MASSW J0746425+200032AB is smaller than 1% or 6.25% if spot contrast is 50% or 80% of its surrounding flux, respectively. Future high spectral resolution observations aided by adaptive optics systems can put tighter constraints on the spectral variability of 2MASSW J0746425+200032AB and other nearby BDs.

  9. The LUVOIR Ultraviolet Multi-Object Spectrograph (LUMOS): instrument definition and design

    Science.gov (United States)

    France, Kevin; Fleming, Brian; West, Garrett; McCandliss, Stephan R.; Bolcar, Matthew R.; Harris, Walter; Moustakas, Leonidas; O'Meara, John M.; Pascucci, Ilaria; Rigby, Jane; Schiminovich, David; Tumlinson, Jason

    2017-08-01

    The Large Ultraviolet/Optical/Infrared Surveyor (LUVOIR) is one of four large mission concepts currently undergoing community study for consideration by the 2020 Astronomy and Astrophysics Decadal Survey. LUVOIR is being designed to pursue an ambitious program of exoplanetary discovery and characterization, cosmic origins astrophysics, and planetary science. The LUVOIR study team is investigating two large telescope apertures (9- and 15-meter primary mirror diameters) and a host of science instruments to carry out the primary mission goals. Many of the exoplanet, cosmic origins, and planetary science goals of LUVOIR require high-throughput, imaging spectroscopy at ultraviolet (100 - 400 nm) wavelengths. The LUVOIR Ultraviolet Multi-Object Spectrograph, LUMOS, is being designed to support all of the UV science requirements of LUVOIR, from exoplanet host star characterization to tomography of circumgalactic halos to water plumes on outer solar system satellites. LUMOS offers point source and multi-object spectroscopy across the UV bandpass, with multiple resolution modes to support different science goals. The instrument will provide low (R = 8,000 - 18,000) and medium (R = 30,000 - 65,000) resolution modes across the far-ultraviolet (FUV: 100 - 200 nm) and nearultraviolet (NUV: 200 - 400 nm) windows, and a very low resolution mode (R = 500) for spectroscopic investigations of extremely faint objects in the FUV. Imaging spectroscopy will be accomplished over a 3 × 1.6 arcminute field-of-view by employing holographically-ruled diffraction gratings to control optical aberrations, microshutter arrays (MSA) built on the heritage of the Near Infrared Spectrograph (NIRSpec) on the James Webb Space Telescope (JWST), advanced optical coatings for high-throughput in the FUV, and next generation large-format photon-counting detectors. The spectroscopic capabilities of LUMOS are augmented by an FUV imaging channel (100 - 200nm, 13 milliarcsecond angular resolution, 2 × 2

  10. Spectra of Th/Ar and U/Ne hollow cathode lamps for spectrograph calibration

    Science.gov (United States)

    Nave, Gillian; Shlosberg, Ariel; Kerber, Florian; Den Hartog, Elizabeth; Neureiter, Bianca

    2018-01-01

    Low-current Th/Ar hollow cathode lamps have long been used for calibration of astronomical spectrographs on ground-based telescopes. Thorium is an attractive element for calibration as it has a single isotope, has narrow spectral lines, and has a dense spectrum covering the whole of the visible region. However, the high density of the spectrum that makes it attractive for calibrating high-resolution spectrographs is a detriment for lower resolution spectrographs and this is not obvious by examination of existing linelists. In addition, recent changes in regulations regarding the handling of thorium have led to a degradation in the quality of Th/Ar calibration lamps, with contamination by molecular ThO lines that are strong enough to obscure the calibration lines of interest.We are pursuing two approaches to these problems. First, we have expanded and improved the NIST Standard Reference Database 161, "Spectrum of Th-Ar Hollow Cathode Lamps" to cover the region 272 nm to 5500 nm. Spectra of hollow cathode lamps at up to 3 different currents can now be displayed simultaneously. Interactive zooming and the ability to convolve any of the spectra with a Gaussian or uploaded instrument profile enable the user to see immediately what the spectrum would look like at the particular resolution of their spectrograph. Second, we have measured the spectrum of a recent, contaminated Th/Ar hollow cathode lamp using a high-resolution Echelle spectrograph (Madison Wisconsin) at a resolving power (R~ 250,000). This significantly exceeds the resolving power of most astronomical spectrographs and resolves many of the molecular lines of ThO. With these spectra we are measuring and calibrating the positions of these molecular lines in order to make them suitable for spectrograph calibration.In the near infrared region, U/Ne hollow cathode lamps give a higher density of calibration lines than Th/Ar lamps and will be implemented on the upgraded CRIRES+ spectrograph on ESO’s Very Large

  11. Multi-wavelength high-resolution observations of a small-scale emerging magnetic flux event and the chromospheric and coronal response

    Energy Technology Data Exchange (ETDEWEB)

    Vargas Domínguez, Santiago; Kosovichev, Alexander; Yurchyshyn, Vasyl, E-mail: svargas@bbso.njit.edu [Big Bear Solar Observatory, NJIT, 40386 North Shore Lane, Big Bear City, CA 92314-9672 (United States)

    2014-10-20

    State-of-the-art solar instrumentation is now revealing magnetic activity of the Sun with unprecedented temporal and spatial resolutions. Observations with the 1.6 m aperture New Solar Telescope (NST) of the Big Bear Solar Observatory are making next steps in our understanding of the solar surface structure. Granular-scale magnetic flux emergence and the response of the solar atmosphere are among the key research topics of high-resolution solar physics. As part of a joint observing program with NASA's Interface Region Imaging Spectrograph (IRIS) mission on 2013 August 7, the NST observed active region NOAA 11,810 in the photospheric TiO 7057 Å band with a resolution of pixel size of 0.''034 and chromospheric He I 10830 Å and Hα 6563 Å wavelengths. Complementary data are provided by the Solar Dynamics Observatory (SDO) and Hinode space-based telescopes. The region displayed a group of solar pores, in the vicinity of which we detect a small-scale buoyant horizontal magnetic flux tube causing granular alignments and interacting with the preexisting ambient field in the upper atmospheric layers. Following the expansion of distorted granules at the emergence site, we observed a sudden appearance of an extended surge in the He I 10830 Å data (bandpass of 0.05 Å). The IRIS transition region imaging caught ejection of a hot plasma jet associated with the He I surge. The SDO/HMI data used to study the evolution of the magnetic and Doppler velocity fields reveal emerging magnetic loop-like structures. Hinode/Ca II H and IRIS filtergrams detail the connectivities of the newly emerged magnetic field in the lower solar chromosphere. From these data, we find that the orientation of the emerging magnetic field lines from a twisted flux tube formed an angle of ∼45° with the overlying ambient field. Nevertheless, the interaction of emerging magnetic field lines with the pre-existing overlying field generates high-temperature emission regions and boosts the

  12. Proposal for the ion optics and for the kinematical fitting at the magnetic spectrograph BIG KARL

    International Nuclear Information System (INIS)

    Hinterberger, F.

    1986-01-01

    For the magnetic spectrograph BIG KARL the installation of an additional quadrupole lens is purposed. From this the possibility of a telescopic ion optic results. For future experiments a standard focusing with a spatial dispersion of 6.6 m and vanishing angular dispersion is proposed. The D/M ratio (dispersion/magnification) extends to 14.0 m, the maximal spatial angle lies at 3 msr. The energy range extends at a focal plane length of 0.66 m to 20%. For the kinematical fitting of the spectrograph the focal plane is shifted. This shift can be simply and rapidly realized for different K values by means of a software correction, if generally two spatial spectra in the focal plane are taken up. By this additionally for each event the actual scattering angle can be determined with relatively good resolution. The dispersion fit is completely decoupled from the kinematical fitting of the magnetic spectrograph. (orig.) [de

  13. Application of charge coupled devices as spatially-resolved detectors for X-ray spectrograph

    Energy Technology Data Exchange (ETDEWEB)

    Attelan-Langlet, S; Etlicher, B [Ecole Polytechnique, Palaiseau (France); Mishenskij, V O; Papazyan, Yu V; Smirnov, V P; Volkov, G S; Zajtsev, V I [Inst. for Thermonuclear and Innovation Investigations, Troitsk (Russian Federation)

    1997-12-31

    An X-ray crystal spectrograph which contains a CCD linear array as the position-sensitive detector is described. Radiation detection is performed directly onto CCD. The spectrograph has a limit of sensitivity at about 2 J/(A.ster), spectral resolution about 1000 and dynamic range 100-120. The device operates on-line with IBM-PC based control system. Software provides all data acquisition and treatment. Output spectra are presented in absolute units. The device was used during composite Z-pinch experiments at pulse-power installations ``Angara-5-1`` (TRINITI, Troitsk, Russia) and ``GAEL`` (Ecole Polytechnique, Palaiseau, France). Currently the spectrograph is included in the set of diagnostics of the ``Angara-5-1`` facility. Some of the spectra obtained are presented and discussed. (author). 4 figs., 9 refs.

  14. Towards high resolution mapping of 3-D mesoscale dynamics from observations

    Directory of Open Access Journals (Sweden)

    B. Buongiorno Nardelli

    2012-10-01

    Full Text Available The MyOcean R&D project MESCLA (MEsoSCaLe dynamical Analysis through combined model, satellite and in situ data was devoted to the high resolution 3-D retrieval of tracer and velocity fields in the oceans, based on the combination of in situ and satellite observations and quasi-geostrophic dynamical models. The retrieval techniques were also tested and compared with the output of a primitive equation model, with particular attention to the accuracy of the vertical velocity field as estimated through the Q vector formulation of the omega equation. The project focused on a test case, covering the region where the Gulf Stream separates from the US East Coast. This work demonstrated that innovative methods for the high resolution mapping of 3-D mesoscale dynamics from observations can be used to build the next generations of operational observation-based products.

  15. Design of the high resolution optical instrument for the Pleiades HR Earth observation satellites

    Science.gov (United States)

    Lamard, Jean-Luc; Gaudin-Delrieu, Catherine; Valentini, David; Renard, Christophe; Tournier, Thierry; Laherrere, Jean-Marc

    2017-11-01

    As part of its contribution to Earth observation from space, ALCATEL SPACE designed, built and tested the High Resolution cameras for the European intelligence satellites HELIOS I and II. Through these programmes, ALCATEL SPACE enjoys an international reputation. Its capability and experience in High Resolution instrumentation is recognised by the most customers. Coming after the SPOT program, it was decided to go ahead with the PLEIADES HR program. PLEIADES HR is the optical high resolution component of a larger optical and radar multi-sensors system : ORFEO, which is developed in cooperation between France and Italy for dual Civilian and Defense use. ALCATEL SPACE has been entrusted by CNES with the development of the high resolution camera of the Earth observation satellites PLEIADES HR. The first optical satellite of the PLEIADES HR constellation will be launched in mid-2008, the second will follow in 2009. To minimize the development costs, a mini satellite approach has been selected, leading to a compact concept for the camera design. The paper describes the design and performance budgets of this novel high resolution and large field of view optical instrument with emphasis on the technological features. This new generation of camera represents a breakthrough in comparison with the previous SPOT cameras owing to a significant step in on-ground resolution, which approaches the capabilities of aerial photography. Recent advances in detector technology, optical fabrication and electronics make it possible for the PLEIADES HR camera to achieve their image quality performance goals while staying within weight and size restrictions normally considered suitable only for much lower performance systems. This camera design delivers superior performance using an innovative low power, low mass, scalable architecture, which provides a versatile approach for a variety of imaging requirements and allows for a wide number of possibilities of accommodation with a mini

  16. The impact of clustering and angular resolution on far-infrared and millimeter continuum observations

    Science.gov (United States)

    Béthermin, Matthieu; Wu, Hao-Yi; Lagache, Guilaine; Davidzon, Iary; Ponthieu, Nicolas; Cousin, Morgane; Wang, Lingyu; Doré, Olivier; Daddi, Emanuele; Lapi, Andrea

    2017-11-01

    Follow-up observations at high-angular resolution of bright submillimeter galaxies selected from deep extragalactic surveys have shown that the single-dish sources are comprised of a blend of several galaxies. Consequently, number counts derived from low- and high-angular-resolution observations are in tension. This demonstrates the importance of resolution effects at these wavelengths and the need for realistic simulations to explore them. We built a new 2 deg2 simulation of the extragalactic sky from the far-infrared to the submillimeter. It is based on an updated version of the 2SFM (two star-formation modes) galaxy evolution model. Using global galaxy properties generated by this model, we used an abundance-matching technique to populate a dark-matter lightcone and thus simulate the clustering. We produced maps from this simulation and extracted the sources, and we show that the limited angular resolution of single-dish instruments has a strong impact on (sub)millimeter continuum observations. Taking into account these resolution effects, we are reproducing a large set of observables, as number counts and their evolution with redshift and cosmic infrared background power spectra. Our simulation consistently describes the number counts from single-dish telescopes and interferometers. In particular, at 350 and 500 μm, we find that the number counts measured by Herschel between 5 and 50 mJy are biased towards high values by a factor 2, and that the redshift distributions are biased towards low redshifts. We also show that the clustering has an important impact on the Herschel pixel histogram used to derive number counts from P(D) analysis. We find that the brightest galaxy in the beam of a 500 μm Herschel source contributes on average to only 60% of the Herschel flux density, but that this number will rise to 95% for future millimeter surveys on 30 m-class telescopes (e.g., NIKA2 at IRAM). Finally, we show that the large number density of red Herschel sources

  17. LTE modeling of inhomogeneous chromospheric structure using high-resolution limb observations

    Science.gov (United States)

    Lindsey, C.

    1987-01-01

    The paper discusses considerations relevant to LTE modeling of rough atmospheres. Particular attention is given to the application of recent high-resolution observations of the solar limb in the far-infrared and radio continuum to the modeling of chromospheric spicules. It is explained how the continuum limb observations can be combined with morphological knowledge of spicule structure to model the physical conditions in chromospheric spicules. This discussion forms the basis for a chromospheric model presented in a parallel publication based on observations ranging from 100 microns to 2.6 mm.

  18. Exoplanets search and characterization with the SOPHIE spectrograph at OHP

    Directory of Open Access Journals (Sweden)

    Hébrard G.

    2011-02-01

    Full Text Available Several programs of exoplanets search and characterization have been started with SOPHIE at the 1.93-m telescope of Haute-Provence Observatory, France. SOPHIE is an environmentally stabilized echelle spectrograph dedicated to high-precision radial velocity measurements. The objectives of these programs include systematic searches for exoplanets around different types of stars, characterizations of planet-host stars, studies of transiting planets through RossiterMcLaughlin effect, follow-up observations of photometric surveys. The instrument SOPHIE and a review of its latest results are presented here.

  19. Role of light satellites in the high-resolution Earth observation domain

    Science.gov (United States)

    Fishman, Moshe

    1999-12-01

    Current 'classic' applications using and exploring space based earth imagery are exclusive, narrow niche tailored, expensive and hardly accessible. On the other side new, inexpensive and widely used 'consumable' applications will be only developed concurrently to the availability of appropriate imagery allowing that process. A part of these applications can be imagined today, like WWW based 'virtual tourism' or news media, but the history of technological, cultural and entertainment evolution teaches us that most of future applications are unpredictable -- they emerge together with the platforms enabling their appearance. The only thing, which can be ultimately stated, is that the definitive condition for such applications is the availability of the proper imagery platform providing low cost, high resolution, large area, quick response, simple accessibility and quick dissemination of the raw picture. This platform is a constellation of Earth Observation satellites. Up to 1995 the Space Based High Resolution Earth Observation Domain was dominated by heavy, super-expensive and very inflexible birds. The launch of Israeli OFEQ-3 Satellite by MBT Division of Israel Aircraft Industries (IAI) marked the entrance to new era of light, smart and cheap Low Earth Orbited Imaging satellites. The Earth Resource Observation System (EROS) initiated by West Indian Space, is based on OFEQ class Satellites design and it is capable to gather visual data of Earth Surface both at high resolution and large image capacity. The main attributes, derived from its compact design, low weight and sophisticated logic and which convert the EROS Satellite to valuable and productive system, are discussed. The major advantages of Light Satellites in High Resolution Earth Observation Domain are presented and WIS guidelines featuring the next generation of LEO Imaging Systems are included.

  20. A hard x-ray spectrometer for high angular resolution observations of cosmic sources

    International Nuclear Information System (INIS)

    Hailey, C.J.; Ziock, K.P.; Harrison, F.; Kahn, S.M.; Liedahl, D.; Lubin, P.M.; Seiffert, M.

    1988-01-01

    LAXRIS (large area x-ray imaging spectrometer) is an experimental, balloon-borne, hard x-ray telescope that consists of a coaligned array of x-ray imaging spectrometer modules capable of obtaining high angular resolution (1--3 arcminutes) with moderate energy resolution in the 20- to 300-keV region. Each spectrometer module consists of a CsI(Na) crystal coupled to a position-sensitive phototube with a crossed-wire, resistive readout. Imaging is provided by a coded aperture mask with a 4-m focal length. The high angular resolution is coupled with rather large area (/approximately/800 cm 2 ) to provide good sensitivity. Results are presented on performance and overall design. Sensitivity estimates are derived from a Monte-Carlo code developed to model the LAXRIS response to background encountered at balloon altitudes. We discuss a variety of observations made feasible by high angular resolution. For instance, spatially resolving the nonthermal x-ray emission from clusters of galaxies is suggested as an ideal program for LAXRIS. 15 refs., 5 figs

  1. General method of quantitative spectrographic analysis

    International Nuclear Information System (INIS)

    Capdevila, C.; Roca, M.

    1966-01-01

    A spectrographic method was developed to determine 23 elements in a wide range of concentrations; the method can be applied to metallic or refractory samples. Previous melting with lithium tetraborate and germanium oxide is done in order to avoid the influence of matrix composition and crystalline structure. Germanium oxide is also employed as internal standard. The resulting beads ar mixed with graphite powder (1:1) and excited in a 10 amperes direct current arc. (Author) 12 refs

  2. Immersion Gratings for Infrared High-resolution Spectroscopy

    Science.gov (United States)

    Sarugaku, Yuki; Ikeda, Yuji; Kobayashi, Naoto; Kaji, Sayumi; Sukegawa, Takashi; Sugiyama, Shigeru; Nakagawa, Takao; Arasaki, Takayuki; Kondo, Sohei; Nakanishi, Kenshi; Yasui, Chikako; Kawakita, Hideyo

    2016-10-01

    High-resolution spectroscopy in the infrared wavelength range is essential for observations of minor isotopologues, such as HDO for water, and prebiotic organic molecules like hydrocarbons/P-bearing molecules because numerous vibrational molecular bands (including non-polar molecules) are located in this wavelength range. High spectral resolution enables us to detect weak lines without spectral line confusion. This technique has been widely used in planetary sciences, e.g., cometary coma (H2O, CO, and organic molecules), the martian atmosphere (CH4, CO2, H2O and HDO), and the upper atmosphere of gas giants (H3+ and organic molecules such as C2H6). Spectrographs with higher resolution (and higher sensitivity) still have a potential to provide a plenty of findings. However, because the size of spectrographs scales with the spectral resolution, it is difficult to realize it.Immersion grating (IG), which is a diffraction grating wherein the diffraction surface is immersed in a material with a high refractive index (n > 2), provides n times higher spectral resolution compared to a reflective grating of the same size. Because IG reduces the size of spectrograph to 1/n compared to the spectrograph with the same spectral resolution using a conventional reflective grating, it is widely acknowledged as a key optical device to realize compact spectrographs with high spectral resolution.Recently, we succeeded in fabricating a CdZnTe immersion grating with the theoretically predicted diffraction efficiency by machining process using an ultrahigh-precision five-axis processing machine developed by Canon Inc. Using the same technique, we completed a practical germanium (Ge) immersion grating with both a reflection coating on the grating surface and the an AR coating on the entrance surface. It is noteworthy that the wide wavelength range from 2 to 20 um can be covered by the two immersion gratings.In this paper, we present the performances and the applications of the immersion

  3. HIGH ANGULAR RESOLUTION OBSERVATIONS OF FOUR CANDIDATE BLAST HIGH-MASS STARLESS CORES

    International Nuclear Information System (INIS)

    Olmi, Luca; Poventud, Carlos M.; Araya, Esteban D.; Chapin, Edward L.; Gibb, Andrew; Hofner, Peter; Martin, Peter G.

    2010-01-01

    We discuss high angular resolution observations of ammonia toward four candidate high-mass starless cores (HMSCs). The cores were identified by the Balloon-borne Large Aperture Submillimeter Telescope (BLAST) during its 2005 survey of the Vulpecula region where 60 compact sources were detected simultaneously at 250, 350, and 500 μm. Four of these cores, with no IRAS-PSC or MSX counterparts, were mapped with the NRAO Very Large Array and observed with the Effelsberg 100 m telescope in the NH 3 (1,1) and (2,2) spectral lines. Our observations indicate that the four cores are cold (T k -1 . The four BLAST cores appear to be colder and more quiescent than other previously observed HMSC candidates, suggesting an earlier stage of evolution.

  4. A fast new cadioptric design for fiber-fed spectrographs

    Science.gov (United States)

    Saunders, Will

    2012-09-01

    The next generation of massively multiplexed multi-object spectrographs (DESpec, SUMIRE, BigBOSS, 4MOST, HECTOR) demand fast, efficient and affordable spectrographs, with higher resolutions (R = 3000-5000) than current designs. Beam-size is a (relatively) free parameter in the design, but the properties of VPH gratings are such that, for fixed resolution and wavelength coverage, the effect on beam-size on overall VPH efficiency is very small. For alltransmissive cameras, this suggests modest beam-sizes (say 80-150mm) to minimize costs; while for cadioptric (Schmidt-type) cameras, much larger beam-sizes (say 250mm+) are preferred to improve image quality and to minimize obstruction losses. Schmidt designs have benefits in terms of image quality, camera speed and scattered light performance, and recent advances such as MRF technology mean that the required aspherics are no longer a prohibitive cost or risk. The main objections to traditional Schmidt designs are the inaccessibility of the detector package, and the loss in throughput caused by it being in the beam. With expected count rates and current read-noise technology, the gain in camera speed allowed by Schmidt optics largely compensates for the additional obstruction losses. However, future advances in readout technology may erase most of this compensation. A new Schmidt/Maksutov-derived design is presented, which differs from previous designs in having the detector package outside the camera, and adjacent to the spectrograph pupil. The telescope pupil already contains a hole at its center, because of the obstruction from the telescope top-end. With a 250mm beam, it is possible to largely hide a 6cm × 6cm detector package and its dewar within this hole. This means that the design achieves a very high efficiency, competitive with transmissive designs. The optics are excellent, as least as good as classic Schmidt designs, allowing F/1.25 or even faster cameras. The principal hardware has been costed at $300K per

  5. Estimating Vegetation Rainfall Interception Using Remote Sensing Observations at Very High Resolution

    Science.gov (United States)

    Cui, Y.; Zhao, P.; Hong, Y.; Fan, W.; Yan, B.; Xie, H.

    2017-12-01

    Abstract: As an important compont of evapotranspiration, vegetation rainfall interception is the proportion of gross rainfall that is intercepted, stored and subsequently evaporated from all parts of vegetation during or following rainfall. Accurately quantifying the vegetation rainfall interception at a high resolution is critical for rainfall-runoff modeling and flood forecasting, and is also essential for understanding its further impact on local, regional, and even global water cycle dynamics. In this study, the Remote Sensing-based Gash model (RS-Gash model) is developed based on a modified Gash model for interception loss estimation using remote sensing observations at the regional scale, and has been applied and validated in the upper reach of the Heihe River Basin of China for different types of vegetation. To eliminate the scale error and the effect of mixed pixels, the RS-Gash model is applied at a fine scale of 30 m with the high resolution vegetation area index retrieved by using the unified model of bidirectional reflectance distribution function (BRDF-U) for the vegetation canopy. Field validation shows that the RMSE and R2 of the interception ratio are 3.7% and 0.9, respectively, indicating the model's strong stability and reliability at fine scale. The temporal variation of vegetation rainfall interception loss and its relationship with precipitation are further investigated. In summary, the RS-Gash model has demonstrated its effectiveness and reliability in estimating vegetation rainfall interception. When compared to the coarse resolution results, the application of this model at 30-m fine resolution is necessary to resolve the scaling issues as shown in this study. Keywords: rainfall interception; remote sensing; RS-Gash analytical model; high resolution

  6. Backthinned TDI CCD image sensor design and performance for the Pleiades high resolution Earth observation satellites

    Science.gov (United States)

    Materne, A.; Bardoux, A.; Geoffray, H.; Tournier, T.; Kubik, P.; Morris, D.; Wallace, I.; Renard, C.

    2017-11-01

    The PLEIADES-HR Earth observing satellites, under CNES development, combine a 0.7m resolution panchromatic channel, and a multispectral channel allowing a 2.8 m resolution, in 4 spectral bands. The 2 satellites will be placed on a sun-synchronous orbit at an altitude of 695 km. The camera operates in push broom mode, providing images across a 20 km swath. This paper focuses on the specifications, design and performance of the TDI detectors developed by e2v technologies under CNES contract for the panchromatic channel. Design drivers, derived from the mission and satellite requirements, architecture of the sensor and measurement results for key performances of the first prototypes are presented.

  7. SpUpNIC (Spectrograph Upgrade: Newly Improved Cassegrain) on the South African Astronomical Observatory's 74-inch telescope

    Science.gov (United States)

    Crause, Lisa A.; Carter, Dave; Daniels, Alroy; Evans, Geoff; Fourie, Piet; Gilbank, David; Hendricks, Malcolm; Koorts, Willie; Lategan, Deon; Loubser, Egan; Mouries, Sharon; O'Connor, James E.; O'Donoghue, Darragh E.; Potter, Stephen; Sass, Craig; Sickafoose, Amanda A.; Stoffels, John; Swanevelder, Pieter; Titus, Keegan; van Gend, Carel; Visser, Martin; Worters, Hannah L.

    2016-08-01

    SpUpNIC (Spectrograph Upgrade: Newly Improved Cassegrain) is the extensively upgraded Cassegrain Spectrograph on the South African Astronomical Observatory's 74-inch (1.9-m) telescope. The inverse-Cassegrain collimator mirrors and woefully inefficient Maksutov-Cassegrain camera optics have been replaced, along with the CCD and SDSU controller. All moving mechanisms are now governed by a programmable logic controller, allowing remote configuration of the instrument via an intuitive new graphical user interface. The new collimator produces a larger beam to match the optically faster Folded-Schmidt camera design and nine surface-relief diffraction gratings offer various wavelength ranges and resolutions across the optical domain. The new camera optics (a fused silica Schmidt plate, a slotted fold flat and a spherically figured primary mirror, both Zerodur, and a fused silica field-flattener lens forming the cryostat window) reduce the camera's central obscuration to increase the instrument throughput. The physically larger and more sensitive CCD extends the available wavelength range; weak arc lines are now detectable down to 325 nm and the red end extends beyond one micron. A rear-of-slit viewing camera has streamlined the observing process by enabling accurate target placement on the slit and facilitating telescope focus optimisation. An interactive quick-look data reduction tool further enhances the user-friendliness of SpUpNI

  8. A high-resolution and observationally constrained OMI NO2 satellite retrieval

    International Nuclear Information System (INIS)

    Goldberg, Daniel L.; Lamsal, Lok N.; Loughner, Christopher P.

    2017-01-01

    Here, this work presents a new high-resolution NO 2 dataset derived from the NASA Ozone Monitoring Instrument (OMI) NO 2 version 3.0 retrieval that can be used to estimate surface-level concentrations. The standard NASA product uses NO 2 vertical profile shape factors from a 1.25° × 1° (~110 km × 110 km) resolution Global Model Initiative (GMI) model simulation to calculate air mass factors, a critical value used to determine observed tropospheric NO 2 vertical columns. To better estimate vertical profile shape factors, we use a high-resolution (1.33 km × 1.33 km) Community Multi-scale Air Quality (CMAQ) model simulation constrained by in situ aircraft observations to recalculate tropospheric air mass factors and tropospheric NO 2 vertical columns during summertime in the eastern US. In this new product, OMI NO 2 tropospheric columns increase by up to 160% in city centers and decrease by 20–50 % in the rural areas outside of urban areas when compared to the operational NASA product. Our new product shows much better agreement with the Pandora NO 2 and Airborne Compact Atmospheric Mapper (ACAM) NO 2 spectrometer measurements acquired during the DISCOVER-AQ Maryland field campaign. Furthermore, the correlation between our satellite product and EPA NO 2 monitors in urban areas has improved dramatically: r 2 = 0.60 in the new product vs. r 2 = 0.39 in the operational product, signifying that this new product is a better indicator of surface concentrations than the operational product. Our work emphasizes the need to use both high-resolution and high-fidelity models in order to recalculate satellite data in areas with large spatial heterogeneities in NO x emissions. Although the current work is focused on the eastern US, the methodology developed in this work can be applied to other world regions to produce high-quality region-specific NO 2 satellite retrievals.

  9. Accurate Mass Measurements for Planetary Microlensing Events Using High Angular Resolution Observations

    Directory of Open Access Journals (Sweden)

    Jean-Philippe Beaulieu

    2018-04-01

    Full Text Available The microlensing technique is a unique method to hunt for cold planets over a range of mass and separation, orbiting all varieties of host stars in the disk of our galaxy. It provides precise mass-ratio and projected separations in units of the Einstein ring radius. In order to obtain the physical parameters (mass, distance, orbital separation of the system, it is necessary to combine the result of light curve modeling with lens mass-distance relations and/or perform a Bayesian analysis with a galactic model. A first mass-distance relation could be obtained from a constraint on the Einstein ring radius if the crossing time of the source over the caustic is measured. It could then be supplemented by secondary constraints such as parallax measurements, ideally by using coinciding ground and space-born observations. These are still subject to degeneracies, like the orbital motion of the lens. A third mass-distance relation can be obtained thanks to constraints on the lens luminosity using high angular resolution observations with 8 m class telescopes or the Hubble Space Telescope. The latter route, although quite inexpensive in telescope time is very effective. If we have to rely heavily on Bayesian analysis and limited constraints on mass-distance relations, the physical parameters are determined to 30–40% typically. In a handful of cases, ground-space parallax is a powerful route to get stronger constraint on masses. High angular resolution observations will be able to constrain the luminosity of the lenses in the majority of the cases, and in favorable circumstances it is possible to derive physical parameters to 10% or better. Moreover, these constraints will be obtained in most of the planets to be discovered by the Euclid and WFIRST satellites. We describe here the state-of-the-art approaches to measure lens masses and distances with an emphasis on high angular resolution observations. We will discuss the challenges, recent results and

  10. Initial results from the fast imaging solar spectrograph (FISS)

    CERN Document Server

    2015-01-01

    This collection of papers describes the instrument and initial results obtained from the Fast Imaging Solar Spectrograph (FISS),  one of the post-focus instruments of the 1.6 meter New Solar Telescope at the Big Bear Solar Observatory. The FISS primarily aims at investigating structures and dynamics of  chromospheric features. This instrument is a dual-band Echelle spectrograph optimized for the simultaneous recording of the H I 656.3 nm band and the Ca II 854.2 nm band. The imaging is done with the fast raster scan realized by the linear motion of a two-mirror scanner, and its quality is determined by the performance of the adaptive optics of the telescope.    These papers illustrate the capability of the early FISS observations in the study of chromospheric features. Since the imaging quality has been improved a lot with the advance of the adaptive optics, one can obtain much better data with the current FISS observations.        This volume is aimed at graduate students and researchers working in...

  11. 15x optical zoom and extreme optical image stabilisation: diffraction limited integral field spectroscopy with the Oxford SWIFT spectrograph

    Science.gov (United States)

    Tecza, Matthias; Thatte, Niranjan; Clarke, Fraser; Lynn, James; Freeman, David; Roberts, Jennifer; Dekany, Richard

    2012-09-01

    When commissioned in November 2008 at the Palomar 200 inch Hale Telescope, the Oxford SWIFT I and z band integral field spectrograph, fed by the adaptive optics system PALAO, provided a wide (3×) range of spatial resolutions: three plate scales of 235 mas, 160 mas, and 80 mas per spaxel over a contiguous field-of-view of 89×44 pixels. Depending on observing conditions and guide star brightness we can choose a seeing limited scale of 235 mas per spaxel, or 160 mas and 80 mas per spaxel for very bright guide star AO with substantial increase of enclosed energy. Over the last two years PALAO was upgraded to PALM-3000: an extreme, high-order adaptive optics system with two deformable mirrors with more than 3000 actuators, promising diffraction limited performance in SWIFT's wavelength range. In order to take advantage of this increased spatial resolution we upgraded SWIFT with new pre-optics allowing us to spatially Nyquist sample the diffraction limited PALM-3000 point spread function with 16 mas resolution, reducing the spaxel scale by another factor of 5×. We designed, manufactured, integrated and tested the new pre-optics in the first half of 2011 and commissioned it in December 2011. Here we present the opto-mechanical design and assembly of the new scale changing optics, as well as laboratory and on-sky commissioning results. In optimal observing conditions we achieve substantial Strehl ratios, delivering the near diffraction limited spatial resolution in the I and z bands.

  12. High Temporal Resolution Tropospheric Wind Profile Observations at NASA Kennedy Space Center During Hurricane Irma

    Science.gov (United States)

    Decker, Ryan K.; Barbre, Robert E., Jr.; Huddleston, Lisa; Brauer, Thomas; Wilfong, Timothy

    2018-01-01

    The NASA Kennedy Space Center (KSC) operates a 48-MHz Tropospheric/Stratospheric Doppler Radar Wind Profiler (TDRWP) on a continual basis generating wind profiles between 2-19 km in the support of space launch vehicle operations. A benefit of the continual operability of the system is the ability to provide unique observations of severe weather events such as hurricanes. Over the past two Atlantic Hurricane seasons the TDRWP has made high temporal resolution wind profile observations of Hurricane Irma in 2017 and Hurricane Matthew in 2016. Hurricane Irma was responsible for power outages to approximately 2/3 of Florida's population during its movement over the state(Stein,2017). An overview of the TDRWP system configuration, brief summary of Hurricanes Irma and Matthew storm track in proximity to KSC, characteristics of the tropospheric wind observations from the TDRWP during both events, and discussion of the dissemination of TDRWP data during the event will be presented.

  13. Exploring image data assimilation in the prospect of high-resolution satellite oceanic observations

    Science.gov (United States)

    Durán Moro, Marina; Brankart, Jean-Michel; Brasseur, Pierre; Verron, Jacques

    2017-07-01

    Satellite sensors increasingly provide high-resolution (HR) observations of the ocean. They supply observations of sea surface height (SSH) and of tracers of the dynamics such as sea surface salinity (SSS) and sea surface temperature (SST). In particular, the Surface Water Ocean Topography (SWOT) mission will provide measurements of the surface ocean topography at very high-resolution (HR) delivering unprecedented information on the meso-scale and submeso-scale dynamics. This study investigates the feasibility to use these measurements to reconstruct meso-scale features simulated by numerical models, in particular on the vertical dimension. A methodology to reconstruct three-dimensional (3D) multivariate meso-scale scenes is developed by using a HR numerical model of the Solomon Sea region. An inverse problem is defined in the framework of a twin experiment where synthetic observations are used. A true state is chosen among the 3D multivariate states which is considered as a reference state. In order to correct a first guess of this true state, a two-step analysis is carried out. A probability distribution of the first guess is defined and updated at each step of the analysis: (i) the first step applies the analysis scheme of a reduced-order Kalman filter to update the first guess probability distribution using SSH observation; (ii) the second step minimizes a cost function using observations of HR image structure and a new probability distribution is estimated. The analysis is extended to the vertical dimension using 3D multivariate empirical orthogonal functions (EOFs) and the probabilistic approach allows the update of the probability distribution through the two-step analysis. Experiments show that the proposed technique succeeds in correcting a multivariate state using meso-scale and submeso-scale information contained in HR SSH and image structure observations. It also demonstrates how the surface information can be used to reconstruct the ocean state below

  14. High resolution radio observations of nuclear and circumnuclear regions of luminous infrared galaxies (LIRGs)

    Energy Technology Data Exchange (ETDEWEB)

    Alberdi, A; Perez-Torres, M A [Instituto de Astrofisica de Andalucia (IAA, CSIC), PO Box 3004, 18080-Granada (Spain); Colina, L [Instituto de Estructura de la Materia - IEM, CSIC, C, Serrano 115, 28005 Madrid (Spain); Torrelles, J M [Instituto de Ciencias del Espacio (ICE, CSIC) and IEEC, Gran Capita 2-4, 08034 Barcelona (Spain)], E-mail: antxon@iaa.es, E-mail: torres@iaa.es, E-mail: colina@damir.iem.csic.es, E-mail: torrelle@ieec.fcr.es

    2008-10-15

    High-resolution radio observations of the nuclear region of Luminous and Ultraluminous Infrared Galaxies (ULIRGs) have shown that its radio structure consists of a compact high surface-brightness central radio source immersed in a diffuse low brightness circumnuclear halo. While the central component could be associated with an AGN or compact star-forming regions where radio supernovae are exploding, it is well known that the circumnuclear regions host bursts of star-formation. The studies of radio supernovae can provide essential information about stellar evolution and CSM/ISM properties in regions hidden by dust at optical and IR wavelengths. In this contribution, we show results from radio interferometric observations from NGC 7469, IRAS 18293-3413 and IRAS 17138-1017 where three extremely bright radio supernovae have been found. High-resolution radio observations of these and other LIRGs would allow us to determine the core-collapse supernova rate in them as well as their star-formation rate.

  15. Comet Shoemaker-Levy 9/Jupiter collision observed with a high resolution speckle imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Gravel, D. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    During the week of July 16, 1994, comet Shoemaker-Levy 9, broken into 20 plus pieces by tidal forces on its last orbit, smashed into the planet Jupiter, releasing the explosive energy of 500 thousand megatons. A team of observers from LLNL used the LLNL Speckle Imaging Camera mounted on the University of California`s Lick Observatory 3 Meter Telescope to capture continuous sequences of planet images during the comet encounter. Post processing with the bispectral phase reconstruction algorithm improves the resolution by removing much of the blurring due to atmospheric turbulence. High resolution images of the planet surface showing the aftermath of the impact are probably the best that were obtained from any ground-based telescope. We have been looking at the regions of the fragment impacts to try to discern any dynamic behavior of the spots left on Jupiter`s cloud tops. Such information can lead to conclusions about the nature of the comet and of Jupiter`s atmosphere. So far, the Hubble Space Telescope has observed expanding waves from the G impact whose mechanism is enigmatic since they appear to be too slow to be sound waves and too fast to be gravity waves, given the present knowledge of Jupiter`s atmosphere. Some of our data on the G and L impact region complements the Hubble observations but, so far, is inconclusive about spot dynamics.

  16. The High Visible Resolution (HVR) instrument of the spot ground observation satellite

    Science.gov (United States)

    Otrio, G.

    1980-01-01

    Two identical high resolution cameras, capable of attaining a track width of 116 km in an almost vertical line of sight from the two 60 km images of each instrument, will be carried on the initial mission of the space observation of Earth satellite (SPOT). Specifications for the instrument, including the telescope and CCD devices are summarized. The present status of development is described including the optical characteristics, structure and thermal control, detector assembly, electronic equipment, and calibration. SPOT mission objectives include the developments relating to soil use, the exploration of EART Earth resources, the discrimination of plant species, and cartography.

  17. Spontaneous Resolution of Chronic Subdural Hematoma : Close Observation as a Treatment Strategy

    Science.gov (United States)

    Kim, Hyung Chan; Yoo, Dong Soo; Lee, Sang-Koo

    2016-01-01

    Objective Chronic subdural hematoma (cSDH) is common condition in neurosurgical field. It is difficult to select the treatment modality between the surgical method and the conservative method when patients have no or mild symptoms. The purpose of this study is to provide a suggestion that the patients could be cured with conservative treatment modality. Methods We enrolled 16 patients who had received conservative treatment for cSDH without special medications which could affect hematoma resolution such as mannitol, steroids, tranexamic acid and angiotensin converting enzyme inhibitors. The patients were classified according to the Markwalder's Grading Scale. Results Among these 16 patients, 13 (81.3%) patients showed spontaneously resolved cSDH and 3 (18.7%) patients received surgery due to symptom aggravation and growing hematoma. They were categorized into two groups based on whether they were cured with conservative treatment or not. The first group was the spontaneous resolution group. The second group was the progression-surgery group. The mean hematoma volume in the spontaneous resolution group was 43.1 mL. The mean degree of midline shift in the spontaneous resolution group was 5.3 mm. The mean hematoma volume in the progression-surgery group was 62.0 mL. The mean degree of midline shift in the second group was 6 mm. Conclusion We suggest that the treatment modality should be determined according to the patient's symptoms and clinical condition and close observation could be performed in patients who do not have any symptoms or in patients who have mild to moderate headache without neurological deterioration. PMID:27847578

  18. The Use of Color Sensors for Spectrographic Calibration

    Science.gov (United States)

    Thomas, Neil B.

    2018-04-01

    The wavelength calibration of spectrographs is an essential but challenging task in many disciplines. Calibration is traditionally accomplished by imaging the spectrum of a light source containing features that are known to appear at certain wavelengths and mapping them to their location on the sensor. This is typically required in conjunction with each scientific observation to account for mechanical and optical variations of the instrument over time, which may span years for certain projects. The method presented here investigates the usage of color itself instead of spectral features to calibrate a spectrograph. The primary advantage of such a calibration is that any broad-spectrum light source such as the sky or an incandescent bulb is suitable. This method allows for calibration using the full optical pathway of the instrument instead of incorporating separate calibration equipment that may introduce errors. This paper focuses on the potential for color calibration in the field of radial velocity astronomy, in which instruments must be finely calibrated for long periods of time to detect tiny Doppler wavelength shifts. This method is not restricted to radial velocity, however, and may find application in any field requiring calibrated spectrometers such as sea water analysis, cellular biology, chemistry, atmospheric studies, and so on. This paper demonstrates that color sensors have the potential to provide calibration with greatly reduced complexity.

  19. SMA OBSERVATIONS OF CLASS 0 PROTOSTARS: A HIGH ANGULAR RESOLUTION SURVEY OF PROTOSTELLAR BINARY SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Chen Xuepeng [Purple Mountain Observatory, Chinese Academy of Sciences, 2 West Beijing Road, Nanjing 210008 (China); Arce, Hector G.; Dunham, Michael M. [Department of Astronomy, Yale University, Box 208101, New Haven, CT 06520-8101 (United States); Zhang Qizhou; Bourke, Tyler L. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Launhardt, Ralf; Henning, Thomas [Max Planck Institute for Astronomy, Koenigstuhl 17, D-69117 Heidelberg (Germany); Jorgensen, Jes K. [Niels Bohr Institute and Centre for Star and Planet Formation, Copenhagen University, Juliane Maries Vej 30, DK-2100 Copenhagen O (Denmark); Lee, Chin-Fei [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 106, Taiwan (China); Foster, Jonathan B. [Institute for Astrophysical Research, Boston University, Boston, MA 02215 (United States); Pineda, Jaime E., E-mail: xpchen@pmo.ac.cn, E-mail: xuepeng.chen@yale.edu [ESO, Karl Schwarzschild Str. 2, D-85748 Garching bei Munchen (Germany)

    2013-05-10

    We present high angular resolution 1.3 mm and 850 {mu}m dust continuum data obtained with the Submillimeter Array toward 33 Class 0 protostars in nearby clouds (distance < 500 pc), which represents so far the largest survey toward protostellar binary/multiple systems. The median angular resolution in the survey is 2.''5, while the median linear resolution is approximately 600 AU. Compact dust continuum emission is observed from all sources in the sample. Twenty-one sources in the sample show signatures of binarity/multiplicity, with separations ranging from 50 AU to 5000 AU. The numbers of singles, binaries, triples, and quadruples in the sample are 12, 14, 5, and 2, respectively. The derived multiplicity frequency (MF) and companion star fraction (CSF) for Class 0 protostars are 0.64 {+-} 0.08 and 0.91 {+-} 0.05, respectively, with no correction for completeness. The derived MF and CSF in this survey are approximately two times higher than the values found in the binary surveys toward Class I young stellar objects, and approximately three (for MF) and four (for CSF) times larger than the values found among main-sequence stars, with a similar range of separations. Furthermore, the observed fraction of high-order multiple systems to binary systems in Class 0 protostars (0.50 {+-} 0.09) is also larger than the fractions found in Class I young stellar objects (0.31 {+-} 0.07) and main-sequence stars ({<=}0.2). These results suggest that binary properties evolve as protostars evolve, as predicted by numerical simulations. The distribution of separations for Class 0 protostellar binary/multiple systems shows a general trend in which CSF increases with decreasing companion separation. We find that 67% {+-} 8% of the protobinary systems have circumstellar mass ratios below 0.5, implying that unequal-mass systems are preferred in the process of binary star formation. We suggest an empirical sequential fragmentation picture for binary star formation, based on this

  20. The high resolution optical instruments for the Pleiades HR Earth observation satellites

    Science.gov (United States)

    Gaudin-Delrieu, Catherine; Lamard, Jean-Luc; Cheroutre, Philippe; Bailly, Bruno; Dhuicq, Pierre; Puig, Olivier

    2017-11-01

    Coming after the SPOT satellites series, PLEIADESHR is a CNES optical high resolution satellite dedicated to Earth observation, part of a larger optical and radar multi-sensors system, ORFEO, which is developed in cooperation between France and Italy for dual Civilian and Defense use. The development of the two PLEIADES-HR cameras was entrusted by CNES to Thales Alenia Space. This new generation of instrument represents a breakthrough in comparison with the previous SPOT instruments owing to a significant step in on-ground resolution, which approaches the capabilities of aerial photography. The PLEIADES-HR instrument program benefits from Thales Alenia Space long and successful heritage in Earth observation from space. The proposed solution benefits from an extensive use of existing products, Cannes Space Optics Centre facilities, unique in Europe, dedicated to High Resolution instruments. The optical camera provides wide field panchromatic images supplemented by 4 multispectral channels with narrow spectral bands. The optical concept is based on a four mirrors Korsch telescope. Crucial improvements in detector technology, optical fabrication and electronics make it possible for the PLEIADES-HR instrument to achieve the image quality requirements while respecting the drastic limitations of mass and volume imposed by the satellite agility needs and small launchers compatibility. The two flight telescopes were integrated, aligned and tested. After the integration phase, the alignment, mainly based on interferometric measurements in vacuum chamber, was successfully achieved within high accuracy requirements. The wave front measurements show outstanding performances, confirmed, after the integration of the PFM Detection Unit, by MTF measurements on the Proto-Flight Model Instrument. Delivery of the proto flight model occurred mi-2008. The FM2 Instrument delivery is planned Q2-2009. The first optical satellite launch of the PLEIADES-HR constellation is foreseen

  1. Exact optics - III. Schwarzschild's spectrograph camera revised

    Science.gov (United States)

    Willstrop, R. V.

    2004-03-01

    Karl Schwarzschild identified a system of two mirrors, each defined by conic sections, free of third-order spherical aberration, coma and astigmatism, and with a flat focal surface. He considered it impractical, because the field was too restricted. This system was rediscovered as a quadratic approximation to one of Lynden-Bell's `exact optics' designs which have wider fields. Thus the `exact optics' version has a moderate but useful field, with excellent definition, suitable for a spectrograph camera. The mirrors are strongly aspheric in both the Schwarzschild design and the exact optics version.

  2. Spectrographic analysis of uranium-molybdenum alloys

    International Nuclear Information System (INIS)

    Roca, M.

    1967-01-01

    A spectrographic method of analysis has been developed for uranium-molybdenum alloys containing up to 10 % Mo. The carrier distillation technique, with gallium oxide and graphite as carriers, is used for the semiquantitative determination of Al, Cr, Fe, Ni and Si, involving the conversion of the samples into oxides. As a consequence of the study of the influence of the molybdenum on the line intensities, it is useful to prepare only one set of standards with 0,6 % MoO 3 . Total burning excitation is used for calcium, employing two sets of standards with 0,6 and 7.5 MoO 3 . (Author) 5 refs

  3. Constraints on Circumstellar Dust Grain Sizes from High Spatial Resolution Observations in the Thermal Infrared

    Science.gov (United States)

    Bloemhof, E. E.; Danen, R. M.; Gwinn, C. R.

    1996-01-01

    We describe how high spatial resolution imaging of circumstellar dust at a wavelength of about 10 micron, combined with knowledge of the source spectral energy distribution, can yield useful information about the sizes of the individual dust grains responsible for the infrared emission. Much can be learned even when only upper limits to source size are available. In parallel with high-resolution single-telescope imaging that may resolve the more extended mid-infrared sources, we plan to apply these less direct techniques to interpretation of future observations from two-element optical interferometers, where quite general arguments may be made despite only crude imaging capability. Results to date indicate a tendency for circumstellar grain sizes to be rather large compared to the Mathis-Rumpl-Nordsieck size distribution traditionally thought to characterize dust in the general interstellar medium. This may mean that processing of grains after their initial formation and ejection from circumstellar atmospheres adjusts their size distribution to the ISM curve; further mid-infrared observations of grains in various environments would help to confirm this conjecture.

  4. High-resolution observations in the western Mediterranean Sea: the REP14-MED experiment

    Science.gov (United States)

    Onken, Reiner; Fiekas, Heinz-Volker; Beguery, Laurent; Borrione, Ines; Funk, Andreas; Hemming, Michael; Hernandez-Lasheras, Jaime; Heywood, Karen J.; Kaiser, Jan; Knoll, Michaela; Mourre, Baptiste; Oddo, Paolo; Poulain, Pierre-Marie; Queste, Bastien Y.; Russo, Aniello; Shitashima, Kiminori; Siderius, Martin; Thorp Küsel, Elizabeth

    2018-04-01

    The observational part of the REP14-MED experiment was conducted in June 2014 in the Sardo-Balearic Basin west of Sardinia (western Mediterranean Sea). Two research vessels collected high-resolution oceanographic data by means of hydrographic casts, towed systems, and underway measurements. In addition, a vast amount of data was provided by a fleet of 11 ocean gliders, time series were available from moored instruments, and information on Lagrangian flow patterns was obtained from surface drifters and one profiling float. The spatial resolution of the observations encompasses a spectrum over 4 orders of magnitude from 𝒪(101 m) to 𝒪(105 m), and the time series from the moored instruments cover a spectral range of 5 orders from 𝒪(101 s) to 𝒪(106 s). The objective of this article is to provide an overview of the huge data set which has been utilised by various studies, focusing on (i) water masses and circulation, (ii) operational forecasting, (iii) data assimilation, (iv) variability of the ocean, and (v) new payloads for gliders.

  5. High Resolution Transmission Electron Microscope Observation of Zero-Strain Deformation Twinning Mechanisms in Ag

    Science.gov (United States)

    Liu, L.; Wang, J.; Gong, S. K.; Mao, S. X.

    2011-04-01

    We have observed a new deformation-twinning mechanism using the high resolution transmission electron microscope in polycrystalline Ag films, zero-strain twinning via nucleation, and the migration of a Σ3{112} incoherent twin boundary (ITB). This twinning mechanism produces a near zero macroscopic strain because the net Burgers vectors either equal zero or are equivalent to a Shockley partial dislocation. This observation provides new insight into the understanding of deformation twinning and confirms a previous hypothesis: detwinning could be accomplished via the nucleation and migration of Σ3{112} ITBs. The zero-strain twinning mechanism may be unique to low staking fault energy metals with implications for their deformation behavior.

  6. High-resolution far-infrared observations of the galactic center

    International Nuclear Information System (INIS)

    Harvey, P.M.; Campbell, M.F.; Hoffmann, W.F.

    1976-01-01

    A map at 53 μ with 17'' resolution and three-color observations at 53 μ, 100 μ, and 175 μ with approx.30'' beams of Sgr A are presented. Sagittarius A is resolved into two main sources, one associated with the cluster of strong 10 μ sources and another approx.45'' to the southwest coincident with a weak 10 μ source. The dust temperature peaks near the strong 10 μ sources, but the 100 μ and 175 μ fluxes and the far-infrared optical depth are greatest near the southwest source. The amount of dust required to explain the far-infrared emission is comparable to that observed in absorption in the near-infrared

  7. Aerosol midlatitude cyclone indirect effects in observations and high-resolution simulations

    Directory of Open Access Journals (Sweden)

    D. T. McCoy

    2018-04-01

    Full Text Available Aerosol–cloud interactions are a major source of uncertainty in inferring the climate sensitivity from the observational record of temperature. The adjustment of clouds to aerosol is a poorly constrained aspect of these aerosol–cloud interactions. Here, we examine the response of midlatitude cyclone cloud properties to a change in cloud droplet number concentration (CDNC. Idealized experiments in high-resolution, convection-permitting global aquaplanet simulations with constant CDNC are compared to 13 years of remote-sensing observations. Observations and idealized aquaplanet simulations agree that increased warm conveyor belt (WCB moisture flux into cyclones is consistent with higher cyclone liquid water path (CLWP. When CDNC is increased a larger LWP is needed to give the same rain rate. The LWP adjusts to allow the rain rate to be equal to the moisture flux into the cyclone along the WCB. This results in an increased CLWP for higher CDNC at a fixed WCB moisture flux in both observations and simulations. If observed cyclones in the top and bottom tercile of CDNC are contrasted it is found that they have not only higher CLWP but also cloud cover and albedo. The difference in cyclone albedo between the cyclones in the top and bottom third of CDNC is observed by CERES to be between 0.018 and 0.032, which is consistent with a 4.6–8.3 Wm−2 in-cyclone enhancement in upwelling shortwave when scaled by annual-mean insolation. Based on a regression model to observed cyclone properties, roughly 60 % of the observed variability in CLWP can be explained by CDNC and WCB moisture flux.

  8. Micro photometer's automation for quantitative spectrograph analysis

    International Nuclear Information System (INIS)

    Gutierrez E, C.Y.A.

    1996-01-01

    A Microphotometer is used to increase the sharpness of dark spectral lines. Analyzing these lines one sample content and its concentration could be determined and the analysis is known as Quantitative Spectrographic Analysis. The Quantitative Spectrographic Analysis is carried out in 3 steps, as follows. 1. Emulsion calibration. This consists of gauging a photographic emulsion, to determine the intensity variations in terms of the incident radiation. For the procedure of emulsion calibration an adjustment with square minimum to the data obtained is applied to obtain a graph. It is possible to determine the density of dark spectral line against the incident light intensity shown by the microphotometer. 2. Working curves. The values of known concentration of an element against incident light intensity are plotted. Since the sample contains several elements, it is necessary to find a work curve for each one of them. 3. Analytical results. The calibration curve and working curves are compared and the concentration of the studied element is determined. The automatic data acquisition, calculation and obtaining of resulting, is done by means of a computer (PC) and a computer program. The conditioning signal circuits have the function of delivering TTL levels (Transistor Transistor Logic) to make the communication between the microphotometer and the computer possible. Data calculation is done using a computer programm

  9. Field Raman Spectrograph for Environmental Analysis

    International Nuclear Information System (INIS)

    Sylvia, J.M.; Haas, J.W.; Spencer, K.M.; Carrabba, M.M.; Rauh, R.D.; Forney, R.W.; Johnston, T.M.

    1998-01-01

    The widespread contamination found across the US Department of Energy (DOE) complex has received considerable attention from the government and public alike. A massive site characterization and cleanup effort has been underway for several years and is expected to continue for several decades more. The scope of the cleanup effort ranges from soil excavation and treatment to complete dismantling and decontamination of whole buildings. To its credit, DOE has supported research and development of new technologies to speed up and reduce the cost of this effort. One area in particular has been the development of portable instrumentation that can be used to perform analytical measurements in the field. This approach provides timely data to decision makers and eliminates the expense, delays, and uncertainties of sample preservation, transport, storage, and laboratory analysis. In this program, we have developed and demonstrated in the field a transportable, high performance Raman spectrograph that can be used to detect and identify contaminants in a variety of scenarios. With no moving parts, the spectrograph is rugged and can perform many Raman measurements in situ with flexible fiber optic sampling probes. The instrument operates under computer control and a software package has been developed to collect and process spectral data. A collection of Raman spectra for 200 contaminants of DOE importance has been compiled in a searchable format to assist in the identification of unknown contaminants in the field

  10. High Resolution Mapping of Drought Impacts on Small Waterbodies using Sentinel 1 SAR and Landsat Observations

    Science.gov (United States)

    Slinski, K.; Hogue, T. S.; McCray, J. E.

    2017-12-01

    Drought in semi-arid areas can have substantial impact on ephemeral and small water bodies, which provide critical ecological habitat and have important socio-economic value. This is particularly true in the pastoral areas of East Africa, where these ecosystems provide local communities with water for human and animal consumption and pasture for livestock. However, monitoring the impact of drought on ephemeral and small water bodies in East Africa is challenging because of sparse in situ observational systems. Satellite remote sensing observations have been shown to be a viable option for monitoring surface water change in data-poor regions. Landsat data is widely used to detect open water, but the use of Landsat data in small waterbody studies is limited by its 30-meter spatial resolution. New remote sensing-based tools are necessary to better understand the vulnerability of ephemeral and small waterbodies in semi-arid areas to drought and to monitor drought impacts. This study combines Landsat and Sentinel 1 SAR observations to create a series of monthly waterbody maps over the Awash River basin in Ethiopia depicting the change in surface water from October 2014 to March 2017. The study time period corresponds with a major drought event in the area. Waterbody maps were generated using a 10-meter resolution and utilized to monitor drought impacts on ephemeral and small waterbodies in the Awash River basin over the course of the drought event. Initial results show that surface waterbodies in the lower catchments of the Awash basin were more severely impacted by the drought event than the upper catchments. It is anticipated that the new information provided by this tool will inform decisions affecting the water, energy, agriculture and other sectors in East Africa reliant on water resources, enabling water authorities to better manage future drought events.

  11. Application of High Resolution Air-Borne Remote Sensing Observations for Monitoring NOx Emissions

    Science.gov (United States)

    Souri, A.; Choi, Y.; Pan, S.; Curci, G.; Janz, S. J.; Kowalewski, M. G.; Liu, J.; Herman, J. R.; Weinheimer, A. J.

    2017-12-01

    Nitrogen oxides (NOx=NO+NO2) are one of the air pollutants, responsible for the formation of tropospheric ozone, acid rain and particulate nitrate. The anthropogenic NOx emissions are commonly estimated based on bottom-up inventories which are complicated by many potential sources of error. One way to improve the emission inventories is to use relevant observations to constrain them. Fortunately, Nitrogen dioxide (NO2) is one of the most successful detected species from remote sensing. Although many studies have shown the capability of using space-borne remote sensing observations for monitoring emissions, the insufficient sample number and footprint of current measurements have introduced a burden to constrain emissions at fine scales. Promisingly, there are several air-borne sensors collected for NASA's campaigns providing high spatial resolution of NO2 columns. Here, we use the well-characterized NO2 columns from the Airborne Compact Atmospheric Mapper (ACAM) onboard NASA's B200 aircraft into a 1×1 km regional model to constrain anthropogenic NOx emissions in the Houston-Galveston-Brazoria area. Firstly, in order to incorporate the data, we convert the NO2 slant column densities to vertical ones using a joint of a radiative transfer model and the 1x1 km regional model constrained by P3-B aircraft measurements. After conducting an inverse modeling method using the Kalman filter, we find the ACAM observations are resourceful at mitigating the overprediction of model in reproducing NO2 on regular days. Moreover, the ACAM provides a unique opportunity to detect an anomaly in emissions leading to strong air quality degradation that is lacking in previous works. Our study provides convincing evidence that future geostationary satellites with high spatial and temporal resolutions will give us insights into uncertainties associated with the emissions at regional scales.

  12. Generation of real-time mode high-resolution water vapor fields from GPS observations

    Science.gov (United States)

    Yu, Chen; Penna, Nigel T.; Li, Zhenhong

    2017-02-01

    Pointwise GPS measurements of tropospheric zenith total delay can be interpolated to provide high-resolution water vapor maps which may be used for correcting synthetic aperture radar images, for numeral weather prediction, and for correcting Network Real-time Kinematic GPS observations. Several previous studies have addressed the importance of the elevation dependency of water vapor, but it is often a challenge to separate elevation-dependent tropospheric delays from turbulent components. In this paper, we present an iterative tropospheric decomposition interpolation model that decouples the elevation and turbulent tropospheric delay components. For a 150 km × 150 km California study region, we estimate real-time mode zenith total delays at 41 GPS stations over 1 year by using the precise point positioning technique and demonstrate that the decoupled interpolation model generates improved high-resolution tropospheric delay maps compared with previous tropospheric turbulence- and elevation-dependent models. Cross validation of the GPS zenith total delays yields an RMS error of 4.6 mm with the decoupled interpolation model, compared with 8.4 mm with the previous model. On converting the GPS zenith wet delays to precipitable water vapor and interpolating to 1 km grid cells across the region, validations with the Moderate Resolution Imaging Spectroradiometer near-IR water vapor product show 1.7 mm RMS differences by using the decoupled model, compared with 2.0 mm for the previous interpolation model. Such results are obtained without differencing the tropospheric delays or water vapor estimates in time or space, while the errors are similar over flat and mountainous terrains, as well as for both inland and coastal areas.

  13. High-resolution sensing for precision agriculture: from Earth-observing satellites to unmanned aerial vehicles

    Science.gov (United States)

    McCabe, Matthew F.; Houborg, Rasmus; Lucieer, Arko

    2016-10-01

    With global population projected to approach 9 billion by 2050, it has been estimated that a 40% increase in cereal production will be required to satisfy the worlds growing nutritional demands. Any such increases in agricultural productivity are likely to occur within a system that has limited room for growth and in a world with a climate that is different from that of today. Fundamental to achieving food and water security, is the capacity to monitor the health and condition of agricultural systems. While space-agency based satellites have provided the backbone for earth observation over the last few decades, many developments in the field of high-resolution earth observation have been advanced by the commercial sector. These advances relate not just to technological developments in the use of unmanned aerial vehicles (UAVs), but also the advent of nano-satellite constellations that offer a radical shift in the way earth observations are now being retrieved. Such technologies present opportunities for improving our description of the water, energy and carbon cycles. Efforts towards developing new observational techniques and interpretative frameworks are required to provide the tools and information needed to improve the management and security of agricultural and related sectors. These developments are one of the surest ways to better manage, protect and preserve national food and water resources. Here we review the capabilities of recently deployed satellite systems and UAVs and examine their potential for application in precision agriculture.

  14. High-resolution sensing for precision agriculture: from Earth-observing satellites to unmanned aerial vehicles

    KAUST Repository

    McCabe, Matthew

    2016-10-25

    With global population projected to approach 9 billion by 2050, it has been estimated that a 40% increase in cereal production will be required to satisfy the worlds growing nutritional demands. Any such increases in agricultural productivity are likely to occur within a system that has limited room for growth and in a world with a climate that is different from that of today. Fundamental to achieving food and water security, is the capacity to monitor the health and condition of agricultural systems. While space-Agency based satellites have provided the backbone for earth observation over the last few decades, many developments in the field of high-resolution earth observation have been advanced by the commercial sector. These advances relate not just to technological developments in the use of unmanned aerial vehicles (UAVs), but also the advent of nano-satellite constellations that offer a radical shift in the way earth observations are now being retrieved. Such technologies present opportunities for improving our description of the water, energy and carbon cycles. Efforts towards developing new observational techniques and interpretative frameworks are required to provide the tools and information needed to improve the management and security of agricultural and related sectors. These developments are one of the surest ways to better manage, protect and preserve national food and water resources. Here we review the capabilities of recently deployed satellite systems and UAVs and examine their potential for application in precision agriculture.

  15. Conception d'instrument pour une mission d'observation haute resolution et grand champ

    Science.gov (United States)

    Fayret, Jean-Philippe; Gaudin-Delrieu, Catherine; Lamard, Jean-Luc; Devilliers, Christophe; Costes, Vincent

    2017-11-01

    The future Earth observation missions aim at delivering images with a high resolution and a large field of view. The PLEIADES mission, coming after the SPOT satellites, lead to enhance the resolution to submetric values with a swath over 20km. Panchromatic and multispectral images will be proposed. Starting with the mission requirements elaborated by the CNES, Alcatel Space Industries has conducted a study to identify the instrument concepts most suited to comply with these performance. In addition, to minimise the development costs, a mini satellite approach has been selected, leading to a compact concept for the instrument design. During the study, various detection techniques and the associated detectors have been investigated from classical pushbroom to supermode acquisition modes. For each of these options, different optical lay-outs were proposed and evaluated with respect to performance as well as interfaces requirements. Optical performance, mechanical design constraints and manufacturing processes were taken into account to assess the performances of the various solutions. Eventually the most promising concept was selected and a preliminary design study performed. This concept, based on a Korsch optical scheme associated with TDI detectors, complies with the mission requirements and allows for a wide number of possibilities of accommodation with a minisatellite class platform.

  16. High-resolution backscatter power observations of 440-MHz E region coherent echoes at Millstone Hill

    International Nuclear Information System (INIS)

    Foster, J.C.; Tetenbaum, D.

    1991-01-01

    A 40-μs pulse length has been used to provide 10-s temporal and 6-km range resolution observations of E region coherent backscatter from the premidnight eastward electrojet region to the north of Millstone Hill. The observations can be divided into two categories: strong events in which the backscattered amplitude nears saturation and weak events in which spatial structure and large-amplitude variations are common. Calibrated observations find a typical volume scattering coefficient of ∼10 -11 m -1 at 440 MHz during strong events with a maximum level of 9 x 10 -10 m -1 observed for brief intervals. During less intense events the radar backscatter is modulated by ∼30dB in amplitude at Pc 5 frequencies (150-500 s) by waves with spatial wavelength 50-100 km. The observations support the premise that the weak irregularities grow linearly with electric field strength and reach a saturation amplitude beyond which the oscillating electric field of the Pc pulsation has little effect. The observed variation of backscattered power with range is interpreted using a geometrical model which accounts for the detailed antenna beam pattern, a magnetic aspect angle sensitivity of -10 dB per degree, and a thin layer of irregularities centered at 110 km altitude. For strongly driven conditions a comparison of the range variation of backscattered power with the thin layer model suggests that the signal power becomes increasingly dominated by strong scatters confined to a narrower altitude range. The apparent altitude extent of the strongest irregularities decreases by a factor of 2 as the amplitude of the backscattered signal increases by a factor of 10

  17. A vision for an ultra-high resolution integrated water cycle observation and prediction system

    Science.gov (United States)

    Houser, P. R.

    2013-05-01

    Society's welfare, progress, and sustainable economic growth—and life itself—depend on the abundance and vigorous cycling and replenishing of water throughout the global environment. The water cycle operates on a continuum of time and space scales and exchanges large amounts of energy as water undergoes phase changes and is moved from one part of the Earth system to another. We must move toward an integrated observation and prediction paradigm that addresses broad local-to-global science and application issues by realizing synergies associated with multiple, coordinated observations and prediction systems. A central challenge of a future water and energy cycle observation strategy is to progress from single variable water-cycle instruments to multivariable integrated instruments in electromagnetic-band families. The microwave range in the electromagnetic spectrum is ideally suited for sensing the state and abundance of water because of water's dielectric properties. Eventually, a dedicated high-resolution water-cycle microwave-based satellite mission may be possible based on large-aperture antenna technology that can harvest the synergy that would be afforded by simultaneous multichannel active and passive microwave measurements. A partial demonstration of these ideas can even be realized with existing microwave satellite observations to support advanced multivariate retrieval methods that can exploit the totality of the microwave spectral information. The simultaneous multichannel active and passive microwave retrieval would allow improved-accuracy retrievals that are not possible with isolated measurements. Furthermore, the simultaneous monitoring of several of the land, atmospheric, oceanic, and cryospheric states brings synergies that will substantially enhance understanding of the global water and energy cycle as a system. The multichannel approach also affords advantages to some constituent retrievals—for instance, simultaneous retrieval of vegetation

  18. Does resolution of flow field observation influence apparent habitat use and energy expenditure in juvenile coho salmon?

    Science.gov (United States)

    Tullos, Desiree D.; Walter, Cara; Dunham, Jason B.

    2016-01-01

    This study investigated how the resolution of observation influences interpretation of how fish, juvenile Coho Salmon (Oncorhynchus kisutch), exploit the hydraulic environment in streams. Our objectives were to evaluate how spatial resolution of the flow field observation influenced: (1) the velocities considered to be representative of habitat units; (2) patterns of use of the hydraulic environment by fish; and (3) estimates of energy expenditure. We addressed these objectives using observations within a 1:1 scale physical model of a full-channel log jam in an outdoor experimental stream. Velocities were measured with Acoustic Doppler Velocimetry at a 10 cm grid spacing, whereas fish locations and tailbeat frequencies were documented over time using underwater videogrammetry. Results highlighted that resolution of observation did impact perceived habitat use and energy expenditure, as did the location of measurement within habitat units and the use of averaging to summarize velocities within a habitat unit. In this experiment, the range of velocities and energy expenditure estimates increased with coarsening resolution (grid spacing from 10 to 100 cm), reducing the likelihood of measuring the velocities locally experienced by fish. In addition, the coarser resolutions contributed to fish appearing to select velocities that were higher than what was measured at finer resolutions. These findings indicate the need for careful attention to and communication of resolution of observation in investigating the hydraulic environment and in determining the habitat needs and bioenergetics of aquatic biota.

  19. Does resolution of flow field observation influence apparent habitat use and energy expenditure in juvenile coho salmon?

    Science.gov (United States)

    Tullos, D. D.; Walter, C.; Dunham, J.

    2016-12-01

    This study investigated how the resolution of observation influences interpretation of how fish, juvenile Coho Salmon (Oncorhynchus kisutch), exploit the hydraulic environment in streams. Our objectives were to evaluate how spatial resolution of the flow field observation influenced: 1) the velocities considered to be representative of habitat units; 2) patterns of use of the hydraulic environment by fish; and 3) estimates of energy expenditure. We addressed these objectives using observations within a 1:1 scale physical model of a full-channel log jam in an outdoor experimental stream. Velocities were measured with Acoustic Doppler Velocimetry at a 10 cm grid spacing, whereas fish locations and tailbeat frequencies were documented over time using underwater videogrammetry. Results highlighted that resolution of observation did impact perceived habitat use and energy expenditure, as did the location of measurement within habitat units and the use of averaging to summarize velocities within a habitat unit. In this experiment, the range of velocities and energy expenditure estimates increased with coarsening resolution, reducing the likelihood of measuring the velocities locally experienced by fish. In addition, the coarser resolutions contributed to fish appearing to select velocities that were higher than what was measured at finer resolutions. These findings indicate the need for careful attention to and communication of resolution of observation in investigating the hydraulic environment and in determining the habitat needs and bioenergetics of aquatic biota.

  20. Typical disturbances of the daytime equatorial F region observed with a high-resolution HF radar

    Directory of Open Access Journals (Sweden)

    E. Blanc

    1998-06-01

    Full Text Available HF radar measurements were performed near the magnetic equator in Africa (Korhogo 9°24'63''N–5°37'38''W during the International Equatorial Electrojet Year (1993–1994. The HF radar is a high-resolution zenithal radar. It gives ionograms, Doppler spectra and echo parameters at several frequencies simultaneously. This paper presents a comparative study of the daytime ionospheric structures observed during 3 days selected as representative of different magnetic conditions, given by magnetometer measurements. Broad Doppler spectra, large echo width, and amplitude fluctuations revealed small-scale instability processes up to the F-region peak. The height variations measured at different altitudes showed gravity waves and larger-scale disturbances related to solar daytime influence and equatorial electric fields. The possibility of retrieving the ionospheric electric fields from these Doppler or height variation measurements in the presence of the other possible equatorial ionospheric disturbances is discussed.

  1. Nano features of Al/Au ultrasonic bond interface observed by high resolution transmission electron microscopy

    International Nuclear Information System (INIS)

    Ji Hongjun; Li Mingyu; Kim, Jong-Myung; Kim, Dae-Won; Wang Chunqing

    2008-01-01

    Nano-scale interfacial details of ultrasonic AlSi1 wire wedge bonding to a Au/Ni/Cu pad were investigated using high resolution transmission electron microscopy (HRTEM). The intermetallic phase Au 8 Al 3 formed locally due to diffusion and reaction activated by ultrasound at the Al/Au bond interface. Multilayer sub-interfaces roughly parallel to the wire/pad interface were observed among this phase, and interdiffusional features near the Au pad resembled interference patterns, alternately dark and bright bars. Solid-state diffusion theory cannot be used to explain why such a thick compound formed within milliseconds at room temperature. The major formation of metallurgical bonds was attributed to ultrasonic cyclic vibration

  2. High resolution earth observation from geostationary orbit by optical aperture synthesys

    Science.gov (United States)

    Mesrine, M.; Thomas, E.; Garin, S.; Blanc, P.; Alis, C.; Cassaing, F.; Laubier, D.

    2017-11-01

    In this paper, we describe Optical Aperture Synthesis (OAS) imaging instrument concepts studied by Alcatel Alenia Space under a CNES R&T contract in term of technical feasibility. First, the methodology to select the aperture configuration is proposed, based on the definition and quantification of image quality criteria adapted to an OAS instrument for direct imaging of extended objects. The following section presents, for each interferometer type (Michelson and Fizeau), the corresponding optical configurations compatible with a large field of view from GEO orbit. These optical concepts take into account the constraints imposed by the foreseen resolution and the implementation of the co-phasing functions. The fourth section is dedicated to the analysis of the co-phasing methodologies, from the configuration deployment to the fine stabilization during observation. Finally, we present a trade-off analysis allowing to select the concept wrt mission specification and constraints related to instrument accommodation under launcher shroud and in-orbit deployment.

  3. Dynamics of Saturn’s 2010 Great White Spot from high-resolution Cassini ISS observations

    Science.gov (United States)

    Hueso, Ricardo; Sánchez-Lavega, A.; del Río-Gaztelurrutia, T.

    2012-10-01

    On December 5th 2010 a storm erupted in Saturn’s North Temperate latitudes which were experiencing early spring season. The storm quickly developed to a planet-wide disturbance of the Great White Spot type. The ISS instrument onboard Cassini acquired its first images of the storm on 23th December 2010 and performed repeated observations with a variety of spatial resolutions over the nearly 10 months period the storm continued active. Here we present an analysis of two of the image sequences with better spatial resolution of the mature storm when it was fully developed and very active. We used an image correlation algorithm to measure the cloud motions obtained from images separated 20 minutes and obtained 16,000 wind tracers in a domain of 60 degrees longitude per 20 degrees in latitude. Intense zonal and meridional motions accompanied the storm and reached values of 120 m/s in particular regions of the active storm. The storm released a chain of anticyclonic and cyclonic vortices at planetocentric latitudes of 36° and 32° respectively. The short time difference between the images results in estimated wind uncertainties of 15 m/s that did not allow to perform a complete analysis of the turbulence and kinetic spectrum of the motions. We identify locations of the updrafts and link those with the morphology in different observing filters. The global behaviour of the storm was examined in images separated by 10 hours confirming the intensity of the winds and the global behaviour of the vortices. Acknowledgments: This work was supported by the Spanish MICIIN project AYA2009-10701 with FEDER funds, by Grupos Gobierno Vasco IT-464-07 and by Universidad País Vasco UPV/EHU through program UFI11/55.

  4. Observation of human embryonic behavior in vitro by high-resolution time-lapse cinematography.

    Science.gov (United States)

    Iwata, Kyoko; Mio, Yasuyuki

    2016-07-01

    Assisted reproductive technology (ART) has yielded vast amounts of information and knowledge on human embryonic development in vitro; however, still images provide limited data on dynamic changes in the developing embryos. Using our high-resolution time-lapse cinematography (hR-TLC) system, we were able to describe normal human embryonic development continuously from the fertilization process to the hatched blastocyst stage in detail. Our hR-TLC observation also showed the embryonic abnormality of a third polar body (PB)-like substance likely containing a small pronucleus being extruded and resulting in single-pronucleus (1PN) formation, while our molecular biological investigations suggested the possibility that some 1PN embryos could be diploid, carrying both maternal and paternal genomes. Furthermore, in some embryos the extruded third PB-like substance was eventually re-absorbed into the ooplasm resulting in the formation of an uneven-sized, two-PN zygote. In addition, other hR-TLC observations showed that cytokinetic failure was correlated with equal-sized, multi-nucleated blastomeres that were also observed in the embryo showing early initiation of compaction. Assessment combining our hR-TLC with molecular biological techniques enables a better understanding of embryonic development and potential improvements in ART outcomes.

  5. Improving Ambiguity Resolution for Medium Baselines Using Combined GPS and BDS Dual/Triple-Frequency Observations.

    Science.gov (United States)

    Gao, Wang; Gao, Chengfa; Pan, Shuguo; Wang, Denghui; Deng, Jiadong

    2015-10-30

    The regional constellation of the BeiDou navigation satellite system (BDS) has been providing continuous positioning, navigation and timing services since 27 December 2012, covering China and the surrounding area. Real-time kinematic (RTK) positioning with combined BDS and GPS observations is feasible. Besides, all satellites of BDS can transmit triple-frequency signals. Using the advantages of multi-pseudorange and carrier observations from multi-systems and multi-frequencies is expected to be of much benefit for ambiguity resolution (AR). We propose an integrated AR strategy for medium baselines by using the combined GPS and BDS dual/triple-frequency observations. In the method, firstly the extra-wide-lane (EWL) ambiguities of triple-frequency system, i.e., BDS, are determined first. Then the dual-frequency WL ambiguities of BDS and GPS were resolved with the geometry-based model by using the BDS ambiguity-fixed EWL observations. After that, basic (i.e., L1/L2 or B1/B2) ambiguities of BDS and GPS are estimated together with the so-called ionosphere-constrained model, where the ambiguity-fixed WL observations are added to enhance the model strength. During both of the WL and basic AR, a partial ambiguity fixing (PAF) strategy is adopted to weaken the negative influence of new-rising or low-elevation satellites. Experiments were conducted and presented, in which the GPS/BDS dual/triple-frequency data were collected in Nanjing and Zhengzhou of China, with the baseline distance varying from about 28.6 to 51.9 km. The results indicate that, compared to the single triple-frequency BDS system, the combined system can significantly enhance the AR model strength, and thus improve AR performance for medium baselines with a 75.7% reduction of initialization time on average. Besides, more accurate and stable positioning results can also be derived by using the combined GPS/BDS system.

  6. The vacuum system of the Karlsruhe magnetic spectrograph 'Little John'

    International Nuclear Information System (INIS)

    Buschmann, J.; Gils, H.J.; Jelitto, H.; Krisch, J.; Ludwig, G.; Manger, D.; Rebel, H.; Seith, W.; Zagromski, S.

    1985-02-01

    The vacuum equipment of the magnetic spectrograph Little John is described. The system is characterized by the following special features: The sliding exit flange of the target chamber can be moved to the desired angle of observation without affecting the high vacuum. The pressure maintained is less by a factor of ten than the pressure in the incoming beam tubing. The vacuum system is divided into several separate pumping sections. Ground loops are strictly avoided. All actual states of relevance are fed back to the control panels. The vacuum installation is protected by hardware interlocking systems as well as by a real time program written in FORTRAN in cooperation with CAMAC interfacing. (orig.) [de

  7. Spectrographic determination of chlorine and fluorine

    International Nuclear Information System (INIS)

    Contamin, G.

    1965-04-01

    Experimental conditions have been investigated in order to obtain the highest sensitivity in spectrographic determination of chlorine and fluorine using the Fassel method of excitation in an inert atmosphere. The influence of the nature of the atmosphere, of the discharge conditions and of the matrix material has been investigated. The following results have been established: 1. chlorine determination is definitely possible: a working curve has been drawn between 10 μg and 100 μg, the detection limit being around 5 μg; 2. fluorine determination is not satisfactory: the detection limit is still of the order of 80 μg. The best operating conditions have been defined for both elements. (author) [fr

  8. Spectrographic determination of impurities in magnesium metal

    International Nuclear Information System (INIS)

    Capdevila, C.; Diaz-Guerra, J. P.

    1979-01-01

    The spectrographic determination of trace quantities of Al, B, Cd, Co, Cr, Cu, Fe, Li, Hn, Mo, Ni and Si in magnesium metal is described. Samples are dissolved with HNO 3 and calcinate into MgO. In order to avoid losses of boron NH 4 OH is added to the nitric solution. Except for aluminium and chromium the analysis is performed through the use of the carrier distillation technique. These two impurities are determined by burning to completion the MgO. Among the compounds studied as carriers (AgCl, AgF, CsCl, CuF 2 , KCl and SrF 2 ) AgCl allows, In general, the best volatilization efficiency. Lithium determination is achieved by using KC1 or CsCl. Detection limits, on the basis of MgO, are in the range 0,1 to 30 ppm, depending on the element. (Author) 8 refs

  9. Quantitative spectrographic analysis of impurities in antimonium

    International Nuclear Information System (INIS)

    Brito, J. de; Gomes, R.P.

    1978-01-01

    An emission spectrographic method is describe for the determination of Ag, Al, As, Be, Bi, Cd, Cr, Cu, Ga, Ni, Pb, Sn, Si, and Zn in high purity antimony metal. The metal sample ia dissolved in nitric acid(1:1) and converted tp oxide by calcination at 900 0 C for one hour. The oxide so obtained is mixed with graphite, which is used as a spectroscopic buffer, and excited by a direct current arc. Many parameters are studied optimum conditions are selected for the determination of the impurities mentioned. The spectrum is photographed in the second order of a 15.000 lines per inch grating and the most sensitive lines for the elements are selected. The impurities are determined in the concentration range of 1 - 0,01% with a precision of approximately 10% [pt

  10. Spectrographic determination of impurities in beryllium oxide

    International Nuclear Information System (INIS)

    Paula Reino, L.C. de; Lordello, A.R.; Pereira, A.S.A.

    1986-03-01

    A method for the spectrographic determination of Al, B, Cd, Co, Cu, Cr, Fe, Mg, NaNi, Si and Zn in nuclear grade beryllium oxide has been developed. The determination of Co, Al, Na and Zn is besed upon a carrier distillation technique. Better results were obtained with 2% Ga 2 O 3 as carrier in beryllium oxide. For the elements B, Cd, Cu, Fe, Cr, Mg, Ni and Si the sample is loaded in a Scribner-Mullin shallow cup electrode, covered with graphite powder and excited in DC arc. The relative standard deviation values for different elements are in the range of 10 to 20%. The method fulfills requirements of precision and sensitivity for specification analysis of nuclear grade beryllium oxide.(Author) [pt

  11. Field Raman spectrograph for environmental analysis

    International Nuclear Information System (INIS)

    Haas, J.W. III; Forney, R.W.; Carrabba, M.M.; Rauh, R.D.

    1995-01-01

    The enormous cost for chemical analysis at DOE facilities predicates that cost-saving measures be implemented. Many approaches, ranging from increasing laboratory sample throughput by reducing preparation time to the development of field instrumentation, are being explored to meet this need. Because of the presence of radioactive materials at many DOE sites, there is also a need for methods that are safer for site personnel and analysts. This project entails the development of a compact Raman spectrograph for field screening and monitoring of a wide variety of wastes, pollutants, and corrosion products in storage tanks, soils, and ground and surface waters. Analytical advantages of the Raman technique include its ability to produce a unique, spectral fingerprint for each contaminant and its ability to analyze both solids and liquids directly, without the need for isolation or cleanup

  12. Spectrographic analysis of thorium and its compounds

    International Nuclear Information System (INIS)

    Grampurohit, S.V.; Saksena, M.D.; Kaimal, V.N.P.; Kapoor, S.K.; Murty, P.S.

    1980-01-01

    A spectrographic method, which employs the principle of carrier-distillation technique, is described for the analysis of high purity thoria. Two carriers, AgCl and NaF were used in determining 27 trace elements in ThO 2 . The elements were divided into three groups, A, B and C. In group A, 15 elements, viz. Al, B, Be, Cd, Co, Cr, Cu, Fe, Mg, Mn, Ni, Pb, Sb, Si and Sn were included since it was possible to choose sensitive lines of these elements in one spectral region, 220 - 285 nm. Group B covered 8 elements, viz. Ag, Bi, Ca, Ga, Mo, Ti, V and Zn, which could be determined in the spectral region 290 - 352.5 nm. Group C consisted 4 elements, viz. Ba, K, Li and Na which could be determined in the spectral region 440 - 820 nm. 5% AgCl was used as the carrier for the determination of groups A and C elements and 4% NaF was used as the carrier for the estimation of group B elements. One hundred milligrammes of the sample (in the form of ThO 2 ) containing the carrier were taken in a carrier-distillation electrode and excited in a d.c. arc (10 amps for groups A and C; 15 amps for group B). The spectra of sample and synthetic standards were photographed on Hilger's large quartz, JACO 3.4 m Ebert plane grating and Higler's large glass spectrographs respectively for determining group A, B and C elements. The detection limit obtained for B and Cd was 0.1 ppm. Thorium metal and thorium nitrate samples were converted to ThO 2 prior to analysis. (auth.)

  13. Calibration Efforts and Unique Capabilities of the HST Space Telescope Imaging Spectrograph

    Science.gov (United States)

    Monroe, TalaWanda R.; Proffitt, Charles R.; Welty, Daniel; Branton, Doug; Carlberg, Joleen K.; debes, John Henry; Lockwood, Sean; Riley, Allyssa; Sohn, Sangmo Tony; Sonnentrucker, Paule G.; Walborn, Nolan R.; Jedrzejewski, Robert I.

    2018-01-01

    The Space Telescope Imaging Spectrograph (STIS) continues to offer the astronomy community the ability to carry out innovative UV and optical spectroscopic and imaging studies, two decades after its deployment on the Hubble Space Telescope (HST). Most notably, STIS provides spectroscopy in the FUV and NUV, including high spectral resolution echelle modes, imaging in the FUV, optical spectroscopy, and coronagraphic capabilities. Additionally, spatial scanning on the CCD with the long-slits is now possible to enable very high S/N spectroscopic observations without saturation while mitigating telluric and fringing concerns in the far red and near-IR. This new mode may especially benefit the diffuse interstellar bands and exoplanet transiting communities. We present recent calibration efforts for the instrument, including work to optimize the calibration of the echelle spectroscopic modes by improving the flux agreement of overlapping spectral orders affected by changes in the grating blaze function since HST Servicing Mission 4. We also discuss considerations to maintain the wavelength precision of the spectroscopic modes, and the current capabilities of CCD spectroscopic spatial trails.

  14. The Keck Cosmic Web Imager (KCWI): A Powerful New Integral Field Spectrograph for the Keck Observatory

    Science.gov (United States)

    Morrissey, Patrick; KCWI Team

    2013-01-01

    The Keck Cosmic Web Imager (KCWI) is a new facility instrument being developed for the W. M. Keck Observatory and funded for construction by the Telescope System Instrumentation Program (TSIP) of the National Science Foundation (NSF). KCWI is a bench-mounted spectrograph for the Keck II right Nasmyth focal station, providing integral field spectroscopy over a seeing-limited field up to 20"x33" in extent. Selectable Volume Phase Holographic (VPH) gratings provide high efficiency and spectral resolution in the range of 1000 to 20000. The dual-beam design of KCWI passed a Preliminary Design Review in summer 2011. The detailed design of the KCWI blue channel (350 to 700 nm) is now nearly complete, with the red channel (530 to 1050 nm) planned for a phased implementation contingent upon additional funding. KCWI builds on the experience of the Caltech team in implementing the Cosmic Web Imager (CWI), in operation since 2009 at Palomar Observatory. KCWI adds considerable flexibility to the CWI design, and will take full advantage of the excellent seeing and dark sky above Mauna Kea with a selectable nod-and-shuffle observing mode. The KCWI team is lead by Caltech (project management, design and implementation) in partnership with the University of California at Santa Cruz (camera optical and mechanical design) and the W. M. Keck Observatory (program oversight and observatory interfaces).

  15. HIGH-RESOLUTION RADIO OBSERVATIONS OF THE REMNANT OF SN 1987A AT HIGH FREQUENCIES

    International Nuclear Information System (INIS)

    Zanardo, Giovanna; Staveley-Smith, L.; Potter, T. M.; Ng, C.-Y.; Gaensler, B. M.; Manchester, R. N.; Tzioumis, A. K.

    2013-01-01

    We present new imaging observations of the remnant of Supernova (SN) 1987A at 44 GHz, performed in 2011 with the Australia Telescope Compact Array (ATCA). The 0.''35 × 0.''23 resolution of the diffraction-limited image is the highest achieved to date in high-dynamic range. We also present a new ATCA image at 18 GHz derived from 2011 observations, which is super-resolved to 0.''25. The flux density is 40 ± 2 mJy at 44 GHz and 81 ± 6 mJy at 18 GHz. At both frequencies, the remnant exhibits a ring-like emission with two prominent lobes, and an east-west brightness asymmetry that peaks on the eastern lobe. A central feature of fainter emission appears at 44 GHz. A comparison with previous ATCA observations at 18 and 36 GHz highlights higher expansion velocities of the remnant's eastern side. The 18-44 GHz spectral index is α = –0.80 (S ν ∝ν α ). The spectral index map suggests slightly steeper values at the brightest sites on the eastern lobe, whereas flatter values are associated with the inner regions. The remnant morphology at 44 GHz generally matches the structure seen with contemporaneous X-ray and Hα observations. Unlike the Hα emission, both the radio and X-ray emission peaks on the eastern lobe. The regions of flatter spectral index align and partially overlap with the optically visible ejecta. Simple free-free absorption models suggest that emission from a pulsar wind nebula or a compact source inside the remnant may now be detectable at high frequencies or at low frequencies if there are holes in the ionized component of the ejecta.

  16. Quantitative imaging through a spectrograph. 1. Principles and theory.

    NARCIS (Netherlands)

    Tolboom, R.A.L.; Dam, N.J.; Meulen, J.J. ter; Mooij, J.M.; Maassen, J.D.M.

    2004-01-01

    Laser-based optical diagnostics, such as planar laser-induced fluorescence and, especially, Raman imaging, often require selective spectral filtering. We advocate the use of an imaging spectrograph with a broad entrance slit as a spectral filter for two-dimensional imaging. A spectrograph in this

  17. Improving global fire carbon emissions estimates by combining moderate resolution burned area and active fire observations

    Science.gov (United States)

    Randerson, J. T.; Chen, Y.; Giglio, L.; Rogers, B. M.; van der Werf, G.

    2011-12-01

    In several important biomes, including croplands and tropical forests, many small fires exist that have sizes that are well below the detection limit for the current generation of burned area products derived from moderate resolution spectroradiometers. These fires likely have important effects on greenhouse gas and aerosol emissions and regional air quality. Here we developed an approach for combining 1km thermal anomalies (active fires; MOD14A2) and 500m burned area observations (MCD64A1) to estimate the prevalence of these fires and their likely contribution to burned area and carbon emissions. We first estimated active fires within and outside of 500m burn scars in 0.5 degree grid cells during 2001-2010 for which MCD64A1 burned area observations were available. For these two sets of active fires we then examined mean fire radiative power (FRP) and changes in enhanced vegetation index (EVI) derived from 16-day intervals immediately before and after each active fire observation. To estimate the burned area associated with sub-500m fires, we first applied burned area to active fire ratios derived solely from within burned area perimeters to active fires outside of burn perimeters. In a second step, we further modified our sub-500m burned area estimates using EVI changes from active fires outside and within of burned areas (after subtracting EVI changes derived from control regions). We found that in northern and southern Africa savanna regions and in Central and South America dry forest regions, the number of active fires outside of MCD64A1 burned areas increased considerably towards the end of the fire season. EVI changes for active fires outside of burn perimeters were, on average, considerably smaller than EVI changes associated with active fires inside burn scars, providing evidence for burn scars that were substantially smaller than the 25 ha area of a single 500m pixel. FRP estimates also were lower for active fires outside of burn perimeters. In our

  18. High-resolution Observations of Downflows at One End of a Pre-eruption Filament

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qin; Deng, Na; Jing, Ju; Wang, Haimin, E-mail: ql47@njit.edu [Space Weather Research Laboratory, New Jersey Institute of Technology, University Heights, Newark, NJ 07102-1982 (United States)

    2017-06-01

    Studying the dynamics of filaments at the pre-eruption phase can shed light on the precursor of eruptive events. Such high-resolution studies (of the order of 0.″1) are highly desirable yet very rare. In this work, we present a detailed observation of a pre-eruption evolution of a filament obtained by the 1.6 m New Solar Telescope (NST) at the Big Bear Solar Observatory (BBSO). One end of the filament is anchored at the sunspot in the NOAA active region (AR) 11515, which is well observed by NST H α off-bands from four hours before to one hour after the filament eruption. A M1.6 flare is associated with the eruption. We observed persistent downflowing materials along the H α multi-threaded component of the loop toward the AR end during the pre-eruption phase. We traced the trajectories of plasma blobs along the H α threads and obtained a plane-of-sky velocity of 45 km s{sup −1} on average. Furthermore, we estimated the real velocities of the downflows and the altitude of the filament by matching the observed H α threads with magnetic field lines extrapolated from a nonlinear force-free field model. Observations of chromospheric brightenings at the footpoints of the falling plasma blobs are also presented. The lower limit of the kinetic energy per second of the downflows through the brightenings is found to be ∼10{sup 21} erg. Larger FOV observations from BBSO full-disk H α images show that the AR end of the filament started ascending four hours before the flare. We attribute the observed downflows at the AR end of the filament to the draining effect of the filament rising prior to its eruption. During the slow-rise phase, the downflows continuously drained away ∼10{sup 15}g mass from the filament over a few hours, which is believed to be essential for the instability, and could be an important precursor of eruptive events.

  19. Investigating Mercury's South Polar Deposits: Arecibo Radar Observations and High-Resolution Determination of Illumination Conditions

    Science.gov (United States)

    Chabot, Nancy L.; Shread, Evangela E.; Harmon, John K.

    2018-02-01

    There is strong evidence that Mercury's polar deposits are water ice hosted in permanently shadowed regions. In this study, we present new Arecibo radar observations of Mercury's south pole, which reveal numerous radar-bright deposits and substantially increase the radar imaging coverage. We also use images from MESSENGER's full mission to determine the illumination conditions of Mercury's south polar region at the same spatial resolution as the north polar region, enabling comparisons between the two poles. The area of radar-bright deposits in Mercury's south is roughly double that found in the north, consistent with the larger permanently shadowed area in the older, cratered terrain at the south relative to the younger smooth plains at the north. Radar-bright features are strongly associated with regions of permanent shadow at both poles, consistent with water ice being the dominant component of the deposits. However, both of Mercury's polar regions show that roughly 50% of permanently shadowed regions lack radar-bright deposits, despite some of these locations having thermal environments that are conducive to the presence of water ice. The observed uneven distribution of water ice among Mercury's polar cold traps may suggest that the source of Mercury's water ice was not a steady, regular process but rather that the source was an episodic event, such as a recent, large impact on the innermost planet.

  20. LAMOST OBSERVATIONS IN THE KEPLER FIELD. I. DATABASE OF LOW-RESOLUTION SPECTRA

    Energy Technology Data Exchange (ETDEWEB)

    Cat, P. De; Ren, A. B.; Yang, X. H. [Royal observatory of Belgium, Ringlaan 3, B-1180 Brussel (Belgium); Fu, J. N. [Department of Astronomy, Beijing Normal University, 19 Avenue Xinjiekouwai, Beijing 100875 (China); Shi, J. R.; Luo, A. L.; Yang, M.; Wang, J. L.; Zhang, H. T.; Shi, H. M.; Zhang, W. [Key Lab for Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Dong, Subo [Kavli Institute for Astronomy and Astrophysics, Peking University, Yi He Yuan Road 5, Hai Dian District, Beijing, 100871 (China); Catanzaro, G.; Frasca, A. [INAF—Osservatorio Astrofisico di Catania, Via S. Sofia 78, I-95123 Catania (Italy); Corbally, C. J. [Vatican Observatory Research Group, Steward Observatory, Tucson, AZ 85721-0065 (United States); Gray, R. O. [Department of Physics and Astronomy, Appalachian State University, Boone, NC 28608 (United States); Żakowicz, J. Molenda- [Astronomical Institute of the University of Wrocław, ul. Kopernika 11, 51-622 Wrocław (Poland); Uytterhoeven, K. [Instituto de Astrofísica de Canarias (IAC), E-38200 La Laguna, Tenerife (Spain); Briquet, M. [Institut d’Astrophysique et de Géophysique, Université de Liège, Allée du 6 Août 19C, B-4000 Liège (Belgium); Bruntt, H., E-mail: Peter.DeCat@oma.be [Stellar Astrophysics Center, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); and others

    2015-09-15

    The nearly continuous light curves with micromagnitude precision provided by the space mission Kepler are revolutionizing our view of pulsating stars. They have revealed a vast sea of low-amplitude pulsation modes that were undetectable from Earth. The long time base of Kepler light curves allows for the accurate determination of the frequencies and amplitudes of pulsation modes needed for in-depth asteroseismic modeling. However, for an asteroseismic study to be successful, the first estimates of stellar parameters need to be known and they cannot be derived from the Kepler photometry itself. The Kepler Input Catalog provides values for the effective temperature, surface gravity, and metallicity, but not always with sufficient accuracy. Moreover, information on the chemical composition and rotation rate is lacking. We are collecting low-resolution spectra for objects in the Kepler field of view with the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (lamost, Xinglong observatory, China). All of the requested fields have now been observed at least once. In this paper, we describe those observations and provide a useful database for the whole astronomical community.

  1. High spatial resolution observations of the T Tau system - II. Interferometry in the mid-infrared

    International Nuclear Information System (INIS)

    Ratzka, Thorsten

    2008-01-01

    Each time the resolution was improved, observations of the young low-mass star T Tau led to new insights. Initially classified as the prototype of low-mass pre-main-sequence stars, measurements with high resolution techniques in the near-infrared revealed the existence of a deeply embedded companion only 0.7 arcsec to the south. Later on, this companion itself has been resolved into two sources with a separation of only about 50 mas. We investigated both the optically bright northern component and the embedded southern binary with the MID-infrared Interferometric instrument (MIDI). The resulting visibilities of the northern component decrease with wavelength, independent of the baseline's position angle. This is a clear sign of the large face-on circumstellar disc. With a simultaneous fit of a radiative transfer model to both the interferometric results and the spectral energy distribution, the properties of this disc can be determined without the high degeneracy of fits to the spectral energy distribution alone. Since the visibilities of the southern binary are clearly dominated by the typical sinusoidal binary signal, we could for the first time in the mid-infrared derive separate spectra for both components together with a very precise relative position. This position is in excellent agreement with the orbit found from a fit to the near-infrared adaptive optics measurements. The orbit with its small periastron distance indicates tidally truncated discs, which are consistent with the interferometric measurements. The peculiar properties of the infrared companion can be explained by the model of an intermediate mass star extincted by an almost edge-on disc.

  2. High resolution solar observations in the context of space weather prediction

    Science.gov (United States)

    Yang, Guo

    Space weather has a great impact on the Earth and human life. It is important to study and monitor active regions on the solar surface and ultimately to predict space weather based on the Sun's activity. In this study, a system that uses the full power of speckle masking imaging by parallel processing to obtain high-spatial resolution images of the solar surface in near real-time has been developed and built. The application of this system greatly improves the ability to monitor the evolution of solar active regions and to predict the adverse effects of space weather. The data obtained by this system have also been used to study fine structures on the solar surface and their effects on the upper solar atmosphere. A solar active region has been studied using high resolution data obtained by speckle masking imaging. Evolution of a pore in an active region presented. Formation of a rudimentary penumbra is studied. The effects of the change of the magnetic fields on the upper level atmosphere is discussed. Coronal Mass Ejections (CMEs) have a great impact on space weather. To study the relationship between CMEs and filament disappearance, a list of 431 filament and prominence disappearance events has been compiled. Comparison of this list with CME data obtained by satellite has shown that most filament disappearances seem to have no corresponding CME events. Even for the limb events, only thirty percent of filament disappearances are associated with CMEs. A CME event that was observed on March 20, 2000 has been studied in detail. This event did not show the three-parts structure of typical CMEs. The kinematical and morphological properties of this event were examined.

  3. High resolution near-bed observations in winter near Cape Hatteras, North Carolina

    Science.gov (United States)

    Martini, Marinna A.; Armstrong, Brandy N.; Warner, John C.

    2010-01-01

    The U.S. Geological Survey (USGS) Coastal and Marine Science Center in Woods Hole, Massachusetts, is leading an effort to understand the regional sediment dynamics along the coastline of North and South Carolina. As part of the Carolinas Coastal Change Processes Project, a geologic framework study in June of 2008 by the Woods Hole Coastal and Marine Science Center's Sea Floor Mapping Group focused on the seaward limit of Diamond Shoals and provided high resolution bathymetric data, surficial sediment characteristics, and subsurface geologic stratigraphy. These data also provided unprecedented guidance to identify deployment locations for tripods and moorings to investigate the processes that control sediment transport at Diamond Shoals. Equipment was deployed at three sites from early January, 2009 through early May, 2009: north and south of the shoals at 15 m depth, and at the tip at 24 m depth. Many strong storm systems were recorded during that time period. Mounted on the tripods were instruments to measure surface waves, pressure, current velocity, bottom turbulence, suspended-sediment profiles, and sea-floor sand-ripple bedforms. Many instruments were designed and programmed to sample in high resolution in time and space, as fast as 8 Hz hourly bursts and as small as 6 cm bin sizes in near bottom profiles. A second tripod at the north site also held a visual camera system and sonar imaging system which document seafloor bedforms. The region is known for its dynamics, and one of the tripods tipped over towards the end of the experiment. A preliminary look at the data suggests the region is characterized by high energy. Raw data from a burst recorded at the south site on Mar. 26th show instantaneous flow speed at 150 cm/s at 0.5 m above the seabed. This paper reports preliminary highlights of the observations, based on raw data, and lessons learned from a deployment of large tripod systems in such a dynamic location.

  4. Rotational temperature of N2+ (0,2 ions from spectrographic measurements used to infer the energy of precipitation in different auroral forms and compared with radar measurements

    Directory of Open Access Journals (Sweden)

    D. Lummerzheim

    2008-05-01

    Full Text Available High resolution spectral data are used to estimate neutral temperatures at auroral heights. The data are from the High Throughput Imaging Echelle Spectrograph (HiTIES which forms part of the Spectrographic Imaging Facility (SIF, located at Longyearbyen, Svalbard in Norway. The platform also contains photometers and a narrow angle auroral imager. Quantum molecular spectroscopy is used for modelling N2+ 1NG (0,2, which serves as a diagnostic tool for neutral temperature and emission height variations. The theoretical spectra are convolved with the instrument function and fitted to measured rotational transition lines as a function of temperature. Measurements were made in the magnetic zenith, and along a meridian slit centred on the magnetic zenith. In the results described, the high spectral resolution of the data (0.08 nm allows an error analysis to be performed more thoroughly than previous findings, with particular attention paid to the correct subtraction of background, and to precise wavelength calibration. Supporting measurements were made with the Svalbard Eiscat Radar (ESR. Estimates were made from both optical and radar observations of the average energy of precipitating electrons in different types of aurora. These provide confirmation that the spectral results are in agreement with the variations observed in radar profiles. In rayed aurora the neutral temperature was highest (800 K and the energy lowest (1 keV. In a bright curling arc, the temperature at the lower border was about 550 K, corresponding to energies of 2 keV. The radar and modelling results confirm that these average values are a lower limit for an estimation of the characteristic energy. In each event the energy distribution is clearly made up of more than one spectral shape. This work emphasises the need for high time resolution as well as high spectral resolution. The present work is the first to provide rotational temperatures using a method which pays particular

  5. SOUTHERN MASSIVE STARS AT HIGH ANGULAR RESOLUTION: OBSERVATIONAL CAMPAIGN AND COMPANION DETECTION

    Energy Technology Data Exchange (ETDEWEB)

    Sana, H. [European Space Agency/Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Le Bouquin, J.-B.; Duvert, G.; Zins, G. [Université Grenoble Alpes, IPAG, F-38000 Grenoble (France); Lacour, S.; Gauchet, L.; Pickel, D. [LESIA, Observatoire de Paris, CNRS, UPMC, Université Paris-Diderot, Paris Sciences et Lettres, 5 Place Jules Janssen, F-92195 Meudon (France); Berger, J.-P. [European Southern Observatory, Schwarzschild-Str. 2, D-85748 Garching bei München (Germany); Norris, B. [Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006 (Australia); Olofsson, J. [Max-Planck-Institut für Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany); Absil, O. [Département d' Astrophysique, Géophysique et Océanographie, Université de Liège, 17 Allée du Six Août, B-4000 Liège (Belgium); De Koter, A. [Astrophysical Institute Anton Pannekoek, Universiteit van Amsterdam, Science Park 904, 1098XH Amsterdam (Netherlands); Kratter, K. [JILA, 440 UCB, University of Colorado, Boulder, CO 80309-0440 (United States); Schnurr, O. [Leibniz-Institut für Astrophysik Potsdam, An der Sternwarte 16, D-14482 Potsdam (Germany); Zinnecker, H., E-mail: hsana@stsci.edu [Deutsches SOFIA Instituut, SOFIA Science Center, NASA Ames Research Center, Mail Stop N232-12, Moffett Field, CA 94035 (United States)

    2014-11-01

    Multiplicity is one of the most fundamental observable properties of massive O-type stars and offers a promising way to discriminate between massive star formation theories. Nevertheless, companions at separations between 1 and 100 milliarcsec (mas) remain mostly unknown due to intrinsic observational limitations. At a typical distance of 2 kpc, this corresponds to projected physical separations of 2-200 AU. The Southern MAssive Stars at High angular resolution survey (SMaSH+) was designed to fill this gap by providing the first systematic interferometric survey of Galactic massive stars. We observed 117 O-type stars with VLTI/PIONIER and 162 O-type stars with NACO/Sparse Aperture Masking (SAM), probing the separation ranges 1-45 and 30-250 mas and brightness contrasts of ΔH < 4 and ΔH < 5, respectively. Taking advantage of NACO's field of view, we further uniformly searched for visual companions in an 8'' radius down to ΔH = 8. This paper describes observations and data analysis, reports the discovery of almost 200 new companions in the separation range from 1 mas to 8'' and presents a catalog of detections, including the first resolved measurements of over a dozen known long-period spectroscopic binaries. Excluding known runaway stars for which no companions are detected, 96 objects in our main sample (δ < 0°; H < 7.5) were observed both with PIONIER and NACO/SAM. The fraction of these stars with at least one resolved companion within 200 mas is 0.53. Accounting for known but unresolved spectroscopic or eclipsing companions, the multiplicity fraction at separation ρ < 8'' increases to f {sub m} = 0.91 ± 0.03. The fraction of luminosity class V stars that have a bound companion reaches 100% at 30 mas while their average number of physically connected companions within 8'' is f {sub c} = 2.2 ± 0.3. This demonstrates that massive stars form nearly exclusively in multiple systems. The nine non-thermal radio

  6. High-Resolution Spectroscopic Observations of Potassium Emissions in the Lunar Exosphere

    Science.gov (United States)

    Robertson, Sarena D.; Oliversen, Ronald J.; Mierkiewicz, Edwin J.; Kuruppuaratchi, Dona Chathuni P.; Derr, Nicholas James; Gallant, Margaret A.; McFarland, Christina G.; Sarantos, Menelaos

    2018-01-01

    We investigate lunar exospheric potassium D1 emissions (7698.9646 Å) using high-resolution (R = 180,000 or 1.7 km/s) spectroscopy with our dual-etalon Fabry-Perot instrument to measure line widths and radial velocities. The Field of View (FOV) is 2 arcmins (~224 km at the mean lunar distance of 384,400 km) positioned tangent to the sunlit limb. The FOV placements are at cardinal directions from a variety of reference craters. All observations are collected at the National Solar Observatory McMath-Pierce Telescope in Kitt Peak, Arizona. The data are from several observations from 2014 through 2017 at various times of the year. Results are produced via a newly created automated data reduction using Python. Python was chosen as an open-source alternative to the previously used IDL and MATLAB scripts to decrease the cost of software licenses and maintenance. The potassium spectral line profiles provide a direct method to track exospheric effective temperatures and velocities. By monitoring the state of the potassium emissions over different lunar phases, solar activity, and the influx of meteor streams, we can constrain physical processes of sources and sinks at the lunar surface. Mechanisms that create the exosphere include photon-stimulated desorption, thermal evaporation, meteoroid impact vaporization, and ion sputtering via solar wind. In contrast, the exosphere is diminished due to the low lunar escape velocity, solar radiation pressure, and neutral gas being ionized and swept away by the interplanetary and terrestrial magnetic field. Preliminary analysis of 2017 data (January through June, excluding February) indicates an average potassium temperature of 1140 K but varying over the range of 550 K to 2000 K. Preliminary results from 2014 data depict a similar range of temperatures to that of 2017. Further analysis is expected for additional data from 2014 to later observations in 2017 that were not included in the initial set of models.

  7. Rocket studies of solar corona and transition region. [X-Ray spectrometer/spectrograph telescope

    Science.gov (United States)

    Acton, L. W.; Bruner, E. C., Jr.; Brown, W. A.; Nobles, R. A.

    1979-01-01

    The XSST (X-Ray Spectrometer/Spectrograph Telescope) rocket payload launched by a Nike Boosted Black Brant was designed to provide high spectral resolution coronal soft X-ray line information on a spectrographic plate, as well as time resolved photo-electric records of pre-selected lines and spectral regions. This spectral data is obtained from a 1 x 10 arc second solar region defined by the paraboloidal telescope of the XSST. The transition region camera provided full disc images in selected spectral intervals originating in lower temperature zones than the emitting regions accessible to the XSST. A H-alpha camera system allowed referencing the measurements to the chromospheric temperatures and altitudes. Payload flight and recovery information is provided along with X-ray photoelectric and UV flight data, transition camera results and a summary of the anomalies encountered. Instrument mechanical stability and spectrometer pointing direction are also examined.

  8. A Fast Algorithm for Image Super-Resolution from Blurred Observations

    Directory of Open Access Journals (Sweden)

    Ng Michael K

    2006-01-01

    Full Text Available We study the problem of reconstruction of a high-resolution image from several blurred low-resolution image frames. The image frames consist of blurred, decimated, and noisy versions of a high-resolution image. The high-resolution image is modeled as a Markov random field (MRF, and a maximum a posteriori (MAP estimation technique is used for the restoration. We show that with the periodic boundary condition, a high-resolution image can be restored efficiently by using fast Fourier transforms. We also apply the preconditioned conjugate gradient method to restore high-resolution images in the aperiodic boundary condition. Computer simulations are given to illustrate the effectiveness of the proposed approach.

  9. High spatial resolution satellite observations for validation of MODIS land products: IKONOS observations acquired under the NASA scientific data purchase.

    Science.gov (United States)

    Jeffrey T. Morisette; Jaime E. Nickeson; Paul Davis; Yujie Wang; Yuhong Tian; Curtis E. Woodcock; Nikolay Shabanov; Matthew Hansen; Warren B. Cohen; Doug R. Oetter; Robert E. Kennedy

    2003-01-01

    Phase 1I of the Scientific Data Purchase (SDP) has provided NASA investigators access to data from four different satellite and airborne data sources. The Moderate Resolution Imaging Spectrometer (MODIS) land discipline team (MODLAND) sought to utilize these data in support of land product validation activities with a lbcus on tile EOS Land Validation Core Sites. These...

  10. Micaceous occlusions in kaolinite observed by ultramicrotomy and high resolution electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S Y [Univ. of Wisconsin, Madison; Jackson, M L; Brown, J L

    1975-01-01

    The layer structure of kaolinite from Twiggs, Georgia, and fire-clay type kaolinite (Frantex B, from France, particle size separates 2 0.2 ..mu..m was studied by high resolution electron microscopy after embedment in Spurr low-viscosity Epoxy media and thin sectioning normal to the (001) planes by an ultramicrotome. Images of the (001) planes (viewed edge-on) of both kaolinites were spaced at 7 A and generally aligned in parallel, with occasional bending into more widely spaced images of about 10 A interval. Some of the 10 A images converged to 7 A at one or both ends, forming ellipse-shaped islands 80 to 130 A thick and 300 to 500 A long. The island areas and interleaved 10 A layers between 7 A layers may represent a residue of incomplete weathering of mica to kaolinite. The proportions of micaceous occlusions were too small and the layer sequences too irregular to be detected by X-ray diffraction. The lateral continuity of the layers through the 7-10-7 A sequence in a kaolinite particle would partially interrupt or prevent expansion in dimethyl sulfoxide (DMSO) and other kaolinite intercalating media. Discrete mica particles were also observed with parallel images at 10 A, as impurities in both kaolinites. The small K content of the chemical analyses of the kaolinite samples is accounted for as interlayer K, not only in discrete mica particles but also in the micaceous occlusions.

  11. The structure of the ISM in the Zone of Avoidance by high-resolution multi-wavelength observations

    Science.gov (United States)

    Tóth, L. V.; Doi, Y.; Pinter, S.; Kovács, T.; Zahorecz, S.; Bagoly, Z.; Balázs, L. G.; Horvath, I.; Racz, I. I.; Onishi, T.

    2018-05-01

    We estimate the column density of the Galactic foreground interstellar medium (GFISM) in the direction of extragalactic sources. All-sky AKARI FIS infrared sky survey data might be used to trace the GFISM with a resolution of 2 arcminutes. The AKARI based GFISM hydrogen column density estimates are compared with similar quantities based on HI 21cm measurements of various resolution and of Planck results. High spatial resolution observations of the GFISM may be important recalculating the physical parameters of gamma-ray burst (GRB) host galaxies using the updated foreground parameters.

  12. Soft X-ray spectrographs for solar observations

    Science.gov (United States)

    Bruner, M. E.

    1988-01-01

    Recent advances in soft X-ray spectrometery are reviewed, with emphasis on techniques for studying the windowless region from roughly 1-100 A. Recent technological developments considered include multilayer mirrors, large-format CCD detectors which are sensitive to X-rays, position-sensitive photon counting detectors, new kinds of X-ray films, and optical systems based on gratings with nonuniform ruling spacings. Improvements in the extent and accuracy of the atomic physics data sets on which the analysis of spectroscopic observatons depend are also discussed.

  13. Study of an integral field spectrograph for the SNAP satellite. Prototype, simulation and performances

    International Nuclear Information System (INIS)

    Aumeunier, Marie-Helene

    2007-01-01

    The SNAP (Supernovae/Acceleration Probe) project plans to measure very precisely the cosmological parameters and to determine the nature of dark energy by observations of type Ia supernovae and weak lensing. The SNAP instrument consists in a 2-meter telescope with a one square-degree imager and a spectrograph in the visible and infrared range. A dedicated optimized integral field spectrograph based on an imager slicer technology has been developed. To test and validate the performances, two approaches have been developed: a complete simulation of the complete instrument at the pixel level and the manufacturing and test of a spectrograph prototype operating at room temperature and in cryogenic environment. In this thesis we will test the optical and functional performances of the SNAP spectrograph: especially diffraction losses, stray-light and spectro-photometric calibration. We present an original approach for the spectro-photometric calibration adapted for the slicer and the optical performances resulting from the first measurement campaign in the visible range. (author) [fr

  14. Flare Energy Release: Internal Conflict, Contradiction with High Resolution Observations, Possible Solutions

    Science.gov (United States)

    Pustilnik, L.

    2017-06-01

    All accepted paradigm of solar and stellar flares energy release based on 2 whales: 1. Source of energy is free energy of non-potential force free magnetic field in atmosphere above active region; 2. Process of ultrafast dissipation of magnetic fields is Reconnection in Thin Turbulent Current Sheet (RTTCS). Progress in observational techniques in last years provided ultra-high spatial resolution and in physics of turbulent plasma showed that real situation is much more complicated and standard approach is in contradiction both with observations and with problem of RTTCS stability. We present critical analysis of classic models of pre-flare energy accumulation and its dissipation during flare energy release from pioneer works Giovanelli (1939, 1947) up to topological reconnection. We show that all accepted description of global force-free fields as source of future flare cannot be agreed with discovered in last years fine and ultra-fine current-magnetic structure included numerouse arcs-threads with diameters up to 100 km with constant sequence from photosphere to corona. This magnetic skeleton of thin current magnetic threads with strong interaction between them is main source of reserved magnetic energy insolar atmosphere. Its dynamics will be controlled by percolation of magnetic stresses through network of current-magnetic threads with transition to flare state caused by critical value of global current. We show that thin turbulent current sheet is absolutely unstable configuration both caused by splitting to numerous linear currents by dissipative modes like to tearing, and as sequence of suppress of plasma turbulence caused by anomalous heating of turbulent plasma. In result of these factors primary RTTCS will be disrupted in numerous turbulent and normal plasma domains like to resistors network. Current propagation through this network will have percolation character with all accompanied properties of percolated systems: self-organization with formation power

  15. Mechanisms Controlling Hypoxia Data Atlas: High-resolution hydrographic and chemical observations from 2003-2014

    Science.gov (United States)

    Zimmerle, H.; DiMarco, S. F.

    2016-02-01

    The Mechanisms Controlling Hypoxia (MCH) project consisted of 31 cruises from 2003-2014 with an objective to investigate the physical and biogeochemical processes that control the hypoxic zone on the Texas-Louisiana shelf in the northern Gulf of Mexico. The known seasonal low oxygen conditions in this region are the result of river-derived nutrients, freshwater input, and wind. The MCH Data Atlas showcases in situ data and subsequent products produced during the duration of the project, focusing on oceanographic observations from 2010-2014. The Atlas features 230 high-resolution vertical sections from nine cruises using the Acrobat undulating towed vehicle that contained a CTD along with sensors measuring oxygen, fluorescence, and turbidity. Vertical profiles along the 20-meter isobaths section feature temperature, salinity, chlorophyll, and dissolved oxygen from the Acrobat towfish and CTD rosette as well as separate selected profiles from the CTD. Surface planview maps show the horizontal distribution of temperature, salinity, chlorophyll, beam transmission, and CDOM observed by the shipboard flow-through system. Bottom planview maps present the horizontal distribution of dissolved oxygen as well as temperature and salinity from the CTD rosette and Acrobat towfish along the shelf's seafloor. Informational basemaps display the GPS cruise track as well as individual CTD stations for each cruise. The shelf concentrations of CTD rosette bottle nutrients, including nitrate, nitrite, phosphate, ammonia, and silicate are displayed in select plots. Shipboard ADCP current velocity fields are also represented. MCH datasets and additional products are featured as an electronic version to compliment the published atlas. The MCH Data Atlas provides a showcase for the spatial and temporal variability of the environmental parameters associated with the annual hypoxic event and will be a useful tool in the continued monitoring and assessment of Gulf coastal hypoxia.

  16. Radio and X-ray observations of a multiple impulsive solar burst with high time resolution

    International Nuclear Information System (INIS)

    Kosugi, T.

    1981-01-01

    A well-developed multiple impulsive microwave burst occurred on February 17, 1979 simultaneously with a hard X-ray burst and a large group of type III bursts at metric wavelengths. The whole event is composed of serveral subgroups of elementary spike bursts. Detailed comparisons between these three classes of emissions with high time resolution of approx. equal to0.5 s reveal that individual type III bursts coincide in time with corresponding elementary X-ray and microwave spike bursts. It suggests that a non-thermal electron pulse generating a type III spike burst is produced simultaneously with those responsible for the corresponding hard X-ray and microwave spike bursts. The rise and decay characteristic time scales of the elementary spike burst are << 1 s, and approx. equal to1 s and approx. equal to3 s for type III, hard X-ray and microwave emissions respectively. Radio interferometric observations made at 17 GHz reveal that the spatial structure varies from one subgroup to others while it remains unchanged in a subgroup. Spectral evolution of the microwave burst seems to be closely related to the spatial evolution. The spatial evolution together with the spectral evolution suggests that the electron-accelerating region shifts to a different location after it stays at one location for several tens of seconds, duration of a subgroup of elementary spike bursts. We discuss several requirements for a model of the impulsive burst which come out from these observational results, and propose a migrating double-source model. (orig.)

  17. Merging thermal and microwave satellite observations for a high-resolution soil moisture data product

    Science.gov (United States)

    Many societal applications of soil moisture data products require high spatial resolution and numerical accuracy. Current thermal geostationary satellite sensors (GOES Imager and GOES-R ABI) could produce 2-16km resolution soil moisture proxy data. Passive microwave satellite radiometers (e.g. AMSR...

  18. The Oxford SWIFT integral field spectrograph

    Science.gov (United States)

    Thatte, Niranjan; Tecza, Matthias; Clarke, Fraser; Goodsall, Timothy; Lynn, James; Freeman, David; Davies, Roger L.

    2006-06-01

    We present the design of the Oxford SWIFT integral field spectrograph, a dedicated I and z band instrument (0.65μm micron - 1.0μm micron at R~4000), designed to be used in conjunction with the Palomar laser guide star adaptive optics system (PALAO, and its planned upgrade PALM-3000). It builds on two recent developments (i) the improved ability of second generation adaptive optics systems to correct for atmospheric turbulence at wavelengths less than or equal to 1μm micron, and (ii) the availability of CCD array detectors with high quantum efficiency at very red wavelengths (close to the silicon band edge). Combining these with a state-of-the-art integral field unit design using an all-glass image slicer, SWIFT's design provides very high throughput and low scattered light. SWIFT simultaneously provides spectra of ~4000 spatial elements, arranged in a rectangular field-of-view of 44 × 89 pixels. It has three on-the-fly selectable pixel scales of 0.24", 0.16" and 0.08'. First light is expected in spring 2008.

  19. Earth System Modeling 2.0: A Blueprint for Models That Learn From Observations and Targeted High-Resolution Simulations

    Science.gov (United States)

    Schneider, Tapio; Lan, Shiwei; Stuart, Andrew; Teixeira, João.

    2017-12-01

    Climate projections continue to be marred by large uncertainties, which originate in processes that need to be parameterized, such as clouds, convection, and ecosystems. But rapid progress is now within reach. New computational tools and methods from data assimilation and machine learning make it possible to integrate global observations and local high-resolution simulations in an Earth system model (ESM) that systematically learns from both and quantifies uncertainties. Here we propose a blueprint for such an ESM. We outline how parameterization schemes can learn from global observations and targeted high-resolution simulations, for example, of clouds and convection, through matching low-order statistics between ESMs, observations, and high-resolution simulations. We illustrate learning algorithms for ESMs with a simple dynamical system that shares characteristics of the climate system; and we discuss the opportunities the proposed framework presents and the challenges that remain to realize it.

  20. MULTI-EPOCH OBSERVATIONS OF HD 69830: HIGH-RESOLUTION SPECTROSCOPY AND LIMITS TO VARIABILITY

    Energy Technology Data Exchange (ETDEWEB)

    Beichman, C. A.; Tanner, A. M.; Bryden, G.; Akeson, R. L.; Ciardi, D. R. [NASA Exoplanet Science Institute, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91125 (United States); Lisse, C. M. [Johns Hopkins University, Applied Physics Laboratory, Laurel, MD 20723 (United States); Boden, A. F. [Caltech Optical Observatories, California Institute of Technology, Pasadena, CA 91125 (United States); Dodson-Robinson, S. E.; Salyk, C. [University of Texas, Astronomy Department, Austin, TX 78712 (United States); Wyatt, M. C., E-mail: chas@pop.jpl.nasa.gov [Institute of Astronomy, University of Cambridge, Cambridge, CB3 0HA (United Kingdom)

    2011-12-10

    The main-sequence solar-type star HD 69830 has an unusually large amount of dusty debris orbiting close to three planets found via the radial velocity technique. In order to explore the dynamical interaction between the dust and planets, we have performed multi-epoch photometry and spectroscopy of the system over several orbits of the outer dust. We find no evidence for changes in either the dust amount or its composition, with upper limits of 5%-7% (1{sigma} per spectral element) on the variability of the dust spectrum over 1 year, 3.3% (1{sigma}) on the broadband disk emission over 4 years, and 33% (1{sigma}) on the broadband disk emission over 24 years. Detailed modeling of the spectrum of the emitting dust indicates that the dust is located outside of the orbits of the three planets and has a composition similar to main-belt, C-type asteroids in our solar system. Additionally, we find no evidence for a wide variety of gas species associated with the dust. Our new higher signal-to-noise spectra do not confirm our previously claimed detection of H{sub 2}O ice leading to a firm conclusion that the debris can be associated with the break-up of one or more C-type asteroids formed in the dry, inner regions of the protoplanetary disk of the HD 69830 system. The modeling of the spectral energy distribution and high spatial resolution observations in the mid-infrared are consistent with a {approx}1 AU location for the emitting material.

  1. Three-frequency BDS precise point positioning ambiguity resolution based on raw observables

    Science.gov (United States)

    Li, Pan; Zhang, Xiaohong; Ge, Maorong; Schuh, Harald

    2018-02-01

    All BeiDou navigation satellite system (BDS) satellites are transmitting signals on three frequencies, which brings new opportunity and challenges for high-accuracy precise point positioning (PPP) with ambiguity resolution (AR). This paper proposes an effective uncalibrated phase delay (UPD) estimation and AR strategy which is based on a raw PPP model. First, triple-frequency raw PPP models are developed. The observation model and stochastic model are designed and extended to accommodate the third frequency. Then, the UPD is parameterized in raw frequency form while estimating with the high-precision and low-noise integer linear combination of float ambiguity which are derived by ambiguity decorrelation. Third, with UPD corrected, the LAMBDA method is used for resolving full or partial ambiguities which can be fixed. This method can be easily and flexibly extended for dual-, triple- or even more frequency. To verify the effectiveness and performance of triple-frequency PPP AR, tests with real BDS data from 90 stations lasting for 21 days were performed in static mode. Data were processed with three strategies: BDS triple-frequency ambiguity-float PPP, BDS triple-frequency PPP with dual-frequency (B1/B2) and three-frequency AR, respectively. Numerous experiment results showed that compared with the ambiguity-float solution, the performance in terms of convergence time and positioning biases can be significantly improved by AR. Among three groups of solutions, the triple-frequency PPP AR achieved the best performance. Compared with dual-frequency AR, additional the third frequency could apparently improve the position estimations during the initialization phase and under constraint environments when the dual-frequency PPP AR is limited by few satellite numbers.

  2. Most Efficient Spectrograph to Shoot the Southern Skies

    Science.gov (United States)

    2009-05-01

    -shooter, for a total of 350 observing nights, making it the second most requested instrument at the Very Large Telescope in this period. More information ESO's Very Large Telescope (VLT) is the world's most advanced optical instrument. It is an ensemble of four 8.2-metre telescopes located at the Paranal Observatory on an isolated mountain peak in the Atacama Desert in North Chile. The four 8.2-metre telescopes have a total of 12 focal stations where different instruments for imaging and spectroscopic observations are installed and a special station where the light of the four telescopes is combined for interferometric observations. The first VLT instrument was installed in 1998 and has been followed by 12 more in the last 10 years, distributed at the different focal stations. X-shooter is the first of the second generation of VLT instruments and replaces the workhorse-instrument FORS1, which has been successfully used for more than ten years by hundreds of astronomers. X-shooter operates at the Cassegrain focus of the Kueyen telescope (UT2). In response to an ESO Call for Proposals for second generation VLT instrumentation, ESO received three proposals for an intermediate resolution, high efficiency spectrograph. These were eventually merged into a single proposal around the present concept of X-shooter, which was approved for construction in November 2003. The Final Design Review, at which the instrument design is finalised and declared ready for construction, took place in April 2006. The first observations with the instrument at the telescope in its full configuration were on 14 March 2009. X-shooter is a joint project by Denmark, France, Italy, the Netherlands and ESO. The collaborating institutes in Denmark are the Niels Bohr and the DARK Institutes of the University of Copenhagen and the National Space Institute (Technical University of Denmark); in France GEPI at the Observatoire de Paris and APC at the Université D. Diderot, with contributions from the CEA and the

  3. Radiation budget studies using collocated observations from advanced Very High Resolution Radiometer, High-Resolution Infrared Sounder/2, and Earth Radiation Budget Experiment instruments

    Science.gov (United States)

    Ackerman, Steven A.; Frey, Richard A.; Smith, William L.

    1992-01-01

    Collocated observations from the Advanced Very High Resolution Radiometer (AVHRR), High-Resolution Infrared Sounder/2 (HIRS/2), and Earth Radiation Budget Experiment (ERBE) instruments onboard the NOAA 9 satellite are combined to describe the broadband and spectral radiative properties of the earth-atmosphere system. Broadband radiative properties are determined from the ERBE observations, while spectral properties are determined from the HIRS/2 and AVHRR observations. The presence of clouds, their areal coverage, and cloud top pressure are determined from a combination of the HIRS/2 and the AVHRR observations. The CO2 slicing method is applied to the HIRS/2 to determine the presence of upper level clouds and their effective emissivity. The AVHRR data collocated within the HIRS/2 field of view are utilized to determine the uniformity of the scene and retrieve sea surface temperature. Changes in the top of the atmosphere longwave and shortwave radiative energy budgets, and the spectral distribution of longwave radiation are presented as a function of cloud amount and cloud top pressure. The radiative characteristics of clear sky conditions over oceans are presented as a function of sea surface temperature and atmospheric water vapor structure.

  4. Spectrographic study of λ 4200 silicon particular stars

    International Nuclear Information System (INIS)

    Didelon, Pierre

    1983-01-01

    This research thesis reports a spectrographic study of sample of particular stars belonging to the Si(II) λ 4200 subgroup which builds up the hot end of conventional 'Ap,Bp' stars. Twenty snapshots taken at the Haute-Provence observatory have been studied and compared with the observation of 17 standard stars. All these snapshots have been digitalised and processed. This allowed the identification of lines which indicated the presence of gallium and the absence of manganese which contradicts the close correlation between these elements that was generally admitted. An inexplicable and until now non observed duplication of Si(II) lines has also been observed. The problem of spectral classification of these stars has been studied. In order to study the concerned stars without calculation of atmospheric models, a comparative method between group stars and reference stars has been used. Results are discussed and seem to indicate an erratic and non-correlated behaviour of light elements (C, Mg, Ca, Si), and a presence of heavier elements (Ga, Sr) and rare earths (Eu, Gd) only when elements of the iron peak are stronger [fr

  5. The surface layer observed by a high-resolution sodar at DOME C, Antarctica

    Directory of Open Access Journals (Sweden)

    Stefania Argentini

    2014-01-01

    Full Text Available One year field experiment has started on December 2011 at the French - Italian station of Concordia at Dome C, East Antarctic Plateau. The objective of the experiment is the study of the surface layer turbulent processes under stable/very stable stratifications, and the mechanisms leading to the formation of the warming events. A sodar was improved to achieve the vertical/time resolution needed to study these processes. The system, named Surface Layer sodar (SL-sodar, may operate both in high vertical resolution (low range and low vertical resolution (high range modes. In situ turbulence and radiation measurements were also provided in the framework of this experiment. A few preliminary results, concerning the standard summer diurnal cycle, a summer warming event, and unusually high frequency boundary layer atmospheric gravity waves are presented.

  6. Inter-observer agreement for diagnostic classification of esophageal motility disorders defined in high-resolution manometry

    NARCIS (Netherlands)

    Fox, M. R.; Pandolfino, J. E.; Sweis, R.; Sauter, M.; Abreu Y Abreu, A. T.; Anggiansah, A.; Bogte, A.; Bredenoord, A. J.; Dengler, W.; Elvevi, A.; Fruehauf, H.; Gellersen, S.; Ghosh, S.; Gyawali, C. P.; Heinrich, H.; Hemmink, M.; Jafari, J.; Kaufman, E.; Kessing, K.; Kwiatek, M.; Lubomyr, B.; Banasiuk, M.; Mion, F.; Pérez-de-la-Serna, J.; Remes-Troche, J. M.; Rohof, W.; Roman, S.; Ruiz-de-León, A.; Tutuian, R.; Uscinowicz, M.; Valdovinos, M. A.; Vardar, R.; Velosa, M.; Waśko-Czopnik, D.; Weijenborg, P.; Wilshire, C.; Wright, J.; Zerbib, F.; Menne, D.

    2015-01-01

    High-resolution esophageal manometry (HRM) is a recent development used in the evaluation of esophageal function. Our aim was to assess the inter-observer agreement for diagnosis of esophageal motility disorders using this technology. Practitioners registered on the HRM Working Group website were

  7. TOPoS. IV. Chemical abundances from high-resolution observations of seven extremely metal-poor stars

    Science.gov (United States)

    Bonifacio, P.; Caffau, E.; Spite, M.; Spite, F.; Sbordone, L.; Monaco, L.; François, P.; Plez, B.; Molaro, P.; Gallagher, A. J.; Cayrel, R.; Christlieb, N.; Klessen, R. S.; Koch, A.; Ludwig, H.-G.; Steffen, M.; Zaggia, S.; Abate, C.

    2018-04-01

    Context. Extremely metal-poor (EMP) stars provide us with indirect information on the first generations of massive stars. The TOPoS survey has been designed to increase the census of these stars and to provide a chemical inventory that is as detailed as possible. Aims: Seven of the most iron-poor stars have been observed with the UVES spectrograph at the ESO VLT Kueyen 8.2 m telescope to refine their chemical composition. Methods: We analysed the spectra based on 1D LTE model atmospheres, but also used 3D hydrodynamical simulations of stellar atmospheres. Results: We measured carbon in six of the seven stars: all are carbon-enhanced and belong to the low-carbon band, defined in the TOPoS II paper. We measured lithium (A(Li) = 1.9) in the most iron-poor star (SDSS J1035+0641, [Fe/H] measure Li in three stars at [Fe/H] -4.0, two of which lie on the Spite plateau. We confirm that SDSS J1349+1407 is extremely rich in Mg, but not in Ca. It is also very rich in Na. Several of our stars are characterised by low α-to-iron ratios. Conclusions: The lack of high-carbon band stars at low metallicity can be understood in terms of evolutionary timescales of binary systems. The detection of Li in SDSS J1035+0641 places a strong constraint on theories that aim at solving the cosmological lithium problem. The Li abundance of the two warmer stars at [Fe/H] -4.0 places them on the Spite plateau, while the third, cooler star, lies below. We argue that this suggests that the temperature at which Li depletion begins increases with decreasing [Fe/H]. SDSS J1349+1407 may belong to a class of Mg-rich EMP stars. We cannot assess if there is a scatter in α-to-iron ratios among the EMP stars or if there are several discrete populations. However, the existence of stars with low α-to-iron ratios is supported by our observations. Based on observations obtained at ESO Paranal Observatory, Programmes 189.D-0165,090.D-0306, 093.D-0136, and 096.D-0468.

  8. Using an integral-field unit spectrograph to study radical species in cometary coma

    Science.gov (United States)

    Lewis, Benjamin; Pierce, Donna M.; Vaughan, Charles M.; Cochran, Anita

    2015-01-01

    We have observed several comets using an integral-field unit spectrograph (the George and Cynthia Mitchell Spectrograph) on the 2.7m Harlan J. Smith telescope at McDonald Observatory. Full-coma spectroscopic images were obtained for various radical species (C2, C3, CN, NH2). Various coma enhancements were used to identify and characterize coma morphological features. The azimuthal average profiles and the Haser model were used to determine production rates and possible parent molecules. Here, we present the work completed to date, and we compare our results to other comet taxonomic surveys. This work was funded by the National Science Foundation Graduate K-12 (GK-12) STEM Fellows program (Award No. DGE-0947419), NASA's Planetary Atmospheres program (Award No. NNX14AH18G), and the Fund for Astrophysical Research, Inc.

  9. Calibrating the SNfactory Integral Field Spectrograph (SNIFS) with SCALA

    Science.gov (United States)

    Küsters, Daniel; Lombardo, Simona; Kowalski, Marek; Aldering, Greg; Nordin, Jakob; Rigault, Mickael

    2016-08-01

    The SNIFS CALibration Apparatus (SCALA), a device to calibrate the Supernova Integral Field Spectrograph on the University Hawaii 2.2m telescope, was developed and installed in Spring 2014. SCALA produces an artificial planet with a diameter of 1° and a constant surface brightness. The wavelength of the beam can be tuned between 3200 Å and 10000 Å and has a bandwidth of 35 Å. The amount of light injected into the telescope is monitored with NIST calibrated photodiodes. SCALA was upgraded in 2015 with a mask installed at the entrance pupil of the UH88 telescope, ensuring that the illumination of the telescope by stars is similar to that of SCALA. With this setup, a first calibration run was performed in conjunction with the spectrophotometric observations of standard stars. We present first estimates for the expected systematic uncertainties of the in-situ calibration and discuss the results of tests that examine the influence of stray light produced in the optics.

  10. SCALA: In situ calibration for integral field spectrographs

    Science.gov (United States)

    Lombardo, S.; Küsters, D.; Kowalski, M.; Aldering, G.; Antilogus, P.; Bailey, S.; Baltay, C.; Barbary, K.; Baugh, D.; Bongard, S.; Boone, K.; Buton, C.; Chen, J.; Chotard, N.; Copin, Y.; Dixon, S.; Fagrelius, P.; Feindt, U.; Fouchez, D.; Gangler, E.; Hayden, B.; Hillebrandt, W.; Hoffmann, A.; Kim, A. G.; Leget, P.-F.; McKay, L.; Nordin, J.; Pain, R.; Pécontal, E.; Pereira, R.; Perlmutter, S.; Rabinowitz, D.; Reif, K.; Rigault, M.; Rubin, D.; Runge, K.; Saunders, C.; Smadja, G.; Suzuki, N.; Taubenberger, S.; Tao, C.; Thomas, R. C.; Nearby Supernova Factory

    2017-11-01

    Aims: The scientific yield of current and future optical surveys is increasingly limited by systematic uncertainties in the flux calibration. This is the case for type Ia supernova (SN Ia) cosmology programs, where an improved calibration directly translates into improved cosmological constraints. Current methodology rests on models of stars. Here we aim to obtain flux calibration that is traceable to state-of-the-art detector-based calibration. Methods: We present the SNIFS Calibration Apparatus (SCALA), a color (relative) flux calibration system developed for the SuperNova integral field spectrograph (SNIFS), operating at the University of Hawaii 2.2 m (UH 88) telescope. Results: By comparing the color trend of the illumination generated by SCALA during two commissioning runs, and to previous laboratory measurements, we show that we can determine the light emitted by SCALA with a long-term repeatability better than 1%. We describe the calibration procedure necessary to control for system aging. We present measurements of the SNIFS throughput as estimated by SCALA observations. Conclusions: The SCALA calibration unit is now fully deployed at the UH 88 telescope, and with it color-calibration between 4000 Å and 9000 Å is stable at the percent level over a one-year baseline.

  11. DYNAMICS IN SUNSPOT UMBRA AS SEEN IN NEW SOLAR TELESCOPE AND INTERFACE REGION IMAGING SPECTROGRAPH DATA

    Energy Technology Data Exchange (ETDEWEB)

    Yurchyshyn, V.; Abramenko, V. [Big Bear Solar Observatory, New Jersey Institute of Technology, Big Bear City, CA 92314 (United States); Kilcik, A. [Department of Space Science and Technologies, Akdeniz University, 07058 Antalya (Turkey)

    2015-01-10

    We analyze sunspot oscillations using Interface Region Imaging Spectrograph (IRIS) slit-jaw and spectral data and narrow-band chromospheric images from the New Solar Telescope (NST) for the main sunspot in NOAA AR 11836. We report that the difference between the shock arrival times as measured by the Mg II k 2796.35 Å and Si IV 1393.76 Å line formation levels changes during the observed period, and peak-to-peak delays may range from 40 s to zero. The intensity of chromospheric shocks also displays long-term (about 20 min) variations. NST's high spatial resolution Hα data allowed us to conclude that, in this sunspot, umbral flashes (UFs) appeared in the form of narrow bright lanes stretched along the light bridges and around clusters of umbral bright points. The time series also suggested that UFs preferred to appear on the sunspot-center side of light bridges, which may indicate the existence of a compact sub-photospheric driver of sunspot oscillations. The sunspot's umbra as seen in the IRIS chromospheric and transition region data appears bright above the locations of light bridges and the areas where the dark umbra is dotted with clusters of umbral dots. Co-spatial and co-temporal data from the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory showed that the same locations were associated with bright footpoints of coronal loops suggesting that the light bridges may play an important role in heating the coronal sunspot loops. Finally, the power spectra analysis showed that the intensity of chromospheric and transition region oscillations significantly vary across the umbra and with height, suggesting that umbral non-uniformities and the structure of sunspot magnetic fields may play a role in wave propagation and heating of umbral loops.

  12. AN INTERFACE REGION IMAGING SPECTROGRAPH FIRST VIEW ON SOLAR SPICULES

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, T. M. D.; De Pontieu, B.; Carlsson, M.; Hansteen, V. [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, NO-0315 Oslo (Norway); Tarbell, T. D.; Lemen, J.; Title, A.; Boerner, P.; Hurlburt, N.; Wülser, J. P.; Martínez-Sykora, J.; Kleint, L. [Lockheed Martin Solar and Astrophysics Laboratory, 3251 Hanover Street, Org. A021S, Bldg. 252, Palo Alto, CA 94304 (United States); Golub, L.; McKillop, S.; Reeves, K. K.; Saar, S.; Testa, P.; Tian, H. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Jaeggli, S.; Kankelborg, C., E-mail: tiago.pereira@astro.uio.no [Department of Physics, Montana State University, P.O. Box 173840, Bozeman, MT 59717 (United States)

    2014-09-01

    Solar spicules have eluded modelers and observers for decades. Since the discovery of the more energetic type II, spicules have become a heated topic but their contribution to the energy balance of the low solar atmosphere remains unknown. Here we give a first glimpse of what quiet-Sun spicules look like when observed with NASA's recently launched Interface Region Imaging Spectrograph (IRIS). Using IRIS spectra and filtergrams that sample the chromosphere and transition region, we compare the properties and evolution of spicules as observed in a coordinated campaign with Hinode and the Atmospheric Imaging Assembly. Our IRIS observations allow us to follow the thermal evolution of type II spicules and finally confirm that the fading of Ca II H spicules appears to be caused by rapid heating to higher temperatures. The IRIS spicules do not fade but continue evolving, reaching higher and falling back down after 500-800 s. Ca II H type II spicules are thus the initial stages of violent and hotter events that mostly remain invisible in Ca II H filtergrams. These events have very different properties from type I spicules, which show lower velocities and no fading from chromospheric passbands. The IRIS spectra of spicules show the same signature as their proposed disk counterparts, reinforcing earlier work. Spectroheliograms from spectral rasters also confirm that quiet-Sun spicules originate in bushes from the magnetic network. Our results suggest that type II spicules are indeed the site of vigorous heating (to at least transition region temperatures) along extensive parts of the upward moving spicular plasma.

  13. Observations of movement dynamics of flying insects using high resolution lidar

    DEFF Research Database (Denmark)

    Kirkeby, Carsten Thure; Wellenreuther, Maren; Brydegaard, Mikkel

    2016-01-01

    insects (wing size cross-section) moved across the field and clustered near the light trap around 22:00 local time, while larger insects (wing size >2.5 mm2 in cross-section) were most abundant near the lidar beam before 22:00 and then moved towards the light trap between 22:00 and 23:30. We......Insects are fundamental to ecosystem functioning and biodiversity, yet the study of insect movement, dispersal and activity patterns remains a challenge. Here we present results from a novel high resolution laser-radar (lidar) system for quantifying flying insect abundance recorded during one...

  14. LENS MODELS OF HERSCHEL-SELECTED GALAXIES FROM HIGH-RESOLUTION NEAR-IR OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Calanog, J. A.; Cooray, A.; Ma, B.; Casey, C. M. [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Fu, Hai [Department of Physics and Astronomy, University of Iowa, Van Allen Hall, Iowa City, IA 52242 (United States); Wardlow, J. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Amber, S. [Department of Physical Sciences, The Open University, Milton Keynes MK7 6AA (United Kingdom); Baker, A. J. [Department of Physics and Astronomy, Rutgers, The State University of New Jersey, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Baes, M. [1 Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281, B-9000 Gent (Belgium); Bock, J. [California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (United States); Bourne, N.; Dye, S. [School of Physics and Astronomy, University of Nottingham, NG7 2RD (United Kingdom); Bussmann, R. S. [Department of Astronomy, Space Science Building, Cornell University, Ithaca, NY 14853-6801 (United States); Chapman, S. C. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Clements, D. L. [Astrophysics Group, Imperial College London, Blackett Laboratory, Prince Consort Road, London SW7 2AZ (United Kingdom); Conley, A. [Center for Astrophysics and Space Astronomy 389-UCB, University of Colorado, Boulder, CO 80309 (United States); Dannerbauer, H. [Laboratoire AIM-Paris-Saclay, CEA/DSM/Irfu-CNRS-Université Paris Diderot, CE-Saclay, pt courrier 131, F-91191 Gif-sur-Yvette (France); De Zotti, G. [INAF-Osservatorio Astronomico di Padova, Vicolo dell' Osservatorio 5, I-35122 Padova (Italy); Dunne, L.; Eales, S. [School of Physics and Astronomy, Cardiff University, Queens Buildings, The Parade, Cardiff CF24 3AA (United Kingdom); and others

    2014-12-20

    We present Keck-Adaptive Optics and Hubble Space Telescope high resolution near-infrared (IR) imaging for 500 μm bright candidate lensing systems identified by the Herschel Multi-tiered Extragalactic Survey and Herschel Astrophysical Terahertz Large Area Survey. Out of 87 candidates with near-IR imaging, 15 (∼17%) display clear near-IR lensing morphologies. We present near-IR lens models to reconstruct and recover basic rest-frame optical morphological properties of the background galaxies from 12 new systems. Sources with the largest near-IR magnification factors also tend to be the most compact, consistent with the size bias predicted from simulations and previous lensing models for submillimeter galaxies (SMGs). For four new sources that also have high-resolution submillimeter maps, we test for differential lensing between the stellar and dust components and find that the 880 μm magnification factor (μ{sub 880}) is ∼1.5 times higher than the near-IR magnification factor (μ{sub NIR}), on average. We also find that the stellar emission is ∼2 times more extended in size than dust. The rest-frame optical properties of our sample of Herschel-selected lensed SMGs are consistent with those of unlensed SMGs, which suggests that the two populations are similar.

  15. High-resolution observations of the near-surface wind field over an isolated mountain and in a steep river canyon

    Science.gov (United States)

    B. W. Butler; N. S. Wagenbrenner; J. M. Forthofer; B. K. Lamb; K. S. Shannon; D. Finn; R. M. Eckman; K. Clawson; L. Bradshaw; P. Sopko; S. Beard; D. Jimenez; C. Wold; M. Vosburgh

    2015-01-01

    A number of numerical wind flow models have been developed for simulating wind flow at relatively fine spatial resolutions (e.g., 100 m); however, there are very limited observational data available for evaluating these high-resolution models. This study presents high-resolution surface wind data sets collected from an isolated mountain and a steep river canyon. The...

  16. High spectral resolution observations of the H2 2.12 micron line in Herbig-Haro objects

    International Nuclear Information System (INIS)

    Zinnecker, H.; Mundt, R.; Geballe, T.R.; Zealey, W.J.

    1989-01-01

    High-spectral-resolution Fabry-Perot observations of the H 2 2.12-micron line emissions of several Herbig-Haro (HH) objects are discussed. It is shown that H 2 emission by the shock heating of external molecular gas in the wings of the bow shock associated with the working surface of a high-velocity jet may occur for HH objects associated with the jet's end. The shock heating of external molecular gas entrained in the flow by internal shocks occurring in the jet itself and/or in its boundary layer may be the H 2 emission mechanism for HH objects observed along the flow axis. 59 refs

  17. THE MULTI-OBJECT, FIBER-FED SPECTROGRAPHS FOR THE SLOAN DIGITAL SKY SURVEY AND THE BARYON OSCILLATION SPECTROSCOPIC SURVEY

    International Nuclear Information System (INIS)

    Smee, Stephen A.; Barkhouser, Robert H.; Gunn, James E.; Carr, Michael A.; Lupton, Robert H.; Loomis, Craig; Uomoto, Alan; Roe, Natalie; Schlegel, David; Rockosi, Constance M.; Leger, French; Owen, Russell; Anderson, Lauren; Dawson, Kyle S.; Olmstead, Matthew D.; Brinkmann, Jon; Long, Dan; Honscheid, Klaus; Harding, Paul; Annis, James

    2013-01-01

    We present the design and performance of the multi-object fiber spectrographs for the Sloan Digital Sky Survey (SDSS) and their upgrade for the Baryon Oscillation Spectroscopic Survey (BOSS). Originally commissioned in Fall 1999 on the 2.5 m aperture Sloan Telescope at Apache Point Observatory, the spectrographs produced more than 1.5 million spectra for the SDSS and SDSS-II surveys, enabling a wide variety of Galactic and extra-galactic science including the first observation of baryon acoustic oscillations in 2005. The spectrographs were upgraded in 2009 and are currently in use for BOSS, the flagship survey of the third-generation SDSS-III project. BOSS will measure redshifts of 1.35 million massive galaxies to redshift 0.7 and Lyα absorption of 160,000 high redshift quasars over 10,000 deg 2 of sky, making percent level measurements of the absolute cosmic distance scale of the universe and placing tight constraints on the equation of state of dark energy. The twin multi-object fiber spectrographs utilize a simple optical layout with reflective collimators, gratings, all-refractive cameras, and state-of-the-art CCD detectors to produce hundreds of spectra simultaneously in two channels over a bandpass covering the near-ultraviolet to the near-infrared, with a resolving power R = λ/FWHM ∼ 2000. Building on proven heritage, the spectrographs were upgraded for BOSS with volume-phase holographic gratings and modern CCD detectors, improving the peak throughput by nearly a factor of two, extending the bandpass to cover 360 nm < λ < 1000 nm, and increasing the number of fibers from 640 to 1000 per exposure. In this paper we describe the original SDSS spectrograph design and the upgrades implemented for BOSS, and document the predicted and measured performances

  18. THE MULTI-OBJECT, FIBER-FED SPECTROGRAPHS FOR THE SLOAN DIGITAL SKY SURVEY AND THE BARYON OSCILLATION SPECTROSCOPIC SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Smee, Stephen A.; Barkhouser, Robert H. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Gunn, James E.; Carr, Michael A.; Lupton, Robert H.; Loomis, Craig [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Uomoto, Alan [Observatories of the Carnegie Institution of Washington, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Roe, Natalie; Schlegel, David [Physics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Rockosi, Constance M. [UC Observatories and Department of Astronomy and Astrophysics, University of California, Santa Cruz, 375 Interdisciplinary Sciences Building (ISB) Santa Cruz, CA 95064 (United States); Leger, French; Owen, Russell; Anderson, Lauren [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 09195 (United States); Dawson, Kyle S.; Olmstead, Matthew D. [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Brinkmann, Jon; Long, Dan [Apache Point Observatory, Sunspot, NM 88349 (United States); Honscheid, Klaus [Department of Physics and Center for Cosmology and Astro-Particle Physics, Ohio State University, Columbus, OH 43210 (United States); Harding, Paul [Department of Astronomy, Case Western Reserve University, Cleveland, OH 44106 (United States); Annis, James, E-mail: smee@pha.jhu.edu [Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 (United States); and others

    2013-08-01

    We present the design and performance of the multi-object fiber spectrographs for the Sloan Digital Sky Survey (SDSS) and their upgrade for the Baryon Oscillation Spectroscopic Survey (BOSS). Originally commissioned in Fall 1999 on the 2.5 m aperture Sloan Telescope at Apache Point Observatory, the spectrographs produced more than 1.5 million spectra for the SDSS and SDSS-II surveys, enabling a wide variety of Galactic and extra-galactic science including the first observation of baryon acoustic oscillations in 2005. The spectrographs were upgraded in 2009 and are currently in use for BOSS, the flagship survey of the third-generation SDSS-III project. BOSS will measure redshifts of 1.35 million massive galaxies to redshift 0.7 and Ly{alpha} absorption of 160,000 high redshift quasars over 10,000 deg{sup 2} of sky, making percent level measurements of the absolute cosmic distance scale of the universe and placing tight constraints on the equation of state of dark energy. The twin multi-object fiber spectrographs utilize a simple optical layout with reflective collimators, gratings, all-refractive cameras, and state-of-the-art CCD detectors to produce hundreds of spectra simultaneously in two channels over a bandpass covering the near-ultraviolet to the near-infrared, with a resolving power R = {lambda}/FWHM {approx} 2000. Building on proven heritage, the spectrographs were upgraded for BOSS with volume-phase holographic gratings and modern CCD detectors, improving the peak throughput by nearly a factor of two, extending the bandpass to cover 360 nm < {lambda} < 1000 nm, and increasing the number of fibers from 640 to 1000 per exposure. In this paper we describe the original SDSS spectrograph design and the upgrades implemented for BOSS, and document the predicted and measured performances.

  19. THE MULTI-OBJECT, FIBER-FED SPECTROGRAPHS FOR THE SLOAN DIGITAL SKY SURVEY AND THE BARYON OSCILLATION SPECTROSCOPIC SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Smee, Stephen A.; Gunn, James E.; Uomoto, Alan; Roe, Natalie; Schlegel, David; Rockosi, Constance M.; Carr, Michael A.; Leger, French; Dawson, Kyle S.; Olmstead, Matthew D.; Brinkmann, Jon; Owen, Russell; Barkhouser, Robert H.; Honscheid, Klaus; Harding, Paul; Long, Dan; Lupton, Robert H.; Loomis, Craig; Anderson, Lauren; Annis, James; Bernardi, Mariangela; Bhardwaj, Vaishali; Bizyaev, Dmitry; Bolton, Adam S.; Brewington, Howard; Briggs, John W.; Burles, Scott; Burns, James G.; Castander, Francisco Javier; Connolly, Andrew; Davenport, James R. A.; Ebelke, Garrett; Epps, Harland; Feldman, Paul D.; Friedman, Scott D.; Frieman, Joshua; Heckman, Timothy; Hull, Charles L.; Knapp, Gillian R.; Lawrence, David M.; Loveday, Jon; Mannery, Edward J.; Malanushenko, Elena; Malanushenko, Viktor; Merrelli, Aronne James; Muna, Demitri; Newman, Peter R.; Nichol, Robert C.; Oravetz, Daniel; Pan, Kaike; Pope, Adrian C.; Ricketts, Paul G.; Shelden, Alaina; Sandford, Dale; Siegmund, Walter; Simmons, Audrey; Smith, D. Shane; Snedden, Stephanie; Schneider, Donald P.; SubbaRao, Mark; Tremonti, Christy; Waddell, Patrick; York, Donald G.

    2013-07-12

    We present the design and performance of the multi-object fiber spectrographs for the Sloan Digital Sky Survey (SDSS) and their upgrade for the Baryon Oscillation Spectroscopic Survey (BOSS). Originally commissioned in Fall 1999 on the 2.5-m aperture Sloan Telescope at Apache Point Observatory, the spectrographs produced more than 1.5 million spectra for the SDSS and SDSS-II surveys, enabling a wide variety of Galactic and extra-galactic science including the first observation of baryon acoustic oscillations in 2005. The spectrographs were upgraded in 2009 and are currently in use for BOSS, the flagship survey of the third-generation SDSS-III project. BOSS will measure redshifts of 1.35 million massive galaxies to redshift 0.7 and Lyman-alpha absorption of 160,000 high redshift quasars over 10,000 square degrees of sky, making percent level measurements of the absolute cosmic distance scale of the Universe and placing tight constraints on the equation of state of dark energy. The twin multi-object fiber spectrographs utilize a simple optical layout with reflective collimators, gratings, all-refractive cameras, and state-of-the-art CCD detectors to produce hundreds of spectra simultaneously in two channels over a bandpass covering the near ultraviolet to the near infrared, with a resolving power R = \\lambda/FWHM ~ 2000. Building on proven heritage, the spectrographs were upgraded for BOSS with volume-phase holographic gratings and modern CCD detectors, improving the peak throughput by nearly a factor of two, extending the bandpass to cover 360 < \\lambda < 1000 nm, and increasing the number of fibers from 640 to 1000 per exposure. In this paper we describe the original SDSS spectrograph design and the upgrades implemented for BOSS, and document the predicted and measured performances.

  20. Spectrographic Determination of Trace Constituents in Rare Earths

    International Nuclear Information System (INIS)

    Capdevila, C.; Alvarez, F.

    1962-01-01

    A spectrographic method was developed for the determination of 18 trace elements in lanthanum, cerium, praseodimium, neodimium and samarium compounds. The concentrations of the impurities cover the range of 0,5 to 500 ppm. Most of these impurities are determined by the carrier distillation method. Several more refractory elements have been determined by total burning of the sample with a direct current arc or by the conduction briquet excitation technique with a high voltage condensed spark. The work has been carried out with a Hilger Automatic Large Quartz Spectrograph. (Author) 5 refs

  1. Using a new, free spectrograph program to critically investigate acoustics

    Science.gov (United States)

    Ball, Edward; Ruiz, Michael J.

    2016-11-01

    We have developed an online spectrograph program with a bank of over 30 audio clips to visualise a variety of sounds. Our audio library includes everyday sounds such as speech, singing, musical instruments, birds, a baby, cat, dog, sirens, a jet, thunder, and screaming. We provide a link to a video of the sound sources superimposed with their respective spectrograms in real time. Readers can use our spectrograph program to view our library, open their own desktop audio files, and use the program in real time with a computer microphone.

  2. Lead shielded cells for the spectrographic analysis of radioisotope solutions

    International Nuclear Information System (INIS)

    Roca, M.; Capdevila, C.; Cruz, F. de la

    1967-01-01

    Two lead shielded cells for the spectrochemical analysis of radioisotope samples are described. One of them is devoted to the evaporation of samples before excitation and the other one contains a suitable spectrographic excitation stand for the copper spark technique. A special device makes it possible the easy displacement of the excitation cell on wheels and rails for its accurate and reproducible position as well as its replacement by a glove box for plutonium analysis. In order to guarantee safety the room in which the spectrograph and the source are set up in separated from the active laboratory by a wall with a suitable window. (Author) 1 refs

  3. HIGH-RESOLUTION HELIOSEISMIC IMAGING OF SUBSURFACE STRUCTURES AND FLOWS OF A SOLAR ACTIVE REGION OBSERVED BY HINODE

    International Nuclear Information System (INIS)

    Zhao Junwei; Kosovichev, Alexander G.; Sekii, Takashi

    2010-01-01

    We analyze a solar active region observed by the Hinode Ca II H line using the time-distance helioseismology technique, and infer wave-speed perturbation structures and flow fields beneath the active region with a high spatial resolution. The general subsurface wave-speed structure is similar to the previous results obtained from Solar and Heliospheric Observatory/Michelson Doppler Imager observations. The general subsurface flow structure is also similar, and the downward flows beneath the sunspot and the mass circulations around the sunspot are clearly resolved. Below the sunspot, some organized divergent flow cells are observed, and these structures may indicate the existence of mesoscale convective motions. Near the light bridge inside the sunspot, hotter plasma is found beneath, and flows divergent from this area are observed. The Hinode data also allow us to investigate potential uncertainties caused by the use of phase-speed filter for short travel distances. Comparing the measurements with and without the phase-speed filtering, we find out that inside the sunspot, mean acoustic travel times are in basic agreement, but the values are underestimated by a factor of 20%-40% inside the sunspot umbra for measurements with the filtering. The initial acoustic tomography results from Hinode show a great potential of using high-resolution observations for probing the internal structure and dynamics of sunspots.

  4. Smoke Dispersion Modeling Over Complex Terrain Using High-Resolution Meteorological Data and Satellite Observations: The FireHub Platform

    Science.gov (United States)

    Solomos, S.; Amiridis, V.; Zanis, P.; Gerasopoulos, E.; Sofiou, F. I.; Herekakis, T.; Brioude, J.; Stohl, A.; Kahn, R. A.; Kontoes, C.

    2015-01-01

    A total number of 20,212 fire hot spots were recorded by the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite instrument over Greece during the period 2002e2013. The Fire Radiative Power (FRP) of these events ranged from 10 up to 6000 MW at 1 km resolution, and many of these fire episodes resulted in long-range transport of smoke over distances up to several hundred kilometers. Three different smoke episodes over Greece are analyzed here using real time hot-spot observations from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) satellite instrument as well as from MODIS hot-spots. Simulations of smoke dispersion are performed with the FLEXPART-WRF model and particulate matter emissions are calculated directly from the observed FRP. The modeled smoke plumes are compared with smoke stereo-heights from the Multiangle Imaging Spectroradiometer (MISR) instrument and the sensitivities to atmospheric and modeling parameters are examined. Driving the simulations with high resolution meteorology (4 4 km) and using geostationary satellite data to identify the hot spots allows the description of local scale features that govern smoke dispersion. The long-range transport of smoke is found to be favored over the complex coastline environment of Greece due to the abrupt changes between land and marine planetary boundary layers (PBL) and the decoupling of smoke layers from the surface.

  5. Utility of High Temporal Resolution Observations for Heat Health Event Characterization

    Science.gov (United States)

    Palecki, M. A.

    2017-12-01

    Many heat health watch systems produce a binary on/off warning when conditions are predicted to exceed a given threshold during a day. Days with warnings and their mortality/morbidity statistics are analyzed relative to days not warned to determine the impacts of the event on human health, the effectiveness of warnings, and other statistics. The climate analyses of the heat waves or extreme temperature events are often performed with hourly or daily observations of air temperature, humidity, and other measured or derived variables, especially the maxima and minima of these data. However, since the beginning of the century, 5-minute observations are readily available for many weather and climate stations in the United States. NOAA National Centers for Environmental Information (NCEI) has been collecting 5-minute observations from the NOAA Automated Surface Observing System (ASOS) stations since 2000, and from the U.S. Climate Reference Network (USCRN) stations since 2005. This presentation will demonstrate the efficacy of utilizing 5-minute environmental observations to characterize heat waves by counting the length of time conditions exceed extreme thresholds based on individual and multiple variables and on derived variables such as the heat index. The length and depth of recovery periods between daytime heating periods will also be examined. The length of time under extreme conditions will influence health outcomes for those directly exposed. Longer periods of dangerous conditions also could increase the chances for poor health outcomes for those only exposed intermittently through cumulative impacts.

  6. Observation of Eye Pattern on Super-Resolution Near-Field Structure Disk with Write-Strategy Technique

    Science.gov (United States)

    Fuji, Hiroshi; Kikukawa, Takashi; Tominaga, Junji

    2004-07-01

    Pit-edge recording at a density of 150 nm pits and spaces is carried out on a super-resolution near-field structure (super-RENS) disk with a platinum oxide layer. Pits are recorded and read using a 635-nm-wavelength laser and an objective lens with a 0.6 numerical aperture. We arrange laser pulses to correctly record the pits on the disk by a write-strategy technique. The laser-pulse figure includes a unit time of 0.25 T and intensities of Pw1, Pw2 and Pw3. After recording pits of various lengths, the observation of an eye pattern is achieved despite a pit smaller than the resolution limit. Furthermore, the eye pattern maintains its shape even though other pits fill the adjacent tracks at a track density of 600 nm. The disk can be used as a pit-edge recording system through a write-strategy technique.

  7. The nature of extragalactic radio-jets from high-resolution radio-interferometric observations

    OpenAIRE

    Perucho, Manel

    2014-01-01

    Extragalactic jets are a common feature of radio-loud active galaxies. The nature of the observed jets in relation to the bulk flow is still unclear. In particular it is not clear whether the observations of parsec-scale jets using the very long baseline interferometric technique (VLBI) reveal wave-like structures that develop and propagate along the jet, or trace the jet flow itself. In this contribution I review the evidence collected during the last years showing that the ridge-lines of he...

  8. Advanced techniques for high resolution spectroscopic observations of cosmic gamma-ray sources

    International Nuclear Information System (INIS)

    Matteson, J.L.; Pelling, M.R.; Peterson, L.E.

    1985-08-01

    We describe an advanced gamma-ray spectrometer that is currently in development. It will obtain a sensitivity of -4 ph/cm -2 -sec in a 6 hour balloon observation and uses innovative techniques for background reduction and source imaging

  9. HIGH-RESOLUTION OBSERVATIONS AND THE PHYSICS OF HIGH-VELOCITY CLOUD A0

    International Nuclear Information System (INIS)

    Verschuur, Gerrit L.

    2013-01-01

    The neutral hydrogen structure of high-velocity cloud A0 (at about –180 km s –1 ) has been mapped with a 9.'1 resolution. Gaussian decomposition of the profiles is used to separately map families of components defined by similarities in center velocities and line widths. About 70% of the H I gas is in the form of a narrow, twisted filament whose typical line widths are of the order of 24 km s –1 . Many bright features with narrow line widths of the order of 6 km s –1 , clouds, are located in and near the filament. A third category with properties between those of the filament and clouds appears in the data. The clouds are not always co-located with the broader line width filament emission as seen projected on the sky. Under the assumption that magnetic fields underlie the presence of the filament, a theorem is developed for its stability in terms of a toroidal magnetic field generated by the flow of gas along field lines. It is suggested that the axial magnetic field strength may be derived from the excess line width of the H I emission over and above that due to kinetic temperature by invoking the role of Alfvén waves that create what is in essence a form of magnetic turbulence. At a distance of 200 pc the axial and the derived toroidal magnetic field strengths in the filament are then about 6 μG while for the clouds they are about 4 μG. The dependence of the derived field strength on distance is discussed.

  10. Statistical Analyses of High-Resolution Aircraft and Satellite Observations of Sea Ice: Applications for Improving Model Simulations

    Science.gov (United States)

    Farrell, S. L.; Kurtz, N. T.; Richter-Menge, J.; Harbeck, J. P.; Onana, V.

    2012-12-01

    Satellite-derived estimates of ice thickness and observations of ice extent over the last decade point to a downward trend in the basin-scale ice volume of the Arctic Ocean. This loss has broad-ranging impacts on the regional climate and ecosystems, as well as implications for regional infrastructure, marine navigation, national security, and resource exploration. New observational datasets at small spatial and temporal scales are now required to improve our understanding of physical processes occurring within the ice pack and advance parameterizations in the next generation of numerical sea-ice models. High-resolution airborne and satellite observations of the sea ice are now available at meter-scale resolution or better that provide new details on the properties and morphology of the ice pack across basin scales. For example the NASA IceBridge airborne campaign routinely surveys the sea ice of the Arctic and Southern Oceans with an advanced sensor suite including laser and radar altimeters and digital cameras that together provide high-resolution measurements of sea ice freeboard, thickness, snow depth and lead distribution. Here we present statistical analyses of the ice pack primarily derived from the following IceBridge instruments: the Digital Mapping System (DMS), a nadir-looking, high-resolution digital camera; the Airborne Topographic Mapper, a scanning lidar; and the University of Kansas snow radar, a novel instrument designed to estimate snow depth on sea ice. Together these instruments provide data from which a wide range of sea ice properties may be derived. We provide statistics on lead distribution and spacing, lead width and area, floe size and distance between floes, as well as ridge height, frequency and distribution. The goals of this study are to (i) identify unique statistics that can be used to describe the characteristics of specific ice regions, for example first-year/multi-year ice, diffuse ice edge/consolidated ice pack, and convergent

  11. CARMENES-NIR channel spectrograph cooling system AIV: thermo-mechanical performance of the instrument

    Science.gov (United States)

    Becerril, S.; Mirabet, E.; Lizon, J. L.; Abril, M.; Cárdenas, C.; Ferro, I.; Morales, R.; Pérez, D.; Ramón, A.; Sánchez-Carrasco, M. A.; Quirrenbach, A.; Amado, P.; Ribas, I.; Reiners, A.; Caballero, J. A.; Seifert, W.; Herranz, J.

    2016-07-01

    CARMENES is the new high-resolution high-stability spectrograph built for the 3.5m telescope at the Calar Alto Observatory (CAHA, Almería, Spain) by a consortium formed by German and Spanish institutions. This instrument is composed by two separated spectrographs: VIS channel (550-1050 nm) and NIR channel (950- 1700 nm). The NIR-channel spectrograph's responsible is the Instituto de Astrofísica de Andalucía (IAACSIC). It has been manufactured, assembled, integrated and verified in the last two years, delivered in fall 2015 and commissioned in December 2015. One of the most challenging systems in this cryogenic channel involves the Cooling System. Due to the highly demanding requirements applicable in terms of stability, this system arises as one of the core systems to provide outstanding stability to the channel. Really at the edge of the state-of-the-art, the Cooling System is able to provide to the cold mass ( 1 Ton) better thermal stability than few hundredths of degree within 24 hours (goal: 0.01K/day). The present paper describes the Assembly, Integration and Verification phase (AIV) of the CARMENES-NIR channel Cooling System implemented at IAA-CSIC and later installation at CAHA 3.5m Telescope, thus the most relevant highlights being shown in terms of thermal performance. The CARMENES NIR-channel Cooling System has been implemented by the IAA-CSIC through very fruitful collaboration and involvement of the ESO (European Southern Observatory) cryo-vacuum department with Jean-Louis Lizon as its head and main collaborator. The present work sets an important trend in terms of cryogenic systems for future E-ELT (European Extremely Large Telescope) large-dimensioned instrumentation in astrophysics.

  12. WAS: the data archive for the WEAVE spectrograph

    NARCIS (Netherlands)

    Guerra, Jose; Molinari, Emilio; Lodi, Marcello; Martin, Adrian; Dalton, Gavin B.; Trager, Scott C.; Jin, Shoko; Abrams, Don Carlos; Bonifacio, Piercarlo; López Aguerri, Jose Alfonso; Vallenari, Antonella; Carrasco Licea, Esperanza E.; Middleton, Kevin F.

    2016-01-01

    The WAS1(WEAVE Archive System) is a software architecture for archiving and delivering the data releases for the WEAVE7 instrument at WHT (William Herschel Telescope). The WEAVE spectrograph will be mounted at the 4.2-m WHT telescope and will provide millions of spectra in a 5-year program, starting

  13. Spectrographic determination of impurities in copper and copper oxide

    International Nuclear Information System (INIS)

    Sabato, S.F.; Lordello, A.R.

    1990-11-01

    An emission spectrographic method for the determination of Al, Bi, Ca, Cd, Cr, Fe, Ge, Mg, Mn, Mo, Ni, Pb, Sb, Si, Sn and Zn in copper and copper oxide is described. Two mixtures (Graphite and ZnO: graphite and GeO sub(2)) were used as buffers. The standard deviation lies around 10%. (author)

  14. The spectrographic orbit of the eclipsing binary HH Carinae

    International Nuclear Information System (INIS)

    Mandrini, C.H.; Mendez, R.H.; Niemela, V.S.; Ferrer, O.E.

    1985-01-01

    We present a radial velocity study of the eclipsing binary system HH Carinae, and determine for the first time its spectrographic orbital elements. Using the results of a previous photometric study by Soderhjelm, we also determine the values of the masses and dimensions of the binary components. (author)

  15. Detection Of Alterations In Audio Files Using Spectrograph Analysis

    Directory of Open Access Journals (Sweden)

    Anandha Krishnan G

    2015-08-01

    Full Text Available The corresponding study was carried out to detect changes in audio file using spectrograph. An audio file format is a file format for storing digital audio data on a computer system. A sound spectrograph is a laboratory instrument that displays a graphical representation of the strengths of the various component frequencies of a sound as time passes. The objectives of the study were to find the changes in spectrograph of audio after altering them to compare altering changes with spectrograph of original files and to check for similarity and difference in mp3 and wav. Five different alterations were carried out on each audio file to analyze the differences between the original and the altered file. For altering the audio file MP3 or WAV by cutcopy the file was opened in Audacity. A different audio was then pasted to the audio file. This new file was analyzed to view the differences. By adjusting the necessary parameters the noise was reduced. The differences between the new file and the original file were analyzed. By adjusting the parameters from the dialog box the necessary changes were made. The edited audio file was opened in the software named spek where after analyzing a graph is obtained of that particular file which is saved for further analysis. The original audio graph received was combined with the edited audio file graph to see the alterations.

  16. Spectrographic determination of lithium in nuclear grade calcium

    International Nuclear Information System (INIS)

    Artaud, J.; Cittanova, J.

    1957-01-01

    A method is described for the spectrographic determination of lithium in calcium. The samples are converted directly to CaCO 3 . A method of fractional distillation in the arc, using KCl as carrier, makes it possible to detect and measure the Li content to 0,1 ppm. (author) [fr

  17. Problems with the sources of the observed gravitational waves and their resolution

    Directory of Open Access Journals (Sweden)

    Dolgov A.D.

    2017-01-01

    Full Text Available Recent direct registration of gravitational waves by LIGO and astronomical observations of the universe at redshifts 5-10 demonstrate that the standard astrophysics and cosmology are in tension with the data. The origin of the source of the GW150914 event, which presumably is a binary of coalescing black holes with masses about 30 solar masses, each with zero spin, as well as the densely populated universe at z= 5-10 by superheavy black holes, blight galaxies, supernovae, and dust does not fit the standard astrophysical picture. It is shown here that the model of primordial black hole (PBH formation, suggested in 1993, nicely explains all these and more puzzles, including those in contemporary universe, such as MACHOs and the mass spectrum of the observed solar mass black holes.. The mass spectrum and density of PBH is predicted. The scenario may possibly lead to abundant antimatter in the universe and even in the Galaxy.

  18. High-resolution observations of quasars from the Parkes +- 40 sample

    International Nuclear Information System (INIS)

    Booth, R.S.; Spencer, R.E.; Stannard, D.; Baath, L.B.

    1979-01-01

    VLBI observations of 20 compact quasars have been made between Jodrell Bank and Onsala at a frequency of 1666 MHz. Twelve of the quasars have inverted or peaked spectra at centimetre wavelengths and these are all unresolved, having angular diameters of < 0.015 arcsec. Two out of five quasars with overall flat spectra are partially resolved on this scale size, as are three steep-spectrum quasars. (author)

  19. Low temperature magneto-morphological characterisation of coronene and the resolution of previously observed unexplained phenomena

    Science.gov (United States)

    Potticary, Jason; Boston, Rebecca; Vella-Zarb, Liana; Few, Alex; Bell, Christopher; Hall, Simon R.

    2016-12-01

    The polyaromatic hydrocarbon coronene has been the molecule of choice for understanding the physical properties of graphene for over a decade. The modelling of the latter by the former was considered to be valid, as since it was first synthesised in 1932, the physical behaviour of coronene has been determined extremely accurately. We recently discovered however, an unforeseen polymorph of coronene, which exists as an enantiotrope with the previously observed crystal structure. Using low-temperature magnetisation and crystallographic measurements, we show here for the first time that the electronic and magnetic properties of coronene depend directly on the temperature at which it is observed, with hysteretic behaviour exhibited between 300 K and 100 K. Furthermore we determine that this behaviour is a direct result of the appearance and disappearance of the newly-discovered polymorph during thermal cycling. Our results not only highlight the need for theoretical models of graphene to take into account this anomalous behaviour at low temperatures, but also explain puzzling experimental observations of coronene dating back over 40 years.

  20. Coupling physics and biogeochemistry thanks to high-resolution observations of the phytoplankton community structure in the northwestern Mediterranean Sea

    Science.gov (United States)

    Marrec, Pierre; Grégori, Gérald; Doglioli, Andrea M.; Dugenne, Mathilde; Della Penna, Alice; Bhairy, Nagib; Cariou, Thierry; Hélias Nunige, Sandra; Lahbib, Soumaya; Rougier, Gilles; Wagener, Thibaut; Thyssen, Melilotus

    2018-03-01

    Fine-scale physical structures and ocean dynamics strongly influence and regulate biogeochemical and ecological processes. These processes are particularly challenging to describe and understand because of their ephemeral nature. The OSCAHR (Observing Submesoscale Coupling At High Resolution) campaign was conducted in fall 2015 in which a fine-scale structure (1-10 km/1-10 days) in the northwestern Mediterranean Ligurian subbasin was pre-identified using both satellite and numerical modeling data. Along the ship track, various variables were measured at the surface (temperature, salinity, chlorophyll a and nutrient concentrations) with ADCP current velocity. We also deployed a new model of the CytoSense automated flow cytometer (AFCM) optimized for small and dim cells, for near real-time characterization of the surface phytoplankton community structure of surface waters with a spatial resolution of a few kilometers and an hourly temporal resolution. For the first time with this optimized version of the AFCM, we were able to fully resolve Prochlorococcus picocyanobacteria in addition to the easily distinguishable Synechococcus. The vertical physical dynamics and biogeochemical properties of the studied area were investigated by continuous high-resolution CTD profiles thanks to a moving vessel profiler (MVP) during the vessel underway associated with a high-resolution pumping system deployed during fixed stations allowing sampling of the water column at a fine resolution (below 1 m). The observed fine-scale feature presented a cyclonic structure with a relatively cold core surrounded by warmer waters. Surface waters were totally depleted in nitrate and phosphate. In addition to the doming of the isopycnals by the cyclonic circulation, an intense wind event induced Ekman pumping. The upwelled subsurface cold nutrient-rich water fertilized surface waters and was marked by an increase in Chl a concentration. Prochlorococcus and pico- and nano-eukaryotes were more

  1. Coupling physics and biogeochemistry thanks to high-resolution observations of the phytoplankton community structure in the northwestern Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    P. Marrec

    2018-03-01

    Full Text Available Fine-scale physical structures and ocean dynamics strongly influence and regulate biogeochemical and ecological processes. These processes are particularly challenging to describe and understand because of their ephemeral nature. The OSCAHR (Observing Submesoscale Coupling At High Resolution campaign was conducted in fall 2015 in which a fine-scale structure (1–10 km∕1–10 days in the northwestern Mediterranean Ligurian subbasin was pre-identified using both satellite and numerical modeling data. Along the ship track, various variables were measured at the surface (temperature, salinity, chlorophyll a and nutrient concentrations with ADCP current velocity. We also deployed a new model of the CytoSense automated flow cytometer (AFCM optimized for small and dim cells, for near real-time characterization of the surface phytoplankton community structure of surface waters with a spatial resolution of a few kilometers and an hourly temporal resolution. For the first time with this optimized version of the AFCM, we were able to fully resolve Prochlorococcus picocyanobacteria in addition to the easily distinguishable Synechococcus. The vertical physical dynamics and biogeochemical properties of the studied area were investigated by continuous high-resolution CTD profiles thanks to a moving vessel profiler (MVP during the vessel underway associated with a high-resolution pumping system deployed during fixed stations allowing sampling of the water column at a fine resolution (below 1 m. The observed fine-scale feature presented a cyclonic structure with a relatively cold core surrounded by warmer waters. Surface waters were totally depleted in nitrate and phosphate. In addition to the doming of the isopycnals by the cyclonic circulation, an intense wind event induced Ekman pumping. The upwelled subsurface cold nutrient-rich water fertilized surface waters and was marked by an increase in Chl a concentration. Prochlorococcus and pico

  2. Marine Boundary Layer Cloud Property Retrievals from High-Resolution ASTER Observations: Case Studies and Comparison with Terra MODIS

    Science.gov (United States)

    Werner, Frank; Wind, Galina; Zhang, Zhibo; Platnick, Steven; Di Girolamo, Larry; Zhao, Guangyu; Amarasinghe, Nandana; Meyer, Kerry

    2016-01-01

    A research-level retrieval algorithm for cloud optical and microphysical properties is developed for the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) aboard the Terra satellite. It is based on the operational MODIS algorithm. This paper documents the technical details of this algorithm and evaluates the retrievals for selected marine boundary layer cloud scenes through comparisons with the operational MODIS Data Collection 6 (C6) cloud product. The newly developed, ASTERspecific cloud masking algorithm is evaluated through comparison with an independent algorithm reported in Zhao and Di Girolamo (2006). To validate and evaluate the cloud optical thickness (tau) and cloud effective radius (r(sub eff)) from ASTER, the high-spatial-resolution ASTER observations are first aggregated to the same 1000m resolution as MODIS. Subsequently, tau(sub aA) and r(sub eff, aA) retrieved from the aggregated ASTER radiances are compared with the collocated MODIS retrievals. For overcast pixels, the two data sets agree very well with Pearson's product-moment correlation coefficients of R greater than 0.970. However, for partially cloudy pixels there are significant differences between r(sub eff, aA) and the MODIS results which can exceed 10 micrometers. Moreover, it is shown that the numerous delicate cloud structures in the example marine boundary layer scenes, resolved by the high-resolution ASTER retrievals, are smoothed by the MODIS observations. The overall good agreement between the research-level ASTER results and the operational MODIS C6 products proves the feasibility of MODIS-like retrievals from ASTER reflectance measurements and provides the basis for future studies concerning the scale dependency of satellite observations and three-dimensional radiative effects.

  3. Observations of a Cold Front at High Spatiotemporal Resolution Using an X-Band Phased Array Imaging Radar

    Directory of Open Access Journals (Sweden)

    Andrew Mahre

    2017-02-01

    Full Text Available While the vertical structure of cold fronts has been studied using various methods, previous research has shown that traditional methods of observing meteorological phenomena (such as pencil-beam radars in PPI/volumetric mode are not well-suited for resolving small-scale cold front phenomena, due to relatively low spatiotemporal resolution. Additionally, non-simultaneous elevation sampling within a vertical cross-section can lead to errors in analysis, as differential vertical advection cannot be distinguished from temporal evolution. In this study, a cold front from 19 September 2015 is analyzed using the Atmospheric Imaging Radar (AIR. The AIR transmits a 20-degree fan beam in elevation, and digital beamforming is used on receive to generate simultaneous receive beams. This mobile, X-band, phased-array radar offers temporal sampling on the order of 1 s (while in RHI mode, range sampling of 30 m (37.5 m native resolution, and continuous, arbitrarily oversampled data in the vertical dimension. Here, 0.5-degree sampling is used in elevation (1-degree native resolution. This study is the first in which a cold front has been studied via imaging radar. The ability of the AIR to obtain simultaneous RHIs at high temporal sampling rates without mechanical steering allows for analysis of features such as Kelvin-Helmholtz instabilities and feeder flow.

  4. Calculation of the performance of the INS iron-free π√2 spectrometer as a spectrograph

    International Nuclear Information System (INIS)

    Fujioka, M.; Hirasawa, M.; Kawakami, H.

    1983-02-01

    The performance of the INS iron-free π√2 beta-ray spectrometer of the current-loop type is calculated with a view of using it as a spectrograph, i.e., in a multichannel mode with a position-sensitive proportional counter. For the momentum resolution of R = 0.01 and 0.1 % the usable momentum range as a spectrograph ( + epsilon + 0 ) and the line shapes on the focal plane are calculated. The transmission of the baffle is 0.025 and 0.13 % of 4π and the expected gain of data-collection efficiency over the single-channel mode is 140 and 40 for R = 0.01 and 0.1%, respectively. An effective tilting of the focal plane due to the entrance baffle is discussed as well as the problems with arrangement and testing of the position detector. (author)

  5. New high-sensitivity, milliarcsecond resolution results from routine observations of lunar occultations at the ESO VLT

    Science.gov (United States)

    Richichi, A.; Fors, O.; Chen, W.-P.; Mason, E.

    2010-11-01

    Context. Lunar occultations (LO) are a very efficient and powerful technique that achieves the best combination of high angular resolution and sensitivity possible today at near-infrared wavelengths. Given that the events are fixed in time, that the sources are occulted randomly, and that the telescope use is minimal, the technique is very well suited for service mode observations. Aims: We have established a program of routine LO observations at the VLT observatory, especially designed to take advantage of short breaks available in-between other programs. We have used the ISAAC instrument in burst mode, capable of producing continuous read-outs at millisecond rates on a suitable subwindow. Given the random nature of the source selection, our aim has been primarily the investigation of a large number of stellar sources at the highest angular resolution in order to detect new binaries. Serendipitous results such as resolved sources and detection of circumstellar components were also anticipated. Methods: We have recorded the signal from background stars for a few seconds, around the predicted time of occultation by the Moon's dark limb. At millisecond time resolution, a characteristic diffraction pattern can be observed. Patterns for two or more sources superimpose linearly, and this property is used for the detection of binary stars. The detailed analysis of the diffraction fringes can be used to measure specific properties such as the stellar angular size and the presence of extended light sources such as a circumstellar shell. Results: We present a list of 191 stars for which LO data could be recorded and analyzed. Results include the detection of 16 binary and 2 triple stars, all but one of which were previously unknown. The projected angular separations are as small as 4 milliarcsec and magnitude differences as high as Δ K = 5.8 mag. Additionally we derive accurate angular diameters for 2 stars and resolve circumstellar emission around another one, also all

  6. Mountains on Io: High-resolution Galileo observations, initial interpretations, and formation models

    Science.gov (United States)

    Turtle, E.P.; Jaeger, W.L.; Keszthelyi, L.P.; McEwen, A.S.; Milazzo, M.; Moore, J.; Phillips, C.B.; Radebaugh, J.; Simonelli, D.; Chuang, F.; Schuster, P.; Alexander, D.D.A.; Capraro, K.; Chang, S.-H.; Chen, A.C.; Clark, J.; Conner, D.L.; Culver, A.; Handley, T.H.; Jensen, D.N.; Knight, D.D.; LaVoie, S.K.; McAuley, M.; Mego, V.; Montoya, O.; Mortensen, H.B.; Noland, S.J.; Patel, R.R.; Pauro, T.M.; Stanley, C.L.; Steinwand, D.J.; Thaller, T.F.; Woncik, P.J.; Yagi, G.M.; Yoshimizu, J.R.; Alvarez Del Castillo, E.M.; Beyer, R.; Branston, D.; Fishburn, M.B.; Muller, Birgit; Ragan, R.; Samarasinha, N.; Anger, C.D.; Cunningham, C.; Little, B.; Arriola, S.; Carr, M.H.; Asphaug, E.; Morrison, D.; Rages, K.; Banfield, D.; Bell, M.; Burns, J.A.; Carcich, B.; Clark, B.; Currier, N.; Dauber, I.; Gierasch, P.J.; Helfenstein, P.; Mann, M.; Othman, O.; Rossier, L.; Solomon, N.; Sullivan, R.; Thomas, P.C.; Veverka, J.; Becker, T.; Edwards, K.; Gaddis, L.; Kirk, R.; Lee, E.; Rosanova, T.; Sucharski, R.M.; Beebe, R.F.; Simon, A.; Belton, M.J.S.; Bender, K.; Fagents, S.; Figueredo, P.; Greeley, R.; Homan, K.; Kadel, S.; Kerr, J.; Klemaszewski, J.; Lo, E.; Schwarz, W.; Williams, D.; Williams, K.; Bierhaus, B.; Brooks, S.; Chapman, C.R.; Merline, B.; Keller, J.; Tamblyn, P.; Bouchez, A.; Dyundian, U.; Ingersoll, A.P.; Showman, A.; Spitale, J.; Stewart, S.; Vasavada, A.; Breneman, H.H.; Cunningham, W.F.; Johnson, T.V.; Jones, T.J.; Kaufman, J.M.; Klaasen, K.P.; Levanas, G.; Magee, K.P.; Meredith, M.K.; Orton, G.S.; Senske, D.A.; West, A.; Winther, D.; Collins, G.; Fripp, W.J.; Head, J. W.; Pappalardo, R.; Pratt, S.; Prockter, L.; Spaun, N.; Colvin, T.; Davies, M.; DeJong, E.M.; Hall, J.; Suzuki, S.; Gorjian, Z.; Denk, T.; Giese, B.; Koehler, U.; Neukum, G.; Oberst, J.; Roatsch, T.; Tost, W.; Wagner, R.; Dieter, N.; Durda, D.; Geissler, P.; Greenberg, R.J.; Hoppa, G.; Plassman, J.; Tufts, R.; Fanale, F.P.; Granahan, J.C.

    2001-01-01

    During three close flybys in late 1999 and early 2000 the Galileo spacecraft ac-quired new observations of the mountains that tower above Io's surface. These images have revealed surprising variety in the mountains' morphologies. They range from jagged peaks several kilometers high to lower, rounded structures. Some are very smooth, others are covered by numerous parallel ridges. Many mountains have margins that are collapsing outward in large landslides or series of slump blocks, but a few have steep, scalloped scarps. From these observations we can gain insight into the structure and material properties of Io's crust as well as into the erosional processes acting on Io. We have also investigated formation mechanisms proposed for these structures using finite-element analysis. Mountain formation might be initiated by global compression due to the high rate of global subsidence associated with Io's high resurfacing rate; however, our models demonstrate that this hypothesis lacks a mechanism for isolating the mountains. The large fraction (???40%) of mountains that are associated with paterae suggests that in some cases these features are tectonically related. Therefore we have also simulated the stresses induced in Io's crust by a combination of a thermal upwelling in the mantle with global lithospheric compression and have shown that this can focus compressional stresses. If this mechanism is responsible for some of Io's mountains, it could also explain the common association of mountains with paterae. Copyright 2001 by the American Geophysical Union.

  7. Merging Radar Quantitative Precipitation Estimates (QPEs) from the High-resolution NEXRAD Reanalysis over CONUS with Rain-gauge Observations

    Science.gov (United States)

    Prat, O. P.; Nelson, B. R.; Stevens, S. E.; Nickl, E.; Seo, D. J.; Kim, B.; Zhang, J.; Qi, Y.

    2015-12-01

    The processing of radar-only precipitation via the reanalysis from the National Mosaic and Multi-Sensor Quantitative (NMQ/Q2) based on the WSR-88D Next-generation Radar (Nexrad) network over the Continental United States (CONUS) is completed for the period covering from 2002 to 2011. While this constitutes a unique opportunity to study precipitation processes at higher resolution than conventionally possible (1-km, 5-min), the long-term radar-only product needs to be merged with in-situ information in order to be suitable for hydrological, meteorological and climatological applications. The radar-gauge merging is performed by using rain gauge information at daily (Global Historical Climatology Network-Daily: GHCN-D), hourly (Hydrometeorological Automated Data System: HADS), and 5-min (Automated Surface Observing Systems: ASOS; Climate Reference Network: CRN) resolution. The challenges related to incorporating differing resolution and quality networks to generate long-term large-scale gridded estimates of precipitation are enormous. In that perspective, we are implementing techniques for merging the rain gauge datasets and the radar-only estimates such as Inverse Distance Weighting (IDW), Simple Kriging (SK), Ordinary Kriging (OK), and Conditional Bias-Penalized Kriging (CBPK). An evaluation of the different radar-gauge merging techniques is presented and we provide an estimate of uncertainty for the gridded estimates. In addition, comparisons with a suite of lower resolution QPEs derived from ground based radar measurements (Stage IV) are provided in order to give a detailed picture of the improvements and remaining challenges.

  8. Fine resolution atmospheric sulfate model driven by operational meteorological data: Comparison with observations

    International Nuclear Information System (INIS)

    Benkovitz, C.M.; Schwartz, S.E.; Berkowitz, C.M.; Easter, R.C.

    1993-09-01

    The hypothesis that anthropogenic sulfur aerosol influences clear-sky and cloud albedo and can thus influence climate has been advanced by several investigators; current global-average climate forcing is estimated to be of comparable magnitude, but opposite sign, to longwave forcing by anthropogenic greenhouse gases. The high space and time variability of sulfate concentrations and column aerosol burdens have been established by observational data; however, geographic and time coverage provided by data from surface monitoring networks is very limited. Consistent regional and global estimates of sulfate aerosol loading, and the contributions to this loading from different sources can be obtained only by modeling studies. Here we describe a sub-hemispheric to global-scale Eulerian transport and transformation model for atmospheric sulfate and its precursors, driven by operational meteorological data, and report results of calculations for October, 1986 for the North Atlantic and adjacent continental regions. The model, which is based on the Global Chemistry Model uses meteorological data from the 6-hour forecast model of the European Center for Medium-Range Weather Forecast to calculate transport and transformation of sulfur emissions. Time- and location-dependent dry deposition velocities were estimated using the methodology of Wesely and colleagues. Chemical reactions includes gaseous oxidation of SO 2 and DMS by OH, and aqueous oxidation of SO 2 by H 2 O 2 and O 3 . Anthropogenic emissions were from the NAPAP and EMEP 1985 inventories and biogenic emissions based on Bates et al. Calculated sulfate concentrations and column burdens exhibit high variability on spatial scale of hundreds of km and temporal scale of days. Calculated daily average sulfate concentrations closely reproduce observed concentrations at locations widespread over the model domain

  9. Potential for added value in precipitation simulated by high-resolution nested Regional Climate Models and observations

    Energy Technology Data Exchange (ETDEWEB)

    Di Luca, Alejandro; Laprise, Rene [Universite du Quebec a Montreal (UQAM), Centre ESCER (Etude et Simulation du Climat a l' Echelle Regionale), Departement des Sciences de la Terre et de l' Atmosphere, PK-6530, Succ. Centre-ville, B.P. 8888, Montreal, QC (Canada); De Elia, Ramon [Universite du Quebec a Montreal, Ouranos Consortium, Centre ESCER (Etude et Simulation du Climat a l' Echelle Regionale), Montreal (Canada)

    2012-03-15

    Regional Climate Models (RCMs) constitute the most often used method to perform affordable high-resolution regional climate simulations. The key issue in the evaluation of nested regional models is to determine whether RCM simulations improve the representation of climatic statistics compared to the driving data, that is, whether RCMs add value. In this study we examine a necessary condition that some climate statistics derived from the precipitation field must satisfy in order that the RCM technique can generate some added value: we focus on whether the climate statistics of interest contain some fine spatial-scale variability that would be absent on a coarser grid. The presence and magnitude of fine-scale precipitation variance required to adequately describe a given climate statistics will then be used to quantify the potential added value (PAV) of RCMs. Our results show that the PAV of RCMs is much higher for short temporal scales (e.g., 3-hourly data) than for long temporal scales (16-day average data) due to the filtering resulting from the time-averaging process. PAV is higher in warm season compared to cold season due to the higher proportion of precipitation falling from small-scale weather systems in the warm season. In regions of complex topography, the orographic forcing induces an extra component of PAV, no matter the season or the temporal scale considered. The PAV is also estimated using high-resolution datasets based on observations allowing the evaluation of the sensitivity of changing resolution in the real climate system. The results show that RCMs tend to reproduce relatively well the PAV compared to observations although showing an overestimation of the PAV in warm season and mountainous regions. (orig.)

  10. High resolution observations of cosmic rays of Z greater than or equal to 30

    International Nuclear Information System (INIS)

    Love, P.T.

    1977-01-01

    Results of two high altitude balloon flights of a 6.6 m 2 steradian detector designed to measure the charge composition of the elements with 30 less than or equal to Z less than or equal to 60 are reported. For charge groups with 30 less than or equal to Z less than or equal to 60 we observe lower abundances of 30 less than or equal to Z less than or equal to 32 and 32 less than or equal to Z less than or equal to 34 and higher abundances of 35 less than or equal to Z less than or equal to 39, 45 less than or equal to Z less than or equal to 49, and 50 less than or equal to Z less than or equal to 54 compared to previous measurements. Measurements of these abundances agree within one sigma with the solar system abundances apart from the significantly lower cosmic ray abundances of 30 less than or equal to Z less than or equal to 32 and the less significant lower abundances of 32 less than or equal to Z less than or equal to 34 and 40 less than or equal to Z less than or equal to 44. Individual elemental abundances measured for 26 less than or equal to Z less than or equal to 40 are consistent with the solar system composition apart from a significant underabundance of cosmic-ray zinc (Z = 30). A superposition of the theoretically postulated helium burning s-process and the r-process compositions, both the result of nucleosynthesis at supernovae, altered slightly by interstellar propagation, seem to fit the measurements, except for the underabundance of cosmic-ray zinc. It was impossible to distinguish between cosmic ray compositions resulting from the acceleration of solar system like interstellar material and those resulting from the acceleration of material synthesized in a supernova event. Finally, no evidence was observed for an energy dependence of the abundance ratios 30 less than or equal to Z less than or equal to 32 to iron and 33 less than or equal to Z less than or equal to 40 to iron over energy ranges 560 to 1030 MeV/amu and bigger than 590 MeV/ amu

  11. The Goddard Integral Field Spectrograph at Apache Point Observatory: Current Status and Progress Towards Photon Counting

    Science.gov (United States)

    McElwain, Michael W.; Grady, Carol A.; Bally, John; Brinkmann, Jonathan V.; Bubeck, James; Gong, Qian; Hilton, George M.; Ketzeback, William F.; Lindler, Don; Llop Sayson, Jorge; Malatesta, Michael A.; Norton, Timothy; Rauscher, Bernard J.; Rothe, Johannes; Straka, Lorrie; Wilkins, Ashlee N.; Wisniewski, John P.; Woodgate, Bruce E.; York, Donald G.

    2015-01-01

    We present the current status and progress towards photon counting with the Goddard Integral Field Spectrograph (GIFS), a new instrument at the Apache Point Observatory's ARC 3.5m telescope. GIFS is a visible light imager and integral field spectrograph operating from 400-1000 nm over a 2.8' x 2.8' and 14' x 14' field of view, respectively. As an IFS, GIFS obtains over 1000 spectra simultaneously and its data reduction pipeline reconstructs them into an image cube that has 32 x 32 spatial elements and more than 200 spectral channels. The IFS mode can be applied to a wide variety of science programs including exoplanet transit spectroscopy, protostellar jets, the galactic interstellar medium probed by background quasars, Lyman-alpha emission line objects, and spectral imaging of galactic winds. An electron-multiplying CCD (EMCCD) detector enables photon counting in the high spectral resolution mode to be demonstrated at the ARC 3.5m in early 2015. The EMCCD work builds upon successful operational and characterization tests that have been conducted in the IFS laboratory at NASA Goddard. GIFS sets out to demonstrate an IFS photon-counting capability on-sky in preparation for future exoplanet direct imaging missions such as the AFTA-Coronagraph, Exo-C, and ATLAST mission concepts. This work is supported by the NASA APRA program under RTOP 10-APRA10-0103.

  12. Coastal High-resolution Observations and Remote Sensing of Ecosystems (C-HORSE)

    Science.gov (United States)

    Guild, Liane

    2016-01-01

    Coastal benthic marine ecosystems, such as coral reefs, seagrass beds, and kelp forests are highly productive as well as ecologically and commercially important resources. These systems are vulnerable to degraded water quality due to coastal development, terrestrial run-off, and harmful algal blooms. Measurements of these features are important for understanding linkages with land-based sources of pollution and impacts to coastal ecosystems. Challenges for accurate remote sensing of coastal benthic (shallow water) ecosystems and water quality are complicated by atmospheric scattering/absorption (approximately 80+% of the signal), sun glint from the sea surface, and water column scattering (e.g., turbidity). Further, sensor challenges related to signal to noise (SNR) over optically dark targets as well as insufficient radiometric calibration thwart the value of coastal remotely-sensed data. Atmospheric correction of satellite and airborne remotely-sensed radiance data is crucial for deriving accurate water-leaving radiance in coastal waters. C-HORSE seeks to optimize coastal remote sensing measurements by using a novel airborne instrument suite that will bridge calibration, validation, and research capabilities of bio-optical measurements from the sea to the high altitude remote sensing platform. The primary goal of C-HORSE is to facilitate enhanced optical observations of coastal ecosystems using state of the art portable microradiometers with 19 targeted spectral channels and flight planning to optimize measurements further supporting current and future remote sensing missions.

  13. Greenland iceberg melt variability from high-resolution satellite observations

    Directory of Open Access Journals (Sweden)

    E. M. Enderlin

    2018-02-01

    Full Text Available Iceberg discharge from the Greenland Ice Sheet accounts for up to half of the freshwater flux to surrounding fjords and ocean basins, yet the spatial distribution of iceberg meltwater fluxes is poorly understood. One of the primary limitations for mapping iceberg meltwater fluxes, and changes over time, is the dearth of iceberg submarine melt rate estimates. Here we use a remote sensing approach to estimate submarine melt rates during 2011–2016 for 637 icebergs discharged from seven marine-terminating glaciers fringing the Greenland Ice Sheet. We find that spatial variations in iceberg melt rates generally follow expected patterns based on hydrographic observations, including a decrease in melt rate with latitude and an increase in melt rate with iceberg draft. However, we find no longitudinal variations in melt rates within individual fjords. We do not resolve coherent seasonal to interannual patterns in melt rates across all study sites, though we attribute a 4-fold melt rate increase from March to April 2011 near Jakobshavn Isbræ to fjord circulation changes induced by the seasonal onset of iceberg calving. Overall, our results suggest that remotely sensed iceberg melt rates can be used to characterize spatial and temporal variations in oceanic forcing near often inaccessible marine-terminating glaciers.

  14. Observation of lens aberrations for high resolution electron microscopy II: Simple expressions for optimal estimates

    Energy Technology Data Exchange (ETDEWEB)

    Saxton, W. Owen, E-mail: wos1@cam.ac.uk

    2015-04-15

    This paper lists simple closed-form expressions estimating aberration coefficients (defocus, astigmatism, three-fold astigmatism, coma / misalignment, spherical aberration) on the basis of image shift or diffractogram shape measurements as a function of injected beam tilt. Simple estimators are given for a large number of injected tilt configurations, optimal in the sense of least-squares fitting of all the measurements, and so better than most reported previously. Standard errors are given for most, allowing different approaches to be compared. Special attention is given to the measurement of the spherical aberration, for which several simple procedures are given, and the effect of foreknowledge of this on other aberration estimates is noted. Details and optimal expressions are also given for a new and simple method of analysis, requiring measurements of the diffractogram mirror axis direction only, which are simpler to make than the focus and astigmatism measurements otherwise required. - Highlights: • Optimal estimators for CTEM lens aberrations are more accurate and/or use fewer observations. • Estimators have been found for defocus, astigmatism, three-fold astigmatism, coma and spherical aberration. • Estimators have been found relying on diffractogram shape, image shift and diffractogram orientation only, for a variety of beam tilts. • The standard error for each estimator has been found.

  15. High resolution far-infrared observations of the evolved H II region M16

    International Nuclear Information System (INIS)

    McBreen, B.; Fazio, G.G.; Jaffe, D.T.

    1982-01-01

    M16 is an evolved, extremely density bounded H II region, which now consists only of a series of ionization fronts at molecular cloud boundaries. The source of ionization is the OB star cluster (NGC 6611) which is about 5 x 10 6 years old. We used the CFA/UA 102 cm balloon-borne telescope to map this region and detected three far-infrared (far-IR) sources embedded in an extended ridge of emission. Source I is an unresolved far-IR source embedded in a molecular cloud near a sharp ionization front. An H 2 O maser is associated with this source, but no radio continuum emission has been observed. The other two far-IR sources (II and III) are associated with ionized gas-molecular cloud interfaces, with the far-IR radiation arising from dust at the boundary heated by the OB cluster. Source II is located at the southern prominent neutral intrusion with its associated bright rims and dark ''elephant trunk'' globules that delineate the current progress of the ionization front into the neutral material, and Source III arises at the interface of the northern molecular cloud fragment

  16. SpecOp: Optimal Extraction Software for Integral Field Unit Spectrographs

    Science.gov (United States)

    McCarron, Adam; Ciardullo, Robin; Eracleous, Michael

    2018-01-01

    The Hobby-Eberly Telescope’s new low resolution integral field spectrographs, LRS2-B and LRS2-R, each cover a 12”x6” area on the sky with 280 fibers and generate spectra with resolutions between R=1100 and R=1900. To extract 1-D spectra from the instrument’s 3D data cubes, a program is needed that is flexible enough to work for a wide variety of targets, including continuum point sources, emission line sources, and compact sources embedded in complex backgrounds. We therefore introduce SpecOp, a user-friendly python program for optimally extracting spectra from integral-field unit spectrographs. As input, SpecOp takes a sky-subtracted data cube consisting of images at each wavelength increment set by the instrument’s spectral resolution, and an error file for each count measurement. All of these files are generated by the current LRS2 reduction pipeline. The program then collapses the cube in the image plane using the optimal extraction algorithm detailed by Keith Horne (1986). The various user-selected options include the fraction of the total signal enclosed in a contour-defined region, the wavelength range to analyze, and the precision of the spatial profile calculation. SpecOp can output the weighted counts and errors at each wavelength in various table formats using python’s astropy package. We outline the algorithm used for extraction and explain how the software can be used to easily obtain high-quality 1-D spectra. We demonstrate the utility of the program by applying it to spectra of a variety of quasars and AGNs. In some of these targets, we extract the spectrum of a nuclear point source that is superposed on a spatially extended galaxy.

  17. Elicitation of State and Local User Needs for Future Moderate Resolution Earth Observations: The AmericaView Contribution

    Science.gov (United States)

    French, N. H. F.; Lawrence, R. L.

    2017-12-01

    AmericaView is a nationwide partnership of remote sensing scientists who support the use of Landsat and other public domain remotely sensed data through applied remote sensing research, K-12 and higher STEM education, workforce development, and technology transfer. The national AmericaView program currently has active university-lead members in 39 states, each of which has a "stateview" consortium consisting of some combination of university, agency, non-profit, and other members. This "consortium of consortia" has resulted in a strong and unique nationwide network of remote sensing practitioners. AmericaView has used this network to contribute to the USGS Requirements Capabilities & Analysis for Earth Observations. Participating states have conducted interviews of key remote sensing end users across the country to provide key input at the state and local level for the design and implementation of future U.S. moderate resolution Earth observations.

  18. The Track of Brain Activity during the Observation of TV Commercials with the High-Resolution EEG Technology

    Directory of Open Access Journals (Sweden)

    Laura Astolfi

    2009-01-01

    Full Text Available We estimate cortical activity in normal subjects during the observation of TV commercials inserted within a movie by using high-resolution EEG techniques. The brain activity was evaluated in both time and frequency domains by solving the associate inverse problem of EEG with the use of realistic head models. In particular, we recover statistically significant information about cortical areas engaged by particular scenes inserted within the TV commercial proposed with respect to the brain activity estimated while watching a documentary. Results obtained in the population investigated suggest that the statistically significant brain activity during the observation of the TV commercial was mainly concentrated in frontoparietal cortical areas, roughly coincident with the Brodmann areas 8, 9, and 7, in the analyzed population.

  19. High-cadence, High-resolution Spectroscopic Observations of Herbig Stars HD 98922 and V1295 Aquila

    Energy Technology Data Exchange (ETDEWEB)

    Aarnio, Alicia N.; Monnier, John D.; Calvet, Nuria; Che, Xiao [Department of Astronomy, University of Michigan, 311 West Hall, 1085 S. University Avenue, Ann Arbor, MI 48109 (United States); Harries, Tim J.; Kraus, Stefan; Acreman, David [Department of Physics and Astronomy, University of Exeter, Stocker Road, Exeter EX4 4QL (United Kingdom)

    2017-10-10

    Recent observational work has indicated that mechanisms for accretion and outflow in Herbig Ae/Be star–disk systems may differ from magnetospheric accretion (MA) as it is thought to occur in T Tauri star–disk systems. In this work, we assess the temporal evolution of spectral lines probing accretion and mass loss in Herbig Ae/Be systems and test for consistency with the MA paradigm. For two Herbig Ae/Be stars, HD 98922 (B9e) and V1295 Aql (A2e), we have gathered multi-epoch (∼years) and high-cadence (∼minutes) high-resolution optical spectra to probe a wide range of kinematic processes. Employing a line equivalent width evolution correlation metric introduced here, we identify species co-evolving (indicative of common line origin) via novel visualization. We interferometrically constrain often problematically degenerate parameters, inclination and inner-disk radius, allowing us to focus on the structure of the wind, magnetosphere, and inner gaseous disk in radiative transfer models. Over all timescales sampled, the strongest variability occurs within the blueshifted absorption components of the Balmer series lines; the strength of variability increases with the cadence of the observations. Finally, high-resolution spectra allow us to probe substructure within the Balmer series’ blueshifted absorption components: we observe static, low-velocity features and time-evolving features at higher velocities. Overall, we find the observed line morphologies and variability are inconsistent with a scaled-up T Tauri MA scenario. We suggest that as magnetic field structure and strength change dramatically with increasing stellar mass from T Tauri to Herbig Ae/Be stars, so too may accretion and outflow processes.

  20. High-cadence, High-resolution Spectroscopic Observations of Herbig Stars HD 98922 and V1295 Aquila

    International Nuclear Information System (INIS)

    Aarnio, Alicia N.; Monnier, John D.; Calvet, Nuria; Che, Xiao; Harries, Tim J.; Kraus, Stefan; Acreman, David

    2017-01-01

    Recent observational work has indicated that mechanisms for accretion and outflow in Herbig Ae/Be star–disk systems may differ from magnetospheric accretion (MA) as it is thought to occur in T Tauri star–disk systems. In this work, we assess the temporal evolution of spectral lines probing accretion and mass loss in Herbig Ae/Be systems and test for consistency with the MA paradigm. For two Herbig Ae/Be stars, HD 98922 (B9e) and V1295 Aql (A2e), we have gathered multi-epoch (∼years) and high-cadence (∼minutes) high-resolution optical spectra to probe a wide range of kinematic processes. Employing a line equivalent width evolution correlation metric introduced here, we identify species co-evolving (indicative of common line origin) via novel visualization. We interferometrically constrain often problematically degenerate parameters, inclination and inner-disk radius, allowing us to focus on the structure of the wind, magnetosphere, and inner gaseous disk in radiative transfer models. Over all timescales sampled, the strongest variability occurs within the blueshifted absorption components of the Balmer series lines; the strength of variability increases with the cadence of the observations. Finally, high-resolution spectra allow us to probe substructure within the Balmer series’ blueshifted absorption components: we observe static, low-velocity features and time-evolving features at higher velocities. Overall, we find the observed line morphologies and variability are inconsistent with a scaled-up T Tauri MA scenario. We suggest that as magnetic field structure and strength change dramatically with increasing stellar mass from T Tauri to Herbig Ae/Be stars, so too may accretion and outflow processes.

  1. PCA determination of the radiometric noise of high spectral resolution infrared observations from spectral residuals: Application to IASI

    Science.gov (United States)

    Serio, C.; Masiello, G.; Camy-Peyret, C.; Jacquette, E.; Vandermarcq, O.; Bermudo, F.; Coppens, D.; Tobin, D.

    2018-02-01

    The problem of characterizing and estimating the instrumental or radiometric noise of satellite high spectral resolution infrared spectrometers directly from Earth observations is addressed in this paper. An approach has been developed, which relies on the Principal Component Analysis (PCA) with a suitable criterion to select the optimal number of PC scores. Different selection criteria have been set up and analysed, which is based on the estimation theory of Least Squares and/or Maximum Likelihood Principle. The approach is independent of any forward model and/or radiative transfer calculations. The PCA is used to define an orthogonal basis, which, in turn, is used to derive an optimal linear reconstruction of the observations. The residual vector that is the observation vector minus the calculated or reconstructed one is then used to estimate the instrumental noise. It will be shown that the use of the spectral residuals to assess the radiometric instrumental noise leads to efficient estimators, which are largely independent of possible departures of the true noise from that assumed a priori to model the observational covariance matrix. Application to the Infrared Atmospheric Sounder Interferometer (IASI) has been considered. A series of case studies has been set up, which make use of IASI observations. As a major result, the analysis confirms the high stability and radiometric performance of IASI. The approach also proved to be efficient in characterizing noise features due to mechanical micro-vibrations of the beam splitter of the IASI instrument.

  2. Radial Velocity Fiber-Fed Spectrographs Towards the Discovery of Compact Planets and Pulsations on M Stars

    Science.gov (United States)

    Berdiñas, Zaira M.

    2016-11-01

    This thesis is developed in the framework of the paradigm that seeks for the discovery of an Earth analog. Nowadays, low mass stars, and in particular M dwarf stars, are key targets towards achieving this goal. In this thesis, I focus on the study of the short-time domain of M dwarf stars with the aim of searching for short period planets, but also for the first detection of stellar pulsations on this spectral type. Both science goals are the primary objectives of the “Cool Tiny Beats” (CTB) survey, which has produced most of the data used in this thesis. CTB data consist in high resolution and high-cadence spectroscopic Doppler measurements taken either with HARPS or HARPS-N spectrographs. First of all, a thorough understanding of the spectrographs response in the short time domain was performed to characterize the sources of noise in our range of study. Our first approach to the goals of this thesis consisted in the design of an observational experiment to delve into the HARPS-N sub-night performance. Results unveiled variability of the spectra continuum correlated with instabilities of the spectrograph illumination associated to the airmass. Such distortions, which are wavelength and time dependent, are also present in at least one of the data-products given by the HARPS-N reduction software: the width of the mean-line profiles (i.e. the so-called FWHM index), an index commonly used as a proxy of the stellar activity. As a consequence, we searched for an alternative approach to measure the width index. In particular, we calculated the mean-line profile of the spectrum with a least-squares-deconvolution technique and we obtained the profile indices as the moments of the profile distribution. As part of this study, we also corroborated that the radial velocities calculated with our template matching algorithm TERRA are not affected by the illumination stability. This work unveiled a possible failure of the HARPS-N atmospheric dispersion corrector (or ADC) and

  3. Meeting Earth Observation Requirements for Global Agricultural Monitoring: An Evaluation of the Revisit Capabilities of Current and Planned Moderate Resolution Optical Earth Observing Missions

    Directory of Open Access Journals (Sweden)

    Alyssa K. Whitcraft

    2015-01-01

    Full Text Available Agriculture is a highly dynamic process in space and time, with many applications requiring data with both a relatively high temporal resolution (at least every 8 days and fine-to-moderate (FTM < 100 m spatial resolution. The relatively infrequent revisit of FTM optical satellite observatories coupled with the impacts of cloud occultation have translated into a barrier for the derivation of agricultural information at the regional-to-global scale. Drawing upon the Group on Earth Observations Global Agricultural Monitoring (GEOGLAM Initiative’s general satellite Earth observation (EO requirements for monitoring of major production areas, Whitcraft et al. (this issue have described where, when, and how frequently satellite data acquisitions are required throughout the agricultural growing season at 0.05°, globally. The majority of areas and times of year require multiple revisits to probabilistically yield a view at least 70%, 80%, 90%, or 95% clear within eight days, something that no present single FTM optical observatory is capable of delivering. As such, there is a great potential to meet these moderate spatial resolution optical data requirements through a multi-space agency/multi-mission constellation approach. This research models the combined revisit capabilities of seven hypothetical constellations made from five satellite sensors—Landsat 7 Enhanced Thematic Mapper (Landsat 7 ETM+, Landsat 8 Operational Land Imager and Thermal Infrared Sensor (Landsat 8 OLI/TIRS, Resourcesat-2 Advanced Wide Field Sensor (Resourcesat-2 AWiFS, Sentinel-2A Multi-Spectral Instrument (MSI, and Sentinel-2B MSI—and compares these capabilities with the revisit frequency requirements for a reasonably cloud-free clear view within eight days throughout the agricultural growing season. Supplementing Landsat 7 and 8 with missions from different space agencies leads to an improved capacity to meet requirements, with Resourcesat-2 providing the largest

  4. Optimization of a space spectrograph main frame and frequency response analysis of the frame

    Science.gov (United States)

    Zhang, Xin-yu; Chen, Zhi-yuan; Yang, Shi-mo

    2009-07-01

    A space spectrograph main structure is optimized and examined in order to satisfy the space operational needs. The space spectrograph will be transported into its operational orbit by the launch vehicle and it will undergo dynamic environment in the spacecraft injection period. The unexpected shocks may cause declination of observation accuracy and even equipment damages. The main frame is one of the most important parts because its mechanical performance has great influence on the operational life of the spectrograph, accuracy of observation, etc. For the reason of cost reduction and stability confirming, lower weight and higher structure stiffness of the frame are simultaneously required. Structure optimization was conducted considering the initial design modal analysis results. The base modal frequency raised 10.34% while the whole weight lowered 8.63% compared to the initial design. The purpose of this study is to analyze the new design of main frame mechanical properties and verify whether it can satisfy strict optical demands under the dynamic impact during spacecraft injection. For realizing and forecasting the frequency response characteristics of the main structure in mechanical environment experiment, dynamic analysis of the structure should be performed simulating impulse loads from the bottom base. Therefore, frequency response analysis (FRA) of the frame was then performed using the FEA software MSC.PATRAN/NASTRAN. Results of shock response spectrum (SRS) responses from the base excitations were given. Stress and acceleration dynamic responses of essential positions in the spacecraft injection course were also calculated and spectrometer structure design was examined considering stiffness / strength demands. In this simulation, maximum stresses of Cesic material in two acceleration application cases are 45.1 and 74.1 MPa, respectively. They are all less than yield strengths. As is demonstrated from the simulation, strength reservation of the frame is

  5. OBSERVING THE FINE STRUCTURE OF LOOPS THROUGH HIGH-RESOLUTION SPECTROSCOPIC OBSERVATIONS OF CORONAL RAIN WITH THE CRISP INSTRUMENT AT THE SWEDISH SOLAR TELESCOPE

    International Nuclear Information System (INIS)

    Antolin, P.; Rouppe van der Voort, L.

    2012-01-01

    Observed in cool chromospheric lines, such as Hα or Ca II H, coronal rain corresponds to cool and dense plasma falling from coronal heights. Considered as a peculiar sporadic phenomenon of active regions, it has not received much attention since its discovery more than 40 years ago. Yet, it has been shown recently that a close relationship exists between this phenomenon and the coronal heating mechanism. Indeed, numerical simulations have shown that this phenomenon is most likely due to a loss of thermal equilibrium ensuing from a heating mechanism acting mostly toward the footpoints of loops. We present here one of the first high-resolution spectroscopic observations of coronal rain, performed with the CRisp Imaging Spectro Polarimeter (CRISP) instrument at the Swedish Solar Telescope. This work constitutes the first attempt to assess the importance of coronal rain in the understanding of the coronal magnetic field in active regions. With the present resolution, coronal rain is observed to literally invade the entire field of view. A large statistical set is obtained in which dynamics (total velocities and accelerations), shapes (lengths and widths), trajectories (angles of fall of the blobs), and thermodynamic properties (temperatures) of the condensations are derived. Specifically, we find that coronal rain is composed of small and dense chromospheric cores with average widths and lengths of ∼310 km and ∼710 km, respectively, average temperatures below 7000 K, displaying a broad distribution of falling speeds with an average of ∼70 km s –1 , and accelerations largely below the effective gravity along loops. Through estimates of the ion-neutral coupling in the blobs we show that coronal rain acts as a tracer of the coronal magnetic field, thus supporting the multi-strand loop scenario, and acts as a probe of the local thermodynamic conditions in loops. We further elucidate its potential in coronal heating. We find that the cooling in neighboring strands

  6. Spectrographic determination of impurities in uranium tetrafluoride matrices

    International Nuclear Information System (INIS)

    Reino, Luiz Carlos de Paula

    1980-01-01

    A direct spectrographic method for the determination of UF 4 impurities was developed. Investigations using spectrochemical carriers were carried out so to avoid uranium distillation, which as fluoride is much more volatile than the U 3 O 8 refractory matrix. The best results were obtained by using a mixture of MgO and NaCl carriers in the proportion of 20% and 10%, respectively, with respect to UF 4 matrix. An original spectrographic technique was introduced aiming to avoid the projection of sample particles outside the electrode during excitation. This new technique is based on the addition of a small quantity of a 0.5% gelatinous solution on the UF 4 tablet. The precision of the method was studied for each element analysed. The variation coefficients are within the range of 10 of 20%

  7. Spectrographic determination of trace impurities in reactor grade aluminium

    International Nuclear Information System (INIS)

    Chandola, L.C.; Machado, I.J.

    1975-01-01

    A spectrographic method enabling the determination of 21 trace impurities in aluminium oxide is described. The technique involves mixing the sample with graphite buffer in the ratio 1:1, loading it in a graphite electrode and arcing it for 30 sec. in a dc arc to 10 A current against a pointed graphite cathode. The spectra are photographed on Ilford N.30 emulsion employing a large quartz spectrograph. The aluminium line at 2669.2 A 0 serves as the internal standard. The impurities determined are Ag, B, Bi, Cd, Co, Cr, Cu, Fe, Ga, In, Mg, Mo, Ni, Pb, Sb, Si, Sn, Ti, V and Zn. The sensitivity varies from 5 to 100 ppm and the precision from +- 5 to +- 22% for different elements. A method for converting aluminium metal to aluminium oxide is described. It is found that boron is not lost during this conversion. (author)

  8. Spectrographic determination of impurities in uranium tetrafluoride matrices

    International Nuclear Information System (INIS)

    Reino, L.C.P.; Lordello, A.R.

    1980-01-01

    A direct spectrographic method for the determination of UF 4 impurities was developed. Investigations using spectrochemical carriers were carried out so to avoid uranium distillation, which as fluoride is much more volatile than the U 3 O 8 refractory matrix. The best results were obtained by using a mixture of MgO and NaCl carriers in the proportion of 20 and 10%, respectively, with respect to UF 4 matrix. An original spectrographic technique was introduced aiming to avoid the projection of sample particles outside the electrode during excitation. This new technique is based on the addition of a small quantity of a 0.5% gellatinous solution on the UF 4 tablet. The precision of the method was studied for each element analysed. The variation coefficients are within the range of 10 of 20%. (C.L.B.) [pt

  9. Sensitivity of Global Methane Bayesian Inversion to Surface Observation Data Sets and Chemical-Transport Model Resolution

    Science.gov (United States)

    Lew, E. J.; Butenhoff, C. L.; Karmakar, S.; Rice, A. L.; Khalil, A. K.

    2017-12-01

    Methane is the second most important greenhouse gas after carbon dioxide. In efforts to control emissions, a careful examination of the methane budget and source strengths is required. To determine methane surface fluxes, Bayesian methods are often used to provide top-down constraints. Inverse modeling derives unknown fluxes using observed methane concentrations, a chemical transport model (CTM) and prior information. The Bayesian inversion reduces prior flux uncertainties by exploiting information content in the data. While the Bayesian formalism produces internal error estimates of source fluxes, systematic or external errors that arise from user choices in the inversion scheme are often much larger. Here we examine model sensitivity and uncertainty of our inversion under different observation data sets and CTM grid resolution. We compare posterior surface fluxes using the data product GLOBALVIEW-CH4 against the event-level molar mixing ratio data available from NOAA. GLOBALVIEW-CH4 is a collection of CH4 concentration estimates from 221 sites, collected by 12 laboratories, that have been interpolated and extracted to provide weekly records from 1984-2008. Differently, the event-level NOAA data records methane mixing ratios field measurements from 102 sites, containing sampling frequency irregularities and gaps in time. Furthermore, the sampling platform types used by the data sets may influence the posterior flux estimates, namely fixed surface, tower, ship and aircraft sites. To explore the sensitivity of the posterior surface fluxes to the observation network geometry, inversions composed of all sites, only aircraft, only ship, only tower and only fixed surface sites, are performed and compared. Also, we investigate the sensitivity of the error reduction associated with the resolution of the GEOS-Chem simulation (4°×5° vs 2°×2.5°) used to calculate the response matrix. Using a higher resolution grid decreased the model-data error at most sites, thereby

  10. High-Resolution Assimilation of GRACE Terrestrial Water Storage Observations to Represent Local-Scale Water Table Depths

    Science.gov (United States)

    Stampoulis, D.; Reager, J. T., II; David, C. H.; Famiglietti, J. S.; Andreadis, K.

    2017-12-01

    Despite the numerous advances in hydrologic modeling and improvements in Land Surface Models, an accurate representation of the water table depth (WTD) still does not exist. Data assimilation of observations of the joint NASA and DLR mission, Gravity Recovery and Climate Experiment (GRACE) leads to statistically significant improvements in the accuracy of hydrologic models, ultimately resulting in more reliable estimates of water storage. However, the usually shallow groundwater compartment of the models presents a problem with GRACE assimilation techniques, as these satellite observations account for much deeper aquifers. To improve the accuracy of groundwater estimates and allow the representation of the WTD at fine spatial scales we implemented a novel approach that enables a large-scale data integration system to assimilate GRACE data. This was achieved by augmenting the Variable Infiltration Capacity (VIC) hydrologic model, which is the core component of the Regional Hydrologic Extremes Assessment System (RHEAS), a high-resolution modeling framework developed at the Jet Propulsion Laboratory (JPL) for hydrologic modeling and data assimilation. The model has insufficient subsurface characterization and therefore, to reproduce groundwater variability not only in shallow depths but also in deep aquifers, as well as to allow GRACE assimilation, a fourth soil layer of varying depth ( 1000 meters) was added in VIC as the bottom layer. To initialize a water table in the model we used gridded global WTD data at 1 km resolution which were spatially aggregated to match the model's resolution. Simulations were then performed to test the augmented model's ability to capture seasonal and inter-annual trends of groundwater. The 4-layer version of VIC was run with and without assimilating GRACE Total Water Storage anomalies (TWSA) over the Central Valley in California. This is the first-ever assimilation of GRACE TWSA for the determination of realistic water table depths, at

  11. Intense energetic electron flux enhancements in Mercury's magnetosphere: An integrated view with high-resolution observations from MESSENGER.

    Science.gov (United States)

    Baker, Daniel N; Dewey, Ryan M; Lawrence, David J; Goldsten, John O; Peplowski, Patrick N; Korth, Haje; Slavin, James A; Krimigis, Stamatios M; Anderson, Brian J; Ho, George C; McNutt, Ralph L; Raines, Jim M; Schriver, David; Solomon, Sean C

    2016-03-01

    The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission to Mercury has provided a wealth of new data about energetic particle phenomena. With observations from MESSENGER's Energetic Particle Spectrometer, as well as data arising from energetic electrons recorded by the X-Ray Spectrometer and Gamma-Ray and Neutron Spectrometer (GRNS) instruments, recent work greatly extends our record of the acceleration, transport, and loss of energetic electrons at Mercury. The combined data sets include measurements from a few keV up to several hundred keV in electron kinetic energy and have permitted relatively good spatial and temporal resolution for many events. We focus here on the detailed nature of energetic electron bursts measured by the GRNS system, and we place these events in the context of solar wind and magnetospheric forcing at Mercury. Our examination of data at high temporal resolution (10 ms) during the period March 2013 through October 2014 supports strongly the view that energetic electrons are accelerated in the near-tail region of Mercury's magnetosphere and are subsequently "injected" onto closed magnetic field lines on the planetary nightside. The electrons populate the plasma sheet and drift rapidly eastward toward the dawn and prenoon sectors, at times executing multiple complete drifts around the planet to form "quasi-trapped" populations.

  12. High-Resolution Mid-IR Imaging of Jupiter's Great Red Spot: Comparing Cassini, VLT and Subaru Observations

    Science.gov (United States)

    Fletcher, Leigh N.; Orton, G. S.; Yanamandra-Fisher, P.; Irwin, P. G. J.; Baines, K. H.; Edkins, E.; Line, M. R.; Mousis, O.; Parrish, P. D.; Vanzi, L.; Fuse, T.; Fujoyoshi, T.

    2008-09-01

    In the eight years since the Cassini fly-by of Jupiter, the spatial resolution of ground-based observations of Jupiter's giant anticyclonic storm systems (the Great Red Spot, Oval BA and others) using 8m-class telescopes has surpassed the resolution of the Cassini/CIRS maps. We present a time-series of mid-IR imaging of the Great Red Spot (GRS) and its environs from the VISIR instrument on the Very Large Telescope (UT3/Melipal) and the COMICS instrument on the Subaru telescope (Hawaii). The NEMESIS optimal-estimation retrieval algorithm (Irwin et al., 2008) is used to analyse both the 7-25 micron filtered imaging from 2005-2008 and Cassini/CIRS 7-16 micron data from 2000. We demonstrate the ability to map temperatures in the 100-400 mbar range, NH3, aerosol opacity and the para-H2 fraction from the filtered imaging. Furthermore, the Cassini/CIRS spectra are used to map the PH3 mole fraction around the GRS. The thermal field, gaseous composition and aerosol distribution are used as diagnostics for the atmospheric motion associated with the GRS. Changes in the atmospheric state in response to close encounters with Oval BA and other vortices will be assessed. These results will be discussed in light of their implications for the planning of the Europa-Jupiter System Mission.

  13. Investigating the Lyman photon escape in local starburst galaxies with the Cosmic Origins Spectrograph

    Science.gov (United States)

    Hernandez, Svea; Leitherer, Claus; Boquien, Médéric; Buat, Véronique; Burgarella, Denis; Calzetti, Daniela; Noll, Stefan

    2018-04-01

    We present a study of 7 star-forming galaxies from the Cosmic Evolution Survey (COSMOS) observed with the Cosmic Origins Spectrograph (COS) on board the Hubble Space Telescope (HST). The galaxies are located at relatively low redshifts, z ˜0.3, with morphologies ranging from extended and disturbed to compact and smooth. To complement the HST observations we also analyze observations taken with the VIMOS spectrograph on the Very Large Telescope (VLT). In our galaxy sample we identify three objects with double peak Lyman-α profiles similar to those seen in Green Pea compact galaxies and measure peak separations of 655, 374, and 275 km s-1. We measure Lyman-α escape fractions with values ranging between 5-13%. Given the low flux levels in the individual COS exposures we apply a weighted stacking approach to obtain a single spectrum. From this COS combined spectrum we infer upper limits for the absolute and relative Lyman continuum escape fractions of f_abs(LyC) = 0.4^{+10.1}_{-0.4}% and f_res(LyC) = 1.7^{+15.2}_{-1.7}%, respectively. Finally, we find that most of these galaxies have moderate UV and optical SFRs (SFRs ≲ 10 M⊙ yr-1).

  14. Solar glint suppression in compact planetary ultraviolet spectrographs

    Science.gov (United States)

    Davis, Michael W.; Cook, Jason C.; Grava, Cesare; Greathouse, Thomas K.; Gladstone, G. Randall; Retherford, Kurt D.

    2015-08-01

    Solar glint suppression is an important consideration in the design of compact photon-counting ultraviolet spectrographs. Southwest Research Institute developed the Lyman Alpha Mapping Project for the Lunar Reconnaissance Orbiter (launch in 2009), and the Ultraviolet Spectrograph on Juno (Juno-UVS, launch in 2011). Both of these compact spectrographs revealed minor solar glints in flight that did not appear in pre-launch analyses. These glints only appeared when their respective spacecraft were operating outside primary science mission parameters. Post-facto scattered light analysis verifies the geometries at which these glints occurred and why they were not caught during ground testing or nominal mission operations. The limitations of standard baffle design at near-grazing angles are discussed, as well as the importance of including surface scatter properties in standard stray light analyses when determining solar keep-out efficiency. In particular, the scattered light analysis of these two instruments shows that standard "one bounce" assumptions in baffle design are not always enough to prevent scattered sunlight from reaching the instrument focal plane. Future builds, such as JUICE-UVS, will implement improved scattered and stray light modeling early in the design phase to enhance capabilities in extended mission science phases, as well as optimize solar keep out volume.

  15. The ICE spectrograph for PEPSI at the LBT: preliminary optical design

    Science.gov (United States)

    Pallavicini, Roberto; Zerbi, Filippo M.; Spano, Paolo; Conconi, Paolo; Mazzoleni, Ruben; Molinari, Emilio; Strassmeier, Klaus G.

    2003-03-01

    We present a preliminary design study for a high-resolution echelle spectrograph (ICE) to be used with the spectropolarimeter PEPSI under development at the LBT. In order to meet the scientific requirements and take full advantage of the peculiarities of the LBT (i.e. the binocular nature and the adaptive optics capabilities), we have designed a fiber-fed bench mounted instrument for both high resolution (R ≍ 100,000; non-AO polarimetric and integral light modes) and ultra-high resolution (R ≍ 300,000; AO integral light mode). In both cases, 4 spectra per order (two for each primary mirror) shall be accomodated in a 2-dimensional cross dispersed echelle format. In order to obtain a resolution-slit product of ≍ 100,000 as required by the science case, we have considered two alternative designs, one with two R4 echelles in series and the other with a sigle R4 echelle and fiber slicing. A white-pupil design, VPH cross-dispersers and two cameras of different focal length for the AO and non-AO modes are adopted in both cases. It is concluded that the single-echelle fiber-slicer solution has to be preferred in terms of performances, complexity and cost. It can be implemented at the LBT in two phases, with the long-camera AO mode added in a second phase depending on the availability of funds and the time-scale for implementation of the AO system.

  16. DARKNESS: A Microwave Kinetic Inductance Detector Integral Field Spectrograph for High-contrast Astronomy

    Science.gov (United States)

    Meeker, Seth R.; Mazin, Benjamin A.; Walter, Alex B.; Strader, Paschal; Fruitwala, Neelay; Bockstiegel, Clint; Szypryt, Paul; Ulbricht, Gerhard; Coiffard, Grégoire; Bumble, Bruce; Cancelo, Gustavo; Zmuda, Ted; Treptow, Ken; Wilcer, Neal; Collura, Giulia; Dodkins, Rupert; Lipartito, Isabel; Zobrist, Nicholas; Bottom, Michael; Shelton, J. Chris; Mawet, Dimitri; van Eyken, Julian C.; Vasisht, Gautam; Serabyn, Eugene

    2018-06-01

    We present DARKNESS (the DARK-speckle Near-infrared Energy-resolving Superconducting Spectrophotometer), the first of several planned integral field spectrographs to use optical/near-infrared Microwave Kinetic Inductance Detectors (MKIDs) for high-contrast imaging. The photon counting and simultaneous low-resolution spectroscopy provided by MKIDs will enable real-time speckle control techniques and post-processing speckle suppression at frame rates capable of resolving the atmospheric speckles that currently limit high-contrast imaging from the ground. DARKNESS is now operational behind the PALM-3000 extreme adaptive optics system and the Stellar Double Coronagraph at Palomar Observatory. Here, we describe the motivation, design, and characterization of the instrument, early on-sky results, and future prospects.

  17. A Study on Various Meteoroid Disintegration Mechanisms as Observed from the Resolute Bay Incoherent Scatter Radar (RISR)

    Science.gov (United States)

    Malhotra, A.; Mathews, J. D.

    2011-01-01

    There has been much interest in the meteor physics community recently regarding the form that meteoroid mass flux arrives in the upper atmosphere. Of particular interest are the relative roles of simple ablation, differential ablation, and fragmentation in the meteoroid mass flux observed by the Incoherent Scatter Radars (ISR). We present here the first-ever statistical study showing the relative contribution of the above-mentioned three mechanisms. These are also one of the first meteor results from the newly-operational Resolute Bay ISR. These initial results emphasize that meteoroid disintegration into the upper atmosphere is a complex process in which all the three above-mentioned mechanisms play an important role though fragmentation seems to be the dominant mechanism. These results prove vital in studying how meteoroid mass is deposited in the upper atmosphere which has important implications to the aeronomy of the region and will also contribute in improving current meteoroid disintegration/ablation models.

  18. Mesoscale spiral vortex embedded within a Lake Michigan snow squall band - High resolution satellite observations and numerical model simulations

    Science.gov (United States)

    Lyons, Walter A.; Keen, Cecil S.; Hjelmfelt, Mark; Pease, Steven R.

    1988-01-01

    It is known that Great Lakes snow squall convection occurs in a variety of different modes depending on various factors such as air-water temperature contrast, boundary-layer wind shear, and geostrophic wind direction. An exceptional and often neglected source of data for mesoscale cloud studies is the ultrahigh resolution multispectral data produced by Landsat satellites. On October 19, 1972, a clearly defined spiral vortex was noted in a Landsat-1 image near the southern end of Lake Michigan during an exceptionally early cold air outbreak over a still very warm lake. In a numerical simulation using a three-dimensional Eulerian hydrostatic primitive equation mesoscale model with an initially uniform wind field, a definite analog to the observed vortex was generated. This suggests that intense surface heating can be a principal cause in the development of a low-level mesoscale vortex.

  19. Mapping High-Resolution Soil Moisture over Heterogeneous Cropland Using Multi-Resource Remote Sensing and Ground Observations

    Directory of Open Access Journals (Sweden)

    Lei Fan

    2015-10-01

    Full Text Available High spatial resolution soil moisture (SM data are crucial in agricultural applications, river-basin management, and understanding hydrological processes. Merging multi-resource observations is one of the ways to improve the accuracy of high spatial resolution SM data in the heterogeneous cropland. In this paper, the Bayesian Maximum Entropy (BME methodology is implemented to merge the following four types of observed data to obtain the spatial distribution of SM at 100 m scale: soil moisture observed by wireless sensor network (WSN, Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER-derived soil evaporative efficiency (SEE, irrigation statistics, and Polarimetric L-band Multi-beam Radiometer (PLMR-derived SM products (~700 m. From the poor BME predictions obtained by merging only WSN and SEE data, we observed that the SM heterogeneity caused by irrigation and the attenuating sensitivity of the SEE data to SM caused by the canopies result in BME prediction errors. By adding irrigation statistics to the merged datasets, the overall RMSD of the BME predictions during the low-vegetated periods can be successively reduced from 0.052 m3·m−3 to 0.033 m3·m−3. The coefficient of determination (R2 and slope between the predicted and in situ measured SM data increased from 0.32 to 0.64 and from 0.38 to 0.82, respectively, but large estimation errors occurred during the moderately vegetated periods (RMSD = 0.041 m3·m−3, R = 0.43 and the slope = 0.41. Further adding the downscaled SM information from PLMR SM products to the merged datasets, the predictions were satisfactorily accurate with an RMSD of 0.034 m3·m−3, R2 of 0.4 and a slope of 0.69 during moderately vegetated periods. Overall, the results demonstrated that merging multi-resource observations into SM estimations can yield improved accuracy in heterogeneous cropland.

  20. A high-resolution open biomass burning emission inventory based on statistical data and MODIS observations in mainland China

    Science.gov (United States)

    Xu, Y.; Fan, M.; Huang, Z.; Zheng, J.; Chen, L.

    2017-12-01

    Open biomass burning which has adverse effects on air quality and human health is an important source of gas and particulate matter (PM) in China. Current emission estimations of open biomass burning are generally based on single source (alternative to statistical data and satellite-derived data) and thus contain large uncertainty due to the limitation of data. In this study, to quantify the 2015-based amount of open biomass burning, we established a new estimation method for open biomass burning activity levels by combining the bottom-up statistical data and top-down MODIS observations. And three sub-category sources which used different activity data were considered. For open crop residue burning, the "best estimate" of activity data was obtained by averaging the statistical data from China statistical yearbooks and satellite observations from MODIS burned area product MCD64A1 weighted by their uncertainties. For the forest and grassland fires, their activity levels were represented by the combination of statistical data and MODIS active fire product MCD14ML. Using the fire radiative power (FRP) which is considered as a better indicator of active fire level as the spatial allocation surrogate, coarse gridded emissions were reallocated into 3km ×3km grids to get a high-resolution emission inventory. Our results showed that emissions of CO, NOx, SO2, NH3, VOCs, PM2.5, PM10, BC and OC in mainland China were 6607, 427, 84, 79, 1262, 1198, 1222, 159 and 686 Gg/yr, respectively. Among all provinces of China, Henan, Shandong and Heilongjiang were the top three contributors to the total emissions. In this study, the developed open biomass burning emission inventory with a high-resolution could support air quality modeling and policy-making for pollution control.

  1. The infrared imaging spectrograph (IRIS) for TMT: volume phase holographic grating performance testing and discussion

    Science.gov (United States)

    Chen, Shaojie; Meyer, Elliot; Wright, Shelley A.; Moore, Anna M.; Larkin, James E.; Maire, Jerome; Mieda, Etsuko; Simard, Luc

    2014-07-01

    Maximizing the grating efficiency is a key goal for the first light instrument IRIS (Infrared Imaging Spectrograph) currently being designed to sample the diffraction limit of the TMT (Thirty Meter Telescope). Volume Phase Holographic (VPH) gratings have been shown to offer extremely high efficiencies that approach 100% for high line frequencies (i.e., 600 to 6000l/mm), which has been applicable for astronomical optical spectrographs. However, VPH gratings have been less exploited in the near-infrared, particularly for gratings that have lower line frequencies. Given their potential to offer high throughputs and low scattered light, VPH gratings are being explored for IRIS as a potential dispersing element in the spectrograph. Our team has procured near-infrared gratings from two separate vendors. We have two gratings with the specifications needed for IRIS current design: 1.51-1.82μm (H-band) to produce a spectral resolution of 4000 and 1.19-1.37μm (J-band) to produce a spectral resolution of 8000. The center wavelengths for each grating are 1.629μm and 1.27μm, and the groove densities are 177l/mm and 440l/mm for H-band R=4000 and J-band R=8000, respectively. We directly measure the efficiencies in the lab and find that the peak efficiencies of these two types of gratings are quite good with a peak efficiency of ~88% at the Bragg angle in both TM and TE modes at H-band, and 90.23% in TM mode, 79.91% in TE mode at J-band for the best vendor. We determine the drop in efficiency off the Bragg angle, with a 20-23% decrease in efficiency at H-band when 2.5° deviation from the Bragg angle, and 25%-28% decrease at J-band when 5° deviation from the Bragg angle.

  2. High-resolution vertical velocities and their power spectrum observed with the MAARSY radar - Part 1: frequency spectrum

    Science.gov (United States)

    Li, Qiang; Rapp, Markus; Stober, Gunter; Latteck, Ralph

    2018-04-01

    The Middle Atmosphere Alomar Radar System (MAARSY) installed at the island of Andøya has been run for continuous probing of atmospheric winds in the upper troposphere and lower stratosphere (UTLS) region. In the current study, we present high-resolution wind measurements during the period between 2010 and 2013 with MAARSY. The spectral analysis applying the Lomb-Scargle periodogram method has been carried out to determine the frequency spectra of vertical wind velocity. From a total of 522 days of observations, the statistics of the spectral slope have been derived and show a dependence on the background wind conditions. It is a general feature that the observed spectra of vertical velocity during active periods (with wind velocity > 10 m s-1) are much steeper than during quiet periods (with wind velocity wind conditions considered together the general spectra are obtained and their slopes are compared with the background horizontal winds. The comparisons show that the observed spectra become steeper with increasing wind velocities under quiet conditions, approach a spectral slope of -5/3 at a wind velocity of 10 m s-1 and then roughly maintain this slope (-5/3) for even stronger winds. Our findings show an overall agreement with previous studies; furthermore, they provide a more complete climatology of frequency spectra of vertical wind velocities under different wind conditions.

  3. Analysis of a severe weather event over Mecca, Kingdom of Saudi Arabia, using observations and high-resolution modelling

    KAUST Repository

    Dasari, Hari Prasad; Attada, Raju; Knio, Omar; Hoteit, Ibrahim

    2017-01-01

    The dynamic and thermodynamic characteristics of a severe weather event that caused heavy wind and rainfall over Mecca, Kingdom of Saudi Arabia, on 11 September 2015 were investigated using available observations and the Weather Research and Forecasting model configured at 1 km resolution. Analysis of surface, upper air observations and model outputs reveals that the event was initiated by synoptic scale conditions that intensified by interaction with the local topography, triggering strong winds and high convective rainfall. The model predicted the observed characteristics of both rainfall and winds well, accurately predicting the maximum wind speed of 20–25 m s−1 that was sustained for about 2 h. A time series analysis of various atmospheric variables suggests a sudden fall in pressure, temperature and outgoing long wave radiation before the development of the storm, followed by a significant increase in wind speed, latent and moisture fluxes and change in wind direction during the mature stage of the storm. The model outputs suggest that the heavy rainfall was induced by a low-level moisture supply from the Red Sea combined with orographic lifting. Latent heat release from microphysical processes increased the vertical velocities in the mid-troposphere, further increasing the low-level convergence that strengthened the event.

  4. Analysis of a severe weather event over Mecca, Kingdom of Saudi Arabia, using observations and high-resolution modelling

    KAUST Repository

    Dasari, Hari Prasad

    2017-08-10

    The dynamic and thermodynamic characteristics of a severe weather event that caused heavy wind and rainfall over Mecca, Kingdom of Saudi Arabia, on 11 September 2015 were investigated using available observations and the Weather Research and Forecasting model configured at 1 km resolution. Analysis of surface, upper air observations and model outputs reveals that the event was initiated by synoptic scale conditions that intensified by interaction with the local topography, triggering strong winds and high convective rainfall. The model predicted the observed characteristics of both rainfall and winds well, accurately predicting the maximum wind speed of 20–25 m s−1 that was sustained for about 2 h. A time series analysis of various atmospheric variables suggests a sudden fall in pressure, temperature and outgoing long wave radiation before the development of the storm, followed by a significant increase in wind speed, latent and moisture fluxes and change in wind direction during the mature stage of the storm. The model outputs suggest that the heavy rainfall was induced by a low-level moisture supply from the Red Sea combined with orographic lifting. Latent heat release from microphysical processes increased the vertical velocities in the mid-troposphere, further increasing the low-level convergence that strengthened the event.

  5. Vertical Rise Velocity of Equatorial Plasma Bubbles Estimated from Equatorial Atmosphere Radar Observations and High-Resolution Bubble Model Simulations

    Science.gov (United States)

    Yokoyama, T.; Ajith, K. K.; Yamamoto, M.; Niranjan, K.

    2017-12-01

    Equatorial plasma bubble (EPB) is a well-known phenomenon in the equatorial ionospheric F region. As it causes severe scintillation in the amplitude and phase of radio signals, it is important to understand and forecast the occurrence of EPBs from a space weather point of view. The development of EPBs is presently believed as an evolution of the generalized Rayleigh-Taylor instability. We have already developed a 3D high-resolution bubble (HIRB) model with a grid spacing of as small as 1 km and presented nonlinear growth of EPBs which shows very turbulent internal structures such as bifurcation and pinching. As EPBs have field-aligned structures, the latitude range that is affected by EPBs depends on the apex altitude of EPBs over the dip equator. However, it was not easy to observe the apex altitude and vertical rise velocity of EPBs. Equatorial Atmosphere Radar (EAR) in Indonesia is capable of steering radar beams quickly so that the growth phase of EPBs can be captured clearly. The vertical rise velocities of the EPBs observed around the midnight hours are significantly smaller compared to those observed in postsunset hours. Further, the vertical growth of the EPBs around midnight hours ceases at relatively lower altitudes, whereas the majority of EPBs at postsunset hours found to have grown beyond the maximum detectable altitude of the EAR. The HIRB model with varying background conditions are employed to investigate the possible factors that control the vertical rise velocity and maximum attainable altitudes of EPBs. The estimated rise velocities from EAR observations at both postsunset and midnight hours are, in general, consistent with the nonlinear evolution of EPBs from the HIRB model.

  6. A medaka model of cancer allowing direct observation of transplanted tumor cells in vivo at a cellular-level resolution.

    Science.gov (United States)

    Hasegawa, Sumitaka; Maruyama, Kouichi; Takenaka, Hikaru; Furukawa, Takako; Saga, Tsuneo

    2009-08-18

    The recent success with small fish as an animal model of cancer with the aid of fluorescence technique has attracted cancer modelers' attention because it would be possible to directly visualize tumor cells in vivo in real time. Here, we report a medaka model capable of allowing the observation of various cell behaviors of transplanted tumor cells, such as cell proliferation and metastasis, which were visualized easily in vivo. We established medaka melanoma (MM) cells stably expressing GFP and transplanted them into nonirradiated and irradiated medaka. The tumor cells were grown at the injection sites in medaka, and the spatiotemporal changes were visualized under a fluorescence stereoscopic microscope at a cellular-level resolution, and even at a single-cell level. Tumor dormancy and metastasis were also observed. Interestingly, in irradiated medaka, accelerated tumor growth and metastasis of the transplanted tumor cells were directly visualized. Our medaka model provides an opportunity to visualize in vivo tumor cells "as seen in a culture dish" and would be useful for in vivo tumor cell biology.

  7. High-time resolution conjugate SuperDARN radar observations of the dayside convection response to changes in IMF By

    Directory of Open Access Journals (Sweden)

    G. Chisham

    2000-02-01

    Full Text Available We present data from conjugate SuperDARN radars describing the high-latitude ionosphere's response to changes in the direction of IMF By during a period of steady IMF Bz southward and Bx positive. During this interval, the radars were operating in a special mode which gave high-time resolution data (30 s sampling period on three adjacent beams with a full scan every 3 min. The location of the radars around magnetic local noon at the time of the event allowed detailed observations of the variations in the ionospheric convection patterns close to the cusp region as IMF By varied. A significant time delay was observed in the ionospheric response to the IMF By changes between the two hemispheres. This is explained as being partially a consequence of the location of the dominant merging region on the magnetopause, which is ~8-12RE closer to the northern ionosphere than to the southern ionosphere (along the magnetic field line due to the dipole tilt of the magnetosphere and the orientation of the IMF. This interpretation supports the anti-parallel merging hypothesis and highlights the importance of the IMF Bx component in solar wind-magnetosphere coupling.Key words: Ionosphere (plasma convection - Magnetospheric physics (magnetopause, cusp, and boundary layers; solar wind - magnetosphere interactions

  8. SERPENS CLUSTER B AND VV SER OBSERVED WITH HIGH SPATIAL RESOLUTION AT 70, 160, AND 350 μm

    International Nuclear Information System (INIS)

    Harvey, Paul; Dunham, Michael M.

    2009-01-01

    We report on diffraction-limited observations in the far-infrared (FIR) and submillimeter of the Cluster B region of Serpens (G3-G6 Cluster) and of the Herbig Be star to the south, VV Ser. The observations were made with the Spitzer/MIPS instrument in fine-scale mode at 70 μm, in a normal mapping mode at 160 μm (VV Ser only), and the Caltech Submillimeter Observatory (CSO) Submillimeter High Angular Resolution Camera II (SHARC-II) camera at 350 μm (Cluster B only). We use these data to define the spectral energy distributions of the tightly grouped members of Cluster B, many of whose spectral energy distribution (SED)'s peak in the FIR. We compare our results to those of the c2d survey of Serpens and to published models for the FIR emission from VV Ser. We find that values of L bol and T bol calculated with our new photometry show only modest changes from previous values, and that most source SED classifications remain unchanged.

  9. Active disease and residual damage in treated Wegener's granulomatosis: an observational study using pulmonary high-resolution computed tomography

    International Nuclear Information System (INIS)

    Komocsi, Andras; Reuter, Michael; Heller, Martin; Murakoezi, Henriette; Gross, Wolfgang L.; Schnabel, Armin

    2003-01-01

    The purpose of this study was to determine to what extent high-resolution computed tomography (HRCT) of the lungs can distinguish active inflammatory disease from inactive cicatricial disease in patients treated for Wegener's granulomatosis (WG). Twenty-eight WG patients with active pulmonary disease underwent a first HRCT examination immediately before standard immunosuppressive treatment and a second examination after clinical remission had been achieved. Lesions remaining after treatment were categorized as residual damage and were compared with findings during active disease to see by what features active and cicatricial disease can be distinguished. During active disease 17 patients had nodules/masses, 12 had ground-glass opacities, 6 had septal lines and 6 had non-septal lines. After treatment, ground-glass opacities had resolved completely. Nodules/masses had resolved in 8 patients and had diminished in 7 patients. Residual nodules were distinguished from nodules/masses in active disease by lack of cavitation and a diameter of mostly <15 mm. In one-third of patients lines resolved, but in 8 instances new lines evolved during immunosuppression. During a follow-up period of a median 26.5 months (range 20.0-33.8), patients with residual nodules or lines had no more relapses than patients with completely cleared lungs. Treated pulmonary WG leaves substantial residual damage. High-resolution CT does assist in the distinction between active and inactive lesions. Ground-glass opacities, cavitating nodules/masses and masses measuring more than 3 cm represent active disease ordinarily. Non-cavitary small nodules and septal or non-septal lines can be either active or cicatricial lesions. The nature of these lesions needs to be clarified by longitudinal observation. (orig.)

  10. Integrating heterogeneous earth observation data for assessment of high-resolution inundation boundaries generated during flood emergencies.

    Science.gov (United States)

    Sava, E.; Cervone, G.; Kalyanapu, A. J.; Sampson, K. M.

    2017-12-01

    The increasing trend in flooding events, paired with rapid urbanization and an aging infrastructure is projected to enhance the risk of catastrophic losses and increase the frequency of both flash and large area floods. During such events, it is critical for decision makers and emergency responders to have access to timely actionable knowledge regarding preparedness, emergency response, and recovery before, during and after a disaster. Large volumes of data sets derived from sophisticated sensors, mobile phones, and social media feeds are increasingly being used to improve citizen services and provide clues to the best way to respond to emergencies through the use of visualization and GIS mapping. Such data, coupled with recent advancements in data fusion techniques of remote sensing with near real time heterogeneous datasets have allowed decision makers to more efficiently extract precise and relevant knowledge and better understand how damage caused by disasters have real time effects on urban population. This research assesses the feasibility of integrating multiple sources of contributed data into hydrodynamic models for flood inundation simulation and estimating damage assessment. It integrates multiple sources of high-resolution physiographic data such as satellite remote sensing imagery coupled with non-authoritative data such as Civil Air Patrol (CAP) and `during-event' social media observations of flood inundation in order to improve the identification of flood mapping. The goal is to augment remote sensing imagery with new open-source datasets to generate flood extend maps at higher temporal and spatial resolution. The proposed methodology is applied on two test cases, relative to the 2013 Boulder Colorado flood and the 2015 floods in Texas.

  11. First Top-Down Estimates of Anthropogenic NOx Emissions Using High-Resolution Airborne Remote Sensing Observations

    Science.gov (United States)

    Souri, Amir H.; Choi, Yunsoo; Pan, Shuai; Curci, Gabriele; Nowlan, Caroline R.; Janz, Scott J.; Kowalewski, Matthew G.; Liu, Junjie; Herman, Jay R.; Weinheimer, Andrew J.

    2018-03-01

    A number of satellite-based instruments have become an essential part of monitoring emissions. Despite sound theoretical inversion techniques, the insufficient samples and the footprint size of current observations have introduced an obstacle to narrow the inversion window for regional models. These key limitations can be partially resolved by a set of modest high-quality measurements from airborne remote sensing. This study illustrates the feasibility of nitrogen dioxide (NO2) columns from the Geostationary Coastal and Air Pollution Events Airborne Simulator (GCAS) to constrain anthropogenic NOx emissions in the Houston-Galveston-Brazoria area. We convert slant column densities to vertical columns using a radiative transfer model with (i) NO2 profiles from a high-resolution regional model (1 × 1 km2) constrained by P-3B aircraft measurements, (ii) the consideration of aerosol optical thickness impacts on radiance at NO2 absorption line, and (iii) high-resolution surface albedo constrained by ground-based spectrometers. We characterize errors in the GCAS NO2 columns by comparing them to Pandora measurements and find a striking correlation (r > 0.74) with an uncertainty of 3.5 × 1015 molecules cm-2. On 9 of 10 total days, the constrained anthropogenic emissions by a Kalman filter yield an overall 2-50% reduction in polluted areas, partly counterbalancing the well-documented positive bias of the model. The inversion, however, boosts emissions by 94% in the same areas on a day when an unprecedented local emissions event potentially occurred, significantly mitigating the bias of the model. The capability of GCAS at detecting such an event ensures the significance of forthcoming geostationary satellites for timely estimates of top-down emissions.

  12. High-Resolution NDVI from Planet's Constellation of Earth Observing Nano-Satellites: A New Data Source for Precision Agriculture

    KAUST Repository

    Houborg, Rasmus

    2016-09-19

    Planet Labs ("Planet") operate the largest fleet of active nano-satellites in orbit, offering an unprecedented monitoring capacity of daily and global RGB image capture at 3-5 m resolution. However, limitations in spectral resolution and lack of accurate radiometric sensor calibration impact the utility of this rich information source. In this study, Planet\\'s RGB imagery was translated into a Normalized Difference Vegetation Index (NDVI): a common metric for vegetation growth and condition. Our framework employs a data mining approach to build a set of rule-based regression models that relate RGB data to atmospherically corrected Landsat-8 NDVI. The approach was evaluated over a desert agricultural landscape in Saudi Arabia where the use of near-coincident (within five days) Planet and Landsat-8 acquisitions in the training of the regression models resulted in NDVI predictabilities with an r2 of approximately 0.97 and a Mean Absolute Deviation (MAD) on the order of 0.014 (~9%). The MAD increased to 0.021 (~14%) when the Landsat NDVI training image was further away (i.e., 11-16 days) from the corrected Planet image. In these cases, the use of MODIS observations to inform on the change in NDVI occurring between overpasses was shown to significantly improve prediction accuracies. MAD levels ranged from 0.002 to 0.011 (3.9% to 9.1%) for the best performing 80% of the data. The technique is generic and extendable to any region of interest, increasing the utility of Planet\\'s dense time-series of RGB imagery.

  13. High-Resolution NDVI from Planet's Constellation of Earth Observing Nano-Satellites: A New Data Source for Precision Agriculture

    KAUST Repository

    Houborg, Rasmus; McCabe, Matthew

    2016-01-01

    Planet Labs ("Planet") operate the largest fleet of active nano-satellites in orbit, offering an unprecedented monitoring capacity of daily and global RGB image capture at 3-5 m resolution. However, limitations in spectral resolution and lack of accurate radiometric sensor calibration impact the utility of this rich information source. In this study, Planet's RGB imagery was translated into a Normalized Difference Vegetation Index (NDVI): a common metric for vegetation growth and condition. Our framework employs a data mining approach to build a set of rule-based regression models that relate RGB data to atmospherically corrected Landsat-8 NDVI. The approach was evaluated over a desert agricultural landscape in Saudi Arabia where the use of near-coincident (within five days) Planet and Landsat-8 acquisitions in the training of the regression models resulted in NDVI predictabilities with an r2 of approximately 0.97 and a Mean Absolute Deviation (MAD) on the order of 0.014 (~9%). The MAD increased to 0.021 (~14%) when the Landsat NDVI training image was further away (i.e., 11-16 days) from the corrected Planet image. In these cases, the use of MODIS observations to inform on the change in NDVI occurring between overpasses was shown to significantly improve prediction accuracies. MAD levels ranged from 0.002 to 0.011 (3.9% to 9.1%) for the best performing 80% of the data. The technique is generic and extendable to any region of interest, increasing the utility of Planet's dense time-series of RGB imagery.

  14. Recovering the colour-dependent albedo of exoplanets with high-resolution spectroscopy: from ESPRESSO to the ELT.

    Science.gov (United States)

    Martins, J. H. C.; Figueira, P.; Santos, N. C.; Melo, C.; Garcia Muñoz, A.; Faria, J.; Pepe, F.; Lovis, C.

    2018-05-01

    The characterization of planetary atmospheres is a daunting task, pushing current observing facilities to their limits. The next generation of high-resolution spectrographs mounted on large telescopes - such as ESPRESSO@VLT and HIRES@ELT - will allow us to probe and characterize exoplanetary atmospheres in greater detail than possible to this point. We present a method that permits the recovery of the colour-dependent reflectivity of exoplanets from high-resolution spectroscopic observations. Determining the wavelength-dependent albedo will provide insight into the chemical properties and weather of the exoplanet atmospheres. For this work, we simulated ESPRESSO@VLT and HIRES@ELT high-resolution observations of known planetary systems with several albedo configurations. We demonstrate how the cross correlation technique applied to theses simulated observations can be used to successfully recover the geometric albedo of exoplanets over a range of wavelengths. In all cases, we were able to recover the wavelength dependent albedo of the simulated exoplanets and distinguish between several atmospheric models representing different atmospheric configurations. In brief, we demonstrate that the cross correlation technique allows for the recovery of exoplanetary albedo functions from optical observations with the next generation of high-resolution spectrographs that will be mounted on large telescopes with reasonable exposure times. Its recovery will permit the characterization of exoplanetary atmospheres in terms of composition and dynamics and consolidates the cross correlation technique as a powerful tool for exoplanet characterization.

  15. Sensitivity to grid resolution in the ability of a chemical transport model to simulate observed oxidant chemistry under high-isoprene conditions

    Directory of Open Access Journals (Sweden)

    K. Yu

    2016-04-01

    Full Text Available Formation of ozone and organic aerosol in continental atmospheres depends on whether isoprene emitted by vegetation is oxidized by the high-NOx pathway (where peroxy radicals react with NO or by low-NOx pathways (where peroxy radicals react by alternate channels, mostly with HO2. We used mixed layer observations from the SEAC4RS aircraft campaign over the Southeast US to test the ability of the GEOS-Chem chemical transport model at different grid resolutions (0.25°  ×  0.3125°, 2°  ×  2.5°, 4°  ×  5° to simulate this chemistry under high-isoprene, variable-NOx conditions. Observations of isoprene and NOx over the Southeast US show a negative correlation, reflecting the spatial segregation of emissions; this negative correlation is captured in the model at 0.25°  ×  0.3125° resolution but not at coarser resolutions. As a result, less isoprene oxidation takes place by the high-NOx pathway in the model at 0.25°  ×  0.3125° resolution (54 % than at coarser resolution (59 %. The cumulative probability distribution functions (CDFs of NOx, isoprene, and ozone concentrations show little difference across model resolutions and good agreement with observations, while formaldehyde is overestimated at coarse resolution because excessive isoprene oxidation takes place by the high-NOx pathway with high formaldehyde yield. The good agreement of simulated and observed concentration variances implies that smaller-scale non-linearities (urban and power plant plumes are not important on the regional scale. Correlations of simulated vs. observed concentrations do not improve with grid resolution because finer modes of variability are intrinsically more difficult to capture. Higher model resolution leads to decreased conversion of NOx to organic nitrates and increased conversion to nitric acid, with total reactive nitrogen oxides (NOy changing little across model resolutions. Model concentrations in the

  16. Cross-calibration of Medium Resolution Earth Observing Satellites by Using EO-1 Hyperion-derived Spectral Surface Reflectance from "Lunar Cal Sites"

    Science.gov (United States)

    Ungar, S.

    2017-12-01

    Over the past 3 years, the Earth Observing-one (EO-1) Hyperion imaging spectrometer was used to slowly scan the lunar surface at a rate which results in up to 32X oversampling to effectively increase the SNR. Several strategies, including comparison against the USGS RObotic Lunar Observatory (ROLO) mode,l are being employed to estimate the absolute and relative accuracy of the measurement set. There is an existing need to resolve discrepancies as high as 10% between ROLO and solar based calibration of current NASA EOS assets. Although the EO-1 mission was decommissioned at the end of March 2017, the development of a well-characterized exoatmospheric spectral radiometric database, for a range of lunar phase angles surrounding the fully illuminated moon, continues. Initial studies include a comprehensive analysis of the existing 17-year collection of more than 200 monthly lunar acquisitions. Specific lunar surface areas, such as a lunar mare, are being characterized as potential "lunar calibration sites" in terms of their radiometric stability in the presence of lunar nutation and libration. Site specific Hyperion-derived lunar spectral reflectance are being compared against spectrographic measurements made during the Apollo program. Techniques developed through this activity can be employed by future high-quality orbiting imaging spectrometers (such as HyspIRI and EnMap) to further refine calibration accuracies. These techniques will enable the consistent cross calibration of existing and future earth observing systems (spectral and multi-spectral) including those that do not have lunar viewing capability. When direct lunar viewing is not an option for an earth observing asset, orbiting imaging spectrometers can serve as transfer radiometers relating that asset's sensor response to lunar values through near contemporaneous observations of well characterized stable CEOS test sites. Analysis of this dataset will lead to the development of strategies to ensure more

  17. Design and fabrication of a Czerny-Turner monochromator-cum-spectrograph

    International Nuclear Information System (INIS)

    Murty, M.V.R.K.; Shukla, R.P.; Bhattacharya, S.S.; Krishnamurthy, G.

    1987-01-01

    The design and fabrication of a Czerny-Turner monochromator cum spectrograph is described. It consists of a classically ruled grating having 1200 grooves/mm. The collimator is a concave spherical mirror having a radius of curvature 1.025 metre while the focusing element is a concave spherical mirror of radius of curvature 0.925 metre. The design of two unequal radii of curvature for collimating and focusing mirrors is chosen to eliminate the chromatic aberration at the wavelength of 5000A. The linear reciprocal dispersion on the focal surface is about 8A/mm. The resolution of the instrument at the coma corrected wavelength i.e. 5000A is 0.1A. The resolution at the other wavelengths is limited by the residual chromatic aberration which increases linearly with wavelength on either side of the 5000A. Therefore the resolution at the wavelength 2000A and 8000A is about 0.2A. 7 figures. (author)

  18. High-resolution Spectroscopic Observations of Single Red Giants in Three Open Clusters: NGC 2360, NGC 3680, and NGC 5822

    Science.gov (United States)

    Peña Suárez, V. J.; Sales Silva, J. V.; Katime Santrich, O. J.; Drake, N. A.; Pereira, C. B.

    2018-02-01

    Single stars in open clusters with known distances are important targets in constraining the nucleosynthesis process since their ages and luminosities are also known. In this work, we analyze a sample of 29 single red giants of the open clusters NGC 2360, NGC 3680, and NGC 5822 using high-resolution spectroscopy. We obtained atmospheric parameters, abundances of the elements C, N, O, Na, Mg, Al, Ca, Si, Ti, Ni, Cr, Y, Zr, La, Ce, and Nd, as well as radial and rotational velocities. We employed the local thermodynamic equilibrium atmospheric models of Kurucz and the spectral analysis code MOOG. Rotational velocities and light-element abundances were derived using spectral synthesis. Based on our analysis of the single red giants in these three open clusters, we could compare, for the first time, their abundance pattern with that of the binary stars of the same clusters previously studied. Our results show that the abundances of both single and binary stars of the open clusters NGC 2360, NGC 3680, and NGC 5822 do not have significant differences. For the elements created by the s-process, we observed that the open clusters NGC 2360, NGC 3680, and NGC 5822 also follow the trend already raised in the literature that young clusters have higher s-process element abundances than older clusters. Finally, we observed that the three clusters of our sample exhibit a trend in the [Y/Mg]-age relation, which may indicate the ability of the [Y/Mg] ratio to be used as a clock for the giants. Based on the observations made with the 2.2 m telescope at the European Southern Observatory (La Silla, Chile) under an agreement with Observatório Nacional and under an agreement between Observatório Nacional and Max-Planck Institute für Astronomie.

  19. Evaluation of high-resolution satellite precipitation products with surface rain gauge observations from Laohahe Basin in northern China

    Directory of Open Access Journals (Sweden)

    Shan-hu Jiang

    2010-12-01

    Full Text Available Three high-resolution satellite precipitation products, the Tropical Rainfall Measuring Mission (TRMM standard precipitation products 3B42V6 and 3B42RT and the Climate Precipitation Center's (CPC morphing technique precipitation product (CMORPH, were evaluated against surface rain gauge observations from the Laohahe Basin in northern China. Widely used statistical validation indices and categorical statistics were adopted. The evaluations were performed at multiple time scales, ranging from daily to yearly, for the years from 2003 to 2008. The results show that all three satellite precipitation products perform very well in detecting the occurrence of precipitation events, but there are some different biases in the amount of precipitation. 3B42V6, which has a bias of 21%, fits best with the surface rain gauge observations at both daily and monthly scales, while the biases of 3B42RT and CMORPH, with values of 81% and 67%, respectively, are much higher than a normal receivable threshold. The quality of the satellite precipitation products also shows monthly and yearly variation: 3B42RT has a large positive bias in the cold season from September to April, while CMORPH has a large positive bias in the warm season from May to August, and they all attained their best values in 2006 (with 10%, 50%, and −5% biases for 3B42V6, 3B42RT, and CMORPH, respectively. Our evaluation shows that, for the Laohahe Basin, 3B42V6 has the best correspondence with the surface observations, and CMORPH performs much better than 3B42RT. The large errors of 3B42RT and CMORPH remind us of the need for new improvements to satellite precipitation retrieval algorithms or feasible bias adjusting methods.

  20. High Spectral Resolution Infrared and Raman Lidar Observations for the ARM Program: Clear and Cloudy Sky Applications

    Energy Technology Data Exchange (ETDEWEB)

    Revercomb, Henry; Tobin, David; Knuteson, Robert; Borg, Lori; Moy, Leslie

    2009-06-17

    This grant began with the development of the Atmospheric Emitted Radiance Interferometer (AERI) for ARM. The AERI has provided highly accurate and reliable observations of downwelling spectral radiance (Knuteson et al. 2004a, 2004b) for application to radiative transfer, remote sensing of boundary layer temperature and water vapor, and cloud characterization. One of the major contributions of the ARM program has been its success in improving radiation calculation capabilities for models and remote sensing that evolved from the multi-year, clear-sky spectral radiance comparisons between AERI radiances and line-by-line calculations (Turner et al. 2004). This effort also spurred us to play a central role in improving the accuracy of water vapor measurements, again helping ARM lead the way in the community (Turner et al. 2003a, Revercomb et al. 2003). In order to add high-altitude downlooking AERI-like observations over the ARM sites, we began the development of an airborne AERI instrument that has become known as the Scanning High-resolution Interferometer Sounder (Scanning-HIS). This instrument has become an integral part of the ARM Unmanned Aerospace Vehicle (ARM-UAV) program. It provides both a cross-track mapping view of the earth and an uplooking view from the 12-15 km altitude of the Scaled Composites Proteus aircraft when flown over the ARM sites for IOPs. It has successfully participated in the first two legs of the “grand tour” of the ARM sites (SGP and NSA), resulting in a very good comparison with AIRS observations in 2002 and in an especially interesting data set from the arctic during the Mixed-Phase Cloud Experiment (M-PACE) in 2004.

  1. Leveraging Earth Observations to Improve Data Resolution and Tracking of Sustainable Development Goals in Water Resources and Public Health

    Science.gov (United States)

    Akanda, A. S.; Nusrat, F.; Hasan, M. A.; Fallatah, O.

    2017-12-01

    Water scarcity affects more than 40 per cent of the world population and is projected to rise substantially, affecting safe water and sanitation access globally. The recently released WHO/UNICEF Joint Monitoring Programme (JMP) 2017 report on global water and sanitation access paints a grim picture across the planet; approximately 30% people worldwide, or 2.1 billion, still lack access to safe, readily available clean water, and 60% people worldwide, or 4.5 billion ppl, lack safely managed sanitation. Meanwhile, demand for water and competition for water resources are sharply rising amid growing uncertainty of climate change and its impacts on water resources. The United Nations Agenda 2030 Sustainable Development Goals (SDGs) call for substantially increasing water-use efficiency across all sectors and ensuring sustainable withdrawals and supply of freshwater to address water scarcity, providing clean water and sanitation for all, increasing international cooperation over transboundary surface and groundwater resources (under Goal 6), as well as ending preventable deaths of newborns and children under 5 years of age, and end the epidemics of neglected tropical and water-borne diseases (under Goal 3). Data availability in developing regions, especially at the appropriate resolution in both space and time, has been a recurring problem for various technological and institutional reasons. Earth observation techniques provide the most cost-effective and encompassing tool to monitor these regions, large transboundary river basins and aquifer systems, and water resources vulnerabilities to climate change around the globe. University of Rhode Island, with US and international collaborators, is using earth observations to develop tools to analyze, monitor and support decision-makers to track their progress towards SDGs with better data resolution and accuracy. Here, we provide case studies on 1) providing safe water and sanitation access South Asia through safe water

  2. Spectrographic temperature measurement of a high power breakdown arc in a high pressure gas switch

    Energy Technology Data Exchange (ETDEWEB)

    Yeckel, Christopher; Curry, Randy [Department of Computer and Electrical Engineering, Center for Physical and Power Electronics, University of Missouri--Columbia, Columbia, Missouri 65211 (United States)

    2011-09-15

    A procedure for obtaining an approximate temperature value of conducting plasma generated during self-break closure of a RIMFIRE gas switch is described. The plasma is in the form of a breakdown arc which conducts approximately 12 kJ of energy in 1 {mu}s. A spectrographic analysis of the trigger-section of the 6-MV RIMFIRE laser triggered gas switch used in Sandia National Laboratory's ''Z-Machine'' has been made. It is assumed that the breakdown plasma has sufficiently approached local thermodynamic equilibrium allowing a black-body temperature model to be applied. This model allows the plasma temperature and radiated power to be approximated. The gas dielectric used in these tests was pressurized SF{sub 6}. The electrode gap is set at 4.59 cm for each test. The electrode material is stainless steel and insulator material is poly(methyl methacrylate). A spectrum range from 220 to 550 nanometers has been observed and calibrated using two spectral irradiance lamps and three spectrograph gratings. The approximate plasma temperature is reported.

  3. Effectiveness of using a magnetic spectrograph with the Trojan Horse method

    Science.gov (United States)

    Manwell, S.; Parikh, A.; Chen, A. A.; de Séréville, N.; Adsley, P.; Irvine, D.; Hammache, F.; Stefan, I.; Longland, R. F.; Tomlinson, J.; Morfuace, P.; Le Crom, B.

    2018-01-01

    The Trojan Horse method relies on performing reactions in a specific kinematic phase space that maximizes contributions of a quasi-free reaction mechanism. The hallmark of this method is that the incident particle can be accelerated to high enough energies to overcome the Coulomb barrier of the target, but once inside the target nucleus the relative motion of the clustered nuclei allows the reaction of interest to proceed at energies below this Coulomb Barrier. This method allows the experimentalist to probe reactions that have significance in astrophysics at low reaction energies that would otherwise be impossible due to the vanishing cross section. Traditionally the Trojan Horse method has been applied with the use of silicon detectors to observe the reaction products. In this study we apply the Trojan Horse method to a well studied reaction to examine the potential benefits of using a splitpole magnetic spectrograph to detect one of the reaction products. We have measure the three body 7Li(d,αn)α reaction to constrain the energy 7Li(d,α)α cross section. Measurements were first made using two silicon detectors, and then by replacing one detector with the magnetic spectrograph. The experimental design, limitations, and early results are discussed.

  4. The infrared imaging spectrograph (IRIS) for TMT: latest science cases and simulations

    Science.gov (United States)

    Wright, Shelley A.; Walth, Gregory; Do, Tuan; Marshall, Daniel; Larkin, James E.; Moore, Anna M.; Adamkovics, Mate; Andersen, David; Armus, Lee; Barth, Aaron; Cote, Patrick; Cooke, Jeff; Chisholm, Eric M.; Davidge, Timothy; Dunn, Jennifer S.; Dumas, Christophe; Ellerbroek, Brent L.; Ghez, Andrea M.; Hao, Lei; Hayano, Yutaka; Liu, Michael; Lopez-Rodriguez, Enrique; Lu, Jessica R.; Mao, Shude; Marois, Christian; Pandey, Shashi B.; Phillips, Andrew C.; Schoeck, Matthias; Subramaniam, Annapurni; Subramanian, Smitha; Suzuki, Ryuji; Tan, Jonathan C.; Terai, Tsuyoshi; Treu, Tommaso; Simard, Luc; Weiss, Jason L.; Wincentsen, James; Wong, Michael; Zhang, Kai

    2016-07-01

    The Thirty Meter Telescope (TMT) first light instrument IRIS (Infrared Imaging Spectrograph) will complete its preliminary design phase in 2016. The IRIS instrument design includes a near-infrared (0.85 - 2.4 micron) integral field spectrograph (IFS) and imager that are able to conduct simultaneous diffraction-limited observations behind the advanced adaptive optics system NFIRAOS. The IRIS science cases have continued to be developed and new science studies have been investigated to aid in technical performance and design requirements. In this development phase, the IRIS science team has paid particular attention to the selection of filters, gratings, sensitivities of the entire system, and science cases that will benefit from the parallel mode of the IFS and imaging camera. We present new science cases for IRIS using the latest end-to-end data simulator on the following topics: Solar System bodies, the Galactic center, active galactic nuclei (AGN), and distant gravitationally-lensed galaxies. We then briefly discuss the necessity of an advanced data management system and data reduction pipeline.

  5. The Oxford SWIFT Spectrograph: first commissioning and on-sky results

    Science.gov (United States)

    Thatte, Niranjan; Tecza, Mathias; Clarke, Fraser; Goodsall, Timothy; Fogarty, Lisa; Houghton, Ryan; Salter, Graeme; Scott, Nicholas; Davies, Roger L.; Bouchez, Antonin; Dekany, Richard

    2010-07-01

    The Oxford SWIFT spectrograph, an I & z band (6500-10500 A) integral field spectrograph, is designed to operate as a facility instrument at the 200 inch Hale Telescope on Palomar Mountain, in conjunction with the Palomar laser guide star adaptive optics system PALAO (and its upgrade to PALM3000). SWIFT provides spectra at R(≡λ/▵λ)~4000 of a contiguous two-dimensional field, 44 x 89 spatial pixels (spaxels) in size, at spatial scales of 0.235", 0.16", and 0.08" per spaxel. It employs two 250μm thick, fully depleted, extremely red sensitive 4k X 2k CCD detector arrays (manufactured by LBNL) that provide excellent quantum efficiency out to 1000 nm. We describe the commissioning observations and present the measured values of a number of instrument parameters. We also present some first science results that give a taste of the range of science programs where SWIFT can have a substantial impact.

  6. Phono-spectrographic analysis of heart murmur in children

    Directory of Open Access Journals (Sweden)

    Angerla Anna

    2007-06-01

    Full Text Available Abstract Background More than 90% of heart murmurs in children are innocent. Frequently the skills of the first examiner are not adequate to differentiate between innocent and pathological murmurs. Our goal was to evaluate the value of a simple and low-cost phonocardiographic recording and analysis system in determining the characteristic features of heart murmurs in children and in distinguishing innocent systolic murmurs from pathological. Methods The system consisting of an electronic stethoscope and a multimedia laptop computer was used for the recording, monitoring and analysis of auscultation findings. The recorded sounds were examined graphically and numerically using combined phono-spectrograms. The data consisted of heart sound recordings from 807 pediatric patients, including 88 normal cases without any murmur, 447 innocent murmurs and 272 pathological murmurs. The phono-spectrographic features of heart murmurs were examined visually and numerically. From this database, 50 innocent vibratory murmurs, 25 innocent ejection murmurs and 50 easily confusable, mildly pathological systolic murmurs were selected to test whether quantitative phono-spectrographic analysis could be used as an accurate screening tool for systolic heart murmurs in children. Results The phono-spectrograms of the most common innocent and pathological murmurs were presented as examples of the whole data set. Typically, innocent murmurs had lower frequencies (below 200 Hz and a frequency spectrum with a more harmonic structure than pathological cases. Quantitative analysis revealed no significant differences in the duration of S1 and S2 or loudness of systolic murmurs between the pathological and physiological systolic murmurs. However, the pathological murmurs included both lower and higher frequencies than the physiological ones (p Conclusion Phono-spectrographic analysis improves the accuracy of primary heart murmur evaluation and educates inexperienced listener

  7. Observation of high-resolution wind fields and offshore wind turbine wakes using TerraSAR-X imagery

    Science.gov (United States)

    Gies, Tobias; Jacobsen, Sven; Lehner, Susanne; Pleskachevsky, Andrey

    2014-05-01

    1. Introduction Numerous large-scale offshore wind farms have been built in European waters and play an important role in providing renewable energy. Therefore, knowledge of behavior of wakes, induced by large wind turbines and their impact on wind power output is important. The spatial variation of offshore wind turbine wake is very complex, depending on wind speed, wind direction, ambient atmospheric turbulence and atmospheric stability. In this study we demonstrate the application of X-band TerraSAR-X (TS-X) data with high spatial resolution for studies on wind turbine wakes in the near and far field of the offshore wind farm Alpha Ventus, located in the North Sea. Two cases which different weather conditions and different wake pattern as observed in the TS-X image are presented. 2. Methods The space-borne synthetic aperture radar (SAR) is a unique sensor that provides two-dimensional information on the ocean surface. Due to their high resolution, daylight and weather independency and global coverage, SARs are particularly suitable for many ocean and coastal applications. SAR images reveal wind variations on small scales and thus represent a valuable means in detailed wind-field analysis. The general principle of imaging turbine wakes is that the reduced wind speed downstream of offshore wind farms modulates the sea surface roughness, which in turn changes the Normalized Radar Cross Section (NRCS, denoted by σ0) in the SAR image and makes the wake visible. In this study we present two cases at the offshore wind farm Alpha Ventus to investigate turbine-induced wakes and the retrieved sea surface wind field. Using the wind streaks, visible in the TS-X image and the shadow behind the offshore wind farm, induced by turbine wake, the sea surface wind direction is derived and subsequently the sea surface wind speed is calculated using the latest generation of wind field algorithm XMOD2. 3. Case study alpha ventus Alpha Ventus is located approximately 45 km from the

  8. Spectrographic determination of niobium in uranium - niobium alloys

    International Nuclear Information System (INIS)

    Charbel, M.Y.; Lordello, A.R.

    1984-01-01

    A method for the spectrographic determination of niobium in uranium-niobium alloys in the concentration range 1-10% has been developed. The metallic sample is converted to oxide by calcination in a muffle furnace at 800 0 C for two hours. The standards are prepared synthetically by dry-mixing. One part of the sample or standard is added to nineteen parts of graphite powder and the mixture is excited in a DC arc. Hafnium has been used as internal standard. The precision of the method is + - 4.8%. (Author) [pt

  9. Quantitative spectrographic determination of traces of manganese in ferric oxide

    International Nuclear Information System (INIS)

    Capdevila, C.; Roca, M.

    1968-01-01

    In order to enhance the sensitivity, different electrode types and sweeping substances have been studied. Graphite anodes, with 5 x 2,5, 4 x 4,5, 4 x 8 and 7 x 10 mm crater, as well as CuF 2 , AgCl, ZnO and graphite powder as sweeping materials, have been tested. A JACO-Ebert grating spectrograph and 10 amp. d.c. arc have been employed, choosing the proper exposure times from moving-plate studies. Using 4 x 4,5 mm electrodes and 75% AgCl a detection limit of 0,2 ppm is attainable. (Author) 7 refs

  10. Spectrographic determination of impurities in ammonium hydrogen fluoride samples

    International Nuclear Information System (INIS)

    Roca, M.; Capdevila, C.; Alduan, F.A.

    1976-01-01

    The quantitative spectrographic trace determination of Al, B, Cr, Cu, Fe, Mn, Mo, Ni, Pb and Si in ammonium hydrogen fluoride samples is considered. 10 A dc arc excitation and graphite electrodes with crate either 4.5 mm or 8 mm deep are employed. A comparison of various matrices such as graphite, gallium oxide, germanium oxide, magnesium oxide and zinc oxide, in the ratios 1:1 and 1:3, as well as a mixture 50% graphite - 50% zinc oxide in the ratio 1:1 is included. Zinc oxide in the ratio 1:1 and 4x8 mm craters show the best over-all results. (author)

  11. Study of airborne particles by emission spectrographic method

    Energy Technology Data Exchange (ETDEWEB)

    Chao, C N; Lee, S L; Tsai, H T; Wu, S C

    1975-03-01

    A rapid spectrographic method was developed to analyze cadmium, lead, nickel, zinc, tin, titanium, and vanadium collected in glass fiber air filters. A direct excitation method is used for volatile elements, while graphite powder is added for determining involatile elements, such as Ti and V in a dc arc source. Limits of detection for analyzed elements are between 0.01-0.1 micrograms. This simple and sensitive method was used to analyze samples from 15 air sampling stations in different areas of Taiwan.

  12. Spectrographic determination of impurities in enriched uranium solutions

    International Nuclear Information System (INIS)

    Capdevila, C.; Roca, M.

    1980-01-01

    A spectrographic procedure for the determination of trace amounts of Al, B, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, K, L i , Hg, Mn, Mo, Na, Nb, Ni, P, Pb, Ru, Sb, Sn, Sr, Ti, V, Zn, and Zr in enriched uranyl nitrate solutions from the reprocessing of spent nuclear fuels is described. After removal of uranium by either TBP or TNOA solvent extraction, the aqueous phase Is analysed by the graphite spark technique. TBP is adequate for all impurities, excepting boron and phosphorus; both of these elements can sat is factory be determined by using TNOA after the addition of mannitol to avoid boron losses. (Author) 4 refs

  13. Spectrographic study of neodymium complexing with ATP and ADP

    International Nuclear Information System (INIS)

    Svetlova, I.E.; Dobrynina, N.A.; Martynenko, L.N.

    1989-01-01

    By spectrographic method neodymium complexing with ATP and ADP in aqueous solutions at different pH values has been studied. The composition of the complexes was determined by the method of isomolar series. On the basis of analysis of absorption spectra it has been ascertained that at equimolar ratio of Nd 3+ and ATP absorption band of L278A corresponds to monocomplex, and the band of 4290 A - to biscomplex. For the complexes with ADP the absorption band of 4288 A is referred to bicomplexes. The character of ATP and ADP coordination by Nd 3+ ion is considered. Stability constants of the complexes are calculated

  14. A UV prime focus spectrograph for the CFHT

    International Nuclear Information System (INIS)

    Boulade, O.; Vigroux, L.

    1986-03-01

    The UV prime spectrograph at the Canada-France-Hawaii Telescope is the first instrument to be designed with an aspherized diffraction grating. This technique leads to all reflective Schmidt designs with a very small amount of optical surface on fast aperture ratio. A thin backside illuminated RCA CCD is now used as the detector. Since the detector is at the focus of an f/1 mounting, within the optical path, a minicryostat (5 cm x 5 cm x 3 cm) was designed to minimize the central obscuration. This paper describes this new instrument and its performances

  15. The spectrographic analysis of inorganic impurities in heavy water

    International Nuclear Information System (INIS)

    Artaud, J.; Normand, J.; Vie, R.

    1961-01-01

    Inorganic impurities in heavy water are determined by two spectrographic methods. First is described the copper-spark method which is sensitive and directly applicable, and is particular useful because of the absence of a support. Secondly the graphite impregnation method is given; this is used when the first method is not applicable (determination of copper) and for the alkali metals. For the usual elements, the sensitivity of the copper spark method is of the order of 0,1 μg/ml whereas for the graphite impregnation method the sensitivity is only 0,3 μg/ml. (author) [fr

  16. Spectrographic mask for digital registration of bright source spectra

    Directory of Open Access Journals (Sweden)

    Ademir Xavier

    2017-08-01

    Full Text Available In this work we present schematic diagrams for the construction of a spectrographic mask attachable to a camera objective in order to capture spectra using simple CD or DVD gratings. The mask is made of two parts: an adapter ring and elbow-shaped blockage for suitable registration of spectra in the lab and outdoors. By using a free software, we analyze and discuss the calibration of the wavelength scale of the solar spectrum, which allows us to identify many chemical elements in it. In the conclusion, we further discuss some interesting projects to be carried out by students using the idea.

  17. Rapid spectrographic method for determining microcomponents in solutions

    International Nuclear Information System (INIS)

    Karpenko, L.I.; Fadeeva, L.A.; Gordeeva, A.N.; Ermakova, N.V.

    1984-01-01

    Rapid spectrographic method foe determining microcomponents (Cd, V, Mo, Ni, rare earths and other elements) in industrial and natural solutions has been developed. The analyses were conducted in argon medium and in the air. Calibration charts for determining individual rare earths in solutions are presented. The accuracy of analysis (Sr) was detection limit was 10 -3 -10 -4 mg/ml, that for rare earths - 1.10 -2 mg/ml. The developed method enables to rapidly analyze solutions (sewages and industrialllwaters, wine products) for 20 elements including 6 rare earths, using strandard equipment

  18. Cassini UVIS Auroral Observations in 2016 and 2017

    Science.gov (United States)

    Pryor, Wayne R.; Esposito, Larry W.; Jouchoux, Alain; Radioti, Aikaterini; Grodent, Denis; Gustin, Jacques; Gerard, Jean-Claude; Lamy, Laurent; Badman, Sarah; Dyudina, Ulyana A.; Cassini UVIS Team, Cassini VIMS Team, Cassini ISS Team, HST Saturn Auroral Team

    2017-10-01

    In 2016 and 2017, the Cassini Saturn orbiter executed a final series of high-inclination, low-periapsis orbits ideal for studies of Saturn's polar regions. The Cassini Ultraviolet Imaging Spectrograph (UVIS) obtained an extensive set of auroral images, some at the highest spatial resolution obtained during Cassini's long orbital mission (2004-2017). In some cases, two or three spacecraft slews at right angles to the long slit of the spectrograph were required to cover the entire auroral region to form auroral images. We will present selected images from this set showing narrow arcs of emission, more diffuse auroral emissions, multiple auroral arcs in a single image, discrete spots of emission, small scale vortices, large-scale spiral forms, and parallel linear features that appear to cross in places like twisted wires. Some shorter features are transverse to the main auroral arcs, like barbs on a wire. UVIS observations were in some cases simultaneous with auroral observations from the Cassini Imaging Science Subsystem (ISS) the Cassini Visual and Infrared Mapping Spectrometer (VIMS), and the Hubble Space Telescope Space Telescope Imaging Spectrograph (STIS) that will also be presented.

  19. Cassini UVIS Observations of Saturn during the Grand Finale Orbits

    Science.gov (United States)

    Pryor, W. R.; Esposito, L. W.; West, R. A.; Jouchoux, A.; Radioti, A.; Grodent, D. C.; Gerard, J. C. M. C.; Gustin, J.; Lamy, L.; Badman, S. V.

    2017-12-01

    In 2016 and 2017, the Cassini Saturn orbiter executed a final series of high inclination, low-periapsis orbits ideal for studies of Saturn's polar regions. The Cassini Ultraviolet Imaging Spectrograph (UVIS) obtained an extensive set of auroral images, some at the highest spatial resolution obtained during Cassini's long orbital mission (2004-2017). In some cases, two or three spacecraft slews at right angles to the long slit of the spectrograph were required to cover the entire auroral region to form auroral images. We will present selected images from this set showing narrow arcs of emission, more diffuse auroral emissions, multiple auroral arcs in a single image, discrete spots of emission, small scale vortices, large-scale spiral forms, and parallel linear features that appear to cross in places like twisted wires. Some shorter features are transverse to the main auroral arcs, like barbs on a wire. UVIS observations were in some cases simultaneous with auroral observations from the Hubble Space Telescope Space Telescope Imaging Spectrograph (STIS) that will also be presented. UVIS polar images also contain spectral information suitable for studies of the auroral electron energy distribution. The long wavelength part of the UVIS polar images contains a signal from reflected sunlight containing absorption signatures of acetylene and other Saturn hydrocarbons. The hydrocarbon spatial distribution will also be examined.

  20. High-spatial-resolution electron density measurement by Langmuir probe for multi-point observations using tiny spacecraft

    Science.gov (United States)

    Hoang, H.; Røed, K.; Bekkeng, T. A.; Trondsen, E.; Clausen, L. B. N.; Miloch, W. J.; Moen, J. I.

    2017-11-01

    A method for evaluating electron density using a single fixed-bias Langmuir probe is presented. The technique allows for high-spatio-temporal resolution electron density measurements, which can be effectively carried out by tiny spacecraft for multi-point observations in the ionosphere. The results are compared with the multi-needle Langmuir probe system, which is a scientific instrument developed at the University of Oslo comprising four fixed-bias cylindrical probes that allow small-scale plasma density structures to be characterized in the ionosphere. The technique proposed in this paper can comply with the requirements of future small-sized spacecraft, where the cost-effectiveness, limited space available on the craft, low power consumption and capacity for data-links need to be addressed. The first experimental results in both the plasma laboratory and space confirm the efficiency of the new approach. Moreover, detailed analyses on two challenging issues when deploying the DC Langmuir probe on a tiny spacecraft, which are the limited conductive area of the spacecraft and probe surface contamination, are presented in the paper. It is demonstrated that the limited conductive area, depending on applications, can either be of no concern for the experiment or can be resolved by mitigation methods. Surface contamination has a small impact on the performance of the developed probe.

  1. Submerged Humid Tropical Karst Landforms Observed By High-Resolution Multibeam Survey in Nagura Bay, Ishigaki Island, Southwestern Japan

    Science.gov (United States)

    Kan, H.; Urata, K.; Nagao, M.; Hori, N.; Fujita, K.; Yokoyama, Y.; Nakashima, Y.; Ohashi, T.; Goto, K.; Suzuki, A.

    2014-12-01

    Submerged tropical karst features were discovered in Nagura Bay on Ishigaki Island in the South Ryukyu Islands, Japan. This is the first description of submerged humid tropical karst using multibeam bathymetry. We conducted a broadband multibeam survey in the central area of Nagura Bay (1.85 × 2.7 km) and visualized the high-resolution bathymetric results with a grid size of 1 m over a depth range of 1.6-58.5 m. Various types of humid tropical karst landforms were found to coexist within the bay, including fluviokarst, doline karst, cockpit karst, polygonal karst, uvalas, and mega-dolines. We assume that Nagura Bay was a large karst basin in which older limestone remained submerged, thus preventing corrosion and the accumulation of reef sediments during periods of submersion, whereas the limestone outcropping on land was corroded during multiple interglacial and glacial periods. Based on our bathymetric result together with aerial photographs of the coastal area, we conclude that the submerged karst landscape has likely developed throughout the whole of Nagura Bay, covering an area of ~6 × 5 km. Accordingly, this area hosts the largest submerged karst in Japan. We also observed abundant coral communities during our SCUBA observations. The present marine conditions of Nagura Bay are characterized by low energy (calm sea) and low irradiance owing to the terrestrial influence. Such conditions have been emphasized by the presence of large undulating landforms, which cause decreases in wave intensity and irradiance with depth. These characteristics have acted to establish unique conditions compared to other coral reef areas in the Ryukyu Islands. It may play an important role in supporting the regional coral reef ecosystem.

  2. Development and construction of a focal-plane detector for the Munich Q3D spectrograph

    International Nuclear Information System (INIS)

    Lindner, H.

    1989-01-01

    For the Munich Q3D magnet spectrograph a focal-plane detector was developed, constructed, and taken in operation. It is primary layed out for light ions like p, d, t 3 He, and 4 He, but can be also applied for heavy ions. The position resolution amounts to about 0.1 mm at counting rates of about 10 kHz. In the detector filled with counting gas on anode wires along the focal plane charge avalanches are formed, which influence in several neighbouring cathode stripes of the dimension (3x25) mm 2 signals. These signals are singularily read out and digitized, i.e. to each of the at the whole 114 cathode strips is assigned an own preamplifier, puls shaper, peak detector, and analog-to-digital converter (ADC). After the digitization in a hardware-like constructed calculator unit the center of mass of the charge distribution influenced by the charge avalanche is calculated, the position of the incident particle is obtained. The detector yields beyond the position signal yet also a signal ΔE form the anode wires, which gives the energy loss of the particle in the gas space, as well as a residual-energy signal E rest from a scintillator, in which the particles are stopped. By this the radiation background (γ's and n) can be separated very well from the required particles. With the focal-plane detector the 103 Rh(d, p) 104 Rh transfer reaction was measured at three different spectrograph angles. The measured level energies and angular momentum transfers are compared with (n, γ) data and discussed. (orig.) [de

  3. Volume phase holographic gratings for the Subaru Prime Focus Spectrograph: performance measurements of the prototype grating set

    Science.gov (United States)

    Barkhouser, Robert H.; Arns, James; Gunn, James E.

    2014-08-01

    The Prime Focus Spectrograph (PFS) is a major instrument under development for the 8.2 m Subaru telescope on Mauna Kea. Four identical, fixed spectrograph modules are located in a room above one Nasmyth focus. A 55 m fiber optic cable feeds light into the spectrographs from a robotic fiber positioner mounted at the telescope prime focus, behind the wide field corrector developed for Hyper Suprime-Cam. The positioner contains 2400 fibers and covers a 1.3 degree hexagonal field of view. Each spectrograph module will be capable of simultaneously acquiring 600 spectra. The spectrograph optical design consists of a Schmidt collimator, two dichroic beamsplitters to separate the light into three channels, and for each channel a volume phase holographic (VPH) grating and a dual- corrector, modified Schmidt reimaging camera. This design provides a 275 mm collimated beam diameter, wide simultaneous wavelength coverage from 380 nm to 1.26 µm, and good imaging performance at the fast f/1.1 focal ratio required from the cameras to avoid oversampling the fibers. The three channels are designated as the blue, red, and near-infrared (NIR), and cover the bandpasses 380-650 nm (blue), 630-970 nm (red), and 0.94-1.26 µm (NIR). A mosaic of two Hamamatsu 2k×4k, 15 µm pixel CCDs records the spectra in the blue and red channels, while the NIR channel employs a 4k×4k, substrate-removed HAWAII-4RG array from Teledyne, with 15 µm pixels and a 1.7 µm wavelength cutoff. VPH gratings have become the dispersing element of choice for moderate-resolution astronomical spectro- graphs due their potential for very high diffraction efficiency, low scattered light, and the more compact instru- ment designs offered by transmissive dispersers. High quality VPH gratings are now routinely being produced in the sizes required for instruments on large telescopes. These factors made VPH gratings an obvious choice for PFS. In order to reduce risk to the project, as well as fully exploit the performance

  4. Design of a simple magnetic spectrograph for the Karlsruhe isochronous cyclotron

    International Nuclear Information System (INIS)

    Gils, H.J.

    1980-12-01

    The ion-optical design of a simple magnetic spectrograph for studies of nuclear reactions on the Karlsruhe cyclotron is described. The spectrograph allows to determine the nuclear charge, the mass number, the reaction angle and the impulse (energy) of charged particles, which are emitted from the target. The spectrographs possibilities cover an appropriate range of likely nuclear reactions which are induced by light and heavy particles up to mass number A=20 and energies of 26 MeV per nucleon [de

  5. DETAILED ANALYSIS OF NEAR-IR WATER (H2O) EMISSION IN COMET C/2014 Q2 (LOVEJOY) WITH THE GIANO/TNG SPECTROGRAPH

    International Nuclear Information System (INIS)

    Faggi, S.; Brucato, J. R.; Tozzi, G. P.; Oliva, E.; Massi, F.; Sanna, N.; Tozzi, A.; Villanueva, G. L.; Mumma, M. J.

    2016-01-01

    We observed the Oort cloud comet C/2014 Q2 (Lovejoy) on 2015 January 31 and February 1 and 2 at a heliocentric distance of 1.3 au and geocentric distance of 0.8 au during its approach to the Sun. Comet Lovejoy was observed with GIANO, the near-infrared high-resolution spectrograph mounted at the Nasmyth-A focus of the TNG (Telescopio Nazionale Galileo) telescope in La Palma, Canary Islands, Spain. We detected strong emissions of radical CN and water, along with many emission features of unidentified origin, across the 1–2.5 μ m region. Spectral lines from eight ro-vibrational bands of H 2 O were detected, six of them for the first time. We quantified the water production rate [ Q (H 2 O), (3.11 ± 0.14) × 10 29 s −1 ] by comparing the calibrated line fluxes with the Goddard full non-resonance cascade fluorescence model for H 2 O. The production rates of ortho-water [ Q (H 2 O) ORTHO , (2.33 ± 0.11) × 10 29 s −1 ] and para-water [ Q (H 2 O) PARA , (0.87 ± 0.21) × 1029 s −1 ] provide a measure of the ortho-to-para ratio (2.70 ± 0.76)). The confidence limits are not small enough to provide a critical test of the nuclear spin temperature.

  6. Detailed Analysis of Near-IR Water (H2O) Emission in Comet C/2014 Q2 (LOVEJOY) with the GIANO/TNG Spectrograph

    Science.gov (United States)

    Faggi, S.; Villanueva, G. L.; Mumma, M. J.; Brucato, J.R.; Tozzi, G. P.; Oliva, E.; Massi, F.; Sanna, N.; Tozzi, A.

    2016-01-01

    We observed the Oort cloud comet C/2014 Q2 (Lovejoy) on 2015 January 31 and February 1 and 2 at a heliocentric distance of 1.3 au and geocentric distance of 0.8 au during its approach to the Sun. Comet Lovejoy was observed with GIANO, the near-infrared high-resolution spectrograph mounted at the Nasmyth-A focus of the TNG (Telescopio Nazionale Galileo) telescope in La Palma, Canary Islands, Spain. We detected strong emissions of radical CN and water, along with many emission features of unidentified origin, across the 1-2.5 micron region. Spectral lines from eight ro-vibrational bands of H2O were detected, six of them for the first time. We quantified the water production rate [Q(H2O), (3.11+/- 0.14) x 10(exp 29)/s] by comparing the calibrated line fluxes with the Goddard full non-resonance cascade fluorescence model for H2O. The production rates of ortho-water [Q(H2O)ORTHO, (2.33+/- 0.11) x 10(exp 29)/s] and para-water [Q(H2O)PARA, (0.87+/-0.21) x 10(exp 29)/s] provide a measure of the ortho-to-para ratio (2.70+/- 0.76)). The confidence limits are not small enough to provide a critical test of the nuclear spin temperature.

  7. Evaluation of applicability of high-resolution multiangle imaging photo-polarimetric observations for aerosol atmospheric correction

    Science.gov (United States)

    Kalashnikova, Olga; Garay, Michael; Xu, Feng; Diner, David; Seidel, Felix

    2016-07-01

    Multiangle spectro-polarimetric measurements have been advocated as an additional tool for better understanding and quantifying the aerosol properties needed for atmospheric correction for ocean color retrievals. The central concern of this work is the assessment of the effects of absorbing aerosol properties on remote sensing reflectance measurement uncertainty caused by neglecting UV-enhanced absorption of carbonaceous particles and by not accounting for dust nonsphericity. In addition, we evaluate the polarimetric sensitivity of absorbing aerosol properties in light of measurement uncertainties achievable for the next generation of multi-angle polarimetric imaging instruments, and demonstrate advantages and disadvantages of wavelength selection in the UV/VNIR range. In this work a vector Markov Chain radiative transfer code including bio-optical models was used to quantitatively evaluate in water leaving radiances between atmospheres containing realistic UV-enhanced and non-spherical aerosols and the SEADAS carbonaceous and dust-like aerosol models. The phase matrices for the spherical smoke particles were calculated using a standard Mie code, while those for non-spherical dust particles were calculated using the numerical approach developed for modeling dust for the AERONET network of ground-based sunphotometers. As a next step, we have developed a retrieval code that employs a coupled Markov Chain (MC) and adding/doubling radiative transfer method for joint retrieval of aerosol properties and water leaving radiance from Airborne Multiangle SpectroPolarimetric Imager-1 (AirMSPI-1) polarimetric observations. The AirMSPI-1 instrument has been flying aboard the NASA ER-2 high altitude aircraft since October 2010. AirMSPI typically acquires observations of a target area at 9 view angles between ±67° at 10 m resolution. AirMSPI spectral channels are centered at 355, 380, 445, 470, 555, 660, and 865 nm, with 470, 660, and 865 reporting linear polarization. We

  8. Spectroscopic Characterisation of CARMENES Target Candidates from FEROS, CAFE and HRS High-Resolution Spectra

    Science.gov (United States)

    Passegger, Vera Maria; Reiners, Ansgar; Jeffers, Sandra V.; Wende, Sebastian; Schöfer, Patrick; Amado, Pedro J.; Caballero, Jose A.; Montes, David; Mundt, Reinhard; Ribas, Ignasi; Quirrenbach, Andreas

    2016-07-01

    CARMENES (Calar Alto high-Resolution search for M dwarfs with Exoearths with Near-infrared and optical Échelle Spectrographs) started a new planet survey on M-dwarfs in January this year. The new high-resolution spectrographs are operating in the visible and near-infrared at Calar Alto Observatory. They will perform high-accuracy radial-velocity measurements (goal 1 m s-1) of about 300 M-dwarfs with the aim to detect low-mass planets within habitable zones. We characterised the candidate sample for CARMENES and provide fundamental parameters for these stars in order to constrain planetary properties and understand star-planet systems. Using state-of-the-art model atmospheres (PHOENIX-ACES) and χ2-minimization with a downhill-simplex method we determine effective temperature, surface gravity and metallicity [Fe/H] for high-resolution spectra of around 480 stars of spectral types M0.0-6.5V taken with FEROS, CAFE and HRS. We find good agreement between the models and our observed high-resolution spectra. We show the performance of the algorithm, as well as results, parameter and spectral type distributions for the CARMENES candidate sample, which is used to define the CARMENES target sample. We also present first preliminary results obtained from CARMENES spectra.

  9. High resolution observed in 800 MHz DNP spectra of extremely rigid type III secretion needles

    International Nuclear Information System (INIS)

    Fricke, Pascal; Mance, Deni; Chevelkov, Veniamin; Giller, Karin; Becker, Stefan; Baldus, Marc; Lange, Adam

    2016-01-01

    The cryogenic temperatures at which dynamic nuclear polarization (DNP) solid-state NMR experiments need to be carried out cause line-broadening, an effect that is especially detrimental for crowded protein spectra. By increasing the magnetic field strength from 600 to 800 MHz, the resolution of DNP spectra of type III secretion needles (T3SS) could be improved by 22 %, indicating that inhomogeneous broadening is not the dominant effect that limits the resolution of T3SS needles under DNP conditions. The outstanding spectral resolution of this system under DNP conditions can be attributed to its low overall flexibility.

  10. High resolution observed in 800 MHz DNP spectra of extremely rigid type III secretion needles

    Energy Technology Data Exchange (ETDEWEB)

    Fricke, Pascal [Leibniz-Institut für Molekulare Pharmakologie, Department of Molecular Biophysics (Germany); Mance, Deni [Utrecht University, NMR Research Group, Bijvoet Center for Biomolecular Research (Netherlands); Chevelkov, Veniamin [Leibniz-Institut für Molekulare Pharmakologie, Department of Molecular Biophysics (Germany); Giller, Karin; Becker, Stefan [Max Planck Institute for Biophysical Chemistry, Department of NMR-Based Structural Biology (Germany); Baldus, Marc [Utrecht University, NMR Research Group, Bijvoet Center for Biomolecular Research (Netherlands); Lange, Adam, E-mail: alange@fmp-berlin.de [Leibniz-Institut für Molekulare Pharmakologie, Department of Molecular Biophysics (Germany)

    2016-08-15

    The cryogenic temperatures at which dynamic nuclear polarization (DNP) solid-state NMR experiments need to be carried out cause line-broadening, an effect that is especially detrimental for crowded protein spectra. By increasing the magnetic field strength from 600 to 800 MHz, the resolution of DNP spectra of type III secretion needles (T3SS) could be improved by 22 %, indicating that inhomogeneous broadening is not the dominant effect that limits the resolution of T3SS needles under DNP conditions. The outstanding spectral resolution of this system under DNP conditions can be attributed to its low overall flexibility.

  11. High-resolution spectroscopic search for the thermal emission of the extrasolar planet HD 217107 b

    OpenAIRE

    Cubillos, Patricio E.; Rojo, Patricio; Fortney, Jonathan J.

    2011-01-01

    We analyzed the combined near-infrared spectrum of a star-planet system with thermal emission atmospheric models, based on the composition and physical parameters of the system. The main objective of this work is to obtain the inclination of the orbit, the mass of the exoplanet, and the planet-to-star flux ratio. We present the results of our routines on the planetary system HD 217107, which was observed with the high-resolution spectrograph Phoenix at 2.14 microns. We revisited and tuned a c...

  12. Variations of Global Terrestrial Primary Production Observed by Moderate Resolution Imaging Spectroradiometer (MODIS) From 2000 to 2005

    Science.gov (United States)

    Zhao, M.; Running, S.; Heinsch, F. A.

    2006-12-01

    Since the first Earth Observing System (EOS) satellite Terra was launched in December 1999 and Moderate Resolution Imaging Spectroradiometer (MODIS) sensor onboard Terra began to provide data in February 2000, we have had six-year MODIS global 1-km terrestrial Gross and Net Primary Production (GPP &NPP) datasets. In this article, we present the variations (seasonality and inter-annual variability) of global GPP/NPP from the latest improved Collection 4.8 (C4.8) MODIS datasets for the past six-year (2000 - 2005), as well as improvements of the algorithm, validations of GPP and NPP. Validation results show that the C4.8 data have higher accuracy and quality than the previous version. Analyses of the variations in GPP/NPP show that GPP not only can reflect strong seasonality of photosynthesis activities by plants in mid- and high-latitude, but importantly, can reveal enhanced growth of Amazon rainforests during dry season, consistent with the reports by Huete et al. (2006) on GRL. Spatially, plants over mid- and high-latitude (north to 22.5°N) are the major contributor of global GPP seasonality. Inter-annual variability of MODIS NPP for 2000 - 2005 reveals the negative effects of major droughts on carbon sequestration at the regional and continental scales. A striking phenomenon is that the severe drought in 2005 over Amazon reduced NPP, indicating water availability becomes the dominant limiting factor rather than solar radiation under normal conditions. GMAO and NCEP driven global total NPPs have the similar interannual anomalies, and they generally follow the inverted CO2 growth rate anomaly with correlation of 0.85 and 0.91, respectively, which are higher than the correlation of 0.7 found by Nemani et al. (2003) on Science. Though there are only 6 years of MODIS data, results show that global NPP decreased from 2000 to 2005, and spatially most decreased NPP areas are in tropic and south hemisphere.

  13. THE 2014 MARCH 29 X-FLARE: SUBARCSECOND RESOLUTION OBSERVATIONS OF Fe XXI λ1354.1

    Energy Technology Data Exchange (ETDEWEB)

    Young, Peter R. [College of Science, George Mason University, Fairfax, VA 22030 (United States); Tian, Hui [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Jaeggli, Sarah [Department of Physics, Montana State University, P.O. Box 173840, Bozeman, MT 59717 (United States)

    2015-02-01

    The Interface Region Imaging Spectrometer (IRIS) is the first solar instrument to observe ∼10 MK plasma at subarcsecond spatial resolution through imaging spectroscopy of the Fe XXI λ1354.1 forbidden line. IRIS observations of the X1 class flare that occurred on 2014 March 29 at 17:48 UT reveal Fe XXI emission from both the flare ribbons and the post-flare loop arcade. Fe XXI appears at all of the chromospheric ribbon sites, although typically with a delay of one raster (75 s) and sometimes offset by up to 1''. 100-200 km s{sup –1} blue-shifts are found at the brightest ribbons, suggesting hot plasma upflow into the corona. The Fe XXI ribbon emission is compact with a spatial extent of <2'', and can extend beyond the chromospheric ribbon locations. Examples are found of both decreasing and increasing blue-shift in the direction away from the ribbon locations, and blue-shifts were present for at least six minutes after the flare peak. The post-flare loop arcade, seen in Atmospheric Imaging Assembly 131 Å filtergram images that are dominated by Fe XXI, exhibited bright loop-tops with an asymmetric intensity distribution. The sizes of the loop-tops are resolved by IRIS at ≥1'', and line widths in the loop-tops are not broader than in the loop-legs suggesting the loop-tops are not sites of enhanced turbulence. Line-of-sight speeds in the loop arcade are typically <10 km s{sup –1}, and mean non-thermal motions fall from 43 km s{sup –1} at the flare peak to 26 km s{sup –1} six minutes later. If the average velocity in the loop arcade is assumed to be at rest, then it implies a new reference wavelength for the Fe XXI line of 1354.106 ± 0.023 Å.

  14. FIMS Wavelength Calibration via Airglow Line Observations

    Directory of Open Access Journals (Sweden)

    Dae-Hee Lee

    2004-12-01

    Full Text Available Far-ultraviolet Imaging Spectrograph (FIMS is the main payload of the Korea's first scientific micro satellite STSAT-1, which was launched at Sep. 27 2003 successfully. Major objective of FIMS is observing hot gas in the Galaxy in FUV bands to diagnose the energy flow models of the interstellar medium. Supernova remnants, molecular clouds, and Aurora emission in the geomagnetic pole regions are specific targets for pointing observation. Although the whole system was calibrated before launch, it is essential to perform on-orbit calibration for data analysis. For spectral calibration, we observed airglow lines in the atmosphere since they provide good spectral references. We identify and compare the observed airglow lines with model calculations, and correct the spectral distortion appeared in the detector system to improve the spectral resolution of the system.

  15. Global significance of a sub-Moho boundary layer (SMBL) deduced from high-resolution seismic observations

    Science.gov (United States)

    Fuchs, K.; Tittgemeyer, M.; Ryberg, T.; Wenzel, F.; Mooney, W.

    2002-01-01

    We infer the fine structure of a sub-Moho boundary layer (SMBL) at the top of the lithospheric mantle from high-resolution seismic observations of Peaceful Nuclear Explosions (PNE) on superlong-range profiles in Russia. Densely recorded seismograms permit recognition of previously unknown features of teleseismic propagation of the well known Pn and Sn phases, such as a band of incoherent, scattered, high-frequency seismic energy, developing consistently from station to station, apparent velocities of sub-Moho material, and high-frequency energy to distances of more than 3000 km with a coda band, incoherent at 10 km spacing and yet consistently observed to the end of the profiles. Estimates of the other key elements of the SMBL were obtained by finite difference calculations of wave propagation in elastic 2D models from a systematic grid search through parameter space. The SMBL consists of randomly distributed, mild velocity fluctuations of 2% or schlieren of high aspect ratios (???40) with long horizontal extent (???20 km) and therefore as thin as 0.5 km only; SMBL thickness is 60-100 km. It is suggested that the SMBL is of global significance as the physical base of the platewide observed high-frequency phases Pn and Sn. It is shown that wave propagation in the SMBL waveguide is insensitive to the background velocity distribution on which its schlieren are superimposed. This explains why the Pn and Sn phases traverse geological provinces of various age, heat flow, crustal thickness, and tectonic regimes. Their propagation appears to be independent of age. temperature, pressure, and stress. Dynamic stretching of mantle material during subduction or flow, possibly combined with chemical differentiation have to be considered as scale-forming processes in the upper mantle. However, it is difficult to distinguish with the present sets of Pn/Sn array data whether (and also where) the boundary layer is a frozen-in feature of paleo-processes or whether it is a response to

  16. A flux calibration device for the SuperNova Integral Field Spectrograph (SNIFS)

    Science.gov (United States)

    Lombardo, Simona; Aldering, Greg; Hoffmann, Akos; Kowalski, Marek; Kuesters, Daniel; Reif, Klaus; Rigault, Michael

    2014-07-01

    Observational cosmology employing optical surveys often require precise flux calibration. In this context we present SNIFS Calibration Apparatus (SCALA), a flux calibration system developed for the SuperNova Integral Field Spectrograph (SNIFS), operating at the University of Hawaii 2.2 m telescope. SCALA consists of a hexagonal array of 18 small parabolic mirrors distributed over the face of, and feeding parallel light to, the telescope entrance pupil. The mirrors are illuminated by integrating spheres and a wavelength-tunable (from UV to IR) light source, generating light beams with opening angles of 1°. These nearly parallel beams are flat and flux-calibrated at a subpercent level, enabling us to calibrate our "telescope + SNIFS system" at the required precision.

  17. A mask quality control tool for the OSIRIS multi-object spectrograph

    Science.gov (United States)

    López-Ruiz, J. C.; Vaz Cedillo, Jacinto Javier; Ederoclite, Alessandro; Bongiovanni, Ángel; González Escalera, Víctor

    2012-09-01

    OSIRIS multi object spectrograph uses a set of user-customised-masks, which are manufactured on-demand. The manufacturing process consists of drilling the specified slits on the mask with the required accuracy. Ensuring that slits are on the right place when observing is of vital importance. We present a tool for checking the quality of the process of manufacturing the masks which is based on analyzing the instrument images obtained with the manufactured masks on place. The tool extracts the slit information from these images, relates specifications with the extracted slit information, and finally communicates to the operator if the manufactured mask fulfills the expectations of the mask designer. The proposed tool has been built using scripting languages and using standard libraries such as opencv, pyraf and scipy. The software architecture, advantages and limits of this tool in the lifecycle of a multiobject acquisition are presented.

  18. Update on the Status of the Space Telescope Imaging Spectrograph onboard the Hubble Space Telescope

    Science.gov (United States)

    Hernandez, Svea; Aloisi, A.; Bostroem, K. A.; Cox, C.; Debes, J. H.; DiFelice, A.; Roman-Duval, J.; Hodge, P.; Holland, S.; Lindsay, K.; Lockwood, S. A.; Mason, E.; Oliveira, C. M.; Penton, S. V.; Proffitt, C. R.; Sonnentrucker, P.; Taylor, J. M.; Wheeler, T.

    2013-06-01

    The Space Telescope Imaging Spectrograph (STIS) has been on orbit for approximately 16 years as one of the 2nd generation instruments on the Hubble Space Telescope (HST). Its operations were interrupted by an electronics failure in 2004, but STIS was successfully repaired in May 2009 during Service Mission 4 (SM4) allowing it to resume science observations. The Instrument team continues to monitor its performance and work towards improving the quality of its products. Here we present updated information on the status of the FUV and NUV MAMA and the CCD detectors onboard STIS and describe recent changes to the STIS calibration pipeline. We also discuss the status of efforts to apply a pixel-based correction for charge transfer inefficiency (CTI) effects to STIS CCD data. These techniques show promise for ameliorating the effects of ongoing radiation damage on the quality of STIS CCD data.

  19. Spectrographic analysis of metallic silicium and natural quartz

    International Nuclear Information System (INIS)

    Grigoletto, T.; Lordello, A.R.

    1985-01-01

    A method has been developed for the spectrographic determination of B, Mg, Al, Ca, Ti, Mn, Fe, Ni, Cu and Ag in silicon metal and other for Al, Ca, Mg, Ti, Cr, Mn, and Fe in natural quartz. A mixture of the matrix with a proper buffer is excited directly in a dc-arc. High-current (25A) and argon atmosphere are used for both the methods. Silicon metal is blended with 8% NaF and after 1:1 (w/w) with graphite. For natural quartz 20% NaF and 30% graphite by weight is the buffer mixture employed. The lower values in the determinations varies from 0.5 to 40 μg/g and the precision of the analysis from 7% to 45%. (Author) [pt

  20. Spectrographic analysis of waste waters; Analisis espectrografico de aguas residuales

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez Alduan, F; Capdevila, C

    1979-07-01

    The Influence of sodium and calcium, up to a maximum concentration of 1000 mg/1 Na and 300 mg/1 Ca, in the spectrographic determination of Cr, Cu, Fe,Mn and Pb in waste waters using graphite spark excitation has been studied. In order to eliminate this influence, each of the elements Ba, Cs, In, La, Li, Sr and Ti, as well as a mixture containing 5% Li-50% Ti, have been tested as spectrochemical buffers. This mixture allows to obtain an accuracy better than 25%. Sodium and calcium enhance the line intensities of impurities, when using graphite or gold electrodes, but they produce an opposite effect if copper or silver electrodes are used. (Author) 1 refs.

  1. Spectrographic determination of traces of boron in steels

    International Nuclear Information System (INIS)

    Alduan, F.A.; Roca, M.

    1976-01-01

    A spectrographic method has been developed to determine quantitatively boron in steels in the 0.5 to 250 ppm concentration range. The samples are dissolved in acids and transformed into oxides, avoiding boron losses by the addition of mannitol. For the fluoride evolution of boron in the dc arc the following compounds have been considered: CuF 2 , LiF, NaF, and SrF 2 . CuF 2 , at a concentration of 10%, provides the highest line-to-background intensity ratio. An arc current of 5 amperes eliminates the interference from iron spectrum on the most sensitive boron line - B 2497.7 A. Variations in chromium and nickel contents have no effect on the analytical results. (author)

  2. Cosmic Origins Spectrograph: On-Orbit Performance of Target Acquisitions

    Science.gov (United States)

    Penton, Steven V.

    2010-07-01

    COS is a slit-less spectrograph with a very small aperture (R=1.2500). To achieve the desired wavelength accuracies, HST+COS must center the target to within 0.100 of the center of the aperture for the FUV channel, and 0.0400 for NUV. During SMOV and early Cycle 17 we fine-tuned the COS target acquisition (TA) procedures to exceed this accuracy for all three COS TA modes; NUV imaging, NUV spectroscopic, and FUV spectroscopic. In Cycle 17, we also adjusted the COSto- FGS offsets in the SIAF file. This allows us to recommend skipping the time consuming ACQ/SEARCH in cases where the target coordinates are well known. Here we will compare the on-orbit performance of all COS TA modes in terms of centering accuracy, efficiency, and required signal-to-noise (S/N).

  3. Determination of rare earth impurities in thorium by spectrographic methods

    Energy Technology Data Exchange (ETDEWEB)

    Wray, L W

    1957-08-15

    A method for determining rare earth impurities in thorium in the fractional ppm range is described. Before spectrographic examination is possible, the impurities must be freed from the thorium matrix. This is accomplished by removing the bulk of the thorium by extraction with TBP-CCl{sub 4} and the remainder by extraction with TTA-C{sub 6}H{sub 6}. This results in a consistent recovery of rare earths of about 85% with an average sensitivity of 0.2 ppm. The experimental error is within 10%. Details of the procedure are given together with working curves for the major neutron absorbing rare earths; i.e. dysprosium, europium, gadolinium and samarium. (author)

  4. High spatio-temporal resolution observations of crater-lake temperatures at Kawah Ijen volcano, East Java, Indonesia

    Science.gov (United States)

    Lewicki, Jennifer L.; Corentin Caudron,; Vincent van Hinsberg,; George Hilley,

    2016-01-01

    The crater lake of Kawah Ijen volcano, East Java, Indonesia, has displayed large and rapid changes in temperature at point locations during periods of unrest, but measurement techniques employed to-date have not resolved how the lake’s thermal regime has evolved over both space and time. We applied a novel approach for mapping and monitoring variations in crater-lake apparent surface (“skin”) temperatures at high spatial (~32 cm) and temporal (every two minutes) resolution at Kawah Ijen on 18 September 2014. We used a ground-based FLIR T650sc camera with digital and thermal infrared (TIR) sensors from the crater rim to collect (1) a set of visible imagery around the crater during the daytime and (2) a time series of co-located visible and TIR imagery at one location from pre-dawn to daytime. We processed daytime visible imagery with the Structure-from-Motion photogrammetric method to create a digital elevation model onto which the time series of TIR imagery was orthorectified and georeferenced. Lake apparent skin temperatures typically ranged from ~21 to 33oC. At two locations, apparent skin temperatures were ~ 4 and 7 oC less than in-situ lake temperature measurements at 1.5 and 5 m depth, respectively. These differences, as well as the large spatio-temporal variations observed in skin temperatures, were likely largely associated with atmospheric effects such as evaporative cooling of the lake surface and infrared absorption by water vapor and SO2. Calculations based on orthorectified TIR imagery thus yielded underestimates of volcanic heat fluxes into the lake, whereas volcanic heat fluxes estimated based on in-situ temperature measurements (68 to 111 MW) were likely more representative of Kawah Ijen in a quiescent state. The ground-based imaging technique should provide a valuable tool to continuously monitor crater-lake temperatures and contribute insight into the spatio-temporal evolution of these temperatures associated with volcanic activity.

  5. Design of a High Resolution Open Access Global Snow Cover Web Map Service Using Ground and Satellite Observations

    Science.gov (United States)

    Kadlec, J.; Ames, D. P.

    2014-12-01

    The aim of the presented work is creating a freely accessible, dynamic and re-usable snow cover map of the world by combining snow extent and snow depth datasets from multiple sources. The examined data sources are: remote sensing datasets (MODIS, CryoLand), weather forecasting model outputs (OpenWeatherMap, forecast.io), ground observation networks (CUAHSI HIS, GSOD, GHCN, and selected national networks), and user-contributed snow reports on social networks (cross-country and backcountry skiing trip reports). For adding each type of dataset, an interface and an adapter is created. Each adapter supports queries by area, time range, or combination of area and time range. The combined dataset is published as an online snow cover mapping service. This web service lowers the learning curve that is required to view, access, and analyze snow depth maps and snow time-series. All data published by this service are licensed as open data; encouraging the re-use of the data in customized applications in climatology, hydrology, sports and other disciplines. The initial version of the interactive snow map is on the website snow.hydrodata.org. This website supports the view by time and view by site. In view by time, the spatial distribution of snow for a selected area and time period is shown. In view by site, the time-series charts of snow depth at a selected location is displayed. All snow extent and snow depth map layers and time series are accessible and discoverable through internationally approved protocols including WMS, WFS, WCS, WaterOneFlow and WaterML. Therefore they can also be easily added to GIS software or 3rd-party web map applications. The central hypothesis driving this research is that the integration of user contributed data and/or social-network derived snow data together with other open access data sources will result in more accurate and higher resolution - and hence more useful snow cover maps than satellite data or government agency produced data by

  6. Development of a focussing-crystal spectrograph for x-rays from laser-fusion targets. Final report for the period ending September 30, 1982

    International Nuclear Information System (INIS)

    Yaakobi, B.; Burek, A.J.

    1983-01-01

    The report is arranged in five major sections, Section II describes the measurements of mica and lithium fluoride crystal properties before and after the cylindrical bending required for a Von-Hamos spectrograph. It also describes the property of mosaic focussing and the measurements of the spatial as well as spectral resolutions of bent crystals. Section III describes the imaging calculations which relate the instrument focussing capability to source misalignment. These calculations demonstrate the necessity to maintain fabrication and alignment precision which is about equal to the radiation source size, if the full potential of the instrument is to be realized. Section IV shows x-ray spectra obtained on the OMEGA 24 laser facility at LLE. The targets used were plastic shells, coated with copper either on the outside or the inside surface, germania shells, and krytpon-filled glass shells. The data indicate deeper heat penetration on the target surface, than predicted by a flux-limited heat transport model. In Section V, we list new spectral lines involving multiple electron excitation, which are observed here for the first time and whose wavelengths are calculated using Hartrer-Fock methods

  7. High Spectral Resolution Observation of the Soft Diffuse X-ray Background in the Direction of the Galactic Anti-Center

    Science.gov (United States)

    Wulf, Dallas; Eckart, Mega E.; Galeazzi, Massimiliano; Jaeckel, Felix; Kelley, Richard L.; Kilbourne, Caroline A.; McCammon, Dan; Morgan, Kelsey M.; Porter, Frederick S.; Szymkowiak, Andrew E.

    2018-01-01

    High spectral resolution observations in the soft x-rays are necessary for understanding and modelling the hot component of the interstellar medium and its contribution to the Soft X-ray Background (SXRB). This extended source emission cannot be resolved with most wavelength dispersive spectrometers, making energy dispersive microcalorimeters the ideal choice for these observations. We present here the analysis of the most recent sounding rocket flight of the University of Wisconsin-Madison/Goddard Space Flight Center X-ray Quantum Calorimeter (XQC), a large area silicon thermistor microcalorimeter. This 111 second observation integrates a nearly 1 steradian field of view in the direction of the galactic anti-center (l, b = 165°, -5°) and features ~5 eV spectral resolution below 1 keV. Direct comparison will also be made to the previous, high-latitude observations.

  8. ISED: Constructing a high-resolution elevation road dataset from massive, low-quality in-situ observations derived from geosocial fitness tracking data.

    Directory of Open Access Journals (Sweden)

    Grant McKenzie

    Full Text Available Gaining access to inexpensive, high-resolution, up-to-date, three-dimensional road network data is a top priority beyond research, as such data would fuel applications in industry, governments, and the broader public alike. Road network data are openly available via user-generated content such as OpenStreetMap (OSM but lack the resolution required for many tasks, e.g., emergency management. More importantly, however, few publicly available data offer information on elevation and slope. For most parts of the world, up-to-date digital elevation products with a resolution of less than 10 meters are a distant dream and, if available, those datasets have to be matched to the road network through an error-prone process. In this paper we present a radically different approach by deriving road network elevation data from massive amounts of in-situ observations extracted from user-contributed data from an online social fitness tracking application. While each individual observation may be of low-quality in terms of resolution and accuracy, taken together they form an accurate, high-resolution, up-to-date, three-dimensional road network that excels where other technologies such as LiDAR fail, e.g., in case of overpasses, overhangs, and so forth. In fact, the 1m spatial resolution dataset created in this research based on 350 million individual 3D location fixes has an RMSE of approximately 3.11m compared to a LiDAR-based ground-truth and can be used to enhance existing road network datasets where individual elevation fixes differ by up to 60m. In contrast, using interpolated data from the National Elevation Dataset (NED results in 4.75m RMSE compared to the base line. We utilize Linked Data technologies to integrate the proposed high-resolution dataset with OpenStreetMap road geometries without requiring any changes to the OSM data model.

  9. ISED: Constructing a high-resolution elevation road dataset from massive, low-quality in-situ observations derived from geosocial fitness tracking data.

    Science.gov (United States)

    McKenzie, Grant; Janowicz, Krzysztof

    2017-01-01

    Gaining access to inexpensive, high-resolution, up-to-date, three-dimensional road network data is a top priority beyond research, as such data would fuel applications in industry, governments, and the broader public alike. Road network data are openly available via user-generated content such as OpenStreetMap (OSM) but lack the resolution required for many tasks, e.g., emergency management. More importantly, however, few publicly available data offer information on elevation and slope. For most parts of the world, up-to-date digital elevation products with a resolution of less than 10 meters are a distant dream and, if available, those datasets have to be matched to the road network through an error-prone process. In this paper we present a radically different approach by deriving road network elevation data from massive amounts of in-situ observations extracted from user-contributed data from an online social fitness tracking application. While each individual observation may be of low-quality in terms of resolution and accuracy, taken together they form an accurate, high-resolution, up-to-date, three-dimensional road network that excels where other technologies such as LiDAR fail, e.g., in case of overpasses, overhangs, and so forth. In fact, the 1m spatial resolution dataset created in this research based on 350 million individual 3D location fixes has an RMSE of approximately 3.11m compared to a LiDAR-based ground-truth and can be used to enhance existing road network datasets where individual elevation fixes differ by up to 60m. In contrast, using interpolated data from the National Elevation Dataset (NED) results in 4.75m RMSE compared to the base line. We utilize Linked Data technologies to integrate the proposed high-resolution dataset with OpenStreetMap road geometries without requiring any changes to the OSM data model.

  10. Optical design and performance of a dual-grating, direct-reading spectrograph for spectrochemical analyses

    International Nuclear Information System (INIS)

    Steinhaus, D.W.; Kline, J.V.; Bieniewski, T.M.; Dow, G.S.; Apel, C.T.

    1979-01-01

    An all-mirror optical system is used to direct the light from a variety of spectroscopic sources to two 2-m spectrographs that are placed on either side of a sturdy vertical mounting plate. The gratings were chosen so that the first spectrograph covers the ultraviolet spectral region, and the second spectrograph covers the ultraviolet, visible, and near-infrared regions. With the over 2.5 m of focal curves, each ultraviolet line is available at more than one place. Thus, problems with close lines can be overcome. The signals from a possible maximum of 256 photoelectric detectors go to a small computer for reading and calculation of the element abundances. To our knowledge, no other direct-reading spectrograph has more than about 100 fixed detectors. With an inductively-coupled-plasma source, our calibration curves, and detection limits, are similar to those of other workers using a direct-reading spectrograph

  11. Optical Design And Performance Of A Dual-Grating, Direct-Reading Spectrograph For Spectrochemical Analyses

    Science.gov (United States)

    Steinhaus, David W.; Kline, John V.; Bieniewski, Thomas M.; Dow, Grove S.; Apel, Charles T.

    1980-11-01

    An all-mirror optical system is used to direct the light from a variety of spectroscopic sources to two 2-m spectrographs that are placed on either side of a sturdy vertical mounting plate. The gratings were chosen so that the first spectrograph covers the ultraviolet spectral region, and the second spectrograph covers the ultraviolet, visible, and near-infrared regions. With the over 2.5 m of focal curves, each ultraviolet line is available at more than one place. Thus, problems with close lines can be overcome. The signals from a possible maximum of 256 photoelectric detectors go to a small computer for reading and calculation of the element abundances. To our knowledge, no other direct-reading spectrograph has more than about 100 fixed detectors. With an inductively-coupled-plasma source, our calibration curves, and detection limits, are similar to those of other workers using a direct-reading spectrograph.

  12. Atomic resolution observation of conversion-type anode RuO 2 during the first electrochemical lithiation

    KAUST Repository

    Mao, Minmin; Nie, Anmin; Liu, Jiabin; Wang, Hongtao; Mao, Scott X; Wang, Qingxiao; Li, Kun; Zhang, Xixiang

    2015-01-01

    . In situ transmission electron microscopy reveals a two-step process during the initial lithiation of the RuO2 nanowire anode at atomic resolution. The first step is characterized by the formation of the intermediate phase LixRuO2 due to the Li

  13. Velocity-space observation regions of high-resolution two-step reaction gamma-ray spectroscopy

    DEFF Research Database (Denmark)

    Salewski, Mirko; Nocente, M.; Gorini, G.

    2015-01-01

    High-resolution γ-ray spectroscopy (GRS) measurements resolve spectral shapes of Dopplerbroadened γ-rays. We calculate weight functions describing velocity-space sensitivities of any two-step reaction GRS measurements in magnetized plasmas using the resonant nuclear reaction 9Be(α, nγ)12C...

  14. High Resolution Infrared Spectroscopy in Astronomy Proceedings of an ESO Workshop Held at Garching, Germany, 18-21 November 2003

    CERN Document Server

    Käufl, Hans Ulrich; Moorwood, Alan F. M

    2005-01-01

    Two specialized new instruments for ESO's VLT, VISIR and CRIRES, spawned the idea for this workshop. CRIRES is a dedicated very high resolution infrared spectrograph; VISIR features a high resolution spectroscopic mode. Together, the instruments combine the sensitivity of an 8m-telescope with the now well-established reliability of VLT-facility instruments. High resolution here means that lines in cool stellar atmospheres and HII-regions can be resolved. The astrophysical topics discussed in this rather specialized workshop range from the inner solar system to active galactic nuclei. There are many possibilities for new discoveries with these instruments, but the unique capability, which becomes available through high-resolution infrared spectroscopy, is the observation of molecular rotational-vibrational transitions in many astrophysical environments. Particularly interesting and surprising in this context, many papers on modeling and laboratory spectroscopy at the workshop appear to indicate that astronomic...

  15. Electrostatic Spectrograph with a Wide Range of Simultaneously Recorded Energies Composed of Two Coaxial Electrodes with Closed End Faces and a Discrete Combined External Electrode

    Science.gov (United States)

    Fishkova, T. Ya.

    2018-01-01

    An optimal set of geometric and electrical parameters of a high-aperture electrostatic charged-particle spectrograph with a range of simultaneously recorded energies of E/ E min = 1-50 has been found by computer simulation, which is especially important for the energy analysis of charged particles during fast processes in various materials. The spectrograph consists of two coaxial electrodes with end faces closed by flat electrodes. The external electrode with a conical-cylindrical form is cut into parts with potentials that increase linearly, except for the last cylindrical part, which is electrically connected to the rear end electrode. The internal cylindrical electrode and the front end electrode are grounded. In the entire energy range, the system is sharply focused on the internal cylindrical electrode, which provides an energy resolution of no worse than 3 × 10-3.

  16. Absolute calibration of a SPRED [Spectrometer Recording Extended Domain] EUV [extreme ultraviolet] spectrograph for use on the DIII-D tokamak

    International Nuclear Information System (INIS)

    Wood, R.D.; Allen, S.L.

    1988-01-01

    We have performed an absolute intensity calibration of a SPRED multichannel EUV spectrograph using synchrotron radiation from the NBS SURF-II electron storage ring. The calibration procedure and results for both a survey grating (450 g/mm) and a high-resolution (2100 g/mm) grating are presented. The spectrograph is currently in use on the DIII-D tokamak with a tangential line-of-sight at the plasma midplane. Data is first acquired and processed by a microcomputer; the absolute line intensities are then sent to the DIII-D database for comparison with data from other diagnostics. Representative data from DIII-D plasma operations will be presented. 6 refs., 3 figs., 1 tab

  17. MISTiC Winds, a Micro-Satellite Constellation Approach to High Resolution Observations of the Atmosphere Using Infrared Sounding and 3D Winds Measurements

    Science.gov (United States)

    Maschhoff, K. R.; Polizotti, J. J.; Aumann, H. H.; Susskind, J.

    2016-01-01

    MISTiC(TM) Winds is an approach to improve short-term weather forecasting based on a miniature high resolution, wide field, thermal emission spectrometry instrument that will provide global tropospheric vertical profiles of atmospheric temperature and humidity at high (3-4 km) horizontal and vertical ( 1 km) spatial resolution. MISTiCs extraordinarily small size, payload mass of less than 15 kg, and minimal cooling requirements can be accommodated aboard a 27U-class CubeSat or an ESPA-Class micro-satellite. Low fabrication and launch costs enable a LEO sunsynchronous sounding constellation that would collectively provide frequent IR vertical profiles and vertically resolved atmospheric motion vector wind observations in the troposphere. These observations are highly complementary to present and emerging environmental observing systems, and would provide a combination of high vertical and horizontal resolution not provided by any other environmental observing system currently in operation. The spectral measurements that would be provided by MISTiC Winds are similar to those of NASA's AIRS that was built by BAE Systems and operates aboard the AQUA satellite. These new observations, when assimilated into high resolution numerical weather models, would revolutionize short-term and severe weather forecasting, save lives, and support key economic decisions in the energy, air transport, and agriculture arenasat much lower cost than providing these observations from geostationary orbit. In addition, this observation capability would be a critical tool for the study of transport processes for water vapor, clouds, pollution, and aerosols. Key remaining technical risks are being reduced through laboratory and airborne testing under NASA's Instrument Incubator Program.

  18. MISTiC Winds, a Micro-Satellite Constellation Approach to High Resolution Observations of the Atmosphere using Infrared Sounding and 3D Winds Measurements

    Science.gov (United States)

    Maschhoff, K. R.; Polizotti, J. J.; Aumann, H. H.; Susskind, J.

    2017-12-01

    MISTiCTM Winds is an approach to improve short-term weather forecasting based on a miniature high resolution, wide field, thermal emission spectrometry instrument that will provide global tropospheric vertical profiles of atmospheric temperature and humidity at high (3-4 km) horizontal and vertical ( 1 km) spatial resolution. MISTiC's extraordinarily small size, payload mass of less than 15 kg, and minimal cooling requirements can be accommodated aboard a ESPA-Class (50 kg) micro-satellite. Low fabrication and launch costs enable a LEO sun-synchronous sounding constellation that would provide frequent IR vertical profiles and vertically resolved atmospheric motion vector wind observations in the troposphere. These observations are highly complementary to present and emerging environmental observing systems, and would provide a combination of high vertical and horizontal resolution not provided by any other environmental observing system currently in operation. The spectral measurements that would be provided by MISTiC Winds are similar to those of NASA's Atmospheric Infrared Sounder. These new observations, when assimilated into high resolution numerical weather models, would revolutionize short-term and severe weather forecasting, save lives, and support key economic decisions in the energy, air transport, and agriculture arenas-at much lower cost than providing these observations from geostationary orbit. In addition, this observation capability would be a critical tool for the study of transport processes for water vapor, clouds, pollution, and aerosols. In this third year of a NASA Instrument incubator program, the compact infrared spectrometer has been integrated into an airborne version of the instrument for high-altitude flights on a NASA ER2. The purpose of these airborne tests is to examine the potential for improved capabilities for tracking atmospheric motion-vector wind tracer features, and determining their height using hyper-spectral sounding and

  19. MISTiC Winds: A micro-satellite constellation approach to high resolution observations of the atmosphere using infrared sounding and 3D winds measurements

    Science.gov (United States)

    Maschhoff, K. R.; Polizotti, J. J.; Aumann, H. H.; Susskind, J.

    2016-09-01

    MISTiCTM Winds is an approach to improve short-term weather forecasting based on a miniature high resolution, wide field, thermal emission spectrometry instrument that will provide global tropospheric vertical profiles of atmospheric temperature and humidity at high (3-4 km) horizontal and vertical ( 1 km) spatial resolution. MISTiC's extraordinarily small size, payload mass of less than 15 kg, and minimal cooling requirements can be accommodated aboard a 27U-class CubeSat or an ESPA-Class micro-satellite. Low fabrication and launch costs enable a LEO sunsynchronous sounding constellation that would collectively provide frequent IR vertical profiles and vertically resolved atmospheric motion vector wind observations in the troposphere. These observations are highly complementary to present and emerging environmental observing systems, and would provide a combination of high vertical and horizontal resolution not provided by any other environmental observing system currently in operation. The spectral measurements that would be provided by MISTiC Winds are similar to those of NASA's AIRS that was built by BAE Systems and operates aboard the AQUA satellite. These new observations, when assimilated into high resolution numerical weather models, would revolutionize short-term and severe weather forecasting, save lives, and support key economic decisions in the energy, air transport, and agriculture arenas-at much lower cost than providing these observations from geostationary orbit. In addition, this observation capability would be a critical tool for the study of transport processes for water vapor, clouds, pollution, and aerosols. Key remaining technical risks are being reduced through laboratory and airborne testing under NASA's Instrument Incubator Program.

  20. Mistic winds, a microsatellite constellation approach to high-resolution observations of the atmosphere using infrared sounding and 3d winds measurements

    Science.gov (United States)

    Maschhoff, K. R.; Polizotti, J. J.; Aumann, H. H.; Susskind, J.

    2016-10-01

    MISTiC Winds is an approach to improve short-term weather forecasting based on a miniature high resolution, wide field, thermal emission spectrometry instrument that will provide global tropospheric vertical profiles of atmospheric temperature and humidity at high (3-4 km) horizontal and vertical ( 1 km) spatial resolution. MISTiC's extraordinarily small size, payload mass of less than 15 kg, and minimal cooling requirements can be accommodated aboard a 27U-class CubeSat or an ESPA-Class micro-satellite. Low fabrication and launch costs enable a LEO sunsynchronous sounding constellation that would collectively provide frequent IR vertical profiles and vertically resolved atmospheric motion vector wind observations in the troposphere. These observations are highly complementary to present and emerging environmental observing systems, and would provide a combination of high vertical and horizontal resolution not provided by any other environmental observing system currently in operation. The spectral measurements that would be provided by MISTiC Winds are similar to those of NASA's AIRS that was built by BAE Systems and operates aboard the AQUA satellite. These new observations, when assimilated into high resolution numerical weather models, would revolutionize short-term and severe weather forecasting, save lives, and support key economic decisions in the energy, air transport, and agriculture arenas-at much lower cost than providing these observations from geostationary orbit. In addition, this observation capability would be a critical tool for the study of transport processes for water vapor, clouds, pollution, and aerosols. Key remaining technical risks are being reduced through laboratory and airborne testing under NASA's Instrument Incubator Program.

  1. Gregor@night: The future high-resolution stellar spectrograph for the GREGOR solar telescope

    Czech Academy of Sciences Publication Activity Database

    Strassmeier, K.G.; Ilyin, I.V.; Woche, M.; Granzer, T.; Weber, M.; Weingrill, J.; Bauer, S.-M.; Popow, E.; Denker, C.; Schmidt, W.; von der Lühe, O.; Berdyugina, S.; Collados Vera, M.; Koubský, Pavel; Hackman, T.; Mantere, M.J.

    2012-01-01

    Roč. 333, č. 9 (2012), s. 901-910 ISSN 0004-6337 Institutional support: RVO:67985815 Keywords : spesctrographs * telescope Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 1.399, year: 2012

  2. ULTRAVIOLET DISCOVERIES AT ASTEROID (21) LUTETIA BY THE ROSETTA ALICE ULTRAVIOLET SPECTROGRAPH

    International Nuclear Information System (INIS)

    Stern, S. A.; Parker, J. Wm.; Steffl, A.; Birath, E.; Graps, A.; Feldman, P. D.; Weaver, H. A.; A'Hearn, M. F.; Feaga, L.; Bertaux, J.-L.; Slater, D. C.; Versteeg, M.; Scherrer, J. R.; Cunningham, N.

    2011-01-01

    The NASA Alice ultraviolet (UV) imaging spectrograph on board the ESA Rosetta comet orbiter successfully conducted a series of flyby observations of the large asteroid (21) Lutetia in the days surrounding Rosetta's closest approach on 2010 July 10. Observations included a search for emission lines from gas, and spectral observations of the Lutetia's surface reflectance. No emissions from gas around Lutetia were observed. Regarding the surface reflectance, we found that Lutetia has a distinctly different albedo and slope than both the asteroid (2867) Steins and Earth's moon, the two most analogous objects studied in the far ultraviolet (FUV). Further, Lutetia's ∼10% geometric albedo near 1800 A is significantly lower than its 16%-19% albedo near 5500 A. Moreover, the FUV albedo shows a precipitous drop (to ∼4%) between 1800 A and 1600 A, representing the strongest spectral absorption feature observed in Lutetia's spectrum at any observed wavelength. Our surface reflectance fits are not unique but are consistent with a surface dominated by an EH5 chondrite, combined with multiple other possible surface constituents, including anorthite, water frost, and SO 2 frost or a similar mid-UV absorber. The water frost identification is consistent with some data sets but inconsistent with others. The anorthite (feldspar) identification suggests that Lutetia is a differentiated body.

  3. Geology of the Alarcón Rise Based on 1-m Resolution Bathymetry and ROV Observations and Sampling

    Science.gov (United States)

    Clague, D. A.; Caress, D. W.; Lundsten, L.; Martin, J. F.; Paduan, J. B.; Portner, R. A.; Bowles, J. A.; Castillo, P. R.; Dreyer, B. M.; Guardado-France, R.; Nieves-Cardoso, C.; Rivera-Huerta, H.; Santa Rosa-del Rio, M.; Spelz-Madero, R.

    2012-12-01

    Alarcón Rise is a ~50 km-long segment of the northernmost East Pacific Rise, bounded on the north and south by the Pescadero and Tamayo Fracture Zones. In April 2012, the MBARI AUV D. Allan B. completed a 1.5-3.1-km wide bathymetric map along the neovolcanic zone between the two fracture zones during 10 surveys. A single AUV survey was also completed on Alarcón Seamount, a near-ridge seamount with 4 offset calderas. Bathymetric data have 1 m lateral and 0.2 m vertical resolution. The maps guided 8 dives of the ROV Doc Ricketts on the ridge and 1 on the seamount. The morphology of the rise changes dramatically along strike and includes an inflated zone, centered ~14 km from the southern end, paved by a young sheet flow erupted from an 8-km-long en echelon fissure system. A young flat-topped volcano and an older shield volcano occur near the center of the ridge segment. Areas nearer the fracture zones are mainly pillow mounds and ridges, some strongly cut by faults and fissures, but others have few structural disruptions. More than 150 of the 194 lava samples recovered from the neovolcanic zone are aphyric to plagioclase-phyric to ultraphyric N-MORB with glass MgO ranging up to 8.5%. The basal cm from 87 short cores contain common limu o Pele and adequate foramifers to provide minimum radiocarbon ages for the underlying lava flows. A rugged lava dome of rhyolite (based on glass compositions) is surrounded by large pillow flows of dacite, centered ~8 km from the north end of the Rise. Pillow flows are steeply uptilted for 2-3 km north and south of the dome, possibly reflecting intrusion of viscous rhyolitic dikes along strike. Near the southern end of this deformed zone, an andesite flow crops out in a fault scarp. Mapping data also reveal the presence of about 110 apparent hydrothermal chimney structures as tall as 18 m, scattered along roughly the central half of the Rise. Subsequent ROV dives observed 70 of these structures and found active venting at 22 of them

  4. The Representation of Tropical Cyclones Within the Global William Putman Non-Hydrostatic Goddard Earth Observing System Model (GEOS-5) at Cloud-Permitting Resolutions

    Science.gov (United States)

    Putman, William M.

    2010-01-01

    The Goddard Earth Observing System Model (GEOS-S), an earth system model developed in the NASA Global Modeling and Assimilation Office (GMAO), has integrated the non-hydrostatic finite-volume dynamical core on the cubed-sphere grid. The extension to a non-hydrostatic dynamical framework and the quasi-uniform cubed-sphere geometry permits the efficient exploration of global weather and climate modeling at cloud permitting resolutions of 10- to 4-km on today's high performance computing platforms. We have explored a series of incremental increases in global resolution with GEOS-S from irs standard 72-level 27-km resolution (approx.5.5 million cells covering the globe from the surface to 0.1 hPa) down to 3.5-km (approx. 3.6 billion cells).

  5. USING A MICRO-UAV FOR ULTRA-HIGH RESOLUTION MULTI-SENSOR OBSERVATIONS OF ANTARCTIC MOSS BEDS

    Directory of Open Access Journals (Sweden)

    A. Lucieer

    2012-07-01

    Full Text Available This study is the first to use an Unmanned Aerial Vehicle (UAV for mapping moss beds in Antarctica. Mosses can be used as indicators for the regional effects of climate change. Mapping and monitoring their extent and health is therefore important. UAV aerial photography provides ultra-high resolution spatial data for this purpose. We developed a technique to extract an extremely dense 3D point cloud from overlapping UAV aerial photography based on structure from motion (SfM algorithms. The combination of SfM and patch-based multi-view stereo image vision algorithms resulted in a 2 cm resolution digital terrain model (DTM. This detailed topographic information combined with vegetation indices derived from a 6-band multispectral sensor enabled the assessment of moss bed health. This novel UAV system has allowed us to map different environmental characteristics of the moss beds at ultra-high resolution providing us with a better understanding of these fragile Antarctic ecosystems. The paper provides details on the different UAV instruments and the image processing framework resulting in DEMs, vegetation indices, and terrain derivatives.

  6. SPECTROSCOPIC OBSERVATIONS OF AN EVOLVING FLARE RIBBON SUBSTRUCTURE SUGGESTING ORIGIN IN CURRENT SHEET WAVES

    Energy Technology Data Exchange (ETDEWEB)

    Brannon, S. R.; Longcope, D. W.; Qiu, J. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States)

    2015-09-01

    We present imaging and spectroscopic observations from the Interface Region Imaging Spectrograph of the evolution of the flare ribbon in the SOL2014-04-18T13:03 M-class flare event, at high spatial resolution and time cadence. These observations reveal small-scale substructure within the ribbon, which manifests as coherent quasi-periodic oscillations in both position and Doppler velocities. We consider various alternative explanations for these oscillations, including modulation of chromospheric evaporation flows. Among these, we find the best support for some form of wave localized to the coronal current sheet, such as a tearing mode or Kelvin–Helmholtz instability.

  7. The lick-index calibration of the Gemini multi-object spectrographs

    International Nuclear Information System (INIS)

    Puzia, Thomas H.; Miller, Bryan W.; Trancho, Gelys; Basarab, Brett; Mirocha, Jordan T.; Butler, Karen

    2013-01-01

    We present the calibration of the spectroscopic Lick/IDS standard line-index system for measurements obtained with the Gemini Multi-Object Spectrographs known as GMOS-North and GMOS-South. We provide linear correction functions for each of the 25 standard Lick line indices for the B600 grism and two instrumental setups, one with 0.''5 slit width and 1 × 1 CCD pixel binning (corresponding to ∼2.5 Å spectral resolution) and the other with 0.''75 slit width and 2 × 2 binning (∼4 Å). We find small and well-defined correction terms for the set of Balmer indices Hβ, Hγ A , and Hδ A along with the metallicity sensitive indices Fe5015, Fe5270, Fe5335, Fe5406, Mg 2 , and Mgb that are widely used for stellar population diagnostics of distant stellar systems. We find other indices that sample molecular absorption bands, such as TiO 1 and TiO 2 , with very wide wavelength coverage or indices that sample very weak molecular and atomic absorption features, such as Mg 1 , as well as indices with particularly narrow passband definitions, such as Fe4384, Ca4455, Fe4531, Ca4227, and Fe5782, which are less robustly calibrated. These indices should be used with caution.

  8. General Astrophysics Science Enabled by the HabEx Ultraviolet Spectrograph (UVS)

    Science.gov (United States)

    Scowen, Paul; Clarke, John; Gaudi, B. Scott; Kiessling, Alina; Martin, Stefan; Somerville, Rachel; Stern, Daniel; HabEx Science and Technology Definition Team

    2018-01-01

    The Habitable Exoplanet Imaging Mission (HabEx) is one of the four large mission concepts being studied by NASA as input to the upcoming 2020 Decadal Survey. The mission implements two world-class General Astrophysics instruments as part of its complement of instrumentation to enable compelling science using the 4m aperture. The Ultraviolet Spectrograph has been designed to address cutting edge far ultraviolet (FUV) science that has not been possible with the Hubble Space Telescope, and to open up a wide range of capabilities that will advance astrophysics as we look into the 2030s. Our poster discusses some of those science drivers and possible applications, which range from Solar System science, to nearby and more distant studies of star formation, to studies of the circumgalactic and intergalactic mediums where the ecology of mass and energy transfer are vital to understanding stellar and galactic evolution. We discuss the performance features of the instrument that include a large 3’x3’ field of view for multi-object spectroscopy, and some 20 grating modes for a variety of spectral resolution and coverage.

  9. VizieR Online Data Catalog: Orphan stream high-resolution spectroscopic study (Casey+, 2014)

    Science.gov (United States)

    Casey, A. R.; Keller, S. C.; da Costa, G.; Frebel, A.; Maunder, E.

    2017-06-01

    High-resolution spectra for five Orphan stream candidates and seven well-studied standard stars have been obtained with the Magellan Inamori Kyocera Echelle spectrograph (Bernstein et al. 2003SPIE.4841.1694B) on the Magellan Clay telescope. These objects were observed in 2011 March using a 1" wide slit in mean seeing of 0.9". This slit configuration provides continuous spectral coverage from 333 nm to 915 nm, with a spectral resolution of R=25000 in the blue arm and R=28000 in the red arm. A minimum of 10 exposures of each calibration type (biases, flat fields, and diffuse flats) were observed in the afternoon of each day, with additional flat-field and Th-Ar arc lamp exposures performed throughout the night to ensure an accurate wavelength calibration. (3 data files).

  10. Spectrographic determination of some rare earths in thorium compounds

    International Nuclear Information System (INIS)

    Brito, J. de.

    1977-01-01

    A method for spectrographic determination of Gd, Sm, Dy, Eu, Y, Yb, Tm and Lu in thorium compounds has been developed. Sensibilities of 0.01 μg rare earths/g Th02 were achieved. The rare earth elements were chromatographycally separated in a nitric acid-ether-cellulose system. The solvent mixture was prepared by dissolving 11% of concentrated nitric acid in ether. The method is based upon the sorption of the rare earths on activated cellulose, the elements being eluted together with 0.01 M HNO 3 . The retention of the 152 , 154 Eu used as tracer was 99,4%. The other elements showed recoveries varying from 95 to 99%. A direct carrier destillation procedure for the spectrochemical determination of the mentioned elements was used. Several concentrations of silver chloride were used to study the volatility behavior of the rare earths. 2%AgCl was added to the matrix as definite carrier, being lantanum selected as internal standard. The average coefficient of variation for this method was +- -+ 7%. The method has been appleid to the analysis of rare earths in thorium coumpounds prepared by Thorium Purification Pilot Plant at Atomic Energy Institute, Sao Paulo [pt

  11. Auroral spectrograph data annals of the international geophysical year, v.25

    CERN Document Server

    Carrigan, Anne; Norman, S J

    1964-01-01

    Annals of the International Geophysical Year, Volume 25: Auroral Spectrograph Data is a five-chapter text that contains tabulations of auroral spectrograph data. The patrol spectrograph built by the Perkin-Elmer Corporation for the Aurora and Airglow Program of the IGY is a high-speed, low-dispersion, automatic instrument designed to photograph spectra of aurora occurring along a given magnetic meridian of the sky. Data from each spectral frame were recorded on an IBM punched card. The data recorded on the cards are printed onto the tabulations in this volume. These tabulations are available

  12. Factors Determining the Inter-observer Variability and Diagnostic Accuracy of High-resolution Manometry for Esophageal Motility Disorders.

    Science.gov (United States)

    Kim, Ji Hyun; Kim, Sung Eun; Cho, Yu Kyung; Lim, Chul-Hyun; Park, Moo In; Hwang, Jin Won; Jang, Jae-Sik; Oh, Minkyung

    2018-01-30

    Although high-resolution manometry (HRM) has the advantage of visual intuitiveness, its diagnostic validity remains under debate. The aim of this study was to evaluate the diagnostic accuracy of HRM for esophageal motility disorders. Six staff members and 8 trainees were recruited for the study. In total, 40 patients enrolled in manometry studies at 3 institutes were selected. Captured images of 10 representative swallows and a single swallow in analyzing mode in both high-resolution pressure topography (HRPT) and conventional line tracing formats were provided with calculated metrics. Assessments of esophageal motility disorders showed fair agreement for HRPT and moderate agreement for conventional line tracing (κ = 0.40 and 0.58, respectively). With the HRPT format, the k value was higher in category A (esophagogastric junction [EGJ] relaxation abnormality) than in categories B (major body peristalsis abnormalities with intact EGJ relaxation) and C (minor body peristalsis abnormalities or normal body peristalsis with intact EGJ relaxation). The overall exact diagnostic accuracy for the HRPT format was 58.8% and rater's position was an independent factor for exact diagnostic accuracy. The diagnostic accuracy for major disorders was 63.4% with the HRPT format. The frequency of major discrepancies was higher for category B disorders than for category A disorders (38.4% vs 15.4%; P < 0.001). The interpreter's experience significantly affected the exact diagnostic accuracy of HRM for esophageal motility disorders. The diagnostic accuracy for major disorders was higher for achalasia than distal esophageal spasm and jackhammer esophagus.

  13. High resolution γ spectra of 40-44 MeV γ photon activation products: Part 3 - a summary of γ rays, radionuclides and nuclear interferences observed

    International Nuclear Information System (INIS)

    Williams, D.R.; Hislop, J.S.

    1980-09-01

    A table of γ rays observed in the high resolution γ ray spectra of 40 to 44 MeV γ photon activation products is presented. This table is arranged in order of increasing γ ray energy and the parent isotopes, their half-lives and their inactive precursors are identified. Nuclear interferences caused by production of an active isotope from different parent elements have been identified and evaluated quantitatively. These are also tabulated. (author)

  14. Fiber link design for the NASA-NSF extreme precision Doppler spectrograph concept "WISDOM"

    Science.gov (United States)

    Fżrész, Gábor; Pawluczyk, Rafal; Fournier, Paul; Simcoe, Robert; Woods, Deborah F.

    2016-08-01

    We describe the design of the fiber-optic coupling and light transfer system of the WISDOM (WIYN Spectrograph for DOppler Monitoring) instrument. As a next-generation Precision Radial Velocity (PRV) spectrometer, WISDOM incorporates lessons learned from HARPS about thermal, pressure, and gravity control, but also takes new measures to stabilize the spectrograph illumination, a subject that has been overlooked until recently. While fiber optic links provide more even illumination than a conventional slit, careful engineering of the interface is required to realize their full potential. Conventional round fiber core geometries have been used successfully in conjunction with optical double scramblers, but such systems still retain a memory of the input illumination that is visible in systems seeking sub-m/s PRV precision. Noncircular fibers, along with advanced optical scramblers, and careful optimization of the spectrograph optical system itself are therefore necessary to study Earth-sized planets. For WISDOM, we have developed such a state-of-the-art fiber link concept. Its design is driven primarily by PRV requirements, but it also manages to preserve high overall throughput. Light from the telescope is coupled into a set of six, 32 μm diameter octagonal core fibers, as high resolution is achieved via pupil slicing. The low-OH, step index, fused silica, FBPI-type fibers are custom designed for their numerical aperture that matches the convergence of the feeding beam and thus minimizes focal ratio degradation at the output. Given the demanding environment at the telescope the fiber end tips are mounted in a custom fused silica holder, providing a perfect thermal match. We used a novel process, chemically assisted photo etching, to manufacture this glass fiber holder. A single ball-lens scrambler is inserted into the 25m long fibers. Employing an anti-reflection (AR) coated, high index, cubic-zirconia ball lens the alignment of the scrambler components are

  15. Simultaneous observations of structure function parameter of refractive index using a high-resolution radar and the DataHawk small airborne measurement system

    Science.gov (United States)

    Scipión, Danny E.; Lawrence, Dale A.; Milla, Marco A.; Woodman, Ronald F.; Lume, Diego A.; Balsley, Ben B.

    2016-09-01

    The SOUSY (SOUnding SYstem) radar was relocated to the Jicamarca Radio Observatory (JRO) near Lima, Peru, in 2000, where the radar controller and acquisition system were upgraded with state-of-the-art parts to take full advantage of its potential for high-resolution atmospheric sounding. Due to its broad bandwidth (4 MHz), it is able to characterize clear-air backscattering with high range resolution (37.5 m). A campaign conducted at JRO in July 2014 aimed to characterize the lower troposphere with a high temporal resolution (8.1 Hz) using the DataHawk (DH) small unmanned aircraft system, which provides in situ atmospheric measurements at scales as small as 1 m in the lower troposphere and can be GPS-guided to obtain measurements within the beam of the radar. This was a unique opportunity to make coincident observations by both systems and to directly compare their in situ and remotely sensed parameters. Because SOUSY only points vertically, it is only possible to retrieve vertical radar profiles caused by changes in the refractive index within the resolution volume. Turbulent variations due to scattering are described by the structure function parameter of refractive index Cn2. Profiles of Cn2 from the DH are obtained by combining pressure, temperature, and relative humidity measurements along the helical trajectory and integrated at the same scale as the radar range resolution. Excellent agreement is observed between the Cn2 estimates obtained from the DH and SOUSY in the overlapping measurement regime from 1200 m up to 4200 m above sea level, and this correspondence provides the first accurate calibration of the SOUSY radar for measuring Cn2.

  16. Simultaneous observations of structure function parameter of refractive index using a high-resolution radar and the DataHawk small airborne measurement system

    Directory of Open Access Journals (Sweden)

    D. E. Scipión

    2016-09-01

    Full Text Available The SOUSY (SOUnding SYstem radar was relocated to the Jicamarca Radio Observatory (JRO near Lima, Peru, in 2000, where the radar controller and acquisition system were upgraded with state-of-the-art parts to take full advantage of its potential for high-resolution atmospheric sounding. Due to its broad bandwidth (4 MHz, it is able to characterize clear-air backscattering with high range resolution (37.5 m. A campaign conducted at JRO in July 2014 aimed to characterize the lower troposphere with a high temporal resolution (8.1 Hz using the DataHawk (DH small unmanned aircraft system, which provides in situ atmospheric measurements at scales as small as 1 m in the lower troposphere and can be GPS-guided to obtain measurements within the beam of the radar. This was a unique opportunity to make coincident observations by both systems and to directly compare their in situ and remotely sensed parameters. Because SOUSY only points vertically, it is only possible to retrieve vertical radar profiles caused by changes in the refractive index within the resolution volume. Turbulent variations due to scattering are described by the structure function parameter of refractive index Cn2. Profiles of Cn2 from the DH are obtained by combining pressure, temperature, and relative humidity measurements along the helical trajectory and integrated at the same scale as the radar range resolution. Excellent agreement is observed between the Cn2 estimates obtained from the DH and SOUSY in the overlapping measurement regime from 1200 m up to 4200 m above sea level, and this correspondence provides the first accurate calibration of the SOUSY radar for measuring Cn2.

  17. Effects of high spatial and temporal resolution Earth observations on simulated hydrometeorological variables in a cropland (southwestern France

    Directory of Open Access Journals (Sweden)

    J. Etchanchu

    2017-11-01

    Full Text Available Agricultural landscapes are often constituted by a patchwork of crop fields whose seasonal evolution is dependent on specific crop rotation patterns and phenologies. This temporal and spatial heterogeneity affects surface hydrometeorological processes and must be taken into account in simulations of land surface and distributed hydrological models. The Sentinel-2 mission allows for the monitoring of land cover and vegetation dynamics at unprecedented spatial resolutions and revisit frequencies (20 m and 5 days, respectively that are fully compatible with such heterogeneous agricultural landscapes. Here, we evaluate the impact of Sentinel-2-like remote sensing data on the simulation of surface water and energy fluxes via the Interactions between the Surface Biosphere Atmosphere (ISBA land surface model included in the EXternalized SURface (SURFEX modeling platform. The study focuses on the effect of the leaf area index (LAI spatial and temporal variability on these fluxes. We compare the use of the LAI climatology from ECOCLIMAP-II, used by default in SURFEX-ISBA, and time series of LAI derived from the high-resolution Formosat-2 satellite data (8 m. The study area is an agricultural zone in southwestern France covering 576 km2 (24 km  ×  24 km. An innovative plot-scale approach is used, in which each computational unit has a homogeneous vegetation type. Evaluation of the simulations quality is done by comparing model outputs with in situ eddy covariance measurements of latent heat flux (LE. Our results show that the use of LAI derived from high-resolution remote sensing significantly improves simulated evapotranspiration with respect to ECOCLIMAP-II, especially when the surface is covered with summer crops. The comparison with in situ measurements shows an improvement of roughly 0.3 in the correlation coefficient and a decrease of around 30 % of the root mean square error (RMSE in the simulated evapotranspiration. This

  18. A Spatio-Temporal Enhancement Method for medium resolution LAI (STEM-LAI), International Journal of Applied Earth Observation and Geoinformation

    KAUST Repository

    Houborg, Rasmus

    2015-12-12

    Satellite remote sensing has been used successfully to map leaf area index (LAI) across landscapes, but advances are still needed to exploit multi-scale data streams for producing LAI at both high spatial and temporal resolution. A multi-scale Spatio-Temporal Enhancement Method for medium resolution LAI (STEM-LAI) has been developed to generate 4-day time-series of Landsat-scale LAI from existing medium resolution LAI products. STEM-LAI has been designed to meet the demands of applications requiring frequent and spatially explicit information, such as effectively resolving rapidly evolving vegetation dynamics at sub-field (30 m) scales. In this study, STEM-LAI is applied to Moderate Resolution Imaging Spectroradiometer (MODIS) based LAI data and utilizes a reference-based regression tree approach for producing MODIS-consistent, but Landsat-based, LAI. The Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) is used to interpolate the downscaled LAI between Landsat acquisition dates, providing a high spatial and temporal resolution improvement over existing LAI products. STARFM predicts high resolution LAI by blending MODIS and Landsat based information from a common acquisition date, with MODIS data from a prediction date. To demonstrate its capacity to reproduce fine-scale spatial features observed in actual Landsat LAI, the STEM-LAI approach is tested over an agricultural region in Nebraska. The implementation of a 250 m resolution LAI product, derived from MODIS 1 km data and using a scale consistent approach based on the Normalized Difference Vegetation Index (NDVI), is found to significantly improve accuracies of spatial pattern prediction, with the coefficient of efficiency (E) ranging from 0.77–0.94 compared to 0.01–0.85 when using 1 km LAI inputs alone. Comparisons against an 11-year record of in-situ measured LAI over maize and soybean highlight the utility of STEM-LAI in reproducing observed LAI dynamics (both characterized by r2 = 0

  19. The Behavior of Warm Molecules in Planet-forming Disks and CHESS: a Pathfinder UV Spectrograph for the LUVOIR Surveyor

    Science.gov (United States)

    Hoadley, Keri; France, Kevin

    2017-01-01

    Understanding the evolution of gas over the lifetime of protoplanetary disks provides us with important clues about how planet formation mechanisms drive the diversity of exoplanetary systems observed to date. In the first part of my talk, I will discuss how we use emission line observations of molecular hydrogen (H2) in the far-ultraviolet (far-UV) with the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope to study the warm molecular regions (a CHESS), built as a demonstration of one component of the LUVOIR spectrograph and new technological improvements to UV optical components for the next generation of near- to far-UV astrophysical observatories. CHESS is a far-UV sounding rocket experiment designed to probe the warm and cool atoms and molecules near sites of recent star formation in the local interstellar medium. I will talk about the science goals, design, research and development (R&D) components, and calibration of the CHESS instrument. I will end by presenting the initial data reduction and results of the flight observations taken during the second launch of CHESS.

  20. GLOBAL SAUSAGE OSCILLATION OF SOLAR FLARE LOOPS DETECTED BY THE INTERFACE REGION IMAGING SPECTROGRAPH

    International Nuclear Information System (INIS)

    Tian, Hui; He, Jiansen; Young, Peter R.; Reeves, Katharine K.; Wang, Tongjiang; Antolin, Patrick; Chen, Bin

    2016-01-01

    An observation from the Interface Region Imaging Spectrograph reveals coherent oscillations in the loops of an M1.6 flare on 2015 March 12. Both the intensity and Doppler shift of Fe xxi 1354.08 Å show clear oscillations with a period of ∼25 s. Remarkably similar oscillations were also detected in the soft X-ray flux recorded by the Geostationary Operational Environmental Satellites ( GOES ). With an estimated phase speed of ∼2420 km s −1 and a derived electron density of at least 5.4 × 10 10 cm −3 , the observed short-period oscillation is most likely the global fast sausage mode of a hot flare loop. We find a phase shift of ∼ π /2 (1/4 period) between the Doppler shift oscillation and the intensity/ GOES oscillations, which is consistent with a recent forward modeling study of the sausage mode. The observed oscillation requires a density contrast between the flare loop and coronal background of a factor ≥42. The estimated phase speed of the global mode provides a lower limit of the Alfvén speed outside the flare loop. We also find an increase of the oscillation period, which might be caused by the separation of the loop footpoints with time.

  1. Near InfraRed Imaging Spectrograph (NIRIS) for ground-based ...

    Indian Academy of Sciences (India)

    54

    NIRIS is a large field-of-view imaging spectrograph which is sensitive to fluctuation in ..... enhancement over low-latitudes has been shown to be developed as a ..... step forward towards passive remote sensing of the mesospheric dynamics.

  2. Spectrometer system using a modular echelle spectrograph and a laser-driven continuum source for simultaneous multi-element determination by graphite furnace absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Geisler, Sebastian; Okruss, Michael; Becker-Ross, Helmut; Huang, Mao Dong, E-mail: huang@isas.de; Esser, Norbert; Florek, Stefan

    2015-05-01

    A multi-element absorption spectrometer system has been developed based on a laser-driven xenon continuum source and a modular simultaneous echelle spectrograph (MOSES), which is characterized by a minimized number of optical components resulting in high optical throughput, high transmittance and high image quality. The main feature of the new optical design is the multifunction usage of a Littrow prism, which is attached on a rotation stage. It operates as an order-sorter for the echelle grating in a double-pass mode, as a fine positioning device moving the echelle spectrum on the detector, and as a forwarder to address different optical components, e.g., echelle gratings, in the setup. Using different prisms, which are mounted back to back on the rotation stage, a multitude of different spectroscopic modes like broad-range panorama observations, specific UV–VIS and NIR studies or high resolution zoom investigations of variable spectral channels can be realized. In the UV panorama mode applied in this work, MOSES has simultaneously detectable wavelength coverage from 193 nm to 390 nm with a spectral resolution λ/Δλ of 55,000 (3-pixel criterion). In the zoom mode the latter can be further increased by a factor of about two for a selectable section of the full wavelength range. The applicability and the analytical performance of the system were tested by simultaneous element determination in a graphite furnace, using eight different elements. Compared to an instrument operating in the optimized single line mode, the achieved analytical sensitivity using the panorama mode was typically a factor of two lower. Using the zoom mode for selected elements, comparable sensitivities were obtained. The results confirm the influence of the different spectral resolutions. - Highlights: • Echelle spectrometer with a full frame CCD array detector • High and variable spectral resolution from λ/Δλ of 55,000 to 95,000 • Laser-driven continuum light source

  3. Greenhouse Gas Dynamics in a Salt-Wedge Estuary Revealed by High Resolution Cavity Ring-Down Spectroscopy Observations.

    Science.gov (United States)

    Tait, Douglas R; Maher, Damien T; Wong, WeiWen; Santos, Isaac R; Sadat-Noori, Mahmood; Holloway, Ceylena; Cook, Perran L M

    2017-12-05

    Estuaries are an important source of greenhouse gases to the atmosphere, but uncertainties remain in the flux rates and production pathways of greenhouse gases in these dynamic systems. This study performs simultaneous high resolution measurements of the three major greenhouse gases (carbon dioxide, methane, and nitrous oxide) as well as carbon stable isotope ratios of carbon dioxide and methane, above and below the pycnocline along a salt wedge estuary (Yarra River estuary, Australia). We identified distinct zones of elevated greenhouse gas concentrations. At the tip of salt wedge, average CO 2 and N 2 O concentrations were approximately five and three times higher than in the saline mouth of the estuary. In anaerobic bottom waters, the natural tracer radon ( 222 Rn) revealed that porewater exchange was the likely source of the highest methane concentrations (up to 1302 nM). Isotopic analysis of CH 4 showed a dominance of acetoclastic production in fresh surface waters and hydrogenotrophic production occurring in the saline bottom waters. The atmospheric flux of methane (in CO 2 equivalent units) was a major (35-53%) contributor of atmospheric radiative forcing from the estuary, while N 2 O contributed <2%. We hypothesize that the release of bottom water gases when stratification episodically breaks down will release large pulses of greenhouse gases to the atmosphere.

  4. Atomic resolution observation of conversion-type anode RuO 2 during the first electrochemical lithiation

    KAUST Repository

    Mao, Minmin

    2015-03-05

    Transition metal oxides have attracted great interest as alternative anode materials for rechargeable lithium-ion batteries. Among them, ruthenium dioxide is considered to be a prototype material that reacts with the Li ions in the conversion type. In situ transmission electron microscopy reveals a two-step process during the initial lithiation of the RuO2 nanowire anode at atomic resolution. The first step is characterized by the formation of the intermediate phase LixRuO2 due to the Li-ion intercalation. The following step is manifested by the solid-state amorphization reaction driven by advancing the reaction front. The crystalline/amorphous interface is consisted of {011} atomic terraces, revealing the orientation-dependent mobility. In the crystalline matrix, lattice disturbance and dislocation are identified to be two major stress-induced distortions. The latter can be effective diffusion channels, facilitating transportation of the Li ions inside the bulk RuO2 crystal and further resulting in non-uniform Li-ion distribution. It is expected that the local enrichment of the Li ions may account for the homogeneous nucleation of dislocations in the bulk RuO2 crystal and the special island-like structures. These results elucidate the structural evolution and the phase transformation during electrochemical cycling, which sheds light on engineering RuO2 anode materials.

  5. DETAILED ANALYSIS OF NEAR-IR WATER (H{sub 2}O) EMISSION IN COMET C/2014 Q2 (LOVEJOY) WITH THE GIANO/TNG SPECTROGRAPH

    Energy Technology Data Exchange (ETDEWEB)

    Faggi, S.; Brucato, J. R.; Tozzi, G. P.; Oliva, E.; Massi, F.; Sanna, N.; Tozzi, A. [Osservatorio Astrofisico di Arcetri, Largo Enrico Fermi 5, I-50125 Firenze (Italy); Villanueva, G. L.; Mumma, M. J., E-mail: sfaggi@arcetri.astro.it [NASA Goddard Space Flight Centre, 8800 Greenbelt Rd, Greenbelt, MD 20771 (United States)

    2016-10-20

    We observed the Oort cloud comet C/2014 Q2 (Lovejoy) on 2015 January 31 and February 1 and 2 at a heliocentric distance of 1.3 au and geocentric distance of 0.8 au during its approach to the Sun. Comet Lovejoy was observed with GIANO, the near-infrared high-resolution spectrograph mounted at the Nasmyth-A focus of the TNG (Telescopio Nazionale Galileo) telescope in La Palma, Canary Islands, Spain. We detected strong emissions of radical CN and water, along with many emission features of unidentified origin, across the 1–2.5 μ m region. Spectral lines from eight ro-vibrational bands of H{sub 2}O were detected, six of them for the first time. We quantified the water production rate [ Q (H{sub 2}O), (3.11 ± 0.14) × 10{sup 29} s{sup −1}] by comparing the calibrated line fluxes with the Goddard full non-resonance cascade fluorescence model for H{sub 2}O. The production rates of ortho-water [ Q (H{sub 2}O){sup ORTHO}, (2.33 ± 0.11) × 10{sup 29} s{sup −1}] and para-water [ Q (H{sub 2}O){sup PARA}, (0.87 ± 0.21) × 1029 s{sup −1}] provide a measure of the ortho-to-para ratio (2.70 ± 0.76)). The confidence limits are not small enough to provide a critical test of the nuclear spin temperature.

  6. Advancements in medium and high resolution Earth observation for land-surface imaging: Evolutions, future trends and contributions to sustainable development

    Science.gov (United States)

    Ouma, Yashon O.

    2016-01-01

    Technologies for imaging the surface of the Earth, through satellite based Earth observations (EO) have enormously evolved over the past 50 years. The trends are likely to evolve further as the user community increases and their awareness and demands for EO data also increases. In this review paper, a development trend on EO imaging systems is presented with the objective of deriving the evolving patterns for the EO user community. From the review and analysis of medium-to-high resolution EO-based land-surface sensor missions, it is observed that there is a predictive pattern in the EO evolution trends such that every 10-15 years, more sophisticated EO imaging systems with application specific capabilities are seen to emerge. Such new systems, as determined in this review, are likely to comprise of agile and small payload-mass EO land surface imaging satellites with the ability for high velocity data transmission and huge volumes of spatial, spectral, temporal and radiometric resolution data. This availability of data will magnify the phenomenon of ;Big Data; in Earth observation. Because of the ;Big Data; issue, new computing and processing platforms such as telegeoprocessing and grid-computing are expected to be incorporated in EO data processing and distribution networks. In general, it is observed that the demand for EO is growing exponentially as the application and cost-benefits are being recognized in support of resource management.

  7. Construction of a High Temporal-spectral Resolution Spectrometer for Detection of Fast Transients from Observations of the Sun at 1.4 GHz.

    Science.gov (United States)

    Casillas-Perez, G. A.; Jeyakumar, S.; Perez-Enriquez, R.

    2014-12-01

    Transients explosive events with time durations from nanoseconds to several hours, are observed in the Sun at high energy bands such as gamma ray and xray. In the radio band, several types of radio bursts are commonly detected from the ground. A few observations of the Sun in the past have also detected a new class of fast transients which are known to have short-live electromagnetic emissions with durations less than 100 ms. The mechanisms that produce such fast transiets remain unclear. Observations of such fast transients over a wide bandwidth is necessary to uderstand the underlying physical process that produce such fast transients. Due to their very large flux densities, fast radio transients can be observed at high time resolution using small antennas in combination with digital signal processing techniques. In this work we report the progress of an spectrometer that is currently in construction at the Observatorio de la Luz of the Universidad de Guanajuato. The instrument which will have the purpose of detecting solar fast radio transients, involves the use of digital devices such as FPGA and ADC cards, in addition with a receiver with high temporal-spectral resolution centered at 1.4 GHz and a pair of 2.3 m satellite dish.

  8. High-resolution Mapping of Permafrost and Soil Freeze/thaw Dynamics in the Tibetan Plateau Based on Multi-sensor Satellite Observations

    Science.gov (United States)

    Zhang, W.; Yi, Y.; Yang, K.; Kimball, J. S.

    2016-12-01

    The Tibetan Plateau (TP) is underlain by the world's largest extent of alpine permafrost ( 2.5×106 km2), dominated by sporadic and discontinuous permafrost with strong sensitivity to climate warming. Detailed permafrost distributions and patterns in most of the TP region are still unknown due to extremely sparse in-situ observations in this region characterized by heterogeneous land cover and large temporal dynamics in surface soil moisture conditions. Therefore, satellite-based temperature and moisture observations are essential for high-resolution mapping of permafrost distribution and soil active layer changes in the TP region. In this study, we quantify the TP regional permafrost distribution at 1-km resolution using a detailed satellite data-driven soil thermal process model (GIPL2). The soil thermal model is calibrated and validated using in-situ soil temperature/moisture observations from the CAMP/Tibet field campaign (9 sites: 0-300 cm soil depth sampling from 1997-2007), a multi-scale soil moisture and temperature monitoring network in the central TP (CTP-SMTMN, 57 sites: 5-40 cm, 2010-2014) and across the whole plateau (China Meteorology Administration, 98 sites: 0-320 cm, 2000-2015). Our preliminary results using the CAMP/Tibet and CTP-SMTMN network observations indicate strong controls of surface thermal and soil moisture conditions on soil freeze/thaw dynamics, which vary greatly with underlying topography, soil texture and vegetation cover. For regional mapping of soil freeze/thaw and permafrost dynamics, we use the most recent soil moisture retrievals from the NASA SMAP (Soil Moisture Active Passive) sensor to account for the effects of temporal soil moisture dynamics on soil thermal heat transfer, with surface thermal conditions defined by MODIS (Moderate Resolution Imaging Spectroradiometer) land surface temperature records. Our study provides the first 1-km map of spatial patterns and recent changes of permafrost conditions in the TP.

  9. High-resolution monitoring of marine protists based on an observation strategy integrating automated on-board filtration and molecular analyses

    Science.gov (United States)

    Metfies, Katja; Schroeder, Friedhelm; Hessel, Johanna; Wollschläger, Jochen; Micheller, Sebastian; Wolf, Christian; Kilias, Estelle; Sprong, Pim; Neuhaus, Stefan; Frickenhaus, Stephan; Petersen, Wilhelm

    2016-11-01

    Information on recent biomass distribution and biogeography of photosynthetic marine protists with adequate temporal and spatial resolution is urgently needed to better understand the consequences of environmental change for marine ecosystems. Here we introduce and review a molecular-based observation strategy for high-resolution assessment of these protists in space and time. It is the result of extensive technology developments, adaptations and evaluations which are documented in a number of different publications, and the results of the recently completed field testing which are introduced in this paper. The observation strategy is organized at four different levels. At level 1, samples are collected at high spatiotemporal resolution using the remotely controlled automated filtration system AUTOFIM. Resulting samples can either be preserved for later laboratory analyses, or directly subjected to molecular surveillance of key species aboard the ship via an automated biosensor system or quantitative polymerase chain reaction (level 2). Preserved samples are analyzed at the next observational levels in the laboratory (levels 3 and 4). At level 3 this involves molecular fingerprinting methods for a quick and reliable overview of differences in protist community composition. Finally, selected samples can be used to generate a detailed analysis of taxonomic protist composition via the latest next generation sequencing technology (NGS) at level 4. An overall integrated dataset of the results based on the different analyses provides comprehensive information on the diversity and biogeography of protists, including all related size classes. At the same time the cost of the observation is optimized with respect to analysis effort and time.

  10. A SEARCH FOR SHORT-PERIOD ROCKY PLANETS AROUND WDs WITH THE COSMIC ORIGINS SPECTROGRAPH (COS)

    Energy Technology Data Exchange (ETDEWEB)

    Sandhaus, Phoebe H.; Debes, John H.; Ely, Justin; Hines, Dean C.; Bourque, Matthew [Space Telescope Science Institute, 3700 San Martin Dr., Baltimore, MD 21218 (United States)

    2016-05-20

    The search for transiting habitable exoplanets has broadened to include several types of stars that are smaller than the Sun in an attempt to increase the observed transit depth and hence the atmospheric signal of the planet. Of all spectral types, white dwarfs (WDs) are the most favorable for this type of investigation. The fraction of WDs that possess close-in rocky planets is unknown, but several large angle stellar surveys have the photometric precision and cadence to discover at least one if they are common. Ultraviolet observations of WDs may allow for detection of molecular oxygen or ozone in the atmosphere of a terrestrial planet. We use archival Hubble Space Telescope data from the Cosmic Origins Spectrograph to search for transiting rocky planets around UV-bright WDs. In the process, we discovered unusual variability in the pulsating WD GD 133, which shows slow sinusoidal variations in the UV. While we detect no planets around our small sample of targets, we do place stringent limits on the possibility of transiting planets, down to sub-lunar radii. We also point out that non-transiting small planets in thermal equilibrium are detectable around hotter WDs through infrared excesses, and identify two candidates.

  11. Large micro-mirror arrays: key components in future space instruments for Universe and Earth Observation

    Directory of Open Access Journals (Sweden)

    Zamkotsian Frederic

    2015-01-01

    Full Text Available In future space missions for Universe and Earth Observation, scientific return could be optimized using MOEMS devices. Micro-mirror arrays are used for designing new generation of instruments, multi-object spectrographs in Universe Observation and programmable wide field spectrographs in Earth Observation. Mock-ups have been designed and built for both applications and they show very promising results.

  12. LCS-1: A high-resolution global model of the lithospheric magnetic field derived from CHAMP and Swarm satellite observations

    DEFF Research Database (Denmark)

    Olsen, Nils; Ravat, Dhananjay; Finlay, Chris

    2017-01-01

    -West gradient is approximated by the difference between observations taken by Swarm Alpha and Charlie. In total, we used 6.2 mio data points.The model is parametrized by 35,000 equivalent point sources located on an almost equal-area grid at a depth of 100 km below the surface (WGS84 ellipsoid). The amplitudes...

  13. In situ high-resolution transmission electron microscopy synthesis observation of nanostructured carbon coated LiFePO 4

    Science.gov (United States)

    Trudeau, M. L.; Laul, D.; Veillette, R.; Serventi, A. M.; Mauger, A.; Julien, C. M.; Zaghib, K.

    In situ high-resolution transmission electron microscopy (HRTEM) studies of the structural transformations that occur during the synthesis of carbon-coated LiFePO 4 (C-LiFePO 4) and heat treatment to elevated temperatures were conducted in two different electron microscopes. Both microscopes have sample holders that are capable of heating up to 1500 °C, with one working under high vacuum and the other capable of operating with the sample surrounded by a low gaseous environment. The C-LiFePO 4 samples were prepared using three different compositions of precursor materials with Fe(0), Fe(II) or Fe(III), a Li-containing salt and a polyethylene- block-poly(ethylene glycol)-50% ethylene oxide or lactose. The in situ TEM studies suggest that low-cost Fe(0) and a low-cost carbon-containing compound such as lactose are very attractive precursors for mass production of C-LiFePO 4, and that 700 °C is the optimum synthesis temperature. At temperatures higher than 800 °C, LiFePO 4 has a tendency to decompose. The same in situ measurements have been made on particles without carbon coat. The results show that the homogeneous deposit of the carbon deposit at 700 °C is the result of the annealing that cures the disorder of the surface layer of bare LiFePO 4. Electrochemical tests supported the conclusion that the C-LiFePO 4 derived from Fe(0) is the most attractive for mass production.

  14. Volcano-tectonic control of Merapi's lava dome splitting observed from high resolution TerraSAR-X data

    KAUST Repository

    Luehr, Birger-G.

    2015-04-01

    Volcanism at active andesite-dacite volcanoes is often associated with the formation and collapse of circular shaped protrusions of extruded, highly viscous lava, the so-called domes, which are emplaced in the near summit region. Growing domes may experience stable and instable structural phases, with a gradual transition in between. Dome collapse and the break-off of instable blocks of viscous lava may lead to pyroclastic flows, one of the most lethal hazards at stratovolcanoes. At Merapi volcano, Indonesia, nearly 50 % of all eruptions are accompanied by these phenomena. After the climactic eruption in 2010 which left an amphitheater in the summit region, a new dome started growing. Three years later, the dome reached a height of approximately 100 m and diameters of 220 and 190 m with a plateau-like surface area of 40,000m2 approximately. On 18/11/2013, an explosion occurred without identified precursors, leaving a major fracture cutting the complete dome structure. Based on high resolution TerraSAR-X satellite radar imagery, we could identify this linear fracture, traceable over ~200m in the long axis, and up to 40m width. After geocoding of the radar amplitude imagery, the fractures azimuthal trend could be compared to other structural lineaments, indicative of a significant NNW-SSE structural direction that has formed on Merapi volcano in the past. This alignment is also visible in a seismic velocity tomographic imagery for the upper crust, down to 15 km depth. The Merapi dome fractured in a NW-SE direction, and is consistent with the alignment of regional tectonic structures and of anticipated directions of pyroclastic flows. The fracture may be part of a larger volcano-tectonic system and may affect the dynamics and the stability of the Merapi dome.

  15. Volcano-tectonic control of Merapi's lava dome splitting observed from high resolution TerraSAR-X data

    KAUST Repository

    Luehr, Birger-G.; Walter, Thomas R.; Subandriyo, Joko; Sri Brotopuspito, Kirbani; Vasyura-Bathke, Hannes; Suryanto, Wiwit; Aisyah, Naning; Darmawan, Herlan; Nikkhoo, Mehdi; Richter, Nicole; Jousset, Philippe; Dahm, Torsten

    2015-01-01

    Volcanism at active andesite-dacite volcanoes is often associated with the formation and collapse of circular shaped protrusions of extruded, highly viscous lava, the so-called domes, which are emplaced in the near summit region. Growing domes may experience stable and instable structural phases, with a gradual transition in between. Dome collapse and the break-off of instable blocks of viscous lava may lead to pyroclastic flows, one of the most lethal hazards at stratovolcanoes. At Merapi volcano, Indonesia, nearly 50 % of all eruptions are accompanied by these phenomena. After the climactic eruption in 2010 which left an amphitheater in the summit region, a new dome started growing. Three years later, the dome reached a height of approximately 100 m and diameters of 220 and 190 m with a plateau-like surface area of 40,000m2 approximately. On 18/11/2013, an explosion occurred without identified precursors, leaving a major fracture cutting the complete dome structure. Based on high resolution TerraSAR-X satellite radar imagery, we could identify this linear fracture, traceable over ~200m in the long axis, and up to 40m width. After geocoding of the radar amplitude imagery, the fractures azimuthal trend could be compared to other structural lineaments, indicative of a significant NNW-SSE structural direction that has formed on Merapi volcano in the past. This alignment is also visible in a seismic velocity tomographic imagery for the upper crust, down to 15 km depth. The Merapi dome fractured in a NW-SE direction, and is consistent with the alignment of regional tectonic structures and of anticipated directions of pyroclastic flows. The fracture may be part of a larger volcano-tectonic system and may affect the dynamics and the stability of the Merapi dome.

  16. The Compositional Evolution of C/2012 S1 (ISON) from Ground-Based High-Resolution Infrared Spectroscopy as Part of a Worldwide Observing Campaign

    Science.gov (United States)

    Russo, N. Dello; Vervack, R. J., Jr.; Kawakita, H.; Cochran, A.; McKay, A. J.; Harris, W. M.; Weaver, H.A.; Lisse, C. M.; DiSanti, M. A.; Kobayashi, H.

    2015-01-01

    Volatile production rates, relative abundances, rotational temperatures, and spatial distributions in the coma were measured in C/2012 S1 (ISON) using long-slit high-dispersion (lambda/delta lambda approximately 2.5 times 10 (sup 4)) infrared spectroscopy as part of a worldwide observing campaign. Spectra were obtained on Universal Time 2013 October 26 and 28 with NIRSPEC (Near Infrared Spectrometer) at the W.M. Keck Observatory, and Universal Time 2013 November 19 and 20 with CSHELL (Cryogenic Echelle Spectrograph) at the NASA IRTF (Infrared Telescope Facility). H2O was detected on all dates, with production rates increasing markedly from (8.7 plus or minus 1.5) times 10 (sup 27) molecules per second on October 26 (Heliocentric Distance = 1.12 Astronomical Units) to (3.7 plus or minus 0.4) times 10 (sup 29) molecules per second on November 20 (Heliocentric Distance = 0.43 Astronomical Units). Short-term variability of H2O production is also seen as observations on November 19 show an increase in H2O production rate of nearly a factor of two over a period of about 6 hours. C2H6, CH3OH and CH4 abundances in ISON (International Scientific Optical Network) are slightly depleted relative to H2O when compared to mean values for comets measured at infrared wavelengths. On the November dates, C2H2, HCN and OCS abundances relative to H2O appear to be within the range of mean values, whereas H2CO and NH3 were significantly enhanced. There is evidence that the abundances with respect to H2O increased for some species but not others between October 28 (Heliocentric Distance = 1.07 Astronomical Units) and November 19 (Heliocentric Distance = 0.46 Astronomical Units). The high mixing ratios of H2CO to CH3OH and C2H2 to C2H6 on November 19, and changes in the mixing ratios of some species with respect to H2O between October 28 to November 19, indicates compositional changes that may be the result of a transition from sampling radiation-processed outer layers in this dynamically

  17. Instrument Design of the Large Aperture Solar UV Visible and IR Observing Telescope (SUVIT) for the SOLAR-C Mission

    Science.gov (United States)

    Suematsu, Y.; Katsukawa, Y.; Shimizu, T.; Ichimoto, K.; Takeyama, N.

    2012-12-01

    We present an instrumental design of one major solar observation payload planned for the SOLAR-C mission: the Solar Ultra-violet Visible and near IR observing Telescope (SUVIT). The SUVIT is designed to provide high-angular-resolution investigation of the lower solar atmosphere, from the photosphere to the uppermost chromosphere, with enhanced spectroscopic and spectro-polarimetric capability in wide wavelength regions from 280 nm (Mg II h&k lines) to 1100 nm (He I 1083 nm line) with 1.5 m class aperture and filtergraphic and spectrographic instruments.

  18. Extreme ultraviolet spectroscopy of G191-B2B - Direct observation of ionization edges

    Science.gov (United States)

    Wilkinson, Erik; Green, James C.; Cash, Webster

    1992-01-01

    We present the first spectrum of the hot, DA white dwarf G191-B2B (wd 0501 + 527) between 200 and 330 A. The spectrum, which has about 2 A resolution, was obtained with a sounding rocket-borne, grazing incidence spectrograph. The spectrum shows no evidence of He II, the expected primary opacity source in this wavelength region. Three ionization edges and one absorption feature were observed and are suggestive of O III existing in the photosphere of G191-B2B. Also noted is a broad spectral depression that may result from Fe VI in the photosphere.

  19. Hyper-Resolution Global Land Surface Model at Regional-to-Local Scales with observed Groundwater data assimilation

    OpenAIRE

    Singh, Raj Shekhar

    2014-01-01

    Modeling groundwater is challenging: it is not readily visible and is difficult to measure, with limited sets of observations available. Even though groundwater models can reproduce water table and head variations, considerable drift in modeled land surface states can nonetheless result from partially known geologic structure, errors in the input forcing fields, and imperfect Land Surface Model (LSM) parameterizations. These models frequently have biased results that are very different from o...

  20. A High-Speed Spectroscopy System for Observing Lightning and Transient Luminous Events

    Science.gov (United States)

    Boggs, L.; Liu, N.; Austin, M.; Aguirre, F.; Tilles, J.; Nag, A.; Lazarus, S. M.; Rassoul, H.

    2017-12-01

    Here we present a high-speed spectroscopy system that can be used to record atmospheric electrical discharges, including lightning and transient luminous events. The system consists of a Phantom V1210 high-speed camera, a Volume Phase Holographic (VPH) grism, an optional optical slit, and lenses. The spectrograph has the capability to record videos at speeds of 200,000 frames per second and has an effective wavelength band of 550-775 nm for the first order spectra. When the slit is used, the system has a spectral resolution of about 0.25 nm per pixel. We have constructed a durable enclosure made of heavy duty aluminum to house the high-speed spectrograph. It has two fans for continuous air flow and a removable tray to mount the spectrograph components. In addition, a Watec video camera (30 frames per second) is attached to the top of the enclosure to provide a scene view. A heavy duty Pelco pan/tilt motor is used to position the enclosure and can be controlled remotely through a Rasperry Pi computer. An observation campaign has been conducted during the summer and fall of 2017 at the Florida Institute of Technology. Several close cloud-to-ground discharges were recorded at 57,000 frames per second. The spectrum of a downward stepped negative leader and a positive cloud-to-ground return stroke will be reported on.

  1. Direct observation of low energy nuclear spin excitations in HoCrO3 by high resolution neutron spectroscopy.

    Science.gov (United States)

    Chatterji, T; Jalarvo, N; Kumar, C M N; Xiao, Y; Brückel, Th

    2013-07-17

    We have investigated low energy nuclear spin excitations in the strongly correlated electron compound HoCrO3. We observe clear inelastic peaks at E = 22.18 ± 0.04 μeV in both energy loss and gain sides. The energy of the inelastic peaks remains constant in the temperature range 1.5-40 K at which they are observed. The intensity of the inelastic peak increases at first with increasing temperature and then decreases at higher temperatures. The temperature dependence of the energy and intensity of the inelastic peaks is very unusual compared to that observed in other Nd, Co, V and also simple Ho compounds. Huge quasielastic scattering appears at higher temperatures presumably due to the fluctuating electronic moments of the Ho ions that get increasingly disordered at higher temperatures. The strong quasielastic scattering may also originate in the first Ho crystal-field excitations at about 1.5 meV.

  2. High-resolution observations of low-luminosity gigahertz-peaked spectrum and compact steep-spectrum sources

    Science.gov (United States)

    Collier, J. D.; Tingay, S. J.; Callingham, J. R.; Norris, R. P.; Filipović, M. D.; Galvin, T. J.; Huynh, M. T.; Intema, H. T.; Marvil, J.; O'Brien, A. N.; Roper, Q.; Sirothia, S.; Tothill, N. F. H.; Bell, M. E.; For, B.-Q.; Gaensler, B. M.; Hancock, P. J.; Hindson, L.; Hurley-Walker, N.; Johnston-Hollitt, M.; Kapińska, A. D.; Lenc, E.; Morgan, J.; Procopio, P.; Staveley-Smith, L.; Wayth, R. B.; Wu, C.; Zheng, Q.; Heywood, I.; Popping, A.

    2018-06-01

    We present very long baseline interferometry observations of a faint and low-luminosity (L1.4 GHz GPS) and compact steep-spectrum (CSS) sample. We select eight sources from deep radio observations that have radio spectra characteristic of a GPS or CSS source and an angular size of θ ≲ 2 arcsec, and detect six of them with the Australian Long Baseline Array. We determine their linear sizes, and model their radio spectra using synchrotron self-absorption (SSA) and free-free absorption (FFA) models. We derive statistical model ages, based on a fitted scaling relation, and spectral ages, based on the radio spectrum, which are generally consistent with the hypothesis that GPS and CSS sources are young and evolving. We resolve the morphology of one CSS source with a radio luminosity of 10^{25} W Hz^{-1}, and find what appear to be two hotspots spanning 1.7 kpc. We find that our sources follow the turnover-linear size relation, and that both homogeneous SSA and an inhomogeneous FFA model can account for the spectra with observable turnovers. All but one of the FFA models do not require a spectral break to account for the radio spectrum, while all but one of the alternative SSA and power-law models do require a spectral break to account for the radio spectrum. We conclude that our low-luminosity sample is similar to brighter samples in terms of their spectral shape, turnover frequencies, linear sizes, and ages, but cannot test for a difference in morphology.

  3. THE SPITZER INFRARED SPECTROGRAPH DEBRIS DISK CATALOG. I. CONTINUUM ANALYSIS OF UNRESOLVED TARGETS

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Christine H. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Mittal, Tushar [Department of Earth and Planetary Science, University of California Berkeley, Berkeley, CA 94720-4767 (United States); Kuchner, Marc [NASA Goddard Space Flight Center, Exoplanets and Stellar Astrophysics Laboratory, Code 667, Greenbelt, MD 20771 (United States); Forrest, William J.; Watson, Dan M. [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 (United States); Lisse, Carey M. [Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723 (United States); Manoj, P. [Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005 (India); Sargent, Benjamin A., E-mail: cchen@stsci.edu [Center for Imaging Science and Laboratory for Multiwavelength Astrophysics, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623 (United States)

    2014-04-01

    During the Spitzer Space Telescope cryogenic mission, Guaranteed Time Observers, Legacy Teams, and General Observers obtained Infrared Spectrograph (IRS) observations of hundreds of debris disk candidates. We calibrated the spectra of 571 candidates, including 64 new IRAS and Multiband Imaging Photometer for Spitzer (MIPS) debris disks candidates, modeled their stellar photospheres, and produced a catalog of excess spectra for unresolved debris disks. For 499 targets with IRS excess but without strong spectral features (and a subset of 420 targets with additional MIPS 70 μm observations), we modeled the IRS (and MIPS data) assuming that the dust thermal emission was well-described using either a one- or two-temperature blackbody model. We calculated the probability for each model and computed the average probability to select among models. We found that the spectral energy distributions for the majority of objects (∼66%) were better described using a two-temperature model with warm (T {sub gr} ∼ 100-500 K) and cold (T {sub gr} ∼ 50-150 K) dust populations analogous to zodiacal and Kuiper Belt dust, suggesting that planetary systems are common in debris disks and zodiacal dust is common around host stars with ages up to ∼1 Gyr. We found that younger stars generally have disks with larger fractional infrared luminosities and higher grain temperatures and that higher-mass stars have disks with higher grain temperatures. We show that the increasing distance of dust around debris disks is inconsistent with self-stirred disk models, expected if these systems possess planets at 30-150 AU. Finally, we illustrate how observations of debris disks may be used to constrain the radial dependence of material in the minimum mass solar nebula.

  4. Improving the spatial and temporal resolution with quantification of uncertainty and errors in earth observation data sets using Data Interpolating Empirical Orthogonal Functions methodology

    Science.gov (United States)

    El Serafy, Ghada; Gaytan Aguilar, Sandra; Ziemba, Alexander

    2016-04-01

    There is an increasing use of process-based models in the investigation of ecological systems and scenario predictions. The accuracy and quality of these models are improved when run with high spatial and temporal resolution data sets. However, ecological data can often be difficult to collect which manifests itself through irregularities in the spatial and temporal domain of these data sets. Through the use of Data INterpolating Empirical Orthogonal Functions(DINEOF) methodology, earth observation products can be improved to have full spatial coverage within the desired domain as well as increased temporal resolution to daily and weekly time step, those frequently required by process-based models[1]. The DINEOF methodology results in a degree of error being affixed to the refined data product. In order to determine the degree of error introduced through this process, the suspended particulate matter and chlorophyll-a data from MERIS is used with DINEOF to produce high resolution products for the Wadden Sea. These new data sets are then compared with in-situ and other data sources to determine the error. Also, artificial cloud cover scenarios are conducted in order to substantiate the findings from MERIS data experiments. Secondly, the accuracy of DINEOF is explored to evaluate the variance of the methodology. The degree of accuracy is combined with the overall error produced by the methodology and reported in an assessment of the quality of DINEOF when applied to resolution refinement of chlorophyll-a and suspended particulate matter in the Wadden Sea. References [1] Sirjacobs, D.; Alvera-Azcárate, A.; Barth, A.; Lacroix, G.; Park, Y.; Nechad, B.; Ruddick, K.G.; Beckers, J.-M. (2011). Cloud filling of ocean colour and sea surface temperature remote sensing products over the Southern North Sea by the Data Interpolating Empirical Orthogonal Functions methodology. J. Sea Res. 65(1): 114-130. Dx.doi.org/10.1016/j.seares.2010.08.002

  5. Observations of three bright extragalactic radiosources at the 1.38 cm wavelength with the resolution up to 8''

    International Nuclear Information System (INIS)

    Berlin, A.B.; Korenev, Yu.V.; Lesovoj, V.Yu.; Parijskij, Yu.N.; Smirnov, V.I.; Soboleva, N.S.

    1980-01-01

    New observations of radiogalaxies in the shortest wavelength region of the RATAN-600 radiotelescope were performed using the 1.38-cm radiometer. One-dimentional radiobrightness distribution of 3C 405 (Cyg A) and Cen A as well as instantaneous spectra of the nuclear sources in 3C 111, 3C 405 and Cen A are presented. Spectra of nuclear components in radiosources 3C 111 and Cen A show marked variations at the time scale of the order of three years. Fluxes for the nuclear component of Cyg A at the wavelengths greater than 3.9 cm have decreased during the last 5 years. Wavelength independence is pointed out for brightness distribution in the main components of all sources. This contradicts to some extragalactic radiosources models in which radiation losses of relativistic electrons when moving from the hot ''spots'' to ''tails'' are suggested

  6. The minimum mass of detectable planets in protoplanetary discs and the derivation of planetary masses from high-resolution observations.

    Science.gov (United States)

    Rosotti, Giovanni P; Juhasz, Attila; Booth, Richard A; Clarke, Cathie J

    2016-07-01

    We investigate the minimum planet mass that produces observable signatures in infrared scattered light and submillimetre (submm) continuum images and demonstrate how these images can be used to measure planet masses to within a factor of about 2. To this end, we perform multi-fluid gas and dust simulations of discs containing low-mass planets, generating simulated observations at 1.65, 10 and 850 μm. We show that the minimum planet mass that produces a detectable signature is ∼15 M ⊕ : this value is strongly dependent on disc temperature and changes slightly with wavelength (favouring the submm). We also confirm previous results that there is a minimum planet mass of ∼20 M ⊕ that produces a pressure maximum in the disc: only planets above this threshold mass generate a dust trap that can eventually create a hole in the submm dust. Below this mass, planets produce annular enhancements in dust outwards of the planet and a reduction in the vicinity of the planet. These features are in steady state and can be understood in terms of variations in the dust radial velocity, imposed by the perturbed gas pressure radial profile, analogous to a traffic jam. We also show how planet masses can be derived from structure in scattered light and submm images. We emphasize that simulations with dust need to be run over thousands of planetary orbits so as to allow the gas profile to achieve a steady state and caution against the estimation of planet masses using gas-only simulations.

  7. Spectrographic determination of impurities in ammonium bifluoride. IV.Study of the processes of vaporization, transport and excitation of the elements Fe, Mn, Mo, Ni, Pb and Si

    International Nuclear Information System (INIS)

    Alduan, F.A.; Capdevila, C.; Roca, M.

    1981-01-01

    The influences of the processes of vaporization, transport and excitation on the shape of the volatilization-excitation curves and on the values of the spectra-line intensities have been investigated in a method for the spectrographic determination of Fe, Mn, Mo, Ni, Pb and Si in ammonium bifluoride samples by direct current arc Ga 2 O 3 , GeO 2 , MgO and ZnO. The reaction products in the electrode cavity have been identified by X-ray powder diffraction analysis and the porcentages of vaporized and diffused element evaluated through analysis by total-burning spectrographic methods. In addition, the values of both the number of particles entering the discharge column and the transport efficiencies have been calculated. Thus, the origin of most observed differences has been explained. (author)

  8. Spectrographic determination of impurities in ammonium bifluoride. III. Study of the processes of vaporization, transport and excitation of the elements Al, B, Cu and Cr

    International Nuclear Information System (INIS)

    Alduan, F. A.; Roca, M.; Capdevila, C.

    1979-01-01

    The influences of the processes of vaporization, transport and excitation on the shape of the volatilization-excitation curves and on the values of the spectral-line intensities have been investigated in a method for the spectrographic determination of Al, B, Cu and Cr In ammonium bifluoride samples by direct current are excitation in Scribner type electrodes, with addition of different matrices (graphite, 63203, GeO 2 , MgO and Zn0). The reaction products in the electrode cavity have been identified by X-ray powder diffraction analysis and the percentages of vaporized and diffused element evaluated through analysis by total-burning spectrographic methods. In addition, the values of both the number of particles entering the discharge column and the transport efficiencies have been calculated. Thus, the origin of most observed differences has been explained. (Author) 11 refs

  9. Characterizing the Diurnal Cycle of Land Surface Temperature and Evapotranspiration at High Spatial Resolution Using Thermal Observations from sUAS.

    Science.gov (United States)

    Dutta, D.; Drewry, D.; Johnson, W. R.

    2017-12-01

    The surface temperature of plant canopies is an important indicator of the stomatal regulation of plant water use and the associated water flux from plants to atmosphere (evapotranspiration (ET)). Remotely sensed thermal observations using compact, low-cost, lightweight sensors from small unmanned aerial systems (sUAS) have the potential to provide surface temperature (ST) and ET estimates at unprecedented spatial and temporal resolutions, allowing us to characterize the intra-field diurnal variations in canopy ST and ET for a variety of vegetation systems. However, major challenges exist for obtaining accurate surface temperature estimates from low-cost uncooled microbolometer-type sensors. Here we describe the development of calibration methods using thermal chamber experiments, taking into account the ambient optics and sensor temperatures, and applying simple models of spatial non-uniformity correction to the sensor focal-plane-array. We present a framework that can be used to derive accurate surface temperatures using radiometric observations from low-cost sensors, and demonstrate this framework using a sUAS-mounted sensor across a diverse set of calibration and vegetation targets. Further, we demonstrate the use of the Surface Temperature Initiated Closure (STIC) model for computing spatially explicit, high spatial resolution ET estimates across several well-monitored agricultural systems, as driven by sUAS acquired surface temperatures. STIC provides a physically-based surface energy balance framework for the simultaneous retrieval of the surface and atmospheric vapor conductances and surface energy fluxes, by physically integrating radiometric surface temperature information into the Penman-Monteith equation. Results of our analysis over agricultural systems in Ames, IA and Davis, CA demonstrate the power of this approach for quantifying the intra-field spatial variability in the diurnal cycle of plant water use at sub-meter resolutions.

  10. Monte Carlo Bayesian inference on a statistical model of sub-gridcolumn moisture variability using high-resolution cloud observations. Part 1: Method

    Science.gov (United States)

    Norris, Peter M.; da Silva, Arlindo M.

    2018-01-01

    A method is presented to constrain a statistical model of sub-gridcolumn moisture variability using high-resolution satellite cloud data. The method can be used for large-scale model parameter estimation or cloud data assimilation. The gridcolumn model includes assumed probability density function (PDF) intra-layer horizontal variability and a copula-based inter-layer correlation model. The observables used in the current study are Moderate Resolution Imaging Spectroradiometer (MODIS) cloud-top pressure, brightness temperature and cloud optical thickness, but the method should be extensible to direct cloudy radiance assimilation for a small number of channels. The algorithm is a form of Bayesian inference with a Markov chain Monte Carlo (MCMC) approach to characterizing the posterior distribution. This approach is especially useful in cases where the background state is clear but cloudy observations exist. In traditional linearized data assimilation methods, a subsaturated background cannot produce clouds via any infinitesimal equilibrium perturbation, but the Monte Carlo approach is not gradient-based and allows jumps into regions of non-zero cloud probability. The current study uses a skewed-triangle distribution for layer moisture. The article also includes a discussion of the Metropolis and multiple-try Metropolis versions of MCMC. PMID:29618847

  11. Monte Carlo Bayesian Inference on a Statistical Model of Sub-Gridcolumn Moisture Variability Using High-Resolution Cloud Observations. Part 1: Method

    Science.gov (United States)

    Norris, Peter M.; Da Silva, Arlindo M.

    2016-01-01

    A method is presented to constrain a statistical model of sub-gridcolumn moisture variability using high-resolution satellite cloud data. The method can be used for large-scale model parameter estimation or cloud data assimilation. The gridcolumn model includes assumed probability density function (PDF) intra-layer horizontal variability and a copula-based inter-layer correlation model. The observables used in the current study are Moderate Resolution Imaging Spectroradiometer (MODIS) cloud-top pressure, brightness temperature and cloud optical thickness, but the method should be extensible to direct cloudy radiance assimilation for a small number of channels. The algorithm is a form of Bayesian inference with a Markov chain Monte Carlo (MCMC) approach to characterizing the posterior distribution. This approach is especially useful in cases where the background state is clear but cloudy observations exist. In traditional linearized data assimilation methods, a subsaturated background cannot produce clouds via any infinitesimal equilibrium perturbation, but the Monte Carlo approach is not gradient-based and allows jumps into regions of non-zero cloud probability. The current study uses a skewed-triangle distribution for layer moisture. The article also includes a discussion of the Metropolis and multiple-try Metropolis versions of MCMC.

  12. The problem of scattering in fibre-fed VPH spectrographs and possible solutions

    Science.gov (United States)

    Ellis, S. C.; Saunders, Will; Betters, Chris; Croom, Scott

    2014-07-01

    All spectrographs unavoidably scatter light. Scattering in the spectral direction is problematic for sky subtraction, since atmospheric spectral lines are blurred. Scattering in the spatial direction is problematic for fibre fed spectrographs, since it limits how closely fibres can be packed together. We investigate the nature of this scattering and show that the scattering wings have both a Lorentzian component, and a shallower (1/r) component. We investigate the causes of this from a theoretical perspective, and argue that for the spectral PSF the Lorentzian wings are in part due to the profile of the illumination of the pupil of the spectrograph onto the diffraction grating, whereas the shallower component is from bulk scattering. We then investigate ways to mitigate the diffractive scattering by apodising the pupil. In the ideal case of a Gaussian apodised pupil, the scattering can be significantly improved. Finally we look at realistic models of the spectrograph pupils of fibre fed spectrographs with a centrally obstructed telescope, and show that it is possible to apodise the pupil through non-telecentric injection into the fibre.

  13. High-resolution LIDAR and ground observations of snow cover in a complex forested terrain in the Sierra Nevada - implications for optical remote sensing of seasonal snow.

    Science.gov (United States)

    Kostadinov, T. S.; Harpold, A.; Hill, R.; McGwire, K.

    2017-12-01

    Seasonal snow cover is a key component of the hydrologic regime in many regions of the world, especially those in temperate latitudes with mountainous terrain and dry summers. Such regions support large human populations which depend on the mountain snowpack for their water supplies. It is thus important to quantify snow cover accurately and continuously in these regions. Optical remote-sensing methods are able to detect snow and leverage space-borne spectroradiometers with global coverage such as MODIS to produce global snow cover maps. However, snow is harder to detect accurately in mountainous forested terrain, where topography influences retrieval algorithms, and importantly - forest canopies complicate radiative transfer and obfuscate the snow. Current satellite snow cover algorithms assume that fractional snow-covered area (fSCA) under the canopy is the same as the fSCA in the visible portion of the pixel. In-situ observations and first principles considerations indicate otherwise, therefore there is a need for improvement of the under-canopy correction of snow cover. Here, we leverage multiple LIDAR overflights and in-situ observations with a distributed fiber-optic temperature sensor (DTS) to quantify snow cover under canopy as opposed to gap areas at the Sagehen Experimental Forest in the Northern Sierra Nevada, California, USA. Snow-off LIDAR overflights from 2014 are used to create a baseline high-resolution digital elevation model and classify pixels at 1 m resolution as canopy-covered or gap. Low canopy pixels are excluded from the analysis. Snow-on LIDAR overflights conducted by the Airborne Snow Observatory in 2016 are then used to classify all pixels as snow-covered or not and quantify fSCA under canopies vs. in gap areas over the Sagehen watershed. DTS observations are classified as snow-covered or not based on diel temperature fluctuations and used as validation for the LIDAR observations. LIDAR- and DTS-derived fSCA is also compared with

  14. Hubble Space Telescope: Faint object spectrograph instrument handbook. Version 1.1

    Science.gov (United States)

    Ford, Holland C. (Editor)

    1990-01-01

    The Faint Object Spectrograph (FOS) has undergone substantial rework since the 1985 FOS Instrument Handbook was published, and we are now more knowledgeable regarding the spacecraft and instrument operations requirements and constraints. The formal system for observation specification has also evolved considerably, as the GTO programs were defined in detail. This supplement to the FOS Instrument Handbook addresses the important aspects of these changes, to facilitate proper selection and specification of FOS observing programs. Since the Handbook was published, the FOS red detector has been replaced twice, first with the best available spare in 1985 (which proved to have a poor, and steadily degrading red response), and later with a newly developed Digicon, which exhibits a high, stable efficiency and a dark-count rate less than half that of its predecessors. Also, the FOS optical train was realigned in 1987-88 to eliminate considerable beam-vignetting losses, and the collimators were both removed and recoated for greater reflectivity. Following the optics and detector rework, the FOS was carefully recalibrated (although only ambient measurements were possible, so the far-UV characteristics could not be re-evaluated directly). The resulting efficiency curves, including improved estimates of the telescope throughput, are shown. A number of changes in the observing-mode specifications and addition of several optional parameters resulted as the Proposal Instructions were honed during the last year. Target-brightness limitations, which have only recently been formulated carefully, are described. Although these restrictions are very conservative, it is imperative that the detector safety be guarded closely, especially during the initial stages of flight operations. Restrictions on the use of the internal calibration lamps and aperture-illumination sources (TA LEDs), also resulting from detector safety considerations, are outlined. Finally, many changes have been made to

  15. THE SPITZER INFRARED SPECTROGRAPH DEBRIS DISK CATALOG. II. SILICATE FEATURE ANALYSIS OF UNRESOLVED TARGETS

    Energy Technology Data Exchange (ETDEWEB)

    Mittal, Tushar [Department of Earth and Planetary Science, University of California Berkeley, Berkeley, CA 94720-4767 (United States); Chen, Christine H. [Space Telescope Science Institute, 3700 San Martin Drive Baltimore, MD 21218 (United States); Jang-Condell, Hannah [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071 (United States); Manoj, P. [Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005 (India); Sargent, Benjamin A. [Center for Imaging Science and Laboratory for Multiwavelength Astrophysics, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623 (United States); Watson, Dan M. [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 (United States); Lisse, Carey M., E-mail: cchen@stsci.edu [Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723 (United States)

    2015-01-10

    During the Spitzer Space Telescope cryogenic mission, astronomers obtained Infrared Spectrograph (IRS) observations of hundreds of debris disk candidates that have been compiled in the Spitzer IRS Debris Disk Catalog. We have discovered 10 and/or 20 μm silicate emission features toward 120 targets in the catalog and modeled the IRS spectra of these sources, consistent with MIPS 70 μm observations, assuming that the grains are composed of silicates (olivine, pyroxene, forsterite, and enstatite) and are located either in a continuous disk with power-law size and surface density distributions or thin rings that are well-characterized using two separate dust grain temperatures. For systems better fit by the continuous disk model, we find that (1) the dust size distribution power-law index is consistent with that expected from a collisional cascade, q = 3.5-4.0, with a large number of values outside this range, and (2) the minimum grain size, a {sub min}, increases with stellar luminosity, L {sub *}, but the dependence of a {sub min} on L {sub *} is weaker than expected from radiation pressure alone. In addition, we also find that (3) the crystalline fraction of dust in debris disks evolves as a function of time with a large dispersion in crystalline fractions for stars of any particular stellar age or mass, (4) the disk inner edge is correlated with host star mass, and (5) there exists substantial variation in the properties of coeval disks in Sco-Cen, indicating that the observed variation is probably due to stochasticity and diversity in planet formation.

  16. Spectrographic investigation of neodymium complexing with hexamethylenediaminetetraacetic acid

    International Nuclear Information System (INIS)

    Kuz'mina, N.P.; Martynenko, L.I.

    1980-01-01

    Complex formation between neodymium and hexamethylenediamine-tetraacetic acid (HMTA, H 2 L) in aqueous solution has been studied by high-resolution spectrography. Formation of NdHL, Hd(HL) 2 3- , Nd(HL) 3 6- complexes has been proved, their values of formation constants (lg Csub(form)) being equal to 5.63+-0.45, 4.20+-0.15, 2.63+-0.15, respectively

  17. High-Resolution Spectroscopy at the Wyoming Infrared Observatory: Setting TESS Science on FHiRE

    Science.gov (United States)

    Jang-Condell, Hannah; Pierce, Michael J.; Pilachowski, C. A.; Kobulnicky, Henry; McLane, Jacob N.

    2018-01-01

    The Fiber High Resolution Echelle (FHiRE) spectrograph is a new instrument designed for the 2.3-m Wyoming InfraRed Observatory (WIRO). With the construction of a vacuum chamber for FHiRE to stabilize the spectrograph and a temperature-stabilized Thorium-Argon lamp for precise velocity calibration, we will be able to achieve 1 m/s RV precision, making it an ideal instrument for finding exoplanets. Details of the design of FHiRE are presented in a companion poster (Pierce et al.). The construction of this instrument is well-timed with the planned 2018 launch of NASA's Transiting Exoplanet Survey Satellite (TESS) mission. TESS will require a great deal of follow-up spectroscopy to characterize potential exoplanet host stars as well as radial velocity measurements to confirm new exoplanets. WIRO is ideally suited to acquire the long-term, high-cadence observations that will be required to make progress in this frontier area of astrophysics. We will coordinate our efforts with the TESS Follow-up Observing Program (TFOP), specifically as part of the Recon Spectroscopy and Precise Radial Velocity Work sub-groups.This work is supported by a grant from NASA EPSCOR.

  18. Mechanical time-shutter for spectrograph with exposure times from 1.5 {mu}s to 3 ms; Un obturateur mecanique pour spectrographe dont le temps d'exposition varie de 1,5 microseconde a 3 millisecondes

    Energy Technology Data Exchange (ETDEWEB)

    Becker, L; Drawin, H W [Commissariat a l' Energie Atomique, Association Euratom - CEA, Groupe de Recherches sur la Fusion Controlee, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1965-07-01

    A mechanical time-shutter for exposure-times ranging from l,5 {mu}s to 3 ms is described. The apparatus is designed for spectrographic observations of pulsed electrical discharges which show rapidly varying spectral emissivities. For the mechanical part of the shutter we used a specially formed fast rotating disk having a slit. Triggering of the discharge is achieved by the rotating disk - in connection with photocells. Both the instant at which - after the beginning of the electrical discharge - the exposure shall begin, and the duration of exposure which will then follow can be 'preselected' on a special electronic control device. All functions: rotation of the disk - ignition of the discharge - exposure - switch-off of the disk are controlled electronically. The principle and the main electronic control parts of this versatile instrument are described. (authors) [French] On decrit un obturateur spectrographique rapide ayant des temps d'exposition allant de 1,5 {mu}s a 3 ms. L'obturateur est concu pour faire des observations spectrographiques de decharges pulsees dont l'emission spectrale varie rapidement. En ce qui concerne la partie mecanique nous avons utilise un disque comprenant une fente, qui tourne devant la fente d'entree du spectrographe. L'amorcage de la decharge est assure par le disque lui-meme, a l'aide de cellules photoelectriques. L'instant a partir duquel l'observation doit commencer - apres avoir amorce la decharge -, ainsi que la duree d'exposition qui suit, peuvent etre preselectionnes sur un tiroir electronique. Toutes les fonctions: mise en rotation du disque - amorcage de la decharge - exposition - freinage du disque se suivent automatiquement. Le principe ainsi que les circuits electroniques de controle de cet appareil sont decrits. (auteur)

  19. Structure and Dynamics of Cool Flare Loops Observed by the Interface Region Imaging Spectrograph

    Czech Academy of Sciences Publication Activity Database

    Mikula, K.; Heinzel, Petr; Liu, Wenjuan; Berlicki, Arkadiusz

    2017-01-01

    Roč. 845, č. 1 (2017), 30/1-30/15 ISSN 0004-637X R&D Projects: GA ČR(CZ) GA16-18495S Grant - others:EC(XE) 606862 Program:FP7 Institutional support: RVO:67985815 Keywords : Sun * chromosphere * flares Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics OBOR OECD: Astronomy (including astrophysics,space science) Impact factor: 5.533, year: 2016

  20. Multiyear high-resolution carbon exchange over European croplands from the integration of observed crop yields into CarbonTracker Europe

    Science.gov (United States)

    Combe, Marie; Vilà-Guerau de Arellano, Jordi; de Wit, Allard; Peters, Wouter

    2016-04-01

    Carbon exchange over croplands plays an important role in the European carbon cycle over daily-to-seasonal time scales. Not only do crops occupy one fourth of the European land area, but their photosynthesis and respiration are large and affect CO2 mole fractions at nearly every atmospheric CO2 monitoring site. A better description of this crop carbon exchange in our CarbonTracker Europe data assimilation system - which currently treats crops as unmanaged grasslands - could strongly improve its ability to constrain terrestrial carbon fluxes. Available long-term observations of crop yield, harvest, and cultivated area allow such improvements, when combined with the new crop-modeling framework we present. This framework can model the carbon fluxes of 10 major European crops at high spatial and temporal resolution, on a 12x12 km grid and 3-hourly time-step. The development of this framework is threefold: firstly, we optimize crop growth using the process-based WOrld FOod STudies (WOFOST) agricultural crop growth model. Simulated yields are downscaled to match regional crop yield observations from the Statistical Office of the European Union (EUROSTAT) by estimating a yearly regional parameter for each crop species: the yield gap factor. This step allows us to better represent crop phenology, to reproduce the observed multiannual European crop yields, and to construct realistic time series of the crop carbon fluxes (gross primary production, GPP, and autotrophic respiration, Raut) on a fine spatial and temporal resolution. Secondly, we combine these GPP and Raut fluxes with a simple soil respiration model to obtain the total ecosystem respiration (TER) and net ecosystem exchange (NEE). And thirdly, we represent the horizontal transport of carbon that follows crop harvest and its back-respiration into the atmosphere during harvest consumption. We distribute this carbon using observations of the density of human and ruminant populations from EUROSTAT. We assess the model

  1. The "+" for CRIRES: enabling better science at infrared wavelength and high spectral resolution at the ESO VLT

    Science.gov (United States)

    Dorn, Reinhold J.; Follert, Roman; Bristow, Paul; Cumani, Claudio; Eschbaumer, Siegfried; Grunhut, Jason; Haimerl, Andreas; Hatzes, Artie; Heiter, Ulrike; Hinterschuster, Renate; Ives, Derek J.; Jung, Yves; Kerber, Florian; Klein, Barbara; Lavaila, Alexis; Lizon, Jean Louis; Löwinger, Tom; Molina-Conde, Ignacio; Nicholson, Belinda; Marquart, Thomas; Oliva, Ernesto; Origlia, Livia; Pasquini, Luca; Paufique, Jérôme; Piskunov, Nikolai; Reiners, Ansgar; Seemann, Ulf; Stegmeier, Jörg; Stempels, Eric; Tordo, Sebastien

    2016-08-01

    The adaptive optics (AO) assisted CRIRES instrument is an IR (0.92 - 5.2 μm) high-resolution spectrograph was in operation from 2006 to 2014 at the Very Large Telescope (VLT) observatory. CRIRES was a unique instrument, accessing a parameter space (wavelength range and spectral resolution) up to now largely uncharted. It consisted of a single-order spectrograph providing long-slit (40 arcsecond) spectroscopy with a resolving power up to R=100 000. However the setup was limited to a narrow, single-shot, spectral range of about 1/70 of the central wavelength, resulting in low observing efficiency for many scientific programmes requiring a broad spectral coverage. The CRIRES upgrade project, CRIRES+, transforms this VLT instrument into a cross-dispersed spectrograph to increase the simultaneously covered wavelength range by a factor of ten. A new and larger detector focal plane array of three Hawaii 2RG detectors with 5.3 μm cut-off wavelength will replace the existing detectors. For advanced wavelength calibration, custom-made absorption gas cells and an etalon system will be added. A spectro-polarimetric unit will allow the recording of circular and linear polarized spectra. This upgrade will be supported by dedicated data reduction software allowing the community to take full advantage of the new capabilities offered by CRIRES+. CRIRES+ has now entered its assembly and integration phase and will return with all new capabilities by the beginning of 2018 to the Very Large Telescope in Chile. This article will provide the reader with an update of the current status of the instrument as well as the remaining steps until final installation at the Paranal Observatory.

  2. HIGH RESOLUTION OPTICAL AND NIR SPECTRA OF HBC 722

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong-Eun; Park, Sunkyung [School of Space Research, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 446-701 (Korea, Republic of); Green, Joel D.; Cochran, William D. [Department of Astronomy, University of Texas at Austin, TX (United States); Kang, Wonseok; Lee, Sang-Gak [National Youth Space Center, 200 Deokheungyangjjok-gil, Dongil-myeon, Goheung-gun, Jeollanam-do 548-951 (Korea, Republic of); Sung, Hyun-Il, E-mail: jeongeun.lee@khu.ac.kr, E-mail: sunkyung@khu.ac.kr, E-mail: joel@astro.as.utexas.edu, E-mail: wdc@astro.as.utexas.edu, E-mail: wskang@kywa.or.kr, E-mail: sanggak@kywa.or.kr, E-mail: hisung@kasi.re.kr [Korea Astronomy and Space Science Institute, 776 Daedeok-daero, Yuseong-gu, Daejeon 305-348 (Korea, Republic of)

    2015-07-01

    We present the results of high resolution (R ≥ 30,000) optical and near-IR spectroscopic monitoring observations of HBC 722, a recent FU Orionis object that underwent an accretion burst in 2010. We observed HBC 722 in the optical/near-IR with the Bohyunsan Optical Echelle Spectrograph, Hobby–Eberly Telescope-HRS, and Immersion Grating Infrared Spectrograph, at various points in the outburst. We found atomic lines with strongly blueshifted absorption features or P Cygni profiles, both evidence of a wind driven by the accretion. Some lines show a broad double-peaked absorption feature, evidence of disk rotation. However, the wind-driven and disk-driven spectroscopic features are anti-correlated in time; the disk features became strong as the wind features disappeared. This anti-correlation might indicate that the rebuilding of the inner disk was interrupted by the wind pressure during the first 2 years. The half-width at half-depth of the double-peaked profiles decreases with wavelength, indicative of the Keplerian rotation; the optical spectra with the disk feature are fitted by a G5 template stellar spectrum convolved with a rotation velocity of 70 km s{sup −1} while the near-IR disk features are fitted by a K5 template stellar spectrum convolved with a rotation velocity of 50 km s{sup −1}. Therefore, the optical and near-IR spectra seem to trace the disk at 39 and 76 R{sub ⊙}, respectively. We fit a power-law temperature distribution in the disk, finding an index of 0.8, comparable to optically thick accretion disk models.

  3. Hurricanes Harvey and Irma - High-Resolution Flood Mapping and Monitoring from Sentinel SAR with the Depolarization Reduction Algorithm for Global Observations of InundatioN (DRAGON)

    Science.gov (United States)

    Nghiem, S. V.; Brakenridge, G. R.; Nguyen, D. T.

    2017-12-01

    Hurricane Harvey inflicted historical catastrophic flooding across extensive regions around Houston and southeast Texas after making landfall on 25 August 2017. The Federal Emergency Management Agency (FEMA) requested urgent supports for flood mapping and monitoring in an emergency response to the extreme flood situation. An innovative satellite remote sensing method, called the Depolarization Reduction Algorithm for Global Observations of inundatioN (DRAGON), has been developed and implemented for use with Sentinel synthetic aperture radar (SAR) satellite data at a resolution of 10 meters to identify, map, and monitor inundation including pre-existing water bodies and newly flooded areas. Results from this new method are hydrologically consistent and have been verified with known surface waters (e.g., coastal ocean, rivers, lakes, reservoirs, etc.), with clear-sky high-resolution WorldView images (where waves can be seen on surface water in inundated areas within a small spatial coverage), and with other flood maps from the consortium of Global Flood Partnership derived from multiple satellite datasets (including clear-sky Landsat and MODIS at lower resolutions). Figure 1 is a high-resolution (4K UHD) image of a composite inundation map for the region around Rosharon (in Brazoria County, south of Houston, Texas). This composite inundation map reveals extensive flooding on 29 August 2017 (four days after Hurricane Harvey made landfall), and the inundation was still persistent in most of the west and south of Rosharon one week later (5 September 2017) while flooding was reduced in the east of Rosharon. Hurricane Irma brought flooding to a number of areas in Florida. As of 10 September 2017, Sentinel SAR flood maps reveal inundation in the Florida Panhandle and over lowland surfaces on several islands in the Florida Keys. However, Sentinel SAR results indicate that flooding along the Florida coast was not extreme despite Irma was a Category-5 hurricane that might

  4. Performance testing of an off-plane reflection grating and silicon pore optic spectrograph at PANTER

    Science.gov (United States)

    Marlowe, Hannah; McEntaffer, Randall L.; Allured, Ryan; DeRoo, Casey T.; Donovan, Benjamin D.; Miles, Drew M.; Tutt, James H.; Burwitz, Vadim; Menz, Benedikt; Hartner, Gisela D.; Smith, Randall K.; Cheimets, Peter; Hertz, Edward; Bookbinder, Jay A.; Günther, Ramses; Yanson, Alex; Vacanti, Giuseppe; Ackermann, Marcelo

    2015-10-01

    An x-ray spectrograph consisting of aligned, radially ruled off-plane reflection gratings and silicon pore optics (SPO) was tested at the Max Planck Institute for Extraterrestrial Physics PANTER x-ray test facility. SPO is a test module for the proposed Arcus mission, which will also feature aligned off-plane reflection gratings. This test is the first time two off-plane gratings were actively aligned to each other and with an SPO to produce an overlapped spectrum. We report the performance of the complete spectrograph utilizing the aligned gratings module and plans for future development.

  5. The Oxford SWIFT Spectrograph: first commissioning and on-sky results

    OpenAIRE

    Thatte, Niranjan; Tecza, Mathias; Clarke, Fraser; Goodsall, Timothy; Fogarty, Lisa; Houghton, Ryan; Salter, Graeme; Scott, Nicholas; Davies, Roger L.; Bouchez, Antonin; Dekany, Richard

    2010-01-01

    The Oxford SWIFT spectrograph, an I & z band (6500-10500 A) integral field spectrograph, is designed to operate as a facility instrument at the 200 inch Hale Telescope on Palomar Mountain, in conjunction with the Palomar laser guide star adaptive optics system PALAO (and its upgrade to PALM3000). SWIFT provides spectra at R(≡λ/▵λ)~4000 of a contiguous two-dimensional field, 44 x 89 spatial pixels (spaxels) in size, at spatial scales of 0.235";, 0.16", and 0.08" per spaxel. It employs two 250μ...

  6. Spectrographic Determination of Trace Constituents in Rare Earths; Determinacion espectrografica de impurezas en tierras raras

    Energy Technology Data Exchange (ETDEWEB)

    Capdevila, C; Alvarez, F

    1962-07-01

    A spectrographic method was developed for the determination of 18 trace elements in lanthanum, cerium, praseodimium, neodimium and samarium compounds. The concentrations of the impurities cover the range of 0,5 to 500 ppm. Most of these impurities are determined by the carrier distillation method. Several more refractory elements have been determined by total burning of the sample with a direct current arc or by the conduction briquet excitation technique with a high voltage condensed spark. The work has been carried out with a Hilger Automatic Large Quartz Spectrograph. (Author) 5 refs.

  7. The Development of Replicated Optical Integral Field Spectrographs and their Application to the Study of Lyman-alpha Emission at Moderate Redshifts

    Science.gov (United States)

    Chonis, Taylor Steven

    In the upcoming era of extremely large ground-based astronomical telescopes, the design of wide-field spectroscopic survey instrumentation has become increasingly complex due to the linear growth of instrument pupil size with telescope diameter for a constant spectral resolving power. The upcoming Visible Integral field Replicable Unit Spectrograph (VIRUS), a baseline array of 150 copies of a simple integral field spectrograph that will be fed by 3:36 x 104 optical fibers on the upgraded Hobby-Eberly Telescope (HET) at McDonald Observatory, represents one of the first uses of large-scale replication to break the relationship between instrument pupil size and telescope diameter. By dividing the telescope's field of view between a large number of smaller and more manageable instruments, the total information grasp of a traditional monolithic survey spectrograph can be achieved at a fraction of the cost and engineering complexity. To highlight the power of this method, VIRUS will execute the HET Dark Energy Experiment (HETDEX) and survey & 420 degrees2 of sky to an emission line flux limit of ˜ 10-17 erg s-1 cm -2 to detect ˜ 106 Lyman-alpha emitting galaxies (LAEs) as probes of large-scale structure at redshifts of 1:9 production of the suite of volume phase holographic (VPH) diffraction gratings for VIRUS is presented, which highlights the challenge and success associated with producing of a very large number of highly customized optical elements whose performance is crucial to meeting the efficiency requirements of the spectrograph system. To accommodate VIRUS, the HET is undergoing a substantial wide-field upgrade to increase its field of view to 22' in diameter. The previous HET facility Low Resolution Spectrograph (LRS), which was directly fed by the telescope's previous spherical aberration corrector, must be removed from the prime focus instrument package as a result of the telescope upgrades and instead be fiber-coupled to the telescope focal plane. For a

  8. DCARR: a spectrograph for measuring low-energy x rays

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    DCARR, the Differential Critical Angle Reflection Refraction detector system, is described. This detector was designed to measure low-energy x rays, 500 to 5000 eV, with a high degree of resolution, 250 eV. DCARR was developed because these low-energy measurements are of interest in the diagnostics of x-radiation in nuclear tests and available equipment could not make measurements at this low an energy in field tests. DCARR is a versatile piece of equipment that can also be used as a laboratory tool, such as in measuring the low-energy x rays emitted by lasers and various x-ray machines

  9. Preparation and Loading Process of Single Crystalline Samples into a Gas Environmental Cell Holder for In Situ Atomic Resolution Scanning Transmission Electron Microscopic Observation.

    Science.gov (United States)

    Straubinger, Rainer; Beyer, Andreas; Volz, Kerstin

    2016-06-01

    A reproducible way to transfer a single crystalline sample into a gas environmental cell holder for in situ transmission electron microscopic (TEM) analysis is shown in this study. As in situ holders have only single-tilt capability, it is necessary to prepare the sample precisely along a specific zone axis. This can be achieved by a very accurate focused ion beam lift-out preparation. We show a step-by-step procedure to prepare the sample and transfer it into the gas environmental cell. The sample material is a GaP/Ga(NAsP)/GaP multi-quantum well structure on Si. Scanning TEM observations prove that it is possible to achieve atomic resolution at very high temperatures in a nitrogen environment of 100,000 Pa.

  10. Neuroanatomy from Mesoscopic to Nanoscopic Scales: An Improved Method for the Observation of Semithin Sections by High-Resolution Scanning Electron Microscopy.

    Science.gov (United States)

    Rodríguez, José-Rodrigo; Turégano-López, Marta; DeFelipe, Javier; Merchán-Pérez, Angel

    2018-01-01

    Semithin sections are commonly used to examine large areas of tissue with an optical microscope, in order to locate and trim the regions that will later be studied with the electron microscope. Ideally, the observation of semithin sections would be from mesoscopic to nanoscopic scales directly, instead of using light microscopy and then electron microscopy (EM). Here we propose a method that makes it possible to obtain high-resolution scanning EM images of large areas of the brain in the millimeter to nanometer range. Since our method is compatible with light microscopy, it is also feasible to generate hybrid light and electron microscopic maps. Additionally, the same tissue blocks that have been used to obtain semithin sections can later be used, if necessary, for transmission EM, or for focused ion beam milling and scanning electron microscopy (FIB-SEM).

  11. High-resolution TNG spectra of T Tauri stars. Near-IR GIANO observations of the young variables XZ Tauri and DR Tauri

    Science.gov (United States)

    Antoniucci, S.; Nisini, B.; Biazzo, K.; Giannini, T.; Lorenzetti, D.; Sanna, N.; Harutyunyan, A.; Origlia, L.; Oliva, E.

    2017-10-01

    Aims: We aim to characterise the star-disk interaction region in T Tauri stars that show photometric and spectroscopic variability. Methods: We used the GIANO instrument at the Telescopio Nazionale Galileo to obtain near-infrared high-resolution spectra (R 50 000) of XZ Tau and DR Tau, which are two actively accreting T Tauri stars classified as EXors. Equivalent widths and profiles of the observed features are used to derive information on the properties of the inner disk, the accretion columns, and the winds. Results: Both sources display composite H I line profiles, where contributions from both accreting gas and high-velocity winds can be recognised. These lines are progressively more symmetric and narrower with increasing upper energy which may be interpreted in terms of two components with different decrements or imputed to self-absorption effects. XZ Tau is observed in a relatively high state of activity with respect to literature observations. The variation of the He I 1.08 μm line blue-shifted absorption, in particular, suggests that the inner wind has undergone a dramatic change in its velocity structure, connected with a recent accretion event. DR Tau has a more stable wind as its He I 1.08 μm absorption does not show variations with time in spite of strong variability of the emission component. The IR veiling in the two sources can be interpreted as due to blackbody emission at temperatures of 1600 K and 2300 K for XZ Tau and DR Tau, respectively, with emitting areas 30 times larger than the central star. While for XZ Tau these conditions are consistent with emission from the inner rim of the dusty disk, the fairly high temperature inferred for DR Tau might suggest that its veiling originates from a thick gaseous disk located within the dust sublimation radius. Strong and broad metallic lines, mainly from C I and Fe I, are detected in XZ Tau, similar to those observed in other EXor sources during burst phases. At variance, DR Tau shows weaker and

  12. Monte Carlo Bayesian inference on a statistical model of sub-gridcolumn moisture variability using high-resolution cloud observations. Part 2: Sensitivity tests and results

    Science.gov (United States)

    Norris, Peter M.; da Silva, Arlindo M.

    2018-01-01

    Part 1 of this series presented a Monte Carlo Bayesian method for constraining a complex statistical model of global circulation model (GCM) sub-gridcolumn moisture variability using high-resolution Moderate Resolution Imaging Spectroradiometer (MODIS) cloud data, thereby permitting parameter estimation and cloud data assimilation for large-scale models. This article performs some basic testing of this new approach, verifying that it does indeed reduce mean and standard deviation biases significantly with respect to the assimilated MODIS cloud optical depth, brightness temperature and cloud-top pressure and that it also improves the simulated rotational–Raman scattering cloud optical centroid pressure (OCP) against independent (non-assimilated) retrievals from the Ozone Monitoring Instrument (OMI). Of particular interest, the Monte Carlo method does show skill in the especially difficult case where the background state is clear but cloudy observations exist. In traditional linearized data assimilation methods, a subsaturated background cannot produce clouds via any infinitesimal equilibrium perturbation, but the Monte Carlo approach allows non-gradient-based jumps into regions of non-zero cloud probability. In the example provided, the method is able to restore marine stratocumulus near the Californian coast, where the background state has a clear swath. This article also examines a number of algorithmic and physical sensitivities of the new method and provides guidance for its cost-effective implementation. One obvious difficulty for the method, and other cloud data assimilation methods as well, is the lack of information content in passive-radiometer-retrieved cloud observables on cloud vertical structure, beyond cloud-top pressure and optical thickness, thus necessitating strong dependence on the background vertical moisture structure. It is found that a simple flow-dependent correlation modification from Riishojgaard provides some help in this respect, by

  13. Monte Carlo Bayesian Inference on a Statistical Model of Sub-Gridcolumn Moisture Variability Using High-Resolution Cloud Observations. Part 2: Sensitivity Tests and Results

    Science.gov (United States)

    Norris, Peter M.; da Silva, Arlindo M.

    2016-01-01

    Part 1 of this series presented a Monte Carlo Bayesian method for constraining a complex statistical model of global circulation model (GCM) sub-gridcolumn moisture variability using high-resolution Moderate Resolution Imaging Spectroradiometer (MODIS) cloud data, thereby permitting parameter estimation and cloud data assimilation for large-scale models. This article performs some basic testing of this new approach, verifying that it does indeed reduce mean and standard deviation biases significantly with respect to the assimilated MODIS cloud optical depth, brightness temperature and cloud-top pressure and that it also improves the simulated rotational-Raman scattering cloud optical centroid pressure (OCP) against independent (non-assimilated) retrievals from the Ozone Monitoring Instrument (OMI). Of particular interest, the Monte Carlo method does show skill in the especially difficult case where the background state is clear but cloudy observations exist. In traditional linearized data assimilation methods, a subsaturated background cannot produce clouds via any infinitesimal equilibrium perturbation, but the Monte Carlo approach allows non-gradient-based jumps into regions of non-zero cloud probability. In the example provided, the method is able to restore marine stratocumulus near the Californian coast, where the background state has a clear swath. This article also examines a number of algorithmic and physical sensitivities of the new method and provides guidance for its cost-effective implementation. One obvious difficulty for the method, and other cloud data assimilation methods as well, is the lack of information content in passive-radiometer-retrieved cloud observables on cloud vertical structure, beyond cloud-top pressure and optical thickness, thus necessitating strong dependence on the background vertical moisture structure. It is found that a simple flow-dependent correlation modification from Riishojgaard provides some help in this respect, by

  14. Confirmation of Elevated Methane Emissions in Utah's Uintah Basin With Ground-Based Observations and a High-Resolution Transport Model

    Science.gov (United States)

    Foster, C. S.; Crosman, E. T.; Holland, L.; Mallia, D. V.; Fasoli, B.; Bares, R.; Horel, J.; Lin, J. C.

    2017-12-01

    Large CH4 leak rates have been observed in the Uintah Basin of eastern Utah, an area with over 10,000 active and producing natural gas and oil wells. In this paper, we model CH4 concentrations at four sites in the Uintah Basin and compare the simulated results to in situ observations at these sites during two spring time periods in 2015 and 2016. These sites include a baseline location (Fruitland), two sites near oil wells (Roosevelt and Castlepeak), and a site near natural gas wells (Horsepool). To interpret these measurements and relate observed CH4 variations to emissions, we carried out atmospheric simulations using the Stochastic Time-Inverted Lagrangian Transport model driven by meteorological fields simulated by the Weather Research and Forecasting and High Resolution Rapid Refresh models. These simulations were combined with two different emission inventories: (1) aircraft-derived basin-wide emissions allocated spatially using oil and gas well locations, from the National Oceanic and Atmospheric Administration (NOAA), and (2) a bottom-up inventory for the entire U.S., from the Environmental Protection Agency (EPA). At both Horsepool and Castlepeak, the diurnal cycle of modeled CH4 concentrations was captured using NOAA emission estimates but was underestimated using the EPA inventory. These findings corroborate emission estimates from the NOAA inventory, based on daytime mass balance estimates, and provide additional support for a suggested leak rate from the Uintah Basin that is higher than most other regions with natural gas and oil development.

  15. Demeter high resolution observations of the ionospheric thermal plasma response to magnetospheric energy input during the magnetic storm of November 2004

    Directory of Open Access Journals (Sweden)

    E. Séran

    2008-01-01

    Full Text Available High resolution Demeter plasma and wave observations were available during one of the geomagnetic storms of November 2004 when the ionospheric footprint of the plasmasphere was pushed below 64 degrees in the midnight sector. We report here onboard observations of thermal/suprathermal plasma and HF electric field variations with a temporal resolution of 0.4 s, which corresponds to a spatial resolution of 3 km. Local perturbations of the plasma parameters at the altitude of 730 km are analysed with respect to the variation of the field-aligned currents, electron and proton precipitation and large-scale electric fields, measured in-situ by Demeter and by remote optical methods from the IMAGE/Polar satellites.

    Flow monitoring in the 21:00 and 24:00 MLT sectors during storm conditions reveals two distinct regions of O+ outflow, i.e. the region of the field-aligned currents, which often comprises few layers of opposite currents, and the region of velocity reversal toward dusk at sub-auroral latitudes. Average upward O+ velocities are identical in both local time sectors and vary between 200 and 450 m s−1, with an exception of a few cases of higher speed (~1000 m s−1 outflow, observed in the midnight sector. Each individual outflow event does not indicate any heating process of the thermal O+ population. On the contrary, the temperature of the O+, outflowing from auroral latitudes, is found to be even colder than that of the ambient ion plasma. The only ion population which is observed to be involved in the heating is the O+ with energies a few times higher than the thermal energy. Such a population was detected at sub-auroral latitudes in the region of duskward flow reversal. Its temperature raises up to a few eV inside the layer of sheared velocity.

    A deep decrease in the H+ density at heights and latitudes, where, according to the IRI model

  16. Demeter high resolution observations of the ionospheric thermal plasma response to magnetospheric energy input during the magnetic storm of November 2004

    Directory of Open Access Journals (Sweden)

    E. Séran

    2007-01-01

    Full Text Available High resolution Demeter plasma and wave observations were available during one of the geomagnetic storms of November 2004 when the ionospheric footprint of the plasmasphere was pushed below 64 degrees in the midnight sector. We report here onboard observations of thermal/suprathermal plasma and HF electric field variations with a temporal resolution of 0.4 s, which corresponds to a spatial resolution of 3 km. Local perturbations of the plasma parameters at the altitude of 730 km are analysed with respect to the variation of the field-aligned currents, electron and proton precipitation and large-scale electric fields, measured in-situ by Demeter and by remote optical methods from the IMAGE/Polar satellites. Flow monitoring in the 21:00 and 24:00 MLT sectors during storm conditions reveals two distinct regions of O+ outflow, i.e. the region of the field-aligned currents, which often comprises few layers of opposite currents, and the region of velocity reversal toward dusk at sub-auroral latitudes. Average upward O+ velocities are identical in both local time sectors and vary between 200 and 450 m s−1, with an exception of a few cases of higher speed (~1000 m s−1 outflow, observed in the midnight sector. Each individual outflow event does not indicate any heating process of the thermal O+ population. On the contrary, the temperature of the O+, outflowing from auroral latitudes, is found to be even colder than that of the ambient ion plasma. The only ion population which is observed to be involved in the heating is the O+ with energies a few times higher than the thermal energy. Such a population was detected at sub-auroral latitudes in the region of duskward flow reversal. Its temperature raises up to a few eV inside the layer of sheared velocity. A deep decrease in the H+ density at heights and latitudes, where, according to the IRI model, these ions are expected to comprise ~50% of the positive charge, indicates that the thermospheric balance

  17. Effect of Acoustic Spectrographic Instruction on Production of English /i/ and /I/ by Spanish Pre-Service English Teachers

    Science.gov (United States)

    Quintana-Lara, Marcela

    2014-01-01

    This study investigates the effects of Acoustic Spectrographic Instruction on the production of the English phonological contrast /i/ and / I /. Acoustic Spectrographic Instruction is based on the assumption that physical representations of speech sounds and spectrography allow learners to objectively see and modify those non-accurate features in…

  18. The Coude spectrograph and echelle scanner of the 2.7 m telescope at McDonald observatory

    Science.gov (United States)

    Tull, R. G.

    1972-01-01

    The design of the Coude spectrograph of the 2.7 m McDonald telescope is discussed. A description is given of the Coude scanner which uses the spectrograph optics, the configuration of the large echelle and the computer scanner control and data systems.

  19. Ammonia in Jupiter's troposphere: a comparison of ground-based 5-μm high-resolution spectroscopy and Juno MWR observations

    Science.gov (United States)

    Giles, R.; Orton, G.; Fletcher, L. N.; Irwin, P. G.; Sinclair, J. A.

    2017-12-01

    Latitudinally-resolved 5-micron observations of Jupiter from the CRIRES instrument at the Very Large Telescope are used to measure the spatial variability in Jupiter's tropospheric ammonia (NH3) abundance and these results are compared to the results from Juno's Microwave Radiometer (MWR). The 5-micron spectral region is an atmospheric window, allowing us to probe down to Jupiter's middle troposphere. The high-resolution 2012 CRIRES observations include several spectrally-resolved NH3 absorption features; these features probe slightly different pressure levels, allowing the NH3 vertical profile at 1-4 bar to be constrained. We find that in regions of low cloud opacity, the NH3 abundance must decrease with altitude within this pressure range. The CRIRES observations do not provide evidence for any significant belt-zone variability in NH3, as any difference in the spectral shape can be accounted for by the large differences in cloud opacity between the cloudy zones and the cloud-free belts. However, we do find evidence for a strong localised enhancement in NH3 on the southern edge of the North Equatorial Belt (4-6°N). These results can be directly compared with observations from the Juno mission's MWR experiment. Li et al. (2017, doi 10.1002/2017GL073159) have used MWR data to retrieve NH3 abundances at pressure levels of 1-100 bar. In bright, cloud-free regions of the planet, the two datasets are broadly consistent, including the asymmetrical enhancement on the southern edge of the NEB. However, in the cool, cloudy Equatorial Zone, the MWR retrieved abundances are significantly higher than those from CRIRES and forward modeling shows that the MWR vertical distributions are unable to fit the CRIRES data. We will investigate possible explanations for this discrepancy, including the role of tropospheric clouds and temperature variations.

  20. LOCAL LUMINOUS INFRARED GALAXIES. II. ACTIVE GALACTIC NUCLEUS ACTIVITY FROM SPITZER/INFRARED SPECTROGRAPH SPECTRA

    Energy Technology Data Exchange (ETDEWEB)

    Alonso-Herrero, Almudena; Pereira-Santaella, Miguel [Centro de Astrobiologia, INTA-CSIC, E-28850 Torrejon de Ardoz, Madrid (Spain); Rieke, George H. [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Rigopoulou, Dimitra [Astrophysics Department, University of Oxford, Oxford OX1 3RH (United Kingdom)

    2012-01-01

    We quantify the active galactic nucleus (AGN) contribution to the mid-infrared (mid-IR) and the total infrared (IR, 8-1000 {mu}m) emission in a complete volume-limited sample of 53 local luminous infrared galaxies (LIRGs, L{sub IR} = 10{sup 11}-10{sup 12} L{sub Sun }). We decompose the Spitzer Infrared Spectrograph low-resolution 5-38 {mu}m spectra of the LIRGs into AGN and starburst components using clumpy torus models and star-forming galaxy templates, respectively. We find that 50% (25/50) of local LIRGs have an AGN component detected with this method. There is good agreement between these AGN detections through mid-IR spectral decomposition and other AGN indicators, such as the optical spectral class, mid-IR spectral features, and X-ray properties. Taking all the AGN indicators together, the AGN detection rate in the individual nuclei of LIRGs is {approx}62%. The derived AGN bolometric luminosities are in the range L{sub bol}(AGN) = (0.4-50) Multiplication-Sign 10{sup 43} erg s{sup -1}. The AGN bolometric contribution to the IR luminosities of the galaxies is generally small, with 70% of LIRGs having L{sub bol}[AGN]/L{sub IR} {<=} 0.05. Only {approx_equal} 8% of local LIRGs have a significant AGN bolometric contribution L{sub bol}[AGN]/L{sub IR} > 0.25. From the comparison of our results with literature results of ultraluminous infrared galaxies (L{sub IR} = 10{sup 12}-10{sup 13} L{sub Sun }), we confirm that in the local universe the AGN bolometric contribution to the IR luminosity increases with the IR luminosity of the galaxy/system. If we add up the AGN bolometric luminosities we find that AGNs only account for 5%{sub -3%}{sup +8%} of the total IR luminosity produced by local LIRGs (with and without AGN detections). This proves that the bulk of the IR luminosity of local LIRGs is due to star formation activity. Taking the newly determined IR luminosity density of LIRGs in the local universe, we then estimate an AGN IR luminosity density of {Omega}{sup AGN

  1. Evaluation of spectrographic standards for the carrier-distillation analysis of PuO2

    International Nuclear Information System (INIS)

    Martell, C.J.; Myers, W.M.

    1976-05-01

    Three plutonium metals whose impurity contents have been accurately determined are used to evaluate spectrographic standards. Best results are obtained when (1) highly impure samples are diluted, (2) the internal standard, cobalt, is used, (3) a linear curve is fitted to the standard data that bracket the impurity concentration, and (4) plutonium standards containing 22 impurities are used

  2. Improvement of spectrographic analyses by the use of a mechanical packer in the arc distillation technique

    International Nuclear Information System (INIS)

    Buffereau, M.; Deniaud, S.; Pichotin, B.; Violet, R.

    1965-01-01

    One studies improvement of spectrographic analysis by the 'carrier distillation' method with the help of a mechanical device. Experiments and advantages of such an apparatus are given (precision and reproducibility improvement, operator factor suppression). A routine apparatus (French patent no 976.493) is described. (authors) [fr

  3. Technical aspects of the Space Telescope Imaging Spectrograph Repair (STIS-R)

    Science.gov (United States)

    Rinehart, S. A.; Domber, J.; Faulkner, T.; Gull, T.; Kimble, R.; Klappenberger, M.; Leckrone, D.; Niedner, M.; Proffitt, C.; Smith, H.; Woodgate, B.

    2008-07-01

    In August 2004, the Hubble Space Telescope (HST) Space Telescope Imaging Spectrograph (STIS) ceased operation due to a failure of the 5V mechanism power converter in the Side 2 Low Voltage Power Supply (LVPS2). The failure precluded movement of any STIS mechanism and, because of the earlier (2001) loss of the Side 1 electronics chain, left the instrument shuttered and in safe mode after 7.5 years of science operations. A team was assembled to analyze the fault and to determine if STIS repair (STIS-R) was feasible. The team conclusively pinpointed the Side 2 failure to the 5V mechanism converter, and began studying EVA techniques for opening STIS during Servicing Mission 4 (SM4) to replace the failed LVPS2 board. The restoration of STIS functionality via surgical repair by astronauts has by now reached a mature and final design state, and will, along with a similar repair procedure for the Advanced Camera for Surveys (ACS), represent a first for Hubble servicing. STIS-R will restore full scientific functionality of the spectrograph on Side 2, while Side 1 will remain inoperative. Because of the high degree of complementarity between STIS and the new Cosmic Origins Spectrograph (COS, to be installed during SM4)), successful repair of the older spectrograph is an important scientific objective. In this presentation, we focus on the technical aspects associated with STIS-R.

  4. Quantitative imaging through a spectrograph : 2. stoichiometry mapping by Raman scattering

    NARCIS (Netherlands)

    Tolboom, R.A.L.; Dam, N.J.; Meulen, ter J.J.

    2004-01-01

    The Bayesian deconvolution algorithm described in a preceding paper [Appl. Opt. 43, 5669–5681 (2004)] is applied to measurement of the two-dimensional stoichiometry field in a combustible methane-air mixture by Raman imaging through a spectrograph. Stoichiometry (fuel equivalence ratio) is derived

  5. Quantitative imaging through a spectrograph. 2. Stoichiometry mapping by Raman scattering.

    NARCIS (Netherlands)

    Tolboom, R.A.L.; Dam, N.J.; Meulen, J.J. ter

    2004-01-01

    The Bayesian deconvolution algorithm described in a preceding paper [Appl. Opt. 43, 5669-5681 (2004)] is applied to measurement of the two-dimensional stoichiometry field in a combustible methane-air mixture by Raman imaging through a spectrograph. Stoichiometry (fuel equivalence ratio) is derived

  6. MOONS: a multi-object optical and near-infrared spectrograph for the VLT

    NARCIS (Netherlands)

    Cirasuolo, M.; Afonso, J.; Bender, R.; Bonifacio, P.; Evans, C.; Kaper, L.; Oliva, Ernesto; Vanzi, Leonardo; Abreu, Manuel; Atad-Ettedgui, Eli; Babusiaux, Carine; Bauer, Franz E.; Best, Philip; Bezawada, Naidu; Bryson, Ian R.; Cabral, Alexandre; Caputi, Karina; Centrone, Mauro; Chemla, Fanny; Cimatti, Andrea; Cioni, Maria-Rosa; Clementini, Gisella; Coelho, João.; Daddi, Emanuele; Dunlop, James S.; Feltzing, Sofia; Ferguson, Annette; Flores, Hector; Fontana, Adriano; Fynbo, Johan; Garilli, Bianca; Glauser, Adrian M.; Guinouard, Isabelle; Hammer, Jean-François; Hastings, Peter R.; Hess, Hans-Joachim; Ivison, Rob J.; Jagourel, Pascal; Jarvis, Matt; Kauffman, G.; Lawrence, A.; Lee, D.; Li Causi, G.; Lilly, S.; Lorenzetti, D.; Maiolino, R.; Mannucci, F.; McLure, R.; Minniti, D.; Montgomery, D.; Muschielok, B.; Nandra, K.; Navarro, R.; Norberg, P.; Origlia, L.; Padilla, N.; Peacock, J.; Pedicini, F.; Pentericci, L.; Pragt, J.; Puech, M.; Randich, S.; Renzini, A.; Ryde, N.; Rodrigues, M.; Royer, F.; Saglia, R.; Sánchez, A.; Schnetler, H.; Sobral, D.; Speziali, R.; Todd, S.; Tolstoy, E.; Torres, M.; Venema, L.; Vitali, F.; Wegner, M.; Wells, M.; Wild, V.; Wright, G.

    MOONS is a new conceptual design for a Multi-Object Optical and Near-infrared Spectrograph for the Very Large Telescope (VLT), selected by ESO for a Phase A study. The baseline design consists of ~1000 fibers deployable over a field of view of ~500 square arcmin, the largest patrol field offered by

  7. Construction and first atmospheric observations of a high spectral resolution lidar system in Argentina in the frame of a trinational Japanese-Argentinean-Chilean collaboration

    Science.gov (United States)

    Papandrea, S.; Jin, Y.; Ristori, P.; Otero, L.; Nishizawa, T.; Mizuno, A.; Sugimoto, N.; Quel, E.

    2016-05-01

    Atmospheric monitoring stations are being developed in Argentina. The most important targets are volcanic ashes, desert aerosols in particular Patagonian dust and biomass burning aerosols. Six stations deployed in the Patagonian Region and Buenos Aires have lidar systems, sun photometers integrated to the AERONET/NASA monitoring network, in situ optical particle analyzers, four solar radiation sensors (pyranometer, UVA, UVB and GUV), and meteorological equipment. The stations are in the main international airports of the Regions (San Carlos de Bariloche, Comodoro Rivadavia, Neuquén, Rio Gallegos) and in Buenos Aires (Aeroparque Jorge Newbery and at CEILAP/CITEDEF). CEILAP and the National Institute of Environmental Studies (NIES) at Tsukuba, Japan developed the first iodine cell-based high spectral resolution lidar (HSRL) in Argentina to add in the lidar network. We upgraded the standard CEILAP multi-wavelength Raman lidar adding the laser frequency tuning system and the 532 iodine-filtered channel at the reception to built the HSRL. HSRL will provide daytime and nighttime direct observation of the aerosol and cloud optical properties (backscatter and extinction) without the pre-assumption of the lidar ratio. This work shows the design and construction of the first Argentinean HSRL. We also show the first lidar observations done in the country with this kind of lidar.

  8. Surface segregation of Ge during Si growth on Ge/Si(0 0 1) at low temperature observed by high-resolution RBS

    International Nuclear Information System (INIS)

    Nakajima, K.; Hosaka, N.; Hattori, T.; Kimura, K.

    2002-01-01

    The Si/Ge/Si(0 0 1) multilayer with about 1 ML Ge layer is fabricated by evaporating Si overlayer on a Ge/Si(0 0 1) surface at 20-300 deg. C. The depth profile of the Ge atoms is observed by high-resolution Rutherford backscattering spectroscopy to investigate the possibility of Ge delta doping in Si. The observed profile of the Ge atoms spreads over several atomic layers even at 20 deg. C and a significant amount of Ge is located in the surface layer at higher temperatures. The results at 20-150 deg. C are well explained with two-layer model for surface segregation of the Ge atoms and the segregation rates are estimated. The activation energy for surface segregation of Ge atoms in amorphous Si is evaluated to be 0.035 eV, which is much smaller than the value reported for Si deposition at 500 deg. C. The small activation energy suggests that local heating during the Si deposition is dominant at low temperature

  9. Simultaneous broadband observations and high-resolution X-ray spectroscopy of the transitional millisecond pulsar PSR J1023+0038

    Science.gov (United States)

    Coti Zelati, F.; Campana, S.; Braito, V.; Baglio, M. C.; D'Avanzo, P.; Rea, N.; Torres, D. F.

    2018-03-01

    We report on the first simultaneous XMM-Newton, NuSTAR, and Swift observations of the transitional millisecond pulsar PSR J1023+0038 in the X-ray active state. Our multi-wavelength campaign allowed us to investigate with unprecedented detail possible spectral variability over a broad energy range in the X-rays, as well as correlations and lags among emissions in different bands. The soft and hard X-ray emissions are significantly correlated, with no lags between the two bands. On the other hand, the X-ray emission does not correlate with the UV emission. We refine our model for the observed mode switching in terms of rapid transitions between a weak propeller regime and a rotation-powered radio pulsar state, and report on a detailed high-resolution X-ray spectroscopy using all XMM-Newton Reflection Grating Spectrometer data acquired since 2013. We discuss our results in the context of the recent discoveries on the system and of the state of the art simulations on transitional millisecond pulsars, and show how the properties of the narrow emission lines in the soft X-ray spectrum are consistent with an origin within the accretion disc.

  10. Assessment of the Latest GPM-Era High-Resolution Satellite Precipitation Products by Comparison with Observation Gauge Data over the Chinese Mainland

    Directory of Open Access Journals (Sweden)

    Shaowei Ning

    2016-10-01

    Full Text Available The Global Precipitation Mission (GPM Core Observatory that was launched on 27 February 2014 ushered in a new era for estimating precipitation from satellites. Based on their high spatial–temporal resolution and near global coverage, satellite-based precipitation products have been applied in many research fields. The goal of this study was to quantitatively compare two of the latest GPM-era satellite precipitation products (GPM IMERG and GSMap-Gauge Ver. 6 with a network of 840 precipitation gauges over the Chinese mainland. Direct comparisons of satellite-based precipitation products with rain gauge observations over a 20 month period from April 2014 to November 2015 at 0.1° and daily/monthly resolutions showed the following results: Both of the products were capable of capturing the overall spatial pattern of the 20 month mean daily precipitation, which was characterized by a decreasing trend from the southeast to the northwest. GPM IMERG overestimated precipitation by approximately 0.09 mm/day while GSMap-Gauge Ver. 6 underestimated precipitation by −0.04 mm/day. The two satellite-based precipitation products performed better over wet southern regions than over dry northern regions. They also showed better performance in summer than in winter. In terms of mean error, root mean square error, correlation coefficient, and probability of detection, GSMap-Gauge was better able to estimate precipitation and had more stable quality results than GPM IMERG on both daily and monthly scales. GPM IMERG was more sensitive to conditions of no rain or light rainfall and demonstrated good capability of capturing the behavior of extreme precipitation events. Overall, the results revealed some limitations of these two latest satellite-based precipitation products when used over the Chinese mainland, helping to characterize some of the error features in these datasets for potential users.

  11. Evidence of horizontal and vertical transport of water in the Southern Hemisphere tropical tropopause layer (TTL from high-resolution balloon observations

    Directory of Open Access Journals (Sweden)

    S. M. Khaykin

    2016-09-01

    Full Text Available High-resolution in situ balloon measurements of water vapour, aerosol, methane and temperature in the upper tropical tropopause layer (TTL and lower stratosphere are used to evaluate the processes affecting the stratospheric water budget: horizontal transport (in-mixing and hydration by cross-tropopause overshooting updrafts. The obtained in situ evidence of these phenomena are analysed using sate