WorldWideScience

Sample records for resolution reflectometry investigations

  1. Doppler reflectometry for the investigation of poloidally propagating density perturbations

    International Nuclear Information System (INIS)

    Hirsch, M.; Baldzuhn, J.; Kurzan, B.; Holzhauer, E.

    1999-01-01

    A modification of microwave reflectometry is discussed where the direction of observation is tilted with respect to the normal onto the reflecting surface. The experiment is similar to scattering where a finite resolution in k-space exists but keeps the radial localization of reflectometry. The observed poloidal wavenumber is chosen by Bragg's condition via the tilt angle and the resolution in k-space is determined by the antenna pattern. From the Doppler shift of the reflected wave the poloidal propagation velocity of density perturbations is obtained. The diagnostic capabilities of Doppler reflectometry are investigated using full wave code calculations. The method offers the possibility to observe changes in the poloidal propagation velocity of density perturbations and their radial shear with a temporal resolution of about 10μs. (authors)

  2. Contributions to the 4. reflectometry workshop

    Energy Technology Data Exchange (ETDEWEB)

    Clairet, F

    1999-09-15

    This document contains ten papers presented during the 4. workshop on reflectometry. Those papers deal with the utility of reflectometry to plasma density fluctuations study or reflectometry based plasma diagnostics: X mode reflectometry on edge density profile measurements on Tore Supra; recent results of reflectometry on ASDEX-UPGRADE; automatic evaluation of density profiles with high temporal resolution; the TJ-II reflectometry system; doppler reflectometry for the investigation of poloidally propagating density perturbations; poloidal rotation measuremin Tore Supra by oblique reflectometry; pulsed radar reflectometry at TEXTOR-94; density profile reconstruction methods using dispersive effects in pulse radar reflectometry; fluctuation reflectometry: two dimensional full wave modelling; phase ramping and modulation of reflectometer signals. (A.L.B.)

  3. Contributions to the 4. reflectometry workshop

    International Nuclear Information System (INIS)

    Clairet, F.

    1999-09-01

    This document contains ten papers presented during the 4. workshop on reflectometry. Those papers deal with the utility of reflectometry to plasma density fluctuations study or reflectometry based plasma diagnostics: X mode reflectometry on edge density profile measurements on Tore Supra; recent results of reflectometry on ASDEX-UPGRADE; automatic evaluation of density profiles with high temporal resolution; the TJ-II reflectometry system; doppler reflectometry for the investigation of poloidally propagating density perturbations; poloidal rotation measurement in Tore Supra by oblique reflectometry; pulsed radar reflectometry at TEXTOR-94; density profile reconstruction methods using dispersive effects in pulse radar reflectometry; fluctuation reflectometry: two dimensional full wave modelling; phase ramping and modulation of reflectometer signals. (A.L.B.)

  4. A survey of reflectometry techniques with applications to TFTR

    International Nuclear Information System (INIS)

    Collazo, I.; Stacey, W.M.; Wilgen, J.; Hanson, G.; Bigelow, T.; Thomas, C.E.; Bretz, N.

    1993-12-01

    This report presents a review of reflectometry with particular attention to eXtraordinary mode (X-mode) reflectometry using the novel technique of dual frequency differential phase. The advantage of using an X-mode wave is that it can probe the edge of the plasma with much higher resolution and using a much smaller frequency range than with the Ordinary mode (O-Mode). The general problem with previous full phase reflectometry techniques is that of keeping track of the phase (on the order of 1000 fringes) as the frequency is swept over the band. The dual frequency phase difference technique has the advantage that since it is keeping track of the phase difference of two frequencies with a constant frequency separation, the fringe counting is on the order of only 3 to 5 fringes. This fringe count, combined with the high resolution of the X-mode wave and the small plasma access requirements of reflectometry, make X-mode reflectometry a very attractive diagnostic for today's experiments and future fusion devices

  5. Neutron reflectometry for interfacial materials characterization

    International Nuclear Information System (INIS)

    Lin, Eric K.; Pochan, Darrin J.; Kolb, Rainer; Wu Wenli; Satija, Sushil K.

    1998-01-01

    Neutron reflectometry provides a powerful non-destructive analytic technique to measure physical properties of interfacial materials. The sample reflectivity provides information about composition, thickness, and roughness of films with 0.1 nm resolution. The use of neutrons has the additional advantage of being able to label selected atomic species by using different isotopes. Two examples are presented to demonstrate the use of neutron reflectometry in measuring the thermal expansion of a buried thin polymer film and measuring the change in polymer mobility near a solid substrate

  6. Plasma diagnostic reflectometry

    International Nuclear Information System (INIS)

    Cohen, B.I.; Afeyan, B.B.; Garrison, J.C.; Kaiser, T.B.; Luhmann, N.C. Jr.; Domier, C.W.; Chou, A.E.; Baang, S.

    1996-01-01

    Theoretical and experimental studies of plasma diagnostic reflectometry have been undertaken as a collaborative research project between the Lawrence Livermore National Laboratory (LLNL) and the University of California Department of Applied Science Plasma Diagnostics Group under the auspices of the Laboratory Directed Research and Development Program at LLNL. Theoretical analyses have explored the basic principles of reflectometry to understand its limitations, to address specific gaps in the understanding of reflectometry measurements in laboratory experiments, and to explore extensions of reflectometry such as ultra-short-pulse reflectometry. The theory has supported basic laboratory reflectometry experiments where reflectometry measurements can be corroborated by independent diagnostic measurements

  7. In situ quantification of membrane foulant accumulation by reflectometry

    NARCIS (Netherlands)

    Schroën, C.G.P.H.; Roosjen, A.; Tang, K.; Norde, W.; Boom, R.M.

    2010-01-01

    In this paper, we present laser light reflectometry [1] (not to be mistaken with ultrasound reflectometry [2] that uses ultrasound waves) as a tool for quantitative investigation of (the initial stages of) fouling on membrane-like surfaces. Reflectometry allows in situ investigation of adsorption

  8. Investigation of the interpolation method to improve the distributed strain measurement accuracy in optical frequency domain reflectometry systems.

    Science.gov (United States)

    Cui, Jiwen; Zhao, Shiyuan; Yang, Di; Ding, Zhenyang

    2018-02-20

    We use a spectrum interpolation technique to improve the distributed strain measurement accuracy in a Rayleigh-scatter-based optical frequency domain reflectometry sensing system. We demonstrate that strain accuracy is not limited by the "uncertainty principle" that exists in the time-frequency analysis. Different interpolation methods are investigated and used to improve the accuracy of peak position of the cross-correlation and, therefore, improve the accuracy of the strain. Interpolation implemented by padding zeros on one side of the windowed data in the spatial domain, before the inverse fast Fourier transform, is found to have the best accuracy. Using this method, the strain accuracy and resolution are both improved without decreasing the spatial resolution. The strain of 3 μϵ within the spatial resolution of 1 cm at the position of 21.4 m is distinguished, and the measurement uncertainty is 3.3 μϵ.

  9. Distributed strain measurement in perfluorinated polymer optical fibres using optical frequency domain reflectometry

    International Nuclear Information System (INIS)

    Liehr, Sascha; Wendt, Mario; Krebber, Katerina

    2010-01-01

    We present the latest advances in distributed strain measurement in perfluorinated polymer optical fibres (POFs) using backscatter techniques. Compared to previously introduced poly(methyl methacrylate) POFs, the measurement length can be extended to more than 500 m at improved spatial resolution of a few centimetres. It is shown that strain in a perfluorinated POF can be measured up to 100%. In parallel to these investigations, the incoherent optical frequency domain reflectometry (OFDR) technique is introduced to detect strained fibre sections and to measure distributed length change along the fibre with sub-millimetre resolution by applying a cross-correlation algorithm to the backscatter signal. The overall superior performance of the OFDR technique compared to the optical time domain reflectometry in terms of accuracy, dynamic range, spatial resolution and measurement speed is presented. The proposed sensor system is a promising technique for use in structural health monitoring applications where the precise detection of high strain is required

  10. Advances in the density profile evaluation from broadband reflectometry on ASDEX upgrade

    International Nuclear Information System (INIS)

    Varela, P.; Manso, M.; Conway, G.

    2001-01-01

    The high temporal and spatial resolutions provided by broadband microwave reflectometry make it an attractive diagnostic technique to measure the density profile in fusion plasmas. However, great problems have been encountered due to the plasma turbulence that difficult, and sometimes prevent, the routine evaluation of density profiles. Advanced broadband systems employ ultra-fast sweeping in an attempt to perform the profile measurement in a time window smaller than the temporal scale of the main plasma fluctuations but this is not sufficient. Indeed, abrupt plasma movements and/or spatial turbulence always affect the reflectometry signals, as shown by numerical studies (with both one- and two-dimensional codes), for the case of ultra-fast sweeping and pulse radar systems. For this reason not only the system performance is important but the software tools also play a crucial role for reflectometry to become a standard density profile diagnostic. Here we present the recent advances towards automatic evaluation of density profiles from broadband reflectometry on ASDEX Upgrade. For regimes with moderate levels of plasma turbulence, density profiles are obtained from single reflectometry samples (temporal resolution of 20 μs), and for higher turbulence levels average profiles are obtained from bursts of ultra-fast (20 μs), closely spaced (10 μs) sweeps. This method improved the accuracy and reliability of density profiles, which can now be obtained automatically from the edge to the bulk plasma - using reflectometry alone - in most plasma regimes of ASDEX Upgrade. New data processing capability has been implemented that allows the profiles to be available to the end-users 10-12 minutes after each discharge. These developments were possible due to the flexibility and high performance of the control and data acquisition systems and to the large number of measurements that can be performed with the diagnostic during each discharge (720 profiles both on the low- and

  11. Anal acoustic reflectometry

    DEFF Research Database (Denmark)

    Mitchell, Peter J; Klarskov, Niels; Telford, Karen J

    2011-01-01

    Anal acoustic reflectometry is a new technique of assessing anal sphincter function. Five new variables reflecting anal canal function are measured: the opening and closing pressure, the opening and closing elastance, and hysteresis.......Anal acoustic reflectometry is a new technique of assessing anal sphincter function. Five new variables reflecting anal canal function are measured: the opening and closing pressure, the opening and closing elastance, and hysteresis....

  12. GNSS Transpolar Earth Reflectometry exploriNg System (G-TERN): Mission Concept

    DEFF Research Database (Denmark)

    Cardellach, Estel; Wickert, Jens; Baggen, Rens

    2018-01-01

    . Over polar areas, the G-TERN will measure sea ice surface elevation (polarimetry aspects at 30-km resolution and 3-days full coverage. G-TERN will implement the interferometric GNSS reflectometry concept, from a single satellite in near-polar orbit with capability...

  13. Interface alloying in multilayer thin films using polarized neutron reflectometry

    International Nuclear Information System (INIS)

    Basu, Saibal

    2013-01-01

    Polarized Neutron Reflectometry (PNR) is an excellent tool to probe magnetic depth profile in multilayer thin film samples. In case of multilayer films with alternating magnetic and non-magnetic layers, PNR can provide magnetic depth profile at the interfaces with better than nanometer resolution. Using PNR and Xray Reflectometry (XRR) together one can obtain chemical composition and magnetic structure, viz. magnetic moment density at interfaces in multilayer films. We have used these two techniques to obtain kinetics of alloy formation at the interfaces and the magnetic nature of the alloy at the interfaces in several important thin films with magnetic/non-magnetic bilayers. These include Ni/Ti, Ni/Al and Si/Ni pairs. Results obtained from these studies will be presented in this talk. (author)

  14. When thin is sexy - neutron reflectometry instrumentation at the Australian replacement research reactor

    International Nuclear Information System (INIS)

    James, M.

    2003-01-01

    Full text: Neutron and X-ray reflectometry are techniques used to probe the structure of surfaces, thin-films or buried interfaces as well as processes occurring at surfaces and interfaces such as adsorption, adhesion and inter-diffusion. Applications cover adsorbed surfactant layers, self-assembled monolayers, biological membranes, electrochemical and catalytic interfaces, polymer coatings and photosensitive films. Contrast variation and selective deuteration of hydrogenous materials are important aspects of the neutron-based technique. Neutron reflectometry probes the structure of materials normal to the surface at depths of up to several thousand Angstroms, with an effective depth resolution of a few Angstroms. Neutron reflectometry experiments have been performed by a number of Australian researchers at overseas facilities for more than a decade, however this capability has previously been absent in this country. A neutron reflectometer has been recognised as one of the highest priority instruments to be constructed at the new 20MW research reactor facility at Lucas Heights (due for completion in 2006). In this presentation we report the design of the time-of-flight reflectometer to be constructed at the new research facility. The reflectometer will operate with a vertical scattering plane and thus be able to measure specular reflectometry from both solid and liquid samples. A series of disc choppers will enable the instrument resolution (ΔQ/Q) to be varied from 2% to > 15%. The detection system will consist of a 2-dimenional position sensitive detector that will also allow the measurement of off-specular reflectivity

  15. Neutron reflectometry studies of aluminum–saline water interface under hydrostatic pressure

    International Nuclear Information System (INIS)

    Junghans, A.; Chellappa, R.; Wang, P.; Majewski, J.; Luciano, G.; Marcelli, R.; Proietti, E.

    2015-01-01

    Highlights: • We investigated corrosion of aluminum via neutron reflectometry. • The hypothesis of an effect on corrosion due to hydrostatic pressure is confirmed. • The speed of corrosion is lower in the early stage compared to results found in the literature. • Nature of the corrosion compounds is investigated. - Abstract: The structural stability of Al layers in contact with 3.5 wt.% NaCl water solution was investigated at a temperature of 25 °C and hydrostatic pressures from 1 to 600 atm using neutron reflectometry. A pressure–temperature (P–T) Neutron Reflectometry (NR) cell developed at Los Alamos National Laboratory (LANL) was used to understand the behavior of thin (∼900 Å) aluminum layers in contact with saline liquid. Experimental results suggest that in the preliminary stages of corrosion the influence of pressure accelerates the mechanism of interactions of the oxide film with Cl − and H 2 O with lower speed compared to results found in the literature

  16. Recent reflectometry results from the UCLA plasma diagnostics group

    International Nuclear Information System (INIS)

    Gilmore, M.; Doyle, E.J.; Kubota, S.; Nguyen, X.V.; Peebles, W.A.; Rhodes, T.L.; Zeng, L.

    2001-01-01

    The UCLA Plasma Diagnostics Group has an active ongoing reflectometry program. The program is threefold, including 1) profile and 2) fluctuation measurements on fusion devices (DIII-D, NSTX, and others), and 3) basic reflectometry studies in linear and laboratory plasmas that seek to develop new measurement capabilities and increase the physics understanding of reflectometry. Recent results on the DIII-D tokamak include progress toward the implementation of FM reflectometry as a standard density profile diagnostic, and correlation length measurements in QDB discharges that indicate a very different scaling than normally observed in L-mode plasmas. The first reflectometry measurements in a spherical torus (ST) have also been obtained on NSTX. Profiles in NSTX show good agreement with those of Thomson scattering. Finally, in a linear device, a local magnetic field strength measurement based on O-X correlation reflectometry has been demonstrated to proof of principle level, and correlation lengths measured by reflectometry are in good agreement with probes. (author)

  17. Synchrotron Moessbauer reflectometry

    Energy Technology Data Exchange (ETDEWEB)

    Nagy, D.L.; Bottyan, L.; Deak, L.; Szilagyi, E. [KFKI Research Institute for Particle and Nuclear Physics (Hungary); Spiering, H. [Johannes Gutenberg Universitaet Mainz, Institut fuer Anorganische und Analytische Chemie (Germany); Dekoster, J.; Langouche, G. [K.U. Leuven, Instituut voor Kern- en Stralingsfysica (Belgium)

    2000-07-15

    Grazing incidence nuclear resonant scattering of synchrotron radiation can be applied to perform depth-selective phase analysis and to determine the isotopic and magnetic structure of thin films and multilayers. Principles and recent experiments of this new kind of reflectometry are briefly reviewed. Methodological aspects are discussed. Model calculations demonstrate how the orientations of the sublattice magnetisation in ferro- and antiferromagnetic multilayers affect time-integral and time-differential spectra. Experimental examples show the efficiency of the method in investigating finite-stacking, in-plane and out-of-plane anisotropy and spin-flop effects in magnetic multilayers.

  18. Soil-embedded optical fiber sensing cable interrogated by Brillouin optical time-domain reflectometry (B-OTDR) and optical frequency-domain reflectometry (OFDR) for embedded cavity detection and sinkhole warning system

    International Nuclear Information System (INIS)

    Lanticq, V; Bourgeois, E; Delepine-Lesoille, S; Magnien, P; Dieleman, L; Vinceslas, G; Sang, A

    2009-01-01

    A soil-embedded optical fiber sensing cable is evaluated for an embedded cavity detection and sinkhole warning system in railway tunnels. Tests were performed on a decametric structure equipped with an embedded 110 m long fiber optic cable. Both Brillouin optical time-domain reflectometry (B-OTDR) and optical frequency-domain reflectometry (OFDR) sensing techniques were used for cable interrogation, yielding results that were in good qualitative agreement with finite-element calculations. Theoretical and experimental comparison enabled physical interpretation of the influence of ground properties, and the analysis of embedded cavity size and position. A 5 mm embedded cavity located 2 m away from the sensing cable was detected. The commercially available sensing cable remained intact after soil collapse. Specificities of each technique are analyzed in view of the application requirements. For tunnel monitoring, the OFDR technique was determined to be more viable than the B-OTDR due to higher spatial resolution, resulting in better detection and size determination of the embedded cavities. Conclusions of this investigation gave outlines for future field use of distributed strain-sensing methods under railways and more precisely enabled designing a warning system suited to the Ebersviller tunnel specificities

  19. Incoherent Optical Frequency Domain Reflectometry for Distributed Thermal Sensing

    DEFF Research Database (Denmark)

    Karamehmedovic, Emir

    2006-01-01

    comprising a pump laser, optical filters, optical fibre and photo-detectors are presented. Limitations, trade-offs and optimisation processes are described for setups having different specifications with respect to range, resolution and accuracy. The analysis is conducted using computer simulation programs...... developed and implemented in Matlab. The computer model is calibrated and tested, and describes the entire system with high precision. Noise analysis and digital processing of the detected signal are discussed as well. An equation describing the standard deviation of the measured temperature is derived......This thesis reports the main results from an investigation of a fibre-optic distributed temperature sensor based on spontaneous Raman scattering. The technique used for spatial resolving is the incoherent optical frequency domain reflectometry, where a pump laser is sine modulated with a stepwise...

  20. First density profile measurements using frequency modulation of the continuous wave reflectometry on JETa)

    Science.gov (United States)

    Meneses, L.; Cupido, L.; Sirinelli, A.; Manso, M. E.; Jet-Efds Contributors

    2008-10-01

    We present the main design options and implementation of an X-mode reflectometer developed and successfully installed at JET using an innovative approach. It aims to prove the viability of measuring density profiles with high spatial and temporal resolution using broadband reflectometry operating in long and complex transmission lines. It probes the plasma with magnetic fields between 2.4 and 3.0 T using the V band [~(0-1.4)×1019 m-3]. The first experimental results show the high sensitivity of the diagnostic when measuring changes in the plasma density profile occurring ITER relevant regimes, such as ELMy H-modes. The successful demonstration of this concept motivated the upgrade of the JET frequency modulation of the continuous wave (FMCW) reflectometry diagnostic, to probe both the edge and core. This new system is essential to prove the viability of using the FMCW reflectometry technique to probe the plasma in next step devices, such as ITER, since they share the same waveguide complexity.

  1. Study of a high spatial resolution {sup 10}B-based thermal neutron detector for application in neutron reflectometry: the Multi-Blade prototype

    Energy Technology Data Exchange (ETDEWEB)

    Piscitelli, F; Buffet, J C; Clergeau, J F; Cuccaro, S; Guérard, B; Khaplanov, A; Manna, Q La; Rigal, J M; Esch, P Van, E-mail: piscitelli@ill.fr [Institut Laue-Langevin (ILL), 6, Jules Horowitz, 38042, Grenoble (France)

    2014-03-01

    Although for large area detectors it is crucial to find an alternative to detect thermal neutrons because of the {sup 3}He shortage, this is not the case for small area detectors. Neutron scattering science is still growing its instruments' power and the neutron flux a detector must tolerate is increasing. For small area detectors the main effort is to expand the detectors' performances. At Institut Laue-Langevin (ILL) we developed the Multi-Blade detector which wants to increase the spatial resolution of {sup 3}He-based detectors for high flux applications. We developed a high spatial resolution prototype suitable for neutron reflectometry instruments. It exploits solid {sup 10}B-films employed in a proportional gas chamber. Two prototypes have been constructed at ILL and the results obtained on our monochromatic test beam line are presented here.

  2. Towards a 3-D magnetometry by neutron reflectometry

    Energy Technology Data Exchange (ETDEWEB)

    Fermon, C. [CEA/Saclay, Dept. de Recherche sur l' Etat Condense, les Atomes et les Molecules (DRECAM), 91 - Gif-sur-Yvette (France); Gilles, B. [Ecole Nationale Superieure d' Electrochimie et d' Electrometallurgie, 38 - Grenoble (France). Lab. de Thermodynamique et Physico-Chimie Metallurgiques; Marty, A. [CEA Grenoble, Dept. de Recherche Fondamentale sur la Matiere Condensee (DRFMC), 38 (France); Ott, F.; Menelle, A. [Laboratoire Leon Brillouin (LLB) - CEA/Saclay, 91 - Gif-sur-Yvette (France)

    1998-07-01

    Polarised Neutron reflectometry with spin analysis allows one to probe the in-depth magnetic profiles of thin films down to about 100 nm. Analysis of specular reflections gives access to the in-plane vectorial absolute magnetic moment. Off-specular reflectometry gives information about lateral contrasts with typical lengths ranging from 5 {mu}m to 100 {mu}m. Furthermore, surface diffraction at grazing angle gives access to transverse dimensions between 10 nm and 300 nm with a resolution in that direction of several nm. The combination of these 3 techniques applied to thin magnetic objects like thin films, arrays of lines or arrays of dots, leads to 3-D patterns in the reciprocal space. The method is extremely sensitive while giving the average on a rather large surface. Such a technique is therefore not applicable for the study of a single magnetic dot, but it generates unique results in several cases including patterns of domain walls in thin films with perpendicular anisotropy, arrays of magnetic dots, patterned fines in magnetic thin films. (authors)

  3. Multiple resolution chirp reflectometry for fault localization and diagnosis in a high voltage cable in automotive electronics

    Science.gov (United States)

    Chang, Seung Jin; Lee, Chun Ku; Shin, Yong-June; Park, Jin Bae

    2016-12-01

    A multiple chirp reflectometry system with a fault estimation process is proposed to obtain multiple resolution and to measure the degree of fault in a target cable. A multiple resolution algorithm has the ability to localize faults, regardless of fault location. The time delay information, which is derived from the normalized cross-correlation between the incident signal and bandpass filtered reflected signals, is converted to a fault location and cable length. The in-phase and quadrature components are obtained by lowpass filtering of the mixed signal of the incident signal and the reflected signal. Based on in-phase and quadrature components, the reflection coefficient is estimated by the proposed fault estimation process including the mixing and filtering procedure. Also, the measurement uncertainty for this experiment is analyzed according to the Guide to the Expression of Uncertainty in Measurement. To verify the performance of the proposed method, we conduct comparative experiments to detect and measure faults under different conditions. Considering the installation environment of the high voltage cable used in an actual vehicle, target cable length and fault position are designed. To simulate the degree of fault, the variety of termination impedance (10 Ω , 30 Ω , 50 Ω , and 1 \\text{k} Ω ) are used and estimated by the proposed method in this experiment. The proposed method demonstrates advantages in that it has multiple resolution to overcome the blind spot problem, and can assess the state of the fault.

  4. Full-wave Simulation of Doppler Reflectometry in the Presence of Turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Lechte, C. [Institut fur Plasmaforschung, Universitat Stuttgart, Stuttgart (Germany)

    2011-07-01

    Doppler reflectometry is a microwave plasma diagnostic well suited for density fluctuation measurement. A meaningful interpretation of Doppler reflectometry measurements necessitates the analysis of the wave propagation in the plasma using simulations methods. While the beam path can usually be reconstructed with beam tracing methods, the modeling of the scattering process demands the use of wave simulation codes. Furthermore, in the presence of strong density fluctuations, the response from the plasma is dominated by dispersion and multiple scattering, and hence becomes non-linear. IPF-FD3D is the finite difference time domain code used to investigate the dependence of the scattering efficiency on the various plasma conditions. It uses the full set of Maxwell equations and the electron equation of motion in a cold plasma. First results in slab geometry indicate a strong dependence of the scattering efficiency on the density gradient, the incident angle, and the wave polarisation. Further complications arise with the introduction of broadband turbulent fluctuations, where additional knowledge of the radial spectrum is necessary to reconstruct the full fluctuation spectrum from Doppler reflectometry measurements. This paper presents the reconstruction of the turbulent fluctuation spectrum from simulated Doppler reflectometry measurements in slab geometry. Two cases of analytical turbulence in slab geometry are presented where the fluctuation wavenumber spectrum was recovered. It is planned to extend these investigations to X mode polarization and to supplement actual fusion experiments

  5. Analytical theory of Doppler reflectometry in slab plasma model

    Energy Technology Data Exchange (ETDEWEB)

    Gusakov, E.Z.; Surkov, A.V. [Ioffe Institute, Politekhnicheskaya 26, St. Petersburg (Russian Federation)

    2004-07-01

    Doppler reflectometry is considered in slab plasma model in the frameworks of analytical theory. The diagnostics locality is analyzed for both regimes: linear and nonlinear in turbulence amplitude. The toroidal antenna focusing of probing beam to the cut-off is proposed and discussed as a method to increase diagnostics spatial resolution. It is shown that even in the case of nonlinear regime of multiple scattering, the diagnostics can be used for an estimation (with certain accuracy) of plasma poloidal rotation profile. (authors)

  6. A review on neutron reflectometry

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Soo; Lee, Chang Hee; Shim, Hae Seop; Seong, Baek Seok

    1999-03-01

    This report contains principle and characteristic of neutron reflectometry. Therefore, in case of operating neutron reflectometer at HANARO in future, it will be a reference to the user who wishes to use the instrument effectively. Also, the current situation of neutron reflectometer operating in the world was examined. The detail of neutron reflectometer such as GANS(MURR), ADAM(ILL), POSY II(ANL), ROG(IRI) was described. The recent research situation on neutron reflectometry was also examined and it helps us to determine research field. (author)

  7. Electrochemical lithiation of silicon electrodes. Neutron reflectometry and secondary ion mass spectrometry investigations

    Energy Technology Data Exchange (ETDEWEB)

    Jerliu, Bujar; Doerrer, Lars; Hueger, Erwin [Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany). AG Mikrokinetik; Seidlhofer, Beatrix-Kamelia; Steitz, Roland [Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Berlin (Germany); Borchardt, Guenter; Schmidt, Harald [Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany). AG Mikrokinetik; Clausthaler Zentrum fuer Materialtechnik (CZM), Clausthal-Zellerfeld (Germany)

    2017-11-15

    In-situ neutron reflectometry and ex-situ secondary ion mass spectrometry in combination with electrochemical methods were used to study the lithiation of amorphous silicon electrodes. For that purpose specially designed closed three-electrode electrochemical cells with thin silicon films as the working electrode and lithium as counter and reference electrodes were used. The neutron reflectometry results obtained in-situ during galvanostatic cycling show that the incorporation, redistribution and removal of Li in amorphous silicon during a lithiation cycle can be monitored. It was possible to measure the volume modification during lithiation, which is found to be rather independent of cycle number, current density and film thickness and in good agreement with first-principles calculations as given in literature. Indications for an inhomogeneous lithiation mechanism were found by secondary ion mass spectrometry measurements. Lithium tracer diffusion experiments indicate that the diffusivities inside the lithiated region (D > 10{sup -15} m{sup 2} s{sup -1}) are considerably higher than in pure amorphous silicon as known from literature. This suggests a kinetics based explanation for the occurrence of an inhomogeneous lithiation mechanism.

  8. Reflectometry diagnostics on TCV

    Science.gov (United States)

    Molina Cabrera, Pedro; Coda, Stefano; Porte, Laurie; Offeddu, Nicola; Tcv Team

    2017-10-01

    Both profile reflectometer and Doppler back-scattering (DBS) diagnostics are being developed for the TCV Tokamak using a steerable quasi-optical launcher and universal polarizers. First results will be presented. A pulse reflectometer is being developed to complement Thomson Scattering measurements of electron density, greatly increasing temporal resolution and also effectively enabling fluctuation measurements. Pulse reflectometry consists of sending short pulses of varying frequency and measuring the roundtrip group-delay with precise chronometers. A fast arbitrary waveform generator is used as a pulse source feeding frequency multipliers that bring the pulses to V-band. A DBS diagnostic is currently operational in TCV. DBS may be used to infer the perpendicular velocity and wave number spectrum of electron density fluctuations in the 3-15 cm-1 wave-number range. Off-the-shelf transceiver modules, originally used for VNA measurements, are being used in a Doppler radar configuration. See author list of S. Coda et al., 2017 Nucl. Fusion 57 102011.

  9. Report on neutron reflectometry for the Australian Replacement Reactor

    International Nuclear Information System (INIS)

    James, M.

    2001-01-01

    There is a clear need for at least one neutron reflectometer at the Australian Replacement Research Reactor when it commences operation in 2005. The participants at the reflectometry workshop have identified that the neutron reflectometer to be built at the Australian Replacement Research Reactor must be capable of the study of: 1. Specular scattering from air/solid, solid/liquid and in particular 'free liquid' samples; and 2. Off-specular' scattering from the above sample types. 3. Kinetics phenomena on a minute or slower time scale; 4. A range of samples of differing thicknesses, ranging from ultra-thin films to thousand angstrom thick films. In order to achieve this the reflectometer should have the capacity to vary its resolution. Interest was also expressed at the ability to conduct glancing-angle and wide-angle scattering studies for the investigation of short length scale, in-plane structures. There was little interest expressed by the workshop participants for polarised neutron reflectometry. This report contains a scientific case for a neutron reflectometer to be built at the Australian Replacement Research Reactor on a cold neutron guide, which is based on the areas of scientific research expressed by the workshop participants. In addition, trends in neutron reflectometry research conducted at major overseas neutron facilities are noted. The new neutron Reflectometer should: 1. Be based on the Time-of-Flight method; 2. Have a vertical scattering plane (i.e. operate for horizontal samples); 3. Be located on the end of a cold neutron guide, or be built off the guide axis using a bender, 4. Have a position sensitive area detector, 5. Be similar in spirit to the new D17 reflectometer at the ILL. Basic aspects of a reflectometer design are discussed which meet the above-stated scientific criteria and include a preliminary list of instrument specifications, capabilities and ancillary equipment requested by the workshop participants. A preliminary instrument

  10. Urethral pressure reflectometry before and after tension-free vaginal tape

    DEFF Research Database (Denmark)

    Saaby, Marie-Louise; Klarskov, Niels; Lose, Gunnar

    2012-01-01

    Urethral pressure reflectometry (UPR) is a new method for measuring pressure and cross-sectional area in the urethra. Our aim was to investigate if the UPR parameters at rest and during squeeze were unchanged after TVT....

  11. Neutron reflectometry

    DEFF Research Database (Denmark)

    Klösgen-Buchkremer, Beate Maria

    2014-01-01

    of desired information. In the course, an introduction into the method and an overview on selected instruments at large scale facilities will be presented. Examples will be given that illustrate the potential of the method, mostly based on organic films. Results from the investigation of layered films......Neutron (and X-ray) reflectometry constitute complementary interfacially sensitive techniques that open access to studying the structure within thin films of both soft and hard condensed matter. Film thickness starts oxide surfaces on bulk substrates, proceeding to (pauci-)molecular layers and up...... films or films with magnetic properties. The reason is the peculiar property of neutron light since the mass of a neutron is close to the one of a proton, and since it bears a magnetic moment. The optical properties of matter, when interacting with neutrons, are described by a refractive index...

  12. Phase-detected Brillouin optical correlation-domain reflectometry

    Science.gov (United States)

    Mizuno, Yosuke; Hayashi, Neisei; Fukuda, Hideyuki; Nakamura, Kentaro

    2018-05-01

    Optical fiber sensing techniques based on Brillouin scattering have been extensively studied for structural health monitoring owing to their capability of distributed strain and temperature measurement. Although a higher signal-to-noise ratio (leading to high spatial resolution and high-speed measurement) is generally obtained for two-end-access systems, they reduce the degree of freedom in embedding the sensors into structures, and render the measurement no longer feasible when extremely high loss or breakage occurs at a point of the sensing fiber. To overcome these drawbacks, a one-end-access sensing technique called Brillouin optical correlation-domain reflectometry (BOCDR) has been developed. BOCDR has a high spatial resolution and cost efficiency, but its conventional configuration suffered from relatively low-speed operation. In this paper, we review the recently developed high-speed configurations of BOCDR, including phase-detected BOCDR, with which we demonstrate real-time distributed measurement by tracking a propagating mechanical wave. We also demonstrate breakage detection with a wide strain dynamic range.

  13. Analysis of human skin tissue by millimeter-wave reflectometry

    NARCIS (Netherlands)

    Smulders, P.F.M.

    2013-01-01

    Background/pupose: Millimeter-wave reflectometry is a potentially interesting technique to analyze the human skin in vivo in order to determine the water content locally in the skin. Purpose of this work is to investigate the possibility of skin-tissue differentiation. In addition, it addresses the

  14. Use of Anal Acoustic Reflectometry in the Evaluation of Men With Passive Fecal Leakage

    DEFF Research Database (Denmark)

    Hornung, Benjamin R; Telford, Karen J; Carlson, Gordon L

    2017-01-01

    with greater sensitivity and discriminatory ability than conventional anal manometry. OBJECTIVE: The aim of this study was to determine whether men with fecal leakage have an abnormality in anal sphincter function that is detectable by anal acoustic reflectometry. DESIGN: This was an age-matched study......BACKGROUND: Men with passive fecal leakage represent a distinct clinical entity in which the pathophysiology remains unclear. Standard anorectal investigations fail to demonstrate consistent abnormalities in this group. Anal acoustic reflectometry is a new test of anal sphincter function...... of continent and incontinent men. SETTINGS: The study was conducted at a university teaching hospital. PATIENTS: Male patients with isolated symptoms of fecal leakage were recruited. Anal acoustic reflectometry, followed by conventional anal manometry, was performed. Results were then compared with those from...

  15. Research proposal on : amplitude modulated reflectometry system for JET divertor

    International Nuclear Information System (INIS)

    Sanchez, J.; Branas, T.; Estrada, T.; Luna, E. de la.

    1992-01-01

    Amplitude Modulated reflectometry is presented here as a tool for density profile measurements in the JET divertor plasmas. One of the main problems which has been presented in most reflectometers during the last years is the need for a coherent tracking of the phase delay: fast density fluctuations and strong modulation on the amplitude of the reflected signal usually bring to fringe jumps' in the phase signal, which are a big problem when the phase values are much larger than 2 pi. The conditions in the JET divertor plasmas: plasma geometry, access and long oversized broad-band waveguide paths makes very difficult the phase measurements at the millimeter wave range. AM reflectometry is to some extension an intermediate solution between the classical phase delay reflectometry, so far applied to small distances, and the time domain reflectometry, used for ionospheric studies and recently also proposed for fusion plasma. the main advantage is to allow the use of millimeter wave reflectometry with moderate phase shifts (approx 2 pi). (author)

  16. Viscoelastic assessment of anal canal function using acoustic reflectometry: a clinically useful technique.

    Science.gov (United States)

    Mitchell, Peter J; Klarskov, Niels; Telford, Karen J; Hosker, Gordon L; Lose, Gunnar; Kiff, Edward S

    2012-02-01

    Anal acoustic reflectometry is a new reproducible technique that allows a viscoelastic assessment of anal canal function. Five new variables reflecting anal canal function are measured: the opening and closing pressure, opening and closing elastance, and hysteresis. The aim of this study was to assess whether the parameters measured in anal acoustic reflectometry are clinically valid between continent and fecally incontinent subjects. This was an age- and sex-matched study of continent and incontinent women. The study was conducted at a university teaching hospital. One hundred women (50 with fecal incontinence and 50 with normal bowel control) were included in the study. Subjects were age matched to within 5 years. Parameters measured with anal acoustic reflectometry and manometry were compared between incontinent and continent groups using a paired t test. Diagnostic accuracy was assessed by the use of receiver operator characteristic curves. Four of the 5 anal acoustic reflectometry parameters at rest were significantly different between continent and incontinent women (eg, opening pressure in fecally incontinent subjects was 31.6 vs 51.5 cm H2O in continent subjects, p = 0.0001). Both anal acoustic reflectometry parameters of squeeze opening pressure and squeeze opening elastance were significantly reduced in the incontinent women compared with continent women (50 vs 99.1 cm H2O, p = 0.0001 and 1.48 vs 1.83 cm H2O/mm, p = 0.012). In terms of diagnostic accuracy, opening pressure at rest measured by reflectometry was significantly superior in discriminating between continent and incontinent women in comparison with resting pressure measured with manometry (p = 0.009). Anal acoustic reflectometry is a new, clinically valid technique in the assessment of continent and incontinent subjects. This technique, which assesses the response of the anal canal to distension and relaxation, provides a detailed viscoelastic assessment of anal canal function. This technique

  17. Microwave reflectometry for fusion plasma diagnostics

    International Nuclear Information System (INIS)

    1992-01-01

    This document contains a collection of 26 papers on ''Microwave Reflectometry for Fusion Plasma Diagnostics'', presented at the IAEA Technical Committee Meeting of the same name held at the JET Joint Undertaking, Abingdon, United Kingdom, March 4-6, 1992. It contains five papers on the measurement of plasma density profiles, six papers on theory and simulations in support of the development and application of this type of plasma diagnostics, eight papers on the measurement of density transients and fluctuations, and seven on new approaches to reflectometry-based plasma diagnostics. Refs, figs and tabs

  18. Pulsed radar reflectometry of broadband fluctuations

    International Nuclear Information System (INIS)

    Gorkom, J.C. van; Pol, M.J. van de; Donne, A.J.H.; Schueller, F.C.

    2001-01-01

    The possibility to use pulsed radar reflectometry for turbulence studies is investigated. Good qualitative agreement is found between the power spectrum of variations in time-of-flight and the quadrature spectrum of a continuous-wave fluctuation reflectometer. Standard Fourier analysis is hampered considerably by missing samples in part of the experimental data. Using the Lomb-Scargle normalised periodogram for power spectrum estimation, reliable spectra are obtained even for signals in which as much as 60% of the samples is missing. (author)

  19. Carbon Fiber TOW Angle Determination Using Microwave Reflectometry

    Science.gov (United States)

    Wilson, William C.; Moore, Jason P.; Juarez, Peter D.

    2016-01-01

    NASA's Advanced Composites Project is investigating technologies that increase automated remote inspection of aircraft composite structures. Therefore, microwave Frequency Domain Reflectometry (FDR) is being investigated as a method of enabling rapid remote inspection of angular orientation of the tow using microwave radiation. This work will present preliminary data demonstrating that frequency shifts in the reflection spectrum of a carbon fiber tow sample are indicative of the angle of the tow with respect to an interrogating antenna's linear polarized output.

  20. Preliminary simulation study of doppler reflectometry

    International Nuclear Information System (INIS)

    Ishii, Yuta; Hojo, Hitoshi; Yoshikawa, Masashi; Ichimura, Makoto; Haraguchi, Yusuke; Imai, Tsuyoshi; Mase, Atsushi

    2010-01-01

    A preliminary simulation study of Doppler reflectometry is performed. The simulations solve Maxwell's equations by a finite difference time domain (FDTD) code method in two dimensions. A moving corrugated metal target is used as a plasma cutoff layer to study the basic features of Doppler reflectometry. We examined the effects of the full width at half maximum (FWHM) of the electromagnetic waves and the corrugation depth of the metal target. Furthermore, the effect of a nonuniform plasma is studied using this FDTD analysis. The Doppler shift and velocity are compared with those obtained from FDTD analysis of a uniform plasma. (author)

  1. Research proposal on: amplitude modulated reflectometry system for the JET divertor

    International Nuclear Information System (INIS)

    Sanchez, J.; Branas, B.; Estrada, T.; Luna, E. de la

    1992-01-01

    Amplitude Modulated reflectometry is presented here as a tool for density profile measurements in the JET divertor plasmas. One of the main problems which has been present in most reflectometers during the last years is the need for a coherent tracking of the phase delay: fast density fluctuations and strong modulation on the amplitude of the reflected signal usually bring to fringe jumps in the phase signal, which are a big problem when the phase values are much larger than 2π The conditions in the JET divertor plasmas: plasma geometry, access and long oversized broad- band waveguide paths makes very difficult the phase measurements at the millimeter wave range. AM reflectometry is to some extension an intermediate solution between the classical phase delay reflectometry, so far applied to small distances, and the time domain reflectometry, used for onospheric studies and recently also proposed for fusion plasmas. The main advantage is to allow the use of millimeter wave reflectometry with moderate phase shifts ( ∼ 2π ). (Author) 2 refs

  2. Theoretical aspects of the use of pulsed reflectometry in a spheromak plasma

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, B. J., LLNL

    1998-06-11

    Pulsed reflectometry using both ordinary (O) and extraordinary (X) modes has the potential of providing time and space-resolved measurements of the electron density, the magnitude of the magnetic field, and the magnetic shear as a function of radius. Such a diagnostic also yields the current profile from the curl of the magnetic field. This research addresses theoretical issues associated with the use of reflectometry in the SSPX spheromak experiment at the Lawrence Livermore National Laboratory. We have extended a reflectometry simulation model to accommodate O and X-mode mixed polarization and linear mode conversion between the two polarizations. A Wentzel-Kramers-Brillouin-Jeffreys (WKBJ) formula for linear mode conversion agrees reasonably well with direct numerical solutions of the wave equation, and we have reconstructed the magnetic pitch-angle profile by matching the results of the WKBJ formula with the mode conversion data observed in simulations using a least-squares determination of coefficients in trial functions for the profile. The reflectometry data also yield information on fluctuations. Instrumental issues, e.g., the effects of microwave mixers and filters on model reflectometry pulses, have been examined to optimize the performance of the reflectometry diagnostics.

  3. Distributed Optical Fiber Sensors Based on Optical Frequency Domain Reflectometry: A review.

    Science.gov (United States)

    Ding, Zhenyang; Wang, Chenhuan; Liu, Kun; Jiang, Junfeng; Yang, Di; Pan, Guanyi; Pu, Zelin; Liu, Tiegen

    2018-04-03

    Distributed optical fiber sensors (DOFS) offer unprecedented features, the most unique one of which is the ability of monitoring variations of the physical and chemical parameters with spatial continuity along the fiber. Among all these distributed sensing techniques, optical frequency domain reflectometry (OFDR) has been given tremendous attention because of its high spatial resolution and large dynamic range. In addition, DOFS based on OFDR have been used to sense many parameters. In this review, we will survey the key technologies for improving sensing range, spatial resolution and sensing performance in DOFS based on OFDR. We also introduce the sensing mechanisms and the applications of DOFS based on OFDR including strain, stress, vibration, temperature, 3D shape, flow, refractive index, magnetic field, radiation, gas and so on.

  4. Plasma turbulence measured by fast sweep reflectometry on Tore Supra

    International Nuclear Information System (INIS)

    Clairet, F.; Vermare, L.; Leclert, G.

    2004-01-01

    Traditionally devoted to electron density profile measurement we show that fast frequency sweeping reflectometry technique can bring valuable and innovative measurements onto plasma turbulence. While fast frequency sweeping technique is traditionally devoted to electron density radial profile measurements we show in this paper how we can handle the fluctuations of the reflected signal to recover plasma density fluctuation measurements with a high spatial and temporal resolution. Large size turbulence related to magneto-hydrodynamic (MHD) activity and the associated magnetic islands can be detected. The radial profile of the micro-turbulence, which is responsible for plasma anomalous transport processes, is experimentally determined through the fluctuation of the reflected phase signal. (authors)

  5. Plasma turbulence measured by fast sweep reflectometry on Tore Supra

    International Nuclear Information System (INIS)

    Clairet, F.; Vermare, L.; Heuraux, S.; Leclert, G.

    2004-01-01

    Traditionally devoted to electron density profile measurement we show that fast frequency sweeping reflectometry technique can bring valuable and innovative measurements onto plasma turbulence. While fast frequency sweeping technique is traditionally devoted to electron density radial profile measurements we show in this paper how we can handle the fluctuations of the reflected signal to recover plasma density fluctuation measurements with a high spatial and temporal resolution. Large size turbulence related to magneto-hydrodynamic (MHD) activity and the associated magnetic islands can be detected. The radial profile of the micro-turbulence, which is responsible for plasma anomalous transport processes, is experimentally determined through the fluctuation of the reflected phase signal

  6. Application of Zeeman spatial beam-splitting in polarized neutron reflectometry

    OpenAIRE

    Kozhevnikov, S. V.; Ignatovich, V. K.; Radu, F.

    2017-01-01

    Neutron Zeeman spatial beam-splitting is considered at reflection from magnetically noncollinear films. Two applications of Zeeman beam-splitting phenomenon in polarized neutron reflectometry are discussed. One is the construction of polarizing devices with high polarizing efficiency. Another one is the investigations of magnetically noncollinear films with low spin-flip probability. Experimental results are presented for illustration.

  7. Proceeding of the 5th international workshop on reflectometry

    International Nuclear Information System (INIS)

    Kawahata, Kazuo

    2001-05-01

    This is the proceedings of the 5th International Workshop on Reflectometry, which was held on 5-7 March, 2001, at the National Institute for Fusion Science. In this workshop, the latest experimental results in reflectometry (profile and fluctuations studies), new technological developments and a broad scope of the theory and simulation codes were presented. The 19 of the presented papers are indexed individually. (author)

  8. Recent results of reflectometry on ASDEX-upgrade

    International Nuclear Information System (INIS)

    Manso, M.; Serra, F.; Numes, I.; Cupido, L.; Grossmann, V.; Meneses, L.; Santos, J.; Silva, A.; Silva, F.; Varela, P.; Vergamota, S.; Maraschek, M.

    1999-01-01

    Reflectometry is well known to be very sensitive to plasma density fluctuations. The study of plasma response in broadband frequency operation is concentrated on the obtention of the main peak and many techniques have been developed to filter the unwanted components. In comparison little work has been done to understand the remaining part of the signal. This paper presents some recent results about plasma fluctuations obtained with FM-reflectometry on ASDEX-Upgrade. They demonstrate the rich content information of both the fixed frequency and broadband signals and suggest that they can be used in a complementary way. (A.L.B.)

  9. Digital coherent detection research on Brillouin optical time domain reflectometry with simplex pulse codes

    International Nuclear Information System (INIS)

    Hao Yun-Qi; Ye Qing; Pan Zheng-Qing; Cai Hai-Wen; Qu Rong-Hui

    2014-01-01

    The digital coherent detection technique has been investigated without any frequency-scanning device in the Brillouin optical time domain reflectometry (BOTDR), where the simplex pulse codes are applied in the sensing system. The time domain signal of every code sequence is collected by the data acquisition card (DAQ). A shift-averaging technique is applied in the frequency domain for the reason that the local oscillator (LO) in the coherent detection is fix-frequency deviated from the primary source. With the 31-bit simplex code, the signal-to-noise ratio (SNR) has 3.5-dB enhancement with the same single pulse traces, accordant with the theoretical analysis. The frequency fluctuation for simplex codes is 14.01 MHz less than that for a single pulse as to 4-m spatial resolution. The results are believed to be beneficial for the BOTDR performance improvement. (general)

  10. Radial correlation length measurements on ASDEX Upgrade using correlation Doppler reflectometry

    International Nuclear Information System (INIS)

    Schirmer, J; Conway, G D; Holzhauer, E; Suttrop, W; Zohm, H

    2007-01-01

    The technique of correlation Doppler reflectometry for providing radial correlation length L r measurements is explored in this paper. Experimental L r measurements are obtained using the recently installed dual channel Doppler reflectometer system on ASDEX Upgrade. The experimental measurements agree well with theory and with L r measured on other fusion devices using different diagnostic techniques. A strong link between L r and plasma confinement could be observed. From the L- to the H-mode, an increase in the absolute value of E r shear was detected at the same plasma edge region where a decrease in L r was measured. This observation is in agreement with theoretical models which predict that an increase in the absolute shear suppresses turbulent fluctuations in the plasma, leading to a reduction in L r . Furthermore, L r decreases from the plasma core to the edge and decreases with increasing plasma triangularity δ. The experimental results have been extensively modelled using a 2-dimensional finite difference time domain code. The simulations confirm that Doppler reflectometry provides robust radial correlation lengths of the turbulence with high resolution and suggests that L r is independent of the turbulence wavenumber k p erpendicular and its fluctuation level

  11. Distributed Optical Fiber Sensors Based on Optical Frequency Domain Reflectometry: A review

    Directory of Open Access Journals (Sweden)

    Zhenyang Ding

    2018-04-01

    Full Text Available Distributed optical fiber sensors (DOFS offer unprecedented features, the most unique one of which is the ability of monitoring variations of the physical and chemical parameters with spatial continuity along the fiber. Among all these distributed sensing techniques, optical frequency domain reflectometry (OFDR has been given tremendous attention because of its high spatial resolution and large dynamic range. In addition, DOFS based on OFDR have been used to sense many parameters. In this review, we will survey the key technologies for improving sensing range, spatial resolution and sensing performance in DOFS based on OFDR. We also introduce the sensing mechanisms and the applications of DOFS based on OFDR including strain, stress, vibration, temperature, 3D shape, flow, refractive index, magnetic field, radiation, gas and so on.

  12. Distributed Optical Fiber Sensors Based on Optical Frequency Domain Reflectometry: A review

    Science.gov (United States)

    Wang, Chenhuan; Liu, Kun; Jiang, Junfeng; Yang, Di; Pan, Guanyi; Pu, Zelin; Liu, Tiegen

    2018-01-01

    Distributed optical fiber sensors (DOFS) offer unprecedented features, the most unique one of which is the ability of monitoring variations of the physical and chemical parameters with spatial continuity along the fiber. Among all these distributed sensing techniques, optical frequency domain reflectometry (OFDR) has been given tremendous attention because of its high spatial resolution and large dynamic range. In addition, DOFS based on OFDR have been used to sense many parameters. In this review, we will survey the key technologies for improving sensing range, spatial resolution and sensing performance in DOFS based on OFDR. We also introduce the sensing mechanisms and the applications of DOFS based on OFDR including strain, stress, vibration, temperature, 3D shape, flow, refractive index, magnetic field, radiation, gas and so on. PMID:29614024

  13. In-service communication channel sensing based on reflectometry for TWDM-PON systems

    Science.gov (United States)

    Iida, Daisuke; Kuwano, Shigeru; Terada, Jun

    2014-05-01

    Many base stations are accommodated in TWDM-PON based mobile backhaul and fronthaul networks for future radio access, and failed connections in an optical network unit (ONU) wavelength channel severely degrade system performance. A cost effective in-service ONU wavelength channel monitor is essential to ensure proper system operation without failed connections. To address this issue we propose a reflectometry-based remote sensing method that provides wavelength channel information with the optical line terminal (OLT)-ONU distance. The method realizes real-time monitoring of ONU wavelength channels without signal quality degradation. Experimental results show it achieves wavelength channel distinction with high distance resolution.

  14. Evaluation of the imaging properties of Microwave Imaging Reflectometry

    International Nuclear Information System (INIS)

    Hong, I; Lee, W; Leem, J; Nam, Y; Kim, M; Yun, G S; Park, H K; Domier, C W; Jr, N C Luhmann

    2012-01-01

    Microwave Imaging Reflectometry (MIR) has been developed for unambiguous measurement of electron density fluctuations in fusion plasmas. The loss of phase information limiting the use of conventional reflectometry can be minimized by a large aperture imaging optics and an array of detectors in the MIR embodiment. The evaluation of the optical system is critical for precise reconstruction of the fluctuations. The optical systems of the prototype TEXTOR MIR [2] and newly-designed KSTAR MIR [5] systems have been tested with a corrugated target simulating density fluctuations at the cut-off surface. The reconstructed phase from the MIR system has been compared to the directly measured phase of corrugations taking into account the rotational speed of the target. The effects of optical aberrations and interference between lenses on the phase reconstruction have been investigated by the 2D amplitude measurement of the reflected waves and the diffraction-based optical simulations. (CODE V) A preliminary design of the KSTAR MIR optics has been suggested which can minimize the aberration and interference effects.

  15. Neutron reflectometry: A probe for materials surfaces. Proceedings of a technical meeting

    International Nuclear Information System (INIS)

    2006-01-01

    Research reactors play an important role in delivering the benefits of nuclear science and technology. The IAEA, through its project on the effective utilization of research reactors, has been providing technical support to Member States and promotes activities related to specific applications. Neutron beam research is one of the main components in materials science studies. Neutron reflectometry is extremely useful for characterizing thin films and layered structures, polymers, oxide coatings on metals and biological membranes. The neutron has been a major probe for investigating magnetic materials. Development of magnetic multilayers is important for diverse applications in sensors, memory devices, etc. The special nature of the interaction of the neutron with matter makes it an important tool to locate low z elements in the presence of high z elements, which is useful in biology and polymer science. The role of neutron reflectometry in research and development in materials science and technology was discussed in a consultants meeting held in 2003. Following this, a technical meeting was organized from 16 to 20 August 2004 in Vienna to discuss the current status of neutron reflectometry, including the instrumentation, data acquisition, data analysis and applications. Experts in the field of neutron reflectometry presented their contributions, after which there was a brainstorming session on various aspects of the technique and its applications. This publication is the outcome of deliberations during the meeting and the presentations by the participants. This publication will be of use to scientists planning to develop a neutron reflectometer at research reactors. It will also help disseminate knowledge and information to material scientists, biologists and chemists working towards characterizing and developing new materials

  16. Pulse compression radar reflectometry for density measurements on fusion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Costley, A; Prentice, R [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Laviron, C [Compagnie Generale des Matieres Nucleaires (COGEMA), 78 - Velizy-Villacoublay (France); Prentice, R [Toulouse-3 Univ., 31 (France). Centre d` Etude Spatiale des Rayonnements

    1994-07-01

    On tokamaks and other toroidal machines, reflectometry is a very rapidly developing technique for density profile measurements, particularly near the edge. Its principle relies on the total reflection of an electromagnetic wave at a cutoff layer, where the critical density is reached and the local refractive index goes to zero. With the new fast frequency synthesizers now available, a method based on pulse compression radar is proposed for plasma reflectometry, overcoming the limitations of the previous reflectometry methods. The measurement can be made on a time-scale which is effectively very short relatively to the plasma fluctuations, and the very high reproducibility and stability of the source allows an absolute calibration of the waveguides to be made, which corrects for the effects of the parasitic reflections. 2 refs., 5 figs.

  17. Larmor precession reflectometry

    International Nuclear Information System (INIS)

    Lauter, H.J.; Toperverg, B.P.; Lauter-Pasyuk, V.; Petrenko, A.; Aksenov, V.

    2004-01-01

    Larmor precession phase encoding is applied to modulate TOF reflection spectra measured from a polymer multilayer and from an Fe/Cr multilayer. It is proposed that decoding of the spectra can be used to extract the small-angle scattering signal from the polymer film-embedded nanoparticles. The second example is directed to demonstrate one of the plausible realizations of the vector polarization analysis in reflectometry of magnetic systems. This would allow to unambiguously reconstruct the transverse and lateral distribution of the magnetization vectors throughout the multilayered superlattices

  18. Reflectometry on D17

    Energy Technology Data Exchange (ETDEWEB)

    Cubitt, R [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)

    1997-04-01

    As part of the package of instrument upgrades planned over the next few years, D17 is based on a straightened cold neutron-guide and converted into a dedicated and versatile reflectometer. In the meantime, in order for ILL to become as fully involved as possible in this growing area of activity, the current D17 has been optimised for reflectometry. Results of this project are presented. (author).

  19. Radio-frequency reflectometry on an undoped AlGaAs/GaAs single electron transistor

    DEFF Research Database (Denmark)

    MacLeod, S. J.; See, A. M.; Keane, Z. K.

    2014-01-01

    Radio frequency reflectometry is demonstrated in a sub-micron undoped AlGaAs/GaAs device. Undoped single electron transistors (SETs) are attractive candidates to study single electron phenomena, due to their charge stability and robust electronic properties after thermal cycling. However......, these devices require a large top-gate, which is unsuitable for the fast and sensitive radio frequency reflectometry technique. Here, we demonstrate that rf reflectometry is possible in an undoped SET....

  20. Differential reflectometry versus tactile sense detection of subgingival calculus in dentistry

    Science.gov (United States)

    Shakibaie, Fardad; Walsh, Laurence J.

    2012-10-01

    Detecting dental calculus is clinically challenging in dentistry. This study used typodonts with extracted premolar and molar teeth and simulated gingival tissue to compare the performance of differential reflectometry and periodontal probing. A total of 30 extracted teeth were set in an anatomical configuration in stone to create three typodonts. Clear polyvinyl siloxane impression material was placed to replicate the periodontal soft tissues. Pocket depths ranged from 10 to 15 mm. The three models were placed in a phantom head, and an experienced dentist assessed the presence of subgingival calculus first using the DetecTar (differential reflectometry) and then a periodontal probe. Scores from these two different methods were compared to the gold standard (direct examination of the root surface using 20× magnification) to determine the accuracy and reproducibility. Differential reflectometry was more accurate than tactile assessment (79% versus 60%), and its reproducibility was also higher (Cohen kappa 0.54 versus 0.39). Both methods performed better on single rooted premolar teeth than on multirooted teeth. These laboratory results indicate that differential reflectometry allows more accurate and reproducible detection of subgingival calculus than conventional probing, and supports its use for supplementing traditional periodontal examination methods in dental practice.

  1. III Workshop on Microwave Reflectometry for Fusion Plasma Diagnostics

    International Nuclear Information System (INIS)

    Sanchez, J.; Luna, E. de la.

    1997-11-01

    Microwave reflectometry is based on the analysis of the properties (phase delay, time delay, amplitude) of a millimeter wave beam which is launched and reflected at the plasma critical layer. Operation with a fixed frequency beam can be used to analyze the electron density fluctuations in the reflecting region. If several frequencies are launched, information about the density profile can be obtained. In these proceedings, a collection of papers is presented on the issues of density fluctuation studies and profile analysis as well as a special contribution about the development of reflectometry for the ITER project. (Author) 145 refs

  2. III Workshop on Microwave Reflectometry for Fusion Plasma Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, J; Luna, E de la

    1997-11-01

    Microwave reflectometry is based on the analysis of the properties (phase delay, time delay, amplitude) of a millimeter wave beam which is launched and reflected at the plasma critical layer. Operation with a fixed frequency beam can be used to analyze the electron density fluctuations in the reflecting region. If several frequencies are launched, information about the density profile can be obtained. In these proceedings, a collection of papers is presented on the issues of density fluctuation studies and profile analysis as well as a special contribution about the development of reflectometry for the ITER project. (Author) 145 refs.

  3. Polarized neutron reflectometry on thin magnetic films

    International Nuclear Information System (INIS)

    Van Der Graaf, A.

    1997-01-01

    In order to be sensitive to magnetic scattering with X-rays very high intensities have to be used. This makes it necessary to use large installations like synchroton radiation sources providing high X-ray intensities. Polarized neutron experiments can be performed even at small reactors like the 2 MW reactor of IRI. In general polarized neutron reflectometry (PNR) is used to determine magnetization depth profiles, whereas X-ray reflectometry is used to study magnetic surfaces. Chapters 2 through 4 of this thesis are general chapters. The theory of neutron reflectometry is described in chapter 2, followed by a description of the ROG instrument (a time-of-flight reflectometer) in chapter 3, and chapter 4 deals with the data analysis. In the subsequent chapters PNR-experiments on different kinds of samples are discussed. First, experiments on a Co-Cr layer, a candidate to be used as perpendicular recording medium, are described in chapter 5. In chapter 6 it is shown that PNR can give information on metal evaporated videotapes, as presently available in every ordinary shop selling videotapes, and also on the writing process in these tapes. Chapter 7 deals with experiments on Fe/Si multilayers. The initial interest in such multilayers was to obtain information on magnetic coupling through a semiconductor. In chapter 8 PNR-experiments on spin-valve systems, that probably will be used as magnetic read head material, are described. Finally, chapter 9 gives some conclusions and recommendations for the future. 78 refs

  4. Hydrogen Absorption in Metal Thin Films and Heterostructures Investigated in Situ with Neutron and X-ray Scattering

    Directory of Open Access Journals (Sweden)

    Sara J. Callori

    2016-05-01

    Full Text Available Due to hydrogen possessing a relatively large neutron scattering length, hydrogen absorption and desorption behaviors in metal thin films can straightforwardly be investigated by neutron reflectometry. However, to further elucidate the chemical structure of the hydrogen absorbing materials, complementary techniques such as high resolution X-ray reflectometry and diffraction remain important too. Examples of work on such systems include Nb- and Pd-based multilayers, where Nb and Pd both have strong affinity to hydrogen. W/Nb and Fe/Nb multilayers were measured in situ with unpolarized and polarized neutron reflectometry under hydrogen gas charging conditions. The gas-pressure/hydrogen-concentration dependence, the hydrogen-induced macroscopic film swelling as well as the increase in crystal lattice plane distances of the films were determined. Ferromagnetic-Co/Pd multilayers were studied with polarized neutron reflectometry and in situ ferromagnetic resonance measurements to understand the effect of hydrogen absorption on the magnetic properties of the system. This electronic effect enables a novel approach for hydrogen sensing using a magnetic readout scheme.

  5. CORRTEX: a compact and versatile system for time domain reflectometry

    International Nuclear Information System (INIS)

    Deupree, R.G.; Eilers, D.D.; McKown, T.O.; Storey, W.H.

    1981-01-01

    The CORRTEX (COntinuous Reflectometry for Radius versus Time EXperiments) system was designed to be an adaptable and versatile unit for performing time domain reflectometry (TDR). The system consists of a coaxial cable, a digital TDR, which uses a Motorola 6800 microprocessor, a power source or battery pack, and an output terminal or recording driver. Desirable criteria for the system are discussed as well as the operation of the CORRTEX system. The types of present applications of the CORRTEX system are summarized and data presented

  6. Understanding dynamic changes in live cell adhesion with neutron reflectometry

    Science.gov (United States)

    Junghans, Ann

    Understanding the structure and functionality of biological systems on a nanometer-resolution and short temporal scales is important for solving complex biological problems, developing innovative treatment, and advancing the design of highly functionalized biomimetic materials. For example, adhesion of cells to an underlying substrate plays a crucial role in physiology and disease development, and has been investigated with great interest for several decades. In the talk, we would like to highlight recent advances in utilizing neutron scattering to study bio-related structures in dynamic conditions (e . g . under the shear flow) including in-situ investigations of the interfacial properties of living cells. The strength of neutron reflectometry is its non-pertubative nature, the ability to probe buried interfaces with nanometer resolution and its sensitivity to light elements like hydrogen and carbon. That allows us to study details of cell - substrate interfaces that are not accessible with any other standard techniques. We studied the adhesion of human brain tumor cells (U251) to quartz substrates and their responses to the external mechanical forces. Such cells are isolated within the central nervous system which makes them difficult to reach with conventional therapies and therefore making them highly invasive. Our results reveal changes in the thickness and composition of the adhesion layer (a layer between the cell lipid membrane and the quartz substrate), largely composed of hyaluronic acid and associated proteoglycans, when the cells were subjected to shear stress. Further studies will allow us to determine more conditions triggering changes in the composition of the bio-material in the adhesion layer. This, in turn, can help to identify changes that correlate with tumor invasiveness, which can have significant medical impact for the development of targeted anti-invasive therapies.

  7. Polarized Neutron Reflectometry of Nickel Corrosion Inhibitors.

    Science.gov (United States)

    Wood, Mary H; Welbourn, Rebecca J L; Zarbakhsh, Ali; Gutfreund, Philipp; Clarke, Stuart M

    2015-06-30

    Polarized neutron reflectometry has been used to investigate the detailed adsorption behavior and corrosion inhibition mechanism of two surfactants on a nickel surface under acidic conditions. Both the corrosion of the nickel surface and the structure of the adsorbed surfactant layer could be monitored in situ by the use of different solvent contrasts. Layer thicknesses and roughnesses were evaluated over a range of pH values, showing distinctly the superior corrosion inhibition of one negatively charged surfactant (sodium dodecyl sulfate) compared to a positively charged example (dodecyl trimethylammonium bromide) due to its stronger binding interaction with the surface. It was found that adequate corrosion inhibition occurs at significantly less than full surface coverage.

  8. X-Ray Reflectometry of DMPS Monolayers on a Water Substrate

    Science.gov (United States)

    Tikhonov, A. M.; Asadchikov, V. E.; Volkov, Yu. O.; Roshchin, B. S.; Ermakov, Yu. A.

    2017-12-01

    The molecular structure of dimyristoyl phosphatidylserine (DMPS) monolayers on a water substrate in different phase states has been investigated by X-ray reflectometry with a photon energy of 8 keV. According to the experimental data, the transition from a two-dimensional expanded liquid state to a solid gel state (liquid crystal) accompanied by the ordering of the hydrocarbon tails C14H27 of the DMPS molecule occurs in the monolayer as the surface pressure rises. The monolayer thickness is 20 ± 3 and 28 ± 2 Å in the liquid and solid phases, respectively, with the deflection angle of the molecular tail axis from the normal to the surface in the gel phase being 26° ± 8°. At least a twofold decrease in the degree of hydration of the polar lipid groups also occurs under two-dimensional monolayer compression. The reflectometry data have been analyzed using two approaches: under the assumption about the presence of two layers with different electron densities in the monolayer and without any assumptions about the transverse surface structure. Both approaches demonstrate satisfactory agreement between themselves in describing the experimental results.

  9. Flextube reflectometry and pressure recordings for level diagnosis in obstructive sleep apnoea

    DEFF Research Database (Denmark)

    Faber, C E; Grymer, L; Hilberg, O

    2002-01-01

    The objective of this study was to compare sound reflections in a flexible tube (flextube reflectometry) with pressure-catheter recordings (ApneaGraph) for identifying the predominant obstructive level of the upper airway during sleep. Seventeen males with suspected obstructive sleep apnoea...... results were found in flextube reflectometry studies and pressure-recordings performed on different nights regarding the level distribution of obstructions during sleep. Possible explanations of this discrepancy are discussed....

  10. Detection of 2-mm-long strained section in silica fiber using slope-assisted Brillouin optical correlation-domain reflectometry

    Science.gov (United States)

    Lee, Heeyoung; Mizuno, Yosuke; Nakamura, Kentaro

    2018-02-01

    Slope-assisted Brillouin optical correlation-domain reflectometry is a single-end-access distributed Brillouin sensing technique with high spatial resolution and high-speed operation. We have recently discovered its unique feature, that is, strained or heated sections even shorter than nominal resolution can be detected, but its detailed characterization has not been carried out. Here, after experimentally characterizing this “beyond-nominal-resolution” effect, we show its usefulness by demonstrating the detection of a 2-mm-long strained section along a silica fiber. We also demonstrate the detection of a 5-mm-long heated section along a polymer optical fiber. The lengths of these detected sections are smaller than those of the other demonstrations reported so far.

  11. Polarized neutron reflectometry in high magnetic fields

    International Nuclear Information System (INIS)

    Fritzsche, H.

    2005-01-01

    A simple method is described to maintain the polarization of a neutron beam on its way through the large magnetic stray fields produced by a vertical field of a cryomagnet with a split-coil geometry. The two key issues are the proper shielding of the neutron spin flippers and an additional radial field component in order to guide the neutron spin through the region of the null point (i.e., point of reversal for the vertical field component). Calculations of the neutron's spin rotation as well as polarized neutron reflectometry experiments on an ErFe 2 /DyFe 2 multilayer show the perfect performance of the used setup. The recently commissioned cryomagnet M5 with a maximum vertical field of up to 7.2 T in asymmetric mode for polarized neutrons and 9 T in symmetric mode for unpolarized neutrons was used on the C5 spectrometer in reflectometry mode, at the NRU reactor in Chalk River, Canada

  12. Advanced density profile reflectometry; the state-of-the-art and measurement prospects for ITER

    Science.gov (United States)

    Doyle, E. J.

    2006-10-01

    Dramatic progress in millimeter-wave technology has allowed the realization of a key goal for ITER diagnostics, the routine measurement of the plasma density profile from millimeter-wave radar (reflectometry) measurements. In reflectometry, the measured round-trip group delay of a probe beam reflected from a plasma cutoff is used to infer the density distribution in the plasma. Reflectometer systems implemented by UCLA on a number of devices employ frequency-modulated continuous-wave (FM-CW), ultrawide-bandwidth, high-resolution radar systems. One such system on DIII-D has routinely demonstrated measurements of the density profile over a range of electron density of 0-6.4x10^19,m-3, with ˜25 μs time and ˜4 mm radial resolution, meeting key ITER requirements. This progress in performance was made possible by multiple advances in the areas of millimeter-wave technology, novel measurement techniques, and improved understanding, including: (i) fast sweep, solid-state, wide bandwidth sources and power amplifiers, (ii) dual polarization measurements to expand the density range, (iii) adaptive radar-based data analysis with parallel processing on a Unix cluster, (iv) high memory depth data acquisition, and (v) advances in full wave code modeling. The benefits of advanced system performance will be illustrated using measurements from a wide range of phenomena, including ELM and fast-ion driven mode dynamics, L-H transition studies and plasma-wall interaction. The measurement capabilities demonstrated by these systems provide a design basis for the development of the main ITER profile reflectometer system. This talk will explore the extent to which these reflectometer system designs, results and experience can be translated to ITER, and will identify what new studies and experimental tests are essential.

  13. Investigating the effects of smoothness of interfaces on stability of probing nano-scale thin films by neutron reflectometry

    Directory of Open Access Journals (Sweden)

    S.S. Jahromi

    2012-03-01

    Full Text Available Most of the reflectometry methods which are used for determining the phase of complex reflection coefficient such as Reference Method and Variation of Surroundings medium are based on solving the Schrödinger equation using a discontinuous and step-like scattering optical potential. However, during the deposition process for making a real sample the two adjacent layers are mixed together and the interface would not be discontinuous and sharp. The smearing of adjacent layers at the interface (smoothness of interface, would affect the the reflectivity, phase of reflection coefficient and reconstruction of the scattering length density (SLD of the sample. In this paper, we have investigated the stability of Reference Method in the presence of smooth interfaces. The smoothness of interfaces is considered by using a continuous function scattering potential. We have also proposed a method to achieve the most reliable output result while retrieving the SLD of the sample.

  14. Recent Developments in Synchrotron Moessbauer Reflectometry

    Energy Technology Data Exchange (ETDEWEB)

    Deak, L.; Bottyan, L.; Major, M.; Nagy, D. L. [KFKI Research Institute for Particle and Nuclear Physics (Hungary); Spiering, H. [Johannes Gutenberg Universitaet, Mainz, Institute fuer Anorganische und Analytische Chemie (Germany); Szilagyi, E.; Tancziko, F. [KFKI Research Institute for Particle and Nuclear Physics (Hungary)

    2002-12-15

    Synchrotron Moessbauer Reflectometry (SMR), the grazing incidence nuclear resonant scattering of synchrotron radiation, can be applied to perform depth-selective phase analysis and to determine the isotopic and magnetic structure of thin films and multilayers. Principles and methodological aspects of SMR are briefly reviewed. Off-specular SMR provides information from the lateral structure of multilayers. In anti-ferromagneticly coupled systems the size of magnetic domains can be measured.

  15. Case study on the dynamics of ultrafast laser heating and ablation of gold thin films by ultrafast pump-probe reflectometry and ellipsometry

    Science.gov (United States)

    Pflug, T.; Wang, J.; Olbrich, M.; Frank, M.; Horn, A.

    2018-02-01

    To increase the comprehension of ultrafast laser ablation, the ablation process has to be portrayed with sufficient temporal resolution. For example, the temporal modification of the complex refractive index {\\tilde{n}} and the relative reflectance of a sample material after irradiation with ultrafast single-pulsed laser radiation can be measured with a pump-probe setup. This work describes the construction and validation of a pump-probe setup enabling spatially, temporally, and spectroscopically resolved Brewster angle microscopy, reflectometry, ellipsometry, and shadow photography. First pump-probe reflectometry and ellipsometry measurements are performed on gold at λ _{probe}= 440 nm and three fluences of the single-pulsed pump radiation at λ _{pump}= 800 nm generating no, gentle, and strong ablation. The relative reflectance overall increases at no and gentle ablation. At strong ablation, the relative reflectance locally decreases, presumable caused by emitted thermal electrons, ballistic electrons, and ablating material. The refractive index n is slightly decreasing after excitation, while the extinction coefficient k is increasing.

  16. Application of imaging spectroscopic reflectometry for characterization of gold reduction from organometallic compound by means of plasma jet technology

    Energy Technology Data Exchange (ETDEWEB)

    Vodák, Jiří, E-mail: jiri.vodak@yahoo.com [Institute of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2, 616 69 Brno (Czech Republic); Nečas, David [RG Plasma Technologies, CEITEC Masaryk University, Kamenice 5, 625 00 Brno (Czech Republic); Pavliňák, David [Department of Physical Electronics, Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); Macak, Jan M [Center of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Nám. Čs. Legií 565, 530 02 Pardubice (Czech Republic); Řičica, Tomáš; Jambor, Roman [Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice (Czech Republic); Ohlídal, Miloslav [Institute of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2, 616 69 Brno (Czech Republic); Institute of Physics, Faculty of Mining and Geology, VŠB – Technical University of Ostrava (Czech Republic)

    2017-02-28

    Highlights: • Metallic gold is reduced from an organometallic compound layer using a plasma jet. • Imaging spectroscopic reflectometry is used to locate areas with metallic gold. • The results are completed with XPS and optical microscopy observations. - Abstract: This work presents a new application of imaging spectroscopic reflectometry to determine a distribution of metallic gold in a layer of an organogold precursor which was treated by a plasma jet. Gold layers were prepared by spin coating from a solution of the precursor containing a small amount of polyvinylpyrrolidone on a microscopy glass, then they were vacuum dried. A difference between reflectivity of metallic gold and the precursor was utilized by imaging spectroscopic reflectometry to create a map of metallic gold distribution using a newly developed model of the studied sample. The basic principle of the imaging spectroscopic reflectometry is also shown together with the data acquisition principles. XPS measurements and microscopy observations were made to complete the imaging spectroscopic reflectometry results. It is proved that the imaging spectroscopic reflectometry represents a new method for quantitative evaluation of local reduction of metallic components from metaloorganic compounds.

  17. Analytical investigation of response of birefringent fiber Bragg grating sensors in distributed monitoring system based on optical frequency domain reflectometry

    Science.gov (United States)

    Wada, D.; Murayama, H.

    2014-01-01

    When Fiber Bragg gratings (FBGs) are used as strain sensors, both longitudinal and lateral strain can be applied uniformly or non-uniformly over the length of the FBGs. In order for the demodulation of such FBG signal, this paper investigates the response of birefringent FBGs which are monitored by distributed measurement system based on optical frequency domain reflectometry. A numerical model of the distributed measurement system is built based on piece-wise uniform approach, which considers polarization states of propagating lights. The numerical model simulates analytical response of birefringent FBGs especially when birefringence induces power fluctuations in the distributed spectra, which can be noise or new opportunity for sensitive monitoring of birefringence. Simulation results show the relationships between the power fluctuations and the polarization states of the propagating lights. Consequently, appropriate methods of polarization control for sensitive distributed birefringent FBG monitoring are discussed.

  18. Flextube reflectometry for level diagnosis in patients with obstructive sleep apnoea and snoring

    DEFF Research Database (Denmark)

    Faber, C E; Hilberg, O; Grymer, L

    2002-01-01

    The aim of this study was to use sound reflections in a flexible tube (flextube reflectometry) for identifying the predominant obstructive level of the upper airway in a series of patients referred to a sleep clinic. We also wished to study the relationship between the number of flextube narrowings...... per hour recording and the RDI (respiratory disturbance index = apnoeas and hypopneas per hour recording) by ResMed AutoSet (AS), which is a device based on nasal pressure variations. We performed sleep studies on 54 patients referred for snoring or OSA; 1) at home with AS; 2) in hospital using...... flextube reflectometry and AS simultaneously. The predominant obstructive level of the upper airway was retropalatal in 15 of the patients and retrolingual in 25 of the patients determined by flextube reflectometry. In 14 there was no predominant level of narrowing. We found a statistically significant...

  19. Urethral pressure reflectometry in women with pelvic organ prolapse

    DEFF Research Database (Denmark)

    Khayyami, Yasmine; Lose, Gunnar; Klarskov, Niels

    2017-01-01

    at an abdominal pressure of 50 cmH2O (PO-Abd 50). UPR can help identify women with POP at risk of postoperative de novo SUI. The aim of this study was to investigate the reproducibility of UPR in women with POP. METHODS: Women with anterior or posterior vaginal wall prolapse were recruited for this prospective......INTRODUCTION AND HYPOTHESIS: The mechanism of continence in women with pelvic organ prolapse (POP) before and after surgery remains unknown. Urethral pressure reflectometry (UPR) separates women with stress urinary incontinence (SUI) from continent women by measuring urethral opening pressure...... studies to help reveal urodynamic features predictive of postoperative de novo SUI in women with POP....

  20. Differential reflectometry of thin film metal oxides on copper, tungsten, molybdenum and chromium

    International Nuclear Information System (INIS)

    Urban, F.K. III; Hummel, R.E.; Verink, E.D. Jr.

    1982-01-01

    A differential reflectometry study was undertaken to investigate the characteristics of thin oxide films on metal substrates. The oxides were produced by heating pure metals of copper, tungsten, molybdenum and chromium in dry oxygen. A new 'halfpolishing' technique was applied to obtain specimens with a step in oxide thickness in order to make them suitable for differential reflectometry. It was found that oxides formed this way yielded the same differential reflectograms as by electrochemical oxidation. A mathematical model involving the interaction of light with a thin corrosion product on metal substrates was applied to generate computer calculated differential reflectograms utilizing various optical constants and thicknesses of the assumed film. Three different thickness ranges have been identified. (a) For large film thicknesses, the differential reflectograms are distinguished by a sequence of interference peaks. (b) If the product of thickness and refraction index of the films is smaller than about 40 nm, no interference peaks are present. Any experimentally observed peaks in differential reflectograms of these films are caused entirely by electron interband transitions. (c) In an intermediate thickness range, superposition of interference and interband peaks are observed. (author)

  1. GEROS-ISS: Ocean Remote Sensing with GNSS Reflectometry from the International Space Station

    DEFF Research Database (Denmark)

    Wickert, Jens; Andersen, Ole Baltazar; Camps, Adriano

    on exploiting reflected signals of opportunity from Global Navigation Satellite Systems (GNSS) at L-band to measure key parameters of ocean surfaces. GEROS will utilize the U.S. American GPS (Global Positioning System) and pioneer the exploitation of signals from Galileo and possibly other GNSS systems (GLONASS......, QZSS, BeiDou), for reflectometry and occultation, thereby improving the accuracy as well as the spatio-temporal resolution of the derived geophysical properties. The primary mission objectives of GEROS are: (1) to measure the altimetric sea surface height of the ocean using reflected GNSS signals...... the oceanographic significance of the expected measurements and to demonstrate the usefulness of the GEROS concept. The presentation will give an overview on the current status of the GEROS experiment, review the science activities within the international GARCA study and related ESA-supported science activities....

  2. High spatial resolution distributed fiber system for multi-parameter sensing based on modulated pulses.

    Science.gov (United States)

    Zhang, Jingdong; Zhu, Tao; Zhou, Huan; Huang, Shihong; Liu, Min; Huang, Wei

    2016-11-28

    We demonstrate a cost-effective distributed fiber sensing system for the multi-parameter detection of the vibration, the temperature, and the strain by integrating phase-sensitive optical time domain reflectometry (φ-OTDR) and Brillouin optical time domain reflectometry (B-OTDR). Taking advantage of the fast changing property of the vibration and the static properties of the temperature and the strain, both the width and intensity of the laser pulses are modulated and injected into the single-mode sensing fiber proportionally, so that three concerned parameters can be extracted simultaneously by only one photo-detector and one data acquisition channel. A data processing method based on Gaussian window short time Fourier transform (G-STFT) is capable of achieving high spatial resolution in B-OTDR. The experimental results show that up to 4.8kHz vibration sensing with 3m spatial resolution at 10km standard single-mode fiber can be realized, as well as the distributed temperature and stress profiles along the same fiber with 80cm spatial resolution.

  3. Crystalisation of aqueous ferrofluids at the free liquid interface investigated by specular and off-specular x-ray reflectometry

    Science.gov (United States)

    Gapon, I. V.; Petrenko, V. I.; Soltwedel, O.; Khaydukov, Yu N.; Kubovcikova, M.; Kopcansky, P.; Bulavin, L. A.; Avdeev, M. V.

    2018-03-01

    Structural organization of nanoparticles from aqueous ferrofluids on free liquid surface was studied by X-ray reflectometry. The observed layered structure at interface is associated with the evaporation of the solvent. By orienting an external magnetic during evaporation of the aqueos ferrofluids their structural organization can be manipulated. For a magnetic field applied perpendicular to the surface a more pronounced ordering along the surface normal is observed as in the case of a parallel field. Independent on the orientation of the magantic field a ∼ 20 μm thick surface layer of depleted nanoparticle concentration is found at the interface.

  4. Estimation of sea level variations with GPS/GLONASS-reflectometry technique

    Science.gov (United States)

    Padokhin, A. M.; Kurbatov, G. A.; Andreeva, E. S.; Nesterov, I. A.; Nazarenko, M. O.; Berbeneva, N. A.; Karlysheva, A. V.

    2017-11-01

    In the present paper we study GNSS - reflectometry methods for estimation of sea level variations using a single GNSSreceiver, which are based on the multipath propagation effects caused by the reflection of navigational signals from the sea surface. Such multipath propagation results in the appearance of the interference pattern in the Signal-to-Noise Ratio (SNR) of GNSS signals at small satellite elevation angles, which parameters are determined by the wavelength of the navigational signal and height of the antenna phase center above the reflecting sea surface. In current work we used GPS and GLONASS signals and measurements at two working frequencies of both systems to study sea level variations which almost doubles the amount of observations compared to GPS-only tide gauge. For UNAVCO sc02 station and collocated Friday Harbor NOAA tide gauge we show good agreement between GNSS-reflectometry and traditional mareograph sea level data.

  5. Microwave Imaging Reflectometry for the Measurement of Turbulent Fluctuations in Tokamaks

    International Nuclear Information System (INIS)

    Mazzucato, E.

    2004-01-01

    This article describes a numerical study of microwave reflectometry for the measurement of turbulent fluctuations in tokamak-like plasmas with a cylindrical geometry. Similarly to what was found previously in plane-stratified plasmas, the results indicate that the characteristics of density fluctuations cannot be uniquely determined from the reflected waves if the latter are allowed to propagate freely to the point of detection, as in standard reflectometry. Again, we find that if the amplitude of fluctuations is below a threshold that is set by the spectrum of poloidal wave numbers, the local characteristics of density fluctuations can be obtained from the phase of reflected waves when these are collected with a wide aperture antenna, and an image of the cutoff is formed onto an array of phase-sensitive detectors

  6. 1 μs broadband frequency sweeping reflectometry for plasma density and fluctuation profile measurements

    Science.gov (United States)

    Clairet, F.; Bottereau, C.; Medvedeva, A.; Molina, D.; Conway, G. D.; Silva, A.; Stroth, U.; ASDEX Upgrade Team; Tore Supra Team; Eurofusion Mst1 Team

    2017-11-01

    Frequency swept reflectometry has reached the symbolic value of 1 μs sweeping time; this performance has been made possible, thanks to an improved control of the ramp voltage driving the frequency source. In parallel, the memory depth of the acquisition system has been upgraded and can provide up to 200 000 signals during a plasma discharge. Additional improvements regarding the trigger delay determination of the acquisition and the voltage ramp linearity required by this ultra-fast technique have been set. While this diagnostic is traditionally dedicated to the plasma electron density profile measurement, such a fast sweeping rate can provide the study of fast plasma events and turbulence with unprecedented time and radial resolution from the edge to the core. Experimental results obtained on ASDEX Upgrade plasmas are presented to demonstrate the performances of the diagnostic.

  7. Application of time–frequency wavelet analysis in the reflectometry of thin films

    Energy Technology Data Exchange (ETDEWEB)

    Astaf’ev, S. B., E-mail: bard@crys.ras.ru [Russian Academy of Sciences, Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics” (Russian Federation); Shchedrin, B. M. [Moscow State University, Faculty of Computational Mathematics and Cybernetics (Russian Federation); Yanusova, L. G. [Russian Academy of Sciences, Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics” (Russian Federation)

    2017-03-15

    The application of time–frequency wavelet analysis for solving the reflectometry inverse problem is considered. It is shown that a simultaneous transform of specular intensity curve, depending on the grazing angle and spatial frequency, allows one to determine not only the thickness but also the alteration order of individual regions (layers) with characteristic behavior of electron density. This information makes it possible to reconstruct the electron density profile in the film cross section as a whole (i.e., to solve the inverse reflectometry problem). The application of the time–frequency transform is illustrated by examples of reconstructing (based on X-ray reflectivity data) the layer alternation order in models of two-layer films with inverted arrangement of layers and a four-layer film on a solid substrate.

  8. Reflectometry and transport in thermonuclear plasmas in the Joint European Torus

    International Nuclear Information System (INIS)

    Sips, A.C.C.

    1991-01-01

    The subjects of this thesis are the study of microwave reflectometry as a method to measure electron density profiles, and the study of particle and energy transport in thermonuclear plasmas. In the transport studies data of a 12-channel reflectometer system are used to analyze the propagation of electron density perturbations in the plasma. The measurements described in this thesis are performed in the plasmas in the Joint European Torus (JET). The main points of study described are based on microwave reflectometry, the principles of which are given. Two modes of operation of a reflectometer are described. Firstly, electro-magnetic waves with constant frequencies may be launched into the plasma to measure variations in the electron density profile. Secondly, the absolute density profile can be measured with a reflectometer, when the source frequencies are swept. (author). 56 refs.; 41 figs.; 5 tabs

  9. Dental optical coherence domain reflectometry explorer

    Energy Technology Data Exchange (ETDEWEB)

    Everett, Matthew J. (Livermore, CA); Colston, Jr., Billy W. (Livermore, CA); Sathyam, Ujwal S. (Livermore, CA); Da Silva, Luiz B. (Pleasanton, CA)

    2001-01-01

    A hand-held, fiber optic based dental device with optical coherence domain reflectometry (OCDR) sensing capabilities provides a profile of optical scattering as a function of depth in the tissue at the point where the tip of the dental explorer touches the tissue. This system provides information on the internal structure of the dental tissue, which is then used to detect caries and periodontal disease. A series of profiles of optical scattering or tissue microstructure are generated by moving the explorer across the tooth or other tissue. The profiles are combined to form a cross-sectional, or optical coherence tomography (OCT), image.

  10. A faster urethral pressure reflectometry technique for evaluating the squeezing function

    DEFF Research Database (Denmark)

    Klarskov, Niels; Saaby, Marie-Louise; Lose, Gunnar

    2013-01-01

    Abstract Objective. Urethral pressure reflectometry (UPR) has shown to be superior in evaluating the squeeze function compared to urethral pressure profilometry. The conventional UPR measurement (step method) required up to 15 squeezes to provide one measure of the squeezing opening pressure...

  11. Studies of electrochemical interfaces by TOF neutron reflectometry at the IBR-2 reactor

    Science.gov (United States)

    Petrenko, V. I.; Gapon, I. V.; Rulev, A. A.; Ushakova, E. E.; Kataev, E. Yu; Yashina, L. V.; Itkis, D. M.; Avdeev, M. V.

    2018-03-01

    The operation performance of electrochemical energy conversion and storage systems such as supercapacitors and batteries depends on the processes occurring at the electrochemical interfaces, where charge separation and chemical reactions occur. Here, we report about the tests of the neutron reflectometry cells specially designed for operando studies of structural changes at the electrochemical interfaces between solid electrodes and liquid electrolytes. The cells are compatible with anhydrous electrolytes with organic solvents, which are employed today in all lithium ion batteries and most supercapacitors. The sensitivity of neutron reflectometry applied at the time-of-flight (TOF) reflectometer at the pulsed reactor IBR-2 is discussed regarding the effect of solid electrolyte interphase (SEI) formation on metal electrode surface.

  12. Fused oblique incidence reflectometry and confocal fluorescence microscopy

    Science.gov (United States)

    Risi, Matthew D.; Rouse, Andrew R.; Gmitro, Arthur F.

    2011-03-01

    Confocal microendoscopy provides real-time high resolution cellular level images via a minimally invasive procedure, but relies on exogenous fluorophores, has a relatively limited penetration depth (100 μm) and field of view (700 μm), and produces a high rate of detailed information to the user. A new catheter based multi-modal system has been designed that combines confocal imaging and oblique incidence reflectometry (OIR), which is a non-invasive method capable of rapidly extracting tissue absorption, μa, and reduced scattering, μ's, spectra from tissue. The system builds on previous developments of a custom slit-scan multi-spectral confocal microendoscope and is designed to rapidly switch between diffuse spectroscopy and confocal fluorescence imaging modes of operation. An experimental proof-of-principle catheter has been developed that consists of a fiber bundle for traditional confocal fluorescence imaging and a single OIR source fiber which is manually redirected at +/- 26 degrees. Diffusely scattered light from each orientation of the source fiber is collected via the fiber bundle, with a frame of data representing spectra collected at a range of distances from the OIR source point. Initial results with intralipid phantoms show good agreement to published data over the 550-650 nm spectral range. We successfully imaged and measured the optical properties of rodent cardiac muscle.

  13. Utilizing GNSS Reflectometry to Assess Surface Inundation Dynamics in Tropical Wetlands

    Science.gov (United States)

    Jensen, K.; McDonald, K. C.; Podest, E.; Chew, C. C.

    2017-12-01

    Tropical wetlands play a significant role in global atmospheric methane and terrestrial water storage. Despite the growing number of remote sensing products from satellite sensors, both spatial distribution and temporal variability of wetlands remain highly uncertain. An emerging innovative approach to mapping wetlands is offered by GNSS reflectometry (GNSS-R), a bistatic radar concept that takes advantage of GNSS transmitting satellites to yield observations with global coverage and rapid revisit time. This technology offers the potential to capture dynamic inundation changes in wetlands at higher temporal fidelity and sensitivity under the canopy than presently possible. We present an integrative analysis of radiometric modeling, ground measurements, and several microwave remote sensing datasets traditionally used for wetland observations. From a theoretical standpoint, GNSS-R sensitivities for vegetation and wetlands are investigated with a bistatic radar model in order to understand the interactions of the signal with various land surface components. GNSS reflections from the TechDemoSat-1 (TDS-1), Soil Moisture Active Passive (SMAP), and Cyclone GNSS (CYGNSS) missions are tested experimentally with contemporaneous (1) field measurements collected from the Pacaya Samiria National Reserve in the Peruvian Amazon, (2) imaging radar from Sentinel-1 and PALSAR-2 observed over a variety of tropical wetland systems, and (3) pan-tropical coarse-resolution (25km) microwave datasets (Surface Water Microwave Product Series). We find that GNSS-R data provide the potential to extend capabilities of current remote sensing techniques to characterize surface inundation extent, and we explore how to maximize synergism between different satellite sensors to produce an enhanced wetland monitoring product.

  14. Laser reflectometry of submegahertz liquid meniscus ringing.

    Science.gov (United States)

    Farahi, R H; Passian, A; Jones, Y K; Tetard, L; Lereu, A L; Thundat, T G

    2009-10-15

    Optical techniques that permit nondestructive probing of interfacial dynamics of various media are of key importance in numerous applications such as ellipsometry, mirage effect, and all-optical switching. Characterization of the various phases of microjet droplet formation yields important information for volume control, uniformity, velocity, and rate. The ringing of the meniscus and the associated relaxation time that occurs after droplet breakoff affect subsequent drop formation and is an indicator of the physical properties of the fluid. Using laser reflectometry, we present an analysis of the meniscus oscillations in an orifice of a piezoelectric microjet.

  15. A new approach based on transfer matrix formalism to characterize porous silicon layers by reflectometry

    Energy Technology Data Exchange (ETDEWEB)

    Pirasteh, P. [RESO Laboratory (EA 3380), ENIB, CS 73862, 29238 Brest Cedex 3 (France); Optronics Laboratory, ENSSAT, UMR 6082, BP 80518, 6 rue de Kerampont, 22305 Lannion Cedex (France); Boucher, Y.G. [RESO Laboratory (EA 3380), ENIB, CS 73862, 29238 Brest Cedex 3 (France); Charrier, J.; Dumeige, Y. [Optronics Laboratory, ENSSAT, UMR 6082, BP 80518, 6 rue de Kerampont, 22305 Lannion Cedex (France)

    2007-07-01

    We use reflectometry coupled to transfer matrix formalism in order to investigate the comparative effect of surface (localized) and volume (distributed) losses inside a porous silicon monolayer. Both are modeled as fictive absorption. Surface losses are described as a Dirac-like singularity of permittivity localized at an interface whereas volume losses are described trough the imaginary part of the porous silicon complex permittivity. A good agreement with experimental data is determined by this formalism. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. The application of neutron reflectometry and atomic force microscopy in the study of corrosion inhibitor films

    International Nuclear Information System (INIS)

    John, Douglas; Blom, Annabelle; Bailey, Stuart; Nelson, Andrew; Schulz, Jamie; De Marco, Roland; Kinsella, Brian

    2006-01-01

    Corrosion inhibitor molecules function by adsorbing to a steel surface and thus prevent oxidation of the metal. The interfacial structures formed by a range of corrosion inhibitor molecules have been investigated by in situ measurements based on atomic force microscopy and neutron reflectometry. Inhibitors investigated include molecules cetyl pyridinium chloride (CPC), dodecyl pyridinium chloride (DPC), 1-hydroxyethyl-2-oleic imidazoline (OHEI) and cetyl dimethyl benzyl ammonium chloride (CDMBAC). This has shown that the inhibitor molecules adsorb onto a surface in micellar structures. Corrosion measurements confirmed that maximum inhibition efficiency coincides with the solution critical micelle concentration

  17. Fault Detection of Aircraft Cable via Spread Spectrum Time Domain Reflectometry

    Directory of Open Access Journals (Sweden)

    Xudong SHI

    2014-03-01

    Full Text Available As the airplane cable fault detection based on TDR (time domain reflectometry is affected easily by various noise signals, which makes the reflected signal attenuate and distort heavily, failing to locate the fault. In order to solve these problems, a method of spread spectrum time domain reflectometry (SSTDR is introduced in this paper, taking the advantage of the sharp peak of correlation function. The test signal is generated from ML sequence (MLS modulated by sine wave in the same frequency. Theoretically, the test signal has the very high immunity of noise, which can be applied with excellent precision to fault location on the aircraft cable. In this paper, the method of SSTDR was normally simulated in MATLAB. Then, an experimental setup, based on LabVIEW, was organized to detect and locate the fault on the aircraft cable. It has been demonstrated that SSTDR has the high immunity of noise, reducing some detection errors effectively.

  18. Reflectometry for Wendelstein 7-X

    International Nuclear Information System (INIS)

    Hirsch, M.; Holzhauer, E.; Hartfuss, H.-J.

    2006-01-01

    Diagnostic equipment for the fully optimized stellarator Wendelstein 7-X involves a reflectometry system dedicated to measuring edge density profiles and characterizing density perturbations and their poloidal propagation velocity. Preparatory work such as design activities and the installation of a first antenna pair belongs to the so-called start-up diagnostics. For start-up a high-directivity broadband dual antenna arrangement is proposed where the optimization of the beam waists can be decoupled from the variable sightlines, which offers flexibility for the different modes of reflectometer operation. It is shown that for large devices such as W7-X the critical value for an optimum antenna arrangement is the aperture of the first plasma facing optical element, usually a first mirror, rather than the limitations arising from the finite plasma curvature

  19. Global mapping of stratigraphy of an old-master painting using sparsity-based terahertz reflectometry.

    Science.gov (United States)

    Dong, Junliang; Locquet, Alexandre; Melis, Marcello; Citrin, D S

    2017-11-08

    The process by which art paintings are produced typically involves the successive applications of preparatory and paint layers to a canvas or other support; however, there is an absence of nondestructive modalities to provide a global mapping of the stratigraphy, information that is crucial for evaluation of its authenticity and attribution, for insights into historical or artist-specific techniques, as well as for conservation. We demonstrate sparsity-based terahertz reflectometry can be applied to extract a detailed 3D mapping of the layer structure of the 17th century easel painting Madonna in Preghiera by the workshop of Giovanni Battista Salvi da Sassoferrato, in which the structure of the canvas support, the ground, imprimatura, underpainting, pictorial, and varnish layers are identified quantitatively. In addition, a hitherto unidentified restoration of the varnish has been found. Our approach unlocks the full promise of terahertz reflectometry to provide a global and detailed account of an easel painting's stratigraphy by exploiting the sparse deconvolution, without which terahertz reflectometry in the past has only provided a meager tool for the characterization of paintings with paint-layer thicknesses smaller than 50 μm. The proposed modality can also be employed across a broad range of applications in nondestructive testing and biomedical imaging.

  20. Combined distributed Raman and Bragg fiber temperature sensing using incoherent optical frequency domain reflectometry

    Directory of Open Access Journals (Sweden)

    M. Koeppel

    2018-02-01

    Full Text Available Optical temperature sensors offer unique features which make them indispensable for key industries such as the energy sector. However, commercially available systems are usually designed to perform either distributed or distinct hot spot temperature measurements since they are restricted to one measurement principle. We have combined two concepts, fiber Bragg grating (FBG temperature sensors and Raman-based distributed temperature sensing (DTS, to overcome these limitations. Using a technique called incoherent optical frequency domain reflectometry (IOFDR, it is possible to cascade several FBGs with the same Bragg wavelength in one fiber and simultaneously perform truly distributed Raman temperature measurements. In our lab we have achieved a standard deviation of 2.5 K or better at a spatial resolution in the order of 1 m with the Raman DTS. We have also carried out a field test in a high-voltage environment with strong magnetic fields where we performed simultaneous Raman and FBG temperature measurements using a single sensor fiber only.

  1. Optical frequency-domain reflectometry using multiple wavelength-swept elements of a DFB laser array

    Science.gov (United States)

    DiLazaro, Tom; Nehmetallah, Georges

    2017-02-01

    Coherent optical frequency-domain reflectometry (C-OFDR) is a distance measurement technique with significant sensitivity and detector bandwidth advantages over normal time-of-flight methods. Although several swept-wavelength laser sources exist, many exhibit short coherence lengths, or require precision mechanical tuning components. Semiconductor distributed feedback lasers (DFBs) are advantageous as a mid-to-long range OFDR source because they exhibit a narrow linewidth and can be rapidly tuned simply via injection current. However, the sweep range of an individual DFB is thermally limited. Here, we present a novel high-resolution OFDR system that uses a compact, monolithic 12-element DFB array to create a continuous, gap-free sweep over a wide wavelength range. Wavelength registration is provided by the incorporation of a HCN gas cell and reference interferometer. The wavelength-swept spectra of the 12 DFBs are combined in post-processing to achieve a continuous total wavelength sweep of more than 40 nm (5.4 THz) in the telecommunications C-Band range.

  2. Wavelet-transform-based time–frequency domain reflectometry for reduction of blind spot

    International Nuclear Information System (INIS)

    Lee, Sin Ho; Park, Jin Bae; Choi, Yoon Ho

    2012-01-01

    In this paper, wavelet-transform-based time–frequency domain reflectometry (WTFDR) is proposed to reduce the blind spot in reflectometry. TFDR has a blind spot problem when the time delay between the reference signal and the reflected signal is short enough compared with the time duration of the reference signal. To solve the blind spot problem, the wavelet transform (WT) is used because the WT has linearity. Using the characteristics of the WT, the overlapped reference signal at the measured signal can be separated and the blind spot is reduced by obtaining the difference of the wavelet coefficients for the reference and reflected signals. In the proposed method, the complex wavelet is utilized as a mother wavelet because the reference signal in WTFDR has a complex form. Finally, the computer simulations and the real experiments are carried out to confirm the effectiveness and accuracy of the proposed method. (paper)

  3. Poloidal rotation velocity measurement in toroidal plasmas via microwave reflectometry

    International Nuclear Information System (INIS)

    Pavlichenko, O.S.; Skibenko, A.I.; Fomin, I.P.; Pinos, I.B.; Ocheretenko, V.L.; Berezhniy, V.L.

    2001-01-01

    Results of experiment modeling backscattering of microwaves from rotating plasma layer perturbed by fluctuations are presented. It was shown that auto- and crosscorrelation of reflected power have a periodicity equal to rotation period. Such periodicity was observed by microwave reflectometry in experiments on RF plasma production on U-3M torsatron and was used for measurement of plasma poloidal rotation velocity. (author)

  4. Validation study of two-microphone acoustic reflectometry for determination of breathing tube placement in 200 adult patients.

    Science.gov (United States)

    Raphael, David T; Benbassat, Maxim; Arnaudov, Dimiter; Bohorquez, Alex; Nasseri, Bita

    2002-12-01

    Acoustic reflectometry allows the construction of a one-dimensional image of a cavity, such as the airway or the esophagus. The reflectometric area-distance profile consists of a constant cross-sectional area segment (length of endotracheal tube), followed either by a rapid increase in the area beyond the carina (tracheal intubation) or by an immediate decrease in the area (esophageal intubation). Two hundred adult patients were induced and intubated, without restrictions on anesthetic agents or airway adjunct devices. A two-microphone acoustic reflectometer was used to determine whether the breathing tube was placed in the trachea or esophagus. A blinded reflectometer operator, seated a distance away from the patient, interpreted the acoustic area-distance profile alone to decide where the tube was placed. Capnography was used as the gold standard. Of 200 tracheal intubations confirmed by capnography, the reflectometer operator correctly identified 198 (99% correct tracheal intubation identification rate). In two patients there were false-negative results, patients with a tracheal intubation were interpreted as having an esophageal intubation. A total of 14 esophageal intubations resulted, all correctly identified by reflectometry, for a 100% esophageal intubation identification rate. Acoustic reflectometry is a rapid, noninvasive method by which to determine whether breathing tube placement is correct (tracheal) or incorrect (esophageal). Reflectometry determination of tube placement may be useful in airway emergencies, particularly in cases where visualization of the glottic area is not possible and capnography may fail, as in patients with cardiac arrest.

  5. Efficient reconstruction of dispersive dielectric profiles using time domain reflectometry (TDR

    Directory of Open Access Journals (Sweden)

    P. Leidenberger

    2006-01-01

    Full Text Available We present a numerical model for time domain reflectometry (TDR signal propagation in dispersive dielectric materials. The numerical probe model is terminated with a parallel circuit, consisting of an ohmic resistor and an ideal capacitance. We derive analytical approximations for the capacitance, the inductance and the conductance of three-wire probes. We couple the time domain model with global optimization in order to reconstruct water content profiles from TDR traces. For efficiently solving the inverse problem we use genetic algorithms combined with a hierarchical parameterization. We investigate the performance of the method by reconstructing synthetically generated profiles. The algorithm is then applied to retrieve dielectric profiles from TDR traces measured in the field. We succeed in reconstructing dielectric and ohmic profiles where conventional methods, based on travel time extraction, fail.

  6. Doped organic films for OLEDs probed with neutron reflectometry

    International Nuclear Information System (INIS)

    Smith, Arthur R. G.; Lo, Shih-Chun; Gentle, Ian R.

    2009-01-01

    Full text: Conjugated organic semiconductors form an exciting class of materials that can be used in a variety of cutting edge technologies including organic light-emitting diodes, solar cells and transistors. In all these technologies the thin film morphology and interfacial interactions are key areas for their operation. In order to optimise the materials and devices it is critical to understand the structural property relationships for the organic semiconductors by relating the 'molecular' structure to the film morphology and correlating these to the photophysical and device characteristics. Organic light emitting diodes (OLEO) have gained interest for their superior performance compared to current display technologies. Optimising the active emissive layer remains a challenge which can significantly affect the final performance of the device [1]. We have investigated the layering behaviour of small molecule co-evaporated films of deuterated 4,4'-bis(9-carbazolyl)-1, 1 '-biphenyl doped with tris-phenylpyridine iridium(llI) using neutron reflectometry The behaviour of doped emissive layers is dependent on the ratio between dopant and host material. The morphology and internal structure of such films have not yet been investigated, leading to questions about the phase separation and ordering of layers within the film.

  7. Asymmetric diffusion model for oblique-incidence reflectometry

    Institute of Scientific and Technical Information of China (English)

    Yaqin Chen; Liji Cao; Liqun Sun

    2011-01-01

    A diffusion theory model induced by a line source distribution is presented for oblique-incidence reflectom-etry. By fitting to this asymmetric diffusion model, the absorption and reduced scattering coefficients μa and μ's of the turbid medium can both be determined with accuracy of 10% from the absolute profile of the diffuse reflectance in the incident plane at the negative position -1.5 transport mean free path (mfp') away from the incident point; particularly, μ's can be estimated from the data at positive positions within 0-1.0 mfp' with 10% accuracy. The method is verified by Monte Carlo simulations and experimentally tested on a phantom.%A diffusion theory model induced by a line source distribution is presented for oblique-incidence reflectometry.By fitting to this asymmetric diffusion model,the absorption and reduced scattering coefficients μa and μ's of the turbid medium can both be determined with accuracy of 10% from the absolute profile of the diffuse reflectance in the incident plane at the negative position -1.5 transport mean free path (mfp')away from the incident point;particularly,μ's can be estimated from the data at positive positions within 0-1.0 mfp' with 10% accuracy.The method is verified by Monte Carlo simulations and experimentally tested on a phantom.Knowledge about the optical properties,including the absorption coefficient (μa) and the reduced scattering coefficient (μ's =μs(1-g)),where μs is the scattering coefficient and g is the anisotropy factor of scattering,of biological tissues plays an important role for optical therapeutic and diagnostic techniques in medicine.

  8. Urethral pressure reflectometry during intra-abdominal pressure increase—an improved technique to characterize the urethral closure function in continent and stress urinary incontinent women

    DEFF Research Database (Denmark)

    Saaby, Marie-Louise; Klarskov, Niels; Lose, Gunnar

    2013-01-01

    to assess the urethral closure function by urethral pressure reflectometry (UPR) during intra-abdominal pressure-increase in SUI and continent women.......to assess the urethral closure function by urethral pressure reflectometry (UPR) during intra-abdominal pressure-increase in SUI and continent women....

  9. Determination of preferential molecular orientation in porphyrin-fullerene dyad ZnDHD6ee monolayers by the X-ray standing-wave method and X-ray reflectometry

    NARCIS (Netherlands)

    Seregin, A. Y.; D' Yakova, Y. A.; Yakunin, S. N.; Makhotkin, I. A.; Alekseev, A. S.; Klechkovskaya, V. V.; Tereschenko, E. Y.; Tkachenko, N. V.; Lemmetyinen, H.; Feigin, L. A.; Kovalchuk, M. V.

    2013-01-01

    Monolayers of porphyrin-fullerene dyad molecules with zinc atoms incorporated into the porphyrin ring (ZnDHD6ee) on the surface of aqueous subphase and on Si substrates have been investigated by the X-ray standing-wave method and X-ray reflectometry. The experiments have been performed under

  10. Electron density profile measurements by microwave reflectometry on Tore Supra

    International Nuclear Information System (INIS)

    Clairet, F.; Paume, M.; Chareau, J.M.

    1995-01-01

    A proposal is presented developing reflectometry diagnostic for electron density profile measurements as routine diagnostic without manual intervention as achieved at JET. Since density fluctuations seriously perturb the reflected signal and the measurement of the group delay, a method is described to overcome the irrelevant results with the help of an adaptive filtering technique. Accurate profiles are estimated for about 70% of the shots. (author) 3 refs.; 6 figs

  11. Reflectometry observations of density fluctuations in Wendelstein VII-AS stellarator

    International Nuclear Information System (INIS)

    Sanchez, J.; Hartfuss, H.J.; Anabitarte, E.; Navarro, A.P.

    1991-01-01

    In the almost shearless stellarator Wendelstein VII-AS strong correlation between the confinement properties and the rotational transform iota has been found. Reduced confinement was observed for the low order rational values 1/2 and 1/3. In their vicinity best confinement is observed. In general optimum confinement is obtained in the low shear configuration if the 'resonant' iota values can be excluded from the plasma column. The iota profile inside the plasma is affected by toroidal currents and beta effects. Although the global net current can be kept at zero level using a small OH induced current opposed to the gradient driven bootstrap current, the different currents flow at different radial positions affecting the iota profile. Tools for configuration control inside the plasma are besides OH current vertical fields and the currents driven by the NBI and most promising the ECH heating systems. In this context experimental information on the iota profile is highly needed. The localization of rational surfaces by reflectometry seems possible. Radially resolved density fluctuation measurements have been carried out by means of a simple microwave reflectometry system. The method is based on the reflection of microwave radiation in the millimeter range at the plasma cutoff layer. (orig./AH)

  12. Study of plasma turbulence by ultrafast sweeping reflectometry on the Tore Supra Tokamak

    International Nuclear Information System (INIS)

    Hornung, Gregoire

    2013-01-01

    The performance of a fusion reactor is closely related to the turbulence present in the plasma. The latter is responsible for anomalous transport of heat and particles that degrades the confinement. The measure and characterization of turbulence in tokamak plasma is therefore essential to the understanding and control of this phenomenon. Among the available diagnostics, the sweeping reflectometer installed on Tore Supra allows to access the plasma density fluctuations from the edge to the centre of the plasma discharge with a fine spatial (mm) and temporal resolution (μs), that is of the order of the characteristic turbulence scales.This thesis consisted in the characterization of plasma turbulence in Tore Supra by ultrafast sweeping reflectometry measurements. Correlation analyses are used to quantify the spatial and temporal scales of turbulence as well as their radial velocity. In the first part, the characterization of turbulence properties from the reconstructed plasma density profiles is discussed, in particular through a comparative study with Langmuir probe data. Then, a parametric study is presented, highlighting the effect of collisionality on turbulence, an interpretation of which is proposed in terms of the stabilization of trapped electron turbulence in the confined plasma. Finally, it is shown how additional heating at ion cyclotron frequency produces a significant though local modification of the turbulence in the plasma near the walls, resulting in a strong increase of the structure velocity and a decrease of the correlation time. The supposed effect of rectified potentials generated by the antenna is investigated via numerical simulations. (author) [fr

  13. Neutron Reflectometry Investigations of the Interaction of DNA-PAMAM Dendrimers with Model Biological Membranes

    International Nuclear Information System (INIS)

    Ainalem, M.L.; Rennie, A.R.; Campbell, Richard; Edler, Karen; Nylander, Tommy

    2009-01-01

    The systemic delivery of DNA for gene therapy requires control of DNA compaction by an agent, such a lipid, surfactant or a polymer (e.g. cationic dendrimers) as well as understanding of how this complex interacts with a biological membrane. Poly (amido amine) (PAMAM) dendrimers have been reported to be a promising synthetic gene-transfection agent. We have studied the structure of the complexes formed between DNA and PAMAM dendrimers with SANS, dynamic light scattering and cryo-TEM. Here we noted that the structure of the complex formed strongly depends on the generation of the dendrimer. The results of the adsorption of generation 2 (G2) and 4 (G4) PAMAM dendrimers to surface deposited bilayers, consisting of palmitoyl oleoyl phosphatidyl choline on silicon surface, have been studied using neutron reflectometry (NR). The NR data shows that the dendrimers are able to penetrate the bilayer. However, the complex is less able to penetrate the bilayer, but rather stays on the top of the bilayer. The dendrimers appear slightly flattened on the surface in comparison with their size in bulk as determined by light scattering. We will also report on the interfacial behavior of the DNA-PAMAM complexes at other types of studies of interfaces, important for biomedical applications, where NR has allowed us to determine the layer structure and composition. (author)

  14. Application of spatial time domain reflectometry measurements in heterogeneous, rocky substrates

    Science.gov (United States)

    Gonzales, C.; Scheuermann, A.; Arnold, S.; Baumgartl, T.

    2016-10-01

    Measurement of soil moisture across depths using sensors is currently limited to point measurements or remote sensing technologies. Point measurements have limitations on spatial resolution, while the latter, although covering large areas may not represent real-time hydrologic processes, especially near the surface. The objective of the study was to determine the efficacy of elongated soil moisture probes—spatial time domain reflectometry (STDR)—and to describe transient soil moisture dynamics of unconsolidated mine waste rock materials. The probes were calibrated under controlled conditions in the glasshouse. Transient soil moisture content was measured using the gravimetric method and STDR. Volumetric soil moisture content derived from weighing was compared with values generated from a numerical model simulating the drying process. A calibration function was generated and applied to STDR field data sets. The use of elongated probes effectively assists in the real-time determination of the spatial distribution of soil moisture. It also allows hydrologic processes to be uncovered in the unsaturated zone, especially for water balance calculations that are commonly based on point measurements. The elongated soil moisture probes can potentially describe transient substrate processes and delineate heterogeneity in terms of the pore size distribution in a seasonally wet but otherwise arid environment.

  15. Rapid screening of fatty acid alkyl esters in olive oils by time domain reflectometry.

    Science.gov (United States)

    Berardinelli, Annachiara; Ragni, Luigi; Bendini, Alessandra; Valli, Enrico; Conte, Lanfranco; Guarnieri, Adriano; Toschi, Tullia Gallina

    2013-11-20

    The main aim of the present research is to assess the possibility of quickly screening fatty acid alkyl esters (FAAE) in olive oils using time domain reflectometry (TDR) and partial least-squares (PLS) multivariate statistical analysis. Eighteen virgin olive oil samples with fatty acid alkyl ester contents and fatty acid ethyl ester/methyl ester ratios (FAEE/FAME) ranging from 3 to 100 mg kg(-1) and from 0.3 to 2.6, respectively, were submitted to tests with time domain resolution of 1 ps. The results obtained in test set validation demonstrated that this new and fast analytical approach is able to predict FAME, FAEE, and FAME + FAEE contents with R(2) values of 0.905, 0.923, and 0.927, respectively. Further measurements on mixtures between olive oil and FAAE standards confirmed that the prediction is based on a direct influence of fatty acid alkyl esters on the TDR signal. The suggested technique appeared potentially suitable for monitoring one of the most important quality attribute of the olive oil in the extraction process.

  16. Synthetic Microwave Imaging Reflectometry diagnostic using 3D FDTD Simulations

    Science.gov (United States)

    Kruger, Scott; Jenkins, Thomas; Smithe, David; King, Jacob; Nimrod Team Team

    2017-10-01

    Microwave Imaging Reflectometry (MIR) has become a standard diagnostic for understanding tokamak edge perturbations, including the edge harmonic oscillations in QH mode operation. These long-wavelength perturbations are larger than the normal turbulent fluctuation levels and thus normal analysis of synthetic signals become more difficult. To investigate, we construct a synthetic MIR diagnostic for exploring density fluctuation amplitudes in the tokamak plasma edge by using the three-dimensional, full-wave FDTD code Vorpal. The source microwave beam for the diagnostic is generated and refelected at the cutoff surface that is distorted by 2D density fluctuations in the edge plasma. Synthetic imaging optics at the detector can be used to understand the fluctuation and background density profiles. We apply the diagnostic to understand the fluctuations in edge plasma density during QH-mode activity in the DIII-D tokamak, as modeled by the NIMROD code. This work was funded under DOE Grant Number DE-FC02-08ER54972.

  17. Penetration depth of YBa2Cu3O7 measured by polarised neutron reflectometry

    International Nuclear Information System (INIS)

    Reynolds, J.M.; Nunez, V.; Boothroyd, A.T.; Bucknall, D.G.; Penfold, J.

    1998-01-01

    We have applied the technique of polarised neutron reflectometry (PNR) to investigate the magnetic field profile near the surface of YBa 2 Cu 3 O 7 films at 4.3 K. The samples comprised 700-1400 nm of c-axis oriented, single crystal YBa 2 Cu 3 O 7 deposited by laser ablation on SrTiO 3 substrates. The measurements were carried out on the CRISP reflectometer at the ISIS facility. The PNR technique measures the magnetic induction profile perpendicular to the surface, and so in our case the decay of flux in the c-direction was measured with a field applied parallel to the ab plane. We present preliminary data for the polarised and unpolarised reflectivity (orig.)

  18. Pinpointing chiral structures with front-back polarized neutron reflectometry.

    Science.gov (United States)

    O'Donovan, K V; Borchers, J A; Majkrzak, C F; Hellwig, O; Fullerton, E E

    2002-02-11

    A new development in spin-polarized neutron reflectometry enables us to more fully characterize the nucleation and growth of buried domain walls in layered magnetic materials. We applied this technique to a thin-film exchange-spring magnet. After first measuring the reflectivity with the neutrons striking the front, we measure with the neutrons striking the back. Simultaneous fits are sensitive to the presence of spiral spin structures. The technique reveals previously unresolved features of field-dependent domain walls in exchange-spring systems and has sufficient generality to apply to a variety of magnetic systems.

  19. High spatial and temporal resolution interrogation of fully distributed chirped fiber Bragg grating sensors

    OpenAIRE

    Ahmad, Eamonn J.; Wang, Chao; Feng, Dejun; Yan, Zhijun; Zhang, Lin

    2017-01-01

    A novel interrogation technique for fully distributed linearly chirped fiber Bragg grating (LCFBG) strain sensors with simultaneous high temporal and spatial resolution based on optical time-stretch frequency-domain reflectometry (OTS-FDR) is proposed and experimentally demonstrated. LCFBGs is a promising candidate for fully distributed sensors thanks to its longer grating length and broader reflection bandwidth compared to normal uniform FBGs. In the proposed system, two identical LCFBGs are...

  20. Observation of E×B Flow Velocity Profile Change Using Doppler Reflectometry in HL-2A

    Institute of Scientific and Technical Information of China (English)

    XIAO Wei-Wen; ZOU Xiao-Lan; DING Xuan-Tong; DONG Jia-Qi; LIU Ze-Tian; SONG Shao-Dong; GAO Ya-Dong; YAO Liang-Hua; FENG Bei-Bin; SONG Xian-Ming; CHEN Cheng-Yuan; SUN Hong-Juan; LI Yong-Gao; YANG Qing-Wei; YAN Long-Wen; LIU Yi; DUAN Xu-Ru; PAN Chuan-Hong; LIU Yong

    2009-01-01

    A broadband,O-mode sweeping Doppler reflectometry designed for measuring plasma E×B flow velocity profiles is operated in HL-2A.The main feature of the Doppler reflectometry is its capability to be tuned to any selected frequency in total waveband from 26-40 GHz.This property enables us to probe several plasma layers within a short time interval during a discharge,permitting the characterization of the radial distribution of plasma fluctuations.The system allows us to extract important information about the velocity change layer,namely its spatial localization.In purely Ohmic discharge a change of the E×B flow velocity profiles has been observed in the region for 28 < r < 30cm if only the line average density exceeds 2.2×1019 m-3.The density gradient change is measured in the same region,too.

  1. Deuterium absorption in Mg70Al30 thin films with bilayer catalysts: A comparative neutron reflectometry study

    International Nuclear Information System (INIS)

    Poirier, Eric; Harrower, Chris T.; Kalisvaart, Peter; Bird, Adam; Teichert, Anke; Wallacher, Dirk; Grimm, Nico; Steitz, Roland; Mitlin, David; Fritzsche, Helmut

    2011-01-01

    Highlights: → Mg 70 Al 30 thin films studied for hydrogen absorption using in situ neutron reflectometry. → Films with Ta/Pd, Ti/Pd and Ni/Pd bilayer catalysts systematically compared. → Measurements reveals deuterium spillover from the catalysts to the MgAl phase. → The use of Ti-Pd bilayer offers best results in terms of amount absorbed and kinetics. → Key results cross-checked with X-ray reflectometry. - Abstract: We present a neutron reflectometry study of deuterium absorption in thin films of Al-containing Mg alloys capped with a Ta/Pd, Ni/Pd and Ti/Pd-catalyst bilayer. The measurements were performed at room temperature over the 0-1 bar pressure range under quasi-equilibrium conditions. The modeling of the measurements provided a nanoscale representation of the deuterium profile in the layers at different stages of the absorption process. The absorption mechanism observed was found to involve spillover of atomic deuterium from the catalyst layer to the Mg alloy phase, followed by the deuteration of the Mg alloy. Complete deuteration of the Mg alloy occurs in a pressure range between 100 and 500 mbar, dependent on the type of bilayer catalyst. The use of a Ti/Pd bilayer catalyst yielded the best results in terms of both storage density and kinetic properties.

  2. Detection of local birefringence in embedded fiber Bragg grating caused by concentrated transverse load using optical frequency domain reflectometry

    Science.gov (United States)

    Wada, D.; Murayama, H.; Igawa, H.

    2014-05-01

    We investigate the capability of local birefringence detection in an embedded fiber Bragg grating (FBG) using optical frequency domain reflectometry. We embed an FBG into carbon fiber reinforced plastic specimen, and conduct 3-point bending test. The cross-sectional stresses are applied to the FBG at the loading location in addition to the non-uniform longitudinal strain distribution over the length of the FBG. The local birefringence due to the cross-sectional stresses was successfully detected while the non-uniform longitudinal strain distribution was accurately measured.

  3. GNSS-Reflectometry based water level monitoring

    Science.gov (United States)

    Beckheinrich, Jamila; Schön, Steffen; Beyerle, Georg; Apel, Heiko; Semmling, Maximilian; Wickert, Jens

    2013-04-01

    Due to climate changing conditions severe changes in the Mekong delta in Vietnam have been recorded in the last years. The goal of the German Vietnamese WISDOM (Water-related Information system for the Sustainable Development Of the Mekong Delta) project is to build an information system to support and assist the decision makers, planners and authorities for an optimized water and land management. One of WISDOM's tasks is the flood monitoring of the Mekong delta. Earth reflected L-band signals from the Global Navigation Satellite System show a high reflectivity on water and ice surfaces or on wet soil so that GNSS-Reflectometry (GNSS-R) could contribute to monitor the water level in the main streams of the Mekong delta complementary to already existing monitoring networks. In principle, two different GNSS-R methods exist: the code- and the phase-based one. As the latter being more accurate, a new generation of GORS (GNSS Occultation, Reflectometry and Scatterometry) JAVAD DELTA GNSS receiver has been developed with the aim to extract precise phase observations. In a two week lasting measurement campaign, the receiver has been tested and several reflection events at the 150-200 m wide Can Tho river in Vietnam have been recorded. To analyze the geometrical impact on the quantity and quality of the reflection traces two different antennas height were tested. To track separately the direct and the reflected signal, two antennas were used. To derive an average height of the water level, for a 15 min observation interval, a phase model has been developed. Combined with the coherent observations, the minimum slope has been calculated based on the Least- Squares method. As cycle slips and outliers will impair the results, a preprocessing of the data has been performed. A cycle slip detection strategy that allows for automatic detection, identification and correction is proposed. To identify outliers, the data snooping method developed by Baarda 1968 is used. In this

  4. Layered structure analysis of multilayers by X-ray reflectometry using the Cu-Kβ line

    International Nuclear Information System (INIS)

    Usami, Katsuhisa; Ueda, Kazuhiro; Hirano, Tatsumi; Hoshiya, Hiroyuki; Narishige, Shinji.

    1997-01-01

    The suitability of X-ray reflectometry using the Cu-K β line for layered structure analysis of NiFe/Cu/NiFe/Ta layered films was studied. Structural parameters such as film thickness, density, and interface width can be determined more accurately than by Cu-K α1 X-ray reflectometry, owing to the abnormal dispersion effect. The standard deviations in determination of film thicknesses were within ±0.3% for NiFe and Ta films and ±0.03 nm for 2 nm Cu film. Those for the densities and interface widths were within ±2% and ±0.04 nm for all films, respectively. Analysis of some layered films regarding the change in Cu film thickness showed that in all these samples the density of the films most closely reflected the density of bulk material, and the interface width between the upper NiFe and Cu films increased with increasing Cu film thickness. (author)

  5. Sub-spatial resolution position estimation for optical fibre sensing applications

    DEFF Research Database (Denmark)

    Zibar, Darko; Werzinger, Stefan; Schmauss, Bernhard

    2017-01-01

    Methods from machine learning community are employed for estimating the position of fibre Bragg gratings in an array. Using the conventional methods for position estimation, based on inverse discrete Fourier transform (IDFT), it is required that two-point spatial resolution is less than gratings...... of reflection coefficients and the positions is performed. From the practical point of view, we can demonstrate the reduction of the interrogator's bandwidth by factor of 2. The technique is demonstrated for incoherent optical frequency domain reflectometry (IOFDR). However, the approach is applicable to any...

  6. Active Time-Domain Reflectometry for Unattended Safeguards Systems: FY16 Report

    Energy Technology Data Exchange (ETDEWEB)

    Tedeschi, Jonathan R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Smith, Leon E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Conrad, Ryan C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gavric, Gordan [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zalavadia, Mital A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Keller, Daniel T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pratt, Richard M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-10-21

    The International Atomic Energy Agency (IAEA) continues to expand its use of unattended measurement systems. An increasing number of systems and an expanding family of instruments create challenges in terms of deployment efficiency and the implementation of data authentication measures. Traditional data security measures, for example tamper-indicating (TI) conduit, are impractical for the long separation distances (often 100 meters or more) between unattended monitoring system (UMS) components. Pacific Northwest National Laboratory (PNNL) is studying the viability of active time-domain reflectometry (TDR) for the detection of cable tampering in unattended radiation detection systems. The instrument concept under investigation would allow for unmanned cable integrity measurements, remote surveillance reporting and locating of cable faults and/or tampers. This report describes PNNL’s FY16 progress and includes: an overview of the TDR methods under investigation; description of the TDR evaluation testbed developed by PNNL; development and testing of advanced signal processing algorithms to extract weak signals from relatively high noise levels; and initial testing of a laboratory prototype intended for IAEA UMS applications and based on a commercially available TDR module. Preliminary viability findings and recommendations for the next stage of development and testing are provided.

  7. A phased array antenna for Doppler reflectometry in ASDEX upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, Stefan; Lechte, Carsten; Kasparek, Walter [IGVP, Universitaet Stuttgart, D-70569 Stuttgart (Germany); Hennequin, Pascale [Laboratoire de Physique des Plasmas, CNRS, Ecole Polytech., F-91128 Palaiseau (France); Conway, Garrard; Happel, Tim [Max-Planck-Institut fuer Plasmaphysik, D-85748 Garching (Germany); Collaboration: ASDEX Upgrade Team

    2016-07-01

    In a toroidal plasma, Doppler reflectometry (DR) allows investigating electron density fluctuations with finite k {sub perpendicular} {sub to}. The injected microwave beam's frequency determines the radial position of the probed region, its tilt angle selects the wavenumber satisfying the Bragg condition for backscattering. The rotation velocity can be calculated from the Doppler shift of the backscattered signal's frequency. By varying the injected frequency, radial profiles can be reconstructed. Varying the tilt angle resolves the k {sub perpendicular} {sub to} -spectrum of the fluctuations. For DR, a pair of phased array antennas (PAAs) has been designed, built, and installed in the ASDEX Upgrade tokamak. Beam steering is done by slightly changing the injected frequency, thus, the PAAs do not need any movable parts or electronics inside the vacuum vessel. From 75 to 105 GHz, the PAAs feature 13 frequency bands, each with an angular scan range of -20 to +20 {sup circle}. So, for each angle, there are 13 radial positions to be probed. The results from PAA characterisation, commissioning, and first DR measurements are presented.

  8. Kinetic investigation on enantioselective hydrolytic resolution of ...

    African Journals Online (AJOL)

    Kinetic investigation on enantioselective hydrolytic resolution of epichlorohydrin by crude epoxide hydrolase from domestic duck liver. X Ling, D Lu, J Wang, J Chen, L Ding, J Chen, H Chai, P Ouyang ...

  9. Improved theory of time domain reflectometry with variable coaxial cable length for electrical conductivity measurements

    Science.gov (United States)

    Although empirical models have been developed previously, a mechanistic model is needed for estimating electrical conductivity (EC) using time domain reflectometry (TDR) with variable lengths of coaxial cable. The goals of this study are to: (1) derive a mechanistic model based on multisection tra...

  10. Dissolution and Protection of Aluminium Oxide in Corrosive Aqueous Media - An Ellipsometry and Reflectometry Study

    NARCIS (Netherlands)

    Karlsson, P.M.; Postmus, B.R.; Palmqvist, A.E.C.

    2009-01-01

    Dissolution of alumina has been studied from wafers in aqueous solution by means of ellipsometry and reflectometry. It was discovered that the dissolution of aluminium oxide is promoted by ethanol amines like N,N-bis(2-hydroxyethyl)glycine and triethanolamine, and that this dissolution is retarded

  11. Signal to Noise Ratio (SNR Enhancement Comparison of Impulse-, Coding- and Novel Linear-Frequency-Chirp-Based Optical Time Domain Reflectometry (OTDR for Passive Optical Network (PON Monitoring Based on Unique Combinations of Wavelength Selective Mirrors

    Directory of Open Access Journals (Sweden)

    Christopher M. Bentz

    2014-03-01

    Full Text Available We compare optical time domain reflectometry (OTDR techniques based on conventional single impulse, coding and linear frequency chirps concerning their signal to noise ratio (SNR enhancements by measurements in a passive optical network (PON with a maximum one-way attenuation of 36.6 dB. A total of six subscribers, each represented by a unique mirror pair with narrow reflection bandwidths, are installed within a distance of 14 m. The spatial resolution of the OTDR set-up is 3.0 m.

  12. Low-noise heterodyne receiver for electron cyclotron emission imaging and microwave imaging reflectometry

    Energy Technology Data Exchange (ETDEWEB)

    Tobias, B., E-mail: bjtobias@pppl.gov [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Domier, C. W.; Luhmann, N. C.; Luo, C.; Mamidanna, M.; Phan, T.; Pham, A.-V.; Wang, Y. [University of California at Davis, Davis, California 95616 (United States)

    2016-11-15

    The critical component enabling electron cyclotron emission imaging (ECEI) and microwave imaging reflectometry (MIR) to resolve 2D and 3D electron temperature and density perturbations is the heterodyne imaging array that collects and downconverts radiated emission and/or reflected signals (50–150 GHz) to an intermediate frequency (IF) band (e.g. 0.1–18 GHz) that can be transmitted by a shielded coaxial cable for further filtering and detection. New circuitry has been developed for this task, integrating gallium arsenide (GaAs) monolithic microwave integrated circuits (MMICs) mounted on a liquid crystal polymer (LCP) substrate. The improved topology significantly increases electromagnetic shielding from out-of-band interference, leads to 10× improvement in the signal-to-noise ratio, and dramatic cost savings through integration. The current design, optimized for reflectometry and edge radiometry on mid-sized tokamaks, has demonstrated >20 dB conversion gain in upper V-band (60-75 GHz). Implementation of the circuit in a multi-channel electron cyclotron emission imaging (ECEI) array will improve the diagnosis of edge-localized modes and fluctuations of the high-confinement, or H-mode, pedestal.

  13. Edge turbulence effect on ultra-fast swept reflectometry core measurements in tokamak plasmas

    Science.gov (United States)

    Zadvitskiy, G. V.; Heuraux, S.; Lechte, C.; Hacquin, S.; Sabot, R.

    2018-02-01

    Ultra-fast frequency-swept reflectometry (UFSR) enables one to provide information about the turbulence radial wave-number spectrum and perturbation amplitude with good spatial and temporal resolutions. However, a data interpretation of USFR is quiet tricky. An iterative algorithm to solve this inverse problem was used in past works, Gerbaud (2006 Rev. Sci. Instrum. 77 10E928). For a direct solution, a fast 1D Helmholtz solver was used. Two-dimensional effects are strong and should be taken into account during data interpretation. As 2D full-wave codes are still too time consuming for systematic application, fast 2D approaches based on the Born approximation are of prime interest. Such methods gives good results in the case of small turbulence levels. However in tokamak plasmas, edge turbulence is usually very strong and can distort and broaden the probing beam Sysoeva et al (2015 Nucl. Fusion 55 033016). It was shown that this can change reflectometer phase response from the plasma core. Comparison between 2D full wave computation and the simplified Born approximation was done. The approximated method can provide a right spectral shape, but it is unable to describe a change of the spectral amplitude with an edge turbulence level. Computation for the O-mode wave with the linear density profile in the slab geometry and for realistic Tore-Supra density profile, based on the experimental data turbulence amplitude and spectrum, were performed to investigate the role of strong edge turbulence. It is shown that the spectral peak in the signal amplitude variation spectrum which rises with edge turbulence can be a signature of strong edge turbulence. Moreover, computations for misaligned receiving and emitting antennas were performed. It was found that the signal amplitude variation peak changes its position with a receiving antenna poloidal displacement.

  14. Time-Domain Reflectometry for Tamper Indication in Unattended Monitoring Systems for Safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Tedeschi, Jonathan R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Smith, Leon E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Moore, David E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sheen, David M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Conrad, Ryan C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-12-01

    The International Atomic Energy Agency (IAEA) continues to expand its use of unattended, remotely monitored measurement systems. An increasing number of systems and an expanding family of instruments create challenges in terms of deployment efficiency and the implementation of data authentication measures. Pacific Northwest National Laboratory (PNNL) leads a collaboration that is exploring various tamper-indicating (TI) measures that could help to address some of the long-standing detector and data-transmission authentication challenges with IAEA’s unattended systems. PNNL is investigating the viability of active time-domain reflectometry (TDR) along two parallel but interconnected paths: (1) swept-frequency TDR as the highly flexible, laboratory gold standard to which field-deployable options can be compared, and (2) a low-cost commercially available spread-spectrum TDR technology as one option for field implementation. This report describes PNNL’s progress and preliminary findings from the first year of the study, and describes the path forward.

  15. An algorithm to remove fringe jumps and its application to microwave reflectometry

    International Nuclear Information System (INIS)

    Ejiri, A.; Kawahata, K.; Shinohara, K.

    1997-01-01

    In some plasma discharges, the phase measured by microwave reflectometry has many fringe (2π radians) jumps. A new algorithm to detect and remove fringe jumps has been developed, and applied to the data in the JIPP TII-U tokamak. Using this algorithm, quantitative properties of fringe jumps, and their effects on the analysis of phase fluctuations are investigated. It was found that the occurrence of fringe jumps obeys a Poisson process, and the time scale of jumps is distributed over a wide range. Fringe jumps affect mainly the low-frequency components of phase fluctuations. Comparison of the phase corrected by the algorithm and the phase calculated from the time smoothed signals indicates that time smoothing (or frequency filtering) is an effective way to obtain information concerning the macroscopic density profile. Fringe jump and phase runaway can be phenomenologically explained by the distribution of the complex amplitude of the reflected wave. (author)

  16. Deuterium absorption in Mg{sub 70}Al{sub 30} thin films with bilayer catalysts: A comparative neutron reflectometry study

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, Eric [National Research Council Canada/Canadian Neutron Beam Centre, Bldg. 459, Chalk River Laboratories, Chalk River, ON, K0J 1J0 (Canada); Harrower, Chris T.; Kalisvaart, Peter [Chemical and Materials Engineering, University of Alberta and National Research Council Canada/National Institute for Nanotechnology, Edmonton, AB, T6G 2M9 (Canada); Bird, Adam [National Research Council Canada/Canadian Neutron Beam Centre, Bldg. 459, Chalk River Laboratories, Chalk River, ON, K0J 1J0 (Canada); Teichert, Anke [Helmholtz Zentrum Berlin, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Instituut voor Kern-en Stralingsfysica and INPAC, K.U. Leuven, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Laboratorium voor Vaste-Stoffysica en Magnetisme and INPAC, K.U. Leuven, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Wallacher, Dirk; Grimm, Nico; Steitz, Roland [Helmholtz Zentrum Berlin, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Mitlin, David [Chemical and Materials Engineering, University of Alberta and National Research Council Canada/National Institute for Nanotechnology, Edmonton, AB, T6G 2M9 (Canada); Fritzsche, Helmut, E-mail: Helmut.Fritzsche@nrc-cnrc.gc.ca [National Research Council Canada/Canadian Neutron Beam Centre, Bldg. 459, Chalk River Laboratories, Chalk River, ON, K0J 1J0 (Canada)

    2011-05-05

    Highlights: > Mg{sub 70}Al{sub 30} thin films studied for hydrogen absorption using in situ neutron reflectometry. > Films with Ta/Pd, Ti/Pd and Ni/Pd bilayer catalysts systematically compared. > Measurements reveals deuterium spillover from the catalysts to the MgAl phase. > The use of Ti-Pd bilayer offers best results in terms of amount absorbed and kinetics. > Key results cross-checked with X-ray reflectometry. - Abstract: We present a neutron reflectometry study of deuterium absorption in thin films of Al-containing Mg alloys capped with a Ta/Pd, Ni/Pd and Ti/Pd-catalyst bilayer. The measurements were performed at room temperature over the 0-1 bar pressure range under quasi-equilibrium conditions. The modeling of the measurements provided a nanoscale representation of the deuterium profile in the layers at different stages of the absorption process. The absorption mechanism observed was found to involve spillover of atomic deuterium from the catalyst layer to the Mg alloy phase, followed by the deuteration of the Mg alloy. Complete deuteration of the Mg alloy occurs in a pressure range between 100 and 500 mbar, dependent on the type of bilayer catalyst. The use of a Ti/Pd bilayer catalyst yielded the best results in terms of both storage density and kinetic properties.

  17. Active Time-Domain Reflectometry for Unattended Safeguards Systems FY15 Report

    Energy Technology Data Exchange (ETDEWEB)

    Tedeschi, Jonathan R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Smith, Leon E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Moore, David E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sheen, David M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Conrad, Ryan C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gavric, Gordan [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-09-01

    The International Atomic Energy Agency (IAEA) continues to expand its use of unattended measurement systems. An increasing number of systems and an expanding family of instruments create challenges in terms of deployment efficiency and the implementation of data authentication measures. In collaboration with the IAEA, tamper-indicating measures to address data-transmission authentication challenges with unattended safeguards systems are under investigation. Pacific Northwest National Laboratory (PNNL) is studying the viability of active time-domain reflectometry (TDR) along two parallel but interconnected paths: (1) swept-frequency TDR as the highly flexible, laboratory gold standard to which field-deployable options can be compared, and (2) a low-cost commercially available spread-spectrum TDR technology as one option for field implementation. This report describes PNNL’s FY15 progress in the viability study including: an overview of the TDR methods under investigation; description of the testing configurations and mock tampering scenarios; results from a preliminary sensitivity comparison of the two TDR methods; demonstration of a quantitative metric for estimating field performance that acknowledges the need for high detection probability while minimizing false alarms. FY15 progress reported here sets the stage for a rigorous comparison of the candidate TDR methods, over a range of deployment scenarios and perturbing effects typical of IAEA unattended monitoring systems.

  18. Two-dimensional Simulations of Correlation Reflectometry in Fusion Plasmas

    International Nuclear Information System (INIS)

    Valeo, E.J.; Kramer, G.J.; Nazikian, R.

    2001-01-01

    A two-dimensional wave propagation code, developed specifically to simulate correlation reflectometry in large-scale fusion plasmas is described. The code makes use of separate computational methods in the vacuum, underdense and reflection regions of the plasma in order to obtain the high computational efficiency necessary for correlation analysis. Simulations of Tokamak Fusion Test Reactor (TFTR) plasma with internal transport barriers are presented and compared with one-dimensional full-wave simulations. It is shown that the two-dimensional simulations are remarkably similar to the results of the one-dimensional full-wave analysis for a wide range of turbulent correlation lengths. Implications for the interpretation of correlation reflectometer measurements in fusion plasma are discussed

  19. Urethral pressure reflectometry, a novel technique for simultaneous recording of pressure and cross-sectional area in the prostatic urethra

    DEFF Research Database (Denmark)

    Aagaard, Mikael; Klarskov, Niels; Sønksen, Jens

    2014-01-01

    OBJECTIVE: Urethral pressure reflectometry (UPR) was introduced in 2005, for simultaneous measurement of pressure and cross-sectional area in the female urethra. It has shown to be more reproducible than conventional pressure measurement. Recently, it has been tested in the anal canal and the pro......OBJECTIVE: Urethral pressure reflectometry (UPR) was introduced in 2005, for simultaneous measurement of pressure and cross-sectional area in the female urethra. It has shown to be more reproducible than conventional pressure measurement. Recently, it has been tested in the anal canal...... version of Prostate Symptom Score, flow rate, residual urine measurements, transrectal ultrasound, urethral pressure profilometry and visual analogue scale (Discomfort). UPR parameters measured were opening and closing pressure, opening and closing elastance and hysteresis, from the bladder neck...

  20. Water penetration mechanisms in nuclear glasses by X-ray and neutron reflectometry

    International Nuclear Information System (INIS)

    Rebiscoul, D.; Rieutord, F.; Ne, F.; Frugier, P.; Gin, S.; Cubitt, R.

    2007-01-01

    To determine the water diffusion at the early stage of the alteration, X-ray and neutron reflectometry have been performed on altered simplified glasses and the SON68 glass (an inactive R7T7-type French nuclear glass). For the first experiment, the simplified and SON68 glasses were altered at pH 3 and pH 6 and characterized by X-ray reflectometry as a function of the alteration duration. The evolutions of the electron density profile obtained from the reflectivity curves simulations have allowed the determination of the layers compositions. At the beginning of the alteration and for pH 3, the altered surface layer is constituted of a dealkalized zone. Upon alteration progress, the water diffuses inside the layer and hydrolyzes the Si-O-B bonds. For the second experiment, glasses were altered in D 2 O (pD 3) and analyzed in D 2 O saturated cell. After a D 2 O/H 2 O substitution, the samples were characterized one more time in H 2 O saturated cell. The evolution of the scattering length density shows that in the first stage of the alteration, the layer is constituted of two parts: a dealkalized glass and a dealkalized and boron depleted glass where water has diffused. According to the glass composition and after few hours of alteration, this dealkalized glass part can disappear. (authors)

  1. Structure of ionic liquid-water mixtures at interfaces: x-ray and neutron reflectometry studies

    International Nuclear Information System (INIS)

    Lauw, Yansen; Rodopoulos, Theo; Horne, Mike; Follink, Bart; Hamilton, Bill; Knott, Robert; Nelson, Andy

    2009-01-01

    Full text: Fundamental studies on the effect of water in ionic liquids are necessary since the overall performance of ionic liquids in many industrial applications is often hampered by the presence of water.[1] Based on this understanding, the surface and interfacial structures of 1-butyl-1methylpyrrolidinium trifluoromethylsulfonylimide [C4mpyr][NTf2] ionic liquid-water mixtures were probed using x-ray and neutron reflectometry techniques. At the gas-liquid surface, a thick cation+water layer was detected next to the phase boundary, followed by an increasing presence of anion towards the bulk. The overall thickness of the surface exhibits non-monotonic trends with an increasing water content, which explains similar phenomenological trends in surface tension reported in the literature.[2] At an electrified interface, the interfacial structure of pure ionic liquids probed by neutron reflectometry shows similar trends to those predicted by a mean-field model.[3] However, the presence of water within the electrical double-layer is less obvious, although it is widely known that water reduces electrochemical window of ionic liquids. To shed light on this issue, further studies are currently in progress.

  2. Mini Tensiometer-Time Domain Reflectometry Coil Probe for Measuring Soil Water Retention Properties

    DEFF Research Database (Denmark)

    Subedi, Shaphal; Kawamoto, Ken; Karunarathna, Anurudda Kumara

    2013-01-01

    Time domain reflectometry (TDR) is used widely for measuring soil-water content. New TDR coil probe technology facilitates the development of small, nondestructive probes for simultaneous measurement of soil-water content (θ) and soil-water potential (ψ). In this study we developed mini tensiomet...... between measured soil-water retention curves (ψ > –100 cm H2O) by the new T-TDR coil probes and independent measurements by the hanging water column method....

  3. Design of an O-mode frequency modulated reflectometry system for the measurement of Alborz Tokamak plasma density profile

    Energy Technology Data Exchange (ETDEWEB)

    Koohestani, Saeideh [Department of Energy Engineering and physics, Amirkabir University of Technology, Tehran, 15875-4413, Islamic Republic of Iran (Iran, Islamic Republic of); Amrollahi, Reza, E-mail: amrollahi@aut.ac.ir [Department of Energy Engineering and physics, Amirkabir University of Technology, Tehran, 15875-4413, Islamic Republic of Iran (Iran, Islamic Republic of); Moradi, Gholamreza [Department of Electrical Engineering, Amirkabir University of Technology, Tehran, 15875-4413, Islamic Republic of Iran (Iran, Islamic Republic of)

    2016-12-15

    Reflectometry is a common method for plasma diagnostic, in which microwaves are launched into the plasma and reflected at the critical surfaces. Comparing the reflected microwave signals with the launched waves would give rise to the plasma density profiles. In the present study, an ordinary mode (O-mode) frequency modulation (FM) reflectometry system has been designed for the electron density profile measurement of the Alborz Tokamak plasma. This system has been considered to operate at K-band (18–26.5 GHz) frequency range and scan the frequency band between 18 to 26 GHz in 40 μS. The density profile from major radius r = 47.9–51.55 cm can be measured in Alborz Tokamak plasma. Based on the Alborz Tokamak operational conditions, the characteristic frequencies, and some dimensional limitations, all parts of reflectometer have been designed so that an appropriate efficiency with minimum attenuation, especially in transmitting/receiving system would be achieved. A dual antenna and an oversized waveguide of X-band (8–12 GHz) for transmitting and receiving purposes and a balanced detector for absolute phase determination have been utilized. The details of the Alborz Tokamak FM reflectometry components focusing on the antenna and waveguide design and mounting are described in this paper. Additionally, the procedure of plasma profile reconstruction using the system output signal is discussed. This system uses signal phase shift to determine the position of the cutoff layer.

  4. Applicability of X-ray reflectometry to studies of polymer solar cell degradation

    DEFF Research Database (Denmark)

    Andreasen, Jens Wenzel; Gevorgyan, Suren; Schleputz, C.M.

    2008-01-01

    Although degradation of polymer solar cells is widely acknowledged, the cause, physical or chemical, has not been identified. The purpose of this work is to determine the applicability of X-ray reflectometry for in situ observation of physical degradation mechanisms. We find that the rough...... interfaces of the polymer solar cell constituent layers seriously obstruct the sensitivity of the technique, rendering it impossible to elucidate changes in the layer/interface structure at the sub-nanometer level. (c) 2008 Elsevier B.V. All rights reserved....

  5. Time and Frequency Localized Pulse Shape for Resolution Enhancement in STFT-BOTDR

    Directory of Open Access Journals (Sweden)

    Linqing Luo

    2016-01-01

    Full Text Available Short-Time Fourier Transform-Brillouin Optical Time-Domain Reflectometry (STFT-BOTDR implements STFT over the full frequency spectrum to measure the distributed temperature and strain along the optic fiber, providing new research advances in dynamic distributed sensing. The spatial and frequency resolution of the dynamic sensing are limited by the Signal to Noise Ratio (SNR and the Time-Frequency (T-F localization of the input pulse shape. T-F localization is fundamentally important for the communication system, which suppresses interchannel interference (ICI and intersymbol interference (ISI to improve the transmission quality in multicarrier modulation (MCM. This paper demonstrates that the T-F localized input pulse shape can enhance the SNR and the spatial and frequency resolution in STFT-BOTDR. Simulation and experiments of T-F localized different pulses shapes are conducted to compare the limitation of the system resolution. The result indicates that rectangular pulse should be selected to optimize the spatial resolution and Lorentzian pulse could be chosen to optimize the frequency resolution, while Gaussian shape pulse can be used in general applications for its balanced performance in both spatial and frequency resolution. Meanwhile, T-F localization is proved to be useful in the pulse shape selection for system resolution optimization.

  6. Urethral pressure reflectometry. A method for simultaneous measurements of pressure and cross-sectional area in the female urethra

    DEFF Research Database (Denmark)

    Klarskov, Niels

    2012-01-01

    A novel technique for simultaneous measurements of pressure and cross-sectional area (CA) in the female urethra, denoted Urethral Pressure Reflectometry (UPR), was devised. A very thin and highly flexible polyurethane-bag was placed in the urethra. A pump applied increasing and decreasing pressur...

  7. Neutron reflectometry as a tool to study magnetism

    International Nuclear Information System (INIS)

    Felcher, G. P.

    1999-01-01

    Polarized-neutron specular reflectometry (PNR) was developed in the 1980's as a means of measuring magnetic depth profiles in flat films. Starting from simple profiles, and gradually solving structures of greater complexity, PNR has been used to observe or clarify a variety of magnetic phenomena. It has been used to measure the absolute magnetization of films of thickness not exceeding a few atomic planes, the penetration of magnetic fields in micron-thick superconductors, and the detailed magnetic coupling across non-magnetic spacers in multilayers and superlattices. Although PNR is considered a probe of depth dependent magnetic structure, laterally averaged in the plane of the film, the development of new scattering techniques promises to enable the characterization of lateral magnetic structures. Retaining the depth-sensitivity of specular reflectivity, off-specular reflectivity may be brought to resolve in-plane structures over nanometer to micron length scales

  8. Interfacial mixing in as-deposited Si/Ni/Si layers analyzed by x-ray and polarized neutron reflectometry

    International Nuclear Information System (INIS)

    Bhattacharya, Debarati; Basu, Saibal; Singh, Surendra; Roy, Sumalay; Dev, Bhupendra Nath

    2012-01-01

    Highlights: ► Room temperature diffusion in Si/Ni/Si trilayer detected through complementary x-ray and polarized neutron reflectometry. ► Analyses of XPNR data generated the construction of the layered structure in terms of physical parameters along with alloy layers created by diffusion. ► Scattering length density information from XPNR provided quantitative assessment of the stoichiometry of alloys formed at the Si/Ni and Ni/Si interfaces. - Abstract: Interdiffusion occurring across the interfaces in a Si/Ni/Si layered system during deposition at room temperature was probed using x-ray reflectivity (XRR) and polarized neutron reflectivity (PNR). Exploiting the complementarity of these techniques, both structural and magnetic characterization with nanometer depth resolution could be achieved. Suitable model fitting of the reflectivity profiles identified the formation of Ni–Si mixed alloy layers at the Si/Ni and Ni/Si interfaces. The physical parameters of the layered structure, including quantitative assessment of the stoichiometry of interfacial alloys, were obtained from the analyses of XRR and PNR patterns. In addition, PNR provided magnetic moment density profile as a function of depth in the stratified medium.

  9. Interfacial mixing in as-deposited Si/Ni/Si layers analyzed by x-ray and polarized neutron reflectometry

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Debarati, E-mail: debarati@barc.gov.in [Solid State Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Basu, Saibal; Singh, Surendra [Solid State Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Roy, Sumalay; Dev, Bhupendra Nath [Department of Materials Science, Indian Association for the Cultivation of Science, 2A and 2B Raja S.C. Mullick Road, Jadavpur, Kolkata 700032 (India)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Room temperature diffusion in Si/Ni/Si trilayer detected through complementary x-ray and polarized neutron reflectometry. Black-Right-Pointing-Pointer Analyses of XPNR data generated the construction of the layered structure in terms of physical parameters along with alloy layers created by diffusion. Black-Right-Pointing-Pointer Scattering length density information from XPNR provided quantitative assessment of the stoichiometry of alloys formed at the Si/Ni and Ni/Si interfaces. - Abstract: Interdiffusion occurring across the interfaces in a Si/Ni/Si layered system during deposition at room temperature was probed using x-ray reflectivity (XRR) and polarized neutron reflectivity (PNR). Exploiting the complementarity of these techniques, both structural and magnetic characterization with nanometer depth resolution could be achieved. Suitable model fitting of the reflectivity profiles identified the formation of Ni-Si mixed alloy layers at the Si/Ni and Ni/Si interfaces. The physical parameters of the layered structure, including quantitative assessment of the stoichiometry of interfacial alloys, were obtained from the analyses of XRR and PNR patterns. In addition, PNR provided magnetic moment density profile as a function of depth in the stratified medium.

  10. A systematic neutron reflectometry study on hydrogen absorption in thin Mg{sub 1-x}Al{sub x} alloy films

    Energy Technology Data Exchange (ETDEWEB)

    Fritzsche, H.; Poirier, E., E-mail: helmut.fritzsche@nrc.gc.ca [National Research Council Canada, Canadian Neutron Beam Centre, Chalk River, ON (Canada); Haagsma, J.; Ophus, C.; Luber, E.; Harrower, C.; Mitlin, D. [Univ. of Alberta, and National Research Council Canada, Chemical and Materials Engineering, Edmonton, AB (Canada)

    2010-10-15

    In this article, we show how neutron reflectometry (NR) can provide deep insight into the absorption and desorption properties of commercially promising hydrogen storage materials. NR benefits from the large negative scattering length of hydrogen atoms, which changes the reflectivity curve substantially, so that NR can determine not only the total amount of stored hydrogen but also the hydrogen distribution along the film normal, with nanometer resolution. To use NR, the samples must have smooth surfaces, and the film thickness should range between 10 and 200 nm. We performed a systematic study on thin Mg{sub 1-x}Al{sub x} alloy films (x = 0.2, 0.3, 0.4, 0.67) capped with a Pd catalyst layer. Our NR experiments showed that Mg{sub 0.7}Al{sub 0.3} is the optimum alloy composition with the highest amount of stored hydrogen and the lowest desorption temperature. All the thin films expand by about 20% because of hydrogen absorption, and the hydrogen is stored only in the MgAl layer with no hydrogen content in the Pd layer. (author)

  11. Upgrade of the COMPASS tokamak microwave reflectometry system with I/Q modulation and detection.

    Czech Academy of Sciences Publication Activity Database

    Zajac, Jaromír; Bogár, Ondrej; Varavin, Mykyta; Žáček, František; Hron, Martin; Pánek, Radomír; Nanobashvili, S.; Silva, A.

    2017-01-01

    Roč. 123, November (2017), s. 911-914 ISSN 0920-3796. [SOFT 2016: Symposium on Fusion Technology /29./. Prague, 05.09.2016-09.09.2016] R&D Projects: GA ČR(CZ) GA14-35260S Institutional support: RVO:61389021 Keywords : Microwave reflectometry * Heterodyne detection * I/Q modulator * COMPASS tokamak Subject RIV: JF - Nuclear Energetics OBOR OECD: Nuclear related engineering Impact factor: 1.319, year: 2016 http://www.sciencedirect.com/science/article/pii/S0920379617303101

  12. Monitoring Bare Soil Freeze–Thaw Process Using GPS-Interferometric Reflectometry: Simulation and Validation

    Directory of Open Access Journals (Sweden)

    Xuerui Wu

    2017-12-01

    Full Text Available Frozen soil and permafrost affect ecosystem diversity and productivity as well as global energy and water cycles. Although some space-based Radar techniques or ground-based sensors can monitor frozen soil and permafrost variations, there are some shortcomings and challenges. For the first time, we use GPS-Interferometric Reflectometry (GPS-IR to monitor and investigate the bare soil freeze–thaw process as a new remote sensing tool. The mixed-texture permittivity models are employed to calculate the frozen and thawed soil permittivities. When the soil freeze/thaw process occurs, there is an abrupt change in the soil permittivity, which will result in soil scattering variations. The corresponding theoretical simulation results from the forward GPS multipath simulator show variations of GPS multipath observables. As for the in-situ measurements, virtual bistatic radar is employed to simplify the analysis. Within the GPS-IR spatial resolution, one SNOTEL site (ID 958 and one corresponding PBO (plate boundary observatory GPS site (AB33 are used for analysis. In 2011, two representative days (frozen soil on Doy of Year (DOY 318 and thawed soil on DOY 322 show the SNR changes of phase and amplitude. The GPS site and the corresponding SNOTEL site in four different years are analyzed for comparisons. When the soil freeze/thaw process occurred and no confounding snow depth and soil moisture effects existed, it exhibited a good absolute correlation (|R| = 0.72 in 2009, |R| = 0.902 in 2012, |R| = 0.646 in 2013, and |R| = 0.7017 in 2014 with the average detrended SNR data. Our theoretical simulation and experimental results demonstrate that GPS-IR has potential for monitoring the bare soil temperature during the soil freeze–thaw process, while more test works should be done in the future. GNSS-R polarimetry is also discussed as an option for detection. More retrieval work about elevation and polarization combinations are the focus of future development.

  13. Optics System Design of Microwave Imaging Reflectometry for the EAST Tokamak

    International Nuclear Information System (INIS)

    Zhu Yilun; Zhao Zhenling; Tong Li; Chen Dongxu; Xie Jinlin; Liu Wandong

    2016-01-01

    A front-end optics system has been developed for the EAST microwave imaging reflectometry for 2D density fluctuation measurement. Via the transmitter optics system, a combination of eight transmitter beams with independent frequencies is employed to illuminate wide poloidal regions on eight distinct cutoff layers. The receiver optics collect the reflected wavefront and project them onto the vertical detector array with 12 antennas. Utilizing optimized Field Curvature adjustment lenses in the receiver optics, the front-end optics system provides a flexible and perfect matching between the image plane and a specified cutoff layer in the plasma, which ensures the correct data interpretation of density fluctuation measurement. (paper)

  14. Characterization of X-UV multilayers by grazing incidence X-ray reflectometry

    International Nuclear Information System (INIS)

    Nevot, L.; Pardo, B.; Corno, J.

    1988-01-01

    The performance of multilayers at the X-UV wavelengths depends upon the structural and geometrical imperfections of the deposited materials. These two respective contributions are not easily separated when only one Bragg peak is recorded, as is usually the case in the X-UV range, so a prediction of the performance at other wavelengths appears rather doubtful. We show how grazing incidence X-ray reflectometry (using Cu Kα 1 radiation) allows the precise evaluation of both interfacial roughnesses and thickness errors, as well as their variations through the stacks. As examples, we analyse three (W/C) multilayers with periods between 3 to 6 nm and up to 40 layers

  15. A Tutorial on Basic Principles of Microwave Reflectometry Applied to Fluctuation Measurements in Fusion Plasmas

    International Nuclear Information System (INIS)

    Nazikian, R.; Kramer, G.J.; Valeo, E.

    2001-01-01

    Microwave reflectometry is now routinely used for probing the structure of magnetohydrodynamic and turbulent fluctuations in fusion plasmas. Conditions specific to the core of tokamak plasmas, such as small amplitude of density irregularities and the uniformity of the background plasma, have enabled progress in the quantitative interpretation of reflectometer signals. In particular, the extent of applicability of the 1-D [one-dimensional] geometric optics description of the reflected field is investigated by direct comparison to 1-D full wave analysis. Significant advances in laboratory experiments are discussed which are paving the way towards a thorough understanding of this important measurement technique. Data is presented from the Tokamak Fusion Test Reactor [R. Hawryluk, Plasma Physics and Controlled Fusion 33 (1991) 1509] identifying the validity of the geometric optics description of the scattered field and demonstrating the feasibility of imaging turbulent fluctuations in fusion scale devices

  16. An automatic time domain reflectometry device to measure and store soil water contents for stand-alone field use

    NARCIS (Netherlands)

    Elsen, van den H.G.M.; Kokot, J.; Skierucha, W.; Halbertsma, J.M.

    1995-01-01

    A field set-up was developed to measure soil moisture content on ten different positions using the time domain reflectometry (TDR) technique. The set-up works on a 12 V battery or solar panel system, independent of an external power source, has low power consumption, and compact dimensions. The

  17. Novel analysis technique for measuring edge density fluctuation profiles with reflectometry in the Large Helical Device

    Science.gov (United States)

    Creely, A. J.; Ida, K.; Yoshinuma, M.; Tokuzawa, T.; Tsujimura, T.; Akiyama, T.; Sakamoto, R.; Emoto, M.; Tanaka, K.; Michael, C. A.

    2017-07-01

    A new method for measuring density fluctuation profiles near the edge of plasmas in the Large Helical Device (LHD) has been developed utilizing reflectometry combined with pellet-induced fast density scans. Reflectometer cutoff location was calculated by proportionally scaling the cutoff location calculated with fast far infrared laser interferometer (FIR) density profiles to match the slower time resolution results of the ray-tracing code LHD-GAUSS. Plasma velocity profile peaks generated with this reflectometer mapping were checked against velocity measurements made with charge exchange spectroscopy (CXS) and were found to agree within experimental uncertainty once diagnostic differences were accounted for. Measured density fluctuation profiles were found to peak strongly near the edge of the plasma, as is the case in most tokamaks. These measurements can be used in the future to inform inversion methods of phase contrast imaging (PCI) measurements. This result was confirmed with both a fixed frequency reflectometer and calibrated data from a multi-frequency comb reflectometer, and this method was applied successfully to a series of discharges. The full width at half maximum of the turbulence layer near the edge of the plasma was found to be only 1.5-3 cm on a series of LHD discharges, less than 5% of the normalized minor radius.

  18. Reflectometry simulation as a tool to explore new schemes of characterizing the fusion plasma turbulence

    International Nuclear Information System (INIS)

    Heuraux, S; Silva, F da; Gusakov, E; Popov, A Yu; Kosolapova, N; Syisoeva, K V

    2013-01-01

    A first step towards the measurement of turbulence characteristics or transient events required for the understanding of turbulent transport is to build an interpretative model able to link the measurements of a given diagnostic to a wanted parameter of the turbulence, and simulation helps us to do that. To obtain density fluctuation parameters in fusion plasmas, microwaves can be used. However, the interpretation of the received signals requires generally sophisticated data processing to extract an exact evaluation of the wanted parameters. Simulations of electromagnetic wave propagation in turbulent plasmas permit to identify the main processes involved in probing wave-fluctuations interaction and the reflectometry signature of the expected events, which gives ideas to model them. It is shown here how simulations have permitted to exhibit the role of resonances of the probing wave induced by turbulence and to explain part of phase jumps seen during reflectometer measurements. The multi-scattering phenomena can be modelled by a photon diffusion equation which can be used to provide information on the turbulence at density fluctuations levels higher than allowed by usual methods. The reflectometry simulations show that at high level of turbulence a competition between the resonances generation mechanism, able to maintain the probing depth, and the Bragg backscattering exists. Its consequences on turbulence characterisation are discussed.

  19. GEROS-ISS: GNSS REflectometry, Radio Occultation and Scatterometry onboard the International Space Station

    DEFF Research Database (Denmark)

    Wickert, Jens; Cardellach, Estel; Bandeiras, Jorge

    2016-01-01

    GEROS-ISS stands for GNSS REflectometry, radio occultation, and scatterometry onboard the International Space Station (ISS). It is a scientific experiment, successfully proposed to the European Space Agency in 2011. The experiment as the name indicates will be conducted on the ISS. The main focus...... of GEROS-ISS is the dedicated use of signals from the currently available Global Navigation Satellite Systems (GNSS) in L-band for remote sensing of the Earth with a focus to study climate change. Prime mission objectives are the determination of the altimetric sea surface height of the oceans...

  20. Time domain reflectometry measured moisture content of sewage sludge compost across temperatures.

    Science.gov (United States)

    Cai, Lu; Chen, Tong-Bin; Gao, Ding; Liu, Hong-Tao; Chen, Jun; Zheng, Guo-Di

    2013-01-01

    Time domain reflectometry (TDR) is a prospective measurement technology for moisture content of sewage sludge composting material; however, a significant dependence upon temperature has been observed. The objective of this study was to assess the impacts of temperature upon moisture content measurement and determine if TDR could be used to monitor moisture content in sewage sludge compost across a range of temperatures. We also investigated the combined effects of temperature and conductivity on moisture content measurement. The results revealed that the moisture content of composting material could be determined by TDR using coated probes, even when the measured material had a moisture content of 0.581 cm(3)cm(-3), temperature of 70°C and conductivity of 4.32 mS cm(-1). TDR probes were calibrated as a function of dielectric properties that included temperature effects. When the bulk temperature varied from 20°C to 70°C, composting material with 0.10-0.70 cm(3)cm(-3) moisture content could be measured by TDR using coated probes, and calibrations based on different temperatures minimized the errors. Copyright © 2012. Published by Elsevier Ltd.

  1. Calibrating electromagnetic induction conductivities with time-domain reflectometry measurements

    Science.gov (United States)

    Dragonetti, Giovanna; Comegna, Alessandro; Ajeel, Ali; Piero Deidda, Gian; Lamaddalena, Nicola; Rodriguez, Giuseppe; Vignoli, Giulio; Coppola, Antonio

    2018-02-01

    This paper deals with the issue of monitoring the spatial distribution of bulk electrical conductivity, σb, in the soil root zone by using electromagnetic induction (EMI) sensors under different water and salinity conditions. To deduce the actual distribution of depth-specific σb from EMI apparent electrical conductivity (ECa) measurements, we inverted the data by using a regularized 1-D inversion procedure designed to manage nonlinear multiple EMI-depth responses. The inversion technique is based on the coupling of the damped Gauss-Newton method with truncated generalized singular value decomposition (TGSVD). The ill-posedness of the EMI data inversion is addressed by using a sharp stabilizer term in the objective function. This specific stabilizer promotes the reconstruction of blocky targets, thereby contributing to enhance the spatial resolution of the EMI results in the presence of sharp boundaries (otherwise smeared out after the application of more standard Occam-like regularization strategies searching for smooth solutions). Time-domain reflectometry (TDR) data are used as ground-truth data for calibration of the inversion results. An experimental field was divided into four transects 30 m long and 2.8 m wide, cultivated with green bean, and irrigated with water at two different salinity levels and using two different irrigation volumes. Clearly, this induces different salinity and water contents within the soil profiles. For each transect, 26 regularly spaced monitoring soundings (1 m apart) were selected for the collection of (i) Geonics EM-38 and (ii) Tektronix reflectometer data. Despite the original discrepancies in the EMI and TDR data, we found a significant correlation of the means and standard deviations of the two data series; in particular, after a low-pass spatial filtering of the TDR data. Based on these findings, this paper introduces a novel methodology to calibrate EMI-based electrical conductivities via TDR direct measurements. This

  2. Terahertz reflectometry imaging for low and high grade gliomas

    Science.gov (United States)

    Ji, Young Bin; Oh, Seung Jae; Kang, Seok-Gu; Heo, Jung; Kim, Sang-Hoon; Choi, Yuna; Song, Seungri; Son, Hye Young; Kim, Se Hoon; Lee, Ji Hyun; Haam, Seung Joo; Huh, Yong Min; Chang, Jong Hee; Joo, Chulmin; Suh, Jin-Suck

    2016-01-01

    Gross total resection (GTR) of glioma is critical for improving the survival rate of glioma patients. One of the greatest challenges for achieving GTR is the difficulty in discriminating low grade tumor or peritumor regions that have an intact blood brain barrier (BBB) from normal brain tissues and delineating glioma margins during surgery. Here we present a highly sensitive, label-free terahertz reflectometry imaging (TRI) that overcomes current key limitations for intraoperative detection of World Health Organization (WHO) grade II (low grade), and grade III and IV (high grade) gliomas. We demonstrate that TRI provides tumor discrimination and delineation of tumor margins in brain tissues with high sensitivity on the basis of Hematoxylin and eosin (H&E) stained image. TRI may help neurosurgeons to remove gliomas completely by providing visualization of tumor margins in WHO grade II, III, and IV gliomas without contrast agents, and hence, improve patient outcomes. PMID:27782153

  3. Detection and characterization of corrosion of bridge cables by time domain reflectometry

    Science.gov (United States)

    Liu, Wei; Hunsperger, Robert G.; Folliard, Kevin; Chajes, Michael J.; Barot, Jignesh; Jhaveri, Darshan; Kunz, Eric

    1999-02-01

    In this paper, we develop and demonstrate a nondestructive evaluation technique for corrosion detection of embedded or encased steel cables. This technique utilizes time domain reflectometry (TDR), which has been traditionally used to detect electrical discontinuities in transmission lines. By applying a sensor wire along with the bridge cable, we can model the cable as an asymmetric, twin-conductor transmission line. Physical defects of the bridge cable will change the electromagnetic properties of the line and can be detected by TDR. Furthermore, different types of defects can be modeled analytically, and identified using TDR. TDR measurement results from several fabricated bridge cable sections with built-in defects are reported.

  4. First steps of ion beam mixing: study by X-ray reflectometry and neutron diffraction

    International Nuclear Information System (INIS)

    Le Boite, M.G.

    1987-12-01

    There are several processes involved in ion beam mixing: ballistic processes, chemical driving forces and radiation enhanced diffusion. Experiments usually performed on bilayers irradiated with heavy elements and characterized by Rutherford backscattering (R.B.S.), have shown that the measured mixing rate is always higher than the calculated one, taking into account ballistic effects only. Besides classical R.B.S. experiments on NiAu and NiPt bilayers irradiated with Xe, we have used another technique of characterization: X-ray reflectometry and neutron diffraction, performed on multilayers irradiated with He. The systems are NiAu, NiPt, NiPd and NiAg, which behave similarly from the ballistic point of view, but have very different heats of mixing. In these experiments, the range of deposited energy density is very low, in contrast to heavy ions irradiation: this has allowed us to reach very low diffusion coefficient, never observed before. The dependence of the diffusion coefficient on the heat of mixing is in agreement with the one theoretically calculated. For the NiAg system, which has a positive heat of mixing, the measured diffusion coefficient is smaller than the ballistic one: a decrease of the ballistic mixing rate is seen for the first time. In this work, we have shown the interest of the reflectometry techniques (X-ray and neutrons); we have used a simple model to analyze the ion beam mixing, when elementary processes are involved

  5. Thermal analysis of the in-vessel components of the ITER plasma-position reflectometry

    Energy Technology Data Exchange (ETDEWEB)

    Quental, P. B., E-mail: pquental@ipfn.tecnico.ulisboa.pt; Policarpo, H.; Luís, R.; Varela, P. [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa (Portugal)

    2016-11-15

    The ITER plasma position reflectometry system measures the edge electron density profile of the plasma, providing real-time supplementary contribution to the magnetic measurements of the plasma-wall distance. Some of the system components will be in direct sight of the plasma and therefore subject to plasma and stray radiation, which may cause excessive temperatures and stresses. In this work, thermal finite element analysis of the antenna and adjacent waveguides is conducted with ANSYS V17 (ANSYS® Academic Research, Release 17.0, 2016). Results allow the identification of critical temperature points, and solutions are proposed to improve the thermal behavior of the system.

  6. Dendrimer sensors probed with neutron reflectometry

    International Nuclear Information System (INIS)

    Cavaye, Hamish; Smith, Arthur R.G.; Burn, Paul L.; Lo, Shih-Chun; Meredith, Paul; Gentle, Ian R.; James, Michael; Nelson, Andrew

    2009-01-01

    Full text: Oxidative photoluminescence (PL) quenching utilizing conjugated polymers as the sensing has proved to be one of the best of many methods for sensing explosive analytes.[1] However are a number of issues that can make polymers difficult to work with, including complex morphologies reproducibility of syntheses, and the need to include elaborate structures to reduce the packing of the polymer chains. Dendrimers, consisting of a core, dendrons, and surface groups, address these issues by being monodisperse and modular in their design. Determining how analytes are sequestered into thin films is important for solid-state sensors. We show that thin (230 ± 30 A ) and thick (750 ± 50 A) films of a first-generation dendrimer comrised of 2-ethylhexyloxy surface groups, biphenyl-based dendrons, and a 9,9,9',9'-tetra-n-propyl-2,2'-bifluorene core, can rapidly and reversibly detect p-nitrotoll oxidative luminescence quenching. For both the thin and thick films the PL is quenched by just 4 s . Combined PL and neutron reflectometry measurements on pristine and analyte-satura showed that during the adsorption process the films swelled, being on average 4% thicker for thin and thick dendrimer films. At the same time the PL was completely quenched. On removal of the analyte the films returned to their original thickness and scattering length density, and the restored, showing that the sensing process was fully reversible.

  7. Advancing Wetlands Mapping and Monitoring with GNSS Reflectometry

    Science.gov (United States)

    Zuffada, Cinzia; Chew, Clara; Nghiem, Son V.; Shah, Rashmi; Podest, Erika; Bloom, A. Anthony; Koning, Alexandra; Small, Eric; Schimel, David; Reager, J. T.; Mannucci, Anthony; Williamson, Walton; Cardellach, Estel

    2016-08-01

    Wetland dynamics is crucial to address changes in both atmospheric methane (CH4) and terrestrial water storage. Yet, both spatial distribution and temporal variability of wetlands remain highly unconstrained despite the existence of remote sensing products from past and present satellite sensors. An innovative approach to mapping wetlands is offered by the Global Navigation Satellite System Reflectometry (GNSS-R), which is a bistatic radar concept that takes advantage of the ever increasing number of GNSS transmitting satellites to yield many randomly distributed measurements with broad-area global coverage and rapid revisit time. Hence, this communication presents the science motivation for mapping of wetlands and monitoring of their dynamics, and shows the relevance of the GNSS-R technique in this context, relative to and in synergy with other existing measurement systems. Additionally, the communication discusses results of our data analysis on wetlands in the Amazon, specifically from the initial analysis of satellite data acquired by the TechDemoSat-1 mission launched in 2014. Finally, recommendations are provided for the design of a GNSS-R mission specifically to address wetlands science issues.

  8. Simultaneous polarized neutron reflectometry and anisotropic magnetoresistance measurements.

    Science.gov (United States)

    Demeter, J; Teichert, A; Kiefer, K; Wallacher, D; Ryll, H; Menéndez, E; Paramanik, D; Steitz, R; Van Haesendonck, C; Vantomme, A; Temst, K

    2011-03-01

    A novel experimental facility to carry out simultaneous polarized neutron reflectometry (PNR) and anisotropic magnetoresistance (AMR) measurements is presented. Performing both techniques at the same time increases their strength considerably. The proof of concept of this method is demonstrated on a CoO/Co bilayer exchange bias system. Although information on the same phenomena, such as the coercivity or the reversal mechanism, can be separately obtained from either of these techniques, the simultaneous application optimizes the consistency between both. In this way, possible differences in experimental conditions, such as applied magnetic field amplitude and orientation, sample temperature, magnetic history, etc., can be ruled out. Consequently, only differences in the fundamental sensitivities of the techniques can cause discrepancies in the interpretation between the two. The almost instantaneous information obtained from AMR can be used to reveal time-dependent effects during the PNR acquisition. Moreover, the information inferred from the AMR measurements can be used for optimizing the experimental conditions for the PNR measurements in a more efficient way than with the PNR measurements alone.

  9. Simulation of Optical and Synthetic Imaging using Microwave Reflectometry

    International Nuclear Information System (INIS)

    Kramer, G.J.; Nazikian, R.; Valeo, E.

    2004-01-01

    Two-dimensional full-wave time-dependent simulations in full plasma geometry are presented which show that conventional reflectometry (without a lens) can be used to synthetically image density fluctuations in fusion plasmas under conditions where the parallel correlation length greatly exceeds the poloidal correlation length of the turbulence. The advantage of synthetic imaging is that the image can be produced without the need for a large lens of high optical quality, and each frequency that is launched can be independently imaged. A particularly simple arrangement, consisting of a single receiver located at the midpoint of a microwave beam propagating along the plasma midplane is shown to suffice for imaging purposes. However, as the ratio of the parallel to poloidal correlation length decreases, a poloidal array of receivers needs to be used to synthesize the image with high accuracy. Simulations using DIII-D relevant parameters show the similarity of synthetic and optical imaging in present-day experiments

  10. Simulation of Optical and Synthetic Imaging using Microwave Reflectometry

    Energy Technology Data Exchange (ETDEWEB)

    G.J. Kramer; R. Nazikian; E. Valeo

    2004-01-16

    Two-dimensional full-wave time-dependent simulations in full plasma geometry are presented which show that conventional reflectometry (without a lens) can be used to synthetically image density fluctuations in fusion plasmas under conditions where the parallel correlation length greatly exceeds the poloidal correlation length of the turbulence. The advantage of synthetic imaging is that the image can be produced without the need for a large lens of high optical quality, and each frequency that is launched can be independently imaged. A particularly simple arrangement, consisting of a single receiver located at the midpoint of a microwave beam propagating along the plasma midplane is shown to suffice for imaging purposes. However, as the ratio of the parallel to poloidal correlation length decreases, a poloidal array of receivers needs to be used to synthesize the image with high accuracy. Simulations using DIII-D relevant parameters show the similarity of synthetic and optical imaging in present-day experiments.

  11. Multimodal ophthalmic imaging using handheld spectrally encoded coherence tomography and reflectometry (SECTR)

    Science.gov (United States)

    Leeburg, Kelsey C.; El-Haddad, Mohamed T.; Malone, Joseph D.; Terrones, Benjamin D.; Tao, Yuankai K.

    2018-02-01

    Scanning laser ophthalmoscopy (SLO) provides high-speed, noninvasive en face imaging of the retinal fundus. Optical coherence tomography (OCT) is the current "gold-standard" for ophthalmic diagnostic imaging and enables depth-resolved visualization of ophthalmic structures and image-based surrogate biomarkers of disease. We present a compact optical and mechanical design for handheld spectrally encoded coherence tomography and reflectometry (SECTR) for multimodality en face spectrally encoded reflectometry (SER) and cross-sectional OCT imaging. We custom-designed a double-pass telecentric scan lens, which halves the size of 4-f optical relays and allowed us to reduce the footprint of our SECTR scan-head by a factor of >2.7x (volume) over our previous design. The double-pass scan lens was optimized for diffraction-limited performance over a +/-10° scan field. SECTR optics and optomechanics were combined in a compact rapid-prototyped enclosure with dimensions 87 x 141.8 x 137 mm (w x h x d). SECTR was implemented using a custom-built 400 kHz 1050 nm swept-source. OCT and SER were simultaneously digitized on dual input channels of a 4 GS/s digitizer at 1.4 GS/s per channel. In vivo human en face SER and cross-sectional OCT images were acquired at 350 fps. OCT volumes of 1000 B-scans were acquired in 2.86 s. We believe clinical translation of our compact handheld design will benefit point-of-care ophthalmic diagnostics in patients who are unable to be imaged on conventional slit-lamp based systems, such as infants and the bedridden. When combined with multi-volumetric registration methods, handheld SECTR will have advantages in motion-artifact free imaging over existing handheld technologies.

  12. Separation and correlation of structural and magnetic roughness in a Ni thin film by polarized off-specular neutron reflectometry.

    Science.gov (United States)

    Singh, Surendra; Basu, Saibal

    2009-02-04

    Diffuse (off-specular) neutron and x-ray reflectometry has been used extensively for the determination of interface morphology in solids and liquids. For neutrons, a novel possibility is off-specular reflectometry with polarized neutrons to determine the morphology of a magnetic interface. There have been few such attempts due to the lower brilliance of neutron sources, though magnetic interaction of neutrons with atomic magnetic moments is much easier to comprehend and easily tractable theoretically. We have obtained a simple and physically meaningful expression, under the Born approximation, for analyzing polarized diffuse (off-specular) neutron reflectivity (PDNR) data. For the first time PDNR data from a Ni film have been analyzed and separate chemical and magnetic morphologies have been quantified. Also specular polarized neutron reflectivity measurements have been carried out to measure the magnetic moment density profile of the Ni film. The fit to PDNR data results in a longer correlation length for in-plane magnetic roughness than for chemical (structural) roughness. The magnetic interface is smoother than the chemical interface.

  13. Progress in the development of phase-sensitive neutron reflectometry methods

    International Nuclear Information System (INIS)

    Majkrzak, C.F.; Berk, N.F.; Kienzle, P.; Perez-Salas, U.

    2009-01-01

    It has been a number of years since phase-sensitive specular neutron reflectometry (PSNR) methods employing reference layers were first introduced to help remove the ambiguity inherent in the reconstruction of scattering length density (SLD) depth profiles (Majkrzak, C. F.; Berk, N. F. Physica B 2003, 336, 27) from specular reflectivity measurements. Although a number of scientific applications of PSNR techniques have now been successfully realized (Majkrzak, C. F.; Berk, N. F.; Perez-Salas, U. A. Langmuir 2003, 19, 7796 and references therein), in certain cases practical difficulties remain. In this article, we describe possible solutions to two specific problems: (1) the need for explicit, detailed knowledge of the SLD profile of a given reference layer of finite thickness; and (2) for a reference layer of finite thickness in which only two density variations are possible, how to identify which of two mathematical solutions corresponds to the true physical structure.

  14. Progress in the development of phase-sensitive neutron reflectometry methods.

    Energy Technology Data Exchange (ETDEWEB)

    Majkrzak, C. F.; Berk, N. F.; Kienzle, P.; Perez-Salas, U. (Materials Science Division); (NIST Center for Neutron Research)

    2009-01-01

    It has been a number of years since phase-sensitive specular neutron reflectometry (PSNR) methods employing reference layers were first introduced to help remove the ambiguity inherent in the reconstruction of scattering length density (SLD) depth profiles (Majkrzak, C. F.; Berk, N. F. Physica B 2003, 336, 27) from specular reflectivity measurements. Although a number of scientific applications of PSNR techniques have now been successfully realized (Majkrzak, C. F.; Berk, N. F.; Perez-Salas, U. A. Langmuir 2003, 19, 7796 and references therein), in certain cases practical difficulties remain. In this article, we describe possible solutions to two specific problems: (1) the need for explicit, detailed knowledge of the SLD profile of a given reference layer of finite thickness; and (2) for a reference layer of finite thickness in which only two density variations are possible, how to identify which of two mathematical solutions corresponds to the true physical structure.

  15. Innovative Sea Surface Monitoring with GNSS-Reflectometry aboard ISS: Overview and Recent Results from GEROS-ISS

    DEFF Research Database (Denmark)

    Wickert, Jens; Andersen, Ole Baltazar; Bandeiras, J.

    GEROS-ISS (GEROS hereafter) stands for GNSS REflectometry, Radio Occultation and Scatterometry onboard the International Space Station. It is a scientific experiment, proposed to the European Space Agency (ESA)in 2011 for installation aboard the ISS. The main focus of GEROS is the dedicated use o...... of signals from the currently available Global Navigation Satellite Systems (GNSS) for remote sensing of the System Earth with focus to Climate Change characterisation. The GEROS mission idea and the current status are briefly reviewed....

  16. Landfill cover performance monitoring using time domain reflectometry

    International Nuclear Information System (INIS)

    Neher, E.R.; Cotten, G.B.; McElroy, D.

    1998-01-01

    Time domain reflectometry (TDR) systems were installed to monitor soil moisture in two newly constructed landfill covers at the Idaho National Engineering and Environmental Laboratory. Each TDR system includes four vertical arrays with each array consisting of four TDR probes located at depths of 15, 30, 45, and 60 cm. The deepest probes at 60 cm were installed beneath a compacted soil layer to analyze infiltration through the compacted layer. Based on the TDR data, infiltration through the two covers between March and October, 1997 ranged from less than measurable to 1.5 cm. However, due to a prohibition on penetrating the buried waste and resulting limits on probe placement depths, deeper percolation was not evaluated. Some of the advantages found in the application of TDR for infiltration monitoring at this site are the relative low cost and rugged nature of the equipment. Also, of particular importance, the ability to collect frequent moisture measurements allows the capture and evaluation of soil moisture changes resulting from episodic precipitation events. Disadvantages include the inability to install the probes into the waste, difficulties in interpretation of infiltration during freeze/thaw periods, and some excessive noise in the data

  17. Enhancement of accuracy in shape sensing of surgical needles using optical frequency domain reflectometry in optical fibers.

    Science.gov (United States)

    Parent, Francois; Loranger, Sebastien; Mandal, Koushik Kanti; Iezzi, Victor Lambin; Lapointe, Jerome; Boisvert, Jean-Sébastien; Baiad, Mohamed Diaa; Kadoury, Samuel; Kashyap, Raman

    2017-04-01

    We demonstrate a novel approach to enhance the precision of surgical needle shape tracking based on distributed strain sensing using optical frequency domain reflectometry (OFDR). The precision enhancement is provided by using optical fibers with high scattering properties. Shape tracking of surgical tools using strain sensing properties of optical fibers has seen increased attention in recent years. Most of the investigations made in this field use fiber Bragg gratings (FBG), which can be used as discrete or quasi-distributed strain sensors. By using a truly distributed sensing approach (OFDR), preliminary results show that the attainable accuracy is comparable to accuracies reported in the literature using FBG sensors for tracking applications (~1mm). We propose a technique that enhanced our accuracy by 47% using UV exposed fibers, which have higher light scattering compared to un-exposed standard single mode fibers. Improving the experimental setup will enhance the accuracy provided by shape tracking using OFDR and will contribute significantly to clinical applications.

  18. The Rise of GNSS Reflectometry for Earth Remote Sensing

    Science.gov (United States)

    Zuffada, Cinzia; Li, Zhijin; Nghiem, Son V.; Lowe, Steve; Shah, Rashmi; Clarizia, Maria Paola; Cardellach, Estel

    2015-01-01

    The Global Navigation Satellite System (GNSS) reflectometry, i.e. GNSS-R, is a novel remote-sensing technique first published in that uses GNSS signals reflected from the Earth's surface to infer its surface properties such as sea surface height (SSH), ocean winds, sea-ice coverage, vegetation, wetlands and soil moisture, to name a few. This communication discusses the scientific value of GNSS-R to (a) furthering our understanding of ocean mesoscale circulation toward scales finer than those that existing nadir altimeters can resolve, and (b) mapping vegetated wetlands, an emerging application that might open up new avenues to map and monitor the planet's wetlands for methane emission assessments. Such applications are expected to be demonstrated by the availability of data from GEROS-ISS, an ESA experiment currently in phase A, and CyGNSS [3], a NASA mission currently in development. In particular, the paper details the expected error characteristics and the role of filtering played in the assimilation of these data to reduce the altimetric error (when averaging many measurements).

  19. Nd:YAG-laser-based time-domain reflectometry measurements of the intrinsic reflection signature from PMMA fiber splices

    Science.gov (United States)

    Lawson, Christopher M.; Michael, Robert R., Jr.; Dressel, Earl M.; Harmony, David W.

    1991-12-01

    Optical time domain reflectometry (OTDR) measurements have been performed on polished polymethylmethacrylate (PMMA) plastic fiber splices. After the dominant splice reflection sources due to surface roughness, inexact index matching, and fiber core misalignment were eliminated, an intrinsic OTDR signature 3 - 8 dB above the Rayleigh backscatter floor remained with all tested fibers. This minimum splice reflectivity exhibits characteristics that are consistent with sub-surface polymer damage and can be used for detection of PMMA fiber splices.

  20. Measurements of effective non-rainfall in soil with the use of time-domain reflectometry technique

    Science.gov (United States)

    Nakonieczna, Anna; Kafarski, Marcin; Wilczek, Andrzej; Szypłowska, Agnieszka; Skierucha, Wojciech

    2014-05-01

    The non-rainfall vectors are fog, dew, hoarfrost and vapour adsorption directly from the atmosphere. The measurements of the amount of water supplied to the soil due to their temporary existence are essential, because in dry areas such water uptake can exceed that of rainfall. Although several devices and methods were proposed for estimating the effective non-rainfall input into the soil, the measurement standard has not yet been established. This is mainly due to obstacles in measuring small water additions to the medium, problems with taking readings in actual soil samples and atmospheric disturbances during their course in natural environment. There still exists the need for automated devices capable of measuring water deposition on real-world soil surfaces, whose resolution is high enough to measure the non-rainfall intensity and increase rate, which are usually very low. In order to achieve the desirable resolution and accuracy of the effective non-rainfall measurements the time-domain reflectometry (TDR) technique was employed. The TDR sensor designed and made especially for the purpose was an untypical waveguide. It consisted of a base made of laminate covered with copper, which served as a bottom of a cuboidal open container in which the examined materials were placed, and a copper signal wire placed on the top of the container. The wire adhered along its entire length to the tested material in order to eliminate the formation of air gaps between the two, what enhanced the accuracy of the measurements. The tested porous materials were glass beads, rinsed sand and three soil samples, which were collected in south-eastern Poland. The diameter ranges of their constituent particles were measured with the use of the laser diffraction technique. The sensor filled with the wetted material was placed on a scale and connected to the TDR meter. The automated readings of mass and TDR time were collected simultaneously every minute. The TDR time was correlated with the

  1. The Impact of Inter-Modulation Components on Interferometric GNSS-Reflectometry

    Directory of Open Access Journals (Sweden)

    Weiqiang Li

    2016-12-01

    Full Text Available The interferometric Global Navigation Satellite System Reflectometry (iGNSS-R exploits the full spectrum of the transmitted GNSS signal to improve the ranging performance for sea surface height applications. The Inter-Modulation (IM component of the GNSS signals is an additional component that keeps the power envelope of the composite signals constant. This extra component has been neglected in previous studies on iGNSS-R, in both modelling and instrumentation. This letter takes the GPS L1 signal as an example to analyse the impact of the IM component on iGNSS-R ocean altimetry, including signal-to-noise ratio, the altimetric sensitivity and the final altimetric precision. Analytical results show that previous estimates of the final altimetric precision were underestimated by a factor of 1 . 5 ∼ 1 . 7 due to the negligence of the IM component, which should be taken into account in proper design of the future spaceborne iGNSS-R altimetry missions.

  2. Influence of the liquid helium meniscus on neutron reflectometry data

    International Nuclear Information System (INIS)

    Kinane, C.J.; Kirichek, O.; Charlton, T.R.; McClintock, P.V.E.

    2016-01-01

    Neutron reflectometry offers a unique opportunity for the direct observation of nanostratification in 3 He- 4 He mixtures in the ultra-low temperature limit. Unfortunately the results of recent experiments could not be well-modelled on account of a seemingly anomalous variation of reflectivity with momentum transfer. We now hypothesize that this effect is attributable to an optical distortion caused by the liquid meniscus near the container wall. The validity of this idea is tested and confirmed through a subsidiary experiment on a D 2 O sample, showing that the meniscus can significantly distort results if the beam size in the horizontal plane is comparable with, or bigger than, the diameter of the container. The meniscus problem can be eliminated if the beam size is substantially smaller than the diameter of the container, such that reflection takes place only from the flat region of the liquid surface thus excluding the meniscus tails. Practical measures for minimizing the meniscus distortion effect are discussed.

  3. A systematic neutron reflectometry study on hydrogen absorption in thin Mg{sub 1-x}Al{sub x} alloy films

    Energy Technology Data Exchange (ETDEWEB)

    Fritzsche, H.; Poirier, E. [National Research Council of Canada, Chalk River, ON (Canada). Canadian Neutron Beam Centre; Haagsma, J.; Ophus, C.; Luber, E.; Harrower, C.T.; Mitlin, D. [Alberta Univ., Edmonton, AB (Canada). Dept. of Chemical and Materials Engineering; National Research Council of Canada, Edmonton, AB (Canada). National Inst. for Nanotechnology

    2010-10-15

    Various methods for storing hydrogen have been examined in an effort to find ways to store hydrogen in increasingly smaller volumes with decreasing weight of the whole hydrogen storage system. Metal hydrides, in which hydrogen is chemically bound to a metal atom, are considered to be very promising candidates for hydrogen storage because they have high gravimetric and volumetric storage capacities. This study investigated the effect of different magnesium (Mg) and aluminium (Al) ratios on the absorption and desorption properties of thin films. Neutron reflectometry (NR) was used in this study to better understand the absorption and desorption properties of commercially promising hydrogen storage materials. The large negative scattering length of hydrogen atoms changes the reflectivity curve substantially, so that NR can determine the total amount of stored hydrogen as well as the hydrogen distribution along the film normal, with nanometer resolution. In order to use NR, the samples must have smooth surfaces, and the film thickness should range between 10 and 200 nm. Thin Mg{sub 1-x}Al{sub x} alloy films (x = 0.2, 0.3, 0.4, 0.67) capped with a palladium (Pd) catalyst layer were used in this study. The NR experiments revealed that Mg{sub 0.7}Al{sub 0.3} is the optimum composition for this binary alloy system, with the highest amount of stored hydrogen and the lowest desorption temperature. All the thin films expanded by approximately 20 percent due to hydrogen absorption. The hydrogen was stored only in the MgAl layer without any hydrogen in the Pd layer. It was concluded that NR can be used to effectively determine the hydrogen profile in thin MgAl films. 29 refs., 5 figs.

  4. Dielectric relaxation and hydrogen bonding interaction in xylitol-water mixtures using time domain reflectometry

    Science.gov (United States)

    Rander, D. N.; Joshi, Y. S.; Kanse, K. S.; Kumbharkhane, A. C.

    2016-01-01

    The measurements of complex dielectric permittivity of xylitol-water mixtures have been carried out in the frequency range of 10 MHz-30 GHz using a time domain reflectometry technique. Measurements have been done at six temperatures from 0 to 25 °C and at different weight fractions of xylitol (0 xylitol-water can be well described by Cole-Davidson model having an asymmetric distribution of relaxation times. The dielectric parameters such as static dielectric constant and relaxation time for the mixtures have been evaluated. The molecular interaction between xylitol and water molecules is discussed using the Kirkwood correlation factor ( g eff ) and thermodynamic parameter.

  5. Multiple wall-reflection effect in adaptive-array differential-phase reflectometry on QUEST

    International Nuclear Information System (INIS)

    Idei, H.; Fujisawa, A.; Nagashima, Y.; Onchi, T.; Hanada, K.; Zushi, H.; Mishra, K.; Hamasaki, M.; Hayashi, Y.; Yamamoto, M.K.

    2016-01-01

    A phased array antenna and Software-Defined Radio (SDR) heterodyne-detection systems have been developed for adaptive array approaches in reflectometry on the QUEST. In the QUEST device considered as a large oversized cavity, standing wave (multiple wall-reflection) effect was significantly observed with distorted amplitude and phase evolution even if the adaptive array analyses were applied. The distorted fields were analyzed by Fast Fourier Transform (FFT) in wavenumber domain to treat separately the components with and without wall reflections. The differential phase evolution was properly obtained from the distorted field evolution by the FFT procedures. A frequency derivative method has been proposed to overcome the multiple-wall reflection effect, and SDR super-heterodyned components with small frequency difference for the derivative method were correctly obtained using the FFT analysis

  6. Application of off-specular polarized neutron reflectometry to measurements on an array of mesoscopic ferromagnetic disks

    International Nuclear Information System (INIS)

    Temst, K.; Van Bael, M. J.; Fritzsche, H.

    2001-01-01

    Using off-specular polarized neutron reflectometry with neutron spin analysis, we determined the magnetic properties of a large array of in-plane magnetized ferromagnetic Co disks. Resonant peaks are clearly observed in the off-specular reflectivity, due to the lateral periodicity of the disk array. Using polarized neutrons, the intensity of the resonant peak in the off-specular reflectivity is studied as a function of the magnetic field applied in the sample plane. Spin analysis of the reflected neutrons reveals the magnetization reversal and saturation within the disks. copyright 2001 American Institute of Physics

  7. High-resolution EELS investigation of the electronic structure of ilmenites

    NARCIS (Netherlands)

    Radtke, G.; Lazar, S.; Botton, G.A.

    2006-01-01

    The electronic structure of a series of compounds belonging to the ilmenite family is investigated using high resolution electron energy loss spectroscopy (EELS). The energy loss near edge structure (ELNES) of the O-K, Ti-L23 and transition metal L23 edges have been recorded in MnTiO3, FeTiO3,

  8. Monitoring Protein Fouling on Polymeric Membranes Using Ultrasonic Frequency-Domain Reflectometry

    Directory of Open Access Journals (Sweden)

    Robin Fong

    2011-08-01

    Full Text Available Novel signal-processing protocols were used to extend the in situ sensitivity of ultrasonic frequency-domain reflectometry (UFDR for real-time monitoring of microfiltration (MF membrane fouling during protein purification. Different commercial membrane materials, with a nominal pore size of 0.2 µm, were challenged using bovine serum albumin (BSA and amylase as model proteins. Fouling induced by these proteins was observed in flat-sheet membrane filtration cells operating in a laminar cross-flow regime. The detection of membrane-associated proteins using UFDR was determined by applying rigorous statistical methodology to reflection spectra of ultrasonic signals obtained during membrane fouling. Data suggest that the total power reflected from membrane surfaces changes in response to protein fouling at concentrations as low as 14 μg/cm2, and results indicate that ultrasonic spectra can be leveraged to detect and monitor protein fouling on commercial MF membranes.

  9. Two-dimensional full-wave code for reflectometry simulations in TJ-II

    International Nuclear Information System (INIS)

    Blanco, E.; Heuraux, S.; Estrada, T.; Sanchez, J.; Cupido, L.

    2004-01-01

    A two-dimensional full-wave code in the extraordinary mode has been developed to simulate reflectometry in TJ-II. The code allows us to study the measurement capabilities of the future correlation reflectometer that is being installed in TJ-II. The code uses the finite-difference-time-domain technique to solve Maxwell's equations in the presence of density fluctuations. Boundary conditions are implemented by a perfectly matched layer to simulate free propagation. To assure the stability of the code, the current equations are solved by a fourth-order Runge-Kutta method. Density fluctuation parameters such as fluctuation level, wave numbers, and correlation lengths are extrapolated from those measured at the plasma edge using Langmuir probes. In addition, realistic plasma shape, density profile, magnetic configuration, and experimental setup of TJ-II are included to determine the plasma regimes in which accurate information may be obtained

  10. DS-OCDMA Encoder/Decoder Performance Analysis Using Optical Low-Coherence Reflectometry

    Science.gov (United States)

    Fsaifes, Ihsan; Lepers, Catherine; Obaton, Anne-Francoise; Gallion, Philippe

    2006-08-01

    Direct-sequence optical code-division multiple-access (DS-OCDMA) encoder/decoder based on sampled fiber Bragg gratings (S-FBGs) is characterized using phase-sensitive optical low-coherence reflectometry (OLCR). The OLCR technique allows localized measurements of FBG wavelength and physical length inside one S-FBG. This paper shows how the discrepancies between specifications and measurements of the different FBGs have some impact on spectral and temporal pulse responses of the OCDMA encoder/decoder. The FBG physical lengths lower than the specified ones are shown to affect the mean optical power reflected by the OCDMA encoder/decoder. The FBG wavelengths that are detuned from each other induce some modulations of S-FBG reflectivity resulting in encoder/decoder sensitivity to laser wavelength drift of the OCDMA system. Finally, highlighted by this OLCR study, some solutions to overcome limitations in performance with the S-FBG technology are suggested.

  11. Nanostructure of polymer monolayer and polyelectrolyte brush at air/water interface by X-ray and neutron reflectometry

    Energy Technology Data Exchange (ETDEWEB)

    Matsuoka, Hideki; Mouri, Emiko; Matsumoto, Kozo [Kyoto Univ., Dept. of Polymer Chemistry, Kyoto (Japan)

    2003-03-01

    The nanostructure of amphiphilic diblock copolymer monolayer on water was directly investigated by in situ X-ray and neutron reflectivity techniques. The diblock copolymer consists of polysilacyclobutane, which is very flexible, as a hydrophobic block and polymethacrylic acid, an anionic polymer, as a hydrophilic block. The polymers with shorter hydrophilic segment formed a very smooth and uniform monolayer with hydrophobic layer on water and dense hydrophilic layer under the water. But the longer hydrophilic segment polymer formed three-layered monolayer with polyelectrolyte brush in addition to hydrophobic and dense hydrophilic layers. The dense hydrophilic layer is thought to be formed to avoid a contact between hydrophobic polymer layer and water. Its role is something like a 'carpet'. An additional interesting information is that the thickness of the 'carpet layer' is almost 15A, independent the surface pressure and hydrophilic polymer length. Highly quantitative information was obtained about the nanostructure of polymer brush under water by neutron reflectometry with the aid of contrast variation technique. X-ray and neutron reflectivity is a very powerful technique to investigate the nanostructure of surface and interfaces, which is important not only for surface nanotechnology but also industrial and medical applications. (author)

  12. Fibre-tree network for water-surface ranging using an optical time-domain reflectometry technique

    Directory of Open Access Journals (Sweden)

    Yoshiaki Yamabayashi

    2014-10-01

    Full Text Available To monitor water level at long distance, a fibre-based time-domain reflectometry network is proposed. A collimator at each fibre end of a tree-type network retrieves 1.55 μm wavelength pulses that are reflected back from remote surfaces. Since this enables a power-supply-free sensor network with non-metal media, this system is expected to be less susceptible to lightning strikes and power cuts than conventional systems that use electrically powered sensors and metal cables. In the present Letter, a successful simultaneous monitoring experiment of two water levels in the laboratory, as well as a trial for detecting a disturbed surface by beam-expanding is reported.

  13. Magnetic field pitch angle and perpendicular velocity measurements from multi-point time-delay estimation of poloidal correlation reflectometry

    Science.gov (United States)

    Prisiazhniuk, D.; Krämer-Flecken, A.; Conway, G. D.; Happel, T.; Lebschy, A.; Manz, P.; Nikolaeva, V.; Stroth, U.; the ASDEX Upgrade Team

    2017-02-01

    In fusion machines, turbulent eddies are expected to be aligned with the direction of the magnetic field lines and to propagate in the perpendicular direction. Time delay measurements of density fluctuations can be used to calculate the magnetic field pitch angle α and perpendicular velocity {{v}\\bot} profiles. The method is applied to poloidal correlation reflectometry installed at ASDEX Upgrade and TEXTOR, which measure density fluctuations from poloidally and toroidally separated antennas. Validation of the method is achieved by comparing the perpendicular velocity (composed of the E× B drift and the phase velocity of turbulence {{v}\\bot}={{v}E× B}+{{v}\\text{ph}} ) with Doppler reflectometry measurements and with neoclassical {{v}E× B} calculations. An important condition for the application of the method is the presence of turbulence with a sufficiently long decorrelation time. It is shown that at the shear layer the decorrelation time is reduced, limiting the application of the method. The magnetic field pitch angle measured by this method shows the expected dependence on the magnetic field, plasma current and radial position. The profile of the pitch angle reproduces the expected shape and values. However, comparison with the equilibrium reconstruction code cliste suggests an additional inclination of turbulent eddies at the pedestal position (2-3°). This additional angle decreases towards the core and at the edge.

  14. Low-Coherence Reflectometry for Refractive Index Measurements of Cells in Micro-Capillaries

    Science.gov (United States)

    Carpignano, Francesca; Rigamonti, Giulia; Mazzini, Giuliano; Merlo, Sabina

    2016-01-01

    The refractive index of cells provides insights into their composition, organization and function. Moreover, a good knowledge of the cell refractive index would allow an improvement of optical cytometric and diagnostic systems. Although interferometric techniques undoubtedly represent a good solution for quantifying optical path variation, obtaining the refractive index of a population of cells non-invasively remains challenging because of the variability in the geometrical thickness of the sample. In this paper, we demonstrate the use of infrared low-coherence reflectometry for non-invasively quantifying the average refractive index of cell populations gently confined in rectangular glass micro-capillaries. A suspension of human red blood cells in plasma is tested as a reference. As a use example, we apply this technique to estimate the average refractive index of cell populations belonging to epithelial and hematological families. PMID:27727172

  15. High resolution shear wave reflection surveying for hydrogeological investigations

    International Nuclear Information System (INIS)

    Johnson, W.J.; Clark, J.C.

    1992-08-01

    The high resolution S-wave method has been developed to be a powerful tool in mapping subsurface lithology and in conducting groundwater investigations. The research has demonstrated that the resolution obtainable using S-waves in a Coastal Plain environment is more than double than that obtained using conventional reflection, which already offers a higher resolution than any other surface method. Where the mapping of thin clay layers functioning as aquitards or thin sand layers functioning as aquifers are critical to the understanding of groundwater flow, S-wave reflections offer unparalleled possibilities for nondestructive exploration. The field experiment at Cooke Crossroads, South Carolina enabled the detection and mapping of beds in the thickness range of one to three feet. The S-wave reflection technique, in combination with conventional P-wave reflection, has potential to directly detect confined and unconfined aquifers. This is a breakthrough technology that still requires additional research before it can be applied on a commercial basis. Aquifer systems were interpreted from the test data at Cooke Crossroads consistent with theoretical model. Additional research is need in assessing the theoretical response of P- and S-waves to subsurface interfaces within unconsolidated sediments of varying moisture content and lithology. More theoretical modeling and in situ testing are needed to bring our knowledge of these phenomena to the level that oil and gas researchers have done for fluids in sandstones

  16. Studying the superconductor-ferromagnet proximity effect with polarised neutron reflectometry

    Science.gov (United States)

    Satchell, Nathan; Cooper, Joshaniel; Kinane, Christy; Witt, James; Burnell, Gavin; Langridge, Sean

    At the interface between a superconductor (S) and ferromagnet (F), an inhomogeneity can convert singlet Cooper pairs into the (spin aligned) long ranged triplet component (LRTC). The manipulation of the LRTC forms the basis of the emerging field of super-spintronics. Several theoretical works predict modification to the local magnetic state inside the S layer with the inclusion of triplet Cooper pairs, however there are now several experimental observations which disagree on both the magnitude and direction of this induced moment (see for example and). Here we report on measurements of the proximity effect using polarised neutron reflectometry, a technique sensitive to changes in the total magnetisation of a S-F heterostructure. Our results suggest that a `smoking gun' direct signature of the LRTC is below the sensitivity of our technique, we are able to study the inverse effect namely a modification to the ferromagnetism by proximity to singlet superconductivity. These observations are supported by XMCD measurements showing changes to the Fe and Co below the S layer Tc.

  17. Simultaneous reflectometry and interferometry for measuring thin-film thickness and curvature

    Science.gov (United States)

    Arends, A. A.; Germain, T. M.; Owens, J. F.; Putnam, S. A.

    2018-05-01

    A coupled reflectometer-interferometer apparatus is described for thin-film thickness and curvature characterization in the three-phase contact line region of evaporating fluids. Validation reflectometry studies are provided for Au, Ge, and Si substrates and thin-film coatings of SiO2 and hydrogel/Ti/SiO2. For interferometry, liquid/air and solid/air interferences are studied, where the solid/air samples consisted of glass/air/glass wedges, cylindrical lenses, and molded polydimethylsiloxane lenses. The liquid/air studies are based on steady-state evaporation experiments of water and isooctane on Si and SiO2/Ti/SiO2 wafers. The liquid thin-films facilitate characterization of both (i) the nano-scale thickness of the absorbed fluid layer and (ii) the macro-scale liquid meniscus thickness, curvature, and curvature gradient profiles. For our validation studies with commercial lenses, the apparatus is shown to measure thickness profiles within 4.1%-10.8% error.

  18. Investigating Hydrocarbon Seep Environments with High-Resolution, Three-Dimensional Geographic Visualizations.

    Science.gov (United States)

    Doolittle, D. F.; Gharib, J. J.; Mitchell, G. A.

    2015-12-01

    Detailed photographic imagery and bathymetric maps of the seafloor acquired by deep submergence vehicles such as Autonomous Underwater Vehicles (AUV) and Remotely Operated Vehicles (ROV) are expanding how scientists and the public view and ultimately understand the seafloor and the processes that modify it. Several recently acquired optical and acoustic datasets, collected during ECOGIG (Ecosystem Impacts of Oil and Gas Inputs to the Gulf) and other Gulf of Mexico expeditions using the National Institute for Undersea Science Technology (NIUST) Eagle Ray, and Mola Mola AUVs, have been fused with lower resolution data to create unique three-dimensional geovisualizations. Included in these data are multi-scale and multi-resolution visualizations over hydrocarbon seeps and seep related features. Resolution of the data range from 10s of mm to 10s of m. When multi-resolution data is integrated into a single three-dimensional visual environment, new insights into seafloor and seep processes can be obtained from the intuitive nature of three-dimensional data exploration. We provide examples and demonstrate how integration of multibeam bathymetry, seafloor backscatter data, sub-bottom profiler data, textured photomosaics, and hull-mounted multibeam acoustic midwater imagery are made into a series a three-dimensional geovisualizations of actively seeping sites and associated chemosynthetic communities. From these combined and merged datasets, insights on seep community structure, morphology, ecology, fluid migration dynamics, and process geomorphology can be investigated from new spatial perspectives. Such datasets also promote valuable inter-comparisons of sensor resolution and performance.

  19. Interface characterization in B-based multilayer mirrors for next generation lithography

    International Nuclear Information System (INIS)

    Naujok, Philipp; Yulin, Sergiy; Müller, Robert; Kaiser, Norbert; Tünnermann, Andreas

    2016-01-01

    The interfaces in La/B_4C and LaN/B_4C multilayer mirrors designed for near normal incidence reflection of 6.x nm EUV light were investigated by grazing incidence X-ray reflectometry, high-resolution transmission electron microscopy and EUV reflectometry. The thickness and roughness asymmetries of the different interfaces in both studied systems have been identified. A development of interface roughness with an increasing number of bilayers was found by different investigation methods. For near normal incidence, R = 51.1% @ λ = 6.65 nm could be reached with our La/B_4C multilayer mirrors, whereas R = 58.1% was achieved with LaN/B_4C multilayers at the same wavelength. - Highlights: • Interface structure in B-based multilayer mirrors investigated. • Combining X-ray reflection, EUV reflection and transmission electron microscopy • Interface thickness and roughness asymmetry identified • Interface roughness increases with higher number of bilayers.

  20. Urethral pressure reflectometry in women with pelvic organ prolapse: a study of reproducibility.

    Science.gov (United States)

    Khayyami, Yasmine; Lose, Gunnar; Klarskov, Niels

    2017-05-01

    The mechanism of continence in women with pelvic organ prolapse (POP) before and after surgery remains unknown. Urethral pressure reflectometry (UPR) separates women with stress urinary incontinence (SUI) from continent women by measuring urethral opening pressure at an abdominal pressure of 50 cmH 2 O (P O-Abd 50 ). UPR can help identify women with POP at risk of postoperative de novo SUI. The aim of this study was to investigate the reproducibility of UPR in women with POP. Women with anterior or posterior vaginal wall prolapse were recruited for this prospective, observational study from our outpatient clinic. The women were examined with UPR on two occasions. Measurements were done at rest, and during squeezing and straining. Statistical analyses were performed using SAS 9.4. A Bland-Altman analysis with limits of agreement and coefficients of variation was used to determine the level of agreement between measurements. Paired t tests were used to estimate the difference; a two-tailed P value of rest or during squeezing or in the values of P O-Abd 50 . P O-Abd 50 showed limits of agreement of 15.3 cmH 2 O and a coefficient of variation of 9.9 %. UPR was found to be a highly reproducible method in women with POP. UPR may be used in future studies to help reveal urodynamic features predictive of postoperative de novo SUI in women with POP.

  1. Investigation of spatial resolution characteristics of an in vivo microcomputed tomography system

    Energy Technology Data Exchange (ETDEWEB)

    Ghani, Muhammad U. [Center for Biomedical engineering and School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK 73019 (United States); Zhou, Zhongxing [Center for Biomedical engineering and School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK 73019 (United States); School of Precision and Optoelectronics Engineering, Tianjin University, Tianjin 300072 (China); Ren, Liqiang; Wong, Molly; Li, Yuhua; Zheng, Bin [Center for Biomedical engineering and School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK 73019 (United States); Yang, Kai [Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114 (United States); Liu, Hong, E-mail: liu@ou.edu [Center for Biomedical engineering and School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK 73019 (United States)

    2016-01-21

    The spatial resolution characteristics of an in vivo microcomputed tomography (CT) system was investigated in the in-plane (x–y), cross plane (z) and projection imaging modes. The microCT system utilized in this study employs a flat panel detector with a 127 µm pixel pitch, a microfocus x-ray tube with a focal spot size ranging from 5–30 µm, and accommodates three geometric magnifications (M) of 1.72, 2.54 and 5.10. The in-plane modulation transfer function (MTF) curves were measured as a function of the number of projections, geometric magnification (M), detector binning and reconstruction magnification (M{sub Recon}). The in plane cutoff frequency (10% MTF) ranged from 2.31 lp/mm (M=1.72, 2×2 binning) to 12.56 lp/mm (M=5.10, 1×1 binning) and a bar pattern phantom validated those measurements. A slight degradation in the spatial resolution was observed when comparing the image reconstruction with 511 and 918 projections, whose effect was visible at the lower frequencies. Small value of M{sub Recon} has little or no impact on the in-plane spatial resolution owning to a stable system. Large value of M{sub Recon} has implications on the spatial resolution and it was evident when comparing the bar pattern images reconstructed with M{sub Recon}=1.25 and 2.5. The cross plane MTF curves showed that the spatial resolution increased as the slice thickness decreased. The cutoff frequencies in the projection imaging mode yielded slightly higher values as compared to the in-plane and cross plane modes at all the geometric magnifications (M). At M=5.10, the cutoff resolution of the projection and cross plane on an ultra-high contrast resolution bar chip phantom were 14.9 lp/mm and 13–13.5 lp/mm. Due to the finite focal spot size of the x-ray tube, the detector blur and the reconstruction kernel functions, the system's spatial resolution does not reach the limiting spatial resolution as defined by the Nyquist's detector criteria with an ideal point source

  2. A high spatial resolution distributed optical fiber grating sensing system based on OFDR

    Science.gov (United States)

    Dong, Ke; Xiong, Yuchuan; Wen, Hongqiao; Tong, Xinlin; Zhang, Cui; Deng, Chengwei

    2017-10-01

    A distributed optical fiber grating sensing system with large capacity and high spatial resolution is presented. Since highdensity identical weak grating array was utilized as sensing fiber, the multiplexing number was greatly increased, meanwhile, optical frequency domain reflectometry (OFDR) technology was used to implement high resolution distributed sensing system. In order to eliminate the nonlinear effect of tunable light source, a windowed FFT algorithm based on cubic spline interpolation was applied. The feasibility of the algorithm was experimentally testified, ultimately, the spatial resolution of system can reach mm-level. The influence of the crosstalk signal in the grating array on the OFDR system was analyzed. A method that a long enough delay fiber was added before the first FBG to remove crosstalk signal was proposed. The experiment was verified using an optical fiber with 113 uniform Bragg gratings at an interval of 10cm whose reflectivity are less than 1%. It demonstrates that crosstalk signal and measurement signal can be completely separated in the distance domain after adding a long enough delay fiber. Finally, the temperature experiment of distributed grating sensing system was carried out. The results display that each raster's center wavelength in the fiber link is independent of each other and the center wavelength drift has a good linear relationship with the temperature. The sensitivity of linear fitting is equal to 11.1pm/°C.

  3. Some aspects of time domain reflectometry, neutron scattering, and capacitance methods for soil water content measurement

    International Nuclear Information System (INIS)

    Evett, S.R.

    2000-01-01

    Soil-water measurements encounter particular problems related to the physics of the method used. For time domain reflectometry (TDR), these relate to wave form shape changes caused by soil, soil water, and TDR probe properties. Methods of wave form interpretation that overcome these problems are discussed and specific computer algorithms are presented. Neutron scattering is well understood, but calibration methods remain critical to accuracy and precision, and are discussed with recommendations for field calibration and use. Capacitance probes tend to exhibit very small radii of influence, thus are sensitive to small-scale changes in soil properties, and are difficult or impossible to field calibrate. Field comparisons of neutron and capacitance probes are presented. (author)

  4. Frequency Domain Reflectometry NDE for Aging Cables in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Glass, Samuel W.; Jones, Anthony M.; Fifield, Leonard S.; Hartman, Trenton S.

    2017-02-16

    Cable insulation polymers are among the more susceptible materials to age-related degradation within a nuclear power plant. This is recognized by both regulators and utilities, so all plants have developed cable aging management programs to detect damage before critical component failure in compliance with regulatory guidelines. Although a wide range of tools are available to evaluate cables and cable systems, cable aging management programs vary in how condition monitoring and nondestructive examinations are conducted as utilities search for the most reliable and cost-effective ways to assess cable system condition. Frequency domain reflectometry (FDR) is emerging as one valuable tool to locate and assess damaged portions of a cable system with minimal cost and only requires access in most cases to one of the cable terminal ends. Since laboratory studies to evaluate the use of FDR for inspection of aged cables can be expensive and data interpretation may be confounded by multiple factors which influence results, a model-based approach is desired to parametrically investigate the effect of insulation material damage in a controlled manner. This work describes development of a physics-based FDR model which uses finite element simulations of cable segments in conjunction with cascaded circuit element simulations to efficiently study a cable system. One or more segments of the cable system model have altered physical or electrical properties which represent the degree of damage and the location of the damage in the system. This circuit model is then subjected to a simulated FDR examination. The modeling approach is verified using several experimental cases and by comparing it to a commercial simulator suitable for simulation of some cable configurations. The model is used to examine a broad range of parameters including defect length, defect profile, degree of degradation, number and location of defects, FDR bandwidth, and addition of impedance-matched extensions to

  5. SU-E-J-197: Investigation of Microsoft Kinect 2.0 Depth Resolution for Patient Motion Tracking

    Energy Technology Data Exchange (ETDEWEB)

    Silverstein, E; Snyder, M [Wayne State University, Detroit, MI (United States)

    2015-06-15

    Purpose: Investigate the use of the Kinect 2.0 for patient motion tracking during radiotherapy by studying spatial and depth resolution capabilities. Methods: Using code written in C#, depth map data was abstracted from the Kinect to create an initial depth map template indicative of the initial position of an object to be compared to the depth map of the object over time. To test this process, simple setup was created in which two objects were imaged: a 40 cm × 40 cm board covered in non reflective material and a 15 cm × 26 cm textbook with a slightly reflective, glossy cover. Each object, imaged and measured separately, was placed on a movable platform with object to camera distance measured. The object was then moved a specified amount to ascertain whether the Kinect’s depth camera would visualize the difference in position of the object. Results: Initial investigations have shown the Kinect depth resolution is dependent on the object to camera distance. Measurements indicate that movements as small as 1 mm can be visualized for objects as close as 50 cm away. This depth resolution decreases linearly with object to camera distance. At 4 m, the depth resolution had decreased to observe a minimum movement of 1 cm. Conclusion: The improved resolution and advanced hardware of the Kinect 2.0 allows for increase of depth resolution over the Kinect 1.0. Although obvious that the depth resolution should decrease with increasing distance from an object given the decrease in number of pixels representing said object, the depth resolution at large distances indicates its usefulness in a clinical setting.

  6. Non-invasive, MRI-compatible fibreoptic device for functional near-IR reflectometry of human brain

    International Nuclear Information System (INIS)

    Sorvoja, H.S.S.; Myllylae, T S; Myllylae, Risto A; Kirillin, M Yu; Sergeeva, Ekaterina A; Elseoud, A A; Nikkinen, J; Tervonen, O; Kiviniemi, V

    2011-01-01

    A non-invasive device for measuring blood oxygen variations in human brain is designed, implemented, and tested for MRI compatibility. The device is based on principles of near-IR reflectometry; power LEDs serve as sources of probing radiation delivered to patient skin surface through optical fibres. Numerical Monte Carlo simulations of probing radiation propagation in a multilayer brain model are performed to evaluate signal levels at different source - detector separations at three operation wavelengths and an additional wavelength of 915 nm. It is shown that the device can be applied for brain activity studies using power LEDs operating at 830 and 915 nm, while employment of wavelength of 660 nm requires an increased probing power. Employment of the wavelength of 592 nm in the current configuration is unreasonable. (application of lasers and laser-optical methods in life sciences)

  7. Single-shot readout of accumulation mode Si/SiGe spin qubits using RF reflectometry

    Science.gov (United States)

    Volk, Christian; Martins, Frederico; Malinowski, Filip; Marcus, Charles M.; Kuemmeth, Ferdinand

    Spin qubits based on gate-defined quantum dots are promising systems for realizing quantum computation. Due to their low concentration of nuclear-spin-carrying isotopes, Si/SiGe heterostructures are of particular interest. While high fidelities have been reported for single-qubit and two-qubit gate operations, qubit initialization and measurement times are relatively slow. In order to develop fast read-out techniques compatible with the operation of spin qubits, we characterize double and triple quantum dots confined in undoped Si/Si0.7Ge0.3 heterostructures using accumulation and depletion gates and a nearby RF charge sensor dot. We implement a RF reflectometry technique that allows single-shot charge read-out at integration times on the order of a few μs. We show our recent advancement towards implementing spin qubits in these structures, including spin-selective single-shot read-out.

  8. Ultrasonic Reflectometry for Monitoring the Effect of Pressure on Sludge Fouling of MF Membranes

    DEFF Research Database (Denmark)

    Jørgensen, Mads Koustrup; Kujundzic, Elmira; Greenberg, Alan

    Membrane fouling remains the key limitation for the widespread use of membrane bioreactors (MBR) for wastewater treatment. This constraint has led to an increasing number of studies that examine the influence of various operational parameters and physicochemical properties on fouling layer...... formation and characteristics. In other membrane applications real-time monitoring has proven to be useful by providing a more quantitative characterization of fouling layer formation [1]. One such technique, ultrasonic reflectometry (UR), has been successfully used to detect fouling formed by a wide range...... of the effect of pressure on the fouling layer structure. The ability of UR to detect and monitor sludge fouling was studied in a series of replicated experiments of 15, 30 and 60-min duration that used commercial microfiltration (MF) membranes at a transmembrane pressure of 15 kPa. By analyzing the peak...

  9. [Application of time domain reflectometry for determination of wate content in Xiangsha Yangwei pills].

    Science.gov (United States)

    Long, Feng-Lai; Sun, Xiao-Mei; Peng, Xiu-Juan; Liu, Peng; He, Fang-Hui

    2016-08-01

    Xiangsha Yangwei pill was selected as a model drug in this research, and time domain reflectometry (TDR) was used to determine the water content in the pill. The effects of five factors including the number of pill layers, pill packing density, atmospheric moisture, ambient temperature and the ratio of pill formula were investigated on water content. The results showed that the number of pill layers and ambient temperature had significant effects on water content of pills, while the pill packing density, atmospheric moisture and pill formula ratio had little effect on the determination of water content in pills. The reflection value was stable when 6 layers of pills were used. Under the condition of 25 ℃ and 45% relative humidity, the water content of pills ranged from 4.01% to 22.38%, showing good linear relationship between water content and reflection value, and the model equation was as follows: Y=0.279X-21.670 (R²=0.997 0). Verification experiment was used to explain the feasibility of this prediction model. The precision of the method complied with the methodology standard. It is concluded that TDR can be used in determination of water content in Xiangsha Yangwei pills. Additionally, TDR, as a new way to quickly and efficiently determine the water content, has a prospect application in the processing of traditional Chinese medicine pharmacy, especially for concentrated pill. Copyright© by the Chinese Pharmaceutical Association.

  10. Progress Report on the GROWTH (GNSS Reflectometry for Ocean Waves, Tides, and Height) Research Project

    Science.gov (United States)

    Kitazawa, Y.; Ichikawa, K.; Akiyama, H.; Ebinuma, T.; Isoguchi, O.; Kimura, N.; Konda, M.; Kouguchi, N.; Tamura, H.; Tomita, H.; Yoshikawa, Y.; Waseda, T.

    2016-12-01

    Global Navigation Satellite Systems (GNSS), such as GPS is a system of satellites that provide autonomous geo-spatial positioning with global coverage. It allows small electronic receivers to determine their location to high precision using radio signals transmitted from satellites, GNSS reflectometry (GNSS-R) involves making measurements from the reflections from the Earth of navigation signals from GNSS satellites. Reflected signals from sea surface are considered that those are useful to observe sea state and sea surface height. We have started a research program for GNSS-R applications on oceanographic observations under the contract with MEXT (Ministry of Education Culture, Sports, Science and Technology, JAPAN) and launched a Japanese research consortium, GROWTH (GNSS Reflectometry for Ocean Waves, Tides, and Height). It is aiming to evaluate the capabilities of GNSS-R observations for oceanographic phenomena with different time scales, such as ocean waves (1/10 to tens of seconds), tides (one or half days), and sea surface dynamic height (a few days to years). In situ observations of ocean wave spectrum, wind speed vertical profile, and sea surface height will be quantitatively compared with equivalent estimates from simultaneous GNSS-R measurements. The GROWTH project will utilize different types of observation platforms; marine observation towers (about 20 m height), multi-copters (about 100 to 150 m height), and much higher-altitude CYGNSS data. Cross-platform data, together with in situ oceanographic observations, will be compared after adequate temporal averaging that accounts differences of the footprint sizes and temporal and spatial scales of oceanographic phenomena. This paper will provide overview of the GROWTH project, preliminary test results, obtained by the multi-sensor platform at observation towers, suggest actual footprint sizes and identification of swell. Preparation status of a ground station which will be supplied to receive CYGNSS data

  11. One directional polarized neutron reflectometry with optimized reference layer method

    International Nuclear Information System (INIS)

    Masoudi, S. Farhad; Jahromi, Saeed S.

    2012-01-01

    In the past decade, several neutron reflectometry methods for determining the modulus and phase of the complex reflection coefficient of an unknown multilayer thin film have been worked out among which the method of variation of surroundings and reference layers are of highest interest. These methods were later modified for measurement of the polarization of the reflected beam instead of the measurement of the intensities. In their new architecture, these methods not only suffered from the necessity of change of experimental setup but also another difficulty was added to their experimental implementations. This deficiency was related to the limitations of the technology of the neutron reflectometers that could only measure the polarization of the reflected neutrons in the same direction as the polarization of the incident beam. As the instruments are limited, the theory has to be optimized so that the experiment could be performed. In a recent work, we developed the method of variation of surroundings for one directional polarization analysis. In this new work, the method of reference layer with polarization analysis has been optimized to determine the phase and modulus of the unknown film with measurement of the polarization of the reflected neutrons in the same direction as the polarization of the incident beam.

  12. Relaxation dynamics and thermophysical properties of vegetable oils using time-domain reflectometry.

    Science.gov (United States)

    Sonkamble, Anil A; Sonsale, Rahul P; Kanshette, Mahesh S; Kabara, Komal B; Wananje, Kunal H; Kumbharkhane, Ashok C; Sarode, Arvind V

    2017-04-01

    Dielectric relaxation studies of vegetable oils are important for insights into their hydrogen bonding and intermolecular dynamics. The dielectric relaxation and thermo physical properties of triglycerides present in some vegetable oils have been measured over the frequency range of 10 MHz to 7 GHz in the temperature region 25 to 10 °C using a time-domain reflectometry approach. The frequency and temperature dependence of dielectric constants and dielectric loss factors were determined for coconut, peanut, soya bean, sunflower, palm, and olive oils. The dielectric permittivity spectra for each of the studied vegetable oils are explained using the Debye model with their complex dielectric permittivity analyzed using the Havriliak-Negami equation. The dielectric parameters static permittivity (ε 0 ), high-frequency limiting static permittivity (ε ∞ ), average relaxation time (τ 0 ), and thermodynamic parameters such as free energy (∆F τ ), enthalpy (∆H τ ), and entropy of activation (∆S τ ) were also measured. Calculation and analysis of these thermodynamic parameters agrees with the determined dielectric parameters, giving insights into the temperature dependence of the molecular dynamics of these systems.

  13. Frequency domain reflectometry modeling for nondestructive evaluation of nuclear power plant cables

    Science.gov (United States)

    Glass, S. W.; Fifield, L. S.; Jones, A. M.; Hartman, T. S.

    2018-04-01

    Cable insulation polymers are among the more susceptible materials to age-related degradation within a nuclear power plant. This is recognized by both regulators and utilities, so all plants have developed cable aging management programs to detect damage before critical component failure in compliance with regulatory guidelines. Although a wide range of tools are available to evaluate cables and cable systems, cable aging management programs vary in how condition monitoring and nondestructive examinations are conducted as utilities search for the most reliable and cost-effective ways to assess cable system condition. Frequency domain reflectometry (FDR) is emerging as one valuable tool to locate and assess damaged portions of a cable system with minimal cost and only requires access in most cases to one of the cable terminal ends. Since laboratory studies to evaluate the use of FDR for inspection of aged cables can be expensive and data interpretation may be confounded by multiple factors which influence results, a model-based approach is desired to parametrically investigate the effect of insulation material damage in a controlled manner. This work describes development of a physics-based FDR model which uses finite element simulations of cable segments in conjunction with cascaded circuit element simulations to efficiently study a cable system. One or more segments of the cable system model have altered physical or electrical properties which represent the degree of damage and the location of the damage in the system. This circuit model is then subjected to a simulated FDR examination. The modeling approach is verified using several experimental cases and by comparing it to a commercial simulator suitable for simulation of some cable configurations. The model is used to examine a broad range of parameters including defect length, defect profile, degree of degradation, number and location of defects, FDR bandwidth, and addition of impedance-matched extensions to

  14. Modification of ordinary-mode reflectometry system to detect lower-hybrid waves in Alcator C-Moda)

    Science.gov (United States)

    Baek, S. G.; Shiraiwa, S.; Parker, R. R.; Dominguez, A.; Kramer, G. J.; Marmar, E. S.

    2012-10-01

    Backscattering experiments to detect lower-hybrid (LH) waves have been performed in Alcator C-Mod, using the two modified channels (60 GHz and 75 GHz) of an ordinary-mode reflectometry system with newly developed spectral recorders that can continuously monitor spectral power at a target frequency. The change in the baseline of the spectral recorder during the LH wave injection is highly correlated to the strength of the X-mode non-thermal electron cyclotron emission. In high density plasmas where an anomalous drop in the lower hybrid current drive efficiency is observed, the observed backscattered signals are expected to be generated near the last closed flux surface, demonstrating the presence of LH waves within the plasma. This experimental technique can be useful in identifying spatially localized LH electric fields in the periphery of high-density plasmas.

  15. Formation of solid thorium monoxide at near-ambient conditions as observed by neutron reflectometry and interpreted by screened hybrid functional calculations

    Energy Technology Data Exchange (ETDEWEB)

    He, Heming [Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Majewski, Jaroslaw, E-mail: jarek@lanl.gov [MPA/CINT/Lujan Neutron Scattering Center, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Department of Chemical Engineering, University of California Davis, Davis, CA 95616 (United States); Allred, David D., E-mail: dda@byu.edu [Department of Physics and Astronomy, Brigham Young University Provo, UT 84602 (United States); Wang, Peng [MPA/CINT/Lujan Neutron Scattering Center, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Wen, Xiaodong [Theoretical Division, Los Alamos National Laboratory Los Alamos, NM 87545 (United States); Rector, Kirk D. [Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2017-04-15

    Oxidation of a ∼1000 Å sputter-deposited thorium thin film at 150 °C in 100 ppm of flowing oxygen in argon produces the long-sought solid form of thorium monoxide. Changes in the scattering length density (SLD) distribution in the film over the 700-min experiment measured by in-situ, dynamic neutron reflectometry (NR) shows the densities, compositions and thickness of the various thorium oxides layers formed. Screened, hybrid density-functional theory calculations of potential thorium oxides aid interpretation, providing atomic-level picture and energetics for understanding oxygen migration. NR provided evidence of the formation of substoichiometric thorium oxide, ThO{sub y} (y < 1) at the interface between the unreacted thorium metal and its dioxide overcoat which grows inward, consuming the thorium at a rate of 2.1 Å/min while y increases until reaching 1:1 oxygen-to-thorium. Its presence indicates that kinetically-favored solid-phase ThO can be preferentially generated as a majority phase under the thermodynamically-favored ThO{sub 2} top layer at conditions close to ambient. - Highlights: •The long-sought solid form of thorium monoxide forms as thin-film thorium oxidizes. •Density-functional calculations suggest that ThO forms for kinetic reasons. •A pathway to producing ThO as a majority phase for future studies is now open. •Dynamic, in-situ neutron reflectometry is valuable for studying oxidation. •At low oxygen content in the lattice octahedral sites are preferred.

  16. Motofit - integrating neutron reflectometry acquisition, reduction and analysis into one, easy to use, package

    International Nuclear Information System (INIS)

    Nelson, Andrew

    2010-01-01

    The efficient use of complex neutron scattering instruments is often hindered by the complex nature of their operating software. This complexity exists at each experimental step: data acquisition, reduction and analysis, with each step being as important as the previous. For example, whilst command line interfaces are powerful at automated acquisition they often reduce accessibility by novice users and sometimes reduce the efficiency for advanced users. One solution to this is the development of a graphical user interface which allows the user to operate the instrument by a simple and intuitive 'push button' approach. This approach was taken by the Motofit software package for analysis of multiple contrast reflectometry data. Here we describe the extension of this package to cover the data acquisition and reduction steps for the Platypus time-of-flight neutron reflectometer. Consequently, the complete operation of an instrument is integrated into a single, easy to use, program, leading to efficient instrument usage.

  17. X mode reflectometry for edge density profile measurements on Tore Supra

    International Nuclear Information System (INIS)

    Clairet, F.; Bottereau, C.; Chareau, J.M.; Paume, M.; Sabot, R.

    1999-01-01

    X mode heterodyne reflectometry associated with fast sweep capabilities demonstrates very precise measurement on Tore Supra and a high sensitivity (∼10 17 m -3 ) to density variations. Very good agreement with Thomson scattering measurement is observed. Fluctuations of the radial positions of the profile are no more than ± 0.5 cm. However, edge magnetic field ripple can be a concern since it is not easy to stand precisely for the wave trajectory into the plasma and for the toroidal position of the cutoff layer; nevertheless if the error can be estimated to be less than than 3 cm in the position of the whole profile, addition work is needed combining 3-D ray tracing and different antenna systems. Additional LH heating generates an ECE noise in the same frequency range of the reflectometer and is detected. This emission throughout the plasma is fortunately stopped by the upper X mode cutoff and is also reabsorbed by the electron cyclotron resonance. But at the very edge, due to a misalignment of the antenna to the plasma magnetic field and the low optical thickness of the plasma, the first cutoff frequency, i.e. the profile initialization, may be determined less precisely. (authors)

  18. Testing of Piezo-Actuated Glass Micro-Membranes by Optical Low-Coherence Reflectometry.

    Science.gov (United States)

    Merlo, Sabina; Poma, Paolo; Crisà, Eleonora; Faralli, Dino; Soldo, Marco

    2017-02-25

    In this work, we have applied optical low-coherence reflectometry (OLCR), implemented with infra-red light propagating in fiberoptic paths, to perform static and dynamic analyses on piezo-actuated glass micro-membranes. The actuator was fabricated by means of thin-film piezoelectric MEMS technology and was employed for modifying the micro-membrane curvature, in view of its application in micro-optic devices, such as variable focus micro-lenses. We are here showing that OLCR incorporating a near-infrared superluminescent light emitting diode as the read-out source is suitable for measuring various parameters such as the micro-membrane optical path-length, the membrane displacement as a function of the applied voltage (yielding the piezo-actuator hysteresis) as well as the resonance curve of the fundamental vibration mode. The use of an optical source with short coherence-time allows performing interferometric measurements without spurious resonance effects due to multiple parallel interfaces of highly planar slabs, furthermore selecting the plane/layer to be monitored. We demonstrate that the same compact and flexible setup can be successfully employed to perform spot optical measurements for static and dynamic characterization of piezo-MEMS in real time.

  19. Urethral pressure reflectometry; a novel technique for simultaneous recording of pressure and cross-sectional area

    DEFF Research Database (Denmark)

    Aagaard, Mikael; Klarskov, Niels; Sønksen, Jens

    2012-01-01

    Study Type - Diagnostic (case series) Level of Evidence 4 What's known on the subject? and What does the study add? In the 1980s and 1990s, a method for direct measurement of pressure and cross-sectional area in women and men was developed. It was successful in terms of obtaining meaningful results...... reproducible than conventional urethral pressure profilometry, when measuring incontinence in women. In 2010 it was also introduced as a new measuring technique in the anal canal. This study, adds a new and interesting technique to the field of male urodynamics. For the first time, sound waves have been used...... in several studies. But the technique, which was based on the field gradient principle, was never implemented in the clinical setting because of technical limitations. In 2005, urethral pressure reflectometry was introduced as a new technique in female urodynamics. The technique has been shown to be more...

  20. Experimental investigation on spontaneously active hippocampal cultures recorded by means of high-density MEAs: analysis of the spatial resolution effects

    Directory of Open Access Journals (Sweden)

    Alessandro Maccione

    2010-05-01

    Full Text Available Based on experiments performed with high-resolution Active Pixel Sensor microelectrode arrays (APS-MEAs coupled with spontaneously active hippocampal cultures, this work investigates the spatial resolution effects of the neuroelectronic interface on the analysis of the recorded electrophysiological signals. The adopted methodology consists, first, in recording the spontaneous activity at the highest spatial resolution (inter-electrode separation of 21 µm from the whole array of 4096 microelectrodes. Then, the full resolution dataset is spatially down sampled in order to evaluate the effects on raster plot representation, array-wide spike rate (AWSR, mean firing rate (MFR and mean bursting rate (MBR. Furthermore, the effects of the array-to-network relative position are evaluated by shifting a subset of equally spaced electrodes on the entire recorded area. Results highlight that MFR and MBR are particularly influenced by the spatial resolution provided by the neuroelectronic interface. On high-resolution large MEAs, such analysis better represent the time-based parameterization of the network dynamics. Finally, this work suggest interesting capabilities of high-resolution MEAs for spatial-based analysis in dense and low-dense neuronal preparation for investigating signalling at both local and global neuronal circuitries.

  1. Neutron-reflectometry study of alcohol adsorption on various DLC coatings

    Energy Technology Data Exchange (ETDEWEB)

    Kalin, M., E-mail: mitjan.kalin@tint.fs.uni-lj.si [University of Ljubljana, Faculty of Mechanical Engineering, Laboratory for Tribology and Interface Nanotechnology, Bogišićeva 8, 1000 Ljubljana (Slovenia); Simič, R. [University of Ljubljana, Faculty of Mechanical Engineering, Laboratory for Tribology and Interface Nanotechnology, Bogišićeva 8, 1000 Ljubljana (Slovenia); Hirayama, T. [Department of Mechanical Engineering, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto 610-0394 (Japan); Geue, T.; Korelis, P. [Paul Scherrer Institute, 5232 Villigen – PSI (Switzerland)

    2014-01-01

    Diamond-like carbon (DLC) coatings are notable for their excellent tribological properties. Our understanding of the lubrication of DLC coatings has improved drastically over the past decade. However, only a few details are known about the properties of the adsorbed layers on DLC, which crucially affect their tribological properties under lubricated conditions. In this work we used neutron reflectometry to determine the thickness and the density of adsorbed layers of alcohol molecules on several different types of DLC coatings, i.e., non-hydrogenated (a-C) and hydrogenated, of which both non-doped (a-C:H) and doped (a-C:H:F and a-C:H:Si) coatings were used. The results showed that a 0.9-nm-thick and relatively dense (≈45%) layer of alcohol adsorbed on the a-C coating. In contrast, no adsorption layer was found on the a-C:H, confirming the important role of hydrogen, which predominantly acts as a dangling-bond passivation source and affects the reactivity and tribochemistry of DLC coatings. The incorporation of F into a DLC coating also did not cause an increase in the adsorption ability with respect to alcohol molecules. On the contrary, the incorporation of Si increased the reactivity of the DLC coating so that a 1.3-nm-thick alcohol layer with a 35% bulk density was detected on the surface. We also discuss the very good agreement of the current results with the surface energy of selected coatings found in these experiments.

  2. High-resolution investigations of edge effects in neutron imaging

    International Nuclear Information System (INIS)

    Strobl, M.; Kardjilov, N.; Hilger, A.; Kuehne, G.; Frei, G.; Manke, I.

    2009-01-01

    Edge enhancement is the main effect measured by the so-called inline or propagation-based neutron phase contrast imaging method. The effect has originally been explained by diffraction, and high spatial coherence has been claimed to be a necessary precondition. However, edge enhancement has also been found in conventional imaging with high resolution. In such cases the effects can produce artefacts and hinder quantification. In this letter the edge effects at cylindrical shaped samples and long straight edges have been studied in detail. The enhancement can be explained by refraction and total reflection. Using high-resolution imaging, where spatial resolutions better than 50 μm could be achieved, refraction and total reflection peaks - similar to diffraction patterns - could be separated and distinguished.

  3. Investigations and characterization of the microstructure of special ceramic materials using the high-resolution electron microscope

    International Nuclear Information System (INIS)

    Kirn, M.

    1979-01-01

    The possibilities to characterize phases and microstructures by direct lattice imaging are indicated in the following work. Ceramic materials are particularly suitable for this as these exhibit a high mechanical stability in the investigation in the transmission electron microscope. First of all the fundamentals of the high-resolution electron microscopy are introduced and the various resulting possibilities to characterize microstructures are presented. A report then follows on experimental observations on undisturbed crystals of special ceramics on a Si 3 N 4 basis. Furthermore, it is shown that the high-resolution electron microscope provides valuable contributions to the determination of structure, in particular of twin variants. Finally, revealing information on the structure of the interfaces was obtained with the help of high-resolution electron microscopy. (orig./IHOE) [de

  4. A theoretical investigation of super-resolution CARS imaging via coherent and incoherent saturation of transitions

    NARCIS (Netherlands)

    Beeker, W.P.; Beeker, Willem; Lee, Christopher James; Boller, Klaus J.; Gross, Petra; Gross, P.; Cleff, Carsten; Fallnich, Carsten; Offerhaus, Herman L.; Herek, Jennifer Lynn

    2011-01-01

    We review two approaches to achieving sub-diffraction-limited resolution coherent anti-Stokes Raman scattering (CARS) microscopy (Beeker et al., Opt. Express, 2009, 17, 22632 and Beeker et al., J. Herek, Phys. Rev. A, 2010, 81, 012507). We performed a numerical investigation, based on the density

  5. A two-dimensional regularization algorithm for density profile evaluation from broadband reflectometry

    International Nuclear Information System (INIS)

    Nunes, F.; Varela, P.; Silva, A.; Manso, M.; Santos, J.; Nunes, I.; Serra, F.; Kurzan, B.; Suttrop, W.

    1997-01-01

    Broadband reflectometry is a current technique that uses the round-trip group delays of reflected frequency-swept waves to measure density profiles of fusion plasmas. The main factor that may limit the accuracy of the reconstructed profiles is the interference of the probing waves with the plasma density fluctuations: plasma turbulence leads to random phase variations and magneto hydrodynamic activity produces mainly strong amplitude and phase modulations. Both effects cause the decrease, and eventually loss, of signal at some frequencies. Several data processing techniques can be applied to filter and/or interpolate noisy group delay data obtained from turbulent plasmas with a single frequency sweep. Here, we propose a more powerful algorithm performing two-dimensional regularization (in space and time) of data provided by multiple consecutive frequency sweeps, which leads to density profiles with improved accuracy. The new method is described and its application to simulated data corrupted by noise and missing data is considered. It is shown that the algorithm improves the identification of slowly varying plasma density perturbations by attenuating the effect of fast fluctuations and noise contained in experimental data. First results obtained with this method in ASDEX Upgrade tokamak are presented. copyright 1997 American Institute of Physics

  6. Time domain reflectometry-measuring dielectric permittivity to detect soil non-acqeous phase liquids contamination-decontamination processes

    Directory of Open Access Journals (Sweden)

    A. Comegna

    2013-09-01

    Full Text Available Contamination of soils with non-aqueous phase liquids (NAPL constitutes a serious geo-environmental problem, given the toxicity level and high mobility of these organic compounds. To develop effective decontamination methods, characterisation and identification of contaminated soils are needed. The objective of this work is to explore the potential of dielectric permittivity measurements to detect the presence of NAPLs in soils. The dielectric permittivity was measured by Time Domain Reflectometry method (TDR in soil samples with either different volumetric content of water (w and NAPL (NAPL or at different stages during immiscible displacement test carried out with two different flushing solutions. A mixing model proposed by Francisca and Montoro, was calibrated to estimate the volume fraction of contaminant present in soil. Obtained results, showed that soil contamination with NAPL and the monitoring of immiscible fluid displacement, during soil remediation processes, can be clearly identified from dielectric measurements.

  7. Signal Based Mixing Analysis for the magnetohydrodynamic mode reconstruction from homodyne microwave reflectometry

    International Nuclear Information System (INIS)

    Ejiri, Akira; Sakakibara, Satoru; Kawahata, Kazuo.

    1995-03-01

    A new method 'Signal Based Mixing Analysis', to extract the components which are coherent to a certain reference signal from a noisy signal, has been developed. The method is applied to homodyne microwave reflectometry to reconstruct the radial structure of a magnetohydrodynamic (MHD) mode in heliotron/torsatron Compact Helical System (CHS) [K. Matsuoka et al. Plasma Phys. Control. Nuclear Fusion Research 1988 Vol. 2, IAEA, Vienna 411 (1989)]. In CHS plasmas, MHD fluctuations measured with magnetic probes show bursts, in which the amplitude and frequency quasi-periodically vary. The signal based mixing analysis uses a set of functions which have the same amplitude and the harmonic frequency as those of the magnetic fluctuations. The product (mixing) of the signal of reflectometer and the functions yields the amplitude and phase of the coherent components. When the plasma density gradually increases, the measuring position moves radially outward. Thus, the radial structure of MHD modes can be obtained by this method. The analysis indicates several peaks and nodes inside the resonance surface of the MHD mode. In addition, the structure does not propagate radially during a burst. (author)

  8. Using a novel spectroscopic reflectometer to optimize a radiation-hardened submicron silicon-on-sapphire CMOS process; Utilisation d'une nouvelle reflectometrie spectroscopique pour optimiser un procede de fabrication CMOS/SOS durci aux radiations

    Energy Technology Data Exchange (ETDEWEB)

    Do, N.T.; Zawaideh, E.; Vu, T.Q.; Warren, G.; Mead, D. [Raytheon Systems company, Microelectronics Div., Newport Beach, California (United States); Li, G.P.; Tsai, C.S. [California Univ., School of Engineering, Newport Beach, CA (United States)

    1999-07-01

    A radiation-hardened sub-micron silicon-on-sapphire CMOS process is monitored and optimized using a novel optical technique based on spectroscopic reflectometry. Quantitative measurements of the crystal quality, surface roughness, and device radiation hardness show excellent correlation between this technique and the Atomic Force Microscopy. (authors)

  9. High resolution, high sensitivity, dynamic distributed structural monitoring using optical frequency domain reflectometry

    Science.gov (United States)

    Kreger, Stephen T.; Sang, Alex K.; Garg, Naman; Michel, Julia

    2013-05-01

    Fiber-optic ultrasonic transducers are an important component of an active ultrasonic testing system for structural health monitoring. Fiber-optic transducers have several advantages such as small size, light weight, and immunity to electromagnetic interference that make them much more attractive than the current available piezoelectric transducers, especially as embedded and permanent transducers in active ultrasonic testing for structural health monitoring. In this paper, a distributed fiber-optic laser-ultrasound generation based on the ghost-mode of tilted fiber Bragg gratings is studied. The influences of the laser power and laser pulse duration on the laser-ultrasound generation are investigated. The results of this paper are helpful to understand the working principle of this laser-ultrasound method and improve the ultrasonic generation efficiency.

  10. Effect of fesoterodine on urethral closure function in women with stress urinary incontinence assessed by urethral pressure reflectometry

    DEFF Research Database (Denmark)

    Klarskov, Niels; Darekar, Amanda; Scholfield, David

    2014-01-01

    INTRODUCTION AND HYPOTHESIS: The aim was to evaluate, using urethral pressure reflectometry (UPR), the effect of fesoterodine on urethral function in women with stress urinary incontinence (SUI). METHODS: Women aged 18 to 65 years were eligible for this randomised, double-blind, placebo...... significant differences were seen between fesoterodine 4 mg or fesoterodine 8 mg and placebo in opening urethral pressure (primary endpoint) or other UPR endpoints. No statistically significant differences were seen between either fesoterodine dose and placebo in the change from baseline in the bladder diary...... variables (total urinary incontinence, SUI, or urgency urinary incontinence episodes per 24 h). Adverse events were reported by 8 participants taking fesoterodine 4 mg, 17 taking fesoterodine 8 mg, and 8 taking placebo. CONCLUSIONS: Fesoterodine did not affect urethral pressure or significantly decrease...

  11. Experimental investigation of energy resolution in a semiconductor detector (surface barrier and Si (Li) detector) in the detection of protons

    International Nuclear Information System (INIS)

    Nordborg, C.

    1974-05-01

    The action of electronic effects on the energy resolution of the detector is investigated. The results are applicable not only to protons but also to heavier charged particles. It should be possible to reach a resolution of about 6 to 7 keV for 10 MeV protons with electronic detectors. Magnetic spectrometers could achieve a resolution of 2 to 3 keV. It is convenient to use Peltier elements for cooling semiconductor spectrometers. (Auth.)

  12. Edge density X-mode reflectometry of RF-heated plasmas on ASDEX

    International Nuclear Information System (INIS)

    Schubert, R.

    1991-09-01

    In the present work microwave reflectometry is extended to the outermost part of tokamak plasmas (n e ≅ 10 11 to 1.5x10 13 cm -3 ), which is subject to strong electron density fluctuations. The perturbations of electron density profile measurements by these fluctuations, which lead to strong modulations in intensity and phase of the reflected signal is analysed in detail. By increasing the frequency of the interference fringes to values between 800 kHz and 2.4 MHz it is possible to make reliable profile measurements even in the region of very strong fluctuations. Measurements in the low density region are only possible with reasonable errors in the X-mode (Eperpendicular toB), as only the cut-off frequency of this mode, in contrast to that of the O-mode (EparallelB), takes a finite value (f ce ) for n e ->O. Taking advantage of this property, a method is presented to calibrate the measurements on the first reflection, which occurs directly in front of the microwave antennas (1-4 mm from the opening) thus giving a high precision even in the outermost part of the plasma close to the microwave antennas. For the calculation of the electron density profile a new and numerically stable algorithm has been developed. Measurements in connection with Lower Hybrid have been made with a set of 2 reflectometer antennas installed in ASDEX. (orig./AH)

  13. Relations between spouses' depressive symptoms and marital conflict: a longitudinal investigation of the role of conflict resolution styles.

    Science.gov (United States)

    Du Rocher Schudlich, Tina D; Papp, Lauren M; Cummings, E Mark

    2011-08-01

    This study investigated longitudinal relations between spouses' depressive symptoms and styles of conflict resolution displayed by husbands and wives in marital conflict, including angry, depressive, and constructive patterns of expression. Behavioral observations were made from a community sample of 276 couples during marital conflict resolution tasks once a year for 3 years. Couples were observed engaging in a major and minor conflict resolution task. Constructive, angry, and depressive conflict resolution styles were derived from the behavioral observation coding. Couples self-reported on depressive symptoms and marital dissatisfaction. Path analyses provided support for an extension of the marital discord model of depression (Beach, Sandeen, & O'Leary, 1990). Specifically, angry, depressive, and constructive styles of conflict each mediated the link between marital dissatisfaction and depressive symptoms. Significant cross-spouse effects were found. Implications for the treatment of depressed and/or relationally discordant couples are discussed.

  14. First Spaceborne GNSS-Reflectometry Observations of Hurricanes From the UK TechDemoSat-1 Mission

    Science.gov (United States)

    Foti, Giuseppe; Gommenginger, Christine; Srokosz, Meric

    2017-12-01

    We present the first examples of Global Navigation Satellite Systems-Reflectometry (GNSS-R) observations of hurricanes using spaceborne data from the UK TechDemoSat-1 (TDS-1) mission. We confirm that GNSS-R signals can detect ocean condition changes in very high near-surface ocean wind associated with hurricanes. TDS-1 GNSS-R reflections were collocated with International Best Track Archive for Climate Stewardship (IBTrACS) hurricane data, MetOp ASCAT A/B scatterometer winds, and two reanalysis products. Clear variations of GNSS-R reflected power (σ0) are observed as reflections travel through hurricanes, in some cases up to and through the eye wall. The GNSS-R reflected power is tentatively inverted to estimate wind speed using the TDS-1 baseline wind retrieval algorithm developed for low to moderate winds. Despite this, TDS-1 GNSS-R winds through the hurricanes show closer agreement with IBTrACS estimates than winds provided by scatterometers and reanalyses. GNSS-R wind profiles show realistic spatial patterns and sharp gradients that are consistent with expected structures around the eye of tropical cyclones.

  15. Investigating the Effects of Grid Resolution of WRF Model for Simulating the Atmosphere for use in the Study of Wake Turbulence

    Science.gov (United States)

    Prince, Alyssa; Trout, Joseph; di Mercurio, Alexis

    2017-01-01

    The Weather Research and Forecasting (WRF) Model is a nested-grid, mesoscale numerical weather prediction system maintained by the Developmental Testbed Center. The model simulates the atmosphere by integrating partial differential equations, which use the conservation of horizontal momentum, conservation of thermal energy, and conservation of mass along with the ideal gas law. This research investigated the possible use of WRF in investigating the effects of weather on wing tip wake turbulence. This poster shows the results of an investigation into the accuracy of WRF using different grid resolutions. Several atmospheric conditions were modeled using different grid resolutions. In general, the higher the grid resolution, the better the simulation, but the longer the model run time. This research was supported by Dr. Manuel A. Rios, Ph.D. (FAA) and the grant ``A Pilot Project to Investigate Wake Vortex Patterns and Weather Patterns at the Atlantic City Airport by the Richard Stockton College of NJ and the FAA'' (13-G-006). Dr. Manuel A. Rios, Ph.D. (FAA), and the grant ``A Pilot Project to Investigate Wake Vortex Patterns and Weather Patterns at the Atlantic City Airport by the Richard Stockton College of NJ and the FAA''

  16. Relations between Spouses’ Depressive Symptoms and Marital Conflict: A Longitudinal Investigation of the Role of Conflict Resolution Styles

    Science.gov (United States)

    Du Rocher Schudlich, Tina D.; Papp, Lauren M.; Cummings, E. Mark

    2011-01-01

    This study investigated longitudinal relations between spouses’ depressive symptoms and styles of conflict resolution displayed by husbands and wives in marital conflict, including angry, depressive, and constructive patterns of expression. Behavioral observations were made from a community sample of 276 couples during marital conflict resolution tasks once a year for three years. Couples were observed engaging in a major and minor conflict resolution task. Constructive, angry, and depressive conflict resolution styles were derived from the behavioral observation coding. Couples self-reported on depressive symptoms and marital dissatisfaction. Path analyses provided support for an extension of the marital discord model of depression (Beach and colleagues, 1990). Specifically, angry, depressive, and constructive styles of conflict each mediated the link between marital dissatisfaction and depressive symptoms. Significant cross-spouse effects were found. Implications for the treatment of depressed and/or relationally-discordant couples are discussed. PMID:21668119

  17. Observation of Wetland Dynamics with Global Navigation Satellite Signals Reflectometry

    Science.gov (United States)

    Zuffada, C.; Shah, R.; Nghiem, S. V.; Cardellach, E.; Chew, C. C.

    2015-12-01

    Wetland dynamics is crucial to changes in both atmospheric methane and terrestrial water storage. The Intergovernmental Panel on Climate Change's Fifth Assessment Report (IPCC AR5) highlights the role of wetlands as a key driver of methane (CH4) emission, which is more than one order of magnitude stronger than carbon dioxide as a greenhouse gas in the centennial time scale. Among the multitude of methane emission sources (hydrates, livestock, rice cultivation, freshwaters, landfills and waste, fossil fuels, biomass burning, termites, geological sources, and soil oxidation), wetlands constitute the largest contributor with the widest uncertainty range of 177-284 Tg(CH4) yr-1 according to the IPCC estimate. Wetlands are highly susceptible to climate change that might lead to wetland collapse. Such wetland destruction would decrease the terrestrial water storage capacity and thus contribute to sea level rise, consequently exacerbating coastal flooding problems. For both methane change and water storage change, wetland dynamics is a crucial factor with the largest uncertainty. Nevertheless, a complete and consistent map of global wetlands still needs to be obtained as the Ramsar Convention calls for a wetlands inventory and impact assessment. We develop a new method for observations of wetland change using Global Navigation Satellite Signals Reflectometry (GNSS-R) signatures for global wetland mapping in synergy with the existing capability, not only as a static inventory but also as a temporal dataset, to advance the capability for monitoring the dynamics of wetland extent relevant to addressing the science issues of CH4 emission change and terrestrial water storage change. We will demonstrate the capability of the new GNSS-R method over a rice field in the Ebro Delta wetland in Spain.

  18. Low resolution spectroscopic investigation of Am stars using Automated method

    Science.gov (United States)

    Sharma, Kaushal; Joshi, Santosh; Singh, Harinder P.

    2018-04-01

    The automated method of full spectrum fitting gives reliable estimates of stellar atmospheric parameters (Teff, log g and [Fe/H]) for late A, F, G, and early K type stars. Recently, the technique was further improved in the cooler regime and the validity range was extended up to a spectral type of M6 - M7 (Teff˜ 2900 K). The present study aims to explore the application of this method on the low-resolution spectra of Am stars, a class of chemically peculiar stars, to examine its robustness for these objects. We use ULySS with the Medium-resolution INT Library of Empirical Spectra (MILES) V2 spectral interpolator for parameter determination. The determined Teff and log g values are found to be in good agreement with those obtained from high-resolution spectroscopy.

  19. The spatial resolution in dosimetry with normoxic polymer-gels investigated with the dose modulation transfer approach

    International Nuclear Information System (INIS)

    Bayreder, Christian; Schoen, Robert; Wieland, M.; Georg, Dietmar; Moser, Ewald; Berg, Andreas

    2008-01-01

    The verification of dose distributions with high dose gradients as appearing in brachytherapy or stereotactic radiotherapy for example, calls for dosimetric methods with sufficiently high spatial resolution. Polymer gels in combination with a MR or optical scanner as a readout device have the potential of performing the verification of a three-dimensional dose distribution within a single measurement. The purpose of this work is to investigate the spatial resolution achievable in MR-based polymer gel dosimetry. The authors show that dosimetry on a very small spatial scale (voxel size: 94x94x1000 μm 3 ) can be performed with normoxic polymer gels using parameter selective T2 imaging. In order to prove the spatial resolution obtained we are relying on the dose-modulation transfer function (DMTF) concept based on very fine dose modulations at half periods of 200 μm. Very fine periodic dose modulations of a 60 Co photon field were achieved by means of an absorption grid made of tungsten-carbide, specifically designed for quality control. The dose modulation in the polymer gel is compared with that of film dosimetry in one plane via the DMTF concept for general access to the spatial resolution of a dose imaging system. Additionally Monte Carlo simulations were performed and used for the calculation of the DMTF of both, the polymer gel and film dosimetry. The results obtained by film dosimetry agree well with those of Monte Carlo simulations, whereas polymer gel dosimetry overestimates the amplitude value of the fine dose modulations. The authors discuss possible reasons. The in-plane resolution achieved in this work competes with the spatial resolution of standard clinical film-scanner systems

  20. GNSS reflectometry aboard the International Space Station: phase-altimetry simulation to detect ocean topography anomalies

    Science.gov (United States)

    Semmling, Maximilian; Leister, Vera; Saynisch, Jan; Zus, Florian; Wickert, Jens

    2016-04-01

    An ocean altimetry experiment using Earth reflected GNSS signals has been proposed to the European Space Agency (ESA). It is part of the GNSS Reflectometry Radio Occultation Scatterometry (GEROS) mission that is planned aboard the International Space Station (ISS). Altimetric simulations are presented that examine the detection of ocean topography anomalies assuming GNSS phase delay observations. Such delay measurements are well established for positioning and are possible due to a sufficient synchronization of GNSS receiver and transmitter. For altimetric purpose delays of Earth reflected GNSS signals can be observed similar to radar altimeter signals. The advantage of GNSS is the synchronized separation of transmitter and receiver that allow a significantly increased number of observation per receiver due to more than 70 GNSS transmitters currently in orbit. The altimetric concept has already been applied successfully to flight data recorded over the Mediterranean Sea. The presented altimetric simulation considers anomalies in the Agulhas current region which are obtained from the Region Ocean Model System (ROMS). Suitable reflection events in an elevation range between 3° and 30° last about 10min with ground track's length >3000km. Typical along-track footprints (1s signal integration time) have a length of about 5km. The reflection's Fresnel zone limits the footprint of coherent observations to a major axis extention between 1 to 6km dependent on the elevation. The altimetric performance depends on the signal-to-noise ratio (SNR) of the reflection. Simulation results show that precision is better than 10cm for SNR of 30dB. Whereas, it is worse than 0.5m if SNR goes down to 10dB. Precision, in general, improves towards higher elevation angles. Critical biases are introduced by atmospheric and ionospheric refraction. Corresponding correction strategies are still under investigation.

  1. Ultra-violet and visible absorption characterization of explosives by differential reflectometry.

    Science.gov (United States)

    Dubroca, Thierry; Moyant, Kyle; Hummel, Rolf E

    2013-03-15

    This study presents some optical properties of TNT (2,4,6-trinitrotoluene), RDX, HMX and tetryl, specifically their absorption spectra as a function of concentration in various solvents in the ultraviolet and visible portion of the electromagnetic spectrum. We utilize a standoff explosives detection method, called differential reflectometry (DR). TNT was diluted in six different solvents (acetone, acetonitrile, ethanol, ethyl acetate, methanol, and toluene), which allowed for a direct comparison of absorption features over a wide range of concentrations. A line-shape analysis was adopted with great accuracy (R(2)>0.99) to model the absorption features of TNT in differential reflectivity spectra. We observed a blue shift in the pertinent absorption band with decreasing TNT concentration for all solvents. Moreover, using this technique, it was found that for all utilized solvents the concentration of TNT as well as of RDX, HMX, and tetryl, measured as a function of the transition wavelength of the ultra-violet absorption edge in differential reflectivity spectra shows three distinct regions. A model is presented to explain this behavior which is based on intermolecular hydrogen bonding of explosives molecules with themselves (or lack thereof) at different concentrations. Other intermolecular forces such as dipole-dipole interactions, London dispersion forces and π-stacking contribute to slight variations in the resulting spectra, which were determined to be rather insignificant in comparison to hydrogen bonding. The results are aimed towards a better understanding of the DR spectra of explosives energetic materials. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. 3D micro-particle image modeling and its application in measurement resolution investigation for visual sensing based axial localization in an optical microscope

    International Nuclear Information System (INIS)

    Wang, Yuliang; Li, Xiaolai; Bi, Shusheng; Zhu, Xiaofeng; Liu, Jinhua

    2017-01-01

    Visual sensing based three dimensional (3D) particle localization in an optical microscope is important for both fundamental studies and practical applications. Compared with the lateral ( X and Y ) localization, it is more challenging to achieve a high resolution measurement of axial particle location. In this study, we aim to investigate the effect of different factors on axial measurement resolution through an analytical approach. Analytical models were developed to simulate 3D particle imaging in an optical microscope. A radius vector projection method was applied to convert the simulated particle images into radius vectors. With the obtained radius vectors, a term of axial changing rate was proposed to evaluate the measurement resolution of axial particle localization. Experiments were also conducted for comparison with that obtained through simulation. Moreover, with the proposed method, the effects of particle size on measurement resolution were discussed. The results show that the method provides an efficient approach to investigate the resolution of axial particle localization. (paper)

  3. Development and application of poloidal correlation reflectometry to study turbulent structures in the ASDEX Upgrade tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Prisiazhniuk, Dmitrii

    2017-06-05

    One of the key question of high temperature plasma confinement in a magnetic field is how plasma turbulence influences the radial transport of particles and energy. A better understanding of transport processes caused by turbulence would allow to improve the plasma confinement in fusion devices. To this end a deeper understanding of the mechanisms controlling the development, saturation and stabilization of turbulence is needed. From the experimental point of view a main challenge in these investigations is the measurement of plasma parameters on both small temporal (μs) and spatial (mm) scales. In this thesis a new microwave heterodyne poloidal correlation reflectometry diagnostic has been developed and installed at the ASDEX Upgrade tokamak to investigate the cross-correlation of turbulent density fluctuations. This diagnostic yields information on fundamental turbulence parameters such as the perpendicular propagation velocity v {sub perpendicular} {sub to}, the perpendicular correlation length l {sub perpendicular} {sub to} (characteristic size of the turbulent eddies) and the decorrelation time τ{sub d} (characteristic life time of the turbulent eddies) over a wide range of plasma densities. The inclination of the turbulent eddies α in the poloidal-toroidal plane spanned by the magnetic flux surfaces of a tokamak, being a measure of the magnetic field pitch angle, can also be obtained. The turbulence investigations were performed in low confinement mode (L-mode) plasmas for a range of plasma parameters. All measurements were interpreted taking into account the transfer function of reflectometry in the Born approximation. The results are compared with theoretical predictions and simulations. In the first part of this thesis the inclination and the propagation of turbulent structures are investigated. It is shown that eddies are nearly aligned to the magnetic field line and, therefore, the magnetic field pitch angle can be measured with a precision of about 1

  4. Design and realization of a sputter deposition system for the in situ- and in operando-use in polarized neutron reflectometry experiments

    Science.gov (United States)

    Schmehl, Andreas; Mairoser, Thomas; Herrnberger, Alexander; Stephanos, Cyril; Meir, Stefan; Förg, Benjamin; Wiedemann, Birgit; Böni, Peter; Mannhart, Jochen; Kreuzpaintner, Wolfgang

    2018-03-01

    We report on the realization of a sputter deposition system for the in situ- and in operando-use in polarized neutron reflectometry experiments. Starting with the scientific requirements, which define the general design considerations, the external limitations and boundaries imposed by the available space at a neutron beamline and by the neutron and vacuum compatibility of the used materials, are assessed. The relevant aspects are then accounted for in the realization of our highly mobile deposition system, which was designed with a focus on a quick and simple installation and removability at the beamline. Apart from the general design, the in-vacuum components, the auxiliary equipment and the remote control via a computer, as well as relevant safety aspects are presented in detail.

  5. High-resolution noncontact AFM and Kelvin probe force microscopy investigations of self-assembled photovoltaic donor–acceptor dyads

    Directory of Open Access Journals (Sweden)

    Benjamin Grévin

    2016-06-01

    Full Text Available Self-assembled donor–acceptor dyads are used as model nanostructured heterojunctions for local investigations by noncontact atomic force microscopy (nc-AFM and Kelvin probe force microscopy (KPFM. With the aim to probe the photo-induced charge carrier generation, thin films deposited on transparent indium tin oxide substrates are investigated in dark conditions and upon illumination. The topographic and contact potential difference (CPD images taken under dark conditions are analysed in view of the results of complementary transmission electron microscopy (TEM experiments. After in situ annealing, it is shown that the dyads with longer donor blocks essentially lead to standing acceptor–donor lamellae, where the acceptor and donor groups are π-stacked in an edge-on configuration. The existence of strong CPD and surface photo-voltage (SPV contrasts shows that structural variations occur within the bulk of the edge-on stacks. SPV images with a very high lateral resolution are achieved, which allows for the resolution of local photo-charging contrasts at the scale of single edge-on lamella. This work paves the way for local investigations of the optoelectronic properties of donor–acceptor supramolecular architectures down to the elementary building block level.

  6. Determination of manganese interdiffusion parameters in CoFe/IrMn bilayers by X-ray reflectometry

    Energy Technology Data Exchange (ETDEWEB)

    Batista, Pablo Forlam Ribeiro; Andrade, Leandro Hostalacio Freire; Fernandez-Outon, Luis Eugenio; Macedo, Waldemar Augusto de Almeida, E-mail: pfrb@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2016-07-01

    Full text: Interfacial diffusion is expected to have strong influence on the exchange bias coupling in ferromagnetic/antiferromagnetic bilayers, basic structures for spintronic devices [1]. In this work, X-ray reflectometry (XRR) in combination with the Fick's second law [2] was applied to determine manganese interdiffusion parameters in CoFe/IrMn exchange-biased bilayers prepared by magnetron sputtering. The layer thickness and the interfacial roughness of the samples were obtained by fitting the reflectivity curves and the values confirmed by transmission electron microscopy. The manganese diffusion coefficient at the interfaces is in the range of 10{sup -22} m{sup 2}/s, and the activation energy for the interfacial diffusion of manganese is in the order of a few tens of kJ/mol, based on the values of interfacial roughness for different annealing temperatures. References: [1] L. E. Fernandez-Outon, M. S. Araujo Filho, R. E. Araujo, J. D. Ardisson, and W. A. A. Macedo. J. Appl. Phys. 113, 17D704 (2013). [2] J. Y. Wang, A. Zalar, Y.H. Zhao, E.J. Mittemeijer. Thin Solid Films. 433, 92 (2003). (author)

  7. Echoic memory: investigation of its temporal resolution by auditory offset cortical responses.

    Science.gov (United States)

    Nishihara, Makoto; Inui, Koji; Morita, Tomoyo; Kodaira, Minori; Mochizuki, Hideki; Otsuru, Naofumi; Motomura, Eishi; Ushida, Takahiro; Kakigi, Ryusuke

    2014-01-01

    Previous studies showed that the amplitude and latency of the auditory offset cortical response depended on the history of the sound, which implicated the involvement of echoic memory in shaping a response. When a brief sound was repeated, the latency of the offset response depended precisely on the frequency of the repeat, indicating that the brain recognized the timing of the offset by using information on the repeat frequency stored in memory. In the present study, we investigated the temporal resolution of sensory storage by measuring auditory offset responses with magnetoencephalography (MEG). The offset of a train of clicks for 1 s elicited a clear magnetic response at approximately 60 ms (Off-P50m). The latency of Off-P50m depended on the inter-stimulus interval (ISI) of the click train, which was the longest at 40 ms (25 Hz) and became shorter with shorter ISIs (2.5∼20 ms). The correlation coefficient r2 for the peak latency and ISI was as high as 0.99, which suggested that sensory storage for the stimulation frequency accurately determined the Off-P50m latency. Statistical analysis revealed that the latency of all pairs, except for that between 200 and 400 Hz, was significantly different, indicating the very high temporal resolution of sensory storage at approximately 5 ms.

  8. Echoic memory: investigation of its temporal resolution by auditory offset cortical responses.

    Directory of Open Access Journals (Sweden)

    Makoto Nishihara

    Full Text Available Previous studies showed that the amplitude and latency of the auditory offset cortical response depended on the history of the sound, which implicated the involvement of echoic memory in shaping a response. When a brief sound was repeated, the latency of the offset response depended precisely on the frequency of the repeat, indicating that the brain recognized the timing of the offset by using information on the repeat frequency stored in memory. In the present study, we investigated the temporal resolution of sensory storage by measuring auditory offset responses with magnetoencephalography (MEG. The offset of a train of clicks for 1 s elicited a clear magnetic response at approximately 60 ms (Off-P50m. The latency of Off-P50m depended on the inter-stimulus interval (ISI of the click train, which was the longest at 40 ms (25 Hz and became shorter with shorter ISIs (2.5∼20 ms. The correlation coefficient r2 for the peak latency and ISI was as high as 0.99, which suggested that sensory storage for the stimulation frequency accurately determined the Off-P50m latency. Statistical analysis revealed that the latency of all pairs, except for that between 200 and 400 Hz, was significantly different, indicating the very high temporal resolution of sensory storage at approximately 5 ms.

  9. Application of time-domain reflectometry to monitoring conditions in crushed tuff test plots at Los Alamos, New Mexico: Interpretation and recommendations for landfill monitoring

    International Nuclear Information System (INIS)

    Filippone, C.L.; Schofield, T.G.

    1994-08-01

    Horizontal and vertical measurements of moisture content were obtained daily using time domain reflectometry (TDR) at four sites in two crushed tuff experimental plots over a period of 287 days. Moisture contents were also measured weekly at the same locations and at two additional locations in the plots using the neutron probe method. Results are assessed to determine the influence of waveguide length and waveguide orientation on TDR moisture content measurements, the degree of spatial variability in measured moisture content in this engineered porous material, and the ability of TDR to resolve vertical moisture content gradients. Recommendations are made for TDR instrumentation of mixed waste landfill monitoring systems

  10. Heat Transport upon River-Water Infiltration investigated by Fiber-Optic High-Resolution Temperature Profiling

    Science.gov (United States)

    Vogt, T.; Schirmer, M.; Cirpka, O. A.

    2010-12-01

    Infiltrating river water is of high relevance for drinking water supply by river bank filtration as well as for riparian groundwater ecology. Quantifying flow patterns and velocities, however, is hampered by temporal and spatial variations of exchange fluxes. In recent years, heat has become a popular natural tracer to estimate exchange rates between rivers and groundwater. Nevertheless, field investigations are often limited by insufficient sensors spacing or simplifying assumptions such as one-dimensional flow. Our interest lies in a detailed local survey of river water infiltration at a restored river section at the losing river Thur in northeast Switzerland. Here, we measured three high-resolution temperature profiles along an assumed flow path by means of distributed temperature sensing (DTS) using fiber optic cables wrapped around poles. Moreover, piezometers were equipped with standard temperature sensors for a comparison to the DTS data. Diurnal temperature oscillations were tracked in the river bed and the riparian groundwater and analyzed by means of dynamic harmonic regression and subsequent modeling of heat transport with sinusoidal boundary conditions to quantify seepage velocities and thermal diffusivities. Compared to the standard temperature sensors, the DTS data give a higher vertical resolution, facilitating the detection of process- and structure-dependent patterns of the spatiotemporal temperature field. This advantage overcompensates the scatter in the data due to instrument noise. In particular, we could demonstrate the impact of heat conduction through the unsaturated zone on the riparian groundwater by the high resolution temperature profiles.

  11. Far infrared fusion plasma diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Luhmann, N.C. Jr.; Peebles, W.A.

    1990-01-01

    Over the last several years, reflectometry has grown in importance as a diagnostic for both steady-state density Profiles as well as for the investigation of density fluctuations and turbulence. As a diagnostic for density profile measurement, it is generally believed to be well understood in the tokamak environment. However, its use as a fluctuation diagnostic is hampered by a lack of quantitative experimental understanding of its wavenumber sensitivity and spatial resolution. Several researchers, have theoretically investigated these questions. However, prior to the UCLA laboratory investigation, no group has experimentally investigated these questions. Because of the reflectometer's importance to the world effort in understanding plasma turbulence and transport, UCLA has, over the last year, made its primary Task IIIA effort the resolution of these questions. UCLA has taken the lead in a quantitative experimental understanding of reflectometer data as applied to the measurement of density fluctuations. In addition to this, work has proceeded on the design, construction, and installation of a reflectometer system on UCLA's CCT tokamak. This effort will allow a comparison between the improved confinement regimes (H-mode) observed on both the DIII-D and CCT machines with the goal of achieving a physics understanding of the phenomena. Preliminary investigation of a new diagnostic technique to measure density profiles as a function of time has been initiated at UCLA. The technique promises to be a valuable addition to the range of available plasma diagnostics. Work on advanced holographic reflectometry technique as applied to fluctuation diagnostics has awaited a better understanding of the reflectometer signal itself as discussed above. Efforts to ensure the transfer of the diagnostic developments have continued with particular attention devoted to the preliminary design of a multichannel FIR interferometer for MST.

  12. Far infrared fusion plasma diagnostics. Task 3A, Progress report, FY 1990

    Energy Technology Data Exchange (ETDEWEB)

    Luhmann, N.C. Jr.; Peebles, W.A.

    1990-12-31

    Over the last several years, reflectometry has grown in importance as a diagnostic for both steady-state density Profiles as well as for the investigation of density fluctuations and turbulence. As a diagnostic for density profile measurement, it is generally believed to be well understood in the tokamak environment. However, its use as a fluctuation diagnostic is hampered by a lack of quantitative experimental understanding of its wavenumber sensitivity and spatial resolution. Several researchers, have theoretically investigated these questions. However, prior to the UCLA laboratory investigation, no group has experimentally investigated these questions. Because of the reflectometer`s importance to the world effort in understanding plasma turbulence and transport, UCLA has, over the last year, made its primary Task IIIA effort the resolution of these questions. UCLA has taken the lead in a quantitative experimental understanding of reflectometer data as applied to the measurement of density fluctuations. In addition to this, work has proceeded on the design, construction, and installation of a reflectometer system on UCLA`s CCT tokamak. This effort will allow a comparison between the improved confinement regimes (H-mode) observed on both the DIII-D and CCT machines with the goal of achieving a physics understanding of the phenomena. Preliminary investigation of a new diagnostic technique to measure density profiles as a function of time has been initiated at UCLA. The technique promises to be a valuable addition to the range of available plasma diagnostics. Work on advanced holographic reflectometry technique as applied to fluctuation diagnostics has awaited a better understanding of the reflectometer signal itself as discussed above. Efforts to ensure the transfer of the diagnostic developments have continued with particular attention devoted to the preliminary design of a multichannel FIR interferometer for MST.

  13. Microwave, High-Resolution Infrared, and Quantum Chemical Investigations of CHBrF2

    DEFF Research Database (Denmark)

    Cazzoli, Gabriele; Cludi, Lino; Puzzarini, Cristina

    2011-01-01

    terms as well as the hyperfine parameters (quadrupole-coupling and spin-rotation interaction constants) of the bromine nucleus. The determination of the latter was made possible by recording of spectra at sub-Doppler resolution, achieved by means of the Lamb-dip technique, and supporting the spectra......A combined microwave, infrared, and computational investigation of CHBrF2 is reported. For the vibrational ground state, measurements in the millimeter- and sub-millimeter-wave regions for (CHBrF2)-Br-79 and (CHBrF2)-Br-81 provided rotational and centrifugal-distortion constants up to the sextic...... parameters of the v(4) = 1 state were found to be close to those of the vibrational ground state, indicating that the v(4) band is essentially unaffected by perturbations....

  14. Investigation of spatial resolution dependent variability in transcutaneous oxygen saturation using point spectroscopy system

    Science.gov (United States)

    Philimon, Sheena P.; Huong, Audrey K. C.; Ngu, Xavier T. I.

    2017-08-01

    This paper aims to investigate the variation in one’s percent mean transcutaneous oxygen saturation (StO2) with differences in spatial resolution of data. This work required the knowledge of extinction coefficient of hemoglobin derivatives in the wavelength range of 520 - 600 nm to solve for the StO2 value via an iterative fitting procedure. A pilot study was conducted on three healthy subjects with spectroscopic data collected from their right index finger at different arbitrarily selected distances. The StO2 value estimated by Extended Modified Lambert Beer (EMLB) model revealed a higher mean StO2 of 91.1 ± 1.3% at a proximity distance of 30 mm compared to 60.83 ± 2.8% at 200 mm. The results showed a high correlation between data spatial resolution and StO2 value, and revealed a decrease in StO2 value as the sampling distance increased. The preliminary findings from this study contribute to the knowledge of the appropriate distance range for consistent and high repeatability measurement of skin oxygenation.

  15. Simulation of space-borne tsunami detection using GNSS-Reflectometry applied to tsunamis in the Indian Ocean

    Directory of Open Access Journals (Sweden)

    R. Stosius

    2010-06-01

    Full Text Available Within the German-Indonesian Tsunami Early Warning System project GITEWS (Rudloff et al., 2009, a feasibility study on a future tsunami detection system from space has been carried out. The Global Navigation Satellite System Reflectometry (GNSS-R is an innovative way of using reflected GNSS signals for remote sensing, e.g. sea surface altimetry. In contrast to conventional satellite radar altimetry, multiple height measurements within a wide field of view can be made simultaneously. With a dedicated Low Earth Orbit (LEO constellation of satellites equipped with GNSS-R, densely spaced sea surface height measurements could be established to detect tsunamis. This simulation study compares the Walker and the meshed comb constellation with respect to their global reflection point distribution. The detection performance of various LEO constellation scenarios with GPS, GLONASS and Galileo as signal sources is investigated. The study concentrates on the detection performance for six historic tsunami events in the Indian Ocean generated by earthquakes of different magnitudes, as well as on different constellation types and orbit parameters. The GNSS-R carrier phase is compared with the PARIS or code altimetry approach. The study shows that Walker constellations have a much better reflection point distribution compared to the meshed comb constellation. Considering simulation assumptions and assuming technical feasibility it can be demonstrated that strong tsunamis with magnitudes (M ≥8.5 can be detected with certainty from any orbit altitude within 15–25 min by a 48/8 or 81/9 Walker constellation if tsunami waves of 20 cm or higher can be detected by space-borne GNSS-R. The carrier phase approach outperforms the PARIS altimetry approach especially at low orbit altitudes and for a low number of LEO satellites.

  16. Optical properties of boron carbide near the boron K edge evaluated by soft-x-ray reflectometry from a Ru/B4C multilayer

    Energy Technology Data Exchange (ETDEWEB)

    Ksenzov, Dmitriy; Panzner, Tobias; Schlemper, Christoph; Morawe, Christian; Pietsch, Ullrich

    2009-12-10

    Soft-x-ray Bragg reflection from two Ru/B4C multilayers with 10 and 63 periods was used for independent determination of both real and imaginary parts of the refractive index n = 1 -{delta} + i{beta} close to the boron K edge ({approx}188 eV). Prior to soft x-ray measurements, the structural parameters of the multilayers were determined by x-ray reflectometry using hard x rays. For the 63-period sample, the optical properties based on the predictions made for elemental boron major deviations were found close to the K edge of boron for the 10-period sample explained by chemical bonding of boron to B4C and various boron oxides.

  17. Ordinary mode reflectometry. Modification of the scattering and cut-off responses due to the shape of localized density fluctuations

    International Nuclear Information System (INIS)

    Fanack, C.; Boucher, I.; Heuraux, S.; Leclert, G.; Clairet, F.; Zou, X.L.

    1996-01-01

    Ordinary wave reflectometry in a plasma containing a localized density perturbation is studied with a 1-D model. The phase response is studied as a function of the wavenumber and position of the perturbation. It is shown that it strongly depends upon the perturbation shape and size. For a small perturbation wavenumber, the response is due to the oscillation of the cut-off layer. For larger wavenumbers, two regimes are found: for a broad perturbation, the phase response is an image of the perturbation itself; for a narrow perturbation, it is rather an image of the Fourier transform. For tokamak plasmas it turns out that, for the fluctuation spectra usually observed, the phase response comes primarily from those fluctuations that are localized at the cut-off. Results of a 2-D numerical model show that geometry effects are negligible for the scattering by radial fluctuations. (author)

  18. Investigation of ultrasonic wave influence on magnetic alignment in layered structure 20x[Fe(20 Angstroem)/Cr(12 Angstroem)]/MgO

    International Nuclear Information System (INIS)

    Aksenov, V.L.; Nikitenko, Yu.V.; Proglyado, V.V.; Khajdukov, Yu.N.; Gavrilov, V.N.; Raitman, E.; Bottyan, L.; Nagy, D.L.

    2007-01-01

    The layered structure 20x[Fe(20 Angstroem)/Cr(12 Angstroem)]/MgO, excited by ultrasonic wave, was investigated using polarized neutron reflectometry. Magnetic domains vibrations and reduction of their effective size in magnetic field of small strength were observed. In the magnetic field close to saturation the magnetic lattice is formed in the layered structure. Interplane distance of the lattice changes with increase of the magnetic field strength as well as with ultrasonic excitation of the structure

  19. New types of time domain reflectometry sensing waveguides for bridge scour monitoring

    Science.gov (United States)

    Lin, Chih-Ping; Wang, Kai; Chung, Chih-Chung; Weng, Yu-Wen

    2017-07-01

    Scour is a major threat to bridge safety, especially in harsh fluvial environments. Real-time monitoring of bridge scour is still very limited due to the lack of robust and economic scour monitoring device. Time domain reflectometry (TDR) is an emerging waveguide-based technique holding great promise to develop more durable scour monitoring devices. This study presents new types of TDR sensing waveguides in forms of either sensing rod or sensing wire, taking into account of the measurement range, durability, and ease of field installation. The sensing rod is composed of a hollow grooved steel rod paired up with a metal strip on the insulating groove, while the sensing wire consists of two steel strands with one of them coated with an insulating jacket. The measurement sensitivity is inevitably sacrificed when other properties such as the measurement range, field durability, and installation easiness are enhanced. Factors affecting the measurement sensitivity were identified and experimentally evaluated for better arranging the waveguide conductors. A data reduction method for scour-depth estimation without the need for identifying the sediment/water reflection and a two-step calibration procedure for rating propagation velocities were proposed to work with the new types of TDR sensing waveguides. Both the calibration procedure and the data reduction method were experimentally validated. The test results indicated that the new TDR sensing waveguide provides accurate scour depth measurements regardless of the sacrificed sensitivity. The insulating coating of the new TDR sensing waveguide was also demonstrated to be effective in extending the measurement range up to at least 15 m.

  20. Cable Damage Detection System and Algorithms Using Time Domain Reflectometry

    Energy Technology Data Exchange (ETDEWEB)

    Clark, G A; Robbins, C L; Wade, K A; Souza, P R

    2009-03-24

    This report describes the hardware system and the set of algorithms we have developed for detecting damage in cables for the Advanced Development and Process Technologies (ADAPT) Program. This program is part of the W80 Life Extension Program (LEP). The system could be generalized for application to other systems in the future. Critical cables can undergo various types of damage (e.g. short circuits, open circuits, punctures, compression) that manifest as changes in the dielectric/impedance properties of the cables. For our specific problem, only one end of the cable is accessible, and no exemplars of actual damage are available. This work addresses the detection of dielectric/impedance anomalies in transient time domain reflectometry (TDR) measurements on the cables. The approach is to interrogate the cable using time domain reflectometry (TDR) techniques, in which a known pulse is inserted into the cable, and reflections from the cable are measured. The key operating principle is that any important cable damage will manifest itself as an electrical impedance discontinuity that can be measured in the TDR response signal. Machine learning classification algorithms are effectively eliminated from consideration, because only a small number of cables is available for testing; so a sufficient sample size is not attainable. Nonetheless, a key requirement is to achieve very high probability of detection and very low probability of false alarm. The approach is to compare TDR signals from possibly damaged cables to signals or an empirical model derived from reference cables that are known to be undamaged. This requires that the TDR signals are reasonably repeatable from test to test on the same cable, and from cable to cable. Empirical studies show that the repeatability issue is the 'long pole in the tent' for damage detection, because it is has been difficult to achieve reasonable repeatability. This one factor dominated the project. The two-step model

  1. Q-ball imaging models: comparison between high and low angular resolution diffusion-weighted MRI protocols for investigation of brain white matter integrity

    Energy Technology Data Exchange (ETDEWEB)

    Caiazzo, Giuseppina; Trojsi, Francesca; Cirillo, Mario; Tedeschi, Gioacchino [MRI Research Center SUN-FISM-Neurological Institute for Diagnosis and Care ' ' Hermitage Capodimonte' ' , Naples (Italy); Second University of Naples, Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, Naples (Italy); Esposito, Fabrizio [University of Salerno, Department of Medicine and Surgery, Baronissi (Salerno) (Italy); Maastricht University, Department of Cognitive Neuroscience, Maastricht (Netherlands)

    2016-02-15

    Q-ball imaging (QBI) is one of the typical data models for quantifying white matter (WM) anisotropy in diffusion-weighted MRI (DwMRI) studies. Brain and spinal investigation by high angular resolution DwMRI (high angular resolution imaging (HARDI)) protocols exhibits higher angular resolution in diffusion imaging compared to low angular resolution models, although with longer acquisition times. We aimed to assess the difference between QBI-derived anisotropy values from high and low angular resolution DwMRI protocols and their potential advantages or shortcomings in neuroradiology. Brain DwMRI data sets were acquired in seven healthy volunteers using both HARDI (b = 3000 s/mm{sup 2}, 54 gradient directions) and low angular resolution (b = 1000 s/mm{sup 2}, 32 gradient directions) acquisition schemes. For both sequences, tract of interest tractography and generalized fractional anisotropy (GFA) measures were extracted by using QBI model and were compared between the two data sets. QBI tractography and voxel-wise analyses showed that some WM tracts, such as corpus callosum, inferior longitudinal, and uncinate fasciculi, were reconstructed as one-dominant-direction fiber bundles with both acquisition schemes. In these WM tracts, mean percent different difference in GFA between the two data sets was less than 5 %. Contrariwise, multidirectional fiber bundles, such as corticospinal tract and superior longitudinal fasciculus, were more accurately depicted by HARDI acquisition scheme. Our results suggest that the design of optimal DwMRI acquisition protocols for clinical investigation of WM anisotropy by QBI models should consider the specific brain target regions to be explored, inducing researchers to a trade-off choice between angular resolution and acquisition time. (orig.)

  2. Development of a flexible Doppler reflectometry system and its application to turbulence characterization in the ASDEX Upgrade tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Troester, Carolin Helma

    2008-04-15

    An essential challenge in present fusion plasma research is the study of plasma turbulence. The turbulence behavior is investigated experimentally on the ASDEX Upgrade tokamak using Doppler reflectometry, a diagnostic technique sensitive to density fluctuations at a specific wavenumber k {sub perpendicular} {sub to}. This microwave radar diagnostic utilizes localized Bragg backscattering of the launched beam (k{sub 0}) by the density fluctuations at the plasma cutoff layer. The incident angle {theta} selects the probed k {sub perpendicular} {sub to} via the Bragg condition k {sub perpendicular} {sub to} {approx} 2k{sub 0}sin{theta}. The measured Doppler shifted frequency spectrum allows the determination of the perpendicular plasma rotation velocity, u {sub perpendicular} {sub to} =v{sub E} {sub x} {sub B}+v{sub turb}, directly from the Doppler frequency shift(f{sub D} = u {sub perpendicular} {sub to} k {sub perpendicular} {sub to} /2{pi}), and the turbulence amplitude from the backscattered power level. This thesis work presents a survey of u {sub perpendicular} {sub to} radial profiles and k {sub perpendicular} {sub to} spectrum measurements for a variety of plasma conditions obtained by scanning the antenna tilt angle. This was achieved by extending the existing V-band Doppler reflectometry system (50 - 75 GHz) with a new W-band system (75 - 110 GHz), which was especially designed for measuring the k {sub perpendicular} {sub to} spectrum and additionally expands the radial coverage into the plasma core region. It consists of a remote steerable antenna with an adjustable line of sight allowing for dynamic wavenumber selection up to 25 cm {sup -1} and a reflectometer with a 'phase locked loop' stabilized transmitter allowing for the precise determination of the instrument response function. The proper system functionality was demonstrated by laboratory testing and benckmarking against the V-band system. The new profile measurements obtained show a

  3. High resolution numerical investigation on the effect of convective instability on long term CO2 storage in saline aquifers

    International Nuclear Information System (INIS)

    Lu, C; Lichtner, P C

    2007-01-01

    CO 2 sequestration (capture, separation, and long term storage) in various geologic media including depleted oil reservoirs, saline aquifers, and oceanic sediments is being considered as a possible solution to reduce green house gas emissions. Dissolution of supercritical CO 2 in formation brines is considered an important storage mechanism to prevent possible leakage. Accurate prediction of the plume dissolution rate and migration is essential. Analytical analysis and numerical experiments have demonstrated that convective instability (Rayleigh instability) has a crucial effect on the dissolution behavior and subsequent mineralization reactions. Global stability analysis indicates that a certain grid resolution is needed to capture the features of density-driven fingering phenomena. For 3-D field scale simulations, high resolution leads to large numbers of grid nodes, unfeasible for a single workstation. In this study, we investigate the effects of convective instability on geologic sequestration of CO 2 by taking advantage of parallel computing using the code PFLOTRAN, a massively parallel 3-D reservoir simulator for modeling subsurface multiphase, multicomponent reactive flow and transport based on continuum scale mass and energy conservation equations. The onset, development and long-term fate of a supercritical CO 2 plume will be resolved with high resolution numerical simulations to investigate the rate of plume dissolution caused by fingering phenomena

  4. Optical coherence tomography and optical coherence domain reflectometry for deep brain stimulation probe guidance

    Science.gov (United States)

    Jeon, Sung W.; Shure, Mark A.; Baker, Kenneth B.; Chahlavi, Ali; Hatoum, Nagi; Turbay, Massud; Rollins, Andrew M.; Rezai, Ali R.; Huang, David

    2005-04-01

    Deep Brain Stimulation (DBS) is FDA-approved for the treatment of Parkinson's disease and essential tremor. Currently, placement of DBS leads is guided through a combination of anatomical targeting and intraoperative microelectrode recordings. The physiological mapping process requires several hours, and each pass of the microelectrode into the brain increases the risk of hemorrhage. Optical Coherence Domain Reflectometry (OCDR) in combination with current methodologies could reduce surgical time and increase accuracy and safety by providing data on structures some distance ahead of the probe. For this preliminary study, we scanned a rat brain in vitro using polarization-insensitive Optical Coherence Tomography (OCT). For accurate measurement of intensity and attenuation, polarization effects arising from tissue birefringence are removed by polarization diversity detection. A fresh rat brain was sectioned along the coronal plane and immersed in a 5 mm cuvette with saline solution. OCT images from a 1294 nm light source showed depth profiles up to 2 mm. Light intensity and attenuation rate distinguished various tissue structures such as hippocampus, cortex, external capsule, internal capsule, and optic tract. Attenuation coefficient is determined by linear fitting of the single scattering regime in averaged A-scans where Beer"s law is applicable. Histology showed very good correlation with OCT images. From the preliminary study using OCT, we conclude that OCDR is a promising approach for guiding DBS probe placement.

  5. Distributed electrical time domain reflectometry (ETDR) structural sensors: design models and proof-of-concept experiments

    Science.gov (United States)

    Stastny, Jeffrey A.; Rogers, Craig A.; Liang, Chen

    1993-07-01

    A parametric design model has been created to optimize the sensitivity of the sensing cable in a distributed sensing system. The system consists of electrical time domain reflectometry (ETDR) signal processing equipment and specially designed sensing cables. The ETDR equipment sends a high-frequency electric pulse (in the giga hertz range) along the sensing cable. Some portion of the electric pulse will be reflected back to the ETDR equipment as a result of the variation of the cable impedance. The electric impedance variation in the sensing cable can be related to its mechanical deformation, such as cable elongation (change in the resistance), shear deformation (change in the capacitance), corrosion of the cable or the materials around the cable (change in inductance and capacitance), etc. The time delay, amplitude, and shape of the reflected pulse provides the means to locate, determine the magnitude, and indicate the nature of the change in the electrical impedance, which is then related to the distributed structural deformation. The sensing cables are an essential part of the health-monitoring system. By using the parametric design model, the optimum cable parameters can be determined for specific deformation. Proof-of-concept experiments also are presented in the paper to demonstrate the utility of an electrical TDR system in distributed sensing applications.

  6. Investigation of a baseline method for genealogical entity resolution

    NARCIS (Netherlands)

    Efremova, I.; Ranjbar-Sahraei, B.; Oliehoek, F.A.; Calders, T.G.K.; Tuyls, K.P.

    2014-01-01

    In this paper we study the application of entity resolution (ER) techniques on a real-world multi-source genealogical dataset. Our goal is to identify all persons involved in various notary acts and link them to their birth, marriage and death certificates. In order to evaluate the performance of a

  7. Elastic scattering research at a 1 MW long pulse spallation neutron source

    International Nuclear Information System (INIS)

    Crawford, R.K.

    1995-01-01

    The elastic scattering working group investigated instrumentation for powder diffraction, single-crystal diffraction, small-angle diffraction, and reflectometry. For this purpose, three subgroups were formed; one for powder diffraction and single-crystal diffraction, one for small-angle diffraction, and one for reflectometry. For the most part these subgroups worked separately, but for part of the time the reflectometry and small-angle diffraction subgroups met together to discuss areas of common interest. Contributors in each of these subgroups are indicated below along with the discussion of these subgroup deliberations

  8. An investigation of tropical Atlantic bias in a high-resolution coupled regional climate model

    Energy Technology Data Exchange (ETDEWEB)

    Patricola, Christina M.; Saravanan, R.; Hsieh, Jen-Shan [Texas A and M University, Department of Atmospheric Sciences, College Station, TX (United States); Li, Mingkui; Xu, Zhao [Texas A and M University, Department of Oceanography, College Station, TX (United States); Ocean University of China, Key Laboratory of Physical Oceanography of Ministry of Education, Qingdao (China); Chang, Ping [Texas A and M University, Department of Oceanography, College Station, TX (United States); Ocean University of China, Key Laboratory of Physical Oceanography of Ministry of Education, Qingdao (China); Second Institute of Oceanography, State Key Laboratory of Satellite Ocean Environment Dynamics, Hangzhou, Zhejiang (China)

    2012-11-15

    Coupled atmosphere-ocean general circulation models (AOGCMs) commonly fail to simulate the eastern equatorial Atlantic boreal summer cold tongue and produce a westerly equatorial trade wind bias. This tropical Atlantic bias problem is investigated with a high-resolution (27-km atmosphere represented by the Weather Research and Forecasting Model, 9-km ocean represented by the Regional Ocean Modeling System) coupled regional climate model. Uncoupled atmospheric simulations test climate sensitivity to cumulus, land-surface, planetary boundary layer, microphysics, and radiation parameterizations and reveal that the radiation scheme has a pronounced impact in the tropical Atlantic. The CAM radiation simulates a dry precipitation (up to -90%) and cold land-surface temperature (up to -8 K) bias over the Amazon related to an over-representation of low-level clouds and almost basin-wide westerly trade wind bias. The Rapid Radiative Transfer Model and Goddard radiation simulates doubled Amazon and Congo Basin precipitation rates and a weak eastern Atlantic trade wind bias. Season-long high-resolution coupled regional model experiments indicate that the initiation of the warm eastern equatorial Atlantic sea surface temperature (SST) bias is more sensitive to the local rather than basin-wide trade wind bias and to a wet Congo Basin instead of dry Amazon - which differs from AOGCM simulations. Comparisons between coupled and uncoupled simulations suggest a regional Bjerknes feedback confined to the eastern equatorial Atlantic amplifies the initial SST, wind, and deepened thermocline bias, while barrier layer feedbacks are relatively unimportant. The SST bias in some CRCM simulations resembles the typical AOGCM bias indicating that increasing resolution is unlikely a simple solution to this problem. (orig.)

  9. Thermal properties of high-power diode lasers investigated by means of high resolution thermography

    International Nuclear Information System (INIS)

    Kozłowska, Anna; Maląg, Andrzej; Dąbrowska, Elżbieta; Teodorczyk, Marian

    2012-01-01

    In the present work, thermal effects in high-power diode lasers are investigated by means of high resolution thermography. Thermal properties of the devices emitting in the 650 nm and 808 nm wavelength ranges are compared. The different versions of the heterostructure design are analyzed. The results show a lowering of active region temperature for diode lasers with asymmetric heterostructure scheme with reduced quantum well distance from the heterostructure surface (and the heat sink). Optimization of technological processes allowed for the improvement of the device performance, e.g. reduction of solder non-uniformities and local defect sites at the mirrors which was visualized by the thermography.

  10. Size effect in the spin glass magnetization of thin AuFe films as studied by polarized neutron reflectometry.

    Science.gov (United States)

    Saoudi, M; Fritzsche, H; Nieuwenhuys, G J; Hesselberth, M B S

    2008-02-08

    We used polarized neutron reflectometry to determine the temperature dependence of the magnetization of thin AuFe films with 3% Fe concentration. We performed the measurements in a large magnetic field of 6 T in a temperature range from 295 to 2 K. For the films in the thickness range from 500 to 20 nm we observed a Brillouin-type behavior from 295 K down to 50 K and a constant magnetization of about 0.9 micro(B) per Fe atom below 30 K. However, for the 10 nm thick film we observed a Brillouin-type behavior down to 20 K and a constant magnetization of about 1.3 micro(B) per Fe atom below 20 K. These experiments are the first to show a finite-size effect in the magnetization of single spin-glass films in large magnetic fields. Furthermore, the ability to measure the deviation from the paramagnetic behavior enables us to prove the existence of the spin-glass state where other methods relying on a cusp-type behavior fail.

  11. Experimental Investigation and High Resolution Simulation of In-Situ Combustion Processes

    Energy Technology Data Exchange (ETDEWEB)

    Margot Gerritsen; Tony Kovscek

    2008-04-30

    This final technical report describes work performed for the project 'Experimental Investigation and High Resolution Numerical Simulator of In-Situ Combustion Processes', DE-FC26-03NT15405. In summary, this work improved our understanding of in-situ combustion (ISC) process physics and oil recovery. This understanding was translated into improved conceptual models and a suite of software algorithms that extended predictive capabilities. We pursued experimental, theoretical, and numerical tasks during the performance period. The specific project objectives were (i) identification, experimentally, of chemical additives/injectants that improve combustion performance and delineation of the physics of improved performance, (ii) establishment of a benchmark one-dimensional, experimental data set for verification of in-situ combustion dynamics computed by simulators, (iii) develop improved numerical methods that can be used to describe in-situ combustion more accurately, and (iv) to lay the underpinnings of a highly efficient, 3D, in-situ combustion simulator using adaptive mesh refinement techniques and parallelization. We believe that project goals were met and exceeded as discussed.

  12. Neutron Reflectometry and QCM-D Study of the Interaction of Cellulase Enzymes with Films of Amorphous Cellulose

    International Nuclear Information System (INIS)

    Halbert, Candice E.; Ankner, John Francis; Kent, Michael S.; Jaclyn, Murton K.; Browning, Jim; Cheng, Gang; Liu, Zelin; Majewski, Jaroslaw; Supratim, Datta; Michael, Jablin; Bulent, Akgun; Alan, Esker; Simmons, Blake

    2011-01-01

    Improving the efficiency of enzymatic hydrolysis of cellulose is one of the key technological hurdles to reduce the cost of producing ethanol and other transportation fuels from lignocellulosic material. A better understanding of how soluble enzymes interact with insoluble cellulose will aid in the design of more efficient enzyme systems. We report a study involving neutron reflectometry (NR) and quartz crystal microbalance with dissipation (QCM-D) of the interaction of a commercial fungal enzyme extract (T. viride), two purified endoglucanses from thermophilic bacteria (Cel9A from A. acidocaldarius and Cel5A from T. maritima), and a mesophilic fungal endoglucanase (Cel45A from H. insolens) with amorphous cellulose films. The use of amorphous cellulose is motivated by the promise of ionic liquid pretreatment as a second generation technology that disrupts the native crystalline structure of cellulose. NR reveals the profile of water through the film at nm resolution, while QCM-D provides changes in mass and film stiffness. At 20 C and 0.3 mg/ml, the T. viride cocktail rapidly digested the entire film, beginning from the surface followed by activity throughout the bulk of the film. For similar conditions, Cel9A and Cel5A were active for only a short period of time and only at the surface of the film, with Cel9A releasing 40 from the ∼ 700 film and Cel5A resulting in only a slight roughening/swelling effect at the surface. Subsequent elevation of the temperature to the Topt in each case resulted in a very limited increase in activity, corresponding to the loss of an additional 60 from the film for Cel9A and 20 from the film for Cel5A, and very weak penetration into and digestion within the bulk of the film, before the activity again ceased. The results for Cel9A and Cel5A contrast sharply with results for Cel45A where very rapid and extensive penetration and digestion within the bulk of the film was observed at 20 C. We speculate that the large differences are due

  13. Chemical and valence reconstruction at the surface of SmB6 revealed by means of resonant soft x-ray reflectometry

    Science.gov (United States)

    Zabolotnyy, V. B.; Fürsich, K.; Green, R. J.; Lutz, P.; Treiber, K.; Min, Chul-Hee; Dukhnenko, A. V.; Shitsevalova, N. Y.; Filipov, V. B.; Kang, B. Y.; Cho, B. K.; Sutarto, R.; He, Feizhou; Reinert, F.; Inosov, D. S.; Hinkov, V.

    2018-05-01

    Samarium hexaboride (SmB6), a Kondo insulator with mixed valence, has recently attracted much attention as a possible host for correlated topological surface states. Here, we use a combination of x-ray absorption and reflectometry techniques, backed up with a theoretical model for the resonant M4 ,5 absorption edge of Sm and photoemission data, to establish laterally averaged chemical and valence depth profiles at the surface of SmB6. We show that upon cleaving, the highly polar (001) surface of SmB6 undergoes substantial chemical and valence reconstruction, resulting in boron termination and a Sm3 + dominated subsurface region. Whereas at room temperature, the reconstruction occurs on a timescale of less than 2 h, it takes about 24 h below 50 K. The boron termination is eventually established, irrespective of the initial termination. Our findings reconcile earlier depth resolved photoemission and scanning tunneling spectroscopy studies performed at different temperatures and are important for better control of surface states in this system.

  14. Effective crop evapotranspiration measurement using time-domain reflectometry technique in a sub-humid region

    Science.gov (United States)

    Srivastava, R. K.; Panda, R. K.; Halder, Debjani

    2017-08-01

    The primary objective of this study was to evaluate the performance of the time-domain reflectometry (TDR) technique for daily evapotranspiration estimation of peanut and maize crop in a sub-humid region. Four independent methods were used to estimate crop evapotranspiration (ETc), namely, soil water balance budgeting approach, energy balance approach—(Bowen ratio), empirical methods approach, and Pan evaporation method. The soil water balance budgeting approach utilized the soil moisture measurement by gravimetric and TDR method. The empirical evapotranspiration methods such as combination approach (FAO-56 Penman-Monteith and Penman), temperature-based approach (Hargreaves-Samani), and radiation-based approach (Priestley-Taylor, Turc, Abetw) were used to estimate the reference evapotranspiration (ET0). The daily ETc determined by the FAO-56 Penman-Monteith, Priestley-Taylor, Turc, Pan evaporation, and Bowen ratio were found to be at par with the ET values derived from the soil water balance budget; while the methods Abetw, Penman, and Hargreaves-Samani were not found to be ideal for the determination of ETc. The study illustrates the in situ applicability of the TDR method in order to make it possible for a user to choose the best way for the optimum water consumption for a given crop in a sub-humid region. The study suggests that the FAO-56 Penman-Monteith, Turc, and Priestley-Taylor can be used for the determination of crop ETc using TDR in comparison to soil water balance budget.

  15. Dielectric dispersion and thermodynamic behavior of stearic acid binary mixtures with alcohol as co-solvent using time domain reflectometry

    Directory of Open Access Journals (Sweden)

    M. Maria Sylvester

    2017-08-01

    Full Text Available Dielectric permittivity and relaxation dynamics of binary and ternary mixture of stearic acid on various concentration and their thermodynamic effects are studied. The static dielectric constant (ε0, dielectric permittivity (ε′ and dielectric loss (ε′′ are found by bilinear calibration. The relaxation time (τ, dielectric strength (Δε and the excess permittivity (εE are found. The thermodynamic parameters such as enthalpy (ΔH, entropy (ΔS and Gibb’s free energy (ΔG are evolved. The significant changes in dielectric parameters are due to the intramolecular and intermolecular interactions in response to the applied frequency. The permittivity spectra of stearic acid–alcohol in the frequency range of 10MHz to 30GHz have been measured using picoseconds Time Domain Reflectometry (TDR. The dielectric parameters (ε0, ε′, ε′′ are found by bilinear calibration method. Influence of temperature in intermolecular interaction and the relaxation process are also studied. The FT-IR spectral analysis reveals that the conformation of functional groups and formation for hydrogen bonding are present in both binary and ternary mixtures of stearic acid.

  16. Laserspritzer: a simple method for optogenetic investigation with subcellular resolutions.

    Directory of Open Access Journals (Sweden)

    Qian-Quan Sun

    Full Text Available To build a detailed circuit diagram in the brain, one needs to measure functional synaptic connections between specific types of neurons. A high-resolution circuit diagram should provide detailed information at subcellular levels such as soma, distal and basal dendrites. However, a limitation lies in the difficulty of studying long-range connections between brain areas separated by millimeters. Brain slice preparations have been widely used to help understand circuit wiring within specific brain regions. The challenge exists because long-range connections are likely to be cut in a brain slice. The optogenetic approach overcomes these limitations, as channelrhodopsin 2 (ChR2 is efficiently transported to axon terminals that can be stimulated in brain slices. Here, we developed a novel fiber optic based simple method of optogenetic stimulation: the laserspritzer approach. This method facilitates the study of both long-range and local circuits within brain slice preparations. This is a convenient and low cost approach that can be easily integrated with a slice electrophysiology setup, and repeatedly used upon initial validation. Our data with direct ChR2 mediated-current recordings demonstrates that the spatial resolution of the laserspritzer is correlated with the size of the laserspritzer, and the resolution lies within the 30 µm range for the 5 micrometer laserspritzer. Using olfactory cortical slices, we demonstrated that the laserspritzer approach can be applied to selectively activate monosynaptic perisomatic GABAergic basket synapses, or long-range intracortical glutamatergic inputs formed on different subcellular domains within the same cell (e.g. distal and proximal dendrites. We discuss significant advantages of the laserspritzer approach over the widely used collimated LED whole-field illumination method in brain slice electrophysiological research.

  17. Polymer surfaces, interfaces and thin films

    Energy Technology Data Exchange (ETDEWEB)

    Stamm, M [Max-Planck-Institut fuer Polymerforschung, Mainz (Germany)

    1996-11-01

    Neutron reflectometry can be used in various ways to investigate surfaces, interfaces and thin films of polymers. Its potential comes mostly from the possibilities offered by selective deuteration, where a particular component can be made visible with respect to its activity at the interface. In addition the depth resolution is much better than with most other direct techniques, and details of the profiles may be resolved. Several examples will be discussed including the segment diffusion at the interface between two polymer films, the determination of the narrow interfaces between incompatible polymer blends and the development of order in thin diblock copolymer films. (author) 10 figs., 2 tabs., 38 refs.

  18. Polymer surfaces, interfaces and thin films

    International Nuclear Information System (INIS)

    Stamm, M.

    1996-01-01

    Neutron reflectometry can be used in various ways to investigate surfaces, interfaces and thin films of polymers. Its potential comes mostly from the possibilities offered by selective deuteration, where a particular component can be made visible with respect to its activity at the interface. In addition the depth resolution is much better than with most other direct techniques, and details of the profiles may be resolved. Several examples will be discussed including the segment diffusion at the interface between two polymer films, the determination of the narrow interfaces between incompatible polymer blends and the development of order in thin diblock copolymer films. (author) 10 figs., 2 tabs., 38 refs

  19. Design and theoretical investigation of a digital x-ray detector with large area and high spatial resolution

    Science.gov (United States)

    Gui, Jianbao; Guo, Jinchuan; Yang, Qinlao; Liu, Xin; Niu, Hanben

    2007-05-01

    X-ray phase contrast imaging is a promising new technology today, but the requirements of a digital detector with large area, high spatial resolution and high sensitivity bring forward a large challenge to researchers. This paper is related to the design and theoretical investigation of an x-ray direct conversion digital detector based on mercuric iodide photoconductive layer with the latent charge image readout by photoinduced discharge (PID). Mercuric iodide has been verified having a good imaging performance (high sensitivity, low dark current, low voltage operation and good lag characteristics) compared with the other competitive materials (α-Se,PbI II,CdTe,CdZnTe) and can be easily deposited on large substrates in the manner of polycrystalline. By use of line scanning laser beam and parallel multi-electrode readout make the system have high spatial resolution and fast readout speed suitable for instant general radiography and even rapid sequence radiography.

  20. Low energy nuclear spin excitations in Ho metal investigated by high resolution neutron spectroscopy.

    Science.gov (United States)

    Chatterji, Tapan; Jalarvo, Niina

    2013-04-17

    We have investigated the low energy excitations in metallic Ho by high resolution neutron spectroscopy. We found at T = 3 K clear inelastic peaks in the energy loss and energy gain sides, along with the central elastic peak. The energy of this low energy excitation, which is 26.59 ± 0.02 μeV at T = 3 K, decreased continuously and became zero at TN ≈ 130 K. By fitting the data in the temperature range 100-127.5 K with a power law we obtained the power-law exponent β = 0.37 ± 0.02, which agrees with the expected value β = 0.367 for a three-dimensional Heisenberg model. Thus the energy of the low energy excitations can be associated with the order parameter.

  1. Determination of the usage factor of components after cyclic loading using high-resolution microstructural investigations

    International Nuclear Information System (INIS)

    Seibold, A.; Scheibe, A.; Assmann, H.D.

    1989-01-01

    The usage factor can be derived from the quantification of the structure changes and the allocation of the microstructural state to the fatigue curves of the component materials. Using the example of the low alloy fine grain structural steel 20 Mn Mo Ni 5 5 (annealed structure), the relationship between micro-structure and the number of load cycles is shown in the form of a calibration curve. By high resolution structural investigation, the usage factor can be determined to n = N/N B ≅ 0.5 under given vibration stress. Only a small volume sample is required for the electron microscope examination. (orig./DG) [de

  2. The effect of single oral doses of duloxetine, reboxetine, and midodrine on the urethral pressure in healthy female subjects, using urethral pressure reflectometry

    DEFF Research Database (Denmark)

    Klarskov, Niels; Cerneus, Dirk; Sawyer, William

    2018-01-01

    AIMS: To evaluate the effect on urethral pressure of reference drugs known to reduce stress urinary incontinence symptoms by different effect size and mechanisms of action on urethral musculature under four test conditions in healthy female subjects using urethral pressure reflectometry. METHODS......: Healthy females aged 18-55 years were recruited by advertising for this phase 1, single site, placebo-controlled, randomized, four-period, crossover study. The interventions were single oral doses of 10 mg Midodrine, 80 mg Duloxetine, 12 mg Reboxetine, and placebo. The endpoints were the opening urethral...... pressure measured in each period at four time points (predose and 2, 5.5, and 9 h after dosing). RESULTS: Twenty-nine females were enrolled; 25 randomized and 24 completed the study. The opening urethral pressure was higher in all measurements with filled bladder compared with empty bladder, and during...

  3. Theoretical investigation of the energy resolution of an ideal hemispherical deflector analyzer and its dependence on the distance from the focal plane

    International Nuclear Information System (INIS)

    Zouros, T.J.M.

    2006-01-01

    In most modern hemispherical deflector analyzers (HDAs) using a position sensitive detector (PSD), due to practical geometrical constraints (fringing field correctors, grids etc.), the PSD cannot always be placed at the optimal position, i.e. the first-order focal plane following 180 o deflection at h=0. Here, the dependence of the exit radial base width Δr πh *, base energy resolution R Bh and line shape L h on the distance h between the focal plane and the detection plane for an ideal HDA (no fringing fields) is investigated theoretically as a function of the maximum injection angle α max- bar * and the diameter of the entry aperture Δr 0 . Both exact numerical results and practical analytic formulas based on Taylor series expansions developed for any HDA show R Bh and L h become increasingly degraded with increasing h from their optimal values at h=0. A detailed comparison of the resolution properties of conventional and biased paracentric HDAs is also presented. Apart from a few marginal improvements of limited utility, overall, the ideal paracentric HDA does not seem to have any distinct practical advantages over the conventional HDA. Resolution improvements recently reported for non-ideal paracentric HDAs must therefore be due to their strong fringing fields and needs to be further investigated. Our ideal HDA results provide a unique standard to evaluate the resolution performance of any HDA under realistic non-zero h-value conditions

  4. Fe and N diffusion in nitrogen-rich FeN measured using neutron ...

    Indian Academy of Sciences (India)

    E-mail: mgupta@csr.ernet.in. Abstract. Grazing incidence neutron reflectometry provides an opportunity to measure the depth profile of a thin film sample with a resolution <1 nm, in a non-destructive way. In this way the diffusion across the interfaces can also be measured. In addition, neutrons have contrast among the ...

  5. Refractive analysis of interfaces with neutron beam optimised for a white spectrum: RAINBOWS

    International Nuclear Information System (INIS)

    Cubitt, R.; Rennie, A.R.; Mueller-Buschbaum, P.

    2011-01-01

    A new technique of refractive encoding for specular reflectometry is described that uses the full white beam without the need for choppers. Depending on the resolution, gains of many orders of flux are possible opening a new area of sub-second kinetics in interface research or allowing very small sample areas to be studied. (author)

  6. Investigation of charm production in hadronic interactions using high-resolution silicon detectors

    CERN Multimedia

    2002-01-01

    The experiment is designed to measure the lifetime of the $F$ and $\\Lambda_{C}$.\\\\ The first level trigger uses scintillator and Cerenkov hodoscope information to select events with at least two particles of opposite charge and compatible with being a kaon or proton.\\\\ The second-level trigger makes use of the FAMP microprocessor system to determine the momenta of the selected particles using the information from 5 MWPC planes, assuming that the particles come from a point target. Only those events are accepted where the selected particles had momenta in the range of the momentum bands given by the Cerenkov counter thresholds.\\\\ The full kinematic reconstruction of the charm decays is achieved using the information from the different parts of the spectrometer: \\\\1) a vertex telescope of eight planes of 5 $\\mu$m resolution silicon strip counters and two charge coupled devices having a spatial resolution of $\\simeq 5 \\mu$m in x and y, \\\\2) a beam telescope of seven planes of 3 $\\mu$m resolution silicon strip c...

  7. Combining reflectometry and fluorescence microscopy: an assay for the investigation of leakage processes across lipid membranes.

    Science.gov (United States)

    Stephan, Milena; Mey, Ingo; Steinem, Claudia; Janshoff, Andreas

    2014-02-04

    The passage of solutes across a lipid membrane plays a central role in many cellular processes. However, the investigation of transport processes remains a serious challenge in pharmaceutical research, particularly the transport of uncharged cargo. While translocation reactions of ions across cell membranes is commonly measured with the patch-clamp, an equally powerful screening method for the transport of uncharged compounds is still lacking. A combined setup for reflectometric interference spectroscopy (RIfS) and fluorescence microscopy measurements is presented that allows one to investigate the passive exchange of uncharged compounds across a free-standing membrane. Pore-spanning lipid membranes were prepared by spreading giant 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) vesicles on porous anodic aluminum oxide (AAO) membranes, creating sealed attoliter-sized compartments. The time-resolved leakage of different dye molecules (pyranine and crystal violet) as well as avidin through melittin induced membrane pores and defects was investigated.

  8. High resolution CT in the investigation of bone destruction in the outer ear

    International Nuclear Information System (INIS)

    Koester, O.; Straehler-Pohl, H.J.; Bonn Univ.

    1986-01-01

    Eleven patients with known malignant tumours of the outer ear and three patients with otitis externa maligna were examined by high resolution CT. CT provided accurate information concerning soft tissue infiltration into the parotid or subtemporal tissues, and of the bony destruction in the mastoid, meatus and tympanic cavity. Absolute differentiation between a malignant tumour and otitis cisterna maligna is not possible, not even by high resolution CT. (orig.) [de

  9. Real time neutron reflectometry using neutron optical imaging

    International Nuclear Information System (INIS)

    Smith, Gregory S.; Majewski, Jaroslaw

    2001-01-01

    We will describe recent improvements to the SPEAR reflectometer at the Manuel Lujan Jr. Neutron Scattering Center at Los Alamos. One of the changes consists of wider convergent, incident-beam, collimation to take advantage of optical imaging for specular scattering. In addition, the instrument now views a partially coupled liquid hydrogen moderator as opposed to the decoupled moderator that was previous in-place. While the wavelength distribution is poorer, it matches the time (wavelength) resolution of the reflectometer more closely with the angular resolution. Since the integrated intensity of the partially coupled moderator is higher than the decoupled moderator, we show a similar gain in incident beam flux on the sample without loss of the ability to separate fringes. The increases in intensity from the moderator gain and the improved collimation combine to allow us to measure reflectivities with good statistics down to 10 -4 in a matter of minutes and reflectivities of 10 -6 in an hour. Examples of measurements showing the gain in data accumulation rates are presented. (author)

  10. Resolution of axial shear strain elastography

    International Nuclear Information System (INIS)

    Thitaikumar, Arun; Righetti, Raffaella; Krouskop, Thomas A; Ophir, Jonathan

    2006-01-01

    The technique of mapping the local axial component of the shear strain due to quasi-static axial compression is defined as axial shear strain elastography. In this paper, the spatial resolution of axial shear strain elastography is investigated through simulations, using an elastically stiff cylindrical lesion embedded in a homogeneously softer background. Resolution was defined as the smallest size of the inclusion for which the strain value at the inclusion/background interface was greater than the average of the axial shear strain values at the interface and inside the inclusion. The resolution was measured from the axial shear strain profile oriented at 45 0 to the axis of beam propagation, due to the absence of axial shear strain along the normal directions. The effects of the ultrasound system parameters such as bandwidth, beamwidth and transducer element pitch along with signal processing parameters such as correlation window length (W) and axial shift (ΔW) on the estimated resolution were investigated. The results show that the resolution (at 45 0 orientation) is determined by the bandwidth and the beamwidth. However, the upper bound on the resolution is limited by the larger of the beamwidth and the window length, which is scaled inversely to the bandwidth. The results also show that the resolution is proportional to the pitch and not significantly affected by the axial window shift

  11. Luminosity class of neutron reflectometers

    Energy Technology Data Exchange (ETDEWEB)

    Pleshanov, N.K., E-mail: pnk@pnpi.spb.ru

    2016-10-21

    The formulas that relate neutron fluxes at reflectometers with differing q-resolutions are derived. The reference luminosity is defined as a maximum flux for measurements with a standard resolution. The methods of assessing the reference luminosity of neutron reflectometers are presented for monochromatic and white beams, which are collimated with either double diaphragm or small angle Soller systems. The values of the reference luminosity for unified parameters define luminosity class of reflectometers. The luminosity class characterizes (each operation mode of) the instrument by one number and can be used to classify operating reflectometers and optimize designed reflectometers. As an example the luminosity class of the neutron reflectometer NR-4M (reactor WWR-M, Gatchina) is found for four operation modes: 2.1 (monochromatic non-polarized beam), 1.9 (monochromatic polarized beam), 1.5 (white non-polarized beam), 1.1 (white polarized beam); it is shown that optimization of measurements may increase the flux at the sample up to two orders of magnitude with monochromatic beams and up to one order of magnitude with white beams. A fan beam reflectometry scheme with monochromatic neutrons is suggested, and the expected increase in luminosity is evaluated. A tuned-phase chopper with a variable TOF resolution is recommended for reflectometry with white beams.

  12. The neutron reflectometer at `SINQ`

    Energy Technology Data Exchange (ETDEWEB)

    Clemens, D [Lab. for Neutron Scattering ETH Zurich, Zurich (Switzerland) and Paul Scherrer Institute, Villigen (Switzerland)

    1996-11-01

    SINQ`s dedicated reflectometer will be a flexible instrument in many respect. A `white beam time of flight` as well as a `constant wavelength` setup are possible for reflectometric experiments in a vertical scattering geometry. The phase controlled double chopper at the beginning of the instrument together with properly chosen time channels at the detector allow for the variation of the temporal resolution. Collimation slits serve to determine the angular resolution. In combination, the resolution can be tailored to the experimental needs. Additionally, one can adjust the illumination of the sample by setting the sample table and the detector to an appropriate distance. A mounting for exchangeable mirrors can be used to supply polarized neutrons by a multilayer polarizer or monochromatic neutrons by a multilayer monochromator. When it is equipped with a supermirror as a deflecting unit one can maintain a horizontal sample position which makes reflectometry on liquid samples practicable. Remanent polarizers are assigned for the changing over of the neutron polarization. A 1 T electromagnet installed on the sample manipulation table and polarization analyzers complete the polarized reflectometry setup. Alternately, an x-y-detector and single detectors will be available. By 1997/1998 the neutron reflectometer will be operational as a users` instrument. (author) 9 figs., 2 tabs., 30 refs.

  13. The neutron reflectometer at 'SINQ'

    International Nuclear Information System (INIS)

    Clemens, D.

    1996-01-01

    SINQ's dedicated reflectometer will be a flexible instrument in many respect. A 'white beam time of flight' as well as a 'constant wavelength' setup are possible for reflectometric experiments in a vertical scattering geometry. The phase controlled double chopper at the beginning of the instrument together with properly chosen time channels at the detector allow for the variation of the temporal resolution. Collimation slits serve to determine the angular resolution. In combination, the resolution can be tailored to the experimental needs. Additionally, one can adjust the illumination of the sample by setting the sample table and the detector to an appropriate distance. A mounting for exchangeable mirrors can be used to supply polarized neutrons by a multilayer polarizer or monochromatic neutrons by a multilayer monochromator. When it is equipped with a supermirror as a deflecting unit one can maintain a horizontal sample position which makes reflectometry on liquid samples practicable. Remanent polarizers are assigned for the changing over of the neutron polarization. A 1 T electromagnet installed on the sample manipulation table and polarization analyzers complete the polarized reflectometry setup. Alternately, an x-y-detector and single detectors will be available. By 1997/1998 the neutron reflectometer will be operational as a users' instrument. (author) 9 figs., 2 tabs., 30 refs

  14. GLORI (GLObal navigation satellite system Reflectometry Instrument): A New Airborne GNSS-R receiver for land surface applications

    Science.gov (United States)

    Motte, Erwan; Zribi, Mehrez; Fanise, Pascal

    2015-04-01

    GLORI (GLObal navigation satellite system Reflectometry Instrument) is a new receiver dedicated to the airborne measurement of surface parameters such as soil moisture and biomass above ground and sea state (wave height and direction) above oceans. The instrument is based on the PARIS concept [Martin-Neira, 1993] using both the direct and surface-reflected L-band signals from the GPS constellation as a multistatic radar source. The receiver is based on one up-looking and one down-looking dual polarization hemispherical active antennas feeding a low-cost 4-channel SDR direct down-conversion receiver tuned to the GPS L1 frequency. The raw measurements are sampled at 16.368MHz and stored as 2-bit, IQ binary files. In post-processing, GPS acquisition and tracking are performed on the direct up-looking signal while the down-looking signal is processed blindly using tracking parameters from the direct signal. The obtained direct and reflected code-correlation waveforms are the basic observables for geophysical parameters inversion. The instrument was designed to be installed aboard the ATR42 experimental aircraft from the French SAFIRE fleet as a permanent payload. The long term goal of the project is to provide real-time continuous surface information for every flight performed. The aircraft records attitude information through its Inertial Measurement Unit and a commercial GPS receiver records additional information such as estimated doppler and code phase, receiver location, satellites azimuth and elevation. A series of test flights were performed over both the Toulouse and Gulf of Lion (Mediterranean Sea) regions during the period 17-21 Nov 2014 together with the KuROS radar [Hauser et al., 2014]. Using processing methods from the literature [Egido et al., 2014], preliminary results demonstrate the instrument sensitivity to both ground and ocean surface parameters estimation. A dedicated scientific flight campaign is planned at the end of second quarter 2015 with

  15. Improved Interpolation Kernels for Super-resolution Algorithms

    DEFF Research Database (Denmark)

    Rasti, Pejman; Orlova, Olga; Tamberg, Gert

    2016-01-01

    Super resolution (SR) algorithms are widely used in forensics investigations to enhance the resolution of images captured by surveillance cameras. Such algorithms usually use a common interpolation algorithm to generate an initial guess for the desired high resolution (HR) image. This initial guess...... when their original interpolation kernel is replaced by the ones introduced in this work....

  16. Investigation of Character and Spatial Distribution of Threading Edge Dislocations in 4H-SiC Epilayers by High-Resolution Topography

    International Nuclear Information System (INIS)

    Kamata, I.; Nagano, M.; Tsuchida, H.; Chen, Y.; Dudley, M.

    2009-01-01

    Topography image variation of threading edge dislocations (TEDs) in 4H-SiC epilayers has been investigated by grazing incidence high-resolution synchrotron topography. Six different images of TEDs resulting from an angle between the diffraction vector and the TED Burgers vector were confirmed by correlation between experimental topography images and simulation results. The TED-type distribution, dependent on the direction of the TED Burger vector, was examined on epitaxial wafers, while the spatial distribution of TEDs on a whole 2 in wafer along (1 1 2 0) and (1 1 0 0) was investigated.

  17. Psychosocial Resolution and Counsellor Trainee Empathy.

    Science.gov (United States)

    Gold, Joshua M.

    1992-01-01

    Entry-level counseling students (n=74) were surveyed to investigate the relationship between resolution of Erikson's psychosocial stage of intimacy/isolation and counselor trainee empathy. Results revealed a significant positive relationship between measures of psychosocial stage resolution and counselor empathy and a significant main effect for…

  18. Coastal Application of Altimetric Measurement using Wideband Signals of Opportunity Reflectometry

    Science.gov (United States)

    Shah, R.; Garrison, J. L.; Li, Z.; Ho, S. C.

    2017-12-01

    The majority of the world's population live in coastal regions, making this region subject to growing stress from resource exploitation, marine operations, and other human activities. The coastal ocean is also a highly dynamic region driven by the interfaces between land, sea, and air. Understanding the evolution over short temporal and small spatial scales of the coastal ocean environment is a complex and long-standing challenge. Over the last decade, it has been well established that submesoscale processes are highly energetic and have a temporal scale of hours at a 10-km of spatial scale. These processes fundamentally impact ocean dynamics, biological processes, trace gas mixing and transport. Satellite altimeters, which have played a significant role in mapping the variability of the Earth's open ocean, have known limitations in coastal areas resulting from land contamination and rapid variations due to tides and atmospheric effects. This study will evaluate the potential application of an emerging remote sensing technology (Signals of Opportunity Reflectometry: SoOp-R) to the problem of resolving submesoscale processes in the coastal regions, with spatial scales on the order of 10 km and temporal scales on the order of 1 day. SoOp-R reutilizes existing powerful communication satellite transmissions as illumination sources in a bistatic radar configuration. A number of direct broadcast satellites (DBS), currently operating in geostationary orbit, occupy very large bandwidth (400-500 MHz) spectral allocations in the Ku- and Ka- bands. Theoretically, sea surface height (SSH) can be estimated by measuring the reflected path delay of these signals with very high precision (on the order of 4-5 cm) due to the large bandwidth and high signal- to-noise ratio. SoOp-R instruments are passive, requiring only low-power receivers which could be launched on constellations of small satellites. The distribution of altimetry measurements, combined with the off-nadir geometry

  19. High-resolution angle-resolved photoemission investigation of potassium and phosphate tungsten bronzes

    International Nuclear Information System (INIS)

    Paul, Sanhita; Kumari, Spriha; Raj, Satyabrata

    2016-01-01

    Highlights: • Electronic structure of potassium and phosphate tungsten bronzes. • Origin of transport anomalies in bronzes. • Flat segments of Fermi surfaces are connected by a nesting vector, q. • Nesting driven charge-density wave is responsible for the anomalies. - Abstract: We have performed high-resolution angle-resolved photoemission spectroscopy (ARPES) and density functional ab initio theoretical calculation to study the electronic structure of potassium (K_0_._2_5WO_3) and phosphate (P_4W_1_2O_4_4) tungsten bronzes. We have experimentally determined the band dispersions and Fermi surface topology of these bronzes and compared with our theoretical calculations and a fair agreement has been seen between them. Our experimental as well as theoretical investigation elucidates the origin of transport anomalies in these bronzes. The Fermi surfaces of these bronzes consist of flat patches, which can be connected with each other by a constant nesting wave vector, q. The scattering wave vectors found from diffraction measurements match with these nesting vectors and the anomalies in the transport properties of these bronzes can be well explained by the evolution of charge-density wave with a partial nesting between the flat segments of the Fermi surfaces.

  20. An investigation into the effects of temporal resolution on hepatic dynamic contrast-enhanced MRI in volunteers and in patients with hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Gill, Andrew B; Graves, Martin J; Lomas, David J; Black, Richard T; Bowden, David J; Priest, Andrew N

    2014-01-01

    This study investigated the effect of temporal resolution on the dual-input pharmacokinetic (PK) modelling of dynamic contrast-enhanced MRI (DCE-MRI) data from normal volunteer livers and from patients with hepatocellular carcinoma. Eleven volunteers and five patients were examined at 3 T. Two sections, one optimized for the vascular input functions (VIF) and one for the tissue, were imaged within a single heart-beat (HB) using a saturation-recovery fast gradient echo sequence. The data was analysed using a dual-input single-compartment PK model. The VIFs and/or uptake curves were then temporally sub-sampled (at interval ▵t = [2–20] s) before being subject to the same PK analysis. Statistical comparisons of tumour and normal tissue PK parameter values using a 5% significance level gave rise to the same study results when temporally sub-sampling the VIFs to HB < ▵t <4 s. However, sub-sampling to ▵t > 4 s did adversely affect the statistical comparisons. Temporal sub-sampling of just the liver/tumour tissue uptake curves at ▵t ≤ 20 s, whilst using high temporal resolution VIFs, did not substantially affect PK parameter statistical comparisons. In conclusion, there is no practical advantage to be gained from acquiring very high temporal resolution hepatic DCE-MRI data. Instead the high temporal resolution could be usefully traded for increased spatial resolution or SNR. (paper)

  1. 10 ps resolution, 160 ns full scale range and less than 1.5% differential non-linearity time-to-digital converter module for high performance timing measurements

    Energy Technology Data Exchange (ETDEWEB)

    Markovic, B.; Tamborini, D.; Villa, F.; Tisa, S.; Tosi, A.; Zappa, F. [Politecnico di Milano, Dipartimento di Elettronica e Informazione, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)

    2012-07-15

    We present a compact high performance time-to-digital converter (TDC) module that provides 10 ps timing resolution, 160 ns dynamic range and a differential non-linearity better than 1.5% LSB{sub rms}. The TDC can be operated either as a general-purpose time-interval measurement device, when receiving external START and STOP pulses, or in photon-timing mode, when employing the on-chip SPAD (single photon avalanche diode) detector for detecting photons and time-tagging them. The instrument precision is 15 ps{sub rms} (i.e., 36 ps{sub FWHM}) and in photon timing mode it is still better than 70 ps{sub FWHM}. The USB link to the remote PC allows the easy setting of measurement parameters, the fast download of acquired data, and their visualization and storing via an user-friendly software interface. The module proves to be the best candidate for a wide variety of applications such as: fluorescence lifetime imaging, time-of-flight ranging measurements, time-resolved positron emission tomography, single-molecule spectroscopy, fluorescence correlation spectroscopy, diffuse optical tomography, optical time-domain reflectometry, quantum optics, etc.

  2. Microwave reflectrometry for electron density measurements in the TJ-1 tokamak plasma

    International Nuclear Information System (INIS)

    Anabitarte, E.; Bustamante, E.G.; Calderon, M.A.G.; Vegas, A.

    1986-01-01

    A study about microwave reflectometry to measure the outside profile of the electron plasma density on tokamak TJ-1 is presented. It is also presented the condition of applicability of this method after the characteristic parameters of the plasma and its resolution. The simulation of the plasma in laboratory by means of a metallic mirror causes the whole characterization of the reflectometer. (author)

  3. Short-term forecasting of individual household electricity loads with investigating impact of data resolution and forecast horizon

    Directory of Open Access Journals (Sweden)

    Yildiz Baran

    2018-01-01

    Full Text Available Smart grid components such as smart home and battery energy management systems, high penetration of renewable energy systems, and demand response activities, require accurate electricity demand forecasts for the successful operation of the electricity distribution networks. For example, in order to optimize residential PV generation and electricity consumption and plan battery charge-discharge regimes by scheduling household appliances, forecasts need to target and be tailored to individual household electricity loads. The recent uptake of smart meters allows easier access to electricity readings at very fine resolutions; hence, it is possible to utilize this source of available data to create forecast models. In this paper, models which predominantly use smart meter data alongside with weather variables, or smart meter based models (SMBM, are implemented to forecast individual household loads. Well-known machine learning models such as artificial neural networks (ANN, support vector machines (SVM and Least-Square SVM are implemented within the SMBM framework and their performance is compared. The analysed household stock consists of 14 households from the state of New South Wales, Australia, with at least a year worth of 5 min. resolution data. In order for the results to be comparable between different households, our study first investigates household load profiles according to their volatility and reveals the relationship between load standard deviation and forecast performance. The analysis extends previous research by evaluating forecasts over four different data resolution; 5, 15, 30 and 60 min, each resolution analysed for four different horizons; 1, 6, 12 and 24 h ahead. Both, data resolution and forecast horizon, proved to have significant impact on the forecast performance and the obtained results provide important insights for the operation of various smart grid applications. Finally, it is shown that the load profile of some

  4. Short-term forecasting of individual household electricity loads with investigating impact of data resolution and forecast horizon

    Science.gov (United States)

    Yildiz, Baran; Bilbao, Jose I.; Dore, Jonathon; Sproul, Alistair B.

    2018-05-01

    Smart grid components such as smart home and battery energy management systems, high penetration of renewable energy systems, and demand response activities, require accurate electricity demand forecasts for the successful operation of the electricity distribution networks. For example, in order to optimize residential PV generation and electricity consumption and plan battery charge-discharge regimes by scheduling household appliances, forecasts need to target and be tailored to individual household electricity loads. The recent uptake of smart meters allows easier access to electricity readings at very fine resolutions; hence, it is possible to utilize this source of available data to create forecast models. In this paper, models which predominantly use smart meter data alongside with weather variables, or smart meter based models (SMBM), are implemented to forecast individual household loads. Well-known machine learning models such as artificial neural networks (ANN), support vector machines (SVM) and Least-Square SVM are implemented within the SMBM framework and their performance is compared. The analysed household stock consists of 14 households from the state of New South Wales, Australia, with at least a year worth of 5 min. resolution data. In order for the results to be comparable between different households, our study first investigates household load profiles according to their volatility and reveals the relationship between load standard deviation and forecast performance. The analysis extends previous research by evaluating forecasts over four different data resolution; 5, 15, 30 and 60 min, each resolution analysed for four different horizons; 1, 6, 12 and 24 h ahead. Both, data resolution and forecast horizon, proved to have significant impact on the forecast performance and the obtained results provide important insights for the operation of various smart grid applications. Finally, it is shown that the load profile of some households vary

  5. Actin restructuring during Salmonella typhimurium infection investigated by confocal and super-resolution microscopy

    Science.gov (United States)

    Han, Jason J.; Kunde, Yuliya A.; Hong-Geller, Elizabeth; Werner, James H.

    2014-01-01

    We have used super-resolution optical microscopy and confocal microscopy to visualize the cytoskeletal restructuring of HeLa cells that accompanies and enables Salmonella typhimurium internalization. Herein, we report the use of confocal microscopy to verify and explore infection conditions that would be compatible with super-resolution optical microscopy, using Alexa-488 labeled phalloidin to stain the actin cytoskeletal network. While it is well known that actin restructuring and cytoskeletal rearrangements often accompany and assist in bacterial infection, most studies have employed conventional diffraction-limited fluorescence microscopy to explore these changes. Here we show that the superior spatial resolution provided by single-molecule localization methods (such as direct stochastic optical reconstruction microscopy) enables more precise visualization of the nanoscale changes in the actin cytoskeleton that accompany bacterial infection. In particular, we found that a thin (100-nm) ring of actin often surrounds an invading bacteria 10 to 20 min postinfection, with this ring being transitory in nature. We estimate that a few hundred monofilaments of actin surround the S. typhimurium in this heretofore unreported bacterial internalization intermediate.

  6. Evaluation of rainfall infiltration characteristics in a volcanic ash soil by time domain reflectometry method

    Directory of Open Access Journals (Sweden)

    S. Hasegawa

    1997-01-01

    Full Text Available Time domain reflectometry (TDR was used to monitor soil water conditions and to evaluate infiltration characteristics associated with rainfall into a volcanic-ash soil (Hydric Hapludand with a low bulk density. Four 1 m TDR probes were installed vertically along a 6 m line in a bare field. Three 30 cm and one 60 cm probes were installed between the 1 m probes. Soil water content was measured every half or every hour throughout the year. TDR enabled prediction of the soil water content precisely even though the empirical equation developed by Topp et al. (1980 underestimated the water content. Field capacity, defined as the amount of water stored to a depth of 1 m on the day following heavy rainfall, was 640 mm. There was approximately 100 mm difference in the amount of water stored between field capacity and the driest period. Infiltration characteristics of rainfall were investigated for 36 rainfall events exceeding 10 mm with a total amount of rain of 969 mm out of an annual rainfall of 1192 mm. In the case of 25 low intensity rainfall events with less than 10 mm h-1 on to dry soils, the increase in the amount of water stored to a depth of 1 m was equal to the cumulative rainfall. For rain intensity in excess of 10 mm h-1, non-uniform infiltration occurred. The increase in the amount of water stored at lower elevation locations was 1.4 to 1.6 times larger than at higher elevation locations even though the difference in ground height among the 1 m probes was 6 cm. In the two instances when rainfall exceeded 100 mm, including the amount of rain in a previous rainfall event, the increase in the amount of water stored to a depth of 1 m was 65 mm lower than the total quantity of rain on the two occasions (220 mm; this indicated that 65 mm of water or 5.5% of the annual rainfall had flowed away either by surface runoff or bypass flow. Hence, approximately 95% of the annual rainfall was absorbed by the soil matrix but it is not possible to simulate

  7. Conflict Resolution between Mexican Origin Adolescent Siblings

    Science.gov (United States)

    Killoren, Sarah E.; Thayer, Shawna M.; Updegraff, Kimberly A.

    2008-01-01

    We investigated correlates of adolescents' sibling conflict resolution strategies in 246, two-parent Mexican origin families. Specifically, we examined links between siblings' conflict resolution strategies and sibling dyad characteristics, siblings' cultural orientations and values, and sibling relationship qualities. Data were gathered during…

  8. Investigation of phosphorus atomization using high-resolution continuum source electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Dessuy, Morgana B.; Vale, Maria Goreti R.; Lepri, Fabio G.; Welz, Bernhard; Heitmann, Uwe

    2007-01-01

    The atomization of phosphorus in electrothermal atomic absorption spectrometry has been investigated using a high-resolution continuum source atomic absorption spectrometer and atomization from a graphite platform as well as from a tantalum boat inserted in a graphite tube. A two-step atomization mechanism is proposed for phosphorus, where the first step is a thermal dissociation, resulting in a fast atomization signal early in the atomization stage, and the second step is a slow release of phosphorus atoms from the graphite tube surface following the adsorption of molecular phosphorus at active sites of the graphite surface. Depending on experimental conditions only one of the mechanisms or both might be active. In the absence of a modifier and with atomization from a graphite or tantalum platform the second mechanism appears to be dominant, whereas in the presence of sodium fluoride as a modifier both mechanisms are observed. Intercalation of phosphorus into the graphite platform in the condensed phase has also been observed; this phosphorus, however, appears to be permanently trapped in the structure of the graphite and does not contribute to the absorption signal

  9. High-resolution He beam scattering as a tool for the investigation of the structural and dynamical properties of surface soliton dislocations

    International Nuclear Information System (INIS)

    El-Batanouny, M.; Martini, K.M.

    1986-01-01

    We discuss the applicability of high-resolution-He-beam/surface scattering to the investigation of the structural and dynamic properties of soliton-like surface misfit dislocations and associated phase transitions. We present evidence, based on recent He diffraction measurements, for the existence of double-sine-Gordon soliton-like dislocations on the reconstructed Au(111) surface. 18 refs., 3 figs., 1 tab

  10. Investigation of thin films, heterostructures and devices of ceramic superconductors by means of high-resolution electron microscopy

    International Nuclear Information System (INIS)

    Jia Chunlin.

    1993-08-01

    In this thesis a systematic study of the microstructure of YBa 2 Cu 3 O 7 thin films is presented by means of high-resolution electron microscopy (HREM). Most of the efforts are focused on the characterization of heterostructures of superconducting YBa 2 Cu 3 O 7 and non-superconducting PrBa 2 Cu 3 O 7 and on YBa 2 Cu 3 O 7 films deposited on step-edge substrates. These specially designed structures exhibit a great potential for the electronic application of high-Tc superconductors and for the investigation of the basic electric properties of the YBa 2 Cu 3 O 7 superconductor. (orig.) [de

  11. Tentative investigation on neutron mirror fabrication with electroless nickel plating

    International Nuclear Information System (INIS)

    Guo, Jiang; Morita, Shin-ya; Yamagata, Yutaka; Takeda, Shin; Kato, Jun-ichi; Hino, Masahiro; Furusaka, Michihiro

    2013-01-01

    Neutron optics becomes highly required due to the rapid development of neutron technology. In this paper, we attempt to fabricate the neutron mirror by using a metal substrate made of electroless nickel plating to take place of glass concerning about mirror's optical performance and manufacturing method. A new manufacture process chain of neutron mirror is proposed by following the steps of fast milling and precision cutting of aluminium/stainless, electroless nickel plating, ultra-precision cutting by diamond tools, super-smooth polishing and super mirror coating to obtain high form accuracy and good surface roughness time-efficiently. Some tentative investigations are carried out. A workpiece (□ 50 x 50 mm 2 ) with flat surface made of electroless nickel plating is machined by ultra-precision cutting and polishing. The surface roughness with 0.728 nm rms (0.588 nm Ra) is acquired. According to results of reflectometry, the neutron beam can be reflected effectively with high intensity and little scattering. (author)

  12. Errors in determination of soil water content using time-domain reflectometry caused by soil compaction around wave guides

    Energy Technology Data Exchange (ETDEWEB)

    Ghezzehei, T.A.

    2008-05-29

    Application of time domain reflectometry (TDR) in soil hydrology often involves the conversion of TDR-measured dielectric permittivity to water content using universal calibration equations (empirical or physically based). Deviations of soil-specific calibrations from the universal calibrations have been noted and are usually attributed to peculiar composition of soil constituents, such as high content of clay and/or organic matter. Although it is recognized that soil disturbance by TDR waveguides may have impact on measurement errors, to our knowledge, there has not been any quantification of this effect. In this paper, we introduce a method that estimates this error by combining two models: one that describes soil compaction around cylindrical objects and another that translates change in bulk density to evolution of soil water retention characteristics. Our analysis indicates that the compaction pattern depends on the mechanical properties of the soil at the time of installation. The relative error in water content measurement depends on the compaction pattern as well as the water content and water retention properties of the soil. Illustrative calculations based on measured soil mechanical and hydrologic properties from the literature indicate that the measurement errors of using a standard three-prong TDR waveguide could be up to 10%. We also show that the error scales linearly with the ratio of rod radius to the interradius spacing.

  13. Uncertainty of global summer precipitation in the CMIP5 models: a comparison between high-resolution and low-resolution models

    Science.gov (United States)

    Huang, Danqing; Yan, Peiwen; Zhu, Jian; Zhang, Yaocun; Kuang, Xueyuan; Cheng, Jing

    2018-04-01

    The uncertainty of global summer precipitation simulated by the 23 CMIP5 CGCMs and the possible impacts of model resolutions are investigated in this study. Large uncertainties exist over the tropical and subtropical regions, which can be mainly attributed to convective precipitation simulation. High-resolution models (HRMs) and low-resolution models (LRMs) are further investigated to demonstrate their different contributions to the uncertainties of the ensemble mean. It shows that the high-resolution model ensemble means (HMME) and low-resolution model ensemble mean (LMME) mitigate the biases between the MME and observation over most continents and oceans, respectively. The HMME simulates more precipitation than the LMME over most oceans, but less precipitation over some continents. The dominant precipitation category in the HRMs (LRMs) is the heavy precipitation (moderate precipitation) over the tropic regions. The combinations of convective and stratiform precipitation are also quite different: the HMME has much higher ratio of stratiform precipitation while the LMME has more convective precipitation. Finally, differences in precipitation between the HMME and LMME can be traced to their differences in the SST simulations via the local and remote air-sea interaction.

  14. Density profile evolution during dynamic processes in ASDEX Upgrade

    International Nuclear Information System (INIS)

    Nunes, I.; Santos, J.; Salzedas, F.; Manso, M.; Serra, F.; Conway, G.D.; Horton, L.D.; Neuhauser, J.; Suttrop, W.

    2005-01-01

    The current understanding of edge localized modes (ELMs) and the trigger of major disruptions is largely based on phenomenology. The need to better understand the processes underlying these phenomena requires high temporal and spatial resolution diagnostics. Fast diagnostics for the temperature measurements exist, such as the ECE radiometer but, for the plasma density, the existing diagnostics such as Lithium Beam and Thomson Scattering do not have the required high temporal resolution for a period long enough to characterize the entire ELM event. The microwave reflectometry system on ASDEX Upgrade has the capability to measure electron density profiles simultaneously at the low-field and high-field sides, in broadband swept ultrafast (35μs) operation with a spatial resolution of 5mm. In this paper we report on recent results on the effects of type I ELMs on density profiles and on the density pedestal width and ELM affected depth. During the ELM event, three phases are identified: precursor, collapse and recovery. The density pedestal width is found to be approximately constant for all the ELMy H-mode discharges analyzed here, except for high input power discharges, where an increase of the density pedestal width is observed. Major disruptions limit the range of parameters used in the operation of a tokamak, especially density limit disruptions, that limit the maximum usable density. Very abrupt increases of density are observed before the onset of the electron temperature profile erosion, supporting the hypothesis that this erosion is due to convection of the magnetic field. In ITER, during the long steady state flat-top phase of the discharges magnetic measurements may accumulate significant drifts. Plasma position and shape control using reflectometry is being assessed in ASDEX Upgrade for ITER like scenarios with successful results, where it is shown that position measurements from reflectometry compared to magnetic data satisfy the ITER requirements

  15. Fetal megacystis : prediction of spontaneous resolution and outcome

    NARCIS (Netherlands)

    Fontanella, F.; Duin, L.; Adama van Scheltema, P. N.; Cohen-Overbeek, T. E.; Pajkrt, E.; Bekker, M.; Willekes, C.; Bax, C. J.; Bilardo, C. M.

    2017-01-01

    Objectives: To investigate the natural history of fetal megacystis from diagnosis in utero to postnatal outcome, and to identify prognostic indicators of spontaneous resolution and postnatal outcome after resolution. Methods: This was a national retrospective cohort study. Fetal megacystis was

  16. Fetal megacystis : prediction of spontaneous resolution and outcome

    NARCIS (Netherlands)

    Fontanella, F; Duin, L; Adama van Scheltema, P N; Cohen-Overbeek, T E; Pajkrt, E; Bekker, M; Willekes, C; Bax, C J; Bilardo, C M

    2017-01-01

    Objectives To investigate the natural history of fetal megacystis from diagnosis in utero to postnatal outcome, and to identify prognostic indicators of spontaneous resolution and postnatal outcome after resolution. Methods This was a national retrospective cohort study. Fetal megacystis was defined

  17. 2-μm optical time domain reflectometry measurements from novel Al-, Ge-, CaAlSi- doped and standard single-mode fibers

    Science.gov (United States)

    Rodriguez-Novelo, J. C.; Sanchez-Nieves, J. A.; Sierra-Calderon, A.; Sanchez-Lara, R.; Alvarez-Chavez, J. A.

    2017-08-01

    The development of novel Al-, Ge- doped and un-doped standard single mode fibers for future optical communication at 2μm requires the integration of, among other pieces of equipment, an optical time domain reflectometry (OTDR) technique for precise spectral attenuation characterization, including the well-known cut-back method. The integration of a state of the art OTDR at 2μm could provide valuable attenuation information from the aforementioned novel fibers. The proposed setup consists of a 1.7 mW, 1960nm pump source, a 30 dB gain Thulium doped fibre amplifier at 2μm, an 0.8mm focal length lens with a 0.5 NA, a 30 MHz acusto-optic modulator, a 3.1 focal length lens with a 0.68NA, an optical circulator at 2μm, an InGaAs photodetector for 1.2 nm-2.6 nm range, a voltage amplifier and an oscilloscope. The propagated pulse rate is 50 KHz, with 500 ns, 200 ns, 100 ns and 50 ns pulse widths. Attenuation versus novel fibers types for lengths ranging from 400- to 1000- meter samples were obtained using the proposed setup.

  18. The scientific and technical requirements for biology at Australia's Replacement Research Reactor

    International Nuclear Information System (INIS)

    2001-01-01

    A Symposium and Workshop on Neutrons for Biology was held in the School of Biochemistry and Molecular Biology at the University of Melbourne, under the auspices of AINSE, Univ of Melbourne and ANSTO. Invited talks were given on the subjects of Genome, small-angle neutron scattering (SANS) as a critical framework for understanding bio-molecular, neutron diffraction at high and low resolution, and the investigation of viruses and large-scale biological structures using neutrons. There were also talks from prominent NMR practitioners and X-ray protein crystallographers, with substantial discussion about how the various methods might fit together in the future. Significant progress was made on defining Australia's needs, which include a strong push to use SANS and reflectometry for the study of macromolecular complexes and model membranes, and a modest network of supporting infrastructure in Brisbane, Melbourne and the Sydney Basin. Specific recommendations were that the small-angle neutron scattering and reflectometry instruments in the Replacement Research Reactor (RRR) be pursued with high priority, that there be no specific effort to provide high-resolution protein-crystallography facilities at the RRR, but that a watching brief be kept on instrumentation and sample-preparation technologies elsewhere. A watch be kept on inelastic and quasielastic neutron scattering capabilities elsewhere, although these methods will not initially be pursued at the RRR and that should be input from this community into the design of the biochemistry/chemistry laboratories at the Replacement Research Reactor. It was also recommended that a small number of regional facilities be established (or enhanced) to allow users to perform deuteration of biomolecules. These facilities would be of significant value to the NMR and neutron scattering communities

  19. Investigation on cause of outage of Wide Range Monitor (WRM) in High Temperature engineering Test Reactor (HTTR). Post Irradiation Examination (PIE) toward investigation of the cause

    International Nuclear Information System (INIS)

    Shinohara, Masanori; Saito, Kenji; Takada, Shoji; Ishimi, Akihiro; Katsuyama, Kozo; Motegi, Toshihiro

    2012-08-01

    An event, in which one of WRMs were disabled to detect the neutron flux in the reactor core, occurred during the period of reactor shut down of HTTR in March, 2010. The actual life time of WRM was unexpectedly shorter than the past developed life time. Investigation of the cause of the outage of WRM toward the recovery of the life time up to the past developed life is one of the issues to develop the technology basis of High Temperature Gas cooled Reactor (HTGR). Then, two experimental investigations were carried out to reveal the cause of the outage by specifying the damaged part causing the event in the WRM. The one is a post irradiation examination using the X-ray computed tomography scanner in Fuels Monitoring Facility (FMF) to specify the damaged part in the WRM. The other is an experiment using a mock-up simulating the WRM fabricated by the fabricator. The characteristic impedance of the damaged WRM was measured by Time Domain Reflectometry, which was compared with that of the mock-up, which could narrow down the damaged part in the WRM. This report summarized the results of the PIE and the experimental investigation using the mock-up to reveal the cause of outage of WRM. (author)

  20. Lateral resolution of eddy current imaging

    International Nuclear Information System (INIS)

    Hassan, W.; Blodgett, M.; Nagy, P.B.

    2002-01-01

    Analytical, finite element simulation, and experimental methods were used to investigate the lateral resolution of eddy current microscopy. It was found that the lateral resolution of eddy current imaging is ultimately limited by the probe-coil geometry and dimensions, but both the inspection frequency and the phase angle can be used to optimize the resolution, to some degree, at the expense of sensitivity. Electric anisotropy exhibited by noncubic crystallographic classes of materials such as titanium alloys can play a very similar role in electromagnetic materials characterization of polycrystalline metals to that of elastic anisotropy in ultrasonic materials characterization. Our results demonstrate that eddy current microscopy can be enhanced via a high-resolution, small diameter probe-coil which delivers a unique materials characterization tool well suited for the evaluation of Ti alloys

  1. High-Resolution PET Detector. Final report

    International Nuclear Information System (INIS)

    Karp, Joel

    2014-01-01

    The objective of this project was to develop an understanding of the limits of performance for a high resolution PET detector using an approach based on continuous scintillation crystals rather than pixelated crystals. The overall goal was to design a high-resolution detector, which requires both high spatial resolution and high sensitivity for 511 keV gammas. Continuous scintillation detectors (Anger cameras) have been used extensively for both single-photon and PET scanners, however, these instruments were based on NaI(Tl) scintillators using relatively large, individual photo-multipliers. In this project we investigated the potential of this type of detector technology to achieve higher spatial resolution through the use of improved scintillator materials and photo-sensors, and modification of the detector surface to optimize the light response function.We achieved an average spatial resolution of 3-mm for a 25-mm thick, LYSO continuous detector using a maximum likelihood position algorithm and shallow slots cut into the entrance surface

  2. Monitoring changes in soil water content on adjustable soil slopes of a soil column using time domain reflectometry (TDR) techniques

    International Nuclear Information System (INIS)

    Wan Zakaria Wan Muhd Tahir; Lakam Anak Mejus; Johari Abdul Latif

    2004-01-01

    Time Domain Reflectometry (TDR) is one of non-destructive methods and widely used in hydrology and soil science for accurate and flexible measurement of soil water content The TDR technique is based on measuring the dielectric constant of soil from the propagation of an electromagnetic pulse traveling along installed probe rods (parallel wire transmission line). An adjustable soil column i.e., 80 cm (L) x 35 cm (H) x 44 cm (W) instrumented with six pairs of vertically installed CS615 reflectometer probes (TDR rods) was developed and wetted under a laboratory simulated rainfall and their sub-surface moisture variations as the slope changes were monitored using TDR method Soil samples for gravimetric determination of water content, converted to a volume basis were taken at selected times and locations after the final TDR reading for every slope change made of the soil column Comparisons of water contents by TDR with those from grawmetric samples at different slopes of soil column were examined. The accuracy was found to be comparable and to some extent dependent upon the variability of the soil. This study also suggests that the response of slope (above 20 degrees) to the gradual increase in water content profile may cause soil saturation faster and increased overland flow (runoff especially on weak soil conditions

  3. Combination of optical coherence tomography and reflectometry technique for eye measurement

    Science.gov (United States)

    Lu, Hui; Wang, Michael R.

    2013-03-01

    A spectral domain optical coherence tomography system is integrated with an optical reflectometer to provide dualfunctional eye measurement. The system is capable of performing anterior segment imaging and tear film thickness evaluation at the same time. The axial resolution of the anterior segment imaging is 6μm while for tear film thickness measurement the resolution is about 21 nm. We use the integrated device to examine a model eye with artificial tear film. Structures such as the cornea, the ciliary muscle, and the front boundary of the crystalline lens are clearly visible. Artificial tear film thickness is determined simultaneously with anterior segment imaging. The integrated device is also flexible for separated anterior segment imaging or tear thickness evaluation.

  4. Thermophysical properties by a pulse-heating reflectometric technique: Niobium, 1100 to 2700 K

    International Nuclear Information System (INIS)

    Righini, F.; Spisiak, J.; Bussolino, G.C.; Gualano, M.

    1999-01-01

    Pulse heating experiments were performed on niobium strips, taking the specimens from room temperature to the melting point is less than one second. The normal spectral emissivity of the strips was measured by integrating sphere reflectometry, and, simultaneously, experimental data (radiance temperature, current, voltage drop) for thermophysical properties were collected with submillisecond time resolution. The normal spectral emissivity results were used to compute the true temperature of the niobium strips; the heat capacity, electrical resistivity, and hemispherical total emissivity were evaluated in the temperature range 1,100 to 2,700 K. The results are compared with literature data obtained in pulse-heating experiments. It is concluded that combined measurements of normal spectral emissivity and of thermophysical properties on strip specimens provide results of the same quality as obtained using tubular specimens with a blackbody. The thermophysical property results on niobium also validate the normal spectral emissivity measurements by integrating sphere reflectometry

  5. Statistical conditional sampling for variable-resolution video compression.

    Directory of Open Access Journals (Sweden)

    Alexander Wong

    Full Text Available In this study, we investigate a variable-resolution approach to video compression based on Conditional Random Field and statistical conditional sampling in order to further improve compression rate while maintaining high-quality video. In the proposed approach, representative key-frames within a video shot are identified and stored at full resolution. The remaining frames within the video shot are stored and compressed at a reduced resolution. At the decompression stage, a region-based dictionary is constructed from the key-frames and used to restore the reduced resolution frames to the original resolution via statistical conditional sampling. The sampling approach is based on the conditional probability of the CRF modeling by use of the constructed dictionary. Experimental results show that the proposed variable-resolution approach via statistical conditional sampling has potential for improving compression rates when compared to compressing the video at full resolution, while achieving higher video quality when compared to compressing the video at reduced resolution.

  6. The hydrogen epoch of reionization array dish III: measuring chromaticity of prototype element with reflectometry

    Science.gov (United States)

    Patra, Nipanjana; Parsons, Aaron R.; DeBoer, David R.; Thyagarajan, Nithyanandan; Ewall-Wice, Aaron; Hsyu, Gilbert; Leung, Tsz Kuk; Day, Cherie K.; de Lera Acedo, Eloy; Aguirre, James E.; Alexander, Paul; Ali, Zaki S.; Beardsley, Adam P.; Bowman, Judd D.; Bradley, Richard F.; Carilli, Chris L.; Cheng, Carina; Dillon, Joshua S.; Fadana, Gcobisa; Fagnoni, Nicolas; Fritz, Randall; Furlanetto, Steve R.; Glendenning, Brian; Greig, Bradley; Grobbelaar, Jasper; Hazelton, Bryna J.; Jacobs, Daniel C.; Julius, Austin; Kariseb, MacCalvin; Kohn, Saul A.; Lebedeva, Anna; Lekalake, Telalo; Liu, Adrian; Loots, Anita; MacMahon, David; Malan, Lourence; Malgas, Cresshim; Maree, Matthys; Martinot, Zachary; Mathison, Nathan; Matsetela, Eunice; Mesinger, Andrei; Morales, Miguel F.; Neben, Abraham R.; Pieterse, Samantha; Pober, Jonathan C.; Razavi-Ghods, Nima; Ringuette, Jon; Robnett, James; Rosie, Kathryn; Sell, Raddwine; Smith, Craig; Syce, Angelo; Tegmark, Max; Williams, Peter K. G.; Zheng, Haoxuan

    2018-04-01

    Spectral structures due to the instrument response is the current limiting factor for the experiments attempting to detect the redshifted 21 cm signal from the Epoch of Reionization (EoR). Recent advances in the delay spectrum methodology for measuring the redshifted 21 cm EoR power spectrum brought new attention to the impact of an antenna's frequency response on the viability of making this challenging measurement. The delay spectrum methodology provides a somewhat straightforward relationship between the time-domain response of an instrument that can be directly measured and the power spectrum modes accessible to a 21 cm EoR experiment. In this paper, we derive the explicit relationship between antenna reflection coefficient ( S 11) measurements made by a Vector Network Analyzer (VNA) and the extent of additional foreground contaminations in delay space. In the light of this mathematical framework, we examine the chromaticity of a prototype antenna element that will constitute the Hydrogen Epoch of Reionization Array (HERA) between 100 and 200 MHz. These reflectometry measurements exhibit additional structures relative to electromagnetic simulations, but we find that even without any further design improvement, such an antenna element will support measuring spatial k modes with line-of-sight components of k ∥ > 0.2 h Mpc- 1. We also find that when combined with the powerful inverse covariance weighting method used in optimal quadratic estimation of redshifted 21 cm power spectra the HERA prototype elements can successfully measure the power spectrum at spatial modes as low as k ∥ > 0.1 h Mpc- 1. This work represents a major step toward understanding the HERA antenna element and highlights a straightforward method for characterizing instrument response for future experiments designed to detect the 21 cm EoR power spectrum.

  7. Investigation of the spatial structure and interactions of the genome at sub-kilobase-pair resolution using T2C.

    Science.gov (United States)

    Kolovos, Petros; Brouwer, Rutger W W; Kockx, Christel E M; Lesnussa, Michael; Kepper, Nick; Zuin, Jessica; Imam, A M Ali; van de Werken, Harmen J G; Wendt, Kerstin S; Knoch, Tobias A; van IJcken, Wilfred F J; Grosveld, Frank

    2018-03-01

    Chromosome conformation capture (3C) and its derivatives (e.g., 4C, 5C and Hi-C) are used to analyze the 3D organization of genomes. We recently developed targeted chromatin capture (T2C), an inexpensive method for studying the 3D organization of genomes, interactomes and structural changes associated with gene regulation, the cell cycle, and cell survival and development. Here, we present the protocol for T2C based on capture, describing all experimental steps and bio-informatic tools in full detail. T2C offers high resolution, a large dynamic interaction frequency range and a high signal-to-noise ratio. Its resolution is determined by the resulting fragment size of the chosen restriction enzyme, which can lead to sub-kilobase-pair resolution. T2C's high coverage allows the identification of the interactome of each individual DNA fragment, which makes binning of reads (often used in other methods) basically unnecessary. Notably, T2C requires low sequencing efforts. T2C also allows multiplexing of samples for the direct comparison of multiple samples. It can be used to study topologically associating domains (TADs), determining their position, shape, boundaries, and intra- and inter-domain interactions, as well as the composition of aggregated loops, interactions between nucleosomes, individual transcription factor binding sites, and promoters and enhancers. T2C can be performed by any investigator with basic skills in molecular biology techniques in ∼7-8 d. Data analysis requires basic expertise in bioinformatics and in Linux and Python environments.

  8. Approximation of Gas Volume in a Seafloor Sediment using Time Domain Reflectometry in the Okhotsk Sea

    Science.gov (United States)

    Aoki, S.; Noborio, K.; Matsumoto, R.

    2013-12-01

    Global warming has accelerated in recent decades as the concentration of carbon dioxide has increased in the atmosphere due to fossil fuel burning. In addition, increases in consuming fossil fuels have led to their depletion in recent years. One practical measure to meet these two challenges is the conversion of energy resources to natural gas that has less environmental impact. Gas hydrates that contain natural gas have been discovered in the sea around Japan. They are expected to serve as a new non-conventional natural gas resource. To understand the mechanism of gas hydrate accumulation, the amount of free gas in sediments should be known. However, it is difficult to measure this non-destructively without affecting other properties. In this study we examined a technique for measuring the amount of free gas using Time Domain Reflectometry (TDR). TDR was a method of measuring the dielectric constant of the soil. This method is based on the relationship between the volumetric water content and dielectric constant, to estimate the volumetric water content indirectly. TDR has commonly been used to measure the moisture content of soil such as cultivation and paddy. In our study, we used TDR to estimate the gas ratio in the sea-bottom sediment obtained from the Sea of Okhotsk. Measurement by the TDR method was difficult in a high electrical conductivity solution such as seawater. Therefore, we blunted the measurement sensitivity by coating TDR probe with plastic, which makes it possible to measure. We found that the gas phase rates differed depending on the depth and location, so gas phase existed up to about 10%.

  9. Investigation of the Spatial Resolution of MR-Based Polymer Gel Dosimetry versus Film Densitometry using Dose Modulation Transfer Function

    Directory of Open Access Journals (Sweden)

    Reza Moghadam-Drodkhani

    2011-03-01

    Full Text Available Introduction: The conventional methods of dosimetry are not capable of dosimetry in such a small volume of less than one cubic millimeter. Although the polymer gel dosimetry method based on magnetic resonance imaging (MRI could achieve three dimensional dosimetry with high resolution, a spatial resolution evaluation based on gel dose modulation transfer function has not been investigated yet. Therefore, in this study, the spatial resolution of two systems of film densitometry and polymer gel dosimetry based on MRI has been evaluated by using the dose modulation transfer function (DMTF.   Material and Methods: Kodak therapy verification films and MAGICA polymer gel samples were positioned below a brass absorption grid with different periodic slices (a/2= 280, 525, 1125 μm, which was placed in a water bath container to avoid regions of dose build-up just below the absorption grid and then irradiated with Cobalt-60 photons on a Theratron external-beam treatment unit. Dose variation under the brass grid was determined using a calibration curve, while transverse relaxation time (T2 as the selective parameter in a dose image based on multiple echo MRI with 1.5 Tesla GE Signa Echo Speed system (FOV=10 cm, matrix size=512 ×512, pixel size =0.199×0.199 mm2, TE = 20, 40, 60, 80 ms, TR=4200 ms, NEX = 4, slice thickness=2 mm, gap=1 mm was calculated. DMTF from the modulation depths of T2 and variation in film optical density after calibration would be achieved. The results of polymer gel were compared with film. Results: After deriving the dose distribution profile under the absorption grid, minima and maxima at the smallest period of a = 560 μm could scarcely be resolved, but the modulations due to a=2250 μm and a = 1050 μm grids could be discerned. The modulation depth for a=2250 μm grid was set to 100% and the other modulations were subsequently referred to this maximum modulation. For film densitometry at a = 1050 μm, the modulation depth was

  10. Dynamic high resolution imaging of rats

    International Nuclear Information System (INIS)

    Miyaoka, R.S.; Lewellen, T.K.; Bice, A.N.

    1990-01-01

    A positron emission tomography with the sensitivity and resolution to do dynamic imaging of rats would be an invaluable tool for biological researchers. In this paper, the authors determine the biological criteria for dynamic positron emission imaging of rats. To be useful, 3 mm isotropic resolution and 2-3 second time binning were necessary characteristics for such a dedicated tomograph. A single plane in which two objects of interest could be imaged simultaneously was considered acceptable. Multi-layered detector designs were evaluated as a possible solution to the dynamic imaging and high resolution imaging requirements. The University of Washington photon history generator was used to generate data to investigate a tomograph's sensitivity to true, scattered and random coincidences for varying detector ring diameters. Intrinsic spatial uniformity advantages of multi-layered detector designs over conventional detector designs were investigated using a Monte Carlo program. As a result, a modular three layered detector prototype is being developed. A module will consist of a layer of five 3.5 mm wide crystals and two layers of six 2.5 mm wide crystals. The authors believe adequate sampling can be achieved with a stationary detector system using these modules. Economical crystal decoding strategies have been investigated and simulations have been run to investigate optimum light channeling methods for block decoding strategies. An analog block decoding method has been proposed and will be experimentally evaluated to determine whether it can provide the desired performance

  11. Large-scale high-resolution non-invasive geophysical archaeological prospection for the investigation of entire archaeological landscapes

    Science.gov (United States)

    Trinks, Immo; Neubauer, Wolfgang; Hinterleitner, Alois; Kucera, Matthias; Löcker, Klaus; Nau, Erich; Wallner, Mario; Gabler, Manuel; Zitz, Thomas

    2014-05-01

    Over the past three years the 2010 in Vienna founded Ludwig Boltzmann Institute for Archaeological Prospection and Virtual Archaeology (http://archpro.lbg.ac.at), in collaboration with its ten European partner organizations, has made considerable progress in the development and application of near-surface geophysical survey technology and methodology mapping square kilometres rather than hectares in unprecedented spatial resolution. The use of multiple novel motorized multichannel GPR and magnetometer systems (both Förster/Fluxgate and Cesium type) in combination with advanced and centimetre precise positioning systems (robotic totalstations and Realtime Kinematic GPS) permitting efficient navigation in open fields have resulted in comprehensive blanket coverage archaeological prospection surveys of important cultural heritage sites, such as the landscape surrounding Stonehenge in the framework of the Stonehenge Hidden Landscape Project, the mapping of the World Cultural Heritage site Birka-Hovgården in Sweden, or the detailed investigation of the Roman urban landscape of Carnuntum near Vienna. Efficient state-of-the-art archaeological prospection survey solutions require adequate fieldwork methodologies and appropriate data processing tools for timely quality control of the data in the field and large-scale data visualisations after arrival back in the office. The processed and optimized visualisations of the geophysical measurement data provide the basis for subsequent archaeological interpretation. Integration of the high-resolution geophysical prospection data with remote sensing data acquired through aerial photography, airborne laser- and hyperspectral-scanning, terrestrial laser-scanning or detailed digital terrain models derived through photogrammetric methods permits improved understanding and spatial analysis as well as the preparation of comprehensible presentations for the stakeholders (scientific community, cultural heritage managers, public). Of

  12. Comparison of time domain reflectometry, capacitance methods and neutron scattering in soil moisture measurements

    International Nuclear Information System (INIS)

    Khorasani, A.; Mousavi Shalmani, M. A.; Piervali Bieranvand, N.

    2011-01-01

    An accurate, precise, fast and ease as well as the ability for measurements in depth are the characteristics that are desirable in measuring soil moisture methods. To compare methods (time domain reflectometry and capacitance) with neutron scattering for soil water monitoring, an experiment was carried out in a randomized complete block design (Split Split plot) on tomato with three replications on the experimental field of International Atomic Energy Agency (Seibersdorf-Austria). The treatment instruments for the soil moisture monitoring (main factor) consist of neutron gauge, Diviner 2000, time domain reflectometer and an EnviroScan and different irrigation systems (first sub factor) consist of trickle and furrow irrigations and different depths of soil (second sub factor) consist of 0-20, 20-40 and 40-60 cm. The results showed that for the neutron gauge and time domain reflectometer the amount of soil moisture in both of trickle and furrow irrigations were the same, but the significant differences were recorded in Diviner 2000 and EnviroScan measurements. The results of this study showed that the neutron gauge is an acceptable and reliable means with the modern technology, with a precision of ±2 mm in 450 mm soil water to a depth of 1.5 meter and can be considered as the most practical method for measuring soil moisture profiles and irrigation planning program. The time domain reflectometer method in most mineral soils, without the need for calibration, with an accuracy ±0.01m 3 m -3 has a good performance in soil moisture and electrical conductivity measurements. The Diviner 2000 and EnviroScan are not well suitable for the above conditions for several reasons such as much higher soil moisture and a large error measurement and also its sensitivity to the soil gap and to the small change in the soil moisture in comparison with the neutron gauge and the time domain reflectometer methods.

  13. 5 CFR 2423.2 - Alternative Dispute Resolution (ADR) services.

    Science.gov (United States)

    2010-01-01

    ... 5 Administrative Personnel 3 2010-01-01 2010-01-01 false Alternative Dispute Resolution (ADR) services. 2423.2 Section 2423.2 Administrative Personnel FEDERAL LABOR RELATIONS AUTHORITY, GENERAL COUNSEL... Filing, Investigating, Resolving, and Acting on Charges § 2423.2 Alternative Dispute Resolution (ADR...

  14. AMOR - the versatile reflectometer at SINQ

    Science.gov (United States)

    Clemens, D.; Gross, P.; Keller, P.; Schlumpf, N.; Könnecke, M.

    2000-03-01

    We report on a new facility for neutron reflectometry situated at the end position of a cold neutron guide at the Swiss Spallation Neutron Source SINQ. The instrument is a flexible apparatus, adaptable to the needs of the user's individual experiment. Principally designed to operate in the time-of-flight mode it is also capable to exploit the fact that SINQ is a continuous source because PSI's developments in the field of thin film multilayers are fruitfully applied. By means of multilayer monochromators it can be converted into a constant wavelength reflectometer. Polarized neutron reflectometry on AMOR takes advantage of remanent FeCo/Ti:N supermirrors and multilayers which can be operated in a way that no spin flippers are needed. The time and angular contributions to the resolution in momentum transfer are separately determinable in TOF mode. The total length of the instrument is adjustable in order to optimize resolution together with the illumination of the sample's surface. Large sample environments can be placed on the sample table that is actively isolated against vibrations. Single detectors and an EMBL 3He area detector can be chosen, alternatively. The instrument concept as well as parameters of its components are presented.

  15. Chandra ACIS Sub-pixel Resolution

    Science.gov (United States)

    Kim, Dong-Woo; Anderson, C. S.; Mossman, A. E.; Allen, G. E.; Fabbiano, G.; Glotfelty, K. J.; Karovska, M.; Kashyap, V. L.; McDowell, J. C.

    2011-05-01

    We investigate how to achieve the best possible ACIS spatial resolution by binning in ACIS sub-pixel and applying an event repositioning algorithm after removing pixel-randomization from the pipeline data. We quantitatively assess the improvement in spatial resolution by (1) measuring point source sizes and (2) detecting faint point sources. The size of a bright (but no pile-up), on-axis point source can be reduced by about 20-30%. With the improve resolution, we detect 20% more faint sources when embedded on the extended, diffuse emission in a crowded field. We further discuss the false source rate of about 10% among the newly detected sources, using a few ultra-deep observations. We also find that the new algorithm does not introduce a grid structure by an aliasing effect for dithered observations and does not worsen the positional accuracy

  16. Validation of High-resolution Climate Simulations over Northern Europe.

    Science.gov (United States)

    Muna, R. A.

    2005-12-01

    Two AMIP2-type (Gates 1992) experiments have been performed with climate versions of ARPEGE/IFS model examine for North Atlantic North Europe, and Norwegian region and analyzed the effect of increasing resolution on the simulated biases. The ECMWF reanalysis or ERA-15 has been used to validate the simulations. Each of the simulations is an integration of the period 1979 to 1996. The global simulations used observed monthly mean sea surface temperatures (SST) as lower boundary condition. All aspects but the horizontal resolutions are similar in the two simulations. The first simulation has a uniform horizontal resolution of T63L. The second one has a variable resolution (T106Lc3) with the highest resolution in the Norwegian Sea. Both simulations have 31 vertical layers in the same locations. For each simulation the results were divided into two seasons: winter (DJF) and summer (JJA). The parameters investigated were mean sea level pressure, geopotential and temperature at 850 hPa and 500 hPa. To find out the causes of temperature bias during summer, latent and sensible heat flux, total cloud cover and total precipitation were analyzed. The high-resolution simulation exhibits more or less realistic climate over Nordic, Artic and European region. The overall performance of the simulations shows improvements of generally all fields investigated with increasing resolution over the target area both in winter (DJF) and summer (JJA).

  17. In-situ investigations of structural changes during cyclic loading by high resolution reciprocal space mapping

    DEFF Research Database (Denmark)

    Diederichs, Annika M.; Thiel, Felix; Lienert, Ulrich

    2017-01-01

    dislocation structures can be identified using advanced electron microscopy and synchrotron techniques. A detailed characterization of the microstructure during cyclic loading by in-situ monitoring the internal structure within individual grains with high energy x-rays can help to understand and predict...... the materials behavior during cyclic deformation and to improve the material design. While monitoring macroscopic stress and strain during cyclic loading, reciprocal space maps of diffraction peaks from single grains are obtained with high resolution. High Resolution Reciprocal Space Mapping was applied...

  18. Investigating riparian groundwater flow close to a losing river using diurnal temperature oscillations at high vertical resolution

    Directory of Open Access Journals (Sweden)

    T. Vogt

    2012-02-01

    Full Text Available River-water infiltration is of high relevance for hyporheic and riparian groundwater ecology as well as for drinking water supply by river-bank filtration. Heat has become a popular natural tracer to estimate exchange rates between rivers and groundwater. However, quantifying flow patterns and velocities is impeded by spatial and temporal variations of exchange fluxes, insufficient sensors spacing during field investigations, or simplifying assumptions for analysis or modeling such as uniform flow. The objective of this study is to investigate lateral shallow groundwater flow upon river-water infiltration at the shoreline of the riverbed and in the adjacent riparian zone of the River Thur in northeast Switzerland. Here we have applied distributed temperature sensing (DTS along optical fibers wrapped around tubes to measure high-resolution vertical temperature profiles of the unsaturated zone and shallow riparian groundwater. Diurnal temperature oscillations were tracked in the subsurface and analyzed by means of dynamic harmonic regression to extract amplitudes and phase angles. Subsequent calculations of amplitude attenuation and time shift relative to the river signal show in detail vertical and temporal variations of heat transport in shallow riparian groundwater. In addition, we apply a numerical two-dimensional heat transport model for the unsaturated zone and shallow groundwater to obtain a better understanding of the observed heat transport processes in shallow riparian groundwater and to estimate the groundwater flow velocity. Our results show that the observed riparian groundwater temperature distribution cannot be described by uniform flow, but rather by horizontal groundwater flow velocities varying over depth. In addition, heat transfer of diurnal temperature oscillations from the losing river through shallow groundwater is influenced by thermal exchange with the unsaturated zone. Neglecting the influence of the unsaturated zone

  19. Phase division multiplexed EIT for enhanced temporal resolution.

    Science.gov (United States)

    Dowrick, T; Holder, D

    2018-03-29

    The most commonly used EIT paradigm (time division multiplexing) limits the temporal resolution of impedance images due to the need to switch between injection electrodes. Advances have previously been made using frequency division multiplexing (FDM) to increase temporal resolution, but in cases where a fixed range of frequencies is available, such as imaging fast neural activity, an upper limit is placed on the total number of simultaneous injections. The use of phase division multiplexing (PDM) where multiple out of phase signals can be injected at each frequency is investigated to increase temporal resolution. TDM, FDM and PDM were compared in head tank experiments, to compare transfer impedance measurements and spatial resolution between the three techniques. A resistor phantom paradigm was established to investigate the imaging of one-off impedance changes, of magnitude 1% and with durations as low as 500 µs (similar to those seen in nerve bundles), using both PDM and TDM approaches. In head tank experiments, a strong correlation (r  >  0.85 and p  EIT injections.

  20. Solid-immersion fluorescence microscopy with increased emission and super resolution

    Energy Technology Data Exchange (ETDEWEB)

    Liau, Z. L.; Porter, J. M. [Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, Massachusetts 02420 (United States); Liau, A. A.; Chen, J. J. [Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Salmon, W. C. [Whitehead Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Sheu, S. S. [Department of Medicine, Jefferson Medical College, Philadelphia, Pennsylvania 19107 (United States)

    2015-01-07

    We investigate solid-immersion fluorescence microscopy suitable for super-resolution nanotechnology and biological imaging, and have observed limit of resolution as small as 15 nm with microspheres, mitochondria, and chromatin fibers. We have further observed that fluorescence efficiency increases with excitation power density, implicating appreciable stimulated emission and increased resolution. We discuss potential advantages of the solid-immersion microscopy, including combined use with previously established super-resolution techniques for reaching deeper beyond the conventional diffraction limit.

  1. Spatial scales of pollution from variable resolution satellite imaging

    International Nuclear Information System (INIS)

    Chudnovsky, Alexandra A.; Kostinski, Alex; Lyapustin, Alexei; Koutrakis, Petros

    2013-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) provides daily global coverage, but the 10 km resolution of its aerosol optical depth (AOD) product is not adequate for studying spatial variability of aerosols in urban areas. Recently, a new Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm was developed for MODIS which provides AOD at 1 km resolution. Using MAIAC data, the relationship between MAIAC AOD and PM 2.5 as measured by the EPA ground monitoring stations was investigated at varying spatial scales. Our analysis suggested that the correlation between PM 2.5 and AOD decreased significantly as AOD resolution was degraded. This is so despite the intrinsic mismatch between PM 2.5 ground level measurements and AOD vertically integrated measurements. Furthermore, the fine resolution results indicated spatial variability in particle concentration at a sub-10 km scale. Finally, this spatial variability of AOD within the urban domain was shown to depend on PM 2.5 levels and wind speed. - Highlights: ► The correlation between PM 2.5 and AOD decreases as AOD resolution is degraded. ► High resolution MAIAC AOD 1 km retrieval can be used to investigate within-city PM 2.5 variability. ► Low pollution days exhibit higher spatial variability of AOD and PM 2.5 then moderate pollution days. ► AOD spatial variability within urban area is higher during the lower wind speed conditions. - The correlation between PM 2.5 and AOD decreases as AOD resolution is degraded. The new high-resolution MAIAC AOD retrieval has the potential to capture PM 2.5 variability at the intra-urban scale.

  2. Investigating alternative dispute resolution methods and the ...

    African Journals Online (AJOL)

    This article investigates the current knowledge, implementation and benefits of ADR within the South African built environment. The focus population of the study is architectural professionals, as defined by the South African Council for the Architectural Profession (SACAP). A questionnaire was distributed among 581 ...

  3. Estimation of Sea Level variations with GPS/GLONASS-Reflectometry Technique: Case Study at Stationary Oceanographic Platform in the Black Sea

    Science.gov (United States)

    Kurbatov, G. A.; Padokhin, A. M.

    2017-12-01

    In the present work we study GNSS - reflectometry methods for estimation of sea level variations using a single GNSS-receiver, which are based on the multipath propagation effects (interference pattern in SNR of GNSS signals at small elevation angles) caused by the reflection of navigational signals from the sea surface. The measurements were carried out in the coastal zone of Black Sea at the Stationary Oceanographic Platform during one-week campaign in the summer 2017. GPS/GLONASS signals at two working frequencies of both systems were used to study sea level variations which almost doubled the amount of observations compared to GPS-only tide gauge. Moreover all the measurements were conducted with 4-antenna GNSS receiver providing the opportunity for different orientations of antennas including zenith and nadir looking ones as well as two horizontally oriented ones at different azimuths. As the reference we used data from co-located wire wave gauge which showed good correspondence of both datasets. Though tidal effects are not so pronounced for the Black Sea, the described experimental setup allowed to study the effects of sea surface roughness, driven by meteorological conditions (e.g. wind waves), as well as antenna directivity pattern effects on the observed interference patterns of GPS/GLONASS L1/L2 signals (relation of the main spectral peak to the noise power) and the quality of sea level estimations.

  4. Super-resolution optical microscopy for studying membrane structure and dynamics.

    Science.gov (United States)

    Sezgin, Erdinc

    2017-07-12

    Investigation of cell membrane structure and dynamics requires high spatial and temporal resolution. The spatial resolution of conventional light microscopy is limited due to the diffraction of light. However, recent developments in microscopy enabled us to access the nano-scale regime spatially, thus to elucidate the nanoscopic structures in the cellular membranes. In this review, we will explain the resolution limit, address the working principles of the most commonly used super-resolution microscopy techniques and summarise their recent applications in the biomembrane field.

  5. The clinical impact of high resolution computed tomography in patients with respiratory disease

    International Nuclear Information System (INIS)

    Screaton, Nicholas J.; Tasker, Angela D.; Flower, Christopher D.R.; Miller, Fiona N.A.C.; Patel, Bipen D.; Groves, Ashley; Lomas, David A.

    2011-01-01

    High resolution computed tomography is widely used to investigate patients with suspected diffuse lung disease. Numerous studies have assessed the diagnostic performance of this investigation, but the diagnostic and therapeutic impacts have received little attention. The diagnostic and therapeutic impacts of high resolution computed tomography in routine clinical practice were evaluated prospectively. All 507 referrals for high-resolution computed tomography over 12 months in two centres were included. Requesting clinicians completed questionnaires before and after the investigation detailing clinical indications, working diagnoses, confidence level in each diagnosis, planned investigations and treatments. Three hundred and fifty-four studies on 347 patients had complete data and were available for analysis. Following high-resolution computed tomography, a new leading diagnosis (the diagnosis with the highest confidence level) emerged in 204 (58%) studies; in 166 (47%) studies the new leading diagnosis was not in the original differential diagnosis. Mean confidence in the leading diagnosis increased from 6.7 to 8.5 out of 10 (p < 0.001). The invasiveness of planned investigations increased in 23 (7%) studies and decreased in 124 (35%) studies. The treatment plan was modified after 319 (90%) studies. Thoracic high-resolution computed tomography alters leading diagnosis, increases diagnostic confidence, and frequently changes investigation and management plans. (orig.)

  6. Investigation to optimize the energy resolution and efficiency of cadmium(zinc)telluride for photon measurements

    Science.gov (United States)

    Kim, Hadong

    While the investigations of the Cd(Zn)Te characteristics were completed, a new method to make arbitrary anode shapes, without the troublesome shadow mask technique, was found. With this technique, the two-anode geometry Cd(Zn)Te detector was introduced and tested. The semiconductor performance of the two-anode geometry detectors for the incoming gamma rays of 241Am, 57Co, and 137Cs were compared to the responses of the planar device. The very promising photon energy resolutions of 9.3 and 5.4% FWHM were obtained with the two-anode geometry detector for the gamma rays energies of 122 keV and 662 keV, respectively, while no discernible full energy peaks were apparent with the planar detector. Several simulation programs that are very easy to handle were developed as useful tools for investigating the complicated gamma ray pulse height distributions, which were due to the energy deposition events inside the semiconductors. Comparisons to the known values and with the results from other application programs, validated the information obtained from the simulation programs, which were developed during this research effort. A graphical user interface (GUI) was designed for the user's convenience in order to enter the required input parameters for the specific requirements of each simulation programs. The idealized noise free spectra for the planar detector and for the small pixel geometry detector were successfully obtained by applying Monte Carlo techniques.

  7. Comparing bulk electrical conductivities spatial series obtained by Time Domain Reflectometry and Electromagnetic Induction sensors

    Science.gov (United States)

    Saeed, Ali; Ajeel, Ali; dragonetti, giovanna; Comegna, Alessandro; Lamaddalena, Nicola; Coppola, Antonio

    2016-04-01

    The ability to determine and monitor the effects of salts on soils and plants, are of great importance to agriculture. To control its harmful effects, soil salinity needs to be monitored in space and time. This requires knowledge of its magnitude, temporal dynamics, and spatial variability. Conventional ground survey procedures by direct soil sampling are time consuming, costly and destructive. Alternatively, soil salinity can be evaluated by measuring the bulk electrical conductivity (σb) directly in the field. Time domain reflectometry (TDR) sensors allow simultaneous measurements of water content, θ, and σb. They may be calibrated for estimating the electrical conductivity of the soil solution (σw). However, they have a relatively small observation window and thus they are thought to only provide local-scale measurements. The spatial range of the sensors is limited to tens of centimeters and extension of the information to a large area can be problematic. Also, information on the vertical distribution of the σb soil profile may only be obtained by installing sensors at different depths. In this sense, the TDR may be considered as an invasive technique. Compared to the TDR, other geophysical methods based for example on Electromagnetic Induction (EMI) techniques are non-invasive methods and represent a viable alternative to traditional techniques for soil characterization. The problem is that all these techniques give depth-weighted apparent electrical conductivity (σa) measurements, depending on the specific depth distribution of the σb, as well as on the depth response function of the sensor used. In order to deduce the actual distribution of the bulk electrical conductivity, σb, in the soil profile, one needs to invert the signal coming from EMI. Because of their relatively lower observation window, TDR sensors provide quasi-point values and do not adequately integrate the spatial variability of the chemical concentration distribution in the soil

  8. Oblique reconstructions in tomosynthesis. II. Super-resolution

    International Nuclear Information System (INIS)

    Acciavatti, Raymond J.; Maidment, Andrew D. A.

    2013-01-01

    Purpose: In tomosynthesis, super-resolution has been demonstrated using reconstruction planes parallel to the detector. Super-resolution allows for subpixel resolution relative to the detector. The purpose of this work is to develop an analytical model that generalizes super-resolution to oblique reconstruction planes.Methods: In a digital tomosynthesis system, a sinusoidal test object is modeled along oblique angles (i.e., “pitches”) relative to the plane of the detector in a 3D divergent-beam acquisition geometry. To investigate the potential for super-resolution, the input frequency is specified to be greater than the alias frequency of the detector. Reconstructions are evaluated in an oblique plane along the extent of the object using simple backprojection (SBP) and filtered backprojection (FBP). By comparing the amplitude of the reconstruction against the attenuation coefficient of the object at various frequencies, the modulation transfer function (MTF) is calculated to determine whether modulation is within detectable limits for super-resolution. For experimental validation of super-resolution, a goniometry stand was used to orient a bar pattern phantom along various pitches relative to the breast support in a commercial digital breast tomosynthesis system.Results: Using theoretical modeling, it is shown that a single projection image cannot resolve a sine input whose frequency exceeds the detector alias frequency. The high frequency input is correctly visualized in SBP or FBP reconstruction using a slice along the pitch of the object. The Fourier transform of this reconstructed slice is maximized at the input frequency as proof that the object is resolved. Consistent with the theoretical results, experimental images of a bar pattern phantom showed super-resolution in oblique reconstructions. At various pitches, the highest frequency with detectable modulation was determined by visual inspection of the bar patterns. The dependency of the highest

  9. Oblique reconstructions in tomosynthesis. II. Super-resolution

    Science.gov (United States)

    Acciavatti, Raymond J.; Maidment, Andrew D. A.

    2013-01-01

    Purpose: In tomosynthesis, super-resolution has been demonstrated using reconstruction planes parallel to the detector. Super-resolution allows for subpixel resolution relative to the detector. The purpose of this work is to develop an analytical model that generalizes super-resolution to oblique reconstruction planes. Methods: In a digital tomosynthesis system, a sinusoidal test object is modeled along oblique angles (i.e., “pitches”) relative to the plane of the detector in a 3D divergent-beam acquisition geometry. To investigate the potential for super-resolution, the input frequency is specified to be greater than the alias frequency of the detector. Reconstructions are evaluated in an oblique plane along the extent of the object using simple backprojection (SBP) and filtered backprojection (FBP). By comparing the amplitude of the reconstruction against the attenuation coefficient of the object at various frequencies, the modulation transfer function (MTF) is calculated to determine whether modulation is within detectable limits for super-resolution. For experimental validation of super-resolution, a goniometry stand was used to orient a bar pattern phantom along various pitches relative to the breast support in a commercial digital breast tomosynthesis system. Results: Using theoretical modeling, it is shown that a single projection image cannot resolve a sine input whose frequency exceeds the detector alias frequency. The high frequency input is correctly visualized in SBP or FBP reconstruction using a slice along the pitch of the object. The Fourier transform of this reconstructed slice is maximized at the input frequency as proof that the object is resolved. Consistent with the theoretical results, experimental images of a bar pattern phantom showed super-resolution in oblique reconstructions. At various pitches, the highest frequency with detectable modulation was determined by visual inspection of the bar patterns. The dependency of the highest

  10. Physical properties of shallow landslides and their role in landscape evolution investigated with ultrahigh-resolution lidar data and aerial imagery

    Science.gov (United States)

    Nelson, M. D.; Bryk, A. B.; Fauria, K.; Huang, M. H.; Dietrich, W. E.

    2017-12-01

    Shallow landslides are often a primary method of sediment transport and a dominant process of hillslope evolution in steep, soil-mantled landscapes. However, detailed studies of single landslides can be difficult to generalize across a landscape and watershed-scale analyses using coarse-resolution digital elevation models often fail to capture the detail necessary to understand the mechanics of individual slides. During February 2017, an intense rainfall event generated over 400 shallow landslides within a 13 km2 field site in Colusa County, Northern California, providing a unique opportunity to investigate how landsliding affects landscape morphology at multiple scales. The hilly grass and oak woodland site is underlain by Great Valley Sequence shale, sandstone, and conglomerate turbidites uniformly dipping 50° east, with ridgelines and valleys following bedding orientation. Here we present results from ultrahigh-resolution ( 100 points per square meter) airborne lidar data and aerial imagery collected directly after the event, as well as high-resolution airborne lidar data collected in 2015 and preliminary findings from field surveys. Of the 136 landslides surveyed so far, the failure surface was at the soil-weathered bedrock boundary in 85%. Only 69% of the landslides traveled down hillslopes and reached active channels, and of these, 37% transformed into debris flows that scoured channel pathways to bedrock. These small landslides have a median width of 3.2 m and average failure depth of 0.4 m. Landslides occurred at a median pre-failure ground surface slope of 35°, and only 56% occurred in convergent or weakly convergent areas. This comprehensive before and after dataset is being used as a rigorous test of shallow landslide models that predict landslide size and location, as well as a lens to investigate patterns in slope stability or failure with across the landscape. After multiple years of fieldwork at this study site where small landslide scars suggested

  11. A study of the reactivity of elemental Cr/Se/Te thin multilayers using X-ray reflectometry, in situ X-ray diffraction and X-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Behrens, Malte; Tomforde, Jan; May, Enno; Kiebach, Ragnar; Bensch, Wolfgang; Haeussler, Dietrich; Jaeger, Wolfgang

    2006-01-01

    The reactivity of [Cr/Se/Te] multilayers under annealing was investigated using X-ray reflectometry, in situ X-ray diffraction, X-ray absorption fine structure (XAFS) measurements and transmission electron microscopy. For all samples, interdiffusion was complete at temperatures between 100 and 300 deg. C, depending on the repeating tri-layer thickness. A crystalline phase nucleated approximately 20 deg. C above the temperature where interdiffusion was finished. The first crystalline phase in a binary Cr/Te sample was layered CrTe 3 nucleating at 230 deg. C. In ternary samples (Se:Te=0.6-1.2), the low-temperature nucleation of such a layered CrQ 3 (Q=Se, Te) phase is suppressed and instead the phase Cr 2 Q 3 nucleates first. Interestingly, this phase decomposes around 500 deg. C into layered CrQ 3 . In contrast, binary Cr/Se samples form stable amorphous alloys after interdiffusion and Cr 3 Se 4 nucleates around 500 deg. C as the only crystalline phase. Evaluation of the XAFS data of annealed samples yield Se-Cr distances of 2.568(1) and 2.552(1) A for Cr 2 Q 3 and CrQ 3 , respectively. In the latter sample, higher coordination shells around Se are seen accounting for the Se-Te contacts in the structure. - Graphical abstract: The first step of the reaction of elemental Cr/Te/Se-multilayers is the interdiffusion of the elements as evidenced by the decay of the modulation peaks in the low-angle region of the X-ray diffraction patterns. The subsequent growth of Bragg peaks at higher scattering angles indicates crystallization of chromium chalcogenide Cr 2 Te 3- x Se x

  12. Enhanced magneto-plasmonic effect in Au/Co/Au multilayers caused by exciton–plasmon strong coupling

    Energy Technology Data Exchange (ETDEWEB)

    Hamidi, S.M., E-mail: m_hamidi@sbu.ac.ir; Ghaebi, O.

    2016-09-15

    In this paper, we have investigated magneto optical Kerr rotation using the strong coupling of exciton–plasmon. For this purpose, we have demonstrated strong coupling phenomenon using reflectometry measurements. These measurements revealed the formation of two split polaritonic extrema in reflectometry as a function of wavelength. Then we have shown exciton–plasmon coupling in dispersion diagram which presented an anti-crossing between the polaritonic branches. To assure the readers of strong coupling, we have shown an enhanced magneto-optical Kerr rotation by comparing the reflectometry results of strong coupling of surface Plasmon polariton of Au/Co/Au multilayer and R6G excitons with surface Plasmon polariton magneto-optical kerr effect experimental setup. - Highlights: • The magneto optical Kerr rotation has been investigated by using the strong coupling of exciton–plasmon. • We have shown exciton–plasmon coupling in dispersion diagram which presented an anti-crossing between the polaritonic branches. • Strong coupling of surface plasmon polariton and exciton have been yielded to the enhanced magneto-optical Kerr effect. • Plasmons in Au/Co/Au multilayer and exciton in R6G have been coupled to enhance magneto-optical activity.

  13. High-resolution, real-time mapping of surface soil moisture at the field scale using ground penetrating radar

    Science.gov (United States)

    Lambot, S.; Minet, J.; Slob, E.; Vereecken, H.; Vanclooster, M.

    2008-12-01

    . Finally, we present laboratory and field results where the GPR measurements are compared to ground-truth gravimetric and time domain reflectometry data. An example of high resolution surface soil moisture map is presented and discussed. The proposed method appears to be an appropriate solution in any applications where soil surface water content must be known at the field scale.

  14. Enhanced sensitivity to dielectric function and thickness of absorbing thin films by combining total internal reflection ellipsometry with standard ellipsometry and reflectometry

    Science.gov (United States)

    Lizana, A.; Foldyna, M.; Stchakovsky, M.; Georges, B.; Nicolas, D.; Garcia-Caurel, E.

    2013-03-01

    High sensitivity of spectroscopic ellipsometry and reflectometry for the characterization of thin films can strongly decrease when layers, typically metals, absorb a significant fraction of the light. In this paper, we propose a solution to overcome this drawback using total internal reflection ellipsometry (TIRE) and exciting a surface longitudinal wave: a plasmon-polariton. As in the attenuated total reflectance technique, TIRE exploits a minimum in the intensity of reflected transversal magnetic (TM) polarized light and enhances the sensitivity of standard methods to thicknesses of absorbing films. Samples under study were stacks of three films, ZnO : Al/Ag/ZnO : Al, deposited on glass substrates. The thickness of the silver layer varied from sample to sample. We performed measurements with a UV-visible phase-modulated ellipsometer, an IR Mueller ellipsometer and a UV-NIR reflectometer. We used the variance-covariance formalism to evaluate the sensitivity of the ellipsometric data to different parameters of the optical model. Results have shown that using TIRE doubled the sensitivity to the silver layer thickness when compared with the standard ellipsometry. Moreover, the thickness of the ZnO : Al layer below the silver layer can be reliably quantified, unlike for the fit of the standard ellipsometry data, which is limited by the absorption of the silver layer.

  15. Investigation of chemical modifiers for phosphorus in a graphite furnace using high-resolution continuum source atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Lepri, Fabio G.; Dessuy, Morgana B.; Vale, Maria Goreti R.; Borges, Daniel L.G.; Welz, Bernhard; Heitmann, Uwe

    2006-01-01

    Phosphorus is not one of the elements that are typically determined by atomic absorption spectrometry, but this technique nevertheless offers several advantages that make it attractive, such as the relatively great freedom from interferences. As the main resonance lines for phosphorus are in the vacuum-ultraviolet, inaccessible by conventional atomic absorption spectrometry equipment, L'vov and Khartsyzov proposed to use the non-resonance doublet at 213.5 / 213.6 nm. Later it turned out that with conventional equipment it is necessary to use a chemical modifier in order to get reasonable sensitivity, and lanthanum was the first one suggested for that purpose. In the following years more than 30 modifiers have been proposed for the determination of this element, and there is no consensus about the best one. In this work high-resolution continuum source atomic absorption spectrometry has been used to investigate the determination of phosphorus without a modifier and with the addition of selected modifiers of very different nature, including the originally recommended lanthanum modifier, several palladium-based modifiers and sodium fluoride. As high-resolution continuum source atomic absorption spectrometry is revealing the spectral environment of the analytical line at high resolution, it became obvious that without the addition of a modifier essentially no atomic phosphorus is formed, even at 2700 deg. C . The absorption measured with line source atomic absorption spectrometry in this case is due to the PO molecule, the spectrum of which is overlapping with the atomic line. Palladium, with or without the addition of calcium or ascorbic acid, was found to be the only modifier to produce almost exclusively atomic phosphorus. Lanthanum and particularly sodium fluoride produced a mixture of P and PO, depending on the atomization temperature. This fact can explain at least some of the discrepancies found in the literature and some of the phenomena observed in the

  16. A Very High Spatial Resolution Detector for Small Animal PET

    International Nuclear Information System (INIS)

    Kanai Shah, M.S.

    2007-01-01

    Positron Emission Tomography (PET) is an in vivo analog of autoradiography and has the potential to become a powerful new tool in imaging biological processes in small laboratory animals. PET imaging of small animals can provide unique information that can help in advancement of human disease models as well as drug development. Clinical PET scanners used for human imaging are bulky, expensive and do not have adequate spatial resolution for small animal studies. Hence, dedicated, low cost instruments are required for conducting small animal studies with higher spatial resolution than what is currently achieved with clinical as well as dedicated small animal PET scanners. The goal of the proposed project is to investigate a new all solid-state detector design for small animal PET imaging. Exceptionally high spatial resolution, good timing resolution, and excellent energy resolution are expected from the proposed detector design. The Phase I project was aimed at demonstrating the feasibility of producing high performance solid-state detectors that provide high sensitivity, spatial resolution, and timing characteristics. Energy resolution characteristics of the new detector were also investigated. The goal of the Phase II project is to advance the promising solid-state detector technology for small animal PET and determine its full potential. Detectors modules will be built and characterized and finally, a bench-top small animal PET system will be assembled and evaluated

  17. Austenitic Reversion of Cryo-rolled Ti-Stabilized Austenitic Stainless Steel: High-Resolution EBSD Investigation

    Science.gov (United States)

    Tiamiyu, A. A.; Odeshi, A. G.; Szpunar, J. A.

    2018-02-01

    In this study, AISI 321 austenitic stainless steel (ASS) was cryo-rolled and subsequently annealed at 650 and 800 °C to reverse BCC α'-martensite to FCC γ-austenite. The texture evolution associated with the reversion at the selected temperatures was investigated using high-resolution EBSD. After the reversion, TiC precipitates were observed to be more stable in 650 °C-annealed specimens than those reversed at 800 °C. {110} texture was mainly developed in specimens subjected to both annealing temperatures. However, specimens reversed at 650 °C have stronger texture than those annealed at 800 °C, even at the higher annealing time. The strong intensity of {110} texture component is attributed to the ability of AISI 321 ASS to memorize the crystallographic orientation of the deformed austenite, a phenomenon termed texture memory. The development of weaker texture in 800 °C-annealed specimens is attributed to the residual strain relief in grains, dissolution of grain boundary precipitates, and an increase in atomic migration along the grain boundaries. Based on the observed features of the reversed austenite grains and estimation from an existing model, it is suspected that the austenite reversion at 650 and 800 °C undergone diffusional and martensitic shear reversion, respectively.

  18. Investigation of Primary School Teachers' Conflict Resolution Skills in Terms of Different Variable

    Science.gov (United States)

    Bayraktar, Hatice Vatansever; Yilmaz, Kamile Özge

    2016-01-01

    In this study, it is aimed to determine the level of conflict resolution skills of primary school teachers and whether they vary by different variables. The study was organised in accordance with the scanning model. The universe of the study consists of primary school teachers working at 14 primary schools, two from each of the seven geographical…

  19. Investigation of the Behavior of Ethylene Molecular Films Using High Resolution Adsorption Isotherms and Neutron Scattering

    International Nuclear Information System (INIS)

    Barbour, Andi M.; Telling, Mark T.; Larese, John Z.

    2010-01-01

    The wetting behavior of ethylene adsorbed on MgO(100) was investigated from 83-135 K using high resolution volumetric adsorption isotherms. The results are compared to ethylene adsorption on graphite, a prototype adsorption system, in an effort to gain further insight into the forces that drive the observed film growth. Layering transitions for ethylene on MgO(100) are observed below the bulk triple point of ethylene (T = 104.0 K). The formation of three discrete adlayers is observed on the MgO(100) surface; onset of the second and third layers occurs at 79.2 ± 1.3 K and 98.3 ± 0.9 K, respectively. Thermodynamic quantities such as differential enthalpy and entropy, heat of adsorption, and isosteric heat of adsorption are determined and compared to the previously published values for ethylene on graphite. The average area occupied by a ethylene molecule on MgO(100) is 22.6 ± 1.1 (angstrom) 2 molecule -1 . The locations of two phase transitions are identified (i.e., layer critical temperatures at T c2 (n=1) at 108.6 ± 1.7 K and T c2 (n=2) at 116.5 ± 1.2 K) and a phase diagram is proposed. Preliminary neutron diffraction measurements reveal evidence of a monolayer solid with a lattice constant of ∼4.2 (angstrom). High resolution INS measurements show that the onset to dynamical motion and monolayer melting take place at 35 K and 65 K, respectively. The data reported here exhibit a striking similarity to ethylene on graphite which suggests that molecule-molecule interactions play an important role in determining the physical properties and growth of molecularly thin ethylene films.

  20. FTIR free-jet set-up for the high resolution spectroscopic investigation of condensable species

    Science.gov (United States)

    Georges, R.; Bonnamy, A.; Benidar, A.; Decroi, M.; Boissoles, J.

    2002-05-01

    An existing experimental set-up combining Fourier transform infrared (FTIR) spectroscopy and free-jet cooling has been modified significantly to allow high resolution studies of the spectrum of monomer species which are liquid under standard conditions. Evaporation of the liquid samples is controlled by a condenser apparatus which is described. A supersonic planar expansion issuing from a narrow aperture is preferred for its very high cooling rate. Such an expansion, probed with a pitot tube, has a zone of limited temperature gradient close to the nozzle exit. The continuum isentropic model appears well suited to describing the thermodynamic properties of the flow up to a high number of nozzle diameters downstream. High resolution spectra of benzene and methanol have been recorded in the 3 µm wavelength range, and their analysis demonstrates a well defined rotational temperature in the 20-25 K range.

  1. Sensitivity of GRETINA position resolution to hole mobility

    Energy Technology Data Exchange (ETDEWEB)

    Prasher, V.S. [Department of Physics, University of Massachusetts Lowell, Lowell, MA 01854 (United States); Cromaz, M. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Merchan, E.; Chowdhury, P. [Department of Physics, University of Massachusetts Lowell, Lowell, MA 01854 (United States); Crawford, H.L. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Lister, C.J. [Department of Physics, University of Massachusetts Lowell, Lowell, MA 01854 (United States); Campbell, C.M.; Lee, I.Y.; Macchiavelli, A.O. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Radford, D.C. [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Wiens, A. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2017-02-21

    The sensitivity of the position resolution of the gamma-ray tracking array GRETINA to the hole charge-carrier mobility parameter is investigated. The χ{sup 2} results from a fit of averaged signal (“superpulse”) data exhibit a shallow minimum for hole mobilities 15% lower than the currently adopted values. Calibration data on position resolution is analyzed, together with simulations that isolate the hole mobility dependence of signal decomposition from other effects such as electronics cross-talk. The results effectively exclude hole mobility as a dominant parameter for improving the position resolution for reconstruction of gamma-ray interaction points in GRETINA.

  2. Super-resolution biomolecular crystallography with low-resolution data.

    Science.gov (United States)

    Schröder, Gunnar F; Levitt, Michael; Brunger, Axel T

    2010-04-22

    X-ray diffraction plays a pivotal role in the understanding of biological systems by revealing atomic structures of proteins, nucleic acids and their complexes, with much recent interest in very large assemblies like the ribosome. As crystals of such large assemblies often diffract weakly (resolution worse than 4 A), we need methods that work at such low resolution. In macromolecular assemblies, some of the components may be known at high resolution, whereas others are unknown: current refinement methods fail as they require a high-resolution starting structure for the entire complex. Determining the structure of such complexes, which are often of key biological importance, should be possible in principle as the number of independent diffraction intensities at a resolution better than 5 A generally exceeds the number of degrees of freedom. Here we introduce a method that adds specific information from known homologous structures but allows global and local deformations of these homology models. Our approach uses the observation that local protein structure tends to be conserved as sequence and function evolve. Cross-validation with R(free) (the free R-factor) determines the optimum deformation and influence of the homology model. For test cases at 3.5-5 A resolution with known structures at high resolution, our method gives significant improvements over conventional refinement in the model as monitored by coordinate accuracy, the definition of secondary structure and the quality of electron density maps. For re-refinements of a representative set of 19 low-resolution crystal structures from the Protein Data Bank, we find similar improvements. Thus, a structure derived from low-resolution diffraction data can have quality similar to a high-resolution structure. Our method is applicable to the study of weakly diffracting crystals using X-ray micro-diffraction as well as data from new X-ray light sources. Use of homology information is not restricted to X

  3. Dual resolution cone beam breast CT: A feasibility study

    International Nuclear Information System (INIS)

    Chen Lingyun; Shen Youtao; Lai, Chao-Jen; Han Tao; Zhong Yuncheng; Ge Shuaiping; Liu Xinming; Wang Tianpeng; Yang, Wei T.; Whitman, Gary J.; Shaw, Chris C.

    2009-01-01

    Purpose: In this study, the authors investigated the feasibility of a dual resolution volume-of-interest (VOI) cone beam breast CT technique and compared two implementation approaches in terms of dose saving and scatter reduction. Methods: With this technique, a lead VOI mask with an opening is inserted between the x-ray source and the breast to deliver x-ray exposure to the VOI while blocking x rays outside the VOI. A CCD detector is used to collect the high resolution projection data of the VOI. Low resolution cone beam CT (CBCT) images of the entire breast, acquired with a flat panel (FP) detector, were used to calculate the projection data outside the VOI with the ray-tracing reprojection method. The Feldkamp-Davis-Kress filtered backprojection algorithm was used to reconstruct the dual resolution 3D images. Breast phantoms with 180 μm and smaller microcalcifications (MCs) were imaged with both FP and FP-CCD dual resolution CBCT systems, respectively. Two approaches of implementing the dual resolution technique, breast-centered approach and VOI-centered approach, were investigated and evaluated for dose saving and scatter reduction with Monte Carlo simulation using a GEANT4 package. Results: The results showed that the breast-centered approach saved more breast absorbed dose than did VOI-centered approach with similar scatter reduction. The MCs in fatty breast phantom, which were invisible with FP CBCT scan, became visible with the FP-CCD dual resolution CBCT scan. Conclusions: These results indicate potential improvement of the image quality inside the VOI with reduced breast dose both inside and outside the VOI.

  4. Effects of bulk colloidal stability on adsorption layers of poly(diallyldimethylammonium chloride)/sodium dodecyl sulfate at the air-water interface studied by neutron reflectometry.

    Science.gov (United States)

    Campbell, Richard A; Yanez Arteta, Marianna; Angus-Smyth, Anna; Nylander, Tommy; Varga, Imre

    2011-12-29

    We show for the oppositely charged system poly(diallyldimethylammonium chloride)/sodium dodecyl sulfate that the cliff edge peak in its surface tension isotherm results from the comprehensive precipitation of bulk complexes into sediment, leaving a supernatant that is virtually transparent and a depleted adsorption layer at the air/water interface. The aggregation and settling processes take about 3 days to reach completion and occur at bulk compositions around charge neutrality of the complexes which lack long-term colloidal stability. We demonstrate excellent quantitative agreement between the measured surface tension values and a peak calculated from the surface excess of surfactant in the precipitation region measured by neutron reflectometry, using the approximation that there is no polymer left in the liquid phase. The nonequilibrium nature of the system is emphasized by the production of very different interfacial properties from equivalent aged samples that are handled differently. We go on to outline our perspective on the "true equilibrium" state of this intriguing system and conclude with a comment on its practical relevance given that the interfacial properties can be so readily influenced by the handling of kinetically trapped bulk aggregates. © 2011 American Chemical Society

  5. Assessing resolution in live cell structured illumination microscopy

    Science.gov (United States)

    Pospíšil, Jakub; Fliegel, Karel; Klíma, Miloš

    2017-12-01

    Structured Illumination Microscopy (SIM) is a powerful super-resolution technique, which is able to enhance the resolution of optical microscope beyond the Abbe diffraction limit. In the last decade, numerous SIM methods that achieve the resolution of 100 nm in the lateral dimension have been developed. The SIM setups with new high-speed cameras and illumination pattern generators allow rapid acquisition of the live specimen. Therefore, SIM is widely used for investigation of the live structures in molecular and live cell biology. Quantitative evaluation of resolution enhancement in a real sample is essential to describe the efficiency of super-resolution microscopy technique. However, measuring the resolution of a live cell sample is a challenging task. Based on our experimental findings, the widely used Fourier ring correlation (FRC) method does not seem to be well suited for measuring the resolution of SIM live cell video sequences. Therefore, the resolution assessing methods based on Fourier spectrum analysis are often used. We introduce a measure based on circular average power spectral density (PSDca) estimated from a single SIM image (one video frame). PSDca describes the distribution of the power of a signal with respect to its spatial frequency. Spatial resolution corresponds to the cut-off frequency in Fourier space. In order to estimate the cut-off frequency from a noisy signal, we use a spectral subtraction method for noise suppression. In the future, this resolution assessment approach might prove useful also for single-molecule localization microscopy (SMLM) live cell imaging.

  6. Cold-target recoil-ion momentum-spectroscopy: First results and future perspectives of a novel high resolution technique for the investigation of collision induced many-particle reactions

    International Nuclear Information System (INIS)

    Ullrich, J.; Doerner, R.; Mergel, V.; Jagutzki, O.; Spielberger, L.; Schmidt-Boecking, H.

    1994-09-01

    In order to investigate many-particle reaction dynamics in atomic collisions a novel high-resolution technique has been developed, which determines the momentum and the charge state of the slowly recoiling target ions. Using a very cold, thin, and localized supersonic gas jet target a momentum resolution of better than 0.05 a.u. is obtained by measuring the recoil-ion time-of-flight and the recoil-ion trajectory. Because of the very high detection efficiency of nearly 100% this technique is well suited for many-particle coincidence measurements in ionizing collisions. First experimental results for fast ion and electron impact on helium targets are presented. Future applications in atomic collision physics and related areas are discussed. (orig.)

  7. High Resolution Simulations of Future Climate in West Africa Using a Variable-Resolution Atmospheric Model

    Science.gov (United States)

    Adegoke, J. O.; Engelbrecht, F.; Vezhapparambu, S.

    2013-12-01

    In previous work demonstrated the application of a var¬iable-resolution global atmospheric model, the conformal-cubic atmospheric model (CCAM), across a wide range of spatial and time scales to investigate the ability of the model to provide realistic simulations of present-day climate and plausible projections of future climate change over sub-Saharan Africa. By applying the model in stretched-grid mode the versatility of the model dynamics, numerical formulation and physical parameterizations to function across a range of length scales over the region of interest, was also explored. We primarily used CCAM to illustrate the capability of the model to function as a flexible downscaling tool at the climate-change time scale. Here we report on additional long term climate projection studies performed by downscaling at much higher resolutions (8 Km) over an area that stretches from just south of Sahara desert to the southern coast of the Niger Delta and into the Gulf of Guinea. To perform these simulations, CCAM was provided with synoptic-scale forcing of atmospheric circulation from 2.5 deg resolution NCEP reanalysis at 6-hourly interval and SSTs from NCEP reanalysis data uses as lower boundary forcing. CCAM 60 Km resolution downscaled to 8 Km (Schmidt factor 24.75) then 8 Km resolution simulation downscaled to 1 Km (Schmidt factor 200) over an area approximately 50 Km x 50 Km in the southern Lake Chad Basin (LCB). Our intent in conducting these high resolution model runs was to obtain a deeper understanding of linkages between the projected future climate and the hydrological processes that control the surface water regime in this part of sub-Saharan Africa.

  8. Stratway: A Modular Approach to Strategic Conflict Resolution

    Science.gov (United States)

    Hagen, George E.; Butler, Ricky W.; Maddalon, Jeffrey M.

    2011-01-01

    In this paper we introduce Stratway, a modular approach to finding long-term strategic resolutions to conflicts between aircraft. The modular approach provides both advantages and disadvantages. Our primary concern is to investigate the implications on the verification of safety-critical properties of a strategic resolution algorithm. By partitioning the problem into verifiable modules much stronger verification claims can be established. Since strategic resolution involves searching for solutions over an enormous state space, Stratway, like most similar algorithms, searches these spaces by applying heuristics, which present especially difficult verification challenges. An advantage of a modular approach is that it makes a clear distinction between the resolution function and the trajectory generation function. This allows the resolution computation to be independent of any particular vehicle. The Stratway algorithm was developed in both Java and C++ and is available through a open source license. Additionally there is a visualization application that is helpful when analyzing and quickly creating conflict scenarios.

  9. Chemical denaturation of globular proteins at the air/water interface: an x-ray and neutron reflectometry study

    International Nuclear Information System (INIS)

    Perriman, A.W.; Henderson, M.J.; White, J.W.

    2003-01-01

    Full text: X-ray and neutron reflectometry has been used to probe the equilibrium surface structure of hen egg white lysozyme (lysozyme) and bovine β -lactoglobulin (β -lactoglobulin) under denaturing conditions at the air-water interface. This was achieved by performing experiments on 10 mg mL -1 protein solutions containing increasing concentrations of the chemical denaturant guanidinium hydrochloride (G.HCl). For solutions containing no G.HCl, the surface structure of the proteins was represented by a two-layer model with total thicknesses of 48 Angstroms and 38 Angstroms for lysozyme and β -lactoglobulin, respectively. The total volume of a single protein molecule and the associated water molecules was evaluated to be approximately 45 (0.3) nm 3 for lysozyme, and 60 (0.3) nm 3 for β-lactoglobulin. The thickness dimensions and the total volumes compared favourably with the crystal dimensions of 45 x 30 x 30 Angstroms (40.5 nm 3 ),1 and 36 x 36 x 36 Angstroms (47 nm 3 ) 2 for lysozyme and β -lactoglobulin, respectively. This comparison suggests that when no denaturant was present, the structures of lysozyme and β -lactoglobulin were near to their native conformations at the air-water interface. The response to the presence of the chemical denaturant was different for each protein. The surface layer of β-lactoglobulin expanded at very low concentrations (0.2 mol dm -3 ) of G.HCl. In contrast, the lysozyme layer contracted. At higher concentrations, unfolding of both the proteins led to the formation of a third diffuse layer. In general, lysozyme appeared to be less responsive to the chemical denaturant, which is most likely a result of the higher disulfide content of lysozyme. A protocol allowing quantitative thermodynamic analysis of the contribution from the air-water interface to the chemical denaturation of a protein was developed

  10. The investigation of active Martian dune fields using very high resolution photogrammetric measurements

    Science.gov (United States)

    Kim, Jungrack; Kim, Younghwi; Park, Minseong

    2016-10-01

    At the present time, arguments continue regarding the migration speeds of Martian dune fields and their correlation with atmospheric circulation. However, precisely measuring the spatial translation of Martian dunes has succeeded only a very few times—for example, in the Nili Patera study (Bridges et al. 2012) using change-detection algorithms and orbital imagery. Therefore, in this study, we developed a generic procedure to precisely measure the migration of dune fields with recently introduced 25-cm resolution orbital imagery specifically using a high-accuracy photogrammetric processor. The processor was designed to trace estimated dune migration, albeit slight, over the Martian surface by 1) the introduction of very high resolution ortho images and stereo analysis based on hierarchical geodetic control for better initial point settings; 2) positioning error removal throughout the sensor model refinement with a non-rigorous bundle block adjustment, which makes possible the co-alignment of all images in a time series; and 3) improved sub-pixel co-registration algorithms using optical flow with a refinement stage conducted on a pyramidal grid processor and a blunder classifier. Moreover, volumetric changes of Martian dunes were additionally traced by means of stereo analysis and photoclinometry. The established algorithms have been tested using high-resolution HIRISE time-series images over several Martian dune fields. Dune migrations were iteratively processed both spatially and volumetrically, and the results were integrated to be compared to the Martian climate model. Migrations over well-known crater dune fields appeared to be almost static for the considerable temporal periods and were weakly correlated with wind directions estimated by the Mars Climate Database (Millour et al. 2015). As a result, a number of measurements over dune fields in the Mars Global Dune Database (Hayward et al. 2014) covering polar areas and mid-latitude will be demonstrated

  11. On Space-Time Resolution of Inflow Representations for Wind Turbine Loads Analysis

    Directory of Open Access Journals (Sweden)

    Lance Manuel

    2012-06-01

    Full Text Available Efficient spatial and temporal resolution of simulated inflow wind fields is important in order to represent wind turbine dynamics and derive load statistics for design. Using Fourier-based stochastic simulation of inflow turbulence, we first investigate loads for a utility-scale turbine in the neutral atmospheric boundary layer. Load statistics, spectra, and wavelet analysis representations for different space and time resolutions are compared. Next, large-eddy simulation (LES is employed with space-time resolutions, justified on the basis of the earlier stochastic simulations, to again derive turbine loads. Extreme and fatigue loads from the two approaches used in inflow field generation are compared. On the basis of simulation studies carried out for three different wind speeds in the turbine’s operating range, it is shown that inflow turbulence described using 10-meter spatial resolution and 1 Hz temporal resolution is adequate for assessing turbine loads. Such studies on the investigation of adequate filtering or resolution of inflow wind fields help to establish efficient strategies for LES and other physical or stochastic simulation needed in turbine loads studies.

  12. Enhancement of Rayleigh scatter in optical fiber by simple UV treatment: an order of magnitude increase in distributed sensing sensitivity

    Science.gov (United States)

    Loranger, Sébastien; Parent, François; Lambin-Iezzi, Victor; Kashyap, Raman

    2016-02-01

    Rayleigh scatter in optical fiber communication systems has long been considered a nuisance as a loss mechanism, although applications have used such scatter to probe the fiber for faults and propagation loss using time domain reflectometry (OTDR). It is however only with the development of Frequency domain reflectometry (OFDR) and coherent-phase OTDR that Rayleigh scatter has been probed to its deepest and can now be used to measure strain and temperature along a fiber, leading to the first distributed sensing applications. However, Rayleigh scatter remains very weak giving rise to very small signals which limits the technique for sensing. We show here a new technique to significantly enhance the Rayleigh scatter signal by at least two orders of magnitude, in a standard optical fiber with simple UV exposure of the core. A study of various exposures with different types of fibers has been conducted and a phenomenological description developed. We demonstrate that such an increase in signal can enhance the temperature and strain sensitivity by an order of magnitude for distributed sensing with an OFDR technique. Such improved performance can lead to temperature/strain RMS noise levels of 6 mK and 50 nɛ for 1 cm spatial resolution in UV exposed SMF-28, compared to the typical noise level of 100 mK for the same spatial resolution in the similar unexposed fiber.

  13. Nonlinear Optics Approaches Towards Subdiffraction Resolution in CARS Imaging

    NARCIS (Netherlands)

    Boller, Klaus J.; Beeker, W.P.; Cleff, C.; Kruse, K.; Lee, Christopher James; Gross, P.; Offerhaus, Herman L.; Fallnich, Carsten; Herek, Jennifer Lynn; Fornasiero, E.F.; Rizzoli, S.O.

    2014-01-01

    In theoretical investigations, we review several nonlinear optical approaches towards subdiffraction-limited resolution in label-free imaging via coherent anti-Stokes Raman scattering (CARS). Using a density matrix model and numerical integration, we investigate various level schemes and

  14. Investigating effects of sample pretreatment on protein stability using size-exclusion chromatography and high-resolution continuum source atomic absorption spectrometry.

    Science.gov (United States)

    Rakow, Tobias; El Deeb, Sami; Hahne, Thomas; El-Hady, Deia Abd; AlBishri, Hassan M; Wätzig, Hermann

    2014-09-01

    In this study, size-exclusion chromatography and high-resolution atomic absorption spectrometry methods have been developed and evaluated to test the stability of proteins during sample pretreatment. This especially includes different storage conditions but also adsorption before or even during the chromatographic process. For the development of the size exclusion method, a Biosep S3000 5 μm column was used for investigating a series of representative model proteins, namely bovine serum albumin, ovalbumin, monoclonal immunoglobulin G antibody, and myoglobin. Ambient temperature storage was found to be harmful to all model proteins, whereas short-term storage up to 14 days could be done in an ordinary refrigerator. Freezing the protein solutions was always complicated and had to be evaluated for each protein in the corresponding solvent. To keep the proteins in their native state a gentle freezing temperature should be chosen, hence liquid nitrogen should be avoided. Furthermore, a high-resolution continuum source atomic absorption spectrometry method was developed to observe the adsorption of proteins on container material and chromatographic columns. Adsorption to any container led to a sample loss and lowered the recovery rates. During the pretreatment and high-performance size-exclusion chromatography, adsorption caused sample losses of up to 33%. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. 40 CFR 22.18 - Quick resolution; settlement; alternative dispute resolution.

    Science.gov (United States)

    2010-07-01

    ...; alternative dispute resolution. 22.18 Section 22.18 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...; alternative dispute resolution. (a) Quick resolution. (1) A respondent may resolve the proceeding at any time... complaint. (d) Alternative means of dispute resolution. (1) The parties may engage in any process within the...

  16. Energy resolution in liquid argon doped with allene

    International Nuclear Information System (INIS)

    Ichinose, H.; Doke, T.; Masuda, K.; Shibamura, E.

    1989-01-01

    Studies have been made on liquid argon as detection medium with large volume and good energy and position resolution. It is advantageous to dope liquid argon with molecules with an ionization potential lower than the energy of scintillation light. In the present work, the energy resolution for 5.305MeV alpha particles is examined, and the effect of allene added to liquid argon is investigated. Some preliminary results for 976 KeV electrons are also presented. Allene is purified by two methods: (a) small-quantity purification and (b) mass purification. Three methods are tried for mixing allene with argon. Results concerning the allene purification methods, effect of allene concentration, and allene-argon mixing methods are presented. Discussion is made of the collected charge and energy resolution. It is concluded that the addition of allene to liquid argon greatly improves the energy resolution of 5.305 MeV alpha particles. The best intrinsic resolution is 1.4 percent FWHM obtained for 4 ppm allene doped liquid argon. In the case of 976 KeV electron radiation, energy resolution is not improved by adding allene to liquid argon. The best resolution is 31 KeV FWHM obtaiend for 65ppm allene doped liquid argon. (N.K.)

  17. 78 FR 14843 - Temporary Scope Expansion of the Post-Investigation Alternative Dispute Resolution Program

    Science.gov (United States)

    2013-03-07

    ... dialogues that can be used to assist parties in resolving disputes and potential conflicts. These techniques..., and improved relationships between the agency and the other party. On August 14, 1992 (57 FR 36678... enforcement action. In SECY-12-0161, ``Status Update, Tasks Related to Alternative Dispute Resolution in the...

  18. Computer simulation of high resolution transmission electron micrographs: theory and analysis

    International Nuclear Information System (INIS)

    Kilaas, R.

    1985-03-01

    Computer simulation of electron micrographs is an invaluable aid in their proper interpretation and in defining optimum conditions for obtaining images experimentally. Since modern instruments are capable of atomic resolution, simulation techniques employing high precision are required. This thesis makes contributions to four specific areas of this field. First, the validity of a new method for simulating high resolution electron microscope images has been critically examined. Second, three different methods for computing scattering amplitudes in High Resolution Transmission Electron Microscopy (HRTEM) have been investigated as to their ability to include upper Laue layer (ULL) interaction. Third, a new method for computing scattering amplitudes in high resolution transmission electron microscopy has been examined. Fourth, the effect of a surface layer of amorphous silicon dioxide on images of crystalline silicon has been investigated for a range of crystal thicknesses varying from zero to 2 1/2 times that of the surface layer

  19. Super-resolution

    DEFF Research Database (Denmark)

    Nasrollahi, Kamal; Moeslund, Thomas B.

    2014-01-01

    Super-resolution, the process of obtaining one or more high-resolution images from one or more low-resolution observations, has been a very attractive research topic over the last two decades. It has found practical applications in many real world problems in different fields, from satellite...

  20. DOI resolution measurement and error analysis with LYSO and APDs

    International Nuclear Information System (INIS)

    Lee, Chae-hun; Cho, Gyuseong

    2008-01-01

    Spatial resolution degradation in PET occurs at the edge of Field Of View (FOV) due to parallax error. To improve spatial resolution at the edge of FOV, Depth-Of-Interaction (DOI) PET has been investigated and several methods for DOI positioning were proposed. In this paper, a DOI-PET detector module using two 8x4 array avalanche photodiodes (APDs) (Hamamatsu, S8550) and a 2 cm long LYSO scintillation crystal was proposed and its DOI characteristics were investigated experimentally. In order to measure DOI positions, signals from two APDs were compared. Energy resolution was obtained from the sum of two APDs' signals and DOI positioning error was calculated. Finally, an optimum DOI step size in a 2 cm long LYSO were suggested to help to design a DOI-PET

  1. Implementation of reflectometry as a standard density profile diagnostic on DIII-D

    International Nuclear Information System (INIS)

    Zeng, L.; Doyle, E. J.; Luce, T. C.; Peebles, W. A.

    2001-01-01

    The profile reflectometer system on the DIII-D tokamak has been significantly upgraded in order to improve time coverage, data quality, and profile availability. The performance of the reflectometer system, which utilizes continuous frequency modulated (FMCW) radar techniques, has been improved as follows: First, a new PC-based data acquisition system has been installed, providing higher data sampling rates and larger memory depth. The higher sampling rate enables use of faster frequency sweeps of the FMCW microwave source, improving time resolution, and increasing profile accuracy. The larger memory depth enables longer data records, so that profiles can now be obtained throughout 5 s discharges at 100 Hz profile measurement rates, while continuous sampling at 10 MHz is available for 1 s for high time resolution physics studies. Second, an initial automated between-shots profile analysis capability is now available. Third, availability of the profiles to end users has been significantly improved

  2. Resolution of ranking hierarchies in directed networks

    Science.gov (United States)

    Barucca, Paolo; Lillo, Fabrizio

    2018-01-01

    Identifying hierarchies and rankings of nodes in directed graphs is fundamental in many applications such as social network analysis, biology, economics, and finance. A recently proposed method identifies the hierarchy by finding the ordered partition of nodes which minimises a score function, termed agony. This function penalises the links violating the hierarchy in a way depending on the strength of the violation. To investigate the resolution of ranking hierarchies we introduce an ensemble of random graphs, the Ranked Stochastic Block Model. We find that agony may fail to identify hierarchies when the structure is not strong enough and the size of the classes is small with respect to the whole network. We analytically characterise the resolution threshold and we show that an iterated version of agony can partly overcome this resolution limit. PMID:29394278

  3. Equivalence of velocity-level and acceleration-level redundancy-resolution of manipulators

    International Nuclear Information System (INIS)

    Cai Binghuang; Zhang Yunong

    2009-01-01

    The equivalence of velocity-level and acceleration-level redundancy resolution of robot manipulators is investigated in this Letter. Theoretical analysis based on gradient-descent method and computer simulations based on PUMA560 robot manipulator both demonstrate the equivalence of redundancy-resolution schemes at different levels.

  4. Umidade do solo no semiárido pernambucano usando-se reflectometria no domínio do tempo (TDR Soil moisture in Pernambuco semiarid using time domain reflectometry (TDR

    Directory of Open Access Journals (Sweden)

    Thais E. M. dos Santos

    2011-07-01

    Full Text Available Objetivou-se com o presente trabalho investigar a variabilidade temporal do conteúdo superficial da água no solo, através da reflectometria no domínio do tempo (TDR, em consequência das características de precipitação ocorridas no semiárido pernambucano, estudando esta dinâmica sob diferentes tipos de cobertura superficial do solo. O estudo foi realizado em uma encosta de uma bacia representativa, em um Argissolo Amarelo Eutrófico típico, onde foram instaladas quatro parcelas experimentais dotadas de duas sondas TDR, para investigação da umidade do solo e do sistema para monitoramento do escoamento superficial. Os tratamentos adotados foram: cobertura natural (CN, solo descoberto (SD, palma forrageira (P e barramentos, associados à cobertura morta (B+CM. A partir dos resultados obtidos durante o período de ocorrência de chuvas erosivas, a umidade do solo apresentou elevada variabilidade no tempo, estando relacionada aos diferentes tipos de cobertura e propriedades do solo. A cobertura morta mostrou ser a prática conservacionista mais adequada para manutenção da umidade do solo.Present study aimed to investigate the temporal variability of surface water content in soil by time domain reflectometry (TDR, as consequence of precipitation characteristics of Pernambuco semiarid, studying such dynamics under different types of the soil cover. The study was conducted in a slope of a representative catchment, in a Typic Hapludalf soil, where four experimental plots were installed with two TDR probes for soil moisture investigation as well as monitoring the runoff. Treatments were natural cover (CN, bare soil (SD, cactus (P and microdams associated with mulch (B + CM. From the results obtained during a period with erosive rainfall, it was found that soil moisture observed during the experimental period showed high variability in time, related to different types of coverage and soil properties. Mulching was the most appropriate

  5. Enhanced sensitivity to dielectric function and thickness of absorbing thin films by combining total internal reflection ellipsometry with standard ellipsometry and reflectometry

    International Nuclear Information System (INIS)

    Lizana, A; Foldyna, M; Garcia-Caurel, E; Stchakovsky, M; Georges, B; Nicolas, D

    2013-01-01

    High sensitivity of spectroscopic ellipsometry and reflectometry for the characterization of thin films can strongly decrease when layers, typically metals, absorb a significant fraction of the light. In this paper, we propose a solution to overcome this drawback using total internal reflection ellipsometry (TIRE) and exciting a surface longitudinal wave: a plasmon-polariton. As in the attenuated total reflectance technique, TIRE exploits a minimum in the intensity of reflected transversal magnetic (TM) polarized light and enhances the sensitivity of standard methods to thicknesses of absorbing films. Samples under study were stacks of three films, ZnO : Al/Ag/ZnO : Al, deposited on glass substrates. The thickness of the silver layer varied from sample to sample. We performed measurements with a UV–visible phase-modulated ellipsometer, an IR Mueller ellipsometer and a UV–NIR reflectometer. We used the variance–covariance formalism to evaluate the sensitivity of the ellipsometric data to different parameters of the optical model. Results have shown that using TIRE doubled the sensitivity to the silver layer thickness when compared with the standard ellipsometry. Moreover, the thickness of the ZnO : Al layer below the silver layer can be reliably quantified, unlike for the fit of the standard ellipsometry data, which is limited by the absorption of the silver layer. (paper)

  6. A high resolution electron microscopy investigation of curvature in multilayer graphite sheets

    International Nuclear Information System (INIS)

    Wang Zhenxia; Hu Jun; Wang Wenmin; Yu Guoqing

    1998-01-01

    Here the authors report a carbon sample generated by ultrasonic wave high oriented pyrolytic graphite (HOPG) in ethanol, water or ethanol-water mixed solution. High resolution transmission electron microscopy (HRTEM) revealed many multilayer graphite sheets with a total curved angle that is multiples of θ 0 (= 30 degree C). Close examination of the micrographs showed that the curvature is accomplished by bending the lattice planes. A possible explanation for the curvature in multilayer graphite sheets is discussed based on the conformation of graphite symmetry axes and the formation of sp 3 -like line defects in the sp 2 graphitic network

  7. Progress in high-resolution x-ray holographic microscopy

    International Nuclear Information System (INIS)

    Jacobsen, C.; Kirz, J.; Howells, M.; McQuaid, K.; Rothman, S.; Feder, R.; Sayre, D.

    1987-07-01

    Among the various types of x-ray microscopes that have been demonstrated, the holographic microscope has had the largest gap between promise and performance. The difficulties of fabricating x-ray optical elements have led some to view holography as the most attractive method for obtaining the ultimate in high resolution x-ray micrographs; however, we know of no investigations prior to 1987 that clearly demonstrated submicron resolution in reconstructed images. Previous efforts suffered from problems such as limited resolution and dynamic range in the recording media, low coherent x-ray flux, and aberrations and diffraction limits in visible light reconstruction. We have addressed the recording limitations through the use of an undulator x-ray source and high-resolution photoresist recording media. For improved results in the readout and reconstruction steps, we have employed metal shadowing and transmission electron microscopy, along with numerical reconstruction techniques. We believe that this approach will allow holography to emerge as a practical method of high-resolution x-ray microscopy. 30 refs., 4 figs

  8. Progress in high-resolution x-ray holographic microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jacobsen, C.; Kirz, J.; Howells, M.; McQuaid, K.; Rothman, S.; Feder, R.; Sayre, D.

    1987-07-01

    Among the various types of x-ray microscopes that have been demonstrated, the holographic microscope has had the largest gap between promise and performance. The difficulties of fabricating x-ray optical elements have led some to view holography as the most attractive method for obtaining the ultimate in high resolution x-ray micrographs; however, we know of no investigations prior to 1987 that clearly demonstrated submicron resolution in reconstructed images. Previous efforts suffered from problems such as limited resolution and dynamic range in the recording media, low coherent x-ray flux, and aberrations and diffraction limits in visible light reconstruction. We have addressed the recording limitations through the use of an undulator x-ray source and high-resolution photoresist recording media. For improved results in the readout and reconstruction steps, we have employed metal shadowing and transmission electron microscopy, along with numerical reconstruction techniques. We believe that this approach will allow holography to emerge as a practical method of high-resolution x-ray microscopy. 30 refs., 4 figs.

  9. High resolution, high speed ultrahigh vacuum microscopy

    International Nuclear Information System (INIS)

    Poppa, Helmut

    2004-01-01

    The history and future of transmission electron microscopy (TEM) is discussed as it refers to the eventual development of instruments and techniques applicable to the real time in situ investigation of surface processes with high resolution. To reach this objective, it was necessary to transform conventional high resolution instruments so that an ultrahigh vacuum (UHV) environment at the sample site was created, that access to the sample by various in situ sample modification procedures was provided, and that in situ sample exchanges with other integrated surface analytical systems became possible. Furthermore, high resolution image acquisition systems had to be developed to take advantage of the high speed imaging capabilities of projection imaging microscopes. These changes to conventional electron microscopy and its uses were slowly realized in a few international laboratories over a period of almost 40 years by a relatively small number of researchers crucially interested in advancing the state of the art of electron microscopy and its applications to diverse areas of interest; often concentrating on the nucleation, growth, and properties of thin films on well defined material surfaces. A part of this review is dedicated to the recognition of the major contributions to surface and thin film science by these pioneers. Finally, some of the important current developments in aberration corrected electron optics and eventual adaptations to in situ UHV microscopy are discussed. As a result of all the path breaking developments that have led to today's highly sophisticated UHV-TEM systems, integrated fundamental studies are now possible that combine many traditional surface science approaches. Combined investigations to date have involved in situ and ex situ surface microscopies such as scanning tunneling microscopy/atomic force microscopy, scanning Auger microscopy, and photoemission electron microscopy, and area-integrating techniques such as x-ray photoelectron

  10. [Locus of control and self-concept in interpersonal conflict resolution approaches].

    Science.gov (United States)

    Hisli Sahin, Nesrin; Basim, H Nejat; Cetin, Fatih

    2009-01-01

    The purpose of this study was to investigate the relationship between self-concept and locus of control in interpersonal conflict resolution approaches and to determine the predictors of conflict resolution approach choices. The study included 345 students aged between 18 and 28 years that were studying at universities in Ankara. Data were collected using the Interpersonal Conflict Resolution Approaches Scale to measure conflict resolution approaches, the Social Comparison Scale to measure self-concept, and the Internal-External Locus of Control Scale to measure locus of control. It was observed that confrontation approach to interpersonal conflict was predicted by self-concept (beta = 0.396, P resolution approaches. In addition to these findings, it was observed that females used self-disclosure (beta = -0.163, P resolution processes. Self-concept and locus of control were related to the behaviors adopted in the interpersonal conflict resolution process. Individuals with a positive self-concept and an internal locus of control adopted solutions to interpersonal conflict resolution that were more effective and constructive.

  11. High-resolution nuclear magnetic resonance studies of proteins.

    Science.gov (United States)

    Jonas, Jiri

    2002-03-25

    The combination of advanced high-resolution nuclear magnetic resonance (NMR) techniques with high-pressure capability represents a powerful experimental tool in studies of protein folding. This review is organized as follows: after a general introduction of high-pressure, high-resolution NMR spectroscopy of proteins, the experimental part deals with instrumentation. The main section of the review is devoted to NMR studies of reversible pressure unfolding of proteins with special emphasis on pressure-assisted cold denaturation and the detection of folding intermediates. Recent studies investigating local perturbations in proteins and the experiments following the effects of point mutations on pressure stability of proteins are also discussed. Ribonuclease A, lysozyme, ubiquitin, apomyoglobin, alpha-lactalbumin and troponin C were the model proteins investigated.

  12. Geometric Accuracy Investigations of SEVIRI High Resolution Visible (HRV Level 1.5 Imagery

    Directory of Open Access Journals (Sweden)

    Sultan Kocaman Aksakal

    2013-05-01

    Full Text Available GCOS (Global Climate Observing System is a long-term program for monitoring the climate, detecting the changes, and assessing their impacts. Remote sensing techniques are being increasingly used for climate-related measurements. Imagery of the SEVIRI instrument on board of the European geostationary satellites Meteosat-8 and Meteosat-9 are often used for the estimation of essential climate variables. In a joint project between the Swiss GCOS Office and ETH Zurich, geometric accuracy and temporal stability of 1-km resolution HRV channel imagery of SEVIRI have been evaluated over Switzerland. A set of tools and algorithms has been developed for the investigations. Statistical analysis and blunder detection have been integrated in the process for robust evaluation. The relative accuracy is evaluated by tracking large numbers of feature points in consecutive HRV images taken at 15-minute intervals. For the absolute accuracy evaluation, lakes in Switzerland and surroundings are used as reference. 20 lakes digitized from Landsat orthophotos are transformed into HRV images and matched via 2D translation terms at sub-pixel level. The algorithms are tested using HRV images taken on 24 days in 2008 (2 days per month. The results show that 2D shifts that are up to 8 pixels are present both in relative and absolute terms.

  13. Elemental Composition Analysis to Investigate NOx Effects on Secondary Organic Aerosol from α-Pinene Using Ultrahigh Resolution Mass Spectrometry

    Science.gov (United States)

    Lim, H. J.; Park, J. H.; Babar, Z.

    2015-12-01

    Secondary organic aerosol (SOA) accounts for 20-70% of atmospheric fine aerosol. NOx plays crucial roles in SOA formation and consequently affects the composition and yield of SOA. SOA component speciation is incomplete due to its complex composition of polar oxygenated and multifunctional species. In this study, ultrahigh resolution mass spectrometry (UHR MS) was applied to improve the understanding of NOx effects on biogenic SOA formation by identifying the elemental composition of SOA. Additional research aim was to investigate oligomer components that are considered as a driving force for SOA formation and growth. In this study α-pinene SOA from photochemical reaction was examined. SOA formation was performed in the absence and presence of NOx at dry condition (grant funded by the Korea government (MEST) (No. 2011-01350000).

  14. A conception of a new neutron spin echo reflectometer

    International Nuclear Information System (INIS)

    Kali, Gy.

    1999-01-01

    Complete text of publication follows. The tilted field technique in the neutron spin echo (NSE) spectroscopy came into the centre of attention in the recent few years. The method was first proposed by F. Mezei and R. Pynn in 1980. A real measurement for high resolution small angle scattering (SANS) on their resonance spin-echo spectrometer was published by Keller et al. [1]. A conception of a new instrument was proposed by M.T. Rekveldt [2] for SANS and reflectometry, using dc field perpendicular to the neutron beam. By further developing these ideas, the setup of a multitask instrument using the traditional way (dc field parallel to the beam) is discussed. This spectrometer may be best applicable in liquid surface reflectometry combining NSE by separating specular and nonspecular reflection. This instrument setup uses wide wavelength band and/or non-collimated neutron beam. (author) [1] T. Keller et al, Neutron News 6, no 3 (1995) 16.; [2] M.T. Rekveldt, Nuc. Inst. and Meth. in Physics Res. B 114 (1996) 366

  15. Isotope effect in heavy/light water suspensions of optically active gold nanoparticles

    Science.gov (United States)

    Kutsenko, V. Y.; Artykulnyi, O. P.; Petrenko, V. I.; Avdeev, M. V.; Marchenko, O. A.; Bulavin, L. A.; Snegir, S. V.

    2018-04-01

    Aqueous suspensions of optically active gold nanoparticles coated with trisodium citrate were synthesized in light (H2O) water and mixture of light and heavy (H2O/D2O) water using the modified Turkevich protocol. The objective of the paper was to verify sensitivity of neutron scattering methods (in particular, neutron reflectometry) to the potential isotope H/D substitution in the stabilizing organic shell around particles in colloidal solutions. First, the isotope effect was studied with respect to the changes in the structural properties of metal particles (size, shape, crystalline morphology) in solutions by electron microscopy including high-resolution transmission electron microscopy from dried systems. The structural factors determining the variation in the adsorption spectra in addition to the change in the optical properties of surrounding medium were discussed. Then, neutron reflectometry was applied to the layered nanoparticles anchored on a silicon wafer via 3-aminopropyltriethoxysilane molecules to reveal the presence of deuterated water molecules in the shell presumably formed by citrate molecules around the metallic core.

  16. Mapping brain structure and function: cellular resolution, global perspective.

    Science.gov (United States)

    Zupanc, Günther K H

    2017-04-01

    A comprehensive understanding of the brain requires analysis, although from a global perspective, with cellular, and even subcellular, resolution. An important step towards this goal involves the establishment of three-dimensional high-resolution brain maps, incorporating brain-wide information about the cells and their connections, as well as the chemical architecture. The progress made in such anatomical brain mapping in recent years has been paralleled by the development of physiological techniques that enable investigators to generate global neural activity maps, also with cellular resolution, while simultaneously recording the organism's behavioral activity. Combination of the high-resolution anatomical and physiological maps, followed by theoretical systems analysis of the deduced network, will offer unprecedented opportunities for a better understanding of how the brain, as a whole, processes sensory information and generates behavior.

  17. Jet energy resolution of the SDC detector

    International Nuclear Information System (INIS)

    Para, A.; Beretvas, A.; Denisenko, K.; Denisenko, N.; Green, D.; Yeh, G.P.; Wu, W.; Iso, H.

    1990-01-01

    We have answered the PAC question (''Demonstrate the jet energy resolution of your proposed detector by studying decays Z → jet + jet and Z' → jet + jet, M Z' = 1 TeV.'') using a general program called SSCSIM. This program is a tool for investigating simple questions involving the relations between detector parameters and physics capabilities of a detector. A different package called ANLSIM developed by our colleagues at Argonne has also been used to answer this question. The results as expected are very similar. In this note we will try to document our procedures. Our tentative conclusion from this study is that physics induced effects, out-of-cone fluctuations and underlying event fluctuations, dominate the resolution. Pushing the detector performance to the limits of technology improves the effective resolution by at most 20%. 20 refs., 6 figs., 5 tabs

  18. Tablet disintegration studied by high-resolution real-time magnetic resonance imaging.

    OpenAIRE

    Quodbach, J.; Moussavi, A.; Tammer, R.; Frahm, J.; Kleinebudde, P.

    2014-01-01

    The present work employs recent advances in high-resolution real-time magnetic resonance imaging (MRI) to investigate the disintegration process of tablets containing disintegrants. A temporal resolution of 75 ms and a spatial resolution of 80 x 80 m with a section thickness of only 600 m were achieved. The histograms of MRI videos were quantitatively analyzed with MATLAB. The mechanisms of action of six commercially available disintegrants, the influence of relative tablet density, and the i...

  19. New detector developments for high resolution positron emission tomography

    International Nuclear Information System (INIS)

    Ziegler, S.I.; Pichler, B.; Lorenz, E.

    1998-01-01

    The strength of quantitative, functional imaging using positron emission tomography, specially in small animals, is limited due to the spatial resolution. Therefore, various tomograph designs employing new scintillators, light sensors, or coincidence electronic are investigated to improve resolution without losses in sensitivity. Luminous scintillators with short light decay time in combination with novel readout schemes using photomultipliers or semiconductor detectors are currently tested by several groups and are implemented in tomographs for small animals. This review summarises the state of development in high resolution positron emission tomography with a detailed description of a system incorporating avalanche photodiode arrays and small scintillation crystals. (orig.) [de

  20. Fundamental limits to imaging resolution for focused ion beams

    International Nuclear Information System (INIS)

    Orloff, J.; Swanson, L.W.; Utlaut, M.

    1996-01-01

    This article investigates the limitations on the formation of focused ion beam images from secondary electrons. We use the notion of the information content of an image to account for the effects of resolution, contrast, and signal-to-noise ratio and show that there is a competition between the rate at which small features are sputtered away by the primary beam and the rate of collection of secondary electrons. We find that for small features, sputtering is the limit to imaging resolution, and that for extended small features (e.g., layered structures), rearrangement, redeposition, and differential sputtering rates may limit the resolution in some cases. copyright 1996 American Vacuum Society

  1. Super-Resolution for Synthetic Zooming

    Directory of Open Access Journals (Sweden)

    Li Xin

    2006-01-01

    Full Text Available Optical zooming is an important feature of imaging systems. In this paper, we investigate a low-cost signal processing alternative to optical zooming—synthetic zooming by super-resolution (SR techniques. Synthetic zooming is achieved by registering a sequence of low-resolution (LR images acquired at varying focal lengths and reconstructing the SR image at a larger focal length or increased spatial resolution. Under the assumptions of constant scene depth and zooming speed, we argue that the motion trajectories of all physical points are related to each other by a unique vanishing point and present a robust technique for estimating its D coordinate. Such a line-geometry-based registration is the foundation of SR for synthetic zooming. We address the issue of data inconsistency arising from the varying focal length of optical lens during the zooming process. To overcome the difficulty of data inconsistency, we propose a two-stage Delaunay-triangulation-based interpolation for fusing the LR image data. We also present a PDE-based nonlinear deblurring to accommodate the blindness and variation of sensor point spread functions. Simulation results with real-world images have verified the effectiveness of the proposed SR techniques for synthetic zooming.

  2. Effect of Cleaving Temperature on the Surface and Bulk Fermi Surface of Sr2RuO4 Investigated by High Resolution Angle-Resolved Photoemission

    International Nuclear Information System (INIS)

    Liu Shan-Yu; Zhang Wen-Tao; Weng Hong-Ming; Zhao Lin; Liu Hai-Yun; Jia Xiao-Wen; Liu Guo-Dong; Dong Xiao-Li; Zhang Jun; Dai Xi; Fang Zhong; Zhou Xing-Jiang; Mao Zhi-Qiang; Chen Chuang-Tian; Xu Zu-Yan

    2012-01-01

    High resolution angle-resolved photoemission measurements are carried out to systematically investigate the effect of cleaving temperature on the electronic structures and Fermi surfaces of Sr 2 RuO 4 . Unlike previous reports, which found that a high cleaving temperature can suppress the surface Fermi surface, we find that the surface Fermi surface remains obvious and strong in Sr 2 RuO 4 cleaved at high temperature, even at room temperature. This indicates that cleaving temperature is not a key effective factor in suppressing surface bands. On the other hand, the bulk bands can be enhanced in an aged surface of Sr 2 RuO 4 that has been cleaved and held for a long time. We have also carried out laser ARPES measurements on Sr 2 RuO 4 by using a vacuum ultra-violet laser (photon energy at 6.994 eV) and found an obvious enhancement of bulk bands even for samples cleaved at low temperature. This information is important for realizing an effective approach to manipulating and detecting the surface and bulk electronic structure of Sr 2 RuO 4 . In particular, the enhancement of bulk sensitivity, along with the super-high instrumental resolution of VUV laser ARPES, will be advantageous in investigating fine electronic structure and superconducting properties of Sr 2 RuO 4 in the future. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  3. Trade-off between angular and spatial resolutions in in vivo fiber tractography

    OpenAIRE

    Vos, Sjoerd B.; Aksoy, Murat; Han, Zhaoying; Holdsworth, Samantha J.; Maclaren, Julian; Viergever, Max A.; Leemans, Alexander; Bammer, Roland

    2016-01-01

    Tractography is becoming an increasingly popular method to reconstruct white matter connections in vivo. The diffusion MRI data that tractography is based on requires a high angular resolution to resolve crossing fibers whereas high spatial resolution is required to distinguish kissing from crossing fibers. However, scan time increases with increasing spatial and angular resolutions, which can become infeasible in clinical settings. Here we investigated the trade-off between spatial and angul...

  4. Super-TIGER-2: A Very-Large-Area, High-Resolution Trans-Iron Cosmic Ray Investigation

    Science.gov (United States)

    Binns, Walter

    This is the lead proposal of a multi-institution proposal. We propose to continue the highly successful Super-TIGER (Super Trans-Iron Galactic Element Recorder) program and to extend its scientific reach. Super-TIGER is a large-area instrument designed to make precision measurements of the elemental composition of ultra-heavy cosmic rays (UHCR) with atomic number Z greater than or equal to 30. The principal objective of the first phase of the Super- TIGER program was to measure the abundances of nuclei with 30 less than or equal to Z less than or equal to 42 with clear individual element resolution and high statistical precision. A secondary objective was to accurately measure the energy spectra of the more abundant light elements with 12 less than or equal to Z less than or equal to 28. Super-TIGER-1 was flown during the 2012-2013 Austral Summer, returning data on over 50 million cosmic ray (CR) nuclei in 55 days at float. The excellent data from this flight should enable us to achieve the initial goals of the program, and the high performance of the instrument makes it possible to expand our primary objective for further flights to include heavier UHCR. This is a 1-year proposal with two objectives: First to complete analysis of the data from the Super-TIGER-1 flight, and second to begin preparations to extend UHCR measurements with individual element resolution through barium (Z=56) and to greatly increase the number of Z greater than or equal to 30 nuclei measured. The abundance measurements provide sensitive tests and clarification of the OB-association model of galactic cosmic-ray origins, and will test models for atomic processes by which nuclei are selected for acceleration to cosmic ray energies. Additionally, measurements of individual element abundances from Z=40 to 56 will enable us to determine the extent of r-process enhancement since Zr (Z=40), Sn (Z=50) and Ba (Z=56) are predominately s-process and Ru (Z=44), Pd (Z=46), Te (Z=52) and Xe (Z=54)are

  5. Focusing super resolution on the cytoskeleton [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Eric A. Shelden

    2016-05-01

    Full Text Available Super resolution imaging is becoming an increasingly important tool in the arsenal of methods available to cell biologists. In recognition of its potential, the Nobel Prize for chemistry was awarded to three investigators involved in the development of super resolution imaging methods in 2014. The availability of commercial instruments for super resolution imaging has further spurred the development of new methods and reagents designed to take advantage of super resolution techniques. Super resolution offers the advantages traditionally associated with light microscopy, including the use of gentle fixation and specimen preparation methods, the ability to visualize multiple elements within a single specimen, and the potential to visualize dynamic changes in living specimens over time. However, imaging of living cells over time is difficult and super resolution imaging is computationally demanding. In this review, we discuss the advantages/disadvantages of different super resolution systems for imaging fixed live specimens, with particular regard to cytoskeleton structures.

  6. Effects of angling and manual handling on pike behaviour investigated by high-resolution positional telemetry

    DEFF Research Database (Denmark)

    Baktoft, Henrik; Aarestrup, Kim; Berg, Søren

    2013-01-01

    Human disturbances such as angling and manual handling may have long-term effects on the behaviour of pike, Esox lucius L., an ecologically important species. Using continuous high-resolution positional telemetry, this study compared the swimming activity of handled and unhandled pike in a small...

  7. Construction of an apparatus for the investigation of inelastic electron scattering processes at high energy resolution and experimental determination of appearance energies of various atoms, molecules and small van-der-Waals clusters

    International Nuclear Information System (INIS)

    Winkler, C.

    1993-03-01

    A new experimental setup is presented, which enables the investigation of inelastic electron scattering processes at high energy resolution with dE n + cluster ions, n>3, is supported by these measurements

  8. Investigation of anodic TiO2 nanotube composition with high spatial resolution AES and ToF SIMS

    Science.gov (United States)

    Dronov, Alexey; Gavrilin, Ilya; Kirilenko, Elena; Dronova, Daria; Gavrilov, Sergey

    2018-03-01

    High resolution Scanning Auger Electron Spectroscopy (AES) and Time-of-Flight Secondary Ion Mass-Spectrometry (ToF SIMS) were used to investigate structure and elemental composition variation of both across an array of TiO2 nanotubes (NTs) and single tube of an array. The TiO2 NT array was grown by anodic oxidation of Ti foil in fluorine-containing ethylene glycol electrolyte. It was found that the studied anodic TiO2 nanotubes have a layered structure with rather sharp interfaces. The differences in AES depth profiling results of a single tube with the focused primary electron beam (point analysis) and over an area of 75 μm in diameter of a nanotube array with the defocused primary electron beam are discussed. Depth profiling by ToF SIMS was carried out over approximately the same size of a nanotube array to determine possible ionic fragments in the structure. The analysis results show that the combination of both mentioned methods is useful for a detailed analysis of nanostructures with complex morphology and multi-layered nature.

  9. Impaired temporal, not just spatial, resolution in amblyopia.

    Science.gov (United States)

    Spang, Karoline; Fahle, Manfred

    2009-11-01

    In amblyopia, neuronal deficits deteriorate spatial vision including visual acuity, possibly because of a lack of use-dependent fine-tuning of afferents to the visual cortex during infancy; but temporal processing may deteriorate as well. Temporal, rather than spatial, resolution was investigated in patients with amblyopia by means of a task based on time-defined figure-ground segregation. Patients had to indicate the quadrant of the visual field where a purely time-defined square appeared. The results showed a clear decrease in temporal resolution of patients' amblyopic eyes compared with the dominant eyes in this task. The extent of this decrease in figure-ground segregation based on time of motion onset only loosely correlated with the decrease in spatial resolution and spanned a smaller range than did the spatial loss. Control experiments with artificially induced blur in normal observers confirmed that the decrease in temporal resolution was not simply due to the acuity loss. Amblyopia not only decreases spatial resolution, but also temporal factors such as time-based figure-ground segregation, even at high stimulus contrasts. This finding suggests that the realm of neuronal processes that may be disturbed in amblyopia is larger than originally thought.

  10. Visual working memory capacity for color is independent of representation resolution.

    Science.gov (United States)

    Ye, Chaoxiong; Zhang, Lingcong; Liu, Taosheng; Li, Hong; Liu, Qiang

    2014-01-01

    The relationship between visual working memory (VWM) capacity and resolution of representation have been extensively investigated. Several recent ERP studies using orientation (or arrow) stimuli suggest that there is an inverse relationship between VWM capacity and representation resolution. However, different results have been obtained in studies using color stimuli. This could be due to important differences in the experimental paradigms used in previous studies. We examined whether the same relationship between capacity and resolution holds for color information. Participants performed a color change detection task while their electroencephalography was recorded. We manipulated representation resolution by asking participants to detect either a salient change (low-resolution) or a subtle change (high-resolution) in color. We used an ERP component known as contralateral delay activity (CDA) to index the amount of information maintained in VWM. The result demonstrated the same pattern for both low- and high-resolution conditions, with no difference between conditions. This result suggests that VWM always represents a fixed number of approximately 3-4 colors regardless of the resolution of representation.

  11. Fast resolution change in neutral helium atom microscopy

    Science.gov (United States)

    Flatabø, R.; Eder, S. D.; Ravn, A. K.; Samelin, B.; Greve, M. M.; Reisinger, T.; Holst, B.

    2018-05-01

    In neutral helium atom microscopy, a beam of atoms is scanned across a surface. Though still in its infancy, neutral helium microscopy has seen a rapid development over the last few years. The inertness and low energy of the helium atoms (less than 0.1 eV) combined with a very large depth of field and the fact that the helium atoms do not penetrate any solid material at low energies open the possibility for a non-destructive instrument that can measure topology on the nanoscale even on fragile and insulating surfaces. The resolution is determined by the beam spot size on the sample. Fast resolution change is an attractive property of a microscope because it allows different aspects of a sample to be investigated and makes it easier to identify specific features. However up till now it has not been possible to change the resolution of a helium microscope without breaking the vacuum and changing parts of the atom source. Here we present a modified source design, which allows fast, step wise resolution change. The basic design idea is to insert a moveable holder with a series of collimating apertures in front of the source, thus changing the effective source size of the beam and thereby the spot size on the surface and thus the microscope resolution. We demonstrate a design with 3 resolution steps. The number of resolution steps can easily be extended.

  12. Corrosion investigation of fire-gilded bronze involving high surface resolution spectroscopic imaging

    International Nuclear Information System (INIS)

    Masi, G.; Chiavari, C.; Avila, J.; Esvan, J.; Raffo, S.; Bignozzi, M.C.; Asensio, M.C.; Robbiola, L.

    2016-01-01

    Graphical abstract: - Highlights: • Fire-gilded bronze prepared by ancient methods (Au–Hg layer on Cu–Sn–Zn–Pb–Sb). • Heating during gilding induces Sn and Znenrichment in the top part of the gilded layer. • SR-HRPES mapping of corrosion craters (cross-section) after accelerated ageing. • Selective dissolution of Cu and Zn in the craters induces Sn species enrichment. • The main species in the craters are related to hydroxi-oxide compounds. - Abstract: Gilded bronzes are often affected by severe corrosion, due to defects in the Au layer and Au/Cu alloy galvanic coupling, stimulated by large cathodic area of the gilded layer. Galvanic corrosion, triggered by gilding defects, leads to products growth at the Au/bronze interface, inducing blistering or break-up of the Au layer. In this context, fire-gilded bronze replicas prepared by ancient methods (use of spreadable Au–Hg paste) was specifically characterised by compiling complementary spectroscopic and imaging information before/after accelerated ageing with synthetic rain. Fire-gilded bronze samples were chemically imaged in cross-section at nano-metric scale (<200 nm) using high energy and lateral resolution synchrotron radiation photoemission (HR-SRPES) of core levels and valence band after conventional characterisation of the samples by Glow Discharge optical Emission Spectroscopy (GD-OES) and conventional X-ray photoelectron spectroscopy (XPS). We have found a net surface enrichment in Zn and Sn after fire-gilding and presence of metallic Hg, Pb and Cu within the Au layer. Moreover, the composition distribution of the elements together with their oxidation has been determined. It was also revealed that metallic phases including Hg and Pb remain in the gilding after corrosion. Moreover, selective dissolution of Zn and Cu occurs in the crater due to galvanic coupling, which locally induces relative Sn species enrichment (decuprification). The feasibility advantages and disadvantages of

  13. Corrosion investigation of fire-gilded bronze involving high surface resolution spectroscopic imaging

    Energy Technology Data Exchange (ETDEWEB)

    Masi, G., E-mail: giulia.masi5@unibo.it [Dipartimento di Ingegneria Civile, Chimica, Ambientale e dei Materiali, Università di Bologna, via Terracini 28, 40131 Bologna (Italy); Chiavari, C., E-mail: cristina.chiavari@unibo.it [Dipartimento di Ingegneria Civile, Chimica, Ambientale e dei Materiali, Università di Bologna, via Terracini 28, 40131 Bologna (Italy); C.I.R.I. (Centro Interdipartimentale Ricerca Industriale) Meccanica Avanzata e Materiali, Università di Bologna, Bologna, via Terracini 28, 40131 Bologna (Italy); Avila, J., E-mail: jose.avila@synchrotron-soleil.fr [Synchrotron SOLEIL, L’Orme des Merisiers, 91190 Saint-Aubin (France); Esvan, J., E-mail: jerome.esvan@ensiacet.fr [Centre Interuniversitaire de Recherche et d’Ingénierie des Matériaux, Université de Toulouse, 4 allée Emile Monso, 31030 Toulouse (France); Raffo, S., E-mail: simona.raffo2@unibo.it [Dipartimento di Chimica Industriale “Toso Montanari”, Università di Bologna, viale Risorgimento 4, 40136 Bologna (Italy); Bignozzi, M.C., E-mail: maria.bignozzi@unibo.it [Dipartimento di Ingegneria Civile, Chimica, Ambientale e dei Materiali, Università di Bologna, via Terracini 28, 40131 Bologna (Italy); Asensio, M.C., E-mail: maria-carmen.asensio@synchrotron-soleil.fr [Synchrotron SOLEIL, L’Orme des Merisiers, 91190 Saint-Aubin (France); Robbiola, L., E-mail: robbiola@univ-tlse2.fr [TRACES Lab (CNRS UMR5608), Université Toulouse Jean-Jaurès, 5, allées Antonio-Machado, 31058 Toulouse (France); and others

    2016-03-15

    Graphical abstract: - Highlights: • Fire-gilded bronze prepared by ancient methods (Au–Hg layer on Cu–Sn–Zn–Pb–Sb). • Heating during gilding induces Sn and Znenrichment in the top part of the gilded layer. • SR-HRPES mapping of corrosion craters (cross-section) after accelerated ageing. • Selective dissolution of Cu and Zn in the craters induces Sn species enrichment. • The main species in the craters are related to hydroxi-oxide compounds. - Abstract: Gilded bronzes are often affected by severe corrosion, due to defects in the Au layer and Au/Cu alloy galvanic coupling, stimulated by large cathodic area of the gilded layer. Galvanic corrosion, triggered by gilding defects, leads to products growth at the Au/bronze interface, inducing blistering or break-up of the Au layer. In this context, fire-gilded bronze replicas prepared by ancient methods (use of spreadable Au–Hg paste) was specifically characterised by compiling complementary spectroscopic and imaging information before/after accelerated ageing with synthetic rain. Fire-gilded bronze samples were chemically imaged in cross-section at nano-metric scale (<200 nm) using high energy and lateral resolution synchrotron radiation photoemission (HR-SRPES) of core levels and valence band after conventional characterisation of the samples by Glow Discharge optical Emission Spectroscopy (GD-OES) and conventional X-ray photoelectron spectroscopy (XPS). We have found a net surface enrichment in Zn and Sn after fire-gilding and presence of metallic Hg, Pb and Cu within the Au layer. Moreover, the composition distribution of the elements together with their oxidation has been determined. It was also revealed that metallic phases including Hg and Pb remain in the gilding after corrosion. Moreover, selective dissolution of Zn and Cu occurs in the crater due to galvanic coupling, which locally induces relative Sn species enrichment (decuprification). The feasibility advantages and disadvantages of

  14. Preliminary investigations into macroscopic attenuated total reflection-fourier transform infrared imaging of intact spherical domains: spatial resolution and image distortion.

    Science.gov (United States)

    Everall, Neil J; Priestnall, Ian M; Clarke, Fiona; Jayes, Linda; Poulter, Graham; Coombs, David; George, Michael W

    2009-03-01

    This paper describes preliminary investigations into the spatial resolution of macro attenuated total reflection (ATR) Fourier transform infrared (FT-IR) imaging and the distortions that arise when imaging intact, convex domains, using spheres as an extreme example. The competing effects of shallow evanescent wave penetration and blurring due to finite spatial resolution meant that spheres within the range 20-140 microm all appeared to be approximately the same size ( approximately 30-35 microm) when imaged with a numerical aperture (NA) of approximately 0.2. A very simple model was developed that predicted this extreme insensitivity to particle size. On the basis of these studies, it is anticipated that ATR imaging at this NA will be insensitive to the size of intact highly convex objects. A higher numerical aperture device should give a better estimate of the size of small spheres, owing to superior spatial resolution, but large spheres should still appear undersized due to the shallow sampling depth. An estimate of the point spread function (PSF) was required in order to develop and apply the model. The PSF was measured by imaging a sharp interface; assuming an Airy profile, the PSF width (distance from central maximum to first minimum) was estimated to be approximately 20 and 30 microm for IR bands at 1600 and 1000 cm(-1), respectively. This work has two significant limitations. First, underestimation of domain size only arises when imaging intact convex objects; if surfaces are prepared that randomly and representatively section through domains, the images can be analyzed to calculate parameters such as domain size, area, and volume. Second, the model ignores reflection and refraction and assumes weak absorption; hence, the predicted intensity profiles are not expected to be accurate; they merely give a rough estimate of the apparent sphere size. Much further work is required to place the field of quantitative ATR-FT-IR imaging on a sound basis.

  15. Difference in particle transport between two coastal areas in the Baltic Sea investigated with high-resolution trajectory modeling.

    Science.gov (United States)

    Corell, Hanna; Döös, Kristofer

    2013-05-01

    A particle-tracking model based on high-resolution ocean flow data was used to investigate particle residence times and spatial distribution of settling sediment for two geo-morphologically different Swedish coastal areas. The study was a part of a safety assessment for the location of a future nuclear-waste repository, and information about the particle-transport patterns can contribute to predictions of the fate of a possible leakage. It is also, to our knowledge, the first time particle-transport differences between two coastal areas have been quantified in this manner. In Forsmark, a funnel-shaped bay shielded by a number of islands, the average residence time for clay particles was 5 times longer than in the modeled part of Simpevarp, which is open to the Baltic Sea. In Forsmark, <10 % of the released particles left the domain compared to 60-80 % in Simpevarp. These site-specific differences will increase over time with the differences in land uplift between the areas.

  16. Difference in Particle Transport Between Two Coastal Areas in the Baltic Sea Investigated with High-Resolution Trajectory Modeling

    International Nuclear Information System (INIS)

    Corell, Hanna; Doeoes, Kristofer

    2013-01-01

    A particle-tracking model based on high-resolution ocean flow data was used to investigate particle residence times and spatial distribution of settling sediment for two geo-morphologically different Swedish coastal areas. The study was a part of a safety assessment for the location of a future nuclear-waste repository, and information about the particle-transport patterns can contribute to predictions of the fate of a possible leakage. It is also, to our knowledge, the first time particle-transport differences between two coastal areas have been quantified in this manner. In Forsmark, a funnel-shaped bay shielded by a number of islands, the average residence time for clay particles was 5 times longer than in the modeled part of Simpevarp, which is open to the Baltic Sea. In Forsmark, <10 % of the released particles left the domain compared to 60-80 % in Simpevarp. These site-specific differences will increase over time with the differences in land uplift between the areas

  17. Ultraprecision motion control technique for high-resolution x-ray instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Shu, D.; Toellner, T. S.; Alp, E. E.

    2000-07-17

    With the availability of third-generation hard x-ray synchrotron radiation sources, such as the Advanced Photon Source (APS) at Argonne National Laboratory, x-ray inelastic scattering and x-ray nuclear resonant scattering provide powerful means for investigating the vibrational dynamics of a variety of materials and condensed matter systems. Novel high-resolution hard x-ray optics with meV energy resolution requires a compact positioning mechanism with 20--50-nrad angular resolution and stability. In this paper, the authors technical approach to this design challenge is presented. Sensitivity and stability test results are also discussed.

  18. Development of high-energy resolution inverse photoemission technique

    International Nuclear Information System (INIS)

    Asakura, D.; Fujii, Y.; Mizokawa, T.

    2005-01-01

    We developed a new inverse photoemission (IPES) machine based on a new idea to improve the energy resolution: off-plane Eagle mounting of the optical system in combination with dispersion matching between incoming electron and outgoing photon. In order to achieve dispersion matching, we have employed a parallel plate electron source and have investigated whether the electron beam is obtained as expected. In this paper, we present the principle and design of the new IPES method and report the current status of the high-energy resolution IPES machine

  19. Neural mechanisms of proactive interference-resolution.

    Science.gov (United States)

    Nee, Derek Evan; Jonides, John; Berman, Marc G

    2007-12-01

    The ability to mitigate interference from information that was previously relevant, but is no longer relevant, is central to successful cognition. Several studies have implicated left ventrolateral prefrontal cortex (VLPFC) as a region tied to this ability, but it is unclear whether this result generalizes across different tasks. In addition, it has been suggested that left anterior prefrontal cortex (APFC) also plays a role in proactive interference-resolution although support for this claim has been limited. The present study used event-related functional magnetic resonance imaging (fMRI) to investigate the role of these regions in resolving proactive-interference across two different tasks performed on the same subjects. Results indicate that both left VLPFC and left APFC are involved in the resolution of proactive interference across tasks. However, different functional networks related to each region suggest dissociable roles for the two regions. Additionally, regions of the posterior cingulate gyrus demonstrated unique involvement in facilitation when short- and long-term memory converged. This pattern of results serves to further specify models of proactive interference-resolution.

  20. Aberrations and adaptive optics in super-resolution microscopy

    Science.gov (United States)

    Booth, Martin; Andrade, Débora; Burke, Daniel; Patton, Brian; Zurauskas, Mantas

    2015-01-01

    As one of the most powerful tools in the biological investigation of cellular structures and dynamic processes, fluorescence microscopy has undergone extraordinary developments in the past decades. The advent of super-resolution techniques has enabled fluorescence microscopy – or rather nanoscopy – to achieve nanoscale resolution in living specimens and unravelled the interior of cells with unprecedented detail. The methods employed in this expanding field of microscopy, however, are especially prone to the detrimental effects of optical aberrations. In this review, we discuss how super-resolution microscopy techniques based upon single-molecule switching, stimulated emission depletion and structured illumination each suffer from aberrations in different ways that are dependent upon intrinsic technical aspects. We discuss the use of adaptive optics as an effective means to overcome this problem. PMID:26124194

  1. Atomic-resolution neutron holography

    International Nuclear Information System (INIS)

    Cser, L.; Toeroek, Gy.; Krexner, G.

    2001-01-01

    Atomic-resolution neutron holography can be realised by two different schemes. In the frame of the first approach a point-like source of slow neutrons is produced inside the investigated crystal. Due to the extremely large value of the incoherent-scattering cross-section of the proton, hydrogen atoms imbedded in a metal single-crystal lattice may serve as point-like sources when the sample is irradiated by a monochromatic beam of slow neutrons. The second approach utilizes the registration of the interference between the incident and scattered waves by means of a point-like detector inserted in the lattice of the crystal under investigation. In addition, neutron-induced electron holography is considered. The feasibility of these ideas is discussed. (orig.)

  2. The investigation of Martian dune fields using very high resolution photogrammetric measurements and time series analysis

    Science.gov (United States)

    Kim, J.; Park, M.; Baik, H. S.; Choi, Y.

    2016-12-01

    At the present time, arguments continue regarding the migration speeds of Martian dune fields and their correlation with atmospheric circulation. However, precisely measuring the spatial translation of Martian dunes has rarely conducted only a very few times Therefore, we developed a generic procedure to precisely measure the migration of dune fields with recently introduced 25-cm resolution High Resolution Imaging Science Experimen (HIRISE) employing a high-accuracy photogrammetric processor and sub-pixel image correlator. The processor was designed to trace estimated dune migration, albeit slight, over the Martian surface by 1) the introduction of very high resolution ortho images and stereo analysis based on hierarchical geodetic control for better initial point settings; 2) positioning error removal throughout the sensor model refinement with a non-rigorous bundle block adjustment, which makes possible the co-alignment of all images in a time series; and 3) improved sub-pixel co-registration algorithms using optical flow with a refinement stage conducted on a pyramidal grid processor and a blunder classifier. Moreover, volumetric changes of Martian dunes were additionally traced by means of stereo analysis and photoclinometry. The established algorithms have been tested using high-resolution HIRISE images over a large number of Martian dune fields covering whole Mars Global Dune Database. Migrations over well-known crater dune fields appeared to be almost static for the considerable temporal periods and were weakly correlated with wind directions estimated by the Mars Climate Database (Millour et al. 2015). Only over a few Martian dune fields, such as Kaiser crater, meaningful migration speeds (>1m/year) compared to phtotogrammetric error residual have been measured. Currently a technical improved processor to compensate error residual using time series observation is under developing and expected to produce the long term migration speed over Martian dune

  3. Spatial scales of pollution from variable resolution satellite imaging.

    Science.gov (United States)

    Chudnovsky, Alexandra A; Kostinski, Alex; Lyapustin, Alexei; Koutrakis, Petros

    2013-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) provides daily global coverage, but the 10 km resolution of its aerosol optical depth (AOD) product is not adequate for studying spatial variability of aerosols in urban areas. Recently, a new Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm was developed for MODIS which provides AOD at 1 km resolution. Using MAIAC data, the relationship between MAIAC AOD and PM(2.5) as measured by the EPA ground monitoring stations was investigated at varying spatial scales. Our analysis suggested that the correlation between PM(2.5) and AOD decreased significantly as AOD resolution was degraded. This is so despite the intrinsic mismatch between PM(2.5) ground level measurements and AOD vertically integrated measurements. Furthermore, the fine resolution results indicated spatial variability in particle concentration at a sub-10 km scale. Finally, this spatial variability of AOD within the urban domain was shown to depend on PM(2.5) levels and wind speed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Assessment of soil water use by grassland by frequency domain reflectometry in the humid area of Spain

    Science.gov (United States)

    Mestas Valero, R. M.; Báez Bernal, D.; García Pomar, M. I.; Paz González, A.

    2009-04-01

    Frequency domain reflectometry (FDR) is becoming increasingly used for indirect water content determination in soils. In Galica, located in NW Spain, the humid region of this country, annual precipitation exceeds evapotranspiration. However, the yearly distribution of rainfall is irregular, so that supplementary irrigation during the dry warm summer is required often. This study aims to evaluate soil water use by grasslands and soil water regime patterns during the warm season from soil moisture measured at successive depths using FDR. The study sity is located at the experimental field of the Centre for Agricultural Research (CIAM) in Mabegondo, latitude 43°14' N and longitude 08°15' W. Soil moisture was monitored at six experimental plots from July to October 2008 two times per week using a portable FDR sensor. Measurements were made from 10 to 160 cm depth at 10 cm intervals. Moreover one of the plots was equipped with a continuous recording FDR-EnviroSCAN probe. Crop potential evapotranspiration (ETc) was estimated according to the of FAO version of the Penman-Monteith equation and the meteorological information required to apply this method was provided by a station located in the place experimental field. Cumulative rainfall along the study period was 195 mm, which is above the long-term mean and cumulative potential evapotranspiration was 264.7 mm. Using the water balance method the total value of actual evapotranspiration was estimated at 205.2 mm. Analysis of soil moisture content profiles allowed a description of soil water regime and main soil water withdrawal patterns under grassland. In general, grassland roots extracted most soil water from the 0-40 cm depth. In contrast, moisture content at the bottom of the profile was close to saturation, even the driest weeks of the study period. Continuous monitoring of soil water content allowed a more detailed characterization of dry and wet periods during the study season. The study data set may be useful

  5. X-ray diffractometry with spatial resolution

    International Nuclear Information System (INIS)

    Zeiner, K.

    1981-04-01

    X-ray diffractometry is one of the extensively used methods for investigation of the crystalline structure of materials. Line shape and position of a diffracted line are influenced by grain size, deformation and stress. Spatial resolution of one of these specimen characteristics is usually achieved by point-focused X-ray beams and subsequently analyzing different specimen positions. This work uses the method of image reconstruction from projections for the generation of distribution maps. Additional experimental requirements when using a conventional X-ray goniometer are a specimen scanning unit and a computer. The scanning unit repeatedly performs a number of translation steps followed by a rotation step in a fixed X-ray tube/detector (position sensitive detector) arrangement. At each specimen position a diffraction line is recorded using a line-shaped X-ray beam. This network of diffraction lines (showing line resolution) is mathematically converted to a distribution map of diffraction lines and going thus a point resolution. Specimen areas of up to several cm 2 may be analyzed with a linear resolution of 0.1 to 1 mm. Image reconstruction from projections must be modified for generation of ''function-maps''. This theory is discussed and demonstrated by computer simulations. Diffraction line analysis is done for specimen deformation using a deconvolution procedure. The theoretical considerations are experimentally verified. (author)

  6. High speed, High resolution terahertz spectrometers

    International Nuclear Information System (INIS)

    Kim, Youngchan; Yee, Dae Su; Yi, Miwoo; Ahn, Jaewook

    2008-01-01

    A variety of sources and methods have been developed for terahertz spectroscopy during almost two decades. Terahertz time domain spectroscopy (THz TDS)has attracted particular attention as a basic measurement method in the fields of THz science and technology. Recently, asynchronous optical sampling (AOS)THz TDS has been demonstrated, featuring rapid data acquisition and a high spectral resolution. Also, terahertz frequency comb spectroscopy (TFCS)possesses attractive features for high precision terahertz spectroscopy. In this presentation, we report on these two types of terahertz spectrometer. Our high speed, high resolution terahertz spectrometer is demonstrated using two mode locked femtosecond lasers with slightly different repetition frequencies without a mechanical delay stage. The repetition frequencies of the two femtosecond lasers are stabilized by use of two phase locked loops sharing the same reference oscillator. The time resolution of our terahertz spectrometer is measured using the cross correlation method to be 270 fs. AOS THz TDS is presented in Fig. 1, which shows a time domain waveform rapidly acquired on a 10ns time window. The inset shows a zoom into the signal with 100ps time window. The spectrum obtained by the fast Fourier Transformation (FFT)of the time domain waveform has a frequency resolution of 100MHz. The dependence of the signal to noise ratio (SNR)on the measurement time is also investigated

  7. A study of spatial resolution in pollution exposure modelling

    Directory of Open Access Journals (Sweden)

    Gustafsson Susanna

    2007-06-01

    Full Text Available Abstract Background This study is part of several ongoing projects concerning epidemiological research into the effects on health of exposure to air pollutants in the region of Scania, southern Sweden. The aim is to investigate the optimal spatial resolution, with respect to temporal resolution, for a pollutant database of NOx-values which will be used mainly for epidemiological studies with durations of days, weeks or longer periods. The fact that a pollutant database has a fixed spatial resolution makes the choice critical for the future use of the database. Results The results from the study showed that the accuracy between the modelled concentrations of the reference grid with high spatial resolution (100 m, denoted the fine grid, and the coarser grids (200, 400, 800 and 1600 meters improved with increasing spatial resolution. When the pollutant values were aggregated in time (from hours to days and weeks the disagreement between the fine grid and the coarser grids were significantly reduced. The results also illustrate a considerable difference in optimal spatial resolution depending on the characteristic of the study area (rural or urban areas. To estimate the accuracy of the modelled values comparison were made with measured NOx values. The mean difference between the modelled and the measured value were 0.6 μg/m3 and the standard deviation 5.9 μg/m3 for the daily difference. Conclusion The choice of spatial resolution should not considerably deteriorate the accuracy of the modelled NOx values. Considering the comparison between modelled and measured values we estimate that an error due to coarse resolution greater than 1 μg/m3 is inadvisable if a time resolution of one day is used. Based on the study of different spatial resolutions we conclude that for urban areas a spatial resolution of 200–400 m is suitable; and for rural areas the spatial resolution could be coarser (about 1600 m. This implies that we should develop a pollutant

  8. Atomic Resolution Microscopy of Nitrides in Steel

    DEFF Research Database (Denmark)

    Danielsen, Hilmar Kjartansson

    2014-01-01

    MN and CrMN type nitride precipitates in 12%Cr steels have been investigated using atomic resolution microscopy. The MN type nitrides were observed to transform into CrMN both by composition and crystallography as Cr diffuses from the matrix into the MN precipitates. Thus a change from one...

  9. HEKATE—A novel grazing incidence neutron scattering concept for the European Spallation Source

    Science.gov (United States)

    Glavic, Artur; Stahn, Jochen

    2018-03-01

    Structure and magnetism at surfaces and buried interfaces on the nanoscale can only be accessed by few techniques, one of which is grazing incidence neutron scattering. While the technique has its strongest limitation in a low signal and large background, due to the low scattering probability and need for high resolution, it can be expected that the high intensity of the European Spallation Source in Lund, Sweden, will make many more such studies possible, warranting a dedicated beamline for this technique. We present an instrument concept, Highly Extended K range And Tunable Experiment (HEKATE), for surface scattering that combines the advantages of two Selene neutron guides with unique capabilities of spatially separated distinct wavelength frames. With this combination, it is not only possible to measure large specular reflectometry ranges, even on free liquid surfaces, but also to use two independent incident beams with tunable sizes and resolutions that can be optimized for the specifics of the investigated samples. Further the instrument guide geometry is tuned for reduction of high energy particle background and only uses low to moderate supermirror coatings for high reliability and affordable cost.

  10. HEKATE-A novel grazing incidence neutron scattering concept for the European Spallation Source.

    Science.gov (United States)

    Glavic, Artur; Stahn, Jochen

    2018-03-01

    Structure and magnetism at surfaces and buried interfaces on the nanoscale can only be accessed by few techniques, one of which is grazing incidence neutron scattering. While the technique has its strongest limitation in a low signal and large background, due to the low scattering probability and need for high resolution, it can be expected that the high intensity of the European Spallation Source in Lund, Sweden, will make many more such studies possible, warranting a dedicated beamline for this technique. We present an instrument concept, Highly Extended K range And Tunable Experiment (HEKATE), for surface scattering that combines the advantages of two Selene neutron guides with unique capabilities of spatially separated distinct wavelength frames. With this combination, it is not only possible to measure large specular reflectometry ranges, even on free liquid surfaces, but also to use two independent incident beams with tunable sizes and resolutions that can be optimized for the specifics of the investigated samples. Further the instrument guide geometry is tuned for reduction of high energy particle background and only uses low to moderate supermirror coatings for high reliability and affordable cost.

  11. Deposition kinetics of nanocolloidal gold particles

    NARCIS (Netherlands)

    Brouwer, E.A.M.; Kooij, Ernst S.; Hakbijl, Mark; Wormeester, Herbert; Poelsema, Bene

    2005-01-01

    The deposition kinetics of the irreversible adsorption of citrate-stabilized, nanocolloidal gold particles on Si/SiO2 surfaces, derivatized with (aminopropyl)triethoxysilane (APTES), is investigated in situ using single wavelength optical reflectometry. A well-defined flow of colloids towards the

  12. Conflict Resolution Strategies in Non-Government Secondary Schools in Benue State, Nigeria

    Science.gov (United States)

    Oboegbulem, Angie; Alfa, Idoko Alphonusu

    2013-01-01

    This study investigated perceived CRSs (conflict resolution strategies) for the resolution of conflicts in non-government secondary schools in Benue State, Nigeria. Three research questions and three hypotheses guided this study. Proportionate stratified random sampling technique was used in drawing 15% of the population which gave a total of 500…

  13. Spectroscopic investigation of ELM phenomena in the ASDEX-Upgrade divertor with high time resolution

    International Nuclear Information System (INIS)

    Field, A.R.; Buechl, K.; Fuchs, C.J.; Fussmann, G.; Herrmann, A.; Lieder, G.; Napiontek, B.; Radtke, R.; Wenzel, U.; Zohm, H.

    1993-01-01

    Improved tokamak H-mode confinement is associated with the formation of an insulating zone just within the separatrix. At a critical pressure gradient a sudden burst of MHD activity (an ELM) degrades edge confinement, releasing particles and energy into the scrape-off layer (SOL) which is subsequently transported to the divertor. Here, these phenomena are studied using spectroscopic diagnostics and target plate thermography of high spatial and temporal resolution. (author) 3 refs., 6 figs

  14. Spectroscopic investigation of ELM phenomena in the ASDEX-Upgrade divertor with high time resolution

    Energy Technology Data Exchange (ETDEWEB)

    Field, A R; Buechl, K; Fuchs, C J; Fussmann, G; Herrmann, A; Lieder, G; Napiontek, B; Radtke, R; Wenzel, U; Zohm, H [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany)

    1994-12-31

    Improved tokamak H-mode confinement is associated with the formation of an insulating zone just within the separatrix. At a critical pressure gradient a sudden burst of MHD activity (an ELM) degrades edge confinement, releasing particles and energy into the scrape-off layer (SOL) which is subsequently transported to the divertor. Here, these phenomena are studied using spectroscopic diagnostics and target plate thermography of high spatial and temporal resolution. (author) 3 refs., 6 figs.

  15. Investigation of the field dependent spin structure of exchange coupled magnetic heterostructures

    International Nuclear Information System (INIS)

    Gurieva, Tatiana

    2016-05-01

    This thesis describes the investigation of the field dependent magnetic spin structure of an antiferromagnetically (AF) coupled Fe/Cr heterostructure sandwiched between a hardmagnetic FePt buffer layer and a softmagnetic Fe top layer. The depth-resolved experimental studies of this system were performed via Magneto-optical Kerr effect (MOKE), Vibrating Sample Magnetometry (VSM) and various measuring methods based on nuclear resonant scattering (NRS) technique. Nucleation and evolution of the magnetic spiral structure in the AF coupled Fe/Cr multilayer structure in an azimuthally rotating external magnetic field were observed using NRS. During the experiment a number of time-dependent magnetic side effects (magnetic after-effect, domain-wall creep effect) caused by the non-ideal structure of a real sample were observed and later explained. Creation of the magnetic spiral structure in rotating external magnetic field was simulated using a one-dimensional micromagnetic model.The cross-sectional magnetic X-ray diffraction technique was conceived and is theoretically described in the present work. This method allows to determine the magnetization state of an individual layer in the magnetic heterostructure. It is also applicable in studies of the magnetic structure of tiny samples where conventional x-ray reflectometry fails.

  16. Investigating the Effects of Group Practice Performed Using Psychodrama Techniques on Adolescents' Conflict Resolution Skills

    Science.gov (United States)

    Karatas, Zeynep

    2011-01-01

    The aim of this study is to examine the effects of group practice which is performed using psychodrama techniques on adolescents' conflict resolution skills. The subjects, for this study, were selected among the high school students who have high aggression levels and low problem solving levels attending Haci Zekiye Arslan High School, in Nigde.…

  17. Characterization of weakly absorbing thin films by multiple linear regression analysis of absolute unwrapped phase in angle-resolved spectral reflectometry.

    Science.gov (United States)

    Dong, Jingtao; Lu, Rongsheng

    2018-04-30

    The simultaneous determination of t, n(λ), and κ(λ) of thin films can be a tough task for the high correlation of fit parameters. The strong assumptions about the type of dispersion relation are commonly used as a consequence to alleviate correlation concerns by reducing the free parameters before the nonlinear regression analysis. Here we present an angle-resolved spectral reflectometry for the simultaneous determination of weakly absorbing thin film parameters, where a reflectance interferogram is recorded in both angular and spectral domains in a single-shot measurement for the point of the sample being illuminated. The variations of the phase recovered from the interferogram as functions of t, n, and κ reveals that the unwrapped phase is monotonically related to t, n, and κ, thereby allowing the problem of correlation to be alleviated by multiple linear regression. After removing the 2π ambiguity of the unwrapped phase, the merit function based on the absolute unwrapped phase performs a 3D data cube with variables of t, n and κ at each wavelength. The unique solution of t, n, and κ can then be directly determined from the extremum of the 3D data cube at each wavelength with no need of dispersion relation. A sample of GaN thin film grown on a polished sapphire substrate is tested. The experimental data of t and [n(λ), κ(λ)] are confirmed by the scanning electron microscopy and the comparison with the results of other related works, respectively. The consistency of the results shows the proposed method provides a useful tool for the determination of the thickness and optical constants of weakly absorbing thin films.

  18. A method for generating high resolution satellite image time series

    Science.gov (United States)

    Guo, Tao

    2014-10-01

    There is an increasing demand for satellite remote sensing data with both high spatial and temporal resolution in many applications. But it still is a challenge to simultaneously improve spatial resolution and temporal frequency due to the technical limits of current satellite observation systems. To this end, much R&D efforts have been ongoing for years and lead to some successes roughly in two aspects, one includes super resolution, pan-sharpen etc. methods which can effectively enhance the spatial resolution and generate good visual effects, but hardly preserve spectral signatures and result in inadequate analytical value, on the other hand, time interpolation is a straight forward method to increase temporal frequency, however it increase little informative contents in fact. In this paper we presented a novel method to simulate high resolution time series data by combing low resolution time series data and a very small number of high resolution data only. Our method starts with a pair of high and low resolution data set, and then a spatial registration is done by introducing LDA model to map high and low resolution pixels correspondingly. Afterwards, temporal change information is captured through a comparison of low resolution time series data, and then projected onto the high resolution data plane and assigned to each high resolution pixel according to the predefined temporal change patterns of each type of ground objects. Finally the simulated high resolution data is generated. A preliminary experiment shows that our method can simulate a high resolution data with a reasonable accuracy. The contribution of our method is to enable timely monitoring of temporal changes through analysis of time sequence of low resolution images only, and usage of costly high resolution data can be reduces as much as possible, and it presents a highly effective way to build up an economically operational monitoring solution for agriculture, forest, land use investigation

  19. Executive function and intelligence in the resolution of temporary syntactic ambiguity: an individual differences investigation.

    Science.gov (United States)

    Engelhardt, Paul E; Nigg, Joel T; Ferreira, Fernanda

    2017-07-01

    In the current study, we examined the role of intelligence and executive functions in the resolution of temporary syntactic ambiguity using an individual differences approach. Data were collected from 174 adolescents and adults who completed a battery of cognitive tests as well as a sentence comprehension task. The critical items for the comprehension task consisted of object/subject garden paths (e.g., While Anna dressed the baby that was small and cute played in the crib), and participants answered a comprehension question (e.g., Did Anna dress the baby?) following each one. Previous studies have shown that garden-path misinterpretations tend to persist into final interpretations. Results showed that both intelligence and processing speed interacted with ambiguity. Individuals with higher intelligence and faster processing were more likely to answer the comprehension questions correctly and, specifically, following ambiguous as opposed to unambiguous sentences. Inhibition produced a marginal effect, but the variance in inhibition was largely shared with intelligence. Conclusions focus on the role of individual differences in cognitive ability and their impact on syntactic ambiguity resolution.

  20. On the optical stability of high-resolution transmission electron microscopes

    International Nuclear Information System (INIS)

    Barthel, J.; Thust, A.

    2013-01-01

    In the recent two decades the technique of high-resolution transmission electron microscopy experienced an unprecedented progress through the introduction of hardware aberration correctors and by the improvement of the achievable resolution to the sub-Ångström level. The important aspect that aberration correction at a given resolution requires also a well defined amount of optical stability has received little attention so far. Therefore we investigate the qualification of a variety of high-resolution electron microscopes to maintain an aberration corrected optical state in terms of an optical lifetime. We develop a comprehensive statistical framework for the estimation of the optical lifetime and find remarkably low values between tens of seconds and a couple of minutes. Probability curves are introduced, which inform the operator about the chance to work still in the fully aberration corrected state. - Highlights: • We investigate the temporal stability of optical aberrations in HRTEM. • We develop a statistical framework for the estimation of optical lifetimes. • We introduce plots showing the success probability for aberration-free work. • Optical lifetimes in sub-Ångström electron microscopy are surprisingly low. • The success of aberration correction depends strongly on the optical stability

  1. Neutron reflectivity as method to study in-situ adsorption of phospholipid layers to solid-liquid interfaces

    DEFF Research Database (Denmark)

    Gutberlet, Thomas; Klösgen, Beate Maria; Krastev, Rumen

    2004-01-01

    variation. It was observed that the method was capable of visualizing the adsorption of phospholipid layers to different solid-liquid interfaces and to resolve structural details at Angstroem resolution. The results depended strongly on a sufficiently good signal-to-noise ratio of the specific measurements......The use of neutron reflectivity as a method to study in-situ adsorption of phospholipid layers to solid-liquid interfaces was analyzed. The most important advantage of neutron reflectometry is the possibility to very the refractive index of the specific sample by isotope exchange, called contrast...

  2. Investigation of CoFeV/TiZr multilayer by polarized neutron reflectometry

    International Nuclear Information System (INIS)

    Chen Bo; Li Xinxi; Huang Chaoqiang

    2007-06-01

    The interracial structures of CoFeV/TiZr multilayer play an important role in performance of polarizing supermirrors. Aiming to requirement, CoFeV/ TiZr layered samples with different structures were prepared. Specular reflection of polarized neutrons was employed to study the depth profile of scattering length, density, thickness and roughness of CoFeV/TiZr multilayer and magnetically dead layers. The result shows that the roughness in CoFeV/ TiZr multilayer can be described with roughness increase law and the thickness of magnetically dead layers is about 0.5 nm. The producing technology of the multilayer reaches the requirements. (authors)

  3. High resolution and simultaneous monitoring of airborne radionuclides

    International Nuclear Information System (INIS)

    Abe, T.; Yamaguchi, Y.; Muguntha Manikandan, N.; Komura, K.

    2005-01-01

    By using 11 extremely low background Ge detectors at Ogoya Underground Laboratory, it became possible to investigate temporal variations of airborne 212 Pb (T 1/2 =10.6 h) along with 210 Pb and 7 Be with order of magnitude higher time resolution. Then, we have measured airborne nuclides at three monitoring points, (1) roof of our laboratory (LLRL; 40 m ASL), (2) Shinshiku Plateau (640 m ASL) located about 8 km from LLRL as a comparison of vertical distribution, and (3) Hegura Island (10 m ASL) at about 50 km from Wajima located north of Noto Peninsula facing on the Sea of Japan (about 180 km to the north-northeast of LLRL), to investigate influence of Asian continent. Airborne nuclides were collected by high volume air samplers at intervals of a few hours at either two or three points simultaneously. In the same manner, high resolution monitoring was carried out also at the time of passage of typhoon and cold front. In this study, we observed drastic temporal variations of airborne radionuclides and correlations of multiple monitoring points. The results indicate that high resolution and simultaneous monitoring is very useful to understand dynamic state of variations of airborne nuclides due to short and long-term air-mass movement. (author)

  4. High resolution radar satellite imagery analysis for safeguards applications

    Energy Technology Data Exchange (ETDEWEB)

    Minet, Christian; Eineder, Michael [German Aerospace Center, Remote Sensing Technology Institute, Department of SAR Signal Processing, Wessling, (Germany); Rezniczek, Arnold [UBA GmbH, Herzogenrath, (Germany); Niemeyer, Irmgard [Forschungszentrum Juelich, Institue of Energy and Climate Research, IEK-6: Nuclear Waste Management and Reactor Safety, Juelich, (Germany)

    2011-12-15

    For monitoring nuclear sites, the use of Synthetic Aperture Radar (SAR) imagery shows essential promises. Unlike optical remote sensing instruments, radar sensors operate under almost all weather conditions and independently of the sunlight, i.e. time of the day. Such technical specifications are required both for continuous and for ad-hoc, timed surveillance tasks. With Cosmo-Skymed, TerraSARX and Radarsat-2, high-resolution SAR imagery with a spatial resolution up to 1m has recently become available. Our work therefore aims to investigate the potential of high-resolution TerraSAR data for nuclear monitoring. This paper focuses on exploiting amplitude of a single acquisition, assessing amplitude changes and phase differences between two acquisitions, and PS-InSAR processing of an image stack.

  5. Importance of resolution and model configuration when downscaling extreme precipitation

    Directory of Open Access Journals (Sweden)

    Adrian J. Champion

    2014-07-01

    Full Text Available Dynamical downscaling is frequently used to investigate the dynamical variables of extra-tropical cyclones, for example, precipitation, using very high-resolution models nested within coarser resolution models to understand the processes that lead to intense precipitation. It is also used in climate change studies, using long timeseries to investigate trends in precipitation, or to look at the small-scale dynamical processes for specific case studies. This study investigates some of the problems associated with dynamical downscaling and looks at the optimum configuration to obtain the distribution and intensity of a precipitation field to match observations. This study uses the Met Office Unified Model run in limited area mode with grid spacings of 12, 4 and 1.5 km, driven by boundary conditions provided by the ECMWF Operational Analysis to produce high-resolution simulations for the Summer of 2007 UK flooding events. The numerical weather prediction model is initiated at varying times before the peak precipitation is observed to test the importance of the initialisation and boundary conditions, and how long the simulation can be run for. The results are compared to raingauge data as verification and show that the model intensities are most similar to observations when the model is initialised 12 hours before the peak precipitation is observed. It was also shown that using non-gridded datasets makes verification more difficult, with the density of observations also affecting the intensities observed. It is concluded that the simulations are able to produce realistic precipitation intensities when driven by the coarser resolution data.

  6. Resolution enhancement of low quality videos using a high-resolution frame

    NARCIS (Netherlands)

    Pham, T.Q.; Van Vliet, L.J.; Schutte, K.

    2006-01-01

    This paper proposes an example-based Super-Resolution (SR) algorithm of compressed videos in the Discrete Cosine Transform (DCT) domain. Input to the system is a Low-Resolution (LR) compressed video together with a High-Resolution (HR) still image of similar content. Using a training set of

  7. High Resolution Ultrasound Imaging Using Adaptive Beamforming with Reduced Number of Active Elements

    DEFF Research Database (Denmark)

    Holfort, Iben Kraglund; Gran, Fredrik; Jensen, Jørgen Arendt

    2009-01-01

    is proposed. By reducing the number of active sensor elements, an increased resolution can be obtained with the MV beamformer. This observation is directly opposite the well-known relation between the spatial extent of the aperture and the achievable resolution. The investigations are based on Field II...

  8. Ionic Strength Dependent Kinetics of Nanocolloidal Gold Deposition

    NARCIS (Netherlands)

    Brouwer, E.A.M.; Kooij, Ernst S.; Wormeester, Herbert; Poelsema, Bene

    2003-01-01

    The deposition kinetics of the irreversible adsorption of citrate-stabilized, nanocolloidal gold particles on Si/SiO2 surfaces, derivatized with (aminopropyl)triethoxysilane, is investigated in situ using single wavelength reflectometry. A well-defined flow of colloids toward the surface is realized

  9. Comparison of super-resolution benefits for downsampled iages and real low-resolution data

    NARCIS (Netherlands)

    Peng, Y.; Spreeuwers, Lieuwe Jan; Gökberk, B.; Veldhuis, Raymond N.J.

    2013-01-01

    Recently, more and more researchers are exploring the benefits of super-resolution methods on low-resolution face recognition. However, often results presented are obtained on downsampled high-resolution face images. Because downsampled images are different from real images taken at low resolution,

  10. Statistical Angular Resolution Limit for Ultrawideband MIMO Noise Radar

    Directory of Open Access Journals (Sweden)

    Xiaoli Zhou

    2015-01-01

    Full Text Available The two-dimensional angular resolution limit (ARL of elevation and azimuth for MIMO radar with ultrawideband (UWB noise waveforms is investigated using statistical resolution theory. First, the signal model of monostatic UWB MIMO noise radar is established in a 3D reference frame. Then, the statistical angular resolution limits (SARLs of two closely spaced targets are derived using the detection-theoretic and estimation-theoretic approaches, respectively. The detection-theoretic approach is based on the generalized likelihood ratio test (GLRT with given probabilities of false alarm and detection, while the estimation-theoretic approach is based on Smith’s criterion which involves the Cramér-Rao lower bound (CRLB. Furthermore, the relationship between the two approaches is presented, and the factors affecting the SARL, that is, detection parameters, transmit waveforms, array geometry, signal-to-noise ratio (SNR, and parameters of target (i.e., radar cross section (RCS and direction, are analyzed. Compared with the conventional radar resolution theory defined by the ambiguity function, the SARL reflects the practical resolution ability of radar and can provide an optimization criterion for radar system design.

  11. Resolution enhancement in medical ultrasound imaging.

    Science.gov (United States)

    Ploquin, Marie; Basarab, Adrian; Kouamé, Denis

    2015-01-01

    Image resolution enhancement is a problem of considerable interest in all medical imaging modalities. Unlike general purpose imaging or video processing, for a very long time, medical image resolution enhancement has been based on optimization of the imaging devices. Although some recent works purport to deal with image postprocessing, much remains to be done regarding medical image enhancement via postprocessing, especially in ultrasound imaging. We face a resolution improvement issue in the case of medical ultrasound imaging. We propose to investigate this problem using multidimensional autoregressive (AR) models. Noting that the estimation of the envelope of an ultrasound radio frequency (RF) signal is very similar to the estimation of classical Fourier-based power spectrum estimation, we theoretically show that a domain change and a multidimensional AR model can be used to achieve super-resolution in ultrasound imaging provided the order is estimated correctly. Here, this is done by means of a technique that simultaneously estimates the order and the parameters of a multidimensional model using relevant regression matrix factorization. Doing so, the proposed method specifically fits ultrasound imaging and provides an estimated envelope. Moreover, an expression that links the theoretical image resolution to both the image acquisition features (such as the point spread function) and a postprocessing feature (the AR model) order is derived. The overall contribution of this work is threefold. First, it allows for automatic resolution improvement. Through a simple model and without any specific manual algorithmic parameter tuning, as is used in common methods, the proposed technique simply and exclusively uses the ultrasound RF signal as input and provides the improved B-mode as output. Second, it allows for the a priori prediction of the improvement in resolution via the knowledge of the parametric model order before actual processing. Finally, to achieve the

  12. Longitudinal profile diagnostic scheme with subfemtosecond resolution for high-brightness electron beams

    Directory of Open Access Journals (Sweden)

    G. Andonian

    2011-07-01

    Full Text Available High-resolution measurement of the longitudinal profile of a relativistic electron beam is of utmost importance for linac based free-electron lasers and other advanced accelerator facilities that employ ultrashort bunches. In this paper, we investigate a novel scheme to measure ultrashort bunches (subpicosecond with exceptional temporal resolution (hundreds of attoseconds and dynamic range. The scheme employs two orthogonally oriented deflecting sections. The first imparts a short-wavelength (fast temporal resolution horizontal angular modulation on the beam, while the second imparts a long-wavelength (slow angular kick in the vertical dimension. Both modulations are observable on a standard downstream screen in the form of a streaked sinusoidal beam structure. We demonstrate, using scaled variables in a quasi-1D approximation, an expression for the temporal resolution of the scheme and apply it to a proof-of-concept experiment at the UCLA Neptune high-brightness injector facility. The scheme is also investigated for application at the SLAC NLCTA facility, where we show that the subfemtosecond resolution is sufficient to resolve the temporal structure of the beam used in the echo-enabled free-electron laser. We employ beam simulations to verify the effect for typical Neptune and NLCTA parameter sets and demonstrate the feasibility of the concept.

  13. Combining high resolution water use data from smart meters with remote sensing and geospatial datasets to investigate outdoor water demand and greenness changes during drought

    Science.gov (United States)

    Quesnel, K.; Ajami, N.; Urata, J.; Marx, A.

    2017-12-01

    Infrastructure modernization, information technology, and the internet of things are impacting urban water use. Advanced metering infrastructure (AMI), also known as smart meters, is one forthcoming technology that holds the potential to fundamentally shift the way customers use water and utilities manage their water resources. Broadly defined, AMI is a system and process used to measure, communicate, and analyze water use data at high resolution intervals at the customer or sub-customer level. There are many promising benefits of AMI systems, but there are also many challenges; consequently, AMI in the water sector is still in its infancy. In this study we provide insights into this emerging technology by taking advantage of the higher temporal and spatial resolution of water use data provided by these systems. We couple daily water use observations from AMI with monthly and bimonthly billing records to investigate water use trends, patterns, and drivers using a case study of the City of Redwood City, CA from 2007 through 2016. We look across sectors, with a particular focus on water use for urban irrigation. Almost half of Redwood City's irrigation accounts use recycled water, and we take this unique opportunity to investigate if the behavioral response for recycled water follows the water and energy efficiency paradox in which customers who have upgraded to more efficient devices end up using more of the commodity. We model potable and recycled water demand using geospatially explicit climate, demographic, and economic factors to gain insight into various water use drivers. Additionally, we use high resolution remote sensing data from the National Agricultural Imaging Program (NAIP) to observe how changes in greenness and impervious surface are related to water use. Using a series of statistical and unsupervised machine learning techniques, we find that water use has changed dramatically over the past decade corresponding to varying climatic regimes and drought

  14. High-Resolution Sonars: What Resolution Do We Need for Target Recognition?

    Directory of Open Access Journals (Sweden)

    Pailhas Yan

    2010-01-01

    Full Text Available Target recognition in sonar imagery has long been an active research area in the maritime domain, especially in the mine-counter measure context. Recently it has received even more attention as new sensors with increased resolution have been developed; new threats to critical maritime assets and a new paradigm for target recognition based on autonomous platforms have emerged. With the recent introduction of Synthetic Aperture Sonar systems and high-frequency sonars, sonar resolution has dramatically increased and noise levels decreased. Sonar images are distance images but at high resolution they tend to appear visually as optical images. Traditionally algorithms have been developed specifically for imaging sonars because of their limited resolution and high noise levels. With high-resolution sonars, algorithms developed in the image processing field for natural images become applicable. However, the lack of large datasets has hampered the development of such algorithms. Here we present a fast and realistic sonar simulator enabling development and evaluation of such algorithms.We develop a classifier and then analyse its performances using our simulated synthetic sonar images. Finally, we discuss sensor resolution requirements to achieve effective classification of various targets and demonstrate that with high resolution sonars target highlight analysis is the key for target recognition.

  15. Reconstructed Image Spatial Resolution of Multiple Coincidences Compton Imager

    Science.gov (United States)

    Andreyev, Andriy; Sitek, Arkadiusz; Celler, Anna

    2010-02-01

    We study the multiple coincidences Compton imager (MCCI) which is based on a simultaneous acquisition of several photons emitted in cascade from a single nuclear decay. Theoretically, this technique should provide a major improvement in localization of a single radioactive source as compared to a standard Compton camera. In this work, we investigated the performance and limitations of MCCI using Monte Carlo computer simulations. Spatial resolutions of the reconstructed point source have been studied as a function of the MCCI parameters, including geometrical dimensions and detector characteristics such as materials, energy and spatial resolutions.

  16. Tablet disintegration studied by high-resolution real-time magnetic resonance imaging.

    Science.gov (United States)

    Quodbach, Julian; Moussavi, Amir; Tammer, Roland; Frahm, Jens; Kleinebudde, Peter

    2014-01-01

    The present work employs recent advances in high-resolution real-time magnetic resonance imaging (MRI) to investigate the disintegration process of tablets containing disintegrants. A temporal resolution of 75 ms and a spatial resolution of 80 × 80 µm with a section thickness of only 600 µm were achieved. The histograms of MRI videos were quantitatively analyzed with MATLAB. The mechanisms of action of six commercially available disintegrants, the influence of relative tablet density, and the impact of disintegrant concentration were examined. Crospovidone seems to be the only disintegrant acting by a shape memory effect, whereas the others mainly swell. A higher relative density of tablets containing croscarmellose sodium leads to a more even distribution of water within the tablet matrix but hardly impacts the disintegration kinetics. Increasing the polacrilin potassium disintegrant concentration leads to a quicker and more thorough disintegration process. Real-time MRI emerges as valuable tool to visualize and investigate the process of tablet disintegration.

  17. High-resolution X-ray television and high-resolution video recorders

    International Nuclear Information System (INIS)

    Haendle, J.; Horbaschek, H.; Alexandrescu, M.

    1977-01-01

    The improved transmission properties of the high-resolution X-ray television chain described here make it possible to transmit more information per television image. The resolution in the fluoroscopic image, which is visually determined, depends on the dose rate and the inertia of the television pick-up tube. This connection is discussed. In the last few years, video recorders have been increasingly used in X-ray diagnostics. The video recorder is a further quality-limiting element in X-ray television. The development of function patterns of high-resolution magnetic video recorders shows that this quality drop may be largely overcome. The influence of electrical band width and number of lines on the resolution in the X-ray television image stored is explained in more detail. (orig.) [de

  18. Energy resolution of a lead scintillating fiber electromagnetic calorimeter

    International Nuclear Information System (INIS)

    Budagov, Yu.; Chirikov-Zorin, I.; Glagolev, V.

    1993-01-01

    A calorimeter module was fabricated using profiled lead plates and scintillating fibers with diameter 1 mm and attenuation length about 80 cm. The absorber-to-fiber volume ratio was 1.17 and the module average radiation length X 0 = 1.05 cm. The energy resolution of the module was investigated using the electron beams of U-70 at Serpukhov and of the SPS at CERN in the energy range 5-70 GeV. The energy resolution at θ = 3 0 (the angle between the fiber axis and the beam direction) may be expressed by the formula σ/E(%) = 13.1/√E ± 1.7. The energy resolution was also simulated by Monte Carlo and good agreement with the experiment has been achieved. 12 refs.; 13 figs.; 4 tabs

  19. Super-Resolution Reconstruction of Remote Sensing Images Using Multifractal Analysis

    Directory of Open Access Journals (Sweden)

    Mao-Gui Hu

    2009-10-01

    Full Text Available Satellite remote sensing (RS is an important contributor to Earth observation, providing various kinds of imagery every day, but low spatial resolution remains a critical bottleneck in a lot of applications, restricting higher spatial resolution analysis (e.g., intraurban. In this study, a multifractal-based super-resolution reconstruction method is proposed to alleviate this problem. The multifractal characteristic is common in Nature. The self-similarity or self-affinity presented in the image is useful to estimate details at larger and smaller scales than the original. We first look for the presence of multifractal characteristics in the images. Then we estimate parameters of the information transfer function and noise of the low resolution image. Finally, a noise-free, spatial resolutionenhanced image is generated by a fractal coding-based denoising and downscaling method. The empirical case shows that the reconstructed super-resolution image performs well indetail enhancement. This method is not only useful for remote sensing in investigating Earth, but also for other images with multifractal characteristics.

  20. The Chorus Conflict and Loss of Separation Resolution Algorithms

    Science.gov (United States)

    Butler, Ricky W.; Hagen, George E.; Maddalon, Jeffrey M.

    2013-01-01

    The Chorus software is designed to investigate near-term, tactical conflict and loss of separation detection and resolution concepts for air traffic management. This software is currently being used in two different problem domains: en-route self- separation and sense and avoid for unmanned aircraft systems. This paper describes the core resolution algorithms that are part of Chorus. The combination of several features of the Chorus program distinguish this software from other approaches to conflict and loss of separation resolution. First, the program stores a history of state information over time which enables it to handle communication dropouts and take advantage of previous input data. Second, the underlying conflict algorithms find resolutions that solve the most urgent conflict, but also seek to prevent secondary conflicts with the other aircraft. Third, if the program is run on multiple aircraft, and the two aircraft maneuver at the same time, the result will be implicitly co-ordinated. This implicit coordination property is established by ensuring that a resolution produced by Chorus will comply with a mathematically-defined criteria whose correctness has been formally verified. Fourth, the program produces both instantaneous solutions and kinematic solutions, which are based on simple accel- eration models. Finally, the program provides resolutions for recovery from loss of separation. Different versions of this software are implemented as Java and C++ software programs, respectively.

  1. High Resolution Thz and FIR Spectroscopy of SOCl_2

    Science.gov (United States)

    Martin-Drumel, M. A.; Cuisset, A.; Sadovskii, D. A.; Mouret, G.; Hindle, F.; Pirali, O.

    2013-06-01

    Thionyl chloride (SOCl_2) is an extremely powerful oxidant widely used in industrial processes and playing a role in the chemistry of the atmosphere. In addition, it has a molecular configuration similar to that of phosgene (COCl_2), and is therefore of particular interest for security and defense applications. Low resolution vibrational spectra of gas phase SOCl_2 as well as high resolution pure rotational transitions up to 25 GHz have previously been investigated. To date no high resolution data are reported at frequencies higher than 25 GHz. We have investigated the THz absorption spectrum of SOCl_2 in the spectral region 70-650 GHz using a frequency multiplier chain coupled to a 1 m long single path cell containing a pressure of about 15 μbar. At the time of the writing, about 8000 pure rotational transitions of SO^{35}Cl_2 with highest J and K_a values of 110 and 50 respectively have been assigned on the spectrum. We have also recorded the high resolution FIR spectra of SOCl_2 in the spectral range 50-700 wn using synchrotron radiation at the AILES beamline of SOLEIL facility. A White-type cell aligned with an absorption path length of 150 m has been used to record, at a resolution of 0.001 wn, two spectra at pressures of 5 and 56 μbar of SOCl_2. On these spectra all FIR modes of SOCl_2 are observed (ν_2 to ν_6) and present a resolved rotational structure. Their analysis is in progress. T. J. Johnson et al., J. Phys. Chem. A 107, 6183 (2003) D. E. Martz and R. T. Lagemann, J. Chem. Phys. 22,1193 (1954) H. S. P. Müller and M. C. L. Gerry, J. Chem. Soc. Faraday Trans. 90, 3473 (1994)

  2. High resolution tsunami inversion for 2010 Chile earthquake

    Directory of Open Access Journals (Sweden)

    T.-R. Wu

    2011-12-01

    Full Text Available We investigate the feasibility of inverting high-resolution vertical seafloor displacement from tsunami waveforms. An inversion method named "SUTIM" (small unit tsunami inversion method is developed to meet this goal. In addition to utilizing the conventional least-square inversion, this paper also enhances the inversion resolution by Grid-Shifting method. A smooth constraint is adopted to gain stability. After a series of validation and performance tests, SUTIM is used to study the 2010 Chile earthquake. Based upon data quality and azimuthal distribution, we select tsunami waveforms from 6 GLOSS stations and 1 DART buoy record. In total, 157 sub-faults are utilized for the high-resolution inversion. The resolution reaches 10 sub-faults per wavelength. The result is compared with the distribution of the aftershocks and waveforms at each gauge location with very good agreement. The inversion result shows that the source profile features a non-uniform distribution of the seafloor displacement. The highly elevated vertical seafloor is mainly concentrated in two areas: one is located in the northern part of the epicentre, between 34° S and 36° S; the other is in the southern part, between 37° S and 38° S.

  3. High resolution tsunami inversion for 2010 Chile earthquake

    Science.gov (United States)

    Wu, T.-R.; Ho, T.-C.

    2011-12-01

    We investigate the feasibility of inverting high-resolution vertical seafloor displacement from tsunami waveforms. An inversion method named "SUTIM" (small unit tsunami inversion method) is developed to meet this goal. In addition to utilizing the conventional least-square inversion, this paper also enhances the inversion resolution by Grid-Shifting method. A smooth constraint is adopted to gain stability. After a series of validation and performance tests, SUTIM is used to study the 2010 Chile earthquake. Based upon data quality and azimuthal distribution, we select tsunami waveforms from 6 GLOSS stations and 1 DART buoy record. In total, 157 sub-faults are utilized for the high-resolution inversion. The resolution reaches 10 sub-faults per wavelength. The result is compared with the distribution of the aftershocks and waveforms at each gauge location with very good agreement. The inversion result shows that the source profile features a non-uniform distribution of the seafloor displacement. The highly elevated vertical seafloor is mainly concentrated in two areas: one is located in the northern part of the epicentre, between 34° S and 36° S; the other is in the southern part, between 37° S and 38° S.

  4. CeBr3 as a room-temperature, high-resolution gamma-ray detector

    International Nuclear Information System (INIS)

    Guss, Paul; Reed, Michael; Yuan Ding; Reed, Alexis; Mukhopadhyay, Sanjoy

    2009-01-01

    Cerium bromide (CeBr 3 ) has become a material of interest in the race for high-resolution gamma-ray spectroscopy at room temperature. This investigation quantified the potential of CeBr 3 as a room-temperature, high-resolution gamma-ray detector. The performance of CeBr 3 crystals was compared to other scintillation crystals of similar dimensions and detection environments. Comparison of self-activity of CeBr 3 to cerium-doped lanthanum tribromide (LaBr 3 :Ce) was performed. Energy resolution and relative intrinsic efficiency were measured and are presented.

  5. Effects of detector–source distance and detector bias voltage variations on time resolution of general purpose plastic scintillation detectors

    International Nuclear Information System (INIS)

    Ermis, E.E.; Celiktas, C.

    2012-01-01

    Effects of source-detector distance and the detector bias voltage variations on time resolution of a general purpose plastic scintillation detector such as BC400 were investigated. 133 Ba and 207 Bi calibration sources with and without collimator were used in the present work. Optimum source-detector distance and bias voltage values were determined for the best time resolution by using leading edge timing method. Effect of the collimator usage on time resolution was also investigated. - Highlights: ► Effect of the source-detector distance on time spectra was investigated. ► Effect of the detector bias voltage variations on time spectra was examined. ► Optimum detector–source distance was determined for the best time resolution. ► Optimum detector bias voltage was determined for the best time resolution. ► 133 Ba and 207 Bi radioisotopes were used.

  6. The urethral closure function in continent and stress urinary incontinent women assessed by urethral pressure reflectometry.

    Science.gov (United States)

    Saaby, Marie-Louise

    2014-02-01

    Stress urinary incontinence (SUI) occurs when the bladder pressure exceeds the urethral pressure in connection with physical effort or exertion or when sneezing or coughing and depends both on the strength of the urethral closure function and the abdominal pressure to which it is subjected. The urethral closure function in continent women and the dysfunction causing SUI are not known in details. The currently accepted view is based on the concept of a sphincteric unit and a support system. Our incomplete knowledge relates to the complexity of the closure apparatus and to inadequate assessment methods which so far have not provided robust urodynamic diagnostic tools, severity measures, or parameters to assess outcome after intervention. Urethral Pressure Reflectometry (UPR) is a novel method that measures the urethral pressure and cross-sectional area (by use of sound waves) simultaneously. The technique involves insertion of only a small, light and flexible polyurethane bag in the urethra and therefore avoids the common artifacts encountered with conventional methods. The UPR parameters can be obtained at a specific site of the urethra, e.g. the high pressure zone, and during various circumstances, i.e. resting and squeezing. During the study period, we advanced the UPR technique to enable faster measurement (within 7 seconds by the continuous technique) which allowed assessment during increased intra-abdominal pressure induced by physical straining. We investigated the urethral closure function in continent and SUI women during resting and straining by the "fast" UPR technique. Thereby new promising urethral parameters were provided that allowed characterization of the closure function based on the permanent closure forces (primarily generated by the sphincteric unit, measured by the Po-rest) and the adjunctive closure forces (primarily generated by the support system, measured by the abdominal to urethral pressure impact ratio (APIR)). The new parameters enabled

  7. Photoionization study of doubly-excited helium at ultra-high resolution

    Energy Technology Data Exchange (ETDEWEB)

    Kaindl, G.; Schulz, K.; Domke, M. [Freie Universitaet Berlin (Germany)] [and others

    1997-04-01

    Ever since the pioneering work of Madden & Codling and Cooper, Fano & Prats on doubly-excited helium in the early sixties, this system may be considered as prototypical for the study of electron-electron correlations. More detailed insight into these states could be reached only much later, when improved theoretical calculations of the optically-excited {sup 1}P{sup 0} double-excitation states became available and sufficiently high energy resolution ({delta}E=4.0 meV) was achieved. This allowed a systematic investigation of the double-excitation resonances of He up to excitation energies close to the double-ionization threshold, I{sub infinity}=79.003 eV, which stimulated renewed theoretical interest into these correlated electron states. The authors report here on striking progress in energy resolution in this grazing-incidence photon-energy range of grating monochromators and its application to hitherto unobservable states of doubly-excited He. By monitoring an extremely narrow double-excitation resonance of He, with a theoretical lifetime width of less than or equal to 5 {mu}eV, a resolution of {delta}E=1.0 meV (FWHM) at 64.1 eV could be achieved. This ultra-high spectral resolution, combined with high photon flux, allowed the investigation of new Rydberg resonances below the N=3 ionization threshold, I{sub 3}, as well as a detailed comparison with ab-initio calculations.

  8. Analysis of Time Resolution in HGCAL Testbeam

    CERN Document Server

    Steentoft, Jonas

    2017-01-01

    Using data from a 250 GeV electron run during the November 2016 HGCAL testbeam, the time resolution of the High Granularity hadronic endcap Calorimeter, HGCAL, was investigated, looking at the seven innermost Si cells, and using them as reference timers for each other. Cuts in the data was applied based on signal amplitude,$0.05 \\hspace{1mm} V < A < 0.45 \\hspace{1mm} V$, position of incoming beam particle,$0 \\hspace{1mm} mm < TDCx < 22\\hspace{1mm} mm$ and $-7\\hspace{1mm} mm resolution of $15-50$ $ps$ was obtained, depending on which two cells were compared, and how the low-statistics cut were placed. We also confirmed a slight correlation between time resolution and distanc...

  9. DSM GENERATION FROM HIGH RESOLUTION COSMO-SKYMED IMAGERY WITH RADARGRAMMETRIC MODEL

    OpenAIRE

    P. Capaldo; M. Crespi; F. Fratarcangeli; A. Nascetti; F. Pieralice

    2012-01-01

    The availability of new high resolution radar spaceborne sensors offers new interesting potentialities for the geomatics application: spatial and temporal change detection, features extraction, generation of Digital Surface (DSMs). As regards the DSMs generation from new high resolution data (as SpotLight imagery), the development and the accuracy assessment of method based on radargrammetric approach are topics of great interest and relevance. The aim of this investigation is the DSM generat...

  10. Alliance Rupture and Resolution in Dialectical Behavior Therapy for Borderline Personality Disorder.

    Science.gov (United States)

    Boritz, Tali; Barnhart, Ryan; Eubanks, Catherine F; McMain, Shelley

    2018-01-01

    The aim of this exploratory study was to investigate alliance rupture and resolution processes in the early sessions of a sample of clients who underwent 1 year of standard dialectical behavior therapy (DBT) for borderline personality disorder (BPD). Participants were three recovered and three unrecovered clients drawn from the DBT arm of a randomized controlled trial that compared the clinical and cost-effectiveness of DBT and general psychiatric management. Alliance rupture and resolution processes were coded using the observer-based Rupture Resolution Rating Scale. Unrecovered clients evidenced a higher frequency of withdrawal ruptures than recovered clients. Withdrawal ruptures tended to persist for unrecovered clients despite the degree of resolution in the prior session, unlike for recovered clients, for whom the probability of withdrawal ruptures decreased as the degree of resolution increased. This study suggests that alliance rupture and resolution processes in early treatment differ between recovered and unrecovered clients in DBT for BPD.

  11. Neutron scattering. Lectures

    International Nuclear Information System (INIS)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner

    2013-01-01

    The following topics are dealt with: Neutron sources, symmetry of crystals, nanostructures investigated by small-angle neutron scattering, structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic neutron scattering, strongly correlated electrons, polymer dynamics, applications of neutron scattering. (HSI)

  12. Comparison between measured and predicted turbulence frequency spectra in ITG and TEM regimes

    NARCIS (Netherlands)

    Citrin, J.; Arnichand, H.; Bernardo, J.; Bourdelle, C.; Garbet, X.; Jenko, F.; Hacquin, S.; Puschel, M. J.; Sabot, R.

    2017-01-01

    The observation of distinct peaks in tokamak core reflectometry measurements—named quasi-coherent-modes (QCMs)—are identified as a signature of trapped-electron-mode (TEM) turbulence (Arnichand et al 2016 Plasma Phys. Control. Fusion 58 014037). This phenomenon is investigated with detailed linear

  13. Feasibility of high temporal resolution breast DCE-MRI using compressed sensing theory.

    Science.gov (United States)

    Wang, Haoyu; Miao, Yanwei; Zhou, Kun; Yu, Yanming; Bao, Shanglian; He, Qiang; Dai, Yongming; Xuan, Stephanie Y; Tarabishy, Bisher; Ye, Yongquan; Hu, Jiani

    2010-09-01

    To investigate the feasibility of high temporal resolution breast DCE-MRI using compressed sensing theory. Two experiments were designed to investigate the feasibility of using reference image based compressed sensing (RICS) technique in DCE-MRI of the breast. The first experiment examined the capability of RICS to faithfully reconstruct uptake curves using undersampled data sets extracted from fully sampled clinical breast DCE-MRI data. An average approach and an approach using motion estimation and motion compensation (ME/MC) were implemented to obtain reference images and to evaluate their efficacy in reducing motion related effects. The second experiment, an in vitro phantom study, tested the feasibility of RICS for improving temporal resolution without degrading the spatial resolution. For the uptake-curve reconstruction experiment, there was a high correlation between uptake curves reconstructed from fully sampled data by Fourier transform and from undersampled data by RICS, indicating high similarity between them. The mean Pearson correlation coefficients for RICS with the ME/MC approach and RICS with the average approach were 0.977 +/- 0.023 and 0.953 +/- 0.031, respectively. The comparisons of final reconstruction results between RICS with the average approach and RICS with the ME/MC approach suggested that the latter was superior to the former in reducing motion related effects. For the in vitro experiment, compared to the fully sampled method, RICS improved the temporal resolution by an acceleration factor of 10 without degrading the spatial resolution. The preliminary study demonstrates the feasibility of RICS for faithfully reconstructing uptake curves and improving temporal resolution of breast DCE-MRI without degrading the spatial resolution.

  14. Reproducibility of the measurement of central corneal thickness in healthy subjects obtained with the optical low coherence reflectometry pachymeter and comparison with the ultrasonic pachymetry.

    Science.gov (United States)

    Garza-Leon, Manuel; Plancarte-Lozano, Eduardo; Valle-Penella, Agustín Del; Guzmán-Martínez, María de Lourdes; Villarreal-González, Andrés

    2018-01-01

    Corneal pachymetry is widely used for refractive surgery and follow up in keratoconus, accurate measurement is essential for a safe surgery. To assess intraobserver reliability of central corneal thickness (CCT) measurements using optical low-coherence reflectometry (OLCR) technology and its agreement with ultrasonic pachymeter (US). Randomized and prospective comparative evaluation of diagnostic technology. One randomly healthy eye of subjects was scanned three times with both devices. Intraobserver within-subject standard deviation (Sw), coefficient of variation (CVw) and intraclass correlation coefficient (ICC) were obtained for reliability analysis; for study agreement, data were analyzed using the paired-sample t test and the Bland-Altman LoA method. The mean of three scans of each equipment was used to assess the LoA. The study enrolled 30 eyes of 30 subjects with average age of 28.70 ± 8.06 years. For repeatability, the Sw were 3.41 and 5.96 µ, the intraobserver CVw was 2 and 4% and ICC 0.991 and 0.988, for OLCR and US respectively. The mean CCT difference between OLCR and US was 8.90 ± 9.03 µ (95% confidence interval: 5.52-2.27 µ), and the LoA was 35.40 µ. OLCR technology provided reliable intraobserver CCT measurements. Both pachymetry measurements may be used interchangeably with minimum calibration adjustment. Copyright: © 2018 Permanyer.

  15. Front-illuminated versus back-illuminated photon-counting CCD-based gamma camera: important consequences for spatial resolution and energy resolution

    International Nuclear Information System (INIS)

    Heemskerk, Jan W T; Westra, Albert H; Linotte, Peter M; Ligtvoet, Kees M; Zbijewski, Wojciech; Beekman, Freek J

    2007-01-01

    Charge-coupled devices (CCDs) coupled to scintillation crystals can be used for high-resolution imaging with x-rays and gamma rays. When the CCD images can be read out fast enough, the energy and interaction position of individual gamma quanta can be estimated by a real-time image analysis of the scintillation light flashes ('photon-counting mode'). The electron-multiplying CCD (EMCCD) is well suited for fast read out, since even at high frame rates it has extremely low read-out noise. Back-illuminated (BI) EMCCDs have much higher quantum efficiency than front-illuminated (FI) EMCCDs. Here we compare the spatial and energy resolution of gamma cameras based on FI and BI EMCCDs. The CCDs are coupled to a 1000 μm thick columnar CsI(Tl) crystal for the purpose of Tc-99m and I-125 imaging. Intrinsic spatial resolutions of 44 μm for I-125 and 49 μm for Tc-99m were obtained when using a BI EMCCD, which is an improvement by a factor of about 1.2-2 over the FI EMCCD. Furthermore, in the energy spectrum of the BI EMCCD, the I-125 signal could be clearly separated from the background noise, which was not the case for the FI EMCCD. The energy resolution of a BI EMCCD for Tc-99m was estimated to be approximately 36 keV, full width at half maximum, at 141 keV. The excellent results for the BI EMCCD encouraged us to investigate the cooling requirements for our setup. We have found that for the BI EMCCD, the spatial and energy resolution, as well as image noise, remained stable over a range of temperatures from -50 deg. C to -15 deg. C. This is a significant advantage over the FI EMCCD, which suffered from loss of spatial and especially energy resolution at temperatures as low as -40 deg. C. We conclude that the use of BI EMCCDs may significantly improve the imaging capabilities and the cost efficiency of CCD-based high-resolution gamma cameras. (note)

  16. High-resolution 3D X-ray microtomography as tool to investigate size distribution of grain phase and pore space in sandstones

    Science.gov (United States)

    Kahl, Wolf-Achim; Holzheid, Astrid

    2013-04-01

    The geometry and internal structures of sandstone reservoirs, like grain size, sorting, degree of bioturbation, and the history of the diagenetic alterations determine the quantity, flow rates, and recovery of hydrocarbons present in the pore space. In this respect, processes influencing the deep reservoir quality in sandstones are either of depositional, shallow diagenetic, or deep-burial origin. To assess the effect of compaction and cementation on the pore space during diagenesis, we investigated a set of sandstone samples using high-resolution microtomography (µ-CT). By high-resolution µ-CT, size distributions (in 2D and 3D), surface areas and volume fractions of the grain skeleton and pore space of sandstones and - in addition - of mineral powders have been determined. For this study, we analysed aliquots of sandstones that exhibit either complete, partial or no cemententation of the pore space, and sets of mineral powders (quartz, feldspar, calcite). As the resolution of the µ-CT scans is in the µm-range, the surface areas determined for sandstones and powders do detect the geometric surface of the material (Kahl & Holzheid, 2010). Since there are differing approaches to "size" parameters like e.g., long/short particle axes, area equivalent radius, Feret-diameter (2D), and structural thickness (3D), we decided to illustrate the effect of various size determinations for (a) single grains, (b) grain skeletons, and (c) pore space. Therefor, the computer-aided morphometric analysis of the segmented 3D models of the reconstructed scan images comprises versatile calculation algorithms. For example, size distribution of the pore space of partially cemented sandstones can be used to infer the timing of the formation of the cement in respect to tectonic/diagenetic activities. In the case of a late-stage partial cementation of a Bunter sandstone, both pore space and cement phase show identical size distributions. On the contrary, the anhydrite cement of a

  17. Insight into Resolution Enhancement in Generalized Two-Dimensional Correlation Spectroscopy

    OpenAIRE

    Ma, Lu; Sikirzhytski, Vitali; Hong, Zhenmin; Lednev, Igor K.; Asher, Sanford A.

    2013-01-01

    Generalized two-dimensional correlation spectroscopy (2D COS) can be used to enhance spectral resolution in order to help differentiate highly overlapped spectral bands. Despite the numerous extensive 2D COS investigations, the origin of the 2D spectral resolution enhancement mechanism(s) are not completely understood. In the work here we studied the 2D COS of simulated spectra in order to develop new insights into the dependence of the 2D COS spectral features on the overlapping band separat...

  18. Preliminary report on the development of a high resolution PET camera using semiconductor detectors

    International Nuclear Information System (INIS)

    Kikuchi, Yohei; Ishii, Keizo; Yamazaki, Hiromichi; Matsuyama, Shigeo; Yamaguchi, Takashi; Yamamoto, Yusuke; Sato, Takemi; Aoki, Yasushi; Aoki, Kenichi

    2005-01-01

    We are developing a PET camera using small semiconductor detectors, whose resolution is equivalent to the physical limit of spatial resolution. First, a coincidence system of 16 Schottky CdTe detectors of 0.5 mm width obtained a resolution of <1 mm and it was confirmed that the Schottky CdTe detector is suitable for high resolution PET. Next, the performance of a pair of 32 channel CdTe arrays (1.2 mm width per channel) was investigated for the development of the prototype of high resolution PET. The time resolution between opposing detector pair was 13 ns (FWHM) when high voltage (700 V) was applied. The image of a 0.6 mm diameter point source was obtained in an experiment with opposing detector arrays using four channels, indicating that, a higher resolution can be achieved with the 32 channel CdTe array

  19. High-resolution coherent three-dimensional spectroscopy of Br2.

    Science.gov (United States)

    Chen, Peter C; Wells, Thresa A; Strangfeld, Benjamin R

    2013-07-25

    In the past, high-resolution spectroscopy has been limited to small, simple molecules that yield relatively uncongested spectra. Larger and more complex molecules have a higher density of peaks and are susceptible to complications (e.g., effects from conical intersections) that can obscure the patterns needed to resolve and assign peaks. Recently, high-resolution coherent two-dimensional (2D) spectroscopy has been used to resolve and sort peaks into easily identifiable patterns for molecules where pattern-recognition has been difficult. For very highly congested spectra, however, the ability to resolve peaks using coherent 2D spectroscopy is limited by the bandwidth of instrumentation. In this article, we introduce and investigate high-resolution coherent three-dimensional spectroscopy (HRC3D) as a method for dealing with heavily congested systems. The resulting patterns are unlike those in high-resolution coherent 2D spectra. Analysis of HRC3D spectra could provide a means for exploring the spectroscopy of large and complex molecules that have previously been considered too difficult to study.

  20. A 3D Finite Element Model with Improved Spatial Resolution to Investigate the Effect of Varying Viscosity on Antarctica

    Science.gov (United States)

    Blank, B.; van der Wal, W.; Pappa, F.; Ebbing, J.

    2017-12-01

    B. Blank1, H. Hu1, W. van der Wal1, F Pappa2, J. Ebbing21Delft University of Technology 2Christian-Albrechts-University of KielSince the beginning of the 2000's time-variable gravity data from GRACE has proved to be an effective method for mapping ice mass loss in Antarctica. However, Glacial Isostatic Adjustment (GIA) models are required to correct for GIA induced mass changes. While most GIA models have adopted an Earth model that only varies radially in parameters, it has long been clear that the Earth structure also varies with longitude and latitude. For this study a new global 3D GIA model has been developed within the finite element software package ABAQUS, which can be modified to operate on a spatial resolution down to 50 km locally. The model is being benchmarked against normal model models for surface loading. It will be used to investigate the effects of a 3D varying lithosphere and upper asthenosphere in Antarctica. Viscosity which will be computed from temperature estimates with laboratory based flow laws. A new 3D temperature map of the Antarctic lithosphere has been developed within ESA's GOCE+ project based on seismic data as well as on GOCE and GRACE inferred gravity gradients. Output from the GIA model with this new temperature estimates will be compared to that of 1D viscosity profiles and other recent 3D viscosity models based on seismic data. From these side to side comparisons we want to investigate the influence of the viscosity map on uplift rates and horizontal movement. Finally the results can be compared to GPS measurement to investigate the validity of all models.

  1. A high resolution ion microscope for cold atoms

    International Nuclear Information System (INIS)

    Stecker, Markus; Schefzyk, Hannah; Fortágh, József; Günther, Andreas

    2017-01-01

    We report on an ion-optical system that serves as a microscope for ultracold ground state and Rydberg atoms. The system is designed to achieve a magnification of up to 1000 and a spatial resolution in the 100 nm range, thereby surpassing many standard imaging techniques for cold atoms. The microscope consists of four electrostatic lenses and a microchannel plate in conjunction with a delay line detector in order to achieve single particle sensitivity with high temporal and spatial resolution. We describe the design process of the microscope including ion-optical simulations of the imaging system and characterize aberrations and the resolution limit. Furthermore, we present the experimental realization of the microscope in a cold atom setup and investigate its performance by patterned ionization with a structure size down to 2.7 μ m. The microscope meets the requirements for studying various many-body effects, ranging from correlations in cold quantum gases up to Rydberg molecule formation. (paper)

  2. High-Resolution Geologic Mapping of Martian Terraced Fan Deposits

    Science.gov (United States)

    Wolak, J. M.; Patterson, A. B.; Smith, S. D.; Robbins, N. N.

    2018-06-01

    This abstract documents our initial progress (year 1) mapping terraced fan features on Mars. Our objective is to investigate the role of fluids during fan formation and produce the first high-resolution geologic map (1:18k) of a terraced fan.

  3. Resolution on the program energy-climate; Resolution sur le paquet energie-climat

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    This document presents the resolutions proposed in the resolution proposition n. 1261 and concerning the european Commission program on the energy policies and the climate change. Twelve resolution are presented on the energy sources development, the energy efficiency, the energy economy and the carbon taxes. (A.L.B.)

  4. Monocytes/Macrophages Control Resolution of Transient Inflammatory Pain

    Science.gov (United States)

    Willemen, Hanneke L. D. M.; Eijkelkamp, Niels; Carbajal, Anibal Garza; Wang, Huijing; Mack, Matthias; Zijlstra, Jitske; Heijnen, Cobi J.; Kavelaars, Annemieke

    2014-01-01

    Insights into mechanisms governing resolution of inflammatory pain are of great importance for many chronic pain–associated diseases. Here we investigate the role of macrophages/monocytes and the anti-inflammatory cytokine interleukin-10 (IL-10) in the resolution of transient inflammatory pain. Depletion of mice from peripheral monocytes/macrophages delayed resolution of intraplantar IL-1β- and carrageenan-induced inflammatory hyperalgesia from 1 to 3 days to >1 week. Intrathecal administration of a neutralizing IL-10 antibody also markedly delayed resolution of IL-1β- and carrageenan-induced inflammatory hyperalgesia. Recently, we showed that IL-1β- and carrageenan-induced hyperalgesia is significantly prolonged in LysM-GRK2+/− mice, which have reduced levels of G-protein-coupled receptor kinase 2 (GRK2) in LysM+ myeloid cells. Here we show that adoptive transfer of wild-type, but not of GRK2+/−, bone marrow-derived monocytes normalizes the resolution of IL-1β-induced hyperalgesia in LysM-GRK2+/− mice. Adoptive transfer of IL-10−/− bone marrow-derived monocytes failed to normalize the duration of IL-1β-induced hyperalgesia in LysM-GRK2+/− mice. Mechanistically, we show that GRK2+/− macrophages produce less IL-10 in vitro. In addition, intrathecal IL-10 administration attenuated IL-1β-induced hyperalgesia in LysM-GRK2+/− mice, whereas it had no effect in wild-type mice. Our data uncover a key role for monocytes/macrophages in promoting resolution of inflammatory hyperalgesia via a mechanism dependent on IL-10 signaling in dorsal root ganglia. Perspective We show that IL-10-producing monocytes/macrophages promote resolution of transient inflammatory hyperalgesia. Additionally, we show that reduced monocyte/macrophage GRK2 impairs resolution of hyperalgesia and reduces IL-10 production. We propose that low GRK2 expression and/or impaired IL-10 production by monocytes/macrophages represent peripheral biomarkers for the risk of developing

  5. Single-photon semiconductor photodiodes for distributed optical fiber sensors: state of the art and perspectives

    Science.gov (United States)

    Ripamonti, Giancarlo; Lacaita, Andrea L.

    1993-03-01

    The extreme sensitivity and time resolution of Geiger-mode avalanche photodiodes (GM- APDs) have already been exploited for optical time domain reflectometry (OTDR). Better than 1 cm spatial resolution in Rayleigh scattering detection was demonstrated. Distributed and quasi-distributed optical fiber sensors can take advantage of the capabilities of GM-APDs. Extensive studies have recently disclosed the main characteristics and limitations of silicon devices, both commercially available and developmental. In this paper we report an analysis of the performance of these detectors. The main characteristics of GM-APDs of interest for distributed optical fiber sensors are briefly reviewed. Command electronics (active quenching) is then introduced. The detector timing performance sets the maximum spatial resolution in experiments employing OTDR techniques. We highlight that the achievable time resolution depends on the physics of the avalanche spreading over the device area. On the basis of these results, trade-off between the important parameters (quantum efficiency, time resolution, background noise, and afterpulsing effects) is considered. Finally, we show first results on Germanium devices, capable of single photon sensitivity at 1.3 and 1.5 micrometers with sub- nanosecond time resolution.

  6. Defect of focus in two-line resolution with Hanning amplitude filters

    Science.gov (United States)

    Karunasagar, D.; Bhikshamaiah, G.; Keshavulu Goud, M.; Lacha Goud, S.

    In the presence of defocusing the modified Sparrow limits of resolution for two-line objects have been investigated for a diffraction-limited coherent optical system apodized by generalized Hanning amplitude filters. These limits have been studied as a function of different parameters such as intensity ratio, the order of the filter for various amounts of apodization parameter. Results reveal that in some situations the defocusing is effective in enhancing the resolution of an optical system.

  7. Network structure underlying resolution of conflicting non-verbal and verbal social information.

    Science.gov (United States)

    Watanabe, Takamitsu; Yahata, Noriaki; Kawakubo, Yuki; Inoue, Hideyuki; Takano, Yosuke; Iwashiro, Norichika; Natsubori, Tatsunobu; Takao, Hidemasa; Sasaki, Hiroki; Gonoi, Wataru; Murakami, Mizuho; Katsura, Masaki; Kunimatsu, Akira; Abe, Osamu; Kasai, Kiyoto; Yamasue, Hidenori

    2014-06-01

    Social judgments often require resolution of incongruity in communication contents. Although previous studies revealed that such conflict resolution recruits brain regions including the medial prefrontal cortex (mPFC) and posterior inferior frontal gyrus (pIFG), functional relationships and networks among these regions remain unclear. In this functional magnetic resonance imaging study, we investigated the functional dissociation and networks by measuring human brain activity during resolving incongruity between verbal and non-verbal emotional contents. First, we found that the conflict resolutions biased by the non-verbal contents activated the posterior dorsal mPFC (post-dmPFC), bilateral anterior insula (AI) and right dorsal pIFG, whereas the resolutions biased by the verbal contents activated the bilateral ventral pIFG. In contrast, the anterior dmPFC (ant-dmPFC), bilateral superior temporal sulcus and fusiform gyrus were commonly involved in both of the resolutions. Second, we found that the post-dmPFC and right ventral pIFG were hub regions in networks underlying the non-verbal- and verbal-content-biased resolutions, respectively. Finally, we revealed that these resolution-type-specific networks were bridged by the ant-dmPFC, which was recruited for the conflict resolutions earlier than the two hub regions. These findings suggest that, in social conflict resolutions, the ant-dmPFC selectively recruits one of the resolution-type-specific networks through its interaction with resolution-type-specific hub regions. © The Author (2013). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  8. Distributed Temperature and Strain Discrimination with Stimulated Brillouin Scattering and Rayleigh Backscatter in an Optical Fiber

    Directory of Open Access Journals (Sweden)

    Xiaoyi Bao

    2013-01-01

    Full Text Available A distributed optical fiber sensor with the capability of simultaneously measuring temperature and strain is proposed using a large effective area non-zero dispersion shifted fiber (LEAF with sub-meter spatial resolution. The Brillouin frequency shift is measured using Brillouin optical time-domain analysis (BOTDA with differential pulse-width pair technique, while the spectrum shift of the Rayleigh backscatter is measured using optical frequency-domain reflectometry (OFDR. These shifts are the functions of both temperature and strain, and can be used as two independent parameters for the discrimination of temperature and strain. A 92 m measurable range with the spatial resolution of 50 cm is demonstrated experimentally, and accuracies of ±1.2 °C in temperature and ±15 με in strain could be achieved.

  9. Energy resolution limitations in a gas scintillation proportional counter

    International Nuclear Information System (INIS)

    Simons, D.G.; de Korte, P.A.J.; Peacock, A.; Bleeker, J.A.M.

    1985-01-01

    An investigation is made of the factors limiting the energy resolution of a gas scintillation proportional counter (GSPC). Several of these limitations originate in the drift region of such a counter and data is presented, giving a quantitative description of those effects. Data is also presented of a GSPC without a drift region, that therefore largely circumvents most of those degrading factors. The results obtained so far indicate that in that detector the limitation to the resolution is most probably due to cleanliness of the gas. Further research is underway in order to assess quantitatively the limiting factors in such a driftless GSPC

  10. Improvement of Water Movement in an Undulating Sandy Soil Prone to Water Repellency

    NARCIS (Netherlands)

    Oostindie, K.; Dekker, L.W.; Wesseling, J.G.; Ritsema, C.J.

    2011-01-01

    The temporal dynamics of water repellency in soils strongly influence water flow. We investigated the variability of soil water content in a slight slope on a sandy fairway exhibiting water-repellent behavior. A time domain reflectometry (TDR) array of 60 probes measured water contents at 3-h

  11. THz reflectometric imaging of medieval wall paintings

    DEFF Research Database (Denmark)

    Dandolo, Corinna Ludovica Koch; Jepsen, Peter Uhd

    2013-01-01

    Terahertz time-domain reflectometry has been applied to the investigation of a medieval Danish wall painting. The technique has been able to detect the presence of carbonblack layer on the surface of the wall painting and a buried insertion characterized by high reflectivity values has been found...

  12. Neutron scattering. Lectures

    Energy Technology Data Exchange (ETDEWEB)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner [eds.

    2010-07-01

    The following topics are dealt with: Neutron sources, symmetry of crystals, diffraction, nanostructures investigated by small-angle neutron scattering, the structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic scattering, strongly correlated electrons, dynamics of macromolecules, applications of neutron scattering. (HSI)

  13. Neutron scattering. Lectures

    International Nuclear Information System (INIS)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner

    2010-01-01

    The following topics are dealt with: Neutron sources, symmetry of crystals, diffraction, nanostructures investigated by small-angle neutron scattering, the structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic scattering, strongly correlated electrons, dynamics of macromolecules, applications of neutron scattering. (HSI)

  14. Improving depth resolutions in positron beam spectroscopy by concurrent ion-beam sputtering

    Science.gov (United States)

    John, Marco; Dalla, Ayham; Ibrahim, Alaa M.; Anwand, Wolfgang; Wagner, Andreas; Böttger, Roman; Krause-Rehberg, Reinhard

    2018-05-01

    The depth resolution of mono-energetic positron annihilation spectroscopy using a positron beam is shown to improve by concurrently removing the sample surface layer during positron beam spectroscopy. During ion-beam sputtering with argon ions, Doppler-broadening spectroscopy is performed with energies ranging from 3 keV to 5 keV allowing for high-resolution defect studies just below the sputtered surface. With this technique, significantly improved depth resolutions could be obtained even at larger depths when compared to standard positron beam experiments which suffer from extended positron implantation profiles at higher positron energies. Our results show that it is possible to investigate layered structures with a thickness of about 4 microns with significantly improved depth resolution. We demonstrated that a purposely generated ion-beam induced defect profile in a silicon sample could be resolved employing the new technique. A depth resolution of less than 100 nm could be reached.

  15. Using Polarized Spectroscopy to Investigate Order in Thin-Films of Ionic Self-Assembled Materials Based on Azo-Dyes

    Science.gov (United States)

    Ahmad, Mariam; Andersen, Frederik; Brend Bech, Ári; Bendixen, H. Krestian L.; Nawrocki, Patrick R.; Bloch, Anders J.; Bora, Ilkay; Bukhari, Tahreem A.; Bærentsen, Nicolai V.; Carstensen, Jens; Chima, Smeeah; Colberg, Helene; Dahm, Rasmus T.; Daniels, Joshua A.; Dinckan, Nermin; El Idrissi, Mohamed; Erlandsen, Ricci; Førster, Marc; Ghauri, Yasmin; Gold, Mikkel; Hansen, Andreas; Hansen, Kenn; Helmsøe-Zinck, Mathias; Henriksen, Mathias; Hoffmann, Sophus V.; Hyllested, Louise O. H.; Jensen, Casper; Kallenbach, Amalie S.; Kaur, Kirandip; Khan, Suheb R.; Kjær, Emil T. S.; Kristiansen, Bjørn; Langvad, Sylvester; Lund, Philip M.; Munk, Chastine F.; Møller, Theis; Nehme, Ola M. Z.; Nejrup, Mathilde Rove; Nexø, Louise; Nielsen, Simon Skødt Holm; Niemeier, Nicolai; Nikolajsen, Lasse V.; Nøhr, Peter C. T.; Skaarup Ovesen, Jacob; Paustian, Lucas; Pedersen, Adam S.; Petersen, Mathias K.; Poulsen, Camilla M.; Praeger-Jahnsen, Louis; Qureshi, L. Sonia; Schiermacher, Louise S.; Simris, Martin B.; Smith, Gorm; Smith, Heidi N.; Sonne, Alexander K.; Zenulovic, Marko R.; Winther Sørensen, Alma; Vogt, Emil; Væring, Andreas; Westermann, Jonas; Özcan, Sevin B.

    2018-01-01

    Three series of ionic self-assembled materials based on anionic azo-dyes and cationic benzalkonium surfactants were synthesized and thin films were prepared by spin-casting. These thin films appear isotropic when investigated with polarized optical microscopy, although they are highly anisotropic. Here, three series of homologous materials were studied to rationalize this observation. Investigating thin films of ordered molecular materials relies to a large extent on advanced experimental methods and large research infrastructure. A statement that in particular is true for thin films with nanoscopic order, where X-ray reflectometry, X-ray and neutron scattering, electron microscopy and atom force microscopy (AFM) has to be used to elucidate film morphology and the underlying molecular structure. Here, the thin films were investigated using AFM, optical microscopy and polarized absorption spectroscopy. It was shown that by using numerical method for treating the polarized absorption spectroscopy data, the molecular structure can be elucidated. Further, it was shown that polarized optical spectroscopy is a general tool that allows determination of the molecular order in thin films. Finally, it was found that full control of thermal history and rigorous control of the ionic self-assembly conditions are required to reproducibly make these materials of high nanoscopic order. Similarly, the conditions for spin-casting are shown to be determining for the overall thin film morphology, while molecular order is maintained. PMID:29462883

  16. Using Polarized Spectroscopy to Investigate Order in Thin-Films of Ionic Self-Assembled Materials Based on Azo-Dyes

    Directory of Open Access Journals (Sweden)

    Miguel R. Carro-Temboury Martin Kühnel

    2018-02-01

    Full Text Available Three series of ionic self-assembled materials based on anionic azo-dyes and cationic benzalkonium surfactants were synthesized and thin films were prepared by spin-casting. These thin films appear isotropic when investigated with polarized optical microscopy, although they are highly anisotropic. Here, three series of homologous materials were studied to rationalize this observation. Investigating thin films of ordered molecular materials relies to a large extent on advanced experimental methods and large research infrastructure. A statement that in particular is true for thin films with nanoscopic order, where X-ray reflectometry, X-ray and neutron scattering, electron microscopy and atom force microscopy (AFM has to be used to elucidate film morphology and the underlying molecular structure. Here, the thin films were investigated using AFM, optical microscopy and polarized absorption spectroscopy. It was shown that by using numerical method for treating the polarized absorption spectroscopy data, the molecular structure can be elucidated. Further, it was shown that polarized optical spectroscopy is a general tool that allows determination of the molecular order in thin films. Finally, it was found that full control of thermal history and rigorous control of the ionic self-assembly conditions are required to reproducibly make these materials of high nanoscopic order. Similarly, the conditions for spin-casting are shown to be determining for the overall thin film morphology, while molecular order is maintained.

  17. Using Polarized Spectroscopy to Investigate Order in Thin-Films of Ionic Self-Assembled Materials Based on Azo-Dyes.

    Science.gov (United States)

    Kühnel, Miguel R Carro-Temboury Martin; Ahmad, Mariam; Andersen, Frederik; Bech, Ári Brend; Bendixen, H Krestian L; Nawrocki, Patrick R; Bloch, Anders J; Bora, Ilkay; Bukhari, Tahreem A; Bærentsen, Nicolai V; Carstensen, Jens; Chima, Smeeah; Colberg, Helene; Dahm, Rasmus T; Daniels, Joshua A; Dinckan, Nermin; Idrissi, Mohamed El; Erlandsen, Ricci; Førster, Marc; Ghauri, Yasmin; Gold, Mikkel; Hansen, Andreas; Hansen, Kenn; Helmsøe-Zinck, Mathias; Henriksen, Mathias; Hoffmann, Sophus V; Hyllested, Louise O H; Jensen, Casper; Kallenbach, Amalie S; Kaur, Kirandip; Khan, Suheb R; Kjær, Emil T S; Kristiansen, Bjørn; Langvad, Sylvester; Lund, Philip M; Munk, Chastine F; Møller, Theis; Nehme, Ola M Z; Nejrup, Mathilde Rove; Nexø, Louise; Nielsen, Simon Skødt Holm; Niemeier, Nicolai; Nikolajsen, Lasse V; Nøhr, Peter C T; Orlowski, Dominik B; Overgaard, Marc; Ovesen, Jacob Skaarup; Paustian, Lucas; Pedersen, Adam S; Petersen, Mathias K; Poulsen, Camilla M; Praeger-Jahnsen, Louis; Qureshi, L Sonia; Ree, Nicolai; Schiermacher, Louise S; Simris, Martin B; Smith, Gorm; Smith, Heidi N; Sonne, Alexander K; Zenulovic, Marko R; Sørensen, Alma Winther; Sørensen, Karina; Vogt, Emil; Væring, Andreas; Westermann, Jonas; Özcan, Sevin B; Sørensen, Thomas Just

    2018-02-15

    Three series of ionic self-assembled materials based on anionic azo-dyes and cationic benzalkonium surfactants were synthesized and thin films were prepared by spin-casting. These thin films appear isotropic when investigated with polarized optical microscopy, although they are highly anisotropic. Here, three series of homologous materials were studied to rationalize this observation. Investigating thin films of ordered molecular materials relies to a large extent on advanced experimental methods and large research infrastructure. A statement that in particular is true for thin films with nanoscopic order, where X-ray reflectometry, X-ray and neutron scattering, electron microscopy and atom force microscopy (AFM) has to be used to elucidate film morphology and the underlying molecular structure. Here, the thin films were investigated using AFM, optical microscopy and polarized absorption spectroscopy. It was shown that by using numerical method for treating the polarized absorption spectroscopy data, the molecular structure can be elucidated. Further, it was shown that polarized optical spectroscopy is a general tool that allows determination of the molecular order in thin films. Finally, it was found that full control of thermal history and rigorous control of the ionic self-assembly conditions are required to reproducibly make these materials of high nanoscopic order. Similarly, the conditions for spin-casting are shown to be determining for the overall thin film morphology, while molecular order is maintained.

  18. Coupling of convection and circulation at various resolutions

    Directory of Open Access Journals (Sweden)

    Cathy Hohenegger

    2015-03-01

    Full Text Available A correct representation of the coupling between convection and circulation constitutes a prerequisite for a correct representation of precipitation at all scales. In this study, the coupling between convection and a sea breeze is investigated across three main resolutions: large-eddy resolution where convection is fully explicit, convection-permitting resolution where convection is partly explicit and coarse resolution where convection is parameterised. The considered models are the UCLA-LES, COSMO and ICON. Despite the use of prescribed surface fluxes, comparison of the simulations reveals that typical biases associated with a misrepresentation of convection at convection-permitting and coarser resolutions significantly alter the characteristics of the sea breeze. The coarse-resolution simulations integrated without convective parameterisation and the convection-permitting simulations simulate a too slow propagation of the breeze front as compared to the large-eddy simulations. From the various factors affecting the propagation, a delayed onset and intensification of cold pools primarily explains the differences. This is a direct consequence of a delayed development of convection when the grid spacing is coarsened. Scaling the time the sea breeze reaches the centre of the land patch by the time precipitation exceeds 2 mm day−1, used as a measure for significant evaporation, yields a collapse of the simulations onto a simple linear relationship although subtle differences remain due to the use of different turbulence and microphysical schemes. Turning on the convection scheme significantly disrupts the propagation of the sea breeze due to a misrepresented timing (too early triggering and magnitude (too strong precipitation evaporation in one of the tested convection schemes of the convective processes.

  19. A Virtual Study of Grid Resolution on Experiments of a Highly-Resolved Turbulent Plume

    Science.gov (United States)

    Maisto, Pietro M. F.; Marshall, Andre W.; Gollner, Michael J.; Fire Protection Engineering Department Collaboration

    2017-11-01

    An accurate representation of sub-grid scale turbulent mixing is critical for modeling fire plumes and smoke transport. In this study, PLIF and PIV diagnostics are used with the saltwater modeling technique to provide highly-resolved instantaneous field measurements in unconfined turbulent plumes useful for statistical analysis, physical insight, and model validation. The effect of resolution was investigated employing a virtual interrogation window (of varying size) applied to the high-resolution field measurements. Motivated by LES low-pass filtering concepts, the high-resolution experimental data in this study can be analyzed within the interrogation windows (i.e. statistics at the sub-grid scale) and on interrogation windows (i.e. statistics at the resolved scale). A dimensionless resolution threshold (L/D*) criterion was determined to achieve converged statistics on the filtered measurements. Such a criterion was then used to establish the relative importance between large and small-scale turbulence phenomena while investigating specific scales for the turbulent flow. First order data sets start to collapse at a resolution of 0.3D*, while for second and higher order statistical moments the interrogation window size drops down to 0.2D*.

  20. Kinetic resolution of α-bromoamides: Experimental and theoretical investigation of highly enantioselective reactions catalyzed by haloalkane dehalogenases

    NARCIS (Netherlands)

    Westerbeek, Alja; Szymanski, Wiktor; Wijma, Hein J.; Marrink, Siewert; Feringa, Ben L.; Janssen, Dick B.

    2011-01-01

    Haloalkane dehalogenases from five sources were heterologously expressed in Escherichia coli, isolated, and tested for their ability to achieve kinetic resolution of racemic alpha-bromoamides, which are important intermediates used in the preparation of bioactive compounds. To explore the substrate