WorldWideScience

Sample records for resolution modelling emission

  1. Quantifying the impacts of landscape heterogeneity and model resolution on dust emissions in the Arabian Peninsula

    KAUST Repository

    Shi, Mingjie; Yang, Zong-Liang; Stenchikov, Georgiy L.; Parajuli, Sagar P.; Tao, Weichun; Kalenderski, Stoitchko

    2016-01-01

    This study evaluates the spatiotemporal variability of dust emission in the Arabian Peninsula and quantifies the emission sensitivity to the land-cover heterogeneity by using the Community Land Model version 4 (CLM43) at three different spatial resolutions. The land-cover heterogeneity is represented by the CLM4-default plant function types (PFTs) and the Moderate Resolution Imaging Spectroradiometer (MODIS) land cover types, respectively, at different grids. We area-average surface vegetation data and use the default nearest neighbor method to interpolate meteorological variables. We find that using MODIS data leads to a slightly higher coverage of vegetated land than the default PFT data; the former also gives more dust emission than the latter at 25- and 50-km grids as the default PFT data have more gridcells favoring less dust emission. The research highlights the importance of using proper data-processing methods or dust emission thresholds to preserve the dust emission accuracy in land models. © 2016 Elsevier Ltd.

  2. Quantifying the impacts of landscape heterogeneity and model resolution on dust emissions in the Arabian Peninsula

    KAUST Repository

    Shi, Mingjie

    2016-01-11

    This study evaluates the spatiotemporal variability of dust emission in the Arabian Peninsula and quantifies the emission sensitivity to the land-cover heterogeneity by using the Community Land Model version 4 (CLM43) at three different spatial resolutions. The land-cover heterogeneity is represented by the CLM4-default plant function types (PFTs) and the Moderate Resolution Imaging Spectroradiometer (MODIS) land cover types, respectively, at different grids. We area-average surface vegetation data and use the default nearest neighbor method to interpolate meteorological variables. We find that using MODIS data leads to a slightly higher coverage of vegetated land than the default PFT data; the former also gives more dust emission than the latter at 25- and 50-km grids as the default PFT data have more gridcells favoring less dust emission. The research highlights the importance of using proper data-processing methods or dust emission thresholds to preserve the dust emission accuracy in land models. © 2016 Elsevier Ltd.

  3. Modeled Full-Flight Aircraft Emissions Impacts on Air Quality and Their Sensitivity to Grid Resolution

    Science.gov (United States)

    Vennam, L. P.; Vizuete, W.; Talgo, K.; Omary, M.; Binkowski, F. S.; Xing, J.; Mathur, R.; Arunachalam, S.

    2018-01-01

    Aviation is a unique anthropogenic source with four-dimensional varying emissions, peaking at cruise altitudes (9–12 km). Aircraft emission budgets in the upper troposphere lower stratosphere region and their potential impacts on upper troposphere and surface air quality are not well understood. Our key objective is to use chemical transport models (with prescribed meteorology) to predict aircraft emissions impacts on the troposphere and surface air quality. We quantified the importance of including full-flight intercontinental emissions and increased horizontal grid resolution. The full-flight aviation emissions in the Northern Hemisphere contributed ~1.3% (mean, min–max: 0.46, 0.3–0.5 ppbv) and 0.2% (0.013, 0.004–0.02 μg/m3) of total O3 and PM2.5 concentrations at the surface, with Europe showing slightly higher impacts (1.9% (O3 0.69, 0.5–0.85 ppbv) and 0.5% (PM2.5 0.03, 0.01–0.05 μg/m3)) than North America (NA) and East Asia. We computed seasonal aviation-attributable mass flux vertical profiles and aviation perturbations along isentropic surfaces to quantify the transport of cruise altitude emissions at the hemispheric scale. The comparison of coarse (108 × 108 km2) and fine (36 × 36 km2) grid resolutions in NA showed ~70 times and ~13 times higher aviation impacts for O3 and PM2.5 in coarser domain. These differences are mainly due to the inability of the coarse resolution simulation to capture nonlinearities in chemical processes near airport locations and other urban areas. Future global studies quantifying aircraft contributions should consider model resolution and perhaps use finer scales near major aviation source regions. PMID:29707471

  4. Modeled Full-Flight Aircraft Emissions Impacts on Air Quality and Their Sensitivity to Grid Resolution

    Science.gov (United States)

    Vennam, L. P.; Vizuete, W.; Talgo, K.; Omary, M.; Binkowski, F. S.; Xing, J.; Mathur, R.; Arunachalam, S.

    2017-12-01

    Aviation is a unique anthropogenic source with four-dimensional varying emissions, peaking at cruise altitudes (9-12 km). Aircraft emission budgets in the upper troposphere lower stratosphere region and their potential impacts on upper troposphere and surface air quality are not well understood. Our key objective is to use chemical transport models (with prescribed meteorology) to predict aircraft emissions impacts on the troposphere and surface air quality. We quantified the importance of including full-flight intercontinental emissions and increased horizontal grid resolution. The full-flight aviation emissions in the Northern Hemisphere contributed 1.3% (mean, min-max: 0.46, 0.3-0.5 ppbv) and 0.2% (0.013, 0.004-0.02 μg/m3) of total O3 and PM2.5 concentrations at the surface, with Europe showing slightly higher impacts (1.9% (O3 0.69, 0.5-0.85 ppbv) and 0.5% (PM2.5 0.03, 0.01-0.05 μg/m3)) than North America (NA) and East Asia. We computed seasonal aviation-attributable mass flux vertical profiles and aviation perturbations along isentropic surfaces to quantify the transport of cruise altitude emissions at the hemispheric scale. The comparison of coarse (108 × 108 km2) and fine (36 × 36 km2) grid resolutions in NA showed 70 times and 13 times higher aviation impacts for O3 and PM2.5 in coarser domain. These differences are mainly due to the inability of the coarse resolution simulation to capture nonlinearities in chemical processes near airport locations and other urban areas. Future global studies quantifying aircraft contributions should consider model resolution and perhaps use finer scales near major aviation source regions.

  5. A non-LTE model for the Jovian methane infrared emissions at high spectral resolution

    Science.gov (United States)

    Halthore, Rangasayi N.; Allen, J. E., Jr.; Decola, Philip L.

    1994-01-01

    High resolution spectra of Jupiter in the 3.3 micrometer region have so far failed to reveal either the continuum or the line emissions that can be unambiguously attributed to the nu(sub 3) band of methane (Drossart et al. 1993; Kim et al. 1991). Nu(sub 3) line intensities predicted with the help of two simple non-Local Thermodynamic Equilibrium (LTE) models -- a two-level model and a three-level model, using experimentally determined relaxation coefficients, are shown to be one to three orders of magnitude respectively below the 3-sigma noise level of these observations. Predicted nu(sub 4) emission intensities are consistent with observed values. If the methane mixing ratio below the homopause is assumed as 2 x 10(exp -3), a value of about 300 K is derived as an upper limit to the temperature of the high stratosphere at microbar levels.

  6. Los Angeles megacity: a high-resolution land–atmosphere modelling system for urban CO2 emissions

    Directory of Open Access Journals (Sweden)

    S. Feng

    2016-07-01

    Full Text Available Megacities are major sources of anthropogenic fossil fuel CO2 (FFCO2 emissions. The spatial extents of these large urban systems cover areas of 10 000 km2 or more with complex topography and changing landscapes. We present a high-resolution land–atmosphere modelling system for urban CO2 emissions over the Los Angeles (LA megacity area. The Weather Research and Forecasting (WRF-Chem model was coupled to a very high-resolution FFCO2 emission product, Hestia-LA, to simulate atmospheric CO2 concentrations across the LA megacity at spatial resolutions as fine as  ∼  1 km. We evaluated multiple WRF configurations, selecting one that minimized errors in wind speed, wind direction, and boundary layer height as evaluated by its performance against meteorological data collected during the CalNex-LA campaign (May–June 2010. Our results show no significant difference between moderate-resolution (4 km and high-resolution (1.3 km simulations when evaluated against surface meteorological data, but the high-resolution configurations better resolved planetary boundary layer heights and vertical gradients in the horizontal mean winds. We coupled our WRF configuration with the Vulcan 2.2 (10 km resolution and Hestia-LA (1.3 km resolution fossil fuel CO2 emission products to evaluate the impact of the spatial resolution of the CO2 emission products and the meteorological transport model on the representation of spatiotemporal variability in simulated atmospheric CO2 concentrations. We find that high spatial resolution in the fossil fuel CO2 emissions is more important than in the atmospheric model to capture CO2 concentration variability across the LA megacity. Finally, we present a novel approach that employs simultaneous correlations of the simulated atmospheric CO2 fields to qualitatively evaluate the greenhouse gas measurement network over the LA megacity. Spatial correlations in the atmospheric CO2 fields reflect the coverage of

  7. High resolution measurements and modeling of auroral hydrogen emission line profiles

    Directory of Open Access Journals (Sweden)

    B. S. Lanchester

    Full Text Available Measurements in the visible wavelength range at high spectral resolution (1.3 Å have been made at Longyearbyen, Svalbard (15.8 E,78.2 N during an interval of intense proton precipitation. The shape and Doppler shift of hydrogen Balmer beta line profiles have been compared with model line profiles, using as input ion energy spectra from almost coincident passes of the FAST and DMSP spacecraft. The comparison shows that the simulation contains the important physical processes that produce the profiles, and confirms that measured changes in the shape and peak wave-length of the hydrogen profiles are the result of changing energy input. This combination of high resolution measurements with modeling provides a method of estimating the incoming energy and changes in flux of precipitating protons over Svalbard, for given energy and pitch-angle distributions. Whereas for electron precipitation, information on the incident particles is derived from brightness and brightness ratios which require at least two spectral windows, for proton precipitation the Doppler profile of resulting hydrogen emission is directly related to the energy and energy flux of the incident energetic protons and can be used to gather information about the source region. As well as the expected Doppler shift to shorter wavelengths, the measured profiles have a significant red-shifted component, the result of upward flowing emitting hydrogen atoms.

    Key words. Ionosphere (auroral ionosphere; particle precipitation – Magnetospheric physics (auroral phenomena

  8. High resolution measurements and modeling of auroral hydrogen emission line profiles

    Directory of Open Access Journals (Sweden)

    B. S. Lanchester

    2003-07-01

    Full Text Available Measurements in the visible wavelength range at high spectral resolution (1.3 Å have been made at Longyearbyen, Svalbard (15.8 E,78.2 N during an interval of intense proton precipitation. The shape and Doppler shift of hydrogen Balmer beta line profiles have been compared with model line profiles, using as input ion energy spectra from almost coincident passes of the FAST and DMSP spacecraft. The comparison shows that the simulation contains the important physical processes that produce the profiles, and confirms that measured changes in the shape and peak wave-length of the hydrogen profiles are the result of changing energy input. This combination of high resolution measurements with modeling provides a method of estimating the incoming energy and changes in flux of precipitating protons over Svalbard, for given energy and pitch-angle distributions. Whereas for electron precipitation, information on the incident particles is derived from brightness and brightness ratios which require at least two spectral windows, for proton precipitation the Doppler profile of resulting hydrogen emission is directly related to the energy and energy flux of the incident energetic protons and can be used to gather information about the source region. As well as the expected Doppler shift to shorter wavelengths, the measured profiles have a significant red-shifted component, the result of upward flowing emitting hydrogen atoms.Key words. Ionosphere (auroral ionosphere; particle precipitation – Magnetospheric physics (auroral phenomena

  9. On the influence of temporal and spatial resolution of aircraft emission inventories for mesoscale modeling of pollutant dispersion

    Energy Technology Data Exchange (ETDEWEB)

    Franzkowiak, V.; Petry, H.; Ebel, A. [Cologne Univ. (Germany). Inst. for Geophysics and Meteorology

    1997-12-31

    The sensitivity of a mesoscale chemistry transport model to the temporal and spatial resolution of aircraft emission inventories is evaluated. A statistical analysis of air traffic in the North-Atlantic flight corridor is carried out showing a highly variable, fine structured spatial distribution and a pronounced daily variation. Sensitivity studies comparing different emission scenarios reveal a strong dependency to the emission time and location of both transport and response in chemical formation of subsequent products. The introduction of a pronounced daily variation leads to a 30% higher ozone production in comparison to uniformly distributed emissions. (author) 9 refs.

  10. On the influence of temporal and spatial resolution of aircraft emission inventories for mesoscale modeling of pollutant dispersion

    Energy Technology Data Exchange (ETDEWEB)

    Franzkowiak, V; Petry, H; Ebel, A [Cologne Univ. (Germany). Inst. for Geophysics and Meteorology

    1998-12-31

    The sensitivity of a mesoscale chemistry transport model to the temporal and spatial resolution of aircraft emission inventories is evaluated. A statistical analysis of air traffic in the North-Atlantic flight corridor is carried out showing a highly variable, fine structured spatial distribution and a pronounced daily variation. Sensitivity studies comparing different emission scenarios reveal a strong dependency to the emission time and location of both transport and response in chemical formation of subsequent products. The introduction of a pronounced daily variation leads to a 30% higher ozone production in comparison to uniformly distributed emissions. (author) 9 refs.

  11. The Fire INventory from NCAR (FINN: a high resolution global model to estimate the emissions from open burning

    Directory of Open Access Journals (Sweden)

    C. Wiedinmyer

    2011-07-01

    Full Text Available The Fire INventory from NCAR version 1.0 (FINNv1 provides daily, 1 km resolution, global estimates of the trace gas and particle emissions from open burning of biomass, which includes wildfire, agricultural fires, and prescribed burning and does not include biofuel use and trash burning. Emission factors used in the calculations have been updated with recent data, particularly for the non-methane organic compounds (NMOC. The resulting global annual NMOC emission estimates are as much as a factor of 5 greater than some prior estimates. Chemical speciation profiles, necessary to allocate the total NMOC emission estimates to lumped species for use by chemical transport models, are provided for three widely used chemical mechanisms: SAPRC99, GEOS-CHEM, and MOZART-4. Using these profiles, FINNv1 also provides global estimates of key organic compounds, including formaldehyde and methanol. Uncertainties in the emissions estimates arise from several of the method steps. The use of fire hot spots, assumed area burned, land cover maps, biomass consumption estimates, and emission factors all introduce error into the model estimates. The uncertainty in the FINNv1 emission estimates are about a factor of two; but, the global estimates agree reasonably well with other global inventories of biomass burning emissions for CO, CO2, and other species with less variable emission factors. FINNv1 emission estimates have been developed specifically for modeling atmospheric chemistry and air quality in a consistent framework at scales from local to global. The product is unique because of the high temporal and spatial resolution, global coverage, and the number of species estimated. FINNv1 can be used for both hindcast and forecast or near-real time model applications and the results are being critically evaluated with models and observations whenever possible.

  12. Development of a high-resolution emission inventory and its evaluation and application through air quality modeling for Jiangsu Province, China

    Science.gov (United States)

    Zhao, Yu; Zhou, Yaduan; Mao, Pan; Zhang, Jie

    2017-04-01

    Improved emission inventories combining detailed source information are crucial for better understanding the atmospheric chemistry and effectively making emission control policies using air quality simulation, particularly at regional or local scales. With the downscaled inventories directly applied, chemical transport model might not be able to reproduce the authentic evolution of atmospheric pollution processes at small spatial scales. Using the bottom-up approach, a high-resolution emission inventory was developed for Jiangsu China, including SO2, NOx, CO, NH3, volatile organic compounds (VOCs), total suspended particulates (TSP), PM10, PM2.5, black carbon (BC), organic carbon (OC), and CO2. The key parameters relevant to emission estimation for over 6000 industrial sources were investigated, compiled and revised at plant level based on various data sources and on-site survey. As a result, the emission fractions of point sources were significantly elevated for most species. The improvement of this provincial inventory was evaluated through comparisons with other inventories at larger spatial scales, using satellite observation and air quality modeling. Compared to the downscaled Multi-resolution Emission Inventory for China (MEIC), the spatial distribution of NOX emissions in our provincial inventory was more consistent with summer tropospheric NO2 VCDs observed from OMI, particularly for the grids with moderate emission levels, implying the improved emission estimation for small and medium industrial plants by this work. Three inventories (national, regional, and provincial by this work) were applied in the Models-3/Community Multi-scale Air Quality (CMAQ) system for southern Jiangsu October 2012, to evaluate the model performances with different emission inputs. The best agreement between available ground observation and simulation was found when the provincial inventory was applied, indicated by the smallest normalized mean bias (NMB) and normalized mean

  13. Confirmation of Elevated Methane Emissions in Utah's Uintah Basin With Ground-Based Observations and a High-Resolution Transport Model

    Science.gov (United States)

    Foster, C. S.; Crosman, E. T.; Holland, L.; Mallia, D. V.; Fasoli, B.; Bares, R.; Horel, J.; Lin, J. C.

    2017-12-01

    Large CH4 leak rates have been observed in the Uintah Basin of eastern Utah, an area with over 10,000 active and producing natural gas and oil wells. In this paper, we model CH4 concentrations at four sites in the Uintah Basin and compare the simulated results to in situ observations at these sites during two spring time periods in 2015 and 2016. These sites include a baseline location (Fruitland), two sites near oil wells (Roosevelt and Castlepeak), and a site near natural gas wells (Horsepool). To interpret these measurements and relate observed CH4 variations to emissions, we carried out atmospheric simulations using the Stochastic Time-Inverted Lagrangian Transport model driven by meteorological fields simulated by the Weather Research and Forecasting and High Resolution Rapid Refresh models. These simulations were combined with two different emission inventories: (1) aircraft-derived basin-wide emissions allocated spatially using oil and gas well locations, from the National Oceanic and Atmospheric Administration (NOAA), and (2) a bottom-up inventory for the entire U.S., from the Environmental Protection Agency (EPA). At both Horsepool and Castlepeak, the diurnal cycle of modeled CH4 concentrations was captured using NOAA emission estimates but was underestimated using the EPA inventory. These findings corroborate emission estimates from the NOAA inventory, based on daytime mass balance estimates, and provide additional support for a suggested leak rate from the Uintah Basin that is higher than most other regions with natural gas and oil development.

  14. Using JPSS VIIRS Fire Radiative Power Data to Forecast Biomass Burning Emissions and Smoke Transport by the High Resolution Rapid Refresh Model

    Science.gov (United States)

    Ahmadov, R.; Grell, G. A.; James, E.; Alexander, C.; Stewart, J.; Benjamin, S.; McKeen, S. A.; Csiszar, I. A.; Tsidulko, M.; Pierce, R. B.; Pereira, G.; Freitas, S. R.; Goldberg, M.

    2017-12-01

    We present a new real-time smoke modeling system, the High Resolution Rapid Refresh coupled with smoke (HRRR-Smoke), to simulate biomass burning (BB) emissions, plume rise and smoke transport in real time. The HRRR is the NOAA Earth System Research Laboratory's 3km grid spacing version of the Weather Research and Forecasting (WRF) model used for weather forecasting. Here we make use of WRF-Chem (the WRF model coupled with chemistry) and simulate fine particulate matter (smoke) emissions emitted by BB. The HRRR-Smoke modeling system ingests fire radiative power (FRP) data from the Visible Infrared Imaging Radiometer Suite (VIIRS) sensor on the Suomi National Polar-orbiting Partnership (S-NPP) satellite to calculate BB emissions. The FRP product is based on processing 750m resolution "M" bands. The algorithms for fire detection and FRP retrieval are consistent with those used to generate the MODIS fire detection data. For the purpose of ingesting VIIRS fire data into the HRRR-Smoke model, text files are generated to provide the location and detection confidence of fire pixels, as well as FRP. The VIIRS FRP data from the text files are processed and remapped over the HRRR-Smoke model domains. We process the FRP data to calculate BB emissions (smoldering part) and fire size for the model input. In addition, HRRR-Smoke uses the FRP data to simulate the injection height for the flaming emissions using concurrently simulated meteorological fields by the model. Currently, there are two 3km resolution domains covering the contiguous US and Alaska which are used to simulate smoke in real time. In our presentation, we focus on the CONUS domain. HRRR-Smoke is initialized 4 times per day to forecast smoke concentrations for the next 36 hours. The VIIRS FRP data, as well as near-surface and vertically integrated smoke mass concentrations are visualized for every forecast hour. These plots are provided to the public via the HRRR-Smoke web-page: https

  15. Simulations of the transport and deposition of 137Cs over Europe after the Chernobyl NPP accident: influence of varying emission-altitude and model horizontal and vertical resolution

    Science.gov (United States)

    Evangeliou, N.; Balkanski, Y.; Cozic, A.; Møller, A. P.

    2013-03-01

    The coupled model LMDzORINCA has been used to simulate the transport, wet and dry deposition of the radioactive tracer 137Cs after accidental releases. For that reason, two horizontal resolutions were deployed and used in the model, a regular grid of 2.5°×1.25°, and the same grid stretched over Europe to reach a resolution of 0.45°×0.51°. The vertical dimension is represented with two different resolutions, 19 and 39 levels, respectively, extending up to mesopause. Four different simulations are presented in this work; the first uses the regular grid over 19 vertical levels assuming that the emissions took place at the surface (RG19L(S)), the second also uses the regular grid over 19 vertical levels but realistic source injection heights (RG19L); in the third resolution the grid is regular and the vertical resolution 39 vertical levels (RG39L) and finally, it is extended to the stretched grid with 19 vertical levels (Z19L). The best choice for the model validation was the Chernobyl accident which occurred in Ukraine (ex-USSR) on 26 May 1986. This accident has been widely studied since 1986, and a large database has been created containing measurements of atmospheric activity concentration and total cumulative deposition for 137Cs from most of the European countries. According to the results, the performance of the model to predict the transport and deposition of the radioactive tracer was efficient and accurate presenting low biases in activity concentrations and deposition inventories, despite the large uncertainties on the intensity of the source released. However, the best agreement with observations was obtained using the highest horizontal resolution of the model (Z19L run). The model managed to predict the radioactive contamination in most of the European regions (similar to Atlas), and also the arrival times of the radioactive fallout. As regards to the vertical resolution, the largest biases were obtained for the 39 layers run due to the increase of

  16. Emissions Modeling Clearinghouse

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Emissions Modeling Clearinghouse (EMCH) supports and promotes emissions modeling activities both internal and external to the EPA. Through this site, the EPA...

  17. Modeling real-world fuel consumption and carbon dioxide emissions with high resolution for light-duty passenger vehicles in a traffic populated city

    International Nuclear Information System (INIS)

    Zhang, Shaojun; Wu, Ye; Un, Puikei; Fu, Lixin; Hao, Jiming

    2016-01-01

    Modeling fuel consumption of light-duty passenger vehicles has created substantial concerns due to the uncertainty from real-world operating conditions. Macao is world-renowned for its tourism industry and high population density. An empirical model is developed to estimate real-world fuel consumption and carbon dioxide emissions for gasoline-powered light-duty passenger vehicles in Macao by considering local fleet configuration and operating conditions. Thanks to increasingly stringent fuel consumption limits in vehicle manufacturing countries, estimated type-approval fuel consumption for light-duty passenger vehicles in Macao by model year was reduced from 7.4 L/100 km in 1995 to 5.9 L/100 km in 2012, although a significant upsizing trend has considerably offset potential energy-saving benefit. However, lower driving speed and the air-conditioning usage tend to raise fleet-average fuel consumption and carbon dioxide emission factors, which are estimated to be 10.1 L/100 km and 240 g/km in 2010. Fleet-total fuel consumption and carbon dioxide emissions are modeled through registered vehicle population-based and link-level traffic demand approaches and the results satisfactorily coincide with the historical record of fuel sales in Macao. Temporal and spatial variations in fuel consumption and carbon dioxide emissions from light-duty passenger vehicles further highlight the importance of effective traffic management in congested areas of Macao. - Highlights: • A fuel consumption model is developed for Macao's light-duty passenger cars. • Increased vehicle size partially offset energy benefit from tightened fuel consumption standard. • Lower speed and use of air-conditioning greatly increase fuel use of Macao light-duty passenger cars. • A high resolution inventory of fuel use and carbon dioxide emissions is built with link-level traffic data. • Policy suggestions are provided to mitigate fuel use in a traffic populated city.

  18. Modelling NOX concentrations through CFD-RANS in an urban hot-spot using high resolution traffic emissions and meteorology from a mesoscale model

    Science.gov (United States)

    Sanchez, Beatriz; Santiago, Jose Luis; Martilli, Alberto; Martin, Fernando; Borge, Rafael; Quaassdorff, Christina; de la Paz, David

    2017-08-01

    Air quality management requires more detailed studies about air pollution at urban and local scale over long periods of time. This work focuses on obtaining the spatial distribution of NOx concentration averaged over several days in a heavily trafficked urban area in Madrid (Spain) using a computational fluid dynamics (CFD) model. A methodology based on weighted average of CFD simulations is applied computing the time evolution of NOx dispersion as a sequence of steady-state scenarios taking into account the actual atmospheric conditions. The inputs of emissions are estimated from the traffic emission model and the meteorological information used is derived from a mesoscale model. Finally, the computed concentration map correlates well with 72 passive samplers deployed in the research area. This work reveals the potential of using urban mesoscale simulations together with detailed traffic emissions so as to provide accurate maps of pollutant concentration at microscale using CFD simulations.

  19. Characteristics of Biogenic VOCs Emission and its High-Resolution Emission Inventory in China

    Science.gov (United States)

    Li, L.; Li, Y.; Xie, S.

    2017-12-01

    Biogenic volatile organic compounds (BVOCs), with high emission and reactivity, can have substantial impacts on the haze and photochemical pollution. It is essential to establish an accurate high-resolution BVOC emission inventory in China for air quality simulation and decision making. Firstly, a semi-static enclosure technique is developed for the field measurements of BVOC emission rates from 50 plant species in China. Using the GC-MS/FID system, 103 VOC species for each plant species are measured. Based on the field measurements in our study and the reported emission rates at home and abroad, a methodology for determining the emission categories of BVOCs is developed using statistical analysis. The isoprene and monoterpene emission rates of 192 plant species/genera in China are determined based on the above emission categories. Secondly, a new vegetation classification with 82 plant functional types (PFTs) is developed based on the most detailed and latest vegetation investigations, China's official statistical data and Vegetation Atlas of China (1:1,000,000). The leaf biomass is estimated based on provincial vegetation volume and production with biomass-apportion models. The WRF model is used to determine meteorological variables at a high spatio-temporal resolution. Using MEAGNv2.1 and the determined emission rates in our study, the high-resolution emission inventories of isoprene, 37 monoterpene species, 32 sesquiterpene species, and other VOCs (OVOCs) from 82 PFTs in China for 1981-2013 are established. The total annual BVOC emissions in 2013 are 55.88 Tg, including 33.87 Tg isoprene, 6.36 Tg monoterpene, 1.29 Tg sesquiterpene, and 14.37 Tg OVOCs. The distribution of isoprene emission fluxes is consistent with the distribution of broadleaf trees, especially tree species with high or higher emission potential. During 1981-2013, China's BVOC emissions have increased by 47.48% at an average rate of 1.80% yr-1. Emissions of isoprene have the largest enhancement

  20. Anthropogenic and volcanic emission impacts on SO2 dynamics and acid rain profiles. Numerical study using WRF-Chem in a high-resolution modeling

    Science.gov (United States)

    Vela, A. V.; González, C. M.; Ynoue, R.; Rojas, N. Y.; Aristizábal, B. H.; Wahl, M.

    2017-12-01

    Eulerian 3-D chemistry transport models (CTM) have been widely used for the study of air quality in urban environments, becoming an essential tool for studying the impacts and dynamics of gases and aerosols on air quality. However, their use in Colombia is scarce, especially in medium-sized cities, which are experimenting a fast urban growth, increasing the risk associated with possible air pollution episodes. In the densely populated medium-sized Andean city of Manizales, Colombia - a city located on the western slopes of the central range of the Andes (urban population 368000; 2150 m.a.s.l), there is an influence of the active Nevado del Ruiz volcano, located 28 km to the southwest. This natural source emits daily gas and particle fluxes, which could influence the atmospheric chemistry of the city and neighboring towns. Hence, the zone presents a unique combination of anthropogenic and volcanic sulfur gas emissions, which affects SO2 dynamics in the urban area, influencing also in the formation of acid rain phenomenon in the city. Therefore, studies analyzing the relative contribution of anthropogenic and volcanic emission could contribute with a deep understanding about causes and dynamics of both acid rain phenomenon and ambient SO2 levels in Manizales. This work aimed to analyze the influence of anthropogenic (on-road vehicular and industrial point-sources) and volcanic sulfur emissions in SO2 atmospheric chemistry dynamics, evaluating its possible effects on acid rain profiles. Ambient SO2 levels and day-night rain samples were measured and used to analyze results obtained from the application of the fully-coupled on-line WRF-Chem model. Two high-resolution simulations were performed during two dry and wet one-week periods in 2015. Analysis of SO2 dispersion patterns and comparison with SO2 observations in the urban area were performed for three different scenarios in which natural and anthropogenic emissions were simulated separately. Results suggest that

  1. Modeling the Transport and Chemical Evolution of Onshore and Offshore Emissions and their Impact on Local and Regional Air Quality Using a Variable-Grid-Resolution Air Quality Model

    Energy Technology Data Exchange (ETDEWEB)

    Kiran Alapaty

    2006-04-16

    This Annual report summarizes the research performed from 17 April 2005 through 16 April 2006. Major portions of the research in several of the project's current eight tasks have been completed. We have successfully developed the meteorological inputs using the best possible modeling configurations, resulting in improved representation of atmospheric processes. The development of the variable-grid-resolution emissions model, SMOKE-VGR, is also completed. The development of the MAQSIP-VGR has been completed and a test run was performed to ensure the functionality of this air quality model. We have incorporated new emission data base to update the offshore emissions. However, we have faced some bottleneck problems in the testing the integrity of the new database. For this reason, we have asked for a no cost extension of this project to tackle these scientific problems. Thus, the project is on a one-year delay schedule. During the reporting period, we solved all problems related to the new emission database. We are ready to move to developing the final product, implementation and testing of the variable grid technology into the Community Multiscale Air Quality Model (CMAQ) to develop the CMAQ-VGR. During the upcoming months we will perform the first CMAQ-VGR simulations over the Houston-Galveston region to study the roles of the meteorology, offshore emissions, and chemistry-transport interactions that determine the temporal and spatial evolution of ozone and its precursors.

  2. MODELING THE TRANSPORT AND CHEMICAL EVOLUTION OF ONSHORE AND OFFSHORE EMISSIONS AND THEIR IMPACT ON LOCAL AND REGIONAL AIR QUALITY USING A VARIABLE-GRID-RESOLUTION AIR QUALITY MODEL

    Energy Technology Data Exchange (ETDEWEB)

    Kiran Alapaty

    2005-05-13

    This second annual report summarizes the research performed from 17 April 2004 through 16 April 2005. Major portions of the research in several of the project's current eight tasks have been completed. We have successfully developed the meteorological inputs using the best possible modeling configurations, resulting in improved representation of atmospheric processes. The development of the variable-grid-resolution emissions model, SMOKE-VGR, is also completed. The development of the MAQSIP-VGR has been completed and a test run was performed to ensure the functionality of this air quality model. Thus, the project is on schedule as planned. During the upcoming reporting period, we expect to perform the first MAQSIP-VGR simulations over the Houston-Galveston region to study the roles of the meteorology, offshore emissions, and chemistry-transport interactions that determine the temporal and spatial evolution of ozone and its precursors.

  3. Super-resolution from single photon emission: toward biological application

    Science.gov (United States)

    Moreva, E.; Traina, P.; Forneris, J.; Ditalia Tchernij, S.; Guarina, L.; Franchino, C.; Picollo, F.; Ruo Berchera, I.; Brida, G.; Degiovanni, I. P.; Carabelli, V.; Olivero, P.; Genovese, M.

    2017-08-01

    Properties of quantum light represent a tool for overcoming limits of classical optics. Several experiments have demonstrated this advantage ranging from quantum enhanced imaging to quantum illumination. In this work, experimental demonstration of quantum-enhanced resolution in confocal fluorescence microscopy will be presented. This is achieved by exploiting the non-classical photon statistics of fluorescence emission of single nitrogen-vacancy (NV) color centers in diamond. By developing a general model of super-resolution based on the direct sampling of the kth-order autocorrelation function of the photoluminescence signal, we show the possibility to resolve, in principle, arbitrarily close emitting centers. Finally, possible applications of NV-based fluorescent nanodiamonds in biosensing and future developments will be presented.

  4. Modeling the Transport and Chemical Evolution of Onshore and Offshore Emissions and their Impact on Local and Regional Air Quality Using a Variable-Grid-Resolution Air Quality Model

    Energy Technology Data Exchange (ETDEWEB)

    Kiran Alapaty

    2004-10-16

    This semiannual report summarizes the research performed from 17 April through 16 October 2004. Major portions of the research in several of the project's current eight tasks have been completed, and the results obtained are briefly presented. We have successfully developed the meteorological inputs using the best possible modeling configurations, resulting in improved representation of atmospheric processes. Ingestion of satellite-derived sea surface temperatures in conjunction with the use of our new surface data assimilation technique have resulted in largely improved meteorological inputs to drive the MAQSIP-VGR. The development of the variable-grid-resolution emissions model, SMOKE-VGR, is also largely complete. We expect to develop the final configuration of the SMOKE-VGR during the upcoming reporting period. We are in the process of acquiring the newly released emissions database and offshore emissions data sets to update our archives. The development of the MAQSIP-VGR has been completed and a test run was performed to ensure the functionality of this air quality model. During the upcoming reporting period, we expect to perform the first MAQSIP-VGR simulations over the Houston-Galveston region to study the roles of the meteorology, offshore emissions, and chemistry-transport interactions that determine the temporal and spatial evolution of ozone and its precursors.

  5. High-resolution mapping of motor vehicle carbon dioxide emissions

    Science.gov (United States)

    McDonald, Brian C.; McBride, Zoe C.; Martin, Elliot W.; Harley, Robert A.

    2014-05-01

    A fuel-based inventory for vehicle emissions is presented for carbon dioxide (CO2) and mapped at various spatial resolutions (10 km, 4 km, 1 km, and 500 m) using fuel sales and traffic count data. The mapping is done separately for gasoline-powered vehicles and heavy-duty diesel trucks. Emission estimates from this study are compared with the Emissions Database for Global Atmospheric Research (EDGAR) and VULCAN. All three inventories agree at the national level within 5%. EDGAR uses road density as a surrogate to apportion vehicle emissions, which leads to 20-80% overestimates of on-road CO2 emissions in the largest U.S. cities. High-resolution emission maps are presented for Los Angeles, New York City, San Francisco-San Jose, Houston, and Dallas-Fort Worth. Sharp emission gradients that exist near major highways are not apparent when emissions are mapped at 10 km resolution. High CO2 emission fluxes over highways become apparent at grid resolutions of 1 km and finer. Temporal variations in vehicle emissions are characterized using extensive day- and time-specific traffic count data and are described over diurnal, day of week, and seasonal time scales. Clear differences are observed when comparing light- and heavy-duty vehicle traffic patterns and comparing urban and rural areas. Decadal emission trends were analyzed from 2000 to 2007 when traffic volumes were increasing and a more recent period (2007-2010) when traffic volumes declined due to recession. We found large nonuniform changes in on-road CO2 emissions over a period of 5 years, highlighting the importance of timely updates to motor vehicle emission inventories.

  6. Modeling and Evaluation of the Global Sea-Salt Aerosol Distribution: Sensitivity to Emission Schemes and Resolution Effects at Coastal/Orographic Sites

    Science.gov (United States)

    Spada, M.; Jorba, O.; Perez Garcia-Pando, C.; Janjic, Z.; Baldasano, J. M.

    2013-01-01

    One of the major sources of uncertainty in model estimates of the global sea-salt aerosol distribution is the emission parameterization. We evaluate a new sea-salt aerosol life cycle module coupled to the online multi-scale chemical transport model NMMB/BSC-CTM. We compare 5 year global simulations using five state-of-the-art sea-salt open-ocean emission schemes with monthly averaged coarse aerosol optical depth (AOD) from selected AERONET sun photometers, surface concentration measurements from the University of Miami's Ocean Aerosol Network, and measurements from two NOAA/PMEL cruises (AEROINDOEX and ACE1). Model results are highly sensitive to the introduction of sea-surface-temperature (SST)-dependent emissions and to the accounting of spume particles production. Emission ranges from 3888 teragrams per year to 8114 teragrams per year, lifetime varies between 7.3 hours and 11.3 hours, and the average column mass load is between 5.0 teragrams and 7.2 teragrams. Coarse AOD is reproduced with an overall correlation of around 0.5 and with normalized biases ranging from +8.8 percent to +38.8 percent. Surface concentration is simulated with normalized biases ranging from minus 9.5 percent to plus 28 percent and the overall correlation is around 0.5. Our results indicate that SST-dependent emission schemes improve the overall model performance in reproducing surface concentrations. On the other hand, they lead to an overestimation of the coarse AOD at tropical latitudes, although it may be affected by uncertainties in the comparison due to the use of all-sky model AOD, the treatment of water uptake, deposition and optical properties in the model and/or an inaccurate size distribution at emission.

  7. MODELING THE TRANSPORT AND CHEMICAL EVOLUTION OF ONSHORE AND OFFSHORE EMISSIONS AND THEIR IMPACT ON LOCAL AND REGIONAL AIR QUALITY USING A VARIABLE-GRID-RESOLUTION AIR QUALITY MODEL

    Energy Technology Data Exchange (ETDEWEB)

    Kiran Alapaty

    2003-12-01

    This document, the project's first semiannual report, summarizes the research performed from 04/17/2003 through 10/16/2003. Portions of the research in several of the project's eight tasks were completed, and results obtained are briefly presented. We have tested the applicability of two different atmospheric boundary layer schemes for use in air quality model simulations. Preliminary analysis indicates that a scheme that uses sophisticated atmospheric boundary physics resulted in better simulation of atmospheric circulations. We have further developed and tested a new surface data assimilation technique to improve meteorological simulations, which will also result in improved air quality model simulations. Preliminary analysis of results indicates that using the new data assimilation technique results in reduced modeling errors in temperature and moisture. Ingestion of satellite-derived sea surface temperatures into the mesoscale meteorological model led to significant improvements in simulated clouds and precipitation compared to that obtained using traditional analyzed sea surface temperatures. To enhance the capabilities of an emissions processing system so that it can be used with our variable-grid-resolution air quality model, we have identified potential areas for improvements. Also for use in the variable-grid-resolution air quality model, we have tested a cloud module offline for its functionality, and have implemented and tested an efficient horizontal diffusion algorithm within the model.

  8. New detector developments for high resolution positron emission tomography

    International Nuclear Information System (INIS)

    Ziegler, S.I.; Pichler, B.; Lorenz, E.

    1998-01-01

    The strength of quantitative, functional imaging using positron emission tomography, specially in small animals, is limited due to the spatial resolution. Therefore, various tomograph designs employing new scintillators, light sensors, or coincidence electronic are investigated to improve resolution without losses in sensitivity. Luminous scintillators with short light decay time in combination with novel readout schemes using photomultipliers or semiconductor detectors are currently tested by several groups and are implemented in tomographs for small animals. This review summarises the state of development in high resolution positron emission tomography with a detailed description of a system incorporating avalanche photodiode arrays and small scintillation crystals. (orig.) [de

  9. Estimates of the changes in tropospheric chemistry which result from human activity and their dependence on NO(x) emissions and model resolution

    Science.gov (United States)

    Kanakidou, Maria; Crutzen, Paul J.; Zimmermann, Peter H.

    1994-01-01

    As a consequence of the non-linear behavior of the chemistry of the atmosphere and because of the short lifetime of nitrogen oxides (NO(x)), two-dimensional models do not give an adequate description of the production and destruction rates of NO(x) and their effects on the distributions of the concentration of ozone and hydroxyl radical. In this study, we use a three-dimensional model to evaluate the contribution of increasing NO(x) emissions from industrial activity and biomass burning to changes in the chemical composition of the troposphere. By comparing results obtained from longitudinally-uniform and longitudinally-varying emissions of NO(x), we demonstrate that the geographical representation of the NO(x) emissions is crucial in simulating tropospheric chemistry.

  10. Instantaneous wave emission model

    International Nuclear Information System (INIS)

    Kruer, W.L.

    1970-12-01

    A useful treatment of electrostatic wave emission by fast particles in a plasma is given. First, the potential due to a fast particle is expressed as a simple integration over the particle orbit; several interesting results readily follow. The potential in the wake of an accelerating particle is shown to be essentially that produced through local excitation of the plasma by the particle free-streaming about its instantaneous orbit. Application is made to one dimension, and it is shown that the wave emission and adsorption synchronize to the instantaneous velocity distribution function. Guided by these calculations, we then formulate a test particle model for computing the instantaneous wave emission by fast particles in a Vlasov plasma. This model lends itself to physical interpretation and provides a direct approach to many problems. By adopting a Fokker-Planck description for the particle dynamics, we calculate the broadening of the wave-particle resonance due to velocity diffusion and drag

  11. Genetic Algorithm Based Microscale Vehicle Emissions Modelling

    Directory of Open Access Journals (Sweden)

    Sicong Zhu

    2015-01-01

    Full Text Available There is a need to match emission estimations accuracy with the outputs of transport models. The overall error rate in long-term traffic forecasts resulting from strategic transport models is likely to be significant. Microsimulation models, whilst high-resolution in nature, may have similar measurement errors if they use the outputs of strategic models to obtain traffic demand predictions. At the microlevel, this paper discusses the limitations of existing emissions estimation approaches. Emission models for predicting emission pollutants other than CO2 are proposed. A genetic algorithm approach is adopted to select the predicting variables for the black box model. The approach is capable of solving combinatorial optimization problems. Overall, the emission prediction results reveal that the proposed new models outperform conventional equations in terms of accuracy and robustness.

  12. Infrared emission high spectral resolution atlas of the stratospheric limb

    Science.gov (United States)

    Maguire, William C.; Kunde, Virgil G.; Herath, Lawrence W.

    1989-01-01

    An atlas of high resolution infrared emission spectra identifies a number of gaseous atmospheric features significant to stratospheric chemistry in the 770-900/cm and 1100-1360/cm regions at six zenith angles from 86.7 to 95.1 deg. A balloon-borne Michelson interferometer was flown to obtain about 0.03/cm resolution spectra. Two 10/cm extracts are presented here.

  13. Simulations of the transport and deposition of {sup 137}Cs over Europe after the Chernobyl Nuclear Power Plant accident. Influence of varying emission-altitude and model horizontal and vertical resolution

    Energy Technology Data Exchange (ETDEWEB)

    Evangeliou, N.; Balkanski, Y.; Cozic, A. [Institut Pierre et Simon Laplace, Gif sur Yvette (France). Lab. des Sciences du Climat et de l' Environnement; Moeller, A.P. [Univ. Paris-Sud, Orsay (France). Lab. d' Ecologie, Systematique et Evolution

    2013-07-01

    The coupled model LMDZORINCA has been used to simulate the transport, wet and dry deposition of the radioactive tracer {sup 137}Cs after accidental releases. For that reason, two horizontal resolutions were deployed and used in the model, a regular grid of 2.5 x 1.27 , and the same grid stretched over Europe to reach a resolution of 0.66 x 0.51 . The vertical dimension is represented with two different resolutions, 19 and 39 levels respectively, extending up to the mesopause. Four different simulations are presented in this work; the first uses the regular grid over 19 vertical levels assuming that the emissions took place at the surface (RG19L(S)), the second also uses the regular grid over 19 vertical levels but realistic source injection heights (RG19L); in the third resolution the grid is regular and the vertical resolution 39 levels (RG39L) and finally, it is extended to the stretched grid with 19 vertical levels (Z19L). The model is validated with the Chernobyl accident which occurred in Ukraine (ex-USSR) on 26 May 1986 using the emission inventory from Brandt et al. (2002). This accident has been widely studied since 1986, and a large database has been created containing measurements of atmospheric activity concentration and total cumulative deposition for {sup 137}Cs from most of the European countries. According to the results, the performance of the model to predict the transport and deposition of the radioactive tracer was efficient and accurate presenting low biases in activity concentrations and deposition inventories, despite the large uncertainties on the intensity of the source released. The best agreement with observations was obtained using the highest horizontal resolution of the model (Z19L run). The model managed to predict the radioactive contamination in most of the European regions (similar to De Cort et al., 1998), and also the arrival times of the radioactive fallout. As regards to the vertical resolution, the largest biases were obtained

  14. Simulations of the transport and deposition of "1"3"7Cs over Europe after the Chernobyl Nuclear Power Plant accident. Influence of varying emission-altitude and model horizontal and vertical resolution

    International Nuclear Information System (INIS)

    Evangeliou, N.; Balkanski, Y.; Cozic, A.; Moeller, A.P.

    2013-01-01

    The coupled model LMDZORINCA has been used to simulate the transport, wet and dry deposition of the radioactive tracer "1"3"7Cs after accidental releases. For that reason, two horizontal resolutions were deployed and used in the model, a regular grid of 2.5 x 1.27 , and the same grid stretched over Europe to reach a resolution of 0.66 x 0.51 . The vertical dimension is represented with two different resolutions, 19 and 39 levels respectively, extending up to the mesopause. Four different simulations are presented in this work; the first uses the regular grid over 19 vertical levels assuming that the emissions took place at the surface (RG19L(S)), the second also uses the regular grid over 19 vertical levels but realistic source injection heights (RG19L); in the third resolution the grid is regular and the vertical resolution 39 levels (RG39L) and finally, it is extended to the stretched grid with 19 vertical levels (Z19L). The model is validated with the Chernobyl accident which occurred in Ukraine (ex-USSR) on 26 May 1986 using the emission inventory from Brandt et al. (2002). This accident has been widely studied since 1986, and a large database has been created containing measurements of atmospheric activity concentration and total cumulative deposition for "1"3"7Cs from most of the European countries. According to the results, the performance of the model to predict the transport and deposition of the radioactive tracer was efficient and accurate presenting low biases in activity concentrations and deposition inventories, despite the large uncertainties on the intensity of the source released. The best agreement with observations was obtained using the highest horizontal resolution of the model (Z19L run). The model managed to predict the radioactive contamination in most of the European regions (similar to De Cort et al., 1998), and also the arrival times of the radioactive fallout. As regards to the vertical resolution, the largest biases were obtained for

  15. Simulations of the transport and deposition of 137Cs over Europe after the Chernobyl Nuclear Power Plant accident: influence of varying emission-altitude and model horizontal and vertical resolution

    Science.gov (United States)

    Evangeliou, N.; Balkanski, Y.; Cozic, A.; Møller, A. P.

    2013-07-01

    The coupled model LMDZORINCA has been used to simulate the transport, wet and dry deposition of the radioactive tracer 137Cs after accidental releases. For that reason, two horizontal resolutions were deployed and used in the model, a regular grid of 2.5° × 1.27°, and the same grid stretched over Europe to reach a resolution of 0.66° × 0.51°. The vertical dimension is represented with two different resolutions, 19 and 39 levels respectively, extending up to the mesopause. Four different simulations are presented in this work; the first uses the regular grid over 19 vertical levels assuming that the emissions took place at the surface (RG19L(S)), the second also uses the regular grid over 19 vertical levels but realistic source injection heights (RG19L); in the third resolution the grid is regular and the vertical resolution 39 levels (RG39L) and finally, it is extended to the stretched grid with 19 vertical levels (Z19L). The model is validated with the Chernobyl accident which occurred in Ukraine (ex-USSR) on 26 May 1986 using the emission inventory from Brandt et al. (2002). This accident has been widely studied since 1986, and a large database has been created containing measurements of atmospheric activity concentration and total cumulative deposition for 137Cs from most of the European countries. According to the results, the performance of the model to predict the transport and deposition of the radioactive tracer was efficient and accurate presenting low biases in activity concentrations and deposition inventories, despite the large uncertainties on the intensity of the source released. The best agreement with observations was obtained using the highest horizontal resolution of the model (Z19L run). The model managed to predict the radioactive contamination in most of the European regions (similar to De Cort et al., 1998), and also the arrival times of the radioactive fallout. As regards to the vertical resolution, the largest biases were obtained for

  16. High resolution and high speed positron emission tomography data acquisition

    International Nuclear Information System (INIS)

    Burgiss, S.G.; Byars, L.G.; Jones, W.F.; Casey, M.E.

    1986-01-01

    High resolution positron emission tomography (PET) requires many detectors. Thus, data collection systems for PET must have high data rates, wide data paths, and large memories to histogram the events. This design uses the VMEbus to cost effectively provide these features. It provides for several modes of operation including real time sorting, list mode data storage, and replay of stored list mode data

  17. Sensitivity of isoprene emissions estimated using MEGAN to the time resolution of input climate data

    Directory of Open Access Journals (Sweden)

    K. Ashworth

    2010-02-01

    Full Text Available We evaluate the effect of varying the temporal resolution of the input climate data on isoprene emission estimates generated by the community emissions model MEGAN (Model of Emissions of Gases and Aerosols from Nature. The estimated total global annual emissions of isoprene is reduced from 766 Tg y−1 when using hourly input data to 746 Tg y−1 (a reduction of 3% for daily average input data and 711 Tg y−1 (down 7% for monthly average input data. The impact on a local scale can be more significant with reductions of up to 55% at some locations when using monthly average data compared with using hourly data. If the daily and monthly average temperature data are used without the imposition of a diurnal cycle the global emissions estimates fall by 27–32%, and local annual emissions by up to 77%. A similar pattern emerges if hourly isoprene fluxes are considered. In order to better simulate and predict isoprene emission rates using MEGAN, we show it is necessary to use temperature and radiation data resolved to one hour. Given the importance of land-atmosphere interactions in the Earth system and the low computational cost of the MEGAN algorithms, we recommend that chemistry-climate models and the new generation of Earth system models input biogenic emissions at the highest temporal resolution possible.

  18. Global tropospheric ozone modeling: Quantifying errors due to grid resolution

    Science.gov (United States)

    Wild, Oliver; Prather, Michael J.

    2006-06-01

    Ozone production in global chemical models is dependent on model resolution because ozone chemistry is inherently nonlinear, the timescales for chemical production are short, and precursors are artificially distributed over the spatial scale of the model grid. In this study we examine the sensitivity of ozone, its precursors, and its production to resolution by running a global chemical transport model at four different resolutions between T21 (5.6° × 5.6°) and T106 (1.1° × 1.1°) and by quantifying the errors in regional and global budgets. The sensitivity to vertical mixing through the parameterization of boundary layer turbulence is also examined. We find less ozone production in the boundary layer at higher resolution, consistent with slower chemical production in polluted emission regions and greater export of precursors. Agreement with ozonesonde and aircraft measurements made during the NASA TRACE-P campaign over the western Pacific in spring 2001 is consistently better at higher resolution. We demonstrate that the numerical errors in transport processes on a given resolution converge geometrically for a tracer at successively higher resolutions. The convergence in ozone production on progressing from T21 to T42, T63, and T106 resolution is likewise monotonic but indicates that there are still large errors at 120 km scales, suggesting that T106 resolution is too coarse to resolve regional ozone production. Diagnosing the ozone production and precursor transport that follow a short pulse of emissions over east Asia in springtime allows us to quantify the impacts of resolution on both regional and global ozone. Production close to continental emission regions is overestimated by 27% at T21 resolution, by 13% at T42 resolution, and by 5% at T106 resolution. However, subsequent ozone production in the free troposphere is not greatly affected. We find that the export of short-lived precursors such as NOx by convection is overestimated at coarse resolution.

  19. Modeling Formaldehyde Emission in Comets

    Science.gov (United States)

    Disanti, M. A.; Reuter, D. C.; Bonev, B. P.; Mumma, M. J.; Villanueva, G. L.

    Modeling fluorescent emission from monomeric formaldehyde (H2CO) forms an integral part of our overall comprehensive program of measuring the volatile composition of comets through high-resolution (RP ~ 25,000) infrared spectroscopy using CSHELL at the IRTF and NIRSPEC at Keck II. The H2CO spectra contain lines from both the nu1 (symmetric CH2 stretch) and nu5 (asymmetric CH2 stretch) bands near 3.6 microns. We have acquired high-quality spectra of twelve Oort cloud comets, and at least six of these show clear emission from H2CO. We also detected H2CO with NIRSPEC in one Jupiter Family comet, 9P/Tempel 1, during Deep Impact observations. Our H2CO model, originally developed to interpret low-resolution spectra of comets Halley and Wilson (Reuter et al. 1989 Ap J 341:1045), predicts individual line intensities (g-factors) as a function of rotational temperature for approximately 1300 lines having energies up to approximately 400 cm^-1 above the ground state. Recently, it was validated through comparison with CSHELL spectra of C/2002 T7 (LINEAR), where newly developed analyses were applied to obtain robust determinations of both the rotational temperature and abundance of H2CO (DiSanti et al. 2006 Ap J 650:470). We are currently in the process of extending the model to higher rotational energy (i.e., higher rotational quantum number) in an attempt to improve the fit to high-J lines in our spectra of C/T7 and other comets. Results will be presented, and implications discussed.Modeling fluorescent emission from monomeric formaldehyde (H2CO) forms an integral part of our overall comprehensive program of measuring the volatile composition of comets through high-resolution (RP ~ 25,000) infrared spectroscopy using CSHELL at the IRTF and NIRSPEC at Keck II. The H2CO spectra contain lines from both the nu1 (symmetric CH2 stretch) and nu5 (asymmetric CH2 stretch) bands near 3.6 microns. We have acquired high-quality spectra of twelve Oort cloud comets, and at least six of

  20. Detectors for high resolution dynamic positron emission tomography

    International Nuclear Information System (INIS)

    Derenzo, S.E.; Budinger, T.F.; Huesman, R.H.

    1985-01-01

    Tomography is the technique of producing a photographic image of an opaque specimen by transmitting a beam of x-rays or gamma rays through the specimen onto an adjacent photographic film. The image results from variations in thickness, density, and chemical composition, of the specimen. This technique is used to study the metabolism of the human brain. This article examines the design of equipment used for high resolution dynamic positron emission tomography. 27 references, 5 figures, 3 tables

  1. NORTRIP emission model user guide

    Energy Technology Data Exchange (ETDEWEB)

    Denby, Rolstad Bruce

    2012-07-01

    The NORTRIP emission model has been developed at NILU, in conjunction with other Nordic institutes, to model non-exhaust traffic induced emissions. This short summary document explains how to run the NORTRIP model from the MATLAB environment or by using the executable user interface version. It also provides brief information on input files and the model architecture.(Author)

  2. Estimating NOx emissions and surface concentrations at high spatial resolution using OMI

    Science.gov (United States)

    Goldberg, D. L.; Lamsal, L. N.; Loughner, C.; Swartz, W. H.; Saide, P. E.; Carmichael, G. R.; Henze, D. K.; Lu, Z.; Streets, D. G.

    2017-12-01

    In many instances, NOx emissions are not measured at the source. In these cases, remote sensing techniques are extremely useful in quantifying NOx emissions. Using an exponential modified Gaussian (EMG) fitting of oversampled Ozone Monitoring Instrument (OMI) NO2 data, we estimate NOx emissions and lifetimes in regions where these emissions are uncertain. This work also presents a new high-resolution OMI NO2 dataset derived from the NASA retrieval that can be used to estimate surface level concentrations in the eastern United States and South Korea. To better estimate vertical profile shape factors, we use high-resolution model simulations (Community Multi-scale Air Quality (CMAQ) and WRF-Chem) constrained by in situ aircraft observations to re-calculate tropospheric air mass factors and tropospheric NO2 vertical columns during summertime. The correlation between our satellite product and ground NO2 monitors in urban areas has improved dramatically: r2 = 0.60 in new product, r2 = 0.39 in operational product, signifying that this new product is a better indicator of surface concentrations than the operational product. Our work emphasizes the need to use both high-resolution and high-fidelity models in order to re-calculate vertical column data in areas with large spatial heterogeneities in NOx emissions. The methodologies developed in this work can be applied to other world regions and other satellite data sets to produce high-quality region-specific emissions estimates.

  3. Modeling emissions for three-dimensional atmospheric chemistry transport models.

    Science.gov (United States)

    Matthias, Volker; Arndt, Jan A; Aulinger, Armin; Bieser, Johannes; Denier Van Der Gon, Hugo; Kranenburg, Richard; Kuenen, Jeroen; Neumann, Daniel; Pouliot, George; Quante, Markus

    2018-01-24

    Poor air quality is still a threat for human health in many parts of the world. In order to assess measures for emission reductions and improved air quality, three-dimensional atmospheric chemistry transport modeling systems are used in numerous research institutions and public authorities. These models need accurate emission data in appropriate spatial and temporal resolution as input. This paper reviews the most widely used emission inventories on global and regional scale and looks into the methods used to make the inventory data model ready. Shortcomings of using standard temporal profiles for each emission sector are discussed and new methods to improve the spatio-temporal distribution of the emissions are presented. These methods are often neither top-down nor bottom-up approaches but can be seen as hybrid methods that use detailed information about the emission process to derive spatially varying temporal emission profiles. These profiles are subsequently used to distribute bulk emissions like national totals on appropriate grids. The wide area of natural emissions is also summarized and the calculation methods are described. Almost all types of natural emissions depend on meteorological information, which is why they are highly variable in time and space and frequently calculated within the chemistry transport models themselves. The paper closes with an outlook for new ways to improve model ready emission data, for example by using external databases about road traffic flow or satellite data to determine actual land use or leaf area. In a world where emission patterns change rapidly, it seems appropriate to use new types of statistical and observational data to create detailed emission data sets and keep emission inventories up-to-date. Emission data is probably the most important input for chemistry transport model (CTM) systems. It needs to be provided in high temporal and spatial resolution and on a grid that is in agreement with the CTM grid. Simple

  4. Modelin the Transport and Chemical Evolution of Onshore and Offshore Emissions and Their Impact on Local and Regional Air Quality Using a Variable-Grid-Resolution Air Quality Model

    Energy Technology Data Exchange (ETDEWEB)

    Adel Hanna

    2008-10-16

    The overall objective of this research project was to develop an innovative modeling technique to adequately model the offshore/onshore transport of pollutants. The variable-grid modeling approach that was developed alleviates many of the shortcomings of the traditionally used nested regular-grid modeling approach, in particular related to biases near boundaries and the excessive computational requirements when using nested grids. The Gulf of Mexico region contiguous to the Houston-Galveston area and southern Louisiana was chosen as a test bed for the variable-grid modeling approach. In addition to the onshore high pollution emissions from various sources in those areas, emissions from on-shore and off-shore oil and gas exploration and production are additional sources of air pollution. We identified case studies for which to perform meteorological and air quality model simulations. Our approach included developing and evaluating the meteorological, emissions, and chemistry-transport modeling components for the variable-grid applications, with special focus on the geographic areas where the finest grid resolution was used. We evaluated the performance of two atmospheric boundary layer (ABL) schemes, and identified the best-performing scheme for simulating mesoscale circulations for different grid resolutions. Use of a newly developed surface data assimilation scheme resulted in improved meteorological model simulations. We also successfully ingested satellite-derived sea surface temperatures (SSTs) into the meteorological model simulations, leading to further improvements in simulated wind, temperature, and moisture fields. These improved meteorological fields were important for variable-grid simulations, especially related to capturing the land-sea breeze circulations that are critical for modeling offshore/onshore transport of pollutants in the Gulf region. We developed SMOKE-VGR, the variable-grid version of the SMOKE emissions processing model, and tested and

  5. A novel super-resolution camera model

    Science.gov (United States)

    Shao, Xiaopeng; Wang, Yi; Xu, Jie; Wang, Lin; Liu, Fei; Luo, Qiuhua; Chen, Xiaodong; Bi, Xiangli

    2015-05-01

    Aiming to realize super resolution(SR) to single image and video reconstruction, a super resolution camera model is proposed for the problem that the resolution of the images obtained by traditional cameras behave comparatively low. To achieve this function we put a certain driving device such as piezoelectric ceramics in the camera. By controlling the driving device, a set of continuous low resolution(LR) images can be obtained and stored instantaneity, which reflect the randomness of the displacements and the real-time performance of the storage very well. The low resolution image sequences have different redundant information and some particular priori information, thus it is possible to restore super resolution image factually and effectively. The sample method is used to derive the reconstruction principle of super resolution, which analyzes the possible improvement degree of the resolution in theory. The super resolution algorithm based on learning is used to reconstruct single image and the variational Bayesian algorithm is simulated to reconstruct the low resolution images with random displacements, which models the unknown high resolution image, motion parameters and unknown model parameters in one hierarchical Bayesian framework. Utilizing sub-pixel registration method, a super resolution image of the scene can be reconstructed. The results of 16 images reconstruction show that this camera model can increase the image resolution to 2 times, obtaining images with higher resolution in currently available hardware levels.

  6. [Development of biogenic VOC emissions inventory with high temporal and spatial resolution].

    Science.gov (United States)

    Hu, Y; Zhang, Y; Xie, S; Zeng, L

    2001-11-01

    A new method was developed to estimate biogenic VOC emissions with high temporal and spatial resolution by use of Mesoscale Meteorology Modeling System Version5 (MM5). In this method, the isoprene and monoterpene standard emission factors for some types of tree in China were given and the standard VOC emission factors and seasonally average densities of leaf biomass for all types of vegetation were determined. A biogenic VOC emissions inventory in South China was established which could meet the requirement of regional air quality modeling. Total biogenic VOC emissions in a typical summer day were estimated to be 1.12 x 10(4) metric tons in an area of 729 km x 729 km of South China. The results showed the temporal and spatial distributions of biogenic VOC emission rates in this area. The results also showed that the geographical distribution of biogenic VOC emission rates depended on vegetation types and their distributions and the diurnal variation mainly depended on the solar radiation and temperature. The uncertainties of estimating biogenic VOC emissions were also discussed.

  7. Optimisation of the image resolution of a positron emission tomograph

    International Nuclear Information System (INIS)

    Ziemons, K.

    1993-10-01

    The resolution and the respective signal-to-noise ratios of reconstructed pictures were a point of main interest of the work for optimisation of PET systems. Monte-Carlo modelling calculations were applied to derive possible improvements of the technical design or performance of the PET system. (DG) [de

  8. Application of High Resolution Air-Borne Remote Sensing Observations for Monitoring NOx Emissions

    Science.gov (United States)

    Souri, A.; Choi, Y.; Pan, S.; Curci, G.; Janz, S. J.; Kowalewski, M. G.; Liu, J.; Herman, J. R.; Weinheimer, A. J.

    2017-12-01

    Nitrogen oxides (NOx=NO+NO2) are one of the air pollutants, responsible for the formation of tropospheric ozone, acid rain and particulate nitrate. The anthropogenic NOx emissions are commonly estimated based on bottom-up inventories which are complicated by many potential sources of error. One way to improve the emission inventories is to use relevant observations to constrain them. Fortunately, Nitrogen dioxide (NO2) is one of the most successful detected species from remote sensing. Although many studies have shown the capability of using space-borne remote sensing observations for monitoring emissions, the insufficient sample number and footprint of current measurements have introduced a burden to constrain emissions at fine scales. Promisingly, there are several air-borne sensors collected for NASA's campaigns providing high spatial resolution of NO2 columns. Here, we use the well-characterized NO2 columns from the Airborne Compact Atmospheric Mapper (ACAM) onboard NASA's B200 aircraft into a 1×1 km regional model to constrain anthropogenic NOx emissions in the Houston-Galveston-Brazoria area. Firstly, in order to incorporate the data, we convert the NO2 slant column densities to vertical ones using a joint of a radiative transfer model and the 1x1 km regional model constrained by P3-B aircraft measurements. After conducting an inverse modeling method using the Kalman filter, we find the ACAM observations are resourceful at mitigating the overprediction of model in reproducing NO2 on regular days. Moreover, the ACAM provides a unique opportunity to detect an anomaly in emissions leading to strong air quality degradation that is lacking in previous works. Our study provides convincing evidence that future geostationary satellites with high spatial and temporal resolutions will give us insights into uncertainties associated with the emissions at regional scales.

  9. A New High-Resolution N2O Emission Inventory for China in 2008

    Science.gov (United States)

    Shang, Z.; Zhou, F.; Ciais, P.; Tao, S.; Piao, S.; Raymond, P. A.; He, C.; Li, B.; Wang, R.; Wang, X.; Peng, S.; Zeng, Z.; Chen, H.; Ying, N.; Hou, X.; Xu, P.

    2014-12-01

    population fraction from 0.3 to 0.9 among 2884 counties, and N2O emission density increases with urban expansion. Moreover, additional experiments and the use of a reliable data-driven approach or process-based models can improve the spatial resolution and reduce the uncertainties in PKU-N2O, especially from agricultural soils and manure management.

  10. High-resolution ammonia emissions inventories in Fujian, China, 2009-2015

    Science.gov (United States)

    Wu, Shui-Ping; Zhang, Yin-Ju; Schwab, James J.; Li, Yang-Fan; Liu, Yuan-Long; Yuan, Chung-Shin

    2017-08-01

    A high-resolution NH3 emission inventory was developed based on the corrected emission factors and county-level activity data. To provide model-ready emission input, the NH3 emission inventory was gridded for the modeling domain at 1 × 1 km resolution using source-based spatial surrogates and a GIS system. The best estimate of total NH3 emission for the province was 228.02 kt in 2015 with a percentage uncertainty of ±16.3%. Four major contributors were farmland ecosystem, livestock wastes, humans and waste treatment, which contributed 39.4%, 43.1%, 4.9%, and 4.2% of the total emissions, respectively. The averaged NH3 emission density for the whole region was 1.88 t km-2 yr-1 and the higher values were found in coastal areas with higher dense populations. The seasonal patterns, with higher emissions in summer, were consistent with the patterns of temperature and planting practices. From 2009 to 2015, annual NH3 emissions increased from 218.49 kt to 228.02 kt. All of these changes are insignificant compared to the estimated overall uncertainties in the analysis, but indicative of changes in the source categories over this period. Between 2009 and 2015, the largest changes occurred in human emissions and waste treatment plants, which were consistent with the process of rapid urbanization. Meanwhile, the decrease of emissions from pigs was slightly higher than the increased emissions from broilers and the increased emissions from meat goats and beef cattle due to the combine effects of increasingly stringent environmental requirements for pig farms and shift away from pork consumption to beef, chicken and mutton. The validity of the estimates was further evaluated using uncertainty analysis, comparison with previous studies, and correlation analysis between emission density and observed ground ammonia. The inventories reflect the changes in economic progress and environmental protection and can provide scientific basis for the establishment of effective PM2.5 control

  11. High-Resolution X-ray Emission and X-ray Absorption Spectroscopy

    NARCIS (Netherlands)

    Groot, F.M.F. de

    2000-01-01

    In this review, high-resolution X-ray emission and X-ray absorption spectroscopy will be discussed. The focus is on the 3d transition-metal systems. To understand high-resolution X-ray emission and reso-nant X-ray emission, it is first necessary to spend some time discussing the X-ray absorption

  12. Model for traffic emissions estimation

    Science.gov (United States)

    Alexopoulos, A.; Assimacopoulos, D.; Mitsoulis, E.

    A model is developed for the spatial and temporal evaluation of traffic emissions in metropolitan areas based on sparse measurements. All traffic data available are fully employed and the pollutant emissions are determined with the highest precision possible. The main roads are regarded as line sources of constant traffic parameters in the time interval considered. The method is flexible and allows for the estimation of distributed small traffic sources (non-line/area sources). The emissions from the latter are assumed to be proportional to the local population density as well as to the traffic density leading to local main arteries. The contribution of moving vehicles to air pollution in the Greater Athens Area for the period 1986-1988 is analyzed using the proposed model. Emissions and other related parameters are evaluated. Emissions from area sources were found to have a noticeable share of the overall air pollution.

  13. A High Resolution Technology-based Emissions Inventory for Nepal: Present and Future Scenario

    Science.gov (United States)

    Sadavarte, P.; Das, B.; Rupakheti, M.; Byanju, R.; Bhave, P.

    2016-12-01

    A comprehensive regional assessment of emission sources is a major hindrance for a complete understanding of the air quality and for designing appropriate mitigation solutions in Nepal, a landlocked country in foothills of the Himalaya. This study attempts, for the first time, to develop a fine resolution (1km × 1km) present day emission inventory of Nepal with a higher tier approach using our understanding of the currently used technologies, energy consumption used in various energy sectors and its resultant emissions. We estimate present-day emissions of aerosols (BC, OC and PM2.5), trace gases (SO2, CO, NOX and VOC) and greenhouse gases (CO2, N2O and CH4) from non-open burning sources (residential, industry, transport, commercial) and open-burning sources (agriculture and municipal solid waste burning) for the base year 2013. We used methodologies published in literatures, and both primary and secondary data to estimate energy production and consumption in each sector and its sub-sector and associated emissions. Local practices and activity rates are explicitly accounted for energy consumption and dispersed often under-documented emission sources like brick manufacturing, diesel generator sets, mining, stone crushing, solid waste burning and diesel use in farms are considered. Apart from pyrogenic source of CH4 emissions, methanogenic and enteric fermentation sources are also accounted. Region-specific and newly measured country-specific emission factors are used for emission estimates. Activity based proxies are used for spatial and temporal distribution of emissions. Preliminary results suggest that 80% of national energy consumption is in residential sector followed by industry (8%) and transport (7%). More than 90% of the residential energy is supplied by biofuel which needs immediate attention to reduce emissions. Further, the emissions would be compared with other contemporary studies, regional and global datasets and used in the model simulations to

  14. 2002 Monthly Carbon Dioxide Emissions from Mexico at a 10x10k Spatial Resolution

    Science.gov (United States)

    Mendoza, D. L.; Gurney, K. R.; Geethakumar, S.; Zhou, Y.; Sahni, N.

    2009-12-01

    The contribution of fossil fuel CO2 emissions to the total measured amount of CO2 in the Earth’s atmosphere remains an important component of carbon cycle science, particularly as efforts to understand the net exchange of carbon at the surface move to smaller scales. In order to reduce the uncertainty of this flux, researchers led by Purdue University have built a high-resolution fossil fuel CO2 flux inventory for the United States, called “Vulcan”. The Vulcan inventory quantifies emissions for the United States at 10km resolution every hour for the year 2002 and can be seen as a key component of a national assessment and verification system for greenhouse gas emissions and emissions mitigation. As part of the North American Carbon Project, the 2002 carbon dioxide emissions from Mexico are presented at the monthly temporal and municipality spatial scale. Mexico is of particular importance because of the scientific integration under the North American Carbon Program. Furthermore, Mexico has seen a notable growth in its population as well as migration toward urban centers and increasing energy requirements due in part to industrial intensification. The native resolution of the emissions is geolocated (lat/lon) for point sources, such as power plants, airports, and large industry. The emissions are estimated at the municipality level for residential and commercial sources, and allocated to roads for the mobile transport sector. Data sources include the National Emissions Inventory (NEI), Commission for Environmental Cooperation (CEC), and Carbon Monitoring for Action (CARMA). CO2 emissions are calculated from the 1999 NEI data by converting CO emissions using sector and process-dependent emission factors, and is scaled up to 2002 using statistics obtained from the Carbon Dioxide Information Analysis Center CDIAC. CEC and CARMA data, which encompass power plant emissions, are already in units of CO2. Emissions are regridded to 10x10k and 0.1x0.1 deg grids to

  15. High-resolution inventory of NO emissions from agricultural soils over the Ile-de-France region

    Energy Technology Data Exchange (ETDEWEB)

    Rolland, M.-N. [INRA, AgroParisTech, UMR 1091 Environnement et Grandes Cultures, F-78850 Grignon (France); Gabrielle, B., E-mail: Benoit.Gabrielle@agroparistech.f [INRA, AgroParisTech, UMR 1091 Environnement et Grandes Cultures, F-78850 Grignon (France); Laville, P.; Cellier, P. [INRA, AgroParisTech, UMR 1091 Environnement et Grandes Cultures, F-78850 Grignon (France); Beekmann, M. [Laboratoire Inter-universitaire des Systemes Atmospheriques - CNRS, Universites Paris-Est and Paris 7, F-94 010 Creteil (France); Gilliot, J.-M.; Michelin, J.; Hadjar, D. [INRA, AgroParisTech, UMR 1091 Environnement et Grandes Cultures, F-78850 Grignon (France); Curci, G. [Dipartimento di Fisica - CETEMPS, Universita' degli Studi dell' Aquila, 67010 Coppito, L' Aquila (Italy)

    2010-03-15

    Arable soils are a significant source of nitric oxide (NO), a precursor of tropospheric ozone, and thereby contribute to ozone pollution. However, their actual impact on ozone formation is strongly related to their spatial and temporal emission patterns, which warrant high-resolution estimates. Here, we combined an agro-ecosystem model and geo-referenced databases to map these sources over the 12 000 km{sup 2} administrative region surrounding Paris, France, with a kilometric level resolution. The six most frequent arable crop species were simulated, with emission rates ranging from 1.4 kg N-NO ha{sup -1} yr{sup -1} to 11.1 kg N-NO ha{sup -1} yr{sup -1}. The overall emission factor for fertilizer-derived NO emissions was 1.7%, while background emissions contributed half of the total NO efflux. Emissions were strongly seasonal, being highest in spring due to fertilizer inputs. They were mostly sensitive to soil type, crops' growing season and fertilizer N rates. - The use of an agro-ecosystem model at regional scale makes it possible to map the emissions of nitric oxide from arable soils at a resolution compatible with tropospheric ozone models.

  16. Time resolution in scintillator based detectors for positron emission tomography

    International Nuclear Information System (INIS)

    Gundacker, S.

    2014-01-01

    In the domain of medical photon detectors L(Y)SO scintillators are used for positron emission tomography (PET). The interest for time of flight (TOF) in PET is increasing since measurements have shown that new crystals like L(Y)SO coupled to state of the art photodetectors, e.g. silicon photomultipliers (SiPM), can reach coincidence time resolutions (CTRs) of far below 500ps FWHM. To achieve these goals it is important to study the processe in the whole detection chain, i.e. the high energy particle or gamma interaction in the crystal, the scintillation process itself, the light propagation in the crystal with the light transfer to the photodetector, and the electronic readout. In this thesis time resolution measurements for a PET like system are performed in a coincidence setup utilizing the ultra fast amplifier discriminator NINO. We found that the time-over-threshold energy information provided by NINO shows a degradation in energy resolution for higher SiPM bias voltages. This is a consequence of the increasing dark count rate (DCR) of the SiPM with higher bias voltages together with the exponential decay of the signal. To overcome this problem and to operate the SiPM at its optimum voltage in terms of timing we developed a new electronic board that employs NINO only as a low noise leading edge discriminator together with an analog amplifier which delivers the energy information. With this new electronic board we indeed improved the measured CTR by about 15%. To study the limits of time resolution in more depth we measured the CTR with 2x2x3mm3 LSO:Ce codoped 0.4%Ca crystals coupled to commercially available SiPMs (Hamamatsu S10931-50P MPPC) and achieved a CTR of 108±5ps FWHM at an energy of 511keV. We determined the influence of the data acquisition system and the electronics on the CTR to be 27±2ps FWHM and thus negligible. To quantitatively understand the measured values, we developed a Monte Carlo simulation tool in MATLAB that incorporates the timing

  17. Emissions Models and Other Methods to Produce Emission Inventories

    Science.gov (United States)

    An emissions inventory is a summary or forecast of the emissions produced by a group of sources in a given time period. Inventories of air pollution from mobile sources are often produced by models such as the MOtor Vehicle Emission Simulator (MOVES).

  18. A comprehensive biomass burning emission inventory with high spatial and temporal resolution in China

    Science.gov (United States)

    Zhou, Ying; Xing, Xiaofan; Lang, Jianlei; Chen, Dongsheng; Cheng, Shuiyuan; Wei, Lin; Wei, Xiao; Liu, Chao

    2017-02-01

    . As for the straw burning emission of various crops, corn straw burning has the largest contribution to all of the pollutants considered, except for CH4; rice straw burning has highest contribution to CH4 and the second largest contribution to other pollutants, except for SO2, OC, and Hg; wheat straw burning is the second largest contributor to SO2, OC, and Hg and the third largest contributor to other pollutants. Heilongjiang, Shandong, and Henan provinces located in the north-eastern and central-southern regions of China have higher emissions compared to other provinces in China. Gridded emissions, which were obtained through spatial allocation based on the gridded rural population and fire point data from emission inventories at county resolution, could better represent the actual situation. High biomass burning emissions are concentrated in the areas with more agricultural and rural activity. The months of April, May, June, and October account for 65 % of emissions from in-field crop residue burning, while, regarding EC, the emissions in January, February, October, November, and December are relatively higher than other months due to biomass domestic burning in heating season. There are regional differences in the monthly variations of emissions due to the diversity of main planted crops and climatic conditions. Furthermore, PM2.5 component results showed that OC, Cl-, EC, K+, NH4+, elemental K, and SO42- are the main PM2.5 species, accounting for 80 % of the total emissions. The species with relatively high contribution to NMVOC emission include ethylene, propylene, toluene, mp-xylene, and ethyl benzene, which are key species for the formation of secondary air pollution. The detailed biomass burning emission inventory developed by this study could provide useful information for air-quality modelling and could support the development of appropriate pollution-control strategies.

  19. Detector response restoration in image reconstruction of high resolution positron emission tomography

    International Nuclear Information System (INIS)

    Liang, Z.

    1994-01-01

    A mathematical method was studied to model the detector response of high spatial-resolution positron emission tomography systems consisting of close-packed small crystals, and to restore the resolution deteriorated due to crystal penetration and/or nonuniform sampling across the field-of-view (FOV). The simulated detector system had 600 bismuth germanate crystals of 3.14 mm width and 30 mm length packed on a single ring of 60 cm diameter. The space between crystal was filled up with lead. Each crystal was in coincidence with 200 opposite crystals so that the FOV had a radius of 30 cm. The detector response was modeled based on the attenuating properties of the crystals and the septa, as well as the geometry of the detector system. The modeled detector-response function was used to restore the projections from the sinogram of the ring-detector system. The restored projections had a uniform sampling of 1.57 mm across the FOV. The crystal penetration and/or the nonuniform sampling were compensated in the projections. A penalized maximum-likelihood algorithm was employed to accomplish the restoration. The restored projections were then filtered and backprojected to reconstruct the image. A chest phantom with a few small circular ''cold'' objects located at the center and near the periphery of FOV was computer generated and used to test the restoration. The reconstructed images from the restored projections demonstrated resolution improvement off the FOV center, while preserving the resolution near the center

  20. MOVES (MOTOR VEHICLE EMISSION SIMULATOR) MODEL ...

    Science.gov (United States)

    A computer model, intended to eventually replace the MOBILE model and to incorporate the NONROAD model, that will provide the ability to estimate criteria and toxic air pollutant emission factors and emission inventories that are specific to the areas and time periods of interest, at scales ranging from local to national. Development of a new emission factor and inventory model for mobile source emissions. The model will be used by air pollution modelers within EPA, and at the State and local levels.

  1. High-resolution spectroscopic search for the thermal emission of the extrasolar planet HD 217107 b

    OpenAIRE

    Cubillos, Patricio E.; Rojo, Patricio; Fortney, Jonathan J.

    2011-01-01

    We analyzed the combined near-infrared spectrum of a star-planet system with thermal emission atmospheric models, based on the composition and physical parameters of the system. The main objective of this work is to obtain the inclination of the orbit, the mass of the exoplanet, and the planet-to-star flux ratio. We present the results of our routines on the planetary system HD 217107, which was observed with the high-resolution spectrograph Phoenix at 2.14 microns. We revisited and tuned a c...

  2. Modeling vehicle fuel consumption and emissions at signalized intersection approaches : integrating field-collected data into microscopic simulation.

    Science.gov (United States)

    2012-07-01

    Microscopic models produce emissions and fuel consumption estimates with higher temporal resolution than other scales of : models. Most emissions and fuel consumption models were developed with data from dynamometer testing which are : sufficiently a...

  3. The Hestia Project: High Spatial Resolution Fossil Fuel Carbon Dioxide Emissions Quantification at Hourly Scale in Indianapolis, USA

    Science.gov (United States)

    Zhou, Y.; Gurney, K. R.

    2009-12-01

    In order to advance the scientific understanding of carbon exchange with the land surface and contribute to sound, quantitatively-based U.S. climate change policy interests, quantification of greenhouse gases emissions drivers at fine spatial and temporal scales is essential. Quantification of fossil fuel CO2 emissions, the primary greenhouse gases, has become a key component to cost-effective CO2 emissions mitigation options and a carbon trading system. Called the ‘Hestia Project’, this pilot study generated CO2 emissions down to high spatial resolution and hourly scale for the greater Indianapolis region in the USA through the use of air quality and traffic monitoring data, remote sensing, GIS, and building energy modeling. The CO2 emissions were constructed from three data source categories: area, point, and mobile. For the area source emissions, we developed an energy consumption model using DOE/EIA survey data on building characteristics and energy consumption. With the Vulcan Project’s county-level CO2 emissions and simulated building energy consumption, we quantified the CO2 emissions for each individual building by allocating Vulcan emissions to roughly 50,000 structures in Indianapolis. The temporal pattern of CO2 emissions in each individual building was developed based on temporal patterns of energy consumption. The point sources emissions were derived from the EPA National Emissions Inventory data and effluent monitoring of electricity producing facilities. The mobile source CO2 emissions were estimated at the month/county scale using the Mobile6 combustion model and the National Mobile Inventory Model database. The month/county scale mobile source CO2 emissions were downscaled to the “native” spatial resolution of road segments every hour using a GIS road atlas and traffic monitoring data. The result is shown in Figure 1. The resulting urban-scale inventory can serve as a baseline of current CO2 emissions and should be of immediate use to

  4. Solid-immersion fluorescence microscopy with increased emission and super resolution

    Energy Technology Data Exchange (ETDEWEB)

    Liau, Z. L.; Porter, J. M. [Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, Massachusetts 02420 (United States); Liau, A. A.; Chen, J. J. [Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Salmon, W. C. [Whitehead Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Sheu, S. S. [Department of Medicine, Jefferson Medical College, Philadelphia, Pennsylvania 19107 (United States)

    2015-01-07

    We investigate solid-immersion fluorescence microscopy suitable for super-resolution nanotechnology and biological imaging, and have observed limit of resolution as small as 15 nm with microspheres, mitochondria, and chromatin fibers. We have further observed that fluorescence efficiency increases with excitation power density, implicating appreciable stimulated emission and increased resolution. We discuss potential advantages of the solid-immersion microscopy, including combined use with previously established super-resolution techniques for reaching deeper beyond the conventional diffraction limit.

  5. Spatial distribution of emissions to air - the SPREAD model

    Energy Technology Data Exchange (ETDEWEB)

    Plejdrup, M S; Gyldenkaerne, S

    2011-04-15

    The National Environmental Research Institute (NERI), Aarhus University, completes the annual national emission inventories for greenhouse gases and air pollutants according to Denmark's obligations under international conventions, e.g. the climate convention, UNFCCC and the convention on long-range transboundary air pollution, CLRTAP. NERI has developed a model to distribute emissions from the national emission inventories on a 1x1 km grid covering the Danish land and sea territory. The new spatial high resolution distribution model for emissions to air (SPREAD) has been developed according to the requirements for reporting of gridded emissions to CLRTAP. Spatial emission data is e.g. used as input for air quality modelling, which again serves as input for assessment and evaluation of health effects. For these purposes distributions with higher spatial resolution have been requested. Previously, a distribution on the 17x17 km EMEP grid has been set up and used in research projects combined with detailed distributions for a few sectors or sub-sectors e.g. a distribution for emissions from road traffic on 1x1 km resolution. SPREAD is developed to generate improved spatial emission data for e.g. air quality modelling in exposure studies. SPREAD includes emission distributions for each sector in the Danish inventory system; stationary combustion, mobile sources, fugitive emissions from fuels, industrial processes, solvents and other product use, agriculture and waste. This model enables generation of distributions for single sectors and for a number of sub-sectors and single sources as well. This report documents the methodologies in this first version of SPREAD and presents selected results. Further, a number of potential improvements for later versions of SPREAD are addressed and discussed. (Author)

  6. Spatial distribution of emissions to air - the SPREAD model

    Energy Technology Data Exchange (ETDEWEB)

    Plejdrup, M.S.; Gyldenkaerne, S.

    2011-04-15

    The National Environmental Research Institute (NERI), Aarhus University, completes the annual national emission inventories for greenhouse gases and air pollutants according to Denmark's obligations under international conventions, e.g. the climate convention, UNFCCC and the convention on long-range transboundary air pollution, CLRTAP. NERI has developed a model to distribute emissions from the national emission inventories on a 1x1 km grid covering the Danish land and sea territory. The new spatial high resolution distribution model for emissions to air (SPREAD) has been developed according to the requirements for reporting of gridded emissions to CLRTAP. Spatial emission data is e.g. used as input for air quality modelling, which again serves as input for assessment and evaluation of health effects. For these purposes distributions with higher spatial resolution have been requested. Previously, a distribution on the 17x17 km EMEP grid has been set up and used in research projects combined with detailed distributions for a few sectors or sub-sectors e.g. a distribution for emissions from road traffic on 1x1 km resolution. SPREAD is developed to generate improved spatial emission data for e.g. air quality modelling in exposure studies. SPREAD includes emission distributions for each sector in the Danish inventory system; stationary combustion, mobile sources, fugitive emissions from fuels, industrial processes, solvents and other product use, agriculture and waste. This model enables generation of distributions for single sectors and for a number of sub-sectors and single sources as well. This report documents the methodologies in this first version of SPREAD and presents selected results. Further, a number of potential improvements for later versions of SPREAD are addressed and discussed. (Author)

  7. [Measurement model of carbon emission from forest fire: a review].

    Science.gov (United States)

    Hu, Hai-Qing; Wei, Shu-Jing; Jin, Sen; Sun, Long

    2012-05-01

    Forest fire is the main disturbance factor for forest ecosystem, and an important pathway of the decrease of vegetation- and soil carbon storage. Large amount of carbonaceous gases in forest fire can release into atmosphere, giving remarkable impacts on the atmospheric carbon balance and global climate change. To scientifically and effectively measure the carbonaceous gases emission from forest fire is of importance in understanding the significance of forest fire in the carbon balance and climate change. This paper reviewed the research progress in the measurement model of carbon emission from forest fire, which covered three critical issues, i. e., measurement methods of forest fire-induced total carbon emission and carbonaceous gases emission, affecting factors and measurement parameters of measurement model, and cause analysis of the uncertainty in the measurement of the carbon emissions. Three path selections to improve the quantitative measurement of the carbon emissions were proposed, i. e., using high resolution remote sensing data and improving algorithm and estimation accuracy of burned area in combining with effective fuel measurement model to improve the accuracy of the estimated fuel load, using high resolution remote sensing images combined with indoor controlled environment experiments, field measurements, and field ground surveys to determine the combustion efficiency, and combining indoor controlled environment experiments with field air sampling to determine the emission factors and emission ratio.

  8. Towards high-resolution positron emission tomography for small volumes

    International Nuclear Information System (INIS)

    McKee, B.T.A.

    1982-01-01

    Some arguments are made regarding the medical usefulness of high spatial resolution in positron imaging, even if limited to small imaged volumes. Then the intrinsic limitations to spatial resolution in positron imaging are discussed. The project to build a small-volume, high resolution animal research prototype (SHARP) positron imaging system is described. The components of the system, particularly the detectors, are presented and brief mention is made of data acquisition and image reconstruction methods. Finally, some preliminary imaging results are presented; a pair of isolated point sources and 18 F in the bones of a rabbit. Although the detector system is not fully completed, these first results indicate that the goals of high sensitivity and high resolution (4 mm) have been realized. (Auth.)

  9. Moving towards Hyper-Resolution Hydrologic Modeling

    Science.gov (United States)

    Rouf, T.; Maggioni, V.; Houser, P.; Mei, Y.

    2017-12-01

    Developing a predictive capability for terrestrial hydrology across landscapes, with water, energy and nutrients as the drivers of these dynamic systems, faces the challenge of scaling meter-scale process understanding to practical modeling scales. Hyper-resolution land surface modeling can provide a framework for addressing science questions that we are not able to answer with coarse modeling scales. In this study, we develop a hyper-resolution forcing dataset from coarser resolution products using a physically based downscaling approach. These downscaling techniques rely on correlations with landscape variables, such as topography, roughness, and land cover. A proof-of-concept has been implemented over the Oklahoma domain, where high-resolution observations are available for validation purposes. Hourly NLDAS (North America Land Data Assimilation System) forcing data (i.e., near-surface air temperature, pressure, and humidity) have been downscaled to 500m resolution over the study area for 2015-present. Results show that correlation coefficients between the downscaled temperature dataset and ground observations are consistently higher than the ones between the NLDAS temperature data at their native resolution and ground observations. Not only correlation coefficients are higher, but also the deviation around the 1:1 line in the density scatterplots is smaller for the downscaled dataset than the original one with respect to the ground observations. Results are therefore encouraging as they demonstrate that the 500m temperature dataset has a good agreement with the ground information and can be adopted to force the land surface model for soil moisture estimation. The study has been expanded to wind speed and direction, incident longwave and shortwave radiation, pressure, and precipitation. Precipitation is well known to vary dramatically with elevation and orography. Therefore, we are pursuing a downscaling technique based on both topographical and vegetation

  10. A high-resolution emission inventory of primary pollutants for the Huabei region, China

    Directory of Open Access Journals (Sweden)

    B. Zhao

    2012-01-01

    Full Text Available Huabei, located between 32° N and 42° N, is part of eastern China and includes administratively the Beijing and Tianjin Municipalities, Hebei and Shanxi Provinces, and Inner-Mongolia Autonomous Region. Over the past decades, the region has experienced dramatic changes in air quality and climate, and has become a major focus of environmental research in China. Here we present a new inventory of air pollutant emissions in Huabei for the year 2003 developed as part of the project Influence of Pollution on Aerosols and Cloud Microphysics in North China (IPAC-NC.

    Our estimates are based on data from the statistical yearbooks of the state, provinces and local districts, including major sectors and activities of power generation, industrial energy consumption, industrial processing, civil energy consumption, crop straw burning, oil and solvent evaporation, manure, and motor vehicles. The emission factors are selected from a variety of literature and those from local measurements in China are used whenever available. The estimated total emissions in the Huabei administrative region in 2003 are 4.73 Tg SO2, 2.72 Tg NOx (in equivalent NO2, 1.77 Tg VOC, 24.14 Tg CO, 2.03 Tg NH3, 4.57 Tg PM10, 2.42 Tg PM2.5, 0.21 Tg EC, and 0.46 Tg OC.

    For model convenience, we consider a larger Huabei region with Shandong, Henan and Liaoning Provinces included in our inventory. The estimated total emissions in the larger Huabei region in 2003 are: 9.55 Tg SO2, 5.27 Tg NOx (in equivalent NO2, 3.82 Tg VOC, 46.59 Tg CO, 5.36 Tg NH3, 10.74 Tg PM10, 5.62 Tg PM2.5, 0.41 Tg EC, and 0.99 Tg OC. The estimated emission rates are projected into grid cells at a horizontal resolution of 0.1° latitude by 0.1° longitude. Our gridded emission inventory consists of area sources, which are classified into industrial, civil, traffic, and

  11. High-resolution mapping of biomass burning emissions in tropical regions across three continents

    Science.gov (United States)

    Shi, Yusheng; Matsunaga, Tsuneo; Saito, Makoto

    2015-04-01

    vegetation burning is the largest contributor to the total amount of emissions, followed by biofuel and human waste burnings. Spatial distribution of open vegetation burning showed extensive emissions in Southern and Central Africa, Amazon of South America, and Southeast Asia with high probability of fire occurrences. Human waste burning presented high emissions in India, Central Africa, and Mexico. Biofuel burning emissions also recorded that large amounts were released from India, Central Africa and Mexico. Our estimates for all trace gases and aerosols emissions from open biomass burning combined with estimates of those from biofuel burning are in the range of the estimates constrained by chemical transport models andand other bottom-up methods. Our high resolution CO2 emission estimates will contribute to regional top-down CO2 flux estimates using data from current satellites such as GOSAT and OCO-2 and future satellites such as TanSat, GOSAT-2, and Carbonsat.

  12. The Combined ASTER MODIS Emissivity over Land (CAMEL Part 1: Methodology and High Spectral Resolution Application

    Directory of Open Access Journals (Sweden)

    E. Eva Borbas

    2018-04-01

    Full Text Available As part of a National Aeronautics and Space Administration (NASA MEaSUREs (Making Earth System Data Records for Use in Research Environments Land Surface Temperature and Emissivity project, the Space Science and Engineering Center (UW-Madison and the NASA Jet Propulsion Laboratory (JPL developed a global monthly mean emissivity Earth System Data Record (ESDR. This new Combined ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer and MODIS (Moderate Resolution Imaging Spectroradiometer Emissivity over Land (CAMEL ESDR was produced by merging two current state-of-the-art emissivity datasets: the UW-Madison MODIS Infrared emissivity dataset (UW BF and the JPL ASTER Global Emissivity Dataset Version 4 (GEDv4. The dataset includes monthly global records of emissivity and related uncertainties at 13 hinge points between 3.6–14.3 µm, as well as principal component analysis (PCA coefficients at 5-km resolution for the years 2000 through 2016. A high spectral resolution (HSR algorithm is provided for HSR applications. This paper describes the 13 hinge-points combination methodology and the high spectral resolutions algorithm, as well as reports the current status of the dataset.

  13. The influence of model resolution on ozone in industrial volatile organic compound plumes.

    Science.gov (United States)

    Henderson, Barron H; Jeffries, Harvey E; Kim, Byeong-Uk; Vizuete, William G

    2010-09-01

    Regions with concentrated petrochemical industrial activity (e.g., Houston or Baton Rouge) frequently experience large, localized releases of volatile organic compounds (VOCs). Aircraft measurements suggest these released VOCs create plumes with ozone (O3) production rates 2-5 times higher than typical urban conditions. Modeling studies found that simulating high O3 productions requires superfine (1-km) horizontal grid cell size. Compared with fine modeling (4-kmin), the superfine resolution increases the peak O3 concentration by as much as 46%. To understand this drastic O3 change, this study quantifies model processes for O3 and "odd oxygen" (Ox) in both resolutions. For the entire plume, the superfine resolution increases the maximum O3 concentration 3% but only decreases the maximum Ox concentration 0.2%. The two grid sizes produce approximately equal Ox mass but by different reaction pathways. Derived sensitivity to oxides of nitrogen (NOx) and VOC emissions suggests resolution-specific sensitivity to NOx and VOC emissions. Different sensitivity to emissions will result in different O3 responses to subsequently encountered emissions (within the city or downwind). Sensitivity of O3 to emission changes also results in different simulated O3 responses to the same control strategies. Sensitivity of O3 to NOx and VOC emission changes is attributed to finer resolved Eulerian grid and finer resolved NOx emissions. Urban NOx concentration gradients are often caused by roadway mobile sources that would not typically be addressed with Plume-in-Grid models. This study shows that grid cell size (an artifact of modeling) influences simulated control strategies and could bias regulatory decisions. Understanding the dynamics of VOC plume dependence on grid size is the first step toward providing more detailed guidance for resolution. These results underscore VOC and NOx resolution interdependencies best addressed by finer resolution. On the basis of these results, the

  14. Evaluation of green house gas emissions models.

    Science.gov (United States)

    2014-11-01

    The objective of the project is to evaluate the GHG emissions models used by transportation agencies and industry leaders. Factors in the vehicle : operating environment that may affect modal emissions, such as, external conditions, : vehicle fleet c...

  15. Arcsecond Resolution Mapping of Sulfur Dioxide Emission in the Circumstellar Envelope of VY Canis Majoris

    Science.gov (United States)

    Fu, Roger R.; Moullet, Arielle; Patel, Nimesh A.; Biersteker, John; Derose, Kimberly L.; Young, Kenneth H.

    2012-02-01

    We report Submillimeter Array observations of SO2 emission in the circumstellar envelope (CSE) of the red supergiant VY Canis Majoris, with an angular resolution of ≈1''. SO2 emission appears in three distinct outflow regions surrounding the central continuum peak emission that is spatially unresolved. No bipolar structure is noted in the sources. A fourth source of SO2 is identified as a spherical wind centered at the systemic velocity. We estimate the SO2 column density and rotational temperature assuming local thermal equilibrium (LTE) as well as perform non-LTE radiative transfer analysis using RADEX. Column densities of SO2 are found to be ~1016 cm-2 in the outflows and in the spherical wind. Comparison with existing maps of the two parent species OH and SO shows the SO2 distribution to be consistent with that of OH. The abundance ratio f_{SO_{2}}/f_{SO} is greater than unity for all radii larger than 3 × 1016 cm. SO2 is distributed in fragmented clumps compared to SO, PN, and SiS molecules. These observations lend support to specific models of circumstellar chemistry that predict f_{SO_{2}}/f_{SO}>1 and may suggest the role of localized effects such as shocks in the production of SO2 in the CSE.

  16. ARCSECOND RESOLUTION MAPPING OF SULFUR DIOXIDE EMISSION IN THE CIRCUMSTELLAR ENVELOPE OF VY CANIS MAJORIS

    International Nuclear Information System (INIS)

    Fu, Roger R.; Moullet, Arielle; Patel, Nimesh A.; Biersteker, John; Derose, Kimberly L.; Young, Kenneth H.

    2012-01-01

    We report Submillimeter Array observations of SO 2 emission in the circumstellar envelope (CSE) of the red supergiant VY Canis Majoris, with an angular resolution of ≈1''. SO 2 emission appears in three distinct outflow regions surrounding the central continuum peak emission that is spatially unresolved. No bipolar structure is noted in the sources. A fourth source of SO 2 is identified as a spherical wind centered at the systemic velocity. We estimate the SO 2 column density and rotational temperature assuming local thermal equilibrium (LTE) as well as perform non-LTE radiative transfer analysis using RADEX. Column densities of SO 2 are found to be ∼10 16 cm –2 in the outflows and in the spherical wind. Comparison with existing maps of the two parent species OH and SO shows the SO 2 distribution to be consistent with that of OH. The abundance ratio f SO 2 /f SO is greater than unity for all radii larger than 3 × 10 16 cm. SO 2 is distributed in fragmented clumps compared to SO, PN, and SiS molecules. These observations lend support to specific models of circumstellar chemistry that predict f SO 2 /f SO >1 and may suggest the role of localized effects such as shocks in the production of SO 2 in the CSE.

  17. High resolution of black carbon and organic carbon emissions in the Pearl River Delta region, China.

    Science.gov (United States)

    Zheng, Junyu; He, Min; Shen, Xingling; Yin, Shasha; Yuan, Zibing

    2012-11-01

    A high-resolution regional black carbon (BC) and organic carbon (OC) emission inventory for the year 2009 was developed for the Pearl River Delta (PRD) region, China, based on the collected activity data and the latest emission factors. PM(2.5), BC and OC emissions were estimated to be 303 kt, 39 kt and 31 kt, respectively. Industrial processes were major contributing sources to PM(2.5) emissions. BC emissions were mainly from mobile sources, accounting for 65.0%, while 34.1% of OC emissions were from residential combustion. The primary OC/BC ratios for individual cities in the PRD region were dependent on the levels of economic development due to differences in source characteristics, with high ratios in the less developed cities and low ratios in the central and southern developed areas. The preliminary temporal profiles were established, showing the highest OC emissions in winter and relatively constant BC emissions throughout the year. The emissions were spatially allocated into grid cells with a resolution of 3 km × 3 km. Large amounts of BC emissions were distributed over the central-southern PRD city clusters, while OC emissions exhibited a relatively even spatial distribution due to the significant biomass burning emissions from the outlying area of the PRD region. Uncertainties in carbonaceous aerosol emissions were usually higher than in other primary pollutants like SO(2), NO(x), and PM(10). One of the key uncertainty sources was the emission factor, due to the absence of direct measurements of BC and OC emission rates. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. High Resolution Atmospheric Inversion of Urban CO2 Emissions During the Dormant Season of the Indianapolis Flux Experiment (INFLUX)

    Science.gov (United States)

    Lauvaux, Thomas; Miles, Natasha L.; Deng, Aijun; Richardson, Scott J.; Cambaliza, Maria O.; Davis, Kenneth J.; Gaudet, Brian; Gurney, Kevin R.; Huang, Jianhua; O'Keefe, Darragh; hide

    2016-01-01

    Urban emissions of greenhouse gases (GHG) represent more than 70% of the global fossil fuel GHG emissions. Unless mitigation strategies are successfully implemented, the increase in urban GHG emissions is almost inevitable as large metropolitan areas are projected to grow twice as fast as the world population in the coming 15 years. Monitoring these emissions becomes a critical need as their contribution to the global carbon budget increases rapidly. In this study, we developed the first comprehensive monitoring systems of CO2 emissions at high resolution using a dense network of CO2 atmospheric measurements over the city of Indianapolis. The inversion system was evaluated over a 8-month period and showed an increase compared to the Hestia CO2 emission estimate, a state-of-the-art building-level emission product, with a 20% increase in the total emissions over the area (from 4.5 to 5.7 Metric Megatons of Carbon +/- 0.23 Metric Megatons of Carbon). However, several key parameters of the inverse system need to be addressed to carefully characterize the spatial distribution of the emissions and the aggregated total emissions.We found that spatial structures in prior emission errors, mostly undetermined, affect significantly the spatial pattern in the inverse solution, as well as the carbon budget over the urban area. Several other parameters of the inversion were sufficiently constrained by additional observations such as the characterization of the GHG boundary inflow and the introduction of hourly transport model errors estimated from the meteorological assimilation system. Finally, we estimated the uncertainties associated with remaining systematic errors and undetermined parameters using an ensemble of inversions. The total CO2 emissions for the Indianapolis urban area based on the ensemble mean and quartiles are 5.26 - 5.91 Metric Megatons of Carbon, i.e. a statistically significant difference compared to the prior total emissions of 4.1 to 4.5 Metric Megatons of

  19. High resolution extremity CT for biomechanics modeling

    International Nuclear Information System (INIS)

    Ashby, A.E.; Brand, H.; Hollerbach, K.; Logan, C.M.; Martz, H.E.

    1995-01-01

    With the advent of ever more powerful computing and finite element analysis (FEA) capabilities, the bone and joint geometry detail available from either commercial surface definitions or from medical CT scans is inadequate. For dynamic FEA modeling of joints, precise articular contours are necessary to get appropriate contact definition. In this project, a fresh cadaver extremity was suspended in parafin in a lucite cylinder and then scanned with an industrial CT system to generate a high resolution data set for use in biomechanics modeling

  20. High resolution extremity CT for biomechanics modeling

    Energy Technology Data Exchange (ETDEWEB)

    Ashby, A.E.; Brand, H.; Hollerbach, K.; Logan, C.M.; Martz, H.E.

    1995-09-23

    With the advent of ever more powerful computing and finite element analysis (FEA) capabilities, the bone and joint geometry detail available from either commercial surface definitions or from medical CT scans is inadequate. For dynamic FEA modeling of joints, precise articular contours are necessary to get appropriate contact definition. In this project, a fresh cadaver extremity was suspended in parafin in a lucite cylinder and then scanned with an industrial CT system to generate a high resolution data set for use in biomechanics modeling.

  1. Ozone Production in Global Tropospheric Models: Quantifying Errors due to Grid Resolution

    Science.gov (United States)

    Wild, O.; Prather, M. J.

    2005-12-01

    Ozone production in global chemical models is dependent on model resolution because ozone chemistry is inherently nonlinear, the timescales for chemical production are short, and precursors are artificially distributed over the spatial scale of the model grid. In this study we examine the sensitivity of ozone, its precursors, and its production to resolution by running a global chemical transport model at four different resolutions between T21 (5.6° × 5.6°) and T106 (1.1° × 1.1°) and by quantifying the errors in regional and global budgets. The sensitivity to vertical mixing through the parameterization of boundary layer turbulence is also examined. We find less ozone production in the boundary layer at higher resolution, consistent with slower chemical production in polluted emission regions and greater export of precursors. Agreement with ozonesonde and aircraft measurements made during the NASA TRACE-P campaign over the Western Pacific in spring 2001 is consistently better at higher resolution. We demonstrate that the numerical errors in transport processes at a given resolution converge geometrically for a tracer at successively higher resolutions. The convergence in ozone production on progressing from T21 to T42, T63 and T106 resolution is likewise monotonic but still indicates large errors at 120~km scales, suggesting that T106 resolution is still too coarse to resolve regional ozone production. Diagnosing the ozone production and precursor transport that follow a short pulse of emissions over East Asia in springtime allows us to quantify the impacts of resolution on both regional and global ozone. Production close to continental emission regions is overestimated by 27% at T21 resolution, by 13% at T42 resolution, and by 5% at T106 resolution, but subsequent ozone production in the free troposphere is less significantly affected.

  2. Three-dimensional super-resolution imaging for fluorescence emission difference microscopy

    Energy Technology Data Exchange (ETDEWEB)

    You, Shangting; Kuang, Cuifang, E-mail: cfkuang@zju.edu.cn; Li, Shuai; Liu, Xu; Ding, Zhihua [State key laboratory of modern optical instrumentations, Zhejiang University, Hangzhou 310027 (China)

    2015-08-15

    We propose a method theoretically to break the diffraction limit and to improve the resolution in all three dimensions for fluorescence emission difference microscopy. We produce two kinds of hollow focal spot by phase modulation. By incoherent superposition, these two kinds of focal spot yield a 3D hollow focal spot. The optimal proportion of these two kinds of spot is given in the paper. By employing 3D hollow focal spot, super-resolution image can be yielded by means of fluorescence emission difference microscopy, with resolution enhanced both laterally and axially. According to computation result, size of point spread function of three-dimensional super-resolution imaging is reduced by about 40% in all three spatial directions with respect to confocal imaging.

  3. First Top-Down Estimates of Anthropogenic NOx Emissions Using High-Resolution Airborne Remote Sensing Observations

    Science.gov (United States)

    Souri, Amir H.; Choi, Yunsoo; Pan, Shuai; Curci, Gabriele; Nowlan, Caroline R.; Janz, Scott J.; Kowalewski, Matthew G.; Liu, Junjie; Herman, Jay R.; Weinheimer, Andrew J.

    2018-03-01

    A number of satellite-based instruments have become an essential part of monitoring emissions. Despite sound theoretical inversion techniques, the insufficient samples and the footprint size of current observations have introduced an obstacle to narrow the inversion window for regional models. These key limitations can be partially resolved by a set of modest high-quality measurements from airborne remote sensing. This study illustrates the feasibility of nitrogen dioxide (NO2) columns from the Geostationary Coastal and Air Pollution Events Airborne Simulator (GCAS) to constrain anthropogenic NOx emissions in the Houston-Galveston-Brazoria area. We convert slant column densities to vertical columns using a radiative transfer model with (i) NO2 profiles from a high-resolution regional model (1 × 1 km2) constrained by P-3B aircraft measurements, (ii) the consideration of aerosol optical thickness impacts on radiance at NO2 absorption line, and (iii) high-resolution surface albedo constrained by ground-based spectrometers. We characterize errors in the GCAS NO2 columns by comparing them to Pandora measurements and find a striking correlation (r > 0.74) with an uncertainty of 3.5 × 1015 molecules cm-2. On 9 of 10 total days, the constrained anthropogenic emissions by a Kalman filter yield an overall 2-50% reduction in polluted areas, partly counterbalancing the well-documented positive bias of the model. The inversion, however, boosts emissions by 94% in the same areas on a day when an unprecedented local emissions event potentially occurred, significantly mitigating the bias of the model. The capability of GCAS at detecting such an event ensures the significance of forthcoming geostationary satellites for timely estimates of top-down emissions.

  4. Improving global fire carbon emissions estimates by combining moderate resolution burned area and active fire observations

    Science.gov (United States)

    Randerson, J. T.; Chen, Y.; Giglio, L.; Rogers, B. M.; van der Werf, G.

    2011-12-01

    analysis we quantified how including sub-500m burned area influenced global burned area, carbon emissions, and net ecosystem exchange (NEE) in different continental regions using the Global Fire Emissions Database (GFED) biogeochemical model. We conclude by discussing validation needs using higher resolution visible and thermal imagery.

  5. High-resolution forest carbon stocks and emissions in the Amazon.

    Science.gov (United States)

    Asner, Gregory P; Powell, George V N; Mascaro, Joseph; Knapp, David E; Clark, John K; Jacobson, James; Kennedy-Bowdoin, Ty; Balaji, Aravindh; Paez-Acosta, Guayana; Victoria, Eloy; Secada, Laura; Valqui, Michael; Hughes, R Flint

    2010-09-21

    Efforts to mitigate climate change through the Reduced Emissions from Deforestation and Degradation (REDD) depend on mapping and monitoring of tropical forest carbon stocks and emissions over large geographic areas. With a new integrated use of satellite imaging, airborne light detection and ranging, and field plots, we mapped aboveground carbon stocks and emissions at 0.1-ha resolution over 4.3 million ha of the Peruvian Amazon, an area twice that of all forests in Costa Rica, to reveal the determinants of forest carbon density and to demonstrate the feasibility of mapping carbon emissions for REDD. We discovered previously unknown variation in carbon storage at multiple scales based on geologic substrate and forest type. From 1999 to 2009, emissions from land use totaled 1.1% of the standing carbon throughout the region. Forest degradation, such as from selective logging, increased regional carbon emissions by 47% over deforestation alone, and secondary regrowth provided an 18% offset against total gross emissions. Very high-resolution monitoring reduces uncertainty in carbon emissions for REDD programs while uncovering fundamental environmental controls on forest carbon storage and their interactions with land-use change.

  6. Construction of a quartz spherical analyzer: application to high-resolution analysis of the Ni Kα emission spectrum

    International Nuclear Information System (INIS)

    Honnicke, Marcelo Goncalves; Cusatis, Cesar

    2016-01-01

    The construction and characterization of a focusing X-ray spherical analyzer based on α-quartz 44̄04 are presented. For this study, the performance of the analyzer was demonstrated by applying it to a high-resolution X-ray spectroscopy study of theKα_1_,_2emission spectrum of Ni. An analytical representation based on physical grounds was assumed to model the shape of the X-ray emission lines. Satellite structures assigned to 3dspectator hole transitions were resolved and determined as well as their relative contribution to the emission spectrum. The present results on 1s"-"13d"-"1shake probabilities support a recently proposed calculation framework based on a multi-configuration atomic model.

  7. HEAVY-DUTY GREENHOUSE GAS EMISSIONS MODEL ...

    Science.gov (United States)

    Class 2b-8 vocational truck manufacturers and Class 7/8 tractor manufacturers would be subject to vehicle-based fuel economy and emission standards that would use a truck simulation model to evaluate the impact of the truck tires and/or tractor cab design on vehicle compliance with any new standards. The EPA has created a model called “GHG Emissions Model (GEM)”, which is specifically tailored to predict truck GHG emissions. As the model is designed for the express purpose of vehicle compliance demonstration, it is less configurable than similar commercial products and its only outputs are GHG emissions and fuel consumption. This approach gives a simple and compact tool for vehicle compliance without the overhead and costs of a more sophisticated model. Evaluation of both fuel consumption and CO2 emissions from heavy-duty highway vehicles through a whole-vehicle operation simulation model.

  8. High-resolution atmospheric emission inventory of the argentine energy sector. Comparison with edgar global emission database

    Directory of Open Access Journals (Sweden)

    S. Enrique Puliafito

    2017-12-01

    Full Text Available This study presents a 2014 high-resolution spatially disaggregated emission inventory (0.025° × 0.025° horizontal resolution, of the main activities in the energy sector in Argentina. The sub-sectors considered are public generation of electricity, oil refineries, cement production, transport (maritime, air, rail and road, residential and commercial. The following pollutants were included: greenhouse gases (CO2, CH4, N2O, ozone precursors (CO, NOx, VOC and other specific air quality indicators such as SO2, PM10, and PM2.5. This work could contribute to a better geographical allocation of the pollutant sources through census based population maps. Considering the sources of greenhouse gas emissions, the total amount is 144 Tg CO2eq, from which the transportation sector emits 57.8 Tg (40%; followed by electricity generation, with 40.9 Tg (28%; residential + commercial, with 31.24 Tg (22%; and cement and refinery production, with 14.3 Tg (10%. This inventory shows that 49% of the total emissions occur in rural areas: 31% in rural areas of medium population density, 13% in intermediate urban areas and 7% in densely populated urban areas. However, if emissions are analyzed by extension (per square km, the largest impact is observed in medium and densely populated urban areas, reaching more than 20.3 Gg per square km of greenhouse gases, 297 Mg/km2 of ozone precursors gases and 11.5 Mg/km2 of other air quality emissions. A comparison with the EDGAR global emission database shows that, although the total country emissions are similar for several sub sectors and pollutants, its spatial distribution is not applicable to Argentina. The road and residential transport emissions represented by EDGAR result in an overestimation of emissions in rural areas and an underestimation in urban areas, especially in more densely populated areas. EDGAR underestimates 60 Gg of methane emissions from road transport sector and fugitive emissions from refining

  9. High-spatiotemporal-resolution ship emission inventory of China based on AIS data in 2014.

    Science.gov (United States)

    Chen, Dongsheng; Wang, Xiaotong; Li, Yue; Lang, Jianlei; Zhou, Ying; Guo, Xiurui; Zhao, Yuehua

    2017-12-31

    Ship exhaust emissions have been considered a significant source of air pollution, with adverse impacts on the global climate and human health. China, as one of the largest shipping countries, has long been in great need of in-depth analysis of ship emissions. This study for the first time developed a comprehensive national-scale ship emission inventory with 0.005°×0.005° resolution in China for 2014, using the bottom-up method based on Automatic Identification System (AIS) data of the full year of 2014. The emission estimation involved 166,546 unique vessels observed from over 15billion AIS reports, covering OGVs (ocean-going vessels), CVs (coastal vessels) and RVs (river vessels). Results show that the total estimated ship emissions for China in 2014 were 1.1937×10 6 t (SO 2 ), 2.2084×10 6 t (NO X ), 1.807×10 5 t (PM 10 ), 1.665×10 5 t (PM 2.5 ), 1.116×10 5 t (HC), 2.419×10 5 t (CO), and 7.843×10 7 t (CO 2 , excluding RVs), respectively. OGVs were the main emission contributors, with proportions of 47%-74% of the emission totals for different species. Vessel type with the most emissions was container (~43.6%), followed by bulk carrier (~17.5%), oil tanker (~5.7%) and fishing ship (~4.9%). Monthly variations showed that emissions from transport vessels had a low point in February, while fishing ship presented two emission peaks in May and September. In terms of port clusters, ship emissions in BSA (Bohai Sea Area), YRD (Yangtze River Delta) and PRD (Pearl River Delta) accounted for ~13%, ~28% and ~17%, respectively, of the total emissions in China. On the contrast, the average emission intensities in PRD were the highest, followed by the YRD and BSA regions. The establishment of this high-spatiotemporal-resolution ship emission inventory fills the gap of national-scale ship emission inventory of China, and the corresponding ship emission characteristics are expected to provide certain reference significance for the management and control of the ship

  10. Development and evaluation of high-resolution regional emission inventory: A case study for Jiangsu Province, China

    Science.gov (United States)

    Zhao, Y.; Mao, P.; Zhou, Y.

    2017-12-01

    Improved emission inventories are crucial for better understanding atmospheric chemistry with air quality simulation at regional or local scales. Using the bottom-up approach, a high-resolution emission inventory was developed for Jiangsu China. Key parameters for over 6000 industrial sources were investigated, compiled and revised at plant level based on various data sources and on-site survey. Totally 56 NMVOCs samples were collected in 9 chemical plants and analyzed with a gas chromatography-mass spectrometry system. Source profiles of stack emissions from synthetic rubber, acetate fiber, polyether, vinyl acetate, and ethylene production, and those of fugitive emissions from ethylene, butanol and octanol, propylene epoxide, polyethylene and glycol production were obtained. Improvement of this provincial inventory was evaluated through comparisons with other inventories at larger spatial scales, using satellite observation and air quality modeling. Three inventories (national, regional, and provincial by this work) were applied in the Models-3/Community Multi-scale Air Quality (CMAQ) system to evaluate the model performances with different emission inputs. The best agreement between available ground observation and simulation was found when the provincial inventory was applied, indicated by the smallest normalized mean bias (NMB) and normalized mean errors (NME) for all the concerned species SO2, NO2, O3 and PM2.5. The result thus implied the advantage of improved emission inventory at local scale for high resolution air quality modeling. Under the unfavorable meteorology in which horizontal and vertical movement of atmosphere was limited, the simulated SO2 concentrations at downtown Nanjing (the capital city of Jiangsu) using the regional or national inventories were much higher than observation, implying overestimated urban emissions when economy or population densities were applied to downscale or allocate the emissions. With more accurate spatial distribution

  11. Modeling greenhouse gas emissions from dairy farms.

    Science.gov (United States)

    Rotz, C Alan

    2017-11-15

    Dairy farms have been identified as an important source of greenhouse gas emissions. Within the farm, important emissions include enteric CH 4 from the animals, CH 4 and N 2 O from manure in housing facilities during long-term storage and during field application, and N 2 O from nitrification and denitrification processes in the soil used to produce feed crops and pasture. Models using a wide range in level of detail have been developed to represent or predict these emissions. They include constant emission factors, variable process-related emission factors, empirical or statistical models, mechanistic process simulations, and life cycle assessment. To fully represent farm emissions, models representing the various emission sources must be integrated to capture the combined effects and interactions of all important components. Farm models have been developed using relationships across the full scale of detail, from constant emission factors to detailed mechanistic simulations. Simpler models, based upon emission factors and empirical relationships, tend to provide better tools for decision support, whereas more complex farm simulations provide better tools for research and education. To look beyond the farm boundaries, life cycle assessment provides an environmental accounting tool for quantifying and evaluating emissions over the full cycle, from producing the resources used on the farm through processing, distribution, consumption, and waste handling of the milk and dairy products produced. Models are useful for improving our understanding of farm processes and their interacting effects on greenhouse gas emissions. Through better understanding, they assist in the development and evaluation of mitigation strategies for reducing emissions and improving overall sustainability of dairy farms. The Authors. Published by the Federation of Animal Science Societies and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article

  12. High-resolution simulation of link-level vehicle emissions and concentrations for air pollutants in a traffic-populated eastern Asian city

    Directory of Open Access Journals (Sweden)

    S. Zhang

    2016-08-01

    Full Text Available Vehicle emissions containing air pollutants created substantial environmental impacts on air quality for many traffic-populated cities in eastern Asia. A high-resolution emission inventory is a useful tool compared with traditional tools (e.g. registration data-based approach to accurately evaluate real-world traffic dynamics and their environmental burden. In this study, Macau, one of the most populated cities in the world, is selected to demonstrate a high-resolution simulation of vehicular emissions and their contribution to air pollutant concentrations by coupling multimodels. First, traffic volumes by vehicle category on 47 typical roads were investigated during weekdays in 2010 and further applied in a networking demand simulation with the TransCAD model to establish hourly profiles of link-level vehicle counts. Local vehicle driving speed and vehicle age distribution data were also collected in Macau. Second, based on a localized vehicle emission model (e.g. the emission factor model for the Beijing vehicle fleet – Macau, EMBEV–Macau, this study established a link-based vehicle emission inventory in Macau with high resolution meshed in a temporal and spatial framework. Furthermore, we employed the AERMOD (AMS/EPA Regulatory Model model to map concentrations of CO and primary PM2.5 contributed by local vehicle emissions during weekdays in November 2010. This study has discerned the strong impact of traffic flow dynamics on the temporal and spatial patterns of vehicle emissions, such as a geographic discrepancy of spatial allocation up to 26 % between THC and PM2.5 emissions owing to spatially heterogeneous vehicle-use intensity between motorcycles and diesel fleets. We also identified that the estimated CO2 emissions from gasoline vehicles agreed well with the statistical fuel consumption in Macau. Therefore, this paper provides a case study and a solid framework for developing high-resolution environment assessment tools for other

  13. A high resolution global scale groundwater model

    Science.gov (United States)

    de Graaf, Inge; Sutanudjaja, Edwin; van Beek, Rens; Bierkens, Marc

    2014-05-01

    As the world's largest accessible source of freshwater, groundwater plays a vital role in satisfying the basic needs of human society. It serves as a primary source of drinking water and supplies water for agricultural and industrial activities. During times of drought, groundwater storage provides a large natural buffer against water shortage and sustains flows to rivers and wetlands, supporting ecosystem habitats and biodiversity. Yet, the current generation of global scale hydrological models (GHMs) do not include a groundwater flow component, although it is a crucial part of the hydrological cycle. Thus, a realistic physical representation of the groundwater system that allows for the simulation of groundwater head dynamics and lateral flows is essential for GHMs that increasingly run at finer resolution. In this study we present a global groundwater model with a resolution of 5 arc-minutes (approximately 10 km at the equator) using MODFLOW (McDonald and Harbaugh, 1988). With this global groundwater model we eventually intend to simulate the changes in the groundwater system over time that result from variations in recharge and abstraction. Aquifer schematization and properties of this groundwater model were developed from available global lithological maps and datasets (Dürr et al., 2005; Gleeson et al., 2010; Hartmann and Moosdorf, 2013), combined with our estimate of aquifer thickness for sedimentary basins. We forced the groundwater model with the output from the global hydrological model PCR-GLOBWB (van Beek et al., 2011), specifically the net groundwater recharge and average surface water levels derived from routed channel discharge. For the parameterization, we relied entirely on available global datasets and did not calibrate the model so that it can equally be expanded to data poor environments. Based on our sensitivity analysis, in which we run the model with various hydrogeological parameter settings, we observed that most variance in groundwater

  14. Spatiotemporal variability of biogenic terpenoid emissions in Pearl River Delta, China, with high-resolution land-cover and meteorological data

    Science.gov (United States)

    Wang, Xuemei; Situ, Shuping; Guenther, Alex; Chen, Fei; Wu, Zhiyong; Xia, Beicheng; Wang, Tijian

    2011-04-01

    This study intended to provide 4-km gridded, hourly, year-long, regional estimates of terpenoid emissions in the Pearl River Delta (PRD), China. It combined Thematic Mapper images and local-survey data to characterize plant functional types, and used observed emission potential of biogenic volatile organic compounds (BVOC) from local plant species and high-resolution meteorological outputs from the MM5 model to constrain the MEGAN BVOC-emission model. The estimated annual emissions for isoprene, monoterpene and sesquiterpene are 95.55 × 106 kg C, 117.35 × 106 kg C and 9.77 × 106 kg C, respectively. The results show strong variabilities of terpenoid emissions spanning diurnal and seasonal time scales, which are mainly distributed in the remote areas (with more vegetation and less economic development) in PRD. Using MODIS PFTs data reduced terpenoid emissions by 27% in remote areas. Using MEGAN-model default emission factors led to a 24% increase in BVOC emission. The model errors of temperature and radiation in MM5 output were used to assess impacts of uncertainties in meteorological forcing on emissions: increasing (decreasing) temperature and downward shortwave radiation produces more (less) terpenoid emissions for July and January. Strong temporal variability of terpenoid emissions leads to enhanced ozone formation during midday in rural areas where the anthropogenic VOC emissions are limited.

  15. Multi-resolution voxel phantom modeling: a high-resolution eye model for computational dosimetry.

    Science.gov (United States)

    Caracappa, Peter F; Rhodes, Ashley; Fiedler, Derek

    2014-09-21

    Voxel models of the human body are commonly used for simulating radiation dose with a Monte Carlo radiation transport code. Due to memory limitations, the voxel resolution of these computational phantoms is typically too large to accurately represent the dimensions of small features such as the eye. Recently reduced recommended dose limits to the lens of the eye, which is a radiosensitive tissue with a significant concern for cataract formation, has lent increased importance to understanding the dose to this tissue. A high-resolution eye model is constructed using physiological data for the dimensions of radiosensitive tissues, and combined with an existing set of whole-body models to form a multi-resolution voxel phantom, which is used with the MCNPX code to calculate radiation dose from various exposure types. This phantom provides an accurate representation of the radiation transport through the structures of the eye. Two alternate methods of including a high-resolution eye model within an existing whole-body model are developed. The accuracy and performance of each method is compared against existing computational phantoms.

  16. Influence of air quality model resolution on uncertainty associated with health impacts

    Directory of Open Access Journals (Sweden)

    T. M. Thompson

    2012-10-01

    Full Text Available We use regional air quality modeling to evaluate the impact of model resolution on uncertainty associated with the human health benefits resulting from proposed air quality regulations. Using a regional photochemical model (CAMx, we ran a modeling episode with meteorological inputs simulating conditions as they occurred during August through September 2006 (a period representative of conditions leading to high ozone, and two emissions inventories (a 2006 base case and a 2018 proposed control scenario, both for Houston, Texas at 36, 12, 4 and 2 km resolution. The base case model performance was evaluated for each resolution against daily maximum 8-h averaged ozone measured at monitoring stations. Results from each resolution were more similar to each other than they were to measured values. Population-weighted ozone concentrations were calculated for each resolution and applied to concentration response functions (with 95% confidence intervals to estimate the health impacts of modeled ozone reduction from the base case to the control scenario. We found that estimated avoided mortalities were not significantly different between the 2, 4 and 12 km resolution runs, but the 36 km resolution may over-predict some potential health impacts. Given the cost/benefit analysis requirements motivated by Executive Order 12866 as it applies to the Clean Air Act, the uncertainty associated with human health impacts and therefore the results reported in this study, we conclude that health impacts calculated from population weighted ozone concentrations obtained using regional photochemical models at 36 km resolution fall within the range of values obtained using fine (12 km or finer resolution modeling. However, in some cases, 36 km resolution may not be fine enough to statistically replicate the results achieved using 2, 4 or 12 km resolution. On average, when modeling at 36 km resolution, an estimated 5 deaths per week during the May through September ozone

  17. High spatial resolution upgrade of the electron cyclotron emission radiometer for the DIII-D tokamak.

    Science.gov (United States)

    Truong, D D; Austin, M E

    2014-11-01

    The 40-channel DIII-D electron cyclotron emission (ECE) radiometer provides measurements of Te(r,t) at the tokamak midplane from optically thick, second harmonic X-mode emission over a frequency range of 83-130 GHz. The frequency spacing of the radiometer's channels results in a spatial resolution of ∼1-3 cm, depending on local magnetic field and electron temperature. A new high resolution subsystem has been added to the DIII-D ECE radiometer to make sub-centimeter (0.6-0.8 cm) resolution Te measurements. The high resolution subsystem branches off from the regular channels' IF bands and consists of a microwave switch to toggle between IF bands, a switched filter bank for frequency selectivity, an adjustable local oscillator and mixer for further frequency down-conversion, and a set of eight microwave filters in the 2-4 GHz range. Higher spatial resolution is achieved through the use of a narrower (200 MHz) filter bandwidth and closer spacing between the filters' center frequencies (250 MHz). This configuration allows for full coverage of the 83-130 GHz frequency range in 2 GHz bands. Depending on the local magnetic field, this translates into a "zoomed-in" analysis of a ∼2-4 cm radial region. Expected uses of these channels include mapping the spatial dependence of Alfven eigenmodes, geodesic acoustic modes, and externally applied magnetic perturbations. Initial Te measurements, which demonstrate that the desired resolution is achieved, are presented.

  18. Modeling Greenhouse Gas Emissions from Enteric Fermentation

    NARCIS (Netherlands)

    Kebreab, E.; Tedeschi, L.; Dijkstra, J.; Ellis, J.L.; Bannink, A.; France, J.

    2016-01-01

    Livestock directly contribute to greenhouse gas (GHG) emissions mainly through methane (CH4) and nitrous oxide (N2O) emissions. For cost and practicality reasons, quantification of GHG has been through development of various types of mathematical models. This chapter addresses the utility and

  19. Modeling Global Biogenic Emission of Isoprene: Exploration of Model Drivers

    Science.gov (United States)

    Alexander, Susan E.; Potter, Christopher S.; Coughlan, Joseph C.; Klooster, Steven A.; Lerdau, Manuel T.; Chatfield, Robert B.; Peterson, David L. (Technical Monitor)

    1996-01-01

    Vegetation provides the major source of isoprene emission to the atmosphere. We present a modeling approach to estimate global biogenic isoprene emission. The isoprene flux model is linked to a process-based computer simulation model of biogenic trace-gas fluxes that operates on scales that link regional and global data sets and ecosystem nutrient transformations Isoprene emission estimates are determined from estimates of ecosystem specific biomass, emission factors, and algorithms based on light and temperature. Our approach differs from an existing modeling framework by including the process-based global model for terrestrial ecosystem production, satellite derived ecosystem classification, and isoprene emission measurements from a tropical deciduous forest. We explore the sensitivity of model estimates to input parameters. The resulting emission products from the global 1 degree x 1 degree coverage provided by the satellite datasets and the process model allow flux estimations across large spatial scales and enable direct linkage to atmospheric models of trace-gas transport and transformation.

  20. Modelling carbon emissions in electric systems

    International Nuclear Information System (INIS)

    Lau, E.T.; Yang, Q.; Forbes, A.B.; Wright, P.; Livina, V.N.

    2014-01-01

    Highlights: • We model carbon emissions in electric systems. • We estimate emissions in generated and consumed energy with UK carbon factors. • We model demand profiles with novel function based on hyperbolic tangents. • We study datasets of UK Elexon database, Brunel PV system and Irish SmartGrid. • We apply Ensemble Kalman Filter to forecast energy data in these case studies. - Abstract: We model energy consumption of network electricity and compute Carbon emissions (CE) based on obtained energy data. We review various models of electricity consumption and propose an adaptive seasonal model based on the Hyperbolic tangent function (HTF). We incorporate HTF to define seasonal and daily trends of electricity demand. We then build a stochastic model that combines the trends and white noise component and the resulting simulations are estimated using Ensemble Kalman Filter (EnKF), which provides ensemble simulations of groups of electricity consumers; similarly, we estimate carbon emissions from electricity generators. Three case studies of electricity generation and consumption are modelled: Brunel University photovoltaic generation data, Elexon national electricity generation data (various fuel types) and Irish smart grid data, with ensemble estimations by EnKF and computation of carbon emissions. We show the flexibility of HTF-based functions for modelling realistic cycles of energy consumption, the efficiency of EnKF in ensemble estimation of energy consumption and generation, and report the obtained estimates of the carbon emissions in the considered case studies

  1. Compact three-dimensional super-resolution system based on fluorescence emission difference microscopy

    Science.gov (United States)

    Zhu, Dazhao; Chen, Youhua; Fang, Yue; Hussain, Anwar; Kuang, Cuifang; Zhou, Xiaoxu; Xu, Yingke; Liu, Xu

    2017-12-01

    A compact microscope system for three-dimensional (3-D) super-resolution imaging is presented. The super-resolution capability of the system is based on a size-reduced effective 3-D point spread function generated through the fluorescence emission difference (FED) method. The appropriate polarization direction distribution and manipulation allows the panel active area of the spatial light modulator to be fully utilized. This allows simultaneous modulation of the incident light by two kinds of phase masks to be performed with a single spatial light modulator in order to generate a 3-D negative spot. The system is more compact than standard 3-D FED systems while maintaining all the advantages of 3-D FED microscopy. The experimental results demonstrated the improvement in 3-D resolution by nearly 1.7 times and 1.6 times compared to the classic confocal resolution in the lateral and axial directions, respectively.

  2. Minimum detection limit and spatial resolution of thin-sample field-emission electron probe microanalysis

    International Nuclear Information System (INIS)

    Kubo, Yugo; Hamada, Kotaro; Urano, Akira

    2013-01-01

    The minimum detection limit and spatial resolution for a thinned semiconductor sample were determined by electron probe microanalysis (EPMA) using a Schottky field emission (FE) electron gun and wavelength dispersive X-ray spectrometry. Comparison of the FE-EPMA results with those obtained using energy dispersive X-ray spectrometry in conjunction with scanning transmission electron microscopy, confirmed that FE-EPMA is largely superior in terms of detection sensitivity. Thin-sample FE-EPMA is demonstrated as a very effective method for high resolution, high sensitivity analysis in a laboratory environment because a high probe current and high signal-to-noise ratio can be achieved. - Highlights: • Minimum detection limit and spatial resolution determined for FE-EPMA. • Detection sensitivity of FE-EPMA greatly superior to that of STEM-EDX. • Minimum detection limit and spatial resolution controllable by probe current

  3. Modeling of greenhouse gas emission from livestock

    Directory of Open Access Journals (Sweden)

    Sanjo eJose

    2016-04-01

    Full Text Available The effects of climate change on humans and other living ecosystems is an area of on-going research. The ruminant livestock sector is considered to be one of the most significant contributors to the existing greenhouse gas (GHG pool. However the there are opportunities to combat climate change by reducing the emission of GHGs from ruminants. Methane (CH4 and nitrous oxide (N2O are emitted by ruminants via anaerobic digestion of organic matter in the rumen and manure, and by denitrification and nitrification processes which occur in manure. The quantification of these emissions by experimental methods is difficult and takes considerable time for analysis of the implications of the outputs from empirical studies, and for adaptation and mitigation strategies to be developed. To overcome these problems computer simulation models offer substantial scope for predicting GHG emissions. These models often include all farm activities while accurately predicting the GHG emissions including both direct as well as indirect sources. The models are fast and efficient in predicting emissions and provide valuable information on implementing the appropriate GHG mitigation strategies on farms. Further, these models help in testing the efficacy of various mitigation strategies that are employed to reduce GHG emissions. These models can be used to determine future adaptation and mitigation strategies, to reduce GHG emissions thereby combating livestock induced climate change.

  4. Minnesota Digital Elevation Model - Tiled 93 Meter Resolution

    Data.gov (United States)

    Minnesota Department of Natural Resources — Digital Elevation Model (DEM) at a resolution of 93 meters. Original data resolution was 3 arc seconds which corresponds (approximately) to a matrix of points at a...

  5. Implementing Problem Resolution Models in Remedy

    CERN Document Server

    Marquina, M A; Ramos, R

    2000-01-01

    This paper defines the concept of Problem Resolution Model (PRM) and describes the current implementation made by the User Support unit at CERN. One of the main challenges of User Support services in any High Energy Physics institute/organization is to address solving of the computing-relatedproblems faced by their researchers. The User Support group at CERN is the IT unit in charge of modeling the operations of the Help Desk and acts as asecond level support to some of the support lines whose problems are receptioned at the Help Desk. The motivation behind the use of a PRM is to provide well defined procedures and methods to react in an efficient way to a request for solving a problem,providing advice, information etc. A PRM is materialized on a workflow which has a set of defined states in which a problem can be. Problems move from onestate to another according to actions as decided by the person who is handling them. A PRM can be implemented by a computer application, generallyreferred to as Problem Report...

  6. A high-resolution open biomass burning emission inventory based on statistical data and MODIS observations in mainland China

    Science.gov (United States)

    Xu, Y.; Fan, M.; Huang, Z.; Zheng, J.; Chen, L.

    2017-12-01

    Open biomass burning which has adverse effects on air quality and human health is an important source of gas and particulate matter (PM) in China. Current emission estimations of open biomass burning are generally based on single source (alternative to statistical data and satellite-derived data) and thus contain large uncertainty due to the limitation of data. In this study, to quantify the 2015-based amount of open biomass burning, we established a new estimation method for open biomass burning activity levels by combining the bottom-up statistical data and top-down MODIS observations. And three sub-category sources which used different activity data were considered. For open crop residue burning, the "best estimate" of activity data was obtained by averaging the statistical data from China statistical yearbooks and satellite observations from MODIS burned area product MCD64A1 weighted by their uncertainties. For the forest and grassland fires, their activity levels were represented by the combination of statistical data and MODIS active fire product MCD14ML. Using the fire radiative power (FRP) which is considered as a better indicator of active fire level as the spatial allocation surrogate, coarse gridded emissions were reallocated into 3km ×3km grids to get a high-resolution emission inventory. Our results showed that emissions of CO, NOx, SO2, NH3, VOCs, PM2.5, PM10, BC and OC in mainland China were 6607, 427, 84, 79, 1262, 1198, 1222, 159 and 686 Gg/yr, respectively. Among all provinces of China, Henan, Shandong and Heilongjiang were the top three contributors to the total emissions. In this study, the developed open biomass burning emission inventory with a high-resolution could support air quality modeling and policy-making for pollution control.

  7. High-Resolution Spectroscopic Observations of Potassium Emissions in the Lunar Exosphere

    Science.gov (United States)

    Robertson, Sarena D.; Oliversen, Ronald J.; Mierkiewicz, Edwin J.; Kuruppuaratchi, Dona Chathuni P.; Derr, Nicholas James; Gallant, Margaret A.; McFarland, Christina G.; Sarantos, Menelaos

    2018-01-01

    We investigate lunar exospheric potassium D1 emissions (7698.9646 Å) using high-resolution (R = 180,000 or 1.7 km/s) spectroscopy with our dual-etalon Fabry-Perot instrument to measure line widths and radial velocities. The Field of View (FOV) is 2 arcmins (~224 km at the mean lunar distance of 384,400 km) positioned tangent to the sunlit limb. The FOV placements are at cardinal directions from a variety of reference craters. All observations are collected at the National Solar Observatory McMath-Pierce Telescope in Kitt Peak, Arizona. The data are from several observations from 2014 through 2017 at various times of the year. Results are produced via a newly created automated data reduction using Python. Python was chosen as an open-source alternative to the previously used IDL and MATLAB scripts to decrease the cost of software licenses and maintenance. The potassium spectral line profiles provide a direct method to track exospheric effective temperatures and velocities. By monitoring the state of the potassium emissions over different lunar phases, solar activity, and the influx of meteor streams, we can constrain physical processes of sources and sinks at the lunar surface. Mechanisms that create the exosphere include photon-stimulated desorption, thermal evaporation, meteoroid impact vaporization, and ion sputtering via solar wind. In contrast, the exosphere is diminished due to the low lunar escape velocity, solar radiation pressure, and neutral gas being ionized and swept away by the interplanetary and terrestrial magnetic field. Preliminary analysis of 2017 data (January through June, excluding February) indicates an average potassium temperature of 1140 K but varying over the range of 550 K to 2000 K. Preliminary results from 2014 data depict a similar range of temperatures to that of 2017. Further analysis is expected for additional data from 2014 to later observations in 2017 that were not included in the initial set of models.

  8. Emission features in the spectrum of NGC 7027 near 3. 3 microns at very high resolution

    Energy Technology Data Exchange (ETDEWEB)

    Lowe, R.P.; Moorhead, J.M.; Wehlau, W.H.; Maillard, J.P. (Western Ontario Univ., London (Canada) CNRS, Institut d' Astrophysique, Paris (France))

    1991-02-01

    A very high resolution spectrum is presented of the planetary nebula NGC 7027 over a 200/cm interval centered at 2950/cm, and the features found are described: (1) nebular continuum, (2) atomic recombination lines of H and He II, and (3) three broader emission features of uncertain origin. For the latter the first evidence is presented that the 3.46 micron feature and possibly the 3.40 micron feature are resolvable into a sequence of narrower features. The interpretation of the broader features is discussed in terms of the hypothesis of identification with emission by polycyclic aromatic hydrocarbons. 18 refs.

  9. High-resolution PET [Positron Emission Tomography] for Medical Science Studies

    Science.gov (United States)

    Budinger, T. F.; Derenzo, S. E.; Huesman, R. H.; Jagust, W. J.; Valk, P. E.

    1989-09-01

    One of the unexpected fruits of basic physics research and the computer revolution is the noninvasive imaging power available to today's physician. Technologies that were strictly the province of research scientists only a decade or two ago now serve as the foundations for such standard diagnostic tools as x-ray computer tomography (CT), magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), ultrasound, single photon emission computed tomography (SPECT), and positron emission tomography (PET). Furthermore, prompted by the needs of both the practicing physician and the clinical researcher, efforts to improve these technologies continue. This booklet endeavors to describe the advantages of achieving high resolution in PET imaging.

  10. High Resolution Modeling of Hurricanes in a Climate Context

    Science.gov (United States)

    Knutson, T. R.

    2007-12-01

    Modeling of tropical cyclone activity in a climate context initially focused on simulation of relatively weak tropical storm-like disturbances as resolved by coarse grid (200 km) global models. As computing power has increased, multi-year simulations with global models of grid spacing 20-30 km have become feasible. Increased resolution also allowed for simulation storms of increasing intensity, and some global models generate storms of hurricane strength, depending on their resolution and other factors, although detailed hurricane structure is not simulated realistically. Results from some recent high resolution global model studies are reviewed. An alternative for hurricane simulation is regional downscaling. An early approach was to embed an operational (GFDL) hurricane prediction model within a global model solution, either for 5-day case studies of particular model storm cases, or for "idealized experiments" where an initial vortex is inserted into an idealized environments derived from global model statistics. Using this approach, hurricanes up to category five intensity can be simulated, owing to the model's relatively high resolution (9 km grid) and refined physics. Variants on this approach have been used to provide modeling support for theoretical predictions that greenhouse warming will increase the maximum intensities of hurricanes. These modeling studies also simulate increased hurricane rainfall rates in a warmer climate. The studies do not address hurricane frequency issues, and vertical shear is neglected in the idealized studies. A recent development is the use of regional model dynamical downscaling for extended (e.g., season-length) integrations of hurricane activity. In a study for the Atlantic basin, a non-hydrostatic model with grid spacing of 18km is run without convective parameterization, but with internal spectral nudging toward observed large-scale (basin wavenumbers 0-2) atmospheric conditions from reanalyses. Using this approach, our

  11. High-resolution modelling of health impacts from air pollution using the integrated model system EVA

    Science.gov (United States)

    Brandt, Jørgen; Andersen, Mikael S.; Bønløkke, Jakob; Christensen, Jesper H.; Geels, Camilla; Hansen, Kaj M.; Jensen, Steen S.; Ketzel, Matthias; Plejdrup, Marlene S.; Sigsgaard, Torben; Silver, Jeremy D.

    2014-05-01

    A high-resolution assessment of health impacts from air pollution and related external cost has been conducted for Denmark using the integrated EVA model system. The EVA system has been further developed by implementing an air quality model with a 1 km x 1 km resolution covering the whole of Denmark. New developments of the integrated model system will be presented as well as results for health impacts and related external costs over several decades. Furthermore, the sensitivity of health impacts to model resolution will be studied. We have developed an integrated model system EVA (Economic Valuation of Air pollution), based on the impact-pathway chain, to assess the health impacts and health-related economic externalities of air pollution resulting from specific emission sources or sectors. The system is used to support policymaking with respect to emission control. In Brandt et al. (2013a; 2013b), the EVA system was used to assess the impacts in Europe and Denmark from the past, present and future total air pollution levels as well as the contribution from the major anthropogenic emission sectors. The EVA system was applied using the hemispheric chemistry-transport model, the Danish Eulerian Hemispheric Model (DEHM), with nesting capability for higher resolution over Europe (50 km x 50 km) and Northern Europe (16.7 km x 16.7 km). In this study an Urban Background Model (UBM) has been further developed to cover the whole of Denmark with a 1 km x 1 km resolution and the model has been implemented as a part of the integrated model system, EVA. The EVA system is based on the impact-pathway methodology. The site-specific emissions will result (via atmospheric transport and chemistry) in a concentration distribution, which together with detailed population data, are used to estimate the population-level exposure. Using exposure-response functions and economic valuations, the exposure is transformed into impacts on human health and related external costs. In this study

  12. The first full-resolution measurements of Auroral Medium Frequency Burst Emissions

    Science.gov (United States)

    Bunch, N. L.; Labelle, J.; Weatherwax, A.; Hughes, J.

    2008-12-01

    Auroral MF burst is a naturally occurring auroral radio emission which appears unstructured on resolution of previous measurements, is observed in the frequency range of 0.8-4.5 MHz, and has typical amplitudes of around 10-14 V2/m2Hz, and durations of a few minutes. The emission occurs at substorm onset. Since Sept 2006, Dartmouth has operated a broadband (0-5 MHz) interferometer at Toolik Lake, Alaska (68° 38' N, 149° 36' W, 68.51 deg. magnetic latitude), designed for the study of auroral MF burst emissions. Normal operation involves taking snapshots of waveforms from four spaced antennas from which wave spectral and directional information is obtained. However, the experiment can also be run in "continuous mode" whereby the signal from a selected antenna is sampled continuously at 10 M samples/second. A "continuous mode" campaign was run 0800-1200 UT (~2200-0200 MLT) daily from March 21 to April 19, 2008. During this campaign more than twenty auroral MF burst emissions were observed, including three extraordinarily intense examples lasting approximately two minutes each. These observations represent the highest time and frequency resolution data ever collected of MF burst emissions. These data allow us to better characterize the null near twice the electron gyrofrequency identified in previous experiments, since examples of this feature observed during this campaign display a strong null ~50 kHz in bandwidth, with sharp boundaries and occasionally coincident with 2 fce auroral roar. These data also allow us to search for frequency-time structures embedded in MF-burst. One prominent feature appears to be a strong single frequency emission which broadens down to lower frequencies over time, spreading to approximately 500 kHz in bandwidth over ~10 ms. Among other features observed are a diffuse and unstructured emission, as well as what could potentially be several separate emission sources, with multiple emissions occurring simultaneously, appearing as weaker

  13. European initiatives for modeling emissions from transport

    DEFF Research Database (Denmark)

    Joumard, Robert; Hickman, A. John; Samaras, Zissis

    1998-01-01

    In Europe there have been many cooperative studies into transport emission inventories since the late 80s. These cover the scope of CORINAIR program involving experts from seven European Community laboratories addressing only road transport emissions at national level. These also include the latest...... covered are the composition of the vehicle fleets, emission factors, driving statistics and the modeling approach. Many of the European initiatives aim also at promoting further cooperation between national laboratories and at defining future research needs. An assessment of these future needs...... is presented from a European point of view....

  14. High resolution krypton M/sub 4,5/ x-ray emission spectra

    International Nuclear Information System (INIS)

    Perera, R.C.C.; Hettrick, M.C.; Lindle, D.W.

    1987-10-01

    High resolution M/sub 4,5/ (3d → 4p) x-ray emission spectra from a krypton plasma were measured using a recently developed grazing-incidence reflection-grating monochromator/spectrometer with very high flux rates at extreme ultraviolet and soft x-ray wave lengths. The nominal resolving power of the instrument, E/ΔE, is about 300 in this energy range (∼80 eV). Three dipole-allowed 3d → 4p emission lines were observed at 80.98 eV, 80.35 eV and 79.73 eV. A broad peak at about 82.3 eV is tentatively assigned to transitions resulting from Kr 2+ , and effects of excitation energy on M/sub 4,5/ x-ray emission were observed. 9 refs., 3 figs., 1 tab

  15. High spatial resolution upgrade of the electron cyclotron emission radiometer for the DIII-D tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Truong, D. D., E-mail: dtruong@wisc.edu [Department of Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Austin, M. E. [Institute for Fusion Studies, University of Texas, Austin, Texas, 78712 (United States)

    2014-11-15

    The 40-channel DIII-D electron cyclotron emission (ECE) radiometer provides measurements of T{sub e}(r,t) at the tokamak midplane from optically thick, second harmonic X-mode emission over a frequency range of 83–130 GHz. The frequency spacing of the radiometer's channels results in a spatial resolution of ∼1–3 cm, depending on local magnetic field and electron temperature. A new high resolution subsystem has been added to the DIII-D ECE radiometer to make sub-centimeter (0.6–0.8 cm) resolution T{sub e} measurements. The high resolution subsystem branches off from the regular channels’ IF bands and consists of a microwave switch to toggle between IF bands, a switched filter bank for frequency selectivity, an adjustable local oscillator and mixer for further frequency down-conversion, and a set of eight microwave filters in the 2–4 GHz range. Higher spatial resolution is achieved through the use of a narrower (200 MHz) filter bandwidth and closer spacing between the filters’ center frequencies (250 MHz). This configuration allows for full coverage of the 83–130 GHz frequency range in 2 GHz bands. Depending on the local magnetic field, this translates into a “zoomed-in” analysis of a ∼2–4 cm radial region. Expected uses of these channels include mapping the spatial dependence of Alfven eigenmodes, geodesic acoustic modes, and externally applied magnetic perturbations. Initial T{sub e} measurements, which demonstrate that the desired resolution is achieved, are presented.

  16. High-resolution inventory of technologies, activities, and emissions of coal-fired power plants in China from 1990 to 2010

    Energy Technology Data Exchange (ETDEWEB)

    Liu, F.; Zheng, B.; He, K.B. [Tsinghua Univ., Beijing (China). State Key Joint Laboratory of Environment Simulation and Pollution Control; Zhang, Q. [Tsinghua Univ., Beijing (China). Ministry of Education Key Laboratory for Earth System Modeling; Tong, D.; Li, M. [Tsinghua Univ., Beijing (China). Ministry of Education Key Laboratory for Earth System Modeling; Tsinghua Univ., Beijing (China). State Key Joint Laboratory of Environment Simulation and Pollution Control; Huo, H. [Tsinghua Univ., Beijing (China). Inst. of Energy, Environment and Economy

    2015-07-01

    This paper, which focuses on emissions from China's coal-fired power plants during 1990-2010, is the second in a series of papers that aims to develop a high-resolution emission inventory for China. This is the first time that emissions from China's coal-fired power plants were estimated at unit level for a 20-year period. This inventory is constructed from a unit-based database compiled in this study, named the China coal-fired Power plant Emissions Database (CPED), which includes detailed information on the technologies, activity data, operation situation, emission factors, and locations of individual units and supplements with aggregated data where unit-based information is not available. Between 1990 and 2010, compared to a 479 % growth in coal consumption, emissions from China's coal-fired power plants increased by 56, 335, and 442 % for SO{sub 2}, NO{sub x}, and CO{sub 2}, respectively, and decreased by 23 and 27 % for PM{sub 2.5} and PM{sub 10} respectively. Driven by the accelerated economic growth, large power plants were constructed throughout the country after 2000, resulting in a dramatic growth in emissions. The growth trend of emissions has been effectively curbed since 2005 due to strengthened emission control measures including the installation of flue gas desulfurization (FGD) systems and the optimization of the generation fleet mix by promoting large units and decommissioning small ones. Compared to previous emission inventories, CPED significantly improved the spatial resolution and temporal profile of the power plant emission inventory in China by extensive use of underlying data at unit level. The new inventory developed in this study will enable a close examination of temporal and spatial variations of power plant emissions in China and will help to improve the performances of chemical transport models by providing more accurate emission data.

  17. Initial characterization of a BGO-photodiode detector for high resolution positron emission tomography

    International Nuclear Information System (INIS)

    Derenzo, S.E.

    1983-11-01

    Spatial resolution in positron emission tomography is currently limited by the resolution of the detectors. This work presents the initial characterization of a detector design using small bismuth germanate (BGO) crystals individually coupled to silicon photodiodes (SPDs) for crystal identification, and coupled in groups to phototubes (PMTs) for coincidence timing. A 3 mm x 3 mm x 3 mm BGO crystal coupled only to an SPD can achieve a 511 keV photopeak resolution of 8.7% FWHM at -150 0 C, using a pulse peaking time of 10 μs. When two 3 mm x 3 mm x 15 mm BGO crystals are coupled individually to SPDs and also coupled to a common 14 mm diam PMT, the SPDs detect the 511 keV photopeak with a resolution of 30% FWHM at -76 0 C. In coincidence with an opposing 3 mm wide BGO crystal, the SPDs are able to identify the crystal of interaction with good signal-to-noise ratio, and the detector pair resolution is 2 mm FWHM. 32 references, 7 figures, 3 tables

  18. Efficient high-resolution X-ray emission spectrometry using synchrotron radiation

    International Nuclear Information System (INIS)

    Unterumsberger, Rainer

    2015-01-01

    5.10 15 atoms/cm 2 , respectively). With the spectrometer extended by the refocusing, XES at different titanium oxides could be performed. Using the high-resolution XES, the chemical species of the different titanium oxides could be identified. In addition to the chemical speciation, it is now possible to do Resonance Inelastic X-Ray Scattering (RIXS). With this method, information about the occupied and unoccupied electronic states of the valence electrons can be revealed. For a quantitative analysis of the titanium L-fluorescence lines, the WDS had to be calibrated. For this purpose, the response behavior of the spectrometer was experimental determined using direct undulator radiation. By means of a model function for the response behavior, the response functions could be modeled and parameterized for the whole covered energy range. The response functions lead to a reliable deconvolution of the emission spectra and thereby allow an accurate determination of the fluorescence intensities. In this work, the relative uncertainties of the intensities are estimated with about 15 %. The transition probabilities of the titanium L3-fluorescence lines were determined as a function of the chemical state. For metallic titanium, the transition probability of the titanium Ll-fluorescence line amounts to 0.59(6) and decreases with increasing oxidation state of the titanium. For titanium dioxide, the transition probability of the titanium Ll-fluorescence line only amounts to 0.46(7).

  19. Study on a high resolution positron emission tomography scanner for brain study

    International Nuclear Information System (INIS)

    Nohara, N.; Tomitani, T.; Yamamoto, M.; Murayama, H.; Tanaka, E.

    1990-01-01

    The spatial resolution of positron emission tomography (PET) scanners is usually limited by the finite size of crystals such as bismuth germanate (BGO). To attain high resolution as well as high sensitivity, it is essential to use a large number of small BGO crystals arranged in close-packing on circular rings. In developing high resolution PET scanners, however, there are two physical factors limiting the spatial resolution. One is the finite range of positrons before annihilation and the other the deviation from 180 degrees of annihilation photons. The effect of the factors on the spatial resolution has been evaluated for positron-emitting sources as a function of detector ring radius. A high resolution PET scanner has been developed for brain study, aiming to have spatial resolutions as high as less than 4-mm FWHM in tomographic plane and less than 6-mm FWHM in axial direction at the detector ring center. For the goal of the high resolutions a multi-segment type of photomultiplier tubes has been specially designed and developed, which allows one tube to be directly coupled by four BGO crystals. The scanner consists of five detector rings of 47-cm in diameter, using all 1200 BGO crystals each measuring 5 mm x 12 mm x 30 mm. The scanner provides simultaneous 9 images by combination of in-plane and cross-plane, offering a 24-cm dia. x7.4-cm field-of-view. Physical performance of the scanner was investigated. At the ring center, the spatial resolution in the tomographic plane was measured to be 3.5-mm FWHM. The axial resolution was measured to be 5.7-mm FWHM for in-plane and 5.3-mm FWHM for cross-plane. Sensitivity for a 20-cm dia. uniform source was measured to be 9.5 kcps/μCi/ml for in-plane and 15.3 kcps/μCi/ml for cross-plane. (J.P.N.)

  20. Top-down constraints on global N2O emissions at optimal resolution: application of a new dimension reduction technique

    Science.gov (United States)

    Wells, Kelley C.; Millet, Dylan B.; Bousserez, Nicolas; Henze, Daven K.; Griffis, Timothy J.; Chaliyakunnel, Sreelekha; Dlugokencky, Edward J.; Saikawa, Eri; Xiang, Gao; Prinn, Ronald G.; O'Doherty, Simon; Young, Dickon; Weiss, Ray F.; Dutton, Geoff S.; Elkins, James W.; Krummel, Paul B.; Langenfelds, Ray; Steele, L. Paul

    2018-01-01

    We present top-down constraints on global monthly N2O emissions for 2011 from a multi-inversion approach and an ensemble of surface observations. The inversions employ the GEOS-Chem adjoint and an array of aggregation strategies to test how well current observations can constrain the spatial distribution of global N2O emissions. The strategies include (1) a standard 4D-Var inversion at native model resolution (4° × 5°), (2) an inversion for six continental and three ocean regions, and (3) a fast 4D-Var inversion based on a novel dimension reduction technique employing randomized singular value decomposition (SVD). The optimized global flux ranges from 15.9 Tg N yr-1 (SVD-based inversion) to 17.5-17.7 Tg N yr-1 (continental-scale, standard 4D-Var inversions), with the former better capturing the extratropical N2O background measured during the HIAPER Pole-to-Pole Observations (HIPPO) airborne campaigns. We find that the tropics provide a greater contribution to the global N2O flux than is predicted by the prior bottom-up inventories, likely due to underestimated agricultural and oceanic emissions. We infer an overestimate of natural soil emissions in the extratropics and find that predicted emissions are seasonally biased in northern midlatitudes. Here, optimized fluxes exhibit a springtime peak consistent with the timing of spring fertilizer and manure application, soil thawing, and elevated soil moisture. Finally, the inversions reveal a major emission underestimate in the US Corn Belt in the bottom-up inventory used here. We extensively test the impact of initial conditions on the analysis and recommend formally optimizing the initial N2O distribution to avoid biasing the inferred fluxes. We find that the SVD-based approach provides a powerful framework for deriving emission information from N2O observations: by defining the optimal resolution of the solution based on the information content of the inversion, it provides spatial information that is lost when

  1. A GIS based emissions inventory at 1 km × 1 km spatial resolution for air pollution analysis in Delhi, India

    Science.gov (United States)

    Guttikunda, Sarath K.; Calori, Giuseppe

    2013-03-01

    In Delhi, between 2008 and 2011, at seven monitoring stations, the daily average of particulates with diameter generation, and construction activities. In this paper, we present a multi-pollutant emissions inventory for the National Capital Territory of Delhi, covering the main district and its satellite cities - Gurgaon, Noida, Faridabad, and Ghaziabad. For the base year 2010, we estimate emissions (to the nearest 000's) of 63,000 tons of PM2.5, 114,000 tons of PM10, 37,000 tons of sulfur dioxide, 376,000 tons of nitrogen oxides, 1.42 million tons of carbon monoxide, and 261,000 tons of volatile organic compounds. The inventory is further spatially disaggregated into 80 × 80 grids at 0.01° resolution for each of the contributing sectors, which include vehicle exhaust, road dust re-suspension, domestic cooking and heating, power plants, industries (including brick kilns), diesel generator sets and waste burning. The GIS based spatial inventory coupled with temporal resolution of 1 h, was utilized for chemical transport modeling using the ATMoS dispersion model. The modeled annual average PM2.5 concentrations were 122 ± 10 μg m-3 for South Delhi; 90 ± 20 μg m-3 for Gurgaon and Dwarka; 93 ± 26 μg m-3 for North-West Delhi; 93 ± 23 μg m-3 for North-East Delhi; 42 ± 10 μg m-3 for Greater Noida; 77 ± 11 μg m-3 for Faridabad industrial area. The results have been compared to measured ambient PM pollution to validate the emissions inventory.

  2. Hyper-Resolution Groundwater Modeling using MODFLOW 6

    Science.gov (United States)

    Hughes, J. D.; Langevin, C.

    2017-12-01

    MODFLOW 6 is the latest version of the U.S. Geological Survey's modular hydrologic model. MODFLOW 6 was developed to synthesize many of the recent versions of MODFLOW into a single program, improve the way different process models are coupled, and to provide an object-oriented framework for adding new types of models and packages. The object-oriented framework and underlying numerical solver make it possible to tightly couple any number of hyper-resolution models within coarser regional models. The hyper-resolution models can be used to evaluate local-scale groundwater issues that may be affected by regional-scale forcings. In MODFLOW 6, hyper-resolution meshes can be maintained as separate model datasets, similar to MODFLOW-LGR, which simplifies the development of a coarse regional model with imbedded hyper-resolution models from a coarse regional model. For example, the South Atlantic Coastal Plain regional water availability model was converted from a MODFLOW-2000 model to a MODFLOW 6 model. The horizontal discretization of the original model is approximately 3,218 m x 3,218 m. Hyper-resolution models of the Aiken and Sumter County water budget areas in South Carolina with a horizontal discretization of approximately 322 m x 322 m were developed and were tightly coupled to a modified version of the original coarse regional model that excluded these areas. Hydraulic property and aquifer geometry data from the coarse model were mapped to the hyper-resolution models. The discretization of the hyper-resolution models is fine enough to make detailed analyses of the effect that changes in groundwater withdrawals in the production aquifers have on the water table and surface-water/groundwater interactions. The approach used in this analysis could be applied to other regional water availability models that have been developed by the U.S. Geological Survey to evaluate local scale groundwater issues.

  3. Intrinsic spatial resolution limitations due to differences between positron emission position and annihilation detection localization

    International Nuclear Information System (INIS)

    Perez, Pedro; Malano, Francisco; Valente, Mauro

    2012-01-01

    Since its successful implementation for clinical diagnostic, positron emission tomography (PET) represents the most promising medical imaging technique. The recent major growth of PET imaging is mainly due to its ability to trace the biologic pathways of different compounds in the patient's body, assuming the patient can be labeled with some PET isotope. Regardless of the type of isotope, the PET imaging method is based on the detection of two 511-keV gamma photons being emitted in opposite directions, with almost 180 deg between them, as a consequence of electron-positron annihilation. Therefore, this imaging method is intrinsically limited by random uncertainties in spatial resolutions, related with differences between the actual position of positron emission and the location of the detected annihilation. This study presents an approach with the Monte Carlo method to analyze the influence of this effect on different isotopes of potential implementation in PET. (author)

  4. Characterising and modelling extended conducted electromagnetic emission

    CSIR Research Space (South Africa)

    Grobler, Inus

    2013-06-01

    Full Text Available , such as common mode and differential mode separation, calibrated with an EMC ETS-Lindgren current probe. Good and workable model accuracies were achieved with the basic Step-Up and Step-Down circuits over the conducted emission frequency band and beyond...

  5. Ultra High Resolution Imaging of Enceladus Tiger Stripe Thermal Emission with Cassini CIRS

    Science.gov (United States)

    Spencer, John R.; Gorius, Nicolas; Howett, Carly; Verbiscer, Anne J.; Cassini CIRS Team

    2017-10-01

    In October 2015, Cassini flew within 48 km of Enceladus’ south pole. The spacecraft attitude was fixed during the flyby, but the roll angle of the spacecraft was chosen so that the remote sensing instrument fields of view passed over Damascus, Baghdad, and Cairo Sulci. The Composite Infrared Spectrometer (CIRS) instrument obtained a single interferometer scan during the flyby, using a special mode, enabled by a flight software update, which bypassed numerical filters to improve the fidelity of the interferograms. This generated a total of 11 interferograms, at 5 contiguous spatial locations for each of the 7 - 9 micron (FP4) and 9 - 17 micron (FP3) focal planes, and a single larger field of view for the 17 - 500 micron focal plane (FP1). Strong spikes were seen in the interferograms when crossing each of the sulci, due to the rapid passage of warm material through the field of view. For FP3 and FP4, the temporal variations of the signals from the 5 contiguous detectors can be used to generated 5-pixel-wide images of the thermal emission, which show excellent agreement between the two focal planes. FP3 and FP4 spatial resolution, limited along track by the 5 msec time sampling of the interferogram, and across track by the CIRS field of view, is a remarkable 40 x 40 meters. At this resolution, the tiger stripe thermal emission shows a large amount of structure, including both continuous emission along the fractures, discrete hot spots less than 100 meters across, and extended emission with complex structure.

  6. A new timing model for calculating the intrinsic timing resolution of a scintillator detector

    International Nuclear Information System (INIS)

    Shao Yiping

    2007-01-01

    The coincidence timing resolution is a critical parameter which to a large extent determines the system performance of positron emission tomography (PET). This is particularly true for time-of-flight (TOF) PET that requires an excellent coincidence timing resolution (<<1 ns) in order to significantly improve the image quality. The intrinsic timing resolution is conventionally calculated with a single-exponential timing model that includes two parameters of a scintillator detector: scintillation decay time and total photoelectron yield from the photon-electron conversion. However, this calculation has led to significant errors when the coincidence timing resolution reaches 1 ns or less. In this paper, a bi-exponential timing model is derived and evaluated. The new timing model includes an additional parameter of a scintillator detector: scintillation rise time. The effect of rise time on the timing resolution has been investigated analytically, and the results reveal that the rise time can significantly change the timing resolution of fast scintillators that have short decay time constants. Compared with measured data, the calculations have shown that the new timing model significantly improves the accuracy in the calculation of timing resolutions

  7. Global tropospheric ozone modeling: Quantifying errors due to grid resolution

    OpenAIRE

    Wild, Oliver; Prather, Michael J

    2006-01-01

    Ozone production in global chemical models is dependent on model resolution because ozone chemistry is inherently nonlinear, the timescales for chemical production are short, and precursors are artificially distributed over the spatial scale of the model grid. In this study we examine the sensitivity of ozone, its precursors, and its production to resolution by running a global chemical transport model at four different resolutions between T21 (5.6° × 5.6°) and T106 (1.1° × 1.1°) and by quant...

  8. Impact of a highly detailed emission inventory on modeling accuracy

    Science.gov (United States)

    Taghavi, M.; Cautenet, S.; Arteta, J.

    2005-03-01

    During Expérience sur Site pour COntraindre les Modèles de Pollution atmosphérique et de Transport d'Emissions (ESCOMPTE) campaign (June 10 to July 14, 2001), two pollution events observed during an intensive measurement period (IOP2a and IOP2b) have been simulated. The comprehensive Regional Atmospheric Modeling Systems (RAMS) model, version 4.3, coupled online with a chemical module including 29 species is used to follow the chemistry of a polluted zone over Southern France. This online method takes advantage of a parallel code and use of the powerful computer SGI 3800. Runs are performed with two emission inventories: the Emission Pre Inventory (EPI) and the Main Emission Inventory (MEI). The latter is more recent and has a high resolution. The redistribution of simulated chemical species (ozone and nitrogen oxides) is compared with aircraft and surface station measurements for both runs at regional scale. We show that the MEI inventory is more efficient than the EPI in retrieving the redistribution of chemical species in space (three-dimensional) and time. In surface stations, MEI is superior especially for primary species, like nitrogen oxides. The ozone pollution peaks obtained from an inventory, such as EPI, have a large uncertainty. To understand the realistic geographical distribution of pollutants and to obtain a good order of magnitude in ozone concentration (in space and time), a high-resolution inventory like MEI is necessary. Coupling RAMS-Chemistry with MEI provides a very efficient tool able to simulate pollution plumes even in a region with complex circulations, such as the ESCOMPTE zone.

  9. High spatio-temporal resolution pollutant measurements of on-board vehicle emissions using ultra-fast response gas analyzers

    Directory of Open Access Journals (Sweden)

    M. Irwin

    2018-06-01

    Full Text Available Existing ultra-fast response engine exhaust emissions analyzers have been adapted for on-board vehicle use combined with GPS data. We present, for the first time, how high spatio-temporal resolution data products allow transient features associated with internal combustion engines to be examined in detail during on-road driving. Such data are both useful to examine the circumstances leading to high emissions, and reveals the accurate position of urban air quality hot spots as deposited by the candidate vehicle, useful for source attribution and dispersion modelling. The fast response time of the analyzers, which results in 100 Hz data, makes accurate time-alignment with the vehicle's engine control unit (ECU signals possible. This enables correlation with transient air fuel ratio, engine speed, load, and other engine parameters, which helps to explain the causes of the emissions spikes that portable emissions measurement systems (PEMS and conventional slow response analyzers would miss or smooth out due to mixing within their sampling systems. The data presented is from NO and NOx analyzers, but other fast analyzers (e.g. total hydrocarbons (THC, CO and CO2 can be used similarly. The high levels of NOx pollution associated with accelerating on entry ramps to motorways, driving over speed bumps, accelerating away from traffic lights, are explored in detail. The time-aligned ultra-fast analyzers offer unique insight allowing more accurate quantification and better interpretation of engine and driver activity and the associated emissions impact on local air quality.

  10. Kalman-filtered compressive sensing for high resolution estimation of anthropogenic greenhouse gas emissions from sparse measurements.

    Energy Technology Data Exchange (ETDEWEB)

    Ray, Jaideep; Lee, Jina; Lefantzi, Sophia; Yadav, Vineet; Michalak, Anna M.; van Bloemen Waanders, Bart Gustaaf; McKenna, Sean Andrew

    2013-09-01

    The estimation of fossil-fuel CO2 emissions (ffCO2) from limited ground-based and satellite measurements of CO2 concentrations will form a key component of the monitoring of treaties aimed at the abatement of greenhouse gas emissions. The limited nature of the measured data leads to a severely-underdetermined estimation problem. If the estimation is performed at fine spatial resolutions, it can also be computationally expensive. In order to enable such estimations, advances are needed in the spatial representation of ffCO2 emissions, scalable inversion algorithms and the identification of observables to measure. To that end, we investigate parsimonious spatial parameterizations of ffCO2 emissions which can be used in atmospheric inversions. We devise and test three random field models, based on wavelets, Gaussian kernels and covariance structures derived from easily-observed proxies of human activity. In doing so, we constructed a novel inversion algorithm, based on compressive sensing and sparse reconstruction, to perform the estimation. We also address scalable ensemble Kalman filters as an inversion mechanism and quantify the impact of Gaussian assumptions inherent in them. We find that the assumption does not impact the estimates of mean ffCO2 source strengths appreciably, but a comparison with Markov chain Monte Carlo estimates show significant differences in the variance of the source strengths. Finally, we study if the very different spatial natures of biogenic and ffCO2 emissions can be used to estimate them, in a disaggregated fashion, solely from CO2 concentration measurements, without extra information from products of incomplete combustion e.g., CO. We find that this is possible during the winter months, though the errors can be as large as 50%.

  11. Thermophysical modeling for high-resolution digital terrain models

    Science.gov (United States)

    Pelivan, I.

    2018-04-01

    A method is presented for efficiently calculating surface temperatures for highly resolved celestial body shapes. A thorough investigation of the necessary conditions leading to reach model convergence shows that the speed of surface temperature convergence depends on factors such as the quality of initial boundary conditions, thermal inertia, illumination conditions, and resolution of the numerical depth grid. The optimization process to shorten the simulation time while increasing or maintaining the accuracy of model results includes the introduction of facet-specific boundary conditions such as pre-computed temperature estimates and pre-evaluated simulation times. The individual facet treatment also allows for assigning other facet-specific properties such as local thermal inertia. The approach outlined in this paper is particularly useful for very detailed digital terrain models in combination with unfavorable illumination conditions such as little to no sunlight at all for a period of time as experienced locally on comet 67P/Churyumov-Gerasimenko. Possible science applications include thermal analysis of highly resolved local (landing) sites experiencing seasonal, environment and lander shadowing. In combination with an appropriate roughness model, the method is very suitable for application to disk-integrated and disk-resolved data. Further applications are seen where the complexity of the task has led to severe shape or thermophysical model simplifications such as in studying surface activity or thermal cracking.

  12. High-resolution regional climate model evaluation using variable-resolution CESM over California

    Science.gov (United States)

    Huang, X.; Rhoades, A.; Ullrich, P. A.; Zarzycki, C. M.

    2015-12-01

    Understanding the effect of climate change at regional scales remains a topic of intensive research. Though computational constraints remain a problem, high horizontal resolution is needed to represent topographic forcing, which is a significant driver of local climate variability. Although regional climate models (RCMs) have traditionally been used at these scales, variable-resolution global climate models (VRGCMs) have recently arisen as an alternative for studying regional weather and climate allowing two-way interaction between these domains without the need for nudging. In this study, the recently developed variable-resolution option within the Community Earth System Model (CESM) is assessed for long-term regional climate modeling over California. Our variable-resolution simulations will focus on relatively high resolutions for climate assessment, namely 28km and 14km regional resolution, which are much more typical for dynamically downscaled studies. For comparison with the more widely used RCM method, the Weather Research and Forecasting (WRF) model will be used for simulations at 27km and 9km. All simulations use the AMIP (Atmospheric Model Intercomparison Project) protocols. The time period is from 1979-01-01 to 2005-12-31 (UTC), and year 1979 was discarded as spin up time. The mean climatology across California's diverse climate zones, including temperature and precipitation, is analyzed and contrasted with the Weather Research and Forcasting (WRF) model (as a traditional RCM), regional reanalysis, gridded observational datasets and uniform high-resolution CESM at 0.25 degree with the finite volume (FV) dynamical core. The results show that variable-resolution CESM is competitive in representing regional climatology on both annual and seasonal time scales. This assessment adds value to the use of VRGCMs for projecting climate change over the coming century and improve our understanding of both past and future regional climate related to fine

  13. Modelling emissions from natural gas flaring

    Directory of Open Access Journals (Sweden)

    G. Ezaina Umukoro

    2017-04-01

    Full Text Available The world today recognizes the significance of environmental sustainability to the development of nations. Hence, the role oil and gas industry plays in environmental degrading activities such as gas flaring is of global concern. This study presents material balance equations and predicts results for non-hydrocarbon emissions such as CO2, CO, NO, NO2, and SO2 etc. from flaring (combustion of 12 natural gas samples representing composition of natural gas of global origin. Gaseous emission estimates and pattern were modelled by coding material balance equations for six reaction types and combustion conditions with a computer program. On the average, anticipated gaseous emissions from flaring natural gas with an average annual global flaring rate 126 bcm per year (between 2000 and 2011 in million metric tonnes (mmt are 560 mmt, 48 mmt, 91 mmt, 93 mmt and 50 mmt for CO2, CO, NO, NO2 and SO2 respectively. This model predicted gaseous emissions based on the possible individual combustion types and conditions anticipated in gas flaring operation. It will assist in the effort by environmental agencies and all concerned to track and measure the extent of environmental pollution caused by gas flaring operations in the oil and gas industry.

  14. High Resolution Simulations of Future Climate in West Africa Using a Variable-Resolution Atmospheric Model

    Science.gov (United States)

    Adegoke, J. O.; Engelbrecht, F.; Vezhapparambu, S.

    2013-12-01

    In previous work demonstrated the application of a var¬iable-resolution global atmospheric model, the conformal-cubic atmospheric model (CCAM), across a wide range of spatial and time scales to investigate the ability of the model to provide realistic simulations of present-day climate and plausible projections of future climate change over sub-Saharan Africa. By applying the model in stretched-grid mode the versatility of the model dynamics, numerical formulation and physical parameterizations to function across a range of length scales over the region of interest, was also explored. We primarily used CCAM to illustrate the capability of the model to function as a flexible downscaling tool at the climate-change time scale. Here we report on additional long term climate projection studies performed by downscaling at much higher resolutions (8 Km) over an area that stretches from just south of Sahara desert to the southern coast of the Niger Delta and into the Gulf of Guinea. To perform these simulations, CCAM was provided with synoptic-scale forcing of atmospheric circulation from 2.5 deg resolution NCEP reanalysis at 6-hourly interval and SSTs from NCEP reanalysis data uses as lower boundary forcing. CCAM 60 Km resolution downscaled to 8 Km (Schmidt factor 24.75) then 8 Km resolution simulation downscaled to 1 Km (Schmidt factor 200) over an area approximately 50 Km x 50 Km in the southern Lake Chad Basin (LCB). Our intent in conducting these high resolution model runs was to obtain a deeper understanding of linkages between the projected future climate and the hydrological processes that control the surface water regime in this part of sub-Saharan Africa.

  15. The Role of Temporal Evolution in Modeling Atmospheric Emissions from Tropical Fires

    Science.gov (United States)

    Marlier, Miriam E.; Voulgarakis, Apostolos; Shindell, Drew T.; Faluvegi, Gregory S.; Henry, Candise L.; Randerson, James T.

    2014-01-01

    Fire emissions associated with tropical land use change and maintenance influence atmospheric composition, air quality, and climate. In this study, we explore the effects of representing fire emissions at daily versus monthly resolution in a global composition-climate model. We find that simulations of aerosols are impacted more by the temporal resolution of fire emissions than trace gases such as carbon monoxide or ozone. Daily-resolved datasets concentrate emissions from fire events over shorter time periods and allow them to more realistically interact with model meteorology, reducing how often emissions are concurrently released with precipitation events and in turn increasing peak aerosol concentrations. The magnitude of this effect varies across tropical ecosystem types, ranging from smaller changes in modeling the low intensity, frequent burning typical of savanna ecosystems to larger differences when modeling the short-term, intense fires that characterize deforestation events. The utility of modeling fire emissions at a daily resolution also depends on the application, such as modeling exceedances of particulate matter concentrations over air quality guidelines or simulating regional atmospheric heating patterns.

  16. Sparse estimation of model-based diffuse thermal dust emission

    Science.gov (United States)

    Irfan, Melis O.; Bobin, Jérôme

    2018-03-01

    Component separation for the Planck High Frequency Instrument (HFI) data is primarily concerned with the estimation of thermal dust emission, which requires the separation of thermal dust from the cosmic infrared background (CIB). For that purpose, current estimation methods rely on filtering techniques to decouple thermal dust emission from CIB anisotropies, which tend to yield a smooth, low-resolution, estimation of the dust emission. In this paper, we present a new parameter estimation method, premise: Parameter Recovery Exploiting Model Informed Sparse Estimates. This method exploits the sparse nature of thermal dust emission to calculate all-sky maps of thermal dust temperature, spectral index, and optical depth at 353 GHz. premise is evaluated and validated on full-sky simulated data. We find the percentage difference between the premise results and the true values to be 2.8, 5.7, and 7.2 per cent at the 1σ level across the full sky for thermal dust temperature, spectral index, and optical depth at 353 GHz, respectively. A comparison between premise and a GNILC-like method over selected regions of our sky simulation reveals that both methods perform comparably within high signal-to-noise regions. However, outside of the Galactic plane, premise is seen to outperform the GNILC-like method with increasing success as the signal-to-noise ratio worsens.

  17. Application of the emission inventory model TEAM: Uncertainties in dioxin emission estimates for central Europe

    NARCIS (Netherlands)

    Pulles, M.P.J.; Kok, H.; Quass, U.

    2006-01-01

    This study uses an improved emission inventory model to assess the uncertainties in emissions of dioxins and furans associated with both knowledge on the exact technologies and processes used, and with the uncertainties of both activity data and emission factors. The annual total emissions for the

  18. Imaging of dopamine transporters in rats using high-resolution pinhole single-photon emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Booij, Jan; Bruin, Kora de; Habraken, Jan B.A. [Department of Nuclear Medicine, F2N, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam (Netherlands); Voorn, Pieter [Department of Anatomy, Vrije Universiteit Medical Center, Amsterdam (Netherlands)

    2002-09-01

    To date, the vast majority of investigations on the dopaminergic system in small animals have been in vitro studies. In comparison with in vitro studies, single-photon emission tomography (SPET) or positron emission tomography (PET) imaging of the dopaminergic system in small animals has the advantage of permitting repeated studies within the same group of animals. Dopamine transporter imaging is a valuable non-invasive tool with which to investigate the integrity of dopaminergic neurons. The purpose of this study was to investigate the feasibility of assessing dopamine transporter density semi-quantitatively in rats using a recently developed high-resolution pinhole SPET system. This system was built exclusively for imaging of small animals. In this unique single-pinhole system, the animal rotates instead of the collimated detector. The system has proven to have a high spatial resolution. We performed SPET imaging with [{sup 123}I]FP-CIT to quantify striatal dopamine transporters in rat brain. In all seven studied control rats, symmetrical striatal binding to dopamine transporters was seen 2 h after injection of the radiotracer, with striatal-to-cerebellar binding ratios of approximately 3.5. In addition, test/retest variability of the striatal-to-cerebellar binding ratios was studied and found to be 14.5%. Finally, in unilaterally 6-hydroxydopamine-lesioned rats, striatal binding was only visible on the non-lesioned side. Quantitative analysis revealed that striatal-to-cerebellar SPET ratios were significantly lower on the lesioned (mean binding ratio 2.2{+-}0.2) than on the non-lesioned (mean ratio 3.1{+-}0.4) side. The preliminary results of this study indicate that semi-quantitative assessment of striatal dopamine transporter density using our recently developed high-resolution single-pinhole SPET system is feasible in living rat brain. (orig.)

  19. High-resolution inversion of OMI formaldehyde columns over the Southeast US to infer isoprene emissions

    Science.gov (United States)

    Kaiser, J.; Zhu, L.; Travis, K.; Jacob, D.

    2017-12-01

    In the South East United States, biogenic isoprene fuels tropospheric ozone formation, and its oxidation products contribute significantly to organic aerosol. Bottom-up emission inventories rely on very limited isoprene emission and land-cover data, yielding uncertainties of a factor of 2 or more. Here, we use formaldehyde columns from the Ozone Monitoring Instrument in a high-resolution (0.25 x 0.325o) adjoint-based inversion to constrain isoprene emissions over the SE US during Aug-Sept of 2013. We find that the MEGANv2.1 inventory is biased high over most of the SE US. Our derived scaling factors show significant spatial variability, with the largest corrections applied to Louisiana and the Edwards Plateau in Texas. We test our inversion results against a comprehensive set of isoprene oxidation product observations from the NASA SEAC4RS flight campaign. The SEAC4RS data provides new confidence in the satellite retrievals and in mechanism linking isoprene oxidation to formaldehyde production. Finally, we relate the posterior scaling factors to the underlying land-type, and examine potential sources of observed biases.

  20. Methane emissions from rice paddies. Experiments and modelling

    International Nuclear Information System (INIS)

    Van Bodegom, P.M.

    2000-01-01

    compounds with iron adsorption kinetics and diffusive transport in a rice plant and rhizosphere, confirmed this hypothesis. Oxidation of CH4 depended on acetate and O2 concentrations and on variables influencing competition between methanotrophs and chemical iron oxidation. Oxidation of CH4 also depended on root growth dynamics and was intrinsically dynamic. The process-based concepts were simplified in a field scale model on CH4 emissions by dividing a rice paddy into a rhizosphere compartment and a bulk soil compartment. The field scale model was validated by independent CH4 emission measurements from fields in the Philippines, China and Indonesia in different seasons and with different inorganic and organic fertiliser additions. The model predicted CH4 emissions well with only few generally available site-specific input parameters. A sensitivity analysis showed that the model was very sensitive to the description of substrate supply. The field scale model was coupled to a Geographic Information System to scale up regional CH4 emissions from rice paddies, as was the aim of the overall project. Regional CH4 emission estimates were however affected by the applied interpolation technique and by data resolution effects in a case study for the island of Java, Indonesia. The scaling effects were induced by the combination of a loss of information on heterogeneities and by non-linear model responses. Data availability and not model uncertainty, which was small for the field scale model developed in this thesis, limits upscaling of CH4 emissions from rice paddies to regions

  1. Modelling Participatory Geographic Information System for Customary Land Conflict Resolution

    Science.gov (United States)

    Gyamera, E. A.; Arko-Adjei, A.; Duncan, E. E.; Kuma, J. S. Y.

    2017-11-01

    Since land contributes to about 73 % of most countries Gross Domestic Product (GDP), attention on land rights have tremendously increased globally. Conflicts over land have therefore become part of the major problems associated with land administration. However, the conventional mechanisms for land conflict resolution do not provide satisfactory result to disputants due to various factors. This study sought to develop a Framework of using Participatory Geographic Information System (PGIS) for customary land conflict resolution. The framework was modelled using Unified Modelling Language (UML). The PGIS framework, called butterfly model, consists of three units namely, Social Unit (SU), Technical Unit (TU) and Decision Making Unit (DMU). The name butterfly model for land conflict resolution was adopted for the framework based on its features and properties. The framework has therefore been recommended to be adopted for land conflict resolution in customary areas.

  2. Development of a vehicle emission inventory with high temporal–spatial resolution based on NRT traffic data and its impact on air pollution in Beijing – Part 1: Development and evaluation of vehicle emission inventory

    Directory of Open Access Journals (Sweden)

    B. Jing

    2016-03-01

    Full Text Available This paper presents a bottom-up methodology based on the local emission factors, complemented with the widely used emission factors of Computer Programme to Calculate Emissions from Road Transport (COPERT model and near-real-time traffic data on road segments to develop a vehicle emission inventory with high temporal–spatial resolution (HTSVE for the Beijing urban area. To simulate real-world vehicle emissions accurately, the road has been divided into segments according to the driving cycle (traffic speed on this road segment. The results show that the vehicle emissions of NOx, CO, HC and PM were 10.54  ×  104, 42.51  ×  104 and 2.13  ×  104 and 0.41  ×  104 Mg respectively. The vehicle emissions and fuel consumption estimated by the model were compared with the China Vehicle Emission Control Annual Report and fuel sales thereafter. The grid-based emissions were also compared with the vehicular emission inventory developed by the macro-scale approach. This method indicates that the bottom-up approach better estimates the levels and spatial distribution of vehicle emissions than the macro-scale method, which relies on more information. Based on the results of this study, improved air quality simulation and the contribution of vehicle emissions to ambient pollutant concentration in Beijing have been investigated in a companion paper (He et al., 2016.

  3. Use of a YAP:Ce matrix coupled to a position-sensitive photomultiplier for high resolution positron emission tomography

    International Nuclear Information System (INIS)

    Del Guerra, A.; Zavattini, G.; Notaristefani, F. de; Giganti, M.; Piffanelli, A.; Pani, R.; Turra, A.

    1996-01-01

    A new scintillation detector system has been designed for application in high resolution Positron Emission Tomography (PET). The detector is a bundle of small YAlO 3 :Ce (YAP) crystals closely packed (0.2 x 0.2 x 3.0 cm 3 ), coupled to a position sensitive photomultiplier tube (PSPMT). The preliminary results obtained for spatial resolution, time resolution, energy resolution and efficiency of two such detectors working in coincidence are presented. These are 1.2 mm for the FWHM spatial resolution, 2.0 ns for the FWHM time resolution and 20% for the FWHM energy resolution at 511 keV. The measured efficiency is (44 ± 3)% with a 150 keV threshold and (20 ± 2)% with a 300 keV threshold

  4. Development of a multiplexed readout with high position resolution for positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sangwon; Choi, Yong [Molecular Imaging Research & Education (MiRe) Laboratory, Department of Electronic Engineering, Sogang University, Seoul 04107 (Korea, Republic of); Kang, Jihoon [Department of Biomedical Engineering, Chonnam National University, Yeosu 550-749 (Korea, Republic of); Jung, Jin Ho [Molecular Imaging Research & Education (MiRe) Laboratory, Department of Electronic Engineering, Sogang University, Seoul 04107 (Korea, Republic of)

    2017-04-01

    Detector signals for positron emission tomography (PET) are commonly multiplexed to reduce the number of digital processing channels so that the system can remain cost effective while also maintaining imaging performance. In this work, a multiplexed readout combining Anger position estimation algorithm and position decoder circuit (PDC) was developed to reduce the number of readout channels by a factor of 24, 96-to-4. The data acquisition module consisted of a TDC (50 ps resolution), 4-channel ADCs (12 bit, 105 MHz sampling rate), 2 GB SDRAM and USB3.0. The performance of the multiplexed readout was assessed with a high-resolution PET detector block composed of 2×3 detector modules, each consisting of an 8×8 array of 1.52×1.52×6 mm{sup 3} LYSO, a 4×4 array of 3×3 mm{sup 2} silicon photomultiplier (SiPM) and 13.4×13.4 mm{sup 2} light guide with 0.7 mm thickness. The acquired flood histogram showed that all 384 crystals could be resolved. The average energy resolution at 511 keV was 13.7±1.6% full-width-at-half-maximum (FWHM) and the peak-to-valley ratios of the flood histogram on the horizontal and vertical lines were 18.8±0.8 and 22.8±1.3, respectively. The coincidence resolving time of a pair of detector blocks was 6.2 ns FWHM. The reconstructed phantom image showed that rods down to a diameter of 1.6 mm could be resolved. The results of this study indicate that the multiplexed readout would be useful in developing a PET with a spatial resolution less than the pixel size of the photosensor, such as a SiPM array.

  5. Estimating Biogenic Non-Methane Hydrocarbon Emissions for the Wasatch Front Through a High-Resolution. Gridded, Biogenic Vola Tile Organic Compound Emissions Inventory

    Science.gov (United States)

    2002-01-01

    1-hour and proposed 8-hour National Ambient Air Quality Standards. Reactive biogenic (natural) volatile organic compounds emitted from plants have...uncertainty in predicting plant species composition and frequency. Isoprene emissions computed for the study area from the project’s high-resolution...Landcover Database (BELD 2), while monoterpene and other reactive volatile organic compound emission rates were almost 26% and 28% lower, respectively

  6. A study of spatial resolution in pollution exposure modelling

    Directory of Open Access Journals (Sweden)

    Gustafsson Susanna

    2007-06-01

    Full Text Available Abstract Background This study is part of several ongoing projects concerning epidemiological research into the effects on health of exposure to air pollutants in the region of Scania, southern Sweden. The aim is to investigate the optimal spatial resolution, with respect to temporal resolution, for a pollutant database of NOx-values which will be used mainly for epidemiological studies with durations of days, weeks or longer periods. The fact that a pollutant database has a fixed spatial resolution makes the choice critical for the future use of the database. Results The results from the study showed that the accuracy between the modelled concentrations of the reference grid with high spatial resolution (100 m, denoted the fine grid, and the coarser grids (200, 400, 800 and 1600 meters improved with increasing spatial resolution. When the pollutant values were aggregated in time (from hours to days and weeks the disagreement between the fine grid and the coarser grids were significantly reduced. The results also illustrate a considerable difference in optimal spatial resolution depending on the characteristic of the study area (rural or urban areas. To estimate the accuracy of the modelled values comparison were made with measured NOx values. The mean difference between the modelled and the measured value were 0.6 μg/m3 and the standard deviation 5.9 μg/m3 for the daily difference. Conclusion The choice of spatial resolution should not considerably deteriorate the accuracy of the modelled NOx values. Considering the comparison between modelled and measured values we estimate that an error due to coarse resolution greater than 1 μg/m3 is inadvisable if a time resolution of one day is used. Based on the study of different spatial resolutions we conclude that for urban areas a spatial resolution of 200–400 m is suitable; and for rural areas the spatial resolution could be coarser (about 1600 m. This implies that we should develop a pollutant

  7. Inverse modelling of national and European CH4 emissions using the atmospheric zoom model TM5

    Directory of Open Access Journals (Sweden)

    P. Bergamaschi

    2005-01-01

    Full Text Available A synthesis inversion based on the atmospheric zoom model TM5 is used to derive top-down estimates of CH4 emissions from individual European countries for the year 2001. We employ a model zoom over Europe with 1° × 1° resolution that is two-way nested into the global model domain (with resolution of 6° × 4°. This approach ensures consistent boundary conditions for the zoom domain and thus European top-down estimates consistent with global CH4 observations. The TM5 model, driven by ECMWF analyses, simulates synoptic scale events at most European and global sites fairly well, and the use of high-frequency observations allows exploiting the information content of individual synoptic events. A detailed source attribution is presented for a comprehensive set of 56 monitoring sites, assigning the atmospheric signal to the emissions of individual European countries and larger global regions. The available observational data put significant constraints on emissions from different regions. Within Europe, in particular several Western European countries are well constrained. The inversion results suggest up to 50-90% higher anthropogenic CH4 emissions in 2001 for Germany, France and UK compared to reported UNFCCC values (EEA, 2003. A recent revision of the German inventory, however, resulted in an increase of reported CH4 emissions by 68.5% (EEA, 2004, being now in very good agreement with our top-down estimate. The top-down estimate for Finland is distinctly smaller than the a priori estimate, suggesting much smaller CH4 emissions from Finnish wetlands than derived from the bottom-up inventory. The EU-15 totals are relatively close to UNFCCC values (within 4-30% and appear very robust for different inversion scenarios.

  8. Estimation of landfill emission lifespan using process oriented modeling

    International Nuclear Information System (INIS)

    Ustohalova, Veronika; Ricken, Tim; Widmann, Renatus

    2006-01-01

    Depending on the particular pollutants emitted, landfills may require service activities lasting from hundreds to thousands of years. Flexible tools allowing long-term predictions of emissions are of key importance to determine the nature and expected duration of maintenance and post-closure activities. A highly capable option represents predictions based on models and verified by experiments that are fast, flexible and allow for the comparison of various possible operation scenarios in order to find the most appropriate one. The intention of the presented work was to develop a experimentally verified multi-dimensional predictive model capable of quantifying and estimating processes taking place in landfill sites where coupled process description allows precise time and space resolution. This constitutive 2-dimensional model is based on the macromechanical theory of porous media (TPM) for a saturated thermo-elastic porous body. The model was used to simulate simultaneously occurring processes: organic phase transition, gas emissions, heat transport, and settlement behavior on a long time scale for municipal solid waste deposited in a landfill. The relationships between the properties (composition, pore structure) of a landfill and the conversion and multi-phase transport phenomena inside it were experimentally determined. In this paper, we present both the theoretical background of the model and the results of the simulations at one single point as well as in a vertical landfill cross section

  9. Free fermion resolution of supergroup WZNW models

    Energy Technology Data Exchange (ETDEWEB)

    Quella, T.; Schomerus, V.

    2007-06-15

    Extending our earlier work on PSL(2 vertical stroke 2), we explain how to reduce the solution of WZNW models on general type I supergroups to those defined on the bosonic subgroup. The new analysis covers in particular the supergroups GL(M vertical stroke N) along with several close relatives such as PSL(N vertical stroke N), certain Poincar'e supergroups and the series OSP(2 vertical stroke 2N). This remarkable progress relies on the use of a special Feigin-Fuchs type representation. In preparation for the field theory analysis, we shall exploit a minisuperspace analogue of a free fermion construction to deduce the spectrum of the Laplacian on type I supergroups. The latter is shown to be non-diagonalizable. After lifting these results to the full WZNW model, we address various issues of the field theory, including its modular invariance and the computation of correlation functions. In agreement with previous findings, supergroup WZNW models allow to study chiral and non-chiral aspects of logarithmic conformal field theory within a geometric framework. We shall briefly indicate how insights from WZNW models carry over to non-geometric examples, such as e.g. the W(p) triplet models.

  10. Free fermion resolution of supergroup WZNW models

    Energy Technology Data Exchange (ETDEWEB)

    Quella, T; Schomerus, V

    2007-06-15

    Extending our earlier work on PSL(2 vertical stroke 2), we explain how to reduce the solution of WZNW models on general type I supergroups to those defined on the bosonic subgroup. The new analysis covers in particular the supergroups GL(M vertical stroke N) along with several close relatives such as PSL(N vertical stroke N), certain Poincar'e supergroups and the series OSP(2 vertical stroke 2N). This remarkable progress relies on the use of a special Feigin-Fuchs type representation. In preparation for the field theory analysis, we shall exploit a minisuperspace analogue of a free fermion construction to deduce the spectrum of the Laplacian on type I supergroups. The latter is shown to be non-diagonalizable. After lifting these results to the full WZNW model, we address various issues of the field theory, including its modular invariance and the computation of correlation functions. In agreement with previous findings, supergroup WZNW models allow to study chiral and non-chiral aspects of logarithmic conformal field theory within a geometric framework. We shall briefly indicate how insights from WZNW models carry over to non-geometric examples, such as e.g. the W(p) triplet models.

  11. High-resolution emission tomography of small laboratory animals: physics and gamma-astronomy meet molecular biology

    International Nuclear Information System (INIS)

    Beekman, F.J.; Colijn, A.P.; Vastenhouw, B.; Wiegant, V.M.; Gerrits, M.A.F.M.

    2003-01-01

    Molecular imaging can be defined as the characterization and measurement of biological processes in living animals, model systems and humans at the cellular and molecular level using remote imaging detectors. An example concerns the mapping of the distributions of radioactively labeled molecules in laboratory animals which is of crucial importance for life sciences. Tomographic methods like Single Photon Emission Computed Tomography (SPECT) offer a possibility to visualize distributions of radioactively labeled molecules in living animals. Miniature tomography systems, derived from their clinical counterparts, but with a much higher image resolution are under development in several institutes. An example is U-SPECT that will be discussed in the present paper. Such systems are expected to accelerate several biomedical research procedures, the understanding of gene and protein function, as well as pharmaceutical development

  12. High-Resolution Electron-Impact Study of the Far-Ultraviolet Emission Spectrum of Molecular Hydrogen

    Science.gov (United States)

    Liu, Xian-Ming; Ahmed, Syed M.; Multari, Rosalie A.; James, Geoffrey K.; Ajello, Joseph M.

    1995-01-01

    The emission spectrum of molecular hydrogen produced by electron-impact excitation at 100 eV has been measured in the wavelength range 1140-1690 A. High-resolution, optically thin spectra (delta(lambda) = 0.136 A) of the far-ultraviolet (FUV) Lyman and Werner band systems have been obtained with a newly constructed 3 m spectrometer. Synthetic spectral intensities based on the transition probabilities calculated by Abgrall et al. are in very good agreement with experimentally observed intensities. Previous modeling that utilized Allison & Daigarno band transition probabilities with Hoenl-London factors breaks down when the transition moment has significant J dependence or when ro-vibrational coupling is significant. Ro-vibrational perturbation between upsilon = 14 of the B(sup 1)Sigma(sup +, sub u) state and upsilon = 3 of the C(sup 1)Pi(sub u) state and the rotational dependence of the transition moment in the bands of the Lyman system are examined. Complete high-resolution experimental reference FUV spectra, together with the model synthetic spectra based on the Abgrall transition probabilities, are presented. An improved calibration standard is obtained, and an accurate calibration of the 3 m spectrometer has been achieved.

  13. Estimates of greenhouse gas and black carbon emissions from a major Australian wildfire with high spatiotemporal resolution

    Science.gov (United States)

    Surawski, N. C.; Sullivan, A. L.; Roxburgh, S. H.; Polglase, P. J.

    2016-08-01

    Estimates of greenhouse gases and particulate emissions are made with a high spatiotemporal resolution from the Kilmore East fire in Victoria, Australia, which burnt approximately 100,000 ha over a 12 h period. Altogether, 10,175 Gigagrams (Gg) of CO2 equivalent (CO2-e) emissions occurred, with CO2 (˜68%) being the dominant chemical species emitted followed by CH4 (˜17%) and black carbon (BC) (˜15%). About 63% of total CO2-e emissions were estimated to be from coarse woody debris, 22% were from surface fuels, 7% from bark, 6% from elevated fuels, and less than 2% from tree crown consumption. To assess the quality of our emissions estimates, we compared our results with previous estimates which used the Global Fire Emissions Database version 3.1 (GFEDv3.1) and the Fire INventory from the National Center for Atmospheric Research version 1.0 (FINNv1), as well as Australia's National Inventory System (and its revision). The uncertainty in emission estimates was addressed using truncated Monte Carlo analysis, which derived a probability density function for total emissions from the uncertainties in each input. The distribution of emission estimates from Monte Carlo analysis was lognormal with a mean of 10,355 Gigagrams (Gg) and a ±1 standard deviation (σ) uncertainty range of 7260-13,450 Gg. Results were in good agreement with the global data sets (when using the same burnt area), although they predicted lower total emissions by 15-37% due to underestimating fuel consumed. Emissions estimates can be improved by obtaining better estimates of fuel consumed and BC emission factors. Overall, this study presents a methodological template for high-resolution emissions accounting and its uncertainty, enabling a step toward process-based emissions accounting to be achieved.

  14. A regional high-resolution emission inventory of primary air pollutants in 2012 for Beijing and the surrounding five provinces of North China

    Science.gov (United States)

    Liu, Huanjia; Wu, Bobo; Liu, Shuhan; Shao, Panyang; Liu, Xiangyang; Zhu, Chuanyong; Wang, Yong; Wu, Yiming; Xue, Yifeng; Gao, Jiajia; Hao, Yan; Tian, Hezhong

    2018-05-01

    , area of cultivated land and possession of civil vehicles) using the software 1stOpt. We find the estimated PAPs emissions of 31 provinces show close correlation with the well-recognized MEIC inventory. This high resolution multi-pollutants inventory provides necessary input data for regional air quality models that could help to identify and appoint the major influence sources, better understand the complex regional air pollution formation mechanism, and benefit for developing the corresponding joint prevention and control policies of regional complex air pollution in North China.

  15. Is Convection Sensitive to Model Vertical Resolution and Why?

    Science.gov (United States)

    Xie, S.; Lin, W.; Zhang, G. J.

    2017-12-01

    Model sensitivity to horizontal resolutions has been studied extensively, whereas model sensitivity to vertical resolution is much less explored. In this study, we use the US Department of Energy (DOE)'s Accelerated Climate Modeling for Energy (ACME) atmosphere model to examine the sensitivity of clouds and precipitation to the increase of vertical resolution of the model. We attempt to understand what results in the behavior change (if any) of convective processes represented by the unified shallow and turbulent scheme named CLUBB (Cloud Layers Unified by Binormals) and the Zhang-McFarlane deep convection scheme in ACME. A short-term hindcast approach is used to isolate parameterization issues from the large-scale circulation. The analysis emphasizes on how the change of vertical resolution could affect precipitation partitioning between convective- and grid-scale as well as the vertical profiles of convection-related quantities such as temperature, humidity, clouds, convective heating and drying, and entrainment and detrainment. The goal is to provide physical insight into potential issues with model convective processes associated with the increase of model vertical resolution. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  16. High-resolution inversion of OMI formaldehyde columns to quantify isoprene emission on ecosystem-relevant scales: application to the southeast US

    Science.gov (United States)

    Kaiser, Jennifer; Jacob, Daniel J.; Zhu, Lei; Travis, Katherine R.; Fisher, Jenny A.; González Abad, Gonzalo; Zhang, Lin; Zhang, Xuesong; Fried, Alan; Crounse, John D.; St. Clair, Jason M.; Wisthaler, Armin

    2018-04-01

    Isoprene emissions from vegetation have a large effect on atmospheric chemistry and air quality. Bottom-up isoprene emission inventories used in atmospheric models are based on limited vegetation information and uncertain land cover data, leading to potentially large errors. Satellite observations of atmospheric formaldehyde (HCHO), a high-yield isoprene oxidation product, provide top-down information to evaluate isoprene emission inventories through inverse analyses. Past inverse analyses have however been hampered by uncertainty in the HCHO satellite data, uncertainty in the time- and NOx-dependent yield of HCHO from isoprene oxidation, and coarse resolution of the atmospheric models used for the inversion. Here we demonstrate the ability to use HCHO satellite data from OMI in a high-resolution inversion to constrain isoprene emissions on ecosystem-relevant scales. The inversion uses the adjoint of the GEOS-Chem chemical transport model at 0.25° × 0.3125° horizontal resolution to interpret observations over the southeast US in August-September 2013. It takes advantage of concurrent NASA SEAC4RS aircraft observations of isoprene and its oxidation products including HCHO to validate the OMI HCHO data over the region, test the GEOS-Chem isoprene oxidation mechanism and NOx environment, and independently evaluate the inversion. This evaluation shows in particular that local model errors in NOx concentrations propagate to biases in inferring isoprene emissions from HCHO data. It is thus essential to correct model NOx biases, which was done here using SEAC4RS observations but can be done more generally using satellite NO2 data concurrently with HCHO. We find in our inversion that isoprene emissions from the widely used MEGAN v2.1 inventory are biased high over the southeast US by 40 % on average, although the broad-scale distributions are correct including maximum emissions in Arkansas/Louisiana and high base emission factors in the oak-covered Ozarks of southeast

  17. Modeling and validation of on-road CO2 emissions inventories at the urban regional scale

    International Nuclear Information System (INIS)

    Brondfield, Max N.; Hutyra, Lucy R.; Gately, Conor K.; Raciti, Steve M.; Peterson, Scott A.

    2012-01-01

    On-road emissions are a major contributor to rising concentrations of atmospheric greenhouse gases. In this study, we applied a downscaling methodology based on commonly available spatial parameters to model on-road CO 2 emissions at the 1 × 1 km scale for the Boston, MA region and tested our approach with surface-level CO 2 observations. Using two previously constructed emissions inventories with differing spatial patterns and underlying data sources, we developed regression models based on impervious surface area and volume-weighted road density that could be scaled to any resolution. We found that the models accurately reflected the inventories at their original scales (R 2 = 0.63 for both models) and exhibited a strong relationship with observed CO 2 mixing ratios when downscaled across the region. Moreover, the improved spatial agreement of the models over the original inventories confirmed that either product represents a viable basis for downscaling in other metropolitan regions, even with limited data. - Highlights: ► We model two on-road CO 2 emissions inventories using common spatial parameters. ► Independent CO 2 observations are used to validate the emissions models. ► The downscaled emissions models capture the urban spatial heterogeneity of Boston. ► Emissions estimates show a strong non-linear relationship with observed CO 2 . ► Our study is repeatable, even in areas with limited data. - This work presents a new, reproducible methodology for downscaling and validating on-road CO 2 emissions estimates.

  18. Estimating criteria pollutant emissions using the California Regional Multisector Air Quality Emissions (CA-REMARQUE model v1.0

    Directory of Open Access Journals (Sweden)

    C. B. Zapata

    2018-04-01

    Full Text Available The California Regional Multisector Air Quality Emissions (CA-REMARQUE model is developed to predict changes to criteria pollutant emissions inventories in California in response to sophisticated emissions control programs implemented to achieve deep greenhouse gas (GHG emissions reductions. Two scenarios for the year 2050 act as the starting point for calculations: a business-as-usual (BAU scenario and an 80 % GHG reduction (GHG-Step scenario. Each of these scenarios was developed with an energy economic model to optimize costs across the entire California economy and so they include changes in activity, fuels, and technology across economic sectors. Separate algorithms are developed to estimate emissions of criteria pollutants (or their precursors that are consistent with the future GHG scenarios for the following economic sectors: (i on-road, (ii rail and off-road, (iii marine and aviation, (iv residential and commercial, (v electricity generation, and (vi biorefineries. Properly accounting for new technologies involving electrification, biofuels, and hydrogen plays a central role in these calculations. Critically, criteria pollutant emissions do not decrease uniformly across all sectors of the economy. Emissions of certain criteria pollutants (or their precursors increase in some sectors as part of the overall optimization within each of the scenarios. This produces nonuniform changes to criteria pollutant emissions in close proximity to heavily populated regions when viewed at 4 km spatial resolution with implications for exposure to air pollution for those populations. As a further complication, changing fuels and technology also modify the composition of reactive organic gas emissions and the size and composition of particulate matter emissions. This is most notably apparent through a comparison of emissions reductions for different size fractions of primary particulate matter. Primary PM2.5 emissions decrease by 4 % in the GHG

  19. Estimating criteria pollutant emissions using the California Regional Multisector Air Quality Emissions (CA-REMARQUE) model v1.0

    Science.gov (United States)

    Zapata, Christina B.; Yang, Chris; Yeh, Sonia; Ogden, Joan; Kleeman, Michael J.

    2018-04-01

    The California Regional Multisector Air Quality Emissions (CA-REMARQUE) model is developed to predict changes to criteria pollutant emissions inventories in California in response to sophisticated emissions control programs implemented to achieve deep greenhouse gas (GHG) emissions reductions. Two scenarios for the year 2050 act as the starting point for calculations: a business-as-usual (BAU) scenario and an 80 % GHG reduction (GHG-Step) scenario. Each of these scenarios was developed with an energy economic model to optimize costs across the entire California economy and so they include changes in activity, fuels, and technology across economic sectors. Separate algorithms are developed to estimate emissions of criteria pollutants (or their precursors) that are consistent with the future GHG scenarios for the following economic sectors: (i) on-road, (ii) rail and off-road, (iii) marine and aviation, (iv) residential and commercial, (v) electricity generation, and (vi) biorefineries. Properly accounting for new technologies involving electrification, biofuels, and hydrogen plays a central role in these calculations. Critically, criteria pollutant emissions do not decrease uniformly across all sectors of the economy. Emissions of certain criteria pollutants (or their precursors) increase in some sectors as part of the overall optimization within each of the scenarios. This produces nonuniform changes to criteria pollutant emissions in close proximity to heavily populated regions when viewed at 4 km spatial resolution with implications for exposure to air pollution for those populations. As a further complication, changing fuels and technology also modify the composition of reactive organic gas emissions and the size and composition of particulate matter emissions. This is most notably apparent through a comparison of emissions reductions for different size fractions of primary particulate matter. Primary PM2.5 emissions decrease by 4 % in the GHG-Step scenario vs

  20. Modeling Spatial and Temporal Variability in Ammonia Emissions from Agricultural Fertilization

    Science.gov (United States)

    Balasubramanian, S.; Koloutsou-Vakakis, S.; Rood, M. J.

    2013-12-01

    Ammonia (NH3), is an important component of the reactive nitrogen cycle and a precursor to formation of atmospheric particulate matter (PM). Predicting regional PM concentrations and deposition of nitrogen species to ecosystems requires representative emission inventories. Emission inventories have traditionally been developed using top down approaches and more recently from data assimilation based on satellite and ground based ambient concentrations and wet deposition data. The National Emission Inventory (NEI) indicates agricultural fertilization as the predominant contributor (56%) to NH3 emissions in Midwest USA, in 2002. However, due to limited understanding of the complex interactions between fertilizer usage, farm practices, soil and meteorological conditions and absence of detailed statistical data, such emission estimates are currently based on generic emission factors, time-averaged temporal factors and coarse spatial resolution. Given the significance of this source, our study focuses on developing an improved NH3 emission inventory for agricultural fertilization at finer spatial and temporal scales for air quality modeling studies. Firstly, a high-spatial resolution 4 km x 4 km NH3 emission inventory for agricultural fertilization has been developed for Illinois by modifying spatial allocation of emissions based on combining crop-specific fertilization rates with cropland distribution in the Sparse Matrix Operator Kernel Emissions model. Net emission estimates of our method are within 2% of NEI, since both methods are constrained by fertilizer sales data. However, we identified localized crop-specific NH3 emission hotspots at sub-county resolutions absent in NEI. Secondly, we have adopted the use of the DeNitrification-DeComposition (DNDC) Biogeochemistry model to simulate the physical and chemical processes that control volatilization of nitrogen as NH3 to the atmosphere after fertilizer application and resolve the variability at the hourly scale

  1. Linear mixing model applied to coarse resolution satellite data

    Science.gov (United States)

    Holben, Brent N.; Shimabukuro, Yosio E.

    1992-01-01

    A linear mixing model typically applied to high resolution data such as Airborne Visible/Infrared Imaging Spectrometer, Thematic Mapper, and Multispectral Scanner System is applied to the NOAA Advanced Very High Resolution Radiometer coarse resolution satellite data. The reflective portion extracted from the middle IR channel 3 (3.55 - 3.93 microns) is used with channels 1 (0.58 - 0.68 microns) and 2 (0.725 - 1.1 microns) to run the Constrained Least Squares model to generate fraction images for an area in the west central region of Brazil. The derived fraction images are compared with an unsupervised classification and the fraction images derived from Landsat TM data acquired in the same day. In addition, the relationship betweeen these fraction images and the well known NDVI images are presented. The results show the great potential of the unmixing techniques for applying to coarse resolution data for global studies.

  2. High resolution reservoir geological modelling using outcrop information

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Changmin; Lin Kexiang; Liu Huaibo [Jianghan Petroleum Institute, Hubei (China)] [and others

    1997-08-01

    This is China`s first case study of high resolution reservoir geological modelling using outcrop information. The key of the modelling process is to build a prototype model and using the model as a geological knowledge bank. Outcrop information used in geological modelling including seven aspects: (1) Determining the reservoir framework pattern by sedimentary depositional system and facies analysis; (2) Horizontal correlation based on the lower and higher stand duration of the paleo-lake level; (3) Determining the model`s direction based on the paleocurrent statistics; (4) Estimating the sandbody communication by photomosaic and profiles; (6) Estimating reservoir properties distribution within sandbody by lithofacies analysis; and (7) Building the reservoir model in sandbody scale by architectural element analysis and 3-D sampling. A high resolution reservoir geological model of Youshashan oil field has been built by using this method.

  3. Extracting chemical information from high-resolution Kβ X-ray emission spectroscopy

    Science.gov (United States)

    Limandri, S.; Robledo, J.; Tirao, G.

    2018-06-01

    High-resolution X-ray emission spectroscopy allows studying the chemical environment of a wide variety of materials. Chemical information can be obtained by fitting the X-ray spectra and observing the behavior of some spectral features. Spectral changes can also be quantified by means of statistical parameters calculated by considering the spectrum as a probability distribution. Another possibility is to perform statistical multivariate analysis, such as principal component analysis. In this work the performance of these procedures for extracting chemical information in X-ray emission spectroscopy spectra for mixtures of Mn2+ and Mn4+ oxides are studied. A detail analysis of the parameters obtained, as well as the associated uncertainties is shown. The methodologies are also applied for Mn oxidation state characterization of double perovskite oxides Ba1+xLa1-xMnSbO6 (with 0 ≤ x ≤ 0.7). The results show that statistical parameters and multivariate analysis are the most suitable for the analysis of this kind of spectra.

  4. High-resolution gravity model of Venus

    Science.gov (United States)

    Reasenberg, R. D.; Goldberg, Z. M.

    1992-01-01

    The anomalous gravity field of Venus shows high correlation with surface features revealed by radar. We extract gravity models from the Doppler tracking data from the Pioneer Venus Orbiter by means of a two-step process. In the first step, we solve the nonlinear spacecraft state estimation problem using a Kalman filter-smoother. The Kalman filter has been evaluated through simulations. This evaluation and some unusual features of the filter are discussed. In the second step, we perform a geophysical inversion using a linear Bayesian estimator. To allow an unbiased comparison between gravity and topography, we use a simulation technique to smooth and distort the radar topographic data so as to yield maps having the same characteristics as our gravity maps. The maps presented cover 2/3 of the surface of Venus and display the strong topography-gravity correlation previously reported. The topography-gravity scatter plots show two distinct trends.

  5. Finite detector based projection model for super resolution CT

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Hengyong; Wang, Ge [Wake Forest Univ. Health Sciences, Winston-Salem, NC (United States). Dept. of Radiology; Virgina Tech, Blacksburg, VA (United States). Biomedical Imaging Div.

    2011-07-01

    For finite detector and focal spot sizes, here we propose a projection model for super resolution CT. First, for a given X-ray source point, a projection datum is modeled as an area integral over a narrow fan-beam connecting the detector elemental borders and the X-ray source point. Then, the final projection value is expressed as the integral obtained in the first step over the whole focal spot support. An ordered-subset simultaneous algebraic reconstruction technique (OS-SART) is developed using the proposed projection model. In the numerical simulation, our method produces super spatial resolution and suppresses high-frequency artifacts. (orig.)

  6. Constraining Stochastic Parametrisation Schemes Using High-Resolution Model Simulations

    Science.gov (United States)

    Christensen, H. M.; Dawson, A.; Palmer, T.

    2017-12-01

    Stochastic parametrisations are used in weather and climate models as a physically motivated way to represent model error due to unresolved processes. Designing new stochastic schemes has been the target of much innovative research over the last decade. While a focus has been on developing physically motivated approaches, many successful stochastic parametrisation schemes are very simple, such as the European Centre for Medium-Range Weather Forecasts (ECMWF) multiplicative scheme `Stochastically Perturbed Parametrisation Tendencies' (SPPT). The SPPT scheme improves the skill of probabilistic weather and seasonal forecasts, and so is widely used. However, little work has focused on assessing the physical basis of the SPPT scheme. We address this matter by using high-resolution model simulations to explicitly measure the `error' in the parametrised tendency that SPPT seeks to represent. The high resolution simulations are first coarse-grained to the desired forecast model resolution before they are used to produce initial conditions and forcing data needed to drive the ECMWF Single Column Model (SCM). By comparing SCM forecast tendencies with the evolution of the high resolution model, we can measure the `error' in the forecast tendencies. In this way, we provide justification for the multiplicative nature of SPPT, and for the temporal and spatial scales of the stochastic perturbations. However, we also identify issues with the SPPT scheme. It is therefore hoped these measurements will improve both holistic and process based approaches to stochastic parametrisation. Figure caption: Instantaneous snapshot of the optimal SPPT stochastic perturbation, derived by comparing high-resolution simulations with a low resolution forecast model.

  7. Impact of transport model errors on the global and regional methane emissions estimated by inverse modelling

    Directory of Open Access Journals (Sweden)

    R. Locatelli

    2013-10-01

    Full Text Available A modelling experiment has been conceived to assess the impact of transport model errors on methane emissions estimated in an atmospheric inversion system. Synthetic methane observations, obtained from 10 different model outputs from the international TransCom-CH4 model inter-comparison exercise, are combined with a prior scenario of methane emissions and sinks, and integrated into the three-component PYVAR-LMDZ-SACS (PYthon VARiational-Laboratoire de Météorologie Dynamique model with Zooming capability-Simplified Atmospheric Chemistry System inversion system to produce 10 different methane emission estimates at the global scale for the year 2005. The same methane sinks, emissions and initial conditions have been applied to produce the 10 synthetic observation datasets. The same inversion set-up (statistical errors, prior emissions, inverse procedure is then applied to derive flux estimates by inverse modelling. Consequently, only differences in the modelling of atmospheric transport may cause differences in the estimated fluxes. In our framework, we show that transport model errors lead to a discrepancy of 27 Tg yr−1 at the global scale, representing 5% of total methane emissions. At continental and annual scales, transport model errors are proportionally larger than at the global scale, with errors ranging from 36 Tg yr−1 in North America to 7 Tg yr−1 in Boreal Eurasia (from 23 to 48%, respectively. At the model grid-scale, the spread of inverse estimates can reach 150% of the prior flux. Therefore, transport model errors contribute significantly to overall uncertainties in emission estimates by inverse modelling, especially when small spatial scales are examined. Sensitivity tests have been carried out to estimate the impact of the measurement network and the advantage of higher horizontal resolution in transport models. The large differences found between methane flux estimates inferred in these different configurations highly

  8. The air emissions risk assessment model (AERAM)

    International Nuclear Information System (INIS)

    Gratt, L.B.

    1991-01-01

    AERAM is an environmental analysis and power generation station investment decision support tool. AERAM calculates the public health risk (in terms of the lifetime cancers) in the nearby population from pollutants released into the air. AERAM consists of four main subroutines: Emissions, Air, Exposure and Risk. The Emission subroutine uses power plant parameters to calculate the expected release of the pollutants. A coal-fired and oil-fired power plant are currently available. A gas-fired plant model is under preparation. The release of the pollutants into the air is followed by their dispersal in the environment. The dispersion in the Air Subroutine uses the Environmental Protection Agency's model, Industrial Source Complex-Long Term. Additional dispersion models (Industrial Source Complex - Short Term and Cooling Tower Drift) are being implemented for future AERAM versions. The Expose Subroutine uses the ambient concentrations to compute population exposures for the pollutants of concern. The exposures are used with corresponding dose-response model in the Risk Subroutine to estimate both the total population risk and individual risk. The risk for the dispersion receptor-population centroid for the maximum concentration is also calculated for regulatory-population purposes. In addition, automated interfaces with AirTox (an air risk decision model) have been implemented to extend AERAM's steady-state single solution to the decision-under-uncertainty domain. AERAM was used for public health risks, the investment decision for additional pollution control systems based on health risk reductions, and the economics of fuel vs. health risk tradeoffs. AERAM provides that state-of-the-art capability for evaluating the public health impact airborne toxic substances in response to regulations and public concern

  9. Air Quality Modelling and the National Emission Database

    DEFF Research Database (Denmark)

    Jensen, S. S.

    The project focuses on development of institutional strengthening to be able to carry out national air emission inventories based on the CORINAIR methodology. The present report describes the link between emission inventories and air quality modelling to ensure that the new national air emission...... inventory is able to take into account the data requirements of air quality models...

  10. Modeling regional-scale wildland fire emissions with the wildland fire emissions information system

    Science.gov (United States)

    Nancy H.F. French; Donald McKenzie; Tyler Erickson; Benjamin Koziol; Michael Billmire; K. Endsley; Naomi K.Y. Scheinerman; Liza Jenkins; Mary E. Miller; Roger Ottmar; Susan Prichard

    2014-01-01

    As carbon modeling tools become more comprehensive, spatial data are needed to improve quantitative maps of carbon emissions from fire. The Wildland Fire Emissions Information System (WFEIS) provides mapped estimates of carbon emissions from historical forest fires in the United States through a web browser. WFEIS improves access to data and provides a consistent...

  11. Stimulated-emission pumping enabling sub-diffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy

    NARCIS (Netherlands)

    Cleff, C.; Gross, P.; Fallnich, C.; Offerhaus, Herman L.; Herek, Jennifer Lynn; Kruse, K.; Beeker, W.P.; Lee, Christopher James; Boller, Klaus J.

    2013-01-01

    We present a theoretical investigation of stimulated emission pumping to achieve sub-diffraction-limited spatial resolution in coherent anti-Stokes Raman scattering (CARS) microscopy. A pair of control light fields is used to prepopulate the Raman state involved in the CARS process prior to the CARS

  12. High resolution X-ray emission spectroscopy: An advanced tool for actinide research

    Science.gov (United States)

    Vitova, T.; Brendebach, B.; Dardenne, K.; Denecke, M. A.; Lebid, A.; Löble, M.; Rothe, J.; Batuk, O. N.; Hormes, J.; Liu, D.; Breher, F.; Geckeis, H.

    2010-03-01

    High resolution X-ray emission spectroscopy (HRXES) is becoming increasingly important for our understanding of electronic and coordination structures. The combination of such information with development of quantum theoretical tools will advance our capability for predicting reactivity and physical behavior especially of 5f elements. HRXES can be used to remove lifetime broadening by registering the partial fluorescence yield emitted by the sample (i.e., recording a windowed signal from the energy dispersed fluorescence emission while varying incident photon energy), thereby yielding highly resolved X-ray absorption fine structure (XAFS) spectra. Such spectra often display resonant features not observed in conventional XAFS. The spectrometer set-up can also be used for a wide range of other experiments, for example, resonant inelastic X-ray scattering (RIXS), where bulk electron configuration information in solids, liquids and gases is obtained. Valence-selective XAFS studies, where the local structure of a selected element's valence state present in a mixture of valence states can be obtained, as well as site-selective XAFS studies, where the coordination structure of a metal bound to selected elements can be differentiated from that of all the other ligating atoms. A HRXES spectrometer has been constructed and is presently being commissioned for use at the INE-Beamline for actinide research at the synchrotron source ANKA at FZK. We present the spectrometer's compact, modular design, optimized for attaining a wide range of energies, and first test measurement results. Examples from HRXES studies of lanthanides, actinides counter parts, are also shown.

  13. Determination of spatial resolution of positron emission tomograph of clear PET-XPAD3/CT system

    Energy Technology Data Exchange (ETDEWEB)

    Olaya D, H.; Martinez O, S. A. [Universidad Pedagogica y Tecnologica de Colombia, Grupo de Fisica Nuclear Aplicada y Simulacion, 150003 Tunja, Boyaca (Colombia); Morel, C. [Centre de Physique des Particules de Marseille, ImXgam Group, 13009 Marseille (France); Castro, H. F. [Universidad Nacional de Colombia, Physics Department, Carrera 45 No. 26-85, Bogota (Colombia)

    2016-10-15

    Based on the National Electrical Manufacturers Association (Nema), using the Amine software to construction of sinograms and using a radioactive source {sup 22}Na that emitting positrons were made calculations for determine spatial resolution of ring array system of phoswich detectors of positron emission tomograph included in the Clear PET-XPAD3/CT prototype for small animals made in the laboratories of CCPM and whose project is led by the research group ImXgam. The radioactive source {sup 22}Na approximately 9 MBq of activity, with spherical shape and diameter of 0.57 mm immersed in a plexiglas disc was located at the geometric center of tomographic system with a Field of View (Fov) of 35 mm in the axial and transverse directions. Displacements of radioactive source were performed on the three cartesian axes and was rebuilt a sinogram for each axis. The shape of sinogram allow describe the correct position and the maximum efficiency of each detector. Subsequently, was carried out a scanning in each one of three spatial axes taking an enough distance covering the dimensions of radioactive source, were recorded data for each one of phoswich detector crystals which are aligned in the axis of movement. The process was repeated for other axes and then was offsetting the radioactive source with respect to the Fov and were calculated FWHM (Full Width at Half Maximum) and FWTM (Full Width at Tenth Maximum) values and performing statistics of these values with parabolic fitting, the latter setting allows to obtain parameters of spatial resolution of system. (Author)

  14. Determination of spatial resolution of positron emission tomograph of clear PET-XPAD3/CT system

    International Nuclear Information System (INIS)

    Olaya D, H.; Martinez O, S. A.; Morel, C.; Castro, H. F.

    2016-10-01

    Based on the National Electrical Manufacturers Association (Nema), using the Amine software to construction of sinograms and using a radioactive source "2"2Na that emitting positrons were made calculations for determine spatial resolution of ring array system of phoswich detectors of positron emission tomograph included in the Clear PET-XPAD3/CT prototype for small animals made in the laboratories of CCPM and whose project is led by the research group ImXgam. The radioactive source "2"2Na approximately 9 MBq of activity, with spherical shape and diameter of 0.57 mm immersed in a plexiglas disc was located at the geometric center of tomographic system with a Field of View (Fov) of 35 mm in the axial and transverse directions. Displacements of radioactive source were performed on the three cartesian axes and was rebuilt a sinogram for each axis. The shape of sinogram allow describe the correct position and the maximum efficiency of each detector. Subsequently, was carried out a scanning in each one of three spatial axes taking an enough distance covering the dimensions of radioactive source, were recorded data for each one of phoswich detector crystals which are aligned in the axis of movement. The process was repeated for other axes and then was offsetting the radioactive source with respect to the Fov and were calculated FWHM (Full Width at Half Maximum) and FWTM (Full Width at Tenth Maximum) values and performing statistics of these values with parabolic fitting, the latter setting allows to obtain parameters of spatial resolution of system. (Author)

  15. Plasmon point spread functions: How do we model plasmon-mediated emission processes?

    Science.gov (United States)

    Willets, Katherine A.

    2014-02-01

    A major challenge with studying plasmon-mediated emission events is the small size of plasmonic nanoparticles relative to the wavelength of light. Objects smaller than roughly half the wavelength of light will appear as diffraction-limited spots in far-field optical images, presenting a significant experimental challenge for studying plasmonic processes on the nanoscale. Super-resolution imaging has recently been applied to plasmonic nanosystems and allows plasmon-mediated emission to be resolved on the order of ˜5 nm. In super-resolution imaging, a diffraction-limited spot is fit to some model function in order to calculate the position of the emission centroid, which represents the location of the emitter. However, the accuracy of the centroid position strongly depends on how well the fitting function describes the data. This Perspective discusses the commonly used two-dimensional Gaussian fitting function applied to super-resolution imaging of plasmon-mediated emission, then introduces an alternative model based on dipole point spread functions. The two fitting models are compared and contrasted for super-resolution imaging of nanoparticle scattering/luminescence, surface-enhanced Raman scattering, and surface-enhanced fluorescence.

  16. Modeling natural emissions in the Community Multiscale Air Quality (CMAQ) Model-I: building an emissions data base

    Science.gov (United States)

    Smith, S. N.; Mueller, S. F.

    2010-05-01

    A natural emissions inventory for the continental United States and surrounding territories is needed in order to use the US Environmental Protection Agency Community Multiscale Air Quality (CMAQ) Model for simulating natural air quality. The CMAQ air modeling system (including the Sparse Matrix Operator Kernel Emissions (SMOKE) emissions processing system) currently estimates non-methane volatile organic compound (NMVOC) emissions from biogenic sources, nitrogen oxide (NOx) emissions from soils, ammonia from animals, several types of particulate and reactive gas emissions from fires, as well as sea salt emissions. However, there are several emission categories that are not commonly treated by the standard CMAQ Model system. Most notable among these are nitrogen oxide emissions from lightning, reduced sulfur emissions from oceans, geothermal features and other continental sources, windblown dust particulate, and reactive chlorine gas emissions linked with sea salt chloride. A review of past emissions modeling work and existing global emissions data bases provides information and data necessary for preparing a more complete natural emissions data base for CMAQ applications. A model-ready natural emissions data base is developed to complement the anthropogenic emissions inventory used by the VISTAS Regional Planning Organization in its work analyzing regional haze based on the year 2002. This new data base covers a modeling domain that includes the continental United States plus large portions of Canada, Mexico and surrounding oceans. Comparing July 2002 source data reveals that natural emissions account for 16% of total gaseous sulfur (sulfur dioxide, dimethylsulfide and hydrogen sulfide), 44% of total NOx, 80% of reactive carbonaceous gases (NMVOCs and carbon monoxide), 28% of ammonia, 96% of total chlorine (hydrochloric acid, nitryl chloride and sea salt chloride), and 84% of fine particles (i.e., those smaller than 2.5 μm in size) released into the atmosphere

  17. Modeling natural emissions in the Community Multiscale Air Quality (CMAQ) model - Part 1: Building an emissions data base

    Science.gov (United States)

    Smith, S. N.; Mueller, S. F.

    2010-01-01

    A natural emissions inventory for the continental United States and surrounding territories is needed in order to use the US Environmental Protection Agency Community Multiscale Air Quality (CMAQ) Model for simulating natural air quality. The CMAQ air modeling system (including the Sparse Matrix Operator Kernel Emissions (SMOKE) emissions processing system) currently estimates volatile organic compound (VOC) emissions from biogenic sources, nitrogen oxide (NOx) emissions from soils, ammonia from animals, several types of particulate and reactive gas emissions from fires, as well as windblown dust and sea salt emissions. However, there are several emission categories that are not commonly treated by the standard CMAQ Model system. Most notable among these are nitrogen oxide emissions from lightning, reduced sulfur emissions from oceans, geothermal features and other continental sources, and reactive chlorine gas emissions linked with sea salt chloride. A review of past emissions modeling work and existing global emissions data bases provides information and data necessary for preparing a more complete natural emissions data base for CMAQ applications. A model-ready natural emissions data base is developed to complement the anthropogenic emissions inventory used by the VISTAS Regional Planning Organization in its work analyzing regional haze based on the year 2002. This new data base covers a modeling domain that includes the continental United States plus large portions of Canada, Mexico and surrounding oceans. Comparing July 2002 source data reveals that natural emissions account for 16% of total gaseous sulfur (sulfur dioxide, dimethylsulfide and hydrogen sulfide), 44% of total NOx, 80% of reactive carbonaceous gases (VOCs and carbon monoxide), 28% of ammonia, 96% of total chlorine (hydrochloric acid, nitryl chloride and sea salt chloride), and 84% of fine particles (i.e., those smaller than 2.5 μm in size) released into the atmosphere. The seasonality and

  18. Role of land state in a high resolution mesoscale model

    Indian Academy of Sciences (India)

    ... Proceedings – Mathematical Sciences · Resonance – Journal of Science ... Land surface characteristics; high resolution mesoscale model; Uttarakhand ... to predict realistic location, timing, amount,intensity and distribution of rainfall ... region embedded within two low pressure centers over Arabian Seaand Bay of Bengal.

  19. Influence of horizontal resolution and ensemble size on model performance

    CSIR Research Space (South Africa)

    Dalton, A

    2014-10-01

    Full Text Available Conference of South African Society for Atmospheric Sciences (SASAS), Potchefstroom, 1-2 October 2014 Influence of horizontal resolution and ensemble size on model performance Amaris Dalton*¹, Willem A. Landman ¹ʾ² ¹Departmen of Geography, Geo...

  20. An Intervention Model of Constructive Conflict Resolution and Cooperative Learning.

    Science.gov (United States)

    Zhang, Quanwu

    1994-01-01

    Tests an intervention model of constructive conflict resolution (CCR) and cooperative learning in three urban high schools. Findings show that improvements in CCR increased social support and decreased victimization for the students. These changes improved student's attitudes, self-esteem, interpersonal relations, and academic achievement. (GLR)

  1. Problem Resolution through Electronic Mail: A Five-Step Model.

    Science.gov (United States)

    Grandgenett, Neal; Grandgenett, Don

    2001-01-01

    Discusses the use of electronic mail within the general resolution and management of administrative problems and emphasizes the need for careful attention to problem definition and clarity of language. Presents a research-based five-step model for the effective use of electronic mail based on experiences at the University of Nebraska at Omaha.…

  2. Theoretical models of neutron emission in fission

    International Nuclear Information System (INIS)

    Madland, D.G.

    1992-01-01

    A brief survey of theoretical representations of two of the observables in neutron emission in fission is given, namely, the prompt fission neutron spectrum N(E) and the average prompt neutron multiplicity bar v p . Early representations of the two observables are presented and their deficiencies are discussed. This is followed by summaries and examples of recent theoretical models for the calculation of these quantities. Emphasis is placed upon the predictability and accuracy of the new models. In particular, the dependencies of N(E) and bar v p upon the fissioning nucleus and its excitation energy are treated. Recent work in the calculation of the prompt fission neutron spectrum matrix N(E,E n ), where E n is the energy of the neutron inducing fission, is then discussed. Concluding remarks address the current status of our ability to calculate these observables with confidence, the direction of future theoretical efforts, and limititations to current and future calculations. Finally, recommendations are presented as to which model should be used currently and which model should be pursued in future efforts

  3. Optimisation of time resolution in Positron Emission Tomography dedicated to dose control in hadron-therapy

    International Nuclear Information System (INIS)

    Joly, Baptiste

    2010-01-01

    Hadron-therapy is a tumor treatment technique based on irradiation by ions beams. The dose distribution can be controlled during the treatment by Positron Emission Tomography (PET). Indeed, the nuclear collisions between the incident ions and the target medium produce β + emitters, whose spatial distribution is correlated to the dose distribution. However, this application of PET suffers from a low β + activity, a high parasitic activity, and requires fast reconstruction. The Time-Of-Flight technique appears as a key factor to make the in beam PET technique feasible. This work starts from a front-end concept based on fast digital sampling of the detector signals and digital processing for energy and time extraction. The statistical limitations to time resolution determined by the scintillation process are first examined. An experimental set-up with two scintillation detectors in coincidence is then used to test various algorithms: digital discriminators (leading-edge, constant fraction), and filters (least squares, optimal filter, low-pass interpolating filter). The timing performances of all the algorithms are very similar, except the least squares filter, which is not adapted to the non-stationary noise conditions resulting from the scintillation process. Various scintillator materials and configurations are tested, confirming the importance of light yield, scintillation time constants and photodetector response. An avalanche photodiode detector is tested and used for a multichannel demonstrator, which will be used for in-beam tests. (author)

  4. Satellite constraint for emissions of nitrogen oxides from anthropogenic, lightning and soil sources over East China on a high-resolution grid

    Directory of Open Access Journals (Sweden)

    J.-T. Lin

    2012-03-01

    Full Text Available Vertical column densities (VCDs of tropospheric nitrogen dioxide (NO2 retrieved from space provide valuable information to estimate emissions of nitrogen oxides (NOx inversely. Accurate emission attribution to individual sources, important both for understanding the global biogeochemical cycling of nitrogen and for emission control, remains difficult. This study presents a regression-based multi-step inversion approach to estimate emissions of NOx from anthropogenic, lightning and soil sources individually for 2006 over East China on a 0.25° long × 0.25° lat grid, employing the DOMINO product version 2 retrieved from the Ozone Monitoring Instrument. The inversion is done gridbox by gridbox to derive the respective emissions, taking advantage of differences in seasonality between anthropogenic and natural sources. Lightning and soil emissions are combined together for any given gridbox due to their similar seasonality; and their different spatial distributions are used implicitly for source separation to some extent. The nested GEOS-Chem model for East Asia is used to simulate the seasonal variations of different emission sources and impacts on VCDs of NO2 for the inversion purpose. Sensitivity tests are conducted to evaluate key assumptions embedded in the inversion process. The inverse estimate suggests annual budgets of about 7.1 TgN (±39%, 0.21 TgN (±61%, and 0.38 TgN (±65% for the a posteriori anthropogenic, lightning and soil emissions, respectively, about 18–23% higher than the respective a priori values. The enhancements in anthropogenic emissions are largest in cities and areas with extensive use of coal, particularly in the north in winter, as evident on the high-resolution grid. Derived soil emissions are consistent with recent bottom-up estimates. They are less than 6% of anthropogenic emissions annually, increasing to about 13% for July. Derived lightning emissions are about 3% of

  5. Influence of daily versus monthly fire emissions on atmospheric model applications in the tropics

    Science.gov (United States)

    Marlier, M. E.; Voulgarakis, A.; Faluvegi, G.; Shindell, D. T.; DeFries, R. S.

    2012-12-01

    Fires are widely used throughout the tropics to create and maintain areas for agriculture, but are also significant contributors to atmospheric trace gas and aerosol concentrations. However, the timing and magnitude of fire activity can vary strongly by year and ecosystem type. For example, frequent, low intensity fires dominate in African savannas whereas Southeast Asian peatland forests are susceptible to huge pulses of emissions during regional El Niño droughts. Despite the potential implications for modeling interactions with atmospheric chemistry and transport, fire emissions have commonly been input into global models at a monthly resolution. Recognizing the uncertainty that this can introduce, several datasets have parsed fire emissions to daily and sub-daily scales with satellite active fire detections. In this study, we explore differences between utilizing the monthly and daily Global Fire Emissions Database version 3 (GFED3) products as inputs into the NASA GISS-E2 composition climate model. We aim to understand how the choice of the temporal resolution of fire emissions affects uncertainty with respect to several common applications of global models: atmospheric chemistry, air quality, and climate. Focusing our analysis on tropical ozone, carbon monoxide, and aerosols, we compare modeled concentrations with available ground and satellite observations. We find that increasing the temporal frequency of fire emissions from monthly to daily can improve correlations with observations, predominately in areas or during seasons more heavily affected by fires. Differences between the two datasets are more evident with public health applications: daily resolution fire emissions increases the number of days exceeding World Health Organization air quality targets.

  6. On spontaneous photon emission in collapse models

    International Nuclear Information System (INIS)

    Adler, Stephen L; Bassi, Angelo; Donadi, Sandro

    2013-01-01

    We reanalyze the problem of spontaneous photon emission in collapse models. We show that the extra term found by Bassi and Dürr is present for non-white (colored) noise, but its coefficient is proportional to the zero frequency Fourier component of the noise. This leads one to suspect that the extra term is an artifact. When the calculation is repeated with the final electron in a wave packet and with the noise confined to a bounded region, the extra term vanishes in the limit of continuum state normalization. The result obtained by Fu and by Adler and Ramazanoğlu from application of the Golden Rule is then recovered. (paper)

  7. Nebular Continuum and Line Emission in Stellar Population Synthesis Models

    Energy Technology Data Exchange (ETDEWEB)

    Byler, Nell; Dalcanton, Julianne J. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Conroy, Charlie; Johnson, Benjamin D., E-mail: ebyler@astro.washington.edu [Department of Astronomy, Harvard University, Cambridge, MA 02138 (United States)

    2017-05-01

    Accounting for nebular emission when modeling galaxy spectral energy distributions (SEDs) is important, as both line and continuum emissions can contribute significantly to the total observed flux. In this work, we present a new nebular emission model integrated within the Flexible Stellar Population Synthesis code that computes the line and continuum emission for complex stellar populations using the photoionization code Cloudy. The self-consistent coupling of the nebular emission to the matched ionizing spectrum produces emission line intensities that correctly scale with the stellar population as a function of age and metallicity. This more complete model of galaxy SEDs will improve estimates of global gas properties derived with diagnostic diagrams, star formation rates based on H α , and physical properties derived from broadband photometry. Our models agree well with results from other photoionization models and are able to reproduce observed emission from H ii regions and star-forming galaxies. Our models show improved agreement with the observed H ii regions in the Ne iii/O ii plane and show satisfactory agreement with He ii emission from z = 2 galaxies, when including rotating stellar models. Models including post-asymptotic giant branch stars are able to reproduce line ratios consistent with low-ionization emission regions. The models are integrated into current versions of FSPS and include self-consistent nebular emission predictions for MIST and Padova+Geneva evolutionary tracks.

  8. Impact of ocean model resolution on CCSM climate simulations

    Energy Technology Data Exchange (ETDEWEB)

    Kirtman, Ben P.; Rousset, Clement; Siqueira, Leo [University of Miami, Rosenstiel School for Marine and Atmospheric Science, Coral Gables, FL (United States); Bitz, Cecilia [University of Washington, Department of Atmospheric Science, Seattle, WA (United States); Bryan, Frank; Dennis, John; Hearn, Nathan; Loft, Richard; Tomas, Robert; Vertenstein, Mariana [National Center for Atmospheric Research, Boulder, CO (United States); Collins, William [University of California, Berkeley, Berkeley, CA (United States); Kinter, James L.; Stan, Cristiana [Center for Ocean-Land-Atmosphere Studies, Calverton, MD (United States); George Mason University, Fairfax, VA (United States)

    2012-09-15

    The current literature provides compelling evidence suggesting that an eddy-resolving (as opposed to eddy-permitting or eddy-parameterized) ocean component model will significantly impact the simulation of the large-scale climate, although this has not been fully tested to date in multi-decadal global coupled climate simulations. The purpose of this paper is to examine how resolved ocean fronts and eddies impact the simulation of large-scale climate. The model used for this study is the NCAR Community Climate System Model version 3.5 (CCSM3.5) - the forerunner to CCSM4. Two experiments are reported here. The control experiment is a 155-year present-day climate simulation using a 0.5 atmosphere component (zonal resolution 0.625 meridional resolution 0.5 ; land surface component at the same resolution) coupled to ocean and sea-ice components with zonal resolution of 1.2 and meridional resolution varying from 0.27 at the equator to 0.54 in the mid-latitudes. The second simulation uses the same atmospheric and land-surface models coupled to eddy-resolving 0.1 ocean and sea-ice component models. The simulations are compared in terms of how the representation of smaller scale features in the time mean ocean circulation and ocean eddies impact the mean and variable climate. In terms of the global mean surface temperature, the enhanced ocean resolution leads to a ubiquitous surface warming with a global mean surface temperature increase of about 0.2 C relative to the control. The warming is largest in the Arctic and regions of strong ocean fronts and ocean eddy activity (i.e., Southern Ocean, western boundary currents). The Arctic warming is associated with significant losses of sea-ice in the high-resolution simulation. The sea surface temperature gradients in the North Atlantic, in particular, are better resolved in the high-resolution model leading to significantly sharper temperature gradients and associated large-scale shifts in the rainfall. In the extra-tropics, the

  9. Analysis of the resolution processes of three modeling tasks

    Directory of Open Access Journals (Sweden)

    Cèsar Gallart Palau

    2017-08-01

    Full Text Available In this paper we present a comparative analysis of the resolution process of three modeling tasks performed by secondary education students (13-14 years, designed from three different points of view: The Modelling-eliciting Activities, the LEMA project, and the Realistic Mathematical Problems. The purpose of this analysis is to obtain a methodological characterization of them in order to provide to secondary education teachers a proper selection and sequencing of tasks for their implementation in the classroom.

  10. Methane emissions from a landfill in north-east India: Performance of various landfill gas emission models.

    Science.gov (United States)

    Gollapalli, Muralidhar; Kota, Sri Harsha

    2018-03-01

    Rapid urbanization and economic growth has led to significant increase in municipal solid waste generation in India during the last few decades and its management has become a major issue because of poor waste management practices. Solid waste generated is deposited into open dumping sites with hardly any segregation and processing. Carbon dioxide (CO 2 ), methane (CH 4 ) and nitrous oxide (N 2 O) are the major greenhouse gases that are released from the landfill sites due to the biodegradation of organic matter. In this present study, CH 4 and CO 2 emissions from a landfill in north-east India are estimated using a flux chamber during September, 2015 to August, 2016. The average emission rates of CH 4 and CO 2 are 68 and 92 mg/min/m 2 , respectively. The emissions are highest in the summer whilst being lowest in winter. The diurnal variation of emissions indicated that the emissions follow a trend similar to temperature in all the seasons. Correlation coefficients of CH 4 and temperature in summer, monsoon and winter are 0.99, 0.87 and 0.97, respectively. The measured CH 4 in this study is in the range of other studies around the world. Modified Triangular Method (MTM), IPCC model and the USEPA Landfill gas emissions model (LandGEM) were used to predict the CH 4 emissions during the study year. The consequent simulation results indicate that the MTM, LandGEM-Clean Air Act, LandGEM-Inventory and IPCC models predict 1.9, 3.3, 1.6 and 1.4 times of the measured CH 4 emission flux in this study. Assuming that this higher prediction of CH 4 levels observed in this study holds well for other landfills in this region, a new CH 4 emission inventory (Units: Tonnes/year), with a resolution of 0.1 0  × 0.1 0 has been developed. This study stresses the importance of biodegradable composition of waste and meteorology, and also points out the drawbacks of the widely used landfill emission models. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Evaluation of a plot-scale methane emission model using eddy covariance observations and footprint modelling

    Directory of Open Access Journals (Sweden)

    A. Budishchev

    2014-09-01

    Full Text Available Most plot-scale methane emission models – of which many have been developed in the recent past – are validated using data collected with the closed-chamber technique. This method, however, suffers from a low spatial representativeness and a poor temporal resolution. Also, during a chamber-flux measurement the air within a chamber is separated from the ambient atmosphere, which negates the influence of wind on emissions. Additionally, some methane models are validated by upscaling fluxes based on the area-weighted averages of modelled fluxes, and by comparing those to the eddy covariance (EC flux. This technique is rather inaccurate, as the area of upscaling might be different from the EC tower footprint, therefore introducing significant mismatch. In this study, we present an approach to validate plot-scale methane models with EC observations using the footprint-weighted average method. Our results show that the fluxes obtained by the footprint-weighted average method are of the same magnitude as the EC flux. More importantly, the temporal dynamics of the EC flux on a daily timescale are also captured (r2 = 0.7. In contrast, using the area-weighted average method yielded a low (r2 = 0.14 correlation with the EC measurements. This shows that the footprint-weighted average method is preferable when validating methane emission models with EC fluxes for areas with a heterogeneous and irregular vegetation pattern.

  12. Mathematical Model of the Emissions of a selected vehicle

    Directory of Open Access Journals (Sweden)

    Matušů Radim

    2014-10-01

    Full Text Available The article addresses the quantification of exhaust emissions from gasoline engines during transient operation. The main targeted emissions are carbon monoxide and carbon dioxide. The result is a mathematical model describing the production of individual emissions components in all modes (static and dynamic. It also describes the procedure for the determination of emissions from the engine’s operating parameters. The result is compared with other possible methods of measuring emissions. The methodology is validated using the data from an on-road measurement. The mathematical model was created on the first route and validated on the second route.

  13. Importance of resolution and model configuration when downscaling extreme precipitation

    Directory of Open Access Journals (Sweden)

    Adrian J. Champion

    2014-07-01

    Full Text Available Dynamical downscaling is frequently used to investigate the dynamical variables of extra-tropical cyclones, for example, precipitation, using very high-resolution models nested within coarser resolution models to understand the processes that lead to intense precipitation. It is also used in climate change studies, using long timeseries to investigate trends in precipitation, or to look at the small-scale dynamical processes for specific case studies. This study investigates some of the problems associated with dynamical downscaling and looks at the optimum configuration to obtain the distribution and intensity of a precipitation field to match observations. This study uses the Met Office Unified Model run in limited area mode with grid spacings of 12, 4 and 1.5 km, driven by boundary conditions provided by the ECMWF Operational Analysis to produce high-resolution simulations for the Summer of 2007 UK flooding events. The numerical weather prediction model is initiated at varying times before the peak precipitation is observed to test the importance of the initialisation and boundary conditions, and how long the simulation can be run for. The results are compared to raingauge data as verification and show that the model intensities are most similar to observations when the model is initialised 12 hours before the peak precipitation is observed. It was also shown that using non-gridded datasets makes verification more difficult, with the density of observations also affecting the intensities observed. It is concluded that the simulations are able to produce realistic precipitation intensities when driven by the coarser resolution data.

  14. Extension of an assessment model of ship traffic exhaust emissions for particulate matter and carbon monoxide

    Directory of Open Access Journals (Sweden)

    J.-P. Jalkanen

    2012-03-01

    Full Text Available A method is presented for the evaluation of the exhaust emissions of marine traffic, based on the messages provided by the Automatic Identification System (AIS, which enable the positioning of ship emissions with a high spatial resolution (typically a few tens of metres. The model also takes into account the detailed technical data of each individual vessel. The previously developed model was applicable for evaluating the emissions of NOx, SOx and CO2. This paper addresses a substantial extension of the modelling system, to allow also for the mass-based emissions of particulate matter (PM and carbon monoxide (CO. The presented Ship Traffic Emissions Assessment Model (STEAM2 allows for the influences of accurate travel routes and ship speed, engine load, fuel sulphur content, multiengine setups, abatement methods and waves. We address in particular the modeling of the influence on the emissions of both engine load and the sulphur content of the fuel. The presented methodology can be used to evaluate the total PM emissions, and those of organic carbon, elemental carbon, ash and hydrated sulphate. We have evaluated the performance of the extended model against available experimental data on engine power, fuel consumption and the composition-resolved emissions of PM. We have also compared the annually averaged emission values with those of the corresponding EMEP inventory, As example results, the geographical distributions of the emissions of PM and CO are presented for the marine regions of the Baltic Sea surrounding the Danish Straits.

  15. A high-resolution air pollutants emission inventory in 2013 for the Beijing-Tianjin-Hebei region, China

    Science.gov (United States)

    Qi, Ji; Zheng, Bo; Li, Meng; Yu, Fang; Chen, Chuchu; Liu, Fei; Zhou, Xiafei; Yuan, Jing; Zhang, Qiang; He, Kebin

    2017-12-01

    We developed a high-resolution Beijing-Tianjin-Hebei (BTH) regional air pollutants emission inventory for the year 2013. The inventory was established using a bottom-up approach based on facility-level activity data obtained from multiple data sources. The estimates from the BTH 2013 emission inventory show that the total emissions of SO2, NOX, PM2.5, PM10, CO, NMVOC, NH3, BC, and OC were 2,305, 2,686, 1,090, 1,494, 20,567, 2,207, 623, 160, and 254 Gg, respectively. The industry sector is the largest emissions source for SO2, NOX, PM2.5, PM10, CO, and NMVOC in the BTH region, contributing 72.6%, 43.7%, 59.6%, 64.7%, 60.3%, and 70.4% of the total emissions, respectively. Power plants contributed 11.8% and 23.3% of the total SO2 and NOX emissions, respectively. The transportation sector contributed 28.9% of the total NOX emissions. Emissions from the residential sector accounted for 31.3%, 21.5%, 46.6% and 71.7% of the total PM2.5, NMVOC, BC and OC emissions, respectively. In addition, more than 90% of the total NH3 emissions originate from the agriculture sector, with 44.2% from fertilizer use and 47.7% from livestock. The spatial distribution results illustrate that air pollutant emissions are mainly distributed over the eastern and southern BTH regions. Beijing, Tianjin, Shijiazhuang, Tangshan and Handan are the major contributors of air pollutants. The major NMVOC species in the BTH region are ethylene, acetylene, ethane and toluene. Ethylene is the biggest contributor in Tianjin and Hebei. The largest contributor in Beijing is toluene. There is relatively low uncertainty in SO2 and NOX emission estimates, medium uncertainty in PM2.5, PM10 and CO emission estimates, and high uncertainties in VOC, NH3, BC and OC emission estimates. The proposed policy recommendations, based on the BTH 2013 emission inventory, would be helpful to develop strategies for air pollution control.

  16. Modeling of the 10-micron natural laser emission from the mesospheres of Mars and Venus

    Science.gov (United States)

    Deming, D.; Mumma, M. J.

    1983-01-01

    The NLTE radiative transfer problem is solved to obtain the 00 deg 1 vibrational state population. This model successfully reproduces the existing center-to-limb observations, although higher spatial resolution observations are needed for a definitive test. The model also predicts total fluxes which are close to the observed values. The strength of the emission is predicted to be closely related to the instantaneous near-IR solar heating rate.

  17. Modelling of the 10-micrometer natural laser emission from the mesospheres of Mars and Venus

    Science.gov (United States)

    Deming, D.; Mumma, M. J.

    1983-01-01

    The NLTE radiative transfer problem is solved to obtain the 00 deg 1 vibrational state population. This model successfully reproduces the existing center-to-limb observations, although higher spatial resolution observations are needed for a definitive test. The model also predicts total fluxes which are close to the observed values. The strength of the emission is predicted to be closely related to the instantaneous near-IR solar heating rate.

  18. Isoprene emissions modelling for West Africa: MEGAN model evaluation and sensitivity analysis

    Directory of Open Access Journals (Sweden)

    J. Ferreira

    2010-09-01

    Full Text Available Isoprene emissions are the largest source of reactive carbon to the atmosphere, with the tropics being a major source region. These natural emissions are expected to change with changing climate and human impact on land use. As part of the African Monsoon Multidisciplinary Analyses (AMMA project the Model of Emissions of Gases and Aerosols from Nature (MEGAN has been used to estimate the spatial and temporal distribution of isoprene emissions over the West African region. During the AMMA field campaign, carried out in July and August 2006, isoprene mixing ratios were measured on board the FAAM BAe-146 aircraft. These data have been used to make a qualitative evaluation of the model performance.

    MEGAN was firstly applied to a large area covering much of West Africa from the Gulf of Guinea in the south to the desert in the north and was able to capture the large scale spatial distribution of isoprene emissions as inferred from the observed isoprene mixing ratios. In particular the model captures the transition from the forested area in the south to the bare soils in the north, but some discrepancies have been identified over the bare soil, mainly due to the emission factors used. Sensitivity analyses were performed to assess the model response to changes in driving parameters, namely Leaf Area Index (LAI, Emission Factors (EF, temperature and solar radiation.

    A high resolution simulation was made of a limited area south of Niamey, Niger, where the higher concentrations of isoprene were observed. This is used to evaluate the model's ability to simulate smaller scale spatial features and to examine the influence of the driving parameters on an hourly basis through a case study of a flight on 17 August 2006.

    This study highlights the complex interactions between land surface processes and the meteorological dynamics and chemical composition of the PBL. This has implications for quantifying the impact of biogenic emissions

  19. A new iterative reconstruction technique for attenuation correction in high-resolution positron emission tomography

    International Nuclear Information System (INIS)

    Knesaurek, K.; Machac, J.; Vallabhajosula, S.; Buchsbaum, M.S.

    1996-01-01

    A new interative reconstruction technique (NIRT) for positron emission computed tomography (PET), which uses transmission data for nonuniform attenuation correction, is described. Utilizing the general inverse problem theory, a cost functional which includes a noise term was derived. The cost functional was minimized using a weighted-least-square maximum a posteriori conjugate gradient (CG) method. The procedure involves a change in the Hessian of the cost function by adding an additional term. Two phantoms were used in a real data acquisition. The first was a cylinder phantom filled with uniformly distributed activity of 74 MBq of fluorine-18. Two different inserts were placed in the phantom. The second was a Hoffman brain phantom filled with uniformly distributed activity of 7.4 MBq of 18 F. Resulting reconstructed images were used to test and compare a new interative reconstruction technique with a standard filtered backprojection (FBP) method. The results confirmed that NIRT, based on the conjugate gradient method, converges rapidly and provides good reconstructed images. In comaprison with standard results obtained by the FBP method, the images reconstructed by NIRT showed better noise properties. The noise was measured as rms% noise and was less, by a factor of 1.75, in images reconstructed by NIRT than in the same images reconstructed by FBP. The distance between the Hoffman brain slice created from the MRI image was 0.526, while the same distance for the Hoffman brain slice reconstructed by NIRT was 0.328. The NIRT method suppressed the propagation of the noise without visible loss of resolution in the reconstructed PET images. (orig.)

  20. The pre-launch Planck Sky Model: a model of sky emission at submillimetre to centimetre wavelengths

    CERN Document Server

    Delabrouille, J.; Melin, J.-B.; Miville-Deschenes, M.-A.; Gonzalez-Nuevo, J.; Jeune, M.Le; Castex, G.; de Zotti, G.; Basak, S.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A.; Bernard, J.-P.; Bouchet, F.R.; Clements, D.L.; da Silva, A.; Dickinson, C.; Dodu, F.; Dolag, K.; Elsner, F.; Fauvet, L.; Fay, G.; Giardino, G.; Leach, S.; Lesgourgues, J.; Liguori, M.; Macias-Perez, J.F.; Massardi, M.; Matarrese, S.; Mazzotta, P.; Montier, L.; Mottet, S.; Paladini, R.; Partridge, B.; Piffaretti, R.; Prezeau, G.; Prunet, S.; Ricciardi, S.; Roman, M.; Schaefer, B.; Toffolatti, L.

    2012-01-01

    We present the Planck Sky Model (PSM), a parametric model for the generation of all-sky, few arcminute resolution maps of sky emission at submillimetre to centimetre wavelengths, in both intensity and polarisation. Several options are implemented to model the cosmic microwave background, Galactic diffuse emission (synchrotron, free-free, thermal and spinning dust, CO lines), Galactic H-II regions, extragalactic radio sources, dusty galaxies, and thermal and kinetic Sunyaev-Zeldovich signals from clusters of galaxies. Each component is simulated by means of educated interpolations/extrapolations of data sets available at the time of the launch of the Planck mission, complemented by state-of-the-art models of the emission. Distinctive features of the simulations are: spatially varying spectral properties of synchrotron and dust; different spectral parameters for each point source; modeling of the clustering properties of extragalactic sources and of the power spectrum of fluctuations in the cosmic infrared back...

  1. Emission features in the spectrum of NGC 7027 near 3.3 microns at very high resolution

    International Nuclear Information System (INIS)

    Lowe, R.P.; Moorhead, J.M.; Wehlau, W.H.; Maillard, J.P.

    1991-01-01

    A very high resolution spectrum is presented of the planetary nebula NGC 7027 over a 200/cm interval centered at 2950/cm, and the features found are described: (1) nebular continuum, (2) atomic recombination lines of H and He II, and (3) three broader emission features of uncertain origin. For the latter the first evidence is presented that the 3.46 micron feature and possibly the 3.40 micron feature are resolvable into a sequence of narrower features. The interpretation of the broader features is discussed in terms of the hypothesis of identification with emission by polycyclic aromatic hydrocarbons. 18 refs

  2. High-resolution forest carbon stocks and emissions in the Amazon

    Science.gov (United States)

    G. P. Asner; George V. N. Powell; Joseph Mascaro; David E. Knapp; John K. Clark; James Jacobson; Ty Kennedy-Bowdoin; Aravindh Balaji; Guayana Paez-Acosta; Eloy Victoria; Laura Secada; Michael Valqui; R. Flint. Hughes

    2010-01-01

    Efforts to mitigate climate change through the Reduced Emissions from Deforestation and Degradation (REDD) depend on mapping and monitoring of tropical forest carbon stocks and emissions over large geographic areas. With a new integrated use of satellite imaging, airborne light detection and ranging, and field plots, we mapped aboveground carbon stocks and emissions at...

  3. Regional on-road vehicle running emissions modeling and evaluation for conventional and alternative vehicle technologies.

    Science.gov (United States)

    Frey, H Christopher; Zhai, Haibo; Rouphail, Nagui M

    2009-11-01

    This study presents a methodology for estimating high-resolution, regional on-road vehicle emissions and the associated reductions in air pollutant emissions from vehicles that utilize alternative fuels or propulsion technologies. The fuels considered are gasoline, diesel, ethanol, biodiesel, compressed natural gas, hydrogen, and electricity. The technologies considered are internal combustion or compression engines, hybrids, fuel cell, and electric. Road link-based emission models are developed using modal fuel use and emission rates applied to facility- and speed-specific driving cycles. For an urban case study, passenger cars were found to be the largest sources of HC, CO, and CO(2) emissions, whereas trucks contributed the largest share of NO(x) emissions. When alternative fuel and propulsion technologies were introduced in the fleet at a modest market penetration level of 27%, their emission reductions were found to be 3-14%. Emissions for all pollutants generally decreased with an increase in the market share of alternative vehicle technologies. Turnover of the light duty fleet to newer Tier 2 vehicles reduced emissions of HC, CO, and NO(x) substantially. However, modest improvements in fuel economy may be offset by VMT growth and reductions in overall average speed.

  4. Modelling African aerosol using updated fossil fuel and biofuel emission inventories for 2005 and 2030

    Science.gov (United States)

    Liousse, C.; Penner, J. E.; Assamoi, E.; Xu, L.; Criqui, P.; Mima, S.; Guillaume, B.; Rosset, R.

    2010-12-01

    A regional fossil fuel and biofuel emission inventory for particulates has been developed for Africa at a resolution of 0.25° x 0.25° for the year 2005. The original database of Junker and Liousse (2008) was used after modification for updated regional fuel consumption and emission factors. Consumption data were corrected after direct inquiries conducted in Africa, including a new emitter category (i.e. two-wheel vehicles including “zemidjans”) and a new activity sector (i.e. power plants) since both were not considered in the previous emission inventory. Emission factors were measured during the 2005 AMMA campaign (Assamoi and Liousse, 2010) and combustion chamber experiments. Two prospective inventories for 2030 are derived based on this new regional inventory and two energy consumption forecasts by the Prospective Outlook on Long-term Energy Systems (POLES) model (Criqui, 2001). The first is a reference scenario, where no emission controls beyond those achieved in 2003 are taken into account, and the second is for a "clean" scenario where possible and planned policies for emission control are assumed to be effective. BC and OCp emission budgets for these new inventories will be discussed and compared to the previous global dataset. These new inventories along with the most recent open biomass burning inventory (Liousse et al., 2010) have been tested in the ORISAM-TM5 global chemistry-climate model with a focus over Africa at a 1° x 1° resolution. Global simulations for BC and primary OC for the years 2005 and 2030 are carried out and the modelled particulate concentrations for 2005 are compared to available measurements in Africa. Finally, BC and OC radiative properties (aerosol optical depths and single scattering albedo) are calculated and the direct radiative forcing is estimated using an off line model (Wang and Penner, 2009). Results of sensitivity tests driven with different emission scenarios will be presented.

  5. Distributed Modeling with Parflow using High Resolution LIDAR Data

    Science.gov (United States)

    Barnes, M.; Welty, C.; Miller, A. J.

    2012-12-01

    Urban landscapes provide a challenging domain for the application of distributed surface-subsurface hydrologic models. Engineered water infrastructure and altered topography influence surface and subsurface flow paths, yet these effects are difficult to quantify. In this work, a parallel, distributed watershed model (ParFlow) is used to simulate urban watersheds using spatial data at the meter and sub-meter scale. An approach using GRASS GIS (Geographic Resources Analysis Support System) is presented that incorporates these data to construct inputs for the ParFlow simulation. LIDAR topography provides the basis for the fully coupled overland flow simulation. Methods to address real discontinuities in the urban land-surface for use with the grid-based kinematic wave approximation used in ParFlow are presented. The spatial distribution of impervious surface is delineated accurately from high-resolution land cover data; hydrogeological properties are specified from literature values. An application is presented for part of the Dead Run subwatershed of the Gwynns Falls in Baltimore County, MD. The domain is approximately 3 square kilometers, and includes a highly impacted urban stream, a major freeway, and heterogeneous urban development represented at a 10-m horizontal resolution and 1-m vertical resolution. This resolution captures urban features such as building footprints and highways at an appropriate scale. The Dead Run domain provides an effective test case for ParFlow application at the fine scale in an urban environment. Preliminary model runs employ a homogeneous subsurface domain with no-flow boundaries. Initial results reflect the highly articulated topography of the road network and the combined influence of surface runoff from impervious surfaces and subsurface flux toward the channel network. Subsequent model runs will include comparisons of the coupled surface-subsurface response of alternative versions of the Dead Run domain with and without impervious

  6. A high resolution gravity model for Venus - GVM-1

    Science.gov (United States)

    Nerem, R. S.; Bills, B. G.; Mcnamee, J. B.

    1993-01-01

    A spherical harmonic model of the gravitational field of Venus complete to degree and order 50 has been developed using the S-band Doppler tracking data of the Pioneer Venus Orbiter (PVO) collected between 1979 and 1982. The short wavelengths of this model could only be resolved near the PVO periapse location (about 14 deg N latitude), therefore a priori constraints were applied to the model to bias poorly observed coefficients towards zero. The resulting model has a half-wavelength resolution of 400 km near the PVO periapse location, but the resolution degrades to greater than 1000 km near the poles. This gravity model correlates well with a degree 50 spherical harmonic expansion of the Venus topography derived from a combination of Magellan and PVO data. New tracking data from Magellan's gravity mission should provide some improvement to this model, although a complete model of the Venusian gravity field will depend on tracking of Magellan after the circularization of its orbit using aerobraking.

  7. Spatial distribution of emissions to air – the SPREAD model

    DEFF Research Database (Denmark)

    Plejdrup, Marlene Schmidt; Gyldenkærne, Steen

    The National Environmental Research Institute (NERI), Aarhus University, completes the annual national emission inventories for greenhouse gases and air pollutants according to Denmark’s obligations under international conventions, e.g. the climate convention, UNFCCC and the convention on long...... quality modelling in exposure studies. SPREAD includes emission distributions for each sector in the Danish inventory system; stationary combustion, mobile sources, fugitive emissions from fuels, industrial processes, solvents and other product use, agriculture and waste. This model enables generation...

  8. Spectroscopy of the extreme ultraviolet dayglow at 6.5A resolution - Atomic and ionic emissions between 530 and 1240A

    Science.gov (United States)

    Gentieu, E. P.; Feldman, P. D.; Meier, R. R.

    1979-01-01

    EUV spectra (530-1500A) of the day airglow in up, down and horizontal aspect orientations have been obtained with 6.5A resolution and a limiting sensitivity of 5R from a rocket experiment. Below 834A the spectrum is rich in previously unobserved OII transitions connecting with 4S(0), 2D(0), and 2P(0) states. Recent broad-band photometric observations of geocoronal HeI 584A emission in terms of the newly observed OII emissions are shown. The OI 989A and OI 1304A emissions exhibit similar dependence on altitude and viewing geometry with the OI 989A brightness 1/15 that of OI 1340. Emission at 1026A is identified as geocoronal HI Lyman beta rather than OI multiplet emission and observed intensities agree well with model estimates. An unexpectedly high NI 1200/NI 1134A brightness ratio is evidence of a significant contribution from photodissociative excitation of N2 to the NI 1200A source function.

  9. A high resolution WRF model for wind energy forecasting

    Science.gov (United States)

    Vincent, Claire Louise; Liu, Yubao

    2010-05-01

    The increasing penetration of wind energy into national electricity markets has increased the demand for accurate surface layer wind forecasts. There has recently been a focus on forecasting the wind at wind farm sites using both statistical models and numerical weather prediction (NWP) models. Recent advances in computing capacity and non-hydrostatic NWP models means that it is possible to nest mesoscale models down to Large Eddy Simulation (LES) scales over the spatial area of a typical wind farm. For example, the WRF model (Skamarock 2008) has been run at a resolution of 123 m over a wind farm site in complex terrain in Colorado (Liu et al. 2009). Although these modelling attempts indicate a great hope for applying such models for detailed wind forecasts over wind farms, one of the obvious challenges of running the model at this resolution is that while some boundary layer structures are expected to be modelled explicitly, boundary layer eddies into the inertial sub-range can only be partly captured. Therefore, the amount and nature of sub-grid-scale mixing that is required is uncertain. Analysis of Liu et al. (2009) modelling results in comparison to wind farm observations indicates that unrealistic wind speed fluctuations with a period of around 1 hour occasionally occurred during the two day modelling period. The problem was addressed by re-running the same modelling system with a) a modified diffusion constant and b) two-way nesting between the high resolution model and its parent domain. The model, which was run with horizontal grid spacing of 370 m, had dimensions of 505 grid points in the east-west direction and 490 points in the north-south direction. It received boundary conditions from a mesoscale model of resolution 1111 m. Both models had 37 levels in the vertical. The mesoscale model was run with a non-local-mixing planetary boundary layer scheme, while the 370 m model was run with no planetary boundary layer scheme. It was found that increasing the

  10. Analysis and Modeling of Jovian Radio Emissions Observed by Galileo

    Science.gov (United States)

    Menietti, J. D.

    2003-01-01

    Our studies of Jovian radio emission have resulted in the publication of five papers in refereed journals, with three additional papers in progress. The topics of these papers include the study of narrow-band kilometric radio emission; the apparent control of radio emission by Callisto; quasi-periodic radio emission; hectometric attenuation lanes and their relationship to Io volcanic activity; and modeling of HOM attenuation lanes using ray tracing. A further study of the control of radio emission by Jovian satellites is currently in progress. Abstracts of each of these papers are contained in the Appendix. A list of the publication titles are also included.

  11. Methyl jasmonate-induced emission of biogenic volatiles is biphasic in cucumber: a high-resolution analysis of dose dependence.

    Science.gov (United States)

    Jiang, Yifan; Ye, Jiayan; Li, Shuai; Niinemets, Ülo

    2017-07-20

    Methyl jasmonate (MeJA) is a key airborne elicitor activating jasmonate-dependent signaling pathways, including induction of stress-related volatile emissions, but how the magnitude and timing of these emissions scale with MeJA dose is not known. Treatments with exogenous MeJA concentrations ranging from mild (0.2 mM) to lethal (50 mM) were used to investigate quantitative relationships among MeJA dose and the kinetics and magnitude of volatile release in Cucumis sativus by combining high-resolution measurements with a proton-transfer reaction time-of-flight mass spectrometer (PTR-TOF-MS) and GC-MS. The results highlighted biphasic kinetics of elicitation of volatiles. The early phase, peaking in 0.1-1 h after the MeJA treatment, was characterized by emissions of lipoxygenase (LOX) pathway volatiles and methanol. In the subsequent phase, starting in 6-12 h and reaching a maximum in 15-25 h after the treatment, secondary emissions of LOX compounds as well as emissions of monoterpenes and sesquiterpenes were elicited. For both phases, the maximum emission rates and total integrated emissions increased with applied MeJA concentration. Furthermore, the rates of induction and decay, and the duration of emission bursts were positively, and the timing of emission maxima were negatively associated with MeJA dose for LOX compounds and terpenoids, except for the duration of the first LOX burst. These results demonstrate major effects of MeJA dose on the kinetics and magnitude of volatile response, underscoring the importance of biotic stress severity in deciphering the downstream events of biological impacts. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  12. GHG emissions quantification at high spatial and temporal resolution at urban scale: the case of the town of Sassari (NW Sardinia - Italy)

    Science.gov (United States)

    Sanna, Laura; Ferrara, Roberto; Zara, Pierpaolo; Duce, Pierpaolo

    2014-05-01

    The European Union has set as priorities the fight against climate change related to greenhouse gas releases. The largest source of these emissions comes from human activities in urban areas that account for more than 70% of the world's emissions and several local governments intend to support the European strategic policies in understanding which crucial sectors drive GHG emissions in their city. Planning for mitigation actions at the community scale starts with the compilation of a GHG inventories that, among a wide range of measurement tools, provide information on the current status of GHG emissions across a specific jurisdiction. In the framework of a regional project for quantitative estimate of the net exchange of CO2 (emissions and sinks) at the municipal level in Sardinia, the town of Sassari represents a pilot site where a spatial and temporal high resolution GHG emissions inventory is built in line with European and international standard protocols to establish a baseline for tracking emission trends. The specific purpose of this accurate accounting is to obtain an appropriate allocation of CO2 and other GHG emissions at the fine building and hourly scale. The aim is to test the direct measurements needed to enable the construction of future scenarios of these emissions and for assessing possible strategies to reduce their impact. The key element of the methodologies used to construct this GHG emissions inventory is the Global Protocol for Community-Scale Greenhouse Gas Emissions (GPC) (March 2012) that identifies four main types of emission sources: (i) Stationary Units, (ii) Mobile Units, (iii) Waste, and (iv) Industrial Process and Product Use Emissions. The development of the GHG emissions account in Sassari consists in the collection of a range of alternative data sources (primary data, IPCC emission factors, national and local statistic, etc.) selected on the base on relevance and completeness criteria performed for 2010, as baseline year, using

  13. High Resolution Atmospheric Modeling for Wind Energy Applications

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, M; Bulaevskaya, V; Glascoe, L; Singer, M

    2010-03-18

    The ability of the WRF atmospheric model to forecast wind speed over the Nysted wind park was investigated as a function of time. It was found that in the time period we considered (August 1-19, 2008), the model is able to predict wind speeds reasonably accurately for 48 hours ahead, but that its forecast skill deteriorates rapidly after 48 hours. In addition, a preliminary analysis was carried out to investigate the impact of vertical grid resolution on the forecast skill. Our preliminary finding is that increasing vertical grid resolution does not have a significant impact on the forecast skill of the WRF model over Nysted wind park during the period we considered. Additional simulations during this period, as well as during other time periods, will be run in order to validate the results presented here. Wind speed is a difficult parameter to forecast due the interaction of large and small length scale forcing. To accurately forecast the wind speed at a given location, the model must correctly forecast the movement and strength of synoptic systems, as well as the local influence of topography / land use on the wind speed. For example, small deviations in the forecast track or strength of a large-scale low pressure system can result in significant forecast errors for local wind speeds. The purpose of this study is to provide a preliminary baseline of a high-resolution limited area model forecast performance against observations from the Nysted wind park. Validating the numerical weather prediction model performance for past forecasts will give a reasonable measure of expected forecast skill over the Nysted wind park. Also, since the Nysted Wind Park is over water and some distance from the influence of terrain, the impact of high vertical grid spacing for wind speed forecast skill will also be investigated.

  14. High-Resolution Modelling of Health Impacts from Air Pollution for Denmark using the Integrated Model System EVA

    Science.gov (United States)

    Brandt, Jørgen; Andersen, Mikael S.; Bønløkke, Jakob; Christensen, Jesper H.; Hansen, Kaj M.; Hertel, Ole; Im, Ulas; Jensen, Steen S.; Ketzel, Matthias; Nielsen, Ole-Kenneth; Plejdrup, Marlene S.; Sigsgaard, Torben; Geels, Camilla

    2015-04-01

    We have developed an integrated health impact assessment system EVA (Economic Valuation of Air pollution; Brandt et al., 2013a; 2013b), based on the impact-pathway chain, to assess the health impacts and health-related economic externalities of air pollution resulting from specific emission sources or sectors. The system is used to support policymaking with respect to emission control. The EVA system has previously been used to assess the health impacts based on results from a regional model DEHM (the Danish Eulerian Hemispheric Model; Brandt et al., 2012). In this study we have used a coupling of two chemistry transport models to calculate the air pollution concentration at different scales; the DEHM model to calculate the air pollution levels with a resolution down to 5.6 km x 5.6 km and the UBM model (Urban Background Model ; Berkowicz, 2000; Brandt et al., 2001) to further calculate the air pollution at 1 km x 1 km resolution for Denmark using results from DEHM as boundary conditions. Both the emission data based on the SPREAD model (Plejdrup and Gyldenkærne, 2011) as well as the population density has been represented in the model system with the same high resolution. The new developments of the integrated model system will be presented as well as results for health impacts and related external costs over the years 2006-2014 for Denmark. Furthermore, a sensitivity study of the health impact using coarse and fine resolutions in the model system has been carried out to evaluate the effect of improved description of the geographical population distribution with respect to location of local emissions. References Berkowicz, R., 2000. A Simple Model for Urban Background Pollution. Environmental Monitoring and Assessment, 65, 1/2, 259-267. Brandt, J., J. H. Christensen, L. M. Frohn, F. Palmgren, R. Berkowicz and Z. Zlatev, 2001: "Operational air pollution forecasts from European to local scale". Atmospheric Environment, Vol. 35, Sup. No. 1, pp. S91-S98, 2001 Brandt

  15. High resolution of anthropogenic atmospheric emissions of 12 heavy metals in the three biggest metropolitan areas, China

    Science.gov (United States)

    Tian, H.; Zhu, C.

    2015-12-01

    Atmospheric emissions of typical toxic heavy metals from anthropogenic sources have received worldwide concerns due to their adverse effects on human health and the ecosystem. An integrated inventory of anthropogenic emissions of twelve HMs (Hg, As, Se, Pb, Cd, Cr, Ni, Sb, Mn, Co, Cu and Zn) in the three biggest metropolitan areas, including Beijing-Tianjin-Hebei (BTH) region, Yangtze River Delta (YRD) region and Pearl River Delta (PRD) region, are developed for 1980-2012 by combining with detailed activity data and inter-annual dynamic emission factors which are determined by S-shaped curves on account of technology progress, economic development, and emission control. The results indicate total emissions of twelve HMs in the three metropolitan regions have increased from 5448.8 tons in 1980 to 19054.9 tons in 2012, with an annual average growth rate of about 4.0%. Due to significant difference in industrial structures and energy consumption compositions, remarkable distinctions can be observed with respect to source contributions of total HM emissions from above three metropolitan areas. Specifically, the ferrous metal smelting sector, coal combustion by industrial boilers and coal combustion by power plants are found to be the primary source of total HM emissions in the BTH region (about 34.2%), YRD region (about 28.2%) and PRD region (about 24.3%), respectively. Furthermore, we allocate the annual emissions of these heavy metals in 2012 at a high spatial resolution of 9 km × 9 km grid with ArcGIS methodology and surrogate indexes, such as regional population and gross domestic product (GDP). The peak of HM emissions are mainly distributed over the grid cells of Beijing, Tianjin, Tangshan, Shijiazhuang, Handan and Baoding in the BTH region; Shanghai, Suzhou, Wuxi, Nanjing, Hangzhou, Ningbo in the YRD region; Guangzhou, Shenzhen, Dongguan, Foshan in the PYD region, respectively. Additionally, monthly emission profiles are established in order to further identify

  16. Allocating emissions to 4 km and 1 km horizontal spatial resolutions and its impact on simulated NOx and O3 in Houston, TX

    Science.gov (United States)

    Pan, Shuai; Choi, Yunsoo; Roy, Anirban; Jeon, Wonbae

    2017-09-01

    A WRF-SMOKE-CMAQ air quality modeling system was used to investigate the impact of horizontal spatial resolution on simulated nitrogen oxides (NOx) and ozone (O3) in the Greater Houston area (a non-attainment area for O3). We employed an approach recommended by the United States Environmental Protection Agency to allocate county-based emissions to model grid cells in 1 km and 4 km horizontal grid resolutions. The CMAQ Integrated Process Rate analyses showed a substantial difference in emissions contributions between 1 and 4 km grids but similar NOx and O3 concentrations over urban and industrial locations. For example, the peak NOx emissions at an industrial and urban site differed by a factor of 20 for the 1 km and 8 for the 4 km grid, but simulated NOx concentrations changed only by a factor of 1.2 in both cases. Hence, due to the interplay of the atmospheric processes, we cannot expect a similar level of reduction of the gas-phase air pollutants as the reduction of emissions. Both simulations reproduced the variability of NASA P-3B aircraft measurements of NOy and O3 in the lower atmosphere (from 90 m to 4.5 km). Both simulations provided similar reasonable predictions at surface, while 1 km case depicted more detailed features of emissions and concentrations in heavily polluted areas, such as highways, airports, and industrial regions, which are useful in understanding the major causes of O3 pollution in such regions, and to quantify transport of O3 to populated communities in urban areas. The Integrated Reaction Rate analyses indicated a distinctive difference of chemistry processes between the model surface layer and upper layers, implying that correcting the meteorological conditions at the surface may not help to enhance the O3 predictions. The model-observation O3 bias in our studies (e.g., large over-prediction during the nighttime or along Gulf of Mexico coastline), were due to uncertainties in meteorology, chemistry or other processes. Horizontal grid

  17. Modeling of pollutant emissions from road transport; Modelisation des emissions de polluants par le transport routier

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    COPERT III (computer programme to calculate emissions from road transport) is the third version of an MS Windows software programme aiming at the calculation of air pollutant emissions from road transport. COPERT estimates emissions of all regulated air pollutants (CO, NO{sub x}, VOC, PM) produced by different vehicle categories as well as CO{sub 2} emissions on the basis of fuel consumption. This research seminar was organized by the French agency of environment and energy mastery (Ademe) around the following topics: the uncertainties and sensitiveness analysis of the COPERT III model, the presentation of case studies that use COPERT III for the estimation of road transport emissions, and the future of the modeling of road transport emissions: from COPERT III to ARTEMIS (assessment and reliability of transport emission models and inventory systems). This document is a compilation of 8 contributions to this seminar and dealing with: the uncertainty and sensitiveness analysis of the COPERT III model; the road mode emissions of the ESCOMPTE program: sensitivity study; the sensitivity analysis of the spatialized traffic at the time-aggregation level: application in the framework of the INTERREG project (Alsace); the road transport aspect of the regional air quality plan of Bourgogne region: exhaustive consideration of the road network; intercomparison of tools and methods for the inventory of emissions of road transport origin; evolution of the French park of vehicles by 2025: new projections; application of COPERT III to the French context: a new version of IMPACT-ADEME; the European ARTEMIS project: new structural considerations for the modeling of road transport emissions. (J.S.)

  18. Monitoring Oilfield Operations and GHG Emissions Sources Using Object-based Image Analysis of High Resolution Spatial Imagery

    Science.gov (United States)

    Englander, J. G.; Brodrick, P. G.; Brandt, A. R.

    2015-12-01

    Fugitive emissions from oil and gas extraction have become a greater concern with the recent increases in development of shale hydrocarbon resources. There are significant gaps in the tools and research used to estimate fugitive emissions from oil and gas extraction. Two approaches exist for quantifying these emissions: atmospheric (or 'top down') studies, which measure methane fluxes remotely, or inventory-based ('bottom up') studies, which aggregate leakage rates on an equipment-specific basis. Bottom-up studies require counting or estimating how many devices might be leaking (called an 'activity count'), as well as how much each device might leak on average (an 'emissions factor'). In a real-world inventory, there is uncertainty in both activity counts and emissions factors. Even at the well level there are significant disagreements in data reporting. For example, some prior studies noted a ~5x difference in the number of reported well completions in the United States between EPA and private data sources. The purpose of this work is to address activity count uncertainty by using machine learning algorithms to classify oilfield surface facilities using high-resolution spatial imagery. This method can help estimate venting and fugitive emissions sources from regions where reporting of oilfield equipment is incomplete or non-existent. This work will utilize high resolution satellite imagery to count well pads in the Bakken oil field of North Dakota. This initial study examines an area of ~2,000 km2 with ~1000 well pads. We compare different machine learning classification techniques, and explore the impact of training set size, input variables, and image segmentation settings to develop efficient and robust techniques identifying well pads. We discuss the tradeoffs inherent to different classification algorithms, and determine the optimal algorithms for oilfield feature detection. In the future, the results of this work will be leveraged to be provide activity

  19. A 4.5 km resolution Arctic Ocean simulation with the global multi-resolution model FESOM 1.4

    Science.gov (United States)

    Wang, Qiang; Wekerle, Claudia; Danilov, Sergey; Wang, Xuezhu; Jung, Thomas

    2018-04-01

    In the framework of developing a global modeling system which can facilitate modeling studies on Arctic Ocean and high- to midlatitude linkage, we evaluate the Arctic Ocean simulated by the multi-resolution Finite Element Sea ice-Ocean Model (FESOM). To explore the value of using high horizontal resolution for Arctic Ocean modeling, we use two global meshes differing in the horizontal resolution only in the Arctic Ocean (24 km vs. 4.5 km). The high resolution significantly improves the model's representation of the Arctic Ocean. The most pronounced improvement is in the Arctic intermediate layer, in terms of both Atlantic Water (AW) mean state and variability. The deepening and thickening bias of the AW layer, a common issue found in coarse-resolution simulations, is significantly alleviated by using higher resolution. The topographic steering of the AW is stronger and the seasonal and interannual temperature variability along the ocean bottom topography is enhanced in the high-resolution simulation. The high resolution also improves the ocean surface circulation, mainly through a better representation of the narrow straits in the Canadian Arctic Archipelago (CAA). The representation of CAA throughflow not only influences the release of water masses through the other gateways but also the circulation pathways inside the Arctic Ocean. However, the mean state and variability of Arctic freshwater content and the variability of freshwater transport through the Arctic gateways appear not to be very sensitive to the increase in resolution employed here. By highlighting the issues that are independent of model resolution, we address that other efforts including the improvement of parameterizations are still required.

  20. A high-resolution global flood hazard model

    Science.gov (United States)

    Sampson, Christopher C.; Smith, Andrew M.; Bates, Paul B.; Neal, Jeffrey C.; Alfieri, Lorenzo; Freer, Jim E.

    2015-09-01

    Floods are a natural hazard that affect communities worldwide, but to date the vast majority of flood hazard research and mapping has been undertaken by wealthy developed nations. As populations and economies have grown across the developing world, so too has demand from governments, businesses, and NGOs for modeled flood hazard data in these data-scarce regions. We identify six key challenges faced when developing a flood hazard model that can be applied globally and present a framework methodology that leverages recent cross-disciplinary advances to tackle each challenge. The model produces return period flood hazard maps at ˜90 m resolution for the whole terrestrial land surface between 56°S and 60°N, and results are validated against high-resolution government flood hazard data sets from the UK and Canada. The global model is shown to capture between two thirds and three quarters of the area determined to be at risk in the benchmark data without generating excessive false positive predictions. When aggregated to ˜1 km, mean absolute error in flooded fraction falls to ˜5%. The full complexity global model contains an automatically parameterized subgrid channel network, and comparison to both a simplified 2-D only variant and an independently developed pan-European model shows the explicit inclusion of channels to be a critical contributor to improved model performance. While careful processing of existing global terrain data sets enables reasonable model performance in urban areas, adoption of forthcoming next-generation global terrain data sets will offer the best prospect for a step-change improvement in model performance.

  1. Noise propagation in resolution modeled PET imaging and its impact on detectability

    International Nuclear Information System (INIS)

    Rahmim, Arman; Tang, Jing

    2013-01-01

    Positron emission tomography imaging is affected by a number of resolution degrading phenomena, including positron range, photon non-collinearity and inter-crystal blurring. An approach to this issue is to model some or all of these effects within the image reconstruction task, referred to as resolution modeling (RM). This approach is commonly observed to yield images of higher resolution and subsequently contrast, and can be thought of as improving the modulation transfer function. Nonetheless, RM can substantially alter the noise distribution. In this work, we utilize noise propagation models in order to accurately characterize the noise texture of reconstructed images in the presence of RM. Furthermore we consider the task of lesion or defect detection, which is highly determined by the noise distribution as quantified using the noise power spectrum. Ultimately, we use this framework to demonstrate why conventional trade-off analyses (e.g. contrast versus noise, using simplistic noise metrics) do not provide a complete picture of the impact of RM and that improved performance of RM according to such analyses does not necessarily translate to the superiority of RM in detection task performance. (paper)

  2. Sensitivity of modeled ozone concentrations to uncertainties in biogenic emissions

    International Nuclear Information System (INIS)

    Roselle, S.J.

    1992-06-01

    The study examines the sensitivity of regional ozone (O3) modeling to uncertainties in biogenic emissions estimates. The United States Environmental Protection Agency's (EPA) Regional Oxidant Model (ROM) was used to simulate the photochemistry of the northeastern United States for the period July 2-17, 1988. An operational model evaluation showed that ROM had a tendency to underpredict O3 when observed concentrations were above 70-80 ppb and to overpredict O3 when observed values were below this level. On average, the model underpredicted daily maximum O3 by 14 ppb. Spatial patterns of O3, however, were reproduced favorably by the model. Several simulations were performed to analyze the effects of uncertainties in biogenic emissions on predicted O3 and to study the effectiveness of two strategies of controlling anthropogenic emissions for reducing high O3 concentrations. Biogenic hydrocarbon emissions were adjusted by a factor of 3 to account for the existing range of uncertainty in these emissions. The impact of biogenic emission uncertainties on O3 predictions depended upon the availability of NOx. In some extremely NOx-limited areas, increasing the amount of biogenic emissions decreased O3 concentrations. Two control strategies were compared in the simulations: (1) reduced anthropogenic hydrocarbon emissions, and (2) reduced anthropogenic hydrocarbon and NOx emissions. The simulations showed that hydrocarbon emission controls were more beneficial to the New York City area, but that combined NOx and hydrocarbon controls were more beneficial to other areas of the Northeast. Hydrocarbon controls were more effective as biogenic hydrocarbon emissions were reduced, whereas combined NOx and hydrocarbon controls were more effective as biogenic hydrocarbon emissions were increased

  3. Road salt emissions: A comparison of measurements and modelling using the NORTRIP road dust emission model

    Science.gov (United States)

    Denby, B. R.; Ketzel, M.; Ellermann, T.; Stojiljkovic, A.; Kupiainen, K.; Niemi, J. V.; Norman, M.; Johansson, C.; Gustafsson, M.; Blomqvist, G.; Janhäll, S.; Sundvor, I.

    2016-09-01

    De-icing of road surfaces is necessary in many countries during winter to improve vehicle traction. Large amounts of salt, most often sodium chloride, are applied every year. Most of this salt is removed through drainage or traffic spray processes but a certain amount may be suspended, after drying of the road surface, into the air and will contribute to the concentration of particulate matter. Though some measurements of salt concentrations are available near roads, the link between road maintenance salting activities and observed concentrations of salt in ambient air is yet to be quantified. In this study the NORTRIP road dust emission model, which estimates the emissions of both dust and salt from the road surface, is applied at five sites in four Nordic countries for ten separate winter periods where daily mean ambient air measurements of salt concentrations are available. The model is capable of reproducing many of the salt emission episodes, both in time and intensity, but also fails on other occasions. The observed mean concentration of salt in PM10, over all ten datasets, is 4.2 μg/m3 and the modelled mean is 2.8 μg/m3, giving a fractional bias of -0.38. The RMSE of the mean concentrations, over all 10 datasets, is 2.9 μg/m3 with an average R2 of 0.28. The mean concentration of salt is similar to the mean exhaust contribution during the winter periods of 2.6 μg/m3. The contribution of salt to the kerbside winter mean PM10 concentration is estimated to increase by 4.1 ± 3.4 μg/m3 for every kg/m2 of salt applied on the road surface during the winter season. Additional sensitivity studies showed that the accurate logging of salt applications is a prerequisite for predicting salt emissions, as well as good quality data on precipitation. It also highlights the need for more simultaneous measurements of salt loading together with ambient air concentrations to help improve model parameterisations of salt and moisture removal processes.

  4. Development and application of methods and models for the calculation of spatially and temporally highly resolved emissions in Europe

    International Nuclear Information System (INIS)

    Thiruchittampalam, Balendra

    2014-01-01

    High spatial and temporal resolution models are essential for answering many questions of air quality management and climate modeling. High-resolution emission models are required to determine the concentration of pollutants using chemical transport models, and to quantify the impacts on health and environment and in particular to develop adequate countermeasures. The aim of this work is to develop methods for the calculation of spatially and temporally high-resolved emissions and to apply these exemplarily on a 1 km x 1 km and hourly resolution for the year 2008 in the EU-27 and EFTA countries. The derivation of methods for the spatial and temporal resolution of emissions with corresponding detailed equations is one of the major improvements that have been carried out in the course of this work. The improvement of the spatial distribution of emissions from the point source relevant sectors like energy supply, industry and waste management is achieved by considering sector specific diffuse emission shares. The progress of the spatial distribution of emissions from households is in particular the development of a fuel type weighted distribution over Europe. Another main focus is the development of the spatial distribution of road transport emissions. Due to the restricted access to traffic count data at the European level, methods have been established to provide reliable emissions on grid level for Europe. The progress in the spatial distribution of agricultural emissions is achieved by the consideration of diffuse shares similar to the other point source relevant sectors like energy supply or industry. In addition to the spatial distribution of the emissions the temporal resolution is a main focus of this work, since the state of knowledge of the temporal resolution of emissions in Europe is still rudimentary. Therefore, it was necessary to develop in particular time curves for the hourly resolution of emissions for the main sectors, namely electricity and heat

  5. Modeling carbon emissions from urban traffic system using mobile monitoring.

    Science.gov (United States)

    Sun, Daniel Jian; Zhang, Ying; Xue, Rui; Zhang, Yi

    2017-12-01

    Comprehensive analyses of urban traffic carbon emissions are critical in achieving low-carbon transportation. This paper started from the architecture design of a carbon emission mobile monitoring system using multiple sets of equipment and collected the corresponding data about traffic flow, meteorological conditions, vehicular carbon emissions and driving characteristics on typical roads in Shanghai and Wuxi, Jiangsu province. Based on these data, the emission model MOVES was calibrated and used with various sensitivity and correlation evaluation indices to analyze the traffic carbon emissions at microscopic, mesoscopic and macroscopic levels, respectively. The major factors that influence urban traffic carbon emissions were investigated, so that emission factors of CO, CO 2 and HC were calculated by taking representative passenger cars as a case study. As a result, the urban traffic carbon emissions were assessed quantitatively, and the total amounts of CO, CO 2 and HC emission from passenger cars in Shanghai were estimated as 76.95kt, 8271.91kt, and 2.13kt, respectively. Arterial roads were found as the primary line source, accounting for 50.49% carbon emissions. In additional to the overall major factors identified, the mobile monitoring system and carbon emission quantification method proposed in this study are of rather guiding significance for the further urban low-carbon transportation development. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. High Resolution CH4 Emissions and Dissolved CH4 Measurements Elucidate Surface Gas Exchange Processes in Toolik Lake, Arctic Alaska

    Science.gov (United States)

    Del Sontro, T.; Sollberger, S.; Kling, G. W.; Shaver, G. R.; Eugster, W.

    2013-12-01

    Approximately 14% of the Alaskan North Slope is covered in lakes of various sizes and depths. Diffusive carbon emissions (CH4 and CO2) from these lakes offset the tundra sink by ~20 %, but the offset would substantially increase if ebullitive CH4 emissions were also considered. Ultimately, arctic lake CH4 emissions are not insignificant in the global CH4 budget and their contribution is bound to increase due to impacts from climate change. Here we present high resolution CH4 emission data as measured via eddy covariance and a Los Gatos gas analyzer during the ice free period from Toolik Lake, a deep (20 m) Arctic lake located on the Alaskan North Slope, over the last few summers. Emissions are relatively low (Gatos gas analyzer. Thus, having both the flux and the CH4 gradient across the air-water interface measured directly, we can calculate k and investigate the processes influencing CH4 gas exchange in this lake. Preliminary results indicate that there are two regimes in wind speed that impact k - one at low wind speeds up to ~5 m s-1 and another at higher wind speeds (max ~10 m s-1). The differential wind speeds during night and day may compound the effect of convective mixing and cause the diurnal variation in observed fluxes.

  7. Comparison of regional and global land cover products and the implications for biogenic emission modeling.

    Science.gov (United States)

    Huang, Ling; McDonald-Buller, Elena; McGaughey, Gary; Kimura, Yosuke; Allen, David T

    2015-10-01

    Accurate estimates of biogenic emissions are required for air quality models that support the development of air quality management plans and attainment demonstrations. Land cover characterization is an essential driving input for most biogenic emissions models. This work contrasted the global Moderate Resolution Imaging Spectroradiometer (MODIS) land cover product against a regional land cover product developed for the Texas Commissions on Environmental Quality (TCEQ) over four climate regions in eastern Texas, where biogenic emissions comprise a large fraction of the total inventory of volatile organic compounds (VOCs) and land cover is highly diverse. The Model of Emissions of Gases and Aerosols from Nature (MEGAN) was utilized to investigate the influences of land cover characterization on modeled isoprene and monoterpene emissions through changes in the standard emission potential and emission activity factor, both separately and simultaneously. In Central Texas, forest coverage was significantly lower in the MODIS land cover product relative to the TCEQ data, which resulted in substantially lower estimates of isoprene and monoterpene emissions by as much as 90%. Differences in predicted isoprene and monoterpene emissions associated with variability in land cover characterization were primarily caused by differences in the standard emission potential, which is dependent on plant functional type. Photochemical modeling was conducted to investigate the effects of differences in estimated biogenic emissions associated with land cover characterization on predicted ozone concentrations using the Comprehensive Air Quality Model with Extensions (CAMx). Mean differences in maximum daily average 8-hour (MDA8) ozone concentrations were 2 to 6 ppb with maximum differences exceeding 20 ppb. Continued focus should be on reducing uncertainties in the representation of land cover through field validation. Uncertainties in the estimation of biogenic emissions associated with

  8. Modeling noncontact atomic force microscopy resolution on corrugated surfaces

    Directory of Open Access Journals (Sweden)

    Kristen M. Burson

    2012-03-01

    Full Text Available Key developments in NC-AFM have generally involved atomically flat crystalline surfaces. However, many surfaces of technological interest are not atomically flat. We discuss the experimental difficulties in obtaining high-resolution images of rough surfaces, with amorphous SiO2 as a specific case. We develop a quasi-1-D minimal model for noncontact atomic force microscopy, based on van der Waals interactions between a spherical tip and the surface, explicitly accounting for the corrugated substrate (modeled as a sinusoid. The model results show an attenuation of the topographic contours by ~30% for tip distances within 5 Å of the surface. Results also indicate a deviation from the Hamaker force law for a sphere interacting with a flat surface.

  9. Neuromorphic model of magnocellular and parvocellular visual paths: spatial resolution

    International Nuclear Information System (INIS)

    Aguirre, Rolando C; Felice, Carmelo J; Colombo, Elisa M

    2007-01-01

    Physiological studies of the human retina show the existence of at least two visual information processing channels, the magnocellular and the parvocellular ones. Both have different spatial, temporal and chromatic features. This paper focuses on the different spatial resolution of these two channels. We propose a neuromorphic model, so that they match the retina's physiology. Considering the Deutsch and Deutsch model (1992), we propose two configurations (one for each visual channel) of the connection between the retina's different cell layers. The responses of the proposed model have similar behaviour to those of the visual cells: each channel has an optimum response corresponding to a given stimulus size which decreases for larger or smaller stimuli. This size is bigger for the magno path than for the parvo path and, in the end, both channels produce a magnifying of the borders of a stimulus

  10. Refunded emission taxes: A resolution to the cap-versus-tax dilemma for greenhouse gas regulation

    International Nuclear Information System (INIS)

    Johnson, Kenneth C.

    2007-01-01

    Regulatory instruments for greenhouse gas control present a policy dilemma: Market-based instruments such as cap and trade function to reduce regulatory costs; but because they provide no guarantee that costs will be reduced to acceptable levels it is infeasible to set caps at sustainable levels. Emission taxes provide cost certainty, but their comparatively high cost makes it infeasible to set tax rates at levels commensurate with sustainability goals. However, there is a straightforward solution to this dilemma: Just as cap and trade uses free allowance allocation to minimize regulatory costs, an emission tax's cost can be mitigated by refunding tax revenue in such a way that emission reduction becomes profitable. A refunded tax, like cap and trade with free allocation, would be revenue-neutral within the regulated industry. Marginal competitive incentives for commercializing emission-reducing technologies would not be diminished by the refund, and the refund could actually make it politically and economically feasible to increase the incentives by an order of magnitude. Whereas cap and trade merely caps emissions at an unsustainable level while subjecting the economy to extreme price volatility, refunded emission taxes could create a stable investment environment with sustained incentives for emission reduction over a long-term investment horizon

  11. MODELING THERMAL DUST EMISSION WITH TWO COMPONENTS: APPLICATION TO THE PLANCK HIGH FREQUENCY INSTRUMENT MAPS

    International Nuclear Information System (INIS)

    Meisner, Aaron M.; Finkbeiner, Douglas P.

    2015-01-01

    We apply the Finkbeiner et al. two-component thermal dust emission model to the Planck High Frequency Instrument maps. This parameterization of the far-infrared dust spectrum as the sum of two modified blackbodies (MBBs) serves as an important alternative to the commonly adopted single-MBB dust emission model. Analyzing the joint Planck/DIRBE dust spectrum, we show that two-component models provide a better fit to the 100-3000 GHz emission than do single-MBB models, though by a lesser margin than found by Finkbeiner et al. based on FIRAS and DIRBE. We also derive full-sky 6.'1 resolution maps of dust optical depth and temperature by fitting the two-component model to Planck 217-857 GHz along with DIRBE/IRAS 100 μm data. Because our two-component model matches the dust spectrum near its peak, accounts for the spectrum's flattening at millimeter wavelengths, and specifies dust temperature at 6.'1 FWHM, our model provides reliable, high-resolution thermal dust emission foreground predictions from 100 to 3000 GHz. We find that, in diffuse sky regions, our two-component 100-217 GHz predictions are on average accurate to within 2.2%, while extrapolating the Planck Collaboration et al. single-MBB model systematically underpredicts emission by 18.8% at 100 GHz, 12.6% at 143 GHz, and 7.9% at 217 GHz. We calibrate our two-component optical depth to reddening, and compare with reddening estimates based on stellar spectra. We find the dominant systematic problems in our temperature/reddening maps to be zodiacal light on large angular scales and the cosmic infrared background anisotropy on small angular scales

  12. Technical discussions on Emissions and Atmospheric Modeling (TEAM)

    Science.gov (United States)

    Frost, G. J.; Henderson, B.; Lefer, B. L.

    2017-12-01

    A new informal activity, Technical discussions on Emissions and Atmospheric Modeling (TEAM), aims to improve the scientific understanding of emissions and atmospheric processes by leveraging resources through coordination, communication and collaboration between scientists in the Nation's environmental agencies. TEAM seeks to close information gaps that may be limiting emission inventory development and atmospheric modeling and to help identify related research areas that could benefit from additional coordinated efforts. TEAM is designed around webinars and in-person meetings on particular topics that are intended to facilitate active and sustained informal communications between technical staff at different agencies. The first series of TEAM webinars focuses on emissions of nitrogen oxides, a criteria pollutant impacting human and ecosystem health and a key precursor of ozone and particulate matter. Technical staff at Federal agencies with specific interests in emissions and atmospheric modeling are welcome to participate in TEAM.

  13. Probabilistic model for the simulation of secondary electron emission

    Directory of Open Access Journals (Sweden)

    M. A. Furman

    2002-12-01

    Full Text Available We provide a detailed description of a model and its computational algorithm for the secondary electron emission process. The model is based on a broad phenomenological fit to data for the secondary-emission yield and the emitted-energy spectrum. We provide two sets of values for the parameters by fitting our model to two particular data sets, one for copper and the other one for stainless steel.

  14. Comparison of Two Grid Refinement Approaches for High Resolution Regional Climate Modeling: MPAS vs WRF

    Science.gov (United States)

    Leung, L.; Hagos, S. M.; Rauscher, S.; Ringler, T.

    2012-12-01

    This study compares two grid refinement approaches using global variable resolution model and nesting for high-resolution regional climate modeling. The global variable resolution model, Model for Prediction Across Scales (MPAS), and the limited area model, Weather Research and Forecasting (WRF) model, are compared in an idealized aqua-planet context with a focus on the spatial and temporal characteristics of tropical precipitation simulated by the models using the same physics package from the Community Atmosphere Model (CAM4). For MPAS, simulations have been performed with a quasi-uniform resolution global domain at coarse (1 degree) and high (0.25 degree) resolution, and a variable resolution domain with a high-resolution region at 0.25 degree configured inside a coarse resolution global domain at 1 degree resolution. Similarly, WRF has been configured to run on a coarse (1 degree) and high (0.25 degree) resolution tropical channel domain as well as a nested domain with a high-resolution region at 0.25 degree nested two-way inside the coarse resolution (1 degree) tropical channel. The variable resolution or nested simulations are compared against the high-resolution simulations that serve as virtual reality. Both MPAS and WRF simulate 20-day Kelvin waves propagating through the high-resolution domains fairly unaffected by the change in resolution. In addition, both models respond to increased resolution with enhanced precipitation. Grid refinement induces zonal asymmetry in precipitation (heating), accompanied by zonal anomalous Walker like circulations and standing Rossby wave signals. However, there are important differences between the anomalous patterns in MPAS and WRF due to differences in the grid refinement approaches and sensitivity of model physics to grid resolution. This study highlights the need for "scale aware" parameterizations in variable resolution and nested regional models.

  15. Model studies of limitation of carbon dioxide emissions reduction

    International Nuclear Information System (INIS)

    1992-01-01

    The report consists of two papers concerning mitigation of CO 2 emissions in Sweden, ''Limitation of carbon dioxide emissions. Socio-economic effects and the importance of international coordination'', and ''Model calculations for Sweden's energy system with carbon dioxide limitations''. Separate abstracts were prepared for both of the papers

  16. Methane emissions from rice paddies : experiments and modelling

    NARCIS (Netherlands)

    Bodegom, van P.M.

    2000-01-01

    This thesis describes model development and experimentation on the comprehension and prediction of methane (CH 4 ) emissions from rice paddies. The large spatial and temporal variability in CH 4 emissions and the dynamic non-linear relationships

  17. A new modelling approach for road traffic emissions: VERSIT+

    NARCIS (Netherlands)

    Smit, R.; Smokers, R.T.M.; Rabé, E.L.M.

    2007-01-01

    The objective of VERSIT+ LD is to predict traffic stream emissions for light-duty vehicles in any particular traffic situation. With respect to hot running emissions, VERSIT+ LD consists of a set of statistical models for detailed vehicle categories that have been constructed using multiple linear

  18. High-resolution X-ray emission spectroscopy with transition-edge sensors: present performance and future potential

    Energy Technology Data Exchange (ETDEWEB)

    Uhlig, J.; Doriese, W. B.; Fowler, J. W.; Swetz, D. S.; Jaye, C.; Fischer, D. A.; Reintsema, C. D.; Bennett, D. A.; Vale, L. R.; Mandal, U.; O' Neil, G. C.; Miaja-Avila, L.; Joe, Y. I.; El Nahhas, A.; Fullagar, W.; Parnefjord Gustafsson, F.; Sundström, V.; Kurunthu, D.; Hilton, G. C.; Schmidt, D. R.; Ullom, J. N.

    2015-04-21

    X-ray emission spectroscopy (XES) is a powerful element-selective tool to analyze the oxidation states of atoms in complex compounds, determine their electronic configuration, and identify unknown compounds in challenging environments. Until now the low efficiency of wavelength-dispersive X-ray spectrometer technology has limited the use of XES, especially in combination with weaker laboratory X-ray sources. More efficient energy-dispersive detectors have either insufficient energy resolution because of the statistical limits described by Fano or too low counting rates to be of practical use. This paper updates an approach to high-resolution X-ray emission spectroscopy that uses a microcalorimeter detector array of superconducting transition-edge sensors (TESs). TES arrays are discussed and compared with conventional methods, and shown under which circumstances they are superior. It is also shown that a TES array can be integrated into a table-top time-resolved X-ray source and a soft X-ray synchrotron beamline to perform emission spectroscopy with good chemical sensitivity over a very wide range of energies.

  19. eWaterCycle: A high resolution global hydrological model

    Science.gov (United States)

    van de Giesen, Nick; Bierkens, Marc; Drost, Niels; Hut, Rolf; Sutanudjaja, Edwin

    2014-05-01

    In 2013, the eWaterCycle project was started, which has the ambitious goal to run a high resolution global hydrological model. Starting point was the PCR-GLOBWB built by Utrecht University. The software behind this model will partially be re-engineered in order to enable to run it in a High Performance Computing (HPC) environment. The aim is to have a spatial resolution of 1km x 1km. The idea is also to run the model in real-time and forecasting mode, using data assimilation. An on-demand hydraulic model will be available for detailed flow and flood forecasting in support of navigation and disaster management. The project faces a set of scientific challenges. First, to enable the model to run in a HPC environment, model runs were analyzed to examine on which parts of the program most CPU time was spent. These parts were re-coded in Open MPI to allow for parallel processing. Different parallelization strategies are thinkable. In our case, it was decided to use watershed logic as a first step to distribute the analysis. There is rather limited recent experience with HPC in hydrology and there is much to be learned and adjusted, both on the hydrological modeling side and the computer science side. For example, an interesting early observation was that hydrological models are, due to their localized parameterization, much more memory intensive than models of sister-disciplines such as meteorology and oceanography. Because it would be deadly to have to swap information between CPU and hard drive, memory management becomes crucial. A standard Ensemble Kalman Filter (enKF) would, for example, have excessive memory demands. To circumvent these problems, an alternative to the enKF was developed that produces equivalent results. This presentation shows the most recent results from the model, including a 5km x 5km simulation and a proof of concept for the new data assimilation approach. Finally, some early ideas about financial sustainability of an operational global

  20. High Resolution Hurricane Storm Surge and Inundation Modeling (Invited)

    Science.gov (United States)

    Luettich, R.; Westerink, J. J.

    2010-12-01

    Coastal counties are home to nearly 60% of the U.S. population and industry that accounts for over 16 million jobs and 10% of the U.S. annual gross domestic product. However, these areas are susceptible to some of the most destructive forces in nature, including tsunamis, floods, and severe storm-related hazards. Since 1900, tropical cyclones making landfall on the US Gulf of Mexico Coast have caused more than 9,000 deaths; nearly 2,000 deaths have occurred during the past half century. Tropical cyclone-related adjusted, annualized losses in the US have risen from 1.3 billion from 1949-1989, to 10.1 billion from 1990-1995, and $35.8 billion per year for the period 2001-2005. The risk associated with living and doing business in the coastal areas that are most susceptible to tropical cyclones is exacerbated by rising sea level and changes in the characteristics of severe storms associated with global climate change. In the five years since hurricane Katrina devastated the northern Gulf of Mexico Coast, considerable progress has been made in the development and utilization of high resolution coupled storm surge and wave models. Recent progress will be presented with the ADCIRC + SWAN storm surge and wave models. These tightly coupled models use a common unstructured grid in the horizontal that is capable of covering large areas while also providing high resolution (i.e., base resolution down to 20m plus smaller subgrid scale features such as sea walls and levees) in areas that are subject to surge and inundation. Hydrodynamic friction and overland winds are adjusted to account for local land cover. The models scale extremely well on modern high performance computers allowing rapid turnaround on large numbers of compute cores. The models have been adopted for FEMA National Flood Insurance Program studies, hurricane protection system design and risk analysis, and quasi-operational forecast systems for several regions of the country. They are also being evaluated as

  1. Clinical evaluation of reducing acquisition time on single-photon emission computed tomography image quality using proprietary resolution recovery software.

    Science.gov (United States)

    Aldridge, Matthew D; Waddington, Wendy W; Dickson, John C; Prakash, Vineet; Ell, Peter J; Bomanji, Jamshed B

    2013-11-01

    A three-dimensional model-based resolution recovery (RR) reconstruction algorithm that compensates for collimator-detector response, resulting in an improvement in reconstructed spatial resolution and signal-to-noise ratio of single-photon emission computed tomography (SPECT) images, was tested. The software is said to retain image quality even with reduced acquisition time. Clinically, any improvement in patient throughput without loss of quality is to be welcomed. Furthermore, future restrictions in radiotracer supplies may add value to this type of data analysis. The aims of this study were to assess improvement in image quality using the software and to evaluate the potential of performing reduced time acquisitions for bone and parathyroid SPECT applications. Data acquisition was performed using the local standard SPECT/CT protocols for 99mTc-hydroxymethylene diphosphonate bone and 99mTc-methoxyisobutylisonitrile parathyroid SPECT imaging. The principal modification applied was the acquisition of an eight-frame gated data set acquired using an ECG simulator with a fixed signal as the trigger. This had the effect of partitioning the data such that the effect of reduced time acquisitions could be assessed without conferring additional scanning time on the patient. The set of summed data sets was then independently reconstructed using the RR software to permit a blinded assessment of the effect of acquired counts upon reconstructed image quality as adjudged by three experienced observers. Data sets reconstructed with the RR software were compared with the local standard processing protocols; filtered back-projection and ordered-subset expectation-maximization. Thirty SPECT studies were assessed (20 bone and 10 parathyroid). The images reconstructed with the RR algorithm showed improved image quality for both full-time and half-time acquisitions over local current processing protocols (Pimproved image quality compared with local processing protocols and has been

  2. A high-resolution global-scale groundwater model

    Science.gov (United States)

    de Graaf, I. E. M.; Sutanudjaja, E. H.; van Beek, L. P. H.; Bierkens, M. F. P.

    2015-02-01

    Groundwater is the world's largest accessible source of fresh water. It plays a vital role in satisfying basic needs for drinking water, agriculture and industrial activities. During times of drought groundwater sustains baseflow to rivers and wetlands, thereby supporting ecosystems. Most global-scale hydrological models (GHMs) do not include a groundwater flow component, mainly due to lack of geohydrological data at the global scale. For the simulation of lateral flow and groundwater head dynamics, a realistic physical representation of the groundwater system is needed, especially for GHMs that run at finer resolutions. In this study we present a global-scale groundwater model (run at 6' resolution) using MODFLOW to construct an equilibrium water table at its natural state as the result of long-term climatic forcing. The used aquifer schematization and properties are based on available global data sets of lithology and transmissivities combined with the estimated thickness of an upper, unconfined aquifer. This model is forced with outputs from the land-surface PCRaster Global Water Balance (PCR-GLOBWB) model, specifically net recharge and surface water levels. A sensitivity analysis, in which the model was run with various parameter settings, showed that variation in saturated conductivity has the largest impact on the groundwater levels simulated. Validation with observed groundwater heads showed that groundwater heads are reasonably well simulated for many regions of the world, especially for sediment basins (R2 = 0.95). The simulated regional-scale groundwater patterns and flow paths demonstrate the relevance of lateral groundwater flow in GHMs. Inter-basin groundwater flows can be a significant part of a basin's water budget and help to sustain river baseflows, especially during droughts. Also, water availability of larger aquifer systems can be positively affected by additional recharge from inter-basin groundwater flows.

  3. Impact of biogenic emissions on ozone formation in the Mediterranean area - a BEMA modelling study

    International Nuclear Information System (INIS)

    Thunis, P.; Cuvelier, C.

    2000-01-01

    The aim of this modelling study is to understand and quantify the influence of biogenic volatile organic compound (BVOC) emissions on the formation of tropospheric ozone in the Burriana area (north of Valencia) on the east coast of Spain. The mesoscale modelling system used consists of the meteorology/transport module TVM and the chemical reaction mechanism RACM. The results of the model simulations are validated and compared with the data collected during the biogenic emissions in the mediterranean area (BEMA) field campaign that took place in June 1997. Anthropogenic and biogenic emission inventories have been constructed with an hourly resolution. Averaged (over the land area and over 24 h) emission fluxes for AVOC, anthropogenic NO x , BVOC and biogenic NO x are given by 16.0, 9.9, 6.2, and 0.7 kg km -2 day -1 , respectively. The impact of biogenic emissions is investigated on peak ozone values by performing simulations with and without biogenic emissions; while keeping anthropogenic emissions constant. The impact on ozone formation is also studied in combination with some anthropogenic emissions reduction strategies, i.e. when anthropogenic VOC emissions and/or NO x emissions are reduced. A factor separation technique is applied to isolate the impact due to biogenic emissions from the overall impact due to biogenic and anthropogenic emissions together. The results indicate that the maximum impact of biogenic emissions on ozone formation represents at the most 10 ppb, while maximum ozone values are of the order of 100 ppb. At different locations the maximum impact is reached at different times of the day depending on the arrival time of the sea breeze. It is also shown that this impact does not coincide in time with the maximum simulated ozone concentrations that are reached over the day. By performing different emission reduction scenarios, BVOC impacts are found to be sensitive mainly to NO x , and not to AVOC. Finally, it is shown that amongst the various

  4. Influence of satellite-derived photolysis rates and NOx emissions on Texas ozone modeling

    Science.gov (United States)

    Tang, W.; Cohan, D. S.; Pour-Biazar, A.; Lamsal, L. N.; White, A. T.; Xiao, X.; Zhou, W.; Henderson, B. H.; Lash, B. F.

    2015-02-01

    Uncertain photolysis rates and emission inventory impair the accuracy of state-level ozone (O3) regulatory modeling. Past studies have separately used satellite-observed clouds to correct the model-predicted photolysis rates, or satellite-constrained top-down NOx emissions to identify and reduce uncertainties in bottom-up NOx emissions. However, the joint application of multiple satellite-derived model inputs to improve O3 state implementation plan (SIP) modeling has rarely been explored. In this study, Geostationary Operational Environmental Satellite (GOES) observations of clouds are applied to derive the photolysis rates, replacing those used in Texas SIP modeling. This changes modeled O3 concentrations by up to 80 ppb and improves O3 simulations by reducing modeled normalized mean bias (NMB) and normalized mean error (NME) by up to 0.1. A sector-based discrete Kalman filter (DKF) inversion approach is incorporated with the Comprehensive Air Quality Model with extensions (CAMx)-decoupled direct method (DDM) model to adjust Texas NOx emissions using a high-resolution Ozone Monitoring Instrument (OMI) NO2 product. The discrepancy between OMI and CAMx NO2 vertical column densities (VCDs) is further reduced by increasing modeled NOx lifetime and adding an artificial amount of NO2 in the upper troposphere. The region-based DKF inversion suggests increasing NOx emissions by 10-50% in most regions, deteriorating the model performance in predicting ground NO2 and O3, while the sector-based DKF inversion tends to scale down area and nonroad NOx emissions by 50%, leading to a 2-5 ppb decrease in ground 8 h O3 predictions. Model performance in simulating ground NO2 and O3 are improved using sector-based inversion-constrained NOx emissions, with 0.25 and 0.04 reductions in NMBs and 0.13 and 0.04 reductions in NMEs, respectively. Using both GOES-derived photolysis rates and OMI-constrained NOx emissions together reduces modeled NMB and NME by 0.05, increases the model

  5. High resolution modelling of extreme precipitation events in urban areas

    Science.gov (United States)

    Siemerink, Martijn; Volp, Nicolette; Schuurmans, Wytze; Deckers, Dave

    2015-04-01

    The present day society needs to adjust to the effects of climate change. More extreme weather conditions are expected, which can lead to longer periods of drought, but also to more extreme precipitation events. Urban water systems are not designed for such extreme events. Most sewer systems are not able to drain the excessive storm water, causing urban flooding. This leads to high economic damage. In order to take appropriate measures against extreme urban storms, detailed knowledge about the behaviour of the urban water system above and below the streets is required. To investigate the behaviour of urban water systems during extreme precipitation events new assessment tools are necessary. These tools should provide a detailed and integral description of the flow in the full domain of overland runoff, sewer flow, surface water flow and groundwater flow. We developed a new assessment tool, called 3Di, which provides detailed insight in the urban water system. This tool is based on a new numerical methodology that can accurately deal with the interaction between overland runoff, sewer flow and surface water flow. A one-dimensional model for the sewer system and open channel flow is fully coupled to a two-dimensional depth-averaged model that simulates the overland flow. The tool uses a subgrid-based approach in order to take high resolution information of the sewer system and of the terrain into account [1, 2]. The combination of using the high resolution information and the subgrid based approach results in an accurate and efficient modelling tool. It is now possible to simulate entire urban water systems using extreme high resolution (0.5m x 0.5m) terrain data in combination with a detailed sewer and surface water network representation. The new tool has been tested in several Dutch cities, such as Rotterdam, Amsterdam and The Hague. We will present the results of an extreme precipitation event in the city of Schiedam (The Netherlands). This city deals with

  6. A modelling approach to estimate carbon emissions from D.R.C. deforestation

    Science.gov (United States)

    Najdovski, Nicolas; Poulter, Benjamin; Defourny, Pierre; Moreau, Inès; Maignan, Fabienne; Ciais, Philippe; Verhegghen, Astrid; Kibambe Lubamba, Jean-Paul; Jungers, Quentin; De Weirdt, Marjolein; Verbeeck, Hans; MacBean, Natasha; Peylin, Philippe

    2014-05-01

    With its 1.8 million squared kilometres, the Congo basin dense forest represents the second largest contiguous forest of the world. These extensive forest ecosystems play a significant role in the regulation of global climate by their potential carbon dioxide emissions and carbon storage. Under a stable climate, the vegetation, assumed to be at the equilibrium, is known to present neutral emissions over a year with seasonal variations. However, modifications in temperatures, precipitations, CO2 atmospheric concentrations have the potential to modify this balance leading to higher or lower biomass storage. In addition, deforestation and forest degradation have played a significant role over the past several decades and are expected to become increasingly important in the future. Here, we quantify the relative effects of deforestation and 21st century climate change on carbon emissions in Congo Basin over the next three decades (2005-2035). Carbon dioxide emissions are estimated using a series of moderate resolution (10 km) vegetation maps merged with spatially explicit deforestation projections and developed to work with a prognostic carbon cycle model. The inversion of the deforestation model allowed hindcast land-use patterns back to 1800 by using land cover change rates based on the HYDE database. Simulations were made over the Democratic Republic of Congo (DRC) using the ORCHIDEE dynamic global vegetation model with climate forcing from the CMIP5 Representative Concentration Pathway 8.5 scenario for the HadGEM2. Two simulations were made, a reference simulation with land cover fixed at 2005 and a land cover change simulation with changing climate and CO2, to quantify the net land cover change emissions and climate emissions directly. Because of the relatively high resolution of the model simulations, the spatial patterns of human-driven carbon losses can be tracked in the context of climate change, providing information for mitigation and vulnerability

  7. High-resolution inventory of ammonia emissions from agricultural fertilizer in China from 1978 to 2008

    Science.gov (United States)

    Xu, P.; Liao, Y. J.; Lin, Y. H.; Zhao, C. X.; Yan, C. H.; Cao, M. N.; Wang, G. S.; Luan, S. J.

    2016-02-01

    The quantification of ammonia (NH3) emissions is essential to the more accurate quantification of atmospheric nitrogen deposition, improved air quality and the assessment of ammonia-related agricultural policy and climate mitigation strategies. The quantity, geographic distribution and historical trends of these emissions remain largely uncertain. In this paper, a new Chinese agricultural fertilizer NH3 (CAF_NH3) emissions inventory has been compiled that exhibits the following improvements: (1) a 1 × 1 km gridded map on the county level was developed for 2008; (2) a combined bottom-up and top-down method was used for the local correction of emission factors (EFs) and parameters; (3) the temporal patterns of historical time trends for 1978-2008 were estimated and the uncertainties were quantified for the inventories; and (4) a sensitivity test was performed in which a province-level disaggregated map was compared with CAF_NH3 emissions for 2008. The total CAF_NH3 emissions for 2008 were 8.4 TgNH3 yr-1 (a 6.6-9.8 Tg interquartile range). From 1978 to 2008, annual NH3 emissions fluctuated with three peaks (1987, 1996 and 2005), and total emissions increased from 3.2 to 8.4 Tg at an annual rate of 3.0 %. During the study period, the contribution of livestock manure spreading increased from 37.0 to 45.5 % because of changing fertilization practices and the rapid increase in egg, milk, and meat consumption. The average contribution of synthetic fertilizer, which has a positive effect on crop yields, was approximately 38.3 % (minimum: 33.4 %; maximum: 42.7 %). With rapid urbanization causing a decline in the rural population, the contribution of the rural excrement sector varied widely between 20.3 % and 8.5 %. The average contributions of cake fertilizer and straw returning were approximately 3.8 and 4.5 %, respectively, thus small and stable. Collectively, the CAF_NH3 emissions reflect the nation's agricultural policy to a certain extent. An effective approach to

  8. Consistency checks in beam emission modeling for neutral beam injectors

    International Nuclear Information System (INIS)

    Punyapu, Bharathi; Vattipalle, Prahlad; Sharma, Sanjeev Kumar; Baruah, Ujjwal Kumar; Crowley, Brendan

    2015-01-01

    In positive neutral beam systems, the beam parameters such as ion species fractions, power fractions and beam divergence are routinely measured using Doppler shifted beam emission spectrum. The accuracy with which these parameters are estimated depend on the accuracy of the atomic modeling involved in these estimations. In this work, an effective procedure to check the consistency of the beam emission modeling in neutral beam injectors is proposed. As a first consistency check, at a constant beam voltage and current, the intensity of the beam emission spectrum is measured by varying the pressure in the neutralizer. Then, the scaling of measured intensity of un-shifted (target) and Doppler shifted intensities (projectile) of the beam emission spectrum at these pressure values are studied. If the un-shifted component scales with pressure, then the intensity of this component will be used as a second consistency check on the beam emission modeling. As a further check, the modeled beam fractions and emission cross sections of projectile and target are used to predict the intensity of the un-shifted component and then compared with the value of measured target intensity. An agreement between the predicted and measured target intensities provide the degree of discrepancy in the beam emission modeling. In order to test this methodology, a systematic analysis of Doppler shift spectroscopy data obtained on the JET neutral beam test stand data was carried out

  9. Global emissions and models of photochemically active compounds

    International Nuclear Information System (INIS)

    Penner, J.E.; Atherton, C.S.; Graedel, T.E.

    1993-01-01

    Anthropogenic emissions from industrial activity, fossil fuel combustion, and biomass burning are now known to be large enough (relative to natural sources) to perturb the chemistry of vast regions of the troposphere. A goal of the IGAC Global Emissions Inventory Activity (GEIA) is to provide authoritative and reliable emissions inventories on a 1 degree x 1 degree grid. When combined with atmospheric photochemical models, these high quality emissions inventories may be used to predict the concentrations of major photochemical products. Comparison of model results with measurements of pertinent species allows us to understand whether there are major shortcomings in our understanding of tropospheric photochemistry, the budgets and transport of trace species, and their effects in the atmosphere. Through this activity, we are building the capability to make confident predictions of the future consequences of anthropogenic emissions. This paper compares IGAC recommended emissions inventories for reactive nitrogen and sulfur dioxide to those that have been in use previously. We also present results from the three-dimensional LLNL atmospheric chemistry model that show how emissions of anthropogenic nitrogen oxides might potentially affect tropospheric ozone and OH concentrations and how emissions of anthropogenic sulfur increase sulfate aerosol loadings

  10. High Resolution Digital Elevation Models of Pristine Explosion Craters

    Science.gov (United States)

    Farr, T. G.; Krabill, W.; Garvin, J. B.

    2004-01-01

    In order to effectively capture a realistic terrain applicable to studies of cratering processes and landing hazards on Mars, we have obtained high resolution digital elevation models of several pristine explosion craters at the Nevada Test Site. We used the Airborne Terrain Mapper (ATM), operated by NASA's Wallops Flight Facility to obtain DEMs with 1 m spacing and 10 cm vertical errors of 4 main craters and many other craters and collapse pits. The main craters that were mapped are Sedan, Scooter, Schooner, and Danny Boy. The 370 m diameter Sedan crater, located on Yucca Flat, is the largest and freshest explosion crater on Earth that was formed under conditions similar to hypervelocity impact cratering. As such, it is effectively pristine, having been formed in 1962 as a result of a controlled detonation of a 100 kiloton thermonuclear device, buried at the appropriate equivalent depth of burst required to make a simple crater. Sedan was formed in alluvium of mixed lithology and subsequently studied using a variety of field-based methods. Nearby secondary craters were also formed at the time and were also mapped by ATM. Adjacent to Sedan and also in alluvium is Scooter, about 90 m in diameter and formed by a high-explosive event. Schooner (240 m) and Danny Boy (80 m) craters were also important targets for ATM as they were excavated in hard basalt and therefore have much rougher ejecta. This will allow study of ejecta patterns in hard rock as well as engineering tests of crater and rock avoidance and rover trafficability. In addition to the high resolution DEMs, crater geometric characteristics, RMS roughness maps, and other higher-order derived data products will be generated using these data. These will provide constraints for models of landing hazards on Mars and for rover trafficability. Other planned studies will include ejecta size-frequency distribution at the resolution of the DEM and at finer resolution through air photography and field measurements

  11. Combining high-resolution gross domestic product data with home and personal care product market research data to generate a subnational emission inventory for Asia.

    Science.gov (United States)

    Hodges, Juliet Elizabeth Natasha; Vamshi, Raghu; Holmes, Christopher; Rowson, Matthew; Miah, Taqmina; Price, Oliver Richard

    2014-04-01

    Environmental risk assessment of chemicals is reliant on good estimates of product usage information and robust exposure models. Over the past 20 to 30 years, much progress has been made with the development of exposure models that simulate the transport and distribution of chemicals in the environment. However, little progress has been made in our ability to estimate chemical emissions of home and personal care (HPC) products. In this project, we have developed an approach to estimate subnational emission inventory of chemical ingredients used in HPC products for 12 Asian countries including Bangladesh, Cambodia, China, India, Indonesia, Laos, Malaysia, Pakistan, Philippines, Sri Lanka, Thailand, and Vietnam (Asia-12). To develop this inventory, we have coupled a 1 km grid of per capita gross domestic product (GDP) estimates with market research data of HPC product sales. We explore the necessity of accounting for a population's ability to purchase HPC products in determining their subnational distribution in regions where wealth is not uniform. The implications of using high resolution data on inter- and intracountry subnational emission estimates for a range of hypothetical and actual HPC product types were explored. It was demonstrated that for low value products (500 US$ per capita/annum required to purchase product) the implications on emissions being assigned to subnational regions can vary by several orders of magnitude. The implications of this on conducting national or regional level risk assessments may be significant. Further work is needed to explore the implications of this variability in HPC emissions to enable the HPC industry and/or governments to advance risk-based chemical management policies in emerging markets. © 2013 SETAC.

  12. Multi-scale climate modelling over Southern Africa using a variable-resolution global model

    CSIR Research Space (South Africa)

    Engelbrecht, FA

    2011-12-01

    Full Text Available -mail: fengelbrecht@csir.co.za Multi-scale climate modelling over Southern Africa using a variable-resolution global model FA Engelbrecht1, 2*, WA Landman1, 3, CJ Engelbrecht4, S Landman5, MM Bopape1, B Roux6, JL McGregor7 and M Thatcher7 1 CSIR Natural... improvement. Keywords: multi-scale climate modelling, variable-resolution atmospheric model Introduction Dynamic climate models have become the primary tools for the projection of future climate change, at both the global and regional scales. Dynamic...

  13. Development of a high energy resolution magnetic bolometer for the determination of photon emission intensities by gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Rodrigues, M.

    2007-12-01

    In this research thesis, a first chapter describes the metrological difficulties for the determination of radionuclide photon emission intensities. Then, it discusses the understanding and the required tools for the computing of a magnetic bolometer signal with respect to the different operation parameters and to the sensor geometry. The author describes the implementation of the experimental device and its validation with a first sensor. The new sensor is then optimised for the measurement of photon emission intensities with a good efficiency and a theoretical energy resolution less than 100 eV up to 200 keV. The sensor's detection efficiency and operation have been characterized with a 133 Ba source. The author finally presents the obtained results

  14. The Next-generation Berkeley High Resolution NO2 (BEHR NO2) Retrieval: Design and Preliminary Emissions Constraints

    Science.gov (United States)

    Laughner, J.; Cohen, R. C.

    2017-12-01

    Recent work has identified a number of assumptions made in NO2 retrievals that lead to biases in the retrieved NO2 column density. These include the treatment of the surface as an isotropic reflector, the absence of lightning NO2 in high resolution a priori profiles, and the use of monthly averaged a priori profiles. We present a new release of the Berkeley High Resolution (BEHR) OMI NO2 retrieval based on the new NASA Standard Product (version 3) that addresses these assumptions by: accounting for surface anisotropy by using a BRDF albedo product, using an updated method of regridding NO2 data, and revised NO2 a priori profiles that better account for lightning NO2 and daily variation in the profile shape. We quantify the effect these changes have on the retrieved NO2 column densities and the resultant impact these updates have on constraints of urban NOx emissions for select cities throughout the United States.

  15. Dislocation unpinning model of acoustic emission from alkali halide ...

    Indian Academy of Sciences (India)

    The present paper reports the dislocation unpinning model of acoustic emis- sion (AE) from ... Acoustic emission; dislocation; alkali halide crystals; plastic deformation. ..... [5] T Nishimura, A Tahara and T Kolama, Jpn. Metal Inst. 64, 339 (2000).

  16. Acoustic emission and magnification of atomic lines resolution for laser breakdown of salt water in ultrasound field

    International Nuclear Information System (INIS)

    Bulanov, Alexey V.; Nagorny, Ivan G.

    2015-01-01

    Researches of the acoustic effects accompanying optical breakdown in a water, generated by the focused laser radiation with power ultrasound have been carried out. Experiments were performed by using 532 nm pulses from Brilliant B Nd:YAG laser. Acoustic radiation was produced by acoustic focusing systems in the form hemisphere and ring by various resonance frequencies of 10.7 kHz and 60 kHz. The experimental results are obtained, that show the sharply strengthens effects of acoustic emission from a breakdown zone by the joint influence of a laser and ultrasonic irradiation. Essentially various thresholds of breakdown and character of acoustic emission in fresh and sea water are found out. The experimental result is established, testifying that acoustic emission of optical breakdown of sea water at presence and at absence of ultrasound essentially exceeds acoustic emission in fresh water. Atomic lines of some chemical elements like a Sodium, Magnesium and so on were investigated for laser breakdown of water with ultrasound field. The effect of magnification of this lines resolution for salt water in ultrasound field was obtained

  17. Effect of model resolution on a regional climate model simulation over southeast Australia

    KAUST Repository

    Evans, J. P.; McCabe, Matthew

    2013-01-01

    Dynamically downscaling climate projections from global climate models (GCMs) for use in impacts and adaptation research has become a common practice in recent years. In this study, the CSIRO Mk3.5 GCM is downscaled using the Weather Research and Forecasting (WRF) regional climate model (RCM) to medium (50 km) and high (10 km) resolution over southeast Australia. The influence of model resolution on the present-day (1985 to 2009) modelled regional climate and projected future (2075 to 2099) changes are examined for both mean climate and extreme precipitation characteristics. Increasing model resolution tended to improve the simulation of present day climate, with larger improvements in areas affected by mountains and coastlines. Examination of circumstances under which increasing the resolution decreased performance revealed an error in the GCM circulation, the effects of which had been masked by the coarse GCM topography. Resolution modifications to projected changes were largest in regions with strong topographic and coastline influences, and can be large enough to change the sign of the climate change projected by the GCM. Known physical mechanisms for these changes included orographic uplift and low-level blocking of air-masses caused by mountains. In terms of precipitation extremes, the GCM projects increases in extremes even when the projected change in the mean was a decrease: but this was not always true for the higher resolution models. Thus, while the higher resolution RCM climate projections often concur with the GCM projections, there are times and places where they differ significantly due to their better representation of physical processes. It should also be noted that the model resolution can modify precipitation characteristics beyond just its mean value.

  18. Effect of model resolution on a regional climate model simulation over southeast Australia

    KAUST Repository

    Evans, J. P.

    2013-03-26

    Dynamically downscaling climate projections from global climate models (GCMs) for use in impacts and adaptation research has become a common practice in recent years. In this study, the CSIRO Mk3.5 GCM is downscaled using the Weather Research and Forecasting (WRF) regional climate model (RCM) to medium (50 km) and high (10 km) resolution over southeast Australia. The influence of model resolution on the present-day (1985 to 2009) modelled regional climate and projected future (2075 to 2099) changes are examined for both mean climate and extreme precipitation characteristics. Increasing model resolution tended to improve the simulation of present day climate, with larger improvements in areas affected by mountains and coastlines. Examination of circumstances under which increasing the resolution decreased performance revealed an error in the GCM circulation, the effects of which had been masked by the coarse GCM topography. Resolution modifications to projected changes were largest in regions with strong topographic and coastline influences, and can be large enough to change the sign of the climate change projected by the GCM. Known physical mechanisms for these changes included orographic uplift and low-level blocking of air-masses caused by mountains. In terms of precipitation extremes, the GCM projects increases in extremes even when the projected change in the mean was a decrease: but this was not always true for the higher resolution models. Thus, while the higher resolution RCM climate projections often concur with the GCM projections, there are times and places where they differ significantly due to their better representation of physical processes. It should also be noted that the model resolution can modify precipitation characteristics beyond just its mean value.

  19. LIDAR-based urban metabolism approach to neighbourhood scale energy and carbon emissions modelling

    Energy Technology Data Exchange (ETDEWEB)

    Christen, A. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Geography; Coops, N. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Forest Sciences; Canada Research Chairs, Ottawa, ON (Canada); Kellet, R. [British Columbia Univ., Vancouver, BC (Canada). School of Architecture and Landscape Architecture

    2010-07-01

    A remote sensing technology was used to model neighbourhood scale energy and carbon emissions in a case study set in Vancouver, British Columbia (BC). The study was used to compile and aggregate atmospheric carbon flux, urban form, and energy and emissions data in a replicable neighbourhood-scale approach. The study illustrated methods of integrating diverse emission and uptake processes on a range of scales and resolutions, and benchmarked comparisons of modelled estimates with measured energy consumption data obtained over a 2-year period from a research tower located in the study area. The study evaluated carbon imports, carbon exports and sequestration, and relevant emissions processes. Fossil fuel emissions produced in the neighbourhood were also estimated. The study demonstrated that remote sensing technologies such as LIDAR and multispectral satellite imagery can be an effective means of generating and extracting urban form and land cover data at fine scales. Data from the study were used to develop several emissions reduction and energy conservation scenarios. 6 refs.

  20. Validation of the Swiss methane emission inventory by atmospheric observations and inverse modelling

    Directory of Open Access Journals (Sweden)

    S. Henne

    2016-03-01

    Full Text Available Atmospheric inverse modelling has the potential to provide observation-based estimates of greenhouse gas emissions at the country scale, thereby allowing for an independent validation of national emission inventories. Here, we present a regional-scale inverse modelling study to quantify the emissions of methane (CH4 from Switzerland, making use of the newly established CarboCount-CH measurement network and a high-resolution Lagrangian transport model. In our reference inversion, prior emissions were taken from the "bottom-up" Swiss Greenhouse Gas Inventory (SGHGI as published by the Swiss Federal Office for the Environment in 2014 for the year 2012. Overall we estimate national CH4 emissions to be 196 ± 18 Gg yr−1 for the year 2013 (1σ uncertainty. This result is in close agreement with the recently revised SGHGI estimate of 206 ± 33 Gg yr−1 as reported in 2015 for the year 2012. Results from sensitivity inversions using alternative prior emissions, uncertainty covariance settings, large-scale background mole fractions, two different inverse algorithms (Bayesian and extended Kalman filter, and two different transport models confirm the robustness and independent character of our estimate. According to the latest SGHGI estimate the main CH4 source categories in Switzerland are agriculture (78 %, waste handling (15 % and natural gas distribution and combustion (6 %. The spatial distribution and seasonal variability of our posterior emissions suggest an overestimation of agricultural CH4 emissions by 10 to 20 % in the most recent SGHGI, which is likely due to an overestimation of emissions from manure handling. Urban areas do not appear as emission hotspots in our posterior results, suggesting that leakages from natural gas distribution are only a minor source of CH4 in Switzerland. This is consistent with rather low emissions of 8.4 Gg yr−1 reported by the SGHGI but inconsistent with the much higher value of 32 Gg yr−1 implied by the

  1. Performance assessment of the single photon emission microscope: high spatial resolution SPECT imaging of small animal organs

    Directory of Open Access Journals (Sweden)

    J. Mejia

    2013-11-01

    Full Text Available The single photon emission microscope (SPEM is an instrument developed to obtain high spatial resolution single photon emission computed tomography (SPECT images of small structures inside the mouse brain. SPEM consists of two independent imaging devices, which combine a multipinhole collimator, a high-resolution, thallium-doped cesium iodide [CsI(Tl] columnar scintillator, a demagnifying/intensifier tube, and an electron-multiplying charge-coupling device (CCD. Collimators have 300- and 450-µm diameter pinholes on tungsten slabs, in hexagonal arrays of 19 and 7 holes. Projection data are acquired in a photon-counting strategy, where CCD frames are stored at 50 frames per second, with a radius of rotation of 35 mm and magnification factor of one. The image reconstruction software tool is based on the maximum likelihood algorithm. Our aim was to evaluate the spatial resolution and sensitivity attainable with the seven-pinhole imaging device, together with the linearity for quantification on the tomographic images, and to test the instrument in obtaining tomographic images of different mouse organs. A spatial resolution better than 500 µm and a sensitivity of 21.6 counts·s-1·MBq-1 were reached, as well as a correlation coefficient between activity and intensity better than 0.99, when imaging 99mTc sources. Images of the thyroid, heart, lungs, and bones of mice were registered using 99mTc-labeled radiopharmaceuticals in times appropriate for routine preclinical experimentation of <1 h per projection data set. Detailed experimental protocols and images of the aforementioned organs are shown. We plan to extend the instrument's field of view to fix larger animals and to combine data from both detectors to reduce the acquisition time or applied activity.

  2. Performance assessment of the single photon emission microscope: high spatial resolution SPECT imaging of small animal organs

    International Nuclear Information System (INIS)

    Mejia, J.; Reis, M.A.; Miranda, A.C.C.; Batista, I.R.; Barboza, M.R.F.; Shih, M.C.; Fu, G.; Chen, C.T.; Meng, L.J.; Bressan, R.A.; Amaro, E. Jr

    2013-01-01

    The single photon emission microscope (SPEM) is an instrument developed to obtain high spatial resolution single photon emission computed tomography (SPECT) images of small structures inside the mouse brain. SPEM consists of two independent imaging devices, which combine a multipinhole collimator, a high-resolution, thallium-doped cesium iodide [CsI(Tl)] columnar scintillator, a demagnifying/intensifier tube, and an electron-multiplying charge-coupling device (CCD). Collimators have 300- and 450-µm diameter pinholes on tungsten slabs, in hexagonal arrays of 19 and 7 holes. Projection data are acquired in a photon-counting strategy, where CCD frames are stored at 50 frames per second, with a radius of rotation of 35 mm and magnification factor of one. The image reconstruction software tool is based on the maximum likelihood algorithm. Our aim was to evaluate the spatial resolution and sensitivity attainable with the seven-pinhole imaging device, together with the linearity for quantification on the tomographic images, and to test the instrument in obtaining tomographic images of different mouse organs. A spatial resolution better than 500 µm and a sensitivity of 21.6 counts·s -1 ·MBq -1 were reached, as well as a correlation coefficient between activity and intensity better than 0.99, when imaging 99m Tc sources. Images of the thyroid, heart, lungs, and bones of mice were registered using 99m Tc-labeled radiopharmaceuticals in times appropriate for routine preclinical experimentation of <1 h per projection data set. Detailed experimental protocols and images of the aforementioned organs are shown. We plan to extend the instrument's field of view to fix larger animals and to combine data from both detectors to reduce the acquisition time or applied activity

  3. Performance assessment of the single photon emission microscope: high spatial resolution SPECT imaging of small animal organs

    Energy Technology Data Exchange (ETDEWEB)

    Mejia, J. [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil); Reis, M.A. [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil); Laboratório Interdisciplinar de Neurociências Clínicas, Departamento de Psiquiatria, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Miranda, A.C.C. [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil); Batista, I.R. [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil); Laboratório Interdisciplinar de Neurociências Clínicas, Departamento de Psiquiatria, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Barboza, M.R.F.; Shih, M.C. [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil); Fu, G. [GE Global Research, Schenectady, NY (United States); Chen, C.T. [Department of Radiology, University of Chicago, Chicago, IL (United States); Meng, L.J. [Department of Nuclear, Plasma and Radiological Engineering, University of Illinois, Urbana-Champaign, IL (United States); Bressan, R.A. [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil); Laboratório Interdisciplinar de Neurociências Clínicas, Departamento de Psiquiatria, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Amaro, E. Jr [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil)

    2013-11-06

    The single photon emission microscope (SPEM) is an instrument developed to obtain high spatial resolution single photon emission computed tomography (SPECT) images of small structures inside the mouse brain. SPEM consists of two independent imaging devices, which combine a multipinhole collimator, a high-resolution, thallium-doped cesium iodide [CsI(Tl)] columnar scintillator, a demagnifying/intensifier tube, and an electron-multiplying charge-coupling device (CCD). Collimators have 300- and 450-µm diameter pinholes on tungsten slabs, in hexagonal arrays of 19 and 7 holes. Projection data are acquired in a photon-counting strategy, where CCD frames are stored at 50 frames per second, with a radius of rotation of 35 mm and magnification factor of one. The image reconstruction software tool is based on the maximum likelihood algorithm. Our aim was to evaluate the spatial resolution and sensitivity attainable with the seven-pinhole imaging device, together with the linearity for quantification on the tomographic images, and to test the instrument in obtaining tomographic images of different mouse organs. A spatial resolution better than 500 µm and a sensitivity of 21.6 counts·s{sup -1}·MBq{sup -1} were reached, as well as a correlation coefficient between activity and intensity better than 0.99, when imaging {sup 99m}Tc sources. Images of the thyroid, heart, lungs, and bones of mice were registered using {sup 99m}Tc-labeled radiopharmaceuticals in times appropriate for routine preclinical experimentation of <1 h per projection data set. Detailed experimental protocols and images of the aforementioned organs are shown. We plan to extend the instrument's field of view to fix larger animals and to combine data from both detectors to reduce the acquisition time or applied activity.

  4. Development of a forecast model for global air traffic emissions

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Martin

    2012-07-01

    The thesis describes the methodology and results of a simulation model that quantifies fuel consumption and emissions of civil air traffic. Besides covering historical emissions, the model aims at forecasting emissions in the medium-term future. For this purpose, simulation models of aircraft and engine types are used in combination with a database of global flight movements and assumptions about traffic growth, fleet rollover and operational aspects. Results from an application of the model include emissions of scheduled air traffic for the years 2000 to 2010 as well as forecasted emissions until the year 2030. In a baseline scenario of the forecast, input assumptions (e.g. traffic growth rates) are in line with predictions by the aircraft industry. Considering the effects of advanced technologies of the short-term and medium-term future, the forecast focusses on fuel consumption and emissions of nitric oxides. Calculations for historical air traffic additionally cover emissions of carbon monoxide, unburned hydrocarbons and soot. Results are validated against reference data including studies by the International Civil Aviation Organization (ICAO) and simulation results from international research projects. (orig.)

  5. The leaf-level emission factor of volatile isoprenoids: caveats, model algorithms, response shapes and scaling

    Directory of Open Access Journals (Sweden)

    Ü. Niinemets

    2010-06-01

    Full Text Available In models of plant volatile isoprenoid emissions, the instantaneous compound emission rate typically scales with the plant's emission potential under specified environmental conditions, also called as the emission factor, ES. In the most widely employed plant isoprenoid emission models, the algorithms developed by Guenther and colleagues (1991, 1993, instantaneous variation of the steady-state emission rate is described as the product of ES and light and temperature response functions. When these models are employed in the atmospheric chemistry modeling community, species-specific ES values and parameter values defining the instantaneous response curves are often taken as initially defined. In the current review, we argue that ES as a characteristic used in the models importantly depends on our understanding of which environmental factors affect isoprenoid emissions, and consequently need standardization during experimental ES determinations. In particular, there is now increasing consensus that in addition to variations in light and temperature, alterations in atmospheric and/or within-leaf CO2 concentrations may need to be included in the emission models. Furthermore, we demonstrate that for less volatile isoprenoids, mono- and sesquiterpenes, the emissions are often jointly controlled by the compound synthesis and volatility. Because of these combined biochemical and physico-chemical drivers, specification of ES as a constant value is incapable of describing instantaneous emissions within the sole assumptions of fluctuating light and temperature as used in the standard algorithms. The definition of ES also varies depending on the degree of aggregation of ES values in different parameterization schemes (leaf- vs. canopy- or region-scale, species vs. plant functional type levels and various

  6. Developing High-resolution Soil Database for Regional Crop Modeling in East Africa

    Science.gov (United States)

    Han, E.; Ines, A. V. M.

    2014-12-01

    The most readily available soil data for regional crop modeling in Africa is the World Inventory of Soil Emission potentials (WISE) dataset, which has 1125 soil profiles for the world, but does not extensively cover countries Ethiopia, Kenya, Uganda and Tanzania in East Africa. Another dataset available is the HC27 (Harvest Choice by IFPRI) in a gridded format (10km) but composed of generic soil profiles based on only three criteria (texture, rooting depth, and organic carbon content). In this paper, we present a development and application of a high-resolution (1km), gridded soil database for regional crop modeling in East Africa. Basic soil information is extracted from Africa Soil Information Service (AfSIS), which provides essential soil properties (bulk density, soil organic carbon, soil PH and percentages of sand, silt and clay) for 6 different standardized soil layers (5, 15, 30, 60, 100 and 200 cm) in 1km resolution. Soil hydraulic properties (e.g., field capacity and wilting point) are derived from the AfSIS soil dataset using well-proven pedo-transfer functions and are customized for DSSAT-CSM soil data requirements. The crop model is used to evaluate crop yield forecasts using the new high resolution soil database and compared with WISE and HC27. In this paper we will present also the results of DSSAT loosely coupled with a hydrologic model (VIC) to assimilate root-zone soil moisture. Creating a grid-based soil database, which provides a consistent soil input for two different models (DSSAT and VIC) is a critical part of this work. The created soil database is expected to contribute to future applications of DSSAT crop simulation in East Africa where food security is highly vulnerable.

  7. Landform classification using a sub-pixel spatial attraction model to increase spatial resolution of digital elevation model (DEM

    Directory of Open Access Journals (Sweden)

    Marzieh Mokarrama

    2018-04-01

    Full Text Available The purpose of the present study is preparing a landform classification by using digital elevation model (DEM which has a high spatial resolution. To reach the mentioned aim, a sub-pixel spatial attraction model was used as a novel method for preparing DEM with a high spatial resolution in the north of Darab, Fars province, Iran. The sub-pixel attraction models convert the pixel into sub-pixels based on the neighboring pixels fraction values, which can only be attracted by a central pixel. Based on this approach, a mere maximum of eight neighboring pixels can be selected for calculating of the attraction value. In the mentioned model, other pixels are supposed to be far from the central pixel to receive any attraction. In the present study by using a sub-pixel attraction model, the spatial resolution of a DEM was increased. The design of the algorithm is accomplished by using a DEM with a spatial resolution of 30 m (the Advanced Space borne Thermal Emission and Reflection Radiometer; (ASTER and a 90 m (the Shuttle Radar Topography Mission; (SRTM. In the attraction model, scale factors of (S = 2, S = 3, and S = 4 with two neighboring methods of touching (T = 1 and quadrant (T = 2 are applied to the DEMs by using MATLAB software. The algorithm is evaluated by taking the best advantages of 487 sample points, which are measured by surveyors. The spatial attraction model with scale factor of (S = 2 gives better results compared to those scale factors which are greater than 2. Besides, the touching neighborhood method is turned to be more accurate than the quadrant method. In fact, dividing each pixel into more than two sub-pixels decreases the accuracy of the resulted DEM. On the other hand, in these cases DEM, is itself in charge of increasing the value of root-mean-square error (RMSE and shows that attraction models could not be used for S which is greater than 2. Thus considering results, the proposed model is highly capable of

  8. Quantification of uncertainty associated with United States high resolution fossil fuel CO2 emissions: updates, challenges and future plans

    Science.gov (United States)

    Gurney, K. R.; Chandrasekaran, V.; Mendoza, D. L.; Geethakumar, S.

    2010-12-01

    The Vulcan Project has estimated United States fossil fuel CO2 emissions at the hourly time scale and at spatial scales below the county level for the year 2002. Vulcan is built from a wide variety of observational data streams including regulated air pollutant emissions reporting, traffic monitoring, energy statistics, and US census data. In addition to these data sets, Vulcan relies on a series of modeling assumptions and constructs to interpolate in space, time and transform non-CO2 reporting into an estimate of CO2 combustion emissions. The recent version 2.0 of the Vulcan inventory has produced advances in a number of categories with particular emphasis on improved temporal structure. Onroad transportation emissions now avail of roughly 5000 automated traffic count monitors allowing for much improved diurnal and weekly time structure in our onroad transportation emissions. Though the inventory shows excellent agreement with independent national-level CO2 emissions estimates, uncertainty quantification has been a challenging task given the large number of data sources and numerous modeling assumptions. However, we have now accomplished a complete uncertainty estimate across all the Vulcan economic sectors and will present uncertainty estimates as a function of space, time, sector and fuel. We find that, like the underlying distribution of CO2 emissions themselves, the uncertainty is also strongly lognormal with high uncertainty associated with a relatively small number of locations. These locations typically are locations reliant upon coal combustion as the dominant CO2 source. We will also compare and contrast Vulcan fossil fuel CO2 emissions estimates against estimates built from DOE fuel-based surveys at the state level. We conclude that much of the difference between the Vulcan inventory and DOE statistics are not due to biased estimation but mechanistic differences in supply versus demand and combustion in space/time.

  9. Global spatially explicit CO2 emission metrics at 0.25° horizontal resolution for forest bioenergy

    Science.gov (United States)

    Cherubini, F.

    2015-12-01

    Bioenergy is the most important renewable energy option in studies designed to align with future RCP projections, reaching approximately 250 EJ/yr in RCP2.6, 145 EJ/yr in RCP4.5 and 180 EJ/yr in RCP8.5 by the end of the 21st century. However, many questions enveloping the direct carbon cycle and climate response to bioenergy remain partially unexplored. Bioenergy systems are largely assessed under the default climate neutrality assumption and the time lag between CO2 emissions from biomass combustion and CO2 uptake by vegetation is usually ignored. Emission metrics of CO2 from forest bioenergy are only available on a case-specific basis and their quantification requires processing of a wide spectrum of modelled or observed local climate and forest conditions. On the other hand, emission metrics are widely used to aggregate climate impacts of greenhouse gases to common units such as CO2-equivalents (CO2-eq.), but a spatially explicit analysis of emission metrics with global forest coverage is today lacking. Examples of emission metrics include the global warming potential (GWP), the global temperature change potential (GTP) and the absolute sustained emission temperature (aSET). Here, we couple a global forest model, a heterotrophic respiration model, and a global climate model to produce global spatially explicit emission metrics for CO2 emissions from forest bioenergy. We show their applications to global emissions in 2015 and until 2100 under the different RCP scenarios. We obtain global average values of 0.49 ± 0.03 kgCO2-eq. kgCO2-1 (mean ± standard deviation), 0.05 ± 0.05 kgCO2-eq. kgCO2-1, and 2.14·10-14 ± 0.11·10-14 °C (kg yr-1)-1, and 2.14·10-14 ± 0.11·10-14 °C (kg yr-1)-1 for GWP, GTP and aSET, respectively. We also present results aggregated at a grid, national and continental level. The metrics are found to correlate with the site-specific turnover times and local climate variables like annual mean temperature and precipitation. Simplified

  10. Numerical modeling of permafrost dynamics in Alaska using a high spatial resolution dataset

    Directory of Open Access Journals (Sweden)

    E. E. Jafarov

    2012-06-01

    Full Text Available Climate projections for the 21st century indicate that there could be a pronounced warming and permafrost degradation in the Arctic and sub-Arctic regions. Climate warming is likely to cause permafrost thawing with subsequent effects on surface albedo, hydrology, soil organic matter storage and greenhouse gas emissions.

    To assess possible changes in the permafrost thermal state and active layer thickness, we implemented the GIPL2-MPI transient numerical model for the entire Alaska permafrost domain. The model input parameters are spatial datasets of mean monthly air temperature and precipitation, prescribed thermal properties of the multilayered soil column, and water content that are specific for each soil class and geographical location. As a climate forcing, we used the composite of five IPCC Global Circulation Models that has been downscaled to 2 by 2 km spatial resolution by Scenarios Network for Alaska Planning (SNAP group.

    In this paper, we present the modeling results based on input of a five-model composite with A1B carbon emission scenario. The model has been calibrated according to the annual borehole temperature measurements for the State of Alaska. We also performed more detailed calibration for fifteen shallow borehole stations where high quality data are available on daily basis. To validate the model performance, we compared simulated active layer thicknesses with observed data from Circumpolar Active Layer Monitoring (CALM stations. The calibrated model was used to address possible ground temperature changes for the 21st century. The model simulation results show widespread permafrost degradation in Alaska could begin between 2040–2099 within the vast area southward from the Brooks Range, except for the high altitude regions of the Alaska Range and Wrangell Mountains.

  11. Large-watershed flood simulation and forecasting based on different-resolution distributed hydrological model

    Science.gov (United States)

    Li, J.

    2017-12-01

    Large-watershed flood simulation and forecasting is very important for a distributed hydrological model in the application. There are some challenges including the model's spatial resolution effect, model performance and accuracy and so on. To cope with the challenge of the model's spatial resolution effect, different model resolution including 1000m*1000m, 600m*600m, 500m*500m, 400m*400m, 200m*200m were used to build the distributed hydrological model—Liuxihe model respectively. The purpose is to find which one is the best resolution for Liuxihe model in Large-watershed flood simulation and forecasting. This study sets up a physically based distributed hydrological model for flood forecasting of the Liujiang River basin in south China. Terrain data digital elevation model (DEM), soil type and land use type are downloaded from the website freely. The model parameters are optimized by using an improved Particle Swarm Optimization(PSO) algorithm; And parameter optimization could reduce the parameter uncertainty that exists for physically deriving model parameters. The different model resolution (200m*200m—1000m*1000m ) are proposed for modeling the Liujiang River basin flood with the Liuxihe model in this study. The best model's spatial resolution effect for flood simulation and forecasting is 200m*200m.And with the model's spatial resolution reduction, the model performance and accuracy also become worse and worse. When the model resolution is 1000m*1000m, the flood simulation and forecasting result is the worst, also the river channel divided based on this resolution is differs from the actual one. To keep the model with an acceptable performance, minimum model spatial resolution is needed. The suggested threshold model spatial resolution for modeling the Liujiang River basin flood is a 500m*500m grid cell, but the model spatial resolution with a 200m*200m grid cell is recommended in this study to keep the model at a best performance.

  12. Stimulated Emission Pumping Enablling Sub-Diffraction-Limited Spatial Resolution in CARS Microscopy

    NARCIS (Netherlands)

    Cleff, C.; Gross, P.; Fallnich, C.; Offerhaus, Herman L.; Herek, Jennifer Lynn; Kruse, K.; Beeker, W.P; Beeker, W.P.; Lee, Christopher James; Boller, Klaus J.; Dobner, S.

    2012-01-01

    Suppression of CARS signal generation is demonstrated by equalization of the ground and Raman states via a control state in a theoretical investigation. Using donut-shaped control light fields for population transfer results in sub-diffraction-limited spatial resolution CARS microscopy.

  13. Development of high-resolution detector module with depth of interaction identification for positron emission tomography

    International Nuclear Information System (INIS)

    Niknejad, Tahereh; Pizzichemi, Marco; Stringhini, Gianluca; Auffray, Etiennette; Bugalho, Ricardo; Da Silva, Jose Carlos; Di Francesco, Agostino; Ferramacho, Luis; Lecoq, Paul; Leong, Carlos; Paganoni, Marco; Rolo, Manuel; Silva, Rui; Silveira, Miguel; Tavernier, Stefaan; Varela, Joao; Zorraquino, Carlos

    2017-01-01

    We have developed a Time-of-flight high resolution and commercially viable detector module for the application in small PET scanners. A new approach to depth of interaction (DOI) encoding with low complexity for a pixelated crystal array using a single side readout and 4-to-1 coupling between scintillators and photodetectors was investigated. In this method the DOI information is estimated using the light sharing technique. The detector module is a 1.53×1.53×15 mm"3 matrix of 8×8 LYSO scintillator with lateral surfaces optically depolished separated by reflective foils. The crystal array is optically coupled to 4×4 silicon photomultipliers (SiPM) array and readout by a high performance front-end ASIC with TDC capability (50 ps time binning). The results show an excellent crystal identification for all the scintillators in the matrix, a timing resolution of 530 ps, an average DOI resolution of 5.17 mm FWHM and an average energy resolution of 18.29% FWHM. - Highlights: • A new method for DOI encoding for PET detectors based on light sharing is proposed. • A prototype module with LYSO scintillator matrix coupled to SiPMs array is produced. • The module has one side readout and 4-to-1 coupling between scintillators and SiPMs. • A compact TOF front-end ASIC is used. • Excellent performances are shown by the prototype module.

  14. A positron emission tomograph designed for 3/4 mm resolution

    International Nuclear Information System (INIS)

    McInytre, J.A.; Allen, R.D.; Aguiar, J.; Paulson, J.T.

    1995-01-01

    Two factors of the design for a positron tomograph affect the magnitude of the tomograph spatial resolution: the gamma ray detector width and the analogue measurement of the scintillator location. In the tomograph design reported here the analogue measurement is eliminated and the detector transaxial width factor is reduced to 3/4 mm. The analogue measurement is eliminated by transmitting the scintillation light from each individual scintillator through optical fibers to four photo-multipliers (PMT's); the identities of the PMT's then provide a digital address for the scintillation location. Plastic scintillators are used to provide enough scintillation light for transmission through the optical fibers. Bonuses from the use of plastic scintillators are first, the reduction of the scintillator dead time to about 10 nsec, second, a large reduction of cross-talk between neighboring scintillators, third, the reduction of resolution loss from off-axis gamma rays and, fourth, the ability to sample the axial image at one-eighth the axial resolution distance of 2.5 mm. The designed tomograph incorporates 20 rings. Two of the 32 tomograph 20-ring modules have been constructed to measure the resolution and other characteristics of the tomographs

  15. Development of high-resolution detector module with depth of interaction identification for positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Niknejad, Tahereh, E-mail: tniknejad@lip.pt [Laboratory of Instrumentation and Experimental Particles Physics, Lisbon (Portugal); Pizzichemi, Marco [University of Milano-Bicocca (Italy); Stringhini, Gianluca [University of Milano-Bicocca (Italy); CERN, Geneve (Switzerland); Auffray, Etiennette [CERN, Geneve (Switzerland); Bugalho, Ricardo; Da Silva, Jose Carlos; Di Francesco, Agostino [Laboratory of Instrumentation and Experimental Particles Physics, Lisbon (Portugal); Ferramacho, Luis [PETsys Electronics, Oeiras (Portugal); Lecoq, Paul [CERN, Geneve (Switzerland); Leong, Carlos [PETsys Electronics, Oeiras (Portugal); Paganoni, Marco [University of Milano-Bicocca (Italy); Rolo, Manuel [Laboratory of Instrumentation and Experimental Particles Physics, Lisbon (Portugal); INFN, Turin (Italy); Silva, Rui [Laboratory of Instrumentation and Experimental Particles Physics, Lisbon (Portugal); Silveira, Miguel [PETsys Electronics, Oeiras (Portugal); Tavernier, Stefaan [PETsys Electronics, Oeiras (Portugal); Vrije Universiteit Brussel (Belgium); Varela, Joao [Laboratory of Instrumentation and Experimental Particles Physics, Lisbon (Portugal); CERN, Geneve (Switzerland); Zorraquino, Carlos [Biomedical Image Technologies Lab, Universidad Politécnica de Madrid (Spain); CIBER-BBN, Universidad Politécnica de Madrid (Spain)

    2017-02-11

    We have developed a Time-of-flight high resolution and commercially viable detector module for the application in small PET scanners. A new approach to depth of interaction (DOI) encoding with low complexity for a pixelated crystal array using a single side readout and 4-to-1 coupling between scintillators and photodetectors was investigated. In this method the DOI information is estimated using the light sharing technique. The detector module is a 1.53×1.53×15 mm{sup 3} matrix of 8×8 LYSO scintillator with lateral surfaces optically depolished separated by reflective foils. The crystal array is optically coupled to 4×4 silicon photomultipliers (SiPM) array and readout by a high performance front-end ASIC with TDC capability (50 ps time binning). The results show an excellent crystal identification for all the scintillators in the matrix, a timing resolution of 530 ps, an average DOI resolution of 5.17 mm FWHM and an average energy resolution of 18.29% FWHM. - Highlights: • A new method for DOI encoding for PET detectors based on light sharing is proposed. • A prototype module with LYSO scintillator matrix coupled to SiPMs array is produced. • The module has one side readout and 4-to-1 coupling between scintillators and SiPMs. • A compact TOF front-end ASIC is used. • Excellent performances are shown by the prototype module.

  16. HIGH-RESOLUTION ATMOSPHERIC ENSEMBLE MODELING AT SRNL

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, R.; Werth, D.; Chiswell, S.; Etherton, B.

    2011-05-10

    The High-Resolution Mid-Atlantic Forecasting Ensemble (HME) is a federated effort to improve operational forecasts related to precipitation, convection and boundary layer evolution, and fire weather utilizing data and computing resources from a diverse group of cooperating institutions in order to create a mesoscale ensemble from independent members. Collaborating organizations involved in the project include universities, National Weather Service offices, and national laboratories, including the Savannah River National Laboratory (SRNL). The ensemble system is produced from an overlapping numerical weather prediction model domain and parameter subsets provided by each contributing member. The coordination, synthesis, and dissemination of the ensemble information are performed by the Renaissance Computing Institute (RENCI) at the University of North Carolina-Chapel Hill. This paper discusses background related to the HME effort, SRNL participation, and example results available from the RENCI website.

  17. Particle Reduction Strategies - PAREST. Traffic emission modelling. Model comparision and alternative scenarios. Sub-report

    International Nuclear Information System (INIS)

    Kugler, Ulrike; Theloke, Jochen; Joerss, Wolfram

    2013-01-01

    The modeling of the reference scenario and the various reduction scenarios in PAREST was based on the Central System of Emissions (CSE) (CSE, 2007). Emissions from road traffic were calculated by using the traffic emission model TREMOD (Knoerr et al., 2005) and fed into the CSE. The version TREMOD 4.17 has been used. The resulting emission levels in PAREST reference scenario were supplemented by the emission-reducing effect of the implementation of the future Euro 5 and 6 emission standards for cars and light commercial vehicles and Euro VI for heavy commercial vehicles in combination with the truck toll extension. [de

  18. Modeling air pollutant emissions from Indian auto-rickshaws: Model development and implications for fleet emission rate estimates

    Science.gov (United States)

    Grieshop, Andrew P.; Boland, Daniel; Reynolds, Conor C. O.; Gouge, Brian; Apte, Joshua S.; Rogak, Steven N.; Kandlikar, Milind

    2012-04-01

    Chassis dynamometer tests were conducted on 40 Indian auto-rickshaws with 3 different fuel-engine combinations operating on the Indian Drive Cycle (IDC). Second-by-second (1 Hz) data were collected and used to develop velocity-acceleration look-up table models for fuel consumption and emissions of CO2, CO, total hydrocarbons (THC), oxides of nitrogen (NOx) and fine particulate matter (PM2.5) for each fuel-engine combination. Models were constructed based on group-average vehicle activity and emissions data in order to represent the performance of a 'typical' vehicle. The models accurately estimated full-cycle emissions for most species, though pollutants with more variable emission rates (e.g., PM2.5) were associated with larger errors. Vehicle emissions data showed large variability for single vehicles ('intra-vehicle variability') and within the test group ('inter-vehicle variability'), complicating the development of a single model to represent a vehicle population. To evaluate the impact of this variability, sensitivity analyses were conducted using vehicle activity data other than the IDC as model input. Inter-vehicle variability dominated the uncertainty in vehicle emission modeling. 'Leave-one-out' analyses indicated that the model outputs were relatively insensitive to the specific sample of vehicles and that the vehicle samples were likely a reasonable representation of the Delhi fleet. Intra-vehicle variability in emissions was also substantial, though had a relatively minor impact on model performance. The models were used to assess whether the IDC, used for emission factor development in India, accurately represents emissions from on-road driving. Modeling based on Global Positioning System (GPS) activity data from real-world auto-rickshaws suggests that, relative to on-road vehicles in Delhi, the IDC systematically under-estimates fuel use and emissions; real-word auto-rickshaws consume 15% more fuel and emit 49% more THC and 16% more PM2.5. The models

  19. Space-Charge-Limited Emission Models for Particle Simulation

    Science.gov (United States)

    Verboncoeur, J. P.; Cartwright, K. L.; Murphy, T.

    2004-11-01

    Space-charge-limited (SCL) emission of electrons from various materials is a common method of generating the high current beams required to drive high power microwave (HPM) sources. In the SCL emission process, sufficient space charge is extracted from a surface, often of complicated geometry, to drive the electric field normal to the surface close to zero. The emitted current is highly dominated by space charge effects as well as ambient fields near the surface. In this work, we consider computational models for the macroscopic SCL emission process including application of Gauss's law and the Child-Langmuir law for space-charge-limited emission. Models are described for ideal conductors, lossy conductors, and dielectrics. Also considered is the discretization of these models, and the implications for the emission physics. Previous work on primary and dual-cell emission models [Watrous et al., Phys. Plasmas 8, 289-296 (2001)] is reexamined, and aspects of the performance, including fidelity and noise properties, are improved. Models for one-dimensional diodes are considered, as well as multidimensional emitting surfaces, which include corners and transverse fields.

  20. Modeling emission rates and exposures from outdoor cooking

    Science.gov (United States)

    Edwards, Rufus; Princevac, Marko; Weltman, Robert; Ghasemian, Masoud; Arora, Narendra K.; Bond, Tami

    2017-09-01

    Approximately 3 billion individuals rely on solid fuels for cooking globally. For a large portion of these - an estimated 533 million - cooking is outdoors, where emissions from cookstoves pose a health risk to both cooks and other household and village members. Models that estimate emissions rates from stoves in indoor environments that would meet WHO air quality guidelines (AQG), explicitly don't account for outdoor cooking. The objectives of this paper are to link health based exposure guidelines with emissions from outdoor cookstoves, using a Monte Carlo simulation of cooking times from Haryana India coupled with inverse Gaussian dispersion models. Mean emission rates for outdoor cooking that would result in incremental increases in personal exposure equivalent to the WHO AQG during a 24-h period were 126 ± 13 mg/min for cooking while squatting and 99 ± 10 mg/min while standing. Emission rates modeled for outdoor cooking are substantially higher than emission rates for indoor cooking to meet AQG, because the models estimate impact of emissions on personal exposure concentrations rather than microenvironment concentrations, and because the smoke disperses more readily outdoors compared to indoor environments. As a result, many more stoves including the best performing solid-fuel biomass stoves would meet AQG when cooking outdoors, but may also result in substantial localized neighborhood pollution depending on housing density. Inclusion of the neighborhood impact of pollution should be addressed more formally both in guidelines on emissions rates from stoves that would be protective of health, and also in wider health impact evaluation efforts and burden of disease estimates. Emissions guidelines should better represent the different contexts in which stoves are being used, especially because in these contexts the best performing solid fuel stoves have the potential to provide significant benefits.

  1. High-resolution urban flood modelling - a joint probability approach

    Science.gov (United States)

    Hartnett, Michael; Olbert, Agnieszka; Nash, Stephen

    2017-04-01

    The hydrodynamic modelling of rapid flood events due to extreme climatic events in urban environment is both a complex and challenging task. The horizontal resolution necessary to resolve complexity of urban flood dynamics is a critical issue; the presence of obstacles of varying shapes and length scales, gaps between buildings and the complex geometry of the city such as slopes affect flow paths and flood levels magnitudes. These small scale processes require a high resolution grid to be modelled accurately (2m or less, Olbert et al., 2015; Hunter et al., 2008; Brown et al., 2007) and, therefore, altimetry data of at least the same resolution. Along with availability of high-resolution LiDAR data and computational capabilities, as well as state of the art nested modelling approaches, these problems can now be overcome. Flooding and drying, domain definition, frictional resistance and boundary descriptions are all important issues to be addressed when modelling urban flooding. In recent years, the number of urban flood models dramatically increased giving a good insight into various modelling problems and solutions (Mark et al., 2004; Mason et al., 2007; Fewtrell et al., 2008; Shubert et al., 2008). Despite extensive modelling work conducted for fluvial (e.g. Mignot et al., 2006; Hunter et al., 2008; Yu and Lane, 2006) and coastal mechanisms of flooding (e.g. Gallien et al., 2011; Yang et al., 2012), the amount of investigations into combined coastal-fluvial flooding is still very limited (e.g. Orton et al., 2012; Lian et al., 2013). This is surprising giving the extent of flood consequences when both mechanisms occur simultaneously, which usually happens when they are driven by one process such as a storm. The reason for that could be the fact that the likelihood of joint event is much smaller than those of any of the two contributors occurring individually, because for fast moving storms the rainfall-driven fluvial flood arrives usually later than the storm surge

  2. Atmospheric Nitrogen Trifluoride: Optimized emission estimates using 2-D and 3-D Chemical Transport Models from 1973-2008

    Science.gov (United States)

    Ivy, D. J.; Rigby, M. L.; Prinn, R. G.; Muhle, J.; Weiss, R. F.

    2009-12-01

    We present optimized annual global emissions from 1973-2008 of nitrogen trifluoride (NF3), a powerful greenhouse gas which is not currently regulated by the Kyoto Protocol. In the past few decades, NF3 production has dramatically increased due to its usage in the semiconductor industry. Emissions were estimated through the 'pulse-method' discrete Kalman filter using both a simple, flexible 2-D 12-box model used in the Advanced Global Atmospheric Gases Experiment (AGAGE) network and the Model for Ozone and Related Tracers (MOZART v4.5), a full 3-D atmospheric chemistry model. No official audited reports of industrial NF3 emissions are available, and with limited information on production, a priori emissions were estimated using both a bottom-up and top-down approach with two different spatial patterns based on semiconductor perfluorocarbon (PFC) emissions from the Emission Database for Global Atmospheric Research (EDGAR v3.2) and Semiconductor Industry Association sales information. Both spatial patterns used in the models gave consistent results, showing the robustness of the estimated global emissions. Differences between estimates using the 2-D and 3-D models can be attributed to transport rates and resolution differences. Additionally, new NF3 industry production and market information is presented. Emission estimates from both the 2-D and 3-D models suggest that either the assumed industry release rate of NF3 or industry production information is still underestimated.

  3. EXPERIMENTAL MEASUREMENT, ANALYSIS AND MODELLING OF DEPENDENCY EMISSIVITY IN FUNCTION OF TEMPERATURE

    Directory of Open Access Journals (Sweden)

    N. Baba Ahmed

    2015-08-01

    Full Text Available We propose a direct method of measurement of the total emissivity of opaque samples on a range of temperature around the ambient one. The method rests on the modulation of the temperature of the sample and the infra-red signal processing resulting from the surface of the sample we model the total emissivity obtained in experiments according to the temperature to establish linear correlations. This leads us to apply the method of optimal linearization associated the finite element method with the nonlinear problem of transfer of heat if thermal conductivity, the specific heat and the emissivity of studied material depend on the temperature. We obtain a good agreement between the resolution of the nonlinear equation of heat and the results obtained by the experimentation. .

  4. Use of scanner characteristics in iterative image reconstruction for high-resolution positron emission tomography studies of small animals

    Energy Technology Data Exchange (ETDEWEB)

    Brix, G. [Research Program ``Radiological Diagnostics and Therapy``, German Cancer Research Center (DKFZ), Heidelberg (Germany); Doll, J. [Research Program ``Radiological Diagnostics and Therapy``, German Cancer Research Center (DKFZ), Heidelberg (Germany); Bellemann, M.E. [Research Program ``Radiological Diagnostics and Therapy``, German Cancer Research Center (DKFZ), Heidelberg (Germany); Trojan, H. [Research Program ``Radiological Diagnostics and Therapy``, German Cancer Research Center (DKFZ), Heidelberg (Germany); Haberkorn, U. [Research Program ``Radiological Diagnostics and Therapy``, German Cancer Research Center (DKFZ), Heidelberg (Germany); Schmidlin, P. [Research Program ``Radiological Diagnostics and Therapy``, German Cancer Research Center (DKFZ), Heidelberg (Germany); Ostertag, H. [Research Program ``Radiological Diagnostics and Therapy``, German Cancer Research Center (DKFZ), Heidelberg (Germany)

    1997-07-01

    The purpose of this work was to improve of the spatial resolution of a whole-body PET system for experimental studies of small animals by incorporation of scanner characteristics into the process of iterative image reconstruction. The image-forming characteristics of the PET camera were characterized by a spatially variant line-spread function (LSF), which was determined from 49 activated copper-64 line sources positioned over a field of view (FOV) of 21.0 cm. During the course of iterative image reconstruction, the forward projection of the estimated image was blurred with the LSF at each iteration step before the estimated projections were compared with the measured projections. Moreover, imaging studies of a rat and two nude mice were performed to evaluate the imaging properties of our approach in vivo. The spatial resolution of the scanner perpendicular to the direction of projection could be approximated by a one-dimensional Gaussian-shaped LSF with a full-width at half-maximum increasing from 6.5 mm at the centre to 6.7 mm at a radial distance of 10.5 cm. The incorporation of this blurring kernel into the iteration formula resulted in a significantly improved spatial resolution of about 3.9 mm over the examined FOV. As demonstrated by the phantom and the animal experiments, the high-resolution algorithm not only led to a better contrast resolution in the reconstructed emission scans but also improved the accuracy for quantitating activity concentrations in small tissue structures without leading to an amplification of image noise or image mottle. The presented data-handling strategy incorporates the image restoration step directly into the process of algebraic image reconstruction and obviates the need for ill-conditioned ``deconvolution`` procedures to be performed on the projections or on the reconstructed image. In our experience, the proposed algorithm is of special interest in experimental studies of small animals. (orig./AJ). With 9 figs.

  5. Use of scanner characteristics in iterative image reconstruction for high-resolution positron emission tomography studies of small animals

    International Nuclear Information System (INIS)

    Brix, G.; Doll, J.; Bellemann, M.E.; Trojan, H.; Haberkorn, U.; Schmidlin, P.; Ostertag, H.

    1997-01-01

    The purpose of this work was to improve of the spatial resolution of a whole-body PET system for experimental studies of small animals by incorporation of scanner characteristics into the process of iterative image reconstruction. The image-forming characteristics of the PET camera were characterized by a spatially variant line-spread function (LSF), which was determined from 49 activated copper-64 line sources positioned over a field of view (FOV) of 21.0 cm. During the course of iterative image reconstruction, the forward projection of the estimated image was blurred with the LSF at each iteration step before the estimated projections were compared with the measured projections. Moreover, imaging studies of a rat and two nude mice were performed to evaluate the imaging properties of our approach in vivo. The spatial resolution of the scanner perpendicular to the direction of projection could be approximated by a one-dimensional Gaussian-shaped LSF with a full-width at half-maximum increasing from 6.5 mm at the centre to 6.7 mm at a radial distance of 10.5 cm. The incorporation of this blurring kernel into the iteration formula resulted in a significantly improved spatial resolution of about 3.9 mm over the examined FOV. As demonstrated by the phantom and the animal experiments, the high-resolution algorithm not only led to a better contrast resolution in the reconstructed emission scans but also improved the accuracy for quantitating activity concentrations in small tissue structures without leading to an amplification of image noise or image mottle. The presented data-handling strategy incorporates the image restoration step directly into the process of algebraic image reconstruction and obviates the need for ill-conditioned ''deconvolution'' procedures to be performed on the projections or on the reconstructed image. In our experience, the proposed algorithm is of special interest in experimental studies of small animals. (orig./AJ). With 9 figs

  6. Sensitivity of U.S. summer precipitation to model resolution and convective parameterizations across gray zone resolutions

    Science.gov (United States)

    Gao, Yang; Leung, L. Ruby; Zhao, Chun; Hagos, Samson

    2017-03-01

    Simulating summer precipitation is a significant challenge for climate models that rely on cumulus parameterizations to represent moist convection processes. Motivated by recent advances in computing that support very high-resolution modeling, this study aims to systematically evaluate the effects of model resolution and convective parameterizations across the gray zone resolutions. Simulations using the Weather Research and Forecasting model were conducted at grid spacings of 36 km, 12 km, and 4 km for two summers over the conterminous U.S. The convection-permitting simulations at 4 km grid spacing are most skillful in reproducing the observed precipitation spatial distributions and diurnal variability. Notable differences are found between simulations with the traditional Kain-Fritsch (KF) and the scale-aware Grell-Freitas (GF) convection schemes, with the latter more skillful in capturing the nocturnal timing in the Great Plains and North American monsoon regions. The GF scheme also simulates a smoother transition from convective to large-scale precipitation as resolution increases, resulting in reduced sensitivity to model resolution compared to the KF scheme. Nonhydrostatic dynamics has a positive impact on precipitation over complex terrain even at 12 km and 36 km grid spacings. With nudging of the winds toward observations, we show that the conspicuous warm biases in the Southern Great Plains are related to precipitation biases induced by large-scale circulation biases, which are insensitive to model resolution. Overall, notable improvements in simulating summer rainfall and its diurnal variability through convection-permitting modeling and scale-aware parameterizations suggest promising venues for improving climate simulations of water cycle processes.

  7. A high-resolution European dataset for hydrologic modeling

    Science.gov (United States)

    Ntegeka, Victor; Salamon, Peter; Gomes, Goncalo; Sint, Hadewij; Lorini, Valerio; Thielen, Jutta

    2013-04-01

    There is an increasing demand for large scale hydrological models not only in the field of modeling the impact of climate change on water resources but also for disaster risk assessments and flood or drought early warning systems. These large scale models need to be calibrated and verified against large amounts of observations in order to judge their capabilities to predict the future. However, the creation of large scale datasets is challenging for it requires collection, harmonization, and quality checking of large amounts of observations. For this reason, only a limited number of such datasets exist. In this work, we present a pan European, high-resolution gridded dataset of meteorological observations (EFAS-Meteo) which was designed with the aim to drive a large scale hydrological model. Similar European and global gridded datasets already exist, such as the HadGHCND (Caesar et al., 2006), the JRC MARS-STAT database (van der Goot and Orlandi, 2003) and the E-OBS gridded dataset (Haylock et al., 2008). However, none of those provide similarly high spatial resolution and/or a complete set of variables to force a hydrologic model. EFAS-Meteo contains daily maps of precipitation, surface temperature (mean, minimum and maximum), wind speed and vapour pressure at a spatial grid resolution of 5 x 5 km for the time period 1 January 1990 - 31 December 2011. It furthermore contains calculated radiation, which is calculated by using a staggered approach depending on the availability of sunshine duration, cloud cover and minimum and maximum temperature, and evapotranspiration (potential evapotranspiration, bare soil and open water evapotranspiration). The potential evapotranspiration was calculated using the Penman-Monteith equation with the above-mentioned meteorological variables. The dataset was created as part of the development of the European Flood Awareness System (EFAS) and has been continuously updated throughout the last years. The dataset variables are used as

  8. A new high resolution tidal model in the arctic ocean

    DEFF Research Database (Denmark)

    Cancet, M.; Andersen, Ole Baltazar; Lyard, F.

    The Arctic Ocean is a challenging region for tidal modeling, because of its complex and not well-documented bathymetry, together combined with the intermittent presence of sea ice and the fact that the in situ tidal observations are rather scarce at such high latitudes. As a consequence, the accu......The Arctic Ocean is a challenging region for tidal modeling, because of its complex and not well-documented bathymetry, together combined with the intermittent presence of sea ice and the fact that the in situ tidal observations are rather scarce at such high latitudes. As a consequence......, the accuracy of the global tidal models decreases by several centimeters in the Polar Regions. In particular, it has a large impact on the quality of the satellite altimeter sea surface heights in these regions (ERS1/2, Envisat, CryoSat-2, SARAL/AltiKa and the future Sentinel-3 mission). Better knowledge......-growing maritime and industrial activities in this region. NOVELTIS and DTU Space have developed a regional, high-resolution tidal atlas in the Arctic Ocean, in the framework of the CryoSat Plus for Ocean (CP4O) ESA project. In particular, this atlas benefits from the assimilation of the most complete satellite...

  9. Modelling and Evaluation of Aircraft Emissions. Final report

    International Nuclear Information System (INIS)

    Savola, M.

    1996-01-01

    An application was developed to calculate the emissions and fuel consumption of a jet and turboprop powered aircraft in Finnair's scheduled and charter traffic both globally and in the Finnish flight information regions. The emissions calculated are nitrogen oxides, unburnt hydrocarbons and carbon monoxide. The study is based on traffic statistics of one week taken from three scheduled periods in 1993. Each flight was studied by dividing the flight profile into sections. The flight profile data are based on aircraft manufacturers' manuals, and they serve as initial data for engine manufacturers' emission calculation programs. In addition, the study includes separate calculations on air traffic emissions at airports during the so-called LTO cycle. The fuel consumption calculated for individual flights is 419,395 tonnes globally, and 146,142 tonnes in the Finnish flight information regions. According to Finnair's statistics the global fuel consumption is 0.97-fold compared with the result given by the model. The results indicate that in 1993 the global nitrogen oxide emissions amounted to 5,934 tonnes, the unburnt hydrocarbon emissions totalled 496 tonnes and carbon monoxide emissions 1,664 tonnes. The corresponding emissions in the Finnish flight information regions were as follows: nitrogen oxides 2,105 tonnes, unburnt hydrocarbons 177 tonnes and carbon monoxide 693 tonnes. (orig.)

  10. Modelling Emission of Pollutants from transportation using mobile sensing data

    DEFF Research Database (Denmark)

    Lehmann, Anders

    The advent and the proliferation of the smartphone has promised new possibilities for researchers to gain knowledge about the habits and behaviour of people, as the ubiqui- tous smartphone with an array of sensors is capable of deliver a wealth of information. This dissertation addresses methods...... to use data acquired from smartphones to im- prove transportation related air quality models and models for climate gas emission from transportation. These models can be used for planning of transportation net- works, monitoring of air quality, and automate transport related green accounting. More...... database imple- mentations are a subfield of computer science. I have worked to bring these diverse research fields together to solve the challenge of improving modelling of transporta- tion related air quality emissions as well as modelling of transportation related climate gas emissions. The main...

  11. A high resolution (1 km) groundwater model for Indonesia

    Science.gov (United States)

    Sutanudjaja, Edwin; Verkaik, Jarno; de Graaf, Inge; van Beek, Rens; Erkens, Gilles; Bierkens, Marc

    2015-04-01

    Groundwater is important in many parts of Indonesia. It serves as a primary source of drinking water and industrial activities. During times of drought, it sustains water flows in streams, rivers, lakes and wetlands, and thus support ecosystem habitat and biodiversity as well as preventing hazardous forest fire. Besides its importance, groundwater is known as a vulnerable resource as unsustainable groundwater exploitation and management occurs in many areas of the country. Therefore, in order to ensure sustainable management of groundwater resources, monitoring and predicting groundwater changes in Indonesia are imperative. However, large extent groundwater models to assess these changes on a regional scale are almost non-existent and are hampered by the strong topographical and lithological transitions that characterize Indonesia. In this study, we built an 1 km resolution groundwater model for the entire Indonesian archipelago (total inland area: about 2 million km2). We adopted the approaches of Sutanudjaja et al. (2011, 2014a) and de Graaf et al. (2014) in order to make a MODFLOW (Harbaugh et al., 2000) groundwater model by using only global datasets. Aquifer schematization and properties of the groundwater model were developed from available global lithological maps (e.g. Dürr et al., 2005; Gleeson et al., 2011; Hartmann & Moorsdorf, 2012; Gleeson et al., 2014). We forced the groundwater model with the recent output of global hydrological model PCR-GLOBWB version 2.0 (Sutanudjaja et al., 2014b; van Beek et al., 2011), specifically the long term average of groundwater recharge and average surface water levels derived from channel discharge. Simulation results were promising. The MODFLOW model converged with realistic aquifer properties (i.e. transmissivities) and produced reasonable groundwater head spatial distribution reflecting the positions of major groundwater bodies and surface water bodies in the country. In Vienna, we aim to show and demonstrate these

  12. Modeling natural emissions in the Community Multiscale Air Quality (CMAQ Model–I: building an emissions data base

    Directory of Open Access Journals (Sweden)

    S. F. Mueller

    2010-05-01

    Full Text Available A natural emissions inventory for the continental United States and surrounding territories is needed in order to use the US Environmental Protection Agency Community Multiscale Air Quality (CMAQ Model for simulating natural air quality. The CMAQ air modeling system (including the Sparse Matrix Operator Kernel Emissions (SMOKE emissions processing system currently estimates non-methane volatile organic compound (NMVOC emissions from biogenic sources, nitrogen oxide (NOx emissions from soils, ammonia from animals, several types of particulate and reactive gas emissions from fires, as well as sea salt emissions. However, there are several emission categories that are not commonly treated by the standard CMAQ Model system. Most notable among these are nitrogen oxide emissions from lightning, reduced sulfur emissions from oceans, geothermal features and other continental sources, windblown dust particulate, and reactive chlorine gas emissions linked with sea salt chloride. A review of past emissions modeling work and existing global emissions data bases provides information and data necessary for preparing a more complete natural emissions data base for CMAQ applications. A model-ready natural emissions data base is developed to complement the anthropogenic emissions inventory used by the VISTAS Regional Planning Organization in its work analyzing regional haze based on the year 2002. This new data base covers a modeling domain that includes the continental United States plus large portions of Canada, Mexico and surrounding oceans. Comparing July 2002 source data reveals that natural emissions account for 16% of total gaseous sulfur (sulfur dioxide, dimethylsulfide and hydrogen sulfide, 44% of total NOx, 80% of reactive carbonaceous gases (NMVOCs and carbon monoxide, 28% of ammonia, 96% of total chlorine (hydrochloric acid, nitryl chloride and sea salt chloride, and 84% of fine particles (i.e., those smaller than 2.5 μm in size released into the

  13. Potential radionuclide emissions from stacks on the Hanford site, Part 2: Dose assessment methodology using portable low-resolution gamma spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, J.M. [Westinghouse Hanford Company, Richland, WA (United States)

    1995-02-01

    In September 1992, the Westinghouse Hanford Company began developing an in situ measurement method to assess gamma radiation emanating from high-efficiency particulate air filters using portable low-resolution gamma spectroscopy. The purpose of the new method was to assess radioactive exhaust stack air emissions from empirical data rather than from theoretical models and to determine the potential unabated dose to an offsite theoretical maximally exposed individual. In accordance with Title 40, Code of Federal Regulations, Part 61, Subpart H, {open_quotes}National Emission Standards for Hazardous Air Pollutants{close_quotes}, stacks that have the potential to emit {ge} 1 {mu}Sv y{sup {minus}1} (0.1 mrem y{sup {minus}1}) to the maximally exposed individual are considered {open_quotes}major{close_quotes} and must meet the continuous monitoring requirements. After the method was tested and verified, the U.S. Environmental Protection Agency, Region 10, approved its use in June 1993. Of the 125 stacks operated by the Westinghouse Hanford Company, 22 were targeted for evaluation by this method, and 15 were assessed. (The method could not be applied at seven stacks because of excessive background radiation or because no gamma emitting particles appear in the emission stream.) The most significant result from this study was the redesignation of the T Plant main stack. The stack was assessed as being {open_quotes}minor{close_quotes}, and it now only requires periodic confirmatory measurements and meets federally imposed sampling requirements.

  14. Short-Term Power Plant GHG Emissions Forecasting Model

    International Nuclear Information System (INIS)

    Vidovic, D.

    2016-01-01

    In 2010, the share of greenhouse gas (GHG) emissions from power generation in the total emissions at the global level was about 25 percent. From January 1st, 2013 Croatian facilities have been involved in the European Union Emissions Trading System (EU ETS). The share of the ETS sector in total GHG emissions in Croatia in 2012 was about 30 percent, where power plants and heat generation facilities contributed to almost 50 percent. Since 2013 power plants are obliged to purchase all emission allowances. The paper describes the short-term climate forecasting model of greenhouse gas emissions from power plants while covering the daily load diagram of the system. Forecasting is done on an hourly domain typically for one day, it is possible and more days ahead. Forecasting GHG emissions in this way would enable power plant operators to purchase additional or sell surplus allowances on the market at the time. Example that describes the operation of the above mentioned forecasting model is given at the end of the paper.(author).

  15. A full-sky, high-resolution atlas of galactic 12 μm dust emission with WISE

    International Nuclear Information System (INIS)

    Meisner, Aaron M.; Finkbeiner, Douglas P.

    2014-01-01

    We describe our custom processing of the entire Wide-field Infrared Survey Explorer (WISE) 12 μm imaging data set, and present a high-resolution, full-sky map of diffuse Galactic dust emission that is free of compact sources and other contaminating artifacts. The principal distinctions between our resulting co-added images and the WISE Atlas stacks are our removal of compact sources, including their associated electronic and optical artifacts, and our preservation of spatial modes larger than 1.°5. We provide access to the resulting full-sky map via a set of 430 12.°5 × 12.°5 mosaics. These stacks have been smoothed to 15'' resolution and are accompanied by corresponding coverage maps, artifact images, and bit-masks for point sources, resolved compact sources, and other defects. When combined appropriately with other mid-infrared and far-infrared data sets, we expect our WISE 12 μm co-adds to form the basis for a full-sky dust extinction map with angular resolution several times better than Schlegel et al.

  16. Numerical modeling of nitrogen oxide emission and experimental verification

    Directory of Open Access Journals (Sweden)

    Szecowka Lech

    2003-12-01

    Full Text Available The results of nitrogen reduction in combustion process with application of primary method are presented in paper. The reduction of NOx emission, by the recirculation of combustion gasses, staging of fuel and of air was investigated, and than the reduction of NOx emission by simultaneous usage of the mentioned above primary method with pulsatory disturbances.The investigations contain numerical modeling of NOx reduction and experimental verification of obtained numerical calculation results.

  17. X-ray spectral models of Galactic bulge sources - the emission-line factor

    International Nuclear Information System (INIS)

    Vrtilek, S.D.; Swank, J.H.; Kallman, T.R.

    1988-01-01

    Current difficulties in finding unique and physically meaningful models for the X-ray spectra of Galactic bulge sources are exacerbated by the presence of strong, variable emission and absorption features that are not resolved by the instruments observing them. Nine Einstein solid state spectrometer (SSS) observations of five Galactic bulge sources are presented for which relatively high resolution objective grating spectrometer (OGS) data have been published. It is found that in every case the goodness of fit of simple models to SSS data is greatly improved by adding line features identified in the OGS that cannot be resolved by the SSS but nevertheless strongly influence the spectra observed by SSS. 32 references

  18. Effect of GPS errors on Emission model

    DEFF Research Database (Denmark)

    Lehmann, Anders; Gross, Allan

    n this paper we will show how Global Positioning Services (GPS) data obtained from smartphones can be used to model air quality in urban settings. The paper examines the uncertainty of smartphone location utilising GPS, and ties this location uncertainty to air quality models. The results presented...... in this paper indicates that the location error from using smartphones is within the accuracy needed to use the location data in air quality modelling. The nature of smartphone location data enables more accurate and near real time air quality modelling and monitoring. The location data is harvested from user...

  19. New Approach in Modelling Indonesian Peat Fire Emission

    Science.gov (United States)

    Putra, E. I.; Cochrane, M. A.; Saharjo, B.; Yokelson, R. J.; Stockwell, C.; Vetrita, Y.; Zhang, X.; Hagen, S. C.; Nurhayati, A. D.; Graham, L.

    2017-12-01

    Peat fires are a serious problem for Indonesia, producing devastating environmental effects and making the country the 3rd largest emitter of CO2. Extensive fires ravaged vast areas of peatlands in Sumatra, Kalimantan and Papua during the pronounced El-Nino of 2015, causing international concern when the resultant haze blanketed Indonesia and neighboring countries, severely impacting the health of millions of people. Our recent unprecedented in-situ studies of aerosol and gas emissions from 35 peat fires of varying depths near Palangka Raya, Central Kalimantan have documented the range and variability of emissions from these major fires. We strongly suggest revisions to previously recommended IPPC's emission factors (EFs) from peat fires, notably: CO2 (-8%), CH4 (-55%), NH3 (-86%), and CO (+39%). Our findings clearly showed that Indonesian carbon equivalent measurements (100 years) might have been 19% less than what current IPCC emission factors indicate. The results also demonstrate the toxic air quality in the area with HCN, which is almost only emitted by biomass burning, accounting for 0.28% and the carcinogenic compound formaldehyde 0.04% of emissions. However, considerable variation in emissions may exist between peat fires of different Indonesian peat formations, illustrating the need for additional regional field emissions measurements for parameterizing peatland emissions models for all of Indonesia's major peatland areas. Through the continuous mutual research collaboration between the Indonesian and USA scientists, we will implement our standardized field-based analyses of fuels, hydrology, peat burning characteristics and fire emissions to characterize the three major Indonesian peatland formations across four study provinces (Central Kalimantan, Riau, Jambi and West Papua). We will provide spatial and temporal drivers of the modeled emissions and validate them at a national level using biomass burning emissions estimations derived from Visible

  20. LENS MODELS OF HERSCHEL-SELECTED GALAXIES FROM HIGH-RESOLUTION NEAR-IR OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Calanog, J. A.; Cooray, A.; Ma, B.; Casey, C. M. [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Fu, Hai [Department of Physics and Astronomy, University of Iowa, Van Allen Hall, Iowa City, IA 52242 (United States); Wardlow, J. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Amber, S. [Department of Physical Sciences, The Open University, Milton Keynes MK7 6AA (United Kingdom); Baker, A. J. [Department of Physics and Astronomy, Rutgers, The State University of New Jersey, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Baes, M. [1 Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281, B-9000 Gent (Belgium); Bock, J. [California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (United States); Bourne, N.; Dye, S. [School of Physics and Astronomy, University of Nottingham, NG7 2RD (United Kingdom); Bussmann, R. S. [Department of Astronomy, Space Science Building, Cornell University, Ithaca, NY 14853-6801 (United States); Chapman, S. C. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Clements, D. L. [Astrophysics Group, Imperial College London, Blackett Laboratory, Prince Consort Road, London SW7 2AZ (United Kingdom); Conley, A. [Center for Astrophysics and Space Astronomy 389-UCB, University of Colorado, Boulder, CO 80309 (United States); Dannerbauer, H. [Laboratoire AIM-Paris-Saclay, CEA/DSM/Irfu-CNRS-Université Paris Diderot, CE-Saclay, pt courrier 131, F-91191 Gif-sur-Yvette (France); De Zotti, G. [INAF-Osservatorio Astronomico di Padova, Vicolo dell' Osservatorio 5, I-35122 Padova (Italy); Dunne, L.; Eales, S. [School of Physics and Astronomy, Cardiff University, Queens Buildings, The Parade, Cardiff CF24 3AA (United Kingdom); and others

    2014-12-20

    We present Keck-Adaptive Optics and Hubble Space Telescope high resolution near-infrared (IR) imaging for 500 μm bright candidate lensing systems identified by the Herschel Multi-tiered Extragalactic Survey and Herschel Astrophysical Terahertz Large Area Survey. Out of 87 candidates with near-IR imaging, 15 (∼17%) display clear near-IR lensing morphologies. We present near-IR lens models to reconstruct and recover basic rest-frame optical morphological properties of the background galaxies from 12 new systems. Sources with the largest near-IR magnification factors also tend to be the most compact, consistent with the size bias predicted from simulations and previous lensing models for submillimeter galaxies (SMGs). For four new sources that also have high-resolution submillimeter maps, we test for differential lensing between the stellar and dust components and find that the 880 μm magnification factor (μ{sub 880}) is ∼1.5 times higher than the near-IR magnification factor (μ{sub NIR}), on average. We also find that the stellar emission is ∼2 times more extended in size than dust. The rest-frame optical properties of our sample of Herschel-selected lensed SMGs are consistent with those of unlensed SMGs, which suggests that the two populations are similar.

  1. Particulate monitoring, modeling, and management: natural sources, long-range transport, and emission control options: a case study of Cyprus

    Science.gov (United States)

    Kleanthous, Savvas; Savvides, Chrysanthos; Christofides, Ioannis; Hadjimitsis, Diofantos G.; Themistocleous, Kyriacos; Achilleos, Constantia; Akylas, Evangelos; Demetriadou, Chrystalla; Christodoulides, Pavlos; Douros, Ioannis; Moussiopoulos, Nicolas; Panayiotou, Charalambos; Gregoris, Charalambous; Fedra, Kurt; Kubat, Milan; Mihalopoulos, Nicolaos

    2013-08-01

    The LIFE+ Project PM3: Particulate Monitoring, Modeling, Management is coordinated by the Department of Labour Inspection in Cyprus and funded in part by LIFE+ Environment Policy & Governance. The project aims at the analysis of dust emissions, transport, and control options for Cyprus, as well as at the identification of "natural" contributions (Directive 2008/50/EC). The ultimate objective is to provide inputs for the design of a dust management plan to improve compliance to EC Directives and minimise impacts to human health and environment. This paper presents a short analysis of historical monitoring data and their patterns as well as a description of a dynamic dust entrainment model. The pyrogenic PM10 emissions combined with the wind driven emissions, are subject to a two phase non-linear multi-criteria emission control optimization procedure. The resulting emission scenarios with an hourly resolution provide input to the Comprehensive Air quality Model with extensions (CAMx) 3D fate and transport model, implemented for the 4,800 km master domain and embedded subdomains (270 km around the island of Cyprus and embedded smaller city domains of up to 30 km down to street canyon modeling). The models test the feasibility of candidate emission control solutions over a range of weather conditions. Model generated patterns of local emissions and long-range transport are discussed compared with the monitoring data, remote sensing (MODIS derived AOT), and the chemical analysis of dust samples.

  2. Distributional aspects of emissions in climate change integrated assessment models

    International Nuclear Information System (INIS)

    Cantore, Nicola

    2011-01-01

    The recent failure of Copenhagen negotiations shows that concrete actions are needed to create the conditions for a consensus over global emission reduction policies. A wide coalition of countries in international climate change agreements could be facilitated by the perceived fairness of rich and poor countries of the abatement sharing at international level. In this paper I use two popular climate change integrated assessment models to investigate the path and decompose components and sources of future inequality in the emissions distribution. Results prove to be consistent with previous empirical studies and robust to model comparison and show that gaps in GDP across world regions will still play a crucial role in explaining different countries contributions to global warming. - Research highlights: → I implement a scenario analysis with two global climate change models. → I analyse inequality in the distribution of emissions. → I decompose emissions inequality components. → I find that GDP per capita is the main Kaya identity source of emissions inequality. → Current rich countries will mostly remain responsible for emissions inequality.

  3. Modeling the effects of atmospheric emissions on groundwater composition

    International Nuclear Information System (INIS)

    Brown, T.J.

    1994-01-01

    A composite model of atmospheric, unsaturated and groundwater transport is developed to evaluate the processes determining the distribution of atmospherically derived contaminants in groundwater systems and to test the sensitivity of simulated contaminant concentrations to input parameters and model linkages. One application is to screen specific atmospheric emissions for their potential in determining groundwater age. Temporal changes in atmospheric emissions could provide a recognizable pattern in the groundwater system. The model also provides a way for quantifying the significance of uncertainties in the tracer source term and transport parameters on the contaminant distribution in the groundwater system, an essential step in using the distribution of contaminants from local, point source atmospheric emissions to examine conceptual models of groundwater flow and transport

  4. Hyper-resolution urban flood modeling using high-resolution radar precipitation and LiDAR data

    Science.gov (United States)

    Noh, S. J.; Lee, S.; Lee, J.; Seo, D. J.

    2016-12-01

    Floods occur most frequently among all natural hazards, often causing widespread economic damage and loss of human lives. In particular, urban flooding is becoming increasingly costly and difficult to manage with a greater concentration of population and assets in urban centers. Despite of known benefits for accurate representation of small scale features and flow interaction among different flow domains, which have significant impact on flood propagation, high-resolution modeling has not been fully utilized due to expensive computation and various uncertainties from model structure, input and parameters. In this study, we assess the potential of hyper-resolution hydrologic-hydraulic modeling using high-resolution radar precipitation and LiDAR data for improved urban flood prediction and hazard mapping. We describe a hyper-resolution 1D-2D coupled urban flood model for pipe and surface flows and evaluate the accuracy of the street-level inundation information produced. For detailed geometric representation of urban areas and for computational efficiency, we use 1 m-resolution topographical data, processed from LiDAR measurements, in conjunction with adaptive mesh refinement. For street-level simulation in large urban areas at grid sizes of 1 to 10 m, a hybrid parallel computing scheme using MPI and openMP is also implemented in a high-performance computing system. The modeling approach developed is applied for the Johnson Creek Catchment ( 40 km2), which makes up the Arlington Urban Hydroinformatics Testbed. In addition, discussion will be given on availability of hyper-resolution simulation archive for improved real-time flood mapping.

  5. A comparative analysis of several vehicle emission models for road freight transportation

    NARCIS (Netherlands)

    Demir, E.; Bektas, T.; Laporte, G.

    2011-01-01

    Reducing greenhouse gas emissions in freight transportation requires using appropriate emission models in the planning process. This paper reviews and numerically compares several available freight transportation vehicle emission models and also considers their outputs in relations to field studies.

  6. Estimation of emission adjustments from the application of four-dimensional data assimilation to photochemical air quality modeling

    International Nuclear Information System (INIS)

    Mendoza-Dominguez, A.; Russell, A.G.

    2001-01-01

    Four-dimensional data assimilation applied to photochemical air quality modeling is used to suggest adjustments to the emissions inventory of the Atlanta, Georgia metropolitan area. In this approach, a three-dimensional air quality model, coupled with direct sensitivity analysis, develops spatially and temporally varying concentration and sensitivity fields that account for chemical and physical processing, and receptor analysis is used to adjust source strengths. Proposed changes to domain-wide NO x , volatile organic compounds (VOCs) and CO emissions from anthropogenic sources and for VOC emissions from biogenic sources were estimated, as well as modifications to sources based on their spatial location (urban vs. rural areas). In general, domain-wide anthropogenic VOC emissions were increased approximately two times their base case level to best match observations, domain-wide anthropogenic NO x and biogenic VOC emissions (BEIS2 estimates) remained close to their base case value and domain-wide CO emissions were decreased. Adjustments for anthropogenic NO x emissions increased their level of uncertainty when adjustments were computed for mobile and area sources (or urban and rural sources) separately, due in part to the poor spatial resolution of the observation field of nitrogen-containing species. Estimated changes to CO emissions also suffer from poor spatial resolution of the measurements. Results suggest that rural anthropogenic VOC emissions appear to be severely underpredicted. The FDDA approach was also used to investigate the speciation profiles of VOC emissions, and results warrant revision of these profiles. In general, the results obtained here are consistent with what are viewed as the current deficiencies in emissions inventories as derived by other top-down techniques, such as tunnel studies and analysis of ambient measurements. (Author)

  7. Symbiotic star UV emission and theoretical models

    International Nuclear Information System (INIS)

    Kafatos, M.

    1982-01-01

    Observations of symbiotic stars in the far UV have provided important information on the nature of these objects. The canonical spectrum of a symbiotic star, e.g. RW Hya, Z And, AG Peg, is dominated by strong allowed and semiforbidden lines of a variety of at least twice ionized elements. Weaker emission from neutral and singly ionized species is also present. A continuum may or may not be present in the 1200 - 2000 A range but is generally present in the range 2000 - 3200 A range. The suspected hot subdwarf continuum is seen in some cases in the range 1200 - 2000 A (RW Hya, AG Peg, SY Mus). The presence of an accretion disk is difficult to demonstrate and to this date the best candidate for accretion to a main sequence star remains CI Cyg. A number of equations have been derived by the author that can yield the accretion parameters from the observable quantities. Boundary layer temperatures approximately 10 5 K and accretion rates approximately > 10 -5 solar masses/yr are required for accreting main sequence companions. To this date, though, most of the symbiotics may only require the presence of a approximately 10 5 K hot subdwarf. (Auth.)

  8. Performance evaluation of four directional emissivity analytical models with thermal SAIL model and airborne images.

    Science.gov (United States)

    Ren, Huazhong; Liu, Rongyuan; Yan, Guangjian; Li, Zhao-Liang; Qin, Qiming; Liu, Qiang; Nerry, Françoise

    2015-04-06

    Land surface emissivity is a crucial parameter in the surface status monitoring. This study aims at the evaluation of four directional emissivity models, including two bi-directional reflectance distribution function (BRDF) models and two gap-frequency-based models. Results showed that the kernel-driven BRDF model could well represent directional emissivity with an error less than 0.002, and was consequently used to retrieve emissivity with an accuracy of about 0.012 from an airborne multi-angular thermal infrared data set. Furthermore, we updated the cavity effect factor relating to multiple scattering inside canopy, which improved the performance of the gap-frequency-based models.

  9. A high-resolution ambient seismic noise model for Europe

    Science.gov (United States)

    Kraft, Toni

    2014-05-01

    measurement precision (i.e. earthquake location), while considering this extremely complex boundary condition. To solve this problem I have developed a high-resolution ambient seismic noise model for Europe. The model is based on land-use data derived from satellite imagery by the EU-project CORINE in a resolution of 100x100m. The the CORINE data consists of several land-use classes, which, besides others, contain: industrial areas, mines, urban fabric, agricultural areas, permanent corps, forests and open spaces. Additionally, open GIS data for highways, and major and minor roads and railway lines were included from the OpenStreetMap project (www.openstreetmap.org). This data was divided into three classes that represent good, intermediate and bad ambient conditions of the corresponding land-use class based on expert judgment. To account for noise propagation away from its source a smoothing operator was applied to individual land-use noise-fields. Finally, the noise-fields were stacked to obtain an European map of ambient noise conditions. A calibration of this map with data of existing seismic stations Europe allowed me to estimate the expected noise level in actual ground motion units for the three ambient noise condition classes of the map. The result is a high-resolution ambient seismic noise map, that allows the network designer to make educated predictions on the expected noise level for arbitrary location in Europe. The ambient noise model was successfully tested in several network optimization projects in Switzerland and surrounding countries and will hopefully be a valuable contribution to improving the data quality of microseismic monitoring networks in Europe.

  10. Impact of atmospheric model resolution on simulation of ENSO feedback processes: a coupled model study

    Science.gov (United States)

    Hua, Lijuan; Chen, Lin; Rong, Xinyao; Su, Jingzhi; Wang, Lu; Li, Tim; Yu, Yongqiang

    2018-03-01

    This study examines El Niño-Southern Oscillation (ENSO)-related air-sea feedback processes in a coupled general circulation model (CGCM) to gauge model errors and pin down their sources in ENSO simulation. Three horizontal resolutions of the atmospheric component (T42, T63 and T106) of the CGCM are used to investigate how the simulated ENSO behaviors are affected by the resolution. We find that air-sea feedback processes in the three experiments mainly differ in terms of both thermodynamic and dynamic feedbacks. We also find that these processes are simulated more reasonably in the highest resolution version than in the other two lower resolution versions. The difference in the thermodynamic feedback arises from the difference in the shortwave-radiation (SW) feedback. Due to the severely (mildly) excessive cold tongue in the lower (higher) resolution version, the SW feedback is severely (mildly) underestimated. The main difference in the dynamic feedback processes lies in the thermocline feedback and the zonal-advection feedback, both of which are caused by the difference in the anomalous thermocline response to anomalous zonal wind stress. The difference in representing the anomalous thermocline response is attributed to the difference in meridional structure of zonal wind stress anomaly in the three simulations, which is linked to meridional resolution.

  11. High resolution emission spectra of H2 and D2 near 80 nm

    International Nuclear Information System (INIS)

    Larzilliere, M.; Roncin, J.-Y.; Launay, F.

    1980-01-01

    A few lines have been observed in the far ultraviolet emission spectrum of molecular hydrogen and deuterium. They are assigned to transitions from levels of the 3pπD 1 PIsub(u)sup(-) state, lying above the dissociation limit into H(ls) + H(n=2), near 84.5 nm, and, for some of them, above the first ionization limit near 80.4 nm, the lower state being X 1 Σsub(g)sup(+) (v''=1). This is in fair agreement with measured predissociation and preionization yields. Accurate line position measurements lead to molecular constants in very good agreement with theoretical calculations

  12. High-resolution subgrid models: background, grid generation, and implementation

    Science.gov (United States)

    Sehili, Aissa; Lang, Günther; Lippert, Christoph

    2014-04-01

    The basic idea of subgrid models is the use of available high-resolution bathymetric data at subgrid level in computations that are performed on relatively coarse grids allowing large time steps. For that purpose, an algorithm that correctly represents the precise mass balance in regions where wetting and drying occur was derived by Casulli (Int J Numer Method Fluids 60:391-408, 2009) and Casulli and Stelling (Int J Numer Method Fluids 67:441-449, 2010). Computational grid cells are permitted to be wet, partially wet, or dry, and no drying threshold is needed. Based on the subgrid technique, practical applications involving various scenarios were implemented including an operational forecast model for water level, salinity, and temperature of the Elbe Estuary in Germany. The grid generation procedure allows a detailed boundary fitting at subgrid level. The computational grid is made of flow-aligned quadrilaterals including few triangles where necessary. User-defined grid subdivision at subgrid level allows a correct representation of the volume up to measurement accuracy. Bottom friction requires a particular treatment. Based on the conveyance approach, an appropriate empirical correction was worked out. The aforementioned features make the subgrid technique very efficient, robust, and accurate. Comparison of predicted water levels with the comparatively highly resolved classical unstructured grid model shows very good agreement. The speedup in computational performance due to the use of the subgrid technique is about a factor of 20. A typical daily forecast can be carried out in less than 10 min on a standard PC-like hardware. The subgrid technique is therefore a promising framework to perform accurate temporal and spatial large-scale simulations of coastal and estuarine flow and transport processes at low computational cost.

  13. ASTER-Derived 30-Meter-Resolution Digital Elevation Models of Afghanistan

    Science.gov (United States)

    Chirico, Peter G.; Warner, Michael B.

    2007-01-01

    INTRODUCTION The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is an imaging instrument aboard the Terra satellite, launched on December 19, 1999, as part of the National Aeronautics and Space Administration's (NASA) Earth Observing System (EOS). The ASTER sensor consists of three subsystems: the visible and near infrared (VNIR), the shortwave infrared (SWIR), and the thermal infrared (TIR), each with a different spatial resolution (VNIR, 15 meters; SWIR, 30 meters, TIR 90 meters). The VNIR system has the capability to generate along-track stereo images that can be used to create digital elevation models (DEMs) at 30-meter resolution. Currently, the only available DEM dataset for Afghanistan is the 90-meter-resolution Shuttle Radar Topography Mission (SRTM) data. This dataset is appropriate for macroscale DEM analysis and mapping. However, ASTER provides a low cost opportunity to generate higher resolution data. For this publication, study areas were identified around populated areas and areas where higher resolution elevation data were desired to assist in natural resource assessments. The higher resolution fidelity of these DEMs can also be used for other terrain analysis including landform classification and geologic structure analysis. For this publication, ASTER scenes were processed and mosaicked to generate 36 DEMs which were created and extracted using PCI Geomatics' OrthoEngine 3D Stereo software. The ASTER images were geographically registered to Landsat data with at least 15 accurate and well distributed ground control points with a root mean square error (RMSE) of less that one pixel (15 meters). An elevation value was then assigned to each ground control point by extracting the elevation from the 90-meter SRTM data. The 36 derived DEMs demonstrate that the software correlated on nearly flat surfaces and smooth slopes accurately. Larger errors occur in cloudy and snow-covered areas, lakes, areas with steep slopes, and

  14. The Neuro-PET: a new high-resolution 7-slice positron emission tomograph

    International Nuclear Information System (INIS)

    Brooks, R.A.; Sank, V.J.; Di Chiro, G.; Friauf, W.S.; Leighton, S.B.; Cascio, H.E.

    1982-01-01

    The Neuro-PET consists of 4 circular rings of 128 BGO detectors providing 7 simultaneous slices. At present the scanner is operating with only one ring, pending delivery of three more electronic chassis. Inter-plane septa of depleted uranium are used to shield out-of-plane activity and scatter, without interfering with the cross-slice images. Preliminary measurements of in-plane resolution, using a 1 mm dia. Ge-68-filled steel rod in a plastic phantom, give 6 mm full-width-at-half-maximum at the center of the image and 7 mm at a point 9 cm off center. Axial resolution was measured to be 10 mm. Sensitivity, as measured with a 20 cm diameter uniform phantom, is 53000, 44000 or 31000 counts/s/μCi/cc, depending on the energy threshold, which is switch-selectable at the console. Scatter was measured with a cold spot phantom by taking the ratio of apparent activity at the center of the cold spot to that in the surrounding area. The result for a 1 cm cold spot located near the periphery of the phantom was 33%, without software correction, and less than 20% for a 5 cm cold spot

  15. Modelling carbon dioxide emissions from agricultural soils in Canada.

    Science.gov (United States)

    Yadav, Dhananjay; Wang, Junye

    2017-11-01

    Agricultural soils are a leading source of atmospheric greenhouse gas (GHG) emissions and are major contributors to global climate change. Carbon dioxide (CO 2 ) makes up 20% of the total GHG emitted from agricultural soil. Therefore, an evaluation of CO 2 emissions from agricultural soil is necessary in order to make mitigation strategies for environmental efficiency and economic planning possible. However, quantification of CO 2 emissions through experimental methods is constrained due to the large time and labour requirements for analysis. Therefore, a modelling approach is needed to achieve this objective. In this paper, the DeNitrification-DeComposition (DNDC), a process-based model, was modified to predict CO 2 emissions for Canada from regional conditions. The modified DNDC model was applied at three experimental sites in the province of Saskatchewan. The results indicate that the simulations of the modified DNDC model are in good agreement with observations. The agricultural management of fertilization and irrigation were evaluated using scenario analysis. The simulated total annual CO 2 flux changed on average by ±13% and ±1% following a ±50% variance of the total amount of N applied by fertilising and the total amount of water through irrigation applications, respectively. Therefore, careful management of irrigation and applications of fertiliser can help to reduce CO 2 emissions from the agricultural sector. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Modeling 13.3nm Fe XXIII Flare Emissions Using the GOES-R EXIS Instrument

    Science.gov (United States)

    Rook, H.; Thiemann, E.

    2017-12-01

    The solar EUV spectrum is dominated by atomic transitions in ionized atoms in the solar atmosphere. As solar flares evolve, plasma temperatures and densities change, influencing abundances of various ions, changing intensities of different EUV wavelengths observed from the sun. Quantifying solar flare spectral irradiance is important for constraining models of Earth's atmosphere, improving communications quality, and controlling satellite navigation. However, high time cadence measurements of flare irradiance across the entire EUV spectrum were not available prior to the launch of SDO. The EVE MEGS-A instrument aboard SDO collected 0.1nm EUV spectrum data from 2010 until 2014, when the instrument failed. No current or future instrument is capable of similar high resolution and time cadence EUV observation. This necessitates a full EUV spectrum model to study EUV phenomena at Earth. It has been recently demonstrated that one hot flare EUV line, such as the 13.3nm Fe XXIII line, can be used to model cooler flare EUV line emissions, filling the role of MEGS-A. Since unblended measurements of Fe XXIII are typically unavailable, a proxy for the Fe XXIII line must be found. In this study, we construct two models of this line, first using the GOES 0.1-0.8nm soft x-ray (SXR) channel as the Fe XXIII proxy, and second using a physics-based model dependent on GOES emission measure and temperature data. We determine that the more sophisticated physics-based model shows better agreement with Fe XXIII measurements, although the simple proxy model also performs well. We also conclude that the high correlation between Fe XXIII emissions and the GOES 0.1-0.8nm band is because both emissions tend to peak near the GOES emission measure peak despite large differences in their contribution functions.

  17. Dynamics of the oil transition: Modeling capacity, depletion, and emissions

    International Nuclear Information System (INIS)

    Brandt, Adam R.; Plevin, Richard J.; Farrell, Alexander E.

    2010-01-01

    The global petroleum system is undergoing a shift to substitutes for conventional petroleum (SCPs). The Regional Optimization Model for Emissions from Oil Substitutes, or ROMEO, models this oil transition and its greenhouse gas impacts. ROMEO models the global liquid fuel market in an economic optimization framework, but in contrast to other models it solves each model year sequentially, with investment and production optimized under uncertainty about future prevailing prices or resource quantities. ROMEO includes more hydrocarbon resource types than integrated assessment models of climate change. ROMEO also includes the carbon intensities and costs of production of these resources. We use ROMEO to explore the uncertainty of future costs, emissions, and total fuel production under a number of scenarios. We perform sensitivity analysis on the endowment of conventional petroleum and future carbon taxes. Results show incremental emissions from production of oil substitutes of ∼ 0-30 gigatonnes (Gt) of carbon over the next 50 years (depending on the carbon tax). Also, demand reductions due to the higher cost of SCPs could reduce or eliminate these increases. Calculated emissions are highly sensitive to the endowment of conventional oil and less sensitive to a carbon tax.

  18. FORECASTING MODEL OF GHG EMISSION IN MANUFACTURING SECTORS OF THAILAND

    Directory of Open Access Journals (Sweden)

    Pruethsan Sutthichaimethee

    2017-01-01

    Full Text Available This study aims to analyze the modeling and forecasting the GHG emission of energy consumption in manufacturing sectors. The scope of the study is to analysis energy consumption and forecasting GHG emission of energy consumption for the next 10 years (2016-2025 and 25 years (2016-2040 by using ARIMAX model from the Input-output table of Thailand. The result shows that iron and steel has the highest value of energy consumption and followed by cement, fluorite, air transport, road freight transport, hotels and places of loading, coal and lignite, petrochemical products, other manufacturing, road passenger transport, respectively. The prediction results show that these models are effective in forecasting by measured by using RMSE, MAE, and MAPE. The results forecast of each model is as follows: 1 Model 1(2,1,1 shows that GHG emission will be increasing steadily and increasing at 25.17% by the year 2025 in comparison to 2016. 2 Model 2 (2,1,2 shows that GHG emission will be rising steadily and increasing at 41.51% by the year 2040 in comparison to 2016.

  19. Influence of spatially dependent, modeled soil carbon emission factors on life-cycle greenhouse gas emissions of corn and cellulosic ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Zhangcai [Energy Systems Division, Argonne National Laboratory, 9700 South Cass Avenue Argonne IL 60439 USA; Dunn, Jennifer B. [Energy Systems Division, Argonne National Laboratory, 9700 South Cass Avenue Argonne IL 60439 USA; Kwon, Hoyoung [Environment and Production Technology Division, International Food Policy Research Institute, 2033 K St. NW Washington DC 20006 USA; Mueller, Steffen [Energy Resources Center, University of Illinois at Chicago, 1309 South Halsted Street Chicago IL 60607 USA; Wander, Michelle M. [Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, 1102 South Goodwin Avenue Urbana IL 61801 USA

    2016-03-03

    Converting land to biofuel feedstock production incurs changes in soil organic carbon (SOC) that can influence biofuel life-cycle greenhouse gas (GHG) emissions. Estimates of these land use change (LUC) and life-cycle GHG emissions affect biofuels’ attractiveness and eligibility under a number of renewable fuel policies in the U.S. and abroad. Modeling was used to refine the spatial resolution and depth-extent of domestic estimates of SOC change for land (cropland, cropland pasture, grasslands, and forests) conversion scenarios to biofuel crops (corn, corn stover, switchgrass, Miscanthus, poplar, and willow). In most regions, conversions from cropland and cropland pasture to biofuel crops led to neutral or small levels of SOC sequestration, while conversion of grassland and forest generally caused net SOC loss. Results of SOC change were incorporated into the Greenhouse Gases, Regulated Emissions, and Energy use in Transportation (GREET) model to assess their influence on life-cycle GHG emissions for the biofuels considered. Total LUC GHG emissions (g CO2eq MJ-1) were 2.1–9.3 for corn, -0.7 for corn stover, -3.4–12.9 for switchgrass, and -20.1–-6.2 for Miscanthus; these varied with SOC modeling assumptions applied. Extending soil depth from 30 to 100cm affected spatially-explicit SOC change and overall LUC GHG emissions; however the influence on LUC GHG emissions estimates were less significant in corn and corn stover than cellulosic feedstocks. Total life-cycle GHG emissions (g CO2eq MJ-1, 100cm) were estimated to be 59–66 for corn ethanol, 14 for stover ethanol, 18-26 for switchgrass ethanol, and -0.6–-7 for Miscanthus ethanol.

  20. Improved Fossil/Industrial CO2 Emissions Modeling for the North American Carbon Program

    Science.gov (United States)

    Gurney, K. R.; Seib, B.; Mendoza, D.; Knox, S.; Fischer, M.; Murtishaw, S.

    2006-12-01

    The quantification of fossil fuel CO2 emissions has implications for a wide variety of scientific and policy- related questions. Improvement in inverse-estimated carbon fluxes, country-level carbon budgeting, analysis of regional emissions trading systems, and targeting of observational systems are all important applications better served by improvements in understanding where and when fossil fuel/industrial CO2 is emitted. Traditional approaches to quantifying fossil/industrial CO2 emissions have relied on national sales/consumption of fossil fuels with secondary spatial footprints performed via proxies such as population. This approach has provided global spatiotemporal resolution of one degree/monthly. In recent years the need has arisen for emission estimates that not only achieve higher spatiotemporal scales but include a process- level component. This latter attribute provides dynamic linkages between energy policy/decisionmaking and emissions for use in projecting changes to energy systems and the implications these changes may have on climate change. We have embarked on a NASA-funded research strategy to construct a process-level fossil/industrial CO2 emissions model/database for North America that will resolve fossil/industrial CO2 emissions hourly and at 36 km. This project is a critical component of the North American Carbon Program. Our approach builds off of many decades of air quality monitoring for regulated pollutants such as NOx, VOCs and CO that has been performed by regional air quality managers, states, and the Environmental Protection Agency in the United States. By using the highly resolved monitoring data supplied to the EPA, we have computed CO2 emissions for residential, commercial/industrial, transportation, and biogenic sources. This effort employs a new emissions modeling system (CONCEPT) that spatially and temporally distributes the monitored emissions across the US. We will provide a description of the methodology we have employed, the

  1. Long-range transport biomass burning emissions to the Himalayas: insights from high-resolution aerosol mass spectrometer

    Science.gov (United States)

    Xu, J.; Zhang, X.; Liu, Y.; Shichang, K.; Ma, Y.

    2017-12-01

    An intensive measurement was conducted at a remote, background, and high-altitude site (Qomolangma station, QOMS, 4276 m a.s.l.) in the northern Himalayas, using an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) along with other collocated instruments. The field measurement was performed from April 12 to May 12, 2016 to chemically characterize high time-resolved submicron particulate matter (PM1) and obtain the influence of biomass burning emissions to the Himalayas, frequently transported from south Asia during pre-monsoon season. Two high aerosol loading periods were observed during the study. Overall, the average (± 1σ) PM1 mass concentration was 4.44 (± 4.54) µg m-3 for the entire study, comparable with those observed at other remote sites worldwide. Organic aerosols (OA) was the dominant PM1 species (accounting for 54.3% of total PM1 mass on average) and its contribution increased with the increase of total PM1 mass loading. The average size distributions of PM1 species all peaked at an overlapping accumulation mode ( 500 nm), suggesting that aerosol particles were internally well-mixed and aged during long-range transportations. Positive matrix factorization (PMF) analysis on the high-resolution organic mass spectra identified three distinct OA factors, including a biomass burning related OA (BBOA, 43.7%) and two oxygenated OA (Local-OOA and LRT-OOA; 13.9% and 42.4%) represented sources from local emissions and long-range transportations, respectively. Two polluted air mass origins (generally from the west and southwest of QOMS) and two polluted episodes with enhanced PM1 mass loadings and elevated BBOA contributions were observed, respectively, suggesting the important sources of wildfires from south Asia. One of polluted aerosol plumes was investigated in detail to illustrate the evolution of aerosol characteristics at QOMS driving by different impacts of wildfires, air mass origins, meteorological conditions and

  2. Modeling Secondary Organic Aerosol Formation From Emissions of Combustion Sources

    Science.gov (United States)

    Jathar, Shantanu Hemant

    Atmospheric aerosols exert a large influence on the Earth's climate and cause adverse public health effects, reduced visibility and material degradation. Secondary organic aerosol (SOA), defined as the aerosol mass arising from the oxidation products of gas-phase organic species, accounts for a significant fraction of the submicron atmospheric aerosol mass. Yet, there are large uncertainties surrounding the sources, atmospheric evolution and properties of SOA. This thesis combines laboratory experiments, extensive data analysis and global modeling to investigate the contribution of semi-volatile and intermediate volatility organic compounds (SVOC and IVOC) from combustion sources to SOA formation. The goals are to quantify the contribution of these emissions to ambient PM and to evaluate and improve models to simulate its formation. To create a database for model development and evaluation, a series of smog chamber experiments were conducted on evaporated fuel, which served as surrogates for real-world combustion emissions. Diesel formed the most SOA followed by conventional jet fuel / jet fuel derived from natural gas, gasoline and jet fuel derived from coal. The variability in SOA formation from actual combustion emissions can be partially explained by the composition of the fuel. Several models were developed and tested along with existing models using SOA data from smog chamber experiments conducted using evaporated fuel (this work, gasoline, fischertropschs, jet fuel, diesels) and published data on dilute combustion emissions (aircraft, on- and off-road gasoline, on- and off-road diesel, wood burning, biomass burning). For all of the SOA data, existing models under-predicted SOA formation if SVOC/IVOC were not included. For the evaporated fuel experiments, when SVOC/IVOC were included predictions using the existing SOA model were brought to within a factor of two of measurements with minor adjustments to model parameterizations. Further, a volatility

  3. Four-dimensional variational data assimilation for inverse modelling of atmospheric methane emissions: method and comparison with synthesis inversion

    Directory of Open Access Journals (Sweden)

    J. F. Meirink

    2008-11-01

    Full Text Available A four-dimensional variational (4D-Var data assimilation system for inverse modelling of atmospheric methane emissions is presented. The system is based on the TM5 atmospheric transport model. It can be used for assimilating large volumes of measurements, in particular satellite observations and quasi-continuous in-situ observations, and at the same time it enables the optimization of a large number of model parameters, specifically grid-scale emission rates. Furthermore, the variational method allows to estimate uncertainties in posterior emissions. Here, the system is applied to optimize monthly methane emissions over a 1-year time window on the basis of surface observations from the NOAA-ESRL network. The results are rigorously compared with an analogous inversion by Bergamaschi et al. (2007, which was based on the traditional synthesis approach. The posterior emissions as well as their uncertainties obtained in both inversions show a high degree of consistency. At the same time we illustrate the advantage of 4D-Var in reducing aggregation errors by optimizing emissions at the grid scale of the transport model. The full potential of the assimilation system is exploited in Meirink et al. (2008, who use satellite observations of column-averaged methane mixing ratios to optimize emissions at high spatial resolution, taking advantage of the zooming capability of the TM5 model.

  4. Simplifiying global biogeochemistry models to evaluate methane emissions

    Science.gov (United States)

    Gerber, S.; Alonso-Contes, C.

    2017-12-01

    Process-based models are important tools to quantify wetland methane emissions, particularly also under climate change scenarios, evaluating these models is often cumbersome as they are embedded in larger land-surface models where fluctuating water table and the carbon cycle (including new readily decomposable plant material) are predicted variables. Here, we build on these large scale models but instead of modeling water table and plant productivity we provide values as boundary conditions. In contrast, aerobic and anaerobic decomposition, as well as soil column transport of oxygen and methane are predicted by the model. Because of these simplifications, the model has the potential to be more readily adaptable to the analysis of field-scale data. Here we determine the sensitivity of the model to specific setups, parameter choices, and to boundary conditions in order to determine set-up needs and inform what critical auxiliary variables need to be measured in order to better predict field-scale methane emissions from wetland soils. To that end we performed a global sensitivity analysis that also considers non-linear interactions between processes. The global sensitivity analysis revealed, not surprisingly, that water table dynamics (both mean level and amplitude of fluctuations), and the rate of the carbon cycle (i.e. net primary productivity) are critical determinants of methane emissions. The depth-scale where most of the potential decomposition occurs also affects methane emissions. Different transport mechanisms are compensating each other to some degree: If plant conduits are constrained, methane emissions by diffusive flux and ebullition compensate to some degree, however annual emissions are higher when plants help to bypass methanotrophs in temporally unsaturated upper layers. Finally, while oxygen consumption by plant roots help creating anoxic conditions it has little effect on overall methane emission. Our initial sensitivity analysis helps guiding

  5. A model to assess the emission of individual isoprenoids emitted from Italian ecosystems

    Science.gov (United States)

    Kemper Pacheco, C. J.; Fares, S.; Loreto, F.; Ciccioli, P.

    2012-04-01

    The aim of this work was to develop a GIS-based model to estimate the emissions from the Italian forest ecosystems. The model was aimed at generating a species-specific emission inventory for isoprene and individual monoterpenes that could have been validated with experimental data collected in selected sites of the CARBOITALY network. The model was develop for the year 2006. At a resolution of 1 km2 with a daily time resolution. By using the emission rates of individual components obtained through several laboratory and field experiments carried out on different vegetation species of the Mediterranean basin, maps of individual isoprenoids were generated for the Italian ecosystems. The spatial distribution and fractional contents of vegetation species present in the Italian forest ecosystems was obtained by combining the CORINE IV land cover map with National Forest Inventory based on ground observations performed at local levels by individual Italian regions (22) in which the country is divided. In general, basal emission rates for individual isoprenoids was reported by Steinbrecher et al. 1997 and Karl et al. 2009 were used. In this case, classes were further subdivided into T and L+T emitters as functions of the active pool. In many instances, however they were revised based on the results obtained in our Institute through determinations performed at leaf, branch (cuvette method) or ecosystem level (REA and the gradient method). In the latter case, studies performed in Italy and/or Mediterranean countries were used. An empirical light extinction function as a function of the canopy type and structure was introduced. The algorithms proposed by (Guenther et al. 1993) were used, but, they were often adapted to fit with the experimental observations made in the Mediterranean Areas. They were corrected for a seasonality factor (Steinbrecher et al. 2009) taking into account a time lag in leaf sprouting due to the plant elevation. A simple parameterization with LAI was

  6. Charged particle emission: the Child-Langmuir model

    International Nuclear Information System (INIS)

    Degond, P.; Raviart, P.A.

    1993-01-01

    The recent mathematical results concerning boundary emission modelling are reviewed with a synthetical view. The plane diode case is first studied; the Child-Langmuir model is then characterized as the limit to an absolutely non standard singular perturbation problem and is associated with approximate models (constrained and penalized models) which may be easily generalized in more realistic cases; an iterative solution method for the penalized problem is studied. The derived Child-Langmuir model is extended to the cylindrical diode case and to an arbitrary geometry case: constrained and penalized models related to the stationary Vlasov-Poisson equations are studied and extended to the Vlasov-Maxwell evolution equation general case

  7. Kinetic modeling in pre-clinical positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kuntner, Claudia [AIT Austrian Institute of Technology GmbH, Seibersdorf (Austria). Biomedical Systems, Health and Environment Dept.

    2014-07-01

    Pre-clinical positron emission tomography (PET) has evolved in the last few years from pure visualization of radiotracer uptake and distribution towards quantification of the physiological parameters. For reliable and reproducible quantification the kinetic modeling methods used to obtain relevant parameters of radiotracer tissue interaction are important. Here we present different kinetic modeling techniques with a focus on compartmental models including plasma input models and reference tissue input models. The experimental challenges of deriving the plasma input function in rodents and the effect of anesthesia are discussed. Finally, in vivo application of kinetic modeling in various areas of pre-clinical research is presented and compared to human data.

  8. Constraining Methane Emissions from Natural Gas Production in Northeastern Pennsylvania Using Aircraft Observations and Mesoscale Modeling

    Science.gov (United States)

    Barkley, Z.; Davis, K.; Lauvaux, T.; Miles, N.; Richardson, S.; Martins, D. K.; Deng, A.; Cao, Y.; Sweeney, C.; Karion, A.; Smith, M. L.; Kort, E. A.; Schwietzke, S.

    2015-12-01

    Leaks in natural gas infrastructure release methane (CH4), a potent greenhouse gas, into the atmosphere. The estimated fugitive emission rate associated with the production phase varies greatly between studies, hindering our understanding of the natural gas energy efficiency. This study presents a new application of inverse methodology for estimating regional fugitive emission rates from natural gas production. Methane observations across the Marcellus region in northeastern Pennsylvania were obtained during a three week flight campaign in May 2015 performed by a team from the National Oceanic and Atmospheric Administration (NOAA) Global Monitoring Division and the University of Michigan. In addition to these data, CH4 observations were obtained from automobile campaigns during various periods from 2013-2015. An inventory of CH4 emissions was then created for various sources in Pennsylvania, including coalmines, enteric fermentation, industry, waste management, and unconventional and conventional wells. As a first-guess emission rate for natural gas activity, a leakage rate equal to 2% of the natural gas production was emitted at the locations of unconventional wells across PA. These emission rates were coupled to the Weather Research and Forecasting model with the chemistry module (WRF-Chem) and atmospheric CH4 concentration fields at 1km resolution were generated. Projected atmospheric enhancements from WRF-Chem were compared to observations, and the emission rate from unconventional wells was adjusted to minimize errors between observations and simulation. We show that the modeled CH4 plume structures match observed plumes downwind of unconventional wells, providing confidence in the methodology. In all cases, the fugitive emission rate was found to be lower than our first guess. In this initial emission configuration, each well has been assigned the same fugitive emission rate, which can potentially impair our ability to match the observed spatial variability

  9. Daily and 3-hourly Variability in Global Fire Emissions and Consequences for Atmospheric Model Predictions of Carbon Monoxide

    Science.gov (United States)

    Mu, M.; Randerson, J. T.; vanderWerf, G. R.; Giglio, L.; Kasibhatla, P.; Morton, D.; Collatz, G. J.; DeFries, R. S.; Hyer, E. J.; Prins, E. M.; hide

    2011-01-01

    Attribution of the causes of atmospheric trace gas and aerosol variability often requires the use of high resolution time series of anthropogenic and natural emissions inventories. Here we developed an approach for representing synoptic- and diurnal-scale temporal variability in fire emissions for the Global Fire Emissions Database version 3 (GFED3). We disaggregated monthly GFED3 emissions during 2003.2009 to a daily time step using Moderate Resolution Imaging Spectroradiometer (MODIS) ]derived measurements of active fires from Terra and Aqua satellites. In parallel, mean diurnal cycles were constructed from Geostationary Operational Environmental Satellite (GOES) Wildfire Automated Biomass Burning Algorithm (WF_ABBA) active fire observations. Daily variability in fires varied considerably across different biomes, with short but intense periods of daily emissions in boreal ecosystems and lower intensity (but more continuous) periods of burning in savannas. These patterns were consistent with earlier field and modeling work characterizing fire behavior dynamics in different ecosystems. On diurnal timescales, our analysis of the GOES WF_ABBA active fires indicated that fires in savannas, grasslands, and croplands occurred earlier in the day as compared to fires in nearby forests. Comparison with Total Carbon Column Observing Network (TCCON) and Measurements of Pollution in the Troposphere (MOPITT) column CO observations provided evidence that including daily variability in emissions moderately improved atmospheric model simulations, particularly during the fire season and near regions with high levels of biomass burning. The high temporal resolution estimates of fire emissions developed here may ultimately reduce uncertainties related to fire contributions to atmospheric trace gases and aerosols. Important future directions include reconciling top ]down and bottom up estimates of fire radiative power and integrating burned area and active fire time series from

  10. Analyzing and leveraging self-similarity for variable resolution atmospheric models

    Science.gov (United States)

    O'Brien, Travis; Collins, William

    2015-04-01

    Variable resolution modeling techniques are rapidly becoming a popular strategy for achieving high resolution in a global atmospheric models without the computational cost of global high resolution. However, recent studies have demonstrated a variety of resolution-dependent, and seemingly artificial, features. We argue that the scaling properties of the atmosphere are key to understanding how the statistics of an atmospheric model should change with resolution. We provide two such examples. In the first example we show that the scaling properties of the cloud number distribution define how the ratio of resolved to unresolved clouds should increase with resolution. We show that the loss of resolved clouds, in the high resolution region of variable resolution simulations, with the Community Atmosphere Model version 4 (CAM4) is an artifact of the model's treatment of condensed water (this artifact is significantly reduced in CAM5). In the second example we show that the scaling properties of the horizontal velocity field, combined with the incompressibility assumption, necessarily result in an intensification of vertical mass flux as resolution increases. We show that such an increase is present in a wide variety of models, including CAM and the regional climate models of the ENSEMBLES intercomparision. We present theoretical arguments linking this increase to the intensification of precipitation with increasing resolution.

  11. High resolution study of Kβ' and Kβ1,3 X-ray emission lines from Mn-compounds

    International Nuclear Information System (INIS)

    Limandri, S.; Ceppi, S.; Tirao, G.; Stutz, G.; Sanchez, C.G.; Riveros, J.A.

    2010-01-01

    High-resolutionemission spectra of several manganese compounds were measured in order to characterize the dependence of the Kβ' and Kβ 1,3 features, on the chemical environment. High resolution spectra were obtained using a non-conventional spectrometer based on quasi-back-diffraction geometry at National Synchrotron Light Laboratory (LNLS). It was found that the energy of the Kβ' satellite structure relative to the main Kβ 1,3 line decreases linearly with the formal oxidation state for Mn-O systems. A noticeable dispersion of the relative Kβ' energy for different Mn 2+ compounds could be observed. The dependence of the Kβ' satellite line on the net charge and the effective 3d spin in Mn 2+ compounds was investigated. Calculations of the net charge and the effective 3d spin were performed within the density-functional theory using the package SIESTA. A direct relation between this dispersion and the effective Mn 3d spin was found.

  12. The multi-resolution capability of Tchebichef moments and its applications to the analysis of fluorescence excitation-emission spectra

    Science.gov (United States)

    Li, Bao Qiong; Wang, Xue; Li Xu, Min; Zhai, Hong Lin; Chen, Jing; Liu, Jin Jin

    2018-01-01

    Fluorescence spectroscopy with an excitation-emission matrix (EEM) is a fast and inexpensive technique and has been applied to the detection of a very wide range of analytes. However, serious scattering and overlapping signals hinder the applications of EEM spectra. In this contribution, the multi-resolution capability of Tchebichef moments was investigated in depth and applied to the analysis of two EEM data sets (data set 1 consisted of valine-tyrosine-valine, tryptophan-glycine and phenylalanine, and data set 2 included vitamin B1, vitamin B2 and vitamin B6) for the first time. By means of the Tchebichef moments with different orders, the different information in the EEM spectra can be represented. It is owing to this multi-resolution capability that the overlapping problem was solved, and the information of chemicals and scatterings were separated. The obtained results demonstrated that the Tchebichef moment method is very effective, which provides a promising tool for the analysis of EEM spectra. It is expected that the applications of Tchebichef moment method could be developed and extended in complex systems such as biological fluids, food, environment and others to deal with the practical problems (overlapped peaks, unknown interferences, baseline drifts, and so on) with other spectra.

  13. Nanometric resolution in glow discharge optical emission spectroscopy and Rutherford backscattering spectrometry depth profiling of metal (Cr, Al) nitride multilayers

    International Nuclear Information System (INIS)

    Escobar Galindo, R.; Gago, R.; Fornies, E.; Munoz-Martin, A.; Climent Font, A.; Albella, J.M.

    2006-01-01

    In this work, we address the capability of glow discharge optical emission spectroscopy (GDOES) for fast and accurate depth profiling of multilayer nitride coatings down to the nanometer range. This is shown by resolving the particular case of CrN/AlN structures with individual thickness ranging from hundreds to few nanometers. In order to discriminate and identify artefacts in the GDOES depth profile due to the sputtering process, the layered structures were verified by Rutherford backscattering spectrometry (RBS) and scanning electron microscopy (SEM). The interfaces in the GDOES profiles for CrN/AlN structures are sharper than the ones measured for similar metal multilayers due to the lower sputtering rate of the nitrides. However, as a consequence of the crater shape, there is a linear degradation of the depth resolution with depth (approximately 40 nm/μm), saturating at a value of approximately half the thickness of the thinner layer. This limit is imposed by the simultaneous sputtering of consecutive layers. The ultimate GDOES depth resolution at the near surface region was estimated to be of 4-6 nm

  14. Comparison of Gas Emission Crater Geomorphodynamics on Yamal and Gydan Peninsulas (Russia, Based on Repeat Very-High-Resolution Stereopairs

    Directory of Open Access Journals (Sweden)

    Alexander Kizyakov

    2017-10-01

    Full Text Available Gas Emission Craters (GEC represent a new phenomenon in permafrost regions discovered in the north of West Siberia. In this study we use very-high-resolution Worldview satellite stereopairs and Resurs-P images to reveal and measure the geomorphic features that preceded and followed GEC formation on the Yamal and Gydan peninsulas. Analysis of DEMs allowed us to: (1 distinguish different terrain positions of the GEC, at the foot of a gentle slope (Yamal, and on an upper edge of a terrace slope; (2 notice that the formation of both Yamal and Gydan GECs were preceded by mound development; (3 measure a funnel-shaped upper part and a cylindrical lower part for each crater; (4 and measure the expansion and plan form modification of GECs. Although the general characteristics of both craters are similar, there are differences when comparing both key sites in detail. The height of the mound and diameter of the resulting GEC in Yamal exceeds that in Gydan; GEC-1 was surrounded by a well-developed parapet, while AntGEC did not show any considerable accumulative body. Thus, using very-high-resolution remote sensing data allowed us to discriminate geomorphic features and relief positions characteristic for GEC formation. GECs are a potential threat to commercial facilities in permafrost and indigenous settlements, especially because at present there is no statistically significant number of study objects to identify the local environmental conditions in which the formation of new GEC is possible.

  15. A model for radio emission from solar coronal shocks

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, G. Q.; Chen, L.; Wu, D. J., E-mail: djwu@pmo.ac.cn [Purple Mountain Observatory, CAS, Nanjing 210008 (China)

    2014-05-01

    Solar coronal shocks are very common phenomena in the solar atmosphere and are believed to be the drivers of solar type II radio bursts. However, the microphysical nature of these emissions is still an open question. This paper proposes that electron cyclotron maser (ECM) emission is responsible for the generation of radiation from the coronal shocks. In the present model, an energetic ion beam accelerated by the shock first excites the Alfvén wave (AW), then the excited AW leads to the formation of a density-depleted duct along the foreshock boundary of the shock. In this density-depleted duct, the energetic electron beam produced via the shock acceleration can effectively excite radio emission by ECM instability. Our results show that this model may potentially be applied to solar type II radio bursts.

  16. A model for radio emission from solar coronal shocks

    International Nuclear Information System (INIS)

    Zhao, G. Q.; Chen, L.; Wu, D. J.

    2014-01-01

    Solar coronal shocks are very common phenomena in the solar atmosphere and are believed to be the drivers of solar type II radio bursts. However, the microphysical nature of these emissions is still an open question. This paper proposes that electron cyclotron maser (ECM) emission is responsible for the generation of radiation from the coronal shocks. In the present model, an energetic ion beam accelerated by the shock first excites the Alfvén wave (AW), then the excited AW leads to the formation of a density-depleted duct along the foreshock boundary of the shock. In this density-depleted duct, the energetic electron beam produced via the shock acceleration can effectively excite radio emission by ECM instability. Our results show that this model may potentially be applied to solar type II radio bursts.

  17. Towards an Integrated Assessment Model for Tropospheric Ozone-Emission Inventories, Scenarios and Emission-control Options

    OpenAIRE

    Olsthoorn, X.

    1994-01-01

    IIASA intends to extend its RAINS model for addressing the issue of transboundary ozone air pollution. This requires the development of a VOC-emissions module, VOCs being precursors in ozone formation. The module should contain a Europe-wide emission inventory, a submodule for developing emission scenarios and a database of measures for VOC-emission control, including data about control effectiveness and control costs. It is recommended to use the forthcoming CORINAIR90 inventory for construc...

  18. Modeling methane emission from rice paddies with various agricultural practices

    Science.gov (United States)

    Huang, Yao; Zhang, Wen; Zheng, Xunhua; Li, Jin; Yu, Yongqiang

    2004-04-01

    Several models have been developed over the past decade to estimate CH4 emission from rice paddies. However, few models have been validated against field measurements with various parameters of soil, climate and agricultural practice. Thus reliability of the model's performance remains questionable particularly when extrapolating the model from site microscale to regional scale. In this paper, modification to the original model focuses on the effect of water regime on CH4 production/emission and the CH4 transport via bubbles. The modified model, named as CH4MOD, was then validated against a total of 94 field observations. These observations covered main rice cultivation regions from northern (Beijing, 40°30'N, 116°25'E) to southern China (Guangzhou, 23°08'N, 113°20'E), and from eastern (Hangzhou, 30°19'N, 120°12'E) to southwestern (Tuzu, 29°40'N, 103°50'E) China. Both single rice and double rice cultivations are distributed in these regions with different irrigation patterns and various types of organic matter incorporation. The observed seasonal amount of CH4 emission ranged from 3.1 to 761.7 kg C ha-1 with an average of 199.4 ± 187.3 kg C ha-1. In consonance with the observations, model simulations resulted in an average value of 224.6 ± 187.0 kg C ha-1, ranging from 13.9 to 824.3 kg C ha-1. Comparison between the computed and the observed seasonal CH4 emission yielded a correlation coefficient r2 of 0.84 with a slope of 0.92 and an intercept of 41.1 (n = 94, p < 0.001). It was concluded that the CH4MOD can reasonably simulate CH4 emissions from irrigated rice fields with a minimal number of inputs and parameters.

  19. Modeling biomass burning and related carbon emissions during the 21st century in Europe

    KAUST Repository

    Migliavacca, Mirco; Dosio, Alessandro; Camia, Andrea; Hobourg, Rasmus; Houston-Durrant, Tracy; Kaiser, Johannes W.; Khabarov, Nikolay; Krasovskii, Andrey A.; Marcolla, Barbara; San Miguel-Ayanz, Jesus; Ward, Daniel S.; Cescatti, Alessandro

    2013-01-01

    In this study we present an assessment of the impact of future climate change on total fire probability, burned area, and carbon (C) emissions from fires in Europe. The analysis was performed with the Community Land Model (CLM) extended with a prognostic treatment of fires that was specifically refined and optimized for application over Europe. Simulations over the 21st century are forced by five different high-resolution Regional Climate Models under the Special Report on Emissions Scenarios A1B. Both original and bias-corrected meteorological forcings is used. Results show that the simulated C emissions over the present period are improved by using bias corrected meteorological forcing, with a reduction of the intermodel variability. In the course of the 21st century, burned area and C emissions from fires are shown to increase in Europe, in particular in the Mediterranean basins, in the Balkan regions and in Eastern Europe. However, the projected increase is lower than in other studies that did not fully account for the effect of climate on ecosystem functioning. We demonstrate that the lower sensitivity of burned area and C emissions to climate change is related to the predicted reduction of the net primary productivity, which is identified as the most important determinant of fire activity in the Mediterranean region after anthropogenic interaction. This behavior, consistent with the intermediate fire-productivity hypothesis, limits the sensitivity of future burned area and C emissions from fires on climate change, providing more conservative estimates of future fire patterns, and demonstrates the importance of coupling fire simulation with a climate driven ecosystem productivity model.

  20. Modeling biomass burning and related carbon emissions during the 21st century in Europe

    KAUST Repository

    Migliavacca, Mirco

    2013-12-01

    In this study we present an assessment of the impact of future climate change on total fire probability, burned area, and carbon (C) emissions from fires in Europe. The analysis was performed with the Community Land Model (CLM) extended with a prognostic treatment of fires that was specifically refined and optimized for application over Europe. Simulations over the 21st century are forced by five different high-resolution Regional Climate Models under the Special Report on Emissions Scenarios A1B. Both original and bias-corrected meteorological forcings is used. Results show that the simulated C emissions over the present period are improved by using bias corrected meteorological forcing, with a reduction of the intermodel variability. In the course of the 21st century, burned area and C emissions from fires are shown to increase in Europe, in particular in the Mediterranean basins, in the Balkan regions and in Eastern Europe. However, the projected increase is lower than in other studies that did not fully account for the effect of climate on ecosystem functioning. We demonstrate that the lower sensitivity of burned area and C emissions to climate change is related to the predicted reduction of the net primary productivity, which is identified as the most important determinant of fire activity in the Mediterranean region after anthropogenic interaction. This behavior, consistent with the intermediate fire-productivity hypothesis, limits the sensitivity of future burned area and C emissions from fires on climate change, providing more conservative estimates of future fire patterns, and demonstrates the importance of coupling fire simulation with a climate driven ecosystem productivity model.

  1. High resolution modelling of the North Icelandic Irminger Current (NIIC

    Directory of Open Access Journals (Sweden)

    K. Logemann

    2006-01-01

    Full Text Available The northward inflow of Atlantic Water through Denmark Strait – the North Icelandic Irminger Current (NIIC – is simulated with a numerical model of the North Atlantic and Arctic Ocean. The model uses the technique of adaptive grid refinement which allows a high spatial resolution (1 km horizontal, 10 m vertical around Iceland. The model is used to assess time and space variability of volume and heat fluxes for the years 1997–2003. Passive tracers are applied to study origin and composition of NIIC water masses. The NIIC originates from two sources: the Irminger Current, flowing as part of the sub-polar gyre in 100–500 m depth along the Reykjanes Ridge and the shallow Icelandic coastal current, flowing north-westward on the south-west Icelandic shelf. The ratio of volume flux between the deep and shallow branch is around 2:1. The NIIC continues as a warm and saline branch northward through Denmark Strait where it entrains large amounts of polar water due to the collision with the southward flowing East Greenland Current. After passing Denmark Strait, the NIIC follows the coast line eastward being an important heat source for north Icelandic waters. At least 60% of the temporal temperature variability of north Icelandic waters is caused by the NIIC. The NIIC volume and heat transport is highly variable and depends strongly on the wind field north-east of Denmark Strait. Daily means can change from 1 Sv eastward to 2 Sv westward within a few days. Highest monthly mean transport rates occur in summer when winds from north are weak, whereas the volume flux is reduced by around 50% in winter. Summer heat flux rates can be even three times higher than in winter. The simulation also shows variability on the interannual scale. In particular weak winds from north during winter 2002/2003 combined with mild weather conditions south of Iceland led to anomalous high NIIC volume (+40% and heat flux (+60% rates. In this period, simulated north Icelandic

  2. Improving the resolution in soft X-ray emission spectrometers through photon-counting using an Electron Multiplying CCD

    International Nuclear Information System (INIS)

    Hall, D J; Soman, M; Tutt, J; Murray, N; Holland, A; Schmitt, T; Raabe, J; Strocov, V N; Schmitt, B

    2012-01-01

    In 2007, a study of back-illuminated Charge-Coupled Devices (CCDs) for soft X-ray photon detection demonstrated the improvements that could be brought over more traditional micro-channel plate detectors for X-ray spectrometers based on diffraction gratings and position sensitive detectors. Whilst the spatial resolution was reported to be improved dramatically, an intrinsic limit of approximately 25 micrometers was found due to the spreading of the charge cloud generated in the CCD across several pixels. To overcome this resolution limit, it is necessary to move away from the current integrated imaging methods and consider a photon-counting approach, recording the photon interaction locations to the sub-pixel level. To make use of photon-counting techniques it is important that the individual events are separable. To maintain the throughput of the spectrometer for high intensity lines, higher frame rates and therefore higher readout speeds are required. With CCD based systems, the increased noise at high readout speeds can limit the photon-counting performance. The Electron-Multiplying CCD shares a similar architecture with the standard CCD but incorporates a g ain register . This novel addition allows controllable gain to be applied to the signal before the read noise is introduced, therefore allowing individual events to be resolved above the noise even at much higher readout rates. In the past, the EM-CCD has only been available with imaging areas too small to be practical in soft X-ray emission spectrometers. The current drive for large area Electron-Multiplying CCDs is opening this technology to new photon-counting applications, requiring in-depth analysis of the processes and techniques involved. Early results indicate that through the introduction of photon-counting techniques the resolution in such systems can be dramatically improved.

  3. Modelling nitrous oxide emissions from grazed grassland systems

    International Nuclear Information System (INIS)

    Wang Junye; Cardenas, Laura M.; Misselbrook, Tom H.; Cuttle, Steve; Thorman, Rachel E.; Li Changsheng

    2012-01-01

    Grazed grassland systems are an important component of the global carbon cycle and also influence global climate change through their emissions of nitrous oxide and methane. However, there are huge uncertainties and challenges in the development and parameterisation of process-based models for grazed grassland systems because of the wide diversity of vegetation and impacts of grazing animals. A process-based biogeochemistry model, DeNitrification-DeComposition (DNDC), has been modified to describe N 2 O emissions for the UK from regional conditions. This paper reports a new development of UK-DNDC in which the animal grazing practices were modified to track their contributions to the soil nitrogen (N) biogeochemistry. The new version of UK-DNDC was tested against datasets of N 2 O fluxes measured at three contrasting field sites. The results showed that the responses of the model to changes in grazing parameters were generally in agreement with observations, showing that N 2 O emissions increased as the grazing intensity increased. - Highlights: ► Parameterisation of grazing system using grazing intensity. ► Modification of UK D NDC for the UK soil and weather conditions. ► Validation of the UK D NDC against measured data of N 2 O emissions in three UK sites. ► Estimating influence of animal grazing practises on N 2 O emissions. - Grazing system was parameterised using grazing intensity and UK-DNDC model was modified and validated against measured data of N 2 O emissions in three UK sites.

  4. Proximal methods for the resolution of inverse problems: application to positron emission tomography

    International Nuclear Information System (INIS)

    Pustelnik, N.

    2010-12-01

    The objective of this work is to propose reliable, efficient and fast methods for minimizing convex criteria, that are found in inverse problems for imagery. We focus on restoration/reconstruction problems when data is degraded with both a linear operator and noise, where the latter is not assumed to be necessarily additive.The reliability of the method is ensured through the use of proximal algorithms, the convergence of which is guaranteed when a convex criterion is considered. Efficiency is sought through the choice of criteria adapted to the noise characteristics, the linear operators and the image specificities. Of particular interest are regularization terms based on total variation and/or sparsity of signal frame coefficients. As a consequence of the use of frames, two approaches are investigated, depending on whether the analysis or the synthesis formulation is chosen. Fast processing requirements lead us to consider proximal algorithms with a parallel structure. Theoretical results are illustrated on several large size inverse problems arising in image restoration, stereoscopy, multi-spectral imagery and decomposition into texture and geometry components. We focus on a particular application, namely Positron Emission Tomography (PET), which is particularly difficult because of the presence of a projection operator combined with Poisson noise, leading to highly corrupted data. To optimize the quality of the reconstruction, we make use of the spatio-temporal characteristics of brain tissue activity. (author)

  5. Seychelles Dome variability in a high resolution ocean model

    Science.gov (United States)

    Nyadjro, E. S.; Jensen, T.; Richman, J. G.; Shriver, J. F.

    2016-02-01

    The Seychelles-Chagos Thermocline Ridge (SCTR; 5ºS-10ºS, 50ºE-80ºE) in the tropical Southwest Indian Ocean (SWIO) has been recognized as a region of prominence with regards to climate variability in the Indian Ocean. Convective activities in this region have regional consequences as it affect socio-economic livelihood of the people especially in the countries along the Indian Ocean rim. The SCTR is characterized by a quasi-permanent upwelling that is often associated with thermocline shoaling. This upwelling affects sea surface temperature (SST) variability. We present results on the variability and dynamics of the SCTR as simulated by the 1/12º high resolution HYbrid Coordinate Ocean Model (HYCOM). It is observed that locally, wind stress affects SST via Ekman pumping of cooler subsurface waters, mixing and anomalous zonal advection. Remotely, wind stress curl in the eastern equatorial Indian Ocean generates westward-propagating Rossby waves that impacts the depth of the thermocline which in turn impacts SST variability in the SCTR region. The variability of the contributions of these processes, especially with regard to the Indian Ocean Dipole (IOD) are further examined. In a typical positive IOD (PIOD) year, the net vertical velocity in the SCTR is negative year-round as easterlies along the region are intensified leading to a strong positive curl. This vertical velocity is caused mainly by anomalous local Ekman downwelling (with peak during September-November), a direct opposite to the climatology scenario when local Ekman pumping is positive (upwelling favorable) year-round. The anomalous remote contribution to the vertical velocity changes is minimal especially during the developing and peak stages of PIOD events. In a typical negative IOD (NIOD) year, anomalous vertical velocity is positive almost year-round with peaks in May and October. The remote contribution is positive, in contrast to the climatology and most of the PIOD years.

  6. NUMERICAL PREDICTION MODELS FOR AIR POLLUTION BY MOTOR VEHICLE EMISSIONS

    Directory of Open Access Journals (Sweden)

    M. M. Biliaiev

    2016-12-01

    Full Text Available Purpose. Scientific work involves: 1 development of 3D numerical models that allow calculating the process of air pollution by motor vehicles emissions; 2 creation of models which would allow predicting the air pollution level in urban areas. Methodology. To solve the problem upon assessing the level of air pollution by motor vehicles emissions fundamental equations of aerodynamics and mass transfer are used. For the solution of differential equations of aerodynamics and mass transfer finite-difference methods are used. For the numerical integration of the equation for the velocity potential the method of conditional approximations is applied. The equation for the velocity potential written in differential form, splits into two equations, where at each step of splitting an unknown value of the velocity potential is determined by an explicit scheme of running computation, while the difference scheme is implicit one. For the numerical integration of the emissions dispersion equation in the atmosphere applies the implicit alternating-triangular difference scheme of splitting. Emissions from the road are modeled by a series of point sources of given intensity. Developed numerical models form is the basis of the created software package. Findings. 3D numerical models were developed; they belong to the class of «diagnostic models». These models take into account main physical factors that influence the process of dispersion of harmful substances in the atmosphere when emissions from vehicles in the city occur. Based on the constructed numerical models the computational experiment was conducted to assess the level of air pollution in the street. Originality. Authors have developed numerical models that allow to calculate the 3D aerodynamics of the wind flow in urban areas and the process of mass transfer emissions from the highway. Calculations to determine the area of contamination, which is formed near the buildings, located along the highway were

  7. Interaction between combustion and turbulence in modelling of emissions

    International Nuclear Information System (INIS)

    Oksanen, A.; Maeki-Mantila, E.

    1995-01-01

    The aim of the work is to study the combustion models which are taking into account the coupling between gas phase chemistry and turbulence in the modelling of emissions, especially of nitric oxide, when temperature and species concentrating are fluctuating by turbulence. The principal tools to model turbulent gas phase combustion are the probability density function (pdf) and the other models which are taking into consideration the effect of turbulence on the chemical reactions in flames. Such other models to use in the modelling are many e.g. Eddy Dissipation Model (EDM), Eddy Dissipation Concept (EDC), Eddy Dissipation Kinetic model (EDK), Eddy Break Up model (EBU), kinetic models and the combinations of those ones, respectively. Besides these models the effect of the different turbulence models on the formation of emissions will be also studied. Same kind of modelling has been done also by the teams in the Special Interest Group of ERCOFTAC (European Research Community On Flow Turbulence And Combustion) under the name of Aerodynamics and Steady State Combustion Chambers and Furnaces (A.S.C.F.). Combustion measurements are also tried to do if only the practical conditions take it possible. (author)

  8. Mathematical modeling of three-dimensional images in emission tomography

    International Nuclear Information System (INIS)

    Koblik, Yu.N.; Khugaev, A. V.; Mktchyan, G.A.; Ioannou, P.; Dimovasili, E.

    2002-01-01

    The model of processing results of three-dimensional measurements in positron-emissive tomograph is proposed in this work. The algorithm of construction and visualization of phantom objects of arbitrary shape was developed and its concrete realization in view of program packet for PC was carried out

  9. Modeling of Particle Emission During Dry Orthogonal Cutting

    Science.gov (United States)

    Khettabi, Riad; Songmene, Victor; Zaghbani, Imed; Masounave, Jacques

    2010-08-01

    Because of the risks associated with exposure to metallic particles, efforts are being put into controlling and reducing them during the metal working process. Recent studies by the authors involved in this project have presented the effects of cutting speeds, workpiece material, and tool geometry on particle emission during dry machining; the authors have also proposed a new parameter, named the dust unit ( D u), for use in evaluating the quantity of particle emissions relative to the quantity of chips produced during a machining operation. In this study, a model for predicting the particle emission (dust unit) during orthogonal turning is proposed. This model, which is based on the energy approach combined with the microfriction and the plastic deformation of the material, takes into account the tool geometry, the properties of the worked material, the cutting conditions, and the chip segmentation. The model is validated using experimental results obtained during the orthogonal turning of 6061-T6 aluminum alloy, AISI 1018, AISI 4140 steels, and grey cast iron. A good agreement was found with experimental results. This model can help in designing strategies for reducing particle emission during machining processes, at the source.

  10. Urban Hydrology and Water Quality Modeling - Resolution Modeling Comparison for Water Quantity and Quality

    Science.gov (United States)

    Fry, T. J.; Maxwell, R. M.

    2014-12-01

    Urbanization presents challenging water resource problems for communities worldwide. The hydromodifications associated with urbanization results in increased runoff rates and volumes and increased peak flows. These hydrologic changes can lead to increased erosion and stream destabilization, decreased evapotranspiration, decreased ground water recharge, increases in pollutant loading, and localized anthropogenic climate change or Urban Heat Islands. Stormwater represents a complex and dynamic component of the urban water cycle that requires careful mitigation. With the implementation of Phase II rules under the CWA, stormwater management is shifting from a drainage-efficiency focus to a natural systems focus. The natural system focus, referred to as Low Impact Development (LID), or Green Infrastructure, uses best management practices (BMPs) to reduce the impacts caused by urbanization hydromodification. Large-scale patterns of stormwater runoff from urban environments are complex and it is unclear what the large-scale impacts of green infrastructure are on the water cycle. High resolution physically based hydrologic models can be used to more accurately simulate the urban hydrologic cycle. These types of models tend to be more dynamic and allow for greater flexibility in evaluating and accounting for various hydrologic processes in the urban environment that may be lost with lower resolution conceptual models. We propose to evaluate the effectiveness of high resolution models to accurately represent and determine the urban hydrologic cycle with the overall goal of being able to accurately assess the impacts of LID BMPs in urban environments. We propose to complete a rigorous model intercomparison between ParFlow and FLO-2D. Both of these models can be scaled to higher resolutions, allow for rainfall to be spatially and temporally input, and solve the shallow water equations. Each model is different in the way it accounts for infiltration, initial abstraction losses

  11. eGSM: A extended Sky Model of Diffuse Radio Emission

    Science.gov (United States)

    Kim, Doyeon; Liu, Adrian; Switzer, Eric

    2018-01-01

    Both cosmic microwave background and 21cm cosmology observations must contend with astrophysical foreground contaminants in the form of diffuse radio emission. For precise cosmological measurements, these foregrounds must be accurately modeled over the entire sky Ideally, such full-sky models ought to be primarily motivated by observations. Yet in practice, these observations are limited, with data sets that are observed not only in a heterogenous fashion, but also over limited frequency ranges. Previously, the Global Sky Model (GSM) took some steps towards solving the problem of incomplete observational data by interpolating over multi-frequency maps using principal component analysis (PCA).In this poster, we present an extended version of GSM (called eGSM) that includes the following improvements: 1) better zero-level calibration 2) incorporation of non-uniform survey resolutions and sky coverage 3) the ability to quantify uncertainties in sky models 4) the ability to optimally select spectral models using Bayesian Evidence techniques.

  12. EPA Supersites Program-related emissions-based particulate matter modeling: initial applications and advances.

    Science.gov (United States)

    Russell, Armistead G

    2008-02-01

    One objective of the U.S. Environmental Protection Agency's (EPA's) Supersite Program was to provide data that could be used to more thoroughly evaluate and improve air quality models, and then have those models used to address both scientific and policy-related issues dealing with air quality management. In this direction, modeling studies have used Supersites-related data and are reviewed here. Fine temporal resolution data have been used both to test model components (e.g., the inorganic thermodynamic routines) and air quality modeling systems (in particular, Community Multiscale Air Quality [CMAQ] and Comprehensive Air Quality Model with extensions [CAMx] applications). Such evaluations suggest that the inorganic thermodynamic approaches being used are accurate, as well as the description of sulfate production, although there are significant uncertainties in production of nitric acid, biogenic and ammonia emissions, secondary organic aerosol formation, and the ability to follow the formation and evolution of ultrafine particles. Model applications have investigated how PM levels will respond to various emissions controls, suggesting that nitrate will replace some of the reductions in sulfate particulate matter (PM), although the replacement is small in the summer. Although not part of the Supersite program, modeling being conducted by EPA, regional planning organizations, and states for policy purposes has benefited from the detailed data collected, and the PM models have advanced by their more widespread use.

  13. High-resolution modeling of the western North American power system demonstrates low-cost and low-carbon futures

    International Nuclear Information System (INIS)

    Nelson, James; Johnston, Josiah; Mileva, Ana; Fripp, Matthias; Hoffman, Ian; Petros-Good, Autumn; Blanco, Christian; Kammen, Daniel M.

    2012-01-01

    Decarbonizing electricity production is central to reducing greenhouse gas emissions. Exploiting intermittent renewable energy resources demands power system planning models with high temporal and spatial resolution. We use a mixed-integer linear programming model – SWITCH – to analyze least-cost generation, storage, and transmission capacity expansion for western North America under various policy and cost scenarios. Current renewable portfolio standards are shown to be insufficient to meet emission reduction targets by 2030 without new policy. With stronger carbon policy consistent with a 450 ppm climate stabilization scenario, power sector emissions can be reduced to 54% of 1990 levels by 2030 using different portfolios of existing generation technologies. Under a range of resource cost scenarios, most coal power plants would be replaced by solar, wind, gas, and/or nuclear generation, with intermittent renewable sources providing at least 17% and as much as 29% of total power by 2030. The carbon price to induce these deep carbon emission reductions is high, but, assuming carbon price revenues are reinvested in the power sector, the cost of power is found to increase by at most 20% relative to business-as-usual projections. - Highlights: ► Intermittent generation necessitates high-resolution electric power system models. ► We apply the SWITCH planning model to the western North American grid. ► We explore carbon policy and resource cost scenarios through 2030. ► As the carbon price rises, coal generation is replaced with solar, wind, gas and/or nuclear generation ► A 450 ppm climate stabilization target can be met at a 20% or lower cost increase.

  14. Variational data assimilation system with nesting model for high resolution ocean circulation

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, Yoichi; Igarashi, Hiromichi; Hiyoshi, Yoshimasa; Sasaki, Yuji; Wakamatsu, Tsuyoshi; Awaji, Toshiyuki [Center for Earth Information Science and Technology, Japan Agency for Marine-Earth Science and Technology, 3173-25 Showa-machi, Kanazawa-Ku, Yokohama 236-0001 (Japan); In, Teiji [Japan Marine Science Foundation, 4-24, Minato-cho, Mutsu, Aomori, 035-0064 (Japan); Nakada, Satoshi [Graduate School of Maritime Science, Kobe University, 5-1-1, Fukae-minamimachi, Higashinada-Ku, Kobe, 658-0022 (Japan); Nishina, Kei, E-mail: ishikaway@jamstec.go.jp [Graduate School of Science, Kyoto University, Kitashirakawaoiwake-cho, Sakyo-Ku, Kyoto, 606-8502 (Japan)

    2015-10-15

    To obtain the high-resolution analysis fields for ocean circulation, a new incremental approach is developed using a four-dimensional variational data assimilation system with nesting models. The results show that there are substantial biases when using a classical method combined with data assimilation and downscaling, caused by different dynamics resulting from the different resolutions of the models used within the nesting models. However, a remarkable reduction in biases of the low-resolution model relative to the high-resolution model was observed using our new approach in narrow strait regions, such as the Tsushima and Tsugaru straits, where the difference in the dynamics represented by the high- and low-resolution models is substantial. In addition, error reductions are demonstrated in the downstream region of these narrow channels associated with the propagation of information through the model dynamics. (paper)

  15. Predicting the emission from an incineration plant - a modelling approach

    International Nuclear Information System (INIS)

    Rohyiza Baan

    2004-01-01

    The emissions from combustion process of Municipal Solid Waste (MSW) have become an important issue in incineration technology. Resulting from unstable combustion conditions, the formation of undesirable compounds such as CO, SO 2 , NO x , PM 10 and dioxin become the source of pollution concentration in the atmosphere. The impact of emissions on criteria air pollutant concentrations could be obtained directly using ambient air monitoring equipment or predicted using dispersion modelling. Literature shows that the complicated atmospheric processes that occur in nature can be described using mathematical models. This paper will highlight the air dispersion model as a tool to relate and simulate the release and dispersion of air pollutants in the atmosphere. The technique is based on a programming approach to develop the air dispersion ground level concentration model with the use of Gaussian and Pasquil equation. This model is useful to study the consequences of various sources of air pollutant and estimating the amount of pollutants released into the air from existing emission sources. From this model, it was found that the difference in percentage of data between actual conditions and the model's prediction is about 5%. (Author)

  16. Prediction/modelling of the neutron emission from JET discharges

    Energy Technology Data Exchange (ETDEWEB)

    Jarvis, O.N. [EURATOM-UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxfordshire (United Kingdom); Conroy, S. [INF, Uppsala University, EURATOM-VR, Uppsala (Sweden)

    2002-08-01

    The neutron emission from the JET tokamak is investigated using an extensive set of diagnostics, permitting the instantaneous neutron yield, the radial profile of the neutron emission and neutron energy spectra to be studied. Apart from their importance as an immediate indication of plasma fusion performance, the customary use for neutron measurements is as a test of the internal consistency of the non-neutron diagnostic data, from which the expected neutron production can be predicted. However, because contours of equal neutron emissivity are not necessarily coincident with magnetic flux surfaces, a fully satisfactory numerical analysis requires the application of highly complex transport codes such as TRANSP. In this paper, a far simpler approach is adopted wherein the neutron emission spatial profiles are used to define the plasma geometry. A two-volume model is used, with a core volume that encompasses about (2/3) of the neutron emission and the peripheral volume the remainder. The overall approach provides an interpretation of the measured neutron data, for both deuterium and deuterium-tritium (D-T) plasma discharges, that are as accurate as the basic non-nuclear plasma data warrant. The model includes the empirical assumption that particles, along with their energies and momenta, are transported macroscopically in accordance with classical conservation laws. This first-order estimate of cross-field transport (which, for D-T plasmas, determines the D : T fuel concentration ratio in the plasma core) is fine-tuned to reproduce the experimental ion and electron temperature data. The success of this model demonstrates that the observed plasma rotation rates, temperatures and the resulting neutron emission can be broadly explained in terms of macroscopic transport. (author)

  17. Air quality modeling in the Valley of Mexico: meteorology, emissions and forecasting

    Science.gov (United States)

    Garcia-Reynoso, A.; Jazcilevich, A. D.; Diaz-Nigenda, E.; Vazquez-Morales, W.; Torres-Jardon, R.; Ruiz-Suarez, G.; Tatarko, J.; Bornstein, R.

    2007-12-01

    The Valley of Mexico presents important challenges for air quality modeling: complex terrain, a great variety of anthropogenic and natural emissions sources, and high altitude and low latitude increasing the amount of radiation flux. The modeling group at the CCA-UNAM is using and merging state of the art models to study the different aspects that influence the air quality phenomenon in the Valley of Mexico. The air quality model MCCM that uses MM5 as its meteorological input has been a valuable tool to study important features of the complex and intricate atmospheric flows on the valley, such as local confluences and vertical fumigation. Air quality modeling has allowed studying the interaction between the atmospheres of the valleys surrounding the Valley of Mexico, prompting the location of measurement stations during the MILAGRO campaign. These measurements confirmed the modeling results and expanded our knowledge of the transport of pollutants between the Valleys of Cuernavaca, Puebla and Mexico. The urban landscape of Mexico City complicates meteorological modeling. Urban-MM5, a model that explicitly takes into account the influence of buildings, houses, streets, parks and anthropogenic heat, is being implemented. Preliminary results of urban-MM5 on a small area of the city have been obtained. The current emissions inventory uses traffic database that includes hourly vehicular activity in more than 11,000 street segments, includes 23 area emissions categories, more than 1,000 industrial sources and biogenic emissions. To improve mobile sources emissions a system consisting of a traffic model and a car simulator is underway. This system will allow for high time and space resolution and takes into account motor stress due to different driving regimes. An important source of emissions in the Valley of Mexico is erosion dust. The erosion model WEPS has been integrated with MM5 and preliminary results showing dust episodes over Mexico City have been obtained. A

  18. Potential radionuclide emissions from stacks on the Hanford Site, Part 2: Dose assessment methodology using portable low-resolution gamma spectroscoy

    International Nuclear Information System (INIS)

    Barnett, J.M.

    1994-07-01

    In September 1992, the Westinghouse Hanford Company began developing an in situ measurement method to assess gamma radiation emanating from high-efficiency particulate air filters using portable low-resolution gamma spectroscopy. The purpose of the new method was to assess radioactive exhaust stack air emissions from empirical data rather than from theoretical models and to determine the potential unabated dose to an offsite theoretical maximally exposed individual. In accordance with Title 40, Code of Federal Regulations, Part 61, Subpart H, ''National Emission Standards for Hazardous Air Pollutants'', stacks that have the potential to emit ≥ 0.1 mrem per year to the maximally exposed individual are considered ''major'' and must meet the continuous monitoring requirements. After the method was tested and verified, the US Environmental Protection Agency, Region 10, approved its use in June 1993. Of the 125 stacks operated by the Westinghouse Hanford Company, 22 were targeted for evaluation by this method; and 15 were assessed. The most significant,result from this study was the redesignation. of the T Plant main stack. The stack was assessed as being ''minor'', and it now only requires periodic confirmatory measurements and meets federally imposed sampling requirements

  19. Electronic field emission models beyond the Fowler-Nordheim one

    Science.gov (United States)

    Lepetit, Bruno

    2017-12-01

    We propose several quantum mechanical models to describe electronic field emission from first principles. These models allow us to correlate quantitatively the electronic emission current with the electrode surface details at the atomic scale. They all rely on electronic potential energy surfaces obtained from three dimensional density functional theory calculations. They differ by the various quantum mechanical methods (exact or perturbative, time dependent or time independent), which are used to describe tunneling through the electronic potential energy barrier. Comparison of these models between them and with the standard Fowler-Nordheim one in the context of one dimensional tunneling allows us to assess the impact on the accuracy of the computed current of the approximations made in each model. Among these methods, the time dependent perturbative one provides a well-balanced trade-off between accuracy and computational cost.

  20. Thematic and spatial resolutions affect model-based predictions of tree species distribution.

    Science.gov (United States)

    Liang, Yu; He, Hong S; Fraser, Jacob S; Wu, ZhiWei

    2013-01-01

    Subjective decisions of thematic and spatial resolutions in characterizing environmental heterogeneity may affect the characterizations of spatial pattern and the simulation of occurrence and rate of ecological processes, and in turn, model-based tree species distribution. Thus, this study quantified the importance of thematic and spatial resolutions, and their interaction in predictions of tree species distribution (quantified by species abundance). We investigated how model-predicted species abundances changed and whether tree species with different ecological traits (e.g., seed dispersal distance, competitive capacity) had different responses to varying thematic and spatial resolutions. We used the LANDIS forest landscape model to predict tree species distribution at the landscape scale and designed a series of scenarios with different thematic (different numbers of land types) and spatial resolutions combinations, and then statistically examined the differences of species abundance among these scenarios. Results showed that both thematic and spatial resolutions affected model-based predictions of species distribution, but thematic resolution had a greater effect. Species ecological traits affected the predictions. For species with moderate dispersal distance and relatively abundant seed sources, predicted abundance increased as thematic resolution increased. However, for species with long seeding distance or high shade tolerance, thematic resolution had an inverse effect on predicted abundance. When seed sources and dispersal distance were not limiting, the predicted species abundance increased with spatial resolution and vice versa. Results from this study may provide insights into the choice of thematic and spatial resolutions for model-based predictions of tree species distribution.

  1. Model of opacity and emissivity of non-equilibrium plasma

    International Nuclear Information System (INIS)

    Politov V Y

    2008-01-01

    In this work the model describing absorption and emission properties of the non-equilibrium plasma is presented. It is based on the kinetics equations for populations of the ground, singly and doubly excited states of multi-charged ions. After solving these equations, the states populations together with the spectroscopic data, supplied in the special database for a lot ionization stages, are used for building the spectral distributions of plasma opacity and emissivity in STA approximation. Results of kinetics simulation are performed for such important X-ray converter as gold, which is investigated intensively in ICF-experiments

  2. Modelling of N21P emission rates in aurora using various cross sections for excitation

    Directory of Open Access Journals (Sweden)

    O. Jokiaho

    2009-06-01

    Full Text Available Measurements of N21P auroral emissions from the (4,1 and (5,2 bands have been made at high temporal and spatial resolution in the region of the magnetic zenith. The instrument used was the auroral imager ASK, situated at Ramfjordmoen, Norway (69.6 N, 19.2 E on 22 October 2006. Measurements from the European Incoherent Scatter Radar (EISCAT have been combined with the optical measurements, and incorporated into an ionospheric model to obtain height profiles of electron density and emission rates of the N21P bands. The radar data provide essential verification that the energy flux used in the model is correct. One of the most important inputs to the model is the cross section for excitation to the B3Πg electronic state, as well as the cross sections to higher states from which cascading into the B state occurs. The balance equations for production and loss of the populations of all levels in each state are solved in order to find the cascade contributions. Several sets of cross sections have been considered, and selected cross sections have been used to construct "emission" cross sections for the observed bands. The resulting brightnesses are compared with those measured by ASK. The importance of specific contributions from cascading is found, with more than 50% of the total brightness resulting from cascading. The cross sections used are found to produce a range of brightnesses well within the uncertainty of both the modelled and measured values.

  3. Modelling of pesticide emissions for Life Cycle Inventory analysis: Model development, applications and implications

    DEFF Research Database (Denmark)

    Dijkman, Teunis Johannes

    with variations in the climates and soils present in Europe. Emissions of pesticides to surface water and groundwater calculated by PestLCI 2.0 were compared with models used for risk assessment. Compared to the MACRO module in SWASH 3.1 model, which calculates surface water emissions by runoff and drainage...... chromatographic flow of water through the soil), which was attributed to the omission of emissions via macropore flow in the latter model. The comparison was complicated by the fact that the scenarios used were not fully identical. In order to quantify the implications of using PestLCI 2.0, human toxicity......The work presented in this thesis deals with quantification of pesticide emissions in the Life Cycle Inventory (LCI) analysis phase of Life Cycle Assessment (LCA). The motivation to model pesticide emissions is that reliable LCA results not only depend on accurate impact assessment models, but also...

  4. Modelling nitrous oxide emissions from cropland at the regional scale

    Directory of Open Access Journals (Sweden)

    Gabrielle Benoît

    2006-11-01

    Full Text Available Arable soils are a large source of nitrous oxide (N2O emissions, making up half of the biogenic emissions worldwide. Estimating their source strength requires methods capable of capturing the spatial and temporal variability of N2O emissions, along with the effects of crop management. Here, we applied a process-based model, CERES, with geo-referenced input data on soils, weather, and land use to map N2O emissions from wheat-cropped soils in three agriculturally intensive regions in France. Emissions were mostly controlled by soil type and local climate conditions, and only to a minor extent by the doses of fertilizer nitrogen applied. As a result, the direct emission factors calculated at the regional level were much smaller (ranging from 0.0007 to 0.0033 kg N2O-N kg–1 N than the value of 0.0125 kg N2O-N kg–1 N currently recommended in the IPCC Tier 1 methodology. Regional emissions were far more sensitive to the soil microbiological parameter s governing denitrification and its fraction evolved as N2O, soil bulk density, and soil initial inorganic N content. Mitigation measures should therefore target a reduction in the amount of soil inorganic N upon sowing of winter crops, and a decrease of the soil N2O production potential itself. From a general perspective, taking into account the spatial variability of soils and climate thereby appears necessary to improve the accuracy of national inventories, and to tailor mitigation strategies to regional characteristics. The methodology and results presented here may easily be transferred to winter oilseed rape, whose has growing cycle and fertilser requirements are similar.

  5. Grey forecasting model for CO2 emissions: A Taiwan study

    International Nuclear Information System (INIS)

    Lin, Chiun-Sin; Liou, Fen-May; Huang, Chih-Pin

    2011-01-01

    Highlights: → CO 2 is the most frequently implicated in global warming. → The CARMA indicates that the Taichung coal-fired power plants had the highest CO 2 emissions in the world. → GM(1,1) prediction accuracy is fairly high. → The results show that the average residual error of the GM(1,1) was below 10%. -- Abstract: Among the various greenhouse gases associated with climate change, CO 2 is the most frequently implicated in global warming. The latest data from Carbon Monitoring for Action (CARMA) shows that the coal-fired power plant in Taichung, Taiwan emitted 39.7 million tons of CO 2 in 2007 - the highest of any power plant in the world. Based on statistics from Energy International Administration, the annual CO 2 emissions in Taiwan have increased 42% from 1997 until 2006. Taiwan has limited natural resources and relies heavily on imports to meet its energy needs, and the government must take serious measures control energy consumption to reduce CO 2 emissions. Because the latest data was from 2009, this study applied the grey forecasting model to estimate future CO 2 emissions in Taiwan from 2010 until 2012. Forecasts of CO 2 emissions in this study show that the average residual error of the GM(1,1) was below 10%. Overall, the GM(1,1) predicted further increases in CO 2 emissions over the next 3 years. Although Taiwan is not a member of the United Nations and is not bound by the Kyoto Protocol, the findings of this study provide a valuable reference with which the Taiwanese government could formulate measures to reduce CO 2 emissions by curbing the unnecessary the consumption of energy.

  6. Daily and Hourly Variability in Global Fire Emissions and Consequences for Atmospheric Model Predictions of Carbon Monoxide

    Science.gov (United States)

    Mu, M.; Randerson, J. T.; van der Werf, G. R.; Giglio, L.; Kasibhatla, P.; Morton, D.; Collatz, G. J.; DeFries, R. S.; Hyer, E. J.; Prins, E. M.; hide

    2011-01-01

    Attribution of the causes of atmospheric trace gas and aerosol variability often requires the use of high resolution time series of anthropogenic and natural emissions inventories. Here we developed an approach for representing synoptic- and diurnal-scale temporal variability in fire emissions for the Global Fire Emissions Database version 3 (GFED3). We distributed monthly GFED3 emissions during 2003-2009 on a daily time step using Moderate Resolution Imaging Spectroradiometer (MODIS)-derived measurements of active fires from Terra and Aqua satellites. In parallel, mean diurnal cycles were constructed from Geostationary Operational Environmental Satellite (GOES) active fire observations. We found that patterns of daily variability in fires varied considerably across different biomes, with short but intense periods of daily emissions in boreal ecosystems and lower intensity (but more continuous) periods of bunting in savannas. On diurnal timescales, our analysis of the GOES active fires indicated that fires in savannas, grasslands, and croplands occurred earlier in the day as compared to fires in nearby forests. Comparison with Total Carbon Column Observing Network (TCCON) and Measurements of Pollution in the Troposphere (MOPITT) column CO observations provided evidence that including daily variability in emissions moderately improved atmospheric model simulations, particularly during the fire season and near regions with high levels of biomass burning. The high temporal resolution estimates of fire emissions developed here may ultimately reduce uncertainties related to fire contributions to atmospheric trace gases and aerosols. Important future directions include reconciling top-down and bottom up estimates of fire radiative power and integrating burned area and active fire time series from multiple satellite sensors to improve daily emissions estimates.

  7. Methods for Developing Emissions Scenarios for Integrated Assessment Models

    Energy Technology Data Exchange (ETDEWEB)

    Prinn, Ronald [MIT; Webster, Mort [MIT

    2007-08-20

    The overall objective of this research was to contribute data and methods to support the future development of new emissions scenarios for integrated assessment of climate change. Specifically, this research had two main objectives: 1. Use historical data on economic growth and energy efficiency changes, and develop probability density functions (PDFs) for the appropriate parameters for two or three commonly used integrated assessment models. 2. Using the parameter distributions developed through the first task and previous work, we will develop methods of designing multi-gas emission scenarios that usefully span the joint uncertainty space in a small number of scenarios. Results on the autonomous energy efficiency improvement (AEEI) parameter are summarized, an uncertainty analysis of elasticities of substitution is described, and the probabilistic emissions scenario approach is presented.

  8. A model for energy pricing with stochastic emission costs

    International Nuclear Information System (INIS)

    Elliott, Robert J.; Lyle, Matthew R.; Miao, Hong

    2010-01-01

    We use a supply-demand approach to value energy products exposed to emission cost uncertainty. We find closed form solutions for a number of popularly traded energy derivatives such as: forwards, European call options written on spot prices and European Call options written on forward contracts. Our modeling approach is to first construct noisy supply and demand processes and then equate them to find an equilibrium price. This approach is very general while still allowing for sensitivity analysis within a valuation setting. Our assumption is that, in the presence of emission costs, traditional supply growth will slow down causing output prices of energy products to become more costly over time. However, emission costs do not immediately cause output price appreciation, but instead expose individual projects, particularly those with high emission outputs, to much more extreme risks through the cost side of their profit stream. Our results have implications for hedging and pricing for producers operating in areas facing a stochastic emission cost environment. (author)

  9. Modeling of methane emissions using artificial neural network approach

    Directory of Open Access Journals (Sweden)

    Stamenković Lidija J.

    2015-01-01

    Full Text Available The aim of this study was to develop a model for forecasting CH4 emissions at the national level, using Artificial Neural Networks (ANN with broadly available sustainability, economical and industrial indicators as their inputs. ANN modeling was performed using two different types of architecture; a Backpropagation Neural Network (BPNN and a General Regression Neural Network (GRNN. A conventional multiple linear regression (MLR model was also developed in order to compare model performance and assess which model provides the best results. ANN and MLR models were developed and tested using the same annual data for 20 European countries. The ANN model demonstrated very good performance, significantly better than the MLR model. It was shown that a forecast of CH4 emissions at the national level using the ANN model can be made successfully and accurately for a future period of up to two years, thereby opening the possibility to apply such a modeling technique which can be used to support the implementation of sustainable development strategies and environmental management policies. [Projekat Ministarstva nauke Republike Srbije, br. 172007

  10. Modelling the effects of spatial and temporal resolution of rainfall and basin model on extreme river discharge

    NARCIS (Netherlands)

    Booij, Martijn J.

    2002-01-01

    Important characteristics of an appropriate river basin model, intended to study the effect of climate change on basin response, are the spatial and temporal resolution of the model and the rainfall input. The effects of input and model resolution on extreme discharge of a large river basin are

  11. What is a Proper Resolution of Weather Radar Precipitation Estimates for Urban Drainage Modelling?

    DEFF Research Database (Denmark)

    Nielsen, Jesper Ellerbæk; Rasmussen, Michael R.; Thorndahl, Søren Liedtke

    2012-01-01

    The resolution of distributed rainfall input for drainage models is the topic of this paper. The study is based on data from high resolution X-band weather radar used together with an urban drainage model of a medium size Danish village. The flow, total run-off volume and CSO volume are evaluated...

  12. Climate change and high-resolution whole-building numerical modelling

    NARCIS (Netherlands)

    Blocken, B.J.E.; Briggen, P.M.; Schellen, H.L.; Hensen, J.L.M.

    2010-01-01

    This paper briefly discusses the need of high-resolution whole-building numerical modelling in the context of climate change. High-resolution whole-building numerical modelling can be used for detailed analysis of the potential consequences of climate change on buildings and to evaluate remedial

  13. Toward verifying fossil fuel CO2 emissions with the CMAQ model: motivation, model description and initial simulation.

    Science.gov (United States)

    Liu, Zhen; Bambha, Ray P; Pinto, Joseph P; Zeng, Tao; Boylan, Jim; Huang, Maoyi; Lei, Huimin; Zhao, Chun; Liu, Shishi; Mao, Jiafu; Schwalm, Christopher R; Shi, Xiaoying; Wei, Yaxing; Michelsen, Hope A

    2014-04-01

    Motivated by the question of whether and how a state-of-the-art regional chemical transport model (CTM) can facilitate characterization of CO2 spatiotemporal variability and verify CO2 fossil-fuel emissions, we for the first time applied the Community Multiscale Air Quality (CMAQ) model to simulate CO2. This paper presents methods, input data, and initial results for CO2 simulation using CMAQ over the contiguous United States in October 2007. Modeling experiments have been performed to understand the roles of fossil-fuel emissions, biosphere-atmosphere exchange, and meteorology in regulating the spatial distribution of CO2 near the surface over the contiguous United States. Three sets of net ecosystem exchange (NEE) fluxes were used as input to assess the impact of uncertainty of NEE on CO2 concentrations simulated by CMAQ. Observational data from six tall tower sites across the country were used to evaluate model performance. In particular, at the Boulder Atmospheric Observatory (BAO), a tall tower site that receives urban emissions from Denver CO, the CMAQ model using hourly varying, high-resolution CO2 fossil-fuel emissions from the Vulcan inventory and Carbon Tracker optimized NEE reproduced the observed diurnal profile of CO2 reasonably well but with a low bias in the early morning. The spatial distribution of CO2 was found to correlate with NO(x), SO2, and CO, because of their similar fossil-fuel emission sources and common transport processes. These initial results from CMAQ demonstrate the potential of using a regional CTM to help interpret CO2 observations and understand CO2 variability in space and time. The ability to simulate a full suite of air pollutants in CMAQ will also facilitate investigations of their use as tracers for CO2 source attribution. This work serves as a proof of concept and the foundation for more comprehensive examinations of CO2 spatiotemporal variability and various uncertainties in the future. Atmospheric CO2 has long been modeled

  14. A statistical model for field emission in superconducting cavities

    International Nuclear Information System (INIS)

    Padamsee, H.; Green, K.; Jost, W.; Wright, B.

    1993-01-01

    A statistical model is used to account for several features of performance of an ensemble of superconducting cavities. The input parameters are: the number of emitters/area, a distribution function for emitter β values, a distribution function for emissive areas, and a processing threshold. The power deposited by emitters is calculated from the field emission current and electron impact energy. The model can successfully account for the fraction of tests that reach the maximum field Epk in an ensemble of cavities, for eg, 1-cells at sign 3 GHz or 5-cells at sign 1.5 GHz. The model is used to predict the level of power needed to successfully process cavities of various surface areas with high pulsed power processing (HPP)

  15. The Supercritical Pile Model: Prompt Emission Across the Electromagnetic Spectrum

    Science.gov (United States)

    Kazanas, Demos; Mastichiadis, A.

    2008-01-01

    The "Supercritical Pile" GRB model is an economical model that provides the dissipation necessary to convert explosively the energy stored in relativistic protons in the blast wave of a GRB into radiation; at the same time it produces spectra whose luminosity peaks at 1 MeV in the lab frame, the result of the kinematics of the proton-photon - pair production reaction that effects the conversion of proton energy to radiation. We outline the fundamental notions behind the "Supercritical Pile" model and discuss the resulting spectra of the prompt emission from optical to gamma-ray energies of order Gamma^2 m_ec^2, (Gamma is the Lorentz factor of the blast wave) present even in the absence of an accelerated particle distribution and compare our results to bursts that cover this entire energy range. Particular emphasis is given on the emission at the GLAST energy range both in the prompt and the afterglow stages of the burst.

  16. Mapping pan-Arctic CH4 emissions using an adjoint method by integrating process-based wetland and lake biogeochemical models and atmospheric CH4 concentrations

    Science.gov (United States)

    Tan, Z.; Zhuang, Q.; Henze, D. K.; Frankenberg, C.; Dlugokencky, E. J.; Sweeney, C.; Turner, A. J.

    2015-12-01

    Understanding CH4 emissions from wetlands and lakes are critical for the estimation of Arctic carbon balance under fast warming climatic conditions. To date, our knowledge about these two CH4 sources is almost solely built on the upscaling of discontinuous measurements in limited areas to the whole region. Many studies indicated that, the controls of CH4 emissions from wetlands and lakes including soil moisture, lake morphology and substrate content and quality are notoriously heterogeneous, thus the accuracy of those simple estimates could be questionable. Here we apply a high spatial resolution atmospheric inverse model (nested-grid GEOS-Chem Adjoint) over the Arctic by integrating SCIAMACHY and NOAA/ESRL CH4 measurements to constrain the CH4 emissions estimated with process-based wetland and lake biogeochemical models. Our modeling experiments using different wetland CH4 emission schemes and satellite and surface measurements show that the total amount of CH4 emitted from the Arctic wetlands is well constrained, but the spatial distribution of CH4 emissions is sensitive to priors. For CH4 emissions from lakes, our high-resolution inversion shows that the models overestimate CH4 emissions in Alaskan costal lowlands and East Siberian lowlands. Our study also indicates that the precision and coverage of measurements need to be improved to achieve more accurate high-resolution estimates.

  17. Development of an emissions inventory model for mobile sources

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, A W; Broderick, B M [Trinity College, Dublin (Ireland). Dept. of Civil, Structural and Environmental Engineering

    2000-07-01

    Traffic represents one of the largest sources of primary air pollutants in urban areas. As a consequence, numerous abatement strategies are being pursued to decrease the ambient concentrations of a wide range of pollutants. A mutual characteristic of most of these strategies is a requirement for accurate data on both the quantity and spatial distribution of emissions to air in the form of an atmospheric emissions inventory database. In the case of traffic pollution, such an inventory must be compiled using activity statistics and emission factors for a wide range of vehicle types. The majority of inventories are compiled using 'passive' data from either surveys or transportation models and by their very nature tend to be out-of-date by the time they are compiled. Current trends are towards integrating urban traffic control systems and assessments of the environmental effects of motor vehicles. In this paper. a methodology for estimating emissions from mobile sources using real-time data is described. This methodology is used to calculate emissions of sulphur dioxide (SO{sub 2}), oxides of nitrogen (NO{sub x}), carbon monoxide (CO). volatile organic compounds (VOC), particulate matter less than 10 {mu}m aerodynamic diameter (PM{sub 10}), 1,3-butadiene (C{sub 4}H{sub 6}) and benzene (C{sub 6}H{sub 6}) at a test junction in Dublin. Traffic data, which are required on a street-by-street basis, is obtained from induction loops and closed circuit televisions (CCTV) as well as statistical data. The observed traffic data are compared to simulated data from a travel demand model. As a test case, an emissions inventory is compiled for a heavily trafficked signalized junction in an urban environment using the measured data. In order that the model may be validated, the predicted emissions are employed in a dispersion model along with local meteorological conditions and site geometry. The resultant pollutant concentrations are compared to average ambient kerbside conditions

  18. A spatial modeling framework to evaluate domestic biofuel-induced potential land use changed and emissions

    Science.gov (United States)

    Elliot, Joshua; Sharma, Bhavna; Best, Neil; Glotter, Michael; Dunn, Jennifer B.; Foster, Ian; Miguez, Fernando; Mueller, Steffen; Wang, Michael

    2014-01-01

    We present a novel bottom-up approach to estimate biofuel-induced land-use change (LUC) and resulting CO2 emissions in the U.S. from 2010 to 2022, based on a consistent methodology across four essential components: land availability, land suitability, LUC decision-making, and induced CO2 emissions. Using highresolution geospatial data and modeling, we construct probabilistic assessments of county-, state-, and national-level LUC and emissions for macroeconomic scenarios. We use the Cropland Data Layer and the Protected Areas Database to characterize availability of land for biofuel crop cultivation, and the CERES-Maize and BioCro biophysical crop growth models to estimate the suitability (yield potential) of available lands for biofuel crops. For LUC decisionmaking, we use a county-level stochastic partial-equilibrium modeling framework and consider five scenarios involving annual ethanol production scaling to 15, 22, and 29 BG, respectively, in 2022, with corn providing feedstock for the first 15 BG and the remainder coming from one of two dedicated energy crops. Finally, we derive high-resolution above-ground carbon factors from the National Biomass and Carbon Data set to estimate emissions from each LUC pathway. Based on these inputs, we obtain estimates for average total LUC emissions of 6.1, 2.2, 1.0, 2.2, and 2.4 gCO2e/MJ for Corn-15 Billion gallons (BG), Miscanthus × giganteus (MxG)-7 BG, Switchgrass (SG)-7 BG, MxG-14 BG, and SG-14 BG scenarios, respectively.

  19. Objective Tuning of Model Parameters in CAM5 Across Different Spatial Resolutions

    Science.gov (United States)

    Bulaevskaya, V.; Lucas, D. D.

    2014-12-01

    Parameterizations of physical processes in climate models are highly dependent on the spatial and temporal resolution and must be tuned for each resolution under consideration. At high spatial resolutions, objective methods for parameter tuning are computationally prohibitive. Our work has focused on calibrating parameters in the Community Atmosphere Model 5 (CAM5) for three spatial resolutions: 1, 2, and 4 degrees. Using perturbed-parameter ensembles and uncertainty quantification methodology, we have identified input parameters that minimize discrepancies of energy fluxes simulated by CAM5 across the three resolutions and with respect to satellite observations. We are also beginning to exploit the parameter-resolution relationships to objectively tune parameters in a high-resolution version of CAM5 by leveraging cheaper, low-resolution simulations and statistical models. We will present our approach to multi-resolution climate model parameter tuning, as well as the key findings. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344 and was supported from the DOE Office of Science through the Scientific Discovery Through Advanced Computing (SciDAC) project on Multiscale Methods for Accurate, Efficient, and Scale-Aware Models of the Earth System.

  20. Interaction between combustion and turbulence in modelling of emissions

    International Nuclear Information System (INIS)

    Oksanen, A.; Maeki-Mantila, E.

    1996-01-01

    The aim of the work was to study the combustion models taking into account the coupling between gas phase reactions and turbulence the modelling of emissions, especially of nitric oxide, when temperature and species concentrations are fluctuating by turbulence. The principal tools to model turbulent gas phase combustion were methods based on the probability density function (pdf) with β and γ-distributions the practice of which can take into consideration the stochastic nature of turbulence and, on the other hand, the models which also include the effect turbulence on the reaction rates in the flames e.g. the Eddy Dissipation Model (EDM), the Eddy Dissipation Concept (EDC), the kinetic mod and the combinations of those ones, respectively. Besides these models effect of the different turbulence models (standard, RNG and CHENKIM k-ε models) on the combustion phenomena, especially on the formation emissions was also studied. Same kind of modelling has been done by the teams in the Special Interest Group of ERCOFTAC (European Research Community On Flow Turbulence And Combustion) under the title of Aerodynamics and Steady State Combustion Chambers and Furnaces (A.S.C.F.) with which we have co-operated during some years with success. (author)

  1. Assessment of prediction skill in equatorial Pacific Ocean in high resolution model of CFS

    Science.gov (United States)

    Arora, Anika; Rao, Suryachandra A.; Pillai, Prasanth; Dhakate, Ashish; Salunke, Kiran; Srivastava, Ankur

    2018-01-01

    The effect of increasing atmospheric resolution on prediction skill of El Niño southern oscillation phenomenon in climate forecast system model is explored in this paper. Improvement in prediction skill for sea surface temperature (SST) and winds at all leads compared to low resolution model in the tropical Indo-Pacific basin is observed. High resolution model is able to capture extreme events reasonably well. As a result, the signal to noise ratio is improved in the high resolution model. However, spring predictability barrier (SPB) for summer months in Nino 3 and Nino 3.4 region is stronger in high resolution model, in spite of improvement in overall prediction skill and dynamics everywhere else. Anomaly correlation coefficient of SST in high resolution model with observations in Nino 3.4 region targeting boreal summer months when predicted at lead times of 3-8 months in advance decreased compared its lower resolution counterpart. It is noted that higher variance of winds predicted in spring season over central equatorial Pacific compared to observed variance of winds results in stronger than normal response on subsurface ocean, hence increases SPB for boreal summer months in high resolution model.

  2. Regional modelling of tracer transport by tropical convection – Part 2: Sensitivity to model resolutions

    Directory of Open Access Journals (Sweden)

    J. Arteta

    2009-09-01

    Full Text Available The general objective of this series of two papers is to evaluate long duration limited-area simulations with idealised tracers as a possible tool to assess the tracer transport in chemistry-transport models (CTMs. In this second paper we analyse the results of three simulations using different horizontal and vertical resolutions. The goal is to study the impact of the model spatial resolution on convective transport of idealized tracer in the tropics. The reference simulation (REF uses a 60 km horizontal resolution and 300 m vertically in the upper troposphere/lower stratosphere (UTLS. A 20 km horizontal resolution simulation (HR is run as well as a simulation with 850 m vertical resolution in the UTLS (CVR. The simulations are run for one month during the SCOUT-O3 field campaign. Aircraft data, TRMM rainrate estimates and radiosoundings have been used to evaluate the simulations. They show that the HR configuration gives generally a better agreement with the measurements than the REF simulation. The CVR simulation gives generally the worst results. The vertical distribution of the tropospheric tracers for the simulations has a similar shape with a ~15 km altitude maximum for the 6h-lifetime tracer of 0.4 ppbv for REF, 1.2 for HR and 0.04 for CVR. These differences are related to the dynamics produced by the three simulations that leads to larger values of the upward velocities on average for HR and lower for CVR compared to REF. HR simulates more frequent and stronger convection leading to enhanced fluxes compared to REF and higher detrainment levels compared to CVR. HR provides also occasional overshoots over the cold point dynamical barrier. For the stratospheric tracers the differences between the three simulations are small. The diurnal cycle of the fluxes of all tracers in the Tropical Tropopause Layer exhibits a maximum linked to the maximum of convective activity.

  3. PV Hosting Capacity Analysis and Enhancement Using High Resolution Stochastic Modeling

    Directory of Open Access Journals (Sweden)

    Emilio J. Palacios-Garcia

    2017-09-01

    Full Text Available Reduction of CO2 emissions is a main target in the future smart grid. This goal is boosting the installation of renewable energy resources (RES, as well as a major consumer engagement that seeks for a more efficient utilization of these resources toward the figure of ‘prosumers’. Nevertheless, these resources present an intermittent nature, which requires the presence of an energy storage system and an energy management system (EMS to ensure an uninterrupted power supply. Moreover, network-related issues might arise due to the increasing power of renewable resources installed in the grid, the storage systems also being capable of contributing to the network stability. However, to assess these future scenarios and test the control strategies, a simulation system is needed. The aim of this paper is to analyze the interaction between residential consumers with high penetration of PV generation and distributed storage and the grid by means of a high temporal resolution simulation scenario based on a stochastic residential load model and PV production records. Results of the model are presented for different PV power rates and storage capacities, as well as a two-level charging strategy as a mechanism for increasing the hosting capacity (HC of the network.

  4. Development of a modal emissions model using data from the Cooperative Industry/Government Exhaust Emission test program

    Science.gov (United States)

    2003-06-22

    The Environmental Protection Agencys (EPAs) recommended model, MOBILE5a, has been : used extensively to predict emission factors based on average speeds for each fleet type. : Because average speeds are not appropriate in modeling intersections...

  5. Innovations in projecting emissions for air quality modeling ...

    Science.gov (United States)

    Air quality modeling is used in setting air quality standards and in evaluating their costs and benefits. Historically, modeling applications have projected emissions and the resulting air quality only 5 to 10 years into the future. Recognition that the choice of air quality management strategy has climate change implications is encouraging longer modeling time horizons. However, for multi-decadal time horizons, many questions about future conditions arise. For example, will current population, economic, and land use trends continue, or will we see shifts that may alter the spatial and temporal pattern of emissions? Similarly, will technologies such as building-integrated solar photovoltaics, battery storage, electric vehicles, and CO2 capture emerge as disruptive technologies - shifting how we produce and use energy - or will these technologies achieve only niche markets and have little impact? These are some of the questions that are being evaluated by researchers within the U.S. EPA’s Office of Research and Development. In this presentation, Dr. Loughlin will describe a range of analytical approaches that are being explored. These include: (i) the development of alternative scenarios of the future that can be used to evaluate candidate management strategies over wide-ranging conditions, (ii) the application of energy system models to project emissions decades into the future and to assess the environmental implications of new technologies, (iii) and methodo

  6. A prognostic pollen emissions model for climate models (PECM1.0

    Directory of Open Access Journals (Sweden)

    M. C. Wozniak

    2017-11-01

    Full Text Available We develop a prognostic model called Pollen Emissions for Climate Models (PECM for use within regional and global climate models to simulate pollen counts over the seasonal cycle based on geography, vegetation type, and meteorological parameters. Using modern surface pollen count data, empirical relationships between prior-year annual average temperature and pollen season start dates and end dates are developed for deciduous broadleaf trees (Acer, Alnus, Betula, Fraxinus, Morus, Platanus, Populus, Quercus, Ulmus, evergreen needleleaf trees (Cupressaceae, Pinaceae, grasses (Poaceae; C3, C4, and ragweed (Ambrosia. This regression model explains as much as 57 % of the variance in pollen phenological dates, and it is used to create a climate-flexible phenology that can be used to study the response of wind-driven pollen emissions to climate change. The emissions model is evaluated in the Regional Climate Model version 4 (RegCM4 over the continental United States by prescribing an emission potential from PECM and transporting pollen as aerosol tracers. We evaluate two different pollen emissions scenarios in the model using (1 a taxa-specific land cover database, phenology, and emission potential, and (2 a plant functional type (PFT land cover, phenology, and emission potential. The simulated surface pollen concentrations for both simulations are evaluated against observed surface pollen counts in five climatic subregions. Given prescribed pollen emissions, the RegCM4 simulates observed concentrations within an order of magnitude, although the performance of the simulations in any subregion is strongly related to the land cover representation and the number of observation sites used to create the empirical phenological relationship. The taxa-based model provides a better representation of the phenology of tree-based pollen counts than the PFT-based model; however, we note that the PFT-based version provides a useful and climate-flexible emissions

  7. Radio emission from symbiotic stars: a binary model

    International Nuclear Information System (INIS)

    Taylor, A.R.; Seaquist, E.R.

    1985-01-01

    The authors examine a binary model for symbiotic stars to account for their radio properties. The system is comprised of a cool, mass-losing star and a hot companion. Radio emission arises in the portion of the stellar wind photo-ionized by the hot star. Computer simulations for the case of uniform mass loss at constant velocity show that when less than half the wind is ionized, optically thick spectral indices greater than +0.6 are produced. Model fits to radio spectra allow the binary separation, wind density and ionizing photon luminosity to be calculated. They apply the model to the symbiotic star H1-36. (orig.)

  8. Bayesian modelling of the emission spectrum of the Joint European Torus Lithium Beam Emission Spectroscopy system.

    Science.gov (United States)

    Kwak, Sehyun; Svensson, J; Brix, M; Ghim, Y-C

    2016-02-01

    A Bayesian model of the emission spectrum of the JET lithium beam has been developed to infer the intensity of the Li I (2p-2s) line radiation and associated uncertainties. The detected spectrum for each channel of the lithium beam emission spectroscopy system is here modelled by a single Li line modified by an instrumental function, Bremsstrahlung background, instrumental offset, and interference filter curve. Both the instrumental function and the interference filter curve are modelled with non-parametric Gaussian processes. All free parameters of the model, the intensities of the Li line, Bremsstrahlung background, and instrumental offset, are inferred using Bayesian probability theory with a Gaussian likelihood for photon statistics and electronic background noise. The prior distributions of the free parameters are chosen as Gaussians. Given these assumptions, the intensity of the Li line and corresponding uncertainties are analytically available using a Bayesian linear inversion technique. The proposed approach makes it possible to extract the intensity of Li line without doing a separate background subtraction through modulation of the Li beam.

  9. Uncertainty of global summer precipitation in the CMIP5 models: a comparison between high-resolution and low-resolution models

    Science.gov (United States)

    Huang, Danqing; Yan, Peiwen; Zhu, Jian; Zhang, Yaocun; Kuang, Xueyuan; Cheng, Jing

    2018-04-01

    The uncertainty of global summer precipitation simulated by the 23 CMIP5 CGCMs and the possible impacts of model resolutions are investigated in this study. Large uncertainties exist over the tropical and subtropical regions, which can be mainly attributed to convective precipitation simulation. High-resolution models (HRMs) and low-resolution models (LRMs) are further investigated to demonstrate their different contributions to the uncertainties of the ensemble mean. It shows that the high-resolution model ensemble means (HMME) and low-resolution model ensemble mean (LMME) mitigate the biases between the MME and observation over most continents and oceans, respectively. The HMME simulates more precipitation than the LMME over most oceans, but less precipitation over some continents. The dominant precipitation category in the HRMs (LRMs) is the heavy precipitation (moderate precipitation) over the tropic regions. The combinations of convective and stratiform precipitation are also quite different: the HMME has much higher ratio of stratiform precipitation while the LMME has more convective precipitation. Finally, differences in precipitation between the HMME and LMME can be traced to their differences in the SST simulations via the local and remote air-sea interaction.

  10. A comprehensive ammonia emission inventory with high-resolution and its evaluation in the Beijing-Tianjin-Hebei (BTH) region, China

    Science.gov (United States)

    Zhou, Ying; Shuiyuan Cheng; Lang, Jianlei; Chen, Dongsheng; Zhao, Beibei; Liu, Chao; Xu, Ran; Li, Tingting

    2015-04-01

    A comprehensive ammonia (NH3) emission inventory for the Beijing-Tianjin-Hebei (BTH) region was developed based on the updated source-specific emission factors (EFs) and the county-level activity data obtained from a full-coverage investigation launched in the BTH region for the first time. The NH3 emission inventory within 1 km × 1 km grid was generated using source-based spatial surrogates with geographical information system (GIS) technology. The total NH3 emission was 1573.7 Gg for the year 2010. The contributions from livestock, farmland, human, biomass burning, chemical industry, fuel combustion, waste disposal and on-road mobile source were approximately 56.6%, 28.6%, 7.2%, 3.4%, 1.1%, 1.3%, 1.0% and 0.8%, respectively. Among different cities, Shijiazhang, Handan, Xingtai, Tangshan and Cangzhou had higher NH3 emissions. Statistical analysis aiming at county-level emission of 180 counties in BTH indicated that the NH3 emission in most of the counties were less than 16 Gg. The maximum value of the county level emission was approximately 25.5 Gg. Higher NH3 emission was concentrated in the areas with more rural and agricultural activity. Monthly, higher NH3 emission occurred during the period from April to September, which could be attributed to the temperature and timing of planting practice. The validity of the estimated emissions were further evaluated from multiple perspectives covering (1) uncertainty analysis based on Monte Carlo simulation, (2) comparison with other studies, (3) quantitative analysis of improvement in spatial resolution of activity data, and (4) verification based on a comparison of the simulated and observed surface concentrations of ammonium. The detailed and validated ammonia emission inventory could provide valuable information for understanding air pollution formation mechanisms and help guide decision-making with respect to control strategies.

  11. Sub-100 ps coincidence time resolution for positron emission tomography with LSO:Ce codoped with Ca

    CERN Document Server

    Nemallapudi, Mythra Varun; Lecoq, Paul; Auffray, Etiennette; Ferri, Alessandro; Gola, Alberto; Piemonte, Claudio

    2015-01-01

    The coincidence time resolution (CTR) becomes a key parameter of 511keV gamma detection in time of flight positron emission tomography (TOF-PET). This is because additional information obtained through timing leads to a better noise suppression and therefore a better signal to noise ratio in the reconstructed image. In this paper we present the results of CTR measurements on two different SiPM technologies from FBK coupled to LSO:Ce codoped 0.4%Ca crystals. We compare the measurements performed at two separate test setups, i.e. at CERN and at FBK, showing that the obtained results agree within a few percent. We achieve a best CTR value of 85  ±  4 ps FWHM for 2  ×  2  ×  3 mm3 LSO:Ce codoped 0.4%Ca crystals, thus breaking the 100 ps barrier with scintillators similar to LSO:Ce or LYSO:Ce. We also demonstrate that a CTR of 140  ±  5 ps can be achieved for longer 2  ×  2  ×  20 mm3 crystals, which can readily be implemented in the current generation PET syst...

  12. Possibilities of High Resolution Inductively Coupled Plasma Optical Emission Spectrometry in the Determination of Trace Elements in Environmental Materials

    Directory of Open Access Journals (Sweden)

    Nikolaya Velitchkova

    2013-01-01

    Full Text Available This paper presents new quantitative data for the spectral interferences obtained by high resolution 40.68 MHz radial viewing inductively coupled plasma optical emission spectrometry (HR-ICP-OES in the determination of Zn, Cd, Sb, Cu, Mn, Pb, Sn, Cr, U, and Ba in environmental materials in the presence of a complex matrix, containing Al, Ca, Fe, Mg, and Ti. The -concept for quantification of spectral interferences was used. The optimum line selection for trace analysis of a variety of multicomponent matrices requires the choice of prominent lines, which are free or negligibly influenced by line interference problems. The versatility of -concept as basic methodology was experimentally demonstrated in the determination of trace of elements in soil and drinking water. The detection limits are lower in comparison with corresponding threshold concentration levels for soil and drinking water in accordance with environmental regulations. This paper shows the possibilities of present day ICP-OES equipment in the direct determination of trace elements (without preconcentration of impurities in environmental samples.

  13. Modelling the ArH+ emission from the Crab nebula

    Science.gov (United States)

    Priestley, F. D.; Barlow, M. J.; Viti, S.

    2017-12-01

    We have performed combined photoionization and photodissociation region (PDR) modelling of a Crab nebula filament subjected to the synchrotron radiation from the central pulsar wind nebula, and to a high flux of charged particles; a greatly enhanced cosmic-ray ionization rate over the standard interstellar value, ζ0, is required to account for the lack of detected [C I] emission in published Herschel SPIRE FTS observations of the Crab nebula. The observed line surface brightness ratios of the OH+ and ArH+ transitions seen in the SPIRE FTS frequency range can only be explained with both a high cosmic-ray ionization rate and a reduced ArH+ dissociative recombination rate compared to that used by previous authors, although consistent with experimental upper limits. We find that the ArH+/OH+ line strengths and the observed H2 vibration-rotation emission can be reproduced by model filaments with nH = 2 × 104 cm-3, ζ = 107ζ0 and visual extinctions within the range found for dusty globules in the Crab nebula, although far-infrared emission from [O I] and [C II] is higher than the observational constraints. Models with nH = 1900 cm-3 underpredict the H2 surface brightness, but agree with the ArH+ and OH+ surface brightnesses and predict [O I] and [C II] line ratios consistent with observations. These models predict HeH+ rotational emission above detection thresholds, but consideration of the formation time-scale suggests that the abundance of this molecule in the Crab nebula should be lower than the equilibrium values obtained in our analysis.

  14. Modeling methane emission via the infinite moving average process

    Czech Academy of Sciences Publication Activity Database

    Jordanova, D.; Dušek, Jiří; Stehlík, M.

    2013-01-01

    Roč. 122, - (2013), s. 40-49 ISSN 0169-7439 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073; GA ČR(CZ) GAP504/11/1151 Institutional support: RVO:67179843 Keywords : Environmental chemistry * Pareto tails * t-Hill estimator * Weak consistency * Moving average process * Methane emission model Subject RIV: EH - Ecology, Behaviour Impact factor: 2.381, year: 2013

  15. Inverse Modeling of Emissions and their Time Profiles

    Czech Academy of Sciences Publication Activity Database

    Resler, Jaroslav; Eben, Kryštof; Juruš, Pavel; Liczki, Jitka

    2010-01-01

    Roč. 1, č. 4 (2010), s. 288-295 ISSN 1309-1042 R&D Projects: GA MŽP SP/1A4/107/07 Grant - others:COST(XE) ES0602 Institutional research plan: CEZ:AV0Z10300504 Keywords : 4DVar * inverse modeling * diurnal time profile of emission * CMAQ adjoint * satellite observations Subject RIV: DG - Athmosphere Sciences, Meteorology

  16. Development of odorous gas model using municipal solid waste emission

    International Nuclear Information System (INIS)

    Mohd Nahar bin Othman; Muhd Noor Muhd Yunus; Ku Halim Ku Hamid

    2010-01-01

    The impact of ambient odour in the vicinity of the Semenyih MSW processing plant, commonly known as RDF plant, can be very negative to the nearby population, causing public restlessness and consequently affecting the business operation and sustainability of the plant. The precise source of the odour, types, emission level and the meteorological conditions are needed to predict and established the ambient odour level at the perimeter fence of the plant and address it with respect to the ambient standards. To develop the odour gas model for the purpose of treatment is very compulsory because in MSW odour it contain many component of chemical that contribute the smell. Upon modelling using an established package as well as site measurements, the odour level at the perimeter fence of the plant was deduced and found to be marginally high, above the normal ambient level. Based on this issue, a study was made to model odour using Ausplume Model. This paper will address and discuss the measurement of ambient gas odour, the dispersion modelling to establish the critical ambient emission level, as well as experimental validation using a simulated odour. The focus will be made on exploring the use of Ausplume modelling to develop the pattern of odour concentrations for various condition and times, as well as adapting the model for MSW odour controls. (author)

  17. Voluminal modelling for the characterization of wastes packages by gamma emission computed tomography

    International Nuclear Information System (INIS)

    Pettier, J.L.; Thierry, R.

    2001-01-01

    The aim of this work is to model the measurement process used for multi-photon emission computed tomography on nuclear waste drum. Our model MEPHISTO (Multi-Energy PHoton Imagery through Segmented TOmography) takes into account all phenomena influencing gamma emergent flux and high resolution spectrometric measurements using an HpGe detector through a collimator aperture. These phenomena are absorption and Compton scattering of gamma photons in waste drum, geometrical blur, spatial and energetic response of the detector. The analysis of results shows better localisation and quantification performances compared with a Ray-Driven method. It proves the importance of an accurate modelization of collimated measurements to reduce noise and stabilize iterative image reconstructions. (authors)

  18. "Updates to Model Algorithms & Inputs for the Biogenic Emissions Inventory System (BEIS) Model"

    Science.gov (United States)

    We have developed new canopy emission algorithms and land use data for BEIS. Simulations with BEIS v3.4 and these updates in CMAQ v5.0.2 are compared these changes to the Model of Emissions of Gases and Aerosols from Nature (MEGAN) and evaluated the simulations against observatio...

  19. Modelling Southern Africa Air Quality and Atmosphere: Importance and Interplay of Natural and Anthropogenic Emissions

    Science.gov (United States)

    Garland, R. M.; Naidoo, M.; Dedekind, Z.; Sibiya, B.; Piketh, S.; Engelbrecht, C. J.; Engelbrecht, F.

    2017-12-01

    Many parts of the southern hemisphere are linked in part due to the strong impact that emissions from natural sources, such as large biomass burning events and marine sources, as well as growing anthropogenic emission sources. Most of southern Africa has an arid to semi-arid climate that is strongly impacted by biomass burning, biogenic and dust emissions. In addition, there are areas of growing industrialization and urbanization that contributes to poor air quality. This air pollution can impact not only human health, but also agriculture, ecosystems, and the climate. This presentation will highlight on-going research to simulate the southern Africa atmosphere and impacts, with a focus on the interplay and relative importance of natural and anthropogenic emissions. The presentation will discuss the simulated sensitivity of the southern African climate to aerosol particles to highlight the importance of natural sources. These historical simulations (1979-2012) were performed with CCAM and are towards the development of the first Africa-led earth systems model. The analysis focused on the simulated sensitivity of the climate and clouds off the southwestern coast of Africa to aerosol particles. The interplay between natural and anthropogenic sources on air pollution will be highlighted using the Waterberg region of South Africa as a case study. CAMx was run at 2km resolution for 2013 using local emission inventories and meteorological output from CCAM to simulate the air quality of the region. These simulations estimate that, on average in the summer, up to 20% of ozone in and around a power plant plume is attributable to biogenic sources of VOCs, with ozone peaks of up to 120ppb; highlighting the importance of understanding the mix of pollutants in this area. In addition to presenting results from this study, the challenges in modelling will be highlighted. These challenges include very few or no measurements that are important to understand, and then accurately

  20. Modelling lifestyle effects on energy demand and related emissions

    International Nuclear Information System (INIS)

    Weber, C.

    2000-01-01

    An approach to analyse and quantify the impact of lifestyle factors on current and future energy demand is developed. Thereby not only directly environmentally relevant consumer activities such as car use or heating have been analysed, but also expenditure patterns which induce environmental damage through the production of the consumed goods. The use of household survey data from the national statistical offices offers the possibility to cover this wide range of activities. For the available social-economic household characteristics a variety of different behavioural patterns have been observed. For evaluating the energy and emission consequences of the consumed goods enhanced input-output models are used. The additions implemented - a mixed monetary-energetic approach for inter-industry flows and a separate treatment of transport -related emissions - improve the reliability of the obtained results. The developed approach has been used for analysing current emissions profiles and distributions in West Germany, France and the Netherlands as well as scenarios for future energy demand and related emissions. It therefore provides a comprehensive methodology to analyse environmental effects in a consumer and citizen perspective and thus contributes to an increase transparency of complex economic and ecological interconnections. (author)

  1. Research for obtaining a detection system with high spatial and temporal resolution for a tomograph with positron emission (PET-Tomography)

    International Nuclear Information System (INIS)

    Cruceru, Ilie; Bartos, Daniel; Stanescu, Daniela

    2002-01-01

    This report describes a new type of detector for a tomograph system with positron emission. The detector has a new design with detection characteristics better than other detectors used currently in tomographic systems. We have in view the detectors like NaI(Tl), CsI(Tl), BGO and others. The new detector is based on discharge in gases and the interaction of gamma radiation - generated in the annihilation processes of positrons - with the mixture of gases within detector. The main novelty is the structure of electrodes with central readout microstrip plate. This structure is composed from two identical chambers. Each of these chambers have two glass resistive electrodes and one metallic electrode (cathode). One of the glass electrodes is separated from the metallic electrode while the other one is in contact with the central readout microstrip plate. In this way to gaps of 0.3 mm are generated. The gas mixture flows between these gaps. The electric charges generated in this gas are collected on the strips under the influence of the electric field applied between cathode and the anode of the detector.The arrangement of electrodes is shown. The structure of electrodes is mounted into a metallic box of special construction which allows the gas to flow through the detector and collects the electric charges generated in the detector. At present the detector is in the stage of a laboratory model and the tests carried out led to the following detection parameters: detection efficiency, 95%; spatial resolution, 3 mm; time resolution, 82 ps. The measurements were performed in coincidence using two similar detectors and the source of positrons was located between detectors. In the next stage of research will be defined the final constructive solution of the experimental model, built and tested for this positron source. The mixture of gases used for tests contained 85%C 2 H 2 F 4 + 10%SF 6 + 5%C 4 H 10 (isobutane). (authors)

  2. Tuneable resolution as a systems biology approach for multi-scale, multi-compartment computational models.

    Science.gov (United States)

    Kirschner, Denise E; Hunt, C Anthony; Marino, Simeone; Fallahi-Sichani, Mohammad; Linderman, Jennifer J

    2014-01-01

    The use of multi-scale mathematical and computational models to study complex biological processes is becoming increasingly productive. Multi-scale models span a range of spatial and/or temporal scales and can encompass multi-compartment (e.g., multi-organ) models. Modeling advances are enabling virtual experiments to explore and answer questions that are problematic to address in the wet-lab. Wet-lab experimental technologies now allow scientists to observe, measure, record, and analyze experiments focusing on different system aspects at a variety of biological scales. We need the technical ability to mirror that same flexibility in virtual experiments using multi-scale models. Here we present a new approach, tuneable resolution, which can begin providing that flexibility. Tuneable resolution involves fine- or coarse-graining existing multi-scale models at the user's discretion, allowing adjustment of the level of resolution specific to a question, an experiment, or a scale of interest. Tuneable resolution expands options for revising and validating mechanistic multi-scale models, can extend the longevity of multi-scale models, and may increase computational efficiency. The tuneable resolution approach can be applied to many model types, including differential equation, agent-based, and hybrid models. We demonstrate our tuneable resolution ideas with examples relevant to infectious disease modeling, illustrating key principles at work. © 2014 The Authors. WIREs Systems Biology and Medicine published by Wiley Periodicals, Inc.

  3. A highly spatially resolved GIS-based model to assess the isoprenoid emissions from key Italian ecosystems

    Science.gov (United States)

    Pacheco, Claudia Kemper; Fares, Silvano; Ciccioli, Paolo

    2014-10-01

    The amount of Biogenic Volatile Organic Compounds (BVOC) emitted from terrestrial vegetation is of great importance in atmospheric reactivity, particularly for ozone-forming reactions and as condensation nuclei in aerosol formation and growth. This work presents a detailed inventory of isoprenoid emissions from vegetation in Italy using an original approach which combines state of the art models to estimate the species-specific isoprenoid emissions and a Geographic Information System (GIS) where emissions are spatially represented. Isoprenoid species and basal emission factors were obtained by combining results from laboratory experiments with those published in literature. For the first time, our investigation was not only restricted to isoprene and total monoterpenes, but our goal was to provide maps of isoprene and individual monoterpenes at a high-spatial (∼1 km2) and temporal resolution (daily runs, monthly trends in emissions are discussed in the text). Another novelty in our research was the inclusion of the effects of phenology on plant emissions. Our results show that: a) isoprene, a-pinene, sabinene and b-pinene are the most important compounds emitted from vegetation in Italy; b) annual biogenic isoprene and monoterpene fluxes for the year 2006 were ∼31.30 Gg and ∼37.70 Gg, respectively; and c) Quercus pubescens + Quercus petrea + Quercus robur, Quercus ilex, Quercus suber and Fagus sylvatica are the principal isoprenoid emitting species in the country. The high spatial and temporal resolution, combined with the species-specific emission output, makes the model particularly suitable for assessing local budgets, and for modeling photochemical pollution in Italy.

  4. Smoke Dispersion Modeling Over Complex Terrain Using High-Resolution Meteorological Data and Satellite Observations: The FireHub Platform

    Science.gov (United States)

    Solomos, S.; Amiridis, V.; Zanis, P.; Gerasopoulos, E.; Sofiou, F. I.; Herekakis, T.; Brioude, J.; Stohl, A.; Kahn, R. A.; Kontoes, C.

    2015-01-01

    A total number of 20,212 fire hot spots were recorded by the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite instrument over Greece during the period 2002e2013. The Fire Radiative Power (FRP) of these events ranged from 10 up to 6000 MW at 1 km resolution, and many of these fire episodes resulted in long-range transport of smoke over distances up to several hundred kilometers. Three different smoke episodes over Greece are analyzed here using real time hot-spot observations from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) satellite instrument as well as from MODIS hot-spots. Simulations of smoke dispersion are performed with the FLEXPART-WRF model and particulate matter emissions are calculated directly from the observed FRP. The modeled smoke plumes are compared with smoke stereo-heights from the Multiangle Imaging Spectroradiometer (MISR) instrument and the sensitivities to atmospheric and modeling parameters are examined. Driving the simulations with high resolution meteorology (4 4 km) and using geostationary satellite data to identify the hot spots allows the description of local scale features that govern smoke dispersion. The long-range transport of smoke is found to be favored over the complex coastline environment of Greece due to the abrupt changes between land and marine planetary boundary layers (PBL) and the decoupling of smoke layers from the surface.

  5. Regional Community Climate Simulations with variable resolution meshes in the Community Earth System Model

    Science.gov (United States)

    Zarzycki, C. M.; Gettelman, A.; Callaghan, P.

    2017-12-01

    Accurately predicting weather extremes such as precipitation (floods and droughts) and temperature (heat waves) requires high resolution to resolve mesoscale dynamics and topography at horizontal scales of 10-30km. Simulating such resolutions globally for climate scales (years to decades) remains computationally impractical. Simulating only a small region of the planet is more tractable at these scales for climate applications. This work describes global simulations using variable-resolution static meshes with multiple dynamical cores that target the continental United States using developmental versions of the Community Earth System Model version 2 (CESM2). CESM2 is tested in idealized, aquaplanet and full physics configurations to evaluate variable mesh simulations against uniform high and uniform low resolution simulations at resolutions down to 15km. Different physical parameterization suites are also evaluated to gauge their sensitivity to resolution. Idealized variable-resolution mesh cases compare well to high resolution tests. More recent versions of the atmospheric physics, including cloud schemes for CESM2, are more stable with respect to changes in horizontal resolution. Most of the sensitivity is due to sensitivity to timestep and interactions between deep convection and large scale condensation, expected from the closure methods. The resulting full physics model produces a comparable climate to the global low resolution mesh and similar high frequency statistics in the high resolution region. Some biases are reduced (orographic precipitation in the western United States), but biases do not necessarily go away at high resolution (e.g. summertime JJA surface Temp). The simulations are able to reproduce uniform high resolution results, making them an effective tool for regional climate studies and are available in CESM2.

  6. Modeling methane emissions by cattle production systems in Mexico

    Science.gov (United States)

    Castelan-Ortega, O. A.; Ku Vera, J.; Molina, L. T.

    2013-12-01

    Methane emissions from livestock is one of the largest sources of methane in Mexico. The purpose of the present paper is to provide a realistic estimate of the national inventory of methane produced by the enteric fermentation of cattle, based on an integrated simulation model, and to provide estimates of CH4 produced by cattle fed typical diets from the tropical and temperate climates of Mexico. The Mexican cattle population of 23.3 million heads was divided in two groups. The first group (7.8 million heads), represents cattle of the tropical climate regions. The second group (15.5 million heads), are the cattle in the temperate climate regions. This approach allows incorporating the effect of diet on CH4 production into the analysis because the quality of forages is lower in the tropics than in temperate regions. Cattle population in every group was subdivided into two categories: cows (COW) and other type of cattle (OTHE), which included calves, heifers, steers and bulls. The daily CH4 production by each category of animal along an average production cycle of 365 days was simulated, instead of using a default emission factor as in Tier 1 approach. Daily milk yield, live weight changes associated with the lactation, and dry matter intake, were simulated for the entire production cycle. The Moe and Tyrrell (1979) model was used to simulate CH4 production for the COW category, the linear model of Mills et al. (2003) for the OTHE category in temperate regions and the Kurihara et al. (1999) model for the OTHE category in the tropical regions as it has been developed for cattle fed tropical diets. All models were integrated with a cow submodel to form an Integrated Simulation Model (ISM). The AFRC (1993) equations and the lactation curve model of Morant and Gnanasakthy (1989) were used to construct the cow submodel. The ISM simulates on a daily basis the CH4 production, milk yield, live weight changes associated with lactation and dry matter intake. The total daily CH

  7. Modeling the impact of chlorine emissions from coal combustion and prescribed waste incineration on tropospheric ozone formation in China

    Science.gov (United States)

    Liu, Yiming; Fan, Qi; Chen, Xiaoyang; Zhao, Jun; Ling, Zhenhao; Hong, Yingying; Li, Weibiao; Chen, Xunlai; Wang, Mingjie; Wei, Xiaolin

    2018-02-01

    Chlorine radicals can enhance atmospheric oxidation, which potentially increases tropospheric ozone concentration. However, few studies have been done to quantify the impact of chlorine emissions on ozone formation in China due to the lack of a chlorine emission inventory used in air quality models with sufficient resolution. In this study, the Anthropogenic Chlorine Emissions Inventory for China (ACEIC) was developed for the first time, including emissions of hydrogen chloride (HCl) and molecular chlorine (Cl2) from coal combustion and prescribed waste incineration (waste incineration plant). The HCl and Cl2 emissions from coal combustion in China in 2012 were estimated to be 232.9 and 9.4 Gg, respectively, while HCl emission from prescribed waste incineration was estimated to be 2.9 Gg. Spatially the highest emissions of HCl and Cl2 were found in the North China Plain, the Yangtze River Delta, and the Sichuan Basin. Air quality model simulations with the Community Multiscale Air Quality (CMAQ) modeling system were performed for November 2011, and the modeling results derived with and without chlorine emissions were compared. The magnitude of the simulated HCl, Cl2 and ClNO2 agreed reasonably with the observation when anthropogenic chlorine emissions were included in the model. The inclusion of the ACEIC increased the concentration of fine particulate Cl-, leading to enhanced heterogeneous reactions between Cl- and N2O5, which resulted in the higher production of ClNO2. Photolysis of ClNO2 and Cl2 in the morning and the reaction of HCl with OH in the afternoon produced chlorine radicals which accelerated tropospheric oxidation. When anthropogenic chlorine emissions were included in the model, the monthly mean concentrations of fine particulate Cl-, daily maximum 1 h ClNO2, and Cl radicals were estimated to increase by up to about 2.0 µg m-3, 773 pptv, and 1.5 × 103 molecule cm-3 in China, respectively. Meanwhile, the monthly mean daily maximum 8 h O3

  8. Modeling the impact of chlorine emissions from coal combustion and prescribed waste incineration on tropospheric ozone formation in China

    Directory of Open Access Journals (Sweden)

    Y. Liu

    2018-02-01

    Full Text Available Chlorine radicals can enhance atmospheric oxidation, which potentially increases tropospheric ozone concentration. However, few studies have been done to quantify the impact of chlorine emissions on ozone formation in China due to the lack of a chlorine emission inventory used in air quality models with sufficient resolution. In this study, the Anthropogenic Chlorine Emissions Inventory for China (ACEIC was developed for the first time, including emissions of hydrogen chloride (HCl and molecular chlorine (Cl2 from coal combustion and prescribed waste incineration (waste incineration plant. The HCl and Cl2 emissions from coal combustion in China in 2012 were estimated to be 232.9 and 9.4 Gg, respectively, while HCl emission from prescribed waste incineration was estimated to be 2.9 Gg. Spatially the highest emissions of HCl and Cl2 were found in the North China Plain, the Yangtze River Delta, and the Sichuan Basin. Air quality model simulations with the Community Multiscale Air Quality (CMAQ modeling system were performed for November 2011, and the modeling results derived with and without chlorine emissions were compared. The magnitude of the simulated HCl, Cl2 and ClNO2 agreed reasonably with the observation when anthropogenic chlorine emissions were included in the model. The inclusion of the ACEIC increased the concentration of fine particulate Cl−, leading to enhanced heterogeneous reactions between Cl− and N2O5, which resulted in the higher production of ClNO2. Photolysis of ClNO2 and Cl2 in the morning and the reaction of HCl with OH in the afternoon produced chlorine radicals which accelerated tropospheric oxidation. When anthropogenic chlorine emissions were included in the model, the monthly mean concentrations of fine particulate Cl−, daily maximum 1 h ClNO2, and Cl radicals were estimated to increase by up to about 2.0 µg m−3, 773 pptv, and 1.5  ×  103 molecule cm−3 in China, respectively. Meanwhile

  9. Development and Evaluation of a Comprehensive Atmospheric Emission Inventory for Air Quality Modeling in the Megacity of Bogotá

    Directory of Open Access Journals (Sweden)

    Jorge E. Pachón

    2018-02-01

    Full Text Available We built an emission inventory (EI for the megacity of Bogotá, Colombia for 2012, which for the first time augments traditional industrial and mobile sources by including commercial sources, biogenic sources, and resuspended dust. We characterized the methodologies for estimating each source annually, and allocated the sources to hourly and 1 km2 spatial resolution for use as inputs for air quality modeling purposes. A resuspended particulate matter (RPM emission estimate was developed using the first measurements of road dust loadings and silt content for the city. Results show that mobile sources dominate emissions of CO2 (80%, CO (99%, VOC (68%, NOx (95%, and SO2 (85%. However, the newly estimated RPM comprises 90% of total PM10 emissions, which are at least onefold larger than the PM10 emissions from combustion processes. The 2012 EI was implemented in a chemical transport model (CTM in order to understand the pollutants’ fate and transport. Model evaluation was conducted against observations from the city’s air quality monitoring network in two different periods. Modeling results for O3 concentrations showed a good agreement, with mean fractional bias (MFB of +11%, and a mean fractional error (MFE of +35% with observations, but simulated PM10 concentrations were strongly biased high (MFB +57%, MFE +68%, which was likely due to RPM emissions being overestimated. NOx, CO, and SO2 were also biased high by the model, which was probably due to emissions not reflecting current fleet conditions. Future work aims to revise emission factors for mobile sources, which are the main sources of pollutants to the atmosphere.

  10. Resolution and Probabilistic Models of Components in CryoEM Maps of Mature P22 Bacteriophage

    Science.gov (United States)

    Pintilie, Grigore; Chen, Dong-Hua; Haase-Pettingell, Cameron A.; King, Jonathan A.; Chiu, Wah

    2016-01-01

    CryoEM continues to produce density maps of larger and more complex assemblies with multiple protein components of mixed symmetries. Resolution is not always uniform throughout a cryoEM map, and it can be useful to estimate the resolution in specific molecular components of a large assembly. In this study, we present procedures to 1) estimate the resolution in subcomponents by gold-standard Fourier shell correlation (FSC); 2) validate modeling procedures, particularly at medium resolutions, which can include loop modeling and flexible fitting; and 3) build probabilistic models that combine high-accuracy priors (such as crystallographic structures) with medium-resolution cryoEM densities. As an example, we apply these methods to new cryoEM maps of the mature bacteriophage P22, reconstructed without imposing icosahedral symmetry. Resolution estimates based on gold-standard FSC show the highest resolution in the coat region (7.6 Å), whereas other components are at slightly lower resolutions: portal (9.2 Å), hub (8.5 Å), tailspike (10.9 Å), and needle (10.5 Å). These differences are indicative of inherent structural heterogeneity and/or reconstruction accuracy in different subcomponents of the map. Probabilistic models for these subcomponents provide new insights, to our knowledge, and structural information when taking into account uncertainty given the limitations of the observed density. PMID:26743049

  11. The Fire Locating and Modeling of Burning Emissions (FLAMBE) Project

    Science.gov (United States)

    Reid, J. S.; Prins, E. M.; Westphal, D.; Richardson, K.; Christopher, S.; Schmidt, C.; Theisen, M.; Eck, T.; Reid, E. A.

    2001-12-01

    The Fire Locating and Modeling of Burning Emissions (FLAMBE) project was initiated by NASA, the US Navy and NOAA to monitor biomass burning and burning emissions on a global scale. The idea behind the mission is to integrate remote sensing data with global and regional transport models in real time for the purpose of providing the scientific community with smoke and fire products for planning and research purposes. FLAMBE is currently utilizing real time satellite data from GOES satellites, fire products based on the Wildfire Automated Biomass Burning Algorithm (WF_ABBA) are generated for the Western Hemisphere every 30 minutes with only a 90 minute processing delay. We are currently collaborating with other investigators to gain global coverage. Once generated, the fire products are used to input smoke fluxes into the NRL Aerosol Analysis and Prediction System, where advection forecasts are performed for up to 6 days. Subsequent radiative transfer calculations are used to estimate top of atmosphere and surface radiative forcing as well as surface layer visibility. Near real time validation is performed using field data collected by Aerosol Robotic Network (AERONET) Sun photometers. In this paper we fully describe the FLAMBE project and data availability. Preliminary result from the previous year will also be presented, with an emphasis on the development of algorithms to determine smoke emission fluxes from individual fire products. Comparisons to AERONET Sun photometer data will be made.

  12. Enhanced Representation of Soil NO Emissions in the Community Multiscale Air Quality (CMAQ) Model Version 5.0.2

    Science.gov (United States)

    Rasool, Quazi Z.; Zhang, Rui; Lash, Benjamin; Cohan, Daniel S.; Cooter, Ellen J.; Bash, Jesse O.; Lamsal, Lok N.

    2016-01-01

    Modeling of soil nitric oxide (NO) emissions is highly uncertain and may misrepresent its spatial and temporal distribution. This study builds upon a recently introduced parameterization to improve the timing and spatial distribution of soil NO emission estimates in the Community Multiscale Air Quality (CMAQ) model. The parameterization considers soil parameters, meteorology, land use, and mineral nitrogen (N) availability to estimate NO emissions. We incorporate daily year-specific fertilizer data from the Environmental Policy Integrated Climate (EPIC) agricultural model to replace the annual generic data of the initial parameterization, and use a 12km resolution soil biome map over the continental USA. CMAQ modeling for July 2011 shows slight differences in model performance in simulating fine particulate matter and ozone from Interagency Monitoring of Protected Visual Environments (IMPROVE) and Clean Air Status and Trends Network (CASTNET) sites and NO2 columns from Ozone Monitoring Instrument (OMI) satellite retrievals. We also simulate how the change in soil NO emissions scheme affects the expected O3 response to projected emissions reductions.

  13. Characterization of primary organic aerosol emissions from meat cooking, trash burning, and motor vehicles with high-resolution aerosol mass spectrometry and comparison with ambient and chamber observations.

    Science.gov (United States)

    Mohr, Claudia; Huffman, Alex; Cubison, Michael J; Aiken, Allison C; Docherty, Kenneth S; Kimmel, Joel R; Ulbrich, Ingrid M; Hannigan, Michael; Jimenez, Jose L

    2009-04-01

    Organic aerosol (OA) emissions from motor vehicles, meat-cooking and trash burning are analyzed here using a high-resolution aerosol mass spectrometer (AMS). High resolution data show that aerosols emitted by combustion engines and plastic burning are dominated by hydrocarbon-like organic compounds. Meat cooking and especially paper burning emissions contain significant fractions of oxygenated organic compounds; however, their unit-resolution mass spectral signatures are very similar to those from ambient hydrocarbon-like OA, and very different from the mass spectra of ambient secondary or oxygenated OA (OOA). Thus, primary OA from these sources is unlikelyto be a significant direct source of ambient OOA. There are significant differences in high-resolution tracer m/zs that may be useful for differentiating some of these sources. Unlike in most ambient spectra, all of these sources have low total m/z 44 and this signal is not dominated by the CO2+ ion. All sources have high m/z 57, which is low during high OOA ambient periods. Spectra from paper burning are similar to some types of biomass burning OA, with elevated m/z 60. Meat cooking aerosols also have slightly elevated m/z 60, whereas motor vehicle emissions have very low signal at this m/z.

  14. Sensitivity to grid resolution in the ability of a chemical transport model to simulate observed oxidant chemistry under high-isoprene conditions

    Directory of Open Access Journals (Sweden)

    K. Yu

    2016-04-01

    Full Text Available Formation of ozone and organic aerosol in continental atmospheres depends on whether isoprene emitted by vegetation is oxidized by the high-NOx pathway (where peroxy radicals react with NO or by low-NOx pathways (where peroxy radicals react by alternate channels, mostly with HO2. We used mixed layer observations from the SEAC4RS aircraft campaign over the Southeast US to test the ability of the GEOS-Chem chemical transport model at different grid resolutions (0.25°  ×  0.3125°, 2°  ×  2.5°, 4°  ×  5° to simulate this chemistry under high-isoprene, variable-NOx conditions. Observations of isoprene and NOx over the Southeast US show a negative correlation, reflecting the spatial segregation of emissions; this negative correlation is captured in the model at 0.25°  ×  0.3125° resolution but not at coarser resolutions. As a result, less isoprene oxidation takes place by the high-NOx pathway in the model at 0.25°  ×  0.3125° resolution (54 % than at coarser resolution (59 %. The cumulative probability distribution functions (CDFs of NOx, isoprene, and ozone concentrations show little difference across model resolutions and good agreement with observations, while formaldehyde is overestimated at coarse resolution because excessive isoprene oxidation takes place by the high-NOx pathway with high formaldehyde yield. The good agreement of simulated and observed concentration variances implies that smaller-scale non-linearities (urban and power plant plumes are not important on the regional scale. Correlations of simulated vs. observed concentrations do not improve with grid resolution because finer modes of variability are intrinsically more difficult to capture. Higher model resolution leads to decreased conversion of NOx to organic nitrates and increased conversion to nitric acid, with total reactive nitrogen oxides (NOy changing little across model resolutions. Model concentrations in the

  15. ALMA 0.1–0.2 arcsec resolution imaging of the NGC 1068 Nucleus: compact dense molecular gas emission at the putative AGN location

    Energy Technology Data Exchange (ETDEWEB)

    Imanishi, Masatoshi [Subaru Telescope, 650 North A’ohoku Place, Hilo, HI 96720 (United States); Nakanishi, Kouichiro [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Izumi, Takuma, E-mail: masa.imanishi@nao.ac.jp [Institute of Astronomy, School of Science, The University of Tokyo, 2-21-1 Osawa, Mitaka, Tokyo 181-0015 (Japan)

    2016-05-01

    We present the results of our ALMA Cycle 2 high angular resolution (0.″1–0.″2) observations of the nuclear region of the nearby well-studied type-2 active galactic nucleus (AGN), NGC 1068, at HCN J = 3–2 and HCO{sup +} J = 3–2 emission lines. For the first time, due to a higher angular resolution than previous studies, we clearly detected dense molecular gas emission at the putative AGN location, identified as a ∼1.1 mm (∼266 GHz) continuum emission peak, by separating this emission from brighter emission located at 0.″5–2.″0 on the eastern and western sides of the AGN. The estimated intrinsic molecular emission size and dense molecular mass, which are thought to be associated with the putative dusty molecular torus around an AGN, were ∼10 pc and ∼several × 10{sup 5} M {sub ⊙}, respectively. HCN-to-HCO{sup +} J = 3–2 flux ratios substantially higher than unity were found throughout the nuclear region of NGC 1068. The continuum emission displayed an elongated morphology along the direction of the radio jet located at the northern side of the AGN, as well as a weak spatially-resolved component at ∼2.″0 on the southwestern side of the AGN. The latter component most likely originated from star formation, with the estimated luminosity more than one order of magnitude lower than the luminosity of the central AGN. No vibrationally excited ( v {sub 2} = 1f) J = 3–2 emission lines were detected for HCN and HCO{sup +} across the field of view.

  16. A model for neutrino emission from nuclear accretion disks

    Science.gov (United States)

    Deaton, Michael

    2015-04-01

    Compact object mergers involving at least one neutron star can produce short-lived black hole accretion engines. Over tens to hundreds of milliseconds such an engine consumes a disk of hot, nuclear-density fluid, and drives changes to its surrounding environment through luminous emission of neutrinos. The neutrino emission may drive an ultrarelativistic jet, may peel off the disk's outer layers as a wind, may irradiate those winds or other forms of ejecta and thereby change their composition, may change the composition and thermodynamic state of the disk itself, and may oscillate in its flavor content. We present the full spatial-, angular-, and energy-dependence of the neutrino distribution function around a realistic model of a nuclear accretion disk, to inform future explorations of these types of behaviors. Spectral Einstein Code (SpEC).

  17. Objective Characterization of Snow Microstructure for Microwave Emission Modeling

    Science.gov (United States)

    Durand, Michael; Kim, Edward J.; Molotch, Noah P.; Margulis, Steven A.; Courville, Zoe; Malzler, Christian

    2012-01-01

    Passive microwave (PM) measurements are sensitive to the presence and quantity of snow, a fact that has long been used to monitor snowcover from space. In order to estimate total snow water equivalent (SWE) within PM footprints (on the order of approx 100 sq km), it is prerequisite to understand snow microwave emission at the point scale and how microwave radiation integrates spatially; the former is the topic of this paper. Snow microstructure is one of the fundamental controls on the propagation of microwave radiation through snow. Our goal in this study is to evaluate the prospects for driving the Microwave Emission Model of Layered Snowpacks with objective measurements of snow specific surface area to reproduce measured brightness temperatures when forced with objective measurements of snow specific surface area (S). This eliminates the need to treat the grain size as a free-fit parameter.

  18. Combustion optimization and HCCI modeling for ultra low emission

    Energy Technology Data Exchange (ETDEWEB)

    Koten, Hasan; Yilmaz, Mustafa; Zafer Gul, M. [Marmara University Mechanical Engineering Department (Turkey)], E-mail: hasan.koten@marmara.edu.tr

    2011-07-01

    With the coming shortage of fossil fuels and the rising concerns over the environment it is important to develop new technologies both to reduce energy consumption and pollution at the same time. In the transportation sector, new combustion processes are under development to provide clean diesel combustion with no particulate or NOx emissions. However, these processes have issues such as limited power output, high levels of unburned hydrocarbons, and carbon monoxide emissions. The aim of this paper is to present a methodology for optimizing combustion performance. The methodology consists of the use of a multi-objective genetic algorithm optimization tool; homogeneous charge compression ignition engine cases were studied with the ECFM-3Z combustion model. Results showed that injected fuel mass led to a decrease in power output, a finding which is in keeping with previous research. This paper presented on optimization tool which can be useful in improving the combustion process.

  19. The influence of digital elevation model resolution on overland flow networks for modelling urban pluvial flooding.

    Science.gov (United States)

    Leitão, J P; Boonya-Aroonnet, S; Prodanović, D; Maksimović, C

    2009-01-01

    This paper presents the developments towards the next generation of overland flow modelling of urban pluvial flooding. Using a detailed analysis of the Digital Elevation Model (DEM) the developed GIS tools can automatically generate surface drainage networks which consist of temporary ponds (floodable areas) and flow paths and link them with the underground network through inlets. For different commercially-available Rainfall-Runoff simulation models, the tool will generate the overland flow network needed to model the surface runoff and pluvial flooding accurately. In this paper the emphasis is placed on a sensitivity analysis of ponds and preferential overland flow paths creation. Different DEMs for three areas were considered in order to compare the results obtained. The DEMs considered were generated using different acquisition techniques and hence represent terrain with varying levels of resolution and accuracy. The results show that DEMs can be used to generate surface flow networks reliably. As expected, the quality of the surface network generated is highly dependent on the quality and resolution of the DEMs and successful representation of buildings and streets.

  20. Air quality over Europe and Iberian Peninsula for 2004 at high horizontal resolution: evaluation of the CALIOPE modelling system

    Science.gov (United States)

    Jorba, O.; Piot, M.; Pay, M. T.; Jiménez-Guerrero, P.; López, E.; Pérez, C.; Gassó, S.; Baldasano, J. M.

    2009-09-01

    In the frame of the CALIOPE project (Baldasano et al., 2008a), a high-resolution air quality forecasting system, WRF-ARW/HERMES/CMAQ/DREAM, is under development and applied to the European domain (12km x 12km, 1hr) as well as to the Iberian Peninsula domain (4km x 4km, 1hr) to provide air quality forecasts for Spain (http://www.bsc.es/caliope/). The simulation of such high-resolution model system is possible by its implementation on the MareNostrum supercomputer. To reassure potential users and reduce uncertainties, the model system must be evaluated to assess its performances in terms of air quality levels and dynamics reproducibility. The present contribution describes a thorough quantitative evaluation study performed for a reference year (2004). CALIOPE is a complex system that integrates a variety of environmental models. WRF-ARW provides high-resolution meteorological fields to the system. It is configured with 38 vertical layers reaching up to 50 hPa. Meteorological initial and boundary conditions are obtained from the NCEP final analysis data. The HERMES emission model (Baldasano et al., 2008b) computes the emissions for the Iberian Peninsula simulation at 4 km horizontal resolution every hour using a bottom-up approach. For the European domain, HERMES disaggregates the EMEP expert emission inventory for 2004. The CMAQ chemical transport model solves the physico-chemical processes in the system. The vertical resolution of CMAQ for gas-phase and aerosols has been increased from 8 to 15 layers in order to simulate vertical exchanges more accurately. Chemical boundary conditions are provided by the LMDz-INCA2 global climate-chemistry model (see Hauglustaine et al., 2004). Finally, the DREAM model simulates long-range transport of mineral dust over the domains under study. In order to evaluate the performances of the CALIOPE system, model simulations were compared with ground-based measurements from the EMEP and Spanish air quality networks. For the European

  1. Biomass burning emissions of reactive gases estimated from satellite data analysis and ecosystem modeling for the Brazilian Amazon region

    Science.gov (United States)

    Potter, Christopher; Brooks-Genovese, Vanessa; Klooster, Steven; Torregrosa, Alicia

    2002-10-01

    To produce a new daily record of trace gas emissions from biomass burning events for the Brazilian Legal Amazon, we have combined satellite advanced very high resolution radiometer (AVHRR) data on fire counts together for the first time with vegetation greenness imagery as inputs to an ecosystem biomass model at 8 km spatial resolution. This analysis goes beyond previous estimates for reactive gas emissions from Amazon fires, owing to a more detailed geographic distribution estimate of vegetation biomass, coupled with daily fire activity for the region (original 1 km resolution), and inclusion of fire effects in extensive areas of the Legal Amazon (defined as the Brazilian states of Acre, Amapá, Amazonas, Maranhao, Mato Grosso, Pará, Rondônia, Roraima, and Tocantins) covered by open woodland, secondary forests, savanna, and pasture vegetation. Results from our emissions model indicate that annual emissions from Amazon deforestation and biomass burning in the early 1990s total to 102 Tg yr-1 carbon monoxide (CO) and 3.5 Tg yr-1 nitrogen oxides (NOx). Peak daily burning emissions, which occurred in early September 1992, were estimated at slightly more than 3 Tg d-1for CO and 0.1 Tg d-1for NOx flux to the atmosphere. Other burning source fluxes of gases with relatively high emission factors are reported, including methane (CH4), nonmethane hydrocarbons (NMHC), and sulfur dioxide (SO2), in addition to total particulate matter (TPM). We estimate the Brazilian Amazon region to be a source of between one fifth and one third for each of these global emission fluxes to the atmosphere. The regional distribution of burning emissions appears to be highest in the Brazilian states of Maranhao and Tocantins, mainly from burning outside of moist forest areas, and in Pará and Mato Grosso, where we identify important contributions from primary forest cutting and burning. These new daily emission estimates of reactive gases from biomass burning fluxes are designed to be used as

  2. Statistical Examination of the Resolution of a Block-Scale Urban Drainage Model

    Science.gov (United States)

    Goldstein, A.; Montalto, F. A.; Digiovanni, K. A.

    2009-12-01

    Stormwater drainage models are utilized by cities in order to plan retention systems to prevent combined sewage overflows and design for development. These models aggregate subcatchments and ignore small pipelines providing a coarse representation of a sewage network. This study evaluates the importance of resolution by comparing two models developed on a neighborhood scale for predicting the total quantity and peak flow of runoff to observed runoff measured at the site. The low and high resolution models were designed for a 2.6 ha block in Bronx, NYC in EPA Stormwater Management Model (SWMM) using a single catchment and separate subcatchments based on surface cover, respectively. The surface covers represented included sidewalks, street, buildings, and backyards. Characteristics for physical surfaces and the infrastructure in the high resolution mode were determined from site visits, sewer pipe maps, aerial photographs, and GIS data-sets provided by the NYC Department of City Planning. Since the low resolution model was depicted at a coarser scale, generalizations were assumed about the overall average characteristics of the catchment. Rainfall and runoff data were monitored over a four month period during the summer rainy season. A total of 53 rain fall events were recorded but only 29 storms produced significant amount of runoffs to be evaluated in the simulations. To determine which model was more accurate at predicting the observed runoff, three characteristics for each storm were compared: peak runoff, total runoff, and time to peak. Two statistical tests were used to determine the significance of the results: the percent difference for each storm and the overall Chi-squared Goodness of Fit distribution for both the low and high resolution model. These tests will evaluate if there is a statistical difference depending on the resolution of scale of the stormwater model. The scale of representation is being evaluated because it could have a profound impact on

  3. Trend analysis from 1970 to 2008 and model evaluation of EDGARv4 global gridded anthropogenic mercury emissions

    Energy Technology Data Exchange (ETDEWEB)

    Muntean, Marilena, E-mail: marilena.muntean@jrc.ec.europa.eu [European Commission, Joint Research Centre, Institute for Environment and Sustainability, Ispra (Italy); Janssens-Maenhout, Greet [European Commission, Joint Research Centre, Institute for Environment and Sustainability, Ispra (Italy); Song, Shaojie; Selin, Noelle E. [Massachusetts Institute of Technology, Cambridge, MA (United States); Olivier, Jos G.J. [PBL Netherlands Environment Assessment Agency, Bilthoven (Netherlands); Guizzardi, Diego [European Commission, Joint Research Centre, Institute for Environment and Sustainability, Ispra (Italy); Maas, Rob [RIVM National Institute for Public Health and Environment, Bilthoven (Netherlands); Dentener, Frank [European Commission, Joint Research Centre, Institute for Environment and Sustainability, Ispra (Italy)

    2014-10-01

    The Emission Database for Global Atmospheric Research (EDGAR) provides a time-series of man-made emissions of greenhouse gases and short-lived atmospheric pollutants from 1970 to 2008. Mercury is included in EDGARv4.tox1, thereby enriching the spectrum of multi-pollutant sources in the database. With an average annual growth rate of 1.3% since 1970, EDGARv4 estimates that the global mercury emissions reached 1287 tonnes in 2008. Specifically, gaseous elemental mercury (GEM) (Hg{sup 0}) accounted for 72% of the global total emissions, while gaseous oxidised mercury (GOM) (Hg{sup 2+}) and particle bound mercury (PBM) (Hg-P) accounted for only 22% and 6%, respectively. The less reactive form, i.e., Hg{sup 0}, has a long atmospheric residence time and can be transported long distances from the emission sources. The artisanal and small-scale gold production, accounted for approximately half of the global Hg{sup 0} emissions in 2008 followed by combustion (29%), cement production (12%) and other metal industry (10%). Given the local-scale impacts of mercury, special attention was given to the spatial distribution showing the emission hot-spots on gridded 0.1° × 0.1° resolution maps using detailed proxy data. The comprehensive ex-post analysis of the mitigation of mercury emissions by end-of-pipe abatement measures in the power generation sector and technology changes in the chlor-alkali industry over four decades indicates reductions of 46% and 93%, respectively. Combined, the improved technologies and mitigation measures in these sectors accounted for 401.7 tonnes of avoided mercury emissions in 2008. A comparison shows that EDGARv4 anthropogenic emissions are nearly equivalent to the lower estimates of the United Nations Environment Programme (UNEP)'s mercury emissions inventory for 2005 for most sectors. An evaluation of the EDGARv4 global mercury emission inventory, including mercury speciation, was performed using the GEOS-Chem global 3-D mercury model. The

  4. Trend a