WorldWideScience

Sample records for resolution inductive sensor

  1. Inductive Non-Contact Position Sensor

    Science.gov (United States)

    Youngquist, Robert; Garcia, Alyssa; Simmons, Stephen

    2010-01-01

    Optical hardware has been developed to measure the depth of defects in the Space Shuttle Orbiter's windows. In this hardware, a mirror is translated such that its position corresponds to the defect's depth, so the depth measurement problem is transferred to a mirror-position measurement problem. This is preferable because the mirror is internal to the optical system and thus accessible. Based on requirements supplied by the window inspectors, the depth of the defects needs to be measured over a range of 200 microns with a resolution of about 100 nm and an accuracy of about 400 nm. These same requirements then apply to measuring the position of the mirror, and in addition, since this is a scanning system, a response time of about 10 ms is needed. A market search was conducted and no sensor that met these requirements that also fit into the available housing volume (less than one cubic inch) was found, so a novel sensor configuration was constructed to meet the requirements. This new sensor generates a nearly linearly varying magnetic field over a small region of space, which can easily be sampled, resulting in a voltage proportional to position. Experiments were done with a range of inductor values, drive voltages, drive frequencies, and inductor shapes. A rough mathematical model was developed for the device that, in most aspects, describes how it operates and what electrical parameters should be chosen for best performance. The final configuration met all the requirements, yielding a small rugged sensor that was easy to use and had nanometer resolution over more than the 200-micron range required. The inductive position sensor is a compact device (potentially as small as 2 cubic centimeters), which offers nanometer-position resolution over a demonstrated range of nearly 1 mm. One of its advantages is the simplicity of its electrical design. Also, the sensor resolution is nearly uniform across its operational range, which is in contrast to eddy current and

  2. Inductance position sensor for pneumatic cylinder

    Science.gov (United States)

    Ripka, Pavel; Chirtsov, Andrey; Mirzaei, Mehran; Vyhnanek, Jan

    2018-04-01

    The position of the piston in pneumatic cylinder with aluminum wall can be measured by external inductance sensor without modifications of the aluminum piston and massive iron piston rod. For frequencies below 20 Hz the inductance is increasing with inserting rod due to the rod permeability. This mode has disadvantage of slow response to piston movement and also high temperature sensitivity. At the frequency of 45 Hz the inductance is position independent, as the permeability effect is compensated by the eddy current effect. At higher frequencies eddy current effects in the rod prevail, the inductance is decreasing with inserting rod. In this mode the sensitivity is smaller but the sensor response is fast and temperature stability is better. We show that FEM simulation of this sensor using measured material properties gives accurate results, which is important for the sensor optimization such as designing the winding geometry for the best linearity.

  3. Inductance position sensor for pneumatic cylinder

    Directory of Open Access Journals (Sweden)

    Pavel Ripka

    2018-04-01

    Full Text Available The position of the piston in pneumatic cylinder with aluminum wall can be measured by external inductance sensor without modifications of the aluminum piston and massive iron piston rod. For frequencies below 20 Hz the inductance is increasing with inserting rod due to the rod permeability. This mode has disadvantage of slow response to piston movement and also high temperature sensitivity. At the frequency of 45 Hz the inductance is position independent, as the permeability effect is compensated by the eddy current effect. At higher frequencies eddy current effects in the rod prevail, the inductance is decreasing with inserting rod. In this mode the sensitivity is smaller but the sensor response is fast and temperature stability is better. We show that FEM simulation of this sensor using measured material properties gives accurate results, which is important for the sensor optimization such as designing the winding geometry for the best linearity.

  4. Induction sensor for measuring the accelerating voltage in an iron-free induction accelerator

    International Nuclear Information System (INIS)

    Bol'nykh, N.S.; Il'in, Yu.M.; Kostyushok, A.A.; Suvorov, V.A.

    1987-01-01

    An inductive sensor is described for measuring the amplitude and form of the accelerating-voltage pulse in the storage coils in a radial iron-free linear induction accelerator. The sensor does not respond to interference from external fields and does not require adjustment after calibration

  5. Investigation of the Performance of an Inductive Seawater Conductivity Sensor

    Directory of Open Access Journals (Sweden)

    WU Sheng

    2015-03-01

    Full Text Available As one of the factors in marine hydrographic survey, seawater salinity plays an important role in marine scientific research, marine exploitation and military defense. In practical measurement, the salinity is always presented indirectly by seawater conductivity value. Compared with the electrode conductivity sensors, inductive conductivity sensors have an advantage of anti-biofouling, and that is very interested in long term ocean observation device. From the principle point of view, this paper discus the different methods to improve inductive sensor output signal, which is confirmed by the relative experimental results. The basic working system of inductive sensor is described here as well as a calibration in standard seawater. From a wide range of temperature, measurement absolute error and stability are close to those of actual electrode conductivity sensors. Furthermore, in the 1000 meters deep sea experiment, our inductive sensor presents a perfect similarity of conductivity profile like sea- bird sensor, even for some small variations. The performance of our inductive sensor can compete with that of commercially available electrode conductivity sensors.

  6. Ring-shaped inductive sensor design and application to pressure sensing

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Myoung Gyu; Baek, Seong Ki; Park, Young Woo [Dept. of Mechatronics Engineering, Chungnam National University, Daejeon (Korea, Republic of); Kim, Sun Young [Samsung Electro-Mechanics, Busan (Korea, Republic of)

    2015-10-15

    Inductive sensors are versatile and economical devices that are widely used to measure a wide variety of physical variables, such as displacement, force, and pressure. In this paper, we propose a simple inductive sensor consisting of a thin partial ring and a coil set. The self-inductance of the sensor was estimated using magnetic circuit analysis and validated through finite element analysis (FEA). The natural frequency of the ring was estimated using Castigliano's theorem and the method of equivalent mass. The estimation was validated through experiments and FEA. A prototype sensor with a signal processing circuit is built and applied to noninvasively sense the pressure inside a flexible tube. The obtained sensor outputs show quadratic behavior with respect to the pressure. When fitted to a quadratic equation, the least-square measurement error was less than 2%. The results confirm the feasibility of pressure sensing using the proposed inductive sensor.

  7. Ring-shaped inductive sensor design and application to pressure sensing

    International Nuclear Information System (INIS)

    Noh, Myoung Gyu; Baek, Seong Ki; Park, Young Woo; Kim, Sun Young

    2015-01-01

    Inductive sensors are versatile and economical devices that are widely used to measure a wide variety of physical variables, such as displacement, force, and pressure. In this paper, we propose a simple inductive sensor consisting of a thin partial ring and a coil set. The self-inductance of the sensor was estimated using magnetic circuit analysis and validated through finite element analysis (FEA). The natural frequency of the ring was estimated using Castigliano's theorem and the method of equivalent mass. The estimation was validated through experiments and FEA. A prototype sensor with a signal processing circuit is built and applied to noninvasively sense the pressure inside a flexible tube. The obtained sensor outputs show quadratic behavior with respect to the pressure. When fitted to a quadratic equation, the least-square measurement error was less than 2%. The results confirm the feasibility of pressure sensing using the proposed inductive sensor

  8. Three-axis magnetic field induction sensor realized on buckled cantilever plate

    KAUST Repository

    Alfadhel, Ahmed

    2013-07-01

    This work presents the fabrication and characterization of a three-axis induction sensor consisting of one planar microcoil, fixed on the substrate, and two microcoils fabricated on Bbuckled cantilever plates (BCP) oriented perpendicularly to the substrate and each other. The BCP allows an out-of-plane translation while preserving a direct connection to the substrate, which aids the routing of electrical lines. The fabricated sensor is integrated on a single substrate, allowing interaction and integration with other systems. The devices are fabricated using a MEMS polymer fabrication process. Different microcoil configurations are realized with 17-30 turns, 5 μm track width, and 15-20 μm track pitch. The sensor showed up to 6.8 nT/√Hz resolution to magnetic fields within a frequency range of 40 Hz to 1 MHz. The BCP concept provides a strikingly simple method to fabricate a three-axis field sensor that can readily be integrated with electronic circuits, and the sensor\\'s performance can easily be adjusted within a wide range by changing the dimensions of the coils. © 2013 IEEE.

  9. Effect of Inductive Coil Shape on Sensing Performance of Linear Displacement Sensor Using Thin Inductive Coil and Pattern Guide

    Directory of Open Access Journals (Sweden)

    Hiroyuki Wakiwaka

    2011-11-01

    Full Text Available This paper discusses the effect of inductive coil shape on the sensing performance of a linear displacement sensor. The linear displacement sensor consists of a thin type inductive coil with a thin pattern guide, thus being suitable for tiny space applications. The position can be detected by measuring the inductance of the inductive coil. At each position due to the change in inductive coil area facing the pattern guide the value of inductance is different. Therefore, the objective of this research is to study various inductive coil pattern shapes and to propose the pattern that can achieve good sensing performance. Various shapes of meander, triangular type meander, square and circle shape with different turn number of inductive coils are examined in this study. The inductance is measured with the sensor sensitivity and linearity as a performance evaluation parameter of the sensor. In conclusion, each inductive coil shape has its own advantages and disadvantages. For instance, the circle shape inductive coil produces high sensitivity with a low linearity response. Meanwhile, the square shape inductive coil has a medium sensitivity with higher linearity.

  10. Three-axis magnetic field induction sensor realized on buckled cantilever plate

    KAUST Repository

    Alfadhel, Ahmed; Carreno, Armando Arpys Arevalo; Foulds, Ian G.; Kosel, Jü rgen

    2013-01-01

    This work presents the fabrication and characterization of a three-axis induction sensor consisting of one planar microcoil, fixed on the substrate, and two microcoils fabricated on Bbuckled cantilever plates (BCP) oriented perpendicularly to the substrate and each other. The BCP allows an out-of-plane translation while preserving a direct connection to the substrate, which aids the routing of electrical lines. The fabricated sensor is integrated on a single substrate, allowing interaction and integration with other systems. The devices are fabricated using a MEMS polymer fabrication process. Different microcoil configurations are realized with 17-30 turns, 5 μm track width, and 15-20 μm track pitch. The sensor showed up to 6.8 nT/√Hz resolution to magnetic fields within a frequency range of 40 Hz to 1 MHz. The BCP concept provides a strikingly simple method to fabricate a three-axis field sensor that can readily be integrated with electronic circuits, and the sensor's performance can easily be adjusted within a wide range by changing the dimensions of the coils. © 2013 IEEE.

  11. Flat Type Thick Film Inductive Sensors

    Directory of Open Access Journals (Sweden)

    D. Marioli

    2003-01-01

    area. Moreover, two sensors have been tested in the laboratory using the single layer as a distance sensor and the multi-layer as a transducer for the measurement of a metallic object profile. The results of the tests show a maximum sensitivity of 14mV/µm and a resolution of 0.6 µm for the single layer, while the multi layer one reconstructs the profile with an axial resolution of a few microns and a lateral resolution better than 200 mm.

  12. Comparison of an Inductance In-Line Oil Debris Sensor and Magnetic Plug Oil Debris Sensor

    Science.gov (United States)

    Dempsey, Paula J.; Tuck, Roger; Showalter, Stephen

    2012-01-01

    The objective of this research was to compare the performance of an inductance in-line oil debris sensor and magnetic plug oil debris sensor when detecting transmission component health in the same system under the same operating conditions. Both sensors were installed in series in the NASA Glenn Spiral Bevel Gear Fatigue Rig during tests performed on 5 gear sets (pinion/gear) when different levels of damage occurred on the gear teeth. Results of this analysis found both the inductance in-line oil debris sensor and magnetic plug oil debris sensor have benefits and limitations when detecting gearbox component damage.

  13. Ultra-high resolution coded wavefront sensor

    KAUST Repository

    Wang, Congli

    2017-06-08

    Wavefront sensors and more general phase retrieval methods have recently attracted a lot of attention in a host of application domains, ranging from astronomy to scientific imaging and microscopy. In this paper, we introduce a new class of sensor, the Coded Wavefront Sensor, which provides high spatio-temporal resolution using a simple masked sensor under white light illumination. Specifically, we demonstrate megapixel spatial resolution and phase accuracy better than 0.1 wavelengths at reconstruction rates of 50 Hz or more, thus opening up many new applications from high-resolution adaptive optics to real-time phase retrieval in microscopy.

  14. A novel capacitive absolute positioning sensor based on time grating with nanometer resolution

    Science.gov (United States)

    Pu, Hongji; Liu, Hongzhong; Liu, Xiaokang; Peng, Kai; Yu, Zhicheng

    2018-05-01

    The present work proposes a novel capacitive absolute positioning sensor based on time grating. The sensor includes a fine incremental-displacement measurement component combined with a coarse absolute-position measurement component to obtain high-resolution absolute positioning measurements. A single row type sensor was proposed to achieve fine displacement measurement, which combines the two electrode rows of a previously proposed double-row type capacitive displacement sensor based on time grating into a single row. To achieve absolute positioning measurement, the coarse measurement component is designed as a single-row type displacement sensor employing a single spatial period over the entire measurement range. In addition, this component employs a rectangular induction electrode and four groups of orthogonal discrete excitation electrodes with half-sinusoidal envelope shapes, which were formed by alternately extending the rectangular electrodes of the fine measurement component. The fine and coarse measurement components are tightly integrated to form a compact absolute positioning sensor. A prototype sensor was manufactured using printed circuit board technology for testing and optimization of the design in conjunction with simulations. Experimental results show that the prototype sensor achieves a ±300 nm measurement accuracy with a 1 nm resolution over a displacement range of 200 mm when employing error compensation. The proposed sensor is an excellent alternative to presently available long-range absolute nanometrology sensors owing to its low cost, simple structure, and ease of manufacturing.

  15. Vehicle Classification Using the Discrete Fourier Transform with Traffic Inductive Sensors.

    Science.gov (United States)

    Lamas-Seco, José J; Castro, Paula M; Dapena, Adriana; Vazquez-Araujo, Francisco J

    2015-10-26

    Inductive Loop Detectors (ILDs) are the most commonly used sensors in traffic management systems. This paper shows that some spectral features extracted from the Fourier Transform (FT) of inductive signatures do not depend on the vehicle speed. Such a property is used to propose a novel method for vehicle classification based on only one signature acquired from a sensor single-loop, in contrast to standard methods using two sensor loops. Our proposal will be evaluated by means of real inductive signatures captured with our hardware prototype.

  16. Vehicle Classification Using the Discrete Fourier Transform with Traffic Inductive Sensors

    Directory of Open Access Journals (Sweden)

    José J. Lamas-Seco

    2015-10-01

    Full Text Available Inductive Loop Detectors (ILDs are the most commonly used sensors in traffic management systems. This paper shows that some spectral features extracted from the Fourier Transform (FT of inductive signatures do not depend on the vehicle speed. Such a property is used to propose a novel method for vehicle classification based on only one signature acquired from a sensor single-loop, in contrast to standard methods using two sensor loops. Our proposal will be evaluated by means of real inductive signatures captured with our hardware prototype.

  17. SALT segmented primary mirror: laboratory test results for FOGALE inductive edge sensors

    Science.gov (United States)

    Menzies, John; Gajjar, Hitesh; Buous, Sébastien; Buckley, David; Gillingham, Peter

    2010-07-01

    At the Southern African Large Telescope (SALT), in collaboration with FOGALE Nanotech, we have been testing the recently-developed new generation inductive edge sensors. The Fogale inductive sensor is one technology being evaluated as a possible replacement for the now defunct capacitance-based edge sensing system. We present the results of exhaustive environmental testing of two variants of the inductive sensor. In addition to the environmental testing including RH and temperature cycles, the sensor was tested for sensitivity to dust and metals. We also consider long-term sensor stability, as well as that of the electronics and of the glue used to bond the sensor to its supporting structure. A prototype design for an adjustable mount is presented which will allow for in-plane gap and shear variations present in the primary mirror configuration without adversely disturbing the figure of the individual mirror segments or the measurement accuracy.

  18. Development of a Respiratory Inductive Plethysmography Module Supporting Multiple Sensors for Wearable Systems

    Directory of Open Access Journals (Sweden)

    Zhengbo Zhang

    2012-09-01

    Full Text Available In this paper, we present an RIP module with the features of supporting multiple inductive sensors, no variable frequency LC oscillator, low power consumption, and automatic gain adjustment for each channel. Based on the method of inductance measurement without using a variable frequency LC oscillator, we further integrate pulse amplitude modulation and time division multiplexing scheme into a module to support multiple RIP sensors. All inductive sensors are excited by a high-frequency electric current periodically and momentarily, and the inductance of each sensor is measured during the time when the electric current is fed to it. To improve the amplitude response of the RIP sensors, we optimize the sensing unit with a matching capacitor parallel with each RIP sensor forming a frequency selection filter. Performance tests on the linearity of the output with cross-sectional area and the accuracy of respiratory volume estimation demonstrate good linearity and accurate lung volume estimation. Power consumption of this new RIP module with two sensors is very low. The performance of respiration measurement during movement is also evaluated. This RIP module is especially desirable for wearable systems with multiple RIP sensors for long-term respiration monitoring.

  19. Compact, Low-Noise Magnetic Sensor with Fluxgate (DC) and Induction (AC) Modes of Operation

    Science.gov (United States)

    2009-07-01

    induction sensor and the fluxgate magnetometer . ......................................... 2 Figure 3.1 - Impulse response of a 4” long coil (#6...Block diagram of the Year 2, Task 2 fluxgate magnetometer . ................................... 6 Figure 3.3 - FIS-prototype magnetic-field...and demonstrated an innovative dual-mode, fluxgate -induction sensor (FIS) that combines a fluxgate magnetometer and an electromagnetic (EM) induction

  20. A Compact Ionic Polymer Metal Composite (IPMC System with Inductive Sensor for Closed Loop Feedback

    Directory of Open Access Journals (Sweden)

    Jiaqi Wang

    2015-05-01

    Full Text Available Ionic polymer metal composite (IPMC, of which a low actuating voltage (<5 V, high power efficiency and biocompatibility makes it a proven candidate for low power devices. However, due to its inherent nonlinear behaviour and time-variance, feedback control, as well as reliable sensing means, are required for accurate operations. This paper presents an IPMC actuator implemented with an inductive sensor to enhance the reliability and compactness of the overall device. A practical, low cost and importantly, compact inductive sensor fabricated on a printed circuit board (PCB is proposed here. Target material selections and coil design considerations are discussed. It is experimentally determined that the inductive sensor has comparable performance to a laser sensor. Based on a proportional-integral-derivative (PID control results the inductive sensor has demonstrated to be an alternative to a laser sensor allowing devices using IPMC actuators to be compact.

  1. Two high-frequency mutual inductance bridges with high resolution

    NARCIS (Netherlands)

    Flokstra, Jakob; Gerritsma, G.J.; Kreuwel, H.J.M.; van der Marel, L.C.

    1980-01-01

    Two mutual inductance bridges are described for operation up to about 100 kHz. Special attention is paid to the sensitivity and resolution of the bridges. Both bridges can be used to measure variations of about 10 pH in the mutual inductance. The first bridge consists of passive elements only

  2. Dual Resonant Frequencies Effects on an Induction-Based Oil Palm Fruit Sensor

    Directory of Open Access Journals (Sweden)

    Noor Hasmiza Harun

    2014-11-01

    Full Text Available As the main exporter in the oil palm industry, the need to improve the quality of palm oil has become the main interest among all the palm oil millers in Malaysia. To produce good quality palm oil, it is important for the miller to harvest a good oil palm Fresh Fruit Bunch (FFB. Conventionally, the main reference used by Malaysian harvesters is the manual grading standard published by the Malaysian Palm Oil Board (MPOB. A good oil palm FFB consists of all matured fruitlets, aged between 18 to 21 weeks of antheses (WAA. To expedite the harvesting process, it is crucial to implement an automated detection system for determining the maturity of the oil palm FFB. Various automated detection methods have been proposed by researchers in the field to replace the conventional method. In our preliminary study, a novel oil palm fruit sensor to detect the maturity of oil palm fruit bunch was proposed. The design of the proposed air coil sensor based on the inductive sensor was further investigated mainly in the context of the effect of coil diameter to improve its sensitivity. In this paper, the sensitivity of the inductive sensor was further examined with a dual flat-type shape of air coil. The dual air coils were tested on fifteen samples of fruitlet from two categories, namely ripe and unripe. Samples were tested within 20 Hz to 10 MHz while evaluations on both peaks were done separately before the gap between peaks was analyzed. A comparative analysis was conducted to investigate the improvement in sensitivity of the induction-based oil palm fruit sensor as compared to previous works. Results from the comparative study proved that the inductive sensor using a dual flat-type shape air coil has improved by up to 167%. This provides an indication in the improvement in the coil sensitivity of the palm oil fruit sensor based on the induction concept.

  3. Dual resonant frequencies effects on an induction-based oil palm fruit sensor.

    Science.gov (United States)

    Harun, Noor Hasmiza; Misron, Norhisam; Mohd Sidek, Roslina; Aris, Ishak; Wakiwaka, Hiroyuki; Tashiro, Kunihisa

    2014-11-19

    As the main exporter in the oil palm industry, the need to improve the quality of palm oil has become the main interest among all the palm oil millers in Malaysia. To produce good quality palm oil, it is important for the miller to harvest a good oil palm Fresh Fruit Bunch (FFB). Conventionally, the main reference used by Malaysian harvesters is the manual grading standard published by the Malaysian Palm Oil Board (MPOB). A good oil palm FFB consists of all matured fruitlets, aged between 18 to 21 weeks of antheses (WAA). To expedite the harvesting process, it is crucial to implement an automated detection system for determining the maturity of the oil palm FFB. Various automated detection methods have been proposed by researchers in the field to replace the conventional method. In our preliminary study, a novel oil palm fruit sensor to detect the maturity of oil palm fruit bunch was proposed. The design of the proposed air coil sensor based on the inductive sensor was further investigated mainly in the context of the effect of coil diameter to improve its sensitivity. In this paper, the sensitivity of the inductive sensor was further examined with a dual flat-type shape of air coil. The dual air coils were tested on fifteen samples of fruitlet from two categories, namely ripe and unripe. Samples were tested within 20 Hz to 10 MHz while evaluations on both peaks were done separately before the gap between peaks was analyzed. A comparative analysis was conducted to investigate the improvement in sensitivity of the induction-based oil palm fruit sensor as compared to previous works. Results from the comparative study proved that the inductive sensor using a dual flat-type shape air coil has improved by up to 167%. This provides an indication in the improvement in the coil sensitivity of the palm oil fruit sensor based on the induction concept.

  4. Monitoring of Non-Ferrous Wear Debris in Hydraulic Oil by Detecting the Equivalent Resistance of Inductive Sensors

    Directory of Open Access Journals (Sweden)

    Lin Zeng

    2018-03-01

    Full Text Available Wear debris in hydraulic oil contains important information on the operation of equipment, which is important for condition monitoring and fault diagnosis in mechanical equipment. A micro inductive sensor based on the inductive coulter principle is presented in this work. It consists of a straight micro-channel and a 3-D solenoid coil wound on the micro-channel. Instead of detecting the inductance change of the inductive sensor, the equivalent resistance change of the inductive sensor is detected for non-ferrous particle (copper particle monitoring. The simulation results show that the resistance change rate caused by the presence of copper particles is greater than the inductance change rate. Copper particles with sizes ranging from 48 μm to 150 μm were used in the experiment, and the experimental results are in good agreement with the simulation results. By detecting the inductive change of the micro inductive sensor, the detection limit of the copper particles only reaches 70 μm. However, the detection limit can be improved to 48 μm by detecting the equivalent resistance of the inductive sensor. The equivalent resistance method was demonstrated to have a higher detection accuracy than conventional inductive detection methods for non-ferrous particle detection in hydraulic oil.

  5. Smart Sensor for Online Detection of Multiple-Combined Faults in VSD-Fed Induction Motors

    Science.gov (United States)

    Garcia-Ramirez, Armando G.; Osornio-Rios, Roque A.; Granados-Lieberman, David; Garcia-Perez, Arturo; Romero-Troncoso, Rene J.

    2012-01-01

    Induction motors fed through variable speed drives (VSD) are widely used in different industrial processes. Nowadays, the industry demands the integration of smart sensors to improve the fault detection in order to reduce cost, maintenance and power consumption. Induction motors can develop one or more faults at the same time that can be produce severe damages. The combined fault identification in induction motors is a demanding task, but it has been rarely considered in spite of being a common situation, because it is difficult to identify two or more faults simultaneously. This work presents a smart sensor for online detection of simple and multiple-combined faults in induction motors fed through a VSD in a wide frequency range covering low frequencies from 3 Hz and high frequencies up to 60 Hz based on a primary sensor being a commercially available current clamp or a hall-effect sensor. The proposed smart sensor implements a methodology based on the fast Fourier transform (FFT), RMS calculation and artificial neural networks (ANN), which are processed online using digital hardware signal processing based on field programmable gate array (FPGA).

  6. An approach to calculating metal particle detection in lubrication oil based on a micro inductive sensor

    Science.gov (United States)

    Wu, Yu; Zhang, Hongpeng

    2017-12-01

    A new microfluidic chip is presented to enhance the sensitivity of a micro inductive sensor, and an approach to coil inductance change calculation is introduced for metal particle detection in lubrication oil. Electromagnetic knowledge is used to establish a mathematical model of an inductive sensor for metal particle detection, and the analytic expression of coil inductance change is obtained by a magnetic vector potential. Experimental verification is carried out. The results show that copper particles 50-52 µm in diameter have been detected; the relative errors between the theoretical and experimental values are 7.68% and 10.02% at particle diameters of 108-110 µm and 50-52 µm, respectively. The approach presented here can provide a theoretical basis for an inductive sensor in metal particle detection in oil and other areas of application.

  7. A single-layer flat-coil-oscillator (SFCO)-based super-broadband position sensor for nano-scale-resolution seismometry

    Energy Technology Data Exchange (ETDEWEB)

    Gevorgyan, Samvel [Department of Physics, Yerevan State University, 1 Alex Manoogian Street, Yerevan 0025 (Armenia); Institute for Physical Researches, National Academy of Sciences, Gitavan IFI, 0203 Ashtarak-2 (Armenia)], E-mail: gevs_sam@web.am; Gevorgyan, Vardan [Department of Physics, Yerevan State University, 1 Alex Manoogian Street, Yerevan 0025 (Armenia); Institute for Physical Researches, National Academy of Sciences, Gitavan IFI, 0203 Ashtarak-2 (Armenia); International Scientific-Educational Center, National Academy of Sciences, 24-D Marshal Baghramyan av., Yerevan 0019 (Armenia); Karapetyan, Gagik [Department of Physics, Yerevan State University, 1 Alex Manoogian Street, Yerevan 0025 (Armenia); Institute for Physical Researches, National Academy of Sciences, Gitavan IFI, 0203 Ashtarak-2 (Armenia)

    2008-05-15

    A new class super-broadband, nano-scale-resolution position sensor is tested. It is used as an additional sensor in seismograph. It enables to extend the band and enhance the sensitivity of the available technique by at least an order of magnitude. It allows transferring of mechanical vibrations of constructions and buildings, with amplitudes over 1 nm, into detectable signal in a frequency range starting practically from quasi-static movements. It is based on detection of position changes of a vibrating normal-metallic plate placed near the flat coil-being used as a pick-up in a stable tunnel diode oscillator. Frequency of the oscillator is used as a detecting parameter, and the measuring effect is determined by a distortion of the MHz-range testing field configuration near a coil by a vibrating plate, leading to magnetic inductance changes of the coil, with a resolution {approx}10 pH. This results in changes of oscillator frequency. We discuss test data of such a position sensor, installed in a Russian SM-3 seismometer, as an additional pick-up component, showing its advantages compared to traditional techniques. We also discuss the future of such a novel sensor involving substitution of a metallic coil by a superconductive one and replacement of a tunnel diode by an S/I/S hetero-structure-as much less-powered active element in the oscillator, compared to tunnel diode. These may strongly improve the stability of oscillators, and therefore enhance the resolution of seismic techniques.

  8. Design and Development of a Pressure Transmitter Using Modified Inductance Measuring Network and Bellow Sensor

    Directory of Open Access Journals (Sweden)

    Venkata Lakshmi Narayana K.

    2013-03-01

    Full Text Available In this paper, a pressure transmitter using a modified op-amp based network for inductance measurement using a bellow as sensor has been proposed to measure the pressure and to convert pressure changes in to an electrical current which can be transmitted to a remote indicator. The change in inductance due to change in pressure is measured by an improved modified operational amplifier based network. The proposed network permits offset inductance compensation of sensing coil and also minimizes the stray capacitance between sensing coil and ground using dummy inductor whose value equal to zero level inductance of sensing coil and op-amps with high input impedance. In the first part of experiment, a modified op-amp based inductance measuring circuit has been simulated using LabVIEW (Laboratory Virtual Instrument Engineering Workbench and studied with test inductance, and in the second part, the experimentation was done by replacing the test inductance with a sensing coil fitted to bellow by means of ferromagnetic wire for the measurement of pressure. It has been observed that the variation in gauge pressure from 0 to 70 psi having linear relationship with output ac voltage in the range of 0 to 85.0 mV. Corresponding to pressure variations, the ac output voltage further converted into an electric current of 4 to 20 mA for remote indication and control purpose. The investigations have been performed to sense air pressure of pressure tank fitted with pump piston. The experimental results are found to have good linearity of about ± 0.1 % and resolution.

  9. 2 DOF resolution adjustment laser position sensor

    CSIR Research Space (South Africa)

    Shaik, A

    2008-12-01

    Full Text Available means. [19, 20] Other - Displacement measuring instruments utilizing eddy currents, capacitive and inductive properties exist, but are not as widely spread as the technologies mentioned. Accelerometers and Gyroscopes are used to determine... resolution. The current accuracy of the IRB 340 Flex Picker, a rapid pick and place machine, is 0.1 mm. The lower limit on screen resolution for absolute 2D positioning would then be 400 phototransistors per square mm, a screen with twice the resolution...

  10. Temperature estimation of induction machines based on wireless sensor networks

    Directory of Open Access Journals (Sweden)

    Y. Huang

    2018-04-01

    Full Text Available In this paper, a fourth-order Kalman filter (KF algorithm is implemented in the wireless sensor node to estimate the temperatures of the stator winding, the rotor cage and the stator core in the induction machine. Three separate wireless sensor nodes are used as the data acquisition systems for different input signals. Six Hall sensors are used to acquire the three-phase stator currents and voltages of the induction machine. All of them are processed to root mean square (rms in ampere and volt. A rotary encoder is mounted for the rotor speed and Pt-1000 is used for the temperature of the coolant air. The processed signals in the physical unit are transmitted wirelessly to the host wireless sensor node, where the KF is implemented with fixed-point arithmetic in Contiki OS. Time-division multiple access (TDMA is used to make the wireless transmission more stable. Compared to the floating-point implementation, the fixed-point implementation has the same estimation accuracy at only about one-fifth of the computation time. The temperature estimation system can work under any work condition as long as there are currents through the machine. It can also be rebooted for estimation even when wireless transmission has collapsed or packages are missing.

  11. Improvement in Sensitivity of an Inductive Oil Palm Fruit Sensor

    Directory of Open Access Journals (Sweden)

    Norhisam Misron

    2014-02-01

    Full Text Available Among palm oil millers, the ripeness of oil palm Fresh Fruit Bunch (FFB is determined through visual inspection. To increase the productivity of the millers, many researchers have proposed with a new detection method to replace the conventional one. The sensitivity of such a sensor plays a crucial role in determining the effectiveness of the method. In our preliminary study a novel oil palm fruit sensor to detect the maturity of oil palm fruit bunches is proposed. The design of the proposed air coil sensor based on an inductive sensor is further investigated to improve its sensitivity. This paper investigates the results pertaining to the effects of the air coil structure of an oil palm fruit sensor, taking consideration of the used copper wire diameter ranging from 0.10 mm to 0.18 mm with 60 turns. The flat-type shape of air coil was used on twenty samples of fruitlets from two categories, namely ripe and unripe. Samples are tested with frequencies ranging from 20 Hz to 120 MHz. The sensitivity of the sensor between air to fruitlet samples increases as the coil diameter increases. As for the sensitivity differences between ripe and unripe samples, the 5 mm air coil length with the 0.12 mm coil diameter provides the highest percentage difference between samples and it is amongst the highest deviation value between samples. The result from this study is important to improve the sensitivity of the inductive oil palm fruit sensor mainly with regards to the design of the air coil structure. The efficiency of the sensor to determine the maturity of the oil palm FFB and the ripening process of the fruitlet could further be enhanced.

  12. Nonlinearity Analysis and Parameters Optimization for an Inductive Angle Sensor

    Directory of Open Access Journals (Sweden)

    Lin Ye

    2014-02-01

    Full Text Available Using the finite element method (FEM and particle swarm optimization (PSO, a nonlinearity analysis based on parameter optimization is proposed to design an inductive angle sensor. Due to the structure complexity of the sensor, understanding the influences of structure parameters on the nonlinearity errors is a critical step in designing an effective sensor. Key parameters are selected for the design based on the parameters’ effects on the nonlinearity errors. The finite element method and particle swarm optimization are combined for the sensor design to get the minimal nonlinearity error. In the simulation, the nonlinearity error of the optimized sensor is 0.053% in the angle range from −60° to 60°. A prototype sensor is manufactured and measured experimentally, and the experimental nonlinearity error is 0.081% in the angle range from −60° to 60°.

  13. Inductive sensors for blade tip-timing in gas turbines

    Directory of Open Access Journals (Sweden)

    Przysowa Radosław

    2015-12-01

    Full Text Available The paper reviews features and applications of the upgraded inductive sensor for BTT, which is able to operate in contact with exhaust gases of temperature even as high as 1200 K. The new design includes metal-ceramic housing ensuring proper heat transfer, magnetic circuit containing set of permanent magnets with various magnetic field values and Curie temperatures, completely redesigned windings and current/voltage converter used instead of an electromotive force amplifier. Its principle of operation is based on electro-dynamical interaction and therefore it may be referred as a passive eddy-current sensor. The sensor technique has been demonstrated on four stages of a surplus military turbofan including the high pressure turbine as part of the engine health monitoring system. We present signal samples and review methods used for online processing of time-of-arrival signals when only a limited number of sensors is available.

  14. Closed loop control of the induction heating process using miniature magnetic sensors

    Science.gov (United States)

    Bentley, Anthony E.; Kelley, John Bruce; Zutavern, Fred J.

    2003-05-20

    A method and system for providing real-time, closed-loop control of the induction hardening process. A miniature magnetic sensor located near the outer surface of the workpiece measures changes in the surface magnetic field caused by changes in the magnetic properties of the workpiece as it heats up during induction heating (or cools down during quenching). A passive miniature magnetic sensor detects a distinct magnetic spike that appears when the saturation field, B.sub.sat, of the workpiece has been exceeded. This distinct magnetic spike disappears when the workpiece's surface temperature exceeds its Curie temperature, due to the sudden decrease in its magnetic permeability. Alternatively, an active magnetic sensor can measure changes in the resonance response of the monitor coil when the excitation coil is linearly swept over 0-10 MHz, due to changes in the magnetic permeability and electrical resistivity of the workpiece as its temperature increases (or decreases).

  15. Using ferrite to improve directional sensing for pulse travelling in MV power cables with two inductive sensors

    NARCIS (Netherlands)

    Li, Y.; Wouters, P.A.A.F.; Wagenaars, P.; Wielen, van der P.C.J.M.; Steennis, E.F.

    2013-01-01

    Inductive sensors are widely used for detection of high frequency signal, e.g. from partial discharge (PD) activity. A single inductive sensor, installed in a ring main unit (RMU) in a medium-voltage (MV) system, is not able to judge the direction of the signal origin. A method to determine its

  16. On the Determination of the Gear Teeth Wear Using an Inductive Sensor

    Directory of Open Access Journals (Sweden)

    V. N. Atamanov

    2015-01-01

    Full Text Available A problem to measure the teeth wear of rotating gear wheels and a possibility to create simple, reliable and inexpensive mobile systems of diagnostics allowing to record the wear in the course of use are presently relevant. The paper presents implemented technical solutions as a result of work. The aim of the work was to prove experimentally that it is possible to measure the teeth wear of a gear wheel using a passive inductive sensor and a positioning disk. The technique to determine the wear uses a phase-chronometric method developed at BMSTU.To reach the objective, an experimental installation was designed and made. Works are performed, and experimental results of used stationary inductive sensors of passive type to measure the ferromagnetic gear wheels wear of reducers in use are received. The technique for defining the points at the output signal of the inductive sensor, which correspond to the specified points of the tooth profile and, in particular, to the profile points on a pitch circle of the tooth of gear wheel has been developed. Experiments allowed us to define the main dependences of signal parameters on the sizes and arrangement of the sensor magnet with respect to the passing tooth in the course of rotation, as well as on the number of the sensor coil turns, speed of gear wheel rotation, and on the gap size between the end face of the sensor and the top of a tooth.The technique for positioning the sensor with respect to tooth has been deve loped. In particular, it allows us to position a sensor at any point of the involute, including also a point of the profile on a pitch circle. This is necessary to adjust the sensor. The conducted researches allowed us to develop a technique for exact measuring system adjustment to a hitch circle of the gear wheel and to develop for this purpose a system of diagnostics and measurement of teeth wear with the wheel being rotated. The results of work performed at the JSC ELARA in Cheboksary city

  17. Observability analysis for model-based fault detection and sensor selection in induction motors

    International Nuclear Information System (INIS)

    Nakhaeinejad, Mohsen; Bryant, Michael D

    2011-01-01

    Sensors in different types and configurations provide information on the dynamics of a system. For a specific task, the question is whether measurements have enough information or whether the sensor configuration can be changed to improve the performance or to reduce costs. Observability analysis may answer the questions. This paper presents a general algorithm of nonlinear observability analysis with application to model-based diagnostics and sensor selection in three-phase induction motors. A bond graph model of the motor is developed and verified with experiments. A nonlinear observability matrix based on Lie derivatives is obtained from state equations. An observability index based on the singular value decomposition of the observability matrix is obtained. Singular values and singular vectors are used to identify the most and least observable configurations of sensors and parameters. A complex step derivative technique is used in the calculation of Jacobians to improve the computational performance of the observability analysis. The proposed algorithm of observability analysis can be applied to any nonlinear system to select the best configuration of sensors for applications of model-based diagnostics, observer-based controller, or to determine the level of sensor redundancy. Observability analysis on induction motors provides various sensor configurations with corresponding observability indices. Results show the redundancy levels for different sensors, and provide a sensor selection guideline for model-based diagnostics, and for observer-based controllers. The results can also be used for sensor fault detection and to improve the reliability of the system by increasing the redundancy level in measurements

  18. Inductive displacement sensors with a notch filter for an active magnetic bearing system.

    Science.gov (United States)

    Chen, Seng-Chi; Le, Dinh-Kha; Nguyen, Van-Sum

    2014-07-15

    Active magnetic bearing (AMB) systems support rotating shafts without any physical contact, using electromagnetic forces. Each radial AMB uses two pairs of electromagnets at opposite sides of the rotor. This allows the rotor to float in the air gap, and the machine to operate without frictional losses. In active magnetic suspension, displacement sensors are necessary to detect the radial and axial movement of the suspended object. In a high-speed rotating machine equipped with an AMB, the rotor bending modes may be limited to the operating range. The natural frequencies of the rotor can cause instability. Thus, notch filters are a useful circuit for stabilizing the system. In addition, commercial displacement sensors are sometimes not suitable for AMB design, and cannot filter the noise caused by the natural frequencies of rotor. Hence, implementing displacement sensors based on the AMB structure is necessary to eliminate noises caused by natural frequency disturbances. The displacement sensor must be highly sensitive in the desired working range, and also exhibit a low interference noise, high stability, and low cost. In this study, we used the differential inductive sensor head and lock-in amplifier for synchronous demodulation. In addition, an active low-pass filter and a notch filter were used to eliminate disturbances, which caused by natural frequencies. As a consequence, the inductive displacement sensor achieved satisfactory linearity, high sensitivity, and disturbance elimination. This sensor can be easily produced for AMB applications. A prototype of these displacement sensors was built and tested.

  19. High-resolution magnetic resonance spectroscopy using a solid-state spin sensor

    Science.gov (United States)

    Glenn, David R.; Bucher, Dominik B.; Lee, Junghyun; Lukin, Mikhail D.; Park, Hongkun; Walsworth, Ronald L.

    2018-03-01

    Quantum systems that consist of solid-state electronic spins can be sensitive detectors of nuclear magnetic resonance (NMR) signals, particularly from very small samples. For example, nitrogen–vacancy centres in diamond have been used to record NMR signals from nanometre-scale samples, with sensitivity sufficient to detect the magnetic field produced by a single protein. However, the best reported spectral resolution for NMR of molecules using nitrogen–vacancy centres is about 100 hertz. This is insufficient to resolve the key spectral identifiers of molecular structure that are critical to NMR applications in chemistry, structural biology and materials research, such as scalar couplings (which require a resolution of less than ten hertz) and small chemical shifts (which require a resolution of around one part per million of the nuclear Larmor frequency). Conventional, inductively detected NMR can provide the necessary high spectral resolution, but its limited sensitivity typically requires millimetre-scale samples, precluding applications that involve smaller samples, such as picolitre-volume chemical analysis or correlated optical and NMR microscopy. Here we demonstrate a measurement technique that uses a solid-state spin sensor (a magnetometer) consisting of an ensemble of nitrogen–vacancy centres in combination with a narrowband synchronized readout protocol to obtain NMR spectral resolution of about one hertz. We use this technique to observe NMR scalar couplings in a micrometre-scale sample volume of approximately ten picolitres. We also use the ensemble of nitrogen–vacancy centres to apply NMR to thermally polarized nuclear spins and resolve chemical-shift spectra from small molecules. Our technique enables analytical NMR spectroscopy at the scale of single cells.

  20. Simple mechanical parameters identification of induction machine using voltage sensor only

    International Nuclear Information System (INIS)

    Horen, Yoram; Strajnikov, Pavel; Kuperman, Alon

    2015-01-01

    Highlights: • A simple low cost algorithm for induction motor mechanical parameters estimation is proposed. • Voltage sensing only is performed; speed sensor is not required. • The method is suitable for both wound rotor and squirrel cage motors. - Abstract: A simple low cost algorithm for induction motor mechanical parameters estimation without speed sensor is presented in this paper. Estimation is carried out by recording stator terminal voltage during natural braking and subsequent offline curve fitting. The algorithm allows accurately reconstructing mechanical time constant as well as loading torque speed dependency. Although the mathematical basis of the presented method is developed for wound rotor motors, it is shown to be suitable for squirrel cage motors as well. The algorithm is first tested by reconstruction of simulation model parameters and then by processing measurement results of several motors. Simulation and experimental results support the validity of the proposed algorithm

  1. A Compact Inductive Position Sensor Made by Inkjet Printing Technology on a Flexible Substrate

    Directory of Open Access Journals (Sweden)

    Nataša Samardžić

    2012-01-01

    Full Text Available This paper describes the design, simulation and fabrication of an inductive angular position sensor on a flexible substrate. The sensor is composed of meandering silver coils printed on a flexible substrate (Kapton film using inkjet technology. The flexibility enables that after printing in the plane, the coils could be rolled and put inside each other. By changing the angular position of the internal coil (rotor related to the external one (stator, the mutual inductance is changed and consequently the impedance. It is possible to determine the angular position from the measured real and imaginary part of the impedance, in our case in the frequency range from 1 MHz to 10 MHz. Experimental results were compared with simulation results obtained by in-house developed software tool, and very good agreement has been achieved. Thanks to the simple design and fabrication, smaller package space requirements and weight, the presented sensor represents a cost-effective alternative to the other sensors currently used in series production applications.

  2. A New, Adaptable, Optical High-Resolution 3-Axis Sensor

    Directory of Open Access Journals (Sweden)

    Niels Buchhold

    2017-01-01

    Full Text Available This article presents a new optical, multi-functional, high-resolution 3-axis sensor which serves to navigate and can, for example, replace standard joysticks in medical devices such as electric wheelchairs, surgical robots or medical diagnosis devices. A light source, e.g., a laser diode, is affixed to a movable axis and projects a random geometric shape on an image sensor (CMOS or CCD. The downstream microcontroller’s software identifies the geometric shape’s center, distortion and size, and then calculates x, y, and z coordinates, which can be processed in attached devices. Depending on the image sensor in use (e.g., 6.41 megapixels, the 3-axis sensor features a resolution of 1544 digits from right to left and 1038 digits up and down. Through interpolation, these values rise by a factor of 100. A unique feature is the exact reproducibility (deflection to coordinates and its precise ability to return to its neutral position. Moreover, optical signal processing provides a high level of protection against electromagnetic and radio frequency interference. The sensor is adaptive and adjustable to fit a user’s range of motion (stroke and force. This recommendation aims to optimize sensor systems such as joysticks in medical devices in terms of safety, ease of use, and adaptability.

  3. Inductive Displacement Sensors with a Notch Filter for an Active Magnetic Bearing System

    Directory of Open Access Journals (Sweden)

    Seng-Chi Chen

    2014-07-01

    Full Text Available Active magnetic bearing (AMB systems support rotating shafts without any physical contact, using electromagnetic forces. Each radial AMB uses two pairs of electromagnets at opposite sides of the rotor. This allows the rotor to float in the air gap, and the machine to operate without frictional losses. In active magnetic suspension, displacement sensors are necessary to detect the radial and axial movement of the suspended object. In a high-speed rotating machine equipped with an AMB, the rotor bending modes may be limited to the operating range. The natural frequencies of the rotor can cause instability. Thus, notch filters are a useful circuit for stabilizing the system. In addition, commercial displacement sensors are sometimes not suitable for AMB design, and cannot filter the noise caused by the natural frequencies of rotor. Hence, implementing displacement sensors based on the AMB structure is necessary to eliminate noises caused by natural frequency disturbances. The displacement sensor must be highly sensitive in the desired working range, and also exhibit a low interference noise, high stability, and low cost. In this study, we used the differential inductive sensor head and lock-in amplifier for synchronous demodulation. In addition, an active low-pass filter and a notch filter were used to eliminate disturbances, which caused by natural frequencies. As a consequence, the inductive displacement sensor achieved satisfactory linearity, high sensitivity, and disturbance elimination. This sensor can be easily produced for AMB applications. A prototype of these displacement sensors was built and tested.

  4. High Tc superconducting nonlinear inductance and quick response magnetic sensor devices

    International Nuclear Information System (INIS)

    Uchiyama, T.; Mohri, K.; Ozeki, A.; Shibata, T.

    1990-01-01

    A flux penetration model considering the demagnetizing effect is presented in order to analyze the nonlinear inductance characteristics for HTcSC. Various quick response magnetic devices such as modulators, magnetic switches and magnetic sensors were constructed. The magnetizing frequency can be set up more than 10 MHz which is difficult to achieve with the conventional ferromagnetic bulk cores. The cut-off frequency of 1.6 MHz was obtained for the sensors using the HTcSC cores at a magnetizing frequency of 11.5 MHz

  5. Measurement of the spatial resolution and rate capability of an induction drift chamber

    International Nuclear Information System (INIS)

    Roderburg, E.; Broeders, R.; Dahmen, M.; Decker, G.; Kilian, K.; Kurtenbach, A.; Lippert, C.; Oelert, W.; Sehl, G.; Steinkamp, O.; Stratmann, R.; Walsh, S.; Ziolkowski, M.

    1992-01-01

    The limits of spatial resolution of an induction drift chamber (IDC) lead to the concept of an asymmetric IDC with Flash ADC readout. The construction of a chamber is described. The results of two measurements concerning the spatial resolution and the rate capability are reported. (orig.)

  6. A self-calibrating optomechanical force sensor with femtonewton resolution

    International Nuclear Information System (INIS)

    Melcher, John; Stirling, Julian; Pratt, Jon R.; Shaw, Gordon A.; Cervantes, Felipe Guzmán

    2014-01-01

    We report the development of an ultrasensitive optomechanical sensor designed to improve the accuracy and precision of force measurements with atomic force microscopy. The sensors reach quality factors of 4.3 × 10 6 and force resolution on the femtonewton scale at room temperature. Self-calibration of the sensor is accomplished using radiation pressure to create a reference force. Self-calibration enables in situ calibration of the sensor in extreme environments, such as cryogenic ultra-high vacuum. The senor technology presents a viable route to force measurements at the atomic scale with uncertainties below the percent level

  7. A self-calibrating optomechanical force sensor with femtonewton resolution

    Energy Technology Data Exchange (ETDEWEB)

    Melcher, John, E-mail: john.melcher@nist.gov; Stirling, Julian; Pratt, Jon R.; Shaw, Gordon A. [National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Cervantes, Felipe Guzmán [National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Joint Quantum Institute, University of Maryland, College Park, Maryland 20742 (United States)

    2014-12-08

    We report the development of an ultrasensitive optomechanical sensor designed to improve the accuracy and precision of force measurements with atomic force microscopy. The sensors reach quality factors of 4.3 × 10{sup 6} and force resolution on the femtonewton scale at room temperature. Self-calibration of the sensor is accomplished using radiation pressure to create a reference force. Self-calibration enables in situ calibration of the sensor in extreme environments, such as cryogenic ultra-high vacuum. The senor technology presents a viable route to force measurements at the atomic scale with uncertainties below the percent level.

  8. Sensitivity encoded silicon photomultiplier—a new sensor for high-resolution PET-MRI

    International Nuclear Information System (INIS)

    Schulz, Volkmar; Berker, Yannick; Berneking, Arne; Omidvari, Negar; Kiessling, Fabian; Gola, Alberto; Piemonte, Claudio

    2013-01-01

    Detectors for simultaneous positron emission tomography and magnetic resonance imaging in particular with sub-mm spatial resolution are commonly composed of scintillator crystal arrays, readout via arrays of solid state sensors, such as avalanche photo diodes (APDs) or silicon photomultipliers (SiPMs). Usually a light guide between the crystals and the sensor is used to enable the identification of crystals which are smaller than the sensor elements. However, this complicates crystal identification at the gaps and edges of the sensor arrays. A solution is to use as many sensors as crystals with a direct coupling, which unfortunately increases the complexity and power consumption of the readout electronics. Since 1997, position-sensitive APDs have been successfully used to identify sub-mm crystals. Unfortunately, these devices show a limitation in their time resolution and a degradation of spatial resolution when placed in higher magnetic fields. To overcome these limitations, this paper presents a new sensor concept that extends conventional SiPMs by adding position information via the spatial encoding of the channel sensitivity. The concept allows a direct coupling of high-resolution crystal arrays to the sensor with a reduced amount of readout channels. The theory of sensitivity encoding is detailed and linked to compressed sensing to compute unique sparse solutions. Two devices have been designed using one- and two-dimensional linear sensitivity encoding with eight and four readout channels, respectively. Flood histograms of both devices show the capability to precisely identify all 4 × 4 LYSO crystals with dimensions of 0.93 × 0.93 × 10 mm 3 . For these crystals, the energy and time resolution (MV ± SD) of the devices with one (two)-dimensional encoding have been measured to be 12.3 · (1 ± 0.047)% (13.7 · (1 ± 0.047)%) around 511 keV with a paired coincidence time resolution (full width at half maximum) of 462 · (1 ± 0.054) ps (452 · (1 ± 0

  9. Sensitivity encoded silicon photomultiplier—a new sensor for high-resolution PET-MRI

    Science.gov (United States)

    Schulz, Volkmar; Berker, Yannick; Berneking, Arne; Omidvari, Negar; Kiessling, Fabian; Gola, Alberto; Piemonte, Claudio

    2013-07-01

    Detectors for simultaneous positron emission tomography and magnetic resonance imaging in particular with sub-mm spatial resolution are commonly composed of scintillator crystal arrays, readout via arrays of solid state sensors, such as avalanche photo diodes (APDs) or silicon photomultipliers (SiPMs). Usually a light guide between the crystals and the sensor is used to enable the identification of crystals which are smaller than the sensor elements. However, this complicates crystal identification at the gaps and edges of the sensor arrays. A solution is to use as many sensors as crystals with a direct coupling, which unfortunately increases the complexity and power consumption of the readout electronics. Since 1997, position-sensitive APDs have been successfully used to identify sub-mm crystals. Unfortunately, these devices show a limitation in their time resolution and a degradation of spatial resolution when placed in higher magnetic fields. To overcome these limitations, this paper presents a new sensor concept that extends conventional SiPMs by adding position information via the spatial encoding of the channel sensitivity. The concept allows a direct coupling of high-resolution crystal arrays to the sensor with a reduced amount of readout channels. The theory of sensitivity encoding is detailed and linked to compressed sensing to compute unique sparse solutions. Two devices have been designed using one- and two-dimensional linear sensitivity encoding with eight and four readout channels, respectively. Flood histograms of both devices show the capability to precisely identify all 4 × 4 LYSO crystals with dimensions of 0.93 × 0.93 × 10 mm3. For these crystals, the energy and time resolution (MV ± SD) of the devices with one (two)-dimensional encoding have been measured to be 12.3 · (1 ± 0.047)% (13.7 · (1 ± 0.047)%) around 511 keV with a paired coincidence time resolution (full width at half maximum) of 462 · (1 ± 0.054) ps (452 · (1 ± 0

  10. Sensitivity encoded silicon photomultiplier--a new sensor for high-resolution PET-MRI.

    Science.gov (United States)

    Schulz, Volkmar; Berker, Yannick; Berneking, Arne; Omidvari, Negar; Kiessling, Fabian; Gola, Alberto; Piemonte, Claudio

    2013-07-21

    Detectors for simultaneous positron emission tomography and magnetic resonance imaging in particular with sub-mm spatial resolution are commonly composed of scintillator crystal arrays, readout via arrays of solid state sensors, such as avalanche photo diodes (APDs) or silicon photomultipliers (SiPMs). Usually a light guide between the crystals and the sensor is used to enable the identification of crystals which are smaller than the sensor elements. However, this complicates crystal identification at the gaps and edges of the sensor arrays. A solution is to use as many sensors as crystals with a direct coupling, which unfortunately increases the complexity and power consumption of the readout electronics. Since 1997, position-sensitive APDs have been successfully used to identify sub-mm crystals. Unfortunately, these devices show a limitation in their time resolution and a degradation of spatial resolution when placed in higher magnetic fields. To overcome these limitations, this paper presents a new sensor concept that extends conventional SiPMs by adding position information via the spatial encoding of the channel sensitivity. The concept allows a direct coupling of high-resolution crystal arrays to the sensor with a reduced amount of readout channels. The theory of sensitivity encoding is detailed and linked to compressed sensing to compute unique sparse solutions. Two devices have been designed using one- and two-dimensional linear sensitivity encoding with eight and four readout channels, respectively. Flood histograms of both devices show the capability to precisely identify all 4 × 4 LYSO crystals with dimensions of 0.93 × 0.93 × 10 mm(3). For these crystals, the energy and time resolution (MV ± SD) of the devices with one (two)-dimensional encoding have been measured to be 12.3 · (1 ± 0.047)% (13.7 · (1 ± 0.047)%) around 511 keV with a paired coincidence time resolution (full width at half maximum) of 462 · (1 ± 0.054) ps (452 · (1 ± 0

  11. Condition monitoring of shaft of single-phase induction motor using optical sensor

    Science.gov (United States)

    Fulzele, Asmita G.; Arajpure, V. G.; Holay, P. P.; Patil, N. M.

    2012-05-01

    Transmission type of optical technique is developed to sense the condition of rotating shafts from a distance. A parallel laser beam is passed tangential over the surface of rotating shaft of a single phase induction motor and its flickering shadow is received on a photo sensor. Variations in sensor voltage output are observed on a digital storage oscilloscope. It is demonstrated that this signal carries information about shaft defects like miss alignment, play and impacts in bearings along with surface deformities. Mathematical model of signals corresponding to these shaft defects is developed. During the development and testing of the sensor, effects of reflections are investigated, sensing phenomenon is simulated, frequency response of the sensor is obtained and its performance is compared with conventional accelerometer.

  12. Use of miniature magnetic sensors for real-time control of the induction heating process

    Science.gov (United States)

    Bentley, Anthony E.; Kelley, John Bruce; Zutavern, Fred J.

    2002-01-01

    A method of monitoring the process of induction heating a workpiece. A miniature magnetic sensor located near the outer surface of the workpiece measures changes in the surface magnetic field caused by changes in the magnetic properties of the workpiece as it heats up during induction heating (or cools down during quenching). A passive miniature magnetic sensor detects a distinct magnetic spike that appears when the saturation field, B.sub.sat, of the workpiece has been exceeded. This distinct magnetic spike disappears when the workpiece's surface temperature exceeds its Curie temperature, due to the sudden decrease in its magnetic permeability. Alternatively, an active magnetic sensor can also be used to measure changes in the resonance response of the monitor coil when the excitation coil is linearly swept over 0-10 MHz, due to changes in the magnetic permeability and electrical resistivity of the workpiece as its temperature increases (or decreases).

  13. ''SensArray'' voltage sensor analysis in an inductively coupled plasma

    International Nuclear Information System (INIS)

    Titus, M. J.; Hsu, C. C.; Graves, D. B.

    2010-01-01

    A commercially manufactured PlasmaVolt sensor wafer was studied in an inductively coupled plasma reactor in an effort to validate sensor measurements. A pure Ar plasma at various powers (25-420 W), for a range of pressures (10-80 mT), and bias voltages (0-250 V) was utilized. A numerical sheath simulation was simultaneously developed in order to interpret experimental results. It was found that PlasmaVolt sensor measurements are proportional to the rf-current through the sheath. Under conditions such that the sheath impedance is dominantly capacitive, sensor measurements follow a scaling law derived from the inhomogeneous sheath model of Lieberman and Lichtenberg, [Principles of Plasma Discharges and Materials Processing (Wiley, New York, 2005)]. Under these conditions, sensor measurements are proportional to the square root of the plasma density at the plasma-sheath interface, the one-fourth root of the electron temperature, and the one-fourth root of the rf bias voltage. When the sheath impedance becomes increasingly resistive, the sensor measurements deviate from the scaling law and tend to be directly proportional to the plasma density. The measurements and numerical sheath simulation demonstrate the scaling behavior as a function of changing sheath impedance for various plasma conditions.

  14. High resolution gas volume change sensor

    International Nuclear Information System (INIS)

    Dirckx, Joris J. J.; Aernouts, Jef E. F.; Aerts, Johan R. M.

    2007-01-01

    Changes of gas quantity in a system can be measured either by measuring pressure changes or by measuring volume changes. As sensitive pressure sensors are readily available, pressure change is the commonly used technique. In many physiologic systems, however, buildup of pressure influences the gas exchange mechanisms, thus changing the gas quantity change rate. If one wants to study the gas flow in or out of a biological gas pocket, measurements need to be done at constant pressure. In this article we present a highly sensitive sensor for quantitative measurements of gas volume change at constant pressure. The sensor is based on optical detection of the movement of a droplet of fluid enclosed in a capillary. The device is easy to use and delivers gas volume data at a rate of more than 15 measurements/s and a resolution better than 0.06 μl. At the onset of a gas quantity change the sensor shows a small pressure artifact of less than 15 Pa, and at constant change rates the pressure artifact is smaller than 10 Pa or 0.01% of ambient pressure

  15. Advances in High-Resolution Microscale Impedance Sensors

    Directory of Open Access Journals (Sweden)

    Marco Carminati

    2017-01-01

    Full Text Available Sensors based on impedance transduction have been well consolidated in the industry for decades. Today, the downscaling of the size of sensing elements to micrometric and submicrometric dimensions is enabled by the diffusion of lithographic processes and fostered by the convergence of complementary disciplines such as microelectronics, photonics, biology, electrochemistry, and material science, all focusing on energy and information manipulation at the micro- and nanoscale. Although such a miniaturization trend is pivotal in supporting the pervasiveness of sensors (in the context of mass deployment paradigms such as smart city, home and body monitoring networks, and Internet of Things, it also presents new challenges for the detection electronics, reaching the zeptoFarad domain. In this tutorial review, a selection of examples is illustrated with the purpose of distilling key indications and guidelines for the design of high-resolution impedance readout circuits and sensors. The applications span from biological cells to inertial and ultrasonic MEMS sensors, environmental monitoring, and integrated photonics.

  16. Benefits of GMR sensors for high spatial resolution NDT applications

    Science.gov (United States)

    Pelkner, M.; Stegemann, R.; Sonntag, N.; Pohl, R.; Kreutzbruck, M.

    2018-04-01

    Magneto resistance sensors like GMR (giant magneto resistance) or TMR (tunnel magneto resistance) are widely used in industrial applications; examples are position measurement and read heads of hard disk drives. However, in case of non-destructive testing (NDT) applications these sensors, although their properties are outstanding like high spatial resolution, high field sensitivity, low cost and low energy consumption, never reached a technical transfer to an application beyond scientific scope. This paper deals with benefits of GMR/TMR sensors in terms of high spatial resolution testing for different NDT applications. The first example demonstrates the preeminent advantages of MR-elements compared with conventional coils used in eddy current testing (ET). The probe comprises one-wire excitation with an array of MR elements. This led to a better spatial resolution in terms of neighboring defects. The second section concentrates on MFL-testing (magnetic flux leakage) with active field excitation during and before testing. The latter illustrated the capability of highly resolved crack detection of a crossed notch. This example is best suited to show the ability of tiny magnetic field sensors for magnetic material characterization of a sample surface. Another example is based on characterization of samples after tensile test. Here, no external field is applied. The magnetization is only changed due to external load and magnetostriction leading to a field signature which GMR sensors can resolve. This gives access to internal changes of the magnetization state of the sample under test.

  17. Nanoscale displacement sensing using microfabricated variable-inductance planar coils

    Science.gov (United States)

    Coskun, M. Bulut; Thotahewa, Kasun; Ying, York-Sing; Yuce, Mehmet; Neild, Adrian; Alan, Tuncay

    2013-09-01

    Microfabricated spiral inductors were employed for nanoscale displacement detection, suitable for use in implantable pressure sensor applications. We developed a variable inductor sensor consisting of two coaxially positioned planar coils connected in series to a measurement circuit. The devices were characterized by varying the air gap between the coils hence changing the inductance, while a Colpitts oscillator readout was used to obtain corresponding frequencies. Our approach shows significant advantages over existing methodologies combining a displacement resolution of 17 nm and low hysteresis (0.15%) in a 1 × 1 mm2 device. We show that resolution could be further improved by shrinking the device's lateral dimensions.

  18. Analysis of field-oriented controlled induction motor drives under sensor faults and an overview of sensorless schemes.

    Science.gov (United States)

    Arun Dominic, D; Chelliah, Thanga Raj

    2014-09-01

    To obtain high dynamic performance on induction motor drives (IMD), variable voltage and variable frequency operation has to be performed by measuring speed of rotation and stator currents through sensors and fed back them to the controllers. When the sensors are undergone a fault, the stability of control system, may be designed for an industrial process, is disturbed. This paper studies the negative effects on a 12.5 hp induction motor drives when the field oriented control system is subjected to sensor faults. To illustrate the importance of this study mine hoist load diagram is considered as shaft load of the tested machine. The methods to recover the system from sensor faults are discussed. In addition, the various speed sensorless schemes are reviewed comprehensively. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Design and Development of a Pressure Transmitter Using Modified Inductance Measuring Network and Bellow Sensor

    OpenAIRE

    Venkata Lakshmi Narayana K.; Bhujanga Rao A.

    2013-01-01

    In this paper, a pressure transmitter using a modified op-amp based network for inductance measurement using a bellow as sensor has been proposed to measure the pressure and to convert pressure changes in to an electrical current which can be transmitted to a remote indicator. The change in inductance due to change in pressure is measured by an improved modified operational amplifier based network. The proposed network permits offset inductance compensation of sensing coil and also minimizes ...

  20. An Embeddable Strain Sensor with 30 Nano-Strain Resolution Based on Optical Interferometry

    Directory of Open Access Journals (Sweden)

    Chen Zhu

    2018-04-01

    Full Text Available A cost-effective, robust and embeddable optical interferometric strain sensor with nanoscale strain resolution is presented in this paper. The sensor consists of an optical fiber, a quartz rod with one end coated with a thin gold layer, and two metal shells employed to transfer the strain and orient and protect the optical fiber and the quartz rod. The optical fiber endface, combining with the gold-coated surface, forms an extrinsic Fabry–Perot interferometer. The sensor was firstly calibrated, and the result showed that our prototype sensor could provide a measurement resolution of 30 nano-strain (nε and a sensitivity of 10.01 µε/µm over a range of 1000 µε. After calibration of the sensor, the shrinkage strain of a cubic brick of mortar in real time during the drying process was monitored. The strain sensor was compared with a commercial linear variable displacement transducer, and the comparison results in four weeks demonstrated that our sensor had much higher measurement resolution and gained more detailed and useful information. Due to the advantages of the extremely simple, robust and cost-effective configuration, it is believed that the sensor is significantly beneficial to practical applications, especially for structural health monitoring.

  1. A temperature-compensated high spatial resolution distributed strain sensor

    International Nuclear Information System (INIS)

    Belal, Mohammad; Cho, Yuh Tat; Ibsen, Morten; Newson, Trevor P

    2010-01-01

    We propose and demonstrate a scheme which utilizes the temperature dependence of spontaneous Raman scattering to provide temperature compensation for a high spatial resolution Brillouin frequency-based strain sensor

  2. Intracerebral hemorrhage (ICH) evaluation with a novel magnetic induction sensor: a preliminary study using the Chinese head model.

    Science.gov (United States)

    Zhang, Ziyi; Liu, Peiguo; Zhou, Dongming; Zhang, Liang; Lei, Hengdong

    2014-01-01

    Biomedical magnetic induction measurement is a promising method for the detection of intracerebral hemorrhage (ICH), especially in China. Aiming at overcoming the problem of low sensitivity, a magnetic induction sensor is chosen to replace the conventional sensors. It uses a two-arm Archimedean spiral coil as the exciter and a circular coil as the receiver. In order to carry out high-fidelity simulations, the Chinese head model with real anatomical structure is introduced into this novel sensor for the first time. Simulations have been carried out upon early stage ICH measurements. By calculating the state sensitivity and time sensitivity of the perturbation phase of two types of sensors using the electromagnetic software, we conclude that the primary signal received can be largely reduced using the novel sensor, which could effectively increase the time and state sensitivity simultaneously.

  3. Photon-Counting Microwave Kinetic Inductance Detectors (MKIDs) for High Resolution Far-Infrared Spectroscopy

    Data.gov (United States)

    National Aeronautics and Space Administration — We are developing ultrasensitive Microwave Kinetic Inductance Detectors (MKIDs) for high resolution far-infrared spectroscopy applications, with a long-term goal of...

  4. Inductive Sensor for Lightning Current Measurement, Fitted in Aircraft Windows-Part I: Analysis for a Circular Window

    Czech Academy of Sciences Publication Activity Database

    van Deursen, A.P.J.; Stelmashuk, Vitaliy

    2011-01-01

    Roč. 11, č. 1 (2011), s. 199-204 ISSN 1530-437X Institutional research plan: CEZ:AV0Z20430508 Keywords : Lightning * inductive sensor * aircraft * window * viewport Subject RIV: JB - Sensors , Measurment, Regulation Impact factor: 1.520, year: 2011

  5. Sensitive element of multifunctional sensor for measuring temperature, strain and magnetic field induction

    Directory of Open Access Journals (Sweden)

    Druzhinin A. A.

    2017-12-01

    Full Text Available Sensitive element of multifunctional sensor for measuring temperature, strain and magnetic field induction has been developed based on the studies of electrical conductivity and magnetoresistance of silicon and germanium microcrystals in the temperature range 4.2—70 K, strain ±1.5*10–3 rel.un. and magnetic fields of 0—14 T. The feature of the sensitive element is the using of the p- and n-type conductivity germanium microcrystals as mechanical and magnetic field sensors, respectively, and the p-type silicon microcrystal — as temperature sensor. That allows providing the compensation of temperature influence on piezoresistance and on sensitivity to the magnetic field.

  6. Development of temperature profile sensor at high temporal and spatial resolution

    International Nuclear Information System (INIS)

    Takiguchi, Hiroki; Furuya, Masahiro; Arai, Takahiro

    2017-01-01

    In order to quantify thermo-physical flow field for the industrial applications such as nuclear and chemical reactors, high temporal and spatial measurements for temperature, pressure, phase velocity, viscosity and so on are required to validate computational fluid dynamics (CFD) and subchannel analyses. The paper proposes a novel temperature profile sensor, which can acquire temperature distribution in water at high temporal (a millisecond) and spatial (millimeter) resolutions. The devised sensor acquires electric conductance between transmitter and receiver wires, which is a function of temperature. The sensor comprise wire mesh structure for multipoint and simultaneous temperature measurement in water, which indicated that three-dimensional temperature distribution can be detected in flexible resolutions. For the demonstration of the principle, temperature profile in water was estimated according to pre-determined temperature calibration line against time-averaged impedance. The 16×16 grid sensor visualized fast and multi-dimensional mixing process of a hot water jet into a cold water pool. (author)

  7. Development of CMOS MEMS inductive type tactile sensor with the integration of chrome steel ball force interface

    Science.gov (United States)

    Yeh, Sheng-Kai; Chang, Heng-Chung; Fang, Weileun

    2018-04-01

    This study presents an inductive tactile sensor with a chrome steel ball sensing interface based on the commercially available standard complementary metal-oxide-semiconductor (CMOS) process (the TSMC 0.18 µm 1P6M CMOS process). The tactile senor has a deformable polymer layer as the spring of the device and no fragile suspended thin film structures are required. As a tactile force is applied on the chrome steel ball, the polymer would deform. The distance between the chrome steel ball and the sensing coil would changed. Thus, the tactile force can be detected by the inductance change of the sensing coil. In short, the chrome steel ball acts as a tactile bump as well as the sensing interface. Experimental results show that the proposed inductive tactile sensor has a sensing range of 0-1.4 N with a sensitivity of 9.22(%/N) and nonlinearity of 2%. Preliminary wireless sensing test is also demonstrated. Moreover, the influence of the process and material issues on the sensor performances have also been investigated.

  8. Calibration of displacement sensors up to 300 µm with nanometre accuracy and direct traceability to a primary standard of length

    NARCIS (Netherlands)

    Haitjema, H.; Schellekens, P.H.J.; Wetzels, S.F.C.L.

    2000-01-01

    A new class of sensor has recently appeared: nanometre sensors. These sensors are characterized by nanometre or sub-nanometre resolution and an uncertainty of a few nanometres over a range of at least several micrometres. Instruments such as capacitive or inductive sensors, laser interferometers,

  9. Sensor Pods: Multi-Resolution Surveys from a Light Aircraft

    Directory of Open Access Journals (Sweden)

    Conor Cahalane

    2017-02-01

    Full Text Available Airborne remote sensing, whether performed from conventional aerial survey platforms such as light aircraft or the more recent Remotely Piloted Airborne Systems (RPAS has the ability to compliment mapping generated using earth-orbiting satellites, particularly for areas that may experience prolonged cloud cover. Traditional aerial platforms are costly but capture spectral resolution imagery over large areas. RPAS are relatively low-cost, and provide very-high resolution imagery but this is limited to small areas. We believe that we are the first group to retrofit these new, low-cost, lightweight sensors in a traditional aircraft. Unlike RPAS surveys which have a limited payload, this is the first time that a method has been designed to operate four distinct RPAS sensors simultaneously—hyperspectral, thermal, hyper, RGB, video. This means that imagery covering a broad range of the spectrum captured during a single survey, through different imaging capture techniques (frame, pushbroom, video can be applied to investigate different multiple aspects of the surrounding environment such as, soil moisture, vegetation vitality, topography or drainage, etc. In this paper, we present the initial results validating our innovative hybrid system adapting dedicated RPAS sensors for a light aircraft sensor pod, thereby providing the benefits of both methodologies. Simultaneous image capture with a Nikon D800E SLR and a series of dedicated RPAS sensors, including a FLIR thermal imager, a four-band multispectral camera and a 100-band hyperspectral imager was enabled by integration in a single sensor pod operating from a Cessna c172. However, to enable accurate sensor fusion for image analysis, each sensor must first be combined in a common vehicle coordinate system and a method for triggering, time-stamping and calculating the position/pose of each sensor at the time of image capture devised. Initial tests were carried out over agricultural regions with

  10. A Wireless Monitoring Sub-nA Resolution Test Platform for Nanostructure Sensors

    Science.gov (United States)

    Jang, Chi Woong; Byun, Young Tae; Lee, Taikjin; Woo, Deok Ha; Lee, Seok; Jhon, Young Min

    2013-01-01

    We have constructed a wireless monitoring test platform with a sub-nA resolution signal amplification/processing circuit (SAPC) and a wireless communication network to test the real-time remote monitoring of the signals from carbon nanotube (CNT) sensors. The operation characteristics of the CNT sensors can also be measured by the ISD-VSD curve with the SAPC. The SAPC signals are transmitted to a personal computer by Bluetooth communication and the signals from the computer are transmitted to smart phones by Wi-Fi communication, in such a way that the signals from the sensors can be remotely monitored through a web browser. Successful remote monitoring of signals from a CNT sensor was achieved with the wireless monitoring test platform for detection of 0.15% methanol vapor with 0.5 nA resolution and 7 Hz sampling rate. PMID:23783735

  11. A Wireless Monitoring Sub-nA Resolution Test Platform for Nanostructure Sensors

    Directory of Open Access Journals (Sweden)

    Young Min Jhon

    2013-06-01

    Full Text Available We have constructed a wireless monitoring test platform with a sub-nA resolution signal amplification/processing circuit (SAPC and a wireless communication network to test the real-time remote monitoring of the signals from carbon nanotube (CNT sensors. The operation characteristics of the CNT sensors can also be measured by the ISD-VSD curve with the SAPC. The SAPC signals are transmitted to a personal computer by Bluetooth communication and the signals from the computer are transmitted to smart phones by Wi-Fi communication, in such a way that the signals from the sensors can be remotely monitored through a web browser. Successful remote monitoring of signals from a CNT sensor was achieved with the wireless monitoring test platform for detection of 0.15% methanol vapor with 0.5 nA resolution and 7 Hz sampling rate.

  12. Improved laser-based triangulation sensor with enhanced range and resolution through adaptive optics-based active beam control.

    Science.gov (United States)

    Reza, Syed Azer; Khwaja, Tariq Shamim; Mazhar, Mohsin Ali; Niazi, Haris Khan; Nawab, Rahma

    2017-07-20

    Various existing target ranging techniques are limited in terms of the dynamic range of operation and measurement resolution. These limitations arise as a result of a particular measurement methodology, the finite processing capability of the hardware components deployed within the sensor module, and the medium through which the target is viewed. Generally, improving the sensor range adversely affects its resolution and vice versa. Often, a distance sensor is designed for an optimal range/resolution setting depending on its intended application. Optical triangulation is broadly classified as a spatial-signal-processing-based ranging technique and measures target distance from the location of the reflected spot on a position sensitive detector (PSD). In most triangulation sensors that use lasers as a light source, beam divergence-which severely affects sensor measurement range-is often ignored in calculations. In this paper, we first discuss in detail the limitations to ranging imposed by beam divergence, which, in effect, sets the sensor dynamic range. Next, we show how the resolution of laser-based triangulation sensors is limited by the interpixel pitch of a finite-sized PSD. In this paper, through the use of tunable focus lenses (TFLs), we propose a novel design of a triangulation-based optical rangefinder that improves both the sensor resolution and its dynamic range through adaptive electronic control of beam propagation parameters. We present the theory and operation of the proposed sensor and clearly demonstrate a range and resolution improvement with the use of TFLs. Experimental results in support of our claims are shown to be in strong agreement with theory.

  13. A non-contact high resolution piezoelectric film based sensor for monitoring breathing during sleep

    Science.gov (United States)

    Johnston, Robert; Nakano, Katsuya; Fujita, Kento; Misaki, Shinya; Fujii, Hiroyuki; Misaki, Yukinori

    2017-07-01

    Currently, research for measuring human breathing during sleep is actively being conducted into using technologies that include piezoelectric, ultrasonic, microwave and infrared rays. But various problems have led to not many practical applications. As such, it was decided to develop a PVDF (PolyVinylidene DiFluoride) based non-contact high resolution sensor for monitoring a subject's breathing as they sleep. Development of the high resolution respiration sensor was possible through the use of PVDF piezoelectric film and the development of a new sensor configuration. Although there was already an existing respiration sensor research resulting product available, is weak signal strength made it very sensitive to noise and difficult to measure respiration accurately. As such, complicated circuits and signal processing were needed. A new high resolution breathing sensor was developed with greater signal strength and with just the use of some simple circuits and signal processing, was able to accurately measure subject breathing. Also due to the greater signal strength, it became possible to measure both heart rate and respiration rate simultaneously.

  14. Inductive Sensor Performance in Partial Discharges and Noise Separation by Means of Spectral Power Ratios

    Directory of Open Access Journals (Sweden)

    Jorge Alfredo Ardila-Rey

    2014-02-01

    Full Text Available Partial discharge (PD detection is a standardized technique to qualify electrical insulation in machines and power cables. Several techniques that analyze the waveform of the pulses have been proposed to discriminate noise from PD activity. Among them, spectral power ratio representation shows great flexibility in the separation of the sources of PD. Mapping spectral power ratios in two-dimensional plots leads to clusters of points which group pulses with similar characteristics. The position in the map depends on the nature of the partial discharge, the setup and the frequency response of the sensors. If these clusters are clearly separated, the subsequent task of identifying the source of the discharge is straightforward so the distance between clusters can be a figure of merit to suggest the best option for PD recognition. In this paper, two inductive sensors with different frequency responses to pulsed signals, a high frequency current transformer and an inductive loop sensor, are analyzed to test their performance in detecting and separating the sources of partial discharges.

  15. High resolution switching mode inductance-to-frequency converter with temperature compensation.

    Science.gov (United States)

    Matko, Vojko; Milanović, Miro

    2014-10-16

    This article proposes a novel method for the temperature-compensated inductance-to-frequency converter with a single quartz crystal oscillating in the switching oscillating circuit to achieve better temperature stability of the converter. The novelty of this method lies in the switching-mode converter, the use of additionally connected impedances in parallel to the shunt capacitances of the quartz crystal, and two inductances in series to the quartz crystal. This brings a considerable reduction of the temperature influence of AT-cut crystal frequency change in the temperature range between 10 and 40 °C. The oscillator switching method and the switching impedances connected to the quartz crystal do not only compensate for the crystal's natural temperature characteristics but also any other influences on the crystal such as ageing as well as from other oscillating circuit elements. In addition, the method also improves frequency sensitivity in inductance measurements. The experimental results show that through high temperature compensation improvement of the quartz crystal characteristics, this switching method theoretically enables a 2 pH resolution. It converts inductance to frequency in the range of 85-100 µH to 2-560 kHz.

  16. High Resolution Switching Mode Inductance-to-Frequency Converter with Temperature Compensation

    Directory of Open Access Journals (Sweden)

    Vojko Matko

    2014-10-01

    Full Text Available This article proposes a novel method for the temperature-compensated inductance-to-frequency converter with a single quartz crystal oscillating in the switching oscillating circuit to achieve better temperature stability of the converter. The novelty of this method lies in the switching-mode converter, the use of additionally connected impedances in parallel to the shunt capacitances of the quartz crystal, and two inductances in series to the quartz crystal. This brings a considerable reduction of the temperature influence of AT-cut crystal frequency change in the temperature range between 10 and 40 °C. The oscillator switching method and the switching impedances connected to the quartz crystal do not only compensate for the crystal’s natural temperature characteristics but also any other influences on the crystal such as ageing as well as from other oscillating circuit elements. In addition, the method also improves frequency sensitivity in inductance measurements. The experimental results show that through high temperature compensation improvement of the quartz crystal characteristics, this switching method theoretically enables a 2 pH resolution. It converts inductance to frequency in the range of 85–100 µH to 2–560 kHz.

  17. Summary of sensor evaluation for the Fusion ELectromagnetic Induction eXperiment (FELIX)

    International Nuclear Information System (INIS)

    Knott, M.J.

    1982-08-01

    As part of the First Wall/Blanket/Shield Engineering Test Program, a test bed called FELIX (Fusion ELectromagnetic Induction eXperiment) is now under construction at ANL. Its purpose will be to test, evaluate, and develop computer codes for the prediction of electromagnetically induced phenomenon in a magnetic environment modeling that of a fusion reaction. Crucial to this process is the sensing and recording of the various induced effects. Sensor evaluation for FELIX has reached the point where most sensor types have been evaluated and preliminary decisions are being made as to type and quantity for the initial FELIX experiments. These early experiments, the first, flat plate experiment in particular, will be aimed at testing the sensors as well as the pertinent theories involved. The reason for these evaluations, decisions, and proof tests is the harsh electrical and magnetic environment that FELIX presents

  18. A Missile-Borne Angular Velocity Sensor Based on Triaxial Electromagnetic Induction Coils

    Directory of Open Access Journals (Sweden)

    Jian Li

    2016-09-01

    Full Text Available Aiming to solve the problem of the limited measuring range for angular motion parameters of high-speed rotating projectiles in the field of guidance and control, a self-adaptive measurement method for angular motion parameters based on the electromagnetic induction principle is proposed. First, a framework with type bent “I-shape” is used to design triaxial coils in a mutually orthogonal way. Under the condition of high rotational speed of a projectile, the induction signal of the projectile moving across a geomagnetic field is acquired by using coils. Second, the frequency of the pulse signal is adjusted self-adaptively. Angular velocity and angular displacement are calculated in the form of periodic pulse counting and pulse accumulation, respectively. Finally, on the basis of that principle prototype of the sensor is researched and developed, performance of measuring angular motion parameters are tested on the sensor by semi-physical and physical simulation experiments, respectively. Experimental results demonstrate that the sensor has a wide measuring range of angular velocity from 1 rps to 100 rps with a measurement error of less than 0.3%, and the angular displacement measurement error is lower than 0.2°. The proposed method satisfies measurement requirements for high-speed rotating projectiles with an extremely high dynamic range of rotational speed and high precision, and has definite value to engineering applications in the fields of attitude determination and geomagnetic navigation.

  19. The Detection and Discrimination of Small Munitions using Giant Magnetoresistive (OMR) Sensors

    Science.gov (United States)

    2010-09-01

    Suffield, Canada. McGlone, D.T., 1998, Magnetometer Comparison Smoke Creek Instruments’ GMR SCIMAG- 01 & Bartington Fluxgate MAG-03MC70, A...a magnetometer and frequency domain or time domain electromagnetic induction sensor. Both the Honeywell and NVE GlvlR sensors studied have si.m ilar...field sensor. In p0ssive mode, the GMR sensor, which has a resolution of Jess than l 0 nT, perfom1ed similarly to a cesium vapor magnetometer . When

  20. Use of the Maximum Torque Sensor to Reduce the Starting Current in the Induction Motor

    Directory of Open Access Journals (Sweden)

    Muchlas

    2010-03-01

    Full Text Available Use of the maximum torque sensor has been demonstrated able to improve the standard ramp-up technique in the induction motor circuit system. The induction motor used was of a three-phase squirrel-cage motor controlled using a microcontroller 68HC11. From the simulation done, it has been found that this innovative technique could optimize the performance of motor by introducing low stator current and low power consumption over the standard ramp-up technique.

  1. Development and Application of the Single-Spiral Inductive-Capacitive Resonant Circuit Sensor for Wireless, Real-Time Characterization of Moisture in Sand

    Directory of Open Access Journals (Sweden)

    Andrew J. DeRouin

    2013-01-01

    Full Text Available A wireless, passive embedded sensor was designed and fabricated for monitoring moisture in sand. The sensor, consisted of an inductive-capacitive (LC resonant circuit, was made of a printed spiral inductor embedded inside sand. When exposed to an electromagnetic field, the sensor resonated at a specific frequency dependent on the inductance of the inductor and its parasitic capacitance. Since the permittivity of water was much higher than dry sand, moisture in sample increased the parasitic capacitance, thus decreasing the sensor’s resonant frequency. Therefore, the internal moisture level of the sample could be easily measured through tracking the resonant frequency using a detection coil. The fabrication process of this sensor is much simpler compared to LC sensors that contain both capacitive and inductive elements, giving it an economical advantage. A study was conducted to investigate the drying rate of sand samples of different grain sizes. The experimental data showed a strong correlation with the actual moisture content in the samples. The described sensor technology can be applied for long term monitoring of localized water content inside soils and sands to understand the environmental health in these media, or monitoring moisture levels within concrete supports and road pavement.

  2. Fault-tolerant control for current sensors of doubly fed induction generators based on an improved fault detection method

    DEFF Research Database (Denmark)

    Li, Hui; Yang, Chao; Hu, Yaogang

    2014-01-01

    Fault-tolerant control of current sensors is studied in this paper to improve the reliability of a doubly fed induction generator (DFIG). A fault-tolerant control system of current sensors is presented for the DFIG, which consists of a new current observer and an improved current sensor fault...... detection algorithm, and fault-tolerant control system are investigated by simulation. The results indicate that the outputs of the observer and the sensor are highly coherent. The fault detection algorithm can efficiently detect both soft and hard faults in current sensors, and the fault-tolerant control...

  3. SQUID position sensor development

    Science.gov (United States)

    Torii, Rodney

    1996-11-01

    I describe the development of an inductance position sensor for the STEP (satellite test of the equivalence principle) accelerometer. I have measured the inductance (with an experimental error of 0.5%) of a single-turn thin-film niobium pick-up coil as a function of the distance from a thin-film niobium disc (both at 4.2 K and superconducting). The circular pick-up coil had a diameter of 4 cm with a track width of 0264-9381/13/11A/022/img1. The disc (mock test mass) had a diameter of 4 cm. The distance range between the coil and disc was set by the range of a low-temperature differential capacitance sensor: 0 - 2 mm with a resolution of 0264-9381/13/11A/022/img2. The full range of the low-temperature translation stage was 0 - 4 mm. The inductance was measured using an LCR meter in a four-wire configuration. The measured inductance was compared to the inductance of a circular loop above a superconducting plane. Due to the fact that the thin-film disc is of finite size, the calculation differed from experiment by as much as 12%. I have also calculated the inductance by segmenting the thin-film niobium disc into 500 concentric rings (each with a width of 0264-9381/13/11A/022/img3). A discrepancy between calculation and experiment of approximately 3% was found.

  4. Geometry Optimization Approaches of Inductively Coupled Printed Spiral Coils for Remote Powering of Implantable Biomedical Sensors

    Directory of Open Access Journals (Sweden)

    Sondos Mehri

    2016-01-01

    Full Text Available Electronic biomedical implantable sensors need power to perform. Among the main reported approaches, inductive link is the most commonly used method for remote powering of such devices. Power efficiency is the most important characteristic to be considered when designing inductive links to transfer energy to implantable biomedical sensors. The maximum power efficiency is obtained for maximum coupling and quality factors of the coils and is generally limited as the coupling between the inductors is usually very small. This paper is dealing with geometry optimization of inductively coupled printed spiral coils for powering a given implantable sensor system. For this aim, Iterative Procedure (IP and Genetic Algorithm (GA analytic based optimization approaches are proposed. Both of these approaches implement simple mathematical models that approximate the coil parameters and the link efficiency values. Using numerical simulations based on Finite Element Method (FEM and with experimental validation, the proposed analytic approaches are shown to have improved accurate performance results in comparison with the obtained performance of a reference design case. The analytical GA and IP optimization methods are also compared to a purely Finite Element Method based on numerical optimization approach (GA-FEM. Numerical and experimental validations confirmed the accuracy and the effectiveness of the analytical optimization approaches to design the optimal coil geometries for the best values of efficiency.

  5. Relative Estimation of Water Content for Flat-Type Inductive-Based Oil Palm Fruit Maturity Sensor

    Directory of Open Access Journals (Sweden)

    Norhisam Misron

    2016-12-01

    Full Text Available The paper aims to study the sensor that identifies the maturity of oil palm fruit bunches by using a flat-type inductive concept based on a resonant frequency technique. Conventionally, a human grader is used to inspect the ripeness of the oil palm fresh fruit bunch (FFB which can be inconsistent and inaccurate. There are various new methods that are proposed with the intention to grade the ripeness of the oil palm FFB, but none has taken the inductive concept. In this study, the resonance frequency of the air coil is investigated. Samples of oil palm FFB are tested with frequencies ranging from 20 Hz to 10 MHz and the results obtained show a linear relationship between the graph of the resonance frequency (MHz against time (Weeks. It is observed that the resonance frequencies obtained for Week 10 (pre-mature and Week 18 (mature are around 8.5 MHz and 9.8 MHz, respectively. These results are compared with the percentage of the moisture content. Hence, the inductive method of the oil palm fruit maturity sensor can be used to detect the change in water content for ripeness detection of the oil palm FFB.

  6. Instrument for the measuring magnetic field characteristics of induction acceleration

    International Nuclear Information System (INIS)

    Novikov, V.M.; Romasheva, P.I.

    1976-01-01

    An instrument for the measuring instantaneous values of variable and pulsed magnetic fields with an amplitide of 0.005-2.0 and duration of 5x10 -6 -2x10 -2 sec is described. Time resolution is not less than 0.5 musec, measuring accuracy is about 1%. Induction coils are used as sensors. A digital voltmeter serves as a secondary recorder

  7. Using finite element modelling and experimental methods to investigate planar coil sensor topologies for inductive measurement of displacement

    Directory of Open Access Journals (Sweden)

    Gregory Moreton

    2018-04-01

    Full Text Available The usage of planar sensors is widespread due to their non-contact nature and small size profiles, however only a few basic design types are generally considered. In order to develop planar coil designs we have performed extensive finite element modelling (FEM and experimentation to understand the performance of different planar sensor topologies when used in inductive sensing. We have applied this approach to develop a novel displacement sensor. Models of different topologies with varying pitch values have been analysed using the ANSYS Maxwell FEM package, furthermore the models incorporated a movable soft magnetic amorphous ribbon element. The different models used in the FEM were then constructed and experimentally tested with topologies that included mesh, meander, square coil, and circular coil configurations. The sensors were used to detect the displacement of the amorphous ribbon. A LabView program controlled both the displacement stage and the impedance analyser, the latter capturing the varying inductance values with ribbon displacement. There was good correlation between the FEM models and the experimental data confirming that the methodology described here offers an effective way for developing planar coil based sensors with improved performance.

  8. Using finite element modelling and experimental methods to investigate planar coil sensor topologies for inductive measurement of displacement

    Science.gov (United States)

    Moreton, Gregory; Meydan, Turgut; Williams, Paul

    2018-04-01

    The usage of planar sensors is widespread due to their non-contact nature and small size profiles, however only a few basic design types are generally considered. In order to develop planar coil designs we have performed extensive finite element modelling (FEM) and experimentation to understand the performance of different planar sensor topologies when used in inductive sensing. We have applied this approach to develop a novel displacement sensor. Models of different topologies with varying pitch values have been analysed using the ANSYS Maxwell FEM package, furthermore the models incorporated a movable soft magnetic amorphous ribbon element. The different models used in the FEM were then constructed and experimentally tested with topologies that included mesh, meander, square coil, and circular coil configurations. The sensors were used to detect the displacement of the amorphous ribbon. A LabView program controlled both the displacement stage and the impedance analyser, the latter capturing the varying inductance values with ribbon displacement. There was good correlation between the FEM models and the experimental data confirming that the methodology described here offers an effective way for developing planar coil based sensors with improved performance.

  9. A quartz-based micro catalytic methane sensor by high resolution screen printing

    Science.gov (United States)

    Lu, Wenshuai; Jing, Gaoshan; Bian, Xiaomeng; Yu, Hongyan; Cui, Tianhong

    2016-02-01

    A micro catalytic methane sensor was proposed and fabricated on a bulk fused quartz substrate using a high resolution screen printing technique for the first time, with reduced power consumption and optimized sensitivity. The sensor was designed by the finite element method and quartz was chosen as the substrate material and alumina support with optimized dimensions. Fabrication of the sensor consisted of two MEMS processes, lift-off and high resolution screen printing, with the advantages of high yield and uniformity. When the sensor’s regional working temperature changes from 250 °C to 470 °C, its sensitivity increases, as well as the power consumption. The highest sensitivity can reach 1.52 mV/% CH4. A temperature of 300 °C was chosen as the optimized working temperature, and the sensor’s sensitivity, power consumption, nonlinearity and response time are 0.77 mV/% CH4, 415 mW, 2.6%, and 35 s, respectively. This simple, but highly uniform fabrication process and the reliable performance of this sensor may lead to wide applications for methane detection.

  10. A quartz-based micro catalytic methane sensor by high resolution screen printing

    International Nuclear Information System (INIS)

    Lu, Wenshuai; Jing, Gaoshan; Bian, Xiaomeng; Yu, Hongyan; Cui, Tianhong

    2016-01-01

    A micro catalytic methane sensor was proposed and fabricated on a bulk fused quartz substrate using a high resolution screen printing technique for the first time, with reduced power consumption and optimized sensitivity. The sensor was designed by the finite element method and quartz was chosen as the substrate material and alumina support with optimized dimensions. Fabrication of the sensor consisted of two MEMS processes, lift-off and high resolution screen printing, with the advantages of high yield and uniformity. When the sensor’s regional working temperature changes from 250 °C to 470 °C, its sensitivity increases, as well as the power consumption. The highest sensitivity can reach 1.52 mV/% CH 4 . A temperature of 300 °C was chosen as the optimized working temperature, and the sensor’s sensitivity, power consumption, nonlinearity and response time are 0.77 mV/% CH 4 , 415 mW, 2.6%, and 35 s, respectively. This simple, but highly uniform fabrication process and the reliable performance of this sensor may lead to wide applications for methane detection. (paper)

  11. Geoarchaeological prospection of a Medieval manor in the Dutch polders using an electromagnetic induction sensor in combination with soil augerings

    NARCIS (Netherlands)

    Simpson, D.; Lehouck, A.; Meirvenne, M.; Bourgeois, J.; Thoen, E.; Vervloet, J.

    2008-01-01

    In archaeological prospection, geophysical sensors are increasingly being used to locate buried remains within their natural context. To cover a large area in sufficient detail, an electromagnetic induction sensor can be very useful, measuring simultaneously the electrical conductivity and the

  12. Modeling and simulation of soft sensor design for real-time speed estimation, measurement and control of induction motor.

    Science.gov (United States)

    Etien, Erik

    2013-05-01

    This paper deals with the design of a speed soft sensor for induction motor. The sensor is based on the physical model of the motor. Because the validation step highlight the fact that the sensor cannot be validated for all the operating points, the model is modified in order to obtain a fully validated sensor in the whole speed range. An original feature of the proposed approach is that the modified model is derived from stability analysis using automatic control theory. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  13. The effect of brain hematoma location on volumetric inductive phase shift spectroscopy of the brain with circular and magnetron sensor coils: a numerical simulation study

    International Nuclear Information System (INIS)

    Rojas, R; González, C A; Rubinsky, B

    2008-01-01

    This numerical simulation study addressed the effects of the location of a discrete brain hematoma on the volumetric inductive phase shift of the brain measured with an induction circular sensor coil and an induction magnetron sensor coil. The theoretical study simulates the brain cavity as a circular sphere transversely centered with respect to the circular and magnetron sensor coils. As a case study for the effects of hematoma location, we employed similar size simulated spherical hematomas placed at three different positions from the center of the brain outward. A three-dimensional finite element analysis of the field equations in the frequency range from 100 kHz to 100 MHz revealed a substantial effect of hematoma location on the ability of both the circular and magnetron sensors to detect the hematomas. In particular it was found that there are frequencies, which may be related to resonance, at which the occurrence of the hematomas has no effect on the volumetric inductive phase shift of the brain. Furthermore it was found that the relative sensitivity of circular and magnetron sensor coils with respect to the occurrence of hematoma varies with the location of the hematoma

  14. SAR and thermal response effects of a two-arm Archimedean spiral coil in a magnetic induction sensor on a human head.

    Science.gov (United States)

    Zhang, Ziyi; Liu, Peiguo; Zhou, Dongming; Zhang, Liang; Ding, Liang

    2015-01-01

    This study investigates the radiation safety of a newly designed magnetic induction sensor. This novel magnetic induction sensor uses a two-arm Archimedean spiral coil (TAASC) as the exciter. A human head model with a real anatomical structure was used to calculate the specific absorption rate (SAR) and temperature change. Computer Simulation Technology (CST) was used to determine the values of the peak 10-g SAR under different operating parameters (current, frequency, horizontal distance between the excitation coil and the receiver coil, vertical distance between the top of the head model and the XOY plane, position of excitation coil, and volume of hemorrhage). Then, the highest response for the SAR and temperature rise was determined. The results showed that this new magnetic induction sensor is safe in the initial state; for safety reasons, the TAASC current should not exceed 4 A. The scalp tissue absorbed most of the electromagnetic energy. The TAASC's SAR/thermal performance was close to that of the circular coil.

  15. Coded aperture detector: an image sensor with sub 20-nm pixel resolution.

    Science.gov (United States)

    Miyakawa, Ryan; Mayer, Rafael; Wojdyla, Antoine; Vannier, Nicolas; Lesser, Ian; Aron-Dine, Shifrah; Naulleau, Patrick

    2014-08-11

    We describe the coded aperture detector, a novel image sensor based on uniformly redundant arrays (URAs) with customizable pixel size, resolution, and operating photon energy regime. In this sensor, a coded aperture is scanned laterally at the image plane of an optical system, and the transmitted intensity is measured by a photodiode. The image intensity is then digitally reconstructed using a simple convolution. We present results from a proof-of-principle optical prototype, demonstrating high-fidelity image sensing comparable to a CCD. A 20-nm half-pitch URA fabricated by the Center for X-ray Optics (CXRO) nano-fabrication laboratory is presented that is suitable for high-resolution image sensing at EUV and soft X-ray wavelengths.

  16. High Resolution Eddy-Current Wire Testing Based on a Gmr Sensor-Array

    Science.gov (United States)

    Kreutzbruck, Marc; Allweins, Kai; Strackbein, Chris; Bernau, Hendrick

    2009-03-01

    Increasing demands in materials quality and cost effectiveness have led to advanced standards in manufacturing technology. Especially when dealing with high quality standards in conjunction with high throughput quantitative NDE techniques are vital to provide reliable and fast quality control systems. In this work we illuminate a modern electromagnetic NDE approach using a small GMR sensor array for testing superconducting wires. Four GMR sensors are positioned around the wire. Each GMR sensor provides a field sensitivity of 200 pT/√Hz and a spatial resolution of about 100 μm. This enables us to detect under surface defects of 100 μm in size in a depth of 200 μm with a signal-to-noise ratio of better than 400. Surface defects could be detected with a SNR of up to 10,000. Besides this remarkably SNR the small extent of GMR sensors results in a spatial resolution which offers new visualisation techniques for defect localisation, defect characterization and tomography-like mapping techniques. We also report on inverse algorithms based on either a Finite Element Method or an analytical approach. These allow for accurate defect localization on the urn scale and an estimation of the defect size.

  17. A Novel Detection Method for Underwater Moving Targets by Measuring Their ELF Emissions with Inductive Sensors

    Directory of Open Access Journals (Sweden)

    Jinhong Wang

    2017-07-01

    Full Text Available In this article, we propose a novel detection method for underwater moving targets by detecting their extremely low frequency (ELF emissions with inductive sensors. The ELF field source of the targets is modeled by a horizontal electric dipole at distances more than several times of the targets’ length. The formulas for the fields produced in air are derived with a three-layer model (air, seawater and seafloor and are evaluated with a complementary numerical integration technique. A proof of concept measurement is presented. The ELF emissions from a surface ship were detected by inductive electronic and magnetic sensors as the ship was leaving a harbor. ELF signals are of substantial strength and have typical characteristic of harmonic line spectrum, and the fundamental frequency has a direct relationship with the ship’s speed. Due to the high sensitivity and low noise level of our sensors, it is capable of resolving weak ELF signals at long distance. In our experiment, a detection distance of 1300 m from the surface ship above the sea surface was realized, which shows that this method would be an appealing complement to the usual acoustic detection and magnetic anomaly detection capability.

  18. Magneto-inductive Sensors for Metallic Ropes in Lift Application

    Directory of Open Access Journals (Sweden)

    Aldo CANOVA

    2010-12-01

    Full Text Available In this paper an innovative system for the contemporary, selective and reliable control of integrity of multiple rope plants is presented. The system is based on magneto-inductive technology and is composed by a magnetic detector connected to an acquisition system. The core of the detector is constituted by an array of Hall sensors properly placed inside the instrument. After a brief introduction to the Non Destructive Techniques applied to the control of metallic ropes, the first part paper deals with the design and behavior of the detector and the acquisition system. In the second part of the paper a performance analysis for different rope size and experimental results on an elevator plants is presented and discussed.

  19. A Novel Tactile Sensor with Electromagnetic Induction and Its Application on Stick-Slip Interaction Detection

    Directory of Open Access Journals (Sweden)

    Yanjie Liu

    2016-03-01

    Full Text Available Real-time detection of contact states, such as stick-slip interaction between a robot and an object on its end effector, is crucial for the robot to grasp and manipulate the object steadily. This paper presents a novel tactile sensor based on electromagnetic induction and its application on stick-slip interaction. An equivalent cantilever-beam model of the tactile sensor was built and capable of constructing the relationship between the sensor output and the friction applied on the sensor. With the tactile sensor, a new method to detect stick-slip interaction on the contact surface between the object and the sensor is proposed based on the characteristics of friction change. Furthermore, a prototype was developed for a typical application, stable wafer transferring on a wafer transfer robot, by considering the spatial magnetic field distribution and the sensor size according to the requirements of wafer transfer. The experimental results validate the sensing mechanism of the tactile sensor and verify its feasibility of detecting stick-slip on the contact surface between the wafer and the sensor. The sensing mechanism also provides a new approach to detect the contact state on the soft-rigid surface in other robot-environment interaction systems.

  20. A Novel Tactile Sensor with Electromagnetic Induction and Its Application on Stick-Slip Interaction Detection

    Science.gov (United States)

    Liu, Yanjie; Han, Haijun; Liu, Tao; Yi, Jingang; Li, Qingguo; Inoue, Yoshio

    2016-01-01

    Real-time detection of contact states, such as stick-slip interaction between a robot and an object on its end effector, is crucial for the robot to grasp and manipulate the object steadily. This paper presents a novel tactile sensor based on electromagnetic induction and its application on stick-slip interaction. An equivalent cantilever-beam model of the tactile sensor was built and capable of constructing the relationship between the sensor output and the friction applied on the sensor. With the tactile sensor, a new method to detect stick-slip interaction on the contact surface between the object and the sensor is proposed based on the characteristics of friction change. Furthermore, a prototype was developed for a typical application, stable wafer transferring on a wafer transfer robot, by considering the spatial magnetic field distribution and the sensor size according to the requirements of wafer transfer. The experimental results validate the sensing mechanism of the tactile sensor and verify its feasibility of detecting stick-slip on the contact surface between the wafer and the sensor. The sensing mechanism also provides a new approach to detect the contact state on the soft-rigid surface in other robot-environment interaction systems. PMID:27023545

  1. Integration of High-Resolution Laser Displacement Sensors and 3D Printing for Structural Health Monitoring

    Directory of Open Access Journals (Sweden)

    Shu-Wei Chang

    2017-12-01

    Full Text Available This paper presents a novel experimental design for complex structural health monitoring (SHM studies achieved by integrating 3D printing technologies, high-resolution laser displacement sensors, and multiscale entropy SHM theory. A seven-story structure with a variety of composite bracing systems was constructed using a dual-material 3D printer. A wireless Bluetooth vibration speaker was used to excite the ground floor of the structure, and high-resolution laser displacement sensors (1-μm resolution were used to monitor the displacement history on different floors. Our results showed that the multiscale entropy SHM method could detect damage on the 3D-printed structures. The results of this study demonstrate that integrating 3D printing technologies and high-resolution laser displacement sensors enables the design of cheap, fast processing, complex, small-scale civil structures for future SHM studies. The novel experimental design proposed in this study provides a suitable platform for investigating the validity and sensitivity of SHM in different composite structures and damage conditions for real life applications in the future.

  2. Integration of High-Resolution Laser Displacement Sensors and 3D Printing for Structural Health Monitoring.

    Science.gov (United States)

    Chang, Shu-Wei; Lin, Tzu-Kang; Kuo, Shih-Yu; Huang, Ting-Hsuan

    2017-12-22

    This paper presents a novel experimental design for complex structural health monitoring (SHM) studies achieved by integrating 3D printing technologies, high-resolution laser displacement sensors, and multiscale entropy SHM theory. A seven-story structure with a variety of composite bracing systems was constructed using a dual-material 3D printer. A wireless Bluetooth vibration speaker was used to excite the ground floor of the structure, and high-resolution laser displacement sensors (1-μm resolution) were used to monitor the displacement history on different floors. Our results showed that the multiscale entropy SHM method could detect damage on the 3D-printed structures. The results of this study demonstrate that integrating 3D printing technologies and high-resolution laser displacement sensors enables the design of cheap, fast processing, complex, small-scale civil structures for future SHM studies. The novel experimental design proposed in this study provides a suitable platform for investigating the validity and sensitivity of SHM in different composite structures and damage conditions for real life applications in the future.

  3. Highly multiplexible thermal kinetic inductance detectors for x-ray imaging spectroscopy

    International Nuclear Information System (INIS)

    Ulbricht, Gerhard; Mazin, Benjamin A.; Szypryt, Paul; Walter, Alex B.; Bockstiegel, Clint; Bumble, Bruce

    2015-01-01

    For X-ray imaging spectroscopy, high spatial resolution over a large field of view is often as important as high energy resolution, but current X-ray detectors do not provide both in the same device. Thermal Kinetic Inductance Detectors (TKIDs) are being developed as they offer a feasible way to combine the energy resolution of transition edge sensors with pixel counts approaching CCDs and thus promise significant improvements for many X-ray spectroscopy applications. TKIDs are a variation of Microwave Kinetic Inductance Detectors (MKIDs) and share their multiplexibility: working MKID arrays with 2024 pixels have recently been demonstrated and much bigger arrays are under development. In this work, we present a TKID prototype, which is able to achieve an energy resolution of 75 eV at 5.9 keV, even though its general design still has to be optimized. We further describe TKID fabrication, characterization, multiplexing, and working principle and demonstrate the necessity of a data fitting algorithm in order to extract photon energies. With further design optimizations, we expect to be able to improve our TKID energy resolution to less than 10 eV at 5.9 keV

  4. Highly multiplexible thermal kinetic inductance detectors for x-ray imaging spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ulbricht, Gerhard, E-mail: ulbricht@physics.ucsb.edu; Mazin, Benjamin A.; Szypryt, Paul; Walter, Alex B.; Bockstiegel, Clint [Department of Physics, University of California, Santa Barbara, California 93106 (United States); Bumble, Bruce [NASA Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, California 91125 (United States)

    2015-06-22

    For X-ray imaging spectroscopy, high spatial resolution over a large field of view is often as important as high energy resolution, but current X-ray detectors do not provide both in the same device. Thermal Kinetic Inductance Detectors (TKIDs) are being developed as they offer a feasible way to combine the energy resolution of transition edge sensors with pixel counts approaching CCDs and thus promise significant improvements for many X-ray spectroscopy applications. TKIDs are a variation of Microwave Kinetic Inductance Detectors (MKIDs) and share their multiplexibility: working MKID arrays with 2024 pixels have recently been demonstrated and much bigger arrays are under development. In this work, we present a TKID prototype, which is able to achieve an energy resolution of 75 eV at 5.9 keV, even though its general design still has to be optimized. We further describe TKID fabrication, characterization, multiplexing, and working principle and demonstrate the necessity of a data fitting algorithm in order to extract photon energies. With further design optimizations, we expect to be able to improve our TKID energy resolution to less than 10 eV at 5.9 keV.

  5. A miniature inductive temperature sensor to monitor temperature noise in the coolant of an LMFBR

    International Nuclear Information System (INIS)

    Dean, S.A.; Sandham, C.W.

    1980-01-01

    A description is given of the design and performance of miniature inductive sensors developed to monitor fast temperature fluctuations in the sodium coolant above the core of a LMFBR. These instruments, designed to be installed within existing thermocouple containment thimbles, also provide a steady-state temperature indication for reactor control purposes. (author)

  6. High-resolution dynamic pressure sensor array based on piezo-phototronic effect tuned photoluminescence imaging.

    Science.gov (United States)

    Peng, Mingzeng; Li, Zhou; Liu, Caihong; Zheng, Qiang; Shi, Xieqing; Song, Ming; Zhang, Yang; Du, Shiyu; Zhai, Junyi; Wang, Zhong Lin

    2015-03-24

    A high-resolution dynamic tactile/pressure display is indispensable to the comprehensive perception of force/mechanical stimulations such as electronic skin, biomechanical imaging/analysis, or personalized signatures. Here, we present a dynamic pressure sensor array based on pressure/strain tuned photoluminescence imaging without the need for electricity. Each sensor is a nanopillar that consists of InGaN/GaN multiple quantum wells. Its photoluminescence intensity can be modulated dramatically and linearly by small strain (0-0.15%) owing to the piezo-phototronic effect. The sensor array has a high pixel density of 6350 dpi and exceptional small standard deviation of photoluminescence. High-quality tactile/pressure sensing distribution can be real-time recorded by parallel photoluminescence imaging without any cross-talk. The sensor array can be inexpensively fabricated over large areas by semiconductor product lines. The proposed dynamic all-optical pressure imaging with excellent resolution, high sensitivity, good uniformity, and ultrafast response time offers a suitable way for smart sensing, micro/nano-opto-electromechanical systems.

  7. Coherent Pound-Drever-Hall technique for high resolution fiber optic strain sensor at very low light power

    Science.gov (United States)

    Wu, Mengxin; Liu, Qingwen; Chen, Jiageng; He, Zuyuan

    2017-04-01

    Pound-Drever-Hall (PDH) technique has been widely adopted for ultrahigh resolution fiber-optic sensors, but its performance degenerates seriously as the light power drops. To solve this problem, we developed a coherent PDH technique for weak optical signal detection, with which the signal-to-noise ratio (SNR) of demodulated PDH signal is dramatically improved. In the demonstrational experiments, a high resolution fiber-optic sensor using the proposed technique is realized, and n"-order strain resolution at a low light power down to -43 dBm is achieved, which is about 15 dB lower compared with classical PDH technique. The proposed coherent PDH technique has great potentials in longer distance and larger scale sensor networks.

  8. Obtaining high-resolution stage forecasts by coupling large-scale hydrologic models with sensor data

    Science.gov (United States)

    Fries, K. J.; Kerkez, B.

    2017-12-01

    We investigate how "big" quantities of distributed sensor data can be coupled with a large-scale hydrologic model, in particular the National Water Model (NWM), to obtain hyper-resolution forecasts. The recent launch of the NWM provides a great example of how growing computational capacity is enabling a new generation of massive hydrologic models. While the NWM spans an unprecedented spatial extent, there remain many questions about how to improve forecast at the street-level, the resolution at which many stakeholders make critical decisions. Further, the NWM runs on supercomputers, so water managers who may have access to their own high-resolution measurements may not readily be able to assimilate them into the model. To that end, we ask the question: how can the advances of the large-scale NWM be coupled with new local observations to enable hyper-resolution hydrologic forecasts? A methodology is proposed whereby the flow forecasts of the NWM are directly mapped to high-resolution stream levels using Dynamical System Identification. We apply the methodology across a sensor network of 182 gages in Iowa. Of these sites, approximately one third have shown to perform well in high-resolution flood forecasting when coupled with the outputs of the NWM. The quality of these forecasts is characterized using Principal Component Analysis and Random Forests to identify where the NWM may benefit from new sources of local observations. We also discuss how this approach can help municipalities identify where they should place low-cost sensors to most benefit from flood forecasts of the NWM.

  9. A new capacitive long-range displacement nanometer sensor with differential sensing structure based on time-grating

    Science.gov (United States)

    Yu, Zhicheng; Peng, Kai; Liu, Xiaokang; Pu, Hongji; Chen, Ziran

    2018-05-01

    High-precision displacement sensors, which can measure large displacements with nanometer resolution, are key components in many ultra-precision fabrication machines. In this paper, a new capacitive nanometer displacement sensor with differential sensing structure is proposed for long-range linear displacement measurements based on an approach denoted time grating. Analytical models established using electric field coupling theory and an area integral method indicate that common-mode interference will result in a first-harmonic error in the measurement results. To reduce the common-mode interference, the proposed sensor design employs a differential sensing structure, which adopts a second group of induction electrodes spatially separated from the first group of induction electrodes by a half-pitch length. Experimental results based on a prototype sensor demonstrate that the measurement accuracy and the stability of the sensor are substantially improved after adopting the differential sensing structure. Finally, a prototype sensor achieves a measurement accuracy of  ±200 nm over the full 200 mm measurement range of the sensor.

  10. Study on the Road Traffic Survey System Based on Micro-ferromagnetic Induction Coil Sensor

    Directory of Open Access Journals (Sweden)

    Liang Tong

    2014-05-01

    Full Text Available Road traffic information is the basis of road traffic management and control. Due to the special design of the sensor coil and ferromagnetic core, traffic survey system which uses micro ferromagnetic inductive coil vehicle detector, not only has the features of small size, simple installation and little road surface damage, but also has the advantages of output signal strength, simple signal processing circuit and obvious characteristics for output waveform corresponding vehicle feature. Based on the introduction of the sensor working principle, the construction of hardware and signal processing circuit for the traffic survey system is described in detail in the paper. Combined with the characteristics of the sensor output waveform, adaptive nearest neighbor clustering RBF neural network algorithm used to classify the vehicles is proposed and verified by experimental method. The result has a high vehicle classification rate and demonstrates the feasibility of the system.

  11. Project of Economically Profitable Technological Process of Production of Rotor and Stator Plates of Inductive Position Sensor by Blanking and Roll Bending

    Directory of Open Access Journals (Sweden)

    Radek ČADA

    2013-12-01

    Full Text Available Paper concerns innovation of production of rotor and stator plates of inductive position sensors which are used at automatization of production processes. Authors analyse possibility of efficiency improvement of production of these devices in joint-stock company TES VSETÍN and suggest concrete solving of new production technology. Composition of production line for blanking and roll bending of rotor and stator plates of inductive position sensor from individual technological devices was suggested: decoiler, straightening device, actuating belt feeder, pneumatic shears with inclined tools, belt conveyer and four cylinders bending rolls. Construction of production line was projected in order to its operation can be secured by one production workman, which controls and chooses operation of CNC programme, takes separate roll bended rotor and stator plates of inductive position sensor from bending rolls and according to required technological procedure he composes them to rotor and stator complexes. Construction of production line was projected so that it is possible to move it by crane without necessity to dismantle and subsequently to put together and adjust the line.

  12. New optical sensor systems for high-resolution satellite, airborne and terrestrial imaging systems

    Science.gov (United States)

    Eckardt, Andreas; Börner, Anko; Lehmann, Frank

    2007-10-01

    The department of Optical Information Systems (OS) at the Institute of Robotics and Mechatronics of the German Aerospace Center (DLR) has more than 25 years experience with high-resolution imaging technology. The technology changes in the development of detectors, as well as the significant change of the manufacturing accuracy in combination with the engineering research define the next generation of spaceborne sensor systems focusing on Earth observation and remote sensing. The combination of large TDI lines, intelligent synchronization control, fast-readable sensors and new focal-plane concepts open the door to new remote-sensing instruments. This class of instruments is feasible for high-resolution sensor systems regarding geometry and radiometry and their data products like 3D virtual reality. Systemic approaches are essential for such designs of complex sensor systems for dedicated tasks. The system theory of the instrument inside a simulated environment is the beginning of the optimization process for the optical, mechanical and electrical designs. Single modules and the entire system have to be calibrated and verified. Suitable procedures must be defined on component, module and system level for the assembly test and verification process. This kind of development strategy allows the hardware-in-the-loop design. The paper gives an overview about the current activities at DLR in the field of innovative sensor systems for photogrammetric and remote sensing purposes.

  13. Integrated High Resolution Digital Color Light Sensor in 130 nm CMOS Technology

    Directory of Open Access Journals (Sweden)

    Drago Strle

    2015-07-01

    Full Text Available This article presents a color light detection system integrated in 130 nm CMOS technology. The sensors and corresponding electronics detect light in a CIE XYZ color luminosity space using on-chip integrated sensors without any additional process steps, high-resolution analog-to-digital converter, and dedicated DSP algorithm. The sensor consists of a set of laterally arranged integrated photodiodes that are partly covered by metal, where color separation between the photodiodes is achieved by lateral carrier diffusion together with wavelength-dependent absorption. A high resolution, hybrid, ∑∆ ADC converts each photo diode’s current into a 22-bit digital result, canceling the dark current of the photo diodes. The digital results are further processed by the DSP, which calculates normalized XYZ or RGB color and intensity parameters using linear transformations of the three photo diode responses by multiplication of the data with a transformation matrix, where the coefficients are extracted by training in combination with a pseudo-inverse operation and the least-mean square approximation. The sensor system detects the color light parameters with 22-bit accuracy, consumes less than 60 μA on average at 10 readings per second, and occupies approx. 0.8 mm2 of silicon area (including three photodiodes and the analog part of the ADC. The DSP is currently implemented on FPGA.

  14. Integrated High Resolution Digital Color Light Sensor in 130 nm CMOS Technology.

    Science.gov (United States)

    Strle, Drago; Nahtigal, Uroš; Batistell, Graciele; Zhang, Vincent Chi; Ofner, Erwin; Fant, Andrea; Sturm, Johannes

    2015-07-22

    This article presents a color light detection system integrated in 130 nm CMOS technology. The sensors and corresponding electronics detect light in a CIE XYZ color luminosity space using on-chip integrated sensors without any additional process steps, high-resolution analog-to-digital converter, and dedicated DSP algorithm. The sensor consists of a set of laterally arranged integrated photodiodes that are partly covered by metal, where color separation between the photodiodes is achieved by lateral carrier diffusion together with wavelength-dependent absorption. A high resolution, hybrid, ∑∆ ADC converts each photo diode's current into a 22-bit digital result, canceling the dark current of the photo diodes. The digital results are further processed by the DSP, which calculates normalized XYZ or RGB color and intensity parameters using linear transformations of the three photo diode responses by multiplication of the data with a transformation matrix, where the coefficients are extracted by training in combination with a pseudo-inverse operation and the least-mean square approximation. The sensor system detects the color light parameters with 22-bit accuracy, consumes less than 60 μA on average at 10 readings per second, and occupies approx. 0.8 mm(2) of silicon area (including three photodiodes and the analog part of the ADC). The DSP is currently implemented on FPGA.

  15. A wireless embedded passive sensor for monitoring the corrosion potential of reinforcing steel

    International Nuclear Information System (INIS)

    Bhadra, Sharmistha; Thomson, Douglas J; Bridges, Greg E

    2013-01-01

    Corrosion of reinforcing steel, which results in premature deterioration of reinforced concrete structures, is a worldwide problem. Most corrosion sensing techniques require some type of wired connection between the sensor and monitoring electronics. This causes significant problems in their installation and long-term use. In this paper we describe a new type of passive embeddable wireless sensor that is based on an LC coil resonator where the resonant frequency is changed by the corrosion potential of the reinforcing steel. The resonant frequency can be monitored remotely by an interrogator coil inductively coupled to the sensor coil. The sensor unit comprises an inductive coil connected in parallel with a voltage dependent capacitor (varactor) and a pair of corrosion electrodes consisting of a reinforcing steel sensing electrode and a stainless steel reference electrode. Change of potential difference between the electrodes due to variation of the corrosion potential of the reinforcing steel changes the capacitance of the varactor and shifts the resonant frequency of the sensor. A time-domain gating method was used for the interrogation of the inductively coupled corrosion sensor. Results of an accelerated corrosion test using the sensor indicate that the corrosion potential can be monitored with a resolution of less than 10 mV. The sensor is simple in design and requires no power source, making it an inexpensive option for long-term remote monitoring of the corrosion state of reinforcing steel. (paper)

  16. Signal Tracking Beyond the Time Resolution of an Atomic Sensor by Kalman Filtering

    Science.gov (United States)

    Jiménez-Martínez, Ricardo; Kołodyński, Jan; Troullinou, Charikleia; Lucivero, Vito Giovanni; Kong, Jia; Mitchell, Morgan W.

    2018-01-01

    We study causal waveform estimation (tracking) of time-varying signals in a paradigmatic atomic sensor, an alkali vapor monitored by Faraday rotation probing. We use Kalman filtering, which optimally tracks known linear Gaussian stochastic processes, to estimate stochastic input signals that we generate by optical pumping. Comparing the known input to the estimates, we confirm the accuracy of the atomic statistical model and the reliability of the Kalman filter, allowing recovery of waveform details far briefer than the sensor's intrinsic time resolution. With proper filter choice, we obtain similar benefits when tracking partially known and non-Gaussian signal processes, as are found in most practical sensing applications. The method evades the trade-off between sensitivity and time resolution in coherent sensing.

  17. An Analog-Digital Mixed Measurement Method of Inductive Proximity Sensor

    Directory of Open Access Journals (Sweden)

    Yi-Xin Guo

    2015-12-01

    Full Text Available Inductive proximity sensors (IPSs are widely used in position detection given their unique advantages. To address the problem of temperature drift, this paper presents an analog-digital mixed measurement method based on the two-dimensional look-up table. The inductance and resistance components can be separated by processing the measurement data, thus reducing temperature drift and generating quantitative outputs. This study establishes and implements a two-dimensional look-up table that reduces the online computational complexity through structural modeling and by conducting an IPS operating principle analysis. This table is effectively compressed by considering the distribution characteristics of the sample data, thus simplifying the processing circuit. Moreover, power consumption is reduced. A real-time, built-in self-test (BIST function is also designed and achieved by analyzing abnormal sample data. Experiment results show that the proposed method obtains the advantages of both analog and digital measurements, which are stable, reliable, and taken in real time, without the use of floating-point arithmetic and process-control-based components. The quantitative output of displacement measurement accelerates and stabilizes the system control and detection process. The method is particularly suitable for meeting the high-performance requirements of the aviation and aerospace fields.

  18. Comparison of capacitive and inductive sensors designed for partial discharges measurements in electrical power apparatus

    Directory of Open Access Journals (Sweden)

    Kunicki Michał

    2017-01-01

    Full Text Available In the paper results of simultaneously conducted measurements achieved using capacitive and inductive sensors are presented according to different PD model sources immersed in a mineral transformer insulation oil. All measurements are preceded under laboratory conditions using typical measurement set up commonly applied for on-site PD detection: measuring impedance and capacitor and high frequency current transformer (HFCT are used respectively. Measuring frequency and voltage level influence as well as phase resolved PD patterns analysis are investigated in the research. Various fundamental PD signal descriptors assigned for selected frequencies are also proposed and compared for chosen sensors. The main purpose of the presented research is to compare PD measurement results achieved using selected type of sensors during laboratory measurements and to point the best application areas in fields of PD detection in high voltage apparatus under normal operating conditions. Furthermore a proper measurement results interpretation coming from different sensors as well as measurement conducting problems and achieved patterns disparities are also discussed in the paper.

  19. A passive UHF RFID tag chip with a dual-resolution temperature sensor in a 0.18 μm standard CMOS process

    International Nuclear Information System (INIS)

    Feng Peng; Zhang Qi; Wu Nanjian

    2011-01-01

    This paper presents a passive EPC Gen-2 UHF RFID tag chip with a dual-resolution temperature sensor. The chip tag integrates a temperature sensor, an RF/analog front-end circuit, an NVM memory and a digital baseband in a standard CMOS process. The sensor with a low power sigma—delta (ΣΔ) ADC is designed to operate in low and high resolution modes. It can not only achieve the target accuracy but also reduce the power consumption and the sensing time. A CMOS-only RF rectifier and a single-poly non-volatile memory (NVM) are designed to realize a low cost tag chip. The 192-bit-NVM tag chip with an area of 1 mm 2 is implemented in a 0.18-μm standard CMOS process. The sensitivity of the tag is −10.7 dBm/−8.4 dBm when the sensor is disabled/enabled. It achieves a maximum reading/sensing distance of 4 m/3.1 m at 2 W EIRP. The inaccuracy of the sensor is −0.6 °C/0.5 °C (−1.0 °C/1.2 °C) in the operating range from 5 to 15 °C in high resolution mode (−30 to 50 °C in low resolution mode). The resolution of the sensor achieves 0.02 °C (0.18 °C) in high (low) resolution mode. (semiconductor integrated circuits)

  20. Changes in Gingival Crevicular Fluid Inflammatory Mediator Levels during the Induction and Resolution of Experimental Gingivitis in Humans

    Science.gov (United States)

    Offenbacher, Steven; Barros, Silvana; Mendoza, L; Mauriello, S; Preisser, J; Moss, K; de Jager, Marko; Aspiras, Marcelo

    2010-01-01

    Aim The goal of this study is to characterize the changes in 33 biomarkers within the gingival crevicular fluid during the 3-week induction and 4-week resolution of stent-induced, biofilm overgrowth mediated, experimental gingivitis in humans. Methods Experimental gingivitis was induced in 25 subjects for 21 days followed by treatment with a sonic powered toothbrush for 28 days. Clinical indices and gingival crevicular fluids were collected weekly during induction and biweekly during resolution. Samples were analyzed using a bead-based multiplexing analysis for the simultaneous measurements of 33 biomarkers within each sample including cytokines, matrix-metalloproteinases and adipokines. Prostaglandin-E2 was measured by enzyme-linked immunoadsorbant assay. Statistical testing using general linear models with structured covariance matrices were performed to compare stent to contralateral (non-stent) changes in clinical signs and in biomarker levels over time. Results Gingivitis induction was associated with a significant 2.6-fold increase in interleukin 1-beta, a 3.1 fold increase in interleukin 1-alpha, and a significant decrease in multiple chemokines as well as matrixmetalloproteinases −1, −3 and 13. All changes in clinical signs and mediators rebounded to baseline in response to treatmentin the resolution phase. Conclusions Stent-induced gingivitis is associated with marked, but reversible increases in interleukins 1-alpha and 1-beta with suppression of multiple chemokines as well as selected matrixmetalloproteinases. PMID:20447255

  1. Performance Analysis of the Ironless Inductive Position Sensor in the Large Hadron Collider Collimators Environment

    CERN Document Server

    Danisi, Alessandro; Losito, Roberto

    2015-01-01

    The Ironless Inductive Position Sensor (I2PS) has been introduced as a valid alternative to Linear Variable Differential Transformers (LVDTs) when external magnetic fields are present. Potential applications of this linear position sensor can be found in critical systems such as nuclear plants, tokamaks, satellites and particle accelerators. This paper analyzes the performance of the I2PS in the harsh environment of the collimators of the Large Hadron Collider (LHC), where position uncertainties of less than 20 μm are demanded in the presence of nuclear radiation and external magnetic fields. The I2PS has been targeted for installation for LHC Run 2, in order to solve the magnetic interference problem which standard LVDTs are experiencing. The paper describes in detail the chain of systems which belong to the new I2PS measurement task, their impact on the sensor performance and their possible further optimization. The I2PS performance is analyzed evaluating the position uncertainty (on 30 s), the magnetic im...

  2. High-resolution gamma-ray spectroscopy with a microwave-multiplexed transition-edge sensor array

    Energy Technology Data Exchange (ETDEWEB)

    Noroozian, Omid [National Institute of Standards and Technology, Boulder, Colorado 80305 (United States); Center for Astrophysics and Space Astronomy, University of Colorado, Boulder, Colorado 80309 (United States); Mates, John A. B.; Bennett, Douglas A.; Brevik, Justus A.; Fowler, Joseph W.; Gao, Jiansong; Hilton, Gene C.; Horansky, Robert D.; Irwin, Kent D.; Schmidt, Daniel R.; Vale, Leila R.; Ullom, Joel N. [National Institute of Standards and Technology, Boulder, Colorado 80305 (United States); Kang, Zhao [Department of Physics, University of Colorado, Boulder, Colorado 80309 (United States)

    2013-11-11

    We demonstrate very high resolution photon spectroscopy with a microwave-multiplexed two-pixel transition-edge sensor (TES) array. We measured a {sup 153}Gd photon source and achieved an energy resolution of 63 eV full-width-at-half-maximum at 97 keV and an equivalent readout system noise of 86 pA/√(Hz) at the TES. The readout circuit consists of superconducting microwave resonators coupled to radio-frequency superconducting-quantum-interference-devices and transduces changes in input current to changes in phase of a microwave signal. We use flux-ramp modulation to linearize the response and evade low-frequency noise. This demonstration establishes one path for the readout of cryogenic X-ray and gamma-ray sensor arrays with more than 10{sup 3} elements and spectral resolving powers R=λ/Δλ>10{sup 3}.

  3. High spatial and temporal resolution interrogation of fully distributed chirped fiber Bragg grating sensors

    OpenAIRE

    Ahmad, Eamonn J.; Wang, Chao; Feng, Dejun; Yan, Zhijun; Zhang, Lin

    2017-01-01

    A novel interrogation technique for fully distributed linearly chirped fiber Bragg grating (LCFBG) strain sensors with simultaneous high temporal and spatial resolution based on optical time-stretch frequency-domain reflectometry (OTS-FDR) is proposed and experimentally demonstrated. LCFBGs is a promising candidate for fully distributed sensors thanks to its longer grating length and broader reflection bandwidth compared to normal uniform FBGs. In the proposed system, two identical LCFBGs are...

  4. Sensitivity and Resolution Improvement in RGBW Color Filter Array Sensor

    Directory of Open Access Journals (Sweden)

    Seunghoon Jee

    2018-05-01

    Full Text Available Recently, several red-green-blue-white (RGBW color filter arrays (CFAs, which include highly sensitive W pixels, have been proposed. However, RGBW CFA patterns suffer from spatial resolution degradation owing to the sensor composition having more color components than the Bayer CFA pattern. RGBW CFA demosaicing methods reconstruct resolution using the correlation between white (W pixels and pixels of other colors, which does not improve the red-green-blue (RGB channel sensitivity to the W channel level. In this paper, we thus propose a demosaiced image post-processing method to improve the RGBW CFA sensitivity and resolution. The proposed method decomposes texture components containing image noise and resolution information. The RGB channel sensitivity and resolution are improved through updating the W channel texture component with those of RGB channels. For this process, a cross multilateral filter (CMF is proposed. It decomposes the smoothness component from the texture component using color difference information and distinguishes color components through that information. Moreover, it decomposes texture components, luminance noise, color noise, and color aliasing artifacts from the demosaiced images. Finally, by updating the texture of the RGB channels with the W channel texture components, the proposed algorithm improves the sensitivity and resolution. Results show that the proposed method is effective, while maintaining W pixel resolution characteristics and improving sensitivity from the signal-to-noise ratio value by approximately 4.5 dB.

  5. A novel angular acceleration sensor based on the electromagnetic induction principle and investigation of its calibration tests.

    Science.gov (United States)

    Zhao, Hao; Feng, Hao

    2013-08-12

    An angular acceleration sensor can be used for the dynamic analysis of human and joint motions. In this paper, an angular acceleration sensor with novel structure based on the principle of electromagnetic induction is designed. The method involves the construction of a constant magnetic field by the excitation windings of sensor, and the cup-shaped rotor that cut the magnetic field. The output windings of the sensor generate an electromotive force, which is directly proportional to the angular acceleration through the electromagnetic coupling when the rotor has rotational angular acceleration. The mechanical structure and the magnetic working circuit of the sensor are described. The output properties and the mathematical model including the transfer function and state-space model of the sensor are established. The asymptotical stability of the sensor when it is working is verified by the Lyapunov Theorem. An angular acceleration calibration device based on the torsional pendulum principle is designed. The method involves the coaxial connection of the angular acceleration sensor, torsion pendulum and a high-precision angle sensor, and then an initial external force is applied to the torsion pendulum to produce a periodic damping angle oscillation. The angular acceleration sensor and the angle sensor will generate two corresponding electrical signals. The sensitivity coefficient of the angular acceleration sensor can be obtained after processing these two-channel signals. The experiment results show that the sensitivity coefficient of the sensor is about 17.29 mv/Krad·s2. Finally, the errors existing in the practical applications of the sensor are discussed and the corresponding improvement measures are proposed to provide effective technical support for the practical promotion of the novel sensor.

  6. Inductive dielectric analyzer

    International Nuclear Information System (INIS)

    Agranovich, Daniel; Popov, Ivan; Ben Ishai, Paul; Feldman, Yuri; Polygalov, Eugene

    2017-01-01

    One of the approaches to bypass the problem of electrode polarization in dielectric measurements is the free electrode method. The advantage of this technique is that, the probing electric field in the material is not supplied by contact electrodes, but rather by electromagnetic induction. We have designed an inductive dielectric analyzer based on a sensor comprising two concentric toroidal coils. In this work, we present an analytic derivation of the relationship between the impedance measured by the sensor and the complex dielectric permittivity of the sample. The obtained relationship was successfully employed to measure the dielectric permittivity and conductivity of various alcohols and aqueous salt solutions. (paper)

  7. White-light full-field OCT resolution improvement by image sensor colour balance adjustment: numerical simulation

    International Nuclear Information System (INIS)

    Kalyanov, A L; Lychagov, V V; Ryabukho, V P; Smirnov, I V

    2012-01-01

    The possibility of improving white-light full-field optical coherence tomography (OCT) resolution by image sensor colour balance tuning is shown numerically. We calculated the full-width at half-maximum (FWHM) of a coherence pulse registered by a silicon colour image sensor under various colour balance settings. The calculations were made for both a halogen lamp and white LED sources. The results show that the interference pulse width can be reduced by the proper choice of colour balance coefficients. The reduction is up to 18%, as compared with a colour image sensor with regular settings, and up to 20%, as compared with a monochrome sensor. (paper)

  8. Development of a high resolution plantar pressure monitoring pad based on fiber Bragg grating (FBG) sensors.

    Science.gov (United States)

    Suresh, R; Bhalla, S; Hao, J; Singh, C

    2015-01-01

    High importance is given to plantar pressure monitoring in the field of biomedical engineering for the diagnosis of posture related ailments associated with diseases such as diabetes and gonarthrosis. This paper presents the proof-of-concept development of a new high resolution plantar pressure monitoring pad based on fiber Bragg grating (FBG) sensors. In the proposed configuration, the FBG sensors are embedded within layers of carbon composite material (CCM) in turn conforming to an arc shape. A total of four such arc shaped sensors are instrumented in the pad at the locations of the forefoot and the hind foot. As a test of the pad, static plantar pressure is monitored on normal subjects under various posture conditions. The pad is evaluated both as a standalone platform as well as a pad inserted inside a standard shoe. An average pressure sensitivity of 1.2 pm/kPa and a resolution of approximately 0.8 kPa is obtained in this special configuration. The pad is found to be suitable in both configurations- stand-alone pad as well as an insert inside a standard shoe. The proposed set up offers a cost-effective high resolution and accurate plantar pressure measurement system suitable for clinical deployment. The novelty of the developed pressure pad lies in its ability to be used both as platform type as well as inserted in-sole type sensor system.

  9. A Sensor Driven Probabilistic Method for Enabling Hyper Resolution Flood Simulations

    Science.gov (United States)

    Fries, K. J.; Salas, F.; Kerkez, B.

    2016-12-01

    A reduction in the cost of sensors and wireless communications is now enabling researchers and local governments to make flow, stage and rain measurements at locations that are not covered by existing USGS or state networks. We ask the question: how should these new sources of densified, street-level sensor measurements be used to make improved forecasts using the National Water Model (NWM)? Assimilating these data "into" the NWM can be challenging due to computational complexity, as well as heterogeneity of sensor and other input data. Instead, we introduce a machine learning and statistical framework that layers these data "on top" of the NWM outputs to improve high-resolution hydrologic and hydraulic forecasting. By generalizing our approach into a post-processing framework, a rapidly repeatable blueprint is generated for for decision makers who want to improve local forecasts by coupling sensor data with the NWM. We present preliminary results based on case studies in highly instrumented watersheds in the US. Through the use of statistical learning tools and hydrologic routing schemes, we demonstrate the ability of our approach to improve forecasts while simultaneously characterizing bias and uncertainty in the NWM.

  10. High Resolution Flexible Tactile Sensors

    DEFF Research Database (Denmark)

    Drimus, Alin; Bilberg, Arne

    2011-01-01

    both spatial distribution of pressure and dynamic events such as contact, release of contact and slip. Data acquisition and object recognition applications are described and it is proposed that such a sensor could be used in robotic grippers to improve object recognition, manipulation of objects......This paper describes the development of a tactile sensor for robotics inspired by the human sense of touch. It consists of two parts: a static tactile array sensor based on piezoresistive rubber and a dynamic sensor based on piezoelectric PVDF film. The combination of these two layers addresses...

  11. Design and Experimental Verification of a 0.19 V 53 μW 65 nm CMOS Integrated Supply-Sensing Sensor With a Supply-Insensitive Temperature Sensor and an Inductive-Coupling Transmitter for a Self-Powered Bio-sensing System Using a Biofuel Cell.

    Science.gov (United States)

    Kobayashi, Atsuki; Ikeda, Kei; Ogawa, Yudai; Kai, Hiroyuki; Nishizawa, Matsuhiko; Nakazato, Kazuo; Niitsu, Kiichi

    2017-12-01

    In this paper, we present a self-powered bio-sensing system with the capability of proximity inductive-coupling communication for supply sensing and temperature monitoring. The proposed bio-sensing system includes a biofuel cell as a power source and a sensing frontend that is associated with the CMOS integrated supply-sensing sensor. The sensor consists of a digital-based gate leakage timer, a supply-insensitive time-domain temperature sensor, and a current-driven inductive-coupling transmitter and achieves low-voltage operation. The timer converts the output voltage from a biofuel cell to frequency. The temperature sensor provides a pulse width modulation (PWM) output that is not dependent on the supply voltage, and the associated inductive-coupling transmitter enables proximity communication. A test chip was fabricated in 65 nm CMOS technology and consumed 53 μW with a supply voltage of 190 mV. The low-voltage-friendly design satisfied the performance targets of each integrated sensor without any trimming. The chips allowed us to successfully demonstrate proximity communication with an asynchronous receiver, and the measurement results show the potential for self-powered operation using biofuel cells. The analysis and experimental verification of the system confirmed their robustness.

  12. New Potentiometric Wireless Chloride Sensors Provide High Resolution Information on Chemical Transport Processes in Streams

    Directory of Open Access Journals (Sweden)

    Keith Smettem

    2017-07-01

    Full Text Available Quantifying the travel times, pathways, and dispersion of solutes moving through stream environments is critical for understanding the biogeochemical cycling processes that control ecosystem functioning. Validation of stream solute transport and exchange process models requires data obtained from in-stream measurement of chemical concentration changes through time. This can be expensive and time consuming, leading to a need for cheap distributed sensor arrays that respond instantly and record chemical transport at points of interest on timescales of seconds. To meet this need we apply new, low-cost (in the order of a euro per sensor potentiometric chloride sensors used in a distributed array to obtain data with high spatial and temporal resolution. The application here is to monitoring in-stream hydrodynamic transport and dispersive mixing of an injected chemical, in this case NaCl. We present data obtained from the distributed sensor array under baseflow conditions for stream reaches in Luxembourg and Western Australia. The reaches were selected to provide a range of increasingly complex in-channel flow patterns. Mid-channel sensor results are comparable to data obtained from more expensive electrical conductivity meters, but simultaneous acquisition of tracer data at several positions across the channel allows far greater spatial resolution of hydrodynamic mixing processes and identification of chemical ‘dead zones’ in the study reaches.

  13. Vibration control of a cable-stayed bridge using electromagnetic induction based sensor integrated MR dampers

    International Nuclear Information System (INIS)

    Cho, Sang Won; Koo, Jeong Hoi; Jo, Ji Seong

    2007-01-01

    This paper presents a novel electromagnetic induction (EMI) system integrated in magneto rheological (MR) dampers: The added EMI system converts reciprocal motions of MR damper into electiral energy (electromotive force or emf) according to the Faraday's law of electromagnetic induction. Maximum energy dissipation algorithm (MEDA) is employed to regulate the MR dampers because it strives to simplify a complex design process by employing the Lyapunov's direct approach. The emf signal, produced from the EMI, provides the necessary measurement information (i.e., realtive velocity across the damper) for the MEDA controller. Thus, the EMI acts as a sensor in the proposed MR-EMI system. In order to evaluate the performance and robustness of the MR-EMI sensor system with the MEDA control, this study performed an extensive simulation study using the first generation benchmark cable-stayed bridge. Moreover, it compared the performance and the robustness of proposed system with those of Clipped-Optimal Control (COC) and Sliding Mode Control (SMC), which were previously studied for the benchmark cable-stayed bridge. The results show that the MR-EMI system reduced the vibrations of the bridge structure more than those of COC and SMC and show more robust performance than that of SMC. These results suggest that EMIs can be used cost-effective sensing devices for MR damper control systems without compromising the performance of them

  14. Resolution in QCM sensors for the viscosity and density of liquids: application to lead acid batteries.

    Science.gov (United States)

    Cao-Paz, Ana María; Rodríguez-Pardo, Loreto; Fariña, José; Marcos-Acevedo, Jorge

    2012-01-01

    In battery applications, particularly in automobiles, submarines and remote communications, the state of charge (SoC) is needed in order to manage batteries efficiently. The most widely used physical parameter for this is electrolyte density. However, there is greater dependency between electrolyte viscosity and SoC than that seen for density and SoC. This paper presents a Quartz Crystal Microbalance (QCM) sensor for electrolyte density-viscosity product measurements in lead acid batteries. The sensor is calibrated in H(2)SO(4) solutions in the battery electrolyte range to obtain sensitivity, noise and resolution. Also, real-time tests of charge and discharge are conducted placing the quartz crystal inside the battery. At the same time, the present theoretical "resolution limit" to measure the square root of the density-viscosity product [Formula: see text] of a liquid medium or best resolution achievable with a QCM oscillator is determined. Findings show that the resolution limit only depends on the characteristics of the liquid to be studied and not on frequency. The QCM resolution limit for [Formula: see text] measurements worsens when the density-viscosity product of the liquid is increased, but it cannot be improved by elevating the work frequency.

  15. Ironless Inductive Position Sensor for Harsh Magnetic Environments

    CERN Document Server

    Danisi, Alessandro; Masi, Alessandro

    Linear Variable Differential Transformers (LVDTs) are widely used for high-precision and high-accuracy linear position sensing in harsh environments, such as the LHC collimators at CERN. These sensors guarantee theoretically infinite resolution and long lifetimes thanks to contactless sensing. Furthermore, they offer very good robustness and ruggedness, as well as micrometer uncertainty over a range of centimeters when proper conditioning techniques are used (such as the three-parameter Sine-Fit algorithm). They can also be suitable for radioactive environments. Nevertheless, an external DC/slowly-varying magnetic field can seriously affect the LVDT reading, leading to position drifts of hundreds of micrometers, often unacceptable in high-accuracy applications. The effect is due to the presence of non-linear ferromagnetic materials in the sensor’s structure. A detailed Finite Element model of an LVDT is first proposed in order to study and characterize the phenomenon. The model itself becomes a powerful de...

  16. TERRA REF: Advancing phenomics with high resolution, open access sensor and genomics data

    Science.gov (United States)

    LeBauer, D.; Kooper, R.; Burnette, M.; Willis, C.

    2017-12-01

    Automated plant measurement has the potential to improve understanding of genetic and environmental controls on plant traits (phenotypes). The application of sensors and software in the automation of high throughput phenotyping reflects a fundamental shift from labor intensive hand measurements to drone, tractor, and robot mounted sensing platforms. These tools are expected to speed the rate of crop improvement by enabling plant breeders to more accurately select plants with improved yields, resource use efficiency, and stress tolerance. However, there are many challenges facing high throughput phenomics: sensors and platforms are expensive, currently there are few standard methods of data collection and storage, and the analysis of large data sets requires high performance computers and automated, reproducible computing pipelines. To overcome these obstacles and advance the science of high throughput phenomics, the TERRA Phenotyping Reference Platform (TERRA-REF) team is developing an open-access database of high resolution sensor data. TERRA REF is an integrated field and greenhouse phenotyping system that includes: a reference field scanner with fifteen sensors that can generate terrabytes of data each day at mm resolution; UAV, tractor, and fixed field sensing platforms; and an automated controlled-environment scanner. These platforms will enable investigation of diverse sensing modalities, and the investigation of traits under controlled and field environments. It is the goal of TERRA REF to lower the barrier to entry for academic and industry researchers by providing high-resolution data, open source software, and online computing resources. Our project is unique in that all data will be made fully public in November 2018, and is already available to early adopters through the beta-user program. We will describe the datasets and how to use them as well as the databases and computing pipeline and how these can be reused and remixed in other phenomics pipelines

  17. A Multi-Resolution Mode CMOS Image Sensor with a Novel Two-Step Single-Slope ADC for Intelligent Surveillance Systems

    Directory of Open Access Journals (Sweden)

    Daehyeok Kim

    2017-06-01

    Full Text Available In this paper, we present a multi-resolution mode CMOS image sensor (CIS for intelligent surveillance system (ISS applications. A low column fixed-pattern noise (CFPN comparator is proposed in 8-bit two-step single-slope analog-to-digital converter (TSSS ADC for the CIS that supports normal, 1/2, 1/4, 1/8, 1/16, 1/32, and 1/64 mode of pixel resolution. We show that the scaled-resolution images enable CIS to reduce total power consumption while images hold steady without events. A prototype sensor of 176 × 144 pixels has been fabricated with a 0.18 μm 1-poly 4-metal CMOS process. The area of 4-shared 4T-active pixel sensor (APS is 4.4 μm × 4.4 μm and the total chip size is 2.35 mm × 2.35 mm. The maximum power consumption is 10 mW (with full resolution with supply voltages of 3.3 V (analog and 1.8 V (digital and 14 frame/s of frame rates.

  18. A Multi-Resolution Mode CMOS Image Sensor with a Novel Two-Step Single-Slope ADC for Intelligent Surveillance Systems.

    Science.gov (United States)

    Kim, Daehyeok; Song, Minkyu; Choe, Byeongseong; Kim, Soo Youn

    2017-06-25

    In this paper, we present a multi-resolution mode CMOS image sensor (CIS) for intelligent surveillance system (ISS) applications. A low column fixed-pattern noise (CFPN) comparator is proposed in 8-bit two-step single-slope analog-to-digital converter (TSSS ADC) for the CIS that supports normal, 1/2, 1/4, 1/8, 1/16, 1/32, and 1/64 mode of pixel resolution. We show that the scaled-resolution images enable CIS to reduce total power consumption while images hold steady without events. A prototype sensor of 176 × 144 pixels has been fabricated with a 0.18 μm 1-poly 4-metal CMOS process. The area of 4-shared 4T-active pixel sensor (APS) is 4.4 μm × 4.4 μm and the total chip size is 2.35 mm × 2.35 mm. The maximum power consumption is 10 mW (with full resolution) with supply voltages of 3.3 V (analog) and 1.8 V (digital) and 14 frame/s of frame rates.

  19. Sparse Representations-Based Super-Resolution of Key-Frames Extracted from Frames-Sequences Generated by a Visual Sensor Network

    Directory of Open Access Journals (Sweden)

    Muhammad Sajjad

    2014-02-01

    Full Text Available Visual sensor networks (VSNs usually generate a low-resolution (LR frame-sequence due to energy and processing constraints. These LR-frames are not very appropriate for use in certain surveillance applications. It is very important to enhance the resolution of the captured LR-frames using resolution enhancement schemes. In this paper, an effective framework for a super-resolution (SR scheme is proposed that enhances the resolution of LR key-frames extracted from frame-sequences captured by visual-sensors. In a VSN, a visual processing hub (VPH collects a huge amount of visual data from camera sensors. In the proposed framework, at the VPH, key-frames are extracted using our recent key-frame extraction technique and are streamed to the base station (BS after compression. A novel effective SR scheme is applied at BS to produce a high-resolution (HR output from the received key-frames. The proposed SR scheme uses optimized orthogonal matching pursuit (OOMP for sparse-representation recovery in SR. OOMP does better in terms of detecting true sparsity than orthogonal matching pursuit (OMP. This property of the OOMP helps produce a HR image which is closer to the original image. The K-SVD dictionary learning procedure is incorporated for dictionary learning. Batch-OMP improves the dictionary learning process by removing the limitation in handling a large set of observed signals. Experimental results validate the effectiveness of the proposed scheme and show its superiority over other state-of-the-art schemes.

  20. Sparse representations-based super-resolution of key-frames extracted from frames-sequences generated by a visual sensor network.

    Science.gov (United States)

    Sajjad, Muhammad; Mehmood, Irfan; Baik, Sung Wook

    2014-02-21

    Visual sensor networks (VSNs) usually generate a low-resolution (LR) frame-sequence due to energy and processing constraints. These LR-frames are not very appropriate for use in certain surveillance applications. It is very important to enhance the resolution of the captured LR-frames using resolution enhancement schemes. In this paper, an effective framework for a super-resolution (SR) scheme is proposed that enhances the resolution of LR key-frames extracted from frame-sequences captured by visual-sensors. In a VSN, a visual processing hub (VPH) collects a huge amount of visual data from camera sensors. In the proposed framework, at the VPH, key-frames are extracted using our recent key-frame extraction technique and are streamed to the base station (BS) after compression. A novel effective SR scheme is applied at BS to produce a high-resolution (HR) output from the received key-frames. The proposed SR scheme uses optimized orthogonal matching pursuit (OOMP) for sparse-representation recovery in SR. OOMP does better in terms of detecting true sparsity than orthogonal matching pursuit (OMP). This property of the OOMP helps produce a HR image which is closer to the original image. The K-SVD dictionary learning procedure is incorporated for dictionary learning. Batch-OMP improves the dictionary learning process by removing the limitation in handling a large set of observed signals. Experimental results validate the effectiveness of the proposed scheme and show its superiority over other state-of-the-art schemes.

  1. Median filters as a tool to determine dark noise thresholds in high resolution smartphone image sensors for scientific imaging

    Science.gov (United States)

    Igoe, Damien P.; Parisi, Alfio V.; Amar, Abdurazaq; Rummenie, Katherine J.

    2018-01-01

    An evaluation of the use of median filters in the reduction of dark noise in smartphone high resolution image sensors is presented. The Sony Xperia Z1 employed has a maximum image sensor resolution of 20.7 Mpixels, with each pixel having a side length of just over 1 μm. Due to the large number of photosites, this provides an image sensor with very high sensitivity but also makes them prone to noise effects such as hot-pixels. Similar to earlier research with older models of smartphone, no appreciable temperature effects were observed in the overall average pixel values for images taken in ambient temperatures between 5 °C and 25 °C. In this research, hot-pixels are defined as pixels with intensities above a specific threshold. The threshold is determined using the distribution of pixel values of a set of images with uniform statistical properties associated with the application of median-filters of increasing size. An image with uniform statistics was employed as a training set from 124 dark images, and the threshold was determined to be 9 digital numbers (DN). The threshold remained constant for multiple resolutions and did not appreciably change even after a year of extensive field use and exposure to solar ultraviolet radiation. Although the temperature effects' uniformity masked an increase in hot-pixel occurrences, the total number of occurrences represented less than 0.1% of the total image. Hot-pixels were removed by applying a median filter, with an optimum filter size of 7 × 7; similar trends were observed for four additional smartphone image sensors used for validation. Hot-pixels were also reduced by decreasing image resolution. The method outlined in this research provides a methodology to characterise the dark noise behavior of high resolution image sensors for use in scientific investigations, especially as pixel sizes decrease.

  2. RFID sensors as the common sensing platform for single-use biopharmaceutical manufacturing

    International Nuclear Information System (INIS)

    Potyrailo, Radislav A; Surman, Cheryl; Monk, David; Morris, William G; Wortley, Timothy; Vincent, Mark; Diana, Rafael; Pizzi, Vincent; Carter, Jeffrey; Gach, Gerard; Klensmeden, Staffan; Ehring, Hanno

    2011-01-01

    The lack of reliable single-use sensors prevents the biopharmaceutical industry from fully embracing single-use biomanufacturing processes. Sensors based on the same detection platform for all critical parameters in single-use bioprocess components would be highly desirable to significantly simplify their installation, calibration and operation. We review here our approach for passive radio-frequency identification (RFID)-based sensing that does not rely on costly proprietary RFID memory chips with an analog input but rather implements ubiquitous passive 13.56 MHz RFID tags as inductively coupled sensors with at least 16 bit resolution provided by a sensor reader. The developed RFID sensors combine several measured parameters from the resonant sensor antenna with multivariate data analysis and deliver unique capability of multiparameter sensing and rejection of environmental interferences with a single sensor. This general sensing approach provides an elegant solution for both analytical measurement and identification and documentation of the measured location. (topical review)

  3. UNDESIRED SPLASH OVER ON EQUIPMENTS USING INDUCTIVE SENSORS FOR MONITORING AUTOMOTIVE VEHICLES' CONTROLLED SPEED

    Directory of Open Access Journals (Sweden)

    Silvio Monteiro

    Full Text Available This article aims to evaluate instruments that oversight traffic flow electronically, using inductive surface sensors, based on the change of local magnetic field. More specifically, we study the possibility of false speed detections, due to the manifestation of the phenomenon called splash over - which means a space splash of the magnetic field lines out of the measuring zone. We show, through the literature, and practical simulations, the damage that can be caused by splash on the correct speed measurement and identification of the car under suspicions. It is also presented solutions to inhibiting unwanted velocity measurements due to this effect.

  4. Resolution in QCM Sensors for the Viscosity and Density of Liquids: Application to Lead Acid Batteries

    Directory of Open Access Journals (Sweden)

    Jorge Marcos-Acevedo

    2012-08-01

    Full Text Available In battery applications, particularly in automobiles, submarines and remote communications, the state of charge (SoC is needed in order to manage batteries efficiently. The most widely used physical parameter for this is electrolyte density. However, there is greater dependency between electrolyte viscosity and SoC than that seen for density and SoC. This paper presents a Quartz Crystal Microbalance (QCM sensor for electrolyte density-viscosity product measurements in lead acid batteries. The sensor is calibrated in H2SO4 solutions in the battery electrolyte range to obtain sensitivity, noise and resolution. Also, real-time tests of charge and discharge are conducted placing the quartz crystal inside the battery. At the same time, the present theoretical “resolution limit” to measure the square root of the density-viscosity product ( of a liquid medium or best resolution achievable with a QCM oscillator is determined. Findings show that the resolution limit only depends on the characteristics of the liquid to be studied and not on frequency. The QCM resolution limit for  measurements worsens when the density-viscosity product of the liquid is increased, but it cannot be improved by elevating the work frequency.

  5. Energy resolution and efficiency of phonon-mediated kinetic inductance detectors for light detection

    International Nuclear Information System (INIS)

    Cardani, L.; Colantoni, I.; Coppolecchia, A.; Cruciani, A.; Vignati, M.; Bellini, F.; Casali, N.; Cosmelli, C.; Di Domizio, S.; Castellano, M. G.; Tomei, C.

    2015-01-01

    The development of sensitive cryogenic light detectors is of primary interest for bolometric experiments searching for rare events like dark matter interactions or neutrino-less double beta decay. Thanks to their good energy resolution and the natural multiplexed read-out, Kinetic Inductance Detectors (KIDs) are particularly suitable for this purpose. To efficiently couple KIDs-based light detectors to the large crystals used by the most advanced bolometric detectors, active surfaces of several cm 2 are needed. For this reason, we are developing phonon-mediated detectors. In this paper, we present the results obtained with a prototype consisting of four 40 nm thick aluminum resonators patterned on a 2 × 2 cm 2 silicon chip, and calibrated with optical pulses and X-rays. The detector features a noise resolution σ E  = 154 ± 7 eV and an (18 ± 2)% efficiency

  6. Energy resolution and efficiency of phonon-mediated kinetic inductance detectors for light detection

    Energy Technology Data Exchange (ETDEWEB)

    Cardani, L., E-mail: laura.cardani@roma1.infn.it [Dipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro 2, 00185 Roma (Italy); Physics Department, Princeton University, Washington Road, 08544, Princeton, New Jersey (United States); Colantoni, I.; Coppolecchia, A. [Dipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro 2, 00185 Roma (Italy); Cruciani, A.; Vignati, M.; Bellini, F.; Casali, N.; Cosmelli, C. [Dipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro 2, 00185 Roma (Italy); INFN - Sezione di Roma, Piazzale Aldo Moro 2, 00185 Roma (Italy); Di Domizio, S. [Dipartimento di Fisica, Università degli Studi di Genova, Via Dodecaneso 33, 16146 Genova (Italy); INFN - Sezione di Genova, Via Dodecaneso 33, 16146 Genova (Italy); Castellano, M. G. [Istituto di Fotonica e Nanotecnologie - CNR, Via Cineto Romano 42, 00156 Roma (Italy); Tomei, C. [INFN - Sezione di Roma, Piazzale Aldo Moro 2, 00185 Roma (Italy)

    2015-08-31

    The development of sensitive cryogenic light detectors is of primary interest for bolometric experiments searching for rare events like dark matter interactions or neutrino-less double beta decay. Thanks to their good energy resolution and the natural multiplexed read-out, Kinetic Inductance Detectors (KIDs) are particularly suitable for this purpose. To efficiently couple KIDs-based light detectors to the large crystals used by the most advanced bolometric detectors, active surfaces of several cm{sup 2} are needed. For this reason, we are developing phonon-mediated detectors. In this paper, we present the results obtained with a prototype consisting of four 40 nm thick aluminum resonators patterned on a 2 × 2 cm{sup 2} silicon chip, and calibrated with optical pulses and X-rays. The detector features a noise resolution σ{sub E} = 154 ± 7 eV and an (18 ± 2)% efficiency.

  7. Droplet deposition measurement with high-speed camera and novel high-speed liquid film sensor with high spatial resolution

    International Nuclear Information System (INIS)

    Damsohn, M.; Prasser, H.-M.

    2011-01-01

    Highlights: → Development of a sensor for time- and space-resolved droplet deposition in annular flow. → Experimental measurement of droplet deposition in horizontal annular flow to compare readings of the sensor with images of a high-speed camera when droplets are depositing unto the liquid film. → Self-adaptive signal filter based on autoregression to separate droplet impacts in the sensor signal from waves of liquid films. - Abstract: A sensor based on the electrical conductance method is presented for the measurement of dynamic liquid films in two-phase flow. The so called liquid film sensor consists of a matrix with 64 x 16 measuring points, a spatial resolution of 3.12 mm and a time resolution of 10 kHz. Experiments in a horizontal co-current air-water film flow were conducted to test the capability of the sensor to detect droplet deposition from the gas core onto the liquid film. The experimental setup is equipped with the liquid film sensor and a high speed camera (HSC) recording the droplet deposition with a sampling rate of 10 kHz simultaneously. In some experiments the recognition of droplet deposition on the sensor is enhanced by marking the droplets with higher electrical conductivity. The comparison between the HSC and the sensor shows, that the sensor captures the droplet deposition above a certain droplet diameter. The impacts of droplet deposition can be filtered from the wavy structures respectively conductivity changes of the liquid film using a filter algorithm based on autoregression. The results will be used to locally measure droplet deposition e.g. in the proximity of spacers in a subchannel geometry.

  8. Single Image Super Resolution via Sparse Reconstruction

    NARCIS (Netherlands)

    Kruithof, M.C.; Eekeren, A.W.M. van; Dijk, J.; Schutte, K.

    2012-01-01

    High resolution sensors are required for recognition purposes. Low resolution sensors, however, are still widely used. Software can be used to increase the resolution of such sensors. One way of increasing the resolution of the images produced is using multi-frame super resolution algorithms.

  9. Multi-Sensor Fusion of Infrared and Electro-Optic Signals for High Resolution Night Images

    Directory of Open Access Journals (Sweden)

    Victor Lawrence

    2012-07-01

    Full Text Available Electro-optic (EO image sensors exhibit the properties of high resolution and low noise level at daytime, but they do not work in dark environments. Infrared (IR image sensors exhibit poor resolution and cannot separate objects with similar temperature. Therefore, we propose a novel framework of IR image enhancement based on the information (e.g., edge from EO images, which improves the resolution of IR images and helps us distinguish objects at night. Our framework superimposing/blending the edges of the EO image onto the corresponding transformed IR image improves their resolution. In this framework, we adopt the theoretical point spread function (PSF proposed by Hardie et al. for the IR image, which has the modulation transfer function (MTF of a uniform detector array and the incoherent optical transfer function (OTF of diffraction-limited optics. In addition, we design an inverse filter for the proposed PSF and use it for the IR image transformation. The framework requires four main steps: (1 inverse filter-based IR image transformation; (2 EO image edge detection; (3 registration; and (4 blending/superimposing of the obtained image pair. Simulation results show both blended and superimposed IR images, and demonstrate that blended IR images have better quality over the superimposed images. Additionally, based on the same steps, simulation result shows a blended IR image of better quality when only the original IR image is available.

  10. High Resolution and Large Dynamic Range Resonant Pressure Sensor Based on Q-Factor Measurement

    Science.gov (United States)

    Gutierrez, Roman C. (Inventor); Stell, Christopher B. (Inventor); Tang, Tony K. (Inventor); Vorperian, Vatche (Inventor); Wilcox, Jaroslava (Inventor); Shcheglov, Kirill (Inventor); Kaiser, William J. (Inventor)

    2000-01-01

    A pressure sensor has a high degree of accuracy over a wide range of pressures. Using a pressure sensor relying upon resonant oscillations to determine pressure, a driving circuit drives such a pressure sensor at resonance and tracks resonant frequency and amplitude shifts with changes in pressure. Pressure changes affect the Q-factor of the resonating portion of the pressure sensor. Such Q-factor changes are detected by the driving/sensing circuit which in turn tracks the changes in resonant frequency to maintain the pressure sensor at resonance. Changes in the Q-factor are reflected in changes of amplitude of the resonating pressure sensor. In response, upon sensing the changes in the amplitude, the driving circuit changes the force or strength of the electrostatic driving signal to maintain the resonator at constant amplitude. The amplitude of the driving signals become a direct measure of the changes in pressure as the operating characteristics of the resonator give rise to a linear response curve for the amplitude of the driving signal. Pressure change resolution is on the order of 10(exp -6) torr over a range spanning from 7,600 torr to 10(exp -6) torr. No temperature compensation for the pressure sensor of the present invention is foreseen. Power requirements for the pressure sensor are generally minimal due to the low-loss mechanical design of the resonating pressure sensor and the simple control electronics.

  11. High-resolution photon spectroscopy with a microwave-multiplexed 4-pixel transition edge sensor array

    Science.gov (United States)

    Guss, Paul; Rabin, Michael; Croce, Mark; Hoteling, Nathan; Schwellenbach, David; Kruschwitz, Craig; Mocko, Veronika; Mukhopadhyay, Sanjoy

    2017-09-01

    We demonstrate very high-resolution photon spectroscopy with a microwave-multiplexed 4-pixel transition edge sensor (TES) array. The readout circuit consists of superconducting microwave resonators coupled to radio frequency superconducting-quantum-interference devices (RF-SQUIDs) and transduces changes in input current to changes in phase of a microwave signal. We used a flux-ramp modulation to linearize the response and avoid low-frequency noise. The result is a very high-resolution photon spectroscopy with a microwave-multiplexed 4-pixel transition edge sensor array. We performed and validated a small-scale demonstration and test of all the components of our concept system, which encompassed microcalorimetry, microwave multiplexing, RF-SQUIDs, and software-defined radio (SDR). We shall display data we acquired in the first simultaneous combination of all key innovations in a 4-pixel demonstration, including microcalorimetry, microwave multiplexing, RF-SQUIDs, and SDR. We present the energy spectrum of a gadolinium-153 (153Gd) source we measured using our 4-pixel TES array and the RF-SQUID multiplexer. For each pixel, one can observe the two 97.4 and 103.2 keV photopeaks. We measured the 153Gd photon source with an achieved energy resolution of 70 eV, full width half maximum (FWHM) at 100 keV, and an equivalent readout system noise of 90 pA/pHz at the TES. This demonstration establishes a path for the readout of cryogenic x-ray and gamma ray sensor arrays with more elements and spectral resolving powers. We believe this project has improved capabilities and substantively advanced the science useful for missions such as nuclear forensics, emergency response, and treaty verification through the explored TES developments.

  12. A High-Resolution Sensor Network for Monitoring Glacier Dynamics

    Science.gov (United States)

    Edwards, S.; Murray, T.; O'Farrell, T.; Rutt, I. C.; Loskot, P.; Martin, I.; Selmes, N.; Aspey, R.; James, T.; Bevan, S. L.; Baugé, T.

    2013-12-01

    Changes in Greenland and Antarctic ice sheets due to ice flow/ice-berg calving are a major uncertainty affecting sea-level rise forecasts. Latterly GNSS (Global Navigation Satellite Systems) have been employed extensively to monitor such glacier dynamics. Until recently however, the favoured methodology has been to deploy sensors onto the glacier surface, collect data for a period of time, then retrieve and download the sensors. This approach works well in less dynamic environments where the risk of sensor loss is low. In more extreme environments e.g. approaching the glacial calving front, the risk of sensor loss and hence data loss increases dramatically. In order to provide glaciologists with new insights into flow dynamics and calving processes we have developed a novel sensor network to increase the robustness of data capture. We present details of the technological requirements for an in-situ Zigbee wireless streaming network infrastructure supporting instantaneous data acquisition from high resolution GNSS sensors thereby increasing data capture robustness. The data obtained offers new opportunities to investigate the interdependence of mass flow, uplift, velocity and geometry and the network architecture has been specifically designed for deployment by helicopter close to the calving front to yield unprecedented detailed information. Following successful field trials of a pilot three node network during 2012, a larger 20 node network was deployed on the fast-flowing Helheim glacier, south-east Greenland over the summer months of 2013. The utilisation of dual wireless transceivers in each glacier node, multiple frequencies and four ';collector' stations located on the valley sides creates overlapping networks providing enhanced capacity, diversity and redundancy of data 'back-haul', even close to ';floor' RSSI (Received Signal Strength Indication) levels around -100 dBm. Data loss through radio packet collisions within sub-networks are avoided through the

  13. Behavior analysis for elderly care using a network of low-resolution visual sensors

    Science.gov (United States)

    Eldib, Mohamed; Deboeverie, Francis; Philips, Wilfried; Aghajan, Hamid

    2016-07-01

    Recent advancements in visual sensor technologies have made behavior analysis practical for in-home monitoring systems. The current in-home monitoring systems face several challenges: (1) visual sensor calibration is a difficult task and not practical in real-life because of the need for recalibration when the visual sensors are moved accidentally by a caregiver or the senior citizen, (2) privacy concerns, and (3) the high hardware installation cost. We propose to use a network of cheap low-resolution visual sensors (30×30 pixels) for long-term behavior analysis. The behavior analysis starts by visual feature selection based on foreground/background detection to track the motion level in each visual sensor. Then a hidden Markov model (HMM) is used to estimate the user's locations without calibration. Finally, an activity discovery approach is proposed using spatial and temporal contexts. We performed experiments on 10 months of real-life data. We show that the HMM approach outperforms the k-nearest neighbor classifier against ground truth for 30 days. Our framework is able to discover 13 activities of daily livings (ADL parameters). More specifically, we analyze mobility patterns and some of the key ADL parameters to detect increasing or decreasing health conditions.

  14. A cloud mask methodology for high resolution remote sensing data combining information from high and medium resolution optical sensors

    Science.gov (United States)

    Sedano, Fernando; Kempeneers, Pieter; Strobl, Peter; Kucera, Jan; Vogt, Peter; Seebach, Lucia; San-Miguel-Ayanz, Jesús

    2011-09-01

    This study presents a novel cloud masking approach for high resolution remote sensing images in the context of land cover mapping. As an advantage to traditional methods, the approach does not rely on thermal bands and it is applicable to images from most high resolution earth observation remote sensing sensors. The methodology couples pixel-based seed identification and object-based region growing. The seed identification stage relies on pixel value comparison between high resolution images and cloud free composites at lower spatial resolution from almost simultaneously acquired dates. The methodology was tested taking SPOT4-HRVIR, SPOT5-HRG and IRS-LISS III as high resolution images and cloud free MODIS composites as reference images. The selected scenes included a wide range of cloud types and surface features. The resulting cloud masks were evaluated through visual comparison. They were also compared with ad-hoc independently generated cloud masks and with the automatic cloud cover assessment algorithm (ACCA). In general the results showed an agreement in detected clouds higher than 95% for clouds larger than 50 ha. The approach produced consistent results identifying and mapping clouds of different type and size over various land surfaces including natural vegetation, agriculture land, built-up areas, water bodies and snow.

  15. High-resolution line-scan analysis of resin-embedded sediments using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS)

    NARCIS (Netherlands)

    Hennekam, R.; Jilbert, T.; de Lange, G.J.; Reichart, G.J.

    2015-01-01

    Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) line-scanning is a promising technique for producing high-resolution (µm-scale) geochemical records on resin-embedded sediments. However, this approach has not yet been thoroughly tested on sediment samples of known elemental

  16. High-resolution line-scan analysis of resin-embedded sediments using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS)

    NARCIS (Netherlands)

    Hennekam, Rick; Jilbert, Tom; Mason, Paul R D; de Lange, Gert J.; Reichart, Gert Jan

    2015-01-01

    Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) line-scanning is a promising technique for producing high-resolution (μm-scale) geochemical records on resin-embedded sediments. However, this approach has not yet been thoroughly tested on sediment samples of known elemental

  17. A multi-resolution approach for an automated fusion of different low-cost 3D sensors.

    Science.gov (United States)

    Dupuis, Jan; Paulus, Stefan; Behmann, Jan; Plümer, Lutz; Kuhlmann, Heiner

    2014-04-24

    The 3D acquisition of object structures has become a common technique in many fields of work, e.g., industrial quality management, cultural heritage or crime scene documentation. The requirements on the measuring devices are versatile, because spacious scenes have to be imaged with a high level of detail for selected objects. Thus, the used measuring systems are expensive and require an experienced operator. With the rise of low-cost 3D imaging systems, their integration into the digital documentation process is possible. However, common low-cost sensors have the limitation of a trade-off between range and accuracy, providing either a low resolution of single objects or a limited imaging field. Therefore, the use of multiple sensors is desirable. We show the combined use of two low-cost sensors, the Microsoft Kinect and the David laserscanning system, to achieve low-resolved scans of the whole scene and a high level of detail for selected objects, respectively. Afterwards, the high-resolved David objects are automatically assigned to their corresponding Kinect object by the use of surface feature histograms and SVM-classification. The corresponding objects are fitted using an ICP-implementation to produce a multi-resolution map. The applicability is shown for a fictional crime scene and the reconstruction of a ballistic trajectory.

  18. Optical fiber sensors-based temperature distribution measurement in ex vivo radiofrequency ablation with submillimeter resolution.

    Science.gov (United States)

    Macchi, Edoardo Gino; Tosi, Daniele; Braschi, Giovanni; Gallati, Mario; Cigada, Alfredo; Busca, Giorgio; Lewis, Elfed

    2014-01-01

    Radiofrequency thermal ablation (RFTA) induces a high-temperature field in a biological tissue having steep spatial (up to 6°C∕mm) and temporal (up to 1°C∕s) gradients. Applied in cancer care, RFTA produces a localized heating, cytotoxic for tumor cells, and is able to treat tumors with sizes up to 3 to 5 cm in diameter. The online measurement of temperature distribution at the RFTA point of care has been previously carried out with miniature thermocouples and optical fiber sensors, which exhibit problems of size, alteration of RFTA pattern, hysteresis, and sensor density worse than 1 sensor∕cm. In this work, we apply a distributed temperature sensor (DTS) with a submillimeter spatial resolution for the monitoring of RFTA in porcine liver tissue. The DTS demodulates the chaotic Rayleigh backscattering pattern with an interferometric setup to obtain the real-time temperature distribution. A measurement chamber has been set up with the fiber crossing the tissue along different diameters. Several experiments have been carried out measuring the space-time evolution of temperature during RFTA. The present work showcases the temperature monitoring in RFTA with an unprecedented spatial resolution and is exportable to in vivo measurement; the acquired data can be particularly useful for the validation of RFTA computational models.

  19. Single Photon Counting Large Format Imaging Sensors with High Spatial and Temporal Resolution

    Science.gov (United States)

    Siegmund, O. H. W.; Ertley, C.; Vallerga, J. V.; Cremer, T.; Craven, C. A.; Lyashenko, A.; Minot, M. J.

    High time resolution astronomical and remote sensing applications have been addressed with microchannel plate based imaging, photon time tagging detector sealed tube schemes. These are being realized with the advent of cross strip readout techniques with high performance encoding electronics and atomic layer deposited (ALD) microchannel plate technologies. Sealed tube devices up to 20 cm square have now been successfully implemented with sub nanosecond timing and imaging. The objective is to provide sensors with large areas (25 cm2 to 400 cm2) with spatial resolutions of 5 MHz and event timing accuracy of 100 ps. High-performance ASIC versions of these electronics are in development with better event rate, power and mass suitable for spaceflight instruments.

  20. New Design for the Inductive Position Sensor of the CAREM Reactor Control Bars

    International Nuclear Information System (INIS)

    Esparza, Daniel; D'Ovidio, Claudio; Taglialavore, Eduardo

    2000-01-01

    We describe the new design of the sensor used for determining the position of the control bars in the CAREM reactor.It presently operates under real 'cold' conditions, being under progress the final selection of materials for operation under the 'hot' condition of the reactor.The actual design is a modification of the previous one and is based on the same principle.A solenoid is placed on the outer side of the mechanism that moves the control bar, which has some part made of a magnetic material, and the variation of an electrical property of the bobbin with the movement of this magnetic piece is studied.This new design was proposed both to increase the output voltage and simplify the electronics and construction of the sensor.The output voltage is lineal with the bar position, with a correlation coefficient R = 0.9997, a sensibility of 43 % and a resolution better than 1 in 1000.The output sensibility was improved in almost three orders of magnitude, from 1.204 μV/mm to 0.924 mV/mm. Considering that the typical electric noise was ±1 mV RMS, we are able to measure the mm in the total bar excursion of 1400 mm. It is to be noticed that we obtained a resolution 10 times higher than the required: half step of the mechanism, that is ±10 mm. Both the employed electronics and the bobbin construction were markedly simplified

  1. Dynamic pressure sensor calibration techniques offering expanded bandwidth with increased resolution

    Science.gov (United States)

    Wisniewiski, David

    2015-03-01

    Advancements in the aerospace, defense and energy markets are being made possible by increasingly more sophisticated systems and sub-systems which rely upon critical information to be conveyed from the physical environment being monitored through ever more specialized, extreme environment sensing components. One sensing parameter of particular interest is dynamic pressure measurement. Crossing the boundary of all three markets (i.e. aerospace, defense and energy) is dynamic pressure sensing which is used in research and development of gas turbine technology, and subsequently embedded into a control loop used for long-term monitoring. Applications include quantifying the effects of aircraft boundary layer ingestion into the engine inlet to provide a reliable and robust design. Another application includes optimization of combustor dynamics by "listening" to the acoustic signature so that fuel-to-air mixture can be adjusted in real-time to provide cost operating efficiencies and reduced NOx emissions. With the vast majority of pressure sensors supplied today being calibrated either statically or "quasi" statically, the dynamic response characterization of the frequency dependent sensitivity (i.e. transfer function) of the pressure sensor is noticeably absent. The shock tube has been shown to be an efficient vehicle to provide frequency response of pressure sensors from extremely high frequencies down to 500 Hz. Recent development activity has lowered this starting frequency; thereby augmenting the calibration bandwidth with increased frequency resolution so that as the pressure sensor is used in an actual test application, more understanding of the physical measurement can be ascertained by the end-user.

  2. A Position Sensorless Control Method for SRM Based on Variation of Phase Inductance

    Science.gov (United States)

    Komatsuzaki, Akitomo; Miki, Ichiro

    Switched reluctance motor (SRM) drives are suitable for variable speed industrial applications because of the simple structure and high-speed capability. However, it is necessary to detect the rotor position with a position sensor attached to the motor shaft. The use of the sensor increases the cost of the drive system and machine size, and furthermore the reliability of the system is reduced. Therefore, several approaches to eliminate the position sensor have already been reported. In this paper, a position sensorless control method based on the variation of the phase inductance is described. The phase inductance regularly varies with the rotor position. The SRM is controlled without the position sensor using the de-fluxing period and the phase inductance. The turn-off timing is determined by computing the difference of angle between the sampling point and the aligned point and the variation of angle during the de-fluxing period. In the magnetic saturation region, the phase inductance at the current when the effect of the saturation starts is computed and the sensorless control can be carried out using this inductance. Experimental results show that the SRM is well controlled without the position sensor using the proposed method.

  3. A Three-Step Resolution-Reconfigurable Hazardous Multi-Gas Sensor Interface for Wireless Air-Quality Monitoring Applications.

    Science.gov (United States)

    Choi, Subin; Park, Kyeonghwan; Lee, Seungwook; Lim, Yeongjin; Oh, Byungjoo; Chae, Hee Young; Park, Chan Sam; Shin, Heugjoo; Kim, Jae Joon

    2018-03-02

    This paper presents a resolution-reconfigurable wide-range resistive sensor readout interface for wireless multi-gas monitoring applications that displays results on a smartphone. Three types of sensing resolutions were selected to minimize processing power consumption, and a dual-mode front-end structure was proposed to support the detection of a variety of hazardous gases with wide range of characteristic resistance. The readout integrated circuit (ROIC) was fabricated in a 0.18 μm CMOS process to provide three reconfigurable data conversions that correspond to a low-power resistance-to-digital converter (RDC), a 12-bit successive approximation register (SAR) analog-to-digital converter (ADC), and a 16-bit delta-sigma modulator. For functional feasibility, a wireless sensor system prototype that included in-house microelectromechanical (MEMS) sensing devices and commercial device products was manufactured and experimentally verified to detect a variety of hazardous gases.

  4. Curved sensors for compact high-resolution wide-field designs: prototype demonstration and optical characterization

    Science.gov (United States)

    Chambion, Bertrand; Gaschet, Christophe; Behaghel, Thibault; Vandeneynde, Aurélie; Caplet, Stéphane; Gétin, Stéphane; Henry, David; Hugot, Emmanuel; Jahn, Wilfried; Lombardo, Simona; Ferrari, Marc

    2018-02-01

    Over the recent years, a huge interest has grown for curved electronics, particularly for opto-electronics systems. Curved sensors help the correction of off-axis aberrations, such as Petzval Field Curvature, astigmatism, and bring significant optical and size benefits for imaging systems. In this paper, we first describe advantages of curved sensor and associated packaging process applied on a 1/1.8'' format 1.3Mpx global shutter CMOS sensor (Teledyne EV76C560) into its standard ceramic package with a spherical radius of curvature Rc=65mm and 55mm. The mechanical limits of the die are discussed (Finite Element Modelling and experimental), and electro-optical performances are investigated. Then, based on the monocentric optical architecture, we proposed a new design, compact and with a high resolution, developed specifically for a curved image sensor including optical optimization, tolerances, assembly and optical tests. Finally, a functional prototype is presented through a benchmark approach and compared to an existing standard optical system with same performances and a x2.5 reduction of length. The finality of this work was a functional prototype demonstration on the CEA-LETI during Photonics West 2018 conference. All these experiments and optical results demonstrate the feasibility and high performances of systems with curved sensors.

  5. High Resolution Robust GPS-free Localization for Wireless Sensor Networks and its Applications

    KAUST Repository

    Mirza, Mohammed

    2011-12-12

    In this thesis we investigate the problem of robustness and scalability w.r.t. estimating the position of randomly deployed motes/nodes of a Wireless Sensor Network (WSN) without the help of Global Positioning System (GPS) devices. We propose a few applications of range independent localization algorithms that allow the sensors to actively determine their location with high resolution without increasing the complexity of the hardware or any additional device setup. In our first application we try to present a localized and centralized cooperative spectrum sensing using RF sensor networks. This scheme collaboratively sense the spectrum and localize the whole network efficiently and with less difficulty. In second application we try to focus on how efficiently we can localize the nodes, to detect underwater threats, without the use of beacons. In third application we try to focus on 3-Dimensional localization for LTE systems. Our performance evaluation shows that these schemes lead to a significant improvement in localization accuracy compared to the state-of-art range independent localization schemes, without requiring GPS support.

  6. Ultra-high resolution coded wavefront sensor

    KAUST Repository

    Wang, Congli; Dun, Xiong; Fu, Qiang; Heidrich, Wolfgang

    2017-01-01

    Wavefront sensors and more general phase retrieval methods have recently attracted a lot of attention in a host of application domains, ranging from astronomy to scientific imaging and microscopy. In this paper, we introduce a new class of sensor

  7. New Magneto-Inductive DC Magnetometer for Space Missions

    Science.gov (United States)

    Moldwin, M.; Bronner, B.; Regoli, L.; Thoma, J.; Shen, A.; Jenkins, G.; Cutler, J.

    2017-12-01

    A new magneto-inductive DC magnetometer is being developed at the University of Michigan that provides fluxgate quality measurements in a low mass, volume, power and cost package. The magnetometer enables constellation-class missions not only due to its low-resource requirements, but also its potential for commercial integrated circuit fabrication. The magneto-inductive operating principle is based on a simple resistance-inductor (RL) circuit and involves measurement of the time it takes to charge and discharge the inductor between an upper and lower threshold by means of a Schmitt trigger oscillator. This time is proportional to the inductance that in turn is proportional to the field strength. We have modeled the operating principle in the circuit simulator SPICE and have built a proto-type using modified commercial sensors. The performance specifications include a dynamic range over the full-Earth's field, sampling rates up to 80 Hz, sensor and electronics mass of about 30 g, circuit board and sensor housing volume of magnetometer.

  8. Optimizing Transition Edge Sensors for High-Resolution X-ray Spectroscopy

    International Nuclear Information System (INIS)

    Saab, Tarek; Bandler, Simon R.; Boyce, Kevin; Chervenak, James A.; Figueroa-Feliciano, Enectali; Iyomoto, Naoko; Kelley, Richard L.; Kilbourne, Caroline A.; Porter, Frederick S.; Sadleir, John E.

    2006-01-01

    Transition Edge Sensors (TES) have found applications as astronomical detectors ranging from the microwave to the gamma ray energy bands. Each energy band, however, imposes a different set of requirements on the TES such as energy and timing resolution, focal plane coverage, and the mechanisms by which the signal is coupled to the detector. This paper focuses on the development of TESs optimized for the 0.1-10 keV energy range at the NASA Goddard Space Flight Center. Such detectors are suitable candidates for some of the upcoming X-ray observatories such as NeXT and Constellation-X. Ongoing efforts at producing, characterizing, and modeling such devices, as well as the latest results, are discussed

  9. High-Resolution Spin-on-Patterning of Perovskite Thin Films for a Multiplexed Image Sensor Array.

    Science.gov (United States)

    Lee, Woongchan; Lee, Jongha; Yun, Huiwon; Kim, Joonsoo; Park, Jinhong; Choi, Changsoon; Kim, Dong Chan; Seo, Hyunseon; Lee, Hakyong; Yu, Ji Woong; Lee, Won Bo; Kim, Dae-Hyeong

    2017-10-01

    Inorganic-organic hybrid perovskite thin films have attracted significant attention as an alternative to silicon in photon-absorbing devices mainly because of their superb optoelectronic properties. However, high-definition patterning of perovskite thin films, which is important for fabrication of the image sensor array, is hardly accomplished owing to their extreme instability in general photolithographic solvents. Here, a novel patterning process for perovskite thin films is described: the high-resolution spin-on-patterning (SoP) process. This fast and facile process is compatible with a variety of spin-coated perovskite materials and perovskite deposition techniques. The SoP process is successfully applied to develop a high-performance, ultrathin, and deformable perovskite-on-silicon multiplexed image sensor array, paving the road toward next-generation image sensor arrays. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Velocity measurement of conductor using electromagnetic induction

    International Nuclear Information System (INIS)

    Kim, Gu Hwa; Kim, Ho Young; Park, Joon Po; Jeong, Hee Tae; Lee, Eui Wan

    2002-01-01

    A basic technology was investigated to measure the speed of conductor by non-contact electromagnetic method. The principle of the velocity sensor was electromagnetic induction. To design electromagnet for velocity sensor, 2D electromagnetic analysis was performed using FEM software. The sensor output was analyzed according to the parameters of velocity sensor, such as the type of magnetizing currents and the lift-off. Output of magnetic sensor was linearly depended on the conductor speed and magnetizing current. To compensate the lift-off changes during measurement of velocity, the other magnetic sensor was put at the pole of electromagnet.

  11. Resolution improvement of low frequency AC magnetic field detection for modulated MR sensors.

    Science.gov (United States)

    Hu, Jinghua; Pan, Mengchun; Hu, Jiafei; Li, Sizhong; Chen, Dixiang; Tian, Wugang; Sun, Kun; Du, Qingfa; Wang, Yuan; Pan, Long; Zhou, Weihong; Zhang, Qi; Li, Peisen; Peng, Junping; Qiu, Weicheng; Zhou, Jikun

    2017-09-01

    Magnetic modulation methods especially Micro-Electro-Mechanical System (MEMS) modulation can improve the sensitivity of magnetoresistive (MR) sensors dramatically, and pT level detection of Direct Current (DC) magnetic field can be realized. While in a Low Frequency Alternate Current (LFAC) magnetic field measurement situation, frequency measurement is limited by a serious spectrum aliasing problem caused by the remanence in sensors and geomagnetic field, leading to target information loss because frequency indicates the magnetic target characteristics. In this paper, a compensation field produced with integrated coils is applied to the MR sensor to remove DC magnetic field distortion, and a LFAC magnetic field frequency estimation algorithm is proposed based on a search of the database, which is derived from the numerical model revealing the relationship of the LFAC frequency and determination factor [defined by the ratio of Discrete Fourier Transform (DFT) coefficients]. In this algorithm, an inverse modulation of sensor signals is performed to detect jumping-off point of LFAC in the time domain; this step is exploited to determine sampling points to be processed. A determination factor is calculated and taken into database to figure out frequency with a binary search algorithm. Experimental results demonstrate that the frequency measurement resolution of the LFAC magnetic field is improved from 12.2 Hz to 0.8 Hz by the presented method, which, within the signal band of a magnetic anomaly (0.04-2 Hz), indicates that the proposed method may expand the applications of magnetoresistive (MR) sensors to human healthcare and magnetic anomaly detection (MAD).

  12. Development of a pixel sensor with fine space-time resolution based on SOI technology for the ILC vertex detector

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Shun, E-mail: s-ono@champ.hep.sci.osaka-u.ac.jp [Osaka University, 1-1 Machikaneyama, Toyonaka (Japan); Togawa, Manabu; Tsuji, Ryoji; Mori, Teppei [Osaka University, 1-1 Machikaneyama, Toyonaka (Japan); Yamada, Miho; Arai, Yasuo; Tsuboyama, Toru; Hanagaki, Kazunori [Institute of Particle and Nuclear Studies, High Energy Accelerator Research Org. (KEK), 1-1 Oho, Tsukuba (Japan)

    2017-02-11

    We have been developing a new monolithic pixel sensor with silicon-on-insulator (SOI) technology for the International Linear Collider (ILC) vertex detector system. The SOI monolithic pixel detector is realized using standard CMOS circuits fabricated on a fully depleted sensor layer. The new SOI sensor SOFIST can store both the position and timing information of charged particles in each 20×20 μm{sup 2} pixel. The position resolution is further improved by the position weighted with the charges spread to multiple pixels. The pixel also records the hit timing with an embedded time-stamp circuit. The sensor chip has column-parallel analog-to-digital conversion (ADC) circuits and zero-suppression logic for high-speed data readout. We are designing and evaluating some prototype sensor chips for optimizing and minimizing the pixel circuit.

  13. Kinota: An Open-Source NoSQL implementation of OGC SensorThings for large-scale high-resolution real-time environmental monitoring

    Science.gov (United States)

    Miles, B.; Chepudira, K.; LaBar, W.

    2017-12-01

    The Open Geospatial Consortium (OGC) SensorThings API (STA) specification, ratified in 2016, is a next-generation open standard for enabling real-time communication of sensor data. Building on over a decade of OGC Sensor Web Enablement (SWE) Standards, STA offers a rich data model that can represent a range of sensor and phenomena types (e.g. fixed sensors sensing fixed phenomena, fixed sensors sensing moving phenomena, mobile sensors sensing fixed phenomena, and mobile sensors sensing moving phenomena) and is data agnostic. Additionally, and in contrast to previous SWE standards, STA is developer-friendly, as is evident from its convenient JSON serialization, and expressive OData-based query language (with support for geospatial queries); with its Message Queue Telemetry Transport (MQTT), STA is also well-suited to efficient real-time data publishing and discovery. All these attributes make STA potentially useful for use in environmental monitoring sensor networks. Here we present Kinota(TM), an Open-Source NoSQL implementation of OGC SensorThings for large-scale high-resolution real-time environmental monitoring. Kinota, which roughly stands for Knowledge from Internet of Things Analyses, relies on Cassandra its underlying data store, which is a horizontally scalable, fault-tolerant open-source database that is often used to store time-series data for Big Data applications (though integration with other NoSQL or rational databases is possible). With this foundation, Kinota can scale to store data from an arbitrary number of sensors collecting data every 500 milliseconds. Additionally, Kinota architecture is very modular allowing for customization by adopters who can choose to replace parts of the existing implementation when desirable. The architecture is also highly portable providing the flexibility to choose between cloud providers like azure, amazon, google etc. The scalable, flexible and cloud friendly architecture of Kinota makes it ideal for use in next

  14. Comparing bulk electrical conductivities spatial series obtained by Time Domain Reflectometry and Electromagnetic Induction sensors

    Science.gov (United States)

    Saeed, Ali; Ajeel, Ali; dragonetti, giovanna; Comegna, Alessandro; Lamaddalena, Nicola; Coppola, Antonio

    2016-04-01

    The ability to determine and monitor the effects of salts on soils and plants, are of great importance to agriculture. To control its harmful effects, soil salinity needs to be monitored in space and time. This requires knowledge of its magnitude, temporal dynamics, and spatial variability. Conventional ground survey procedures by direct soil sampling are time consuming, costly and destructive. Alternatively, soil salinity can be evaluated by measuring the bulk electrical conductivity (σb) directly in the field. Time domain reflectometry (TDR) sensors allow simultaneous measurements of water content, θ, and σb. They may be calibrated for estimating the electrical conductivity of the soil solution (σw). However, they have a relatively small observation window and thus they are thought to only provide local-scale measurements. The spatial range of the sensors is limited to tens of centimeters and extension of the information to a large area can be problematic. Also, information on the vertical distribution of the σb soil profile may only be obtained by installing sensors at different depths. In this sense, the TDR may be considered as an invasive technique. Compared to the TDR, other geophysical methods based for example on Electromagnetic Induction (EMI) techniques are non-invasive methods and represent a viable alternative to traditional techniques for soil characterization. The problem is that all these techniques give depth-weighted apparent electrical conductivity (σa) measurements, depending on the specific depth distribution of the σb, as well as on the depth response function of the sensor used. In order to deduce the actual distribution of the bulk electrical conductivity, σb, in the soil profile, one needs to invert the signal coming from EMI. Because of their relatively lower observation window, TDR sensors provide quasi-point values and do not adequately integrate the spatial variability of the chemical concentration distribution in the soil

  15. MULTICOMPONENT DETERMINATION OF CHLORINATED HYDROCARBONS USING A REACTION-BASED CHEMICAL SENSOR .2. CHEMICAL SPECIATION USING MULTIVARIATE CURVE RESOLUTION

    NARCIS (Netherlands)

    Tauler, R.; Smilde, A. K.; HENSHAW, J. M.; BURGESS, L. W.; KOWALSKI, B. R.

    1994-01-01

    A new multivariate curve resolution method that can extract analytical information from UV/visible spectroscopic data collected from a reaction-based chemical sensor is proposed. The method is demonstrated with the determination of mixtures of chlorinated hydrocarbons by estimating the kinetic and

  16. Detection of heavy metal ions in drinking water using a high-resolution differential surface plasmon resonance sensor.

    Science.gov (United States)

    Forzani, Erica S; Zhang, Haiqian; Chen, Wilfred; Tao, Nongjian

    2005-03-01

    We have built a high-resolution differential surface plasmon resonance (SPR) sensor for heavy metal ion detection. The sensor surface is divided into a reference and sensing areas, and the difference in the SPR angles from the two areas is detected with a quadrant cell photodetector as a differential signal. In the presence of metal ions, the differential signal changes due to specific binding of the metal ions onto the sensing area coated with properly selected peptides, which provides an accurate real-time measurement and quantification of the metal ions. Selective detection of Cu2+ and Ni2+ in the ppt-ppb range was achieved by coating the sensing surface with peptides NH2-Gly-Gly-His-COOH and NH2-(His)6-COOH. Cu2+ in drinking water was tested using this sensor.

  17. Cybernetic systems based on inductive logic

    International Nuclear Information System (INIS)

    Fry, Robert L.

    2001-01-01

    Recent work in the area of inductive logic suggests that cybernetics might be quantified and reduced to engineering practice. If so, then there are considerable implications for engineering, science, and other fields. This paper attempts to capture the essential ideas of cybernetics cast in the light of inductive logic. The described inductive logic extends conventional logic by adding a conjugate logical domain of questions to the logical domain of assertions intrinsic to Boolean Algebra with which most are familiar. This was first posited and developed by Richard Cox. Interestingly enough, these two logical domains, one of questions and the other of assertions, only exist relative to one another with each possessing natural measures of entropy and probability, respectively. Examples are given that highlight the utility of cybernetic approaches to neuroscience, algorithm design, system engineering, and the design and understanding of defensive and offensive systems. For example, the application of cybernetic approaches to defense systems suggests that these systems possess a wavefunction which like quantum mechanics, collapses when we 'look' through the eyes of the system sensors such as radars and optical sensors

  18. Long range inductive power transfer system

    International Nuclear Information System (INIS)

    Lawson, James; Pinuela, Manuel; Yates, David C; Lucyszyn, Stepan; Mitcheson, Paul D

    2013-01-01

    We report upon a recently developed long range inductive power transfer system (IPT) designed to power remote sensors with mW level power consumption at distances up to 7 m. In this paper an inductive link is established between a large planar (1 × 1 m) transmit coil (Tx) and a small planer (170 × 170 mm) receiver coil (Rx), demonstrating the viability of highly asymmetrical coil configurations that real-world applications such as sensor networks impose. High Q factor Tx and Rx coils required for viable power transfer efficiencies over such distances are measured using a resonant method. The applicability of the Class-E amplifier in very low magnetic coupling scenarios and at the high frequencies of operation required for high Q operation is demonstrated by its usage as the Tx coil driver

  19. Time-domain multiplexed high resolution fiber optics strain sensor system based on temporal response of fiber Fabry-Perot interferometers.

    Science.gov (United States)

    Chen, Jiageng; Liu, Qingwen; He, Zuyuan

    2017-09-04

    We developed a multiplexed strain sensor system with high resolution using fiber Fabry-Perot interferometers (FFPI) as sensing elements. The temporal responses of the FFPIs excited by rectangular laser pulses are used to obtain the strain applied on each FFPI. The FFPIs are connected by cascaded couplers and delay fiber rolls for the time-domain multiplexing. A compact optoelectronic system performing closed-loop cyclic interrogation is employed to improve the sensing resolution and the frequency response. In the demonstration experiment, 3-channel strain sensing with resolutions better than 0.1 nε and frequency response higher than 100 Hz is realized.

  20. Modified Euler integration based control of a five-phase induction ...

    African Journals Online (AJOL)

    phase machines. Variable speed induction motor drives without mechanical speed sensors at the motor shaft have the attractions of low cost and high reliability. To replace the speed sensor, information of the rotor speed is extracted from ...

  1. An Inductive Link-Based Wireless Power Transfer System for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    M. A. Adeeb

    2012-01-01

    Full Text Available A wireless power transfer system using an inductive link has been demonstrated for implantable sensor applications. The system is composed of two primary blocks: an inductive power transfer unit and a backward data communication unit. The inductive link performs two functions: coupling the required power from a wireless power supply system enabling battery-less, long-term implant operation and providing a backward data transmission path. The backward data communication unit transmits the data to an outside reader using FSK modulation scheme via the inductive link. To demonstrate the operation of the inductive link, a board-level design has been implemented with high link efficiency. Test results from a fabricated sensor system, composed of a hybrid implementation of custom-integrated circuits and board-level discrete components, are presented demonstrating power transmission of 125 mW with a 12.5% power link transmission efficiency. Simultaneous backward data communication involving a digital pulse rate of up to 10 kbps was also observed.

  2. Crossed Optical Fiber Sensor Arrays for High-Spatial-Resolution Sensing: Application to Dissolved Oxygen Concentration Measurements

    Directory of Open Access Journals (Sweden)

    M. Veronica Rigo

    2012-01-01

    Full Text Available Optical fiber sensors using luminescent probes located along an optical fiber in the cladding of this fiber are of great interest for monitoring physical and chemical properties in their environment. The interrogation of a luminophore with a short laser pulse propagating through the fiber core allows for the measurement of the location of these luminophores. To increase the spatial resolution of such a measurements and to measure multiple analytes and properties in a confined space, a crossed optical fiber sensing platform can be employed. Here we describe the application of this platform to measuring the concentration of dissolved oxygen. The sensor is based on luminescence quenching of a ruthenium complex immobilized in a highly crosslinked film and covalently attached to the optical fibers. Both luminescence-intensity and luminescence-lifetime changes of the sensor molecules in response to changes in the concentration of oxygen dissolved in water are reported. For luminescence-intensity measurements, a second adjacent sensor region is employed as reference to account for laser pulse energy fluctuations. Enhanced quenching response in water is demonstrated by the use of organically modified poly(ethylene glycol precursors, which increase the hydrophobicity of the film surface.

  3. Sensorless displacement estimation of a shape memory alloy coil spring actuator using inductance

    International Nuclear Information System (INIS)

    Kim, Hongjip; Lee, Dae-young; Cho, Kyu-Jin; Han, Yongsu; Ha, Jung-Ik

    2013-01-01

    To measure the displacement of a shape memory alloy (SMA) coil spring actuator for feedback control, displacement sensors larger than the actuator are normally required. In this study, a novel method for estimating the displacement of an SMA coil spring actuator without a sensor is proposed. Instead of a sensor, coil inductance is used for estimating the displacement. Coil inductance is estimated by measuring the voltage and the transient response of the current. It has a one-to-one relationship with the displacement of the coil and is not affected by load. Previous methods for estimating displacement using resistance measurements are heavily affected by load variations. The experimental results herein show that displacement is estimated with reasonable accuracy under varying loads using coil inductance. This sensorless method of estimating the displacement of an SMA coil spring actuator can be used to build a compact feedback controller because there is no need for a bulky displacement sensor. (paper)

  4. Evaluation of High-Temporal-Resolution Bedload Sensors for Tracking Channel Bed Movement and Transport Thresholds in Forested Mountain Headwater Catchments.

    Science.gov (United States)

    Martin, S.; Conklin, M. H.; Bales, R. C.

    2014-12-01

    High temporal resolution data is required to take channel bed movement data beyond time integrated changes between measurements where many of the subtleties of bedload movement patterns are often missed. This study used continuous bedload scour sensors (flexible, fluid-filled pans connected to a pressure transducer) to collect high temporal resolution, long term bedload movement data for 4 high elevation (1500-1800 m) Sierra Nevada headwater streams draining 1 km2 catchments and to investigate the physical channel characteristics under which they perform best. Data collected by the scour sensors were used to investigate the disturbance and recovery patterns of these streams, to relate the observed patterns to channel bed stability, and to evaluate whether the channel bed is acting as a sediment source, sink, or storage across various temporal scales. Finally, attempts are made to identify discharge thresholds for bed movement from scour sensor and discharge data and to compare these threshold values to observed changes in the channel bed. Bedload scour data, turbidity data, and stream discharge data were collected at 15 minute intervals for (WY 2011 to WY 2014), including both above average (2011) and below average (2012, 2013, 2014) water years. Bedload scour sensors were found to have a relatively high (60%) failure rate in these systems. In addition, they required in situ calibrations as the factory and laboratory calibrations did not translate well to the field deployments. Data from the working sensors, showed patterns of abrupt channel bed disturbance (scour and/or fill) on an hour to day temporal scale followed by gradual recovery on a day to month scale back to a stable equilibrium bed surface elevation. These observed patterns suggest the bed acts as a short term source or sink for sediment, but is roughly sediment neutral over longer time periods implying the changes in bed elevation are reflective of fluctuations in storage rather than a true source or

  5. A sun-crown-sensor model and adapted C-correction logic for topographic correction of high resolution forest imagery

    Science.gov (United States)

    Fan, Yuanchao; Koukal, Tatjana; Weisberg, Peter J.

    2014-10-01

    Canopy shadowing mediated by topography is an important source of radiometric distortion on remote sensing images of rugged terrain. Topographic correction based on the sun-canopy-sensor (SCS) model significantly improved over those based on the sun-terrain-sensor (STS) model for surfaces with high forest canopy cover, because the SCS model considers and preserves the geotropic nature of trees. The SCS model accounts for sub-pixel canopy shadowing effects and normalizes the sunlit canopy area within a pixel. However, it does not account for mutual shadowing between neighboring pixels. Pixel-to-pixel shadowing is especially apparent for fine resolution satellite images in which individual tree crowns are resolved. This paper proposes a new topographic correction model: the sun-crown-sensor (SCnS) model based on high-resolution satellite imagery (IKONOS) and high-precision LiDAR digital elevation model. An improvement on the C-correction logic with a radiance partitioning method to address the effects of diffuse irradiance is also introduced (SCnS + C). In addition, we incorporate a weighting variable, based on pixel shadow fraction, on the direct and diffuse radiance portions to enhance the retrieval of at-sensor radiance and reflectance of highly shadowed tree pixels and form another variety of SCnS model (SCnS + W). Model evaluation with IKONOS test data showed that the new SCnS model outperformed the STS and SCS models in quantifying the correlation between terrain-regulated illumination factor and at-sensor radiance. Our adapted C-correction logic based on the sun-crown-sensor geometry and radiance partitioning better represented the general additive effects of diffuse radiation than C parameters derived from the STS or SCS models. The weighting factor Wt also significantly enhanced correction results by reducing within-class standard deviation and balancing the mean pixel radiance between sunlit and shaded slopes. We analyzed these improvements with model

  6. CMOS-sensors for energy-resolved X-ray imaging

    International Nuclear Information System (INIS)

    Doering, D.; Amar-Youcef, S.; Deveaux, M.; Linnik, B.; Müntz, C.; Stroth, Joachim; Baudot, J.; Dulinski, W.; Kachel, M.

    2016-01-01

    Due to their low noise, CMOS Monolithic Active Pixel Sensors are suited to sense X-rays with a few keV quantum energy, which is of interest for high resolution X-ray imaging. Moreover, the good energy resolution of the silicon sensors might be used to measure this quantum energy. Combining both features with the good spatial resolution of CMOS sensors opens the potential to build ''color sensitive' X-ray cameras. Taking such colored images is hampered by the need to operate the CMOS sensors in a single photon counting mode, which restricts the photon flux capability of the sensors. More importantly, the charge sharing between the pixels smears the potentially good energy resolution of the sensors. Based on our experience with CMOS sensors for charged particle tracking, we studied techniques to overcome the latter by means of an offline processing of the data obtained from a CMOS sensor prototype. We found that the energy resolution of the pixels can be recovered at the expense of reduced quantum efficiency. We will introduce the results of our study and discuss the feasibility of taking colored X-ray pictures with CMOS sensors

  7. Generating three-parameter sensor

    Directory of Open Access Journals (Sweden)

    Filinyuk M. A.

    2014-08-01

    Full Text Available Generating sensors provide the possibility of getting remote information and its easy conversion into digital form. Typically, these are one-parameter sensors formed by combination of a primary transmitter (PT and a sine wave generator. Two-parameter sensors are not widely used as their implementation causes a problem with ambiguity output when measuring the PT. Nevertheless, the problem of creating miniature, thrifty multi-parameter RF sensors for different branches of science and industry remains relevant. Considering ways of designing RF sensors, we study the possibility of constructing a three-parameter microwave radio frequency range sensor, which is based on a two-stage three-parameter generalized immitance convertor (GIC. Resistive, inductive and capacitive PT are used as sensing elements. A mathematical model of the sensor, which describes the relation of the sensor parameters to the parameters of GIC and PT was developed. The basic parameters of the sensor, its transfer function and sensitivity were studied. It is shown that the maximum value of the power generated signal will be observed at a frequency of 175 MHz, and the frequency ranges depending on the parameters of the PT will be different. Research results and adequacy of the mathematical model were verified by the experiment. Error of the calculated dependences of the lasing frequency on PT parameters change, compared with the experimental data does not exceed 2 %. The relative sensitivity of the sensor based on two-stage GIC showed that for the resistive channel it is about 1.88, for the capacitive channel –1,54 and for the inductive channel –11,5. Thus, it becomes possible to increase the sensor sensitivity compared with the sensitivity of the PT almost 1,2—2 times, and by using the two stage GIC a multifunctional sensor is provided.

  8. Backthinned TDI CCD image sensor design and performance for the Pleiades high resolution Earth observation satellites

    Science.gov (United States)

    Materne, A.; Bardoux, A.; Geoffray, H.; Tournier, T.; Kubik, P.; Morris, D.; Wallace, I.; Renard, C.

    2017-11-01

    The PLEIADES-HR Earth observing satellites, under CNES development, combine a 0.7m resolution panchromatic channel, and a multispectral channel allowing a 2.8 m resolution, in 4 spectral bands. The 2 satellites will be placed on a sun-synchronous orbit at an altitude of 695 km. The camera operates in push broom mode, providing images across a 20 km swath. This paper focuses on the specifications, design and performance of the TDI detectors developed by e2v technologies under CNES contract for the panchromatic channel. Design drivers, derived from the mission and satellite requirements, architecture of the sensor and measurement results for key performances of the first prototypes are presented.

  9. Estimation of Mechanical Signals in Induction Motors using the Recursive Prediction Error Method

    DEFF Research Database (Denmark)

    Børsting, H.; Knudsen, Morten; Rasmussen, Henrik

    1993-01-01

    Sensor feedback of mechanical quantities for control applications in induction motors is troublesome and relative expensive. In this paper a recursive prediction error (RPE) method has successfully been used to estimate the angular rotor speed ........Sensor feedback of mechanical quantities for control applications in induction motors is troublesome and relative expensive. In this paper a recursive prediction error (RPE) method has successfully been used to estimate the angular rotor speed .....

  10. A Cost-effective Method for Resolution Increase of the Twostage Piecewise Linear ADC Used for Sensor Linearization

    Directory of Open Access Journals (Sweden)

    Jovanović Jelena

    2016-02-01

    Full Text Available A cost-effective method for resolution increase of a two-stage piecewise linear analog-to-digital converter used for sensor linearization is proposed in this paper. In both conversion stages flash analog-to-digital converters are employed. Resolution increase by one bit per conversion stage is performed by introducing one additional comparator in front of each of two flash analog-to-digital converters, while the converters’ resolutions remain the same. As a result, the number of employed comparators, as well as the circuit complexity and the power consumption originating from employed comparators are for almost 50 % lower in comparison to the same parameters referring to the linearization circuit of the conventional design and of the same resolution. Since the number of employed comparators is significantly reduced according to the proposed method, special modifications of the linearization circuit are needed in order to properly adjust reference voltages of employed comparators.

  11. Enhanced UXO Discrimination Using Frequency-Domain Electromagnetic Induction

    National Research Council Canada - National Science Library

    Nelson, H. H; Steinhurst, D. A; Barrow, B; Bell, T; Khadar, N; SanFilipo, B; Won, I. J

    2007-01-01

    .... With support from the Environmental Security Technology Certification Program, we have developed a frequency-domain electromagnetic induction sensor array to extend the discrimination capabilities of the MTADS...

  12. Empirical electro-optical and x-ray performance evaluation of CMOS active pixels sensor for low dose, high resolution x-ray medical imaging

    International Nuclear Information System (INIS)

    Arvanitis, C. D.; Bohndiek, S. E.; Royle, G.; Blue, A.; Liang, H. X.; Clark, A.; Prydderch, M.; Turchetta, R.; Speller, R.

    2007-01-01

    Monolithic complementary metal oxide semiconductor (CMOS) active pixel sensors with high performance have gained attention in the last few years in many scientific and space applications. In order to evaluate the increasing capabilities of this technology, in particular where low dose high resolution x-ray medical imaging is required, critical electro-optical and physical x-ray performance evaluation was determined. The electro-optical performance includes read noise, full well capacity, interacting quantum efficiency, and pixels cross talk. The x-ray performance, including x-ray sensitivity, modulation transfer function, noise power spectrum, and detection quantum efficiency, has been evaluated in the mammographic energy range. The sensor is a 525x525 standard three transistor CMOS active pixel sensor array with more than 75% fill factor and 25x25 μm pixel pitch. Reading at 10 f/s, it is found that the sensor has 114 electrons total additive noise, 10 5 electrons full well capacity with shot noise limited operation, and 34% interacting quantum efficiency at 530 nm. Two different structured CsI:Tl phosphors with thickness 95 and 115 μm, respectively, have been optically coupled via a fiber optic plate to the array resulting in two different system configurations. The sensitivity of the two different system configurations was 43 and 47 electrons per x-ray incident on the sensor. The MTF at 10% of the two different system configurations was 9.5 and 9 cycles/mm with detective quantum efficiency of 0.45 and 0.48, respectively, close to zero frequency at ∼0.44 μC/kg (1.72 mR) detector entrance exposure. The detector was quantum limited at low spatial frequencies and its performance was comparable with high resolution a:Si and charge coupled device based x-ray imagers. The detector also demonstrates almost an order of magnitude lower noise than active matrix flat panel imagers. The results suggest that CMOS active pixel sensors when coupled to structured CsI:Tl can

  13. Unified MTF for scintillator-coupled CMOS sensor

    International Nuclear Information System (INIS)

    Kim, Kwang Hyun; Kang, Dong-Wan; Kim, Dong Ki; Kim, Yong-Kyun

    2007-01-01

    The spatial resolution of scintillator-coupled CMOS sensor has been investigated from intrinsic sensor Modulation Transfer Function (MTF) to system MTF for the conditions of the digital radiography. For the intrinsic sensor MTF, the geometric MTF (gMTF) and the unified MTF (uMTF) were compared by analytic calculations for various pixel sizes. The effects of the initial dark signal of the sensor were considered in the calculation of the uMTF and reflected in a newly developed semi-empirical model. The measured system MTF and the calculated system MTF including semi-empirical model were compared under radiography conditions of 28 and 80 kVp. From the results, the calculated system MTF reflecting the dark-signal contribution on the sensor resolution did fit for the measured system resolution, and the higher the fraction of an initial dark signal to an output signal in response to X-ray exposure showed more degradation of the system resolution even with same scintillator and sensor

  14. Resolution Enhancement Method Used for Force Sensing Resistor Array

    Directory of Open Access Journals (Sweden)

    Karen Flores De Jesus

    2015-01-01

    Full Text Available Tactile sensors are one of the major devices that enable robotic systems to interact with the surrounding environment. This research aims to propose a mathematical model to describe the behavior of a tactile sensor based on experimental and statistical analyses and moreover to develop a versatile algorithm that can be applied to different tactile sensor arrays to enhance the limited resolution. With the proposed algorithm, the resolution can be increased up to twenty times if multiple measurements are available. To verify if the proposed algorithm can be used for tactile sensor arrays that are used in robotic system, a 16×10 force sensing array (FSR is adopted. The acquired two-dimensional measurements were processed by a resolution enhancement method (REM to enhance the resolution, which can be used to improve the resolution for single image or multiple measurements. As a result, the resolution of the sensor is increased and it can be used as synthetic skin to identify accurate shapes of objects and applied forces.

  15. A new rechargeable intelligent vehicle detection sensor

    International Nuclear Information System (INIS)

    Lin, L; Han, X B; Ding, R; Li, G; Lu, Steven C-Y; Hong, Q

    2005-01-01

    Intelligent Transportation System (ITS) is a valid approach to solve the increasing transportation issue in cities. Vehicle detection is one of the key technologies in ITS. The ITS collects and processes traffic data (vehicle flow, vehicular speed, vehicle density and occupancy ratios) from vehicle detection sensors buried under the road or installed along the road. Inductive loop detector as one type of the vehicle detector is applied extensively, with the characters of stability, high value to cost ratio and feasibility. On the other hand, most of the existing inductive loop vehicle detection sensors have some weak points such as friability of detective loop, huge engineering for setting and traffic interruption during installing the sensor. The design and reality of a new rechargeable intelligent vehicle detection sensor is presented in this paper against these weak points existing now. The sensor consists of the inductive loop detector, the rechargeable batteries, the MCU (microcontroller) and the transmitter. In order to reduce the installing project amount, make the loop durable and easily maintained, the volume of the detective loop is reduced as much as we can. Communication in RF (radio frequency) brings on the advantages of getting rid of the feeder cable completely and reducing the installing project amount enormously. For saving the cable installation, the sensor is supplied by the rechargeable batteries. The purpose of the intelligent management of the energy and transmitter by means of MCU is to minimize the power consumption and prolong the working period of the sensor. In a word, the new sensor is more feasible with smaller volume, wireless communication, rechargeable batteries, low power consumption, low cost, high detector precision and easy maintenance and installation

  16. A new rechargeable intelligent vehicle detection sensor

    Energy Technology Data Exchange (ETDEWEB)

    Lin, L [Inspiring Technology Research Laboratory, Tianjin University, Tianjin 300072 (China); Han, X B [Inspiring Technology Research Laboratory, Tianjin University, Tianjin 300072 (China); Ding, R [Tianjin University of Technology and Education, Tianjin 300222 (China); Li, G [Inspiring Technology Research Laboratory, Tianjin University, Tianjin 300072 (China); Lu, Steven C-Y [Inspiring Technology Research Laboratory, Tianjin University, Tianjin 300072 (China); Hong, Q [Inspiring Technology Research Laboratory, Tianjin University, Tianjin 300072 (China)

    2005-01-01

    Intelligent Transportation System (ITS) is a valid approach to solve the increasing transportation issue in cities. Vehicle detection is one of the key technologies in ITS. The ITS collects and processes traffic data (vehicle flow, vehicular speed, vehicle density and occupancy ratios) from vehicle detection sensors buried under the road or installed along the road. Inductive loop detector as one type of the vehicle detector is applied extensively, with the characters of stability, high value to cost ratio and feasibility. On the other hand, most of the existing inductive loop vehicle detection sensors have some weak points such as friability of detective loop, huge engineering for setting and traffic interruption during installing the sensor. The design and reality of a new rechargeable intelligent vehicle detection sensor is presented in this paper against these weak points existing now. The sensor consists of the inductive loop detector, the rechargeable batteries, the MCU (microcontroller) and the transmitter. In order to reduce the installing project amount, make the loop durable and easily maintained, the volume of the detective loop is reduced as much as we can. Communication in RF (radio frequency) brings on the advantages of getting rid of the feeder cable completely and reducing the installing project amount enormously. For saving the cable installation, the sensor is supplied by the rechargeable batteries. The purpose of the intelligent management of the energy and transmitter by means of MCU is to minimize the power consumption and prolong the working period of the sensor. In a word, the new sensor is more feasible with smaller volume, wireless communication, rechargeable batteries, low power consumption, low cost, high detector precision and easy maintenance and installation.

  17. USING A MICRO-UAV FOR ULTRA-HIGH RESOLUTION MULTI-SENSOR OBSERVATIONS OF ANTARCTIC MOSS BEDS

    Directory of Open Access Journals (Sweden)

    A. Lucieer

    2012-07-01

    Full Text Available This study is the first to use an Unmanned Aerial Vehicle (UAV for mapping moss beds in Antarctica. Mosses can be used as indicators for the regional effects of climate change. Mapping and monitoring their extent and health is therefore important. UAV aerial photography provides ultra-high resolution spatial data for this purpose. We developed a technique to extract an extremely dense 3D point cloud from overlapping UAV aerial photography based on structure from motion (SfM algorithms. The combination of SfM and patch-based multi-view stereo image vision algorithms resulted in a 2 cm resolution digital terrain model (DTM. This detailed topographic information combined with vegetation indices derived from a 6-band multispectral sensor enabled the assessment of moss bed health. This novel UAV system has allowed us to map different environmental characteristics of the moss beds at ultra-high resolution providing us with a better understanding of these fragile Antarctic ecosystems. The paper provides details on the different UAV instruments and the image processing framework resulting in DEMs, vegetation indices, and terrain derivatives.

  18. Enhancement of Spatial Resolution Using a Metamaterial Sensor in Nondestructive Evaluation

    Directory of Open Access Journals (Sweden)

    Adriana Savin

    2015-11-01

    Full Text Available The current stage of non-destructive evaluation techniques imposes the development of new electromagnetic methods that are based on high spatial resolution and increased sensitivity. Printed circuit boards, integrated circuit boards, composite materials with polymeric matrix containing conductive fibers, as well as some types of biosensors are devices of interest in using such evaluation methods. In order to achieve high performance, the work frequencies must be either radiofrequencies or microwaves. At these frequencies, at the dielectric/conductor interface, plasmon polaritons can appear, propagating between conductive regions as evanescent waves. Detection of these waves, containing required information, can be done using sensors with metamaterial lenses. We propose in this paper the enhancement of the spatial resolution using electromagnetic methods, which can be accomplished in this case using evanescent waves that appear in the current study in slits of materials such as the spaces between carbon fibers in Carbon Fibers Reinforced Plastics or in materials of interest in the nondestructive evaluation field with industrial applications, where microscopic cracks are present. We propose herein a unique design of the metamaterials for use in nondestructive evaluation based on Conical Swiss Rolls configurations, which assure the robust concentration/focusing of the incident electromagnetic waves (practically impossible to be focused using classical materials, as well as the robust manipulation of evanescent waves. Applying this testing method, spatial resolution of approximately λ/2000 can be achieved. This testing method can be successfully applied in a variety of applications of paramount importance such as defect/damage detection in materials used in a variety of industrial applications, such as automotive and aviation technologies.

  19. Determination of 241Am in sediments by isotope dilution high resolution inductively coupled plasma mass spectrometry (ID HR ICP-MS).

    Science.gov (United States)

    Agarande, M; Benzoubir, S; Bouisset, P; Calmet, D

    2001-08-01

    Trace levels (pg kg(-1)) of 241Am in sediments were determined by isotope dilution high resolution inductively coupled plasma mass spectrometry (ID HR ICP-MS) using a microconcentric nebulizer. 241Am was isolated from major elements like Ca and Fe by different selective precipitations. In further steps. Am was first separated from other transuranic elements and purified by anion exchange and extraction chromatography prior to the mass spectrometric measurements. The ID HR ICP-MS results are compared with isotope dilution alpha spectrometry.

  20. Relation of NDVI obtained from different remote sensing at different space and resolutions sensors in Spanish Dehesas

    Science.gov (United States)

    Escribano Rodríguez, Juan; Tarquis, Ana M.; Saa-Requejo, Antonio; Díaz-Ambrona, Carlos G. H.

    2015-04-01

    Satellite data are an important source of information and serve as monitoring crops on large scales. There are several indexes, but the most used for monitoring vegetation is NDVI (Normalized Difference Vegetation Index), calculated from the spectral bands of red (RED) and near infrared (NIR), obtaining the value according to relationship: [(NIR - RED) / (NIR + RED)]. During the years 2010-2013 monthly monitoring was conducted in three areas of Spain (Salamanca, Caceres and Cordoba). Pasture plots were selected and satellite images of two different sensors, DEIMOS-1 and MODIS were obtained. DEIMOS-1 is based on the concept Microsat-100 from Surrey. It is designed for imaging the Earth with a resolution good enough to study terrestrial vegetation cover (20x20 m), although with a wide range of visual field (600 km) to get those images with high temporal resolution. By contrast, MODIS images present a much lower spatial resolution (500x500 m). Indices obtained from both sensors to the same area and date are compared and the results show r2 = 0.56; r2 = 0.65 and r2 = 0.90 for the areas of Salamanca, Cáceres and Cordoba respectively. According to the results obtained show that the NDVI obtained by MODIS is slightly larger than that obtained by the sensor for DEIMOS for same time and area. References J.A. Escribano, C.G.H. Diaz-Ambrona, L. Recuero, M. Huesca, V. Cicuendez, A. Palacios-Orueta y A.M. Tarquis. Aplicacion de Indices de Vegetacion para evaluar la falta de produccion de pastos y montaneras en dehesas. I Congreso Iberico de la Dehesa y el Montado. 6-7 Noviembre, 2013, Badajoz. J.A. Escribano Rodriguez, A.M. Tarquis, C.G. Hernandez Diaz-Ambrona. Pasture Drought Insurance Based on NDVI and SAVI. Geophysical Research Abstracts, 14, EGU2012-13945, 2012. EGU General Assembly 2012. Juan Escribano Rodriguez, Carmelo Alonso, Ana Maria Tarquis, Rosa Maria Benito, Carlos Hernandez Diaz-Ambrona. Comparison of NDVI fields obtained from different remote sensors

  1. Study of the Sensor for On-line Lubricating Oil Debris Monitoring

    Directory of Open Access Journals (Sweden)

    Huiqin Zhan

    2014-07-01

    Full Text Available Mechanical parts such as gears and bearings used in mechanical equipment have a finite lifetime because of corrosion and wear. If the parts are in abnormal operation and is not detected, it may cause catastrophic component failure during operation. One effective approach to detect signs of potential failure of the mechanical equipment is to examine the debris particles in its lubricating oil. This article presented an inductive debris sensor which is designed on the basis of the principle of inductance balance. The structure design and the principle of it are studied. The intensity distribution of its magnetic induction is simulated by the use of simulation software Ansoft Maxwell. The mathematical model when there is a debris particle passing through the sensor is analyzed and the characteristics of the sensor’s induction signal is gotten. Experiments have shown that debris particles can be detected by this sensor.

  2. Working Group Report: Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Artuso, M.; et al.,

    2013-10-18

    Sensors play a key role in detecting both charged particles and photons for all three frontiers in Particle Physics. The signals from an individual sensor that can be used include ionization deposited, phonons created, or light emitted from excitations of the material. The individual sensors are then typically arrayed for detection of individual particles or groups of particles. Mounting of new, ever higher performance experiments, often depend on advances in sensors in a range of performance characteristics. These performance metrics can include position resolution for passing particles, time resolution on particles impacting the sensor, and overall rate capabilities. In addition the feasible detector area and cost frequently provides a limit to what can be built and therefore is often another area where improvements are important. Finally, radiation tolerance is becoming a requirement in a broad array of devices. We present a status report on a broad category of sensors, including challenges for the future and work in progress to solve those challenges.

  3. High-Resolution Sonars: What Resolution Do We Need for Target Recognition?

    Directory of Open Access Journals (Sweden)

    Pailhas Yan

    2010-01-01

    Full Text Available Target recognition in sonar imagery has long been an active research area in the maritime domain, especially in the mine-counter measure context. Recently it has received even more attention as new sensors with increased resolution have been developed; new threats to critical maritime assets and a new paradigm for target recognition based on autonomous platforms have emerged. With the recent introduction of Synthetic Aperture Sonar systems and high-frequency sonars, sonar resolution has dramatically increased and noise levels decreased. Sonar images are distance images but at high resolution they tend to appear visually as optical images. Traditionally algorithms have been developed specifically for imaging sonars because of their limited resolution and high noise levels. With high-resolution sonars, algorithms developed in the image processing field for natural images become applicable. However, the lack of large datasets has hampered the development of such algorithms. Here we present a fast and realistic sonar simulator enabling development and evaluation of such algorithms.We develop a classifier and then analyse its performances using our simulated synthetic sonar images. Finally, we discuss sensor resolution requirements to achieve effective classification of various targets and demonstrate that with high resolution sonars target highlight analysis is the key for target recognition.

  4. On-line methanol sensor system development for recombinant ...

    African Journals Online (AJOL)

    On-line methanol sensor system development for recombinant human serum ... of the methanol sensor system was done in a medium environment with yeast cells ... induction at a low temperature and a pH where protease does not function.

  5. Identification and observability problems of the induction motor for sensor-less industrial speed variation; Problemes d'identification et d'observabilite du moteur a induction pour la variation de vitesse industrielle sans capteur

    Energy Technology Data Exchange (ETDEWEB)

    Malrait, F.

    2001-02-15

    In order to improve the efficiency of a speed variator or to make autonomous the control of induction motors without mechanical sensor, the speed variator must integrate with a good precision the parameters of the motor to which it is connected. In this work, an identification phase when the motor is off is proposed. This raises the problem of the modeling of the induction motor and of the power stage (saturation model, voltage drop in the power stage components) in an unusual operation zone for a speed variator. The knowledge of the off-line electrical parameters is thus not sufficient. During normal operation, the thermal drift of resistors leads to a parametric error which can create blocking problems in the low sped domain or which can significantly lower the efficiency. The low-speed zone has been analyzed. This zone contains some intrinsic properties of the induction motor: instability, non-observability (first order). The synthesis of an observer of the induction motor is proposed which is based on the linearization of the system around a trajectory. A construction method has been developed to generate a non-singular observer for a system changing with time and having observability singularities. This result comes from this study on systems having controllability singularities for linear systems with time-variable coefficients. An exogenous loop is explicitly proposed which allows to transform the original system into integrator chains without singularities. (J.S.)

  6. Focus on image sensors

    NARCIS (Netherlands)

    Jos Gunsing; Daniël Telgen; Johan van Althuis; Jaap van de Loosdrecht; Mark Stappers; Peter Klijn

    2013-01-01

    Robots need sensors to operate properly. Using a single image sensor, various aspects of a robot operating in its environment can be measured or monitored. Over the past few years, image sensors have improved a lot: frame rate and resolution have increased, while prices have fallen. As a result,

  7. Multi-Channel Capacitive Sensor Arrays

    Directory of Open Access Journals (Sweden)

    Bingnan Wang

    2016-01-01

    Full Text Available In this paper, multi-channel capacitive sensor arrays based on microstrip band-stop filters are studied. The sensor arrays can be used to detect the proximity of objects at different positions and directions. Each capacitive sensing structure in the array is connected to an inductive element to form resonance at different frequencies. The resonances are designed to be isolated in the frequency spectrum, such that the change in one channel does not affect resonances at other channels. The inductive element associated with each capacitive sensor can be surface-mounted inductors, integrated microstrip inductors or metamaterial-inspired structures. We show that by using metamaterial split-ring structures coupled to a microstrip line, the quality factor of each resonance can be greatly improved compared to conventional surface-mounted or microstrip meander inductors. With such a microstrip-coupled split-ring design, more sensing elements can be integrated in the same frequency spectrum, and the sensitivity can be greatly improved.

  8. Use of Hi-resolution data for evaluating accuracy of traffic volume counts collected by microwave sensors

    Directory of Open Access Journals (Sweden)

    David K. Chang

    2017-10-01

    Full Text Available Over the past few years, the Utah Department of Transportation has developed the signal performance metrics (SPMs system to evaluate the performance of signalized intersections dynamically. This system currently provides data summaries for several performance measures, one of them being turning movement counts collected by microwave sensors. As this system became public, there was a need to evaluate the accuracy of the data placed on the SPMs. A large-scale data collection was carried out to meet this need. Vehicles in the Hi-resolution data from microwave sensors were matched with the vehicles by ground-truth volume count data. Matching vehicles from the microwave sensor data and the ground-truth data manually collected required significant effort. A spreadsheet-based data analysis procedure was developed to carry out the task. A mixed model analysis of variance was used to analyze the effects of the factors considered on turning volume count accuracy. The analysis found that approach volume level and number of approach lanes would have significant effect on the accuracy of turning volume counts but the location of the sensors did not significantly affect the accuracy of turning volume counts. In addition, it was found that the location of lanes in relation to the sensor did not significantly affect the accuracy of lane-by-lane volume counts. This indicated that accuracy analysis could be performed by using total approach volumes without comparing specific turning counts, that is, left-turn, through and right-turn movements. In general, the accuracy of approach volume counts collected by microwave sensors were within the margin of error that traffic engineers could accept. The procedure taken to perform the analysis and a summary of accuracy of volume counts for the factor combinations considered are presented in this paper.

  9. Measuring Dynamic Signals with Direct Sensor-to-Microcontroller Interfaces Applied to a Magnetoresistive Sensor.

    Science.gov (United States)

    Sifuentes, Ernesto; Gonzalez-Landaeta, Rafael; Cota-Ruiz, Juan; Reverter, Ferran

    2017-05-18

    This paper evaluates the performance of direct interface circuits (DIC), where the sensor is directly connected to a microcontroller, when a resistive sensor subjected to dynamic changes is measured. The theoretical analysis provides guidelines for the selection of the components taking into account both the desired resolution and the bandwidth of the input signal. Such an analysis reveals that there is a trade-off between the sampling frequency and the resolution of the measurement, and this depends on the selected value of the capacitor that forms the RC circuit together with the sensor resistance. This performance is then experimentally proved with a DIC measuring a magnetoresistive sensor exposed to a magnetic field of different frequencies, amplitudes, and waveforms. A sinusoidal magnetic field up to 1 kHz can be monitored with a resolution of eight bits and a sampling frequency of around 10 kSa/s. If a higher resolution is desired, the sampling frequency has to be lower, thus limiting the bandwidth of the dynamic signal under measurement. The DIC is also applied to measure an electrocardiogram-type signal and its QRS complex is well identified, which enables the estimation, for instance, of the heart rate.

  10. Theory, analysis and design of RF interferometric sensors

    CERN Document Server

    Nguyen, Cam

    2012-01-01

    Theory, Analysis and Design of RF Interferometric Sensors presents the theory, analysis and design of RF interferometric sensors. RF interferometric sensors are attractive for various sensing applications that require every fine resolution and accuracy as well as fast speed. The book also presents two millimeter-wave interferometric sensors realized using RF integrated circuits. The developed millimeter-wave homodyne sensor shows sub-millimeter resolution in the order of 0.05 mm without correction for the non-linear phase response of the sensor's quadrature mixer. The designed millimeter-wave double-channel homodyne sensor provides a resolution of only 0.01 mm, or 1/840th of the operating wavelength, and can inherently suppress the non-linearity of the sensor's quadrature mixer. The experimental results of displacement and velocity measurement are presented as a way to demonstrate the sensing ability of the RF interferometry and to illustrate its many possible applications in sensing. The book is succinct, ye...

  11. Self-Similarity Superresolution for Resource-Constrained Image Sensor Node in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yuehai Wang

    2014-01-01

    Full Text Available Wireless sensor networks, in combination with image sensors, open up a grand sensing application field. It is a challenging problem to recover a high resolution (HR image from its low resolution (LR counterpart, especially for low-cost resource-constrained image sensors with limited resolution. Sparse representation-based techniques have been developed recently and increasingly to solve this ill-posed inverse problem. Most of these solutions are based on an external dictionary learned from huge image gallery, consequently needing tremendous iteration and long time to match. In this paper, we explore the self-similarity inside the image itself, and propose a new combined self-similarity superresolution (SR solution, with low computation cost and high recover performance. In the self-similarity image super resolution model (SSIR, a small size sparse dictionary is learned from the image itself by the methods such as KSVD. The most similar patch is searched and specially combined during the sparse regulation iteration. Detailed information, such as edge sharpness, is preserved more faithfully and clearly. Experiment results confirm the effectiveness and efficiency of this double self-learning method in the image super resolution.

  12. Two-Dimensional Micro-/Nanoradian Angle Generator with High Resolution and Repeatability Based on Piezo-Driven Double-Axis Flexure Hinge and Three Capacitive Sensors.

    Science.gov (United States)

    Tan, Xinran; Zhu, Fan; Wang, Chao; Yu, Yang; Shi, Jian; Qi, Xue; Yuan, Feng; Tan, Jiubin

    2017-11-19

    This study presents a two-dimensional micro-/nanoradian angle generator (2D-MNAG) that achieves high angular displacement resolution and repeatability using a piezo-driven flexure hinge for two-dimensional deflections and three capacitive sensors for output angle monitoring and feedback control. The principal error of the capacitive sensor for precision microangle measurement is analyzed and compensated for; so as to achieve a high angle output resolution of 10 nrad (0.002 arcsec) and positioning repeatability of 120 nrad (0.024 arcsec) over a large angular range of ±4363 μrad (±900 arcsec) for the 2D-MNAG. The impact of each error component, together with the synthetic error of the 2D-MNAG after principal error compensation are determined using Monte Carlo simulation for further improvement of the 2D-MNAG.

  13. Wireless current sensing by near field induction from a spin transfer torque nano-oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Ramaswamy, B. [Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742 (United States); Algarin, J. M.; Waks, E., E-mail: edowaks@umd.edu [Institute for Research in Electronics and Applied Physics (IREAP), University of Maryland, College Park, Maryland 20742 (United States); Weinberg, I. N. [Weinberg Medical Physics LLC, Bethesda, Maryland 20817 (United States); Chen, Y.-J.; Krivorotov, I. N. [Department of Physics and Astronomy, University of California, Irvine, California 92697 (United States); Katine, J. A. [HGST Research Center, San Jose, California 95135 (United States); Shapiro, B. [Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742 (United States); Institute for Systems Research (ISR), University of Maryland, College Park, Maryland 20742 (United States)

    2016-06-13

    We demonstrate that spin transfer torque nano-oscillators (STNO) can act as wireless sensors for local current. The STNO acts as a transducer that converts weak direct currents into microwave field oscillations that we detect using an inductive coil. We detect direct currents in the range of 300–700 μA and report them wirelessly to a receiving induction coil at distances exceeding 6.5 mm. This current sensor could find application in chemical and biological sensing and industrial inspection.

  14. On-irrigator pasture soil moisture sensor

    International Nuclear Information System (INIS)

    Tan, Adrian Eng-Choon; Richards, Sean; Platt, Ian; Woodhead, Ian

    2017-01-01

    In this paper, we presented the development of a proximal soil moisture sensor that measured the soil moisture content of dairy pasture directly from the boom of an irrigator. The proposed sensor was capable of soil moisture measurements at an accuracy of  ±5% volumetric moisture content, and at meter scale ground area resolutions. The sensor adopted techniques from the ultra-wideband radar to enable measurements of ground reflection at resolutions that are smaller than the antenna beamwidth of the sensor. An experimental prototype was developed for field measurements. Extensive field measurements using the developed prototype were conducted on grass pasture at different ground conditions to validate the accuracy of the sensor in performing soil moisture measurements. (paper)

  15. Development of printed sensors for taste sensing

    KAUST Repository

    Nag, Anindya

    2018-01-30

    The paper presents an idea of developing taste sensors using novel printed sensors. The raw materials used for developing the sensors were commercial polymer films. Powered graphene was produced using laser induction technique. This powder was separately transferred to Kapton tapes to developed flexible graphene sensors. The fabricated sensors were tested with different chemicals having specific attributes with the idea to develop a taste sensor. Three different types of chemicals were tested and analyzed to verify the ability of the developed sensor patch to differentiate between the individual chemicals. The initial results have provided a significant platform in the process of developing a fully functionalized taste sensing system.

  16. Development of printed sensors for taste sensing

    KAUST Repository

    Nag, Anindya; Mukhopadhyay, Subhas; Kosel, Jü rgen

    2018-01-01

    The paper presents an idea of developing taste sensors using novel printed sensors. The raw materials used for developing the sensors were commercial polymer films. Powered graphene was produced using laser induction technique. This powder was separately transferred to Kapton tapes to developed flexible graphene sensors. The fabricated sensors were tested with different chemicals having specific attributes with the idea to develop a taste sensor. Three different types of chemicals were tested and analyzed to verify the ability of the developed sensor patch to differentiate between the individual chemicals. The initial results have provided a significant platform in the process of developing a fully functionalized taste sensing system.

  17. Polymer laser bio-sensors

    DEFF Research Database (Denmark)

    Kristensen, Anders; Vannahme, Christoph; Hermannsson, Pétur Gordon

    2014-01-01

    Organic dye based distributed feed-back lasers, featuring narrow linewidth and thus high quality spectral resolution, are used as highly sensitive refractive index sensors. The design, fabrication and application of the laser intra-cavity sensors are discussed....

  18. High speed and high resolution interrogation of a fiber Bragg grating sensor based on microwave photonic filtering and chirped microwave pulse compression.

    Science.gov (United States)

    Xu, Ou; Zhang, Jiejun; Yao, Jianping

    2016-11-01

    High speed and high resolution interrogation of a fiber Bragg grating (FBG) sensor based on microwave photonic filtering and chirped microwave pulse compression is proposed and experimentally demonstrated. In the proposed sensor, a broadband linearly chirped microwave waveform (LCMW) is applied to a single-passband microwave photonic filter (MPF) which is implemented based on phase modulation and phase modulation to intensity modulation conversion using a phase modulator (PM) and a phase-shifted FBG (PS-FBG). Since the center frequency of the MPF is a function of the central wavelength of the PS-FBG, when the PS-FBG experiences a strain or temperature change, the wavelength is shifted, which leads to the change in the center frequency of the MPF. At the output of the MPF, a filtered chirped waveform with the center frequency corresponding to the applied strain or temperature is obtained. By compressing the filtered LCMW in a digital signal processor, the resolution is improved. The proposed interrogation technique is experimentally demonstrated. The experimental results show that interrogation sensitivity and resolution as high as 1.25 ns/με and 0.8 με are achieved.

  19. Measuring Dynamic Signals with Direct Sensor-to-Microcontroller Interfaces Applied to a Magnetoresistive Sensor

    Directory of Open Access Journals (Sweden)

    Ernesto Sifuentes

    2017-05-01

    Full Text Available This paper evaluates the performance of direct interface circuits (DIC, where the sensor is directly connected to a microcontroller, when a resistive sensor subjected to dynamic changes is measured. The theoretical analysis provides guidelines for the selection of the components taking into account both the desired resolution and the bandwidth of the input signal. Such an analysis reveals that there is a trade-off between the sampling frequency and the resolution of the measurement, and this depends on the selected value of the capacitor that forms the RC circuit together with the sensor resistance. This performance is then experimentally proved with a DIC measuring a magnetoresistive sensor exposed to a magnetic field of different frequencies, amplitudes, and waveforms. A sinusoidal magnetic field up to 1 kHz can be monitored with a resolution of eight bits and a sampling frequency of around 10 kSa/s. If a higher resolution is desired, the sampling frequency has to be lower, thus limiting the bandwidth of the dynamic signal under measurement. The DIC is also applied to measure an electrocardiogram-type signal and its QRS complex is well identified, which enables the estimation, for instance, of the heart rate.

  20. Sensor influence in digital 3λ holographic interferometry

    International Nuclear Information System (INIS)

    Desse, J M; Picart, P; Tankam, P

    2011-01-01

    In digital holographic interferometry, the resolution of the reconstructed hologram depends on the pixel size and pixel number of the sensor used for recording. When different wavelengths are simultaneously used as a luminous source for the interferometer, the shape and the overlapping of three filters of a color sensor strongly influence the three reconstructed images. This problem can be directly visualized in 2D Fourier planes on red, green and blue channels. To better understand this problem and to avoid parasitic images generated at the reconstruction, three different sensors have been tested: a CCD sensor equipped with a Bayer filter, a Foveon sensor and a 3CCD sensor. The first one is a Bayer mosaic where one half of the pixels detect the green color and only one-quarter detect the red or blue color. As the missing data are interpolated among color detection positions, offsets and artifacts are generated. The second one is a specific sensor constituted with three stacked photodiode layers. Its technology is different from that of the classical color mosaic sensor because each pixel location detects the three colors simultaneously. So, the three colors are recorded simultaneously with identical spatial resolution, which corresponds to the spatial resolution of the sensor. However, the spectral curve of the sensor is large along each wavelength since the color segmentation is based on the penetration depth of the photons in silicon. Finally, with a 3CCD sensor, each image is recorded on three different sensors with the same resolution. In order to test the sensor influence, we have developed a specific optical bench which allows the near wake flow around a circular cylinder at Mach 0.45 to be characterized. Finally, best results have been obtained with the 3CDD sensor

  1. Sensor Compendium - A Snowmass Whitepaper-

    Energy Technology Data Exchange (ETDEWEB)

    Artuso, M. [Syracuse Univ., NY (United States); Battaglia, M. [Univ. of California, Santa Cruz, CA (United States); Bolla, G. [Purdue Univ., West Lafayette, IN (United States); Bortoletto, D. [Purdue Univ., West Lafayette, IN (United States); Caberera, B. [Stanford Univ., CA (United States); Carlstrom, J E [Univ. of Chicago, IL (United States); Argonne National Lab. (ANL), Argonne, IL (United States); Chang, C. L. [Univ. of Chicago, IL (United States); Argonne National Lab. (ANL), Argonne, IL (United States); Cooper, W. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Da Via, C. [Univ. of Manchester (United Kingdom); Demarteau, M. [Argonne National Lab. (ANL), Argonne, IL (United States); Fast, J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Frisch, H. [Univ. of Chicago, IL (United States), et al.

    2013-10-01

    Sensors play a key role in detecting both charged particles and photons for all three frontiers in Particle Physics. The signals from an individual sensor that can be used include ionization deposited, phonons created, or light emitted from excitations of the material. The individual sensors are then typically arrayed for detection of individual particles or groups of particles. Mounting of new, ever higher performance experiments, often depend on advances in sensors in a range of performance characteristics. These performance metrics can include position resolution for passing particles, time resolution on particles impacting the sensor, and overall rate capabilities. In addition the feasible detector area and cost frequently provides a limit to what can be built and therefore is often another area where improvements are important. Finally, radiation tolerance is becoming a requirement in a broad array of devices. We present a status report on a broad category of sensors, including challenges for the future and work in progress to solve those challenges.

  2. Two-Dimensional Micro-/Nanoradian Angle Generator with High Resolution and Repeatability Based on Piezo-Driven Double-Axis Flexure Hinge and Three Capacitive Sensors

    Directory of Open Access Journals (Sweden)

    Xinran Tan

    2017-11-01

    Full Text Available This study presents a two-dimensional micro-/nanoradian angle generator (2D-MNAG that achieves high angular displacement resolution and repeatability using a piezo-driven flexure hinge for two-dimensional deflections and three capacitive sensors for output angle monitoring and feedback control. The principal error of the capacitive sensor for precision microangle measurement is analyzed and compensated for; so as to achieve a high angle output resolution of 10 nrad (0.002 arcsec and positioning repeatability of 120 nrad (0.024 arcsec over a large angular range of ±4363 μrad (±900 arcsec for the 2D-MNAG. The impact of each error component, together with the synthetic error of the 2D-MNAG after principal error compensation are determined using Monte Carlo simulation for further improvement of the 2D-MNAG.

  3. Sensor fusion to enable next generation low cost Night Vision systems

    Science.gov (United States)

    Schweiger, R.; Franz, S.; Löhlein, O.; Ritter, W.; Källhammer, J.-E.; Franks, J.; Krekels, T.

    2010-04-01

    The next generation of automotive Night Vision Enhancement systems offers automatic pedestrian recognition with a performance beyond current Night Vision systems at a lower cost. This will allow high market penetration, covering the luxury as well as compact car segments. Improved performance can be achieved by fusing a Far Infrared (FIR) sensor with a Near Infrared (NIR) sensor. However, fusing with today's FIR systems will be too costly to get a high market penetration. The main cost drivers of the FIR system are its resolution and its sensitivity. Sensor cost is largely determined by sensor die size. Fewer and smaller pixels will reduce die size but also resolution and sensitivity. Sensitivity limits are mainly determined by inclement weather performance. Sensitivity requirements should be matched to the possibilities of low cost FIR optics, especially implications of molding of highly complex optical surfaces. As a FIR sensor specified for fusion can have lower resolution as well as lower sensitivity, fusing FIR and NIR can solve performance and cost problems. To allow compensation of FIR-sensor degradation on the pedestrian detection capabilities, a fusion approach called MultiSensorBoosting is presented that produces a classifier holding highly discriminative sub-pixel features from both sensors at once. The algorithm is applied on data with different resolution and on data obtained from cameras with varying optics to incorporate various sensor sensitivities. As it is not feasible to record representative data with all different sensor configurations, transformation routines on existing high resolution data recorded with high sensitivity cameras are investigated in order to determine the effects of lower resolution and lower sensitivity to the overall detection performance. This paper also gives an overview of the first results showing that a reduction of FIR sensor resolution can be compensated using fusion techniques and a reduction of sensitivity can be

  4. Tidal analysis of GNSS data from a high resolution sensor network at Helheim Glacier

    Science.gov (United States)

    Martin, Ian; Aspey, Robin; Baugé, Tim; Edwards, Stuart; Everett, Alistair; James, Timothy; Loskot, Pavel; Murray, Tavi; O'Farrell, Tim; Rutt, Ian

    2014-05-01

    Changes in Greenland and Antarctic ice sheets due to ice flow/ice-berg calving are a major uncertainty affecting sea-level rise forecasts. Latterly GNSS (Global Navigation Satellite Systems) have been employed extensively to monitor such glacier dynamics. Until recently however, the favoured methodology has been to deploy sensors onto the glacier surface, collect data for a period of time, then retrieve and download the sensors. This approach works well in less dynamic environments where the risk of sensor loss is low. In more extreme environments e.g. approaching the glacial calving front, the risk of sensor loss and hence data loss increases dramatically. In order to provide glaciologists with new insights into flow dynamics and calving processes we have developed a novel sensor network to increase the robustness of data capture. We present details of the technological requirements for an in-situ Zigbee wireless streaming network infrastructure supporting instantaneous data acquisition from high resolution GNSS sensors thereby increasing data capture robustness. The data obtained offers new opportunities to investigate the interdependence of mass flow, uplift, velocity and geometry and the network architecture has been specifically designed for deployment by helicopter close to the calving front to yield unprecedented detailed information. Following successful field trials of a pilot three node network during 2012, a larger 20 node network was deployed on the fast-flowing Helheim glacier, south-east Greenland over the summer months of 2013. The utilisation of dual wireless transceivers in each glacier node, multiple frequencies and four 'collector' stations located on the valley sides creates overlapping networks providing enhanced capacity, diversity and redundancy of data 'back-haul', even close to 'floor' RSSI (Received Signal Strength Indication) levels around -100 dBm. Data loss through radio packet collisions within sub-networks are avoided through the

  5. Chromophoric Dissolved Organic Matter and Dissolved Organic Carbon from Sea-Viewing Wide Field-of-View Sensor (SeaWiFS), Moderate Resolution Imaging Spectroradiometer (MODIS) and MERIS Sensors: Case Study for the Northern Gulf of Mexico

    OpenAIRE

    Blake A. Schaeffer; Thomas S. Bianchi; Eurico J. D'Sa; Christopher L. Osburn; Nazanin Chaichi Tehrani

    2013-01-01

    Empirical band ratio algorithms for the estimation of colored dissolved organic matter (CDOM) and dissolved organic carbon (DOC) for Sea-viewing Wide Field-of-view Sensor (SeaWiFS), Moderate Resolution Imaging Spectroradiometer (MODIS) and MERIS ocean color sensors were assessed and developed for the northern Gulf of Mexico. Match-ups between in situ measurements of CDOM absorption coefficients at 412 nm (aCDOM(412)) with that derived from SeaWiFS were examined using two previously reported r...

  6. Scanning SQUID susceptometers with sub-micron spatial resolution

    Energy Technology Data Exchange (ETDEWEB)

    Kirtley, John R., E-mail: jkirtley@stanford.edu; Rosenberg, Aaron J.; Palmstrom, Johanna C.; Holland, Connor M.; Moler, Kathryn A. [Department of Applied Physics, Stanford University, Stanford, California 94305-4045 (United States); Paulius, Lisa [Department of Physics, Western Michigan University, Kalamazoo, Michigan 49008-5252 (United States); Spanton, Eric M. [Department of Physics, Stanford University, Stanford, California 94305-4045 (United States); Schiessl, Daniel [Attocube Systems AG, Königinstraße 11A, 80539 Munich (Germany); Jermain, Colin L.; Gibbons, Jonathan [Department of Physics, Cornell University, Cornell, Ithaca, New York 14853 (United States); Fung, Y.-K.K.; Gibson, Gerald W. [IBM Research Division, T. J. Watson Research Center, Yorktown Heights, New York 10598 (United States); Huber, Martin E. [Department of Physics, University of Colorado Denver, Denver, Colorado 80217-3364 (United States); Ralph, Daniel C. [Department of Physics, Cornell University, Cornell, Ithaca, New York 14853 (United States); Kavli Institute at Cornell, Ithaca, New York 14853 (United States); Ketchen, Mark B. [OcteVue, Hadley, Massachusetts 01035 (United States)

    2016-09-15

    Superconducting QUantum Interference Device (SQUID) microscopy has excellent magnetic field sensitivity, but suffers from modest spatial resolution when compared with other scanning probes. This spatial resolution is determined by both the size of the field sensitive area and the spacing between this area and the sample surface. In this paper we describe scanning SQUID susceptometers that achieve sub-micron spatial resolution while retaining a white noise floor flux sensitivity of ≈2μΦ{sub 0}/Hz{sup 1/2}. This high spatial resolution is accomplished by deep sub-micron feature sizes, well shielded pickup loops fabricated using a planarized process, and a deep etch step that minimizes the spacing between the sample surface and the SQUID pickup loop. We describe the design, modeling, fabrication, and testing of these sensors. Although sub-micron spatial resolution has been achieved previously in scanning SQUID sensors, our sensors not only achieve high spatial resolution but also have integrated modulation coils for flux feedback, integrated field coils for susceptibility measurements, and batch processing. They are therefore a generally applicable tool for imaging sample magnetization, currents, and susceptibilities with higher spatial resolution than previous susceptometers.

  7. Scanning SQUID susceptometers with sub-micron spatial resolution

    International Nuclear Information System (INIS)

    Kirtley, John R.; Rosenberg, Aaron J.; Palmstrom, Johanna C.; Holland, Connor M.; Moler, Kathryn A.; Paulius, Lisa; Spanton, Eric M.; Schiessl, Daniel; Jermain, Colin L.; Gibbons, Jonathan; Fung, Y.-K.K.; Gibson, Gerald W.; Huber, Martin E.; Ralph, Daniel C.; Ketchen, Mark B.

    2016-01-01

    Superconducting QUantum Interference Device (SQUID) microscopy has excellent magnetic field sensitivity, but suffers from modest spatial resolution when compared with other scanning probes. This spatial resolution is determined by both the size of the field sensitive area and the spacing between this area and the sample surface. In this paper we describe scanning SQUID susceptometers that achieve sub-micron spatial resolution while retaining a white noise floor flux sensitivity of ≈2μΦ_0/Hz"1"/"2. This high spatial resolution is accomplished by deep sub-micron feature sizes, well shielded pickup loops fabricated using a planarized process, and a deep etch step that minimizes the spacing between the sample surface and the SQUID pickup loop. We describe the design, modeling, fabrication, and testing of these sensors. Although sub-micron spatial resolution has been achieved previously in scanning SQUID sensors, our sensors not only achieve high spatial resolution but also have integrated modulation coils for flux feedback, integrated field coils for susceptibility measurements, and batch processing. They are therefore a generally applicable tool for imaging sample magnetization, currents, and susceptibilities with higher spatial resolution than previous susceptometers.

  8. The effect of receiver coil orientations on the imaging performance of magnetic induction tomography

    Science.gov (United States)

    Gürsoy, D.; Scharfetter, H.

    2009-10-01

    Magnetic induction tomography is an imaging modality which aims to reconstruct the conductivity distribution of the human body. It uses magnetic induction to excite the body and an array of sensor coils to detect the perturbations in the magnetic field. Up to now, much effort has been expended with the aim of finding an efficient coil configuration to extend the dynamic range of the measured signal. However, the merits of different sensor orientations on the imaging performance have not been studied in great detail so far. Therefore, the aim of the study is to fill the void of a systematic investigation of coil orientations on the reconstruction quality of the designs. To this end, a number of alternative receiver array designs with different coil orientations were suggested and the evaluations of the designs were performed based on the singular value decomposition. A generalized class of quality measures, the subclasses of which are linked to both the spatial resolution and uncertainty measures, was used to assess the performance on the radial and axial axes of a cylindrical phantom. The detectability of local conductivity perturbations in the phantom was explored using the reconstructed images. It is possible to draw the conclusion that the proper choice of the coil orientations significantly influences the number of usable singular vectors and accordingly the stability of image reconstruction, although the effect of increased stability on the quality of the reconstructed images was not of paramount importance due to the reduced independent information content of the associated singular vectors.

  9. The effect of receiver coil orientations on the imaging performance of magnetic induction tomography

    International Nuclear Information System (INIS)

    Gürsoy, D; Scharfetter, H

    2009-01-01

    Magnetic induction tomography is an imaging modality which aims to reconstruct the conductivity distribution of the human body. It uses magnetic induction to excite the body and an array of sensor coils to detect the perturbations in the magnetic field. Up to now, much effort has been expended with the aim of finding an efficient coil configuration to extend the dynamic range of the measured signal. However, the merits of different sensor orientations on the imaging performance have not been studied in great detail so far. Therefore, the aim of the study is to fill the void of a systematic investigation of coil orientations on the reconstruction quality of the designs. To this end, a number of alternative receiver array designs with different coil orientations were suggested and the evaluations of the designs were performed based on the singular value decomposition. A generalized class of quality measures, the subclasses of which are linked to both the spatial resolution and uncertainty measures, was used to assess the performance on the radial and axial axes of a cylindrical phantom. The detectability of local conductivity perturbations in the phantom was explored using the reconstructed images. It is possible to draw the conclusion that the proper choice of the coil orientations significantly influences the number of usable singular vectors and accordingly the stability of image reconstruction, although the effect of increased stability on the quality of the reconstructed images was not of paramount importance due to the reduced independent information content of the associated singular vectors

  10. Design of a PC Based Pressure Indicator Using Inductive Pick-up Type Transducer and Bourdon Tube Sensor

    Directory of Open Access Journals (Sweden)

    S. C. BERA

    2009-08-01

    Full Text Available Bourdon tube is a mechanical type pressure sensor and the bourdon gauge measures gauge pressure of a process pipe line or a process tank. But it is a local indicator and special costlier techniques are required to transmit the reading of bourdon gauge to a remote distance. In the present paper, a very simple inductive pick-up type technique has been developed to transmit the reading of bourdon gauge to a remote distance in the form of 1-5 Volt D.C. signal. This signal has been optically isolated to design a PC based pressure indicator using Labtech Note Book Pro software. The theoretical analysis of the whole technique has been presented in the paper. The instrument developed using this technique has been experimentally tested and the experimental results are reported in the paper. A good linearity and repeatability of the instrument has been observed.

  11. Speed and position sensors for electric motors

    Energy Technology Data Exchange (ETDEWEB)

    Lyyjynen, M. [Helsinki University of Technology, Otaniemi (Finland). Institute of Intelligent Power Electronics

    1997-12-31

    This paper gives an overview of speed and position measuring instruments for electric motors. The emphasis is on sensors that are designed to operate at industrial environment. In addition to that, some other, mostly magnetic sensors which are used, e.g., in automotive applications, are presented. Some of them are already applied in induction motors and some might be worth a try remembering the limitations. Automotive sensors are very cost-effective due to high production volumes. (orig.) 22 refs.

  12. Theoretical and Experimental Estimations of Volumetric Inductive Phase Shift in Breast Cancer Tissue

    Science.gov (United States)

    González, C. A.; Lozano, L. M.; Uscanga, M. C.; Silva, J. G.; Polo, S. M.

    2013-04-01

    Impedance measurements based on magnetic induction for breast cancer detection has been proposed in some studies. This study evaluates theoretical and experimentally the use of a non-invasive technique based on magnetic induction for detection of patho-physiological conditions in breast cancer tissue associated to its volumetric electrical conductivity changes through inductive phase shift measurements. An induction coils-breast 3D pixel model was designed and tested. The model involves two circular coils coaxially centered and a human breast volume centrally placed with respect to the coils. A time-harmonic numerical simulation study addressed the effects of frequency-dependent electrical properties of tumoral tissue on the volumetric inductive phase shift of the breast model measured with the circular coils as inductor and sensor elements. Experimentally; five female volunteer patients with infiltrating ductal carcinoma previously diagnosed by the radiology and oncology departments of the Specialty Clinic for Women of the Mexican Army were measured by an experimental inductive spectrometer and the use of an ergonomic inductor-sensor coil designed to estimate the volumetric inductive phase shift in human breast tissue. Theoretical and experimental inductive phase shift estimations were developed at four frequencies: 0.01, 0.1, 1 and 10 MHz. The theoretical estimations were qualitatively in agreement with the experimental findings. Important increments in volumetric inductive phase shift measurements were evident at 0.01MHz in theoretical and experimental observations. The results suggest that the tested technique has the potential to detect pathological conditions in breast tissue associated to cancer by non-invasive monitoring. Further complementary studies are warranted to confirm the observations.

  13. Characterization of LC sensor structures realized by PCB and LTCC technology for determining moisture in building materials

    Directory of Open Access Journals (Sweden)

    Milan R. Radovanović

    2018-03-01

    Full Text Available This paper compares performances of two wireless sensors for measuring water concentration in building materials, one manufactured by the printed circuit board (PCB technology and another one using the low temperature co-fired ceramics (LTCC process. The fabricated sensors consist of inductive part (L and interdigitated capacitive part (C in one metal layer, connected in parallel. Inductance of inductive part was kept constant, whereas capacitance of capacitive part was changed by exposing the sensor to different moisture concentration, changing its resonant frequency. The variation of resonant frequency as a function of different water concentration was measured, using antenna coil and impedance analyser, in two widely used construction materials: clay brick and autoclaved aerated concrete block. Surface analysis for two sensors was performed by means of 3D profilometer. Mechanical properties of the sensors were measured for both conductive segments (copper and silver and substrates materials (PCB and ceramics substrates using nanoindenter. Comparative characteristics of the sensors are presented from their application point of view.

  14. High-resolution X-ray emission spectroscopy with transition-edge sensors: present performance and future potential

    Energy Technology Data Exchange (ETDEWEB)

    Uhlig, J.; Doriese, W. B.; Fowler, J. W.; Swetz, D. S.; Jaye, C.; Fischer, D. A.; Reintsema, C. D.; Bennett, D. A.; Vale, L. R.; Mandal, U.; O' Neil, G. C.; Miaja-Avila, L.; Joe, Y. I.; El Nahhas, A.; Fullagar, W.; Parnefjord Gustafsson, F.; Sundström, V.; Kurunthu, D.; Hilton, G. C.; Schmidt, D. R.; Ullom, J. N.

    2015-04-21

    X-ray emission spectroscopy (XES) is a powerful element-selective tool to analyze the oxidation states of atoms in complex compounds, determine their electronic configuration, and identify unknown compounds in challenging environments. Until now the low efficiency of wavelength-dispersive X-ray spectrometer technology has limited the use of XES, especially in combination with weaker laboratory X-ray sources. More efficient energy-dispersive detectors have either insufficient energy resolution because of the statistical limits described by Fano or too low counting rates to be of practical use. This paper updates an approach to high-resolution X-ray emission spectroscopy that uses a microcalorimeter detector array of superconducting transition-edge sensors (TESs). TES arrays are discussed and compared with conventional methods, and shown under which circumstances they are superior. It is also shown that a TES array can be integrated into a table-top time-resolved X-ray source and a soft X-ray synchrotron beamline to perform emission spectroscopy with good chemical sensitivity over a very wide range of energies.

  15. Solute transport in streams of varying morphology inferred from a high resolution network of potentiometric wireless chloride sensors

    Science.gov (United States)

    Klaus, Julian; Smettem, Keith; Pfister, Laurent; Harris, Nick

    2017-04-01

    There is ongoing interest in understanding and quantifying the travel times and dispersion of solutes moving through stream environments, including the hyporheic zone and/or in-channel dead zones where retention affects biogeochemical cycling processes that are critical to stream ecosystem functioning. Modelling these transport and retention processes requires acquisition of tracer data from injection experiments where the concentrations are recorded downstream. Such experiments are often time consuming and costly, which may be the reason many modelling studies of chemical transport have tended to rely on relatively few well documented field case studies. This leads to the need of fast and cheap distributed sensor arrays that respond instantly and record chemical transport at points of interest on timescales of seconds at various locations in the stream environment. To tackle this challenge we present data from several tracer experiments carried out in the Attert river catchment in Luxembourg employing low-cost (in the order of a euro per sensor) potentiometric chloride sensors in a distributed array. We injected NaCl under various baseflow conditions in streams of different morphologies and observed solute transport at various distances and locations. This data is used to benchmark the sensors to data obtained from more expensive electrical conductivity meters. Furthermore, the data allowed spatial resolution of hydrodynamic mixing processes and identification of chemical 'dead zones' in the study reaches.

  16. arXiv Time resolution of silicon pixel sensors

    CERN Document Server

    Riegler, W.

    2017-11-21

    We derive expressions for the time resolution of silicon detectors, using the Landau theory and a PAI model for describing the charge deposit of high energy particles. First we use the centroid time of the induced signal and derive analytic expressions for the three components contributing to the time resolution, namely charge deposit fluctuations, noise and fluctuations of the signal shape due to weighting field variations. Then we derive expressions for the time resolution using leading edge discrimination of the signal for various electronics shaping times. Time resolution of silicon detectors with internal gain is discussed as well.

  17. Design and development of ITER high-frequency magnetic sensor

    NARCIS (Netherlands)

    Ma, Y.; Vayakis, G.; Begrambekov, L. B.; Cooper, J.J.; Duran, I.; Hirsch, M.; Laqua, H.P.; Moreau, Ph.; Oosterbeek, J.W.; Spuig, P.; Stange, T.; Walsh, M.

    2016-01-01

    High-frequency (HF) inductive magnetic sensors are the primary ITER diagnostic set for Toroidal Alfvén Eigenmodes (TAE) detection, while they also supplement low-frequency MHD and plasma equilibrium measurements. These sensors will be installed on the inner surface of ITER vacuum vessel, operated in

  18. Global Crop Area Monitoring at High Resolution Exploiting Complementary Use of Free and Open SAR and VSNIR/SWIR Sensor Data Sets

    Science.gov (United States)

    Lemoine, G.; LEO, O.

    2015-12-01

    Earth Observation imaging sensors with spatial resolutions in the 10-30 m range allow for separation of the area and crop status contributions to the radiometric signatures, typically at parcel level for a wide range of arable crop production systems. These sensors complement current monitoring efforts that deploy low (100-1000 m) resolution VSNIR/SWIR sensors like MODIS, METOP or PROBA-V, which provide denser time series, but with aggregated and mixed radiometric information for cropped areas. "Free and Open" access to US Landsat imagery has recently been complemented by the European Union's Copernicus program with access to Sentinel-1A C-band SAR and Sentinel-2A visual, near and short-ware infrared (VSNIR/SWIR) sensor data in the 10-20 m resolution range. Sentinel-1A has already proven that consistent time series can be generated at its 12 day revisit frequency. The density of Sentinel-2 time series will greatly expand the availability of [partially cloud covered] VSNIR/SWIR imagery. The release of this large new data flow coincides with wider availability of "big data" processing capacity, the public release of ever more detailed ancillary data sets that support extraction of georeferenced and robust indicators on crop production and their spatial and temporal statistics and developments in crowd-sourced mobile data collection for data validation purposes. We will illustrate the use of hybrid SAR and VSNIR/SWIR data sets from Sentinel-1 and Landsat-8 (and initially released Sentinel-2 imagery) for a number of selected examples. These include crop area delineation and classification in the Netherlands with the support of detailed parcel delineation sets for validation, detection of winter cereal cultivation in Ukraine, impact of the Syrian civil war on irrigated summer crop cultivation and recent examples in support to crop anomaly detection in food insecure areas (North Korea, Sub-Saharan Africa). We discuss method implementation, operational issues and outline

  19. SiDIVS: Simple Detection of Inductive Vehicle Signatures with a Multiplex Resonant Sensor

    Directory of Open Access Journals (Sweden)

    José J. Lamas-Seco

    2016-08-01

    Full Text Available This work provides a system capable of obtaining simultaneous inductive signatures of vehicles traveling on a roadway with minimal cost. Based on Time-Division Multiplexing (TDM with multiple oscillators, one for each inductive loop, the proposed system detects the presence of vehicles by means of a shift in the oscillation period of the selected loop and registers the signature of the detected vehicles by measuring the duration of a fixed number of oscillator pulses. In order to test the system in an actual environment, we implement a prototype that we denote as SiDIVS (Simple Detection of Inductive Vehicle Signatures and acquire different vehicle inductive signatures under real scenarios. We also test the robustness of the detector by simulating the effect of noise on the signature acquisition.

  20. High resolution color imagery for orthomaps and remote sensing

    Energy Technology Data Exchange (ETDEWEB)

    Fricker, Peter [Leica Geosystems GIS and Mapping, LLC (Switzerland); Gallo, M. Guillermo [Leica Geosystems GIS and Mapping, LLC (United States)

    2005-07-01

    The ADS40 Airborne Digital Pushbroom Sensor is currently the only commercial sensor capable of acquiring color and false color strip images in the low decimeter range at the same high resolution as the black and white stereo images. This high resolution of 12,000 pixels across the entire swath and 100% forward overlap in the image strips result in high quality DSM's, True Ortho's and at the same time allow unbiased remote sensing applications due to color strip images unchanged by pan-sharpening. The paper gives details on how the pushbroom sensor achieves these seemingly difficult technical challenges. It describes how a variety of mapping applications benefit from this sensor, a sensor which acts as a satellite pushbroom sensor within the airborne environment. (author)

  1. Magneto-Inductive Underground Communications in a District Heating System

    DEFF Research Database (Denmark)

    Meybodi, Soroush Afkhami; Nielsen, Jens Frederik Dalsgaard; Bendtsen, Jan Dimon

    2011-01-01

    Feasibility of underground data communications is investigated by employing magnetic induction as the key technology at physical layer. Realizing an underground wireless sensor network for a district heating plant motivates this research problem. The main contribution of the paper is to find the ...

  2. CMOS foveal image sensor chip

    Science.gov (United States)

    Bandera, Cesar (Inventor); Scott, Peter (Inventor); Sridhar, Ramalingam (Inventor); Xia, Shu (Inventor)

    2002-01-01

    A foveal image sensor integrated circuit comprising a plurality of CMOS active pixel sensors arranged both within and about a central fovea region of the chip. The pixels in the central fovea region have a smaller size than the pixels arranged in peripheral rings about the central region. A new photocharge normalization scheme and associated circuitry normalizes the output signals from the different size pixels in the array. The pixels are assembled into a multi-resolution rectilinear foveal image sensor chip using a novel access scheme to reduce the number of analog RAM cells needed. Localized spatial resolution declines monotonically with offset from the imager's optical axis, analogous to biological foveal vision.

  3. High-speed uncooled MWIR hostile fire indication sensor

    Science.gov (United States)

    Zhang, L.; Pantuso, F. P.; Jin, G.; Mazurenko, A.; Erdtmann, M.; Radhakrishnan, S.; Salerno, J.

    2011-06-01

    Hostile fire indication (HFI) systems require high-resolution sensor operation at extremely high speeds to capture hostile fire events, including rocket-propelled grenades, anti-aircraft artillery, heavy machine guns, anti-tank guided missiles and small arms. HFI must also be conducted in a waveband with large available signal and low background clutter, in particular the mid-wavelength infrared (MWIR). The shortcoming of current HFI sensors in the MWIR is the bandwidth of the sensor is not sufficient to achieve the required frame rate at the high sensor resolution. Furthermore, current HFI sensors require cryogenic cooling that contributes to size, weight, and power (SWAP) in aircraft-mounted applications where these factors are at a premium. Based on its uncooled photomechanical infrared imaging technology, Agiltron has developed a low-SWAP, high-speed MWIR HFI sensor that breaks the bandwidth bottleneck typical of current infrared sensors. This accomplishment is made possible by using a commercial-off-the-shelf, high-performance visible imager as the readout integrated circuit and physically separating this visible imager from the MWIR-optimized photomechanical sensor chip. With this approach, we have achieved high-resolution operation of our MWIR HFI sensor at 1000 fps, which is unprecedented for an uncooled infrared sensor. We have field tested our MWIR HFI sensor for detecting all hostile fire events mentioned above at several test ranges under a wide range of environmental conditions. The field testing results will be presented.

  4. A Positional Deviation Sensor for Training of Robots

    Directory of Open Access Journals (Sweden)

    Fredrik Dessen

    1988-04-01

    Full Text Available A device for physically guiding a robot manipulator through its task is described. It consists of inductive, contact-free positional deviation sensors. The sensor will be used in high performance sensory control systems. The paper describes problems concerning multi-dimensional, non-linear measurement functions and the design of the servo control system.

  5. Integrated magnetic, geometric and discriminating sensor for instrumented Pigs; Sensor geometrico magnetico e discriminador integrado para pigs instrumentados

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Vinicius de C. [Pontificia Univ. Catolica do Rio de Janeiro, RJ (Brazil); Von der Weid, Jean Pierre [Pontificia Univ. Catolica do Rio de Janeiro, RJ (Brazil). Centro de Estudos em Telecomunicacoes; Silva, Jose A.P. da [PipeWay Engenharia, Rio de Janeiro, RJ (Brazil); Camerini, Claudio Soligo; Oliveira, Carlos H.F. de [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas

    2003-07-01

    In this work it is presented a result of a research partnership between PUC-Rio, PETROBRAS, Pipeway. The development of an innovative sensor head for high resolution MFL Pigs, the GMD sensor, Geometric Magnetic and Discriminator. This head make the magnetic pipeline reading, in high resolution using the MFL - Magnetic Flux Leakage technique, adding to it the geometric reading as well as the discrimination of the defects, as being external or internal. This technique makes possible the inspection of geometry, magnetism and discrimination with only one crown of GMD sensors. In this paper technical aspects of the development, eg: the constructive details of the sensor, evaluation tests and laboratory results are presented. (author)

  6. Induction of Inflammation In Vivo by Electrocardiogram Sensor Operation Using Wireless Power Transmission.

    Science.gov (United States)

    Heo, Jin-Chul; Kim, Beomjoon; Kim, Yoon-Nyun; Kim, Dae-Kwang; Lee, Jong-Ha

    2017-12-14

    Prolonged monitoring by cardiac electrocardiogram (ECG) sensors is useful for patients with emergency heart conditions. However, implant monitoring systems are limited by lack of tissue biocompatibility. Here, we developed an implantable ECG sensor for real-time monitoring of ventricular fibrillation and evaluated its biocompatibility using an animal model. The implantable sensor comprised transplant sensors with two electrodes, a wireless power transmission system, and a monitoring system. The sensor was inserted into the subcutaneous tissue of the abdominal area and operated for 1 h/day for 5 days using a wireless power system. Importantly, the sensor was encapsulated by subcutaneous tissue and induced angiogenesis, inflammation, and phagocytosis. In addition, we observed that the levels of inflammation-related markers increased with wireless-powered transmission via the ECG sensor; in particular, levels of the Th-1 cytokine interleukin-12 were significantly increased. The results showed that induced tissue damage was associated with the use of wireless-powered sensors. We also investigated research strategies for the prevention of adverse effects caused by lack of tissue biocompatibility of a wireless-powered ECG monitoring system and provided information on the clinical applications of inflammatory reactions in implant treatment using the wireless-powered transmission system.

  7. High resolution (transformers.

    Science.gov (United States)

    Garcia-Souto, Jose A; Lamela-Rivera, Horacio

    2006-10-16

    A novel fiber-optic interferometric sensor is presented for vibrations measurements and analysis. In this approach, it is shown applied to the vibrations of electrical structures within power transformers. A main feature of the sensor is that an unambiguous optical phase measurement is performed using the direct detection of the interferometer output, without external modulation, for a more compact and stable implementation. High resolution of the interferometric measurement is obtained with this technique (transformers are also highlighted.

  8. Development of a diamond waveguide sensor for sensitive protein analysis using IR quantum cascade lasers

    Science.gov (United States)

    Piron, P.; Vargas Catalan, E.; Haas, J.; Österlund, L.; Nikolajeff, F.; Andersson, P. O.; Bergström, J.; Mizaikoff, B.; Karlsson, M.

    2018-02-01

    Microfabricated diamond waveguides, between 5 and 20 μm thick, manufactured by chemical vapor deposition of diamond, followed by standard lithographic techniques and inductively coupled plasma etching of diamond, are used as bio-chemical sensors in the mid infrared domain: 5-11 μm. Infrared light, emitted from a broadly tunable quantum cascade laser with a wavelength resolution smaller than 20 nm, is coupled through the diamond waveguides for attenuated total reflection spectroscopy. The expected advantages of these waveguides are a high sensitivity due to the high number of internal reflections along the propagation direction, a high transmittance in the mid-IR domain, the bio-compatibility of diamond and the possibility of functionalizing the surface layer. The sensor will be used for analyzing different forms of proteins such as α-synuclein which is relevant in understanding the mechanism behind Parkinson's disease. The fabrication process of the waveguide, its characteristics and several geometries are introduced. The optical setup of the biosensor is described and our first measurements on two analytes to demonstrate the principle of the sensing method will be presented. Future use of this sensor includes the functionalization of the diamond waveguide sensor surface to be able to fish out alpha-synuclein from cerebrospinal fluid.

  9. Multiple Sensor Camera for Enhanced Video Capturing

    Science.gov (United States)

    Nagahara, Hajime; Kanki, Yoshinori; Iwai, Yoshio; Yachida, Masahiko

    A resolution of camera has been drastically improved under a current request for high-quality digital images. For example, digital still camera has several mega pixels. Although a video camera has the higher frame-rate, the resolution of a video camera is lower than that of still camera. Thus, the high-resolution is incompatible with the high frame rate of ordinary cameras in market. It is difficult to solve this problem by a single sensor, since it comes from physical limitation of the pixel transfer rate. In this paper, we propose a multi-sensor camera for capturing a resolution and frame-rate enhanced video. Common multi-CCDs camera, such as 3CCD color camera, has same CCD for capturing different spectral information. Our approach is to use different spatio-temporal resolution sensors in a single camera cabinet for capturing higher resolution and frame-rate information separately. We build a prototype camera which can capture high-resolution (2588×1958 pixels, 3.75 fps) and high frame-rate (500×500, 90 fps) videos. We also proposed the calibration method for the camera. As one of the application of the camera, we demonstrate an enhanced video (2128×1952 pixels, 90 fps) generated from the captured videos for showing the utility of the camera.

  10. Virtual Induction Loops Based on Cooperative Vehicular Communications

    Directory of Open Access Journals (Sweden)

    Maria Calderon

    2013-01-01

    Full Text Available Induction loop detectors have become the most utilized sensors in traffic management systems. The gathered traffic data is used to improve traffic efficiency (i.e., warning users about congested areas or planning new infrastructures. Despite their usefulness, their deployment and maintenance costs are expensive. Vehicular networks are an emerging technology that can support novel strategies for ubiquitous and more cost-effective traffic data gathering. In this article, we propose and evaluate VIL (Virtual Induction Loop, a simple and lightweight traffic monitoring system based on cooperative vehicular communications. The proposed solution has been experimentally evaluated through simulation using real vehicular traces.

  11. Virtual Induction Loops Based on Cooperative Vehicular Communications

    Science.gov (United States)

    Gramaglia, Marco; Bernardos, Carlos J.; Calderon, Maria

    2013-01-01

    Induction loop detectors have become the most utilized sensors in traffic management systems. The gathered traffic data is used to improve traffic efficiency (i.e., warning users about congested areas or planning new infrastructures). Despite their usefulness, their deployment and maintenance costs are expensive. Vehicular networks are an emerging technology that can support novel strategies for ubiquitous and more cost-effective traffic data gathering. In this article, we propose and evaluate VIL (Virtual Induction Loop), a simple and lightweight traffic monitoring system based on cooperative vehicular communications. The proposed solution has been experimentally evaluated through simulation using real vehicular traces. PMID:23348033

  12. Coil geometry models for power loss analysis and hybrid inductive ...

    Indian Academy of Sciences (India)

    CHANDRASEKHARAN NATARAJ

    2018-04-26

    Apr 26, 2018 ... most of the WPT systems, but often suffers from power loss in the near field area of inductively coupled ... applications in the area of Distribution Generation (DG) ... embedded sensors, and buried devices, work at low voltage.

  13. Induction of Inflammation In Vivo by Electrocardiogram Sensor Operation Using Wireless Power Transmission

    Directory of Open Access Journals (Sweden)

    Jin-Chul Heo

    2017-12-01

    Full Text Available Prolonged monitoring by cardiac electrocardiogram (ECG sensors is useful for patients with emergency heart conditions. However, implant monitoring systems are limited by lack of tissue biocompatibility. Here, we developed an implantable ECG sensor for real-time monitoring of ventricular fibrillation and evaluated its biocompatibility using an animal model. The implantable sensor comprised transplant sensors with two electrodes, a wireless power transmission system, and a monitoring system. The sensor was inserted into the subcutaneous tissue of the abdominal area and operated for 1 h/day for 5 days using a wireless power system. Importantly, the sensor was encapsulated by subcutaneous tissue and induced angiogenesis, inflammation, and phagocytosis. In addition, we observed that the levels of inflammation-related markers increased with wireless-powered transmission via the ECG sensor; in particular, levels of the Th-1 cytokine interleukin-12 were significantly increased. The results showed that induced tissue damage was associated with the use of wireless-powered sensors. We also investigated research strategies for the prevention of adverse effects caused by lack of tissue biocompatibility of a wireless-powered ECG monitoring system and provided information on the clinical applications of inflammatory reactions in implant treatment using the wireless-powered transmission system.

  14. Robust Parameter and Signal Estimation in Induction Motors

    DEFF Research Database (Denmark)

    Børsting, H.

    This thesis deals with theories and methods for robust parameter and signal estimation in induction motors. The project originates in industrial interests concerning sensor-less control of electrical drives. During the work, some general problems concerning estimation of signals and parameters...... in nonlinear systems, have been exposed. The main objectives of this project are: - analysis and application of theories and methods for robust estimation of parameters in a model structure, obtained from knowledge of the physics of the induction motor. - analysis and application of theories and methods...... for robust estimation of the rotor speed and driving torque of the induction motor based only on measurements of stator voltages and currents. Only contimuous-time models have been used, which means that physical related signals and parameters are estimated directly and not indirectly by some discrete...

  15. A Comparison of Inductive Sensors in the Characterization of Partial Discharges and Electrical Noise Using the Chromatic Technique.

    Science.gov (United States)

    Ardila-Rey, Jorge Alfredo; Montaña, Johny; de Castro, Bruno Albuquerque; Schurch, Roger; Covolan Ulson, José Alfredo; Muhammad-Sukki, Firdaus; Bani, Nurul Aini

    2018-03-29

    Partial discharges (PDs) are one of the most important classes of ageing processes that occur within electrical insulation. PD detection is a standardized technique to qualify the state of the insulation in electric assets such as machines and power cables. Generally, the classical phase-resolved partial discharge (PRPD) patterns are used to perform the identification of the type of PD source when they are related to a specific degradation process and when the electrical noise level is low compared to the magnitudes of the PD signals. However, in practical applications such as measurements carried out in the field or in industrial environments, several PD sources and large noise signals are usually present simultaneously. In this study, three different inductive sensors have been used to evaluate and compare their performance in the detection and separation of multiple PD sources by applying the chromatic technique to each of the measured signals.

  16. Sensorless control of induction machine

    OpenAIRE

    Kılıç, Bahadır; Kilic, Bahadir

    2004-01-01

    AC drives based on fully digital control have reached the status of a maturing technology in a broad range of applications ranging from the low cost to high performance systems. Continuing research has concentrated on the removal of the sensors measuring the mechanical coordinates (e.g. tachogenerators, encoders) while maintaining the cost and performance of the control system. Speed estimation is an issue of particular interest with induction motor electrical drives as the rotor speed is gen...

  17. Compact, low-cost, and high-resolution interrogation unit for optical sensors

    International Nuclear Information System (INIS)

    Kiesel, Peter; Schmidt, Oliver; Mohta, Setu; Johnson, Noble; Malzer, Stefan

    2006-01-01

    Compact wavelength detectors that resolve wavelength changes in the subpicometer range over a broad spectral range are presented. A photodiode array or position sensor device is coated with a linear variable filter that converts the wavelength of the incident light into a spatial intensity distribution. The centroid of the spatial distribution is determined by a differential readout of the two elements of the photodiode array or the position sensor device. The device can interrogate any optical sensor that produces a wavelength shift in response to a stimulus. The potential of this device was tested by interrogating fiber-Bragg-grating sensors

  18. Wireless Sensing System Using Open-circuit, Electrically-conductive Spiral-trace Sensor

    Science.gov (United States)

    Woodard, Stanley E. (Inventor); Taylor, Bryant D. (Inventor)

    2013-01-01

    A wireless sensing system includes a sensor made from an electrical conductor shaped to form an open-circuit, electrically-conductive spiral trace having inductance and capacitance. In the presence of a time-varying magnetic field, the sensor resonates to generate a harmonic response having a frequency, amplitude and bandwidth. A magnetic field response recorder wirelessly transmits the time-varying magnetic field to the sensor and wirelessly detects the sensor's response frequency, amplitude and bandwidth.

  19. Curve resolution and figures of merit estimation for determination of trace elements in geological materials by inductively coupled plasma atomic emission spectrometry

    International Nuclear Information System (INIS)

    Lorber, A.; Harel, A.; Goldbart, Z.; Brenner, I.B.

    1987-01-01

    In geochemical analysis using inductively coupled plasma atomic emission spectrometry (ICP-AES), spectral interferences and background enhancement in response to sample concomitants are the main cause of deterioration of the limit of detection (LOD) and inaccuracy of the determination at the trace and minor element levels. In this account, the authors describe the chemometric procedure of curve resolution for compensating for these sources of error. A newly developed method for calculating figures of merit is used to evaluate the correction procedure, test the statistical significance of the determined concentration, and determine LODs for each sample. The technique involves scanning the vicinity of the spectral line of the analyte. With prior knowledge of potential spectral interferences, deconvolution of the overlapped response is possible. Analytical data for a wide range of geological standard reference materials demonstrate the effectiveness of the chemometric techniques. Separation of 0.002 nm spectral coincidence, employing a 0.02 nm resolution spectrometer, is demonstrated

  20. A high-resolution non-contact fluorescence-based temperature sensor for neonatal care

    International Nuclear Information System (INIS)

    Lam, H T; Kostov, Y; Tolosa, L; Rao, G; Falk, S

    2012-01-01

    To date, thermistors are used to continuously monitor the body temperature of newborn babies in the neonatal intensive care unit. The thermistor probe is attached to the body with a strong adhesive tape to ensure that the probe stays in place. However, these strong adhesives are shown to increase microbial growth and cause serious skin injuries via epidermal stripping. The latter compromises the skin's ability to serve as a protective barrier leading to increase in water loss and further microbial infections. In this paper, a new approach is introduced that eliminates the need for an adhesive. Instead, two kinds of fluorophores are entrapped in a skin-friendly chitosan gel that can be easily wiped on and off of the skin, and has antimicrobial properties as well. A CCD camera is used to detect the temperature-dependent fluorescence of the fluorophore, tris(1,10-phenthroline)ruthenium(II) while 8-aminopyrene-1,3,6-trisulfonic acid serves as the reference. This temperature sensor was found to have a resolution of at least 0.13 °C. (paper)

  1. Expanding the functionality and applications of nanopore sensors

    Science.gov (United States)

    Venta, Kimberly E.

    Nanopore sensors have developed into powerful tools for single-molecule studies since their inception two decades ago. Nanopore sensors function as nanoscale Coulter counters, by monitoring ionic current modulations as particles pass through a nanopore. While nanopore sensors can be used to study any nanoscale particle, their most notable application is as a low cost, fast alternative to current DNA sequencing technologies. In recent years, signifcant progress has been made toward the goal of nanopore-based DNA sequencing, which requires an ambitious combination of a low-noise and high-bandwidth nanopore measurement system and spatial resolution. In this dissertation, nanopore sensors in thin membranes are developed to improve dimensional resolution, and these membranes are used in parallel with a high-bandwidth amplfier. Using this nanopore sensor system, the signals of three DNA homopolymers are differentiated for the first time in solid-state nanopores. The nanopore noise is also reduced through the addition of a layer of SU8, a spin-on polymer, to the supporting chip structure. By increasing the temporal and spatial resolution of nanopore sensors, studies of shorter molecules are now possible. Nanopore sensors are beginning to be used for the study and characterization of nanoparticles. Nanoparticles have found many uses from biomedical imaging to next-generation solar cells. However, further insights into the formation and characterization of nanoparticles would aid in developing improved synthesis methods leading to more effective and customizable nanoparticles. This dissertation presents two methods of employing nanopore sensors to benet nanoparticle characterization and fabrication. Nanopores were used to study the formation of individual nanoparticles and serve as nanoparticle growth templates that could be exploited to create custom nanoparticle arrays. Additionally, nanopore sensors were used to characterize the surface charge density of anisotropic

  2. A Comparison of Inductive Sensors in the Characterization of Partial Discharges and Electrical Noise Using the Chromatic Technique

    Directory of Open Access Journals (Sweden)

    Jorge Alfredo Ardila-Rey

    2018-03-01

    Full Text Available Partial discharges (PDs are one of the most important classes of ageing processes that occur within electrical insulation. PD detection is a standardized technique to qualify the state of the insulation in electric assets such as machines and power cables. Generally, the classical phase-resolved partial discharge (PRPD patterns are used to perform the identification of the type of PD source when they are related to a specific degradation process and when the electrical noise level is low compared to the magnitudes of the PD signals. However, in practical applications such as measurements carried out in the field or in industrial environments, several PD sources and large noise signals are usually present simultaneously. In this study, three different inductive sensors have been used to evaluate and compare their performance in the detection and separation of multiple PD sources by applying the chromatic technique to each of the measured signals.

  3. Noise characteristics of a dc SQUID with a resistively shunted inductance

    International Nuclear Information System (INIS)

    Enpuku, K.; Muta, T.; Yoshida, K.; Irie, F.

    1985-01-01

    Noise characteristics of a dc SQUID with an inductance shunted by a damping resistance are studied numerically. It is shown that the damping resistance improves considerably the resolution of the SQUID in the case of large β, where β = 2LI 0 /Phi 0 , I 0 is a critical current, L is a loop inductance and Phi 0 is the flux quantum. The energy resolutions for β = 4 and β = 10 are only about 2 and 4 times larger than that for β = 1, respectively. Furthermore, the ranges of both the bias current and the external flux, where good resolution is obtained, become very wide compared with the conventional SQUID. Therefore, the SQUID with the damping resistance can be used for large β (or L) without the significant degradation of the resolution, and will much improve the coupling properties between the SQUID and the input circuitry. The numerical simulation results are also compared with analytical ones, and a reasonable agreement is obtained

  4. Observation of Magnetic Induction Distribution by Scanning Interference Electron Microscopy

    Science.gov (United States)

    Takahashi, Yoshio; Yajima, Yusuke; Ichikawa, Masakazu; Kuroda, Katsuhiro

    1994-09-01

    A scanning interference electron microscope (SIEM) capable of observing magnetic induction distribution with high sensitivity and spatial resolution has been developed. The SIEM uses a pair of fine coherent scanning probes and detects their relative phase change by magnetic induction, giving raster images of microscopic magnetic distributions. Its performance has been demonstrated by observing magnetic induction distributed near the edge of a recorded magnetic storage medium. Obtained images are compared with corresponding images taken in the scanning Lorentz electron microscope mode using the same microscope, and the differences between them are discussed.

  5. An autonomous low power high resolution micro-digital sun sensor

    NARCIS (Netherlands)

    Xie, N.; Theuwissen, A.J.P.

    2011-01-01

    Micro-Digital Sun Sensor (?DSS) is a sun detector which senses the respective angle between a satellite and the sun. It is composed of a solar cell power supply, a RF communication block and a CMOS Image Sensor (CIS) chip, which is called APS+. The paper describes the implementation of a prototype

  6. Bulk disk resonator based ultrasensitive mass sensor

    DEFF Research Database (Denmark)

    Cagliani, Alberto; Davis, Zachary James

    2009-01-01

    range. The sensor has been characterized in terms of sensitivity both for distributed mass detection, performing six consecutive depositions of e-beam evaporated Au, and localized mass detection, depositing approximately 7.5 pg of Pt/Ga/C three times consecutively with a Focused Ion Beam system......In the framework of developing an innovative label-free sensor for multiarrayed biodetection applications, we present a novel bulk resonator based mass sensor. The sensor is a polysilicon disk which shows a Q-factor of 6400 in air at 68.8 MHz, resulting in mass resolutions down in the femtogram....... The sensor has an extremely high distributed mass to frequency shift sensitivity of 60104 Hzcm2/¿g and shows a localized mass to frequency sensitivity up to 4405 Hz/pg with a localized mass resolution down to 15 fg. The device has been fabricated with a new microfabrication process that uses only two...

  7. Nanophotonic Image Sensors.

    Science.gov (United States)

    Chen, Qin; Hu, Xin; Wen, Long; Yu, Yan; Cumming, David R S

    2016-09-01

    The increasing miniaturization and resolution of image sensors bring challenges to conventional optical elements such as spectral filters and polarizers, the properties of which are determined mainly by the materials used, including dye polymers. Recent developments in spectral filtering and optical manipulating techniques based on nanophotonics have opened up the possibility of an alternative method to control light spectrally and spatially. By integrating these technologies into image sensors, it will become possible to achieve high compactness, improved process compatibility, robust stability and tunable functionality. In this Review, recent representative achievements on nanophotonic image sensors are presented and analyzed including image sensors with nanophotonic color filters and polarizers, metamaterial-based THz image sensors, filter-free nanowire image sensors and nanostructured-based multispectral image sensors. This novel combination of cutting edge photonics research and well-developed commercial products may not only lead to an important application of nanophotonics but also offer great potential for next generation image sensors beyond Moore's Law expectations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. High Resolution Flash Flood Forecasting Using a Wireless Sensor Network in the Dallas-Fort Worth Metroplex

    Science.gov (United States)

    Bartos, M. D.; Kerkez, B.; Noh, S.; Seo, D. J.

    2017-12-01

    In this study, we develop and evaluate a high resolution urban flash flood monitoring system using a wireless sensor network (WSN), a real-time rainfall-runoff model, and spatially-explicit radar rainfall predictions. Flooding is the leading cause of natural disaster fatalities in the US, with flash flooding in particular responsible for a majority of flooding deaths. While many riverine flood models have been operationalized into early warning systems, there is currently no model that is capable of reliably predicting flash floods in urban areas. Urban flash floods are particularly difficult to model due to a lack of rainfall and runoff data at appropriate scales. To address this problem, we develop a wide-area flood-monitoring wireless sensor network for the Dallas-Fort Worth metroplex, and use this network to characterize rainfall-runoff response over multiple heterogeneous catchments. First, we deploy a network of 22 wireless sensor nodes to collect real-time stream stage measurements over catchments ranging from 2-80 km2 in size. Next, we characterize the rainfall-runoff response of each catchment by combining stream stage data with gage and radar-based precipitation measurements. Finally, we demonstrate the potential for real-time flash flood prediction by joining the derived rainfall-runoff models with real-time radar rainfall predictions. We find that runoff response is highly heterogeneous among catchments, with large variabilities in runoff response detected even among nearby gages. However, when spatially-explicit rainfall fields are included, spatial variability in runoff response is largely captured. This result highlights the importance of increased spatial coverage for flash flood prediction.

  9. Distributed temperature sensor testing in liquid sodium

    Energy Technology Data Exchange (ETDEWEB)

    Gerardi, Craig, E-mail: cgerardi@anl.gov; Bremer, Nathan; Lisowski, Darius; Lomperski, Stephen

    2017-02-15

    Highlights: • Distributed temperature sensors measured high-resolution liquid-sodium temperatures. • DTSs worked well up to 400 °C. • A single DTS simultaneously detected sodium level and temperature. - Abstract: Rayleigh-backscatter-based distributed fiber optic sensors were immersed in sodium to obtain high-resolution liquid-sodium temperature measurements. Distributed temperature sensors (DTSs) functioned well up to 400 °C in a liquid sodium environment. The DTSs measured sodium column temperature and the temperature of a complex geometrical pattern that leveraged the flexibility of fiber optics. A single Ø 360 μm OD sensor registered dozens of temperatures along a length of over one meter at 100 Hz. We also demonstrated the capability to use a single DTS to simultaneously detect thermal interfaces (e.g. sodium level) and measure temperature.

  10. Multi-image acquisition-based distance sensor using agile laser spot beam.

    Science.gov (United States)

    Riza, Nabeel A; Amin, M Junaid

    2014-09-01

    We present a novel laser-based distance measurement technique that uses multiple-image-based spatial processing to enable distance measurements. Compared with the first-generation distance sensor using spatial processing, the modified sensor is no longer hindered by the classic Rayleigh axial resolution limit for the propagating laser beam at its minimum beam waist location. The proposed high-resolution distance sensor design uses an electronically controlled variable focus lens (ECVFL) in combination with an optical imaging device, such as a charged-coupled device (CCD), to produce and capture different laser spot size images on a target with these beam spot sizes different from the minimal spot size possible at this target distance. By exploiting the unique relationship of the target located spot sizes with the varying ECVFL focal length for each target distance, the proposed distance sensor can compute the target distance with a distance measurement resolution better than the axial resolution via the Rayleigh resolution criterion. Using a 30 mW 633 nm He-Ne laser coupled with an electromagnetically actuated liquid ECVFL, along with a 20 cm focal length bias lens, and using five spot images captured per target position by a CCD-based Nikon camera, a proof-of-concept proposed distance sensor is successfully implemented in the laboratory over target ranges from 10 to 100 cm with a demonstrated sub-cm axial resolution, which is better than the axial Rayleigh resolution limit at these target distances. Applications for the proposed potentially cost-effective distance sensor are diverse and include industrial inspection and measurement and 3D object shape mapping and imaging.

  11. The fusion of satellite and UAV data: simulation of high spatial resolution band

    Science.gov (United States)

    Jenerowicz, Agnieszka; Siok, Katarzyna; Woroszkiewicz, Malgorzata; Orych, Agata

    2017-10-01

    Remote sensing techniques used in the precision agriculture and farming that apply imagery data obtained with sensors mounted on UAV platforms became more popular in the last few years due to the availability of low- cost UAV platforms and low- cost sensors. Data obtained from low altitudes with low- cost sensors can be characterised by high spatial and radiometric resolution but quite low spectral resolution, therefore the application of imagery data obtained with such technology is quite limited and can be used only for the basic land cover classification. To enrich the spectral resolution of imagery data acquired with low- cost sensors from low altitudes, the authors proposed the fusion of RGB data obtained with UAV platform with multispectral satellite imagery. The fusion is based on the pansharpening process, that aims to integrate the spatial details of the high-resolution panchromatic image with the spectral information of lower resolution multispectral or hyperspectral imagery to obtain multispectral or hyperspectral images with high spatial resolution. The key of pansharpening is to properly estimate the missing spatial details of multispectral images while preserving their spectral properties. In the research, the authors presented the fusion of RGB images (with high spatial resolution) obtained with sensors mounted on low- cost UAV platforms and multispectral satellite imagery with satellite sensors, i.e. Landsat 8 OLI. To perform the fusion of UAV data with satellite imagery, the simulation of the panchromatic bands from RGB data based on the spectral channels linear combination, was conducted. Next, for simulated bands and multispectral satellite images, the Gram-Schmidt pansharpening method was applied. As a result of the fusion, the authors obtained several multispectral images with very high spatial resolution and then analysed the spatial and spectral accuracies of processed images.

  12. 0.5 V and 0.43 pJ/bit Capacitive Sensor Interface for Passive Wireless Sensor Systems.

    Science.gov (United States)

    Beriain, Andoni; Gutierrez, Iñigo; Solar, Hector; Berenguer, Roc

    2015-08-28

    This paper presents an ultra low-power and low-voltage pulse-width modulation based ratiometric capacitive sensor interface. The interface was designed and fabricated in a standard 90 nm CMOS 1P9M technology. The measurements show an effective resolution of 10 bits using 0.5 V of supply voltage. The active occupied area is only 0.0045 mm2 and the Figure of Merit (FOM), which takes into account the energy required per conversion bit, is 0.43 pJ/bit. Furthermore, the results show low sensitivity to PVT variations due to the proposed ratiometric architecture. In addition, the sensor interface was connected to a commercial pressure transducer and the measurements of the resulting complete pressure sensor show a FOM of 0.226 pJ/bit with an effective linear resolution of 7.64 bits. The results validate the use of the proposed interface as part of a pressure sensor, and its low-power and low-voltage characteristics make it suitable for wireless sensor networks and low power consumer electronics.

  13. Symmetry Induced Heteroclinic Cycles in Coupled Sensor Devices

    Science.gov (United States)

    2012-01-01

    of an array of magnetic sensors. In particular, we consider arrays made up of fluxgate magnetometers inductively coupled through electronic circuits. c...cycle can significantly enhance the sensitivity of an array of magnetic sensors. In particular, we consider arrays made up of fluxgate magnetometers ...IUTAM 5 ( 2012 ) 144 – 150 4. A Cycle in A Coupled-Core Fluxgate Magnetometer 4.1. Modeling In its most basic form, a fluxgate magnetometer

  14. A Microfluidic Cytometer for Complete Blood Count With a 3.2-Megapixel, 1.1- μm-Pitch Super-Resolution Image Sensor in 65-nm BSI CMOS.

    Science.gov (United States)

    Liu, Xu; Huang, Xiwei; Jiang, Yu; Xu, Hang; Guo, Jing; Hou, Han Wei; Yan, Mei; Yu, Hao

    2017-08-01

    Based on a 3.2-Megapixel 1.1- μm-pitch super-resolution (SR) CMOS image sensor in a 65-nm backside-illumination process, a lens-free microfluidic cytometer for complete blood count (CBC) is demonstrated in this paper. Backside-illumination improves resolution and contrast at the device level with elimination of surface treatment when integrated with microfluidic channels. A single-frame machine-learning-based SR processing is further realized at system level for resolution correction with minimum hardware resources. The demonstrated microfluidic cytometer can detect the platelet cells (< 2 μm) required in CBC, hence is promising for point-of-care diagnostics.

  15. Limitations on energy resolution of segmented silicon detectors

    Science.gov (United States)

    Wiącek, P.; Chudyba, M.; Fiutowski, T.; Dąbrowski, W.

    2018-04-01

    In the paper experimental study of charge division effects and energy resolution of X-ray silicon pad detectors are presented. The measurements of electrical parameters, capacitances and leakage currents, for six different layouts of pad arrays are reported. The X-ray spectra have been measured using a custom developed dedicated low noise front-end electronics. The spectra measured for six different detector layouts have been analysed in detail with particular emphasis on quantitative evaluation of charge division effects. Main components of the energy resolution due to Fano fluctuations, electronic noise, and charge division, have been estimated for six different sensor layouts. General recommendations regarding optimisation of pad sensor layout for achieving best possible energy resolution have been formulated.

  16. Coded Shack-Hartmann Wavefront Sensor

    KAUST Repository

    Wang, Congli

    2016-12-01

    Wavefront sensing is an old yet fundamental problem in adaptive optics. Traditional wavefront sensors are limited to time-consuming measurements, complicated and expensive setup, or low theoretically achievable resolution. In this thesis, we introduce an optically encoded and computationally decodable novel approach to the wavefront sensing problem: the Coded Shack-Hartmann. Our proposed Coded Shack-Hartmann wavefront sensor is inexpensive, easy to fabricate and calibrate, highly sensitive, accurate, and with high resolution. Most importantly, using simple optical flow tracking combined with phase smoothness prior, with the help of modern optimization technique, the computational part is split, efficient, and parallelized, hence real time performance has been achieved on Graphics Processing Unit (GPU), with high accuracy as well. This is validated by experimental results. We also show how optical flow intensity consistency term can be derived, using rigor scalar diffraction theory with proper approximation. This is the true physical law behind our model. Based on this insight, Coded Shack-Hartmann can be interpreted as an illumination post-modulated wavefront sensor. This offers a new theoretical approach for wavefront sensor design.

  17. Long-range surface plasmons for high-resolution surface plasmon resonance sensors

    Czech Academy of Sciences Publication Activity Database

    Nenninger, G. G.; Tobiška, Petr; Homola, Jiří; Yee, S. S.

    B74, 1/3 (2001), s. 145-151 ISSN 0925-4005. [European Conference on Optical Chemical Sensors and Biosensors EUROPT(R)ODE /5./. Lyon-Villeurbanne, 16.04.2000-19.04.2000] R&D Projects: GA ČR GA102/99/0549; GA ČR GA102/00/1536 Grant - others:Department of Defense(US) DAAD13-99-C-0032 Institutional research plan: CEZ:AV0Z2067918 Keywords : sensors * surface plasmons * biosensors Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 1.440, year: 2001

  18. Linear induction motor

    International Nuclear Information System (INIS)

    Barkman, W.E.; Adams, W.Q.; Berrier, B.R.

    1978-01-01

    A linear induction motor has been operated on a test bed with a feedback pulse resolution of 5 nm (0.2 μin). Slewing tests with this slide drive have shown positioning errors less than or equal to 33 nm (1.3 μin) at feedrates between 0 and 25.4 mm/min (0-1 ipm). A 0.86-m (34-in)-stroke linear motor is being investigated, using the SPACO machine as a test bed. Initial results were encouraging, and work is continuing to optimize the servosystem compensation

  19. Sensors and sensor integration; Proceedings of the Meeting, Orlando, FL, Apr. 4, 1991

    Science.gov (United States)

    Dean, Peter D.

    Consideration is given to adaptive control of propellant slosh for launch vehicles, a lidar for expendable launch vehicles, a high-resolution airborne multisensor system, an optical velocity sensor for air data applications, and use of absorption spectroscopy for refined petroleum product discrimination. Attention is also given to edge effects in silicon photodiode arrays, sensing and environment perception for a mobile vehicle, distributed-effect optical fiber sensors for trusses and plates, and instrumentation concepts for multiplexed Bragg grating sensors. (For individual items see A93-21962 to A93-21972)

  20. Analysis of the SNR and sensing ability of different sensor types in a LIDAR system

    Science.gov (United States)

    Choi, Gyudong; Han, Munhyun; Seo, Hongseok; Mheen, Bongki

    2017-10-01

    LIDAR (light distance and ranging) systems use sensors to detect reflected signals. The performance of the sensors significantly affects the specification of the LIDAR system. Especially, the number and size of the sensors determine the FOV (field of view) and resolution of the system, regardless of which sensors are used. The resolution of an array-type sensor normally depends on the number of pixels in the array. In this type of sensor, there are several limitations to increase the number of pixels in an array for higher resolution, specifically complexity, cost, and size limitations. Another type of sensors uses multiple pairs of transmitter and receiver channels. Each channel detects different points with the corresponding directions indicated by the laser points of each channel. In this case, in order to increase the resolution, it is required to increase the number of channels, resulting in bigger sensor head size and deteriorated reliability due to heavy rotating head module containing all the pairs. In this paper, we present a method to overcome these limitations and improve the performance of the LIDAR system. ETRI developed a type of scanning LIDAR system called a STUD (static unitary detector) LIDAR system. It was developed to solve the problems associated with the aforementioned sensors. The STUD LIDAR system can use a variety of sensors without any limitations on the size or number of sensors, unlike other LIDAR systems. Since it provides optimal performance in terms of range and resolution, the detailed analysis was conducted in the STUD LIDAR system by applying different sensor type to have improved sensing performance.

  1. Sensors based on GMR'S for detection of subsurface defects

    International Nuclear Information System (INIS)

    Cordon, J.; Ribes, B.; Vazquez, J.

    2010-01-01

    The use of magneto resistive sensors, GMR, as receptors in eddy current probe has certain advantages over the use of conventional inductive sensors, which puts an alternative for the detection of subsurface defects in metal components with thick materials. It has carried out a study of the most important characteristics of these sensors, which has enabled the manufacture of several probes based on OMR. In this paper we analyze different configurations and present the results of the analysis on several blocks with different defects in materials.

  2. High Temperature, Wireless Seismometer Sensor for Venus

    Science.gov (United States)

    Ponchak, George E.; Scardelletti, Maximilian C.; Taylor, Brandt; Beard, Steve; Meredith, Roger D.; Beheim, Glenn M.; Hunter Gary W.; Kiefer, Walter S.

    2012-01-01

    Space agency mission plans state the need to measure the seismic activity on Venus. Because of the high temperature on Venus (462? C average surface temperature) and the difficulty in placing and wiring multiple sensors using robots, a high temperature, wireless sensor using a wide bandgap semiconductor is an attractive option. This paper presents the description and proof of concept measurements of a high temperature, wireless seismometer sensor for Venus. A variation in inductance of a coil caused by the movement of an aluminum probe held in the coil and attached to a balanced leaf-spring seismometer causes a variation of 700 Hz in the transmitted signal from the oscillator/sensor system at 426? C. This result indicates that the concept may be used on Venus.

  3. Inductance analyzer based on auto-balanced circuit for precision measurement of fluxgate impedance

    Science.gov (United States)

    Setiadi, Rahmondia N.; Schilling, Meinhard

    2018-05-01

    An instrument for fluxgate sensor impedance measurement based on an auto-balanced circuit has been designed and characterized. The circuit design is adjusted to comply with the fluxgate sensor characteristics which are low impedance and highly saturable core with very high permeability. The system utilizes a NI-DAQ card and LabVIEW to process the signal acquisition and evaluation. Some fixed reference resistances are employed for system calibration using linear regression. A multimeter HP 34401A and impedance analyzer Agilent 4294A are used as calibrator and validator for the resistance and inductance measurements. Here, we realized a fluxgate analyzer instrument based on auto-balanced circuit, which measures the resistance and inductance of the device under test with a small error and much lower excitation current to avoid core saturation compared to the used calibrator.

  4. A Novel On-Chip Impedance Sensor for the Detection of Particle Contamination in Hydraulic Oil

    Directory of Open Access Journals (Sweden)

    Hongpeng Zhang

    2017-08-01

    Full Text Available A novel impedance sensor based on a microfluidic chip is presented. The sensor consists of two single-layer coils and a straight micro-channel, and can detect, not only ferromagnetic and non-ferromagnetic particles in oil as an inductive sensor, but also, water droplets and air bubbles in oil as a capacitive sensor. The experiments are carried out at different excitation frequencies, number of coil turns and particle sizes. For the inductance detection, the inductance signals are found to increase with the excitation frequency and the noise is constant; both the inductance signals and the noise increase with the number of coil turns, but because the noise increases at a faster rate than the signal, the signal-to-noise ratio decreases with the number of coil turns. We demonstrate the successful detection of 40 μm iron particles and 110 μm copper particles using the coil with 20 turns at the excitation frequency of 2 MHz. For the capacitance detection, capacitance signals decrease with the excitation frequency and the noise is constant; the capacitance signals decrease with the number of coil turns, while the noise increases, thus, the signal-to-noise ratio decreases with the number of coil turns. We can detect 100 μm water droplets and 180 μm bubbles successfully using the coil with 20 turns at the excitation frequency of 0.3 MHz.

  5. Sensor for thickness measurement of a liquid metal film

    International Nuclear Information System (INIS)

    Blanc, R.

    1984-04-01

    Description, calibration and measuring method of a sensor for the measure of thin liquid metal depths in a temperature range of 0-500 0 C and for shift frequencies from 0 to 100 Hz; these sensors are based on the principle of induction-coil impedance variation, as a function of the thickness of an electrical conductor matter placed in the coil magnetic field [fr

  6. Coherent and non-coherent processing of multiband radar sensor data

    Directory of Open Access Journals (Sweden)

    S. Tejero

    2006-01-01

    Full Text Available Increasing resolution is an attractive goal for all types of radar sensor applications. Obtaining high radar resolution is strongly related to the signal bandwidth which can be used. The currently available frequency bands however, restrict the available bandwidth and consequently the achievable range resolution. As nowadays more sensors become available e.g. on automotive platforms, methods of combining sensor information stemming from sensors operating in different and not necessarily overlapping frequency bands are of concern. It will be shown that it is possible to derive benefit from perceiving the same radar scenery with two or more sensors in distinct frequency bands. Beyond ordinary sensor fusion methods, radar information can be combined more effectively if one compensates for the lack of mutual coherence, thus taking advantage of phase information. At high frequencies, complex scatterers can be approximately modeled as a group of single scattering centers with constant delay and slowly varying amplitude, i.e. a set of complex exponentials buried in noise. The eigenanalysis algorithms are well known for their capability to better resolve complex exponentials as compared to the classical spectral analysis methods. These methods exploit the statistical properties of those signals to estimate their frequencies. Here, two main approaches to extend the statistical analysis for the case of data collected at two different subbands are presented. One method relies on the use of the band gap information (and therefore, coherent data collection is needed and achieves an increased resolution capability compared with the single-band case. On the other hand, the second approach does not use the band gap information and represents a robust way to process radar data collected with incoherent sensors. Combining the information obtained with these two approaches a robust estimator of the target locations with increased resolution can be built.

  7. Using multi-spectral sensors for vegetation mapping

    CSIR Research Space (South Africa)

    Van Deventer, Heidi

    2016-07-01

    Full Text Available Wetland and estuarine vegetation is often difficult to detect and separate from adjacent land covers with multispectral sensors for a number of reasons. The spatial resolution of space-borne sensors is often insufficient for these features which...

  8. Spatial Resolution Assessment of the Telops Airborne TIR Imagery

    Science.gov (United States)

    Mousakhani, S.; Eslami, M.; Saadatseresht, M.

    2017-09-01

    Having a high spatial resolution of Thermal InfraRed (TIR) Sensors is a challenge in remote sensing applications. Airborne high spatial resolution TIR is a novel source of data that became available lately. Recent developments in spatial resolution of the TIR sensors have been an interesting topic for scientists. TIR sensors are very sensitive to the energies emitted from objects. Past researches have been shown that increasing the spatial resolution of an airborne image will decrease the spectral content of the data and will reduce the Signal to Noise Ratio (SNR). Therefore, in this paper a comprehensive assessment is adapted to estimate an appropriate spatial resolution of the TIR data (TELOPS TIR data), in consideration of the SNR. So, firstly, a low-pass filter is applied on TIR data and the achieved products fed to a classification method for analysing of the accuracy improvement. The obtained results show that, there is no significant change in classification accuracy by applying low-pass filter. Furthermore, estimation of the appropriate spatial resolution of the TIR data is evaluated for obtaining higher spectral content and SNR. For this purpose, different resolutions of the TIR data are created and fed to the maximum likelihood classification method separately. The results illustrated in the case of using images with ground pixel size four times greater than the original image, the classification accuracy is not reduced. Also, SNR and spectral contents are improved. But the corners sharpening is declined.

  9. Comparison of the performance of intraoral X-ray sensors using objective image quality assessment.

    Science.gov (United States)

    Hellén-Halme, Kristina; Johansson, Curt; Nilsson, Mats

    2016-05-01

    The main aim of this study was to evaluate the performance of 10 individual sensors of the same make, using objective measures of key image quality parameters. A further aim was to compare 8 brands of sensors. Ten new sensors of 8 different models from 6 manufacturers (i.e., 80 sensors) were included in the study. All sensors were exposed in a standardized way using an X-ray tube voltage of 60 kVp and different exposure times. Sensor response, noise, low-contrast resolution, spatial resolution and uniformity were measured. Individual differences between sensors of the same brand were surprisingly large in some cases. There were clear differences in the characteristics of the different brands of sensors. The largest variations were found for individual sensor response for some of the brands studied. Also, noise level and low contrast resolution showed large variations between brands. Sensors, even of the same brand, vary significantly in their quality. It is thus valuable to establish action levels for the acceptance of newly delivered sensors and to use objective image quality control for commissioning purposes and periodic checks to ensure high performance of individual digital sensors. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Design of Oil Viscosity Sensor Based on Plastic Optical Fiber

    Science.gov (United States)

    Yunus, Muhammad; Arifin, A.

    2018-03-01

    A research of plastic optical fiber based sensors have been studied for measurement of oil viscosity. This sensor was made with straight configuration, U configuration, and gamma configuration have two types, there are optical fiber sensor with cladding and without cladding. Viscosity sensor was made, dipped into an oil sample with a concentration of viscosity percentage about 270 mPa.s - 350 mPa.s. The light from the LED propagated into the optical fiber, then it was received by the photodetector converted to output power. When plastic optical fiber dipped into an oil sample, viscosity of oil affect increase of refractive index on optical fiber resulting in a bigger loss of power so the light intensity will be smaller, consequences the measured output power will be smaller. Sensitivity and resolution viscosity sensor without cladding peel showed the best result rather than viscosity sensor with cladding peel. The best result in the measurement showed in gamma configuration with 3 cm length of cladding peel and the diameter of bending 0,25 cm is the range 103,090 nWatt, sensitivity 1,289 nWatt/mPa.s, and resolution 0,776 mPa.s. This method is effectively and efficiently used as an oil viscosity sensor with high sensitivity and resolution.

  11. Position sensor without any mechanical contact

    International Nuclear Information System (INIS)

    Ambier, Jean.

    1976-01-01

    The invention concerns a system for detecting, without any mechanical contact, the position of a mobile element according to a pre-determined path. The sensor includes a primary winding fed by an AC source and a secondary winding inductively coupled with the primary winding and subdivided into elementary coils, spaced out along this path and electrically inter-connected in couples. The mobile element has a magnetic part capable of modifying the inductive coupling between the windings, a secondary coil couple delivering a differential signal of zero values for all positions of the mobile element generating the same inductive coupling of each coil of the couple to the said primary winding. The main patent describes a system making it possible to detect the position of the rods in a nuclear reactor. The need was felt to improved the measuring accuracy of the sensor and to have a rigid front signal for easy electronic processing. The purpose of this invention is to improve the standard sensor to this end and it is characterised by the fact that the primary winding is subdivided into the same number of elementary coils as the secondary winding and that a primary coil is associated to each secondary coil, the two associated coils being coiled one on the other. The saving in space enables the coils to be brought closer together and affords an increase in measurement accuracy. A magnetic screen isolates each pair of coils and channels the leakage flux, the screen sharing in the localisation of the magnetic field under each pair of coils to achieve a sudden variation and a rigid front of the signal during the displacement of the mobile element [fr

  12. In-situ investigation of strain-induced martensitic transformation kinetics in an austenitic stainless steel by inductive measurements

    NARCIS (Netherlands)

    Alonso de Celada Casero, C.; Kooiker, Harm; Groen, Manso; Post, J; San Martin, D

    2017-01-01

    An inductive sensor developed by Philips ATC has been used to study in-situ the austenite (γ) to martensite (α′) phase transformation kinetics during tensile testing in an AISI 301 austenitic stainless steel. A correlation between the sensor output signal and the volume fraction of α′-martensite

  13. Kinetic Inductance Parametric Up-Converter

    Science.gov (United States)

    Kher, A.; Day, P. K.; Eom, B. H.; Zmuidzinas, J.; Leduc, H. G.

    2016-07-01

    We describe a novel class of devices based on the nonlinearity of the kinetic inductance of a superconducting thin film. By placing a current-dependent inductance in a microwave resonator, small currents can be measured through their effect on the resonator's frequency. By using a high-resistivity material for the film and nanowires as kinetic inductors, we can achieve a large coefficient of nonlinearity to improve device sensitivity. We demonstrate a current sensitivity of 8{ {pA/}}√{{ {Hz}}}, making this device useful for transition-edge sensor (TES) readout and other cutting-edge applications. An advantage of these devices is their natural ability to be multiplexed in the frequency domain, enabling large detector arrays for TES-based instruments. A traveling-wave version of the device, consisting of a thin-film microwave transmission line, is also sensitive to small currents as they change the phase length of the line due to their effect on its inductance. We demonstrate a current sensitivity of 5{ {pA/}}√{{ {Hz}}} for this version of the device, making it also suitable for TES readout as well as other current-detection applications. It has the advantage of multi-GHz bandwidth and greater dynamic range, offering a different approach to the resonator version of the device.

  14. High-resolution imaging of magnetic fields using scanning superconducting quantum interference device (SQUID) microscopy

    Science.gov (United States)

    Fong de Los Santos, Luis E.

    Development of a scanning superconducting quantum interference device (SQUID) microscope system with interchangeable sensor configurations for imaging magnetic fields of room-temperature (RT) samples with sub-millimeter resolution. The low-critical-temperature (Tc) niobium-based monolithic SQUID sensor is mounted in the tip of a sapphire rod and thermally anchored to the cryostat helium reservoir. A 25 mum sapphire window separates the vacuum space from the RT sample. A positioning mechanism allows adjusting the sample-to-sensor spacing from the top of the Dewar. I have achieved a sensor-to-sample spacing of 100 mum, which could be maintained for periods of up to 4 weeks. Different SQUID sensor configurations are necessary to achieve the best combination of spatial resolution and field sensitivity for a given magnetic source. For imaging thin sections of geological samples, I used a custom-designed monolithic low-Tc niobium bare SQUID sensor, with an effective diameter of 80 mum, and achieved a field sensitivity of 1.5 pT/Hz1/2 and a magnetic moment sensitivity of 5.4 x 10-18 Am2/Hz1/2 at a sensor-to-sample spacing of 100 mum in the white noise region for frequencies above 100 Hz. Imaging action currents in cardiac tissue requires higher field sensitivity, which can only be achieved by compromising spatial resolution. I developed a monolithic low-Tc niobium multiloop SQUID sensor, with sensor sizes ranging from 250 mum to 1 mm, and achieved sensitivities of 480 - 180 fT/Hz1/2 in the white noise region for frequencies above 100 Hz, respectively. For all sensor configurations, the spatial resolution was comparable to the effective diameter and limited by the sensor-to-sample spacing. Spatial registration allowed us to compare high-resolution images of magnetic fields associated with action currents and optical recordings of transmembrane potentials to study the bidomain nature of cardiac tissue or to match petrography to magnetic field maps in thin sections of

  15. Lenses and effective spatial resolution in macroscopic optical mapping

    International Nuclear Information System (INIS)

    Bien, Harold; Parikh, Puja; Entcheva, Emilia

    2007-01-01

    Optical mapping of excitation dynamically tracks electrical waves travelling through cardiac or brain tissue by the use of fluorescent dyes. There are several characteristics that set optical mapping apart from other imaging modalities: dynamically changing signals requiring short exposure times, dim fluorescence demanding sensitive sensors and wide fields of view (low magnification) resulting in poor optical performance. These conditions necessitate the use of optics with good light gathering ability, i.e. lenses having high numerical aperture. Previous optical mapping studies often used sensor resolution to estimate the minimum spatial feature resolvable, assuming perfect optics and infinite contrast. We examine here the influence of finite contrast and real optics on the effective spatial resolution in optical mapping under broad-field illumination for both lateral (in-plane) resolution and axial (depth) resolution of collected fluorescence signals

  16. Micro string resonators as temperature sensors

    DEFF Research Database (Denmark)

    Larsen, T.; Schmid, S.; Boisen, A.

    2013-01-01

    The resonance frequency of strings is highly sensitive to temperature. In this work we have investigated the applicability of micro string resonators as temperature sensors. The resonance frequency of strings is a function of the tensile stress which is coupled to temperature by the thermal...... to the low thermal mass of the strings. A temperature resolution of 2.5×10-4 °C has been achieved with silicon nitride strings. The theoretical limit for the temperature resolution of 8×10-8 °C has not been reached yet and requires further improvement of the sensor....

  17. A Miniaturized Force Sensor Based on Hair-Like Flexible Magnetized Cylinders Deposited Over a Giant Magnetoresistive Sensor

    KAUST Repository

    Ribeiro, Pedro

    2017-06-13

    The detection of force with higher resolution than observed in humans (similar to 1 mN) is of great interest for emerging technologies, especially surgical robots, since this level of resolution could allow these devices to operate in extremely sensitive environments without harming these. In this paper, we present a force sensor fabricated with a miniaturized footprint (9 mm(2)), based on the detection of the magnetic field generated by magnetized flexible pillars over a giant magnetoresistive sensor. When these flexible pillars deflect due to external loads, the stray field emitted by these will change, thus varying the GMR sensor resistance. A sensor with an array of five pillars with 200 mu m diameter and 1 mm height was fabricated, achieving a 0 to 26 mN measurement range and capable of detecting a minimum force feature of 630 mu N. A simulation model to predict the distribution of magnetic field generated by the flexible pillars on the sensitive area of the GMR sensor in function of the applied force was developed and validated against the experimental results reported in this paper. The sensor was finally tested as a texture classification system, with the ability of differentiating between four distinct surfaces varying between 0 and 162 mu m root mean square surface roughness.

  18. A Miniaturized Force Sensor Based on Hair-Like Flexible Magnetized Cylinders Deposited Over a Giant Magnetoresistive Sensor

    KAUST Repository

    Ribeiro, Pedro; Khan, Mohammed Asadullah; Alfadhel, Ahmed; Kosel, Jü rgen; Franco, Fernando; Cardoso, Susana; Bernardino, Alexandre; Santos-Victor, Jose; Jamone, Lorenzo

    2017-01-01

    The detection of force with higher resolution than observed in humans (similar to 1 mN) is of great interest for emerging technologies, especially surgical robots, since this level of resolution could allow these devices to operate in extremely sensitive environments without harming these. In this paper, we present a force sensor fabricated with a miniaturized footprint (9 mm(2)), based on the detection of the magnetic field generated by magnetized flexible pillars over a giant magnetoresistive sensor. When these flexible pillars deflect due to external loads, the stray field emitted by these will change, thus varying the GMR sensor resistance. A sensor with an array of five pillars with 200 mu m diameter and 1 mm height was fabricated, achieving a 0 to 26 mN measurement range and capable of detecting a minimum force feature of 630 mu N. A simulation model to predict the distribution of magnetic field generated by the flexible pillars on the sensitive area of the GMR sensor in function of the applied force was developed and validated against the experimental results reported in this paper. The sensor was finally tested as a texture classification system, with the ability of differentiating between four distinct surfaces varying between 0 and 162 mu m root mean square surface roughness.

  19. Methods of Using a Magnetic Field Response Sensor Within Closed, Electrically Conductive Containers

    Science.gov (United States)

    Woodward, Stanley E.; Taylor, Bryant D.

    2010-01-01

    Magnetic field response sensors are a class of sensors that are powered via oscillating magnetic fields, and when electrically active, respond with their own magnetic fields with attributes dependent upon the magnitude of the physical quantity being measured. A magnetic field response recorder powers and interrogates the magnetic sensors [see Magnetic-Field-Response Measurement- Acquisition System, NASA Tech Briefs Vol. 30, No, 6 (June 2006, page 28)]. Electrically conductive containers have low transmissivity for radio frequency (RF) energy and thus present problems for magnetic field response sensors. It is necessary in some applications to have a magnetic field response sensor s capacitor placed in these containers. Proximity to conductive surfaces alters the inductance and capacitance of the sensors. As the sensor gets closer to a conductive surface, the electric field and magnetic field energy of the sensor is reduced due to eddy currents being induced in the conductive surface. Therefore, the capacitors and inductors cannot be affixed to a conductive surface or embedded in a conductive material. It is necessary to have a fixed separation away from the conductive material. The minimum distance for separation is determined by the desired sensor response signal to noise ratio. Although the inductance is less than what it would be if it were not in proximity to the conductive surface, the inductance is fixed. As long as the inductance is fixed, all variations of the magnetic field response are due to capacitance changes. Numerous variations of inductor mounting can be utilized, such as providing a housing that provides separation from the conductive material as well as protection from impact damage. The sensor can be on the same flexible substrate with a narrow throat portion of the sensor between the inductor and the capacitor, Figure 1. The throat is of sufficient length to allow the capacitor to be appropriately placed within the container and the inductor

  20. Line width and line shape analysis in the inductively coupled plasma by high resolution Fourier transform spectrometry

    International Nuclear Information System (INIS)

    Faires, L.M.; Palmer, B.A.; Brault, J.W.

    1984-01-01

    High resolution Fourier transform spectrometry has been used to perform line width and line shape analysis of eighty-one iron I emision lines in the spectral range 290 to 390nm originating in the normal analytical zone of an inductively coupled plasma. Computer programs using non-linear least squares fitting techniques for line shape analysis were applied to the fully resolved spectra to determine Gaussian and Lorentzian components of the total observed line width. The effect of noise in the spectrum on the precision of the line fitting technique was assessed, and the importance of signal to noise ratio for line shape analysis is discussed. Translational (Doppler) temperatures were calculated from the Gaussian components of the line width and were found to be on the order of 6300 0 K. The excitation temperature of iron I was also determined from the same spectral data by the spectroscopic slope method based on the Einstein-Boltzmann expression for spectral intensity and was found to be on the order of 4700 0 K. 31 references

  1. Multi-Sensor Systems Development for UXO Detection and Discrimination: Hand-Held Dual Magnetic/Electromagnetic Induction Sensor

    National Research Council Canada - National Science Library

    Wright, David; Bennett, Jr., , Hollis H; Dove, Linda P; Butler, Dwain K

    2008-01-01

    ...) detection and discrimination system. This breakthrough technology markedly reduces UXO false alarm rates by fusing two heretofore incompatible sensor platforms, integrating highly accurate spatial data in real time, and applying...

  2. Characterization of Pixel Sensors

    CERN Document Server

    Oliveira, Felipe Ferraz

    2017-01-01

    It was commissioned at CERN ATLAS pixel group a fluorescence setup for characterization of pixel sensors. The idea is to measure the energies of different targets to calibrate your sensor. It was measured four matrices (80, 95, 98 and 106) of the Investigator1 sensor with different deep PW using copper, iron and titanium as target materials. The matrix 80 has a higher gain (0.065 ± 0.002) and matrix 106 has a better energy resolution (0.05 ± 0.04). The noise of the setup is around 3.6 mV .

  3. Photonic Crystal Slab Sensors in Microfluidics

    DEFF Research Database (Denmark)

    Sørensen, Kristian Tølbøl

    refractive index. The underlying phenomenon is called guidedmode resonance (GMR), which responds to changes in the refractive index of fluids only within the first few hundred nanometers from the sensor surface. PCS sensors can be fabricated entirely out of polymers, and read out using instrumentation...... to provide adaptive resolution. This algorithm can routinely make GMR simulations more than 100 times faster. The second manuscript, submitted to Optics Express, describes the practical application of polymeric PCS sensors. As with any refractive index sensor, the devices are highly sensitive to temperature...

  4. Recent Developments in Fiber Optics Humidity Sensors.

    Science.gov (United States)

    Ascorbe, Joaquin; Corres, Jesus M; Arregui, Francisco J; Matias, Ignacio R

    2017-04-19

    A wide range of applications such as health, human comfort, agriculture, food processing and storage, and electronic manufacturing, among others, require fast and accurate measurement of humidity. Sensors based on optical fibers present several advantages over electronic sensors and great research efforts have been made in recent years in this field. The present paper reports the current trends of optical fiber humidity sensors. The evolution of optical structures developed towards humidity sensing, as well as the novel materials used for this purpose, will be analyzed. Well-known optical structures, such as long-period fiber gratings or fiber Bragg gratings, are still being studied towards an enhancement of their sensitivity. Sensors based on lossy mode resonances constitute a platform that combines high sensitivity with low complexity, both in terms of their fabrication process and the equipment required. Novel structures, such as resonators, are being studied in order to improve the resolution of humidity sensors. Moreover, recent research on polymer optical fibers suggests that the sensitivity of this kind of sensor has not yet reached its limit. Therefore, there is still room for improvement in terms of sensitivity and resolution.

  5. Sensor Integration Using State Estimators

    Directory of Open Access Journals (Sweden)

    Jens G. Balchen

    1991-04-01

    Full Text Available Means for including very different types of sensors using one single unit are described. Accumulated data are represented using an updatable dynamic model, a Kalman filter. The scheme handles common phenomena such as skewed sampling, finite resolution measurements and information delays. Included is an example where 3D motion information is collected by one or more vision sensors.

  6. A high resolution β-detector

    International Nuclear Information System (INIS)

    Charon, Y.; Cuzon, J.C.; Tricoire, H.; Valentin, L.

    1987-01-01

    We present a detector which associates a charge coupled device to a light amplifier. This image sensor must detect weak β-activity, with a 10 μm resolution and should replace the autoradiographic films used for molecular hybridization. The best results are obtained with the 35 S emittor, for which the resolution and the efficiency are respectively 20 μm and 100% (relative to the measured standard source)

  7. A spiraled segmented waveguide sensor: Principle and experiment

    NARCIS (Netherlands)

    van Lith, J.; Lambeck, Paul; Hoekstra, Hugo; Heideman, Rene; Wijn, Robert Raimond

    2005-01-01

    A novel type of chemo-optical sensor has been designed, fabricated and characterized. The sensor is simple to fabricate, puts low demands on light source quality and shows resolution of index changes of ~ $3.10^{-8}$

  8. Investigations on a Novel Inductive Concept Frequency Technique for the Grading of Oil Palm Fresh Fruit Bunches

    Directory of Open Access Journals (Sweden)

    Kunihisa Tashiro

    2013-02-01

    Full Text Available From the Malaysian harvester’s perspective, the determination of the ripeness of the oil palm (FFB is a critical factor to maximize palm oil production. A preliminary study of a novel oil palm fruit sensor to detect the maturity of oil palm fruit bunches is presented. To optimize the functionality of the sensor, the frequency characteristics of air coils of various diameters are investigated to determine their inductance and resonant characteristics. Sixteen samples from two categories, namely ripe oil palm fruitlets and unripe oil palm fruitlets, are tested from 100 Hz up to 100 MHz frequency. The results showed the inductance and resonant characteristics of the air coil sensors display significant changes among the samples of each category. The investigations on the frequency characteristics of the sensor air coils are studied to observe the effect of variations in the coil diameter. The effect of coil diameter yields a significant 0.02643 MHz difference between unripe samples to air and 0.01084 MHz for ripe samples to air. The designed sensor exhibits significant potential in determining the maturity of oil palm fruits.

  9. Resolution Enhancement of Multilook Imagery

    Energy Technology Data Exchange (ETDEWEB)

    Galbraith, Amy E. [Univ. of Arizona, Tucson, AZ (United States)

    2004-07-01

    This dissertation studies the feasibility of enhancing the spatial resolution of multi-look remotely-sensed imagery using an iterative resolution enhancement algorithm known as Projection Onto Convex Sets (POCS). A multi-angle satellite image modeling tool is implemented, and simulated multi-look imagery is formed to test the resolution enhancement algorithm. Experiments are done to determine the optimal con guration and number of multi-angle low-resolution images needed for a quantitative improvement in the spatial resolution of the high-resolution estimate. The important topic of aliasing is examined in the context of the POCS resolution enhancement algorithm performance. In addition, the extension of the method to multispectral sensor images is discussed and an example is shown using multispectral confocal fluorescence imaging microscope data. Finally, the remote sensing issues of atmospheric path radiance and directional reflectance variations are explored to determine their effect on the resolution enhancement performance.

  10. Characteristics of Ir/Au transition edge sensor

    International Nuclear Information System (INIS)

    Kunieda, Yuichi; Ohno, Masashi; Nakazawa, Masaharu; Takahashi, Hiroyuki; Fukuda, Daiji; Ohkubo, Masataka

    2004-01-01

    A new type of microcalorimeter has been developed using a transition edge sensor (TES) and an electro-thermal feedback (ETF) method to achieve higher energy resolution and higher count rate. We are developing a superconducting Ir-based transition edge sensor (TES) microcalorimeters. To improve thermal conductivity and achieve higher energy resolution with an Ir-TES, we fabricated an Ir/Au bilayer TES by depositing gold on Ir and investigated the influence of intermediate between superconducting and normal states at the transition edge for signal responses by microscopic observation in the Ir/Au-TES. (T. Tanaka)

  11. A Sensitive Sensor Cell Line for the Detection of Oxidative Stress Responses in Cultured Human Keratinocytes

    Directory of Open Access Journals (Sweden)

    Ute Hofmann

    2014-06-01

    Full Text Available In the progress of allergic and irritant contact dermatitis, chemicals that cause the generation of reactive oxygen species trigger a heat shock response in keratinocytes. In this study, an optical sensor cell line based on cultured human keratinocytes (HaCaT cells expressing green fluorescent protein (GFP under the control of the stress-inducible HSP70B’ promoter were constructed. Exposure of HaCaT sensor cells to 25 µM cadmium, a model substance for oxidative stress induction, provoked a 1.7-fold increase in total glutathione and a ~300-fold induction of transcript level of the gene coding for heat shock protein HSP70B’. An extract of Arnica montana flowers resulted in a strong induction of the HSP70B’ gene and a pronounced decrease of total glutathione in keratinocytes. The HSP70B’ promoter-based sensor cells conveniently detected cadmium-induced stress using GFP fluorescence as read-out with a limit of detection of 6 µM cadmium. In addition the sensor cells responded to exposure of cells to A. montana extract with induction of GFP fluorescence. Thus, the HaCaT sensor cells provide a means for the automated detection of the compromised redox status of keratinocytes as an early indicator of the development of human skin disorders and could be applied for the prediction of skin irritation in more complex in vitro 3D human skin models and in the development of micro-total analysis systems (µTAS that may be utilized in dermatology, toxicology, pharmacology and drug screenings.

  12. Stress distribution and contact area measurements of a gecko toe using a high-resolution tactile sensor.

    Science.gov (United States)

    Eason, Eric V; Hawkes, Elliot W; Windheim, Marc; Christensen, David L; Libby, Thomas; Cutkosky, Mark R

    2015-02-02

    The adhesive systems of geckos have been widely studied and have been a great source of bioinspiration. Load-sharing (i.e. preventing stress concentrations through equal distribution of loads) is necessary to maximize the performance of an adhesive system, but it is not known to what extent load-sharing occurs in gecko toes. In this paper, we present in vivo measurements of the stress distribution and contact area on the toes of a tokay gecko (Gekko gecko) using a custom tactile sensor with 100 μm spatial resolution. We found that the stress distributions were nonuniform, with large variations in stress between and within lamellae, suggesting that load-sharing in the tokay gecko is uneven. These results may be relevant to the understanding of gecko morphology and the design of improved synthetic adhesive systems.

  13. Stress distribution and contact area measurements of a gecko toe using a high-resolution tactile sensor

    International Nuclear Information System (INIS)

    Eason, Eric V; Hawkes, Elliot W; Christensen, David L; Cutkosky, Mark R; Windheim, Marc; Libby, Thomas

    2015-01-01

    The adhesive systems of geckos have been widely studied and have been a great source of bioinspiration. Load-sharing (i.e. preventing stress concentrations through equal distribution of loads) is necessary to maximize the performance of an adhesive system, but it is not known to what extent load-sharing occurs in gecko toes. In this paper, we present in vivo measurements of the stress distribution and contact area on the toes of a tokay gecko (Gekko gecko) using a custom tactile sensor with 100 μm spatial resolution. We found that the stress distributions were nonuniform, with large variations in stress between and within lamellae, suggesting that load-sharing in the tokay gecko is uneven. These results may be relevant to the understanding of gecko morphology and the design of improved synthetic adhesive systems. (paper)

  14. Push-Broom-Type Very High-Resolution Satellite Sensor Data Correction Using Combined Wavelet-Fourier and Multiscale Non-Local Means Filtering

    Science.gov (United States)

    Kang, Wonseok; Yu, Soohwan; Seo, Doochun; Jeong, Jaeheon; Paik, Joonki

    2015-01-01

    In very high-resolution (VHR) push-broom-type satellite sensor data, both destriping and denoising methods have become chronic problems and attracted major research advances in the remote sensing fields. Since the estimation of the original image from a noisy input is an ill-posed problem, a simple noise removal algorithm cannot preserve the radiometric integrity of satellite data. To solve these problems, we present a novel method to correct VHR data acquired by a push-broom-type sensor by combining wavelet-Fourier and multiscale non-local means (NLM) filters. After the wavelet-Fourier filter separates the stripe noise from the mixed noise in the wavelet low- and selected high-frequency sub-bands, random noise is removed using the multiscale NLM filter in both low- and high-frequency sub-bands without loss of image detail. The performance of the proposed method is compared to various existing methods on a set of push-broom-type sensor data acquired by Korean Multi-Purpose Satellite 3 (KOMPSAT-3) with severe stripe and random noise, and the results of the proposed method show significantly improved enhancement results over existing state-of-the-art methods in terms of both qualitative and quantitative assessments. PMID:26378532

  15. Sensor Fusion of Position- and Micro-Sensors (MEMS) integrated in a Wireless Sensor Network for movement detection in landslide areas

    Science.gov (United States)

    Arnhardt, Christian; Fernández-Steeger, Tomas; Azzam, Rafig

    2010-05-01

    technologies were chosen. The MEMS-Sensors are acceleration-, tilt- and barometric pressure sensors. The positionsensors are draw wire and linear displacement transducers. In first laboratory tests the accuracy and resolution were investigated. The tests showed good results for all sensors. For example tilt-movements can be monitored with an accuracy of +/- 0,06° and a resolution of 0,1°. With the displacement transducer change in length of >0,1mm is possible. Apart from laboratory tests, field tests in South France and Germany were done to prove data stability and movement detection under real conditions. The results obtained were very satisfying, too. In the next step the combination of numerous sensors (sensor fusion) of the same type (redundancy) or different types (complementary) was researched. Different experiments showed that there is a high concordance between identical sensor-types. According to different sensor parameters (sensitivity, accuracy, resolution) some sensor-types can identify changes earlier. Taking this into consideration, good correlations between different kinds of sensors were achieved, too. Thus the experiments showed that combination of sensors is possible and this could improve the detection of movement and movement rate but also outliers. Based on this results various algorithms were setup that include different statistical methods (outlier tests, testing of hypotheses) and procedures from decision theories (Hurwicz-criteria). These calculation formulas will be implemented in the spatial data infrastructure (SDI) for the further data processing and validation. In comparison with today existing mainly punctually working monitoring systems, the application of wireless sensor networks in combination with low-cost, but precise micro-sensors provides an inexpensive and easy to set up monitoring system also in large areas. The correlation of same but also different sensor-types permits a good data control. Thus the sensor fusion is a promising tool

  16. Liquid level measurement on coolant pipeline using Raman distributed temperature sensor

    International Nuclear Information System (INIS)

    Kasinathan, M.; Sosamma, S.; Babu Rao, C.; Murali, N.; Jayakumar, T.

    2011-01-01

    Optical fibre based Raman Distributed Temperature Sensor (RDTS) has been widely used for temperature monitoring in oil pipe line, power cable and environmental monitoring. Recently it has gained importance in nuclear reactor owing to its advantages like continuous, distributed temperature monitoring and immunity from electromagnetic interference. It is important to monitor temperature based level measurement in sodium capacities and in coolant pipelines for Fast Breeder Reactor (FBR). This particular application is used for filling and draining sodium in storage tank of sodium circuits of Fast breeder reactor. There are different conventional methods to find out the sodium level in the storage tank of sodium cooled reactors. They are continuous level measurement and discontinuous level measurement. For continuous level measurement, mutual inductance type level probes are used. The disadvantage of using this method is it needs a temperature compensation circuit. For discontinuous level measurement, resistance type discontinuous level probe and mutual inductance type discontinuous level probe are used. In resistance type discontinuous level probe, each level needs a separate probe. To overcome these disadvantages, RDTS is used for level measurement based distributed temperature from optical fibre as sensor. The feasibility of using RDTS for measurement of temperature based level measurement sensor is studied using a specially designed test set-up and using hot water, instead of sodium. The test set-up consist of vertically erected Stainless Steel (SS) pipe of length 2m and diameter 10cm, with provision for filling and draining out the liquid. Bare graded index multimode fibre is laid straight along the length of the of the SS pipe. The SS pipe is filled with hot water at various levels. The hot water in the SS pipe is maintained at constant temperature by insulating the SS pipe. The temperature profile of the hot water at various levels is measured using RDTS. The

  17. On-line methanol sensor system development for recombinant ...

    African Journals Online (AJOL)

    PANCHIGA

    2016-10-19

    Oct 19, 2016 ... Calibration of the methanol sensor system was done in a medium environment with ... by taking protein induction at a low temperature and a pH where protease ... molecular weight of 66.5 kDa, HSA comprises about one-.

  18. High tracking resolution detectors. Final Technical Report

    International Nuclear Information System (INIS)

    Vasile, Stefan; Li, Zheng

    2010-01-01

    High-resolution tracking detectors based on Active Pixel Sensor (APS) have been valuable tools in Nuclear Physics and High-Energy Physics research, and have contributed to major discoveries. Their integration time, radiation length and readout rate is a limiting factor for the planed luminosity upgrades in nuclear and high-energy physics collider-based experiments. The goal of this program was to demonstrate and develop high-gain, high-resolution tracking detector arrays with faster readout, and shorter radiation length than APS arrays. These arrays may operate as direct charged particle detectors or as readouts of high resolution scintillating fiber arrays. During this program, we developed in CMOS large, high-resolution pixel sensor arrays with integrated readout, and reset at pixel level. Their intrinsic gain, high immunity to surface and moisture damage, will allow operating these detectors with minimal packaging/passivation requirements and will result in radiation length superior to APS. In Phase I, we designed and fabricated arrays with calorimetric output capable of sub-pixel resolution and sub-microsecond readout rate. The technical effort was dedicated to detector and readout structure development, performance verification, as well as to radiation damage and damage annealing.

  19. A bendable and wearable cardiorespiratory monitoring device fusing two noncontact sensor principles.

    Science.gov (United States)

    Teichmann, Daniel; De Matteis, Dennis; Bartelt, Thorsten; Walter, Marian; Leonhardt, Steffen

    2015-05-01

    A mobile device is presented for monitoring both respiration and pulse. The device is developed as a bendable/flexible inlay that can be placed in a shirt pocket or the inside pocket of a jacket. To achieve optimum monitoring performance, the device combines two sensor principles, which work in a safe noncontact way through several layers of cotton or other textiles. One sensor, based on magnetic induction, is intended for respiratory monitoring, and the other is a reflective photoplethysmography sensor intended for pulse detection. Because each sensor signal has some dependence on both physiological parameters, fusing the sensor signals allows enhanced signal coverage.

  20. A Magnetic-Balanced Inductive Link for the Simultaneous Uplink Data and Power Telemetry.

    Science.gov (United States)

    Gong, Chen; Liu, Dake; Miao, Zhidong; Li, Min

    2017-08-02

    When using the conventional two-coil inductive link for the simultaneous wireless power and data transmissions in implantable biomedical sensor devices, the strong power carrier could overwhelm the uplink data signal and even saturate the external uplink receiver. To address this problem, we propose a new magnetic-balanced inductive link for our implantable glaucoma treatment device. In this inductive link, an extra coil is specially added for the uplink receiving. The strong power carrier interference is minimized to approach zero by balanced canceling of the magnetic field of the external power coil. The implant coil is shared by the wireless power harvesting and the uplink data transmitting. Two carriers (i.e., 2-MHz power carrier and 500-kHz uplink carrier) are used for the wireless power transmission and the uplink data transmission separately. In the experiments, the prototype of this link achieves as high as 65.72 dB improvement of the signal-to-interference ratio (SIR) compared with the conventional two-coil inductive link. Benefiting from the significant improvement of SIR, the implant transmitter costs only 0.2 mW of power carrying 50 kbps of binary phase shift keying data and gets a bit error rate of 1 × 10 - 7 , even though the coupling coefficient is as low as 0.005. At the same time, 5 mW is delivered to the load with maximum power transfer efficiency of 58.8%. This magnetic-balanced inductive link is useful for small-sized biomedical sensor devices, which require transmitting data and power simultaneously under ultra-weak coupling.

  1. A Magnetic-Balanced Inductive Link for the Simultaneous Uplink Data and Power Telemetry

    Directory of Open Access Journals (Sweden)

    Chen Gong

    2017-08-01

    Full Text Available When using the conventional two-coil inductive link for the simultaneous wireless power and data transmissions in implantable biomedical sensor devices, the strong power carrier could overwhelm the uplink data signal and even saturate the external uplink receiver. To address this problem, we propose a new magnetic-balanced inductive link for our implantable glaucoma treatment device. In this inductive link, an extra coil is specially added for the uplink receiving. The strong power carrier interference is minimized to approach zero by balanced canceling of the magnetic field of the external power coil. The implant coil is shared by the wireless power harvesting and the uplink data transmitting. Two carriers (i.e., 2-MHz power carrier and 500-kHz uplink carrier are used for the wireless power transmission and the uplink data transmission separately. In the experiments, the prototype of this link achieves as high as 65.72 dB improvement of the signal-to-interference ratio (SIR compared with the conventional two-coil inductive link. Benefiting from the significant improvement of SIR, the implant transmitter costs only 0.2 mW of power carrying 50 kbps of binary phase shift keying data and gets a bit error rate of 1 × 10 − 7 , even though the coupling coefficient is as low as 0.005. At the same time, 5 mW is delivered to the load with maximum power transfer efficiency of 58.8%. This magnetic-balanced inductive link is useful for small-sized biomedical sensor devices, which require transmitting data and power simultaneously under ultra-weak coupling.

  2. Multi-Sensor Methods for Mobile Radar Motion Capture and Compensation

    Science.gov (United States)

    Nakata, Robert

    Remote sensing has many applications, including surveying and mapping, geophysics exploration, military surveillance, search and rescue and counter-terrorism operations. Remote sensor systems typically use visible image, infrared or radar sensors. Camera based image sensors can provide high spatial resolution but are limited to line-of-sight capture during daylight. Infrared sensors have lower resolution but can operate during darkness. Radar sensors can provide high resolution motion measurements, even when obscured by weather, clouds and smoke and can penetrate walls and collapsed structures constructed with non-metallic materials up to 1 m to 2 m in depth depending on the wavelength and transmitter power level. However, any platform motion will degrade the target signal of interest. In this dissertation, we investigate alternative methodologies to capture platform motion, including a Body Area Network (BAN) that doesn't require external fixed location sensors, allowing full mobility of the user. We also investigated platform stabilization and motion compensation techniques to reduce and remove the signal distortion introduced by the platform motion. We evaluated secondary ultrasonic and radar sensors to stabilize the platform resulting in an average 5 dB of Signal to Interference Ratio (SIR) improvement. We also implemented a Digital Signal Processing (DSP) motion compensation algorithm that improved the SIR by 18 dB on average. These techniques could be deployed on a quadcopter platform and enable the detection of respiratory motion using an onboard radar sensor.

  3. Sea-Ice Thickness Monitoring from Sensor Equipped Inuit Sleds

    Science.gov (United States)

    Rodwell, Shane; Jones, Bryn; Wilkinson, Jeremy

    2013-04-01

    A novel instrumentation package capable of measuring sea-ice thickness autonomously has been designed for long-term deployment upon the dog drawn sleds of the indigenous peoples of the Arctic. The device features a range of sensors that have been integrated with an electromagnetic induction device. These include a global positioning system, temperature sensor, tilt meter and accelerometer. Taken together, this system is able to provide accurate (+/-5cm) measurements of ice thickness with spatio-temporal resolution ranging from 1m to 5m every second. Autonomous data transmission capability is provided via GSM, inspired by the fact that many of the coastal communities in Greenland possess modern cell-phone infrastructure, enabling an inexpensive means of data-retrieval. Such data is essential in quantifying the sea-ice mass balance; given that existing satellite based systems are unable to measure ice-thickness directly. Field-campaign results from a prototype device, deployed in the North West of Greenland during three consecutive seasons, have demonstrated successful proof-of-concept when compared to data provided by ice mass balance (IMB) stations provided at fixed positions along the route of the sled. This project highlights not only the use of novel polar technology, but how opportunistic deployment using an existing roving platform (Inuit sledges) can provide economical, yet highly valuable, data for instrumentation development.

  4. Multivariate Sensitivity Analysis of Time-of-Flight Sensor Fusion

    Science.gov (United States)

    Schwarz, Sebastian; Sjöström, Mårten; Olsson, Roger

    2014-09-01

    Obtaining three-dimensional scenery data is an essential task in computer vision, with diverse applications in various areas such as manufacturing and quality control, security and surveillance, or user interaction and entertainment. Dedicated Time-of-Flight sensors can provide detailed scenery depth in real-time and overcome short-comings of traditional stereo analysis. Nonetheless, they do not provide texture information and have limited spatial resolution. Therefore such sensors are typically combined with high resolution video sensors. Time-of-Flight Sensor Fusion is a highly active field of research. Over the recent years, there have been multiple proposals addressing important topics such as texture-guided depth upsampling and depth data denoising. In this article we take a step back and look at the underlying principles of ToF sensor fusion. We derive the ToF sensor fusion error model and evaluate its sensitivity to inaccuracies in camera calibration and depth measurements. In accordance with our findings, we propose certain courses of action to ensure high quality fusion results. With this multivariate sensitivity analysis of the ToF sensor fusion model, we provide an important guideline for designing, calibrating and running a sophisticated Time-of-Flight sensor fusion capture systems.

  5. Solutions on high-resolution multiple configuration system sensors

    Science.gov (United States)

    Liu, Hua; Ding, Quanxin; Guo, Chunjie; Zhou, Liwei

    2014-11-01

    For aim to achieve an improved resolution in modern image domain, a method of continuous zoom multiple configuration, with a core optics is attempt to establish model by novel principle on energy transfer and high accuracy localization, by which the system resolution can be improved with a level in nano meters. A comparative study on traditional vs modern methods can demonstrate that the dialectical relationship and their balance is important, among Merit function, Optimization algorithms and Model parameterization. The effect of system evaluated criterion that MTF, REA, RMS etc. can support our arguments qualitatively.

  6. Microwave multiplex readout for superconducting sensors

    Energy Technology Data Exchange (ETDEWEB)

    Ferri, E., E-mail: elena.ferri@mib.infn.it [Università Milano-Bicocca, Milan (Italy); INFN Sez. di Milano-Bicocca, Milan (Italy); Becker, D.; Bennett, D. [NIST, Boulder, CO (United States); Faverzani, M. [Università Milano-Bicocca, Milan (Italy); INFN Sez. di Milano-Bicocca, Milan (Italy); Fowler, J.; Gard, J. [NIST, Boulder, CO (United States); Giachero, A. [Università Milano-Bicocca, Milan (Italy); INFN Sez. di Milano-Bicocca, Milan (Italy); Hays-Wehle, J.; Hilton, G. [NIST, Boulder, CO (United States); Maino, M. [Università Milano-Bicocca, Milan (Italy); INFN Sez. di Milano-Bicocca, Milan (Italy); Mates, J. [NIST, Boulder, CO (United States); Puiu, A.; Nucciotti, A. [Università Milano-Bicocca, Milan (Italy); INFN Sez. di Milano-Bicocca, Milan (Italy); Reintsema, C.; Schmidt, D.; Swetz, D.; Ullom, J.; Vale, L. [NIST, Boulder, CO (United States)

    2016-07-11

    The absolute neutrino mass scale is still an outstanding challenge in both particle physics and cosmology. The calorimetric measurement of the energy released in a nuclear beta decay is a powerful tool to determine the effective electron-neutrino mass. In the last years, the progress on low temperature detector technologies has allowed to design large scale experiments aiming at pushing down the sensitivity on the neutrino mass below 1 eV. Even with outstanding performances in both energy (~ eV on keV) and time resolution (~ 1 μs) on the single channel, a large number of detectors working in parallel is required to reach a sub-eV sensitivity. Microwave frequency domain readout is the best available technique to readout large array of low temperature detectors, such as Transition Edge Sensors (TESs) or Microwave Kinetic Inductance Detectors (MKIDs). In this way a multiplex factor of the order of thousands can be reached, limited only by the bandwidth of the available commercial fast digitizers. This microwave multiplexing system will be used to readout the HOLMES detectors, an array of 1000 microcalorimeters based on TES sensors in which the {sup 163}Ho will be implanted. HOLMES is a new experiment for measuring the electron neutrino mass by means of the electron capture (EC) decay of {sup 163}Ho. We present here the microwave frequency multiplex which will be used in the HOLMES experiment and the microwave frequency multiplex used to readout the MKID detectors developed in Milan as well.

  7. Soil water sensor response to bulk electrical conductivity

    Science.gov (United States)

    Soil water monitoring using electromagnetic (EM) sensors can facilitate observations of water content at high temporal and spatial resolutions. These sensors measure soil dielectric permittivity (Ka) which is largely a function of volumetric water content. However, bulk electrical conductivity BEC c...

  8. Investigation of a low-cost magneto-inductive magnetometer for space science applications

    Science.gov (United States)

    Regoli, Leonardo H.; Moldwin, Mark B.; Pellioni, Matthew; Bronner, Bret; Hite, Kelsey; Sheinker, Arie; Ponder, Brandon M.

    2018-03-01

    A new sensor for measuring low-amplitude magnetic fields that is ideal for small spacecraft is presented. The novel measurement principle enables the fabrication of a low-cost sensor with low power consumption and with measuring capabilities that are comparable to recent developments for CubeSat applications. The current magnetometer, a software-modified version of a commercial sensor, is capable of detecting fields with amplitudes as low as 8.7 nT at 40 Hz and 2.7 nT at 1 Hz, with a noise floor of 4 pT/Hz at 1 Hz. The sensor has a linear response to less than 3 % over a range of ±100 000 nT. All of these features make the magneto-inductive principle a promising technology for the development of magnetic sensors for both space-borne and ground-based applications to study geomagnetic activity.

  9. Group 2 coronaviruses prevent immediate early interferon induction by protection of viral RNA from host cell recognition

    International Nuclear Information System (INIS)

    Versteeg, Gijs A.; Bredenbeek, Peter J.; Worm, Sjoerd H.E. van den; Spaan, Willy J.M.

    2007-01-01

    Many viruses encode antagonists to prevent interferon (IFN) induction. Infection of fibroblasts with the murine hepatitis coronavirus (MHV) and SARS-coronavirus (SARS-CoV) did not result in nuclear translocation of interferon-regulatory factor 3 (IRF3), a key transcription factor involved in IFN induction, and induction of IFN mRNA transcription. Furthermore, MHV and SARS-CoV infection could not prevent IFN induction by poly (I:C) or Sendai virus, suggesting that these CoVs do not inactivate IRF3-mediated transcription regulation, but apparently prevent detection of replicative RNA by cellular sensory molecules. Our data indicate that shielding of viral RNA to host cell sensors might be the main general mechanism for coronaviruses to prevent IFN induction

  10. Direct training of robots using a positional deviation sensor

    OpenAIRE

    Dessen, Fredrik

    1988-01-01

    A device and system for physically guiding a manipulator through its task is described. The device consists of inductive, contact-free positional deviation sensors, enabling the rcbot to track a motion marker. Factors limiting the tracking performance are the kinematics of the sensor device and the bartdwidth of the servo system. Means for improving it includes the use of optimal motion coordination and force and velocity feedback. This enables real-time manual training o...

  11. Microscopic resolution broadband dielectric spectroscopy

    International Nuclear Information System (INIS)

    Mukherjee, S; Watson, P; Prance, R J

    2011-01-01

    Results are presented for a non-contact measurement system capable of micron level spatial resolution. It utilises the novel electric potential sensor (EPS) technology, invented at Sussex, to image the electric field above a simple composite dielectric material. EP sensors may be regarded as analogous to a magnetometer and require no adjustments or offsets during either setup or use. The sample consists of a standard glass/epoxy FR4 circuit board, with linear defects machined into the surface by a PCB milling machine. The sample is excited with an a.c. signal over a range of frequencies from 10 kHz to 10 MHz, from the reverse side, by placing it on a conducting sheet connected to the source. The single sensor is raster scanned over the surface at a constant working distance, consistent with the spatial resolution, in order to build up an image of the electric field, with respect to the reference potential. The results demonstrate that both the surface defects and the internal dielectric variations within the composite may be imaged in this way, with good contrast being observed between the glass mat and the epoxy resin.

  12. Microscopic resolution broadband dielectric spectroscopy

    Science.gov (United States)

    Mukherjee, S.; Watson, P.; Prance, R. J.

    2011-08-01

    Results are presented for a non-contact measurement system capable of micron level spatial resolution. It utilises the novel electric potential sensor (EPS) technology, invented at Sussex, to image the electric field above a simple composite dielectric material. EP sensors may be regarded as analogous to a magnetometer and require no adjustments or offsets during either setup or use. The sample consists of a standard glass/epoxy FR4 circuit board, with linear defects machined into the surface by a PCB milling machine. The sample is excited with an a.c. signal over a range of frequencies from 10 kHz to 10 MHz, from the reverse side, by placing it on a conducting sheet connected to the source. The single sensor is raster scanned over the surface at a constant working distance, consistent with the spatial resolution, in order to build up an image of the electric field, with respect to the reference potential. The results demonstrate that both the surface defects and the internal dielectric variations within the composite may be imaged in this way, with good contrast being observed between the glass mat and the epoxy resin.

  13. AN ACTIVE-PASSIVE COMBINED ALGORITHM FOR HIGH SPATIAL RESOLUTION RETRIEVAL OF SOIL MOISTURE FROM SATELLITE SENSORS (Invited)

    Science.gov (United States)

    Lakshmi, V.; Mladenova, I. E.; Narayan, U.

    2009-12-01

    Soil moisture is known to be an essential factor in controlling the partitioning of rainfall into surface runoff and infiltration and solar energy into latent and sensible heat fluxes. Remote sensing has long proven its capability to obtain soil moisture in near real-time. However, at the present time we have the Advanced Scanning Microwave Radiometer (AMSR-E) on board NASA’s AQUA platform is the only satellite sensor that supplies a soil moisture product. AMSR-E coarse spatial resolution (~ 50 km at 6.9 GHz) strongly limits its applicability for small scale studies. A very promising technique for spatial disaggregation by combining radar and radiometer observations has been demonstrated by the authors using a methodology is based on the assumption that any change in measured brightness temperature and backscatter from one to the next time step is due primarily to change in soil wetness. The approach uses radiometric estimates of soil moisture at a lower resolution to compute the sensitivity of radar to soil moisture at the lower resolution. This estimate of sensitivity is then disaggregated using vegetation water content, vegetation type and soil texture information, which are the variables on which determine the radar sensitivity to soil moisture and are generally available at a scale of radar observation. This change detection algorithm is applied to several locations. We have used aircraft observed active and passive data over Walnut Creek watershed in Central Iowa in 2002; the Little Washita Watershed in Oklahoma in 2003 and the Murrumbidgee Catchment in southeastern Australia for 2006. All of these locations have different soils and land cover conditions which leads to a rigorous test of the disaggregation algorithm. Furthermore, we compare the derived high spatial resolution soil moisture to in-situ sampling and ground observation networks

  14. Proximity sensing of electrostatic induction electret nanoparticles device using separation electrode

    Directory of Open Access Journals (Sweden)

    Jianxiong Zhu

    2017-04-01

    Full Text Available We reported a two dimensional self-powered proximity sensor based on nanoparticles polytetrafluoroethylene (PTFE electrostatic induction electret using separation electrode. The structural pattern was carefully designed for identifying the specific position on the horizontal plane. When the separation electrode is motioned above the sensor, the induced charges on electrodes will change based on the coupling effect of the electret film. Experiment results showed that the proximity sensor works well with the velocity 0.05 m/s. We also found that the prototype have a good stability even with a huge uncontrolled perturbation on the Y direction. Our work could be a significant step forward in self-powered proximity sensing technology, with a wide range of potential applications in touchpad, robotics, and safety-monitoring device.

  15. A Magnetic Sensor with Amorphous Wire

    Directory of Open Access Journals (Sweden)

    Dongfeng He

    2014-06-01

    Full Text Available Using a FeCoSiB amorphous wire and a coil wrapped around it, we have developed a sensitive magnetic sensor. When a 5 mm long amorphous wire with the diameter of 0.1 mm was used, the magnetic field noise spectrum of the sensor was about 30 pT/ÖHz above 30 Hz. To show the sensitivity and the spatial resolution, the magnetic field of a thousand Japanese yen was scanned with the magnetic sensor.

  16. Parametric study of a polymer-coated fibre-optic humidity sensor

    International Nuclear Information System (INIS)

    David, Nigel A; Wild, Peter M; Djilali, Ned

    2012-01-01

    A relative humidity sensor based on polymer-coated optical fibre Bragg gratings is presented. This fully functional sensor has response time and resolution comparable to the current capacitive relative humidity (RH) sensors, but with greater applicability. Numerical and experimental methods are used to determine the effects of coating thickness and fibre diameter on the response time and sensitivity of Bragg gratings coated with Pyralin. Transient results indicate that coating thicknesses of less than 4 μm are needed to achieve a response time of 5 s, competitive with commercial capacitive RH sensors. Using thin coatings of ∼2 μm, for a short response time, sensors with reduced fibre diameter were fabricated and tested under steady-state, transient and saturated conditions. By chemical etching from 125 to 20 μm, the sensitivity increased by a factor of 7. Such an increase in sensitivity allows for the resolution and response time of the Pyralin-coated sensor to be comparable to commercial capacitive RH sensors. These characteristics, in addition to the sensor’s rapid recovery from saturation in liquid water, indicate good potential for use of this sensor design in applications where electronic RH sensors are not suitable. (paper)

  17. Development of a rechargeable optical hydrogen peroxide sensor - sensor design and biological application

    DEFF Research Database (Denmark)

    Koren, Klaus; Jensen, Peter Østrup; Kühl, Michael

    2016-01-01

    and readout strategy, H2O2 can be measured with high spatial (∼500 μm) and temporal (∼30 s) resolution. The sensor has a broad applicability both in complex environmental and biomedical systems, as demonstrated by (i) H2O2 concentration profile measurements in natural photosynthetic biofilms under light....... Quantifying H2O2 within biological samples is challenging and often not possible. Here we present a quasi-reversible fiber-optic sensor capable of measuring H2O2 concentrations ranging from 1-100 μM within different biological samples. Based on a Prussian blue/white redox cycle and a simple sensor recharging...

  18. High Tc superconducting magnetic multivibrators for fluxgate magnetic-field sensors

    International Nuclear Information System (INIS)

    Mohri, K.; Uchiyama, T.; Ozeki, A.

    1989-01-01

    Sensitive and quick-response nonlinear inductance characteristics are found for high Tc superconducting (YBa 2 Cu 3 O 7-chi ) disk cores at 77K in which soft magnetic BH hysteresis loops are observed. Various quick response magnetic devices such as modulators, amplifiers and sensors are built using these cores. The magnetizing frequency can be set to more than 20 MHz, which is difficult for conventional ferromagnetic bulk materials such as Permalloy amorphous alloys and ferrite. New quick-response fluxgate type magnetic-field sensors are made using ac and dc voltage sources. The former is used for second-harmonic type sensors, while the latter is for voltage-output multivibrator type sensors. Stable and quick-response sensor characteristics were obtained for two-core type multivibrators

  19. Image acquisition system using on sensor compressed sampling technique

    Science.gov (United States)

    Gupta, Pravir Singh; Choi, Gwan Seong

    2018-01-01

    Advances in CMOS technology have made high-resolution image sensors possible. These image sensors pose significant challenges in terms of the amount of raw data generated, energy efficiency, and frame rate. This paper presents a design methodology for an imaging system and a simplified image sensor pixel design to be used in the system so that the compressed sensing (CS) technique can be implemented easily at the sensor level. This results in significant energy savings as it not only cuts the raw data rate but also reduces transistor count per pixel; decreases pixel size; increases fill factor; simplifies analog-to-digital converter, JPEG encoder, and JPEG decoder design; decreases wiring; and reduces the decoder size by half. Thus, CS has the potential to increase the resolution of image sensors for a given technology and die size while significantly decreasing the power consumption and design complexity. We show that it has potential to reduce power consumption by about 23% to 65%.

  20. Sweat test for cystic fibrosis: Wearable sweat sensor vs. standard laboratory test.

    Science.gov (United States)

    Choi, Dong-Hoon; Thaxton, Abigail; Jeong, In Cheol; Kim, Kain; Sosnay, Patrick R; Cutting, Garry R; Searson, Peter C

    2018-03-23

    Sweat chloride testing for diagnosis of cystic fibrosis (CF) involves sweat induction, collection and handling, and measurement in an analytical lab. We have developed a wearable sensor with an integrated salt bridge for real-time measurement of sweat chloride concentration. Here, in a proof-of-concept study, we compare the performance of the sensor to current clinical practice in CF patients and healthy subjects. Sweat was induced on both forearms of 10 individuals with CF and 10 healthy subjects using pilocarpine iontophoresis. A Macroduct sweat collection device was attached to one arm and sweat was collected for 30 min and then sent for laboratory analysis. A sensor was attached to the other arm and the chloride ion concentration monitored in real time for 30 min using a Bluetooth transceiver and smart phone app. Stable sweat chloride measurements were obtained within 15 min following sweat induction using the wearable sensor. We define the detection time as the time at which the standard deviation of the real-time chloride ion concentration remained below 2 mEq/L for 5 min. The sweat volume for sensor measurements at the detection time was 13.1 ± 11.4 μL (SD), in many cases lower than the minimum sweat volume of 15 μL for conventional testing. The mean difference between sweat chloride concentrations measured by the sensor and the conventional laboratory practice was 6.2 ± 9.5 mEq/L (SD), close to the arm-to-arm variation of about 3 mEq/L. The Pearson correlation coefficient between the two measurements was 0.97 highlighting the excellent agreement between the two methods. A wearable sensor can be used to make real-time measurements of sweat chloride within 15 min following sweat induction, requiring a small sweat volume, and with excellent agreement to standard methods. Copyright © 2018 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

  1. Small Pitch Transition-Edge Sensors with Broadband High Spectral Resolution for Solar Physics

    Science.gov (United States)

    Smith, S. J.; Adams, J. S.; Eckart, M. E.; Smith, Adams; Bailey, C. N.; Bandler, S. R.; Chevenak, J. A.; Finkbeiner, F. M.; Kelley, R. L.; Kilbourne, C. A.; hide

    2012-01-01

    We are developing small pitch transition-edge sensor (TES) X-ray detectors optimized for solar astronomy. These devices are fabricated on thick Si substrates with embedded Cu heat-sink layer. We use 35 x 35 square micrometers Mo/Au TESs with 4.5 micrometer thick Au absorbers. We have tested devices with different geometric absorber stem contact areas with the TES and surrounding substrate area. This allows us to investigate the loss of athermal phonons to the substrate. Results show a correlation between thc stem contact area and a broadening in the spectral line shape indicative of athermal phonon loss. When the contact area is minimized we have obtained exceptional broadband spectral resolution of 1.28 plus or minus 0.03 eV at an energy of 1.5 keV, 1.58 plus or minus 0.07 eV at 5.9 keV and 1.96 plus or minus 0.08 eV at 8 keV. The linearity in the measured gain scale is understood in the context of the longitudinal proximity effect from the electrical bias leads resulting in transition characteristics that are strongly dependent upon TES size.

  2. Performance study of double SOI image sensors

    Science.gov (United States)

    Miyoshi, T.; Arai, Y.; Fujita, Y.; Hamasaki, R.; Hara, K.; Ikegami, Y.; Kurachi, I.; Nishimura, R.; Ono, S.; Tauchi, K.; Tsuboyama, T.; Yamada, M.

    2018-02-01

    Double silicon-on-insulator (DSOI) sensors composed of two thin silicon layers and one thick silicon layer have been developed since 2011. The thick substrate consists of high resistivity silicon with p-n junctions while the thin layers are used as SOI-CMOS circuitry and as shielding to reduce the back-gate effect and crosstalk between the sensor and the circuitry. In 2014, a high-resolution integration-type pixel sensor, INTPIX8, was developed based on the DSOI concept. This device is fabricated using a Czochralski p-type (Cz-p) substrate in contrast to a single SOI (SSOI) device having a single thin silicon layer and a Float Zone p-type (FZ-p) substrate. In the present work, X-ray spectra of both DSOI and SSOI sensors were obtained using an Am-241 radiation source at four gain settings. The gain of the DSOI sensor was found to be approximately three times that of the SSOI device because the coupling capacitance is reduced by the DSOI structure. An X-ray imaging demonstration was also performed and high spatial resolution X-ray images were obtained.

  3. Machine Learning Based Single-Frame Super-Resolution Processing for Lensless Blood Cell Counting

    Directory of Open Access Journals (Sweden)

    Xiwei Huang

    2016-11-01

    Full Text Available A lensless blood cell counting system integrating microfluidic channel and a complementary metal oxide semiconductor (CMOS image sensor is a promising technique to miniaturize the conventional optical lens based imaging system for point-of-care testing (POCT. However, such a system has limited resolution, making it imperative to improve resolution from the system-level using super-resolution (SR processing. Yet, how to improve resolution towards better cell detection and recognition with low cost of processing resources and without degrading system throughput is still a challenge. In this article, two machine learning based single-frame SR processing types are proposed and compared for lensless blood cell counting, namely the Extreme Learning Machine based SR (ELMSR and Convolutional Neural Network based SR (CNNSR. Moreover, lensless blood cell counting prototypes using commercial CMOS image sensors and custom designed backside-illuminated CMOS image sensors are demonstrated with ELMSR and CNNSR. When one captured low-resolution lensless cell image is input, an improved high-resolution cell image will be output. The experimental results show that the cell resolution is improved by 4×, and CNNSR has 9.5% improvement over the ELMSR on resolution enhancing performance. The cell counting results also match well with a commercial flow cytometer. Such ELMSR and CNNSR therefore have the potential for efficient resolution improvement in lensless blood cell counting systems towards POCT applications.

  4. A High Frequency (HF) Inductive Power Transfer Circuit for High Temperature Applications Using SiC Schottky Diodes

    Science.gov (United States)

    Jordan, Jennifer L.; Ponchak, George E.; Spry, David J.; Neudeck, Philip G.

    2018-01-01

    Wireless sensors placed in high temperature environments, such as aircraft engines, are desirable to reduce the mass and complexity of routing wires. While communication with the sensors is straight forward, providing power wirelessly is still a challenge. This paper introduces an inductive wireless power transfer circuit incorporating SiC Schottky diodes and its operation from room temperature (25 C) to 500 C.

  5. Brazing of sensors for high-temperature steam instrumentation systems

    International Nuclear Information System (INIS)

    Moorhead, A.J.; Morgan, C.S.; Woodhouse, J.J.; Reed, R.W.

    1981-01-01

    Procedures are developed for brazing a ceramic-to-metal seal and for laser welding of sensor subassemblies into tube walls, induction brazing thermocouples through a tube wall, and furnace brazing triaxial cables, thermocouples, and a vent tube to a guide tube

  6. Modeling and identification of induction micromachines in microelectromechanical systems applications

    Energy Technology Data Exchange (ETDEWEB)

    Lyshevski, S.E. [Purdue University at Indianapolis (United States). Dept. of Electrical and Computer Engineering

    2002-11-01

    Microelectromechanical systems (MEMS), which integrate motion microstructures, radiating energy microdevices, controlling and signal processing integrated circuits (ICs), are widely used. Rotational and translational electromagnetic based micromachines are used in MEMS as actuators and sensors. Brushless high performance micromachines are the preferable choice in different MEMS applications, and therefore, synchronous and induction micromachines are the best candidates. Affordability, good performance characteristics (efficiency, controllability, robustness, reliability, power and torque densities etc.) and expanded operating envelopes result in a strong interest in the application of induction micromachines. In addition, induction micromachines can be easily fabricated using surface micromachining and high aspect ratio fabrication technologies. Thus, it is anticipated that induction micromachines, controlled using different control algorithms implemented using ICs, will be widely used in MEMS. Controllers can be implemented using specifically designed ICs to attain superior performance, maximize efficiency and controllability, minimize losses and electromagnetic interference, reduce noise and vibration, etc. In order to design controllers, the induction micromachine must be modeled, and its mathematical model parameters must be identified. Using microelectromechanics, nonlinear mathematical models are derived. This paper illustrates the application of nonlinear identification methods as applied to identify the unknown parameters of three phase induction micromachines. Two identification methods are studied. In particular, nonlinear error mapping technique and least squares identification are researched. Analytical and numerical results, as well as practical capabilities and effectiveness, are illustrated, identifying the unknown parameters of a three phase brushless induction micromotor. Experimental results fully support the identification methods. (author)

  7. Determination of strontium and lead isotope ratios of grains using high resolution inductively coupled plasma mass spectrometer with single collector

    International Nuclear Information System (INIS)

    Shinozaki, Miyuki; Ariyama, Kaoru; Kawasaki, Akira; Hirata, Takafumi

    2010-01-01

    A method for determining strontium and lead isotope ratios of grains was developed. The samples investigated in this study were rice, barley and wheat. The samples were digested with nitric acid and hydrogen peroxide, and heated in a heating block. Strontium and lead were separated from the matrix by adding an acid digested solution into a column packed with Sr resin, which has selectivity for the absorption of strontium and lead. Strontium and lead isotope ratios were determined using a high-resolution inductively coupled plasma mass spectrometer (HR-ICP-MS) with a single collector. The intraday relative standard deviations of 87 Sr/ 86 Sr and lead isotope ratios ( 204 Pb/ 206 Pb, 207 Pb/ 206 Pb, 208 Pb/ 206 Pb) by HR-ICP-MS measurements were < 0.06% and around 0.1%, respectively. This method enabled us to determine strontium and lead isotope ratios in two days. (author)

  8. Position-insensitive long range inductive power transfer

    International Nuclear Information System (INIS)

    Kwan, Christopher H; Lawson, James; Yates, David C; Mitcheson, Paul D

    2014-01-01

    This paper presents results of an improved inductive wireless power transfer system for reliable long range powering of sensors with milliwatt-level consumption. An ultra-low power flyback impedance emulator operating in open loop is used to present the optimal load to the receiver's resonant tank. Transmitter power modulation is implemented in order to maintain constant receiver power and to prevent damage to the receiver electronics caused by excessive received voltage. Received power is steady up to 3 m at around 30 mW. The receiver electronics and feedback system consumes 3.1 mW and so with a transmitter input power of 163.3 W the receiver becomes power neutral at 4.75 m. Such an IPT system can provide a reliable alternative to energy harvesters for supplying power concurrently to multiple remote sensors

  9. The absolute radiometric calibration of the advanced very high resolution radiometer

    Science.gov (United States)

    Slater, P. N.; Teillet, P. M.; Ding, Y.

    1988-01-01

    An increasing number of remote sensing investigations require radiometrically calibrated imagery from NOAA Advanced Very High Resolution Radiation (AVHRR) sensors. Although a prelaunch calibration is done for these sensors, there is no capability for monitoring any changes in the in-flight absolute calibration for the visible and near infrared spectral channels. Hence, the possibility of using the reflectance-based method developed at White Sands for in-orbit calibration of LANDSAT Thematic Mapper (TM) and SPOT Haute Resolution Visible (HVR) data to calibrate the AVHRR sensor was investigated. Three diffrent approaches were considered: Method 1 - ground and atmospheric measurements and reference to another calibrated satellite sensor; Method 2 - ground and atmospheric measurements with no reference to another sensor; and Method 3 - no ground and atmospheric measurements but reference to another satellite sensor. The purpose is to describe an investigation on the use of Method 2 to calibrate NOAA-9 AVHRR channels 1 and 2 with the help of ground and atmospheric measurements at Rogers (dry) Lake, Edwards Air Force Base (EAFB) in the Mojave desert of California.

  10. The absolute radiometric calibration of the advanced very high resolution radiometer

    Science.gov (United States)

    Slater, P. N.; Teillet, P. M.; Ding, Y.

    1988-10-01

    An increasing number of remote sensing investigations require radiometrically calibrated imagery from NOAA Advanced Very High Resolution Radiation (AVHRR) sensors. Although a prelaunch calibration is done for these sensors, there is no capability for monitoring any changes in the in-flight absolute calibration for the visible and near infrared spectral channels. Hence, the possibility of using the reflectance-based method developed at White Sands for in-orbit calibration of LANDSAT Thematic Mapper (TM) and SPOT Haute Resolution Visible (HVR) data to calibrate the AVHRR sensor was investigated. Three diffrent approaches were considered: Method 1 - ground and atmospheric measurements and reference to another calibrated satellite sensor; Method 2 - ground and atmospheric measurements with no reference to another sensor; and Method 3 - no ground and atmospheric measurements but reference to another satellite sensor. The purpose is to describe an investigation on the use of Method 2 to calibrate NOAA-9 AVHRR channels 1 and 2 with the help of ground and atmospheric measurements at Rogers (dry) Lake, Edwards Air Force Base (EAFB) in the Mojave desert of California.

  11. Networked Sensor Arrays

    International Nuclear Information System (INIS)

    Tighe, R. J.

    2002-01-01

    A set of independent radiation sensors, coupled with real-time data telemetry, offers the opportunity to run correlation algorithms for the sensor array as well as to incorporate non-radiological data into the system. This may enhance the overall sensitivity of the sensors and provide an opportunity to project the location of a source within the array. In collaboration with Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories (SNL), we have conducted field experiments to test a prototype system. Combining the outputs of a set of distributed sensors permits the correlation that the independent sensor outputs. Combined with additional information such as traffic patterns and velocities, this can reduce random/false detections and enhance detection capability. The principle components of such a system include: (1) A set of radiation sensors. These may be of varying type and complexity, including gamma and/or neutron detectors, gross count and spectral-capable sensors, and low to high energy-resolution sensors. (2) A set of non-radiation sensors. These may include sensors such as vehicle presence and imaging sensors. (3) A communications architecture for near real-time telemetry. Depending upon existing infrastructure and bandwidth requirements, this may be a radio or hard-wire based system. (4) A central command console to pole the sensors, correlate their output, and display the data in a meaningful form to the system operator. Both sensitivity and selectivity are important considerations when evaluating the performance of a detection system. Depending on the application, the optimization of sensitivity as well as the rejection of ''nuisance'' radioactive sources may or may not be critical

  12. Hybrid optical-fibre/geopolymer sensors for structural health monitoring of concrete structures

    Science.gov (United States)

    Perry, M.; Saafi, M.; Fusiek, G.; Niewczas, P.

    2015-04-01

    In this work, we demonstrate hybrid optical-fibre/geopolymer sensors for monitoring temperature, uniaxial strain and biaxial strain in concrete structures. The hybrid sensors detect these measurands via changes in geopolymer electrical impedance, and via optical wavelength measurements of embedded fibre Bragg gratings. Electrical and optical measurements were both facilitated by metal-coated optical fibres, which provided the hybrid sensors with a single, shared physical path for both voltage and wavelength signals. The embedded fibre sensors revealed that geopolymer specimens undergo 2.7 mɛ of shrinkage after one week of curing at 42 °C. After curing, an axial 2 mɛ compression of the uniaxial hybrid sensor led to impedance and wavelength shifts of 7 × 10-2 and -2 × 10-4 respectively. The typical strain resolution in the uniaxial sensor was 100 μ \\varepsilon . The biaxial sensor was applied to the side of a concrete cylinder, which was then placed under 0.6 mɛ of axial, compressive strain. Fractional shifts in impedance and wavelength, used to monitor axial and circumferential strain, were 3 × 10-2 and 4 × 10-5 respectively. The biaxial sensor’s strain resolution was approximately 10 μ \\varepsilon in both directions. Due to several design flaws, the uniaxial hybrid sensor was unable to accurately measure ambient temperature changes. The biaxial sensor, however, successfully monitored local temperature changes with 0.5 °C resolution.

  13. Design and development of ITER high-frequency magnetic sensor

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Y., E-mail: Yunxing.Ma@iter.org [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Fircroft Engineering, Lingley House, 120 Birchwood Point, Birchwood Boulevard, Warrington, WA3 7QH (United Kingdom); Vayakis, G. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Begrambekov, L.B. [National Research Nuclear University (MEPhI), 115409, Moscow, Kashirskoe shosse 31 (Russian Federation); Cooper, J.-J. [Culham Centre for Fusion Energy (CCFE), Abingdon, Oxfordshire OX14 3DB (United Kingdom); Duran, I. [IPP Prague, Za Slovankou 1782/3, 182 00 Prague 8 (Czech Republic); Hirsch, M.; Laqua, H.P. [Max-Planck-Institut für Plasmaphysik, Teilinstitut Greifswald, Wendelsteinstraße 1, D-17491 Greifswald (Germany); Moreau, Ph. [CEA Cadarache, 13108 Saint Paul lez Durance Cedex (France); Oosterbeek, J.W. [Eindhoven University of Technology (TU/e), PO Box 513, 5600 MB Eindhoven (Netherlands); Spuig, P. [CEA Cadarache, 13108 Saint Paul lez Durance Cedex (France); Stange, T. [Max-Planck-Institut für Plasmaphysik, Teilinstitut Greifswald, Wendelsteinstraße 1, D-17491 Greifswald (Germany); Walsh, M. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France)

    2016-11-15

    Highlights: • ITER high-frequency magnetic sensor system has been designed. • Prototypes have been successfully manufactured. • Manufactured prototypes have been tested in various labs. • Test results experimentally validated the design. - Abstract: High-frequency (HF) inductive magnetic sensors are the primary ITER diagnostic set for Toroidal Alfvén Eigenmodes (TAE) detection, while they also supplement low-frequency MHD and plasma equilibrium measurements. These sensors will be installed on the inner surface of ITER vacuum vessel, operated in a harsh environment with considerable neutron/nuclear radiation and high thermal load. Essential components of the HF sensor system, including inductive coil, electron cyclotron heating (ECH) shield, electrical cabling and termination load, have been designed to meet ITER measurement requirements. System performance (e.g. frequency response, thermal conduction) has been assessed. A prototyping campaign was initiated to demonstrate the manufacturability of the designed components. Prototypes have been produced according to the specifications. A series of lab tests have been performed to examine assembly issues and validate electrical and thermo-mechanical aspects of the design. In-situ microwave radiation test has been conducted in the MISTRAL test facility at IPP-Greifswald to experimentally examine the microwave shielding efficiency and structural integrity of the ECH shield. Low-power microwave attenuation measurement and scanning electron microscopic inspection were conducted to probe and examine the quality of the metal coating on the ECH shield.

  14. A Two-Ply Polymer-Based Flexible Tactile Sensor Sheet Using Electric Capacitance

    Directory of Open Access Journals (Sweden)

    Shijie Guo

    2014-01-01

    Full Text Available Traditional capacitive tactile sensor sheets usually have a three-layered structure, with a dielectric layer sandwiched by two electrode layers. Each electrode layer has a number of parallel ribbon-like electrodes. The electrodes on the two electrode layers are oriented orthogonally and each crossing point of the two perpendicular electrode arrays makes up a capacitive sensor cell on the sheet. It is well known that compatibility between measuring precision and resolution is difficult, since decreasing the width of the electrodes is required to obtain a high resolution, however, this may lead to reduction of the area of the sensor cells, and as a result, lead to a low Signal/Noise (S/N ratio. To overcome this problem, a new multilayered structure and related calculation procedure are proposed. This new structure stacks two or more sensor sheets with shifts in position. Both a high precision and a high resolution can be obtained by combining the signals of the stacked sensor sheets. Trial production was made and the effect was confirmed.

  15. AN INDUCTION SENSOR FOR MEASURING CURRENTS OF NANOSECOND RANGE

    Directory of Open Access Journals (Sweden)

    S. P. Shalamov

    2016-11-01

    Full Text Available Purpose. A current meter based on the principle of electromagnetic induction is designed to register the current flowing in the rod lightning. The aim of the article is to describe the way of increasing the sensitivity of the converter by means of their serial communication. Methodology. The recorded current is in the nanosecond range. If compared with other methods, meters based on the principle of electromagnetic induction have several advantages, such as simplicity of construction, reliability, low cost, no need in a power source, relatively high sensitivity. Creation of such a meter is necessary, because in some cases there is no possibility to use a shunt. Transient properties of a meter are determined by the number of turns and the constant of integration. Sensitivity is determined by measuring the number of turns, the coil sectional area, the core material and the integration constant. For measuring the magnetic field pulses with a rise time of 5 ns to 50 ns a meter has turns from 5 to 15. The sensitivity of such a meter is low. When the number of turns is increased, the output signal and the front increase. Earlier described dependencies were used to select the main parameters of the converter. It was based on generally accepted and widely known equivalent circuit. The experience of created earlier pulse magnetic field meters was considered both for measuring the magnetic fields, and large pulse current. Originality. Series connection of converters has the property of a long line. The level of the transient response of the meter is calculated. The influence of parasitic parameters on the type of meter transient response is examined. The shown construction was not previously described. Practical value. The results of meter implementation are given. The design peculiarities of the given measuring instruments are shown.

  16. Distributed pressure sensors for a urethral catheter.

    Science.gov (United States)

    Ahmadi, Mahdi; Rajamani, Rajesh; Timm, Gerald; Sezen, A S

    2015-01-01

    A flexible strip that incorporates multiple pressure sensors and is capable of being fixed to a urethral catheter is developed. The urethral catheter thus instrumented will be useful for measurement of pressure in a human urethra during urodynamic testing in a clinic. This would help diagnose the causes of urinary incontinence in patients. Capacitive pressure sensors are fabricated on a flexible polyimide-copper substrate using surface micromachining processes and alignment/assembly of the top and bottom portions of the sensor strip. The developed sensor strip is experimentally evaluated in an in vitro test rig using a pressure chamber. The sensor strip is shown to have adequate sensitivity and repeatability. While the calibration factors for the sensors on the strip vary from one sensor to another, even the least sensitive sensor has a resolution better than 0.1 psi.

  17. Enhancing Spatial Resolution of Remotely Sensed Imagery Using Deep Learning

    Science.gov (United States)

    Beck, J. M.; Bridges, S.; Collins, C.; Rushing, J.; Graves, S. J.

    2017-12-01

    Researchers at the Information Technology and Systems Center at the University of Alabama in Huntsville are using Deep Learning with Convolutional Neural Networks (CNNs) to develop a method for enhancing the spatial resolutions of moderate resolution (10-60m) multispectral satellite imagery. This enhancement will effectively match the resolutions of imagery from multiple sensors to provide increased global temporal-spatial coverage for a variety of Earth science products. Our research is centered on using Deep Learning for automatically generating transformations for increasing the spatial resolution of remotely sensed images with different spatial, spectral, and temporal resolutions. One of the most important steps in using images from multiple sensors is to transform the different image layers into the same spatial resolution, preferably the highest spatial resolution, without compromising the spectral information. Recent advances in Deep Learning have shown that CNNs can be used to effectively and efficiently upscale or enhance the spatial resolution of multispectral images with the use of an auxiliary data source such as a high spatial resolution panchromatic image. In contrast, we are using both the spatial and spectral details inherent in low spatial resolution multispectral images for image enhancement without the use of a panchromatic image. This presentation will discuss how this technology will benefit many Earth Science applications that use remotely sensed images with moderate spatial resolutions.

  18. Super-resolution post-processing for satellites with yaw-steering capability

    CSIR Research Space (South Africa)

    Van den Dool, R

    2012-10-01

    Full Text Available We describe a method for improving Earth observation satellite image resolution, for specific areas of interest where the sensor design resolution is insufficient. Our method may be used for satellites with yaw-steering capability, such as Nigeria...

  19. Wire-mesh sensors for two-phase flow investigations

    International Nuclear Information System (INIS)

    Prasser, H.M.

    1999-01-01

    In the annual report 1996 a new wire-mesh sensor for gas-liquid flows was presented. It was used to visualise the cavitation bubble behind a fast acting shut-off valve in a pipeline with a time resolution of over 1000 frames per second for the first time. In the last two years the sensor was applied to an air-water flow in a vertical pipeline (inner diameter D=51.2 mm) to study the flow structure in a wide range of superficial velocities. Besides the void fraction distributions, the high resolution of the sensor allows to calculate bubble size distributions from the primary measuring data. It was possible to study the evolution of the bubble size distribution along the flow path with growing distance from the gas injection (inlet length, L). (orig.)

  20. Wire-mesh sensors for two-phase flow investigations

    Energy Technology Data Exchange (ETDEWEB)

    Prasser, H.M.

    1999-07-01

    In the annual report 1996 a new wire-mesh sensor for gas-liquid flows was presented. It was used to visualise the cavitation bubble behind a fast acting shut-off valve in a pipeline with a time resolution of over 1000 frames per second for the first time. In the last two years the sensor was applied to an air-water flow in a vertical pipeline (inner diameter D=51.2 mm) to study the flow structure in a wide range of superficial velocities. Besides the void fraction distributions, the high resolution of the sensor allows to calculate bubble size distributions from the primary measuring data. It was possible to study the evolution of the bubble size distribution along the flow path with growing distance from the gas injection (inlet length, L). (orig.)

  1. Wire-mesh sensors for two-phase flow investigations

    Energy Technology Data Exchange (ETDEWEB)

    Prasser, H.M.

    1999-09-01

    In the annual report 1996 a new wire-mesh sensor for gas-liquid flows was presented. It was used to visualise the cavitation bubble behind a fast acting shut-off valve in a pipeline with a time resolution of over 1000 frames per second for the first time. In the last two years the sensor was applied to an air-water flow in a vertical pipeline (inner diameter D=51.2 mm) to study the flow structure in a wide range of superficial velocities. Besides the void fraction distributions, the high resolution of the sensor allows to calculate bubble size distributions from the primary measuring data. It was possible to study the evolution of the bubble size distribution along the flow path with growing distance from the gas injection (inlet length, L). (orig.)

  2. Low-Power Low-Noise CMOS Imager Design : In Micro-Digital Sun Sensor Application

    NARCIS (Netherlands)

    Xie, N.

    2012-01-01

    A digital sun sensor is superior to an analog sun sensor in aspects of resolution, albedo immunity, and integration. The proposed Micro-Digital Sun Sensor (µDSS) is an autonomous digital sun sensor which is implemented by means of a CMOS image sensor, which is named APS+. The µDSS is designed

  3. A MEMS sensor for microscale force measurements

    International Nuclear Information System (INIS)

    Majcherek, S; Aman, A; Fochtmann, J

    2016-01-01

    This paper describes the development and testing of a new MEMS-based sensor device for microscale contact force measurements. A special MEMS cell was developed to reach higher lateral resolution than common steel-based load cells with foil-type strain gauges as mechanical-electrical converters. The design provided more than one normal force measurement point with spatial resolution in submillimeter range. Specific geometric adaption of the MEMS-device allowed adjustability of its measurement range between 0.5 and 5 N. The thin film nickel-chromium piezo resistors were used to achieve a mechanical-electrical conversion. The production process was realized by established silicon processing technologies such as deep reactive ion etching and vapor deposition (sputtering). The sensor was tested in two steps. Firstly, the sensor characteristics were carried out by application of defined loads at the measurement points by a push-pull tester. As a result, the sensor showed linear behavior. A measurement system analysis (MSA1) was performed to define the reliability of the measurement system. The measured force values had the maximal relative deviation of 1% to average value of 1.97 N. Secondly, the sensor was tested under near-industrial conditions. In this context, the thermal induced relaxation behavior of the electrical connector contact springs was investigated. The handling of emerging problems during the characterization process of the sensor is also described. (paper)

  4. High-resolution three-dimensional imaging of a depleted CMOS sensor using an edge Transient Current Technique based on the Two Photon Absorption process (TPA-eTCT)

    CERN Document Server

    García, Marcos Fernández; Echeverría, Richard Jaramillo; Moll, Michael; Santos, Raúl Montero; Moya, David; Pinto, Rogelio Palomo; Vila, Iván

    2016-01-01

    For the first time, the deep n-well (DNW) depletion space of a High Voltage CMOS sensor has been characterized using a Transient Current Technique based on the simultaneous absorption of two photons. This novel approach has allowed to resolve the DNW implant boundaries and therefore to accurately determine the real depleted volume and the effective doping concentration of the substrate. The unprecedented spatial resolution of this new method comes from the fact that measurable free carrier generation in two photon mode only occurs in a micrometric scale voxel around the focus of the beam. Real three-dimensional spatial resolution is achieved by scanning the beam focus within the sample.

  5. High-resolution three-dimensional imaging of a depleted CMOS sensor using an edge Transient Current Technique based on the Two Photon Absorption process (TPA-eTCT)

    Energy Technology Data Exchange (ETDEWEB)

    García, Marcos Fernández; Sánchez, Javier González; Echeverría, Richard Jaramillo [Instituto de Física de Cantabria (CSIC-UC), Avda. los Castros s/n, E-39005 Santander (Spain); Moll, Michael [CERN, Organisation europénne pour la recherche nucléaire, CH-1211 Genéve 23 (Switzerland); Santos, Raúl Montero [SGIker Laser Facility, UPV/EHU, Sarriena, s/n - 48940 Leioa-Bizkaia (Spain); Moya, David [Instituto de Física de Cantabria (CSIC-UC), Avda. los Castros s/n, E-39005 Santander (Spain); Pinto, Rogelio Palomo [Departamento de Ingeniería Electrónica, Escuela Superior de Ingenieros Universidad de Sevilla (Spain); Vila, Iván [Instituto de Física de Cantabria (CSIC-UC), Avda. los Castros s/n, E-39005 Santander (Spain)

    2017-02-11

    For the first time, the deep n-well (DNW) depletion space of a High Voltage CMOS sensor has been characterized using a Transient Current Technique based on the simultaneous absorption of two photons. This novel approach has allowed to resolve the DNW implant boundaries and therefore to accurately determine the real depleted volume and the effective doping concentration of the substrate. The unprecedented spatial resolution of this new method comes from the fact that measurable free carrier generation in two photon mode only occurs in a micrometric scale voxel around the focus of the beam. Real three-dimensional spatial resolution is achieved by scanning the beam focus within the sample.

  6. High-resolution room-temperature sample scanning superconducting quantum interference device microscope configurable for geological and biomagnetic applications

    Science.gov (United States)

    Fong, L. E.; Holzer, J. R.; McBride, K. K.; Lima, E. A.; Baudenbacher, F.; Radparvar, M.

    2005-05-01

    We have developed a scanning superconducting quantum interference device (SQUID) microscope system with interchangeable sensor configurations for imaging magnetic fields of room-temperature (RT) samples with submillimeter resolution. The low-critical-temperature (Tc) niobium-based monolithic SQUID sensors are mounted on the tip of a sapphire and thermally anchored to the helium reservoir. A 25μm sapphire window separates the vacuum space from the RT sample. A positioning mechanism allows us to adjust the sample-to-sensor spacing from the top of the Dewar. We achieved a sensor-to-sample spacing of 100μm, which could be maintained for periods of up to four weeks. Different SQUID sensor designs are necessary to achieve the best combination of spatial resolution and field sensitivity for a given source configuration. For imaging thin sections of geological samples, we used a custom-designed monolithic low-Tc niobium bare SQUID sensor, with an effective diameter of 80μm, and achieved a field sensitivity of 1.5pT/Hz1/2 and a magnetic moment sensitivity of 5.4×10-18Am2/Hz1/2 at a sensor-to-sample spacing of 100μm in the white noise region for frequencies above 100Hz. Imaging action currents in cardiac tissue requires a higher field sensitivity, which can only be achieved by compromising spatial resolution. We developed a monolithic low-Tc niobium multiloop SQUID sensor, with sensor sizes ranging from 250μm to 1mm, and achieved sensitivities of 480-180fT /Hz1/2 in the white noise region for frequencies above 100Hz, respectively. For all sensor configurations, the spatial resolution was comparable to the effective diameter and limited by the sensor-to-sample spacing. Spatial registration allowed us to compare high-resolution images of magnetic fields associated with action currents and optical recordings of transmembrane potentials to study the bidomain nature of cardiac tissue or to match petrography to magnetic field maps in thin sections of geological samples.

  7. Detection of clinical mastitis with sensor data from automatic milking systems is improved by using decision-tree induction.

    Science.gov (United States)

    Kamphuis, C; Mollenhorst, H; Heesterbeek, J A P; Hogeveen, H

    2010-08-01

    The objective was to develop and validate a clinical mastitis (CM) detection model by means of decision-tree induction. For farmers milking with an automatic milking system (AMS), it is desirable that the detection model has a high level of sensitivity (Se), especially for more severe cases of CM, at a very high specificity (Sp). In addition, an alert for CM should be generated preferably at the quarter milking (QM) at which the CM infection is visible for the first time. Data were collected from 9 Dutch dairy herds milking automatically during a 2.5-yr period. Data included sensor data (electrical conductivity, color, and yield) at the QM level and visual observations of quarters with CM recorded by the farmers. Visual observations of quarters with CM were combined with sensor data of the most recent automatic milking recorded for that same quarter, within a 24-h time window before the visual assessment time. Sensor data of 3.5 million QM were collected, of which 348 QM were combined with a CM observation. Data were divided into a training set, including two-thirds of all data, and a test set. Cows in the training set were not included in the test set and vice versa. A decision-tree model was trained using only clear examples of healthy (n=24,717) or diseased (n=243) QM. The model was tested on 105 QM with CM and a random sample of 50,000 QM without CM. While keeping the Se at a level comparable to that of models currently used by AMS, the decision-tree model was able to decrease the number of false-positive alerts by more than 50%. At an Sp of 99%, 40% of the CM cases were detected. Sixty-four percent of the severe CM cases were detected and only 12.5% of the CM that were scored as watery milk. The Se increased considerably from 40% to 66.7% when the time window increased from less than 24h before the CM observation, to a time window from 24h before to 24h after the CM observation. Even at very wide time windows, however, it was impossible to reach an Se of 100

  8. Three-dimensional numerical modeling of an induction heated injection molding tool with flow visualization

    DEFF Research Database (Denmark)

    Guerrier, Patrick; Tosello, Guido; Nielsen, Kaspar Kirstein

    2016-01-01

    , comparison of the induction heating and filling of the cavity is compared and validated with simulations. Two polymer materials ABS and HVPC were utilized during the injection molding experiments carried out in this work. A nonlinear electromagnetic model was employed to establish an effective linear......Using elevated mold temperature is known to have a positive influence of final injection molded parts. Induction heating is a method that allow obtaining a rapid thermal cycle, so the overall molding cycle time is not increased. In the present research work, an integrated multi-turn induction...... heating coil has been developed and assembled into an injection molding tool provided with a glass window, so the effect of induction heating can directly be captured by a high speed camera. In addition, thermocouples and pressure sensors are also installed, and together with the high speed videos...

  9. A radiographic imaging system based upon a 2-D silicon microstrip sensor

    CERN Document Server

    Papanestis, A; Corrin, E; Raymond, M; Hall, G; Triantis, F A; Manthos, N; Evagelou, I; Van den Stelt, P; Tarrant, T; Speller, R D; Royle, G F

    2000-01-01

    A high resolution, direct-digital detector system based upon a 2-D silicon microstrip sensor has been designed, built and is undergoing evaluation for applications in dentistry and mammography. The sensor parameters and image requirements were selected using Monte Carlo simulations. Sensors selected for evaluation have a strip pitch of 50mum on the p-side and 80mum on the n-side. Front-end electronics and data acquisition are based on the APV6 chip and were adapted from systems used at CERN for high-energy physics experiments. The APV6 chip is not self-triggering so data acquisition is done at a fixed trigger rate. This paper describes the mammographic evaluation of the double sided microstrip sensor. Raw data correction procedures were implemented to remove the effects of dead strips and non-uniform response. Standard test objects (TORMAX) were used to determine limiting spatial resolution and detectability. MTFs were determined using the edge response. The results indicate that the spatial resolution of the...

  10. Investigation of a low-cost magneto-inductive magnetometer for space science applications

    Directory of Open Access Journals (Sweden)

    L. H. Regoli

    2018-03-01

    Full Text Available A new sensor for measuring low-amplitude magnetic fields that is ideal for small spacecraft is presented. The novel measurement principle enables the fabrication of a low-cost sensor with low power consumption and with measuring capabilities that are comparable to recent developments for CubeSat applications. The current magnetometer, a software-modified version of a commercial sensor, is capable of detecting fields with amplitudes as low as 8.7 nT at 40 Hz and 2.7 nT at 1 Hz, with a noise floor of 4 pT∕Hz at 1 Hz. The sensor has a linear response to less than 3 % over a range of ±100 000 nT. All of these features make the magneto-inductive principle a promising technology for the development of magnetic sensors for both space-borne and ground-based applications to study geomagnetic activity.

  11. Breaking The Millisecond Barrier On SpiNNaker: Implementing Asynchronous Event-Based Plastic Models With Microsecond Resolution

    Directory of Open Access Journals (Sweden)

    Xavier eLagorce

    2015-06-01

    Full Text Available Spike-based neuromorphic sensors such as retinas and cochleas, change the way in which the world is sampled. Instead of producing data sampled at a constant rate, these sensors output spikes that are asynchronous and event driven. The event-based nature of neuromorphic sensors implies a complete paradigm shift in current perception algorithms towards those that emphasize the importance of precise timing. The spikes produced by these sensors usually have a time resolution in the order of microseconds. This high temporal resolution is a crucial factor in learning tasks. It is also widely used in the field of biological neural networks. Sound localization for instance relies on detecting time lags between the two ears which, in the barn owl, reaches a temporal resolution of 5 microseconds. Current available neuromorphic computation platforms such as SpiNNaker often limit their users to a time resolution in the order of milliseconds that is not compatible with the asynchronous outputs of neuromorphic sensors. To overcome these limitations and allow for the exploration of new types of neuromorphic computing architectures, we introduce a novel software framework on the SpiNNaker platform. This framework allows for simulations of spiking networks and plasticity mechanisms using a completely asynchronous and event-based scheme running with a microsecond time resolution. Results on two example networks using this new implementation are presented.

  12. On the timing performance of thin planar silicon sensors

    Science.gov (United States)

    Akchurin, N.; Ciriolo, V.; Currás, E.; Damgov, J.; Fernández, M.; Gallrapp, C.; Gray, L.; Junkes, A.; Mannelli, M.; Martin Kwok, K. H.; Meridiani, P.; Moll, M.; Nourbakhsh, S.; Pigazzini, S.; Scharf, C.; Silva, P.; Steinbrueck, G.; de Fatis, T. Tabarelli; Vila, I.

    2017-07-01

    We report on the signal timing capabilities of thin silicon sensors when traversed by multiple simultaneous minimum ionizing particles (MIP). Three different planar sensors, with depletion thicknesses 133, 211, and 285 μm, have been exposed to high energy muons and electrons at CERN. We describe signal shape and timing resolution measurements as well as the response of these devices as a function of the multiplicity of MIPs. We compare these measurements to simulations where possible. We achieve better than 20 ps timing resolution for signals larger than a few tens of MIPs.

  13. Possibilities of High Resolution Inductively Coupled Plasma Optical Emission Spectrometry in the Determination of Trace Elements in Environmental Materials

    Directory of Open Access Journals (Sweden)

    Nikolaya Velitchkova

    2013-01-01

    Full Text Available This paper presents new quantitative data for the spectral interferences obtained by high resolution 40.68 MHz radial viewing inductively coupled plasma optical emission spectrometry (HR-ICP-OES in the determination of Zn, Cd, Sb, Cu, Mn, Pb, Sn, Cr, U, and Ba in environmental materials in the presence of a complex matrix, containing Al, Ca, Fe, Mg, and Ti. The -concept for quantification of spectral interferences was used. The optimum line selection for trace analysis of a variety of multicomponent matrices requires the choice of prominent lines, which are free or negligibly influenced by line interference problems. The versatility of -concept as basic methodology was experimentally demonstrated in the determination of trace of elements in soil and drinking water. The detection limits are lower in comparison with corresponding threshold concentration levels for soil and drinking water in accordance with environmental regulations. This paper shows the possibilities of present day ICP-OES equipment in the direct determination of trace elements (without preconcentration of impurities in environmental samples.

  14. TOPOGRAPHIC LOCAL ROUGHNESS EXTRACTION AND CALIBRATION OVER MARTIAN SURFACE BY VERY HIGH RESOLUTION STEREO ANALYSIS AND MULTI SENSOR DATA FUSION

    Directory of Open Access Journals (Sweden)

    J. R. Kim

    2012-08-01

    Full Text Available The planetary topography has been the main focus of the in-orbital remote sensing. In spite of the recent development in active and passive sensing technologies to reconstruct three dimensional planetary topography, the resolution limit of range measurement is theoretically and practically obvious. Therefore, the extraction of inner topographical height variation within a measurement spot is very challengeable and beneficial topic for the many application fields such as the identification of landform, Aeolian process analysis and the risk assessment of planetary lander. In this study we tried to extract the topographic height variation over martian surface so called local roughness with different approaches. One method is the employment of laser beam broadening effect and the other is the multi angle optical imaging. Especially, in both cases, the precise pre processing employing high accuracy DTM (Digital Terrain Model were introduced to minimise the possible errors. Since a processing routine to extract very high resolution DTMs up to 0.5–4m grid-spacing from HiRISE (High Resolution Imaging Science Experiment and 20–10m DTM from CTX (Context Camera stereo pair has been developed, it is now possible to calibrate the local roughness compared with the calculated height variation from very high resolution topographic products. Three testing areas were chosen and processed to extract local roughness with the co-registered multi sensor data sets. Even though, the extracted local roughness products are still showing the strong correlation with the topographic slopes, we demonstrated the potentials of the height variations extraction and calibration methods.

  15. HiRLoc: High-resolution Robust Localization for Wireless Sensor Networks

    National Research Council Canada - National Science Library

    Lazos, Loukas; Poovendran, Radha

    2005-01-01

    ..., or the complexity of the hardware of each reference point. In HiRLoc, sensors determine their location based on the intersection of the areas covered by the beacons transmitted by multiple reference points...

  16. Combined Simulation of a Micro Permanent Magnetic Linear Contactless Displacement Sensor

    Directory of Open Access Journals (Sweden)

    Jing Gao

    2010-09-01

    Full Text Available The permanent magnetic linear contactless displacement (PLCD sensor is a new type of displacement sensor operating on the magnetic inductive principle. It has many excellent properties and has already been used for many applications. In this article a Micro-PLCD sensor which can be used for microelectromechanical system (MEMS measurements is designed and simulated with the CST EM STUDIO® software, including building a virtual model, magnetostatic calculations, low frequency calculations, steady current calculations and thermal calculations. The influence of some important parameters such as air gap dimension, working frequency, coil current and eddy currents etc. is studied in depth.

  17. Determination of 230Th/232Th and correct methods by High Resolution Inductively Coupled Plasma Mass Spectrometry

    International Nuclear Information System (INIS)

    Xie Shengkai; Guo Dongfa; Tan Jing; Zhang Yanhui; Huang Qiuhong; Gao Aiguo

    2013-01-01

    It is very important for the rapid and reliable determination of 230 Th/ 232 Th in the thorium-230 dating. A method of measuring 230 Th/ 232 Th in natural samples by high resolution inductively coupled plasma mass spectrometer (HR-ICP-MS) was developed on the base of our former work. The precise and accurate of natural 230 Th in geology samples is challenging, as the peak tailing to the high intensity of neighboring peak at 232 Th and the mass discrimination of the instrument. The peak tailing of 238 U to 236 U was used to decrease the peak tailing effect of 232 Th to 230 Th. The mass discrimination factor K between ture and measured isotope ratio was calculated after measuring different 230 Th/ 232 Th ratio solutions. Lab used standard samples was digested in mixed acids of HN0 3 -HF-HCI-HCl0 4 , and separated by the Bio-rad AG 1 × 8 Cl - resin. The measurement method of blank-standard-blank-sample procession was used to determinate the 230 Th/ 232 Th. The measured result of 230 Th/ 232 Th was at (7.29 ± 0.34) × 10 -6 , which agreed with the reference value of (7.33 ± 0.17) × 10 -6 . (authors)

  18. Characterising Dynamic Instability in High Water-Cut Oil-Water Flows Using High-Resolution Microwave Sensor Signals

    Science.gov (United States)

    Liu, Weixin; Jin, Ningde; Han, Yunfeng; Ma, Jing

    2018-06-01

    In the present study, multi-scale entropy algorithm was used to characterise the complex flow phenomena of turbulent droplets in high water-cut oil-water two-phase flow. First, we compared multi-scale weighted permutation entropy (MWPE), multi-scale approximate entropy (MAE), multi-scale sample entropy (MSE) and multi-scale complexity measure (MCM) for typical nonlinear systems. The results show that MWPE presents satisfied variability with scale and anti-noise ability. Accordingly, we conducted an experiment of vertical upward oil-water two-phase flow with high water-cut and collected the signals of a high-resolution microwave resonant sensor, based on which two indexes, the entropy rate and mean value of MWPE, were extracted. Besides, the effects of total flow rate and water-cut on these two indexes were analysed. Our researches show that MWPE is an effective method to uncover the dynamic instability of oil-water two-phase flow with high water-cut.

  19. Development of induction current acquisition device based on ARM

    Science.gov (United States)

    Ji, Yanju; Liu, Xiyang; Huang, Wanyu; Yao, Jiang; Yuan, Guiyang; Hui, Luan; Guan, Shanshan

    2018-03-01

    We design an induction current acquisition device based on ARM in order to realize high resolution and high sampling rate of acquisition for the induction current in wire-loop. Considering its characteristics of fast attenuation and small signal amplitude, we use the method of multi-path fusion for noise suppression. In the paper, the design is carried out from three aspects of analog circuit and device selection, independent power supply structure and the electromagnetic interference suppression of high frequency. DMA and ping-pong buffer, as a new data transmission technology, solves real time storage problem of massive data. The performance parameters of ARM acquisition device are tested. The comparison test of ARM acquisition device and cRIO acquisition device is performed at different time constants. The results show that it has 120dB dynamic range, 47kHz bandwidth, 96kHz sampling rate, 5μV the smallest resolution, and its average error value is not more than 4%, which proves the high accuracy and stability of the device.

  20. High-Speed Tactile Sensing for Array-Type Tactile Sensor and Object Manipulation Based on Tactile Information

    Directory of Open Access Journals (Sweden)

    Wataru Fukui

    2011-01-01

    Full Text Available We have developed a universal robot hand with tactile and other sensors. An array-type tactile sensor is crucial for dexterous manipulation of objects using a robotic hand, since this sensor can measure the pressure distribution on finger pads. The sensor has a very high resolution, and the shape of a grasped object can be classified by using this sensor. The more the number of measurement points provided, the higher the accuracy of the classification, but with a corresponding lengthening of the measurement cycle. In this paper, the problem of slow response time is resolved by using software for an array-type tactile sensor with high resolution that emulates the human sensor system. The validity of the proposed method is demonstrated through experiments.

  1. Response simulation and theoretical calibration of a dual-induction resistivity LWD tool

    Science.gov (United States)

    Xu, Wei; Ke, Shi-Zhen; Li, An-Zong; Chen, Peng; Zhu, Jun; Zhang, Wei

    2014-03-01

    In this paper, responses of a new dual-induction resistivity logging-while-drilling (LWD) tool in 3D inhomogeneous formation models are simulated by the vector finite element method (VFEM), the influences of the borehole, invaded zone, surrounding strata, and tool eccentricity are analyzed, and calibration loop parameters and calibration coefficients of the LWD tool are discussed. The results show that the tool has a greater depth of investigation than that of the existing electromagnetic propagation LWD tools and is more sensitive to azimuthal conductivity. Both deep and medium induction responses have linear relationships with the formation conductivity, considering optimal calibration loop parameters and calibration coefficients. Due to the different depths of investigation and resolution, deep induction and medium induction are affected differently by the formation model parameters, thereby having different correction factors. The simulation results can provide theoretical references for the research and interpretation of the dual-induction resistivity LWD tools.

  2. Wearable, wireless gas sensors using highly stretchable and transparent structures of nanowires and graphene

    Science.gov (United States)

    Park, Jihun; Kim, Joohee; Kim, Kukjoo; Kim, So-Yun; Cheong, Woon Hyung; Park, Kyeongmin; Song, Joo Hyeb; Namgoong, Gyeongho; Kim, Jae Joon; Heo, Jaeyeong; Bien, Franklin; Park, Jang-Ung

    2016-05-01

    Herein, we report the fabrication of a highly stretchable, transparent gas sensor based on silver nanowire-graphene hybrid nanostructures. Due to its superb mechanical and optical characteristics, the fabricated sensor demonstrates outstanding and stable performances even under extreme mechanical deformation (stable until 20% of strain). The integration of a Bluetooth system or an inductive antenna enables the wireless operation of the sensor. In addition, the mechanical robustness of the materials allows the device to be transferred onto various nonplanar substrates, including a watch, a bicycle light, and the leaves of live plants, thereby achieving next-generation sensing electronics for the `Internet of Things' area.Herein, we report the fabrication of a highly stretchable, transparent gas sensor based on silver nanowire-graphene hybrid nanostructures. Due to its superb mechanical and optical characteristics, the fabricated sensor demonstrates outstanding and stable performances even under extreme mechanical deformation (stable until 20% of strain). The integration of a Bluetooth system or an inductive antenna enables the wireless operation of the sensor. In addition, the mechanical robustness of the materials allows the device to be transferred onto various nonplanar substrates, including a watch, a bicycle light, and the leaves of live plants, thereby achieving next-generation sensing electronics for the `Internet of Things' area. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01468b

  3. Scalable fabric tactile sensor arrays for soft bodies

    Science.gov (United States)

    Day, Nathan; Penaloza, Jimmy; Santos, Veronica J.; Killpack, Marc D.

    2018-06-01

    Soft robots have the potential to transform the way robots interact with their environment. This is due to their low inertia and inherent ability to more safely interact with the world without damaging themselves or the people around them. However, existing sensing for soft robots has at least partially limited their ability to control interactions with their environment. Tactile sensors could enable soft robots to sense interaction, but most tactile sensors are made from rigid substrates and are not well suited to applications for soft robots which can deform. In addition, the benefit of being able to cheaply manufacture soft robots may be lost if the tactile sensors that cover them are expensive and their resolution does not scale well for manufacturability. This paper discusses the development of a method to make affordable, high-resolution, tactile sensor arrays (manufactured in rows and columns) that can be used for sensorizing soft robots and other soft bodies. However, the construction results in a sensor array that exhibits significant amounts of cross-talk when two taxels in the same row are compressed. Using the same fabric-based tactile sensor array construction design, two different methods for cross-talk compensation are presented. The first uses a mathematical model to calculate a change in resistance of each taxel directly. The second method introduces additional simple circuit components that enable us to isolate each taxel electrically and relate voltage to force directly. Fabric sensor arrays are demonstrated for two different soft-bodied applications: an inflatable single link robot and a human wrist.

  4. Laboratory course on silicon sensors

    CERN Document Server

    Crescio, E; Roe, S; Rudge, A

    2003-01-01

    The laboratory course consisted of four different mini sessions, in order to give the student some hands-on experience on various aspects of silicon sensors and related integrated electronics. The four experiments were. 1. Characterisation of silicon diodes for particle detection 2. Study of noise performance of the Viking readout circuit 3. Study of the position resolution of a silicon microstrip sensor 4. Study of charge transport in silicon with a fast amplifier The data in the following were obtained during the ICFA school by the students.

  5. Long-Term Large-Scale Bias-Adjusted Precipitation Estimates at High Spatial and Temporal Resolution Derived from the National Mosaic and Multi-Sensor QPE (NMQ/Q2) Precipitation Reanalysis over CONUS

    Science.gov (United States)

    Prat, O. P.; Nelson, B. R.; Stevens, S. E.; Seo, D. J.; Kim, B.

    2014-12-01

    The processing of radar-only precipitation via the reanalysis from the National Mosaic and Multi-Sensor Quantitative (NMQ/Q2) based on the WSR-88D Next-generation Radar (Nexrad) network over Continental United States (CONUS) is nearly completed for the period covering from 2000 to 2012. This important milestone constitutes a unique opportunity to study precipitation processes at a 1-km spatial resolution for a 5-min temporal resolution. However, in order to be suitable for hydrological, meteorological and climatological applications, the radar-only product needs to be bias-adjusted and merged with in-situ rain gauge information. Rain gauge networks such as the Hydrometeorological Automated Data System (HADS), the Automated Surface Observing Systems (ASOS), the Climate Reference Network (CRN), and the Global Historical Climatology Network - Daily (GHCN-D) are used to adjust for those biases and to merge with the radar only product to provide a multi-sensor estimate. The challenges related to incorporating non-homogeneous networks over a vast area and for a long-term record are enormous. Among the challenges we are facing are the difficulties incorporating differing resolution and quality surface measurements to adjust gridded estimates of precipitation. Another challenge is the type of adjustment technique. After assessing the bias and applying reduction or elimination techniques, we are investigating the kriging method and its variants such as simple kriging (SK), ordinary kriging (OK), and conditional bias-penalized Kriging (CBPK) among others. In addition we hope to generate estimates of uncertainty for the gridded estimate. In this work the methodology is presented as well as a comparison between the radar-only product and the final multi-sensor QPE product. The comparison is performed at various time scales from the sub-hourly, to annual. In addition, comparisons over the same period with a suite of lower resolution QPEs derived from ground based radar

  6. Miniature scientific-grade induction magnetometer for cubesats

    Science.gov (United States)

    Pronenko, Vira

    2017-04-01

    One of the main areas of space research is the study and forecasting of space weather. The society is more and more depending nowadays on satellite technology and communications, so it is vital to understand the physical process in the solar-terrestrial system which may disturb them. Besides the solar radiation and Space Weather effects, the Earth's ionosphere is also modified by the ever increasing industrial activity. There have been also multiple reports relating VLF and ELF wave activity to atmospheric storms and geological processes, such as earthquakes and volcanic activity. For advancing in these fields, the AC magnetic field permanent monitoring is crucial. Using the cubesat technology would allow increasing the number of measuring points dramatically. It is necessary to mention that the cubesats use for scientific research requires the miniaturization of scientific sensors what is a serious problem because the reduction of their dimensions leads, as a rule, to the parameters degradation, especially of sensitivity threshold. Today, there is no basic model of a sensitive miniature induction magnetometer. Even the smallest one of the known - for the Bepi-Colombo mission to Mercury - is too big for cubesats. The goal of the present report is to introduce the new design of miniature three-component sensor for measurement of alternative vector magnetic fields - induction magnetometer (IM). The study directions were concentrated on the ways and possibilities to create the miniature magnetometer with best combination of parameters. For this a set of scientific and technological problems, mostly aimed at the sensor construction improvement, was solved. The most important parameter characterizing magnetometer quality is its own magnetic noise level (NL). The analysis of the NL influencing factors is made and the ways to decrease it are discussed in the report. Finally, the LEMI-151 IM was developed for the SEAM cubesat mission with optimal performances within the

  7. Optofluidic refractive index sensor based on partial reflection

    Science.gov (United States)

    Zhang, Lei; Zhang, Zhang; Wang, Yichuan; Ye, Meiying; Fang, Wei; Tong, Limin

    2017-06-01

    We demonstrate a novel optofluidic refractive index (RI) sensor with high sensitivity and wide dynamic range based on partial reflection. Benefited from the divergent incident light and the output fibers with different tilting angles, we have achieved highly sensitive RI sensing in a wide range from 1.33 to 1.37. To investigate the effectiveness of this sensor, we perform a measurement of RI with a resolution of ca. 5.0×10-5 refractive index unit (RIU) for ethylene glycol solutions. Also, we have measured a series of liquid solutions by using different output fibers, achieving a resolution of ca. 0.52 mg/mL for cane surge. The optofluidic RI sensor takes advantage of the high sensitivity, wide dynamic range, small footprint, and low sample consumption, as well as the efficient fluidic sample delivery, making it useful for applications in the food industry.

  8. System overview and applications of a panoramic imaging perimeter sensor

    International Nuclear Information System (INIS)

    Pritchard, D.A.

    1995-01-01

    This paper presents an overview of the design and potential applications of a 360-degree scanning, multi-spectral intrusion detection sensor. This moderate-resolution, true panoramic imaging sensor is intended for exterior use at ranges from 50 to 1,500 meters. This Advanced Exterior Sensor (AES) simultaneously uses three sensing technologies (infrared, visible, and radar) along with advanced data processing methods to provide low false-alarm intrusion detection, tracking, and immediate visual assessment. The images from the infrared and visible detector sets and the radar range data are updated as the sensors rotate once per second. The radar provides range data with one-meter resolution. This sensor has been designed for easy use and rapid deployment to cover wide areas beyond or in place of typical perimeters, and tactical applications around fixed or temporary high-value assets. AES prototypes are in development. Applications discussed in this paper include replacements, augmentations, or new installations at fixed sites where topological features, atmospheric conditions, environmental restrictions, ecological regulations, and archaeological features limit the use of conventional security components and systems

  9. Development of a metallic magnetic calorimeter for high resolution spectroscopy

    International Nuclear Information System (INIS)

    Linck, M.

    2007-01-01

    In this thesis the development of a metallic magnetic calorimeter for high resolution detection of single x-ray quanta is described. The detector consists of an X-ray absorber and a paramagnetic temperature sensor. The raise in temperature of the paramagnetic sensor due to the absorption of a single X-ray is measured by the change in magnetization of the sensor using a low-noise SQUID magnetometer. The thermodynamic properties of the detector can be described by a theoretical model based on a mean field approximation. This allows for an optimization of the detector design with respect to signal size. The maximal archivable energy resolution is limited by thermodynamic energy fluctuations between absorber, heat bath and thermometer. An interesting field of application for a metallic magnetic calorimeter is X-ray astronomy and the investigation of X-ray emitting objects. Through high-resolution X-ray spectroscopy it is possible to obtain information about physical processes of even far distant objects. The magnetic calorimeter that was developed in this thesis has a metallic absorber with a quantum efficiency of 98% at 6 keV. The energy resolution of the magnetic calorimeter is EFWHM=2.7 eV at 5.9 keV. The deviation of the detector response from a linear behavior of the detector is only 0.8% at 5.9 keV. (orig.)

  10. A small-displacement sensor using total internal reflection theory and surface plasmon resonance technology for heterodyne interferometry.

    Science.gov (United States)

    Wang, Shinn-Fwu

    2009-01-01

    A small-displacement sensor based on total-internal reflection theory and surface plasmon resonance technology is proposed for use in heterodyne interferometry. A small displacement can be obtained simply by measuring the variation in phase difference between s- and p-polarization states with the small-displacement sensor. The theoretical displacement resolution of the small-displacement sensor can reach 0.45 nm. The sensor has some additional advantages, e.g., a simple optical setup, high resolution, high sensitivity and rapid measurement. Its feasibility is also demonstrated.

  11. Combining ground penetrating radar and electromagnetic induction for industrial site characterization

    Science.gov (United States)

    Van De Vijver, Ellen; Van Meirvenne, Marc; Saey, Timothy; De Smedt, Philippe; Delefortrie, Samuël; Seuntjens, Piet

    2014-05-01

    Industrial sites pose specific challenges to the conventional way of characterizing soil and groundwater properties through borehole drilling and well monitoring. The subsurface of old industrial sites typically exhibits a large heterogeneity resulting from various anthropogenic interventions, such as the dumping of construction and demolition debris and industrial waste. Also larger buried structures such as foundations, utility infrastructure and underground storage tanks are frequently present. Spills and leaks from industrial activities and leaching of buried waste may have caused additional soil and groundwater contamination. Trying to characterize such a spatially heterogeneous medium with a limited number of localized observations is often problematic. The deployment of mobile proximal soil sensors may be a useful tool to fill up the gaps in between the conventional observations, as these enable measuring soil properties in a non-destructive way. However, because the output of most soil sensors is affected by more than one soil property, the application of only one sensor is generally insufficient to discriminate between all contributing factors. To test a multi-sensor approach, we selected a study area which was part of a former manufactured gas plant site located in one of the seaport areas of Belgium. It has a surface area of 3400 m² and was the location of a phosphate production unit that was demolished at the end of the 1980s. Considering the long and complex history of the site we expected to find a typical "industrial" soil. Furthermore, the studied area was located between buildings of the present industry, entailing additional practical challenges such as the presence of active utilities and aboveground obstacles. The area was surveyed using two proximal soil sensors based on two different geophysical methods: ground penetrating radar (GPR), to image contrasts in dielectric permittivity, and electromagnetic induction (EMI), to measure the apparent

  12. Thin-Film Magnetic-Field-Response Fluid-Level Sensor for Non-Viscous Fluids

    Science.gov (United States)

    Woodard, Stanley E.; Shams, Qamar A.; Fox, Robert L.; Taylor, Bryant D.

    2008-01-01

    An innovative method has been developed for acquiring fluid-level measurements. This method eliminates the need for the fluid-level sensor to have a physical connection to a power source or to data acquisition equipment. The complete system consists of a lightweight, thin-film magnetic-field-response fluid-level sensor (see Figure 1) and a magnetic field response recorder that was described in Magnetic-Field-Response Measurement-Acquisition System (LAR-16908-1), NASA Tech Briefs, Vol. 30, No. 6 (June 2006), page 28. The sensor circuit is a capacitor connected to an inductor. The response recorder powers the sensor using a series of oscillating magnetic fields. Once electrically active, the sensor responds with its own harmonic magnetic field. The sensor will oscillate at its resonant electrical frequency, which is dependent upon the capacitance and inductance values of the circuit.

  13. A Float Type Liquid Level Measuring System Using a Modified Inductive Transducer

    Directory of Open Access Journals (Sweden)

    Samik MARICK

    2014-11-01

    Full Text Available Float type liquid level sensor is generally used as a very simple technique for local level indication and level switching. In the present paper a technique has been proposed to transmit the measured liquid level signal of a float type sensor at remote terminal using a modified differential inductance type electromechanical transducer. The theoretical characteristic equation of this transducer has been derived. A prototype unit of the transducer has been developed and fabricated and its performance characteristic has been experimentally determined. The experimental results are reported in the paper. From experimental data, a very good linear characteristic of the proposed level transducer has been observed.

  14. Wireless Monitoring of Induction Machine Rotor Physical Variables

    Directory of Open Access Journals (Sweden)

    Jefferson Doolan Fernandes

    2017-11-01

    Full Text Available With the widespread use of electric machines, there is a growing need to extract information from the machines to improve their control systems and maintenance management. The present work shows the development of an embedded system to perform the monitoring of the rotor physical variables of a squirrel cage induction motor. The system is comprised of: a circuit to acquire desirable rotor variable(s and value(s that send it to the computer; a rectifier and power storage circuit that converts an alternating current in a continuous current but also stores energy for a certain amount of time to wait for the motor’s shutdown; and a magnetic generator that harvests energy from the rotating field to power the circuits mentioned above. The embedded system is set on the rotor of a 5 HP squirrel cage induction motor, making it difficult to power the system because it is rotating. This problem can be solved with the construction of a magnetic generator device to avoid the need of using batteries or collector rings and will send data to the computer using a wireless NRF24L01 module. For the proposed system, initial validation tests were made using a temperature sensor (DS18b20, as this variable is known as the most important when identifying the need for maintenance and control systems. Few tests have shown promising results that, with further improvements, can prove the feasibility of using sensors in the rotor.

  15. Wireless Monitoring of Induction Machine Rotor Physical Variables.

    Science.gov (United States)

    Doolan Fernandes, Jefferson; Carvalho Souza, Francisco Elvis; Cipriano Maniçoba, Glauco George; Salazar, Andrés Ortiz; de Paiva, José Alvaro

    2017-11-18

    With the widespread use of electric machines, there is a growing need to extract information from the machines to improve their control systems and maintenance management. The present work shows the development of an embedded system to perform the monitoring of the rotor physical variables of a squirrel cage induction motor. The system is comprised of: a circuit to acquire desirable rotor variable(s) and value(s) that send it to the computer; a rectifier and power storage circuit that converts an alternating current in a continuous current but also stores energy for a certain amount of time to wait for the motor's shutdown; and a magnetic generator that harvests energy from the rotating field to power the circuits mentioned above. The embedded system is set on the rotor of a 5 HP squirrel cage induction motor, making it difficult to power the system because it is rotating. This problem can be solved with the construction of a magnetic generator device to avoid the need of using batteries or collector rings and will send data to the computer using a wireless NRF24L01 module. For the proposed system, initial validation tests were made using a temperature sensor (DS18b20), as this variable is known as the most important when identifying the need for maintenance and control systems. Few tests have shown promising results that, with further improvements, can prove the feasibility of using sensors in the rotor.

  16. Evaluation of deep neural networks for single image super-resolution in a maritime context

    NARCIS (Netherlands)

    Nieuwenhuizen, R.P.J.; Kruithof, M.; Schutte, K.

    2017-01-01

    High resolution imagery is of crucial importance for the performance on visual recognition tasks. Super-resolution (SR) reconstruction algorithms aim to enhance the image resolution beyond the capability of the image sensor being used. Traditional SR algorithms approach this inverse problem using

  17. Stepped-frequency radar sensors theory, analysis and design

    CERN Document Server

    Nguyen, Cam

    2016-01-01

    This book presents the theory, analysis and design of microwave stepped-frequency radar sensors. Stepped-frequency radar sensors are attractive for various sensing applications that require fine resolution. The book consists of five chapters. The first chapter describes the fundamentals of radar sensors including applications followed by a review of ultra-wideband pulsed, frequency-modulated continuous-wave (FMCW), and stepped-frequency radar sensors. The second chapter discusses a general analysis of radar sensors including wave propagation in media and scattering on targets, as well as the radar equation. The third chapter addresses the analysis of stepped-frequency radar sensors including their principles and design parameters. Chapter 4 presents the development of two stepped-frequency radar sensors at microwave and millimeter-wave frequencies based on microwave integrated circuits (MICs), microwave monolithic integrated circuits (MMICs) and printed-circuit antennas, and discusses their signal processing....

  18. OPTICAL FIBRES AND FIBREOPTIC SENSORS: Fibreoptic distributed temperature sensor with spectral filtration by directional fibre couplers

    Science.gov (United States)

    Kuznetsov, A. G.; Babin, Sergei A.; Shelemba, Ivan S.

    2009-11-01

    We demonstrate a Raman-based all-fibre temperature sensor utilising a pulsed erbium fibre laser. The sensor is made of a standard single-mode telecom fibre, SMF-28, and includes a number of directional couplers as band-pass filters. The temperature profile along a 7-km fibreoptic line is measured with an accuracy of 2oC and a spatial resolution of 10 m. In data processing, we take into account the difference in attenuation between the spectral components of the backscatter signal.

  19. Multi-sensor Cloud Retrieval Simulator and Remote Sensing from Model Parameters . Pt. 1; Synthetic Sensor Radiance Formulation; [Synthetic Sensor Radiance Formulation

    Science.gov (United States)

    Wind, G.; DaSilva, A. M.; Norris, P. M.; Platnick, S.

    2013-01-01

    In this paper we describe a general procedure for calculating synthetic sensor radiances from variable output from a global atmospheric forecast model. In order to take proper account of the discrepancies between model resolution and sensor footprint, the algorithm takes explicit account of the model subgrid variability, in particular its description of the probability density function of total water (vapor and cloud condensate.) The simulated sensor radiances are then substituted into an operational remote sensing algorithm processing chain to produce a variety of remote sensing products that would normally be produced from actual sensor output. This output can then be used for a wide variety of purposes such as model parameter verification, remote sensing algorithm validation, testing of new retrieval methods and future sensor studies.We show a specific implementation using the GEOS-5 model, the MODIS instrument and the MODIS Adaptive Processing System (MODAPS) Data Collection 5.1 operational remote sensing cloud algorithm processing chain (including the cloud mask, cloud top properties and cloud optical and microphysical properties products). We focus on clouds because they are very important to model development and improvement.

  20. Meal Microstructure Characterization from Sensor-Based Food Intake Detection

    Directory of Open Access Journals (Sweden)

    Abul Doulah

    2017-07-01

    Full Text Available To avoid the pitfalls of self-reported dietary intake, wearable sensors can be used. Many food ingestion sensors offer the ability to automatically detect food intake using time resolutions that range from 23 ms to 8 min. There is no defined standard time resolution to accurately measure ingestive behavior or a meal microstructure. This paper aims to estimate the time resolution needed to accurately represent the microstructure of meals such as duration of eating episode, the duration of actual ingestion, and number of eating events. Twelve participants wore the automatic ingestion monitor (AIM and kept a standard diet diary to report their food intake in free-living conditions for 24 h. As a reference, participants were also asked to mark food intake with a push button sampled every 0.1 s. The duration of eating episodes, duration of ingestion, and number of eating events were computed from the food diary, AIM, and the push button resampled at different time resolutions (0.1–30s. ANOVA and multiple comparison tests showed that the duration of eating episodes estimated from the diary differed significantly from that estimated by the AIM and the push button (p-value <0.001. There were no significant differences in the number of eating events for push button resolutions of 0.1, 1, and 5 s, but there were significant differences in resolutions of 10–30s (p-value <0.05. The results suggest that the desired time resolution of sensor-based food intake detection should be ≤5 s to accurately detect meal microstructure. Furthermore, the AIM provides more accurate measurement of the eating episode duration than the diet diary.

  1. Optical sensors for earth observation. Chikyu kansokuyo kogaku sensor

    Energy Technology Data Exchange (ETDEWEB)

    Ono, A [National Research Laboratory of Metrology, Tsukuba (Japan)

    1991-10-10

    Developments are made on an optical imager (ASTER) used to collect mainly images of land areas and an infrared sounder (IMG) to measure vertical air temperature distribution and vertical concentration distribution of specific gases, as satellite mounted sensors for earth observation. All the sensor characteristics of the ASTER comprising a visible near infrared radiometer, short wave infrared radiometer and thermal infrared radiometer are required to be capable of providing measurement, evaluation and assurance at the required accuracies during the entire life time. A problem to be solved is how to combine the on-ground calibration prior to launching, on-satellite calibration, and calibration between the test site and the sensors. The IMG is a Fourier transform spectroscopic infrared sounder, which is demanded of a high wave resolution over extended periods of time as well as a high radiation measuring capability. Also required are the level elevation of analysis algorithms to solve inverse problems from the observed radiation spectra, and the data base with high accuracy. 19 refs., 4 figs., 4 tabs.

  2. Cyclic GMP-AMP synthase is an innate immune sensor of HIV and other retroviruses.

    Science.gov (United States)

    Gao, Daxing; Wu, Jiaxi; Wu, You-Tong; Du, Fenghe; Aroh, Chukwuemika; Yan, Nan; Sun, Lijun; Chen, Zhijian J

    2013-08-23

    Retroviruses, including HIV, can activate innate immune responses, but the host sensors for retroviruses are largely unknown. Here we show that HIV infection activates cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) synthase (cGAS) to produce cGAMP, which binds to and activates the adaptor protein STING to induce type I interferons and other cytokines. Inhibitors of HIV reverse transcriptase, but not integrase, abrogated interferon-β induction by the virus, suggesting that the reverse-transcribed HIV DNA triggers the innate immune response. Knockout or knockdown of cGAS in mouse or human cell lines blocked cytokine induction by HIV, murine leukemia virus, and simian immunodeficiency virus. These results indicate that cGAS is an innate immune sensor of HIV and other retroviruses.

  3. Microwave Sensors for Breast Cancer Detection.

    Science.gov (United States)

    Wang, Lulu

    2018-02-23

    Breast cancer is the leading cause of death among females, early diagnostic methods with suitable treatments improve the 5-year survival rates significantly. Microwave breast imaging has been reported as the most potential to become the alternative or additional tool to the current gold standard X-ray mammography for detecting breast cancer. The microwave breast image quality is affected by the microwave sensor, sensor array, the number of sensors in the array and the size of the sensor. In fact, microwave sensor array and sensor play an important role in the microwave breast imaging system. Numerous microwave biosensors have been developed for biomedical applications, with particular focus on breast tumor detection. Compared to the conventional medical imaging and biosensor techniques, these microwave sensors not only enable better cancer detection and improve the image resolution, but also provide attractive features such as label-free detection. This paper aims to provide an overview of recent important achievements in microwave sensors for biomedical imaging applications, with particular focus on breast cancer detection. The electric properties of biological tissues at microwave spectrum, microwave imaging approaches, microwave biosensors, current challenges and future works are also discussed in the manuscript.

  4. Laseroptic eddy currents sensor for high-resolution flaw detection. Pt. 3; Laseroptische Wirbelstromsensoren - Entwicklung neuer Sensoren fuer die Wirbelstrompruefung. T. 3

    Energy Technology Data Exchange (ETDEWEB)

    Maass, M; Crostack, H A; Radtke, U; Grafe, A [Dortmund Univ. (Germany). Lehrstuhl fuer Qualitaetswesen

    1997-11-01

    A new kind of eddy current sensor is presented, which uses the optical Faraday effect for eddy current detection. First results already emphasise the strongly increased spatial resolution in eddy current testing by integrating these detectors in conventional transmitting coils. Basic principle of this enormously improved resolution is the use of laser beams and small faraday rotators, which allow a point-like measurement of the magnetic field at the surface of a component. Lateral and axial extend of the measuring volume can be reduced in the range of microns - much smaller than conventional receiving coils. (orig.) [Deutsch] Es wird ein neuartiger Wirbelstromsensor vorgestellt, der auf dem optischen Faradayeffekt zur Wirbelstromdetektion beruht. Erste Untersuchungsergebnisse verdeutlichen die enorme Steigerung des Ortsaufloesungsvermoegens der Wirbelstrompruefung durch Integration dieser Detektoren in konventionelle Erregerspulen. Grundlage der verbesserten Ortsaufloesung ist der Einsatz von Lasern und kleinen Faradayrotatoren, mit deren Hilfe die Messung von Magnetfeldern an Bauteiloberflaechen nahezu punktfoermig erfolgen kann. Die laterale und axiale Ausdehnung des Messvolumens kann bis in den Mikrometerbereich reduziert werden und ist somit um Groessenordnungen kleiner als bei herkoemmlichen Empfangsspulen. (orig.)

  5. Spring constant measurement using a MEMS force and displacement sensor utilizing paralleled piezoresistive cantilevers

    Science.gov (United States)

    Kohyama, Sumihiro; Takahashi, Hidetoshi; Yoshida, Satoru; Onoe, Hiroaki; Hirayama-Shoji, Kayoko; Tsukagoshi, Takuya; Takahata, Tomoyuki; Shimoyama, Isao

    2018-04-01

    This paper reports on a method to measure a spring constant on site using a micro electro mechanical systems (MEMS) force and displacement sensor. The proposed sensor consists of a force-sensing cantilever and a displacement-sensing cantilever. Each cantilever is composed of two beams with a piezoresistor on the sidewall for measuring the in-plane lateral directional force and displacement. The force resolution and displacement resolution of the fabricated sensor were less than 0.8 µN and 0.1 µm, respectively. We measured the spring constants of two types of hydrogel microparticles to demonstrate the effectiveness of the proposed sensor, with values of approximately 4.3 N m-1 and 15.1 N m-1 obtained. The results indicated that the proposed sensor is effective for on-site spring constant measurement.

  6. Fluxgate Magnetic Sensor and Its Application for Current Measurement

    International Nuclear Information System (INIS)

    Mitra-Djamal

    2007-01-01

    Conventionally electric current can be measured by connecting the instrument serially on the circuit. This method has disadvantage because its disturb the measured current flow. By using a magnetic sensor, current can be measured without disturbing the current flow, because it just measures the magnetic field of the measured current. This paper shows the use of fluxgate magnetic sensor for current measurement. It is shown that the sensor can measure widely range of current with resolution ≤ 2 %. (author)

  7. Study of optical emission spectroscopy with inductively coupled plasma torch

    International Nuclear Information System (INIS)

    Bauer, M.

    1982-01-01

    Inductively coupled plasma optical emission spectroscopy is an excellent tool for quantitative multielement trace analysis. This paper describes the performance of a computer-controlled sequential measurement system. Chemical and ionization interferences are shown to be negligible due to the characteristics of the inductively coupled plasma, spectral interferences are eliminated by using a high-resolution monochromator and computer data handling. Good accuracy is achieved for most of the interesting elements, as is shown from both an interlaboratory test and from comparison of the results of water samples from the rivers Elbe and Weser with those achieved with neutron activation and X-ray fluorescence analysis. (orig.) [de

  8. Distributed temperature sensor testing in liquid sodium

    Energy Technology Data Exchange (ETDEWEB)

    Gerardi, Craig; Bremer, Nathan; Lisowski, Darius; Lomperski, Stephen

    2017-02-01

    Rayleigh-backscatter-based distributed fiber optic sensors were immersed in sodium to obtain high-resolution liquid-sodium temperature measurements. Distributed temperature sensors (DTSs) functioned well up to 400°C in a liquid sodium environment. The DTSs measured sodium column temperature and the temperature of a complex geometrical pattern that leveraged the flexibility of fiber optics. A single Ø 360 lm OD sensor registered dozens of temperatures along a length of over one meter at 100 Hz. We also demonstrated the capability to use a single DTS to simultaneously detect thermal interfaces (e.g. sodium level) and measure temperature.

  9. Event-Based Color Segmentation With a High Dynamic Range Sensor

    Directory of Open Access Journals (Sweden)

    Alexandre Marcireau

    2018-04-01

    Full Text Available This paper introduces a color asynchronous neuromorphic event-based camera and a methodology to process color output from the device to perform color segmentation and tracking at the native temporal resolution of the sensor (down to one microsecond. Our color vision sensor prototype is a combination of three Asynchronous Time-based Image Sensors, sensitive to absolute color information. We devise a color processing algorithm leveraging this information. It is designed to be computationally cheap, thus showing how low level processing benefits from asynchronous acquisition and high temporal resolution data. The resulting color segmentation and tracking performance is assessed both with an indoor controlled scene and two outdoor uncontrolled scenes. The tracking's mean error to the ground truth for the objects of the outdoor scenes ranges from two to twenty pixels.

  10. Precision timing detectors with cadmium-telluride sensor

    Science.gov (United States)

    Bornheim, A.; Pena, C.; Spiropulu, M.; Xie, S.; Zhang, Z.

    2017-09-01

    Precision timing detectors for high energy physics experiments with temporal resolutions of a few 10 ps are of pivotal importance to master the challenges posed by the highest energy particle accelerators such as the LHC. Calorimetric timing measurements have been a focus of recent research, enabled by exploiting the temporal coherence of electromagnetic showers. Scintillating crystals with high light yield as well as silicon sensors are viable sensitive materials for sampling calorimeters. Silicon sensors have very high efficiency for charged particles. However, their sensitivity to photons, which comprise a large fraction of the electromagnetic shower, is limited. To enhance the efficiency of detecting photons, materials with higher atomic numbers than silicon are preferable. In this paper we present test beam measurements with a Cadmium-Telluride (CdTe) sensor as the active element of a secondary emission calorimeter with focus on the timing performance of the detector. A Schottky type CdTe sensor with an active area of 1cm2 and a thickness of 1 mm is used in an arrangement with tungsten and lead absorbers. Measurements are performed with electron beams in the energy range from 2 GeV to 200 GeV. A timing resolution of 20 ps is achieved under the best conditions.

  11. Generation of super-resolution stills from video

    CSIR Research Space (South Africa)

    Duvenhage, B

    2014-11-01

    Full Text Available plane. If one accurately registers the image of the target on the focal plane to some reference then one can increase the effective sensor pixel density by stacking or appropriately combining the registered images. The super-resolution technique operates...

  12. Inductive sensor for lightning current measurement, fitted in aircraft windows - part I : analysis for a circular window

    NARCIS (Netherlands)

    Deursen, van A.P.J.; Stelmashuk, V.

    2011-01-01

    A novel sensor is described for the detection of the lightning current through the fuselage of an aircraft. The sensor relies on the penetration of the magnetic field through fuselage openings and can be embedded in a window inside the aircraft. The sensor combines good sensitivity with sufficient

  13. A Three-Dimensional Target Depth-Resolution Method with a Single-Vector Sensor.

    Science.gov (United States)

    Zhao, Anbang; Bi, Xuejie; Hui, Juan; Zeng, Caigao; Ma, Lin

    2018-04-12

    This paper mainly studies and verifies the target number category-resolution method in multi-target cases and the target depth-resolution method of aerial targets. Firstly, target depth resolution is performed by using the sign distribution of the reactive component of the vertical complex acoustic intensity; the target category and the number resolution in multi-target cases is realized with a combination of the bearing-time recording information; and the corresponding simulation verification is carried out. The algorithm proposed in this paper can distinguish between the single-target multi-line spectrum case and the multi-target multi-line spectrum case. This paper presents an improved azimuth-estimation method for multi-target cases, which makes the estimation results more accurate. Using the Monte Carlo simulation, the feasibility of the proposed target number and category-resolution algorithm in multi-target cases is verified. In addition, by studying the field characteristics of the aerial and surface targets, the simulation results verify that there is only amplitude difference between the aerial target field and the surface target field under the same environmental parameters, and an aerial target can be treated as a special case of a surface target; the aerial target category resolution can then be realized based on the sign distribution of the reactive component of the vertical acoustic intensity so as to realize three-dimensional target depth resolution. By processing data from a sea experiment, the feasibility of the proposed aerial target three-dimensional depth-resolution algorithm is verified.

  14. Performance of RVGui sensor and Kodak Ektaspeed Plus film for proximal caries detection.

    Science.gov (United States)

    Abreu, M; Mol, A; Ludlow, J B

    2001-03-01

    A high-resolution charge-coupled device was used to compare the diagnostic performances obtained with Trophy's new RVGui sensor and Kodak Ektaspeed Plus film with respect to caries detection. Three acquisition modes of the Trophy RVGui sensor were compared with Kodak Ektaspeed Plus film. Images of the proximal surfaces of 40 extracted posterior teeth were evaluated by 6 observers. The presence or absence of caries was scored by means of a 5-point confidence scale. The actual caries status of each surface was determined through ground-section histology. Responses were evaluated by means of receiver operating characteristic analysis. Areas under receiver operating characteristic curves (A(Z)) were assessed through analysis of variance. The mean A(Z) scores were 0.85 for film, 0.84 for the high-resolution caries mode, and 0.82 for both the low resolution caries mode and the high-resolution periodontal mode. These differences were not statistically significant (P =.70). The differences among observers also were not statistically significant (P =.23). The performance of the RVGui sensor in high- and low-resolution modes for proximal caries detection is comparable to that of Ektaspeed Plus film.

  15. A Temperature Sensor Based on a Polymer Optical Fiber Macro-Bend

    Directory of Open Access Journals (Sweden)

    Joseba Zubia Zaballa

    2013-09-01

    Full Text Available The design and development of a plastic optical fiber (POF macrobend temperature sensor is presented. The sensor has a linear response versus temperature at a fixed bend radius, with a sensitivity of . The sensor system used a dummy fiber-optic sensor for reference purposes having a resolution below 0.3 °C. A comprehensive experimental analysis was carried out to provide insight into the effect of different surrounding media on practical macro-bend POF sensor implementation. Experimental results are successfully compared with bend loss calculations.

  16. Focused-laser interferometric position sensor

    International Nuclear Information System (INIS)

    Friedman, Stephen J.; Barwick, Brett; Batelaan, Herman

    2005-01-01

    We describe a simple method to measure the position shifts of an object with a range of tens of micrometers using a focused-laser (FL) interferometric position sensor. In this article we examine the effects of mechanical vibration on FL and Michelson interferometers. We tested both interferometers using vibration amplitudes ranging from 0 to 20 μm. Our FL interferometer has a resolution much better than the diffraction grating periodicities of 10 and 14 μm used in our experiments. A FL interferometer provides improved mechanical stability at the expense of spatial resolution. Our experimental results show that Michelson interferometers cannot be used when the vibration amplitude is more than an optical wavelength. The main purpose of this article is to demonstrate that a focused-laser interferometric position sensor can be used to measure the position shifts of an object on a less sensitive, micrometer scale when the vibration amplitude is too large to use a Michelson interferometer

  17. Construction and calibration of high time resolution gas pressure meter

    International Nuclear Information System (INIS)

    Rossi, J.O.; Santos, C.; Ueda, M.

    1989-11-01

    In this report, the construction and calibration of a gas pressure meter with a time resolution better than 20 μs are described. The meter consists basically of a sensor of the FIG (Fast Ionization Gauge) type and an adequate electronic circuit. A 6AU6A pentode vacuum tube without the glass envelope is used as the sensor head. (author) [pt

  18. Review of the development of diamond radiation sensors

    International Nuclear Information System (INIS)

    Adam, W.; Bauer, C.; Berdermann, E.; Bergonzo, P.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; Eijk, B. van; Fallou, A.; Fizzotti, F.; Foulon, F.; Friedl, M.; Gan, K.K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Karl, C.; Kass, R.; Knoepfle, K.T.; Krammer, M.; Logiudice, A.; Lu, R.; Manfredi, P.F.; Manfredotti, C.; Marshall, R.D.; Meier, D.; Mishina, M.; Oh, A.; Pan, L.S.; Palmieri, V.G.; Pernicka, M.; Peitz, A.; Pirollo, S.; Polesello, P.; Pretzl, K.; Re, V.; Riester, J.L.; Roe, S.; Roff, D.; Rudge, A.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Stone, R.; Tapper, R.J.; Tesarek, R.; Thomson, G.B.; Trawick, M.; Trischuk, W.; Vittone, E.; Walsh, A.M.; Wedenig, R.; Weilhammer, P.; Ziock, H.; Zoeller, M.

    1999-01-01

    Diamond radiation sensors produced by chemical vapour deposition are studied for the application as tracking detectors in high luminosity experiments. Sensors with a charge collection distance up to 250 μm have been manufactured. Their radiation hardness has been studied with pions, proton and neutrons up to fluences of 1.9x10 15 π cm -2 , 5x10 15 p cm -2 and 1.35x10 15 n cm -2 , respectively. Diamond micro-strip detectors with 50 μm pitch have been exposed in a high-energy test beam in order to investigate their charge collection properties. The measured spatial resolution using a centre-of-gravity position finding algorithm corresponds to the digital resolution for this strip pitch. First results from a strip tracker with a 2x4 cm 2 surface area are reported as well as the performance of a diamond tracker read out by radiation-hard electronics with 25 ns shaping time. Diamond pixel sensors have been prepared to match the geometries of the recently available read-out chip prototypes for ATLAS and CMS. Beam test results are shown from a diamond detector bump-bonded to an ATLAS prototype read-out. They demonstrate a 98% bump-bonding efficiency and a digital resolution in both dimensions. (author)

  19. Review of the development of diamond radiation sensors

    Science.gov (United States)

    Adam, W.; Bauer, C.; Berdermann, E.; Bergonzo, P.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; van Eijk, B.; Fallou, A.; Fizzotti, F.; Foulon, F.; Friedl, M.; Gan, K. K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Karl, C.; Kass, R.; Knöpfle, K. T.; Krammer, M.; Logiudice, A.; Lu, R.; Manfredi, P. F.; Manfredotti, C.; Marshall, R. D.; Meier, D.; Mishina, M.; Oh, A.; Pan, L. S.; Palmieri, V. G.; Pernicka, M.; Peitz, A.; Pirollo, S.; Polesello, P.; Pretzl, K.; Re, V.; Riester, J. L.; Roe, S.; Roff, D.; Rudge, A.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Stone, R.; Tapper, R. J.; Tesarek, R.; Thomson, G. B.; Trawick, M.; Trischuk, W.; Vittone, E.; Walsh, A. M.; Wedenig, R.; Weilhammer, P.; Ziock, H.; Zoeller, M.; RD42 Collaboration

    1999-09-01

    Diamond radiation sensors produced by chemical vapour deposition are studied for the application as tracking detectors in high luminosity experiments. Sensors with a charge collection distance up to 250 μm have been manufactured. Their radiation hardness has been studied with pions, proton and neutrons up to fluences of 1.9×10 15 π cm -2, 5×10 15 p cm -2 and 1.35×10 15 n cm -2, respectively. Diamond micro-strip detectors with 50 μm pitch have been exposed in a high-energy test beam in order to investigate their charge collection properties. The measured spatial resolution using a centre-of-gravity position finding algorithm corresponds to the digital resolution for this strip pitch. First results from a strip tracker with a 2×4 cm 2 surface area are reported as well as the performance of a diamond tracker read out by radiation-hard electronics with 25 ns shaping time. Diamond pixel sensors have been prepared to match the geometries of the recently available read-out chip prototypes for ATLAS and CMS. Beam test results are shown from a diamond detector bump-bonded to an ATLAS prototype read-out. They demonstrate a 98% bump-bonding efficiency and a digital resolution in both dimensions.

  20. Development of Signal Processing Algorithms for High Resolution Airborne Millimeter Wave FMCW SAR

    NARCIS (Netherlands)

    Meta, A.; Hoogeboom, P.

    2005-01-01

    For airborne earth observation applications, there is a special interest in lightweight, cost effective, imaging sensors of high resolution. The combination of Frequency Modulated Continuous Wave (FMCW) technology and Synthetic Aperture Radar (SAR) techniques can lead to such a sensor. In this

  1. Development of a low-cost sun sensor for nanosatellites

    Science.gov (United States)

    Antonello, Andrea; Olivieri, Lorenzo; Francesconi, Alessandro

    2018-03-01

    Sun sensors represent a common and reliable technology for attitude determination, employed in many space missions thanks to their limited size and weight. Typically, two-axis digital Sun sensors employ an array of active pixels arranged behind a small aperture; the position of the sunlight's spot allows to determine the direction of the Sun. With the advent of smaller vehicles such as CubeSats and Nanosats, there is the need to further reduce the size and weight of such devices: as a trade-off, this usually results in the curtail of the performances. Nowadays, state of the art Sun sensors for CubeSats have resolutions of about 0.5°, with fields of view in the ±45° to ±90° range, with off-the-self prices of several thousands of dollars. In this work we introduce a novel low-cost miniaturized Sun sensor, based on a commercial CMOS camera detector; its main feature is the reduced size with respect to state-of-the-art sensors developed from the same technology, making it employable on CubeSats. The sensor consists of a precisely machined pinhole with a 10 μm circular aperture, placed at a distance of 7 mm from the CMOS. The standoff distance and casing design allow for a maximum resolution of less than 0.03°, outperforming most of the products currently available for nano and pico platforms; furthermore, the nature of the technology allows for reduced size and lightweight characteristics. The design, development and laboratory tests of the sensor are here introduced, starting with the definition of the physical model, the geometrical layout and its theoretical resolution; a more accurate model was then developed in order to account for the geometrical deviations and deformations of the pinhole-projected light-spot, as well as to account for the background noise and disturbances to the electronics. Finally, the laboratory setup is presented along with the test campaigns: the results obtained are compared with the simulations, allowing for the validation of the

  2. All-fiber, long-active-length Fabry-Perot strain sensor.

    Science.gov (United States)

    Pevec, Simon; Donlagic, Denis

    2011-08-01

    This paper presents a high-sensitivity, all-silica, all-fiber Fabry-Perot strain-sensor. The proposed sensor provides a long active length, arbitrary length of Fabry-Perot cavity, and low intrinsic temperature sensitivity. The sensor was micro-machined from purposely-developed sensor-forming fiber that is etched and directly spliced to the lead-in fiber. This manufacturing process has good potential for cost-effective, high-volume production. Its measurement range of over 3000 µε, and strain-resolution better than 1 µε were demonstrated by the application of a commercial, multimode fiber-based signal processor.

  3. UrtheCast Second-Generation Earth Observation Sensors

    Science.gov (United States)

    Beckett, K.

    2015-04-01

    UrtheCast's Second-Generation state-of-the-art Earth Observation (EO) remote sensing platform will be hosted on the NASA segment of International Space Station (ISS). This platform comprises a high-resolution dual-mode (pushbroom and video) optical camera and a dual-band (X and L) Synthetic Aperture RADAR (SAR) instrument. These new sensors will complement the firstgeneration medium-resolution pushbroom and high-definition video cameras that were mounted on the Russian segment of the ISS in early 2014. The new cameras are expected to be launched to the ISS in late 2017 via the Space Exploration Technologies Corporation Dragon spacecraft. The Canadarm will then be used to install the remote sensing platform onto a CBM (Common Berthing Mechanism) hatch on Node 3, allowing the sensor electronics to be accessible from the inside of the station, thus limiting their exposure to the space environment and allowing for future capability upgrades. The UrtheCast second-generation system will be able to take full advantage of the strengths that each of the individual sensors offers, such that the data exploitation capabilities of the combined sensors is significantly greater than from either sensor alone. This represents a truly novel platform that will lead to significant advances in many other Earth Observation applications such as environmental monitoring, energy and natural resources management, and humanitarian response, with data availability anticipated to begin after commissioning is completed in early 2018.

  4. Phase 1 report on sensor technology, data fusion and data interpretation for site characterization

    International Nuclear Information System (INIS)

    Beckerman, M.

    1991-10-01

    In this report we discuss sensor technology, data fusion and data interpretation approaches of possible maximal usefulness for subsurface imaging and characterization of land-fill waste sites. Two sensor technologies, terrain conductivity using electromagnetic induction and ground penetrating radar, are described and the literature on the subject is reviewed. We identify the maximum entropy stochastic method as one providing a rigorously justifiable framework for fusing the sensor data, briefly summarize work done by us in this area, and examine some of the outstanding issues with regard to data fusion and interpretation. 25 refs., 17 figs

  5. Model and performance of current sensor observers for a doubly fed induction generator

    DEFF Research Database (Denmark)

    Li, Hui; Yang, Chao; Hu, Yaogang

    2014-01-01

    . A stator and rotor current observer model, which is based on the state-space models of doubly fed induction generators, is then derived by using the stator and rotor voltage signals as inputs. To demonstrate the effectiveness of the proposed current observer, its dynamic performance is simulated using...

  6. Spark-safe mechanical fluctuation sensor

    Energy Technology Data Exchange (ETDEWEB)

    Retek, S; Galisz, T

    1979-04-20

    The subject of the invention is a mechanical fluctuation sensor in a spark-safe design for use at mines which are dangerous for gas, as an element of different systems for remote control information transfer. The patented sensor of mechanical fluctuations contains: magnetic-induction transformer characterized by the fact that its inert mass consists of a plane permanent magnet placed in the suspended state on springs between 2 coils, which together with their cores are rigidly fixed to the walls of the ferromagnetic vessels. The ends of the coil windings are interconnected, while the beginnings of the windings are lead out with connection to the outlet of the electronic amplifier with binary outlet signal. The electronic amplifier is placed between the transformer in the common ferromagnetic housing which is a screen for protection from the effect of external magnetic fields.

  7. High-Resolution PET Detector. Final report

    International Nuclear Information System (INIS)

    Karp, Joel

    2014-01-01

    The objective of this project was to develop an understanding of the limits of performance for a high resolution PET detector using an approach based on continuous scintillation crystals rather than pixelated crystals. The overall goal was to design a high-resolution detector, which requires both high spatial resolution and high sensitivity for 511 keV gammas. Continuous scintillation detectors (Anger cameras) have been used extensively for both single-photon and PET scanners, however, these instruments were based on NaI(Tl) scintillators using relatively large, individual photo-multipliers. In this project we investigated the potential of this type of detector technology to achieve higher spatial resolution through the use of improved scintillator materials and photo-sensors, and modification of the detector surface to optimize the light response function.We achieved an average spatial resolution of 3-mm for a 25-mm thick, LYSO continuous detector using a maximum likelihood position algorithm and shallow slots cut into the entrance surface

  8. Triclocarban mediates induction of xenobiotic metabolism through activation of the constitutive androstane receptor and the estrogen receptor alpha.

    Directory of Open Access Journals (Sweden)

    Mei-Fei Yueh

    Full Text Available Triclocarban (3,4,4'-trichlorocarbanilide, TCC is used as a broad-based antimicrobial agent that is commonly added to personal hygiene products. Because of its extensive use in the health care industry and resistance to degradation in sewage treatment processes, TCC has become a significant waste product that is found in numerous environmental compartments where humans and wildlife can be exposed. While TCC has been linked to a range of health and environmental effects, few studies have been conducted linking exposure to TCC and induction of xenobiotic metabolism through regulation by environmental sensors such as the nuclear xenobiotic receptors (XenoRs. To identify the ability of TCC to activate xenobiotic sensors, we monitored XenoR activities in response to TCC treatment using luciferase-based reporter assays. Among the XenoRs in the reporter screening assay, TCC promotes both constitutive androstane receptor (CAR and estrogen receptor alpha (ERα activities. TCC treatment to hUGT1 mice resulted in induction of the UGT1A genes in liver. This induction was dependent upon the constitutive active/androstane receptor (CAR because no induction occurred in hUGT1Car(-/- mice. Induction of the UGT1A genes by TCC corresponded with induction of Cyp2b10, another CAR target gene. TCC was demonstrated to be a phenobarbital-like activator of CAR in receptor-based assays. While it has been suggested that TCC be classified as an endocrine disruptor, it activates ERα leading to induction of Cyp1b1 in female ovaries as well as in promoter activity. Activation of ERα by TCC in receptor-based assays also promotes induction of human CYP2B6. These observations demonstrate that TCC activates nuclear xenobiotic receptors CAR and ERα both in vivo and in vitro and might have the potential to alter normal physiological homeostasis. Activation of these xenobiotic-sensing receptors amplifies gene expression profiles that might represent a mechanistic base for

  9. A Hybrid Fault-Tolerant Strategy for Severe Sensor Failure Scenarios in Late-Stage Offshore DFIG-WT

    Directory of Open Access Journals (Sweden)

    Wei Li

    2017-12-01

    Full Text Available As the phase current sensors and rotor speed/position sensor are prone to fail in the late stage of an offshore doubly-fed induction generator based wind turbine (DFIG-WT, this paper investigates a hybrid fault-tolerant strategy for a severe sensor failure scenario. The phase current sensors in the back-to-back (BTB converter and the speed/position sensor are in the faulty states simultaneously. Based on the 7th-order doubly-fed induction generator (DFIG dynamic state space model, the extended Kalman filter (EKF algorithm is applied for rotor speed and position estimation. In addition, good robustness of this sensorless control algorithm to system uncertainties and measurement disturbances is presented. Besides, a single DC-link current sensor based phase current reconstruction scheme is utilized for deriving the phase current information according to the switching states. A duty ratio adjustment strategy is proposed to avoid missing the sampling points in a switching period, which is simple to implement. Furthermore, the additional active time of the targeted nonzero switching states is complemented so that the reference voltage vector remains in the same position as that before duty ratio adjustment. The validity of the proposed hybrid fault-tolerant sensorless control strategy is demonstrated by simulation results in Matlab/Simulink2017a by considering harsh operating environments.

  10. Novel Hall sensors developed for magnetic field imaging systems

    International Nuclear Information System (INIS)

    Cambel, Vladimir; Karapetrov, Goran; Novosad, Valentyn; Bartolome, Elena; Gregusova, Dagmar; Fedor, Jan; Kudela, Robert; Soltys, Jan

    2007-01-01

    We report here on the fabrication and application of novel planar Hall sensors based on shallow InGaP/AlGaAs/GaAs heterostructure with a two-dimensional electron gas (2DEG) as an active layer. The sensors are developed for two kinds of experiments. In the first one, magnetic samples are placed directly on the Hall sensor. Room temperature experiments of permalloy objects evaporated onto the sensor are presented. In the second experiment, the sensor scans close over a multigranular superconducting sample prepared on a YBCO thin film. Large-area and high-resolution scanning experiments were performed at 4.2 K with the Hall probe scanning system in a liquid helium flow cryostat

  11. High-Resolution Silicon-based Particle Sensor with Integrated Amplification, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I project will deliver a breakthrough in particle-detection sensors, by integrating an amplifying junction as part of the detector topology. Focusing...

  12. Rotor speed estimation for indirect stator flux oriented induction motor drive based on MRAS scheme

    Directory of Open Access Journals (Sweden)

    Youssef Agrebi

    2007-09-01

    Full Text Available In this paper, a conventional indirect stator flux oriented controlled (ISFOC induction motor drive is presented. In order to eliminate the speed sensor, an adaptation algorithm for tuning the rotor speed is proposed. Based on the model reference adaptive system (MRAS scheme, the rotor speed is tuned to obtain an exact ISFOC induction motor drive. The reference and adjustable models, developed in stationary stator reference frame, are used in the MRAS scheme to estimate induction rotor peed from measured terminal voltages and currents. The IP gains speed controller and PI gains current controller are calculated and tuned at each sampling time according to the new estimated rotor speed. The proposed algorithm has been tested by numerical simulation, showing the capability of driving active load; and stability is preserved. Experimental results obtained with a general-purpose 1-kW induction machine are presented showing the effectiveness of the proposed approach in terms of dynamic performance.

  13. Assessment of MODIS sun-sensor geometry variations effect on observed NDVI using MSG SEVIRI geostationary data

    DEFF Research Database (Denmark)

    Fensholt, R.; Sandholt, I.; Proud, Simon Richard

    2010-01-01

    The quality of Earth observation (EO) based vegetation monitoring has improved during recent years, which can be attributed to the enhanced sensor design of new satellites such as MODIS (Moderate Resolution Imaging Spectroradiometer) on Terra and Aqua. It is however expected that sun-sensor geome......The quality of Earth observation (EO) based vegetation monitoring has improved during recent years, which can be attributed to the enhanced sensor design of new satellites such as MODIS (Moderate Resolution Imaging Spectroradiometer) on Terra and Aqua. It is however expected that sun......-sensor geometry variations will have a more visible impact on the Normalized Difference Vegetation Index (NDVI) from MODIS compared to earlier data sources, since noise related to atmosphere and sensor calibration is substantially reduced in the MODIS data stream. For this reason, the effect of varying MODIS......, including a red and NIR band, and the high temporal resolution (15 min) of data, enabling MSG data to be used as a reference for estimating MODIS surface reflectance and NDVI variations caused by varying sun-sensor geometry. The study was performed on data covering West Africa for periods of lowest possible...

  14. Implications of sensor design for coral reef detection: Upscaling ground hyperspectral imagery in spatial and spectral scales

    Science.gov (United States)

    Caras, Tamir; Hedley, John; Karnieli, Arnon

    2017-12-01

    Remote sensing offers a potential tool for large scale environmental surveying and monitoring. However, remote observations of coral reefs are difficult especially due to the spatial and spectral complexity of the target compared to sensor specifications as well as the environmental implications of the water medium above. The development of sensors is driven by technological advances and the desired products. Currently, spaceborne systems are technologically limited to a choice between high spectral resolution and high spatial resolution, but not both. The current study explores the dilemma of whether future sensor design for marine monitoring should prioritise on improving their spatial or spectral resolution. To address this question, a spatially and spectrally resampled ground-level hyperspectral image was used to test two classification elements: (1) how the tradeoff between spatial and spectral resolutions affects classification; and (2) how a noise reduction by majority filter might improve classification accuracy. The studied reef, in the Gulf of Aqaba (Eilat), Israel, is heterogeneous and complex so the local substrate patches are generally finer than currently available imagery. Therefore, the tested spatial resolution was broadly divided into four scale categories from five millimeters to one meter. Spectral resolution resampling aimed to mimic currently available and forthcoming spaceborne sensors such as (1) Environmental Mapping and Analysis Program (EnMAP) that is characterized by 25 bands of 6.5 nm width; (2) VENμS with 12 narrow bands; and (3) the WorldView series with broadband multispectral resolution. Results suggest that spatial resolution should generally be prioritized for coral reef classification because the finer spatial scale tested (pixel size mind, while the focus in this study was on the technologically limited spaceborne design, aerial sensors may presently provide an opportunity to implement the suggested setup.

  15. Integration of a Miniaturized Conductivity Sensor into an Animal-Borne Instrument

    Science.gov (United States)

    2013-09-30

    inductive sensors. However, there is a trade -off between size and accuracy. Decreasing size resuls in a decreased accuracy. In addition, by...modified for easy integration into the existing SRDL. The CT package will then be intergrated into the SRDL tested in the lab. After the successful

  16. Multidimensional measurement by using 3-D PMD sensors

    Directory of Open Access Journals (Sweden)

    T. Ringbeck

    2007-06-01

    Full Text Available Optical Time-of-Flight measurement gives the possibility to enhance 2-D sensors by adding a third dimension using the PMD principle. Various applications in the automotive (e.g. pedestrian safety, industrial, robotics and multimedia fields require robust three-dimensional data (Schwarte et al., 2000. These applications, however, all have different requirements in terms of resolution, speed, distance and target characteristics. PMDTechnologies has developed 3-D sensors based on standard CMOS processes that can provide an optimized solution for a wide field of applications combined with high integration and cost-effective production. These sensors are realized in various layout formats from single pixel solutions for basic applications to low, middle and high resolution matrices for applications requiring more detailed data. Pixel pitches ranging from 10 micrometer up to a 300 micrometer or larger can be realized and give the opportunity to optimize the sensor chip depending on the application.

    One aspect of all optical sensors based on a time-of-flight principle is the necessity of handling background illumination. This can be achieved by various techniques, such as optical filters and active circuits on chip. The sensors' usage of the in-pixel so-called SBI-circuitry (suppression of background illumination makes it even possible to overcome the effects of bright ambient light. This paper focuses on this technical requirement. In Sect. 2 we will roughly describe the basic operation principle of PMD sensors. The technical challenges related to the system characteristics of an active optical ranging technique are described in Sect. 3, technical solutions and measurement results are then presented in Sect. 4. We finish this work with an overview of actual PMD sensors and their key parameters (Sect. 5 and some concluding remarks in Sect. 6.

  17. Preparation and Property Research of Strain Sensor Based on PDMS and Silver Nanomaterials

    Directory of Open Access Journals (Sweden)

    Lihua Liu

    2017-01-01

    Full Text Available Based on the advantages and broad applications of stretchable strain sensors, this study reports a simple method to fabricate a highly sensitive strain sensor with Ag nanomaterials-polydimethylsiloxane (AgNMs-PDMS to create a synergic conductive network and a sandwich-structure. Three Ag nanomaterial samples were synthesized by controlling the concentrations of the FeCl3 solution and reaction time via the heat polyols thermal method. The AgNMs network’s elastomer nanocomposite-based strain sensors show strong piezoresistivity with a high gauge factor of 547.8 and stretchability from 0.81% to 7.26%. The application of our high-performance strain sensors was demonstrated by the inducting finger of the motion detection. These highly sensitive sensors conform to the current trends of flexible electronics and have prospects for broad application.

  18. POTENTIALS OF RAMAN BASED SENSOR SYSTEM FOR AN ONLINE ANALYSIS OF HUMAN INHALE AND EXHALE

    Directory of Open Access Journals (Sweden)

    T. Seeger

    2015-11-01

    Full Text Available A gas sensor based on spontaneous Raman scattering is proposed for the compositional analysis of single breath events. A description of the sensor as well as of the calibration procedure, which also allows the quantification of condensable gases, is presented. Moreover, a comprehensive characterization of the system is carried out in order to determine the measurement uncertainty. Finally, the sensor is applied to consecutive breath events and allowed measurements with 250 ms time resolution. The Raman sensor is able to detect all the major gas components, i.e. N2, O2, CO2, and H2O at ambient pressure with a high temporal resolution. Concentration fluctuations within a single breath event could be resolved.

  19. Commercial CMOS image sensors as X-ray imagers and particle beam monitors

    International Nuclear Information System (INIS)

    Castoldi, A.; Guazzoni, C.; Maffessanti, S.; Montemurro, G.V.; Carraresi, L.

    2015-01-01

    CMOS image sensors are widely used in several applications such as mobile handsets webcams and digital cameras among others. Furthermore they are available across a wide range of resolutions with excellent spectral and chromatic responses. In order to fulfill the need of cheap systems as beam monitors and high resolution image sensors for scientific applications we exploited the possibility of using commercial CMOS image sensors as X-rays and proton detectors. Two different sensors have been mounted and tested. An Aptina MT9v034, featuring 752 × 480 pixels, 6μm × 6μm pixel size has been mounted and successfully tested as bi-dimensional beam profile monitor, able to take pictures of the incoming proton bunches at the DeFEL beamline (1–6 MeV pulsed proton beam) of the LaBeC of INFN in Florence. The naked sensor is able to successfully detect the interactions of the single protons. The sensor point-spread-function (PSF) has been qualified with 1MeV protons and is equal to one pixel (6 mm) r.m.s. in both directions. A second sensor MT9M032, featuring 1472 × 1096 pixels, 2.2 × 2.2 μm pixel size has been mounted on a dedicated board as high-resolution imager to be used in X-ray imaging experiments with table-top generators. In order to ease and simplify the data transfer and the image acquisition the system is controlled by a dedicated micro-processor board (DM3730 1GHz SoC ARM Cortex-A8) on which a modified LINUX kernel has been implemented. The paper presents the architecture of the sensor systems and the results of the experimental measurements

  20. Light-Addressable Potentiometric Sensors for Quantitative Spatial Imaging of Chemical Species.

    Science.gov (United States)

    Yoshinobu, Tatsuo; Miyamoto, Ko-Ichiro; Werner, Carl Frederik; Poghossian, Arshak; Wagner, Torsten; Schöning, Michael J

    2017-06-12

    A light-addressable potentiometric sensor (LAPS) is a semiconductor-based chemical sensor, in which a measurement site on the sensing surface is defined by illumination. This light addressability can be applied to visualize the spatial distribution of pH or the concentration of a specific chemical species, with potential applications in the fields of chemistry, materials science, biology, and medicine. In this review, the features of this chemical imaging sensor technology are compared with those of other technologies. Instrumentation, principles of operation, and various measurement modes of chemical imaging sensor systems are described. The review discusses and summarizes state-of-the-art technologies, especially with regard to the spatial resolution and measurement speed; for example, a high spatial resolution in a submicron range and a readout speed in the range of several tens of thousands of pixels per second have been achieved with the LAPS. The possibility of combining this technology with microfluidic devices and other potential future developments are discussed.

  1. Sensor Fish: an autonomous sensor package for characterizing complex flow fields and fish passage

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Zhiqun; Martinez, Jayson J.; Lu, Jun

    2016-10-04

    Fish passing through dams or other hydraulic structures may be injured or killed despite advances in turbine design, project operations, and other fish bypass systems. The Sensor Fish (SF) device is an autonomous sensor package that characterizes the physical conditions and stressors to which fish are exposed during passage through hydro facilities. It was designed to move passively as a neutrally buoyant object through severe hydraulic environments, while collecting high-resolution sensor data. Since its first generation1, the SF device has been successfully deployed in many fish passage studies and has evolved to be a major tool for characterizing fish passage conditions during fish passage in the Columbia River Basin. To better accelerate hydropower development, the U.S. Department of Energy Water Power Program provided funding to develop a new generation (Gen 2 SF) to incorporate more capabilities and accommodate a wider range of users over a broader range of turbine designs and operating environments. The Gen 2 SF (Figure 1) is approximately the size and density of a yearling salmon smolt and is nearly neutrally buoyant. It contains three-dimensional (3D) rotation sensors, 3D linear acceleration sensors, a pressure sensor, a temperature sensor, a 3D orientation sensor, a radiofrequency (RF) transmitter, and a recovery module2. A low-power microcontroller collects data from the sensors and stores up to 5 min of data on internal flash memory at a sampling frequency of 2048 Hz. The recovery module makes the SF positively buoyant after a pre-programmed period of time, causing it to float to the surface for recovery.

  2. A Brief History of the use of Electromagnetic Induction Techniques in Soil Survey

    Science.gov (United States)

    Brevik, Eric C.; Doolittle, James

    2017-04-01

    Electromagnetic induction (EMI) has been used to characterize the spatial variability of soil properties since the late 1970s. Initially used to assess soil salinity, the use of EMI in soil studies has expanded to include: mapping soil types; characterizing soil water content and flow patterns; assessing variations in soil texture, compaction, organic matter content, and pH; and determining the depth to subsurface horizons, stratigraphic layers or bedrock, among other uses. In all cases the soil property being investigated must influence soil apparent electrical conductivity (ECa) either directly or indirectly for EMI techniques to be effective. An increasing number and diversity of EMI sensors have been developed in response to users' needs and the availability of allied technologies, which have greatly improved the functionality of these tools and increased the amount and types of data that can be gathered with a single pass. EMI investigations provide several benefits for soil studies. The large amount of georeferenced data that can be rapidly and inexpensively collected with EMI provides more complete characterization of the spatial variations in soil properties than traditional sampling techniques. In addition, compared to traditional soil survey methods, EMI can more effectively characterize diffuse soil boundaries and identify included areas of dissimilar soils within mapped soil units, giving soil scientists greater confidence when collecting spatial soil information. EMI techniques do have limitations; results are site-specific and can vary depending on the complex interactions among multiple and variable soil properties. Despite this, EMI techniques are increasingly being used to investigate the spatial variability of soil properties at field and landscape scales. The future should witness a greater use of multiple-frequency and multiple-coil EMI sensors and integration with other sensors to assess the spatial variability of soil properties. Data analysis

  3. Reducing the capacitance of piezoelectric film sensors

    Energy Technology Data Exchange (ETDEWEB)

    González, Martín G., E-mail: mggonza@fi.uba.ar [Grupo de Láser, Óptica de Materiales y Aplicaciones Electromagnéticas (GLOMAE), Departamento de Física, Facultad de Ingeniería, Universidad de Buenos Aires, Paseo Colón 850, C1063ACV Buenos Aires (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1425FQB Buenos Aires (Argentina); Sorichetti, Patricio A.; Santiago, Guillermo D. [Grupo de Láser, Óptica de Materiales y Aplicaciones Electromagnéticas (GLOMAE), Departamento de Física, Facultad de Ingeniería, Universidad de Buenos Aires, Paseo Colón 850, C1063ACV Buenos Aires (Argentina)

    2016-04-15

    We present a novel design for large area, wideband, polymer piezoelectric sensor with low capacitance. The large area allows better spatial resolution in applications such as photoacoustic tomography and the reduced capacitance eases the design of fast transimpedance amplifiers. The metalized piezoelectric polymer thin film is segmented into N sections, electrically connected in series. In this way, the total capacitance is reduced by a factor 1/N{sup 2}, whereas the mechanical response and the active area of the sensor are not modified. We show the construction details for a two-section sensor, together with the impedance spectroscopy and impulse response experimental results that validate the design.

  4. Reducing the capacitance of piezoelectric film sensors

    International Nuclear Information System (INIS)

    González, Martín G.; Sorichetti, Patricio A.; Santiago, Guillermo D.

    2016-01-01

    We present a novel design for large area, wideband, polymer piezoelectric sensor with low capacitance. The large area allows better spatial resolution in applications such as photoacoustic tomography and the reduced capacitance eases the design of fast transimpedance amplifiers. The metalized piezoelectric polymer thin film is segmented into N sections, electrically connected in series. In this way, the total capacitance is reduced by a factor 1/N"2, whereas the mechanical response and the active area of the sensor are not modified. We show the construction details for a two-section sensor, together with the impedance spectroscopy and impulse response experimental results that validate the design.

  5. A Sentinel Sensor Network for Hydrogen Sensing

    Directory of Open Access Journals (Sweden)

    Andrew J. Mason

    2003-02-01

    Full Text Available A wireless sensor network is presented for in-situ monitoring of atmospheric hydrogen concentration. The hydrogen sensor network consists of multiple sensor nodes, equipped with titania nanotube hydrogen sensors, distributed throughout the area of interest; each node is both sensor, and data-relay station that enables extended wide area monitoring without a consequent increase of node power and thus node size. The hydrogen sensor is fabricated from a sheet of highly ordered titania nanotubes, made by anodization of a titanium thick film, to which platinum electrodes are connected. The electrical resistance of the hydrogen sensor varies from 245 Ω at 500 ppm hydrogen, to 10.23 kΩ at 0 ppm hydrogen (pure nitrogen environment. The measured resistance is converted to voltage, 0.049 V at 500 ppm to 2.046 V at 0 ppm, by interface circuitry. The microcontroller of the sensor node digitizes the voltage and transmits the digital information, using intermediate nodes as relays, to a host node that downloads measurement data to a computer for display. This paper describes the design and operation of the sensor network, the titania nanotube hydrogen sensors with an apparent low level resolution of approximately 0.05 ppm, and their integration in one widely useful device.

  6. The trade-off characteristics of acoustic and pressure sensors for the NASP

    Science.gov (United States)

    Winkler, Martin; Bush, Chuck

    1992-01-01

    Results of a trade study for the development of pressure and acoustic sensors for use on the National Aerospace Plane (NASP) are summarized. Pressure sensors are needed to operate to 100 psia; acoustic sensors are needed that can give meaningful information about a 200 dB sound pressure level (SPL) environment. Both sensors will have to operate from a high temperature of 2000 F down to absolute zero. The main conclusions of the study are the following: (1) Diaphragm materials limit minimum size and maximum frequency response attainable. (2) No transduction is available to meet all the NASP requirements with existing technology. (3) Capacitive sensors are large relative to the requirement, have limited resolution and frequency response due to noise, and cable length is limited to approximately 20 feet. (4) Eddy current sensors are large relative to the requirement and have limited cable lengths. (5) Fiber optic sensors provide the possibility for a small sensor, even though present developments do not exhibit that characteristic. The need to use sapphire at high temperature complicates the design. Present high temperature research sensors suffer from poor resolution. A significant development effort will be required to realize the potential of fiber optics. (6) Short-term development seems to favor eddy current techniques with the penalty of larger size and reduced dynamic range for acoustic sensors. (7) Long-term development may favor fiber optics with the penalties of cost, schedule, and uncertainty.

  7. A Probabilistic Model of the LMAC Protocol for Concurrent Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Esparza, Luz Judith R; Zeng, Kebin; Nielsen, Bo Friis

    2011-01-01

    We present a probabilistic model for the network setup phase of the Lightweight Medium Access Protocol (LMAC) for concurrent Wireless Sensor Networks. In the network setup phase, time slots are allocated to the individual sensors through resolution of successive collisions. The setup phase...

  8. Development of High Resolution Eddy Current Imaging Using an Electro-Mechanical Sensor (Preprint)

    Science.gov (United States)

    2011-11-01

    The Fluxgate Magnetometer ,” J. Phys. E: Sci. Instrum., Vol. 12: 241-253. 13. A. Abedi, J. J. Fellenstein, A. J. Lucas, and J. P. Wikswo, Jr., “A...206 (2006). 11. Ripka, P., 1992, Review of Fluxgate Sensors, Sensors and Actuators, A. 33, Elsevier Sequoia: 129-141. 12. Primdahl, F., 1979...superconducting quantum interference device magnetometer system for quantitative analysis and imaging of hidden corrosion activity in aircraft aluminum

  9. A Temperature Sensor Based on a Polymer Optical Fiber Macro-Bend

    Science.gov (United States)

    Moraleda, Alberto Tapetado; García, Carmen Vázquez; Zaballa, Joseba Zubia; Arrue, Jon

    2013-01-01

    The design and development of a plastic optical fiber (POF) macrobend temperature sensor is presented. The sensor has a linear response versus temperature at a fixed bend radius, with a sensitivity of 1.92·10−3 (°C)−1. The sensor system used a dummy fiber-optic sensor for reference purposes having a resolution below 0.3 °C. A comprehensive experimental analysis was carried out to provide insight into the effect of different surrounding media on practical macro-bend POF sensor implementation. Experimental results are successfully compared with bend loss calculations. PMID:24077323

  10. Evolution of miniature detectors and focal plane arrays for infrared sensors

    Science.gov (United States)

    Watts, Louis A.

    1993-06-01

    Sensors that are sensitive in the infrared spectral region have been under continuous development since the WW2 era. A quest for the military advantage of 'seeing in the dark' has pushed thermal imaging technology toward high spatial and temporal resolution for night vision equipment, fire control, search track, and seeker 'homing' guidance sensing devices. Similarly, scientific applications have pushed spectral resolution for chemical analysis, remote sensing of earth resources, and astronomical exploration applications. As a result of these developments, focal plane arrays (FPA) are now available with sufficient sensitivity for both high spatial and narrow bandwidth spectral resolution imaging over large fields of view. Such devices combined with emerging opto-electronic developments in integrated FPA data processing techniques can yield miniature sensors capable of imaging reflected sunlight in the near IR and emitted thermal energy in the Mid-wave (MWIR) and longwave (LWIR) IR spectral regions. Robotic space sensors equipped with advanced versions of these FPA's will provide high resolution 'pictures' of their surroundings, perform remote analysis of solid, liquid, and gas matter, or selectively look for 'signatures' of specific objects. Evolutionary trends and projections of future low power micro detector FPA developments for day/night operation or use in adverse viewing conditions are presented in the following test.

  11. Multisensor Super Resolution Using Directionally-Adaptive Regularization for UAV Images.

    Science.gov (United States)

    Kang, Wonseok; Yu, Soohwan; Ko, Seungyong; Paik, Joonki

    2015-05-22

    In various unmanned aerial vehicle (UAV) imaging applications, the multisensor super-resolution (SR) technique has become a chronic problem and attracted increasing attention. Multisensor SR algorithms utilize multispectral low-resolution (LR) images to make a higher resolution (HR) image to improve the performance of the UAV imaging system. The primary objective of the paper is to develop a multisensor SR method based on the existing multispectral imaging framework instead of using additional sensors. In order to restore image details without noise amplification or unnatural post-processing artifacts, this paper presents an improved regularized SR algorithm by combining the directionally-adaptive constraints and multiscale non-local means (NLM) filter. As a result, the proposed method can overcome the physical limitation of multispectral sensors by estimating the color HR image from a set of multispectral LR images using intensity-hue-saturation (IHS) image fusion. Experimental results show that the proposed method provides better SR results than existing state-of-the-art SR methods in the sense of objective measures.

  12. Cryogenic fiber optic temperature sensor and method of manufacturing the same

    Science.gov (United States)

    Kochergin, Vladimir (Inventor)

    2012-01-01

    This invention teaches the fiber optic sensors temperature sensors for cryogenic temperature range with improved sensitivity and resolution, and method of making said sensors. In more detail, the present invention is related to enhancement of temperature sensitivity of fiber optic temperature sensors at cryogenic temperatures by utilizing nanomaterials with a thermal expansion coefficient that is smaller than the thermal expansion coefficient of the optical fiber but larger in absolute value than the thermal expansion coefficient of the optical fiber at least over a range of temperatures.

  13. Polydimethylsiloxane-integratable micropressure sensor for microfluidic chips

    KAUST Repository

    Wang, Limu

    2009-09-17

    A novel microfluidicpressuresensor which can be fully integrated into polydimethylsiloxane(PDMS) is reported. The sensor produces electrical signals directly. We integrated PDMS-based conductive composites into a 30 μm thick membrane and bonded it to the microchannel side wall. The response time of the sensor is approximately 100 ms and can work within a pressure range as wide as 0–100 kPa. The resolution of this micropressure sensor is generally 0.1 kPa but can be increased to 0.01 kPa at high pressures as a result of the quadratic relationship between resistance and pressure. The PDMS-based nature of the sensor ensures its perfect bonding with PDMS chips, and the standard photolithographic process of the sensor allows one-time fabrication of three dimensional structures or even microsensor arrays. The theoretical calculations are in good agreement with experimental observations.

  14. Polydimethylsiloxane-integratable micropressure sensor for microfluidic chips

    KAUST Repository

    Wang, Limu; Zhang, Mengying; Yang, Min; Zhu, Weiming; Wu, Jinbo; Gong, Xiuqing; Wen, Weijia

    2009-01-01

    A novel microfluidicpressuresensor which can be fully integrated into polydimethylsiloxane(PDMS) is reported. The sensor produces electrical signals directly. We integrated PDMS-based conductive composites into a 30 μm thick membrane and bonded it to the microchannel side wall. The response time of the sensor is approximately 100 ms and can work within a pressure range as wide as 0–100 kPa. The resolution of this micropressure sensor is generally 0.1 kPa but can be increased to 0.01 kPa at high pressures as a result of the quadratic relationship between resistance and pressure. The PDMS-based nature of the sensor ensures its perfect bonding with PDMS chips, and the standard photolithographic process of the sensor allows one-time fabrication of three dimensional structures or even microsensor arrays. The theoretical calculations are in good agreement with experimental observations.

  15. Development of a Dynamic Web Mapping Service for Vegetation Productivity Using Earth Observation and in situ Sensors in a Sensor Web Based Approach

    Directory of Open Access Journals (Sweden)

    Sytze de Bruin

    2009-03-01

    Full Text Available This paper describes the development of a sensor web based approach which combines earth observation and in situ sensor data to derive typical information offered by a dynamic web mapping service (WMS. A prototype has been developed which provides daily maps of vegetation productivity for the Netherlands with a spatial resolution of 250 m. Daily available MODIS surface reflectance products and meteorological parameters obtained through a Sensor Observation Service (SOS were used as input for a vegetation productivity model. This paper presents the vegetation productivity model, the sensor data sources and the implementation of the automated processing facility. Finally, an evaluation is made of the opportunities and limitations of sensor web based approaches for the development of web services which combine both satellite and in situ sensor sources.

  16. Fiber Optic Displacement Sensor for Measuring Cholesterol Concentration

    Directory of Open Access Journals (Sweden)

    Moh. Budiyanto

    2017-11-01

    Full Text Available A simple design of a cholesterol concentration detection is proposed and demonstrated using a fiber optic displacement sensor based on an intensity modulation technique. The proposed sensor uses a bundled plastic optical fiber (POF as a probe in conjunction with a flat mirror as a target. It is obtained that the peak voltage reduces with increasing cholesterol concentration. The sensor is capable of measuring the cholesterol concentration ranging from 0 to 300 ppm in a distilled water with a measured sensitivity of 0.01 mV/ppm, a linearity of more than 99.62 % and a resolution of 3.9188 ppm. The proposed sensor also shows a high degree of stability and good repeatability. The simplicity of design, accuracy, flexible dynamic range, and the low cost of fabrication are favorable attributes of the sensor and beneficial for real- field applications. Fiber optic sensors

  17. Tracking bacterial infection into macrophages by a novel red-emission pH sensor

    OpenAIRE

    Jin, Yuguang; Tian, Yanqing; Zhang, Weiwen; Jang, Sei-Hum; Jen, Alex K.-Y.; Meldrum, Deirdre R.

    2010-01-01

    The relationship between bacteria and host phagocytic cells is a key to the induction of immunity. To visualize and monitor bacterial infection, we developed a novel bacterial membrane permeable pH sensor for noninvasive monitoring of bacterial entry into murine macrophages. The pH sensor was constructed using 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran (TCF) as an electron-withdrawing group and aniline as an electron donating group. A piperazine moiety was u...

  18. High-speed imaging using CMOS image sensor with quasi pixel-wise exposure

    Science.gov (United States)

    Sonoda, T.; Nagahara, H.; Endo, K.; Sugiyama, Y.; Taniguchi, R.

    2017-02-01

    Several recent studies in compressive video sensing have realized scene capture beyond the fundamental trade-off limit between spatial resolution and temporal resolution using random space-time sampling. However, most of these studies showed results for higher frame rate video that were produced by simulation experiments or using an optically simulated random sampling camera, because there are currently no commercially available image sensors with random exposure or sampling capabilities. We fabricated a prototype complementary metal oxide semiconductor (CMOS) image sensor with quasi pixel-wise exposure timing that can realize nonuniform space-time sampling. The prototype sensor can reset exposures independently by columns and fix these amount of exposure by rows for each 8x8 pixel block. This CMOS sensor is not fully controllable via the pixels, and has line-dependent controls, but it offers flexibility when compared with regular CMOS or charge-coupled device sensors with global or rolling shutters. We propose a method to realize pseudo-random sampling for high-speed video acquisition that uses the flexibility of the CMOS sensor. We reconstruct the high-speed video sequence from the images produced by pseudo-random sampling using an over-complete dictionary.

  19. Transition-edge sensor imaging arrays for astrophysics applications

    Science.gov (United States)

    Burney, Jennifer Anne

    Many interesting objects in our universe currently elude observation in the optical band: they are too faint or they vary rapidly and thus any structure in their radiation is lost over the period of an exposure. Conventional photon detectors cannot simultaneously provide energy resolution and time-stamping of individual photons at fast rates. Superconducting detectors have recently made the possibility of simultaneous photon counting, imaging, and energy resolution a reality. Our research group has pioneered the use of one such detector, the Transition-Edge Sensor (TES). TES physics is simple and elegant. A thin superconducting film, biased at its critical temperature, can act as a particle detector: an incident particle deposits energy and drives the film into its superconducting-normal transition. By inductively coupling the detector to a SQUID amplifier circuit, this resistance change can be read out as a current pulse, and its energy deduced by integrating over the pulse. TESs can be used to accurately time-stamp (to 0.1 [mu]s) and energy-resolve (0.15 eV at 1.6 eV) near-IR/visible/near-UV photons at rates of 30~kHz. The first astronomical observations using fiber-coupled detectors were made at the Stanford Student Observatory 0.6~m telescope in 1999. Further observations of the Crab Pulsar from the 107" telescope at the University of Texas McDonald Observatory showed rapid phase variations over the near-IR/visible/near-UV band. These preliminary observations provided a glimpse into a new realm of observations of pulsars, binary systems, and accreting black holes promised by TES arrays. This thesis describes the development, characterization, and preliminary use of the first camera system based on Transition-Edge Sensors. While single-device operation is relatively well-understood, the operation of a full imaging array poses significant challenges. This thesis addresses all aspects related to the creation and characterization of this cryogenic imaging

  20. Inductive reasoning.

    Science.gov (United States)

    Hayes, Brett K; Heit, Evan; Swendsen, Haruka

    2010-03-01

    Inductive reasoning entails using existing knowledge or observations to make predictions about novel cases. We review recent findings in research on category-based induction as well as theoretical models of these results, including similarity-based models, connectionist networks, an account based on relevance theory, Bayesian models, and other mathematical models. A number of touchstone empirical phenomena that involve taxonomic similarity are described. We also examine phenomena involving more complex background knowledge about premises and conclusions of inductive arguments and the properties referenced. Earlier models are shown to give a good account of similarity-based phenomena but not knowledge-based phenomena. Recent models that aim to account for both similarity-based and knowledge-based phenomena are reviewed and evaluated. Among the most important new directions in induction research are a focus on induction with uncertain premise categories, the modeling of the relationship between inductive and deductive reasoning, and examination of the neural substrates of induction. A common theme in both the well-established and emerging lines of induction research is the need to develop well-articulated and empirically testable formal models of induction. Copyright © 2010 John Wiley & Sons, Ltd. For further resources related to this article, please visit the WIREs website. Copyright © 2010 John Wiley & Sons, Ltd.

  1. Dynamic Landslide Deformation Monitoring with Fiber Bragg Grating Sensors

    Science.gov (United States)

    Moore, J. R.; Gischig, V.; Button, E.; Loew, S.

    2009-12-01

    Fiber optic (FO) strain sensors are a promising new technology for in-situ landslide monitoring. General performance advantages include high resolution, fast sampling rate, and insensitivity to electrical disturbances. Here we describe a new FO monitoring system based on long-gage fiber Bragg grating sensors installed at the Randa Rockslide Laboratory in southern Switzerland. We highlight the advantages and disadvantages of the system, describe relevant first results, and compare FO data to that from traditional instruments already installed on site. The Randa rock slope has been the subject of intensive research since its failure in 1991. Around 5 million cubic meters of rock remains unstable today, moving at rates up to 20 mm / year. Traditional in-situ monitoring techniques have been employed to understand the mechanics and driving forces of the currently unstable rock mass, however these investigations are limited by the resolution and low sampling rate of the sensors. The new FO monitoring system has micro-strain resolution and offers the capability to detect sub-micrometer scale deformations in both triggered-dynamic and continuous measurements. Two types of sensors have been installed: fully-embedded borehole sensors encased in grout at depths of 38, 40, and 68 m, and surface extensometers spanning active tension cracks. Dynamic measurements are triggered by sensor deformation and recorded at 100 Hz, while continuous measurements are logged every 5 minutes. Since installation in August 2008, the FO monitoring system has been operational 90% of the time. Time series deformation data show movement rates consistent with previous borehole extensometer surveys. Accelerated displacements following installation are likely related to long-term curing and dewatering of the grout. A number of interesting transients have been recorded, which in some cases were large enough to trigger rapid sampling. The combination of short- and long-term observation offers new

  2. Long-Term Quantitative Precipitation Estimates (QPE) at High Spatial and Temporal Resolution over CONUS: Bias-Adjustment of the Radar-Only National Mosaic and Multi-sensor QPE (NMQ/Q2) Precipitation Reanalysis (2001-2012)

    Science.gov (United States)

    Prat, Olivier; Nelson, Brian; Stevens, Scott; Seo, Dong-Jun; Kim, Beomgeun

    2015-04-01

    The processing of radar-only precipitation via the reanalysis from the National Mosaic and Multi-Sensor Quantitative (NMQ/Q2) based on the WSR-88D Next-generation Radar (NEXRAD) network over Continental United States (CONUS) is completed for the period covering from 2001 to 2012. This important milestone constitutes a unique opportunity to study precipitation processes at a 1-km spatial resolution for a 5-min temporal resolution. However, in order to be suitable for hydrological, meteorological and climatological applications, the radar-only product needs to be bias-adjusted and merged with in-situ rain gauge information. Several in-situ datasets are available to assess the biases of the radar-only product and to adjust for those biases to provide a multi-sensor QPE. The rain gauge networks that are used such as the Global Historical Climatology Network-Daily (GHCN-D), the Hydrometeorological Automated Data System (HADS), the Automated Surface Observing Systems (ASOS), and the Climate Reference Network (CRN), have different spatial density and temporal resolution. The challenges related to incorporating non-homogeneous networks over a vast area and for a long-term record are enormous. Among the challenges we are facing are the difficulties incorporating differing resolution and quality surface measurements to adjust gridded estimates of precipitation. Another challenge is the type of adjustment technique. The objective of this work is threefold. First, we investigate how the different in-situ networks can impact the precipitation estimates as a function of the spatial density, sensor type, and temporal resolution. Second, we assess conditional and un-conditional biases of the radar-only QPE for various time scales (daily, hourly, 5-min) using in-situ precipitation observations. Finally, after assessing the bias and applying reduction or elimination techniques, we are using a unique in-situ dataset merging the different RG networks (CRN, ASOS, HADS, GHCN-D) to

  3. Dc-SQUID sensor system for multichannel neuromagnetometry

    Energy Technology Data Exchange (ETDEWEB)

    Houwman, E.P.; Veldhuis, D.; Flokstra, ter Brake, H.J.M.; Jaszczuk, W.; Rogalla, H. (Univ. of Twente, Faculty of Applied Physics, P.O. Box 217, 7500 AE Enschede (NL)); Martinez, A. (Universidad de Zaragoza, E.T.S.I.I. Maria Zambrano 50, 50015 Zaragoza (ES))

    1991-03-01

    This paper reports on various DC-SQUID sensor configurations developed for use in the authors' 19-channel neuromagetometer. Apart from the standard type, resistively and indictively shunted SQUIDs were made, allowing for a large screening factor {beta} ({gt}1). In this way signal coupling from the pick-up coil to the SQUID is facilitated and capactive coupling between the input coil and the SQUID washer can be decreased. The number of turns of the input coil is decreased further by allowing for an inductance mismatch in the input circuit. Although theoretically both measures give rise to an increased field noise of the sensor, they may lead to a reduction of the excess noise and the noise balance may become positive.

  4. Dynamic temperature measurements with embedded optical sensors.

    Energy Technology Data Exchange (ETDEWEB)

    Dolan, Daniel H.,; Seagle, Christopher T; Ao, Tommy

    2013-10-01

    This report summarizes LDRD project number 151365, \\Dynamic Temperature Measurements with Embedded Optical Sensors". The purpose of this project was to develop an optical sensor capable of detecting modest temperature states (<1000 K) with nanosecond time resolution, a recurring diagnostic need in dynamic compression experiments at the Sandia Z machine. Gold sensors were selected because the visible re ectance spectrum of gold varies strongly with temperature. A variety of static and dynamic measurements were performed to assess re ectance changes at di erent temperatures and pressures. Using a minimal optical model for gold, a plausible connection between static calibrations and dynamic measurements was found. With re nements to the model and diagnostic upgrades, embedded gold sensors seem capable of detecting minor (<50 K) temperature changes under dynamic compression.

  5. Three-Dimensional Steerable Magnetic Field (3DSMF)Sensor System for Classification of Buried Metal Targets

    National Research Council Canada - National Science Library

    Nelson, Carl V; Mendat, Deborah P; Huynh, Toan B; Ramac-Thomas, Liane C; Beaty, James D; Craig, Joseph N

    2006-01-01

    .... The 3DSMF is a time-domain (TD) electromagnetic induction (EMI) sensor configured with a three-axis magnetic field generator and three receivers that measures the multiple components of buried unexploded ordnance (UXO...

  6. Advances in measuring ocean salinity with an optical sensor

    International Nuclear Information System (INIS)

    Menn, M Le; De Bougrenet de la Tocnaye, J L; Grosso, P; Delauney, L; Podeur, C; Brault, P; Guillerme, O

    2011-01-01

    Absolute salinity measurement of seawater has become a key issue in thermodynamic models of the oceans. One of the most direct ways is to measure the seawater refractive index which is related to density and can therefore be related to the absolute salinity. Recent advances in high resolution position sensitive devices enable us to take advantage of small beam deviation measurements using refractometers. This paper assesses the advantages of such technology with respect to the current state-of-the-art technology. In particular, we present the resolution dependence on refractive index variations and derive the limits of such a solution for designing seawater sensors well suited for coastal and deep-sea applications. Particular attention has been paid to investigate the impact of environmental parameters, such as temperature and pressure, on an optical sensor, and ways to mitigate or compensate them have been suggested here. The sensor has been successfully tested in a pressure tank and in open oceans 2000 m deep

  7. Integration of electromagnetic induction sensor data in soil sampling scheme optimization using simulated annealing.

    Science.gov (United States)

    Barca, E; Castrignanò, A; Buttafuoco, G; De Benedetto, D; Passarella, G

    2015-07-01

    Soil survey is generally time-consuming, labor-intensive, and costly. Optimization of sampling scheme allows one to reduce the number of sampling points without decreasing or even increasing the accuracy of investigated attribute. Maps of bulk soil electrical conductivity (EC a ) recorded with electromagnetic induction (EMI) sensors could be effectively used to direct soil sampling design for assessing spatial variability of soil moisture. A protocol, using a field-scale bulk EC a survey, has been applied in an agricultural field in Apulia region (southeastern Italy). Spatial simulated annealing was used as a method to optimize spatial soil sampling scheme taking into account sampling constraints, field boundaries, and preliminary observations. Three optimization criteria were used. the first criterion (minimization of mean of the shortest distances, MMSD) optimizes the spreading of the point observations over the entire field by minimizing the expectation of the distance between an arbitrarily chosen point and its nearest observation; the second criterion (minimization of weighted mean of the shortest distances, MWMSD) is a weighted version of the MMSD, which uses the digital gradient of the grid EC a data as weighting function; and the third criterion (mean of average ordinary kriging variance, MAOKV) minimizes mean kriging estimation variance of the target variable. The last criterion utilizes the variogram model of soil water content estimated in a previous trial. The procedures, or a combination of them, were tested and compared in a real case. Simulated annealing was implemented by the software MSANOS able to define or redesign any sampling scheme by increasing or decreasing the original sampling locations. The output consists of the computed sampling scheme, the convergence time, and the cooling law, which can be an invaluable support to the process of sampling design. The proposed approach has found the optimal solution in a reasonable computation time. The

  8. Wireless energizing system for an automated implantable sensor

    Energy Technology Data Exchange (ETDEWEB)

    Swain, Biswaranjan; Nayak, Praveen P.; Kar, Durga P.; Bhuyan, Satyanarayan; Mishra, Laxmi P. [Department of Electronics and Instrumentation Engineering, Siksha ‘O’ Anusandhan University, Bhubaneswar 751030 (India)

    2016-07-15

    The wireless drive of an automated implantable electronic sensor has been explored for health monitoring applications. The proposed system comprises of an automated biomedical sensing system which is energized through resonant inductive coupling. The implantable sensor unit is able to monitor the body temperature parameter and sends back the corresponding telemetry data wirelessly to the data recoding unit. It has been observed that the wireless power delivery system is capable of energizing the automated biomedical implantable electronic sensor placed over a distance of 3 cm from the power transmitter with an energy transfer efficiency of 26% at the operating resonant frequency of 562 kHz. This proposed method ensures real-time monitoring of different human body temperatures around the clock. The monitored temperature data have been compared with a calibrated temperature measurement system to ascertain the accuracy of the proposed system. The investigated technique can also be useful for monitoring other body parameters such as blood pressure, bladder pressure, and physiological signals of the patient in vivo using various implantable sensors.

  9. Wireless energizing system for an automated implantable sensor

    International Nuclear Information System (INIS)

    Swain, Biswaranjan; Nayak, Praveen P.; Kar, Durga P.; Bhuyan, Satyanarayan; Mishra, Laxmi P.

    2016-01-01

    The wireless drive of an automated implantable electronic sensor has been explored for health monitoring applications. The proposed system comprises of an automated biomedical sensing system which is energized through resonant inductive coupling. The implantable sensor unit is able to monitor the body temperature parameter and sends back the corresponding telemetry data wirelessly to the data recoding unit. It has been observed that the wireless power delivery system is capable of energizing the automated biomedical implantable electronic sensor placed over a distance of 3 cm from the power transmitter with an energy transfer efficiency of 26% at the operating resonant frequency of 562 kHz. This proposed method ensures real-time monitoring of different human body temperatures around the clock. The monitored temperature data have been compared with a calibrated temperature measurement system to ascertain the accuracy of the proposed system. The investigated technique can also be useful for monitoring other body parameters such as blood pressure, bladder pressure, and physiological signals of the patient in vivo using various implantable sensors.

  10. Wireless energizing system for an automated implantable sensor.

    Science.gov (United States)

    Swain, Biswaranjan; Nayak, Praveen P; Kar, Durga P; Bhuyan, Satyanarayan; Mishra, Laxmi P

    2016-07-01

    The wireless drive of an automated implantable electronic sensor has been explored for health monitoring applications. The proposed system comprises of an automated biomedical sensing system which is energized through resonant inductive coupling. The implantable sensor unit is able to monitor the body temperature parameter and sends back the corresponding telemetry data wirelessly to the data recoding unit. It has been observed that the wireless power delivery system is capable of energizing the automated biomedical implantable electronic sensor placed over a distance of 3 cm from the power transmitter with an energy transfer efficiency of 26% at the operating resonant frequency of 562 kHz. This proposed method ensures real-time monitoring of different human body temperatures around the clock. The monitored temperature data have been compared with a calibrated temperature measurement system to ascertain the accuracy of the proposed system. The investigated technique can also be useful for monitoring other body parameters such as blood pressure, bladder pressure, and physiological signals of the patient in vivo using various implantable sensors.

  11. Development of High Resolution Eddy Current Imaging Using an Electro-Mechanical Sensor (Postprint)

    Science.gov (United States)

    2011-08-01

    Primdahl, F., 1979, “The Fluxgate Magnetometer ,” J. Phys. E: Sci. Instrum., Vol. 12: 241-253. 13. A. Abedi, J. J. Fellenstein, A. J. Lucas, and J. P...Issues 1-2, Pages 203-206 (2006). 11. Ripka, P., 1992, Review of Fluxgate Sensors, Sensors and Actuators, A. 33, Elsevier Sequoia: 129-141. 12...Wikswo, Jr., “A superconducting quantum interference device magnetometer system for quantitative analysis and imaging of hidden corrosion activity in

  12. Performance Characteristics and Temperature Compensation Method of Fluid Property Sensor Based on Tuning-Fork Technology

    Directory of Open Access Journals (Sweden)

    Yuan Chen

    2016-01-01

    Full Text Available Fluid property sensor (FPS based on tuning-fork technology is applied to the measurement of the contaminant level of lubricant oil. The measuring principle of FPS sensor is derived and proved together with its resolution. The performance characteristics of the FPS sensor, such as sensitivity coefficient, resolution, and quality factor, are analyzed. A temperature compensation method is proposed to eliminate the temperature-dependence of the measuring parameters, and its validity is investigated by numerical simulation of sensitivity, oscillating frequency, and dielectric constant. The values of purification efficiency obtained using microwave and without microwave are compared experimentally.

  13. Fast and accurate spectral estimation for online detection of partial broken bar in induction motors

    Science.gov (United States)

    Samanta, Anik Kumar; Naha, Arunava; Routray, Aurobinda; Deb, Alok Kanti

    2018-01-01

    In this paper, an online and real-time system is presented for detecting partial broken rotor bar (BRB) of inverter-fed squirrel cage induction motors under light load condition. This system with minor modifications can detect any fault that affects the stator current. A fast and accurate spectral estimator based on the theory of Rayleigh quotient is proposed for detecting the spectral signature of BRB. The proposed spectral estimator can precisely determine the relative amplitude of fault sidebands and has low complexity compared to available high-resolution subspace-based spectral estimators. Detection of low-amplitude fault components has been improved by removing the high-amplitude fundamental frequency using an extended-Kalman based signal conditioner. Slip is estimated from the stator current spectrum for accurate localization of the fault component. Complexity and cost of sensors are minimal as only a single-phase stator current is required. The hardware implementation has been carried out on an Intel i7 based embedded target ported through the Simulink Real-Time. Evaluation of threshold and detectability of faults with different conditions of load and fault severity are carried out with empirical cumulative distribution function.

  14. Design considerations for a new, high resolution Micro-Angiographic Fluoroscope based on a CMOS sensor (MAF-CMOS).

    Science.gov (United States)

    Loughran, Brendan; Swetadri Vasan, S N; Singh, Vivek; Ionita, Ciprian N; Jain, Amit; Bednarek, Daniel R; Titus, Albert; Rudin, Stephen

    2013-03-06

    The detectors that are used for endovascular image-guided interventions (EIGI), particularly for neurovascular interventions, do not provide clinicians with adequate visualization to ensure the best possible treatment outcomes. Developing an improved x-ray imaging detector requires the determination of estimated clinical x-ray entrance exposures to the detector. The range of exposures to the detector in clinical studies was found for the three modes of operation: fluoroscopic mode, high frame-rate digital angiographic mode (HD fluoroscopic mode), and DSA mode. Using these estimated detector exposure ranges and available CMOS detector technical specifications, design requirements were developed to pursue a quantum limited, high resolution, dynamic x-ray detector based on a CMOS sensor with 50 μm pixel size. For the proposed MAF-CMOS, the estimated charge collected within the full exposure range was found to be within the estimated full well capacity of the pixels. Expected instrumentation noise for the proposed detector was estimated to be 50-1,300 electrons. Adding a gain stage such as a light image intensifier would minimize the effect of the estimated instrumentation noise on total image noise but may not be necessary to ensure quantum limited detector operation at low exposure levels. A recursive temporal filter may decrease the effective total noise by 2 to 3 times, allowing for the improved signal to noise ratios at the lowest estimated exposures despite consequent loss in temporal resolution. This work can serve as a guide for further development of dynamic x-ray imaging prototypes or improvements for existing dynamic x-ray imaging systems.

  15. Recent Improvement of Medical Optical Fibre Pressure and Temperature Sensors.

    Science.gov (United States)

    Poeggel, Sven; Duraibabu, Dineshbabu; Kalli, Kyriacos; Leen, Gabriel; Dooly, Gerard; Lewis, Elfed; Kelly, Jimmy; Munroe, Maria

    2015-07-13

    This investigation describes a detailed analysis of the fabrication and testing of optical fibre pressure and temperature sensors (OFPTS). The optical sensor of this research is based on an extrinsic Fabry-Perot interferometer (EFPI) with integrated fibre Bragg grating (FBG) for simultaneous pressure and temperature measurements. The sensor is fabricated exclusively in glass and with a small diameter of 0.2 mm, making it suitable for volume-restricted bio-medical applications. Diaphragm shrinking techniques based on polishing, hydrofluoric (HF) acid and femtosecond (FS) laser micro-machining are described and analysed. The presented sensors were examined carefully and demonstrated a pressure sensitivity in the range of sp = 2-10 nm/kPa and a resolution of better than ΔP = 10 Pa protect (0.1 cm H2O). A static pressure test in 38 cm H2O shows no drift of the sensor in a six-day period. Additionally, a dynamic pressure analysis demonstrated that the OFPTS never exceeded a drift of more than 130 Pa (1.3 cm H2O) in a 12-h measurement, carried out in a cardiovascular simulator. The temperature sensitivity is given by k = 10.7 pm/K, which results in a temperature resolution of better than ΔT = 0.1 K. Since the temperature sensing element is placed close to the pressure sensing element, the pressure sensor is insensitive to temperature changes.

  16. Review of the development of diamond radiation sensors

    Energy Technology Data Exchange (ETDEWEB)

    Adam, W.; Bauer, C.; Berdermann, E.; Bergonzo, P.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; Eijk, B. van; Fallou, A.; Fizzotti, F.; Foulon, F.; Friedl, M.; Gan, K.K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hartjes, F.; Hrubec, J. E-mail: josel.hrubec@cern.ch; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Karl, C.; Kass, R.; Knoepfle, K.T.; Krammer, M.; Logiudice, A.; Lu, R.; Manfredi, P.F.; Manfredotti, C.; Marshall, R.D.; Meier, D.; Mishina, M.; Oh, A.; Pan, L.S.; Palmieri, V.G.; Pernicka, M.; Peitz, A.; Pirollo, S.; Polesello, P.; Pretzl, K.; Re, V.; Riester, J.L.; Roe, S.; Roff, D.; Rudge, A.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Stone, R.; Tapper, R.J.; Tesarek, R.; Thomson, G.B.; Trawick, M.; Trischuk, W.; Vittone, E.; Walsh, A.M.; Wedenig, R.; Weilhammer, P.; Ziock, H.; Zoeller, M

    1999-09-11

    Diamond radiation sensors produced by chemical vapour deposition are studied for the application as tracking detectors in high luminosity experiments. Sensors with a charge collection distance up to 250 {mu}m have been manufactured. Their radiation hardness has been studied with pions, proton and neutrons up to fluences of 1.9x10{sup 15} {pi} cm{sup -2}, 5x10{sup 15} p cm{sup -2} and 1.35x10{sup 15} n cm{sup -2}, respectively. Diamond micro-strip detectors with 50 {mu}m pitch have been exposed in a high-energy test beam in order to investigate their charge collection properties. The measured spatial resolution using a centre-of-gravity position finding algorithm corresponds to the digital resolution for this strip pitch. First results from a strip tracker with a 2x4 cm{sup 2} surface area are reported as well as the performance of a diamond tracker read out by radiation-hard electronics with 25 ns shaping time. Diamond pixel sensors have been prepared to match the geometries of the recently available read-out chip prototypes for ATLAS and CMS. Beam test results are shown from a diamond detector bump-bonded to an ATLAS prototype read-out. They demonstrate a 98% bump-bonding efficiency and a digital resolution in both dimensions. (author)

  17. Smart textile plasmonic fiber dew sensors.

    Science.gov (United States)

    Esmaeilzadeh, Hamid; Rivard, Maxime; Arzi, Ezatollah; Légaré, François; Hassani, Alireza

    2015-06-01

    We propose a novel Surface Plasmon Resonance (SPR)-based sensor that detects dew formation in optical fiber-based smart textiles. The proposed SPR sensor facilitates the observation of two phenomena: condensation of moisture and evaporation of water molecules in air. This sensor detects dew formation in less than 0.25 s, and determines dew point temperature with an accuracy of 4%. It can be used to monitor water layer depth changes during dew formation and evaporation in the range of a plasmon depth probe, i.e., 250 nm, with a resolution of 7 nm. Further, it facilitates estimation of the relative humidity of a medium over a dynamic range of 30% to 70% by measuring the evaporation time via the plasmon depth probe.

  18. Fiber interferometer combining sub-nm displacement resolution with miniaturized sensor head

    NARCIS (Netherlands)

    Cheng, L.K.; Hagen, R.A.J.; Schriek, L.N.; Toet, P.M.; Togt, O.E. van der

    2017-01-01

    The presented interferometer concept enables high-accuracy target displacement measurement in difficult accessible locations and the development of small fiber optic sensor to measure other physical parameters e.g. pressure, vibration, gravity force, etc.. Furthermore, this configuration is

  19. Antibody induction versus corticosteroid induction for liver transplant recipients

    DEFF Research Database (Denmark)

    Penninga, Luit; Wettergren, André; Wilson, Colin H

    2014-01-01

    BACKGROUND: Liver transplantation is an established treatment option for end-stage liver failure. To date, no consensus has been reached on the use of immunosuppressive T-cell specific antibody induction compared with corticosteroid induction of immunosuppression after liver transplantation....... OBJECTIVES: To assess the benefits and harms of T-cell specific antibody induction versus corticosteroid induction for prevention of acute rejection in liver transplant recipients. SEARCH METHODS: We searched The Cochrane Hepato-Biliary Group Controlled Trials Register, the Cochrane Central Register...... to identify additional trials. SELECTION CRITERIA: We included all randomised clinical trials assessing immunosuppression with T-cell specific antibody induction versus corticosteroid induction in liver transplant recipients. Our inclusion criteria stated that participants within each included trial should...

  20. Evaluation of the data of vegetable covering using fraction images and multitemporal vegetation index, derived of orbital data of moderate resolution of the sensor MODIS

    International Nuclear Information System (INIS)

    Murillo Mejia, Mario Humberto

    2006-01-01

    The objective was to evaluate the data obtained by sensor MODIS onboard the EOS terra satellite land cover units. The study area is the republic of Colombia in South America. The methodology consisted of analyzing the multitemporal (vegetation, soil and shade-water) fraction images and vegetation indices (NDVI) apply the lineal spectral mixture model to products derived from derived images by sensor MODIS data obtained in years 2001 and 2003. The mosaics of the original and the transformed vegetation (soil and shade-water) bands were generated for the whole study area using SPRING 4. 0 software, developed by INPE then these mosaics were segmented, classified, mapped, and edited to obtain a moderate resolution land cover map. The results derived from MODIS analysis were compared with Landsat ETM+ data acquire for a single test site. The results of the project showed the usefulness of MODIS images for large-scale land cover mapping and monitoring studies

  1. Review of the development of diamond radiation sensors

    CERN Document Server

    Adam, W; Berdermann, E; Bergonzo, P; Bogani, F; Borchi, E; Brambilla, A; Bruzzi, Mara; Colledani, C; Conway, J; Dabrowski, W; Delpierre, P A; Deneuville, A; Dulinski, W; van Eijk, B; Fallou, A; Fizzotti, F; Foulon, F; Friedl, M; Gan, K K; Gheeraert, E; Grigoriev, E; Hallewell, G D; Hall-Wilton, R; Han, S; Hartjes, F G; Hrubec, Josef; Husson, D; Kagan, H; Kania, D R; Kaplon, J; Karl, C; Kass, R; Knöpfle, K T; Krammer, Manfred; Lo Giudice, A; Lü, R; Manfredi, P F; Manfredotti, C; Marshall, R D; Meier, D; Mishina, M; Oh, A; Pan, L S; Palmieri, V G; Pernicka, Manfred; Peitz, A; Pirollo, S; Polesello, P; Pretzl, Klaus P; Re, V; Riester, J L; Roe, S; Roff, D G; Rudge, A; Schnetzer, S R; Sciortino, S; Speziali, V; Stelzer, H; Stone, R; Tapper, R J; Tesarek, R J; Thomson, G B; Trawick, M L; Trischuk, W; Vittone, E; Walsh, A M; Wedenig, R; Weilhammer, Peter; Ziock, H J; Zöller, M

    1999-01-01

    Diamond radiation sensors produced by chemical vapour deposition are studied for the application as tracking detectors in high luminosity experiments. Sensors with a charge collection distance up to 250 mu m have been manufactured. Their radiation hardness has been studied with pions, proton and neutrons up to fluences of 1.9*10/sup 15/ pi cm/sup -2/, 5*10/sup 19/ p cm/sup -2/ and 1.35*10/sup 15/ n cm/sup -2 /, respectively. Diamond micro-strip detectors with 50 mu m pitch have been exposed in a high-energy test beam in order to investigate their charge collection properties. The measured spatial resolution using a centre-of-gravity position finding algorithm corresponds to the digital resolution for this strip pitch. First results from a strip tracker with a 2*4 cm/sup 2/ surface area are reported as well as the performance of a diamond tracker read out by radiation-hard electronics with 25 ns shaping time. Diamond pixel sensors have been prepared to match the geometries of the recently available read-out ch...

  2. In-Situ Investigation of Strain-Induced Martensitic Transformation Kinetics in an Austenitic Stainless Steel by Inductive Measurements

    Directory of Open Access Journals (Sweden)

    Carola Celada-Casero

    2017-07-01

    Full Text Available An inductive sensor developed by Philips ATC has been used to study in-situ the austenite (γ to martensite (α′ phase transformation kinetics during tensile testing in an AISI 301 austenitic stainless steel. A correlation between the sensor output signal and the volume fraction of α′-martensite has been found by comparing the results to the ex-situ characterization by magnetization measurements, light optical microscopy, and X-ray diffraction. The sensor has allowed for the observation of the stepwise transformation behavior, a not-well-understood phenomena that takes place in large regions of the bulk material and that so far had only been observed by synchrotron X-ray diffraction.

  3. Study on quench detection of the KSTAR CS coil with CDA+MIK compensation of inductive voltages

    Energy Technology Data Exchange (ETDEWEB)

    An, Seok Chan; Kim, Jin Sub [Yonsei University, Seoul (Korea, Republic of); Chu, Yong [National Fusion Research Institute(NFRI), Daejeon (Korea, Republic of)

    2016-03-15

    Quench Detection System (QDS) is essential to guarantee the stable operation of the Korea Superconducting Tokamak Advanced Research (KSTAR) Poloidal Field (PF) magnet system because the stored energy in the magnet system is very large. For the fast response, voltage-based QDS has been used. Co-wound voltage sensors and balanced bridge circuits were applied to eliminate the inductive voltages generated during the plasma operation. However, as the inductive voltages are hundreds times higher than the quench detection voltage during the pulse-current operation, Central Difference Averaging (CDA) and MIK, where I and K stand for mutual coupling indexes of different circuits, which is an active cancellation of mutually generated voltages have been suggested and studied. In this paper, the CDA and MIK technique were applied to the KSTAR magnet for PF magnet quench detection. The calculated inductive voltages from the MIK and measured voltages from the CDA circuits were compared to eliminate the inductive voltages at result signals.

  4. Study on quench detection of the KSTAR CS coil with CDA+MIK compensation of inductive voltages

    International Nuclear Information System (INIS)

    An, Seok Chan; Kim, Jin Sub; Chu, Yong

    2016-01-01

    Quench Detection System (QDS) is essential to guarantee the stable operation of the Korea Superconducting Tokamak Advanced Research (KSTAR) Poloidal Field (PF) magnet system because the stored energy in the magnet system is very large. For the fast response, voltage-based QDS has been used. Co-wound voltage sensors and balanced bridge circuits were applied to eliminate the inductive voltages generated during the plasma operation. However, as the inductive voltages are hundreds times higher than the quench detection voltage during the pulse-current operation, Central Difference Averaging (CDA) and MIK, where I and K stand for mutual coupling indexes of different circuits, which is an active cancellation of mutually generated voltages have been suggested and studied. In this paper, the CDA and MIK technique were applied to the KSTAR magnet for PF magnet quench detection. The calculated inductive voltages from the MIK and measured voltages from the CDA circuits were compared to eliminate the inductive voltages at result signals

  5. First-time demonstration of measuring concrete prestress levels with metal packaged fibre optic sensors

    Science.gov (United States)

    Mckeeman, I.; Fusiek, G.; Perry, M.; Johnston, M.; Saafi, M.; Niewczas, P.; Walsh, M.; Khan, S.

    2016-09-01

    In this work we present the first large-scale demonstration of metal packaged fibre Bragg grating sensors developed to monitor prestress levels in prestressed concrete. To validate the technology, strain and temperature sensors were mounted on steel prestressing strands in concrete beams and stressed up to 60% of the ultimate tensile strength of the strand. We discuss the methods and calibration procedures used to fabricate and attach the temperature and strain sensors. The use of induction brazing for packaging the fibre Bragg gratings and welding the sensors to prestressing strands eliminates the use of epoxy, making the technique suitable for high-stress monitoring in an irradiated, harsh industrial environment. Initial results based on the first week of data after stressing the beams show the strain sensors are able to monitor prestress levels in ambient conditions.

  6. A Pascalian lateral drift sensor

    International Nuclear Information System (INIS)

    Jansen, H.

    2016-01-01

    A novel concept of a layer-wise produced semiconductor sensor for precise particle tracking is proposed herein. In contrast to common semiconductor sensors, local regions with increased doping concentration deep in the bulk termed charge guides increase the lateral drift of free charges on their way to the read-out electrode. This lateral drift enables charge sharing independent of the incident position of the traversing particle. With a regular grid of charge guides the lateral charge distribution resembles a normalised Pascal's triangle for particles that are stopped in depths lower than the depth of the first layer of the charge guides. For minimum ionising particles a sum of binomial distributions describes the lateral charge distribution. This concept decouples the achievable sensor resolution from the pitch size as the characteristic length is replaced by the lateral distance of the charge guides.

  7. A Pascalian lateral drift sensor

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, H., E-mail: hendrik.jansen@desy.de

    2016-09-21

    A novel concept of a layer-wise produced semiconductor sensor for precise particle tracking is proposed herein. In contrast to common semiconductor sensors, local regions with increased doping concentration deep in the bulk termed charge guides increase the lateral drift of free charges on their way to the read-out electrode. This lateral drift enables charge sharing independent of the incident position of the traversing particle. With a regular grid of charge guides the lateral charge distribution resembles a normalised Pascal's triangle for particles that are stopped in depths lower than the depth of the first layer of the charge guides. For minimum ionising particles a sum of binomial distributions describes the lateral charge distribution. This concept decouples the achievable sensor resolution from the pitch size as the characteristic length is replaced by the lateral distance of the charge guides.

  8. Induction linacs

    International Nuclear Information System (INIS)

    Keefe, D.

    1986-07-01

    The principle of linear induction acceleration is described, and examples are given of practical configurations for induction linacs. These examples include the Advanced Technology Accelerator, Long Pulse Induction Linac, Radial Line Accelerator (RADLAC), and Magnetically-Insulated Electron-Focussed Ion Linac. A related concept, the auto accelerator, is described in which the high-current electron-beam technology in the sub-10 MeV region is exploited to produce electron beams at energies perhaps as high as the 100 to 1000 MeV range. Induction linacs for ions are also discussed. The efficiency of induction linear acceleration is analyzed

  9. Thinking Outside of the Blue Marble: Novel Ocean Applications Using the VIIRS Sensor

    Science.gov (United States)

    Vandermeulen, Ryan A.; Arnone, Robert

    2016-01-01

    While planning for future space-borne sensors will increase the quality, quantity, and duration of ocean observations in the years to come, efforts to extend the limits of sensors currently in orbit can help shed light on future scientific gains as well as associated uncertainties. Here, we present several applications that are unique to the polar orbiting Visual Infrared Imaging Radiometer Suite (VIIRS), each of which challenge the threshold capabilities of the sensor and provide lessons for future missions. For instance, while moderate resolution polar orbiters typically have a one day revisit time, we are able to obtain multiple looks of the same area by focusing on the extreme zenith angles where orbital views overlap, and pair these observations with those from other sensors to create pseudo-geostationary data sets. Or, by exploiting high spatial resolution (imaging) channels and analyzing patterns of synoptic covariance across the visible spectrum, we can obtain higher spatial resolution bio-optical products. Alternatively, non-traditional products can illuminate important biological interactions in the ocean, such as the use of the Day-Night-Band to provide some quantification of phototactic behavior of marine life along light polluted beaches, as well as track the location of marine fishing vessel fleets along ocean fronts. In this talk, we explore ways to take full advantage of the capabilities of existing sensors in order to maximize insights for future missions.

  10. Improvements in the measurement system of a biological Magnetic Induction Tomographical experimental setup

    International Nuclear Information System (INIS)

    Bras, N. B.; Martins, R. C.; Serra, A. C.

    2010-01-01

    Magnetic Induction Tomography (MIT) is an imaging technique that allows mapping the internal structure complex conductivity of a body. In this paper a feasibility study to implement a higher resolution MIT system for biological tissues is carried out. Recent improvements in measured signal stability and accuracy as well as a much improved angular resolution measurement of the multi-coil setup are presented which, together with a new mechanical design allows obtaining longer stable and more accurate acquisitions. This allows improving the number of measurements without trends or external perturbations, leading to a better conductivity resolution and to an enhanced image reconstruction. Throughout the paper experimental data is used to consolidate results.

  11. Time-Resolved Emittance Characterization of an Induction Linac Beam using Optical Transition Radiation

    International Nuclear Information System (INIS)

    Le Sage, G P

    2002-01-01

    An induction linac is used by Lawrence Livermore National Laboratory to perform radiographic testing at the Flash X-ray Radiography facility. Emittance characterization is important since x-ray spot size impacts the resolution of shadow-graphs. Due to the long pulse length, high current, and beam energy, emittance measurement using Optical Transition Radiation is an attractive alternative for reasons that will be described in the text. The utility of OTR-based emittance measurement has been well demonstrated for both RF and induction linacs. We describe the time-resolved emittance characterization of an induction linac electron beam. We have refined the optical collection system for the induction linac application, and have demonstrated a new technique for probing the divergence of a subset of the beam profile. The experimental apparatus, data reduction, and conclusions will be presented. Additionally, a new scheme for characterizing the correlation between beam divergence and spatial coordinates within the beam profile will be described

  12. Time-Resolved Emittance Characterization of an Induction Linac Beam using Optical Transition Radiation

    CERN Document Server

    Le Sage, G P

    2002-01-01

    An induction linac is used by Lawrence Livermore National Laboratory to perform radiographic testing at the Flash X-ray Radiography facility. Emittance characterization is important since x-ray spot size impacts the resolution of shadow-graphs. Due to the long pulse length, high current, and beam energy, emittance measurement using Optical Transition Radiation is an attractive alternative for reasons that will be described in the text. The utility of OTR-based emittance measurement has been well demonstrated for both RF and induction linacs. We describe the time-resolved emittance characterization of an induction linac electron beam. We have refined the optical collection system for the induction linac application, and have demonstrated a new technique for probing the divergence of a subset of the beam profile. The experimental apparatus, data reduction, and conclusions will be presented. Additionally, a new scheme for characterizing the correlation between beam divergence and spatial coordinates within the b...

  13. Optical arc sensor using energy harvesting power source

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kyoo Nam, E-mail: knchoi@inu.ac.kr; Rho, Hee Hyuk, E-mail: rdoubleh0902@inu.ac.kr [Dept. of Information and Telecommunication Engineering Incheon National University Incheon 22012 (Korea, Republic of)

    2016-06-03

    Wireless sensors without external power supply gained considerable attention due to convenience both in installation and operation. Optical arc detecting sensor equipping with self sustaining power supply using energy harvesting method was investigated. Continuous energy harvesting method was attempted using thermoelectric generator to supply standby power in micro ampere scale and operating power in mA scale. Peltier module with heat-sink was used for high efficiency electricity generator. Optical arc detecting sensor with hybrid filter showed insensitivity to fluorescent and incandescent lamps under simulated distribution panel condition. Signal processing using integrating function showed selective arc discharge detection capability to different arc energy levels, with a resolution below 17 J energy difference, unaffected by bursting arc waveform. The sensor showed possibility for application to arc discharge detecting sensor in power distribution panel. Also experiment with proposed continuous energy harvesting method using thermoelectric power showed possibility as a self sustainable power source of remote sensor.

  14. Optical arc sensor using energy harvesting power source

    Science.gov (United States)

    Choi, Kyoo Nam; Rho, Hee Hyuk

    2016-06-01

    Wireless sensors without external power supply gained considerable attention due to convenience both in installation and operation. Optical arc detecting sensor equipping with self sustaining power supply using energy harvesting method was investigated. Continuous energy harvesting method was attempted using thermoelectric generator to supply standby power in micro ampere scale and operating power in mA scale. Peltier module with heat-sink was used for high efficiency electricity generator. Optical arc detecting sensor with hybrid filter showed insensitivity to fluorescent and incandescent lamps under simulated distribution panel condition. Signal processing using integrating function showed selective arc discharge detection capability to different arc energy levels, with a resolution below 17J energy difference, unaffected by bursting arc waveform. The sensor showed possibility for application to arc discharge detecting sensor in power distribution panel. Also experiment with proposed continuous energy harvesting method using thermoelectric power showed possibility as a self sustainable power source of remote sensor.

  15. High Resolution Tactile Sensors for Curved Robotic Fingertips

    DEFF Research Database (Denmark)

    Drimus, Alin; Jankovics, Vince; Gorsic, Matija

    2014-01-01

    Tactile sensing is a key element for various animals that interact with the environment and surrounding objects. Touch provides information about contact forces, torques and pressure distribution and by the means of exploration it provides object properties such as geometry, stiffness and texture...... trivial to obtain, dealing with limited accuracy, occlusions and calibration problems. In terms of sensors for static stimuli, such as pressure, there are a range of technologies that can be used to manufacture transducers with various results[5].......Tactile sensing is a key element for various animals that interact with the environment and surrounding objects. Touch provides information about contact forces, torques and pressure distribution and by the means of exploration it provides object properties such as geometry, stiffness and texture[5...

  16. Elastomeric Sensing of Pressure with Liquid Metal and Wireless Inductive Coupling

    Science.gov (United States)

    Dick, Jacob; Zou, Xiyue; Hogan, Ben; Tumalle, Jonathan; Etikyala, Sowmith; Fung, Diego; Charles, Watley; Gu, Tianye; Hull, Patrick V.; Mazzeo, Aaron D.

    2017-01-01

    This project describes resistance-based soft sensors filled with liquid metal, which permit measurements of large strains (0 percent to 110 percent), associated with small forces of less than 30 Newtons. This work also demonstrates a methodology for wireless transfer of these strain measurements without connected electrodes. These sensors allow intermittent detection of pressure on soft membranes with low force. Adapting these sensors for passive wireless pressure sensing will eliminate the need for embedded batteries, and will allow the sensors to transmit pressure data through non-conductive materials including glass and acrylic. The absence of batteries allows us to embed these sensors into materials for long-term use because the sensors only use passive analog circuit elements. We found the oxidation of the liquid metal (eutectic gallium indium) plays a role in the repeatability of the soft sensors. We investigated how the oxidation layer affected the behavior of the sensor by encapsulating materials (silicone, fluorosilicone, and PVC) with varied permeabilities to oxygen. We measured the effects of mechanical loading on the oxidation layer and the effects of wireless inductive coupling on the oxidation layer. We concluded our research by investigating the effects of embedding self-resonant circuits into polydimethylsiloxane (PDMS). Efforts to design engineered systems with soft materials are a growing field with progress in soft robotics, epidermal electronics, and wearable electronics. In the field of soft robotics, PDMS-based grippers are capable of picking up delicate objects because their form-fitting properties allow them to conform to the shape of objects more easily than conventional robotic grippers. Epidermal devices also use PDMS as a substrate to hold electronic components such as radios, sensors, and power supply circuits. Additionally, PDMS-based soft sensors can monitor human motion with liquid metal embedded within micro-channels. Passive

  17. High Resolution Ultrasound Imaging Using Adaptive Beamforming with Reduced Number of Active Elements

    DEFF Research Database (Denmark)

    Holfort, Iben Kraglund; Gran, Fredrik; Jensen, Jørgen Arendt

    2009-01-01

    is proposed. By reducing the number of active sensor elements, an increased resolution can be obtained with the MV beamformer. This observation is directly opposite the well-known relation between the spatial extent of the aperture and the achievable resolution. The investigations are based on Field II...

  18. Sensors and OBIA synergy for operational monitoring of surface water

    Science.gov (United States)

    Masson, Eric; Thenard, Lucas

    2010-05-01

    This contribution will focus on combining Object Based Image Analysis (i.e. OBIA with e-Cognition 8) and recent sensors (i.e. Spot 5 XS, Pan and ALOS Prism, Avnir2, Palsar) to address the technical feasibility for an operational monitoring of surface water. Three cases of river meandering (India), flood mapping (Nepal) and dam's seasonal water level monitoring (Morocco) using recent sensors will present various application of surface water monitoring. The operational aspect will be demonstrated either by sensor properties (i.e. spatial resolution and bandwidth), data acquisition properties (i.e. multi sensor, return period and near real-time acquisition) but also with OBIA algorithms (i.e. fusion of multi sensors / multi resolution data and batch processes). In the first case of river meandering (India) we will address multi sensor and multi date satellite acquisition to monitor the river bed mobility within a floodplain using an ALOS dataset. It will demonstrate the possibility of an operational monitoring system that helps the geomorphologist in the analysis of fluvial dynamic and sediment budget for high energy rivers. In the second case of flood mapping (Nepal) we will address near real time Palsar data acquisition at high spatial resolution to monitor and to map a flood extension. This ALOS sensor takes benefit both from SAR and L band properties (i.e. atmospheric transparency, day/night acquisition, low sensibility to surface wind). It's a real achievement compared to optical imagery or even other high resolution SAR properties (i.e. acquisition swath, bandwidth and data price). These advantages meet the operational needs set by crisis management of hydrological disasters but also for the implementation of flood risk management plans. The last case of dam surface water monitoring (Morocco) will address an important issue of water resource management in countries affected by water scarcity. In such countries water users have to cope with over exploitation

  19. Antibody induction versus placebo, no induction, or another type of antibody induction for liver transplant recipients

    DEFF Research Database (Denmark)

    Penninga, Luit; Wettergren, André; Wilson, Colin H

    2014-01-01

    . All 19 trials were with high risk of bias. Of the 19 trials, 16 trials were two-arm trials, and three trials were three-arm trials. Hence, we found 25 trial comparisons with antibody induction agents: interleukin-2 receptor antagonist (IL-2 RA) versus no induction (10 trials with 1454 participants....... Furthermore, serum creatinine was statistically significantly higher when T-cell specific antibody induction was compared with no induction (MD 3.77 μmol/L, 95% CI 0.33 to 7.21; low-quality evidence), as well as when polyclonal T-cell specific antibody induction was compared with no induction, but this small...... T-cell specific antibody induction, drug-related adverse events were less common among participants treated with interleukin-2 receptor antagonists (RR 0.23, 95% CI 0.09 to 0.63; low-quality evidence), but this was caused by the results from one trial, and trial sequential analysis could not exclude...

  20. Fiber Optic Temperature Sensors in TPS: Arc Jet Model Design & Testing

    Science.gov (United States)

    Black, Richard; Feldman, Jay; Ellerby, Donald; Monk, Joshua; Moslehi, Behzad; Oblea, Levy; Switzer, Matthew

    2017-01-01

    Techniques for using fiber optics with Fiber Bragg Gratings (FBGs) have been developed by IFOS Corp. for use in thermal protection systems (TPS) on spacecraft heat shield materials through NASA Phase 1 and 2 SBIR efforts and have been further improved in a recent collaboration between IFOS and NASA that will be described here. Fiber optic temperature sensors offer several potential advantages over traditional thermocouple sensors including a) multiplexing many sensors in a single fiber to increase sensor density in a given array or to provide spatial resolution, b) improved thermal property match between sensor and TPS to reduce heat flow disruption, c) lack of electrical conductivity.