WorldWideScience

Sample records for resolution in-situ x-ray

  1. In Situ High Resolution Synchrotron X-Ray Powder Diffraction Studies of Lithium Batteries

    DEFF Research Database (Denmark)

    Amri, Mahrez; Fitch, Andy; Norby, Poul

    2015-01-01

    Lithium ion battery technology is the heart in operating modern technology devices such as mobile phones and laptops. However, as our society is moving towards the utilization of sustainable energy sources, batteries can be foreseen to become an even more important part of the energy infrastructure...... the obtainable power density and battery life time. A challenging and important task is to obtain in situ information about the formation and evolution of interfaces in an operating battery system. This work addresses these challenges and for this purpose we have developed a special microcapillary battery cell...

  2. In situ MEMS testing: correlation of high-resolution X-ray diffraction with mechanical experiments and finite element analysis.

    Science.gov (United States)

    Schifferle, Andreas; Dommann, Alex; Neels, Antonia

    2017-01-01

    New methods are needed in microsystems technology for evaluating microelectromechanical systems (MEMS) because of their reduced size. The assessment and characterization of mechanical and structural relations of MEMS are essential to assure the long-term functioning of devices, and have a significant impact on design and fabrication. Within this study a concept for the investigation of mechanically loaded MEMS materials on an atomic level is introduced, combining high-resolution X-ray diffraction (HRXRD) measurements with finite element analysis (FEA) and mechanical testing. In situ HRXRD measurements were performed on tensile loaded single crystal silicon (SCSi) specimens by means of profile scans and reciprocal space mapping (RSM) on symmetrical (004) and (440) reflections. A comprehensive evaluation of the rather complex XRD patterns and features was enabled by the correlation of measured with simulated, 'theoretical' patterns. Latter were calculated by a specifically developed, simple and fast approach on the basis of continuum mechanical relations. Qualitative and quantitative analysis confirmed the admissibility and accuracy of the presented method. In this context [001] Poisson's ratio was determined providing an error of less than 1.5% with respect to analytical prediction. Consequently, the introduced procedure contributes to further going investigations of weak scattering being related to strain and defects in crystalline structures and therefore supports investigations on materials and devices failure mechanisms.

  3. Submicrometer-resolution in situ imaging of the focus pattern of a soft x-ray laser by color center formation in LiF crystal.

    Science.gov (United States)

    Faenov, A Ya; Kato, Y; Tanaka, M; Pikuz, T A; Kishimoto, M; Ishino, M; Nishikino, M; Fukuda, Y; Bulanov, S V; Kawachi, T

    2009-04-01

    We demonstrate high quality, single-shot in situ imaging of the focused Ag x-ray laser (XRL) at 13.9 nm with 700 nm spatial resolution by color center formation in LiF. The flux and intensity for the color center formation in LiF are evaluated from the experimental data. Comparisons with previous reports show that the threshold x-ray flux for the color center formation in LiF for the 13.9 nm, 7 ps Ag XRL is 3 orders of magnitude less than that with the 46.9 nm, 2 ns capillary discharge Ar XRL.

  4. In situ liquid water visualization in polymer electrolyte membrane fuel cells with high resolution synchrotron x-ray radiography

    Energy Technology Data Exchange (ETDEWEB)

    Chevalier, S.; Banerjee, R.; Lee, J.; Ge, N.; Lee, C.; Bazylak, A., E-mail: abazylak@mie.utoronto.ca [Dept. of Mechanical & Industrial Engineering, Faculty of Applied Science & Engineering, University of Toronto, Toronto, Ontario (Canada); Wysokinski, T. W.; Belev, G.; Webb, A.; Miller, D.; Zhu, N. [Canadian Light Source, Saskatoon, Saskatchewan (Canada); Tabuchi, Y.; Kotaka, T. [EV System Laboratory, Research Division 2, Nissan Motor Co., Ltd., Yokosuka, Kanagawa (Japan)

    2016-07-27

    In this work, we investigated the dominating properties of the porous materials that impact water dynamics in a polymer electrolyte membrane fuel cell (PEMFC). Visualizations of liquid water in an operating PEMFC were performed at the Canadian Light Source. A miniature fuel cell was specifically designed for X-ray imaging investigations, and an in-house image processing algorithm based on the Beer-Lambert law was developed to extract quantities of liquid water thicknesses (cm) from raw X-ray radiographs. The X-ray attenuation coefficient of water at 24 keV was measured with a calibration device to ensure accurate measurements of the liquid water thicknesses. From this experiment, the through plane distribution of the liquid water in the fuel cell was obtained.

  5. Nucleation and growth of gold nanoparticles studied via in situ small angle X-ray scattering at millisecond time resolution.

    Science.gov (United States)

    Polte, Jörg; Erler, Robert; Thünemann, Andreas F; Sokolov, Sergey; Ahner, T Torsten; Rademann, Klaus; Emmerling, Franziska; Kraehnert, Ralph

    2010-02-23

    Gold nanoparticles (AuNP) were prepared by the homogeneous mixing of continuous flows of an aqueous tetrachloroauric acid solution and a sodium borohydride solution applying a microstructured static mixer. The online characterization and screening of this fast process ( approximately 2 s) was enabled by coupling a micromixer operating in continuous-flow mode with a conventional in-house small angle X-ray scattering (SAXS) setup. This online characterization technique enables the time-resolved investigation of the growth process of the nanoparticles from an average radius of ca. 0.8 nm to about 2 nm. To the best of our knowledge, this is the first demonstration of a continuous-flow SAXS setup for time-resolved studies of nanoparticle formation mechanisms that does not require the use of synchrotron facilities. In combination with X-ray absorption near edge structure microscopy, scanning electron microscopy, and UV-vis spectroscopy the obtained data allow the deduction of a two-step mechanism of gold nanoparticle formation. The first step is a rapid conversion of the ionic gold precursor into metallic gold nuclei, followed by particle growth via coalescence of smaller entities. Consequently it could be shown that the studied synthesis serves as a model system for growth driven only by coalescence processes.

  6. High-Resolution X-ray Emission and X-ray Absorption Spectroscopy

    NARCIS (Netherlands)

    Groot, F.M.F. de

    2000-01-01

    In this review, high-resolution X-ray emission and X-ray absorption spectroscopy will be discussed. The focus is on the 3d transition-metal systems. To understand high-resolution X-ray emission and reso-nant X-ray emission, it is first necessary to spend some time discussing the X-ray absorption

  7. Quick-EXAFS setup at the SuperXAS beamline for in situ X-ray absorption spectroscopy with 10 ms time resolution

    Energy Technology Data Exchange (ETDEWEB)

    Müller, Oliver, E-mail: o.mueller@uni-wuppertal.de [University of Wuppertal, Gaußstraße 20, 42119 Wuppertal (Germany); Nachtegaal, Maarten [Paul Scherrer Institute, 5232 Villigen (Switzerland); Just, Justus [University of Wuppertal, Gaußstraße 20, 42119 Wuppertal (Germany); Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Lützenkirchen-Hecht, Dirk; Frahm, Ronald [University of Wuppertal, Gaußstraße 20, 42119 Wuppertal (Germany)

    2016-01-01

    A new quick-scanning EXAFS (QEXAFS) monochromator, ionization chambers and data acquisition system have been developed and installed at the SuperXAS beamline at the Swiss Light Source to reach a temporal resolution of 10 ms. The quick-EXAFS (QEXAFS) method adds time resolution to X-ray absorption spectroscopy (XAS) and allows dynamic structural changes to be followed. A completely new QEXAFS setup consisting of monochromator, detectors and data acquisition system is presented, as installed at the SuperXAS bending-magnet beamline at the Swiss Light Source (Paul Scherrer Institute, Switzerland). The monochromator uses Si(111) and Si(311) channel-cut crystals mounted on one crystal stage, and remote exchange allows an energy range from 4.0 keV to 32 keV to be covered. The spectral scan range can be electronically adjusted up to several keV to cover multiple absorption edges in one scan. The determination of the Bragg angle close to the position of the crystals allows high-accuracy measurements. Absorption spectra can be acquired with fast gridded ionization chambers at oscillation frequencies of up to 50 Hz resulting in a time resolution of 10 ms, using both scan directions of each oscillation period. The carefully developed low-noise detector system yields high-quality absorption data. The unique setup allows both state-of-the-art QEXAFS and stable step-scan operation without the need to exchange whole monochromators. The long-term stability of the Bragg angle was investigated and absorption spectra of reference materials as well as of a fast chemical reaction demonstrate the overall capabilities of the new setup.

  8. In Situ Ptychography of Heterogeneous Catalysts using Hard X-Rays

    DEFF Research Database (Denmark)

    Baier, Sina; Damsgaard, Christian Danvad; Scholz, Maria

    2016-01-01

    A new closed cell is presented for in situ X-ray ptychography which allows studies under gas flow and at elevated temperature. In order to gain complementary information by transmission and scanning electron microscopy, the cell makes use of a Protochips E-chipTM which contains a small, thin...... electron transparent window and allows heating. Two gold-based systems, 50 nm gold particles and nanoporous gold as a relevant catalyst sample, were used for studying the feasibility of the cell. Measurements showing a resolution around 40 nm have been achieved under a flow of synthetic air and during...... heating up to temperatures of 933 K. An elevated temperature exhibited little influence on image quality and resolution. With this study, the potential of in situ hard X-ray ptychography for investigating annealing processes of real catalyst samples is demonstrated. Furthermore, the possibility to use...

  9. In Situ X-Ray Probing Reveals Fingerprints of Surface Platinum Oxide

    Energy Technology Data Exchange (ETDEWEB)

    Friebel, Daniel

    2011-08-24

    In situ x-ray absorption spectroscopy (XAS) at the Pt L{sub 3} edge is a useful probe for Pt-O interactions at polymer electrolyte membrane fuel cell (PEMFC) cathodes. We show that XAS using the high energy resolution fluorescence detection (HERFD) mode, applied to a well-defined monolayer Pt/Rh(111) sample where the bulk penetrating hard x-rays probe only surface Pt atoms, provides a unique sensitivity to structure and chemical bonding at the Pt-electrolyte interface. Ab initio multiple-scattering calculations using the FEFF8 code and complementary extended x-ray absorption fine structure (EXAFS) results indicate that the commonly observed large increase of the white-line at high electrochemical potentials on PEMFC cathodes originates from platinum oxide formation, whereas previously proposed chemisorbed oxygen-containing species merely give rise to subtle spectral changes.

  10. Cyclic olefin homopolymer-based microfluidics for protein crystallization and in situ X-ray diffraction

    Science.gov (United States)

    Emamzadah, Soheila; Petty, Tom J.; De Almeida, Victor; Nishimura, Taisuke; Joly, Jacques; Ferrer, Jean-Luc; Halazonetis, Thanos D.

    2009-01-01

    Microfluidics is a promising technology for the rapid iden­tification of protein crystallization conditions. However, most of the existing systems utilize silicone elastomers as the chip material which, despite its many benefits, is highly permeable to water vapour. This limits the time available for protein crystallization to less than a week. Here, the use of a cyclic olefin homopolymer-based microfluidics system for protein crystallization and in situ X-ray diffraction is described. Liquid handling in this system is performed in 2 mm thin transparent cards which contain 500 chambers, each with a volume of 320 nl. Microbatch, vapour-diffusion and free-interface diffusion protocols for protein crystallization were implemented and crystals were obtained of a number of proteins, including chicken lysozyme, bovine trypsin, a human p53 protein containing both the DNA-binding and oligomerization domains bound to DNA and a functionally important domain of Arabidopsis Morpheus’ molecule 1 (MOM1). The latter two polypeptides have not been crystallized previously. For X-ray diffraction analysis, either the cards were opened to allow mounting of the crystals on loops or the crystals were exposed to X-rays in situ. For lysozyme, an entire X-ray diffraction data set at 1.5 Å resolution was collected without removing the crystal from the card. Thus, cyclic olefin homopolymer-based microfluidics systems have the potential to further automate protein crystallization and structural genomics efforts. PMID:19690369

  11. X-ray photoelectron spectroscopy, high-resolution X-ray diffraction ...

    Indian Academy of Sciences (India)

    Powder X-ray diffraction studies were carried out on doped lithium niobate for phase identification. High-resolution X-ray diffraction technique was used to study the crystalline quality through full-width at half-maximum values. The refractive index values are more for doped samples than for pure sample as determined by ...

  12. Cyclic olefin homopolymer-based microfluidics for protein crystallization and in situ X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Emamzadah, Soheila [Department of Molecular Biology, University of Geneva, CH-1205 Geneva (Switzerland); Department of Biochemistry, University of Geneva, CH-1205 Geneva (Switzerland); Petty, Tom J. [Department of Molecular Biology, University of Geneva, CH-1205 Geneva (Switzerland); Biomedical Graduate Studies Genomics and Computational Biology Group, University of Pennsylvania, Philadelphia, PA 19104 (United States); De Almeida, Victor [Department of Molecular Biology, University of Geneva, CH-1205 Geneva (Switzerland); Department of Biochemistry, University of Geneva, CH-1205 Geneva (Switzerland); Nishimura, Taisuke [Department of Plant Biology, University of Geneva, CH-1205 Geneva (Switzerland); Joly, Jacques; Ferrer, Jean-Luc [Institut de Biologie Structurale J.-P. Ebel, CEA-CNRS-University J. Fourier, 38027 Grenoble CEDEX 1 (France); Halazonetis, Thanos D., E-mail: thanos.halazonetis@unige.ch [Department of Molecular Biology, University of Geneva, CH-1205 Geneva (Switzerland); Department of Biochemistry, University of Geneva, CH-1205 Geneva (Switzerland)

    2009-09-01

    A cyclic olefin homopolymer-based microfluidics system has been established for protein crystallization and in situ X-ray diffraction. Microfluidics is a promising technology for the rapid identification of protein crystallization conditions. However, most of the existing systems utilize silicone elastomers as the chip material which, despite its many benefits, is highly permeable to water vapour. This limits the time available for protein crystallization to less than a week. Here, the use of a cyclic olefin homopolymer-based microfluidics system for protein crystallization and in situ X-ray diffraction is described. Liquid handling in this system is performed in 2 mm thin transparent cards which contain 500 chambers, each with a volume of 320 nl. Microbatch, vapour-diffusion and free-interface diffusion protocols for protein crystallization were implemented and crystals were obtained of a number of proteins, including chicken lysozyme, bovine trypsin, a human p53 protein containing both the DNA-binding and oligomerization domains bound to DNA and a functionally important domain of Arabidopsis Morpheus’ molecule 1 (MOM1). The latter two polypeptides have not been crystallized previously. For X-ray diffraction analysis, either the cards were opened to allow mounting of the crystals on loops or the crystals were exposed to X-rays in situ. For lysozyme, an entire X-ray diffraction data set at 1.5 Å resolution was collected without removing the crystal from the card. Thus, cyclic olefin homopolymer-based microfluidics systems have the potential to further automate protein crystallization and structural genomics efforts.

  13. In situ Synchrotron X-ray Thermodiffraction of Boranes

    Directory of Open Access Journals (Sweden)

    Pascal G. Yot

    2016-01-01

    Full Text Available Boranes of low molecular weight are crystalline materials that have been much investigated over the past decade in the field of chemical hydrogen storage. In the present work, six of them have been selected to be studied by in situ synchrotron X-ray thermodiffraction. The selected boranes are ammonia borane NH3BH3 (AB, hydrazine borane N2H4BH3 (HB, hydrazine bisborane N2H4(BH32 (HBB, lithium LiN2H3BH3 (LiHB and sodium NaN2H3BH3 (NaHB hydrazinidoboranes, and sodium triborane NaB3H8 (STB. They are first investigated separately over a wide range of temperature (80–300 K, and subsequently compared. Differences in crystal structures, the existence of phase transition, evolutions of unit cell parameters and volumes, and variation of coefficients of thermal expansion can be observed. With respect to AB, HB and HBB, the differences are mainly explained in terms of molecule size, conformation and motion (degree of freedom of the chemical groups (NH3, N2H4, BH3. With respect to LiHB, NaHB and STB, the differences are explained by a stabilization effect favored by the alkali cations via M···H interactions with four to five borane anions. The main results are presented and discussed herein.

  14. High Resolution X-ray Views of Solar System Objects

    Science.gov (United States)

    Branduardi-Raymont, Graziella

    2011-05-01

    Over the last decade Chandra, and XMM-Newton, have revealed the beauty and multiplicity of X-ray emissions in our solar system: high resolution data, in both spectral and spatial domains, have been crucial in disentangling the physical processes at work. The talk will review the main findings in this area at the boundary between astrophysics and planetary science, and will show how the solar system offers `next door’ examples of widespread astrophysical phenomena. Jupiter shows bright X-ray aurorae, arising from the interactions of local and/or solar wind ions, and electrons, with its powerful magnetic environment: the ions undergo charge exchange with atmospheric neutrals and generate soft X-ray line emission, and the electrons give rise to bremsstrahlung X-rays. Chandra's unparalleled spatial resolution has shown how the X-ray footprints of the electrons in the aurorae coincide with the bright FUV auroral oval, indicating that the same electron population is likely to be at the origin of both emissions. Moreover, Jupiter's disk scatters solar X-rays, displaying a spectrum that closely resembles that of solar flares. Saturn has not revealed X-ray aurorae (yet), but its disk X-ray brightness, like Jupiter's, is strictly correlated with the Sun's X-ray output. A bright X-ray spot has also been resolved by Chandra on the eastern ansa of Saturn's rings, and its spectrum suggests an origin in the fluorescent scattering of solar X-rays on the rings icy particles. Both Mars and Venus have X-ray emitting disks and exospheres, which can be clearly resolved at high spectral and spatial resolution. And the Earth has bright X-ray aurorae that have been targets of Chandra observations. Finally, comets, with their extended neutral comae and extremely line-rich X-ray spectra, are spectacular X-ray sources, and ideal probes of the conditions of the solar wind in the Sun's proximity.

  15. High-resolution X-ray diffraction studies of multilayers

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Hornstrup, Allan; Schnopper, H. W.

    1988-01-01

    High-resolution X-ray diffraction studies of the perfection of state-of-the-art multilayers are presented. Data were obtained using a triple-axis perfect-crystal X-ray diffractometer. Measurements reveal large-scale figure errors in the substrate. A high-resolution triple-axis set up is required...

  16. In situ X-ray ptychography imaging of high-temperature CO2 acceptor particle agglomerates

    DEFF Research Database (Denmark)

    Høydalsvik, Kristin; Fløystad, Jostein Bø; Zhao, Tiejun

    2014-01-01

    Imaging nanoparticles under relevant reaction conditions of high temperature and gas pressure is difficult because conventional imaging techniques, like transmission electron microscopy, cannot be used. Here we demonstrate that the coherent diffractive imaging technique of X-ray ptychography can...... be used for in situ phase contrast imaging in structure studies at atmospheric pressure and elevated temperatures. Lithium zirconate, a candidate CO2 capture material, was studied at a pressure of one atmosphere in air and in CO2, at temperatures exceeding 600 °C. Images with a spatial resolution better...

  17. Characterization of Gas-Solid Reactions using In Situ Powder X-ray Diffraction

    DEFF Research Database (Denmark)

    Møller, Kasper Trans; Hansen, Bjarne Rosenlund Søndertoft; Dippel, Ann-Christin

    2014-01-01

    X-ray diffraction is a superior technique for structural characterization of crystalline matter. Here we review the use of in situ powder X-ray diffraction (PXD) mainly for real-time studies of solid/gas reactions, data analysis and the extraction of valuable knowledge of structural, chemical...

  18. In-situ Scanning Transmission X-Ray Microscopy of Catalytic Solids and Related Nanomaterials

    NARCIS (Netherlands)

    de Groot, F.M.F.; de Smit, E.; van Schooneveld, M.M.; Aramburo, L.R.; Weckhuysen, B.M.

    2013-01-01

    The present status of in-situ scanning transmission X-ray microscopy (STXM) is reviewed, with an emphasis on the abilities of the STXM technique in comparison with electron microscopy. The experimental aspects and interpretation of X-ray absorption spectroscopy (XAS) are briefly introduced and the

  19. Crystallization via tubing microfluidics permits both in situ and ex situ X-ray diffraction.

    Science.gov (United States)

    Gerard, Charline J J; Ferry, Gilles; Vuillard, Laurent M; Boutin, Jean A; Chavas, Leonard M G; Huet, Tiphaine; Ferte, Nathalie; Grossier, Romain; Candoni, Nadine; Veesler, Stéphane

    2017-10-01

    A microfluidic platform was used to address the problems of obtaining diffraction-quality crystals and crystal handling during transfer to the X-ray diffractometer. Crystallization conditions of a protein of pharmaceutical interest were optimized and X-ray data were collected both in situ and ex situ.

  20. High energy resolution off-resonant X-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wojciech, Blachucki [Univ. of Fribourg (Switzerland). Dept. of Physics

    2015-10-16

    This work treats of the high energy resolution off-resonant X-ray spectroscopy (HEROS) method of determining the density of unoccupied electronic states in the vicinity of the absorption edge. HEROS is an alternative to the existing X-ray absorption spectroscopy (XAS) methods and opens the way for new studies not achievable before.

  1. In situ azimuthal rotation device for linear dichroism measurements in scanning transmission x-ray microscopy

    Science.gov (United States)

    Hernández-Cruz, D.; Hitchcock, A. P.; Tyliszczak, T.; Rousseau, M.-E.; Pézolet, M.

    2007-03-01

    A novel miniature rotation device used in conjunction with a scanning transmission x-ray microscope is described. It provides convenient in situ sample rotation to enable measurements of linear dichroism at high spatial resolution. The design, fabrication, and mechanical characterization are presented. This device has been used to generate quantitative maps of the spatial distribution of the orientation of proteins in several different spider and silkworm silks. Specifically, quantitative maps of the dichroic signal at the C 1s→π*amide transition in longitudinal sections of the silk fibers give information about the spatial orientation, degree of alignment, and spatial distribution of protein peptide bonds. A new approach for analyzing the dichroic signal to extract orientation distributions, in addition to magnitudes of aligned components, is presented and illustrated with results from Nephila clavipes dragline spider silk measured using the in situ rotation device.

  2. The adsorption of methanol and water on SAPO-34: in situ and ex situ X-ray diffraction studies

    DEFF Research Database (Denmark)

    Wragg, David S.; Johnsen, Rune; Norby, Poul

    2010-01-01

    The adsorption of methanol on SAPO-34 has been studied using a combination of in situ synchrotron powder X-ray diffraction to follow the process and ex situ high resolution powder diffraction to determine the structure. The unit cell volume of SAPO-34 is found to expand by 0.5% during methanol ad...... for adsorbed water molecules on the same framework, supporting the observation from the in situ data that water is more strongly bound than methanol. The results are consistent with previous results from thermodynamic and tapered element oscillating microbalance measurements.......The adsorption of methanol on SAPO-34 has been studied using a combination of in situ synchrotron powder X-ray diffraction to follow the process and ex situ high resolution powder diffraction to determine the structure. The unit cell volume of SAPO-34 is found to expand by 0.5% during methanol...

  3. High-resolution x-ray characterization of mosaic crystals for hard x-ray astronomy

    Science.gov (United States)

    Ferrari, Claudio; Buffagni, Elisa; Marchini, Laura; Zappettini, Andrea

    2012-04-01

    GaAs, Cu, CdTe, and CdZnTe crystals have been studied as optical elements for lenses for hard x-ray astronomy. High-resolution x-ray diffraction at 8 keV in Bragg geometry and at synchrotron at energies up to 500 keV in Laue geometry has been used. A good agreement was found between the mosaicity evaluated in Bragg geometry at 8 keV with x-ray penetration of the order of few tens of micrometers and that derived at synchrotron in transmission Laue geometry at higher x-ray energies. Mosaicity values in a range between a few to 150 arcsec were found in all the samples but, due to the presence of crystal grains in the cm range, CdTe and CdZnTe crystals were found not suitable. Cu crystals exhibit a mosaicity of the order of several arcmin; they indeed were found to be severely affected by cutting damage which could only be removed with a very deep etching. The full width at half maximum of the diffraction peaks decreased at higher x-ray energies showing that the peak broadening is affected by crystallite size. GaAs crystals grown by Czochralski method showed a mosaic spread up to 30 arcsec and good diffraction efficiency up to energies of 500 keV. The use of thermal treatments as a possible method to increase the mosaic spread was also evaluated.

  4. Development of high resolution imaging detectors for x ray astronomy

    Science.gov (United States)

    Murray, S. S.; Schwartz, D. A.

    1992-01-01

    This final report summarizes our past activities and discusses the work performed over the period of 1 April 1990 through 1 April 1991 on x-ray optics, soft x-ray (0.1 - 10 KeV) imaging detectors, and hard x-ray (10 - 300 KeV) imaging detectors. If microchannel plates (MCPs) can be used to focus x-rays with a high efficiency and good angular resolution, they will revolutionize the field of x-ray optics. An x-ray image of a point source through an array of square MCP pores compared favorably with our ray tracing model for the MCP. Initial analysis of this image demonstrates the feasibility of MCPs for soft x-rays. Our work continues with optimizing the performance of our soft x-ray MCP imaging detectors. This work involves readout technology that should provide improved MCP readout devices (thin film crossed grid, curved, and resistive sheets), defect removal in MCPs, and photocathode optimization. In the area of hard x-ray detector development we have developed two different techniques for producing a CsI photocathode thickness of 10 to 100 microns, such that it is thick enough to absorb the high energy x-rays and still allow the photoelectrons to escape to the top MCP of a modified soft x-ray imaging detector. The methods involve vacuum depositing a thick film of CsI on a strong back, and producing a converter device that takes the place of the photocathode.

  5. IN SITU SURFACE X-RAY SCATTERING STUDIES OF ELECTROSORPTION

    Energy Technology Data Exchange (ETDEWEB)

    WANG,J.X.; ADZIC,R.R.; OCKO,B.M.

    1998-07-01

    A short review of the application of surface x-ray scattering techniques to the electrode/electrolyte interfaces is presented. Recent results on metal, halide, and metal-halide adlayers with three specific systems: Bi on Au(100) and Au(110); Br on Au(100) and Ag(100); and the coadsorption of Tl with Br or I on Au(111), are given as an illustration. Factors affecting ordering of pure metal and halide adlayers and the metal-halide surface compounds are discussed in some detail.

  6. Progress in high-resolution x-ray holographic microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jacobsen, C.; Kirz, J.; Howells, M.; McQuaid, K.; Rothman, S.; Feder, R.; Sayre, D.

    1987-07-01

    Among the various types of x-ray microscopes that have been demonstrated, the holographic microscope has had the largest gap between promise and performance. The difficulties of fabricating x-ray optical elements have led some to view holography as the most attractive method for obtaining the ultimate in high resolution x-ray micrographs; however, we know of no investigations prior to 1987 that clearly demonstrated submicron resolution in reconstructed images. Previous efforts suffered from problems such as limited resolution and dynamic range in the recording media, low coherent x-ray flux, and aberrations and diffraction limits in visible light reconstruction. We have addressed the recording limitations through the use of an undulator x-ray source and high-resolution photoresist recording media. For improved results in the readout and reconstruction steps, we have employed metal shadowing and transmission electron microscopy, along with numerical reconstruction techniques. We believe that this approach will allow holography to emerge as a practical method of high-resolution x-ray microscopy. 30 refs., 4 figs.

  7. X-ray optics high-energy-resolution applications

    CERN Document Server

    Shvyd’ko, Yuri

    2004-01-01

    The generation of radiation with well-defined frequency and wavelength, and the ability to precisely determine these quantities, are of fundamental importance in physics and other natural sciences Monochromatic radiation enables both very accurate structure determinations and studies of the dynamics of living and non-living matter It is crucial for the realization of standards of time and length, for the determination of fundamental constants, and for many other aspects of basic research Bragg backscattering from perfect crystals is a tool for creating, manipulating, and analyzing x-rays with highest spectral purity It has the unique feature of selecting x-rays with narrow spectral bandwidth This book describes the theoretical foundations and principles of x-ray crystal optics with high spectral resolution Various experimental studies and applications are presented and the author also addresses the development of instrumentation, such as high-resolution x-ray monochromators, analyzers, wavelength meters, reso...

  8. High-resolution x-ray photoemission spectra of silver

    DEFF Research Database (Denmark)

    Barrie, A.; Christensen, N. E.

    1976-01-01

    An electron spectrometer fitted with an x-ray monochromator for Al Kα1,2 radiation (1486.6 eV) has been used to record high-resolution x-ray photoelectron spectra for the 4d valence band as well as the 3d spin doublet in silver. The core-level spectrum has a line shape that can be described...

  9. In Situ Study of Silicon Electrode Lithiation with X-ray Reflectivity.

    Science.gov (United States)

    Cao, Chuntian; Steinrück, Hans-Georg; Shyam, Badri; Stone, Kevin H; Toney, Michael F

    2016-12-14

    Surface sensitive X-ray reflectivity (XRR) measurements were performed to investigate the electrochemical lithiation of a native oxide terminated single crystalline silicon (100) electrode in real time during the first galvanostatic discharge cycle. This allows us to gain nanoscale, mechanistic insight into the lithiation of Si and the formation of the solid electrolyte interphase (SEI). We describe an electrochemistry cell specifically designed for in situ XRR studies and have determined the evolution of the electron density profile of the lithiated Si layer (LixSi) and the SEI layer with subnanometer resolution. We propose a three-stage lithiation mechanism with a reaction limited, layer-by-layer lithiation of the Si at the LixSi/Si interface.

  10. High resolution X-ray diffraction studies on unirradiated and ...

    Indian Academy of Sciences (India)

    High-resolution X-ray diffraction technique, employing a three-crystal monochromator–collimator ... observed by high-resolution electron microscopy in both ..... 1988 Nucl. Instrum. Meth. B34 228. Kato N 1992 J. Acta Crystallogr. A48 834. Kaur B, Bhat M, Licci F, Kumar R, Kotru P N and Bamzai K K. 2004 Nucl. Instrum. Meth ...

  11. X-ray spectroscopy of energy materials under in situ/operando conditions

    Energy Technology Data Exchange (ETDEWEB)

    Crumlin, Ethan J., E-mail: ejcrumlin@lbl.gov [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Liu, Zhi [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China); School of Physical Science and Technology, ShanghaiTech University, Shanghai 200031 (China); Bluhm, Hendrik [Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Yang, Wanli; Guo, Jinghua [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Hussain, Zahid, E-mail: zhussain@lbl.gov [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2015-04-15

    A perspective and brief review of in situ/operando X-ray spectroscopic techniques with focus on energy materials is presented, including discussion on current status, choice of cells and suitable X-ray energy range. Initial discussion focuses on the scientific advancement achieved using ambient pressure X-ray photoelectron spectroscopy (APXPS) at the solid/gas interface, and then progresses through the techniques evolution to probe the liquid/vapor and the emerging solid/liquid interface. This is followed by an overview of soft X-ray adsorption spectroscopy (sXAS) for energy science using both window and windowless cell configurations. Concluding remarks provide a future outlook for where the authors believe these techniques and class of science will progress toward.

  12. High spatial resolution soft-x-ray microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Meyer-Ilse, W.; Medecki, H.; Brown, J.T. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    A new soft x-ray microscope (XM-1) with high spatial resolution has been constructed by the Center for X-ray Optics. It uses bending magnet radiation from beamline 6.1 at the Advanced Light Source, and is used in a variety of projects and applications in the life and physical sciences. Most of these projects are ongoing. The instrument uses zone plate lenses and achieves a resolution of 43 nm, measured over 10% to 90% intensity with a knife edge test sample. X-ray microscopy permits the imaging of relatively thick samples, up to 10 {mu}m thick, in water. XM-1 has an easy to use interface, that utilizes visible light microscopy to precisely position and focus the specimen. The authors describe applications of this device in the biological sciences, as well as in studying industrial applications including structured polymer samples.

  13. Two-dimensional in situ metrology of X-ray mirrors using the speckle scanning technique

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hongchang, E-mail: hongchang.wang@diamond.ac.uk; Kashyap, Yogesh; Laundy, David; Sawhney, Kawal [Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0DE (United Kingdom)

    2015-06-06

    The two-dimensional slope error of an X-ray mirror has been retrieved by employing the speckle scanning technique, which will be valuable at synchrotron radiation facilities and in astronomical telescopes. In situ metrology overcomes many of the limitations of existing metrology techniques and is capable of exceeding the performance of present-day optics. A novel technique for precisely characterizing an X-ray bimorph mirror and deducing its two-dimensional (2D) slope error map is presented. This technique has also been used to perform fast optimization of a bimorph mirror using the derived 2D piezo response functions. The measured focused beam size was significantly reduced after the optimization, and the slope error map was then verified by using geometrical optics to simulate the focused beam profile. This proposed technique is expected to be valuable for in situ metrology of X-ray mirrors at synchrotron radiation facilities and in astronomical telescopes.

  14. In situ X-ray diffraction measurement of shock-wave-driven twinning and lattice dynamics

    Science.gov (United States)

    Wehrenberg, C. E.; McGonegle, D.; Bolme, C.; Higginbotham, A.; Lazicki, A.; Lee, H. J.; Nagler, B.; Park, H.-S.; Remington, B. A.; Rudd, R. E.; Sliwa, M.; Suggit, M.; Swift, D.; Tavella, F.; Zepeda-Ruiz, L.; Wark, J. S.

    2017-10-01

    Pressure-driven shock waves in solid materials can cause extreme damage and deformation. Understanding this deformation and the associated defects that are created in the material is crucial in the study of a wide range of phenomena, including planetary formation and asteroid impact sites, the formation of interstellar dust clouds, ballistic penetrators, spacecraft shielding and ductility in high-performance ceramics. At the lattice level, the basic mechanisms of plastic deformation are twinning (whereby crystallites with a mirror-image lattice form) and slip (whereby lattice dislocations are generated and move), but determining which of these mechanisms is active during deformation is challenging. Experiments that characterized lattice defects have typically examined the microstructure of samples after deformation, and so are complicated by post-shock annealing and reverberations. In addition, measurements have been limited to relatively modest pressures (less than 100 gigapascals). In situ X-ray diffraction experiments can provide insights into the dynamic behaviour of materials, but have only recently been applied to plasticity during shock compression and have yet to provide detailed insight into competing deformation mechanisms. Here we present X-ray diffraction experiments with femtosecond resolution that capture in situ, lattice-level information on the microstructural processes that drive shock-wave-driven deformation. To demonstrate this method we shock-compress the body-centred-cubic material tantalum—an important material for high-energy-density physics owing to its high shock impedance and high X-ray opacity. Tantalum is also a material for which previous shock compression simulations and experiments have provided conflicting information about the dominant deformation mechanism. Our experiments reveal twinning and related lattice rotation occurring on the timescale of tens of picoseconds. In addition, despite the common association between twinning

  15. In situ X-ray diffraction measurement of shock-wave-driven twinning and lattice dynamics.

    Science.gov (United States)

    Wehrenberg, C E; McGonegle, D; Bolme, C; Higginbotham, A; Lazicki, A; Lee, H J; Nagler, B; Park, H-S; Remington, B A; Rudd, R E; Sliwa, M; Suggit, M; Swift, D; Tavella, F; Zepeda-Ruiz, L; Wark, J S

    2017-10-25

    Pressure-driven shock waves in solid materials can cause extreme damage and deformation. Understanding this deformation and the associated defects that are created in the material is crucial in the study of a wide range of phenomena, including planetary formation and asteroid impact sites, the formation of interstellar dust clouds, ballistic penetrators, spacecraft shielding and ductility in high-performance ceramics. At the lattice level, the basic mechanisms of plastic deformation are twinning (whereby crystallites with a mirror-image lattice form) and slip (whereby lattice dislocations are generated and move), but determining which of these mechanisms is active during deformation is challenging. Experiments that characterized lattice defects have typically examined the microstructure of samples after deformation, and so are complicated by post-shock annealing and reverberations. In addition, measurements have been limited to relatively modest pressures (less than 100 gigapascals). In situ X-ray diffraction experiments can provide insights into the dynamic behaviour of materials, but have only recently been applied to plasticity during shock compression and have yet to provide detailed insight into competing deformation mechanisms. Here we present X-ray diffraction experiments with femtosecond resolution that capture in situ, lattice-level information on the microstructural processes that drive shock-wave-driven deformation. To demonstrate this method we shock-compress the body-centred-cubic material tantalum-an important material for high-energy-density physics owing to its high shock impedance and high X-ray opacity. Tantalum is also a material for which previous shock compression simulations and experiments have provided conflicting information about the dominant deformation mechanism. Our experiments reveal twinning and related lattice rotation occurring on the timescale of tens of picoseconds. In addition, despite the common association between twinning and

  16. Functional materials analysis using in situ and in operando X-ray and neutron scattering.

    Science.gov (United States)

    Peterson, Vanessa K; Papadakis, Christine M

    2015-03-01

    In situ and in operando studies are commonplace and necessary in functional materials research. This review highlights recent developments in the analysis of functional materials using state-of-the-art in situ and in operando X-ray and neutron scattering and analysis. Examples are given covering a number of important materials areas, alongside a description of the types of information that can be obtained and the experimental setups used to acquire them.

  17. Functional materials analysis using in situ and in operando X-ray and neutron scattering

    Directory of Open Access Journals (Sweden)

    Vanessa K. Peterson

    2015-03-01

    Full Text Available In situ and in operando studies are commonplace and necessary in functional materials research. This review highlights recent developments in the analysis of functional materials using state-of-the-art in situ and in operando X-ray and neutron scattering and analysis. Examples are given covering a number of important materials areas, alongside a description of the types of information that can be obtained and the experimental setups used to acquire them.

  18. Functional materials analysis using in situ and in operando X-ray and neutron scattering

    Science.gov (United States)

    Peterson, Vanessa K.; Papadakis, Christine M.

    2015-01-01

    In situ and in operando studies are commonplace and necessary in functional materials research. This review highlights recent developments in the analysis of functional materials using state-of-the-art in situ and in operando X-ray and neutron scattering and analysis. Examples are given covering a number of important materials areas, alongside a description of the types of information that can be obtained and the experimental setups used to acquire them. PMID:25866665

  19. Determination of x-ray elastic constants using an in situ pressing device

    NARCIS (Netherlands)

    Teeuw, D.H.J.; Hosson, J.Th.M. De

    1998-01-01

    The experimental determination of x-ray elastic constants are performed by in situ measurements of the dependence of the strain state in selected crystallites for different applied external compressive stresses. The use of compressive applied stresses instead of tensile applied stresses is of

  20. In-situ soft X-ray absorption of over-exchanged Fe/ZSM5

    NARCIS (Netherlands)

    Heijboer, WM; Battiston, AA; Knop-Gericke, A; Havecker, M; Mayer, R; Bluhm, H; Schlogl, R; Weckhuysen, BM|info:eu-repo/dai/nl/285484397; Koningsberger, DC; de Groot, FMF|info:eu-repo/dai/nl/08747610X

    2003-01-01

    In-situ soft X-ray absorption spectroscopy (XAS) has been applied to study the iron redox behavior in over-exchanged Fe/ZSM5. The Fe L-2,L-3 XAS and O K spectral shapes of the Fe/ZSM5 surface have been measured during heat treatments and reduction/oxidation cycles. Charge-transfer multiplet

  1. High resolution X-ray diffraction studies on unirradiated and ...

    Indian Academy of Sciences (India)

    High-resolution X-ray diffraction technique, employing a three-crystal monochromator–collimator combination is used to study the irradiation induced defects in flux grown Sr-hexaferrite crystals irradiated with 50 MeV Li3+ ion beams at room temperature with a fluence value of 1 × 1014 ions/cm2. The diffraction curves of the ...

  2. A Next-Generation Hard X-Ray Nanoprobe Beamline for In Situ Studies of Energy Materials and Devices

    Energy Technology Data Exchange (ETDEWEB)

    Maser, Jong [Argonne National Lab. (ANL), Argonne, IL (United States); Lai, Barry [Argonne National Lab. (ANL), Argonne, IL (United States); Buonassisi, Toni [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Cai, Zhonghou [Argonne National Lab. (ANL), Argonne, IL (United States); Chen, Si [Argonne National Lab. (ANL), Argonne, IL (United States); Finney, Lydia [Argonne National Lab. (ANL), Argonne, IL (United States); Gleber, Sophie-Charlotte [Argonne National Lab. (ANL), Argonne, IL (United States); Jacobsen, Chris [Argonne National Lab. (ANL), Argonne, IL (United States); Preissner, Curt [Argonne National Lab. (ANL), Argonne, IL (United States); Roehrig, Chris [Argonne National Lab. (ANL), Argonne, IL (United States); Rose, Volker [Argonne National Lab. (ANL), Argonne, IL (United States); Shu, Deming [Argonne National Lab. (ANL), Argonne, IL (United States); Vine, David [Argonne National Lab. (ANL), Argonne, IL (United States); Vogt, Stefan [Argonne National Lab. (ANL), Argonne, IL (United States)

    2013-08-20

    The Advanced Photon Source is developing a suite of new X-ray beamlines to study materials and devices across many length scales and under real conditions. One of the flagship beamlines of the APS upgrade is the In Situ Nanoprobe (ISN) beamline, which will provide in situ and operando characterization of advanced energy materials and devices under varying temperatures, gas ambients, and applied fields, at previously unavailable spatial resolution and throughput. Examples of materials systems include inorganic and organic photovoltaic systems, advanced battery systems, fuel cell components, nanoelectronic devices, advanced building materials and other scientifically and technologically relevant systems. To characterize these systems at very high spatial resolution and trace sensitivity, the ISN will use both nanofocusing mirrors and diffractive optics to achieve spots sizes as small as 20 nm. Nanofocusing mirrors in Kirkpatrick–Baez geometry will provide several orders of magnitude increase in photon flux at a spatial resolution of 50 nm. Diffractive optics such as zone plates and/or multilayer Laue lenses will provide a highest spatial resolution of 20 nm. Coherent diffraction methods will be used to study even small specimen features with sub-10 nm relevant length scale. A high-throughput data acquisition system will be employed to significantly increase operations efficiency and usability of the instrument. The ISN will provide full spectroscopy capabilities to study the chemical state of most materials in the periodic table, and enable X-ray fluorescence tomography. In situ electrical characterization will enable operando studies of energy and electronic devices such as photovoltaic systems and batteries. We also describe the optical concept for the ISN beamline, the technical design, and the approach for enabling a broad variety of in situ studies. Furthermore, we discuss the application of hard X-ray microscopy to study defects in multi-crystalline solar

  3. Reactor for nano-focused x-ray diffraction and imaging under catalytic in situ conditions

    Science.gov (United States)

    Richard, M.-I.; Fernández, S.; Hofmann, J. P.; Gao, L.; Chahine, G. A.; Leake, S. J.; Djazouli, H.; De Bortoli, Y.; Petit, L.; Boesecke, P.; Labat, S.; Hensen, E. J. M.; Thomas, O.; Schülli, T.

    2017-09-01

    A reactor cell for in situ studies of individual catalyst nanoparticles or surfaces by nano-focused (coherent) x-ray diffraction has been developed. Catalytic reactions can be studied in flow mode in a pressure range of 10-2-103 mbar and temperatures up to 900 °C. This instrument bridges the pressure and materials gap at the same time within one experimental setup. It allows us to probe in situ the structure (e.g., shape, size, strain, faceting, composition, and defects) of individual nanoparticles using a nano-focused x-ray beam. Here, the setup was used to observe strain and facet evolution of individual model Pt catalysts during in situ experiments. It can be used for heating other (non-catalytically active) nanoparticles (e.g., nanowires) in inert or reactive gas atmospheres or vacuum as well.

  4. The Suzaku High Resolution X-Ray Spectrometer

    Science.gov (United States)

    Kelley, Richard L.; Mitsuda, Kazuhisa; Allen, Christine A.; Arsenovic, Petar; Audley, Michael D.; Bialas, Thomas G.; Boyce, Kevin R.; Boyle, Robert F.; Breon, Susan R.; Brown, Gregory V.; Cottam, Jean; Dipirro, Michael J.; Fujimoto, Ryuichi; Furusho, Tae; Gendreau, Keith C.; Gochar, Gene G.; Gonzalez, Oscar; Hirabayashi, Masayuki; Holt, Stephen S.; Inoue, Hajime; Ishida, Manabu; Ishisaki, Yoshitaka; Jones, Carol S.; Keski-Kuha, Ritva; Kilbourne, Caroline A.; McCammon, Dan; Morita, Umeyo; Moseley, S. Harvey; Mott, Brent; Narasaki, Katsuhiro; Ogawara, Yoshiaki; Ohashi, Takaya; Ota, Naomi; Panek, John S.; Porter, F. Scott; Serlemitsos, Aristides; Shirron, Peter J.; Sneiderman, Gary A.; Szymkowiak, Andrew E.; Takei, Yoh; Tveekrem, June L.; Volz, Stephen M.; Yamamoto, Mikio; Yamasaki, Noriko Y.

    2007-01-01

    The X-Ray Spectrometer (XRS) has been designed to provide the Suzaku Observatory with non-dispersive, high-resolution X-ray spectroscopy. As designed, the instrument covers the energy range 0.3 to 12keV, which encompasses the most diagnostically rich part of the X-ray band. The sensor consists of a 32-channel array of X-ray microcalorimeters, each with an energy resolution of about 6eV. The very low temperature required for operation of the array (60mK) is provided by a four-stage cooling system containing a single-stage adiabatic demagnetization refrigerator, a superfluid-helium cryostat, a solid-neon dewar, and a single-stage, Stirling-cycle cooler. The Suzaku/XRS is the first orbiting X-ray microcalorimeter spectrometer and was designed to last more than three years in orbit. The early verification phase of the mission demonstrated that the instrument worked properly and that the cryogen consumption rate was low enough to ensure a mission lifetime exceeding 3 years. However, the liquid-He cryogen was completely vaporized two weeks after opening the dewar guard vacuum vent. The problem has been traced to inadequate venting of the dewar He and Ne gases out of the spacecraft and into space. In this paper we present the design and ground testing of the XRS instrument, and then describe the in-flight performance. An energy resolution of 6eV was achieved during pre-launch tests and a resolution of 7eV was obtained in orbit. The slight degradation is due to the effects of cosmic rays.

  5. Bright Semiconductor Scintillator for High Resolution X-Ray Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Nagarkar, Vivek V.; Gaysinskiy, Valeriy; Ovechkina, Olena E.; Miller, Stuart; Singh, Bipin; Guo, Liang; Irving, Thomas (IIT); (Rad. Monitoring)

    2011-08-16

    We report on a novel approach to produce oxygen-doped zinc telluride (ZnTe:O), a remarkable group II-VI semiconductor scintillator, fabricated in the columnar-structured or polycrystalline forms needed to fulfill the needs of many demanding X-ray and {gamma}-ray imaging applications. ZnTe:O has one of the highest conversion efficiencies among known scintillators, emission around 680 nm (which is ideally suited for CCD sensors), high density of 6.4 g/cm{sup 3}, fast decay time of {approx}1 {micro}s with negligible afterglow, and orders of magnitude higher radiation resistance compared to commonly used scintillators. These properties allow the use of ZnTe:O in numerous applications, including X-ray imaging, nuclear medicine (particularly SPECT), room temperature radioisotope identification, and homeland security. Additionally, ZnTe:O offers distinct advantages for synchrotron-based high resolution imaging due to the absence of atomic absorption edges in the low energy range, which otherwise reduce resolution due to secondary X-ray formations. We have fabricated films of ZnTe:O using a vapor deposition technique that allows large-area structured scintillator fabrication in a time- and cost-efficient manner, and evaluated its performance for small-angle X-ray scattering (SAXS) at an Argonne National Laboratory synchrotron beamline. Details of the fabrication and characterization of the optical, scintillation and imaging properties of the ZnTe:O films are presented in this paper.

  6. Bendable X-ray Optics for High Resolution Imaging

    Science.gov (United States)

    Gubarev, M.; Ramsey, B.; Kilaru, K.; Atkins, C.; Broadway, D.

    2014-01-01

    Current state-of the-art for x-ray optics fabrication calls for either the polishing of massive substrates into high-angular-resolution mirrors or the replication of thin, lower-resolution, mirrors from perfectly figured mandrels. Future X-ray Missions will require a change in this optics fabrication paradigm in order to achieve sub-arcsecond resolution in light-weight optics. One possible approach to this is to start with perfectly flat, light-weight surface, bend it into a perfect cone, form the desired mirror figure by material deposition, and insert the resulting mirror into a telescope structure. Such an approach is currently being investigated at MSFC, and a status report will be presented detailing the results of finite element analyses, bending tests and differential deposition experiments.

  7. Hydrothermal formation of tobermorite studied by in situ X-ray diffraction under autoclave condition.

    Science.gov (United States)

    Kikuma, Jun; Tsunashima, Masamichi; Ishikawa, Tetsuji; Matsuno, Shin-ya; Ogawa, Akihiro; Matsui, Kunio; Sato, Masugu

    2009-09-01

    Hydrothermal formation of tobermorite from a pre-cured cake has been investigated by transmission X-ray diffraction (XRD) using high-energy X-rays from a synchrotron radiation source in combination with a newly designed autoclave cell. The autoclave cell has a large and thin beryllium window for wide-angle X-ray diffraction; nevertheless, it withstands a steam pressure of more than 1.2 MPa, which enables in situ XRD measurements in a temperature range of 373 to 463 K under a saturated steam pressure. Formation and/or decomposition of several components has been successfully observed during 7.5 h of reaction time. From the intensity changes of the intermediate materials, namely non-crystalline C-S-H and hydroxylellestadite, two pathways for tobermorite formation have been confirmed. Thus, the newly developed autoclave cell can be used for the analyses of reaction mechanisms under specific atmospheres and temperatures.

  8. In situ laser heating and radial synchrotron X-ray diffraction ina diamond anvil cell

    Energy Technology Data Exchange (ETDEWEB)

    Kunz, Martin; Caldwell, Wendel A.; Miyagi, Lowell; Wenk,Hans-Rudolf

    2007-06-29

    We report a first combination of diamond anvil cell radialx-ray diffraction with in situ laser heating. The laser-heating setup ofALS beamline 12.2.2 was modified to allow one-sided heating of a samplein a diamond anvil cell with an 80 W yttrium lithium fluoride laser whileprobing the sample with radial x-ray diffraction. The diamond anvil cellis placed with its compressional axis vertical, and perpendicular to thebeam. The laser beam is focused onto the sample from the top while thesample is probed with hard x-rays through an x-ray transparentboron-epoxy gasket. The temperature response of preferred orientation of(Fe,Mg)O is probed as a test experiment. Recrystallization was observedabove 1500 K, accompanied by a decrease in stress.

  9. In situ measurements of X-ray peak profile asymmetry from individual grains

    DEFF Research Database (Denmark)

    Wejdemann, Christian; Lienert, U.; Pantleon, Wolfgang

    2010-01-01

    Two copper samples, pre-deformed in tension to 5% plastic strain, are subjected to an in situ tensile deformation of 1% plastic strain while X-ray peak profiles from individual bulk grains are obtained. One sample is oriented with the in situ tensile axis parallel to the pre-deformation axis......, and peak profiles are obtained with the scattering vector parallel to this direction. The profiles show the expected asymmetry explained by the composite model as caused by intra-grain stresses. The other sample is oriented with the in situ tensile axis perpendicular to the pre-deformation axis, and peak...... profiles are obtained with the scattering vector parallel to the in situ tensile axis. In this case the profiles initially show an opposite asymmetry, but during the in situ deformation the asymmetry reverses sign as the deformation under new loading conditions leads to changes in the intra-grain stresses....

  10. In situ surface/interface x-ray diffractometer for oxide molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. H.; Freeland, J. W.; Hong, Hawoong, E-mail: hhong@aps.anl.gov [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Tung, I. C. [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208 (United States); Chang, S.-H.; Bhattacharya, A.; Fong, D. D. [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2016-01-15

    In situ studies of oxide molecular beam epitaxy by synchrotron x-ray scattering has been made possible by upgrading an existing UHV/molecular beam epitaxy (MBE) six-circle diffractometer system. For oxide MBE growth, pure ozone delivery to the chamber has been made available, and several new deposition sources have been made available on a new 12 in. CF (ConFlat, a registered trademark of Varian, Inc.) flange. X-ray diffraction has been used as a major probe for film growth and structures for the system. In the original design, electron diffraction was intended for the secondary diagnostics available without the necessity of the x-ray and located at separate positions. Deposition of films was made possible at the two diagnostic positions. And, the aiming of the evaporation sources is fixed to the point between two locations. Ozone can be supplied through two separate nozzles for each location. Also two separate thickness monitors are installed. Additional features of the equipment are also presented together with the data taken during typical oxide film growth to illustrate the depth of information available via in situ x-ray techniques.

  11. In situ surface/interface x-ray diffractometer for oxide molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. H. [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA; Tung, I. C. [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA; Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA; Chang, S. -H. [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA; Bhattacharya, A. [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA; Fong, D. D. [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA; Freeland, J. W. [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA; Hong, Hawoong [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA

    2016-01-01

    In situ studies of oxide molecular beam epitaxy by synchrotron x-ray scattering has been made possible by upgrading an existing UHV/molecular beam epitaxy (MBE) six-circle diffractometer system. For oxide MBE growth, pure ozone delivery to the chamber has been made available, and several new deposition sources have been made available on a new 12 in. CF (ConFlat, a registered trademark of Varian, Inc.) flange. X-ray diffraction has been used as a major probe for film growth and structures for the system. In the original design, electron diffraction was intended for the secondary diagnostics available without the necessity of the x-ray and located at separate positions. Deposition of films was made possible at the two diagnostic positions. And, the aiming of the evaporation sources is fixed to the point between two locations. Ozone can be supplied through two separate nozzles for each location. Also two separate thickness monitors are installed. Additional features of the equipment are also presented together with the data taken during typical oxide film growth to illustrate the depth of information available via in situ x-ray techniques.

  12. In-situ X-ray Nanocharacterization of Defect Kinetics in Chalcogenide Solar Cell Materials

    Energy Technology Data Exchange (ETDEWEB)

    Bertoni, Mariana [Arizona State Univ., Tempe, AZ (United States); Lai, Barry [Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS); Masser, Jorg [Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS); Buonassisi, Tonio [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2016-09-21

    ) correlate positively, and In negatively with charge collection efficiency for cells with low Ga content, both at grain boundaries and in grain cores. For cells with high Ga content, the charge collection efficiency depends to much lesser extent on the elemental distribution. The objective is three folded: (1) develop an x-ray in-situ microscopy capability to simulate growth and processing conditions, (2) apply it to elucidate performance-governing defect kinetics in chalcogenide solar cell materials, and (3) to study approaches to engineer materials from the nanoscale up. The development of these capabilities will enable experimental characterization to take place under actual processing and operating conditions and it will have impact well beyond the proposed research, enabling future studies on a large variety of materials system where electronic properties depend on underlying structural or chemical inhomogeneities.

  13. Electrochemical cell for in situ x-ray diffraction under ultrapure conditions

    DEFF Research Database (Denmark)

    Koop, T.; Schindler, W.; Kazimirov, A.

    1998-01-01

    of the crystal using a Luggin capillary and a standard reference electrode. We demonstrate the performance of our cell by in situ synchrotron x-ray diffraction measurements on ultrathin Co layers electrodeposited on Cu(001) in an aqueous H(2)SO(4)/CoSO(4) solution. (C) 1998 American Institute of Physics.......An electrochemical cell has been developed for in situ x-ray diffraction from a working electrode under clean conditions equivalent to ultrahigh vacuum conditions of 5 x 10(-10) mbar. The substrate crystals can be prepared ex situ and transferred into the cell under protection of ultrapure water...... within a few seconds. The oxygen level in the electrolyte is reduced by continuous N(2) flow to less than 0.2% compared to that of a fresh electrolyte. This can be done while rotating the cell by 360 degrees about the surface normal. The electrode potential is accurately measured at the position...

  14. Two-dimensional in situ metrology of X-ray mirrors using the speckle scanning technique.

    Science.gov (United States)

    Wang, Hongchang; Kashyap, Yogesh; Laundy, David; Sawhney, Kawal

    2015-07-01

    In situ metrology overcomes many of the limitations of existing metrology techniques and is capable of exceeding the performance of present-day optics. A novel technique for precisely characterizing an X-ray bimorph mirror and deducing its two-dimensional (2D) slope error map is presented. This technique has also been used to perform fast optimization of a bimorph mirror using the derived 2D piezo response functions. The measured focused beam size was significantly reduced after the optimization, and the slope error map was then verified by using geometrical optics to simulate the focused beam profile. This proposed technique is expected to be valuable for in situ metrology of X-ray mirrors at synchrotron radiation facilities and in astronomical telescopes.

  15. Hybrid X-ray and {gamma}-ray spectrometer for in-situ planetary science missions

    Energy Technology Data Exchange (ETDEWEB)

    Skidmore, M.S. [Space Research Centre, Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom)], E-mail: mss16@star.le.ac.uk; Ambrosi, R.M. [Space Research Centre, Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Simon, H. [Eurorad, 2, rue Ettore Bugatti, 67201 Eckbolsheim (France)

    2009-06-11

    {gamma}-Ray spectroscopy, X-ray spectroscopy and {gamma}-ray backscatter densitometry for planetary science applications are three complementary analytical techniques that can be used to determine surface and sub-surface composition, constrain heat flow through a planetary regolith and hence understand more about the processes that formed planetary bodies. Evaluating different detector types and configurations in order to achieve these scientific objectives is a key enabling step for a successful flight instrument development programme. In this study, we evaluate and compare different detector solutions and configurations including: planar and hemispherical CdTe, a CsI(Tl) scintillator, a LaBr{sub 3}(Ce) scintillator and a HPGe detector. The LaBr{sub 3}(Ce) detector was chosen as the most suitable detector for an in-situ planetary science mission due to its high-radiation tolerance, low mass compared with HPGe detector systems, its comparable resolution ({approx}3.4% at 662 keV) to compound semiconductors (planar CdTe {approx}2.4% at 662 keV) and high efficiency.

  16. Using in situ X-ray reflectivity to study protein adsorption on hydrophilic and hydrophobic surfaces: benefits and limitations.

    Science.gov (United States)

    Richter, Andrew G; Kuzmenko, Ivan

    2013-04-30

    We have employed in situ X-ray reflectivity (IXRR) to study the adsorption of a variety of proteins (lysozyme, cytochrome c, myoglobin, hemoglobin, serum albumin, and immunoglobulin G) on model hydrophilic (silicon oxide) and hydrophobic surfaces (octadecyltrichlorosilane self-assembled monolayers), evaluating this recently developed technique for its applicability in the area of biomolecular studies. We report herein the highest resolution depiction of adsorbed protein films, greatly improving on the precision of previous neutron reflectivity (NR) results and previous IXRR studies. We were able to perform complete scans in 5 min or less with the maximum momentum transfer of at least 0.52 Å(-1), allowing for some time-resolved information about the evolution of the protein film structure. The three smallest proteins (lysozyme, cytochrome c, and myoglobin) were seen to deposit as fully hydrated, nondenatured molecules onto hydrophilic surfaces, with indications of particular preferential orientations. Time evolution was observed for both lysozyme and myoglobin films. The larger proteins were not observed to deposit on the hydrophilic substrates, perhaps because of contrast limitations. On hydrophobic surfaces, all proteins were seen to denature extensively in a qualitatively similar way but with a rough trend that the larger proteins resulted in lower coverage. We have generated high-resolution electron density profiles of these denatured films, including capturing the growth of a lysozyme film. Because the solution interface of these denatured films is diffuse, IXRR cannot unambiguously determine the film extent and coverage, a drawback compared to NR. X-ray radiation damage was systematically evaluated, including the controlled exposure of protein films to high-intensity X-rays and exposure of the hydrophobic surface to X-rays before adsorption. Our analysis showed that standard measuring procedures used for XRR studies may lead to altered protein films

  17. Metallic magnetic calorimeters for high resolution X-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Krantz, M.; Hengstler, D.; Geist, J.; Schoetz, C.; Hassel, K.; Hendricks, S.; Keller, M.; Kempf, S.; Gastaldo, L.; Fleischmann, A.; Enss, C. [Heidelberg Univ. (Germany). KIP

    2015-07-01

    We develop microfabricated, energy dispersive particle detector arrays based on metallic magnetic calorimeters (MMCs) for high resolution X-ray spectroscopy to challenge bound-state QED calculations. Our MMCs are operated at about T=30 mK and use a paramagnetic temperature sensor, read-out by a SQUID, to measure the energy deposited by single X-ray photons. We discuss the physics of MMCs, the detector performance and the cryogenic setups for two different detector arrays. We present their microfabrication layouts with focus on challenges like the heatsinking of each pixel of the detector and the overhanging absorbers. The maXs-20 detector is a linear 1x8-pixel array with excellent linearity in its designated energy range up to 20 keV and unsurpassed energy resolution of 1.6 eV for 6 keV x-rays. MaXs-20 operated in a highly portable pulse tube cooled ADR setup has already been used at the EBIT facilities of the MPI-K for new reference measurements of V-like and Ti-like tungsten. The maXs-30 detector currently in development is a 8x8-pixel 2d-array with an active detection area of 16 mm{sup 2} and is designed to detect X-rays up to 50 keV with a designated energy resolution below 5 eV. MaXs-30 will be operated in a cryogen free 3He/4He-dilution refrigerator at the tip of a 40 cm long cold finger at T=20 mK.

  18. Ultra-fast in-situ X-ray studies of evolving columnar dendrites in solidifying steel weld pools

    OpenAIRE

    Mirihanage, W.U.; Di Michiel, M.; Mathiesen, R.H.

    2015-01-01

    High-brilliance polychromatic synchrotron radiation has been used to conduct in-situ studies of the solidification microstructure evolution during simulated welding. The welding simulations were realized by rapidly fusing ~ 5 mm spot in Fe-Cr-Ni steel. During the solid- liquid-solid phase transformations, a section of the weld pool was placed in an incident 50-150 keV polychromatic synchrotron X-ray beam, in a near-horizontal position at a very low inclination angle. Multiple high-resolution ...

  19. High resolution X-ray CT for advanced electronics packaging

    Science.gov (United States)

    Oppermann, M.; Zerna, T.

    2017-02-01

    Advanced electronics packaging is a challenge for non-destructive Testing (NDT). More, smaller and mostly hidden interconnects dominate modern electronics components and systems. To solve the demands of customers to get products with a high functionality by low volume, weight and price (e.g. mobile phones, personal medical monitoring systems) often the designers use System-in-Package solutions (SiP). The non-destructive testing of such devices is a big challenge. So our paper will impart fundamentals and applications for non-destructive evaluation of inner structures of electronics packaging for quality assurance and reliability investigations with a focus on X-ray methods, especially on high resolution X-ray computed tomography (CT).

  20. Active X-ray Optics for Generation-X, the Next High Resolution X-ray Observatory

    OpenAIRE

    Elvis, Martin; Brissenden, R. J.; Fabbiano, G.; Schwartz, D. A.; Reid, P.; Podgorski, W.; Eisenhower, M.; Juda, M.; Phillips, J.; Cohen, L.; Wolk, S.

    2006-01-01

    X-rays provide one of the few bands through which we can study the epoch of reionization, when the first galaxies, black holes and stars were born. To reach the sensitivity required to image these first discrete objects in the universe needs a major advance in X-ray optics. Generation-X (Gen-X) is currently the only X-ray astronomy mission concept that addresses this goal. Gen-X aims to improve substantially on the Chandra angular resolution and to do so with substantially larger effective ar...

  1. High spatial resolution hard X-ray microscope using X-ray refractive lens and phase contrast imaging experiments

    CERN Document Server

    Kohmura, Y; Takeuchi, A; Takano, H; Suzuki, Y; Ishikawa, T; Ohigashi, T; Yokosuka, H

    2001-01-01

    A high spatial resolution X-ray microscope was constructed using an X-ray refractive lens as an objective. The spatial resolution was tested using 18 keV X-ray. A 0.4 mu m line and 0.4 mu m space tantalum test pattern was successfully resolved. Using the similar setup with the addition of a phase plate, a Zernike type phase-contrast microscopy experiment was carried out for the phase retrieval of the samples. Two-dimensional phase-contrast images were successfully taken for the first time in the hard X-ray region. Images of a gold mesh sample were analyzed and the validity of this method was indicated. An improvement of the lens, however, is required for the precise phase retrieval of the samples.

  2. In situ observation of dynamic electrodeposition processes by soft x-ray fluorescence microspectroscopy and keyhole coherent diffractive imaging

    Science.gov (United States)

    Bozzini, Benedetto; Kourousias, George; Gianoncelli, Alessandra

    2017-03-01

    This paper describes two novel in situ microspectroscopic approaches to the dynamic study of electrodeposition processes: x-ray fluorescence (XRF) mapping with submicrometric space resolution and keyhole coherent diffractive imaging (kCDI) with nanometric lateral resolution. As a case study, we consider the pulse-plating of nanocomposites with polypyrrole matrix and Mn x Co y O z dispersoids, a prospective cathode material for zinc-air batteries. This study is centred on the detailed measurement of the elemental distributions developing in two representative subsequent growth steps, based on the combination of in situ identical-location XRF microspectroscopy—accompanied by soft-x ray absorption microscopy—and kCDI. XRF discloses space and time distributions of the two electrodeposited metals and kCDI on the one hand allows nanometric resolution and on the other hand provides complementary absorption as well as phase contrast modes. The joint information derived from these two microspectroscopies allows measurement of otherwise inaccessible observables that are a prerequisite for electrodeposition modelling and control accounting for dynamic localization processes.

  3. Custom AFM for X-ray beamlines: in situ biological investigations under physiological conditions

    Energy Technology Data Exchange (ETDEWEB)

    Gumí-Audenis, B. [ESRF, The European Synchrotron, Grenoble (France); Institute for Bioengineering of Catalonia (IBEC), Barcelona (Spain); Physical Chemistry Department, Universitat de Barcelona, Barcelona (Spain); Networking Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid (Spain); Carlà, F. [ESRF, The European Synchrotron, Grenoble (France); Vitorino, M. V. [University of Lisboa, Falculty of Science, Biosystems and Integrative Sciences Institute - BIOISI, Lisbon (Portugal); Panzarella, A. [ESRF, The European Synchrotron, Grenoble (France); Porcar, L. [Institut Laue-Langevin, Grenoble (France); Boilot, M. [ORTEC, Marseille (France); Guerber, S. [CEA, LETI Grenoble (France); Bernard, P. [ESRF, The European Synchrotron, Grenoble (France); Rodrigues, M. S. [University of Lisboa, Falculty of Science, Biosystems and Integrative Sciences Institute - BIOISI, Lisbon (Portugal); Sanz, F.; Giannotti, M. I. [Institute for Bioengineering of Catalonia (IBEC), Barcelona (Spain); Physical Chemistry Department, Universitat de Barcelona, Barcelona (Spain); Networking Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid (Spain); Costa, L., E-mail: luca.costa@esrf.fr [ESRF, The European Synchrotron, Grenoble (France)

    2015-09-30

    The performance of a custom atomic force microscope for grazing-incidence X-ray experiments on hydrated soft and biological samples is presented. A fast atomic force microscope (AFM) has been developed that can be installed as a sample holder for grazing-incidence X-ray experiments at solid/gas or solid/liquid interfaces. It allows a wide range of possible investigations, including soft and biological samples under physiological conditions (hydrated specimens). The structural information obtained using the X-rays is combined with the data gathered with the AFM (morphology and mechanical properties), providing a unique characterization of the specimen and its dynamics in situ during an experiment. In this work, lipid monolayers and bilayers in air or liquid environment have been investigated by means of AFM, both with imaging and force spectroscopy, and X-ray reflectivity. In addition, this combination allows the radiation damage induced by the beam on the sample to be studied, as has been observed on DOPC and DPPC supported lipid bilayers under physiological conditions.

  4. Nanocalorimeter platform for in situ specific heat measurements and x-ray diffraction at low temperature

    Science.gov (United States)

    Willa, K.; Diao, Z.; Campanini, D.; Welp, U.; Divan, R.; Hudl, M.; Islam, Z.; Kwok, W.-K.; Rydh, A.

    2017-12-01

    Recent advances in electronics and nanofabrication have enabled membrane-based nanocalorimetry for measurements of the specific heat of microgram-sized samples. We have integrated a nanocalorimeter platform into a 4.5 T split-pair vertical-field magnet to allow for the simultaneous measurement of the specific heat and x-ray scattering in magnetic fields and at temperatures as low as 4 K. This multi-modal approach empowers researchers to directly correlate scattering experiments with insights from thermodynamic properties including structural, electronic, orbital, and magnetic phase transitions. The use of a nanocalorimeter sample platform enables numerous technical advantages: precise measurement and control of the sample temperature, quantification of beam heating effects, fast and precise positioning of the sample in the x-ray beam, and fast acquisition of x-ray scans over a wide temperature range without the need for time-consuming re-centering and re-alignment. Furthermore, on an YBa2Cu3O7-δ crystal and a copper foil, we demonstrate a novel approach to x-ray absorption spectroscopy by monitoring the change in sample temperature as a function of incident photon energy. Finally, we illustrate the new insights that can be gained from in situ structural and thermodynamic measurements by investigating the superheated state occurring at the first-order magneto-elastic phase transition of Fe2P, a material that is of interest for magnetocaloric applications.

  5. In situ X-ray diffraction studies on the piezoelectric response of PZT thin films

    Energy Technology Data Exchange (ETDEWEB)

    Davydok, A., E-mail: davydok@mpie.de [Aix Marseille Université, CNRS, Université de Toulon, IM2NP UMR 7334, 13397 Marseille (France); Max-Planck-Institut für Eisenforschung, Department Structure and Nano-/Micromechanics of Materials, D-40237 Düsseldorf (Germany); Cornelius, T.W. [Aix Marseille Université, CNRS, Université de Toulon, IM2NP UMR 7334, 13397 Marseille (France); Mocuta, C. [SOLEIL Synchrotron, DiffAbs beamline, L' Orme des Merisiers, Saint-Aubin - BP 48, 91192 Gif-sur-Yvette Cedex (France); Lima, E.C. [Universidade Federal do Tocantins, 77500-000 Porto Nacional, TO (Brazil); Araujo, E.B. [Departamento de Fisica e Quimica, Universidade Estadual Paulista, Av. Brasil, 56 Centro, 15385-000 Ilha Solteira, SP (Brazil); Thomas, O. [Aix Marseille Université, CNRS, Université de Toulon, IM2NP UMR 7334, 13397 Marseille (France)

    2016-03-31

    Piezoelectric properties of randomly oriented self-polarized PbZr{sub 0.50}Ti{sub 0.50}O{sub 3} (PZT) thin films were investigated using in situ synchrotron X-ray diffraction. Possibilities for investigating the piezoelectric effect using micro-sized hard X-ray beams are demonstrated and perspectives for future dynamical measurements on PZT samples with variety of compositions and thicknesses are given. Studies performed on the crystalline [100, 110] directions evidenced piezoelectric anisotropy. The piezoelectric coefficient d{sub 33} was calculated in terms of the lab reference frame (d{sub perp}) and found to be two times larger along the [100] direction than along the [110] direction. The absolute values for the d{sub perp} amount to 120 and 230 pm/V being in good agreement with experimental and theoretical values found in literature for bulk PZT ceramics. - Highlights: • We performed in situ synchrotron X-ray diffraction studies on (PZT) thin films. • We discuss anisotropy of piezo effect in different crystallographic directions. • Perpendicular component Piezo coefficient of thin PZT layer is defined.

  6. In situ/Operando studies of electrocatalysts using hard X-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lassalle-Kaiser, Benedikt [Synchrotron SOLEIL, Gif-sur-Yvette (France); Gul, Sheraz [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Molecular Biophysics and Integrated Bioimaging Div.; Kern, Jan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Molecular Biophysics and Integrated Bioimaging Div.; SLAC National Accelerator Lab., Menlo Park, CA (United States). Linac Coherent Light Source (LCLS); Yachandra, Vittal K. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Molecular Biophysics and Integrated Bioimaging Div.; Yano, Junko [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Molecular Biophysics and Integrated Bioimaging Div.

    2017-05-02

    This review focuses on the use of X-ray absorption and emission spectroscopy techniques using hard X-rays to study electrocatalysts under in situ/operando conditions. The importance and the versatility of methods in the study of electrodes in contact with the electrolytes are described, when they are being cycled through the catalytic potentials during the progress of the oxygen-evolution, oxygen reduction and hydrogen evolution reactions. The catalytic oxygen evolution reaction is illustrated with examples using three oxides, Co, Ni and Mn, and two sulfides, Mo and Co. These are used as examples for the hydrogen evolution reaction. A bimetallic, bifunctional oxygen evolving and oxygen reducing Ni/Mn oxide is also presented. The various advantages and constraints in the use of these techniques and the future outlook are discussed.

  7. In Situ X-ray Diffraction Studies of (De)lithiation Mechanism in Silicon Nanowire Anodes

    KAUST Repository

    Misra, Sumohan

    2012-06-26

    Figure Persented: Silicon is a promising anode material for Li-ion batteries due to its high theoretical specific capacity. From previous work, silicon nanowires (SiNWs) are known to undergo amorphorization during lithiation, and no crystalline Li-Si product has been observed. In this work, we use an X-ray transparent battery cell to perform in situ synchrotron X-ray diffraction on SiNWs in real time during electrochemical cycling. At deep lithiation voltages the known metastable Li 15Si 4 phase forms, and we show that avoiding the formation of this phase, by modifying the SiNW growth temperature, improves the cycling performance of SiNW anodes. Our results provide insight on the (de)lithiation mechanism and a correlation between phase evolution and electrochemical performance for SiNW anodes. © 2012 American Chemical Society.

  8. In situ X-ray diffraction studies of (de)lithiation mechanism in silicon nanowire anodes.

    Science.gov (United States)

    Misra, Sumohan; Liu, Nian; Nelson, Johanna; Hong, Seung Sae; Cui, Yi; Toney, Michael F

    2012-06-26

    Silicon is a promising anode material for Li-ion batteries due to its high theoretical specific capacity. From previous work, silicon nanowires (SiNWs) are known to undergo amorphorization during lithiation, and no crystalline Li-Si product has been observed. In this work, we use an X-ray transparent battery cell to perform in situ synchrotron X-ray diffraction on SiNWs in real time during electrochemical cycling. At deep lithiation voltages the known metastable Li(15)Si(4) phase forms, and we show that avoiding the formation of this phase, by modifying the SiNW growth temperature, improves the cycling performance of SiNW anodes. Our results provide insight on the (de)lithiation mechanism and a correlation between phase evolution and electrochemical performance for SiNW anodes.

  9. Setup for in situ X-ray diffraction studies of thin film growth by magnetron sputtering

    CERN Document Server

    Ellmer, K; Weiss, V; Rossner, H

    2001-01-01

    A novel method is described for the in situ-investigation of nucleation and growth of thin films during magnetron sputtering. Energy dispersive X-ray diffraction with synchrotron light is used for the structural analysis during film growth. An in situ-magnetron sputtering chamber was constructed and installed at a synchrotron radiation beam line with a bending magnet. The white synchrotron light (1-70 keV) passes the sputtering chamber through Kapton windows and hits one of the substrates on a four-fold sample holder. The diffracted beam, observed under a fixed diffraction angle between 3 deg. and 10 deg., is energy analyzed by a high purity Ge-detector. The in situ-EDXRD setup is demonstrated for the growth of tin-doped indium oxide (ITO) films prepared by reactive magnetron sputtering from a metallic target.

  10. Wide band focusing x-ray spectrograph with spatial resolution.

    Science.gov (United States)

    Pikuz, S A; Douglass, J D; Shelkovenko, T A; Sinars, D B; Hammer, D A

    2008-01-01

    A new, wide spectral bandwidth x-ray spectrograph, the wide-bandwidth focusing spectrograph with spatial resolution (WB-FSSR), based on spherically bent mica crystals, is described. The wide bandwidth is achieved by combining three crystals to form a large aperture dispersive element. Since the WB-FSSR covers a wide spectral band, it is very convenient for application as a routine diagnostic tool in experiments in which the desired spectral coverage is different from one test to the next. The WB-FSSR has been tested in imploding wire-array experiments on a 1 MA pulsed power machine, and x-ray spectra were recorded in the 1-20 A spectral band using different orders of mica crystal reflection. Using a two mirror-symmetrically placed WB-FSSR configuration, it was also possible to distinguish between a real spectral shift and a shift of recorded spectral lines caused by the spatial distribution of the radiating plasma. A spectral resolution of about 2000 was demonstrated and a spatial resolution of approximately 100 microm was achieved in the spectral band of 5-10 A in second order of mica reflection. A simple method of numerical analysis of spectrograph capability is proposed.

  11. In situ X-ray pair distribution function analysis of geopolymer gel nanostructure formation kinetics.

    Science.gov (United States)

    White, Claire E; Provis, John L; Bloomer, Breaunnah; Henson, Neil J; Page, Katharine

    2013-06-14

    With the ever-increasing environmentally-driven demand for technologically advanced structural materials, geopolymer cement is fast becoming a viable alternative to traditional cements due to its proven engineering characteristics and the reduction in CO2 emitted during manufacturing (as much as 80% less CO2 emitted in manufacture, compared to ordinary Portland cement). Nevertheless, much remains unknown regarding the kinetics of reaction responsible for nanostructural evolution during the geopolymerisation process. Here, in situ X-ray total scattering measurements and pair distribution function (PDF) analysis are used to quantify the extent of reaction as a function of time for alkali-activated metakaolin/slag geopolymer binders, including the impact of various activators (alkali hydroxide/silicate) on the kinetics of the geopolymerisation reaction. Quantifying the reaction process in situ from X-ray PDF data collected during the initial ten hours can provide an estimate of the total reaction extent, but when combined with data obtained at longer times (128 days here) enables more accurate determination of the overall rate of reaction. To further assess the initial stages of the geopolymerisation reaction process, a pseudo-single step first order rate equation is fitted to the extent of reaction data, which reveals important mechanistic information regarding the role of free silica in the activators in the evolution of the binder systems. Hence, it is shown that in situ X-ray PDF analysis is an ideal experimental local structure tool to probe the reaction kinetics of complex reacting systems involving transitions between disordered/amorphous phases, of which geopolymerisation is an important example.

  12. Exploring Pore Formation of Atomic Layer-Deposited Overlayers by in Situ Small- and Wide-Angle X-ray Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Li, Tao; Karwal, Saurabh; Aoun, Bachir; Zhao, Haiyan; Ren, Yang; Canlas, Christian P.; Elam, Jeffrey W.; Winans, Randall E.

    2016-10-11

    In this work, we explore the pore structure of overcoated materials by in situ synchrotron small- and wide-angle X-ray scattering (SAXS)/(WAXS). Thin films of aluminum oxide (Al2O3) and titanium dioxide (TiO2) with thicknesses of 4.9 and 2.5 nm, respectively, are prepared by atomic layer deposition (ALD) on non-porous nanoparticles. In situ X-ray measurements reveal that porosity is induced in the ALD films by annealing the samples at high temperature. Moreover, this pore formation can be attributed to densification resulting from an amorphous to crystalline phase transition of the ALD films as confirmed by high resolution X-ray diffraction (XRD) and pair distribution function (PDF). Simultaneous SAXS/WAXS results not only show the porosity is formed by the phase transition but also that the pore size increases with temperature.

  13. Exploring Pore Formation of Atomic Layer-Deposited Overlayers by in Situ Small- and Wide-Angle X-ray Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Li, Tao; Karwal, Saurabh; Aoun, Bachir; Zhao, Haiyan; Ren, Yang; Canlas, Christian P.; Elam, Jeffrey W.; Winans, Randall E.

    2016-10-11

    In this work, we explore the pore structure of overcoated materials by in situ synchrotron small- and wide-angle X-ray scattering (SAXS)/(WAXS). Thin films of aluminum oxide (Al2O3) and titanium dioxide (TiO2) with thicknesses of 4.9 and 2.5 nm, respectively, are prepared by atomic layer deposition (ALD) on non-porous nanoparticles. In situ X-ray measurements reveal that porosity is induced in the ALD films by annealing the samples at high temperature. Moreover, this pore formation can be attributed to densification resulting from an amorphous to crystalline phase transition of the ALD films as confirmed by high resolution X-ray diffraction (XRD) and pair distribution function (PDF). Simultaneous SAXS/WAXS results not only show that the porosity is formed by this phase transition but also that the pore size increases with temperature.

  14. In situ X-ray diffraction environments for high-pressure reactions

    DEFF Research Database (Denmark)

    R. S. Hansen, Bjarne; Møller, Kasper Trans; Paskevicius, Mark

    2015-01-01

    New sample environments and techniques specifically designed for in situ powder X-ray diffraction studies up to 1000 bar (1 bar = 105 Pa) gas pressure are reported and discussed. The cells can be utilized for multiple purposes in a range of research fields. Specifically, investigations of gas......–solid reactions and sample handling under inert conditions are undertaken here. Sample containers allowing the introduction of gas from one or both ends are considered, enabling the possibility of flow-through studies. Various containment materials are evaluated, e.g. capillaries of single-crystal sapphire (Al2O3...

  15. Local detection of X-ray spectroscopies with an in-situ AFM

    OpenAIRE

    Rodrigues, Mario; Dhez, Olivier; Le Denmat, Simon; Chevrier, Joël; Felici, Roberto; Comin, Fabio

    2008-01-01

    International audience; The in situ combination of Scanning Probe Microscopies (SPM) with X-ray microbeams adds a variety of new possibilities to the panoply of synchrotron radiation techniques. In this paper we describe an optics-free AFM/STM that can be directly installed on synchrotron radiation end stations for such combined experiments. The instrument can be used just for AFM imaging of the investigated sample or can be used for detection of photoemitted electrons with a sharp STM-like t...

  16. In-Situ Silver Acetylide Silver Nitrate Explosive Deposition Measurements Using X-Ray Fluorescence.

    Energy Technology Data Exchange (ETDEWEB)

    Covert, Timothy Todd

    2014-09-01

    The Light Initiated High Explosive facility utilized a spray deposited coating of silver acetylide - silver nitrate explosive to impart a mechanical shock into targets of interest. A diagnostic was required to measure the explosive deposition in - situ. An X - ray fluorescence spectrometer was deployed at the facility. A measurement methodology was developed to measure the explosive quantity with sufficient accuracy. Through the use of a tin reference material under the silver based explosive, a field calibration relationship has been developed with a standard deviation of 3.2 % . The effect of the inserted tin material into the experiment configuration has been explored.

  17. In-situ x-ray absorption study of copper films in ground watersolutions

    Energy Technology Data Exchange (ETDEWEB)

    Kvashnina, K.O.; Butorin, S.M.; Modin, A.; Soroka, I.; Marcellini, M.; Nordgren, J.; Guo, J.-H.; Werme, L.

    2007-10-29

    This study illustrates how the damage from copper corrosion can be reduced by modifying the chemistry of the copper surface environment. The surface modification of oxidized copper films induced by chemical reaction with Cl{sup -} and HCO{sub 3}{sup -} in aqueous solutions was monitored by in situ X-ray absorption spectroscopy. The results show that corrosion of copper can be significantly reduced by adding even a small amount of sodium bicarbonate. The studied copper films corroded quickly in chloride solutions, whereas the same solution containing 1.1 mM HCO{sub 3}{sup -} prevented or slowed down the corrosion processes.

  18. Characterization of ceramic archaeological by high resolution X ray microtomography

    Energy Technology Data Exchange (ETDEWEB)

    Machado, Alessandra C.; Freitas, Renato; Calza, Cristiane F.; Lopes, Ricardo T.; Lima, Inaya, E-mail: alecastro@lin.ufrj.br [Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Lab. de Instrumentacao Nuclear; Carvalho, Daniele D.; Gaspar, Maria D. [Museu Nacional (MN/UFRJ), RJ (Brazil). Centro de Tecnologia

    2013-07-01

    Characterization of ceramic fragments is a very important area of research in art and archeometry area because it enables a greater understanding of how ancient civilizations behave and what were their traditions and customs. Petrography and chemical analyses are commonly used, but these techniques are destructive, which is not interesting for this type of sample. Through the exchange of multidisciplinary scientific knowledge and new partnerships, high resolution X-ray microtomography has been introduced in archaeological area as a great possibility of 3D inspection in a non-destructive way. The goal of this work is to investigate the internal microstructures of four samples of archeological ceramic, from the Archaeological Site of Macacu - RJ. The X-ray microtomography were performed in a high resolution setup, and can be used to infer the nature of organic temper even with all plant remains completely burnt out during the firing process and also to ensure the homogeneity of samples envisaged for geochemical analyses, especially with respect to the distribution of chemically diverse fabric compounds. In this way this study intends to contribute to our understanding of the archaeological and historical formations of this region. (author)

  19. Geological Carbon Sequestration: new insights from in-situ Synchrotron X-ray Microtomography

    Science.gov (United States)

    Voltolini, M.; Kwon, T.; Ajo Franklin, J. B.

    2012-12-01

    In a world with rapidly increasing atmospheric CO2 concentrations, a variety of scalable technologies are being considered to mitigate emissions from the combustion of fossil fuels; among these approaches, geological carbon storage (GCS) is being actively tested at a variety of subsurface sites. Despite these activities, a mechanistic understanding of multiphase flow in scCO2/brine systems at the pore scale is still being developed. The distribution of scCO2 in the pore space controls a variety of processes at the continuum scale including CO2 dissolution rate (by way of brine/CO2 contact area), capillary trapping, and residual brine fraction. Virtually no dynamic measurements of the pore-scale distribution of scCO2 in real geological samples have been made in three dimensions leaving models describing multi-phase fluid dynamics, reactive transport, and geophysical properties reliant on analog systems (often using fewer spatial dimensions, different fluids, or lower pressures) or theoretical models describing phase configurations. We present dynamic pore-scale imagery of scCO2 invasion dynamics in a 3D geological sample, in this case a quartz-rich sandstone core extracted from the Domengine Fm, a regionally extensive unit which is currently a target for future GCS operations in the Sacramento Basin. This dataset, acquired using synchrotron X-ray micro tomography (SXR-μCT) and high speed radiography, was made possible by development of a controlled P/T flow-through triaxial cell compatible with X-ray imaging in the 8-40 keV range. These experiments successfully resolved scCO2 and brine phases at a spatial resolution of 4.47 μm while the sample was kept at in situ conditions (45°C, 9 MPa pore pressure, 14 MPa hydrostatic confining stress) during drainage and imbibition cycles. Image volumes of the dry, brine saturated, and partially scCO2 saturated sample were captured and were used to correlate aspects of rock microstructure to development of the invasion front

  20. [Application of in situ micro energy dispersive X-ray fluorescence analysis in mineralogy].

    Science.gov (United States)

    Yang, Hai; Ge, Liang-Quan; Gu, Yi; Zhang, Qing-Xian; Xiong, Sheng-Qing

    2013-11-01

    Thirteen rock samples were collected for studying the variation of element content in the mineral during the alteration process from Xinjiang, China. The IED-6000 in situ micro energy dispersive X-ray fluorescence developed by CDUT was applied to get chemical and physical data from minerals. The non-destructive spectrometer is based on a low-power Mo-anode X-ray tube and a Si-PIN peltier cooled X-ray detector. The unique design of the tube's probe allows very close coupling of polycapillary and makes the use of micro-area measurement feasible and efficient. The spectrometer can be integrated into any microscope for analysis. The long axis diameter of beam spot is about 110 microm. According to micro-EDXRF measurement, the tetrahedrite was corrected to pyrite, improving the efficiency and accuracy of the mineral identification. The feldspar of mineralized rock sample is rich in Cu and Zn which can be used as prospecting indicator elements. Element content of Cr, Mn and Co shows negative correlation with the degree of mineralization.

  1. High resolution, monochromatic x-ray topography capability at CHESS

    Energy Technology Data Exchange (ETDEWEB)

    Finkelstein, K. D., E-mail: kdf1@cornell.edu; Pauling, A.; Brown, Z. [CHESS, Cornell University, Ithaca, NY (United States); Jones, R. [Department of Physics, University of Connecticut, Storrs, CT (United States); Tarun, A.; Misra, D. S. [IIa Technologies (Singapore); Jupitz, S. [St. Mary’s College of Maryland, St. Mary’s City, MD (United States); Sagan, D. C. [CLASSE, Cornell University, Ithaca, NY (United States)

    2016-07-27

    CHESS has a monochromatic x-ray topography capability serving continually expanding user interest. The setup consists of a beam expanding monochromator, 6-circle diffactometer, and CHESS designed CMOS camera with real time sample-alignment capability. This provides rocking curve mapping with angle resolution as small as 2 µradians, spatial resolution to 3 microns, and field of view up to 7mm. Thus far the capability has been applied for: improving CVD-diamond growth, evaluating perfection of ultra-thin diamond membranes, correlating performance of diamond-based electronics with crystal defect structure, and defect analysis of single crystal silicon carbide. This paper describes our topography system, explains its capabilities, and presents experimental results from several applications.

  2. Fabricating High-Resolution X-Ray Collimators

    Science.gov (United States)

    Appleby, Michael; Atkinson, James E.; Fraser, Iain; Klinger, Jill

    2008-01-01

    A process and method for fabricating multi-grid, high-resolution rotating modulation collimators for arcsecond and sub-arcsecond x-ray and gamma-ray imaging involves photochemical machining and precision stack lamination. The special fixturing and etching techniques that have been developed are used for the fabrication of multiple high-resolution grids on a single array substrate. This technology has application in solar and astrophysics and in a number of medical imaging applications including mammography, computed tomography (CT), single photon emission computed tomography (SPECT), and gamma cameras used in nuclear medicine. This collimator improvement can also be used in non-destructive testing, hydrodynamic weapons testing, and microbeam radiation therapy.

  3. In Situ Soft X-ray Spectromicroscopy of Early Tricalcium Silicate Hydration

    Science.gov (United States)

    Bae, Sungchul; Kanematsu, Manabu; Hernández-Cruz, Daniel; Moon, Juhyuk; Kilcoyne, David; Monteiro, Paulo J. M.

    2016-01-01

    The understanding and control of early hydration of tricalcium silicate (C3S) is of great importance to cement science and concrete technology. However, traditional characterization methods are incapable of providing morphological and spectroscopic information about in situ hydration at the nanoscale. Using soft X-ray spectromicroscopy, we report the changes in morphology and molecular structure of C3S at an early stage of hydration. In situ C3S hydration in a wet cell, beginning with induction (~1 h) and acceleration (~4 h) periods of up to ~8 h, was studied and compared with ex situ measurements in the deceleration period after 15 h of curing. Analysis of the near-edge X-ray absorption fine structure showed that the Ca binding energy and energy splitting of C3S changed rapidly in the early age of hydration and exhibited values similar to calcium silicate hydrate (C–S–H). The formation of C–S–H nanoseeds in the C3S solution and the development of a fibrillar C–S–H morphology on the C3S surface were visualized. Following this, silicate polymerization accompanied by C–S–H precipitation produced chemical shifts in the peaks of the main Si K edge and in multiple scattering. However, the silicate polymerization process did not significantly affect the Ca binding energy of C–S–H. PMID:28774096

  4. In Situ Soft X-ray Spectromicroscopy of Early Tricalcium Silicate Hydration

    Directory of Open Access Journals (Sweden)

    Sungchul Bae

    2016-12-01

    Full Text Available The understanding and control of early hydration of tricalcium silicate (C3S is of great importance to cement science and concrete technology. However, traditional characterization methods are incapable of providing morphological and spectroscopic information about in situ hydration at the nanoscale. Using soft X-ray spectromicroscopy, we report the changes in morphology and molecular structure of C3S at an early stage of hydration. In situ C3S hydration in a wet cell, beginning with induction (~1 h and acceleration (~4 h periods of up to ~8 h, was studied and compared with ex situ measurements in the deceleration period after 15 h of curing. Analysis of the near-edge X-ray absorption fine structure showed that the Ca binding energy and energy splitting of C3S changed rapidly in the early age of hydration and exhibited values similar to calcium silicate hydrate (C–S–H. The formation of C–S–H nanoseeds in the C3S solution and the development of a fibrillar C–S–H morphology on the C3S surface were visualized. Following this, silicate polymerization accompanied by C–S–H precipitation produced chemical shifts in the peaks of the main Si K edge and in multiple scattering. However, the silicate polymerization process did not significantly affect the Ca binding energy of C–S–H.

  5. A flexible gas flow reaction cell for in situ x-ray absorption spectroscopy studies

    Energy Technology Data Exchange (ETDEWEB)

    Kroner, Anna B., E-mail: anna.kroner@diamond.ac.uk; Gilbert, Martin; Duller, Graham; Cahill, Leo; Leicester, Peter; Woolliscroft, Richard; Shotton, Elizabeth J. [Diamond Light Source Ltd., Diamond House, Harwell Science and Innovation Campus, Chilton, Oxfordshire, OX110DE (United Kingdom); Mohammed, Khaled M. H. [UK Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory, Chilton, Oxfordshire, OX110FA (United Kingdom); School of Chemistry, University of Southampton, Southampton, SO17 1BJ (United Kingdom)

    2016-07-27

    A capillary-based sample environment with hot air blower and integrated gas system was developed at Diamond to conduct X-ray absorption spectroscopy (XAS) studies of materials under time-resolved, in situ conditions. The use of a hot air blower, operating in the temperature range of 298-1173 K, allows introduction of other techniques e.g. X-ray diffraction (XRD), Raman spectroscopy for combined techniques studies. The flexibility to use either quartz or Kapton capillaries allows users to perform XAS measurement at energies as low as 5600 eV. To demonstrate performance, time-resolved, in situ XAS results of Rh catalysts during the process of activation (Rh K-edge, Ce L{sub 3}-edge and Cr K-edge) and the study of mixed oxide membrane (La{sub 0.6}Sr{sub 0.4}Co{sub 0.2}Fe{sub 0.8}O{sub 3−δ}) under various partial oxygen pressure conditions are described.

  6. In situ X-ray investigations of oxygen precipitation in semiconductor silicon; In-situ-Roentgenuntersuchungen der Sauerstoffpraezipitation in Halbleitersilizium

    Energy Technology Data Exchange (ETDEWEB)

    Grillenberger, Hannes

    2011-03-04

    The precipitation of oxygen in Czochralski grown semiconductor silicon is investigated in situ during thermal treatments up to 1000 C with high energy X-rays. All investigations are performed with a focusing Laue diffractometer. The parameters of the diffraction curve are the relative full width at half maximum (rFHWM) and the enhancement of the integral intensity (EII). A readout software has been developed to extract these automatically from the detector image for the measured 220, -220 and 040 Bragg peaks. The sample thickness is set to 15 mm as this enhances the sensitivity of the method and the samples are processed after the strain-field diffraction (SFD) experiments to wafers for an ex situ characterization demanding wafers. Three experimental series with a total of 21 in situ SFD experiments with different thermal treatments have been performed. The slope of the initial temperature ramp is set to 1 K/min in the first and the third series to generate a high precipitate (Bulk Micro Defect, BMD) density. In the second series the slope is chosen as 10 K/min to generate a lower density in the same silicon material. It is shown with all experiments and with preliminary works that the built up of strain during the heat treatment is caused by BMDs during the high temperature period of the treatment. The detection limit of series 1 is found at 7 nm at a density of 10{sup 13}/cm{sup 3}, of series 2 at 40 nm at a density of 2 x 10{sup 8}/cm{sup 3}, and at 8 nm at a density of 4.8 x 10{sup 12}/cm{sup 3} for series 3. The local maximum of the EII at 450 C, which emerges coincident with a local minimum of the rFWHM in series 2 may be caused by thermal donors (TD). With the experiments is shown that SFD operates in the infrared-laser scattering tomography detection range, but also reaches in a region covered only by transmission electron microscopy (TEM) so far. In contrast to these methods SFD is not limited to low temperatures and in situ experiments can be done. Thus

  7. High-resolution x-ray studies of an AXAF high-energy transmission grating

    DEFF Research Database (Denmark)

    Abdali, S.; Christensen, Finn Erland; Schnopper, H. W.

    1993-01-01

    A triple axis X-ray diffractometer, designed and built at the Danish Space Research Institute, was used to make a high resolution study of the performance of a 2000 angstroms period, high energy X-ray transmission grating developed at MIT for one of the grating spectrometers on the Advanced X-ray...

  8. An apparatus for in situ x-ray scattering measurements during polymer injection molding.

    Science.gov (United States)

    Rendon, Stanley; Fang, Jun; Burghardt, Wesley R; Bubeck, Robert A

    2009-04-01

    We report a novel instrument for synchrotron-based in situ x-ray scattering measurements during injection molding processing. It allows direct, real-time monitoring of molecular-scale structural evolution in polymer materials undergoing a complex processing operation. The instrument is based on a laboratory-scale injection molding machine, and employs customized mold tools designed to allow x-ray access during mold filling and subsequent solidification, while providing sufficient robustness to withstand high injection pressures. The use of high energy, high flux synchrotron radiation, and a fast detector allows sufficiently rapid data acquisition to resolve time-dependent orientation dynamics in this transient process. Simultaneous monitoring of temperature and pressure signals allows transient scattering data to be referenced to various stages of the injection molding cycle. Representative data on a commercial liquid crystalline polymer, Vectra(R) B950, are presented to demonstrate the features of this apparatus; however, it may find application in a wide range of polymeric materials such as nanocomposites, semicrystalline polymers and fiber-reinforced thermoplastics.

  9. In situ X-ray photoelectron spectroscopy study of complex oxides under gas and vacuum environments

    Science.gov (United States)

    Paloukis, F.; Papazisi, K. M.; Balomenou, S. P.; Tsiplakides, D.; Bournel, F.; Gallet, J.-J.; Zafeiratos, S.

    2017-11-01

    For several decades an open question in many X-ray photoelectron spectroscopy (XPS) studies was whether or not the results obtained in ultra-high vacuum conditions (UHV) were representative of the sample state in gas atmospheres. As a consequence, near ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) was received by surface scientists as an important tool for in situ characterization of the gas-solid interactions. However, it is not yet clear how, if at all, the surface state formed in contact with the gas is modified when this gas is evacuated. In this work we compare synchrotron-based XPS results recorded at 300 °C on Ni/yttria- stabilized zirconia cermet and La0.75Sr0.25Cr0.9Fe0.1O3 perovskite, under 3.5 mbar O2 and UHV environments. We found that the surface state formed in O2 is maintained to a large extent under vacuum. In addition, we demonstrate that the correlation of XPS spectra recorded in the two conditions can provide information regarding the electrical conductivity of the specific surface sites of these complex oxides. Our findings suggest that comparison of XPS measurements in gas and in vacuum environments might be particularly useful in applications where the electronic conductivity at the surface plays a crucial role, as for example in solid oxide electrochemical devices.

  10. Atomic Structure of Pt3Ni Nanoframe Electrocatalysts by in Situ X-ray Absorption Spectroscopy.

    Science.gov (United States)

    Becknell, Nigel; Kang, Yijin; Chen, Chen; Resasco, Joaquin; Kornienko, Nikolay; Guo, Jinghua; Markovic, Nenad M; Somorjai, Gabor A; Stamenkovic, Vojislav R; Yang, Peidong

    2015-12-23

    Understanding the atomic structure of a catalyst is crucial to exposing the source of its performance characteristics. It is highly unlikely that a catalyst remains the same under reaction conditions when compared to as-synthesized. Hence, the ideal experiment to study the catalyst structure should be performed in situ. Here, we use X-ray absorption spectroscopy (XAS) as an in situ technique to study Pt3Ni nanoframe particles which have been proven to be an excellent electrocatalyst for the oxygen reduction reaction (ORR). The surface characteristics of the nanoframes were probed through electrochemical hydrogen underpotential deposition and carbon monoxide electrooxidation, which showed that nanoframe surfaces with different structure exhibit varying levels of binding strength to adsorbate molecules. It is well-known that Pt-skin formation on Pt-Ni catalysts will enhance ORR activity by weakening the binding energy between the surface and adsorbates. Ex situ and in situ XAS results reveal that nanoframes which bind adsorbates more strongly have a rougher Pt surface caused by insufficient segregation of Pt to the surface and consequent Ni dissolution. In contrast, nanoframes which exhibit extremely high ORR activity simultaneously demonstrate more significant segregation of Pt over Ni-rich subsurface layers, allowing better formation of the critical Pt-skin. This work demonstrates that the high ORR activity of the Pt3Ni hollow nanoframes depends on successful formation of the Pt-skin surface structure.

  11. Speckle-based portable device for in-situ metrology of x-ray mirrors at Diamond Light Source

    Science.gov (United States)

    Wang, Hongchang; Kashyap, Yogesh; Zhou, Tunhe; Sawhney, Kawal

    2017-09-01

    For modern synchrotron light sources, the push toward diffraction-limited and coherence-preserved beams demands accurate metrology on X-ray optics. Moreover, it is important to perform in-situ characterization and optimization of X-ray mirrors since their ultimate performance is critically dependent on the working conditions. Therefore, it is highly desirable to develop a portable metrology device, which can be easily implemented on a range of beamlines for in-situ metrology. An X-ray speckle-based portable device for in-situ metrology of synchrotron X-ray mirrors has been developed at Diamond Light Source. Ultra-high angular sensitivity is achieved by scanning the speckle generator in the X-ray beam. In addition to the compact setup and ease of implementation, a user-friendly graphical user interface has been developed to ensure that characterization and alignment of X-ray mirrors is simple and fast. The functionality and feasibility of this device is presented with representative examples.

  12. In situ x-ray reflectivity and grazing incidence x-ray diffraction study of L 1(0) ordering in (57)Fe/Pt multilayers.

    Science.gov (United States)

    Raghavendra Reddy, V; Gupta, Ajay; Gome, Anil; Leitenberger, Wolfram; Pietsch, U

    2009-05-06

    In situ high temperature x-ray reflectivity and grazing incidence x-ray diffraction measurements in the energy dispersive mode are used to study the ordered face-centered tetragonal (fct) L 1(0) phase formation in [Fe(19 Å)/Pt(25 Å)]( × 10) multilayers prepared by ion beam sputtering. With the in situ x-ray measurements it is observed that (i) the multilayer structure first transforms to a disordered FePt and subsequently to an ordered fct L 1(0) phase, (ii) the ordered fct L 1(0) FePt peaks start to appear at 320 °C annealing, (iii) the activation energy of the interdiffusion is 0.8 eV and (iv) ordered fct FePt grains have preferential out-of-plane texture. The magneto-optical Kerr effect and conversion electron Mössbauer spectroscopies are used to study the magnetic properties of the as-deposited and 400 °C annealed multilayers. The magnetic data for the 400 °C annealed sample indicate that the magnetization is at an angle of ∼50° from the plane of the film.

  13. In situ X-ray polymerization: from swollen lamellae to polymer-surfactant complexes.

    Science.gov (United States)

    Agzenai, Yahya; Lindman, Björn; Alfredsson, Viveka; Topgaard, Daniel; Renamayor, Carmen S; Pacios, Isabel E

    2014-01-30

    The influence of the monomer diallyldimethylammonium chloride (D) on the lamellar liquid crystal formed by the anionic surfactant aerosol OT (AOT) and water is investigated, determining the lamellar spacings by SAXS and the quadrupolar splittings by deuterium NMR, as a function of the D or AOT concentrations. The cationic monomer D induces a destabilization of the AOT lamellar structure such that, at a critical concentration higher than 5 wt %, macroscopic phase separation takes place. When the monomer, which is dissolved in the AOT lamellae, is polymerized in situ by X-ray initiation, a new collapsed lamellar phase appears, corresponding to the complexation of the surfactant with the resulting polymer. A theoretical model is employed to analyze the variation of the interactions between the AOT bilayers and the stability of the lamellar structure.

  14. Reduction of variable-truncation artifacts from beam occlusion during in situ x-ray tomography

    DEFF Research Database (Denmark)

    Borg, Leise; Jørgensen, Jakob Sauer; Frikel, Jürgen

    2017-01-01

    Many in situ x-ray tomography studies require experimental rigs which may partially occlude the beam and cause parts of the projection data to be missing. In a study of fluid flow in porous chalk using a percolation cell with four metal bars drastic streak artifacts arise in the filtered...... discontinuities that are shown to be the source of the streaks. The ‘reduction to limited angle’ (RLA) method simply keeps only non-truncated projections; the ‘detector-directed smoothing’ (DDS) method smooths the discontinuities; while the ‘reflexive boundary condition’ (RBC) method enforces a zero derivative...... at the discontinuities. Experimental results using both simulated and real data show that the proposed methods effectively reduce variable-truncation artifacts. The RBC method is found to provide the best artifact reduction and preservation of image features using both visual and quantitative assessment. The analysis...

  15. In Situ X ray scattering for investing morphology of bottle brush BCP with Solvent annealing

    Science.gov (United States)

    Jeong, Gajin; Russell, Thomas P.; Sveinbjornsson, Benjamin R.; Grubbs, Robert H.; Univ of Mass-Amherst Collaboration; California Institute of Technology Collaboration

    2014-03-01

    We investigated the morphology of bottle-brush block copolymer (BrBCPs) thin films using solvent vapor annealing (SVA) in a specially designed chamber for in situgrazing incidence x-ray scattering. BrBCPs with polystyrene (PS) and poly(lactic acid) (PLA) side chains and a norbornene backbone were studied SVA using THF, a good solvent for PS and PLA, a controlled swelling and deswelling rate were achieved with N2 carrier gas. Film thickness was monitored by optical interferometry. The interference maximum, characteristic of the microdomain morphology, was found to vary linearly with molecular weight. The in situGISAXS measuremens were used to elucidate the evolution of the morphology in the thin films.

  16. Advanced in situ metrology for x-ray beam shaping with super precision.

    Science.gov (United States)

    Wang, Hongchang; Sutter, John; Sawhney, Kawal

    2015-01-26

    We report a novel method for in situ metrology of an X-ray bimorph mirror by using the speckle scanning technique. Both the focusing beam and the "tophat" defocussed beam have been generated by optimizing the bimorph mirror in a single iteration. Importantly, we have demonstrated that the angular sensitivity for measuring the slope error of an optical surface can reach accuracy in the range of two nanoradians. When compared with conventional ex-situ metrology techniques, the method enables a substantial increase of around two orders of magnitude in the angular sensitivity and opens the way to a previously inaccessible region of slope error measurement. Such a super precision metrology technique will be beneficial for both the manufacture of polished mirrors and the optimization of beam shaping.

  17. In-situ x-ray characterization of wurtzite formation in GaAs nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Krogstrup, Peter; Hannibal Madsen, Morten; Nygaard, Jesper; Feidenhans' l, Robert [Nano-Science Center, Niels Bohr Institute, University of Copenhagen, Copenhagen (Denmark); Hu Wen [Quantum Beam Science Directorate, Japan Atomic Energy Agency, 1-1-1 Koto, Sayo, Hyogo 679-5148 (Japan); Kozu, Miwa; Nakata, Yuka [University of Hyogo, 3-2-1 Koto, Kamigori, Hyogo 678-1297 (Japan); Takahasi, Masamitu [Quantum Beam Science Directorate, Japan Atomic Energy Agency, 1-1-1 Koto, Sayo, Hyogo 679-5148 (Japan); University of Hyogo, 3-2-1 Koto, Kamigori, Hyogo 678-1297 (Japan)

    2012-02-27

    In-situ monitoring of the crystal structure formation during Ga-assisted GaAs nanowire growth on Si(111) substrates has been performed in a combined molecular beam epitaxy growth and x-ray characterization experiment. Under Ga rich conditions, we show that an increase in the V/III ratio increases the formation rate of the wurtzite structure. Moreover, the response time for changes in the structural phase formation to changes in the beam fluxes is observed to be much longer than predicted time scales of adatom kinetics and liquid diffusion. This suggests that the morphology of the growth interface plays the key role for the relative growth structure formation rates.

  18. Tensile behavior of orthorhombic alpha ''-titanium alloy studied by in situ X-ray diffraction

    DEFF Research Database (Denmark)

    Wang, X.D.; Lou, H.B.; Ståhl, Kenny

    2010-01-01

    The tensile behavior of a Ti-11%Zr-14%Nb-10%Sn alloy with pure orthorhombic alpha '' phase was studied by in situ X-ray diffraction using synchrotron radiation. It is found that no phase transformation happens during the whole tensile process. The "double-yielding" platforms of this alloy...... are indeed due to a low stress yielding (similar to 400 MPa) followed with a significant work-hardening before necking and fracture. In this process, the [0 2 2] orientation of grains more approaches the tensile direction and the [2 0 0] moves to the transverse, causing the lattice parameter a to be shrunk......, and b and c elongated, and the formation of texture. The similar texture can also be produced upon cold rolling by which the yield strength of the alpha '' phase is largely improved to be over 900 MPa....

  19. Hydride reorientation in Zircaloy-4 examined by in situ synchrotron X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Weekes, H.E. [Department of Materials, Royal School of Mines, Imperial College London, Prince Consort Road, London SW7 2BP (United Kingdom); Jones, N.G. [Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); Lindley, T.C. [Department of Materials, Royal School of Mines, Imperial College London, Prince Consort Road, London SW7 2BP (United Kingdom); Dye, D., E-mail: david.dye@imperial.ac.uk [Department of Materials, Royal School of Mines, Imperial College London, Prince Consort Road, London SW7 2BP (United Kingdom)

    2016-09-15

    The phenomenon of stress-reorientation has been investigated using in situ X-ray diffraction during the thermomechanical cycling of hydrided Zircaloy-4 tensile specimens. Results have shown that loading along a sample’s transverse direction (TD) leads to a greater degree of hydride reorientation when compared to rolling direction (RD)-aligned samples. The elastic lattice micro-strains associated with radially oriented hydrides have been revealed to be greater than those oriented circumferentially, a consequence of strain accommodation. Evidence of hydride redistribution after cycling, to α-Zr grains oriented in a more favourable orientation when under an applied stress, has also been observed and its behaviour has been found to be highly dependent on the loading axis. Finally, thermomechanical loading across multiple cycles has been shown to reduce the difference in terminal solid solubility of hydrogen during dissolution (TSS{sub D,H}) and precipitation (TSS{sub P,H}).

  20. Final Report on Developing Microstructure-Property Correlation in Reactor Materials using in situ High-Energy X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Li, Meimei [Argonne National Lab. (ANL), Argonne, IL (United States); Almer, Jonathan D. [Argonne National Lab. (ANL), Argonne, IL (United States); Yang, Yong [Univ. of Florida, Gainesville, FL (United States); Tan, Lizhen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-01-01

    This report provides a summary of research activities on understanding microstructure – property correlation in reactor materials using in situ high-energy X-rays. The report is a Level 2 deliverable in FY16 (M2CA-13-IL-AN_-0403-0111), under the Work Package CA-13-IL-AN_- 0403-01, “Microstructure-Property Correlation in Reactor Materials using in situ High Energy Xrays”, as part of the DOE-NE NEET Program. The objective of this project is to demonstrate the application of in situ high energy X-ray measurements of nuclear reactor materials under thermal-mechanical loading, to understand their microstructure-property relationships. The gained knowledge is expected to enable accurate predictions of mechanical performance of these materials subjected to extreme environments, and to further facilitate development of advanced reactor materials. The report provides detailed description of the in situ X-ray Radiated Materials (iRadMat) apparatus designed to interface with a servo-hydraulic load frame at beamline 1-ID at the Advanced Photon Source. This new capability allows in situ studies of radioactive specimens subject to thermal-mechanical loading using a suite of high-energy X-ray scattering and imaging techniques. We conducted several case studies using the iRadMat to obtain a better understanding of deformation and fracture mechanisms of irradiated materials. In situ X-ray measurements on neutron-irradiated pure metal and model alloy and several representative reactor materials, e.g. pure Fe, Fe-9Cr model alloy, 316 SS, HT-UPS, and duplex cast austenitic stainless steels (CASS) CF-8 were performed under tensile loading at temperatures of 20-400°C in vacuum. A combination of wide-angle X-ray scattering (WAXS), small-angle X-ray scattering (SAXS), and imaging techniques were utilized to interrogate microstructure at different length scales in real time while the specimen was subject to thermal-mechanical loading. In addition, in situ X-ray studies were

  1. Reduction of variable-truncation artifacts from beam occlusion during in situ x-ray tomography

    Science.gov (United States)

    Borg, Leise; Jørgensen, Jakob S.; Frikel, Jürgen; Sporring, Jon

    2017-12-01

    Many in situ x-ray tomography studies require experimental rigs which may partially occlude the beam and cause parts of the projection data to be missing. In a study of fluid flow in porous chalk using a percolation cell with four metal bars drastic streak artifacts arise in the filtered backprojection (FBP) reconstruction at certain orientations. Projections with non-trivial variable truncation caused by the metal bars are the source of these variable-truncation artifacts. To understand the artifacts a mathematical model of variable-truncation data as a function of metal bar radius and distance to sample is derived and verified numerically and with experimental data. The model accurately describes the arising variable-truncation artifacts across simulated variations of the experimental setup. Three variable-truncation artifact-reduction methods are proposed, all aimed at addressing sinogram discontinuities that are shown to be the source of the streaks. The ‘reduction to limited angle’ (RLA) method simply keeps only non-truncated projections; the ‘detector-directed smoothing’ (DDS) method smooths the discontinuities; while the ‘reflexive boundary condition’ (RBC) method enforces a zero derivative at the discontinuities. Experimental results using both simulated and real data show that the proposed methods effectively reduce variable-truncation artifacts. The RBC method is found to provide the best artifact reduction and preservation of image features using both visual and quantitative assessment. The analysis and artifact-reduction methods are designed in context of FBP reconstruction motivated by computational efficiency practical for large, real synchrotron data. While a specific variable-truncation case is considered, the proposed methods can be applied to general data cut-offs arising in different in situ x-ray tomography experiments.

  2. In situ observation of water distribution and behaviour in a polymer electrolyte fuel cell by synchrotron X-ray imaging.

    Science.gov (United States)

    Mukaide, Taihei; Mogi, Satoshi; Yamamoto, Jun; Morita, Akira; Koji, Shinnosuke; Takada, Kazuhiro; Uesugi, Kentaro; Kajiwara, Kentaro; Noma, Takashi

    2008-07-01

    In situ visualization of the distribution and behaviour of water in a polymer electrolyte fuel cell during power generation has been demonstrated using a synchrotron X-ray imaging technique. Images were recorded using a CCD detector combined with a scintillator (Gd(2)O(2)S:Tb) and relay lens system, which were placed at 2.0 m or 2.5 m from the fuel cell. The images were measured continuously before and during power generation, and data on cell performance was recorded. The change of water distribution during power generation was obtained from X-ray images normalized with the initial state of the fuel cell. Compared with other techniques for visualizing the water in fuel cells, this technique enables the water distribution and behaviour in the fuel cell to be visualized during power generation with high spatial resolution. In particular, the effects of the specifications of the gas diffusion layer on the cathode side of the fuel cell on the distribution of water were efficiently identified. This is a very powerful technique for investigating the mechanism of water flow within the fuel cell and the relationship between water behaviour and cell performance.

  3. Structured scintillators for X-ray imaging with micrometre resolution

    DEFF Research Database (Denmark)

    Olsen, Ulrik Lund; Schmidt, Søren; Poulsen, Henning Friis

    2009-01-01

    A 3D X-ray detector for imaging of 30–200 keV photons is described. It comprises a stack of semitransparent structured scintillators, where each scintillator is a regular array of waveguides in silicon, and with pores filled with CsI. The performance of the detector is described theoretically...... and explored in detail through simulations. The resolution of a single screen is shown to be determined only by the pitch, at least up to 100 keV. In comparison to conventional homogenous screens an improvement in efficiency by a factor 5–15 is obtainable. The cross-talk between screens in the 3D detector...... is shown to be negligible. The concept of such a 3D detector enables ray tracing and super resolution algorithms to be applied. Realized pore geometries have a lower aspect ratio than used in simulations and the roughness of the pore walls gives a 13% decrease in waveguide efficiency. Compared to currently...

  4. MapX An In Situ, Full-frame X-Ray Spectroscopic Imager for Planetary Science and Astrobiology

    Science.gov (United States)

    Blake, David; Sarrazin, Philippe; Thompson, Kathleen; Bristow, Thomas

    2017-01-01

    Microbial life exploits micron-scale disequilibria at boundaries where valence, chemical potential, pH, Eh, etc. vary on a length scale commensurate with the organisms - 10's to 100's of microns. The detection of accumulations of the biogenic elements C,N,O,P,S at appropriate concentrations on or in a mineral/ice substrate would constitute permissive evidence of extant life, but context is also required. Does the putative biosignature exist under habitable conditions? Under what conditions of P, T, and chemical potential was the host mineralogy formed? MapX is an in situ robotic spacecraft instrument that images the biogenic elements C, N, O, P, S, as well as the cations of the rock-forming minerals (Na, Mg, Al, Si, K, Ca, Ti, Cr, Mn, Fe) and important anions such as Cl, Fl. MapX provides element maps with less than or equal to100 microns resolution over a 2.5 cm X 2.5 cm area, as well as quantitative XRF spectra from ground- or instrument-selected Regions of Interest (ROI). XRF spectra are converted to mineralogies using ground- or instrument-based algorithms. Either X-ray tube or radioisotope sources such as 244Cm (Alpha-particle and gamma- ray fluorescence) can be used. Fluoresced sample Xrays are imaged onto an X-ray sensitive CCD through an X-ray MicroPore Optic (MPO). The MapX design as well as baseline performance requirements for a MapX instrument intended for life detection / identification of habitable environments will be presented.

  5. Hydraulic Properties of Fractured Rock Samples at In-Situ Conditions - Insights from Lab Experiments Using X-Ray Tomography

    Science.gov (United States)

    Nehler, Mathias; Stöckhert, Ferdinand; Duda, Mandy; Renner, Jörg; Bracke, Rolf

    2017-04-01

    The hydraulic properties of low-porosity rock formations are controlled by the geometry of open fractures, joints and faults. Aperture, surface roughness, accessible length, and thus, the volume available for fluids associated of such interfaces are strongly affected by their state of stress. Moreover, these properties may evolve with time in particular due to processes involving chemically active fluids. Understanding the physico-chemical interactions of rocks with fluids at reservoir conditions will help to predict the long-term reservoir development and to increase the efficiency of geothermal power plants. We designed an x-ray transparent flow-through cell. Confining pressure can be up to 50 MPa and pore fluid can currently be circulated through the sample with pressures of up to 25 MPa. All wetted parts are made of PEEK to avoid corrosion when using highly saline fluids. Laboratory experiments were performed to investigate hydraulic properties of fractured low-porosity samples under reservoir conditions while x-rays transmit the sample. The cell is placed inside a µCT scanner with a 225 kV multifocal x-ray tube for high resolution x-ray tomography. Samples measure 10 mm in diameter and 25 mm in length resulting in a voxel resolution of approximately 10 µm. Samples with single natural as well as artificial fractures were subjected to various confining pressures ranging from 2.5 MPa to 25 MPa. At each pressure level, effective permeability was determined from steady-state flow relying on Darcy's law. In addition, a full 3D image was recorded by the µCT scanner to gain information on the fracture aperture and geometry. Subvolumes (400x400x400 voxels) of the images were analyzed to reduce computational cost. The subvolumes were filtered in 3D with an edge preserving non-local means filter. Further quantification algorithms were implemented in Matlab. Segmentation into pore space and minerals was done automatically for all datasets by a peak finder algorithm

  6. Gas scintillation glass GEM detector for high-resolution X-ray imaging and CT

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, T., E-mail: fujiwara-t@aist.go.jp [Research Institute for Measurement and Analytical Instrumentation, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Mitsuya, Y. [Nuclear Professional School, The University of Tokyo, Tokai, Naka, Ibaraki 319-1188 (Japan); Fushie, T. [Radiment Lab. Inc., Setagaya, Tokyo 156-0044 (Japan); Murata, K.; Kawamura, A.; Koishikawa, A. [XIT Co., Naruse, Machida, Tokyo 194-0045 (Japan); Toyokawa, H. [Research Institute for Measurement and Analytical Instrumentation, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Takahashi, H. [Institute of Engineering Innovation, School of Engineering, The University of Tokyo, Bunkyo, Tokyo 113-8654 (Japan)

    2017-04-01

    A high-spatial-resolution X-ray-imaging gaseous detector has been developed with a single high-gas-gain glass gas electron multiplier (G-GEM), scintillation gas, and optical camera. High-resolution X-ray imaging of soft elements is performed with a spatial resolution of 281 µm rms and an effective area of 100×100 mm. In addition, high-resolution X-ray 3D computed tomography (CT) is successfully demonstrated with the gaseous detector. It shows high sensitivity to low-energy X-rays, which results in high-contrast radiographs of objects containing elements with low atomic numbers. In addition, the high yield of scintillation light enables fast X-ray imaging, which is an advantage for constructing CT images with low-energy X-rays.

  7. In situ X-Ray reflectivity measurements during DC sputtering of vanadium carbide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kaufholz, Marthe; Krause, Baerbel; Kotapati, Sunil; Baumbach, Tilo [ISS, Karlsruher Institute for Technology (Germany); Ulrich, Sven; Stueber, Michael [IAM-AWP, Karlsruher Institute for Technology (Germany)

    2012-07-01

    Vanadium Carbide (VC) is a promising candidate for new hard coatings used e.g. in medical applications. For optimising the coating properties, the relation between the microstructure formation, deposition conditions and mechanical properties has to be understood. In situ X-Ray Reflectivity (XRR) is a powerful tool to investigate the changes in thickness, electron density and roughness during deposition. In situ XRR measurements during sputtering were performed at ANKA (MPI-Beamline). Several VC films were deposited on Si with different growth conditions. Before and after deposition a full specular XRR curve was taken. During sputtering, the intensity changes e.g. due to the thickness increase were measured at fixed angular position of the detector. For the analysis of the angle - and time-dependent XRR a simulation tool is used based on the Parratt Algorithm. This tool can be adapted to other materials and deposition techniques. First measurements show that the electron density of the thin films depends strongly on the plasma properties during the deposition. This might give the possibility of a controlled growth of layers with different electron density by tuning the plasma conditions.

  8. In-Situ Synchrotron X-ray Study of the Phase and Texture Evolution of Ceria and Superconductor Films Deposited by Chemical Solution Method

    DEFF Research Database (Denmark)

    Yue, Zhao; Grivel, Jean-Claude; He, Dong

    2012-01-01

    In situ synchrotron x-ray diffraction is used to study the phase and texture formation of ceria based films and superconductor films deposited by the chemical solution method on technical substrates. Combined analysis using in situ synchrotron x-ray diffraction, thermogravimetry/differential ther......In situ synchrotron x-ray diffraction is used to study the phase and texture formation of ceria based films and superconductor films deposited by the chemical solution method on technical substrates. Combined analysis using in situ synchrotron x-ray diffraction, thermogravimetry...

  9. In situ X-ray absorption spectroscopy of transition metal based water oxidation catalysts

    NARCIS (Netherlands)

    van Oversteeg, Christina H M; Doan, Hoang Q; de Groot, Frank M F; Cuk, Tanja

    2016-01-01

    X-ray absorption studies of the geometric and electronic structure of primarily heterogeneous Co, Ni, and Mn based water oxidation catalysts are reviewed. The X-ray absorption near edge and extended X-ray absorption fine structure studies of the metal K-edge, characterize the metal oxidation state,

  10. In situ hydration of sulphoaluminate cement mixtures monitored by synchrotron x-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Turrillas, X. [Institut de Ciencia de Materials de Barcelona (ICMAB-CSIC), Barcelona (Spain); Martinez, L.G.; Carvalho, A.M.; Carezzato, G.L. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Rossetto, C.M. [Faculdade de Tecnologia de Sao Paulo (FATEC), SP (Brazil)

    2016-07-01

    Full text: The hydration of calcium sulpho-aluminate cement mixtures was studied in situ by synchrotron X-ray diffraction at the XRD1 beamline of the Laboratorio Nacional de Luz Sincrotron (LNLS) in Campinas, SP. The powder specimens were introduced in borosilicate glass capillary tubes of 0.7 mm of internal diameter and imbued with deionized water. As the hydration reaction is very fast the capillaries were placed on the goniometer and the data collection was started after two minutes of mixing with water. The X-ray energy chosen to get an adequate flux for these short time acquisitions was 12 keV or more precisely 1.033258 Å, determined with polycrystalline corundum standard. Diffraction patterns were collected sequentially every 35 seconds for several hours at temperatures ranging from 40 degC to 55 degC with an accuracy better than 0.1 degC attained with the help of a hot air blower. The diffracted signal was collected with an array of twenty-four Mythen detectors at 760 mm from the capillary tube. The diffraction patterns had appropriate statistics to determine the kinetics of the reaction either by quantitative Rietveld analysis or by fitting isolated diffraction peaks to Gaussian curves as a function of time. The most important phases involved in the hydration are Klein´s salt, also known as Ye’elimite, Ca4(AlO2)6SO4, and gypsum, CaSO4.2H2O to yield Ettringite, Ca6Al2(SO4)3(OH)12 - 26H2O, phase responsible for the mechanical properties. (author)

  11. Non-destructive in situ study of "Mad Meg" by Pieter Bruegel the Elder using mobile X-ray fluorescence, X-ray diffraction and Raman spectrometers

    Science.gov (United States)

    Van de Voorde, Lien; Van Pevenage, Jolien; De Langhe, Kaat; De Wolf, Robin; Vekemans, Bart; Vincze, Laszlo; Vandenabeele, Peter; Martens, Maximiliaan P. J.

    2014-07-01

    "Mad Meg", a figure of Flemish folklore, is the subject of a famous oil-on-panel painting by the Flemish renaissance artist Pieter Bruegel the Elder, exhibited in the Museum Mayer van den Bergh (Antwerp, Belgium). This article reports on the in situ chemical characterization of this masterpiece by using currently available state-of-the-art portable analytical instruments. The applied non-destructive analytical approach involved the use of a) handheld X-ray fluorescence instrumentation for retrieving elemental information and b) portable X-ray fluorescence/X-ray diffraction instrumentation and laser-based Raman spectrometers for obtaining structural/molecular information. Next to material characterization of the used pigments and of the different preparation layers of the painting, also the verification of two important historical iconographic hypotheses is performed concerning the economic way of painting by Brueghel, and whether or not he used blue smalt pigment for painting the boat that appears towards the top of the painting. The pigments identified are smalt pigment (65% SiO2 + 15% K2O + 10% CoO + 5% Al2O3) for the blue color present in all blue areas of the painting, probably copper resinate for the green colors, vermillion (HgS) as red pigment and lead white is used to form different colors. The comparison of blue pigments used on different areas of the painting gives no differences in the elemental fingerprint which confirms the existing hypothesis concerning the economic painting method by Bruegel.

  12. In situ x-ray absorption of Co/Mn/TiO2 catalysts for Fischer-Tropsch synthesis

    NARCIS (Netherlands)

    Morales, F; de Groot, FMF|info:eu-repo/dai/nl/08747610X; Glatzel, P; Kleimenov, E; Bluhm, H; Havecker, M; Knop-Gericke, A; Weckhuysen, BM|info:eu-repo/dai/nl/285484397

    2004-01-01

    The reduction behavior of Co/TiO2 and Co/Mn/TiO2 catalysts for Fischer-Tropsch synthesis has been investigated by soft X-ray absorption spectroscopy (XAS). In situ XAS measurements of the L-2,L-3 edges of Co and Mn have been carried out during reduction treatments of the samples in H-2 at a pressure

  13. In-situ real-time x-ray scattering for probing the processing-structure-performance relation

    KAUST Repository

    Smilgies, Detlef-M.

    2014-01-01

    © 2014 Materials Research Society. In-situ X-ray scattering methodology is discussed, in order to analyze the microstructure development of soft functional materials during coating, annealing, and drying processes in real-time. The relevance of a fundamental understanding of coating processes for future industrial production is pointed out.

  14. Hydrogen Absorption in Metal Thin Films and Heterostructures Investigated in Situ with Neutron and X-ray Scattering

    Directory of Open Access Journals (Sweden)

    Sara J. Callori

    2016-05-01

    Full Text Available Due to hydrogen possessing a relatively large neutron scattering length, hydrogen absorption and desorption behaviors in metal thin films can straightforwardly be investigated by neutron reflectometry. However, to further elucidate the chemical structure of the hydrogen absorbing materials, complementary techniques such as high resolution X-ray reflectometry and diffraction remain important too. Examples of work on such systems include Nb- and Pd-based multilayers, where Nb and Pd both have strong affinity to hydrogen. W/Nb and Fe/Nb multilayers were measured in situ with unpolarized and polarized neutron reflectometry under hydrogen gas charging conditions. The gas-pressure/hydrogen-concentration dependence, the hydrogen-induced macroscopic film swelling as well as the increase in crystal lattice plane distances of the films were determined. Ferromagnetic-Co/Pd multilayers were studied with polarized neutron reflectometry and in situ ferromagnetic resonance measurements to understand the effect of hydrogen absorption on the magnetic properties of the system. This electronic effect enables a novel approach for hydrogen sensing using a magnetic readout scheme.

  15. High-resolution accelerator alignment using x-ray optics

    Directory of Open Access Journals (Sweden)

    Bingxin Yang

    2006-03-01

    Full Text Available We propose a novel alignment technique utilizing the x-ray beam of an undulator in conjunction with pinholes and position-sensitive detectors for positioning components of the accelerator, undulator, and beam line in an x-ray free-electron laser. Two retractable pinholes at each end of the undulator define a stable and reproducible x-ray beam axis (XBA. Targets are precisely positioned on the XBA using a pinhole camera technique. Position-sensitive detectors responding to both x-ray and electron beams enable direct transfer of the position setting from the XBA to the electron beam. This system has the potential to deliver superior alignment accuracy (1–3   μm for target pinholes in the transverse directions over a long distance (200 m or longer. It can be used to define the beam axis of the electron-beam–based alignment, enabling high reproducibility of the latter. This x-ray–based concept should complement the electron-beam–based alignment and the existing survey methods to raise the alignment accuracy of long accelerators to an unprecedented level. Further improvement of the transverse accuracy using x-ray zone plates will be discussed. We also propose a concurrent measurement scheme during accelerator operation to allow real-time feedback for transverse position correction.

  16. Compact Roll-to-Roll Coater for in Situ X-ray Diffraction Characterization of Organic Electronics Printing.

    Science.gov (United States)

    Gu, Xiaodan; Reinspach, Julia; Worfolk, Brian J; Diao, Ying; Zhou, Yan; Yan, Hongping; Gu, Kevin; Mannsfeld, Stefan; Toney, Michael F; Bao, Zhenan

    2016-01-27

    We describe a compact roll-to-roll (R2R) coater that is capable of tracking the crystallization process of semiconducting polymers during solution printing using X-ray scattering at synchrotron beamlines. An improved understanding of the morphology evolution during the solution-processing of organic semiconductor materials during R2R coating processes is necessary to bridge the gap between "lab" and "fab". The instrument consists of a vacuum chuck to hold the flexible plastic substrate uniformly flat for grazing incidence X-ray scattering. The time resolution of the drying process that is achievable can be tuned by controlling two independent motor speeds, namely, the speed of the moving flexible substrate and the speed of the printer head moving in the opposite direction. With this novel design, we are able to achieve a wide range of drying time resolutions, from tens of milliseconds to seconds. This allows examination of the crystallization process over either fast or slow drying processes depending on coating conditions. Using regioregular poly(3-hexylthiophene-2,5-diyl) (P3HT) and phenyl-C61-butyric acid methyl ester (PCBM) inks based on two different solvents as a model system, we demonstrate the capability of our in situ R2R printing tool by observing two distinct crystallization processes for inks drying from the solvents with different boiling points (evaporation rates). We also observed delayed on-set point for the crystallization of P3HT polymer in the 1:1 P3HT/PCBM BHJ blend, and the inhibited crystallization of the P3HT during the late stage of the drying process.

  17. Johann Spectrometer for High Resolution X-ray Spectroscopy

    Science.gov (United States)

    Machek, Pavel; Welter, Edmund; Caliebe, Wolfgang; Brüggmann, Ulf; Dräger, Günter; Fröba, Michael

    2007-01-01

    A newly designed vacuum Johann spectrometer with a large focusing analyzer crystal for inelastic x-ray scattering and high resolution fluorescence spectroscopy has been installed at the DORIS III storage ring. Spherically bent crystals with a maximum diameter of 125 mm, and cylindrically bent crystals are employed as dispersive optical elements. Standard radius of curvature of the crystals is 1000 mm, however, the design of the mechanical components also facilitates measurements with smaller and larger bending radii. Up to four crystals are mounted on a revolving crystal changer which enables crystal changes without breaking the vacuum. The spectrometer works at fixed Bragg angle. It is preferably designed for the measurements in non-scanning mode with a broad beam spot, and offers a large flexibility to set the sample to the optimum position inside the Rowland circle. A deep depletion CCD camera is employed as a position sensitive detector to collect the energy-analyzed photons on the circumference of the Rowland circle. The vacuum in the spectrometer tank is typically 10-6 mbar. The sample chamber is separated from the tank either by 25 μm thick Kapton windows, which allows samples to be measured under ambient conditions, or by two gate valves. The spectrometer is currently installed at wiggler beamline W1 whose working range is 4-10.5 keV with typical flux at the sample of 5×1010photons/s/mm2. The capabilities of the spectrometer are illustrated by resonant inelastic experiments on 3d transition metals and rare earth compounds, and by chemical shift measurements on chromium compounds.

  18. Copper L X-ray spectra measured by a high resolution ion-induced X-ray spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Ryohei; Hamaguchi, Dai; Kageyama, Hiroyoshi [Kyoto Inst. of Tech. (Japan)] [and others

    1997-03-01

    High resolution L X-ray emission spectra of Cu have been measured by 0.75 MeV/u H, He, and F, 0.73 MeV/u Ar, 0.64 MeV/u Si, and 0.073 MeV/u Si ion impacts with a crystal spectrometer. The X-ray transition energies in the Cu target for L{iota}, L{eta}, L{alpha}{sub 1,2}, L{beta}{sub 1}, and L{beta}{sub 3,4} diagram lines induced by light ion impacts are determined, which are in good agreement with those given in the reference. The difference in L X-ray emission spectra produced by H, He, F, Si, and Ar ions are considered and the L{alpha}{sub 1,2} and L{beta}{sub 1} emission spectra are compared with the calculated ones based on the multiconfiguration Dirac-Fock method. (author)

  19. In situ coherent x-ray scattering and STM studies of hexagonally reconstructed Au(001) in Electrolytes

    Science.gov (United States)

    Pierce, Michael S.; Komanicky, Vladimir; Barbour, Andi; Hennessy, Daniel; Su, Jun-Dar; Sandy, Alec; You, Hoydoo

    2011-03-01

    We have studied the dynamics of Au(001) and Au(111) surfaces in situ in 0.1 M HClO4 electrolyte solution using coherent x-ray scattering experiments and STM microscopy. Our coherent x-ray scattering experiments measure a correlation time for the surface as a function of applied potentials. Coherent x-ray scattering differs from the ordinary x-ray diffraction in sensitivity to the structural and temporal details. The correlation times were obtained from measurements conducted while the surface is in equilibrium and the ordinary surface scattering intensity is constant. The correlation time changes from high 103 seconds to low 102 seconds. The correlation times of reconstructed surfaces at low potential are at least an order of magnitude smaller than those measured at the reconstructed surfaces in vacuum. The correlation times also change dramatically in response to the applied potential. These experiments also represent the first successful application of coherent x-ray scattering to the study of electrochemical interfaces in situ. Work at ANL is supported by DOE-BES and work at SU by VEGA.

  20. Electrochemistry and in-situ x-ray diffraction of InSb in lithium batteries.

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, C. S.; Vaughey, J. T.; Thackeray, M. M.; Sarakonsri, T.; Hackney, S. A.; Fransson, L.; Edstrom, K.; Thomas, J. O.; Chemical Engineering

    2000-08-01

    The electrochemical reactions of lithium with the intermetallic compound, InSb, were studied in lithium coin cells using laminate electrodes fabricated from either single-crystal InSb wafers or ball-milled samples. In-situ X-ray diffraction data show that the InSb zinc-blende framework is unstable to extensive reaction with lithium; In is extruded from a fixed Sb lattice during 'discharge' and is partially incorporated back into the lattice during 'charge'. Despite the loss of some In from the structure, the indium antimonide electrode provides capacities in excess of 300 mAh/g with excellent reversibility. Cyclic voltammetry was used to study the electrochemical processes in greater detail. Lithiated indium products are formed below {approx}600 mV versus Li. The electrode can be discharged at high rates, delivering 150 mAh/g at 3.6 mA/cm{sub 2} between 1.2 and 0.2 V versus Li. These data hold exciting prospects for the development of intermetallic insertion electrodes for practical room-temperature Li-ion cells.

  1. Versatile in situ powder X-ray diffraction cells for solid-gas investigations

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Torben R.; Nielsen, Thomas K.; Joergensen, Jens-Erik [Aarhus Univ. (Denmark). Center for Energy Materials, Center for Materials Crystallography; Filinchuk, Yaroslav [European Synchrotron Radiation Facility, Grenoble (France). Swiss-Norwegian Beam Lines; Cerenius, Yngve [Lund Univ. (Sweden). MAX-lab; Gray, Evan MacA.; Webb, Colin J. [Griffith Univ., Nathan, Brisbane (Australia). Queensland Micro- and Nanotechnology Centre

    2010-12-15

    This paper describes new sample cells and techniques for in situ powder X-ray diffraction specifically designed for gas absorption studies up to ca 300 bar (1 bar = 100 000 Pa) gas pressure. The cells are for multipurpose use, in particular the study of solid-gas reactions in dosing or flow mode, but can also handle samples involved in solid-liquid-gas studies. The sample can be loaded into a single-crystal sapphire (Al{sub 2}O{sub 3}) capillary, or a quartz (SiO{sub 2}) capillary closed at one end. The advantages of a sapphire single-crystal cell with regard to rapid pressure cycling are discussed, and burst pressures are calculated and measured to be {proportional_to}300 bar. An alternative and simpler cell based on a thin-walled silicate or quartz glass capillary, connected to a gas source via a VCR fitting, enables studies up to {proportional_to}100 bar. Advantages of the two cell types are compared and their applications are illustrated by case studies. (orig.)

  2. Kinetics of methane hydrate decomposition studied via in situ low temperature X-ray powder diffraction.

    Science.gov (United States)

    Everett, S Michelle; Rawn, Claudia J; Keffer, David J; Mull, Derek L; Payzant, E Andrew; Phelps, Tommy J

    2013-05-02

    Gas hydrate is known to have a slowed decomposition rate at ambient pressure and temperatures below the melting point of ice. As hydrate exothermically decomposes, gas is released and water of the clathrate cages transforms into ice. Based on results from the decomposition of three nominally similar methane hydrate samples, the kinetics of two regions, 180-200 and 230-260 K, within the overall decomposition range 140-260 K, were studied by in situ low temperature X-ray powder diffraction. The kinetic rate constants, k(a), and the reaction mechanisms, n, for ice formation from methane hydrate were determined by the Avrami model within each region, and activation energies, E(a), were determined by the Arrhenius plot. E(a) determined from the data for 180-200 K was 42 kJ/mol and for 230-260 K was 22 kJ/mol. The higher E(a) in the colder temperature range was attributed to a difference in the microstructure of ice between the two regions.

  3. In situ alkali-silica reaction observed by x-ray microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kurtis, K.E.; Monteiro, P.J.M. [Univ. of California, Berkeley, CA (United States); Brown, J.T.; Meyer-Ilse, W. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    In concrete, alkali metal ions and hydroxyl ions contributed by the cement and reactive silicates present in aggregate can participate in a destructive alkali-silica reaction (ASR). This reaction of the alkalis with the silicates produces a gel that tends to imbibe water found in the concrete pores, leading to swelling of the gel and eventual cracking of the affected concrete member. Over 104 cases of alkali-aggregate reaction in dams and spillways have been reported around the world. At present, no method exists to arrest the expansive chemical reaction which generates significant distress in the affected structures. Most existing techniques available for the examination of concrete microstructure, including ASR products, demand that samples be dried and exposed to high pressure during the observation period. These sample preparation requirements present a major disadvantage for the study of alkali-silica reaction. Given the nature of the reaction and the affect of water on its products, it is likely that the removal of water will affect the morphology, creating artifacts in the sample. The purpose of this research is to observe and characterize the alkali-silica reaction, including each of the specific reactions identified previously, in situ without introducing sample artifacts. For observation of unconditioned samples, x-ray microscopy offers an opportunity for such an examination of the alkali-silica reaction. Currently, this investigation is focusing on the effect of calcium ions on the alkali-silica reaction.

  4. In situ X-ray Scattering and Dynamical Modeling of Pd Catalyst Nanoparticles Formed in Flames

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Juan; Seifert, Sönke; Winans, Randall E.; Tolmachoff, Erik; Xin, Yuxuan; Chen, Dongping; Wang, Hai; Anderson, Scott L.

    2015-08-20

    It has previously been demonstrated that organopalladium precursors can break down under combustion conditions, forming nanoparticles that catalyze ignition. Here, we use in situ small-angle X-ray scattering (SAXS) to probe the formation and growth of palladium nanoparticles in an ethylene fl ame doped with 28 ppm (mol) of Pd(acetate) 2 . The particles appear to nucleate in the fl ame front and are observed by SAXS to grow in size and mass in the high-temperature region of the fl ame ( ~ 2200 K) with median diameters that evolve from 1.5 to 3.0 nm. Transmission electron microscopy of particles collected on a grid located outside the fl ame shows that the particles are metallic palladium with sizes comparable to those determined by SAXS. Molecular dynamics simulation of particles of selected sizes indicates that at the fl ame temperature the particles are molten and the average mass density of the particle material is notably smaller than that of bulk, liquid Pd at the melting point. Both experimental and computational results point to homogeneous nucleation and particle - particle coalescence as mechanisms for particle formation and growth. Aerosol dynamics simulation reproduces the time evolution of the particle size distribution and suggests that a substantial fraction of the particles must be electrically charged during their growth process.

  5. Scanning of Adsorption Hysteresis In Situ with Small Angle X-Ray Scattering

    Science.gov (United States)

    Mitropoulos, Athanasios Ch.; Favvas, Evangelos P.; Stefanopoulos, Konstantinos L.; Vansant, Etienne F.

    2016-01-01

    Everett’s theorem-6 of the domain theory was examined by conducting adsorption in situ with small angle x-ray scattering (SAXS) supplemented by the contrast matching technique. The study focuses on the spectrum differences of a point to which the system arrives from different scanning paths. It is noted that according to this theorem at a common point the system has similar macroscopic properties. Furthermore it was examined the memory string of the system. We concluded that opposite to theorem-6: a) at a common point the system can reach in a finite (not an infinite) number of ways, b) a correction for the thickness of the adsorbed film prior to capillary condensation is necessary, and c) the scattering curves although at high-Q values coincide, at low-Q values are different indicating different microscopic states. That is, at a common point the system holds different metastable states sustained by hysteresis effects. These metastable states are the ones which highlight the way of a system back to a return point memory (RPM). Entering the hysteresis loop from different RPMs different histories are implanted to the paths toward the common point. Although in general the memory points refer to relaxation phenomena, they also constitute a characteristic feature of capillary condensation. Analogies of the no-passing rule and the adiabaticity assumption in the frame of adsorption hysteresis are discussed. PMID:27741263

  6. A new setup for high resolution fast X-ray reflectivity data acquisition.

    Science.gov (United States)

    Lippmann, Milena; Buffet, Adeline; Pflaum, Kathrin; Ehnes, Anita; Ciobanu, Anca; Seeck, Oliver H

    2016-11-01

    A new method for fast x-ray reflectivity data acquisition is presented. The method is based on a fast rotating, slightly tilted sample reflecting to a stationary mounted position sensitive detector and it allows for measurements of reflectivity curves in a quarter of a second. The resolution in q-space mainly depends on the beam properties and the pixel size of the detector. Maximum qz-value of 1 Å-1 can be achieved. The time-temperature depending structure changes of poly(N-isopropylacrylamide) thin films were investigated in situ by applying the fast-reflectivity setup. The results are presented in this paper as illustration of the method and proof of principle.

  7. Local and long range order in promoted iron-based Fischer–Tropsch catalysts: a combined in situ X-ray absorption spectroscopy/wide angle X-ray scattering study

    NARCIS (Netherlands)

    de Smit, E.|info:eu-repo/dai/nl/304824232; Beale, A.M.|info:eu-repo/dai/nl/325802068; Nikitenko, S.; Weckhuysen, B.M.|info:eu-repo/dai/nl/285484397

    2009-01-01

    The structural properties of three Fe-based Fischer–Tropsch synthesis (FTS) catalysts containing different amounts of Cu, K and SiO2 additives were investigated during pretreatment and FTS in a fixed bed-like reactor using combined in situ X-ray absorption fine structure (XAFS)/wide angle X-ray

  8. Novel ultra-lightweight and high-resolution MEMS x-ray optics

    Science.gov (United States)

    Mitsuishi, Ikuyuki; Ezoe, Yuichiro; Takagi, Utako; Mita, Makoto; Riveros, Raul; Yamaguchi, Hitomi; Kato, Fumiki; Sugiyama, Susumu; Fujiwara, Kouzou; Morishita, Kohei; Nakajima, Kazuo; Fujihira, Shinya; Kanamori, Yoshiaki; Yamasaki, Noriko Y.; Mitsuda, Kazuhisa; Maeda, Ryutaro

    2009-05-01

    We have been developing ultra light-weight X-ray optics using MEMS (Micro Electro Mechanical Systems) technologies.We utilized crystal planes after anisotropic wet etching of silicon (110) wafers as X-ray mirrors and succeeded in X-ray reflection and imaging. Since we can etch tiny pores in thin wafers, this type of optics can be the lightest X-ray telescope. However, because the crystal planes are alinged in certain directions, we must approximate ideal optical surfaces with flat planes, which limits angular resolution of the optics on the order of arcmin. In order to overcome this issue, we propose novel X-ray optics based on a combination of five recently developed MEMS technologies, namely silicon dry etching, X-ray LIGA, silicon hydrogen anneal, magnetic fluid assisted polishing and hot plastic deformation of silicon. In this paper, we describe this new method and report on our development of X-ray mirrors fabricated by these technologies and X-ray reflection experiments of two types of MEMS X-ray mirrors made of silicon and nickel. For the first time, X-ray reflections on these mirrors were detected in the angular response measurements. Compared to model calculations, surface roughness of the silicon and nickel mirrors were estimated to be 5 nm and 3 nm, respectively.

  9. Simulation studies of atomic resolution X-ray holography

    Indian Academy of Sciences (India)

    Unknown

    rage atomic arrangement of the atoms. It may be noted that in X-ray holography methods, the concept of unit cell is not required. We know from the optical reciprocity principle that if we exchange the detector with the source, then we obtain the same experiment. We now have a source in the far field producing a plane wave ...

  10. A compact high vacuum heating chamber for in-situ x-ray scattering studies

    Energy Technology Data Exchange (ETDEWEB)

    Bertram, F.; Deiter, C.; Pflaum, K.; Seeck, O. H. [Hamburger Synchrotronstrahlungslabor am Deutschen Elektronen-Synchrotron, Notkestr. 85, 22607 Hamburg (Germany)

    2012-08-15

    A very compact multi purpose high vacuum heating chamber for x-ray scattering techniques was developed. The compact design allows the chamber to be installed on high precision diffractometers which usually cannot support heavy and/or large equipment. The chamber is covered by a Be dome allowing full access to the hemisphere above the sample which is required for in-plane grazing incident x-ray diffraction and out-off plane wide angle x-ray diffraction.

  11. Next Generation Astronomical X-ray Optics: High Angular Resolution, Light Weight, and Low Production Cost

    Science.gov (United States)

    Zhang. W. W.; Biskach, M. P.; Blake, P. N.; Chan, K. W.; Gaskin, J. A.; Hong, M. L.; Jones, W. D.; Kolos, L. D.; Mazzarella, J. R.; McClelland, R. S.; hide

    2012-01-01

    X-ray astronomy depends on the availability of telescopes with high resolution and large photon collecting areas. Since x-ray observation can only be carried out above the atmosphere, these telescopes must be necessarily lightweight. Compounding the lightweight requirement is that an x-ray telescope consists of many nested concentric shells, which further require that x-ray mirrors must also be geometrically thin to achieve high packing efficiency. This double lightweight and geometrically thin requirement poses significant technical challenges in fabricating the mirrors and in integrating them into mirror assemblies. This paper reports on the approach, strategy and status of our x-ray optics development program whose objective is to meet these technical challenges at modest cost to enable future x-ray missions, including small Explorer missions in the near term, probe class missions in the medium term, and large flagship missions in the long term.

  12. A high resolution X-ray crystal spectrometer to study electron and ...

    Indian Academy of Sciences (India)

    We have studied fast ion–atom and electron–atom collision processes using a reconditioned high resolution X-ray spectrometer. The X-rays, generated by the collisions, are dispersed by a curved ADP crystal (Johansson geometry) and detected by a gas proportional counter. A self-written LabVIEW based program has ...

  13. A rotational and axial motion system load frame insert for in situ high energy x-ray studies

    Energy Technology Data Exchange (ETDEWEB)

    Shade, Paul A., E-mail: paul.shade.1@us.af.mil; Schuren, Jay C.; Turner, Todd J. [Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433 (United States); Blank, Basil [PulseRay, Beaver Dams, New York 14812 (United States); Kenesei, Peter; Goetze, Kurt; Lienert, Ulrich; Almer, Jonathan [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Suter, Robert M. [Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States); Bernier, Joel V.; Li, Shiu Fai [Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Lind, Jonathan [Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States); Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2015-09-15

    High energy x-ray characterization methods hold great potential for gaining insight into the behavior of materials and providing comparison datasets for the validation and development of mesoscale modeling tools. A suite of techniques have been developed by the x-ray community for characterizing the 3D structure and micromechanical state of polycrystalline materials; however, combining these techniques with in situ mechanical testing under well characterized and controlled boundary conditions has been challenging due to experimental design requirements, which demand new high-precision hardware as well as access to high-energy x-ray beamlines. We describe the design and performance of a load frame insert with a rotational and axial motion system that has been developed to meet these requirements. An example dataset from a deforming titanium alloy demonstrates the new capability.

  14. Lightweight and High Angular Resolution X-Ray Optics

    Science.gov (United States)

    Zhang, William W.

    2009-01-01

    The International X-ray Observatory (IXO) mission requires a lightweight and high throughput spectroscopic telescope. The fabrication, alignment, and integration of this mirror assembly require breakthroughs in many areas. In this paper we report on our recent progress in all these areas, including mirror fabrication, coating, metrology, alignment, mechanical characteristics, and their integration into mirror modules. In particular, we will also outline our plan for the next few of years, showing approaches that will progress toward reaching the 5" HPD requirement.

  15. In situ flow cell for combined X-ray absorption spectroscopy, X-ray diffraction, and mass spectrometry at high photon energies under solar thermochemical looping conditions

    Science.gov (United States)

    Rothensteiner, Matthäus; Jenni, Joel; Emerich, Hermann; Bonk, Alexander; Vogt, Ulrich F.; van Bokhoven, Jeroen A.

    2017-08-01

    An in situ/operando flow cell for transmission mode X-ray absorption spectroscopy (XAS), X-ray diffraction (XRD), and combined XAS/XRD measurements in a single experiment under the extreme conditions of two-step solar thermochemical looping for the dissociation of water and/or carbon dioxide was developed. The apparatus exposes materials to relevant conditions of both the auto-reduction and the oxidation sub-steps of the thermochemical cycle at ambient temperature up to 1773 K and enables determination of the composition of the effluent gases by online quadrupole mass spectrometry. The cell is based on a tube-in-tube design and is heated by means of a focusing infrared furnace. It was tested successfully for carbon dioxide splitting. In combined XAS/XRD experiments with an unfocused beam, XAS measurements were performed at the Ce K edge (40.4 keV) and XRD measurements at 64.8 keV and 55.9 keV. Furthermore, XRD measurements with a focused beam at 41.5 keV were carried out. Equimolar ceria-hafnia was auto-reduced in a flow of argon and chemically reduced in a flow of hydrogen/helium. Under reducing conditions, all cerium(iv) was converted to cerium(iii) and a cation-ordered pyrochlore-type structure was formed, which was not stable upon oxidation in a flow of carbon dioxide.

  16. A modular reactor design for in situ synchrotron x-ray investigation of atomic layer deposition processes

    Science.gov (United States)

    Klug, Jeffrey A.; Weimer, Matthew S.; Emery, Jonathan D.; Yanguas-Gil, Angel; Seifert, Sönke; Schlepütz, Christian M.; Martinson, Alex B. F.; Elam, Jeffrey W.; Hock, Adam S.; Proslier, Thomas

    2015-11-01

    Synchrotron characterization techniques provide some of the most powerful tools for the study of film structure and chemistry. The brilliance and tunability of the Advanced Photon Source allow access to scattering and spectroscopic techniques unavailable with in-house laboratory setups and provide the opportunity to probe various atomic layer deposition (ALD) processes in situ starting at the very first deposition cycle. Here, we present the design and implementation of a portable ALD instrument which possesses a modular reactor scheme that enables simple experimental switchover between various beamlines and characterization techniques. As first examples, we present in situ results for (1) X-ray surface scattering and reflectivity measurements of epitaxial ZnO ALD on sapphire, (2) grazing-incidence small angle scattering of MnO nucleation on silicon, and (3) grazing-incidence X-ray absorption spectroscopy of nucleation-regime Er2O3 ALD on amorphous ALD alumina and single crystalline sapphire.

  17. Quantifying the Nucleation and Growth Kinetics of Microwave Nanochemistry Enabled by in Situ High-Energy X-ray Scattering.

    Science.gov (United States)

    Liu, Qi; Gao, Min-Rui; Liu, Yuzi; Okasinski, John S; Ren, Yang; Sun, Yugang

    2016-01-13

    The fast reaction kinetics presented in the microwave synthesis of colloidal silver nanoparticles was quantitatively studied, for the first time, by integrating a microwave reactor with in situ X-ray diffraction at a high-energy synchrotron beamline. Comprehensive data analysis reveals two different types of reaction kinetics corresponding to the nucleation and growth of the Ag nanoparticles. The formation of seeds (nucleation) follows typical first-order reaction kinetics with activation energy of 20.34 kJ/mol, while the growth of seeds (growth) follows typical self-catalytic reaction kinetics. Varying the synthesis conditions indicates that the microwave colloidal chemistry is independent of concentration of surfactant. These discoveries reveal that the microwave synthesis of Ag nanoparticles proceeds with reaction kinetics significantly different from the synthesis present in conventional oil bath heating. The in situ X-ray diffraction technique reported in this work is promising to enable further understanding of crystalline nanomaterials formed through microwave synthesis.

  18. Exploring the interfacial structure of protein adsorbates and the kinetics of protein adsorption: an in situ high-energy X-ray reflectivity study.

    Science.gov (United States)

    Evers, Florian; Shokuie, Kaveh; Paulus, Michael; Sternemann, Christian; Czeslik, Claus; Tolan, Metin

    2008-09-16

    The high energy X-ray reflectivity technique has been applied to study the interfacial structure of protein adsorbates and protein adsorption kinetics in situ. For this purpose, the adsorption of lysozyme at the hydrophilic silica-water interface has been chosen as a model system. The structure of adsorbed lysozyme layers was probed for various aqueous solution conditions. The effect of solution pH and lysozyme concentration on the interfacial structure was measured. Monolayer formation was observed for all cases except for the highest concentration. The adsorbed protein layers consist of adsorbed lysozyme molecules with side-on or end-on orientation. By means of time-dependent X-ray reflectivity scans, the time-evolution of adsorbed proteins was monitored as well. The results of this study demonstrate the capabilities of in situ X-ray reflectivity experiments on protein adsorbates. The great advantages of this method are the broad wave vector range available and the high time resolution.

  19. Fabrication of High Resolution Lightweight X-ray Mirrors Using Mono-crystalline Silicon Project

    Data.gov (United States)

    National Aeronautics and Space Administration — "Three factors characterize an X-ray optics fabrication technology: angular resolution, effective area per unit mass, and production cost per unit effective...

  20. High Spectral Resolution, High Cadence, Imaging X-ray Microcalorimeters for Solar Physics - Phase 2 Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Microcalorimeter x-ray instruments are non-dispersive, high spectral resolution, broad-band, high cadence imaging spectrometers. We have been developing these...

  1. Zone-doubling technique to produce ultrahigh-resolution x-ray optics.

    Science.gov (United States)

    Jefimovs, K; Vila-Comamala, J; Pilvi, T; Raabe, J; Ritala, M; David, C

    2007-12-31

    A method for the fabrication of ultrahigh-resolution Fresnel zone plate lenses for x-ray microscopy is demonstrated. It is based on the deposition of a zone plate material (Ir) onto the sidewalls of a prepatterned template structure (Si) using an atomic layer deposition technique. This results in a doubling of the effective zone density, thus improving the achievable resolution of x-ray microscopes. Test structures with lines and spaces down to 15 nm were resolved in a scanning transmission x-ray microscope at 1 keV photon energy.

  2. In-situ X-ray CT results of damage evolution in L6 ordinary chondrite meteorites

    Energy Technology Data Exchange (ETDEWEB)

    Cuadra, Jefferson A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hazeli, Kavan [Univ. of Alabama, Huntsville, AL (United States); Ramesh, K. T. [Johns Hopkins Univ., Baltimore, MD (United States). Hopkins Extreme Materials Inst.; Martz, Harry [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Nondestructive Characterization Inst.

    2016-06-17

    These are slides about in-situ X-ray CT results of damage evolution in L6 ordinary chondrite meteorites. The following topics are covered: mechanical and thermal damage characterization, list of Grosvenor Mountain (GRO) meteorite samples, in-situ x-ray compression test setup, GRO-chipped reference at 0 N - existing cracks, GRO-chipped loaded at 1580 N, in-situ x-ray thermal fatigue test setup, GRO-B14 room temperature reference, GRO-B14 Cycle 47 at 200°C, GRO-B14 Cycle 47 at room temperature, conclusions from qualitative analysis, future work and next steps. Conclusions are the following: Both GRO-Chipped and GRO-B14 had existing voids and cracks within the volume. These sites with existing damage were selected for CT images from mechanically and thermally loaded scans since they are prone to damage initiation. The GRO-Chipped sample was loaded to 1580 N which resulted in a 14% compressive engineering strain, calculated using LVDT. Based on the CT cross sectional images, the GRO-B14 sample at 200°C has a thermal expansion of approximately 96 μm in height (i.e. ~1.6% engineering strain).

  3. The Oxford-Diamond In Situ Cell for studying chemical reactions using time-resolved X-ray diffraction.

    Science.gov (United States)

    Moorhouse, Saul J; Vranješ, Nenad; Jupe, Andrew; Drakopoulos, Michael; O'Hare, Dermot

    2012-08-01

    A versatile, infrared-heated, chemical reaction cell has been assembled and commissioned for the in situ study of a range of chemical syntheses using time-resolved energy-dispersive X-ray diffraction (EDXRD) on Beamline I12 at the Diamond Light Source. Specialized reactor configurations have been constructed to enable in situ EDXRD investigation of samples under non-ambient conditions. Chemical reactions can be studied using a range of sample vessels such as alumina crucibles, steel hydrothermal autoclaves, and glassy carbon tubes, at temperatures up to 1200 °C.

  4. The Oxford-Diamond In Situ Cell for studying chemical reactions using time-resolved X-ray diffraction

    Science.gov (United States)

    Moorhouse, Saul J.; Vranješ, Nenad; Jupe, Andrew; Drakopoulos, Michael; O'Hare, Dermot

    2012-08-01

    A versatile, infrared-heated, chemical reaction cell has been assembled and commissioned for the in situ study of a range of chemical syntheses using time-resolved energy-dispersive X-ray diffraction (EDXRD) on Beamline I12 at the Diamond Light Source. Specialized reactor configurations have been constructed to enable in situ EDXRD investigation of samples under non-ambient conditions. Chemical reactions can be studied using a range of sample vessels such as alumina crucibles, steel hydrothermal autoclaves, and glassy carbon tubes, at temperatures up to 1200 °C.

  5. A new X-ray pinhole camera for energy dispersive X-ray fluorescence imaging with high-energy and high-spatial resolution

    Energy Technology Data Exchange (ETDEWEB)

    Romano, F.P., E-mail: romanop@lns.infn.it [IBAM, CNR, Via Biblioteca 4, 95124 Catania (Italy); INFN-LNS, Via S. Sofia 62, 95123 Catania (Italy); Altana, C. [INFN-LNS, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Fisica e Astronomia, Università di Catania, Via S. Sofia 64, 95123 Catania (Italy); Cosentino, L.; Celona, L.; Gammino, S.; Mascali, D. [INFN-LNS, Via S. Sofia 62, 95123 Catania (Italy); Pappalardo, L. [IBAM, CNR, Via Biblioteca 4, 95124 Catania (Italy); INFN-LNS, Via S. Sofia 62, 95123 Catania (Italy); Rizzo, F. [INFN-LNS, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Fisica e Astronomia, Università di Catania, Via S. Sofia 64, 95123 Catania (Italy)

    2013-08-01

    A new X-ray pinhole camera for the Energy Dispersive X-ray Fluorescence (ED-XRF) imaging of materials with high-energy and high-spatial resolution, was designed and developed. It consists of a back-illuminated and deep depleted CCD detector (composed of 1024 × 1024 pixels with a lateral size of 13 μm) coupled to a 70 μm laser-drilled pinhole-collimator, positioned between the sample under analysis and the CCD. The X-ray pinhole camera works in a coaxial geometry allowing a wide range of magnification values. The characteristic X-ray fluorescence is induced on the samples by irradiation with an external X-ray tube working at a maximum power of 100 W (50 kV and 2 mA operating conditions). The spectroscopic capabilities of the X-ray pinhole camera were accurately investigated. Energy response and energy calibration of the CCD detector were determined by irradiating pure target-materials emitting characteristic X-rays in the energy working-domain of the system (between 3 keV and 30 keV). Measurements were performed by using a multi-frame acquisition in single-photon counting. The characteristic X-ray spectra were obtained by an automated processing of the acquired images. The energy resolution measured at the Fe–Kα line is 157 eV. The use of the X-ray pinhole camera for the 2D resolved elemental analysis was investigated by using reference-patterns of different materials and geometries. The possibility of the elemental mapping of samples up to an area of 3 × 3 cm{sup 2} was demonstrated. Finally, the spatial resolution of the pinhole camera was measured by analyzing the profile function of a sharp-edge. The spatial resolution determined at the magnification values of 3.2 × and 0.8 × (used as testing values) is about 90 μm and 190 μm respectively. - Highlights: • We developed an X-ray pinhole camera for the 2D X-ray fluorescence imaging. • X-ray spectra are obtained by a multi-frame acquisition in single photon mode. • The energy resolution in the X-ray

  6. In situ surface X-ray diffraction studies of the copper-electrolyte interface. Atomic structure and homoepitaxial grwoth

    Energy Technology Data Exchange (ETDEWEB)

    Golks, Frederik

    2011-05-19

    Copper electrodeposition is the predominantly used technique for on-chip wiring in the fabrication of ultra-large scale integrated (ULSI) microchips. In this 'damascene copper electroplating' process, multicomponent electrolytes containing organic additives realize void-free filling of trenches with high aspect ratio ('superconformal deposition'). Despite manifold studies, motivated by the continuous trend to shrink wiring dimensions and thus the demand of optimized plating baths, detailed knowledge on the growth mechanism - in presence and absence of additives - is still lacking. Using a recently developed hanging meniscus X-ray transmission cell, brilliant synchrotron x-rays and a fast, one-dimensional detector system, unique real-time in situ surface X-ray diffraction studies of copper electrodeposition were performed under realistic reaction conditions, approaching rates of technological relevance. Preparatory measurements of the electrochemical dissolution of Au(001) in chloride-containing electrolyte demonstrated the capability of this powerful technique, specifically the possibility to follow atomic-scale deposition or dissolution processes with a time resolution down to five milliseconds. The electrochemical as well as structural characterization of the Cu(001)- and Cu(111)-electrolyte interfaces provided detailed insight into the complex atomic-scale structures in presence of specifically adsorbed chloride on these surfaces. The interface of Cu(001) in chloride-containing electrolyte exhibits a continuous surface phase transition of a disordered Cl adlayer to a c(2 x 2) Cl adlayer with increasing potential. The latter was found to induce a small vertical corrugation of substrate atoms, which can be ascribed to lattice relaxations induced by the presence of coadsorbed water molecules and cations in the outer part of the electrochemical double layer. The study of the specific adsorption of chloride on Cu(111) from acidic aqueous

  7. Next Generation X-ray Optics: High Angular Resolution, Light Weight, and Low Production Cost

    Science.gov (United States)

    Zhang, William

    2013-01-01

    Since its beginning 50 years ago, X-ray astronomy has advanced by leaps and bounds, culminating in its current golden age in which three major observatories—Chandra, XMM-Newton, and Suzaku—are operating simultaneously and addressing some of the most important astronomical and astrophysical problems of our time. Building upon this success, the recent Decadal Survey of Astronomy and Astrophysics has defined objectives for x-ray astronomy whose realization requires both new optics and new detector technologies. The development of these technologies has been identified as one of the highest priorities for funding to enable future x-ray missions. X-ray optics technology based on precision glass slumping is on the verge of revolutionizing x-ray telescope making. It has shown that extremely thin (fabricated consistently, efficiently, and inexpensively. In comparison with those of XMM-Newton, these mirror segments represent a factor of 10 reduction in mass while achieving slightly better angular resolution. In comparison with those of Suzaku, they represent a factor of 20 improvement in angular resolution while maintaining the same mass areal density. These advances have been demonstrated with x-ray images from aligned and bonded mirror segments. In short, this technology is approaching TRL-5 for making the mirror assemblies required for a 10 arc-second observatory. In this poster we will present the latest x-ray and environment test results obtained with technology development modules which are substantially similar to flight modules in the way they constructed and tested.

  8. Calibration of a high resolution grating soft x-ray spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Magee, E. W.; Dunn, J.; Brown, G. V.; Cone, K. V.; Park, J.; Porter, F. S.; Kilbourne, C. A.; Kelley, R. L.; Beiersdorfer, P.

    2010-10-01

    The calibration of the soft x-ray spectral response of a large radius of curvature, high resolution grating spectrometer (HRGS) with a back-illuminated charge-coupled device detector is reported. The instrument is cross-calibrated for the 10–50 Å waveband at the Lawrence Livermore National Laboratory electron beam ion trap (EBIT) x-ray source with the EBIT calorimeter spectrometer. The HRGS instrument is designed for laser-produced plasma experiments and is important for making high dynamic range measurements of line intensities, line shapes, and x-ray sources.

  9. Nanocalorimeter platform for in situ specific heat measurements and x-ray diffraction at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Willa, K. [Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, USA; Diao, Z. [Department of Physics, Stockholm University, SE-106 91 Stockholm, Sweden; Laboratory of Mathematics, Physics and Electrical Engineering, Halmstad University, P.O. Box 823, SE-301 18 Halmstad, Sweden; Campanini, D. [Department of Physics, Stockholm University, SE-106 91 Stockholm, Sweden; Welp, U. [Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, USA; Divan, R. [Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, USA; Hudl, M. [Department of Physics, Stockholm University, SE-106 91 Stockholm, Sweden; Islam, Z. [X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, USA; Kwok, W. -K. [Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, USA; Rydh, A. [Department of Physics, Stockholm University, SE-106 91 Stockholm, Sweden

    2017-12-01

    Recent advances in electronics and nanofabrication have enabled membrane-based nanocalorimetry for measurements of the specific heat of microgram-sized samples. We have integrated a nanocalorimeter platform into a 4.5 T split-pair vertical-field magnet to allow for the simultaneous measurement of the specific heat and x-ray scattering in magnetic fields and at temperatures as low as 4 K. This multi-modal approach empowers researchers to directly correlate scattering experiments with insights from thermodynamic properties including structural, electronic, orbital, and magnetic phase transitions. The use of a nanocalorimeter sample platform enables numerous technical advantages: precise measurement and control of the sample temperature, quantification of beam heating effects, fast and precise positioning of the sample in the x-ray beam, and fast acquisition of x-ray scans over a wide temperature range without the need for time-consuming re-centering and re-alignment. Furthermore, on an YBa2Cu3O7-delta crystal and a copper foil, we demonstrate a novel approach to x-ray absorption spectroscopy by monitoring the change in sample temperature as a function of incident photon energy. Finally, we illustrate the new insights that can be gained from in situ structural and thermodynamic measurements by investigating the superheated state occurring at the first-order magneto-elastic phase transition of Fe2P, a material that is of interest for magnetocaloric applications.

  10. In situ electrochemical high-energy X-ray diffraction using a capillary working electrode cell geometry.

    Science.gov (United States)

    Young, Matthias J; Bedford, Nicholas M; Jiang, Naisheng; Lin, Deqing; Dai, Liming

    2017-07-01

    The ability to generate new electrochemically active materials for energy generation and storage with improved properties will likely be derived from an understanding of atomic-scale structure/function relationships during electrochemical events. Here, the design and implementation of a new capillary electrochemical cell designed specifically for in situ high-energy X-ray diffraction measurements is described. By increasing the amount of electrochemically active material in the X-ray path while implementing low-Z cell materials with anisotropic scattering profiles, an order of magnitude enhancement in diffracted X-ray signal over traditional cell geometries for multiple electrochemically active materials is demonstrated. This signal improvement is crucial for high-energy X-ray diffraction measurements and subsequent Fourier transformation into atomic pair distribution functions for atomic-scale structural analysis. As an example, clear structural changes in LiCoO2 under reductive and oxidative conditions using the capillary cell are demonstrated, which agree with prior studies. Accurate modeling of the LiCoO2 diffraction data using reverse Monte Carlo simulations further verifies accurate background subtraction and strong signal from the electrochemically active material, enabled by the capillary working electrode geometry.

  11. In Situ X-ray Microtomography of Stress Corrosion Cracking and Corrosion Fatigue in Aluminum Alloys

    Science.gov (United States)

    Singh, Sudhanshu S.; Stannard, Tyler J.; Xiao, Xianghui; Chawla, Nikhilesh

    2017-08-01

    Structural materials are subjected to combinations of stress and corrosive environments that work synergistically to cause premature failure. Therefore, studies on the combined effect of stress and corrosive environments on material behavior are required. Existing studies have been performed in two dimensions that are inadequate for full comprehension of the three-dimensional (3D) processes related to stress corrosion cracking (SCC) and corrosion-fatigue (CF) behavior. Recently, x-ray synchrotron tomography has evolved as an excellent technique to obtain the microstructure in 3D. Moreover, being nondestructive in nature, x-ray synchrotron tomography is well suited to study the evolution of microstructure with time (4D, or fourth dimension in time). This article presents our recent 4D studies on SCC and CF of Al 7075 alloys using x-ray synchrotron tomography.

  12. An ultrahigh-vacuum goniometer for in situ soft X-ray standing-wave analysis of semiconductor surfaces.

    Science.gov (United States)

    Sugiyama, M; Maeyama, S

    1998-05-01

    An ultrahigh-vacuum goniometer was developed for in situ X-ray standing-wave (XSW) analysis of semiconductor surfaces prepared by molecular-beam epitaxy (MBE). Although two ultrahigh-vacuum motors for chi and phi rotating axes are inside the analysis chamber, low-energy photoelectrons can still be collected as the magnetic field is sufficiently suppressed by using metal shields. Furthermore, the sample can be annealed at temperatures higher than 870 K on the goniometer in the analysis chamber. This goniometer is used at beamline 1A (BL-1A) at the Photon Factory, where both monochromated soft X-rays and UV radiation are available. This analysis system was shown to be suitable not only for in situ soft-XSW and X-ray absorption near-edge structure (XANES) studies but also for synchrotron radiation photoelectron spectroscopy (SRPES) studies. The annealing effects on an S-adsorbed GaAs(001) surface could be studied by SRPES, XANES and XSW using this new goniometer.

  13. A versatile, highly-efficient, high-resolution von Hamos Bragg crystal x-ray spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Vane, C.R.; Smith, M.S.; Raman, S.

    1988-01-01

    An efficient, high-resolution, vertical-focusing, Bragg crystal x-ray spectrometer has been specifically designed and constructed for use in measurements of x rays produced in collisions of energetic heavy ions. In this report the design and resulting operational characteristics of the final instrument are fully described. A wide variety of sample data is also included to illustrate the utility of this device in several areas of research. 14 refs., 38 figs.

  14. In situ study of the Porticello Bronzes by portable X-ray fluorescence and laser-induced breakdown spectroscopy

    Science.gov (United States)

    Ferretti, M.; Cristoforetti, G.; Legnaioli, S.; Palleschi, V.; Salvetti, A.; Tognoni, E.; Console, E.; Palaia, P.

    2007-12-01

    This paper reports the results of a measurement campaign performed at the National Museum of Magna Grecia in Reggio Calabria (Italy). Portable X-Ray Fluorescence (XRF) and Laser-Induced Breakdown Spectroscopy (LIBS) instrumentation allowed in situ analysis of several bronze pieces belonging to the group of the so-called Porticello Bronzes. The find occurred at sea, off the village of Porticello (Reggio Calabria) in 1969 and consists of a number of fragments, including a bearded head, pertaining to at least two statues. The use of X-Ray Fluorescence and Laser-Induced Breakdown Spectroscopy techniques allowed for a classification of the fragments according to their elemental composition. The fragments appear to belong to at least two different statues; although, in general, the compositional classification agrees well with the stylistic analysis of the fragments, significant improvements with respect to previous achievements emerge from the joint results of the two techniques used.

  15. In situ study of the Porticello Bronzes by portable X-ray fluorescence and laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ferretti, M. [Istituto per le Tecnologie Applicate ai Beni Culturali, Via Salaria, km 29.300, c.p.10, 00016 Monterotondo St. - Roma (Italy); Cristoforetti, G.; Legnaioli, S. [Applied Laser Spectroscopy Laboratory, Istituto per i Processi Chimico Fisici del CNR, Area di Ricerca di Pisa, Via G.Moruzzi, 1-56124 Pisa (Italy); Palleschi, V. [Applied Laser Spectroscopy Laboratory, Istituto per i Processi Chimico Fisici del CNR, Area di Ricerca di Pisa, Via G.Moruzzi, 1-56124 Pisa (Italy); Salvetti, A.; Tognoni, E. [Applied Laser Spectroscopy Laboratory, Istituto per i Processi Chimico Fisici del CNR, Area di Ricerca di Pisa, Via G.Moruzzi, 1-56124 Pisa (Italy); Console, E. [T.E.A. s.a.s., Via Luigi Pascali, 23/25-88100 Catanzaro (Italy)], E-mail: elena@teacz.191.it; Palaia, P. [T.E.A. s.a.s., Via Luigi Pascali, 23/25-88100 Catanzaro (Italy)

    2007-12-15

    This paper reports the results of a measurement campaign performed at the National Museum of Magna Grecia in Reggio Calabria (Italy). Portable X-Ray Fluorescence (XRF) and Laser-Induced Breakdown Spectroscopy (LIBS) instrumentation allowed in situ analysis of several bronze pieces belonging to the group of the so-called Porticello Bronzes. The find occurred at sea, off the village of Porticello (Reggio Calabria) in 1969 and consists of a number of fragments, including a bearded head, pertaining to at least two statues. The use of X-Ray Fluorescence and Laser-Induced Breakdown Spectroscopy techniques allowed for a classification of the fragments according to their elemental composition. The fragments appear to belong to at least two different statues; although, in general, the compositional classification agrees well with the stylistic analysis of the fragments, significant improvements with respect to previous achievements emerge from the joint results of the two techniques used.

  16. In situ analyses of Ag speciation in tissues of cucumber and wheat using synchrotron-based X-ray absorption spectroscopy

    Data.gov (United States)

    U.S. Environmental Protection Agency — In situ analyses of Ag speciation in tissues of cucumber and wheat using synchrotron-based X-ray absorption spectroscopy showing spectral fitting and linear...

  17. Next Generation X-Ray Optics: High-Resolution, Light-Weight, and Low-Cost

    Science.gov (United States)

    Zhang, William W.

    2012-01-01

    X-ray telescopes are essential to the future of x-ray astronomy. In this talk I will describe a comprehensive program to advance the technology for x-ray telescopes well beyond the state of the art represented by the three currently operating missions: Chandra, XMM-Newton, and Suzaku. This program will address the three key issues in making an x-ray telescope: (1) angular resolution, (2) effective area per unit mass, and (3) cost per unit effective area. The objectives of this technology program are (1) in the near term, to enable Explorer-class x-ray missions and an IXO-type mission, and (2) in the long term, to enable a flagship x-ray mission with sub-arcsecond angular resolution and multi-square-meter effective area, at an affordable cost. We pursue two approaches concurrently, emphasizing the first approach in the near term (2-5 years) and the second in the long term (4-10 years). The first approach is precision slumping of borosilicate glass sheets. By design and choice at the outset, this technique makes lightweight and low-cost mirrors. The development program will continue to improve angular resolution, to enable the production of 5-arcsecond x-ray telescopes, to support Explorer-class missions and one or more missions to supersede the original IXO mission. The second approach is precision polishing and light-weighting of single-crystal silicon mirrors. This approach benefits from two recent commercial developments: (1) the inexpensive and abundant availability of large blocks of monocrystalline silicon, and (2) revolutionary advances in deterministic, precision polishing of mirrors. By design and choice at the outset, this technique is capable of producing lightweight mirrors with sub-arcsecond angular resolution. The development program will increase the efficiency and reduce the cost of the polishing and the light-weighting processes, to enable the production of lightweight sub-arcsecond x-ray telescopes. Concurrent with the fabrication of lightweight

  18. In situ microfluidic dialysis for biological small-angle X-ray scattering

    DEFF Research Database (Denmark)

    Skou, Magda; Skou, Soren; Jensen, Thomas Glasdam

    2014-01-01

    for simultaneous SAXS and ultraviolet absorption measurements during protein dialysis, integrated directly on a SAXS beamline. Microfluidic dialysis can be used for monitoring structural changes in response to buffer exchange or, as demonstrated, protein concentration. By collecting X-ray data during...

  19. In Situ Synchrotron X-Ray Diffraction and Small Angle X-Ray Scattering Studies on Rapidly Heated and Cooled Ti-Al and Al-Cu-Mg Alloys Using Laser-Based Heating

    Science.gov (United States)

    Kenel, C.; Schloth, P.; Van Petegem, S.; Fife, J. L.; Grolimund, D.; Menzel, A.; Van Swygenhoven, H.; Leinenbach, C.

    2016-03-01

    Beam-based additive manufacturing (AM) typically involves high cooling rates in a range of 103-104 K/s. Therefore, new techniques are required to understand the non-equilibrium evolution of materials at appropriate time scales. Most technical alloys have not been optimized for such rapid solidification, and microstructural, phase, and elemental solubility behavior can be very different. In this work, the combination of complementary in situ synchrotron micro-x-ray diffraction (microXRD) and small angle x-ray scattering (SAXS) studies with laser-based heating and rapid cooling is presented as an approach to study alloy behavior under processing conditions similar to AM techniques. In rapidly solidified Ti-48Al, the full solidification and phase transformation sequences are observed using microXRD with high temporal resolution. The high cooling rates are achieved by fast heat extraction. Further, the temperature- and cooling rate-dependent precipitation of sub-nanometer clusters in an Al-Cu-Mg alloy can be studied by SAXS. The sensitivity of SAXS on the length scales of the newly formed phases allows their size and fraction to be determined. These techniques are unique tools to help provide a deeper understanding of underlying alloy behavior and its influence on resulting microstructures and properties after AM. Their availability to materials scientists is crucial for both in-depth investigations of novel alloys and also future production of high-quality parts using AM.

  20. High resolution x-ray microtomography of biological samples: Requirements and strategies for satisfying them

    Energy Technology Data Exchange (ETDEWEB)

    Loo, B.W. Jr. [Univ. of California, San Francisco, CA (United States)]|[Univ. of California, Davis, CA (United States)]|[Lawrence Berkeley National Lab., CA (United States); Rothman, S.S. [Univ. of California, San Francisco, CA (United States)]|[Lawrence Berkeley National Lab., CA (United States)

    1997-02-01

    High resolution x-ray microscopy has been made possible in recent years primarily by two new technologies: microfabricated diffractive lenses for soft x-rays with about 30-50 nm resolution, and high brightness synchrotron x-ray sources. X-ray microscopy occupies a special niche in the array of biological microscopic imaging methods. It extends the capabilities of existing techniques mainly in two areas: a previously unachievable combination of sub-visible resolution and multi-micrometer sample size, and new contrast mechanisms. Because of the soft x-ray wavelengths used in biological imaging (about 1-4 nm), XM is intermediate in resolution between visible light and electron microscopies. Similarly, the penetration depth of soft x-rays in biological materials is such that the ideal sample thickness for XM falls in the range of 0.25 - 10 {mu}m, between that of VLM and EM. XM is therefore valuable for imaging of intermediate level ultrastructure, requiring sub-visible resolutions, in intact cells and subcellular organelles, without artifacts produced by thin sectioning. Many of the contrast producing and sample preparation techniques developed for VLM and EM also work well with XM. These include, for example, molecule specific staining by antibodies with heavy metal or fluorescent labels attached, and sectioning of both frozen and plastic embedded tissue. However, there is also a contrast mechanism unique to XM that exists naturally because a number of elemental absorption edges lie in the wavelength range used. In particular, between the oxygen and carbon absorption edges (2.3 and 4.4 nm wavelength), organic molecules absorb photons much more strongly than does water, permitting element-specific imaging of cellular structure in aqueous media, with no artifically introduced contrast agents. For three-dimensional imaging applications requiring the capabilities of XM, an obvious extension of the technique would therefore be computerized x-ray microtomography (XMT).

  1. The behavior of single-crystal silicon to dynamic loading using in-situ X-ray diffraction and phase contrast imaging

    Science.gov (United States)

    Lee, Hae Ja; Xing, Zhou; Galtier, Eric; Arnold, Brice; Granados, Eduardo; Brown, Shaughnessy B.; Tavella, Franz; McBride, Emma; Fry, Alan; Nagler, Bob; Schropp, Andreas; Seiboth, Frank; Samberg, Dirk; Schroer, Christian; Gleason, Arianna E.; Higginbotham, Andrew

    Hydrostatic and uniaxial compression studies have revealed that crystalline silicon undergoes phase transitions from a cubic diamond structure to a variety of phases including orthorhombic Imma phase, body-centered tetragonal phase, and a hexagonal primitive phase. The dynamic response of silicon at high pressure, however, is not well understood. Phase contrast imaging has proven to be a powerful tool for probing density changes caused by the shock propagation into a material. In order to characterize the elastic and phase transitions, we image shock waves in Si with high spatial resolution using the LCLS X-ray free electron laser and Matter in Extreme Conditions instrument. In this study, the long pulse optical laser with pseudo-flat top shape creates high pressures up to 60 GPa. We measure the crystal structure by observing X-ray diffraction orthogonal to the shock propagation direction over a range of pressures. We describe the capability of simultaneously performing phase contrast imaging and in situ X-ray diffraction during shock loading and discuss the dynamic response of Si in high-pressure phases Use of the Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515. The MEC instrument is supported by.

  2. A broadband x-ray imaging spectroscopy with high-angular resolution: the FORCE mission

    Science.gov (United States)

    Mori, Koji; Tsuru, Takeshi Go; Nakazawa, Kazuhiro; Ueda, Yoshihiro; Okajima, Takashi; Murakami, Hiroshi; Awaki, Hisamitsu; Matsumoto, Hironori; Fukazawa, Yasushi; Tsunemi, Hiroshi; Takahashi, Tadayuki; Zhang, William W.

    2016-07-01

    We are proposing FORCE (Focusing On Relativistic universe and Cosmic Evolution) as a future Japan-lead Xray observatory to be launched in the mid 2020s. Hitomi (ASTRO-H) possesses a suite of sensitive instruments enabling the highest energy-resolution spectroscopy in soft X-ray band, a broadband X-ray imaging spectroscopy in soft and hard X-ray bands, and further high energy coverage up to soft gamma-ray band. FORCE is the direct successor to the broadband X-ray imaging spectroscopy aspect of Hitomi (ASTRO-H) with significantly higher angular resolution. The current design of FORCE defines energy band pass of 1-80 keV with angular resolution of black holes" in various mass-scales: "buried supermassive black holes (SMBHs)" (> 104 M⊙) residing in the center of galaxies in a cosmological distance, "intermediate-mass black holes" (102-104 M⊙) acting as the possible seeds from which SMBHs grow, and "orphan stellar-mass black holes" (< 102 M⊙) without companion in our Galaxy. In addition to these missing BHs, hunting for the nature of relativistic particles at various astrophysical shocks is also in our scope, utilizing the broadband X-ray coverage with high angular-resolution. FORCE are going to open a new era in these fields. The satellite is proposed to be launched with the Epsilon vehicle that is a Japanese current solid-fuel rocket. FORCE carries three identical pairs of Super-mirror and wide-band X-ray detector. The focal length is currently planned to be 10 m. The silicon mirror with multi-layer coating is our primary choice to achieve lightweight, good angular optics. The detector is a descendant of hard X-ray imager onboard Hitomi (ASTRO-H) replacing its silicon strip detector with SOI-CMOS silicon pixel detector, allowing an extension of the low energy threshold down to 1 keV or even less.

  3. Differentiation of Deformation Modes in Nanocrystalline Pd Films Inferred from Peak Asymmetry Evolution Using In Situ X-Ray Diffraction

    Science.gov (United States)

    Lohmiller, Jochen; Baumbusch, Rudolf; Kraft, Oliver; Gruber, Patric A.

    2013-02-01

    Synchrotron-based in situ tensile testing was used to study the dominant deformation mechanisms of nanocrystalline Pd thin films on a compliant substrate. An x-ray diffraction peak profile analysis reveals an (hkl) independent deformation induced peak asymmetry. It is argued that the asymmetry is caused by a broad distribution of elastic strains among individual grains and the complexity of accommodation processes. The reversal of peak asymmetry manifests the transition from heterogeneous microplasticity to dislocation-based macroplasticity. Independently, stress-driven grain boundary migration is active.

  4. In-situ study of the growth of CuO nanowires by energy dispersive X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Himanshu; Ganguli, Tapas; Deb, S. K. [Indus Synchrotrons Utilization Division, Raja Ramanna Centre for Advanced technology, Indore-452013 (India); Sant, Tushar; Poswal, Himanshu; Sharma, S. M. [High Pressure and Synchrotron Physics Division, Bhabha Atomic Research Centre, Mumbai (India)

    2013-02-05

    Growth of CuO nanowires by annealing method has been studied in-situ by grazing incidence Energy Dispersive X-ray Diffraction (EDXRD) technique on Indus-2. It was observed that Cu slowly oxidized to Cu{sub 2}O and finally to CuO. The data was taken as a function of time at two annealing temperatures 500 Degree-Sign C where nanowires form and 300 Degree-Sign C where nanowires don't form. We found that the strain in the CuO layer may be a principal factor for the spontaneous growth of nanowires in annealing method.

  5. A high time resolution x-ray diagnostic on the Madison Symmetric Torus.

    Science.gov (United States)

    DuBois, Ami M; Lee, John David; Almagri, Abdulgadar F

    2015-07-01

    A new high time resolution x-ray detector has been installed on the Madison Symmetric Torus (MST) to make measurements around sawtooth events. The detector system is comprised of a silicon avalanche photodiode, a 20 ns Gaussian shaping amplifier, and a 500 MHz digitizer with 14-bit sampling resolution. The fast shaping time diminishes the need to restrict the amount of x-ray flux reaching the detector, limiting the system dead-time. With a much higher time resolution than systems currently in use in high temperature plasma physics experiments, this new detector has the versatility to be used in a variety of discharges with varying flux and the ability to study dynamics on both slow and fast time scales. This paper discusses the new fast x-ray detector recently installed on MST and the improved time resolution capabilities compared to the existing soft and hard x-ray diagnostics. In addition to the detector hardware, improvements to the detector calibration and x-ray pulse identification software, such as additional fitting parameters and a more sophisticated fitting routine are discussed. Finally, initial data taken in both high confinement and standard reversed-field pinch plasma discharges are compared.

  6. A high time resolution x-ray diagnostic on the Madison Symmetric Torus

    Science.gov (United States)

    DuBois, Ami M.; Lee, John David; Almagri, Abdulgadar F.

    2015-07-01

    A new high time resolution x-ray detector has been installed on the Madison Symmetric Torus (MST) to make measurements around sawtooth events. The detector system is comprised of a silicon avalanche photodiode, a 20 ns Gaussian shaping amplifier, and a 500 MHz digitizer with 14-bit sampling resolution. The fast shaping time diminishes the need to restrict the amount of x-ray flux reaching the detector, limiting the system dead-time. With a much higher time resolution than systems currently in use in high temperature plasma physics experiments, this new detector has the versatility to be used in a variety of discharges with varying flux and the ability to study dynamics on both slow and fast time scales. This paper discusses the new fast x-ray detector recently installed on MST and the improved time resolution capabilities compared to the existing soft and hard x-ray diagnostics. In addition to the detector hardware, improvements to the detector calibration and x-ray pulse identification software, such as additional fitting parameters and a more sophisticated fitting routine are discussed. Finally, initial data taken in both high confinement and standard reversed-field pinch plasma discharges are compared.

  7. In-situ high-P, T X-ray microtomographic imaging during large deformation

    DEFF Research Database (Denmark)

    Wang, Y; Lesher, Charles

    2011-01-01

    We have examined the microstructural evolution of a two-phase composite (olivine + Fe-Ni-S) during large shear deformation, using a newly developed high-pressure X-ray tomography microscope. Two samples were examined: a load-bearing framework–type texture, where the alloy phase (Fe-Ni-S) was pres......We have examined the microstructural evolution of a two-phase composite (olivine + Fe-Ni-S) during large shear deformation, using a newly developed high-pressure X-ray tomography microscope. Two samples were examined: a load-bearing framework–type texture, where the alloy phase (Fe...... deformation at temperatures up to 800 K. Shear strains were introduced by twisting the samples at high pressure and high temperature. At each imposed shear strain, samples were cooled to ambient temperature and tomographic images collected. The three-dimensional tomographic images were analyzed for textural...

  8. Spatial resolution in X-ray imaging with scintillating glass optical fiber plates

    Science.gov (United States)

    Pavan, P.; Zanella, G.; Zannoni, R.; Marigo, A.

    1993-04-01

    Some scintillating optical fiber plates, fabricated with terbium glasses are tested for their intrinsic spatial resolution under X-ray irradiation and the result is compared with a typical phosphor screen. The spatial resolution (CTF and MTF) is measured as a function of spatial frequency and the standard deviation of the corresponding Gaussian PSF is derived.

  9. Bismuth Passivation Technique for High-Resolution X-Ray Detectors

    Science.gov (United States)

    Chervenak, James; Hess, Larry

    2013-01-01

    The Athena-plus team requires X-ray sensors with energy resolution of better than one part in 3,000 at 6 keV X-rays. While bismuth is an excellent material for high X-ray stopping power and low heat capacity (for large signal when an X-ray is stopped by the absorber), oxidation of the bismuth surface can lead to electron traps and other effects that degrade the energy resolution. Bismuth oxide reduction and nitride passivation techniques analogous to those used in indium passivation are being applied in a new technique. The technique will enable improved energy resolution and resistance to aging in bismuth-absorber-coupled X-ray sensors. Elemental bismuth is lithographically integrated into X-ray detector circuits. It encounters several steps where the Bi oxidizes. The technology discussed here will remove oxide from the surface of the Bi and replace it with nitridized surface. Removal of the native oxide and passivating to prevent the growth of the oxide will improve detector performance and insulate the detector against future degradation from oxide growth. Placing the Bi coated sensor in a vacuum system, a reduction chemistry in a plasma (nitrogen/hydrogen (N2/H2) + argon) is used to remove the oxide and promote nitridization of the cleaned Bi surface. Once passivated, the Bi will perform as a better X-ray thermalizer since energy will not be trapped in the bismuth oxides on the surface. A simple additional step, which can be added at various stages of the current fabrication process, can then be applied to encapsulate the Bi film. After plasma passivation, the Bi can be capped with a non-diffusive layer of metal or dielectric. A non-superconducting layer is required such as tungsten or tungsten nitride (WNx).

  10. Diagnostic imaging of gout: comparison of high-resolution US versus conventional X-ray

    Energy Technology Data Exchange (ETDEWEB)

    Rettenbacher, Thomas; Ennemoser, Sybille; Weirich, Harald [Innsbruck Medical University, Department of Radiology, Innsbruck (Austria); Ulmer, Hanno [Innsbruck Medical University, Department of Medical Statistics, Informatics, and Health Economics, Innsbruck (Austria); Hartig, Frank; Klotz, Werner; Herold, Manfred [Innsbruck Medical University, Department of Internal Medicine, Innsbruck (Austria)

    2008-03-15

    The aim was to compare X-ray and ultrasound (US) in diagnosing gout. In a prospective study, 105 consecutive patients with clinical suspicion of gout underwent conventional X-ray und high-resolution US in order to help in arriving at a definite diagnosis. X-ray findings suggestive of gout included soft-tissue opacifications with densities between soft tissue and bone, articular and periarticular bone erosions, and osteophytes at the margins of opacifications or erosions. US findings suggestive of gout included bright stippled foci and hyperechoic soft-tissue areas. Fifty-five patients had a definite diagnosis of gout (102 involved sites), 31 patients were diagnosed as having another disease (59 involved sites), and 19 patients were excluded from the study because a definite diagnosis could not be established. X-ray suggested gout with a sensitivity of 31% (32/102) and a specificity of 93% (55/59), whereas US suggested gout with a sensitivity of 96% (98/102) and a specificity of 73% (43/59). US was much more sensitive than conventional X-ray but less specific. Our data show that US often provided additional diagnostic information in patients with clinical suspicion of gout when laboratory findings and X-ray results were negative or inconclusive and should therefore be used in these cases. (orig.)

  11. High-resolution x-ray imaging for microbiology at the Advanced Photon Source

    Energy Technology Data Exchange (ETDEWEB)

    Lai, B.; Kemner, K. M.; Maser, J.; Schneegurt, M. A.; Cai, Z.; Ilinski, P. P.; Kulpa, C. F.; Legnini, D. G.; Nealson, K. H.; Pratt, S. T.; Rodrigues, W.; Tischler, M. L.; Yun, W.

    1999-11-02

    Exciting new applications of high-resolution x-ray imaging have emerged recently due to major advances in high-brilliance synchrotrons sources and high-performance zone plate optics. Imaging with submicron resolution is now routine with hard x-rays: the authors have demonstrated 150 run in the 6--10 keV range with x-ray microscopes at the Advanced Photon Source (APS), a third-generation synchrotrons radiation facility. This has fueled interest in using x-ray imaging in applications ranging from the biomedical, environmental, and materials science fields to the microelectronics industry. One important application they have pursued at the APS is a study of the microbiology of bacteria and their associated extracellular material (biofilms) using fluorescence microanalysis. No microscopy techniques were previously available with sufficient resolution to study live bacteria ({approx}1 {micro}m x 4 {micro}m in size) and biofilms in their natural hydrated state with better than part-per-million elemental sensitivity and the capability of determining g chemical speciation. In vivo x-ray imaging minimizes artifacts due to sample fixation, drying, and staining. This provides key insights into the transport of metal contaminants by bacteria in the environment and potential new designs for remediation and sequestration strategies.

  12. Sub-micrometer resolution proximity X-ray microscope with digital image registration.

    Science.gov (United States)

    Chkhalo, N I; Pestov, A E; Salashchenko, N N; Sherbakov, A V; Skorokhodov, E V; Svechnikov, M V

    2015-06-01

    A compact laboratory proximity soft X-ray microscope providing submicrometer spatial resolution and digital image registration is described. The microscope consists of a laser-plasma soft X-ray radiation source, a Schwarzschild objective to illuminate the test sample, and a two-coordinate detector for image registration. Radiation, which passes through the sample under study, generates an absorption image on the front surface of the detector. Optical ceramic YAG:Ce was used to convert the X-rays into visible light. An image was transferred from the scintillator to a charge-coupled device camera with a Mitutoyo Plan Apo series lens. The detector's design allows the use of lenses with numerical apertures of NA = 0.14, 0.28, and 0.55 without changing the dimensions and arrangement of the elements of the device. This design allows one to change the magnification, spatial resolution, and field of view of the X-ray microscope. A spatial resolution better than 0.7 μm and an energy conversion efficiency of the X-ray radiation with a wavelength of 13.5 nm into visible light collected by the detector of 7.2% were achieved with the largest aperture lens.

  13. High-Resolution Structure of the Photosynthetic Mn4Ca Catalyst from X-ray Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yachandra, Vittal; Yano, Junko; Kern, Jan; Pushkar, Yulia; Sauer, Kenneth; Glatzel, Pieter; Bergmann, Uwe; Messinger, Johannes; Zouni, Athina; Yachandra, Vittal K.

    2007-08-01

    The application of high-resolution X-ray spectroscopy methods to study the photosynthetic water oxidizing complex, which contains a unique hetero-nuclear catalytic Mn4Ca cluster, are described. Issues of X-ray damage especially at the metal sites in the Mn4Ca cluster are discussed. The structure of the Mn4Ca catalyst at high-resolution which has so far eluded attempts of determination by X-ray diffraction, EXAFS and other spectroscopic techniques has been addressed using polarized EXAFS techniques applied to oriented PS II membrane preparations and PS II single crystals. A review of how the resolution of traditional EXAFS techniques can be improved, using methods such as range-extended EXAFS is presented, and the changes that occur in the structure of the cluster as it advances through the catalytic cycle are described. X-ray absorption and emission techniques (XANES and K? emission) have been used earlier to determine the oxidation states of the Mn4Ca cluster, and in this report we review the use of X-ray resonant Raman spectroscopy to understand the electronic structure of the Mn4Ca cluster as it cycles through the intermediate S-states.

  14. The Astro-H High Resolution Soft X-Ray Spectrometer

    Science.gov (United States)

    Kelley, Richard L.; Akamatsu, Hiroki; Azzarell, Phillip; Bialas, Tom; Boyce, Kevin R.; Brown, Gregory V.; Canavan, Edgar; Chiao, Meng P.; Costantini, Elisa; DiPirro, Michael J.; hide

    2016-01-01

    We present the overall design and performance of the Astro-H (Hitomi) Soft X-Ray Spectrometer (SXS). The instrument uses a 36-pixel array of x-ray microcalorimeters at the focus of a grazing-incidence x-ray mirror Soft X-Ray Telescope (SXT) for high-resolution spectroscopy of celestial x-ray sources. The instrument was designed to achieve an energy resolution better than 7 eV over the 0.3-12 keV energy range and operate for more than 3 years in orbit. The actual energy resolution of the instrument is 4-5 eV as demonstrated during extensive ground testing prior to launch and in orbit. The measured mass flow rate of the liquid helium cryogen and initial fill level at launch predict a lifetime of more than 4 years assuming steady mechanical cooler performance. Cryogen-free operation was successfully demonstrated prior to launch. The successful operation of the SXS in orbit, including the first observations of the velocity structure of the Perseus cluster of galaxies, demonstrates the viability and power of this technology as a tool for astrophysics.

  15. Angle-resolved x-ray imaging using a resolution-tunable double-crystal analyser

    CERN Document Server

    Hirano, K

    2003-01-01

    A resolution-tunable double-crystal analyser was successfully applied, for the first time, to angle-resolved x-ray imaging. Tuning the resolution between 0.5'' and 2.3'' was done with small loss of peak intensity using a Si(220) double-crystal analyser. The angle-resolved images of a housefly were recorded on nuclear emulsion plates at various angular resolutions. Several methods to improve the angular resolution of the analyser are also proposed.

  16. Development of high-resolution x-ray CT system using parallel beam geometry

    Energy Technology Data Exchange (ETDEWEB)

    Yoneyama, Akio, E-mail: akio.yoneyama.bu@hitachi.com; Baba, Rika [Central Research Laboratory, Hitachi Ltd., Hatoyama, Saitama (Japan); Hyodo, Kazuyuki [Institute of Materials Science, High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan); Takeda, Tohoru [School of Allied Health Sciences, Kitasato University, Sagamihara, Kanagawa (Japan); Nakano, Haruhisa; Maki, Koutaro [Department of Orthodontics, School of Dentistry Showa University, Ota-ku, Tokyo (Japan); Sumitani, Kazushi; Hirai, Yasuharu [Kyushu Synchrotron Light Research Center, Tosu, Saga (Japan)

    2016-01-28

    For fine three-dimensional observations of large biomedical and organic material samples, we developed a high-resolution X-ray CT system. The system consists of a sample positioner, a 5-μm scintillator, microscopy lenses, and a water-cooled sCMOS detector. Parallel beam geometry was adopted to attain a field of view of a few mm square. A fine three-dimensional image of birch branch was obtained using a 9-keV X-ray at BL16XU of SPring-8 in Japan. The spatial resolution estimated from the line profile of a sectional image was about 3 μm.

  17. X-ray micro-beam focusing system for in situ investigation of single nanowire during MBE growth

    Science.gov (United States)

    Hu, Wen; Takahasi, Masamitu; Kozu, Miwa; Nakata, Yuka

    2013-03-01

    A ternary Fresnel zone plate (FZP) has been fabricated and installed at the beamline 11XU of SPring-8, in the aim of in situ studies on the growth of semiconductor nanostructures. The FZP is designed for an X-ray energy of 9.5 keV for the first-order diffraction, which is isolated by an order sorting aperture (OSA) inserted 450 mm after the FZP. The focal length of this FZP is 650 mm. The full width at half maximum of the focused beam profile was estimated to be 1.17 μm (H) × 1.38 μm (V) by the dark-field knife-edge scan. Using this FZP, micro-beam diffraction of an as-grown single InAs NW was carried out to show the feasibility of in situ study during growth.

  18. Microcalorimetry for High-Resolution X-Ray Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, Stephen [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-01-03

    Magnetic Microcalorimeters (MMCs) are gamma-ray detectors with an energy resolution 10x higher than high-purity germanium detectors. They can increase the accuracy of non-destructive analysis of nuclear materials, enable the detection of new isotopes (e.g. Pu-242 of U-236), and improve nuclear data in cases where Ge detectors are limited by line overlap. MMCs consist of a magnetic sensor operated at temperatures below 50 mK, and they infer gamma-ray energies from the change in magnetization due to the temperature increase after gamma-ray absorption. The goal of this project is to further increase the energy resolution and sensitivity of MMC gamma detectors.

  19. TFTR horizontal high-resolution Bragg x-ray spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Hill, K.W.; Bitter, M.; Tavernier, M.; Diesso, M.; von Goeler, S.; Johnson, G.; Johnson, L.C.; Sauthoff, N.R.; Schechtman, N.; Sesnic, S.; Tenney, F.; Young, K.M.

    1984-11-01

    A bent quartz crystal spectrometer of the Johann type with a spectral resolution of lambda/..delta..lambda = 10,000 to 25,000 is used on TFTR to determine central plasma parameters from the spectra of heliumlike and lithiumlike metal impurity ions (Ti, Cr, Fe, and Ni). The spectra are observed along a central radial chord and are recorded by a position sensitive multiwire proportional counter with a spatial resolution of 250. Standard delay-line time-difference readout is employed. The data are histogrammed and stored in 64k of memory providing 128 time groups of 512-channel spectra. The central ion temperature and the toroidal plasma rotation are inferred from the Doppler broadening and Doppler shift of the K lines. The central electron temperature, the distribution of ionization states, and dielectronic recombination rates are obtained from satellite-to-resonance line ratios. The performance of the spectrometer is demonstrated by measurements of the Ti XXI K radiation.

  20. A compact high-resolution X-ray powder diffractometer.

    Science.gov (United States)

    Fewster, Paul F; Trout, David R D

    2013-12-01

    A new powder diffractometer operating in transmission mode is described. It can work as a rapid very compact instrument or as a high-resolution instrument, and the sample preparation is simplified. The incident beam optics create pure Cu K α 1 radiation, giving rise to peak widths of ∼0.1° in 2θ in compact form with a sample-to-detector minimum radius of 55 mm, reducing to peak widths of advantage of this geometry is that the resolution of the diffractometer can be calculated precisely and the instrumental artefacts can be analysed easily without a sample present. The performance is demonstrated with LaB 6 and paracetamol, and a critical appraisal of the uncertainties in the measurements is presented. The instantaneous data collection offers possibilities in dynamic experiments.

  1. A curved image-plate detector system for high-resolution synchrotron X-ray diffraction.

    Science.gov (United States)

    Sarin, P; Haggerty, R P; Yoon, W; Knapp, M; Berghaeuser, A; Zschack, P; Karapetrova, E; Yang, N; Kriven, W M

    2009-03-01

    The developed curved image plate (CIP) is a one-dimensional detector which simultaneously records high-resolution X-ray diffraction (XRD) patterns over a 38.7 degrees 2theta range. In addition, an on-site reader enables rapid extraction, transfer and storage of X-ray intensity information in response is not compromised in the unsaturated regions of the image plate, regardless of saturation in another region. The speed of XRD data acquisition together with excellent resolution afforded by the CIP detector is unique and opens up wide possibilities in materials research accessible through X-ray diffraction. This article presents details of the basic features, operation and performance of the CIP detector along with some examples of applications, including high-temperature XRD.

  2. Improved spatial resolution by MOSFET dosimetry of an x-ray microbeam.

    Science.gov (United States)

    Kaplan, G I; Rosenfeld, A B; Allen, B J; Booth, J T; Carolan, M G; Holmes-Siedle, A

    2000-01-01

    Measurement of the lateral profile of the dose distribution across a narrow x-ray microbeam requires a dosimeter with a micron resolution. We investigated the use of a MOSFET dosimeter in an "edge-on" orientation with the gate insulating oxide layer parallel to the direction of the beam. We compared results using this technique to Gafchromic film measurements of a 200 micrometer wide planar x-ray microbeam. The microbeam was obtained by using a vernier micrometer-driven miniature collimator attached to a Therapax DXT300 x-ray machine operated at 100 kVp. The "edge-on" application allows utilization of the ultra thin sensitive volume of the MOSFET detector. Spatial resolution of both the MOSFET and Gafchromic film dosimeters appeared to be of about 1 micrometer. The MOSFET dosimeter appeared to provide more uniform dose profiles with the advantage of on-line measurements.

  3. High resolution X-ray spectroscopy in light antiprotonic atoms

    CERN Document Server

    Borchert, G L; Augsburger, M A; Castelli, C M; Chatellard, D; Egger, J P; El-Khoury, P; Elble, M; Gorke, H; Gotta, D; Hauser, P R; Indelicato, P J; Kirch, K; Lenz, S; Nelms, N; Rashid, K; Schult, O W B; Siems, T; Simons, L M

    2000-01-01

    At the LEAR facility, CERN, antiprotonic L alpha transitions in light elements have been investigated with a focussing crystal spectrometer. The high resolution of the experiment allowed for the first time to resolve in pH/pH the 2/sup 3/P/sub 0/ state from the close-lying states 2/sup 3/P/sub 2/, 2/sup 1/P/sub 1/, and 2/sup 3/P /sub 1/. In pD the corresponding transitions were found to be more than an order of magnitude broader. To a large extent the results for pH support the meson exchange model. (15 refs).

  4. Resolution of x-ray parabolic compound refractive diamond lens defined at the home laboratory

    Science.gov (United States)

    Polyakov, S. N.; Zholudev, S. I.; Gasilov, S. V.; Martyushov, S. Yu.; Denisov, V. N.; Terentiev, S. A.; Blank, V. D.

    2017-05-01

    Here we demonstrate performance of an original lab system designed for testing of X-ray parabolic compound refractive lenses (CRL) manufactured from a high-quality single-crystalline synthetic diamond grown by the high-pressure hightemperature technique. The basic parameters of a diamond CRL comprised from 28 plano-concave lenses such as the focal length of 634 mm, transmissivity of 0.36, field of view of 1 mm and resolution of 6 µm have been determined. Usually such measurements are performed on synchrotron radiation facilities. In this work characterization of CRL was performed by means of instruments and components that are available for laboratories such as the Rigaku 9kW rotating anode X-ray generator, the PANalytical parallel beam X-ray mirror, a 6 m long optical bench, high precision multi-axis goniometers, high resolution X-ray emulsion films, and ultra-fast high-sensitive X-ray area detector PIXel3D. Developed setup was used to find differences between experimental and design parameters, which is very important for the improvement of CRLs manufacturing technology.

  5. Probing the influence of X-rays on aqueous copper solutions using time-resolved in situ combined video/X-ray absorption near-edge/ultraviolet-visible spectroscopy

    NARCIS (Netherlands)

    Mesu, J. Gerbrand; Beale, Andrew M.|info:eu-repo/dai/nl/325802068; de Groot, Frank M. F.|info:eu-repo/dai/nl/08747610X; Weckhuysen, Bert M.|info:eu-repo/dai/nl/285484397

    2006-01-01

    Time-resolved in situ video monitoring and ultraviolet-visible spectroscopy in combination with X-ray absorption near-edge spectroscopy (XANES) have been used for the first time in a combined manner to study the effect of synchrotron radiation on a series of homogeneous aqueous copper solutions in a

  6. In Situ identification of mineral resources with an X-ray-optical "Hand-Lens" instrument

    Science.gov (United States)

    Marshall, J.; Koppel, L.; Bratton, C.; Metzger, E.; Hecht, M.

    1997-01-01

    The recognition of material resources on a planetary surface requires exploration strategies not dissimilar to those employed by early field geologists who searched for ore deposits primarily from surface clues. In order to determine the location of mineral ores or other materials, it will be necessary to characterize host terranes at regional or subregional scales. This requires geographically broad surveys in which statistically significant numbers of samples are rapidly scanned from a roving platform. To enable broad-scale, yet power-conservative planetary-surface exploration, we are developing an instrument that combines x-ray diffractometry (XRD), x-ray fluorescence spectrometry (XRF), and optical capabilities; the instrument can be deployed at the end of a rover's robotic arm, without the need for sample capture or preparation. The instrument provides XRD data for identification of mineral species and lithological types; diffractometry of minerals is conducted by ascertaining the characteristic lattice parameters or "d-spacings" of mineral compounds. D-spacings of 1.4 to 25 angstroms can be determined to include the large molecular structures of hydrated minerals such as clays. The XRF data will identify elements ranging from carbon (Atomic Number = 6) to elements as heavy as barium (Atomic Number = 56).

  7. Sample Handling System for in-situ Powder X-ray Diffraction Instruments. Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is a Powder Handling System (PHS) that will deliver powdered samples to in situ planetary XRD instruments and provide unique means of...

  8. High-resolution water window X-ray imaging of in vivo cells and their products using LiF crystal detectors.

    Science.gov (United States)

    Bonfigli, Francesca; Faenov, Anatoly; Flora, Francesco; Francucci, Massimo; Gaudio, Pasqualino; Lai, Antonia; Martellucci, Sergio; Montereali, Rosa Maria; Pikuz, Tania; Reale, Lucia; Richetta, Maria; Vincenti, Maria Aurora; Baldacchini, Giuseppe

    2008-01-01

    High contrast imaging of in vivo Chlorella sorokiniana cells with submicron spatial resolution was obtained with a contact water window X-ray microscopy technique using a point-like, laser-plasma produced, water-window X-ray radiation source, and LiF crystals as detectors. This novel type of X-ray imaging detectors is based on photoluminescence of stable electronic point defects, characterized by high intrinsic resolution. The fluorescence images obtained on LiF crystals exposed in single-shot experiments demonstrate the high sensitivity and dynamic range of this new detector. The powerful performances of LiF crystals allowed us to detect the exudates of Chlorella cells in their living medium and their spatial distribution in situ, without any special sample preparation. 2007 Wiley-Liss, Inc

  9. A Versatile System for High-Throughput In Situ X-ray Screening and Data Collection of Soluble and Membrane-Protein Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Broecker, Jana; Klingel, Viviane; Ou, Wei-Lin; Balo, Aidin R.; Kissick, David J.; Ogata, Craig M.; Kuo, Anling; Ernst, Oliver P.

    2016-10-12

    In recent years, in situ data collection has been a major focus of progress in protein crystallography. Here, we introduce the Mylar in situ method using Mylar-based sandwich plates that are inexpensive, easy to make and handle, and show significantly less background scattering than other setups. A variety of cognate holders for patches of Mylar in situ sandwich films corresponding to one or more wells makes the method robust and versatile, allows for storage and shipping of entire wells, and enables automated crystal imaging, screening, and goniometerbased X-ray diffraction data-collection at room temperature and under cryogenic conditions for soluble and membrane-protein crystals grown in or transferred to these plates. We validated the Mylar in situ method using crystals of the water-soluble proteins hen egg-white lysozyme and sperm whale myoglobin as well as the 7-transmembrane protein bacteriorhodopsin from Haloquadratum walsbyi. In conjunction with current developments at synchrotrons, this approach promises high-resolution structural studies of membrane proteins to become faster and more routine.

  10. In Situ Identification of Mineral Resources with an X-Ray-Optical "Hands-Lens" Instrument

    Science.gov (United States)

    Marshall, J.; Koppel, L.; Bratton, C.; Metzger, E.; Hecht, M.

    1999-01-01

    The recognition of material resources on a planetary surface requires exploration strategies not dissimilar to those employed by early field geologists who searched for ore deposits primarily from surface clues. In order to determine the location of mineral ores or other materials, it will be necessary to characterize host terranes at regional or subregional scales. This requires geographically broad surveys in which statistically significant numbers of samples are rapidly scanned from a roving platform. To enable broad-scale, yet power-conservative planetary-surface exploration, we are developing an instrument that combines x-ray diffractometry (XRD), x-ray fluorescence spectrometry (XRF), and optical capabilities; the instrument can be deployed at the end of a rover's robotic arm, without the need for sample capture or preparation. The instrument provides XRD data for identification of mineral species and lithological types; diffractometry of minerals is conducted by ascertaining the characteristic lattice parameters or "d-spacings" of mineral compounds. D-spacings of 1.4 to 25 angstroms can be determined to include the large molecular structures of hydrated minerals such as clays. The XRF data will identify elements ranging from carbon (Atomic Number = 6) to elements as heavy as barium (Atomic Number = 56). While a sample is being x-rayed, the instrument simultaneously acquires an optical image of the sample surface at magnifications from lx to at least 50x (200x being feasible, depending on the sample surface). We believe that imaging the sample is extremely important as corroborative sample-identification data (the need for this capability having been illustrated by the experience of the Pathfinder rover). Very few geologists would rely on instrument data for sample identification without having seen the sample. Visual inspection provides critical recognition data such as texture, crystallinity, granularity, porosity, vesicularity, color, lustre, opacity, and

  11. Improved resolution for soft-x-ray monochromatization using lamellar multilayer gratings

    NARCIS (Netherlands)

    van der Meer, R.; Krishnan, B.; Kozhevnikov, I.V.; de Boer, Meint J.; Vratzov, B.; Bastiaens, Hubertus M.J.; Huskens, Jurriaan; van der Wiel, Wilfred Gerard; Hegeman, P.E.; Brons, G.C.S.; Boller, Klaus J.; Bijkerk, Frederik; Morawe, Christian; Khounsary, Ali M.; Goto, Shunji

    2011-01-01

    Lamellar Multilayer Gratings (LMG) offer improved resolution for soft-x-ray (SXR) monochromatization, while maintaining a high reflection efficiency in comparison to conventional multilayer mirrors (MM). We previously used a Coupled-Waves Approach (CWA) to calculate SXR diffraction by LMGs and

  12. High spatial resolution X-ray and gamma ray imaging system using diffraction crystals

    Science.gov (United States)

    Smither, Robert K [Hinsdale, IL

    2011-05-17

    A method and a device for high spatial resolution imaging of a plurality of sources of x-ray and gamma-ray radiation are provided. The device comprises a plurality of arrays, with each array comprising a plurality of elements comprising a first collimator, a diffracting crystal, a second collimator, and a detector.

  13. Ultra-high aspect ratio high-resolution nanofabrication for hard X-ray diffractive optics

    Science.gov (United States)

    Chang, Chieh; Sakdinawat, Anne

    2014-06-01

    Although diffractive optics have played a major role in nanoscale soft X-ray imaging, high-resolution and high-efficiency diffractive optics have largely been unavailable for hard X-rays where many scientific, technological and biomedical applications exist. This is owing to the long-standing challenge of fabricating ultra-high aspect ratio high-resolution dense nanostructures. Here we report significant progress in ultra-high aspect ratio nanofabrication of high-resolution, dense silicon nanostructures using vertical directionality controlled metal-assisted chemical etching. The resulting structures have very smooth sidewalls and can be used to pattern arbitrary features, not limited to linear or circular. We focus on the application of X-ray zone plate fabrication for high-efficiency, high-resolution diffractive optics, and demonstrate the process with linear, circular, and spiral zone plates. X-ray measurements demonstrate high efficiency in the critical outer layers. This method has broad applications including patterning for thermoelectric materials, battery anodes and sensors among others.

  14. High resolution X-ray scattering studies of substrates and multilayers

    DEFF Research Database (Denmark)

    Christensen, Finn Erland

    1988-01-01

    High resolution X-ray scattering measurements on multilayer substrates and surfaces are reviewed. It is shown that the usual substrates of float glass and Si-wafers are dominated by large scale figure error, whereas samples of super polished SiC substrates are comparable in flatness and roughness...

  15. On the use of CCD area detectors for high-resolution specular X-ray reflectivity.

    Science.gov (United States)

    Fenter, P; Catalano, J G; Park, C; Zhang, Z

    2006-07-01

    The use and application of charge coupled device (CCD) area detectors for high-resolution specular X-ray reflectivity is discussed. Direct comparison of high-resolution specular X-ray reflectivity data measured with CCD area detectors and traditional X-ray scintillator ('point') detectors demonstrates that the use of CCD detectors leads to a substantial (approximately 30-fold) reduction in data acquisition rates because of the elimination of the need to scan the sample to distinguish signal from background. The angular resolution with a CCD detector is also improved by a factor of approximately 3. The ability to probe the large dynamic range inherent to high-resolution X-ray reflectivity data in the specular reflection geometry was demonstrated with measurements of the orthoclase (001)- and alpha-Al2O3 (012)-water interfaces, with measured reflectivity signals varying by a factor of approximately 10(6) without the use of any beam attenuators. Statistical errors in the reflectivity signal are also derived and directly compared with the repeatability of the measurements.

  16. Toward atomic resolution diffractive imaging of isolated molecules with x-ray free-electron lasers

    DEFF Research Database (Denmark)

    Stern, Stephan; Holmegaard, Lotte; Filsinger, Frank

    2014-01-01

    We give a detailed account of the theoretical analysis and the experimental results of an x-ray-diffraction experiment on quantum-state selected and strongly laser-aligned gas-phase ensembles of the prototypical large asymmetric rotor molecule 2,5-diiodobenzonitrile, performed at the Linac Cohere...... Light Source [Phys. Rev. Lett. 112, 083002 (2014)]. This experiment is the first step toward coherent diffractive imaging of structures and structural dynamics of isolated molecules at atomic resolution, i. e., picometers and femtoseconds, using x-ray free-electron lasers.......We give a detailed account of the theoretical analysis and the experimental results of an x-ray-diffraction experiment on quantum-state selected and strongly laser-aligned gas-phase ensembles of the prototypical large asymmetric rotor molecule 2,5-diiodobenzonitrile, performed at the Linac Coherent...

  17. Phase contrast enhanced high resolution X-ray imaging and tomography of soft tissue

    Energy Technology Data Exchange (ETDEWEB)

    Jakubek, Jan [Institute of Experimental and Applied Physis, Czech Technical Universtiy in Prague, Horska 3a/22, 128 00 Prague 2 (Czech Republic); Granja, Carlos [Institute of Experimental and Applied Physis, Czech Technical Universtiy in Prague, Horska 3a/22, 128 00 Prague 2 (Czech Republic)]. E-mail: carlos.granja@utef.cvut.cz; Dammer, Jiri [Institute of Experimental and Applied Physis, Czech Technical Universtiy in Prague, Horska 3a/22, 128 00 Prague 2 (Czech Republic); Hanus, Robert [Institute of Organic Chemistry and Biochemistry, Academy of Sciences, CZ-166 10 Prague 6 (Czech Republic); Holy, Tomas [Institute of Experimental and Applied Physis, Czech Technical Universtiy in Prague, Horska 3a/22, 128 00 Prague 2 (Czech Republic); Pospisil, Stanislav [Institute of Experimental and Applied Physis, Czech Technical Universtiy in Prague, Horska 3a/22, 128 00 Prague 2 (Czech Republic); Tykva, Richard [Institute of Organic Chemistry and Biochemistry, Academy of Sciences, CZ-166 10 Prague 6 (Czech Republic); Uher, Josef [Institute of Experimental and Applied Physis, Czech Technical Universtiy in Prague, Horska 3a/22, 128 00 Prague 2 (Czech Republic); Vykydal, Zdenek [Institute of Experimental and Applied Physis, Czech Technical Universtiy in Prague, Horska 3a/22, 128 00 Prague 2 (Czech Republic)

    2007-02-01

    A tabletop system for digital high resolution and high sensitivity X-ray micro-radiography has been developed for small-animal and soft-tissue imaging. The system is based on a micro-focus X-ray tube and the semiconductor hybrid position sensitive Medipix2 pixel detector. Transmission radiography imaging, conventionally based only on absorption, is enhanced by exploiting phase-shift effects induced in the X-ray beam traversing the sample. Phase contrast imaging is realized by object edge enhancement. DAQ is done by a novel fully integrated USB-based readout with online image generation. Improved signal reconstruction techniques make use of advanced statistical data analysis, enhanced beam hardening correction and direct thickness calibration of individual pixels. 2D and 3D micro-tomography images of several biological samples demonstrate the applicability of the system for biological and medical purposes including in-vivo and time dependent physiological studies in the life sciences.

  18. High-resolution interference-monochromator for hard X-rays.

    Science.gov (United States)

    Tsai, Yi-Wei; Chang, Ying-Yi; Wu, Yu-Hsin; Lee, Kun-Yuan; Liu, Shih-Lun; Chang, Shih-Lin

    2016-12-26

    An X-ray interference-monochromator combining a Fabry-Perot resonator (FPR) and a double-crystal monochromator (DCM) is proposed and realized for obtaining single-mode X-rays with 3.45 meV energy resolution. The monochromator is based on the generation of cavity interference fringes from a FPR and single-mode selection of the transmission spectrum by a DCM of a nearly backward symmetric reflection geometry. The energy of the monochromator can be tuned within 2500 meV(= ΔE) by temperature control of the FPR and the DCM crystals in the range of ΔT = 70 K at room temperature. The diffraction geometry and small size of the optical components used make the interference-monochromator very easy to be adapted in modern synchrotron beamlines and X-ray optics applications.

  19. Simulation of high-resolution X-ray microscopic images for improved alignment

    Energy Technology Data Exchange (ETDEWEB)

    Song Xiangxia; Zhang Xiaobo; Liu Gang; Cheng Xianchao; Li Wenjie; Guan Yong; Liu Ying; Xiong Ying [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029 (China); Tian Yangchao, E-mail: ychtian@ustc.edu.cn [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029 (China)

    2011-12-11

    The introduction of precision optical elements to X-ray microscopes necessitates fine realignment to achieve optimal high-resolution imaging. In this paper, we demonstrate a numerical method for simulating image formation that facilitates alignment of the source, condenser, objective lens, and CCD camera. This algorithm, based on ray-tracing and Rayleigh-Sommerfeld diffraction theory, is applied to simulate the X-ray microscope beamline U7A of National Synchrotron Radiation Laboratory (NSRL). The simulations and imaging experiments show that the algorithm is useful for guiding experimental adjustments. Our alignment simulation method is an essential tool for the transmission X-ray microscope (TXM) with optical elements and may also be useful for the alignment of optical components in other modes of microscopy.

  20. High resolution x-ray fluorescence spectroscopy - a new technique for site- and spin-selectivity

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xin [Univ. of California, Davis, CA (United States). Dept. of Applied Science

    1996-12-01

    X-ray spectroscopy has long been used to elucidate electronic and structural information of molecules. One of the weaknesses of x-ray absorption is its sensitivity to all of the atoms of a particular element in a sample. Through out this thesis, a new technique for enhancing the site- and spin-selectivity of the x-ray absorption has been developed. By high resolution fluorescence detection, the chemical sensitivity of K emission spectra can be used to identify oxidation and spin states; it can also be used to facilitate site-selective X-ray Absorption Near Edge Structure (XANES) and site-selective Extended X-ray Absorption Fine Structure (EXAFS). The spin polarization in K fluorescence could be used to generate spin selective XANES or spin-polarized EXAFS, which provides a new measure of the spin density, or the nature of magnetic neighboring atoms. Finally, dramatic line-sharpening effects by the combination of absorption and emission processes allow observation of structure that is normally unobservable. All these unique characters can enormously simplify a complex x-ray spectrum. Applications of this novel technique have generated information from various transition-metal model compounds to metalloproteins. The absorption and emission spectra by high resolution fluorescence detection are interdependent. The ligand field multiplet model has been used for the analysis of K{alpha} and K{beta} emission spectra. First demonstration on different chemical states of Fe compounds has shown the applicability of site selectivity and spin polarization. Different interatomic distances of the same element in different chemical forms have been detected using site-selective EXAFS.

  1. Affordable and lightweight high-resolution x-ray optics for astronomical missions

    Science.gov (United States)

    Zhang, W. W.; Biskach, M. P.; Bly, V. T.; Carter, J. M.; Chan, K. W.; Gaskin, J. A.; Hong, M.; Hohl, B. R.; Jones, W. D.; Kolodziejczak, J. J.; Kolos, L. D.; Mazzarella, J. R.; McClelland, R. S.; McKeon, K. P.; Miller, T. M.; O'Dell, S. L.; Riveros, R. E.; Saha, T. T.; Schofield, M. J.; Sharpe, M. V.; Smith, H. C.

    2014-07-01

    Future x-ray astronomical missions require x-ray mirror assemblies that provide both high angular resolution and large photon collecting area. In addition, as x-ray astronomy undertakes more sensitive sky surveys, a large field of view is becoming increasingly important as well. Since implementation of these requirements must be carried out in broad political and economical contexts, any technology that meets these performance requirements must also be financially affordable and can be implemented on a reasonable schedule. In this paper we report on progress of an x-ray optics development program that has been designed to address all of these requirements. The program adopts the segmented optical design, thereby is capable of making both small and large mirror assemblies for missions of any size. This program has five technical elements: (1) fabrication of mirror substrates, (2) coating, (3) alignment, (4) bonding, and (5) mirror module systems engineering and testing. In the past year we have made progress in each of these five areas, advancing the angular resolution of mirror modules from 10.8 arc-seconds half-power diameter reported (HPD) a year ago to 8.3 arc-seconds now. These mirror modules have been subjected to and passed all environmental tests, including vibration, acoustic, and thermal vacuum. As such this technology is ready for implementing a mission that requires a 10-arc-second mirror assembly. Further development in the next two years would make it ready for a mission requiring a 5-arc-second mirror assembly. We expect that, by the end of this decade, this technology would enable the x-ray astrophysical community to compete effectively for a major x-ray mission in the 2020s that would require one or more 1-arc-second mirror assemblies for imaging, spectroscopic, timing, and survey studies.

  2. Affordable and Lightweight High-Resolution X-ray Optics for Astronomical Missions

    Science.gov (United States)

    Zhang, W. W.; Biskach, M. P.; Bly, V. T.; Carter, J. M.; Chan, K. W.; Gaskin, J. A.; Hong, M.; Hohl, B. R.; Jones, W. D.; Kolodziejczak, J. J.

    2014-01-01

    Future x-ray astronomical missions require x-ray mirror assemblies that provide both high angular resolution and large photon collecting area. In addition, as x-ray astronomy undertakes more sensitive sky surveys, a large field of view is becoming increasingly important as well. Since implementation of these requirements must be carried out in broad political and economical contexts, any technology that meets these performance requirements must also be financially affordable and can be implemented on a reasonable schedule. In this paper we report on progress of an x-ray optics development program that has been designed to address all of these requirements. The program adopts the segmented optical design, thereby is capable of making both small and large mirror assemblies for missions of any size. This program has five technical elements: (1) fabrication of mirror substrates, (2) coating, (3) alignment, (4) bonding, and (5) mirror module systems engineering and testing. In the past year we have made progress in each of these five areas, advancing the angular resolution of mirror modules from 10.8 arc-seconds half-power diameter reported (HPD) a year ago to 8.3 arc-seconds now. These mirror modules have been subjected to and passed all environmental tests, including vibration, acoustic, and thermal vacuum. As such this technology is ready for implementing a mission that requires a 10-arc-second mirror assembly. Further development in the next two years would make it ready for a mission requiring a 5-arc-second mirror assembly. We expect that, by the end of this decade, this technology would enable the x-ray astrophysical community to compete effectively for a major x-ray mission in the 2020s that would require one or more 1-arc-second mirror assemblies for imaging, spectroscopic, timing, and survey studies.

  3. High Angular Resolution and Lightweight X-Ray Optics for Astronomical Missions

    Science.gov (United States)

    Zhang, W. W.; Biskach, M. P.; Blake, P. N.; Chan, K. W.; Evans, T. C.; Hong, M.; Jones, W. D.; Jones, W. D.; Kolos, L. D.; Mazzarella, J. M.; hide

    2011-01-01

    X-ray optics with both high angular resolution and lightweight is essential for further progress in x-ray astronomy. High angular resolution is important in avoiding source confusion and reducing background to enable the observation of the most distant objects of the early Universe. It is also important in enabling the use of gratings to achieve high spectral resolution to study, among other things, the myriad plasmas that exist in planetary, stellar, galactic environments, as well as interplanetary, inter-stellar, and inter-galactic media. Lightweight is important for further increase in effective photon collection area, because x-ray observations must take place on space platforms and the amount of mass that can be launched into space has always been very limited and is expected to continue to be very limited. This paper describes an x-ray optics development program and reports on its status that meets these two requirements. The objective of this program is to enable Explorer type missions in the near term and to enable flagship missions in the long term.

  4. High resolution x-ray lensless imaging by differential holographic encoding

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, D.; Guizar-Sicairos, M.; Wu, B.; Scherz, A.; Acremann, Y.; Tylisczcak, T.; Fischer, P.; Friedenberger, N.; Ollefs, K.; Farle, M.; Fienup, J. R.; Stohr, J.

    2009-11-02

    X-ray free electron lasers (X-FEL{sub s}) will soon offer femtosecond pulses of laterally coherent x-rays with sufficient intensity to record single-shot coherent scattering patterns for nanoscale imaging. Pulse trains created by splitand-delay techniques even open the door for cinematography on unprecedented nanometer length and femtosecond time scales. A key to real space ultrafast motion pictures is fast and reliable inversion of the recorded reciprocal space scattering patterns. Here we for the first time demonstrate in the x-ray regime the power of a novel technique for lensless high resolution imaging, previously suggested by Guizar-Sicairos and Fienup termed holography with extended reference by autocorrelation linear differential operation, HERALD0. We have achieved superior resolution over conventional x-ray Fourier transform holography (FTH) without sacrifices in SNR or significant increase in algorithmic complexity. By combining images obtained from individual sharp features on an extended reference, we further show that the resolution can be even extended beyond the reference fabrication limits. Direct comparison to iterative phase retrieval image reconstruction and images recorded with stateof- the-art zone plate microscopes is presented. Our results demonstrate the power of HERALDO as a favorable candidate for robust inversion of single-shot coherent scattering patterns.

  5. High-Resolution X-Ray Lensless Imaging by Differential Holographic Encoding

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Diling [Stanford Univ., CA (United States). Dept. of Applied Physics; SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Inst. for Material and Energy Science; Guizar-Sicairos, Manuel [Univ. of Rochester, NY (United States). Inst. of Optics; Wu, Benny [Stanford Univ., CA (United States). Dept. of Applied Physics; SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Inst. for Material and Energy Science; Scherz, Andreas [SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Inst. for Material and Energy Science; Acremann, Yves [SLAC National Accelerator Lab., Menlo Park, CA (United States). Photon Ultrafast Laser Science and Engineering Inst. (PULSE); Tyliszczak, Tolek [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS); Fischer, Peter [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Center for X-ray Optics; Friedenberger, Nina [Universitat Duisburg-Essen (Germany). Dept. of Physics and Center for Nanointegration Duisburg-Essen (CeNIDE); Ollefs, Katharina [Universitat Duisburg-Essen (Germany). Dept. of Physics and Center for Nanointegration Duisburg-Essen (CeNIDE); Farle, Michael [Universitat Duisburg-Essen (Germany). Dept. of Physics and Center for Nanointegration Duisburg-Essen (CeNIDE); Fienup, James R. [Univ. of Rochester, NY (United States). Inst. of Optics; Stöhr, Joachim [SLAC National Accelerator Lab., Menlo Park, CA (United States). Linac Coherent Light Source (LCLS)

    2010-07-01

    X-ray free electron lasers (X-FELs) will soon offer femtosecond pulses of laterally coherent x-rays with sufficient intensity to record single-shot coherent scattering patterns for nanoscale imaging. Pulse trains created by split and- delay techniques even open the door for cinematography on unprecedented nanometer length and femtosecond time scales. A key to real space ultrafast motion pictures is fast and reliable inversion of the recorded reciprocal space scattering patterns. Here we for the first time demonstrate in the x-ray regime the power of a novel technique for lensless high resolution imaging, previously suggested by Guizar-Sicairos and Fienup termed holography with extended reference by autocorrelation linear differential operation, HERALD0. We have achieved superior resolution over conventional x-ray Fourier transform holography (FTH) without sacrifices in SNR or significant increase in algorithmic complexity. By combining images obtained from individual sharp features on an extended reference, we further show that the resolution can be even extended beyond the reference fabrication limits. Direct comparison to iterative phase retrieval image reconstruction and images recorded with state of-the-art zone plate microscopes is presented. Our results demonstrate the power of HERALDO as a favorable candidate for robust inversion of single-shot coherent scattering patterns.

  6. Characterization of metallic nanoparticles by high-resolution X-ray absorption and X-ray emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kuehn, Timna-Josua

    2012-03-15

    In almost all areas of technology, metallic nanoparticles are of interest due to their special thermal, electronic, magnetic and optical properties. Their special properties are mainly due to their small size which implies the relevance of quantum effects as well as the significance of the surface: For 2 nm nanoparticles, the surface-to-volume ratio is already 1:1. However, the identification of surface-to-volume interactions - that are responsible for the new properties - is a difficult task due to the small size that inhibits a lot of 'standard' techniques to be applicable. Here X-ray absorption/emission spectroscopy (XAS/XES) is a favorable tool for the characterization of nanoparticles, independent on size, degree of crystallinity and shape/condition of the surface. Using XAS, a tempered nanosized Co{sub 3}Pt/C catalyst have been investigated. Its outstanding oxygen-reduction reaction (ORR) properties in a fuel cell could be related to a lowered Pt 5d-band center connected to a tightened Pt-Pt bonding distance, leading to a weakening of the oxygen adsorption strength so that the ORR may proceed faster. One drawback remains, however, as the properties found by (standard) XAS are summed up for different chemical environments of the chosen element. Thus, no distinction can be made between, e.g., the pure metal in a nanoparticles' interior and the ligated metal in the outer shells or surface. Here, high-resolution fluorescence-detected XAS (HRFD-XAS) provides additional opportunities as, due to its chemical sensitivity, it leads to site-selective XAS. For a system of 6 nm sized Co nanoparticles, build up of a metallic core surrounded by a protecting shell, that resulted from the 'smooth oxidation' process, this technique of site-selective XAS was proven to be applicable. For the first time, the interior and outer shell of a metallic nanoparticle could be characterized separately. In particular, the Co-hcp phase could be determined for the

  7. In situ X-ray crystallographic study of the structural evolution of colloidal crystals upon heating

    NARCIS (Netherlands)

    Zozulya, A.V.; Meijer, J.M.; Shabalin, A.; Ricci, A.; Westermeier, F.; Kurta, R.P.; Lorenz, U.; Singer, A.; Yefanow, O.; Petukhov, A.V.; Sprung, M.; Vartanyants, I. A.

    2013-01-01

    The structural evolution of colloidal crystals made of polystyrene hard spheres has been studied in situ upon incremental heating of a crystal in a temperature range below and above the glass transition temperature of polystyrene. Thin films of colloidal crystals having different particle sizes were

  8. High-Resolution X-Ray Scattering Topography Using Synchrotron Radiation Microbeam

    Science.gov (United States)

    Chikaura, Yoshinori; Suzuki, Yoshifumi; Kii, Hideki

    1994-02-01

    Although spatial resolution is the most essential factor determining the function of X-ray topography, it has not been improved in 30 years in spite of increasing requirements for highly-resolvable topography in materials science. X-ray scattering topography using a microbeam is a method capable of overcoming this resolution problem. Because the maximum resolution of an apparatus using a sealed-off tube is limited to 20 µ m, we designed and constructed scattering topography equipment using a synchrotron radiation microbeam. In the experiment, the slit system forms the microbeam 7 µ m in diameter. We observed a cellulose distribution in bamboo as a testing material. When the scanning step was 2 µ m, we attained spatial resolution less than 5 µ m.

  9. In situ micro-focused X-ray beam characterization with a lensless camera using a hybrid pixel detector.

    Science.gov (United States)

    Kachatkou, Anton; Marchal, Julien; van Silfhout, Roelof

    2014-03-01

    Results of studies on micro-focused X-ray beam diagnostics using an X-ray beam imaging (XBI) instrument based on the idea of recording radiation scattered from a thin foil of a low-Z material with a lensless camera are reported. The XBI instrument captures magnified images of the scattering region within the foil as illuminated by the incident beam. These images contain information about beam size, beam position and beam intensity that is extracted during dedicated signal processing steps. In this work the use of the device with beams for which the beam size is significantly smaller than that of a single detector pixel is explored. The performance of the XBI device equipped with a state-of-the-art hybrid pixel X-ray imaging sensor is analysed. Compared with traditional methods such as slit edge or wire scanners, the XBI micro-focused beam characterization is significantly faster and does not interfere with on-going experiments. The challenges associated with measuring micrometre-sized beams are described and ways of optimizing the resolution of beam position and size measurements of the XBI instrument are discussed.

  10. High numerical aperture tabletop soft x-ray diffraction microscopy with 70-nm resolution

    OpenAIRE

    Sandberg, Richard L.; Song, Changyong; Wachulak, Przemyslaw W.; Raymondson, Daisy A.; Paul, Ariel; Amirbekian, Bagrat; Lee, Edwin; Sakdinawat, Anne E.; La-O-Vorakiat, Chan; Marconi, Mario C.; Menoni, Carmen S.; Murnane, Margaret M.; Rocca, Jorge J.; Kapteyn, Henry C.; Miao, Jianwei

    2007-01-01

    Light microscopy has greatly advanced our understanding of nature. The achievable resolution, however, is limited by optical wavelengths to ≈200 nm. By using imaging and labeling technologies, resolutions beyond the diffraction limit can be achieved for specialized specimens with techniques such as near-field scanning optical microscopy, stimulated emission depletion microscopy, and photoactivated localization microscopy. Here, we report a versatile soft x-ray diffraction microscope with 70- ...

  11. In situ X-ray diffraction study of crystallization process of GeSbTe thin films during heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Naohiko [Toyota Central R and D Labs., Inc., Nagakute, Aichi 480-1192 (Japan)]. E-mail: e0957@mosk.tytlabs.co.jp; Konomi, Ichiro [Toyota Central R and D Labs., Inc., Nagakute, Aichi 480-1192 (Japan); Seno, Yoshiki [Toyota Central R and D Labs., Inc., Nagakute, Aichi 480-1192 (Japan); Motohiro, Tomoyoshi [Toyota Central R and D Labs., Inc., Nagakute, Aichi 480-1192 (Japan)

    2005-05-15

    The crystallization processes of the Ge{sub 2}Sb{sub 2}Te{sub 5} thin film used for PD and DVD-RAM were studied in its realistic optical disk film configurations for the first time by X-ray diffraction using an intense X-ray beam of a synchrotron orbital radiation facility (SPring-8) and in situ quick detection with a Position-Sensitive-Proportional-Counter. The dependence of the amorphous-to-fcc phase-change temperature T{sub 1} on the rate of temperature elevation R{sub et} gave an activation energy E{sub a}: 0.93 eV much less than previously reported 2.2 eV obtained from a model sample 25-45 times thicker than in the real optical disks. The similar measurement on the Ge{sub 4}Sb{sub 1}Te{sub 5} film whose large reflectance change attains the readability by CD-ROM drives gave E{sub a}: 1.13 eV with larger T{sub 1} than Ge{sub 2}Sb{sub 2}Te{sub 5} thin films at any R{sub et} implying a lower sensitivity in erasing as well as a better data stability of the phase-change disk.

  12. The Simultaneous Combination of Phase Contrast Imaging with In Situ X-ray diffraction from Shock Compressed Matter

    Science.gov (United States)

    McBride, Emma Elizabeth; Seiboth, Frank; Cooper, Leora; Frost, Mungo; Goede, Sebastian; Harmand, Marion; Levitan, Abe; McGonegle, David; Miyanishi, Kohei; Ozaki, Norimasa; Roedel, Melanie; Sun, Peihao; Wark, Justin; Hastings, Jerry; Glenzer, Siegfried; Fletcher, Luke

    2017-10-01

    Here, we present the simultaneous combination of phase contrast imaging (PCI) techniques with in situ X-ray diffraction to investigate multiple-wave features in laser-driven shock-compressed germanium. Experiments were conducted at the Matter at Extreme Conditions end station at the LCLS, and measurements were made perpendicular to the shock propagation direction. PCI allows one to take femtosecond snapshots of magnified real-space images of shock waves as they progress though matter. X-ray diffraction perpendicular to the shock propagation direction provides the opportunity to isolate and identify different waves and determine the crystal structure unambiguously. Here, we combine these two powerful techniques simultaneously, by using the same Be lens setup to focus the fundamental beam at 8.2 keV to a size of 1.5 mm on target for PCI and the 3rd harmonic at 24.6 keV to a spot size of 2 um on target for diffraction.

  13. Tuning of colossal dielectric constant in gold-polypyrrole composite nanotubes using in-situ x-ray diffraction techniques

    Directory of Open Access Journals (Sweden)

    Abhisakh Sarma

    2014-09-01

    Full Text Available In-situ x-ray diffraction technique has been used to study the growth process of gold incorporated polypyrrole nanotubes that exhibit colossal dielectric constant due to existence of quasi-one-dimensional charge density wave state. These composite nanotubes were formed within nanopores of a polycarbonate membrane by flowing pyrrole monomer from one side and mixture of ferric chloride and chloroauric acid from other side in a sample cell that allows collection of x-ray data during the reaction. The size of the gold nanoparticle embedded in the walls of the nanotubes was found to be dependent on chloroauric acid concentration for nanowires having diameter more than 100 nm. For lower diameter nanotubes the nanoparticle size become independent of chloroauric acid concentration and depends on the diameter of nanotubes only. The result of this study also shows that for 50 nm gold-polypyrrole composite nanotubes obtained with 5.3 mM chloroauric acid gives colossal dielectric constant of about 107. This value remain almost constant over a frequency range from 1Hz to 106 Hz even at 80 K temperature.

  14. Aerodynamic levitator for in situ x-ray structure measurements on high temperature and molten nuclear fuel materials

    Energy Technology Data Exchange (ETDEWEB)

    Weber, J. K. R.; Alderman, O. L. G. [Materials Development, Inc., Arlington Heights, Illinois 60004 (United States); Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Tamalonis, A.; Sendelbach, S. [Materials Development, Inc., Arlington Heights, Illinois 60004 (United States); Benmore, C. J. [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Hebden, A.; Williamson, M. A. [Nuclear Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2016-07-15

    An aerodynamic levitator with carbon dioxide laser beam heating was integrated with a hermetically sealed controlled atmosphere chamber and sample handling mechanism. The system enabled containment of radioactive samples and control of the process atmosphere chemistry. The chamber was typically operated at a pressure of approximately 0.9 bars to ensure containment of the materials being processed. Samples 2.5-3 mm in diameter were levitated in flowing gas to achieve containerless conditions. Levitated samples were heated to temperatures of up to 3500 °C with a partially focused carbon dioxide laser beam. Sample temperature was measured using an optical pyrometer. The sample environment was integrated with a high energy (100 keV) x-ray synchrotron beamline to enable in situ structure measurements to be made on levitated samples as they were heated, melted, and supercooled. The system was controlled from outside the x-ray beamline hutch by using a LabVIEW program. Measurements have been made on hot solid and molten uranium dioxide and binary uranium dioxide-zirconium dioxide compositions.

  15. Tuning of colossal dielectric constant in gold-polypyrrole composite nanotubes using in-situ x-ray diffraction techniques

    Energy Technology Data Exchange (ETDEWEB)

    Sarma, Abhisakh; Sanyal, Milan K., E-mail: milank.sanyal@saha.ac.in [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700 064 (India)

    2014-09-15

    In-situ x-ray diffraction technique has been used to study the growth process of gold incorporated polypyrrole nanotubes that exhibit colossal dielectric constant due to existence of quasi-one-dimensional charge density wave state. These composite nanotubes were formed within nanopores of a polycarbonate membrane by flowing pyrrole monomer from one side and mixture of ferric chloride and chloroauric acid from other side in a sample cell that allows collection of x-ray data during the reaction. The size of the gold nanoparticle embedded in the walls of the nanotubes was found to be dependent on chloroauric acid concentration for nanowires having diameter more than 100 nm. For lower diameter nanotubes the nanoparticle size become independent of chloroauric acid concentration and depends on the diameter of nanotubes only. The result of this study also shows that for 50 nm gold-polypyrrole composite nanotubes obtained with 5.3 mM chloroauric acid gives colossal dielectric constant of about 10{sup 7}. This value remain almost constant over a frequency range from 1Hz to 10{sup 6} Hz even at 80 K temperature.

  16. Aerodynamic levitator for in situ x-ray structure measurements on high temperature and molten nuclear fuel materials.

    Science.gov (United States)

    Weber, J K R; Tamalonis, A; Benmore, C J; Alderman, O L G; Sendelbach, S; Hebden, A; Williamson, M A

    2016-07-01

    An aerodynamic levitator with carbon dioxide laser beam heating was integrated with a hermetically sealed controlled atmosphere chamber and sample handling mechanism. The system enabled containment of radioactive samples and control of the process atmosphere chemistry. The chamber was typically operated at a pressure of approximately 0.9 bars to ensure containment of the materials being processed. Samples 2.5-3 mm in diameter were levitated in flowing gas to achieve containerless conditions. Levitated samples were heated to temperatures of up to 3500 °C with a partially focused carbon dioxide laser beam. Sample temperature was measured using an optical pyrometer. The sample environment was integrated with a high energy (100 keV) x-ray synchrotron beamline to enable in situ structure measurements to be made on levitated samples as they were heated, melted, and supercooled. The system was controlled from outside the x-ray beamline hutch by using a LabVIEW program. Measurements have been made on hot solid and molten uranium dioxide and binary uranium dioxide-zirconium dioxide compositions.

  17. Multiferroic CuCrO₂ under high pressure: In situ X-ray diffraction and Raman spectroscopic studies

    Energy Technology Data Exchange (ETDEWEB)

    Garg, Alka B., E-mail: alkagarg@barc.gov.in; Mishra, A. K.; Pandey, K. K.; Sharma, Surinder M. [High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2014-10-07

    The compression behavior of delafossite compound CuCrO₂ has been investigated by in situ x-ray diffraction (XRD) and Raman spectroscopic measurements up to 23.2 and 34 GPa, respectively. X-ray diffraction data show the stability of ambient rhombohedral structure up to ~23 GPa. Material shows large anisotropy in axial compression with c-axis compressibility, κ{sub c} = 1.26 × 10⁻³(1) GPa⁻¹ and a-axis compressibility, κ{sub a} = 8.90 × 10⁻³(6) GPa⁻¹. Our XRD data show an irreversible broadening of diffraction peaks. Pressure volume data when fitted to 3rd order Birch-Murnaghan equation of state give the value of bulk modulus, B₀ = 156.7(2.8) GPa with its pressure derivative, B₀{sup ’} as 5.3(0.5). All the observed vibrational modes in Raman measurements show hardening with pressure. Appearance of a new mode at ~24 GPa indicates the structural phase transition in the compound. Our XRD and Raman results indicate that CuCrO{sub 2} may be transforming to an ordered rocksalt type structure under compression.

  18. Measuring twinning and slip in shock-compressed Ta from in-situ x-ray diffraction

    Science.gov (United States)

    Wehrenberg, Christopher; McGonegle, David; Sliwa, Marcin; Suggit, Matt; Wark, Justin; Lee, Hae Ja; Nagler, Bob; Tavella, Franz; Remington, Bruce; Rudd, Rob; Lazicki, Amy; Park, Hye-Sook; Swift, Damian; Zepeda-Ruiz, Louis; Higginbotham, Andrew; Bolme, Cindy

    2017-06-01

    A fundamental understanding of high-pressure and high-strain-rate deformation rests on grasping the underlying microstructural processes, such as twinning and dislocation generation and transport (slip), yet simulations and ex-post-facto recovery experiments provide conflicting answers to these basic issues. Here, we report direct, in-situ observation of twinning and slip in shock compressed Ta using in-situ x-ray diffraction. A series of shock experiments were performed on the Matter in Extreme Conditions end station at LCLS. Direct laser ablation was used to drive a shock, ranging in pressure from 10-300 GPa, into a Ta sample with an initial (110) fiber texture. The subsequent changes in texture were observed in-situ by examining the azimuthal distribution of the diffraction intensity and found to match twinning and lattice rotation. Measurements of the twin fraction and lattice rotation were used to calculate the equivalent plastic strain from twinning and slip. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  19. The chemical sensitivity of X-ray spectroscopy: high energy resolution XANES versus X-ray emission spectroscopy of substituted ferrocenes.

    Science.gov (United States)

    Atkins, Andrew J; Bauer, Matthias; Jacob, Christoph R

    2013-06-07

    X-ray spectroscopy at the metal K-edge is an important tool for understanding catalytic processes and provides insight into the geometric and electronic structures of transition metal complexes. In particular, X-ray emission-based methods such as high-energy resolution fluorescence detection (HERFD), X-ray absorption near-edge spectroscopy (XANES) and valence-to-core X-ray emission spectroscopy (V2C-XES) hold the promise of providing increased chemical sensitivity compared to conventional X-ray absorption spectroscopy. Here, we explore the ability of HERFD-XANES and V2C-XES spectroscopy to distinguish substitutions beyond the directly coordinated atoms for the example of ferrocene and selected ferrocene derivatives. The experimental spectra are assigned and interpreted through the use of density functional theory (DFT) calculations. We find that while the pre-edge peaks in the HERFD-XANES spectra are affected by substituents at the cyclopentadienyl ring containing π-bonds [A. J. Atkins, Ch. R. Jacob and M. Bauer, Chem.-Eur. J., 2012, 18, 7021], the V2C-XES spectra are virtually unchanged. The pre-edge in HERFD-XANES probes the weak transition to unoccupied metal d-orbitals, while the V2C-XES spectra are determined by dipole-allowed transitions from occupied ligand orbitals to the 1s core hole. The latter turn out to be less sensitive to changes beyond the first coordination shell.

  20. A flow cell for the study of gas-solid reactions via in situ powder X-ray diffraction

    Science.gov (United States)

    Scarlett, Nicola V. Y.; Hewish, Damien; Pattel, Rachel; Webster, Nathan A. S.

    2017-10-01

    This paper describes the development and testing of a novel capillary flow cell for use in in situ powder X-ray diffraction experiments. It is designed such that it achieves 200° of rotation of the capillary whilst still allowing the flow of gas through the sample and the monitoring of off gas via mass spectrometry, gas chromatography, or other such analytical techniques. This high degree of rotation provides more uniform heating of the sample than can be achieved in static cells or those with lower rotational ranges and consequently also improves particle statistics. The increased uniformity of heating provides more accurate temperature calibration of the experimental setup as well. The cell is designed to be held in a standard goniometer head and is therefore suitable for use in many laboratory and synchrotron instruments.

  1. In-situ early stage electromigration study in Al line using synchrotron polychromatic X-ray microdiffraction

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Kai; Tamura, Nobumichi; Tu, King-Ning

    2007-10-31

    Electromigration is a phenomenon that has attracted much attention in the semiconductor industry because of its deleterious effects on electronic devices (such as interconnects) as they become smaller and current density passing through them increases. However, the effect of the electric current on the microstructure of interconnect lines during the very early stage of electromigration is not well documented. In the present report, we used synchrotron radiation based polychromatic X-ray microdiffraction for the in-situ study of the electromigration induced plasticity effects on individual grains of an Al (Cu) interconnect test structure. Dislocation slips which are activated by the electric current stressing are analyzed by the shape change of the diffraction peaks. The study shows polygonization of the grains due to the rearrangement of geometrically necessary dislocations (GND) in the direction of the current. Consequences of these findings are discussed.

  2. α-Synuclein insertion into supported lipid bilayers as seen by in situ X-ray reflectivity.

    Science.gov (United States)

    Hähl, Hendrik; Möller, Isabelle; Kiesel, Irena; Campioni, Silvia; Riek, Roland; Verdes, Dorinel; Seeger, Stefan

    2015-03-18

    Large aggregates of misfolded α-synuclein inside neuronal cells are the hallmarks of Parkinson's disease. The protein's natural function and its supposed toxicity, however, are believed to be closely related to its interaction with cell and vesicle membranes. Upon this interaction, the protein folds into an α-helical structure and intercalates into the membrane. In this study, we focus on the changes in the lipid bilayer caused by this intrusion. In situ X-ray reflectivity was applied to determine the vertical density structure of the bilayer before and after exposure to α-synuclein. It was found that the α-synuclein insertion, wild type and E57K variant, caused a reduction in bilayer thickness. This effect may be one factor in the membrane pore formation ability of α-synuclein.

  3. In-situ stress measurement of single and multilayer thin-films used in x-ray astronomy optics applications

    Science.gov (United States)

    Broadway, David M.; Ramsey, Brian D.; O'Dell, Stephen L.; Gurgew, Danielle

    2017-09-01

    We present in-situ stress measurement results for single and multilayer thin-films deposited by magnetron sputtering. In particular, we report on the influence of the material interfaces on the ensuing stress in both the transient and steady-state regimes of film growth. This behavior is used to determine the appropriate thicknesses of the constituent layers that will result in a net tensile stress in multilayers composed of various material combinations. These multilayers can then be used to compensate the compressive integrated stress in single and multilayer EUV and x-ray optical coatings. The use of multilayers to compensate the integrated stress might be advantageous because, unlike single layers of chromium, the roughness is not expected to increase with the total thickness of the multilayer. In this paper, we demonstrate the technique for W/Si and Mo/Si multilayers and discuss its application to other material combinations.

  4. Probing the electron beam induced reduction of graphite oxide by in situ X-ray photoelectron spectroscopy/mass spectrometer

    Science.gov (United States)

    Zhu, Chunhua; Hao, Xiaofei; Liu, Yu; Wu, Yeping; Wang, Jianhua

    2018-01-01

    The graphite oxide (GO) was reduced successfully by electron-beam irradiation without solution chemistry and high temperature, where the chemical structural changes and gaseous species released during the exposure was monitored directly by X-ray photoelectron spectroscopy/mass spectrometer. The degree of reduction of GO can be tuned effectively by way of electron beam intensity and irradiation time, resulting a high C/O ratio of 5.27. The evolution of C 1s spectra with irradiation time was also investigated. The CO, CO2, H2 molecules and several organic species were detected during the irradiation, confirmed that the electron beam induced the photoreduction of GO. The combined chemical structure evolution and gas species analysis make the XPS-MS highly desirable as a powerful in situ analytical instrument for tracking the reaction process. The electron-beam-induced reduction described in detail here provides potential way to fabricate graphene device from GO in one step.

  5. In-situ characterization of highly reversible phase transformation by synchrotron X-ray Laue microdiffraction

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xian [Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay (Hong Kong); Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Tamura, Nobumichi; MacDowell, Alastair [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); James, Richard D. [Department of Aerospace Engineering and Mechanics, University of Minnesota, Minneapolis, Minnesota 55455 (United States)

    2016-05-23

    The alloy Cu{sub 25}Au{sub 30}Zn{sub 45} undergoes a huge first-order phase transformation (6% strain) and shows a high reversibility under thermal cycling and an unusual martensitc microstructure in sharp contrast to its nearby compositions. This alloy was discovered by systematically tuning the composition so that its lattice parameters satisfy the cofactor conditions (i.e., the kinematic conditions of compatibility between phases). It was conjectured that satisfaction of these conditions is responsible for the enhanced reversibility as well as the observed unusual fluid-like microstructure during transformation, but so far, there has been no direct evidence confirming that these observed microstructures are those predicted by the cofactor conditions. To verify this hypothesis, we use synchrotron X-ray Laue microdiffraction to measure the orientations and structural parameters of variants and phases near the austenite/martensite interface. The areas consisting of both austenite and multi-variants of martensite are scanned by microLaue diffraction. The cofactor conditions have been examined from the kinematic relation of lattice vectors across the interface. The continuity condition of the interface is precisely verified from the correspondent lattice vectors between two phases.

  6. Characterization of high-resolution diffractive X-ray optics by ptychographic coherent diffractive imaging.

    Science.gov (United States)

    Vila-Comamala, Joan; Diaz, Ana; Guizar-Sicairos, Manuel; Mantion, Alexandre; Kewish, Cameron M; Menzel, Andreas; Bunk, Oliver; David, Christian

    2011-10-24

    We have employed ptychographic coherent diffractive imaging to completely characterize the focal spot wavefield and wavefront aberrations of a high-resolution diffractive X-ray lens. The ptychographic data from a strongly scattering object was acquired using the radiation cone emanating from a coherently illuminated Fresnel zone plate at a photon energy of 6.2 keV. Reconstructed images of the object were retrieved with a spatial resolution of 8 nm by combining the difference-map phase retrieval algorithm with a non-linear optimization refinement. By numerically propagating the reconstructed illumination function, we have obtained the X-ray wavefield profile of the 23 nm round focus of the Fresnel zone plate (outermost zone width, Δr = 20 nm) as well as the X-ray wavefront at the exit pupil of the lens. The measurements of the wavefront aberrations were repeatable to within a root mean square error of 0.006 waves, and we demonstrate that they can be related to manufacturing aspects of the diffractive optical element and to errors on the incident X-ray wavefront introduced by the upstream beamline optics. © 2011 Optical Society of America

  7. From lows to highs: using low-resolution models to phase X-ray data

    Energy Technology Data Exchange (ETDEWEB)

    Stuart, David I. [University of Oxford, Roosevelt Drive, Headington, Oxford OX3 7BN (United Kingdom); Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot (United Kingdom); Abrescia, Nicola G. A., E-mail: nabrescia@cicbiogune.es [CIC bioGUNE, CIBERehd, Bizkaia Technology Park, Bld 800, 48160 Derio (Spain); IKERBASQUE, Basque Foundation for Science, 48011 Bilbao (Spain); University of Oxford, Roosevelt Drive, Headington, Oxford OX3 7BN (United Kingdom)

    2013-11-01

    An unusual example of how virus structure determination pushes the limits of the molecular replacement method is presented. The study of virus structures has contributed to methodological advances in structural biology that are generally applicable (molecular replacement and noncrystallographic symmetry are just two of the best known examples). Moreover, structural virology has been instrumental in forging the more general concept of exploiting phase information derived from multiple structural techniques. This hybridization of structural methods, primarily electron microscopy (EM) and X-ray crystallography, but also small-angle X-ray scattering (SAXS) and nuclear magnetic resonance (NMR) spectroscopy, is central to integrative structural biology. Here, the interplay of X-ray crystallography and EM is illustrated through the example of the structural determination of the marine lipid-containing bacteriophage PM2. Molecular replacement starting from an ∼13 Å cryo-EM reconstruction, followed by cycling density averaging, phase extension and solvent flattening, gave the X-ray structure of the intact virus at 7 Å resolution This in turn served as a bridge to phase, to 2.5 Å resolution, data from twinned crystals of the major coat protein (P2), ultimately yielding a quasi-atomic model of the particle, which provided significant insights into virus evolution and viral membrane biogenesis.

  8. In-situ X-ray observations of creep behavior during the olivine-spinel transformation in fayalite

    Science.gov (United States)

    Kubo, T.; Doi, N.; Imamura, M.; Kato, T.; Higo, Y.; Tange, Y.

    2016-12-01

    Most of constituent minerals in subducting slab cause high-pressure transformations in mantle transition zone, which largely affects rheology of the deep slab. Previous studies have suggested that the grain-size reduction due to non-equilibrium olivine-spinel transformation leads to weakening and shear instability in the slab, which may be responsible for the slab stagnation and deep earthquakes. However, there have been few experimental studies to examine the coupling process between transformation and deformation at high pressure quantitatively. Here we report preliminary results on in-situ X-ray observations of creep behaviors during the olivine-spinel transformation in fayalite (Fe2SiO4). High-pressure deformation experiments were conducted using Deformation-DIA apparatus in the beamline of BL04B1 at the synchrotron facility of SPring-8. Monochromatic X-ray (energy 50-60 keV) was used as the incident beam. We measured time-resolved two-dimensional X-ray diffraction patterns and X-ray radiography images to obtain stress-strain and transformation-time (strain) curves, simultaneously. After annealing polycrystalline fayalite at 3.5 GP and 1173 K for 2 hours, we observed the olivine-spinel transformation at 5-9 GPa and 873-1173 K with and without deformation (in uniaxial compression with constant strain rate of 4-5 x 10-5 s-1). Overpressures needed for the transformation increased with decreasing temperature from 1.5 GPa and 1173 K to 3.8 GPa at 973 K in the case of no deformation. When the sample was deformed, the overpressures decreased by 0.5-1 GPa compared to the case of no deformation, suggesting the enhancement of spinel nucleation. Transformation was not observed at 873 K even when the overpressure reached to 4 GPa with deformation. Stress in olivine, spinel, and the bulk sample (from stress marker arranged in tandem) were similar at the initial stage, and then spinel becomes dominant deformation phase at around 50% transformation. During the

  9. High-resolution x-ray scatter and reflectivity study of sputtered IR surfaces

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Abdali, S.; Hornstrup, Allan

    1993-01-01

    In recent years there has been an increased interest in the possible use of Ir as the reflecting surface in X-ray telescope programs. An X-ray study of such surfaces produced by sputtering of Ir on highly polished Zerodur flats is presented here. The study was performed using Fe K(alpha) 1 (6.......404 Kev) and Cu K(alpha) 1 (8.048 keV) and includes measurement of total external reflection and scattering. The scattering measurement was made with three different instruments arrangements; one employed a 1D position sensitive detector for low resolution studies giving approximately 30 arcsec resolution...... (FWHM), and the other two arrangements employed channel cut crystals providing resolutions (FWHM) of 5 arcsec and 1 arcsec, respectively at Cu K(alpha) 1. The reflectivity study revealed a very close correspondence with a theoretical model based on recently published optical constants. This important...

  10. High-resolution X-ray diffraction imaging of non-Bragg diffracting materials using phase retrieval X-ray diffractometry (PRXRD) technique

    Energy Technology Data Exchange (ETDEWEB)

    Nikulin, A.Y.; Darahanau, A.V.; Horney, R.; Ishikawa, T

    2004-06-15

    An X-ray diffraction technique has recently been developed and successfully applied to comprehensively, including both phase and amplitude contrast, map the complex refractive index of non-crystalline materials with submicron spatial resolution. The methodology is based on the measurement of a high angular resolution X-ray Fraunhofer diffraction pattern with further application of the phase-retrieval formalism using a logarithmic dispersion relation. The technique is reviewed from the perspective of its ability to deliver ultra-high, order of several nanometres, spatial resolution and to uniquely determine both the real and imaginary components of the complex refractive index of the material under analysis. Potential niche of practical applications is discussed in terms of the spatial resolution and field of view achievable by the method.

  11. Ultra-high-resolution inelastic X-ray scattering at high-repetition-rate self-seeded X-ray free-electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Chubar, Oleg [Brookhaven National Laboratory, Upton, NY 11973 (United States); Geloni, Gianluca [European X-ray Free-Electron Laser, Albert-Einstein-Ring 19, 22761 Hamburg (Germany); Kocharyan, Vitali [Deutsches Elektronen-Synchrotron, 22761 Hamburg (Germany); Madsen, Anders [European X-ray Free-Electron Laser, Albert-Einstein-Ring 19, 22761 Hamburg (Germany); Saldin, Evgeni; Serkez, Svitozar [Deutsches Elektronen-Synchrotron, 22761 Hamburg (Germany); Shvyd’ko, Yuri, E-mail: shvydko@aps.anl.gov [Argonne National Laboratory, Argonne, IL 60439 (United States); Sutter, John [Diamond Light Source Ltd, Didcot OX11 0DE (United Kingdom)

    2016-02-12

    This article explores novel opportunities for ultra-high-resolution inelastic X-ray scattering (IXS) at high-repetition-rate self-seeded XFELs. These next-generation light sources are promising a more than three orders of magnitude increase in average spectral flux compared with what is possible with storage-ring-based radiation sources. In combination with the advanced IXS spectrometer described here, this may become a real game-changer for ultra-high-resolution X-ray spectroscopies, and hence for the studies of dynamics in condensed matter systems. Inelastic X-ray scattering (IXS) is an important tool for studies of equilibrium dynamics in condensed matter. A new spectrometer recently proposed for ultra-high-resolution IXS (UHRIX) has achieved 0.6 meV and 0.25 nm{sup −1} spectral and momentum-transfer resolutions, respectively. However, further improvements down to 0.1 meV and 0.02 nm{sup −1} are required to close the gap in energy–momentum space between high- and low-frequency probes. It is shown that this goal can be achieved by further optimizing the X-ray optics and by increasing the spectral flux of the incident X-ray pulses. UHRIX performs best at energies from 5 to 10 keV, where a combination of self-seeding and undulator tapering at the SASE-2 beamline of the European XFEL promises up to a 100-fold increase in average spectral flux compared with nominal SASE pulses at saturation, or three orders of magnitude more than what is possible with storage-ring-based radiation sources. Wave-optics calculations show that about 7 × 10{sup 12} photons s{sup −1} in a 90 µeV bandwidth can be achieved on the sample. This will provide unique new possibilities for dynamics studies by IXS.

  12. Characterization of beryllium deformation using in-situ x-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Magnuson, Eric Alan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Brown, Donald William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Clausen, Bjorn [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sisneros, Thomas A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Park, Jun-Sang [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-08-24

    Beryllium’s unique mechanical properties are extremely important in a number of high performance applications. Consequently, accurate models for the mechanical behavior of beryllium are required. However, current models are not sufficiently microstructure aware to accurately predict the performance of beryllium under a range of processing and loading conditions. Previous experiments conducted using the SMARTS and HIPPO instruments at the Lujan Center(LANL), have studied the relationship between strain rate and texture development, but due to the limitations of neutron diffraction studies, it was not possible to measure the response of the material in real-time. In-situ diffraction experiments conducted at the Advanced Photon Source have allowed the real time measurement of the mechanical response of compressed beryllium. Samples of pre-strained beryllium were reloaded orthogonal to their original load path to show the reorientation of already twinned grains. Additionally, the in-situ experiments allowed the real time tracking of twin evolution in beryllium strained at high rates. The data gathered during these experiments will be used in the development and validation of a new, microstructure aware model of the constitutive behavior of beryllium.

  13. The X-ray high resolution Chandra spectra of Nova SMC 2016

    Science.gov (United States)

    Orio, Marina; Aydi, Elias; Behar, Ehud; Buckley, David; Dobrotka, Andrej; Ness, Jan-Uwe; Page, Kim L.; Rauch, Thomas; Zemko, Polina

    2017-08-01

    Nova SMC 2016 was discovered in the direction of the SMC by the MASTER Global Robotic Net on 2016 October 14. At peak optical magnitude B~9.55, if it is located in the SMC it is one of the intrinsically most luminous novae ever recorded. The X-ray to optical luminosity of the nova is around the average value, so it was also very X-ray luminous for a nova in the SMC. It was classified as a fast nova. It was monitored with Swift until the present day (2017 May), with close cadence whenever it was feasible, and we were able to observe it on the rise to maximum X-ray luminosity on 2016 November 17-18 and at maximum on 2017 January 4 with the Chandra Low Energy Transmission Grating (another high resolution X-ray spectrum was obtained with XMM-Newton on 2016 December 22). We report on the luminous supersoft spectrum of the central source observed with Chandra, a luminous stellar continuum with effective temperature of about 650,000 K in December and 750,000 K in January, with deep absorption features of carbon, nitrogen and sulphur, blue-shifted by about 1700 km/s in November and by 2100 km/s in January. We describe the results of our initial spectral and timing analysis.

  14. Sub-atomic resolution X-ray crystallography and neutron crystallography: promise, challenges and potential

    Directory of Open Access Journals (Sweden)

    Matthew P. Blakeley

    2015-07-01

    Full Text Available The International Year of Crystallography saw the number of macromolecular structures deposited in the Protein Data Bank cross the 100000 mark, with more than 90000 of these provided by X-ray crystallography. The number of X-ray structures determined to sub-atomic resolution (i.e. ≤1 Å has passed 600 and this is likely to continue to grow rapidly with diffraction-limited synchrotron radiation sources such as MAX-IV (Sweden and Sirius (Brazil under construction. A dozen X-ray structures have been deposited to ultra-high resolution (i.e. ≤0.7 Å, for which precise electron density can be exploited to obtain charge density and provide information on the bonding character of catalytic or electron transfer sites. Although the development of neutron macromolecular crystallography over the years has been far less pronounced, and its application much less widespread, the availability of new and improved instrumentation, combined with dedicated deuteration facilities, are beginning to transform the field. Of the 83 macromolecular structures deposited with neutron diffraction data, more than half (49/83, 59% were released since 2010. Sub-mm3 crystals are now regularly being used for data collection, structures have been determined to atomic resolution for a few small proteins, and much larger unit-cell systems (cell edges >100 Å are being successfully studied. While some details relating to H-atom positions are tractable with X-ray crystallography at sub-atomic resolution, the mobility of certain H atoms precludes them from being located. In addition, highly polarized H atoms and protons (H+ remain invisible with X-rays. Moreover, the majority of X-ray structures are determined from cryo-cooled crystals at 100 K, and, although radiation damage can be strongly controlled, especially since the advent of shutterless fast detectors, and by using limited doses and crystal translation at micro-focus beams, radiation damage can still take place

  15. Improved multivariate analysis for fast and selective monitoring of structural dynamics by in situ X-ray powder diffraction.

    Science.gov (United States)

    Guccione, Pietro; Palin, Luca; Milanesio, Marco; Belviso, Benny Danilo; Caliandro, Rocco

    2017-11-06

    The development of two solid-state reactions, Xe absorption into MFI and molecular complex formation, where samples are affected by changes of crystal lattice due to temperature or pressure variation was structurally monitored through in situ or in operando X-ray powder diffraction experiments. Consequent variations of the peak positions prevent collective analysis of measured patterns, aiming at investigating structural changes occurring within the crystal cell. Moreover, an intrinsic and variable error in peak position is unavoidable when using the Bragg-Brentano geometry and, in some cases (sticky, bulky, aggregate samples) the sample mounting can increase the error within a dataset. Here we present a general multivariate analysis method to process in a fast and automatic way in situ XRPD data collected on charge transfer complexes and porous materials, with the capacity of disentangling peak shifts from intensity and shape variations in diffraction signals, thus allowing an efficient separation of the contribution of crystal lattice changes from structural changes. The peak shift correction allowed an improved PCA analysis that turned out to be more sensible than the traditional single pattern Rietveld analysis. The developed algorithms allowed, with respect to the traditional approach, the location of two new Xe positions into MFI with a better interpretation of the experimental data, while a much faster and more efficient recovery of the reaction coordinate was achieved in the molecular complex formation reaction.

  16. In situ x-ray diffraction of solution-derived ferroelectric thin films for quantitative phase and texture evolution measurement

    Science.gov (United States)

    Nittala, Krishna; Mhin, Sungwook; Jones, Jacob L.; Robinson, Douglas S.; Ihlefeld, Jon F.; Brennecka, Geoff L.

    2012-11-01

    An in situ measurement technique is developed and presented, which utilizes x-rays from a synchrotron source with a two-dimensional detector to measure thin film microstructural and crystallographic evolution during heating. A demonstration experiment is also shown wherein the measured diffraction patterns are used to describe phase and texture evolution during heating and crystallization of solution-derived thin films. The diffraction images are measured sequentially while heating the thin film with an infrared lamp. Data reduction methodologies and representations are also outlined to extract phase and texture information from the diffraction images as a function of time and temperature. These techniques and data reduction methods are demonstrated during crystallization of solution-derived lead zirconate titanate ferroelectric thin films heated at a rate of 30 °C/min and using an acquisition time of 8 s. During heating and crystallization, a PtxPb type phase was not observed. A pyrochlore phase was observed prior to the formation and growth of the perovskite phase. The final crystallized films are observed to have both 111 and 100 texture components. The in situ measurement methodology developed in this work allows for acquiring diffraction images in times as low as 0.25 s and can be used to investigate changes during crystallization at faster heating rates. Moreover, the experiments are shown to provide unique information during materials processing.

  17. Beamline electrostatic levitator for in situ high energy x-ray diffraction studies of levitated solids and liquids

    Energy Technology Data Exchange (ETDEWEB)

    Gangopadhyay, A.K.; Lee, G.W.; Kelto, K.F.; Rogers, J.R.; Goldman, A.I.; Robinson, D.S.; Rathz, T.J.; Hyers, R.W. (WU); (UAB); (NASA); (UMASS, Amherst)

    2010-07-19

    Determinations of the phase formation sequence, crystal structures and the thermo-physical properties of materials at high temperatures are hampered by contamination from the sample container and environment. Containerless processing techniques, such as electrostatic (ESL), electromagnetic, aerodynamic, and acoustic levitation, are most suitable for these studies. An adaptation of ESL for in situ structural studies of a wide range of materials using high energy (30-130 keV) x rays at a synchrotron source is described here. This beamline ESL (BESL) allows the in situ determination of the atomic structures of equilibrium solid and liquid phases, undercooled liquids and time-resolved studies of solid-solid and liquid-solid phase transformations. The use of area detectors enables the rapid acquisition of complete diffraction patterns over a wide range (0.5-14 {angstrom}{sup -1}) of reciprocal space. The wide temperature range (300-2500 K), containerless processing environment under high vacuum (10{sup -7}-10{sup -8} Torr), and fast data acquisition capability, make BESL particularly well suited for phase stability studies of high temperature solids and liquids. An additional, but important, feature of BESL is the capability for simultaneous measurements of a host of thermo-physical properties including the specific heat, enthalpy of transformation, solidus and liquidus temperatures, density, viscosity, and surface tension, all on the same sample during the structural measurements.

  18. Strategies for in situ laser heating in the diamond anvil cell at an X-ray diffraction beamline.

    Science.gov (United States)

    Petitgirard, Sylvain; Salamat, Ashkan; Beck, Pierre; Weck, Gunnar; Bouvier, Pierre

    2014-01-01

    An overview of several innovations regarding in situ laser-heating techniques in the diamond anvil cell at the high-pressure beamline ID27 of the European Synchrotron Radiation Facility is presented. Pyrometry measurements have been adapted to allow simultaneous double-sided temperature measurements with the installation of two additional online laser systems: a CO2 and a pulsed Nd:YAG laser system. This reiteration of laser-heating advancements at ID27 is designed to pave the way for a new generation of state-of-the-art experiments that demand the need for synchrotron diffraction techniques. Experimental examples are provided for each major development. The capabilities of the double pyrometer have been tested with the Nd:YAG continuous-wave lasers but also in a time-resolved configuration using the nanosecond-pulsed Nd:YAG laser on a Fe sample up to 180 GPa and 2900 K. The combination of time-resolved X-ray diffraction with in situ CO2 laser heating is shown with the crystallization of a high-pressure phase of the naturally found pyrite mineral MnS2 (11 GPa, 1100-1650 K).

  19. Formation and texture of palladium germanides studied by in situ X-ray diffraction and pole figure measurements

    Energy Technology Data Exchange (ETDEWEB)

    Geenen, F.A., E-mail: Filip.Geenen@UGent.be [Ghent University, Department of Solid-State Sciences, Krijgslaan 281 (S1), 9000 Gent (Belgium); Knaepen, W.; De Keyser, K. [Ghent University, Department of Solid-State Sciences, Krijgslaan 281 (S1), 9000 Gent (Belgium); Opsomer, K. [Interuniversitair Micro-Electronica Centrum (IMEC), Kapeldreef 75, 3001 Leuven (Belgium); Vanmeirhaeghe, R.L. [Ghent University, Department of Solid-State Sciences, Krijgslaan 281 (S1), 9000 Gent (Belgium); Jordan-Sweet, J.; Lavoie, C. [IBM T.J. Watson Research Center, Yorktown (United States); Detavernier, C. [Ghent University, Department of Solid-State Sciences, Krijgslaan 281 (S1), 9000 Gent (Belgium)

    2014-01-31

    The solid state reaction between 30 nm Pd films and various Ge substrates (Ge(100), Ge(111), polycrystalline Ge and amorphous Ge) was studied by means of in situ X-ray diffraction and in situ sheet resistance measurements. The reported phase sequence of Pd{sub 2}Ge followed by PdGe was verified on all substrates. The texture of the germanides was analysed by pole figure measurements on samples quenched in the Pd{sub 2}Ge and in the PdGe phase on both Ge(100) and (111) substrates. We report an epitaxial growth of Pd{sub 2}Ge on Ge(111) and on Ge(100). The formed PdGe has an axiotaxial alignment on Ge(111). On Ge(100), the axiotaxial texture is observed together with a fibre texture. The higher formation temperature of PdGe on Ge(111) could be related to the epitaxial alignment of the Pd{sub 2}Ge parent phase on Ge(111). - Highlights: • Solid-state reaction is studied on a Pd film with Ge substrates. • Pd2Ge grains have an epitaxial texture on both Ge 100 and Ge 111. • PdGe grains are found to grow with an axiotaxial texture. • Retarded PdGe formation on Ge111 is related with strong epitaxy of Pd2Ge.

  20. Strategies for in situ laser heating in the diamond anvil cell at an X-ray diffraction beamline

    Science.gov (United States)

    Petitgirard, Sylvain; Salamat, Ashkan; Beck, Pierre; Weck, Gunnar; Bouvier, Pierre

    2014-01-01

    An overview of several innovations regarding in situ laser-heating techniques in the diamond anvil cell at the high-pressure beamline ID27 of the European Synchrotron Radiation Facility is presented. Pyrometry measurements have been adapted to allow simultaneous double-sided temperature measurements with the installation of two additional online laser systems: a CO2 and a pulsed Nd:YAG laser system. This reiteration of laser-heating advancements at ID27 is designed to pave the way for a new generation of state-of-the-art experiments that demand the need for synchrotron diffraction techniques. Experimental examples are provided for each major development. The capabilities of the double pyrometer have been tested with the Nd:YAG continuous-wave lasers but also in a time-resolved configuration using the nanosecond-pulsed Nd:YAG laser on a Fe sample up to 180 GPa and 2900 K. The combination of time-resolved X-ray diffraction with in situ CO2 laser heating is shown with the crystallization of a high-pressure phase of the naturally found pyrite mineral MnS2 (11 GPa, 1100–1650 K). PMID:24365921

  1. High-resolution X-ray absorption spectroscopy of iron carbonyl complexes

    OpenAIRE

    Atkins, A.J.; Bauer, M; Jacob, C.R.

    2015-01-01

    We apply high-energy-resolution fluorescence-detected (HERFD) X-ray absorption near-edge spectroscopy (XANES) to study iron carbonyl complexes. Mono-, bi-, and tri-nuclear carbonyl complexes and pure carbonyl complexes as well as carbonyl complexes containing hydrocarbon ligands are considered. The HERFD-XANES spectra reveal multiple pre-edge peaks with individual signatures for each complex, which could not be detected previously with conventional XANES spectroscopy. These peaks are assigned...

  2. Design of High Resolution Soft X-Ray Microcalorimeters Using Magnetic Penetration Thermometers

    Science.gov (United States)

    Busch. Sarah; Balvin, Manuel; Bandler, Simon; Denis, Kevin; Finkbeiner, Fred; Porst, Jan-Patrick; Sadlier, Jack; Smith, Stephen; Stevenson, Thomas

    2012-01-01

    We have designed high-resolution soft x-ray microcalorimeters using magnetic penetration thermometers (MPTs) in an array of pixels covering a total of 2 square centimeters to have a resolving power of 300 at energies around 300 eV. This performance is desirable for studying the soft x-ray background from the warm hot intergalactic medium. MPT devices have small sensor heat capacity and high responsivities, which makes them excellent detector technology for attempting to attain sub-eV resolution. We are investigating the feasibility of pixels with absorbers that are 625 x 625 square micrometers, up to 1 x 1 square millimeters in area and 0.35 micrometer thick and thinner. Our tests have shown that suspended gold absorbers 0.35 micrometers thick (RRR = 6.7) are feasible to fabricate. We modeled the thermal diffusion from such thin gold over the size of a 625 x 625 square micrometer absorber, and conclude that the effect of the thermalization on the resolution of a 300 eV photon is an additional approximately 0.2 eV FWHM of broadening. We discuss the thermal effects of small absorber attachment sterns on solid substrate, as well as considerations for multiplexed readout. We will present the progress we have made towards building and testing this soft x-ray detector.

  3. High-Resolution X-Ray Spectra of the Symbiotic Star SS73 17

    Science.gov (United States)

    Eze, R. N. C.; Luna, G. J. M.; Smith, R. K.

    2010-01-01

    SS73 17 was an innocuous Mira-type symbiotic star until the International Gamma-Ray Astrophysics Laboratory and Swift discovered its bright hard X-ray emission, adding it to the small class of "hard X-ray emitting symbiotics." Suzaku observations in 2006 then showed it emits three bright iron lines as well, with little to no emission in the 0.3-2.0 keV bandpass. We present here follow-up observations with the Chandra High Energy Transmission Grating and Suzaku that confirm the earlier detection of strong emission lines of Fe K(alpha) fluorescence, Fe XXV and Fe XXVI but also show significantly more soft X-ray emission. The high-resolution spectrum also shows emission lines of other highly ionized ions as Si xiv and possibly S XVI. In addition, a re-analysis of the 2006 Suzaku data using the latest calibration shows that the hard (15-50 keV) X-ray emission is brighter than previously thought and remains constant in both the 2006 and 2008 data. The G ratio calculated from the Fe xxv lines shows that these lines are thermal, not photoionized, in origin.With the exception of the hard X-ray emission, the spectra from both epochs can be fit using thermal radiation assuming a differential emission measure based on a cooling-flow model combined with a full and partial absorber. We show that acceptable fits can be obtained for all the data in the 1-10 keV band varying only the partial absorber. Based on the temperature and accretion rate, the thermal emission appears to be arising from the boundary layer between the accreting white dwarf and the accretion disk.

  4. Precision mechanical structure of an ultra-high-resolution spectrometer for inelastic X-ray scattering instrument

    Science.gov (United States)

    Shu, Deming; Shvydko, Yuri; Stoupin, Stanislav A.; Khachatryan, Ruben; Goetze, Kurt A.; Roberts, Timothy

    2015-04-14

    A method and an ultrahigh-resolution spectrometer including a precision mechanical structure for positioning inelastic X-ray scattering optics are provided. The spectrometer includes an X-ray monochromator and an X-ray analyzer, each including X-ray optics of a collimating (C) crystal, a pair of dispersing (D) element crystals, anomalous transmission filter (F) and a wavelength (W) selector crystal. A respective precision mechanical structure is provided with the X-ray monochromator and the X-ray analyzer. The precision mechanical structure includes a base plate, such as an aluminum base plate; positioning stages for D-crystal alignment; positioning stages with an incline sensor for C/F/W-crystal alignment, and the positioning stages including flexure-based high-stiffness structure.

  5. In-Situ Additive Manufacturing Platform for Neutron, X-ray and Proton Beamlines

    Science.gov (United States)

    Cooley, Jason C.; Brown, Donald B.; Carpenter, John S.; Clausen, Bjorn; Cross, Carl E.; Lienert, Thomas J.; Bernal, John E.; Losko, Adrian S.

    Advanced manufacturing offers the promise to make high value components with complex shapes without complex machining or significant material waste on short notice. There are however significant technical barriers to overcome with focused research and development. In the case of metallic parts made by melting and depositing wire or powder, additive manufacturing results in repetitive heating and cooling of the deposited material. The thermal gradients imposed are significantly higher than typically encountered during casting. These gradients produce residual stresses we cannot currently predict and can cause the formation of undesirable secondary phases. Efforts to accurately predict the final state of materials manufactured additively will require an understanding of the time evolution of the microstructure which includes intertwined residual stresses, texture, and chemical inhomogeneity. The best way to understand these linked effects is to measure their evolution in-situ during the deposition process. In order to do this a prototype device for making quasi 1-D features while making real time beamline measurements (radiography and diffraction) has been built and recently tested. Work funded by the Department of Energy under Contract Number DEAC5206NA25396.

  6. Distribution of barium and fulvic acid at the mica solution interface using in-situ X-ray reflectivity

    Science.gov (United States)

    Lee, Sang Soo; Nagy, Kathryn L.; Fenter, Paul

    2007-12-01

    The interfacial structures of the basal surface of muscovite mica in solutions containing (1) 5 × 10 -3 m BaCl 2, (2) 500 ppm Elliott Soil Fulvic Acid I (ESFA I), (3) 100 ppm Elliott Soil Fulvic Acid II (ESFA II), (4) 100 ppm Pahokee Peat Fulvic Acid I (PPFA), and (5) 5 × 10 -3 m BaCl 2 and 100 ppm ESFA II were obtained with high resolution in-situ X-ray reflectivity. The derived electron-density profile in BaCl 2 shows two sharp peaks near the mica surface at 1.98(2) and 3.02(4) Å corresponding to the heights of a mixture of Ba 2+ ions and water molecules adsorbed in ditrigonal cavities and water molecules coordinated to the Ba 2+ ions, respectively. This pattern indicates that most Ba 2+ ions are adsorbed on the mica surface as inner-sphere complexes in a partially hydrated form. The amount of Ba 2+ ions in the ditrigonal cavities compensates more than 90% of the layer charge of the mica surface. The electron-density profiles of the fulvic acids (FAs) adsorbed on the mica surface, in the absence of Ba 2+, had overall thicknesses of 4.9-10.8 Å and consisted of one broad taller peak near the surface (likely hydrophobic and positively-charged groups) followed by a broad humped pattern (possibly containing negatively-charged functional groups). The total interfacial electron density and thickness of the FA layer increased as the solution FA concentration increased. The sorbed peat FA which has higher ash content showed a higher average electron density than the sorbed soil FA. When the muscovite reacted with a pre-mixed BaCl 2-ESFA II solution, the positions of the two peaks nearest the surface matched those in the BaCl 2 solution. However, the occupancy of the second peak decreased by about 30% implying that the hydration shell of surface-adsorbed Ba 2+ was partially substituted by FA. The two surface peaks were followed by a broad less electron-dense layer suggesting a sorption mechanism in which Ba 2+ acts dominantly as a bridging cation between the mica

  7. In situ structural investigation of iron phthalocyanine monolayer adsorbed on electrode surface by X-ray absorption fine structure

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Hyun [Konkuk Univ., Seoul (Korea, Republic of); Ohta, Toshiaki [Tokyo Univ., Tokyo (Japan); Kwag, Gwang Hoon [Kumho Petrochemical Co., Taejon(Korea, Republic of)

    2000-06-01

    Structural changes of an iron phthalocyanine (FePC) monolayer induced by adsorption and externally applied potential on high area carbon surface have been investigated in situ by iron K-edge X-ray absorption fine structure (XAFS) in 0.5 M H{sub 2}SO{sub 4}. Fine structures shown in the X-ray absorption near edge structure (XANES) for microcrystalline FePC decreased upon adsorption and further diminished under electrochemical conditions. Fe(II)PC(-2) showed a 1s{yields}4p transition as poorly resolved shoulder to the main absorption edge rather than a distinct peak and a weak 1s{yields}3d transition. The absorption edge position measured at half maximum was shifted from 7121.8 eV for Fe(II)PC(-2) to 7124.8 eV for [Fe(III)PC(-2)]{sup +} as well as the 1s{yields}3d pre-edge peak being slightly enhanced. However, essentially no absorption edge shift was observed by the 1-electron reduction of Fe(II)PC(-2), indicating that the species formed is [Fe(II)PC(-3)]{sup -}. Structural parameters were obtained by analyzing extended X-ray absorption fine structure (EXAFS) oscillations with theoretical phases and amplitudes calculated from FEFF 6.01 using multiple-scattering theory. When applied to the powder FePC, the average iron-to-phthalocyanine nitrogen distance, d(Fe-N{sub p}) and the coordination number were found to be 1.933 A and 3.2, respectively, and these values are the same, within experimental error, as those reported (1.927 A and 4). Virtually no structural changes were found upon adsorption except for the increased Debye-Waller factor of 0.005 A{sup 2} from 0.003 A{sup 2}. Oxidation of Fe(II)PC(-2) to [Fe(III)PC(-2)]{sup +} yielded an increased d(Fe-N{sub p}) (1.98 A) and Debye-Waller factor (0.005 A{sup 2}). The formation of [Fe(II)PC(-3)]{sup -}, however, produced a shorter d(Fe-N{sub p}) of 1.91 A, the same as that of crystalline FePC within experimental error, and about the same Debye-Waller factor (0.006 A{sup 2})

  8. Mapping strain fields induced in Zr-based bulk metallic glasses during in-situ nanoindentation by X-ray nanodiffraction

    Energy Technology Data Exchange (ETDEWEB)

    Gamcová, J.; Bednarčík, J.; Franz, H. [DESY, Notkestraße 85, Hamburg 22547 (Germany); Mohanty, G.; Wehrs, J.; Michler, J. [Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Mechanics of Materials and Nanostructures, Feuerwerkerstraße 39, Thun 3602 (Switzerland); Michalik, Š. [Institute of Physics ASCR, Na Slovance 2, Praha 18221 (Czech Republic); Krywka, C. [HZG, Institut für Werkstoffforschung, Notkestraße 85, Hamburg 22547 (Germany); Breguet, J. M. [Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Mechanics of Materials and Nanostructures, Feuerwerkerstraße 39, Thun 3602 (Switzerland); Alemnis GmbH, Feuerwerkerstraße 39, Thun 3602 (Switzerland)

    2016-01-18

    A pioneer in-situ synchrotron X-ray nanodiffraction approach for characterization and visualization of strain fields induced by nanoindentation in amorphous materials is introduced. In-situ nanoindentation experiments were performed in transmission mode using a monochromatic and highly focused sub-micron X-ray beam on 40 μm thick Zr-based bulk metallic glass under two loading conditions. Spatially resolved X-ray diffraction scans in the deformed volume of Zr-based bulk metallic glass covering an area of 40 × 40 μm{sup 2} beneath the pyramidal indenter revealed two-dimensional map of elastic strains. The largest value of compressive elastic strain calculated from diffraction data at 1 N load was −0.65%. The region of high elastic compressive strains (<−0.3%) is located beneath the indenter tip and has radius of 7 μm.

  9. Implementation of digital multiplexing for high resolution X-ray detector arrays.

    Science.gov (United States)

    Sharma, P; Swetadri Vasan, S N; Titus, A H; Cartwright, A N; Bednarek, D R; Rudin, S

    2012-01-01

    We describe and demonstrate for the first time the use of the novel Multiple Module Multiplexer (MMMIC) for a 2×2 array of new electron multiplying charge coupled device (EMCCD) based x-ray detectors. It is highly desirable for x-ray imaging systems to have larger fields of view (FOV) extensible in two directions yet to still be capable of doing high resolution imaging over regions-of-interest (ROI). The MMMIC achieves these goals by acquiring and multiplexing data from an array of imaging modules thereby enabling a larger FOV, and at the same time allowing high resolution ROI imaging through selection of a subset of modules in the array. MMMIC also supports different binning modes. This paper describes how a specific two stage configuration connecting three identical MMMICs is used to acquire and multiplex data from a 2×2 array of EMCCD based detectors. The first stage contains two MMMICs wherein each MMMIC is getting data from two EMCCD detectors. The multiplexed data from these MMMICs is then forwarded to the second stage MMMIC in the similar fashion. The second stage that has only one MMMIC gives the final 12 bit multiplexed data from four modules. This data is then sent over a high speed Camera Link interface to the image processing computer. X-ray images taken through the 2×2 array of EMCCD based detectors using this two stage configuration of MMMICs are shown successfully demonstrating the concept.

  10. High-energy, high-resolution x-ray imaging for metallic cultural heritages

    Directory of Open Access Journals (Sweden)

    Masato Hoshino

    2017-10-01

    Full Text Available An x-ray micro-imaging technique to visualize high-resolution structure of cultural heritages made of iron or copper has been developed. It utilizes high-energy x-rays from a bending magnet at the SPring-8 synchrotron radiation facility. A white x-ray beam was attenuated by 0.5 mm tungsten and 2.0 mm lead absorbers resulting in the peak energy of 200 keV. The tungsten absorber eliminated the photon energy peak below the absorption edge of lead. A sample was rotated over 180 degrees in 500 s and projection images were continuously collected with an exposure time of 500 ms by an sCMOS camera equipped with a scintillator. Tomographic reconstruction of an ancient sword containing of both copper and iron was successfully obtained at a voxel size of 14.8 μm. Beam hardening was found to cause 2.5 % differences in density in a reconstructed image of a homogeneous stainless-steel rod. Ring artefacts were reduced by continuously moving the absorbers. This work demonstrates feasibility of high-energy, high-resolution imaging at a synchrotron beamline which may be generally useful for inspecting metallic objects.

  11. High-energy, high-resolution x-ray imaging for metallic cultural heritages

    Science.gov (United States)

    Hoshino, Masato; Uesugi, Kentaro; Shikaku, Ryuji; Yagi, Naoto

    2017-10-01

    An x-ray micro-imaging technique to visualize high-resolution structure of cultural heritages made of iron or copper has been developed. It utilizes high-energy x-rays from a bending magnet at the SPring-8 synchrotron radiation facility. A white x-ray beam was attenuated by 0.5 mm tungsten and 2.0 mm lead absorbers resulting in the peak energy of 200 keV. The tungsten absorber eliminated the photon energy peak below the absorption edge of lead. A sample was rotated over 180 degrees in 500 s and projection images were continuously collected with an exposure time of 500 ms by an sCMOS camera equipped with a scintillator. Tomographic reconstruction of an ancient sword containing of both copper and iron was successfully obtained at a voxel size of 14.8 μm. Beam hardening was found to cause 2.5 % differences in density in a reconstructed image of a homogeneous stainless-steel rod. Ring artefacts were reduced by continuously moving the absorbers. This work demonstrates feasibility of high-energy, high-resolution imaging at a synchrotron beamline which may be generally useful for inspecting metallic objects.

  12. High-resolution 3D translation measurements using point source x-ray stereoscopy

    Science.gov (United States)

    Salih, Wasil H. M.; Soons, Joris A. M.; Dirckx, Joris J. J.

    2011-02-01

    A method for high-resolution measurement of 3D coordinates and translations of small objects is presented, using single x-ray point-source stereoscopy. The theory of the pinhole method is re-derived for a point-source x-ray projection setup using a conical beam. The method is then implemented using a micro x-ray tomography setup with a single 8 µm point source. Stereo projections are obtained by rotating the object over 90° between subsequent recordings, and microscopic tungsten beads are used as marker points. The accuracy of the method is tested on a spherical calibration object, and found to be better than 10 µm. Using a translation stage, the measurement uncertainty for translation measurements was found to be better than 5 µm along both axes parallel to the detector and at right angles to the detector. Due to the short measurement time and the high resolution, the method will be useful to study the biomechanics of small specimens, and the principle of the method is useful in any cone-beam-based setup.

  13. The application of in-situ 3D X-ray diffraction in annealing experiments: First interpretation of substructure development in deformed NaCl

    DEFF Research Database (Denmark)

    Borthwick, Verity; Schmidt, Søren; Piazolo, Sandra

    2012-01-01

    In-situ 3D X-ray diffraction (3DXRD) annealing experiments were conducted at the ID-11 beamline at the European Synchrotron Radiation Facility in Grenoble. This allowed us to nondestructively document and subsequently analyse the development of substructures during heating, without the influence ...

  14. Dehydrogenation kinetics of pure and nickel-doped magnesium hydride investigated by in situ time-resolved powder X-ray diffraction

    DEFF Research Database (Denmark)

    Jensen, T.R.; Andreasen, A.; Vegge, Tejs

    2006-01-01

    The dehydrogenation kinetics of pure and nickel (Ni)-doped (2w/w%) magnesium hydride (MgH2) have been investigated by in situ time-resolved powder X-ray diffraction (PXD). Deactivated samples, i.e. air exposed, are investigated in order to focus on the effect of magnesium oxide (MgO) surface layers...

  15. Lightweight and High-Resolution Single Crystal Silicon Optics for X-ray Astronomy

    Science.gov (United States)

    Zhang, William W.; Biskach, Michael P.; Chan, Kai-Wing; Mazzarella, James R.; McClelland, Ryan S.; Riveros, Raul E.; Saha, Timo T.; Solly, Peter M.

    2016-01-01

    We describe an approach to building mirror assemblies for next generation X-ray telescopes. It incorporates knowledge and lessons learned from building existing telescopes, including Chandra, XMM-Newton, Suzaku, and NuSTAR, as well as from our direct experience of the last 15 years developing mirror technology for the Constellation-X and International X-ray Observatory mission concepts. This approach combines single crystal silicon and precision polishing, thus has the potential of achieving the highest possible angular resolution with the least possible mass. Moreover, it is simple, consisting of several technical elements that can be developed independently in parallel. Lastly, it is highly amenable to mass production, therefore enabling the making of telescopes of very large photon collecting areas.

  16. Kinematic Alignment and Bonding of Silicon Mirrors for High-Resolution Astronomical X-Ray Optics

    Science.gov (United States)

    Chan, Kai-Wing; Mazzarella, James R.; Saha, Timo T.; Zhang, William W.; Mcclelland, Ryan S.; Biskack, Michael P.; Riveros, Raul E.; Allgood, Kim D.; Kearney, John D.; Sharpe, Marton V.; hide

    2017-01-01

    Optics for the next generation's high-resolution, high throughput x-ray telescope requires fabrication of well-formed lightweight mirror segments and their integration at arc-second precision. Recent advances in the fabrication of silicon mirrors developed at NASA/Goddard prompted us to develop a new method of mirror alignment and integration. In this method, stiff silicon mirrors are aligned quasi-kinematically and are bonded in an interlocking fashion to produce a "meta-shell" with large collective area. We address issues of aligning and bonding mirrors with this method and show a recent result of 4 seconds-of-arc for a single pair of mirrors tested at soft x-rays.

  17. Empirical electro-optical and x-ray performance evaluation of CMOS active pixels sensor for low dose, high resolution x-ray medical imaging.

    Science.gov (United States)

    Arvanitis, C D; Bohndiek, S E; Royle, G; Blue, A; Liang, H X; Clark, A; Prydderch, M; Turchetta, R; Speller, R

    2007-12-01

    Monolithic complementary metal oxide semiconductor (CMOS) active pixel sensors with high performance have gained attention in the last few years in many scientific and space applications. In order to evaluate the increasing capabilities of this technology, in particular where low dose high resolution x-ray medical imaging is required, critical electro-optical and physical x-ray performance evaluation was determined. The electro-optical performance includes read noise, full well capacity, interacting quantum efficiency, and pixels cross talk. The x-ray performance, including x-ray sensitivity, modulation transfer function, noise power spectrum, and detection quantum efficiency, has been evaluated in the mammographic energy range. The sensor is a 525 x 525 standard three transistor CMOS active pixel sensor array with more than 75% fill factor and 25 x 25 microm pixel pitch. Reading at 10 f/s, it is found that the sensor has 114 electrons total additive noise, 10(5) electrons full well capacity with shot noise limited operation, and 34% interacting quantum efficiency at 530 nm. Two different structured CsI:Tl phosphors with thickness 95 and 115 microm, respectively, have been optically coupled via a fiber optic plate to the array resulting in two different system configurations. The sensitivity of the two different system configurations was 43 and 47 electrons per x-ray incident on the sensor. The MTF at 10% of the two different system configurations was 9.5 and 9 cycles/mm with detective quantum efficiency of 0.45 and 0.48, respectively, close to zero frequency at approximately 0.44 microC/kg (1.72 mR) detector entrance exposure. The detector was quantum limited at low spatial frequencies and its performance was comparable with high resolution a: Si and charge coupled device based x-ray imagers. The detector also demonstrates almost an order of magnitude lower noise than active matrix flat panel imagers. The results suggest that CMOS active pixel sensors when coupled

  18. Ultra-high resolution zone-doubled diffractive X-ray optics for the multi-keV regime.

    Science.gov (United States)

    Vila-Comamala, Joan; Gorelick, Sergey; Färm, Elina; Kewish, Cameron M; Diaz, Ana; Barrett, Ray; Guzenko, Vitaliy A; Ritala, Mikko; David, Christian

    2011-01-03

    X-ray microscopy based on Fresnel zone plates is a powerful technique for sub-100 nm resolution imaging of biological and inorganic materials. Here, we report on the modeling, fabrication and characterization of zone-doubled Fresnel zone plates for the multi-keV regime (4-12 keV). We demonstrate unprecedented spatial resolution by resolving 15 nm lines and spaces in scanning transmission X-ray microscopy, and focusing diffraction efficiencies of 7.5% at 6.2 keV photon energy. These developments represent a significant step towards 10 nm spatial resolution for hard X-ray energies of up to 12 keV.

  19. High resolution x-ray and gamma ray imaging using diffraction lenses with mechanically bent crystals

    Science.gov (United States)

    Smither, Robert K [Hinsdale, IL

    2008-12-23

    A method for high spatial resolution imaging of a plurality of sources of x-ray and gamma-ray radiation is provided. High quality mechanically bent diffracting crystals of 0.1 mm radial width are used for focusing the radiation and directing the radiation to an array of detectors which is used for analyzing their addition to collect data as to the location of the source of radiation. A computer is used for converting the data to an image. The invention also provides for the use of a multi-component high resolution detector array and for narrow source and detector apertures.

  20. Depth Probing Soft X-ray Microprobe (DPSXRM) for High Resolution Probing of Earth's Microstructural Samples

    Science.gov (United States)

    Dikedi, P. N.

    2015-12-01

    The Cambrian explosion; occurrence of landslides in very dry weather conditions; rockslides; dead, shriveled-up and crumbled leaves possessing fossil records with the semblance of well preserved, flat leaves; abundance of trilobite tracks in lower and higher rock layers; and sailing stones are enigmas demanding demystifications. These enigmas could be elucidated when data on soil structure, texture and strength are provided by some device with submicrometre accuracy; for these and other reasons, the design of a Depth Probing Soft X-ray Microprobe (DPSXRM), is being proposed; it is expected to deliver soft X-rays, at spatial resolution, ϛ≥600nm and to probe at the depth of 0.5m in 17s. The microprobe is portable compared to a synchrotron radiation facility (Diamond Light Source has land size of 43,300m2); spatial resolution,ϛ , of the DPSXRM surpasses those of the X-ray Fluorescence microanalysis (10µm), electron microprobe (1-3µm) and ion microprobe (5->30µm); the DPSXRM has allowance for multiple targets. Vanadium and Manganese membranes are proposed owing to respective 4.952KeV VKα1 and 5.899KeV MnKα1 X-rays emitted, which best suits micro-probing of Earth's microstructural samples. Compound systems like the Kirk-Patrick and Baez and Wolter optics, aspheric mirrors like elliptical and parabolic optics, small apertures and Abbe sine condition are employed to reduce or remove astigmatism, obliquity, comatic and spherical aberrations—leading to good image quality. Results show that 5.899KeV MnKα1 and 4.952KeV VKα1 soft X-rays will travel a distance of 2.75mm to form circular patches of radii 2.2mm and 2.95mm respectively. Zone plate with nth zone radius of 1.5mm must be positioned 1.5mm and 2mm from the electron gun if circular patches must be formed from 4.952KeV VKα1 and 5.899KeV MnKα1 soft X-rays respectively. The focal lengths of 0.25μm≤ƒ≤1.50μm and 0.04μm≤ƒ≤0.2μm covered by 4.952KeV VKα1 and 5.899KeV Mn Kα1 soft X-Rays, will

  1. Development of a new micro-furnace for "in situ" high-temperature single crystal X-ray diffraction measurements

    Science.gov (United States)

    Alvaro, Matteo; Angel, Ross J.; Marciano, Claudio; Zaffiro, Gabriele; Scandolo, Lorenzo; Mazzucchelli, Mattia L.; Milani, Sula; Rustioni, Greta; Domeneghetti, Chiara M.; Nestola, Fabrizio

    2015-04-01

    Several experimental methods to reliably determine elastic properties of minerals at non-ambient conditions have been developed. In particular, different techniques for generating high-pressure and high-temperature have been successfully adopted for single-crystal and powder X-ray diffraction measurements. High temperature devices for "in-situ" measurements should provide the most controlled isothermal environment as possible across the entire sample. It is intuitive that in general, thermal gradients across the sample increase as the temperature increases. Even if the small isothermal volume required for single-crystal X-ray diffraction experiments makes such phenomena almost negligible, the design of a furnace should also aim to reduce thermal gradients by including a large thermal mass that encloses the sample. However this solution often leads to complex design that results in a restricted access to reciprocal space or attenuation of the incident or diffracted intensity (with consequent reduction of the accuracy and/or precision in lattice parameter determination). Here we present a newly-developed H-shaped Pt-Pt/Rh resistance microfurnace for in-situ high-temperature single-crystal X-ray diffraction measurements. The compact design of the furnace together with the long collimator-sample-detector distance allows us to perform measurements up to 2θ = 70° with no further restrictions on any other angular movement. The microfurnace is equipped with a water cooling system that allows a constant thermal gradient to be maintained that in turn guarantees thermal stability with oscillations smaller than 5°C in the whole range of operating T of room-T to 1200°C. The furnace has been built for use with a conventional 4-circle Eulerian geometry equipped with point detector and automated with the SINGLE software (Angel and Finger 2011) that allows the effects of crystal offsets and diffractometer aberrations to be eliminated from the refined peak positions by the 8

  2. X-ray-induced reduction of Au ions in an aqueous solution in the presence of support materials and in situ time-resolved XANES measurements

    Energy Technology Data Exchange (ETDEWEB)

    Ohkubo, Yuji, E-mail: okubo@upst.eng.osaka-u.ac.jp; Nakagawa, Takashi; Seino, Satoshi; Kugai, Junichiro; Yamamoto, Takao A. [Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Nitani, Hiroaki; Niwa, Yasuhiro [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan)

    2014-07-31

    In situ time-resolved XANES measurements of Au ions in an aqueous solution in the presence of support materials were performed under synchrotron X-ray irradiation. The synchrotron X-ray-induced reduction of Au ions leads to the formation of Au nanoparticles on the carbon particles, acrylic cell or polyimide window. The deposited Au metallic spots were affected by the wettability of carbon particles. Synchrotron X-ray-induced reduction of Au ions in an aqueous solution with or without support materials is reported. To clarify the process of radiation-induced reduction of metal ions in aqueous solutions in the presence of carbon particles as support materials, in situ time-resolved XANES measurements of Au ions were performed under synchrotron X-ray irradiation. XANES spectra were obtained only when hydrophobic carbon particles were added to the precursor solution containing Au ions. Changes in the shape of the XANES spectra indicated a rapid reduction from ionic to metallic Au in the precursor solution owing to synchrotron X-ray irradiation. In addition, the effects of the wettability of the carbon particles on the deposited Au metallic spots were examined. The deposited Au metallic spots were different depending on the relationship of surface charges between metal precursors and support materials. Moreover, a Au film was obtained as a by-product only when hydrophilic carbon particles were added to the precursor solution containing the Au ions.

  3. Implications of heavy-ion-induced satellite x-ray emission. III. Chemical effects in high resolution sulfur K/sub. cap alpha. / x-ray spectra

    Energy Technology Data Exchange (ETDEWEB)

    Vane, C.R.; Hulett, L.D. Jr.; Kahane, S.; McDaniel, F.D.; Milner, W.T.; Raman, S.; Rosseel, T.M.; Slaughter, G.G.; Varghese, S.L.; Young, J.P.

    1983-01-01

    High resolution (approx. 7 eV at 2.3 keV) sulfur K/sub ..cap alpha../ x-ray spectra have been obtained for a series of sulfur compound targets under heavy ion impact at the Holified Heavy Ion Facility. The spectra observed are dominated by a series of satellite peaks arising from varying degrees of L-shell ionization at the time of x-ray emission. Each spectral profile has been parameterized by a single variable p/sub L/, the apparent average L-shell ionization probability. Correlations are evident between p/sub L/ and the corresponding sulfur atom chemical environment. Much stronger correlations are however found for variations of some individual peak intensities with specific chemical parameters. Comparison of results for Ar/sup q+/ and Kr/sup q+/ projectiles shows that while L-shell ionization probability has increased, chemical sensitivity has apparently saturated.

  4. In situ x-ray diffraction studies of alkyl quaternary ammonium montmorillonite in a CO2 environment

    Science.gov (United States)

    Thompson, M. R.; Balogh, M. P.; Speer, R. L.; Fasulo, P. D.; Rodgers, W. R.

    2009-01-01

    An in situ study was conducted using an x-ray diffractometer and a specially designed high pressure cell to examine the effects of carbon dioxide at different pressures and temperatures on three different modified montmorillonite species. These organoclays possessed organic pillars of quaternary ammonium surfactant with either one, two, or three long (C16-C18) alkyl chains attached to expand the galleries of the clay mineral. The three clay species were tested between 50 °C and 200 °C with carbon dioxide pressures between 0.1 and 8.4 MPa. Under these conditions, the three organoclays exhibited marked differences in their basal spacing depending on the surfactant used. The physical state of the intercalated surfactant was found to be of critical importance, with no changes in basal spacing noted until the organic component began to melt, in spite of CO2 being present. A pressure effect was also noted which delayed melting of the surfactants as the pressure of the system increased. In all cases, further cation exchange with residual sodium cation present in the galleries was observed in the presence of CO2 and above the melting state of the surfactant. The study included examination of the effect of rapid depressurization on the clay structure, which produced only a small change in basal spacing.

  5. In situ compressibility of carbonated hydroxyapatite in tooth dentine measured under hydrostatic pressure by high energy X-ray diffraction.

    Science.gov (United States)

    Forien, Jean-Baptiste; Fleck, Claudia; Krywka, Christina; Zolotoyabko, Emil; Zaslansky, Paul

    2015-10-01

    Tooth dentine and other bone-like materials contain carbonated hydroxyapatite nanoparticles within a network of collagen fibrils. It is widely assumed that the elastic properties of biogenic hydroxyapatites are identical to those of geological apatite. By applying hydrostatic pressure and by in situ measurements of the a- and c- lattice parameters using high energy X-ray diffraction, we characterize the anisotropic deformability of the mineral in the crowns and roots of teeth. The collected data allowed us to calculate the bulk modulus and to derive precise estimates of Young׳s moduli and Poisson׳s ratios of the biogenic mineral particles. The results show that the dentine apatite particles are about 20% less stiff than geological and synthetic apatites and that the mineral has an average bulk modulus K=82.7 GPa. A 5% anisotropy is observed in the derived values of Young׳s moduli, with E11≈91 GPa and E33≈96 GPa, indicating that the nanoparticles are only slightly stiffer along their long axis. Poisson׳s ratio spans ν≈0.30-0.35, as expected. Our findings suggest that the carbonated nanoparticles of biogenic apatite are significantly softer than previously thought and that their elastic properties can be considered to be nearly isotropic. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. In Situ Ambient Pressure X-ray Photoelectron Spectroscopy of Cobalt Perovskite Surfaces under Cathodic Polarization at High Temperatures

    KAUST Repository

    Crumlin, Ethan J.

    2013-08-08

    Heterostructured oxide interfaces have demonstrated enhanced oxygen reduction reaction rates at elevated temperatures (∼500-800 C); however, the physical origin underlying this enhancement is not well understood. By using synchrotron-based in situ ambient pressure X-ray photoelectron spectroscopy (APXPS), we focus on understanding the surface electronic structure, elemental composition, and chemical nature of epitaxial La0.8Sr 0.2CoO3-δ (LSC113), (La 0.5Sr0.5)2CoO4±δ (LSC214), and LSC214-decorated LSC113 (LSC 113/214) thin films as a function of applied electrical potentials (0 to -800 mV) at 520 C and p(O2) of 1 × 10-3 atm. Shifts in the top of the valence band binding energy and changes in the Sr 3d and O 1s spectral components under applied bias reveal key differences among the film chemistries, most notably in the degree of Sr segregation to the surface and quantity of active oxygen sites in the perovskite termination layer. These differences help to identify important factors governing the enhanced activity of oxygen electrocatalysis observed for the LSC113/214 heterostructured surface. © 2013 American Chemical Society.

  7. Temperature Assisted in-Situ Small Angle X-ray Scattering Analysis of Ph-POSS/PC Polymer Nanocomposite

    Science.gov (United States)

    Yadav, Ramdayal; Naebe, Minoo; Wang, Xungai; Kandasubramanian, Balasubramanian

    2016-07-01

    Inorganic/organic nanofillers have been extensively exploited to impart thermal stability to polymer nanocomposite via various strategies that can endure structural changes when exposed a wide range of thermal environment during their application. In this abstraction, we have utilized temperature assisted in-situ small angle X-ray scattering (SAXS) to examine the structural orientation distribution of inorganic/organic nanofiller octa phenyl substituted polyhedral oligomeric silsesquioxane (Ph-POSS) in Polycarbonate (PC) matrix from ambient temperature to 180 °C. A constant interval of 30 °C with the heating rate of 3 °C/min was utilized to guise the temperature below and above the glass transition temperature of PC followed by thermal gravimetric, HRTEM, FESEM and hydrophobic analysis at ambient temperature. The HRTEM images of Ph-POSS nano unit demonstrated hyperrectangular structure, while FESEM image of the developed nano composite rendered separated phase containing flocculated and overlapped stacking of POSS units in the PC matrix. The phase separation in polymer nanocomposite was further substantiated by thermodynamic interaction parameter (χ) and mixing energy (Emix) gleaned via Accelrys Materials studio. The SAXS spectra has demonstrated duplex peak at higher scattering vector region, postulated as a primary and secondary segregated POSS domain and followed by abundance of secondary peak with temperature augmentation.

  8. Induction of in situ DNA double-strand breaks and apoptosis by 200 MeV protons and 10 MV X-rays in human tumour cell lines.

    Science.gov (United States)

    Gerelchuluun, Ariungerel; Hong, Zhengshan; Sun, Lue; Suzuki, Kenshi; Terunuma, Toshiyuki; Yasuoka, Kiyoshi; Sakae, Takeji; Moritake, Takashi; Tsuboi, Koji

    2011-01-01

    To clarify the properties of clinical high-energy protons by comparing with clinical high-energy X-rays. Human tumor cell lines, ONS76 and MOLT4, were irradiated with 200 MeV protons or 10 MV X-rays. In situ DNA double-strand breaks (DDSB) induction was evaluated by immunocytochemical staining of phosphorylated histone H2AX (γ-H2AX). Apoptosis was measured by flow-cytometry after staining with Annexin V. The relative biological effectiveness (RBE) was obtained by clonogenic survival assay. DDSB induction was significantly higher for protons than X-rays with average ratios of 1.28 (ONS76) and 1.59 (MOLT4) at 30 min after irradiation. However the differences became insignificant at 6 h. Also, apoptosis induction in MOLT4 cells was significantly higher for protons than X-rays with an average ratio of 2.13 at 12 h. However, the difference became insignificant at 20 h. RBE values of protons to X-rays at 10% survival were 1.06 ± 0.04 and 1.02 ± 0.15 for ONS76 and MOLT4, respectively. Cell inactivation may differ according to different timings and/or endpoints. Proton beams demonstrated higher cell inactivation than X-rays in the early phases. These data may facilitate the understanding of the biological properties of clinical proton beams.

  9. Nm-scale spatial resolution x-ray imaging with MLL nanofocusing optics: instrumentational requirements and challenges

    Energy Technology Data Exchange (ETDEWEB)

    Nazaretski, E. [Brookhaven National Lab. (BNL), Upton, NY (United States); Yan, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Lauer, K. [Brookhaven National Lab. (BNL), Upton, NY (United States); Huang, X. [Brookhaven National Lab. (BNL), Upton, NY (United States); Xu, W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Kalbfleisch, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Yan, Hui [Brookhaven National Lab. (BNL), Upton, NY (United States); Li, Li [Brookhaven National Lab. (BNL), Upton, NY (United States); Bouet, N. [Brookhaven National Lab. (BNL), Upton, NY (United States); Zhou, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Shu, D. [Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source; Conley, R. [Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source; Chu, Y. S. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-08-30

    The Hard X-ray Nanoprobe (HXN) beamline at NSLS-II has been designed and constructed to enable imaging experiments with unprecedented spatial resolution and detection sensitivity. The HXN X-ray Microscope is a key instrument for the beamline, providing a suite of experimental capabilities which includes scanning fluorescence, diffraction, differential phase contrast and ptychography utilizing Multilayer Laue Lenses (MLL) and zoneplate (ZP) as nanofocusing optics. In this paper, we present technical requirements for the MLL-based scanning microscope, outline the development concept and present first ~15 x 15 nm2 spatial resolution x-ray fluorescence images.

  10. A high-resolution x-ray spectrometer for a kaon mass measurement

    Science.gov (United States)

    Phelan, Kevin; Suzuki, Ken; Zmeskal, Johann; Tortorella, Daniele; Bühler, Matthias; Hertrich, Theo

    2017-02-01

    The ASPECT consortium (Adaptable Spectrometer Enabled by Cryogenic Technology) is currently constructing a generalised cryogenic platform for cryogenic detector work which will be able to accommodate a wide range of sensors. The cryogenics system is based on a small mechanical cooler with a further adiabatic demagnetisation stage and will work with cryogenic detectors at sub-Kelvin temperatures. The commercial aim of the consortium is to produce a compact, user-friendly device with an emphasis on reliability and portability which can easily be transported for specialised on-site work, such as beam-lines or telescope facilities. The cryogenic detector platform will accommodate a specially developed cryogenic sensor, either a metallic magnetic calorimeter or a magnetic penetration-depth thermometer. The detectors will be designed to work in various temperatures regions with an emphasis on optimising the various detector resolutions for specific temperatures. One resolution target is of about 10 eV at the energies range typically created in kaonic atoms experiments (soft x-ray energies). A following step will see the introduction of continuous, high-power, sub-Kelvin cooling which will bring the cryogenic basis for a high resolution spectrometer system to the market. The scientific goal of the project will produce an experimental set-up optimised for kaon-mass measurements performing high-resolution x-ray spectroscopy on a beam-line provided foreseeably by the J-PARC (Tokai, Japan) or DAΦNE (Frascati, Italy) facilities.

  11. Capillary-based micro-battery cell for in situ X-ray powder diffraction studies of working batteries: a study of the initial intercalation and deintercalation of lithium into graphite

    DEFF Research Database (Denmark)

    Johnsen, Rune; Norby, Poul

    2013-01-01

    to obtain diffraction from a single electrode at a time, which facilitates detailed structural and microstructural studies of the electrode materials. The micro-battery cell is potentially also applicable for in situ X-ray absorption spectroscopy and smallangle X-ray scattering experiments. The in situ XRPD...

  12. Insight into the structure of Pd/ZrO2 during the total oxidation of methane using combined in situ XRD, X.-ray absorption and Raman spectroscopy

    DEFF Research Database (Denmark)

    Grunwaldt, Jan-Dierk; van Vegten, Niels; Baiker, Alfons

    2009-01-01

    The structure of palladium during the total combustion of methane has been studied by a combination of the complementary in situ techniques X-ray absorption spectroscopy, Raman spectroscopy and X-ray diffraction. The study demonstrates that finely dispersed and oxidized palladium is most active...... for the oxidation of methane. Upon heating in the reaction mixture a sudden reduction accompanied by strong sintering of the palladium particles occurs leading to a less active catalyst. Raman spectroscopy combined with XAS shows that palladium is re-oxidized during cooling but is not as finely dispersed as in its...

  13. Coupling in-situ X-ray micro- and nano-tomography and discrete element method for investigating high temperature sintering of metal and ceramic powders

    Science.gov (United States)

    Yan, Zilin; Martin, Christophe L.; Bouvard, Didier; Jauffrès, David; Lhuissier, Pierre; Salvo, Luc; Olmos, Luis; Villanova, Julie; Guillon, Olivier

    2017-06-01

    The behaviour of various powder systems during high temperature sintering has been investigated by coupling X-ray microtomography and discrete element method (DEM). Both methods are particularly relevant to analyse particle interactions and porosity changes occurring during sintering. Two examples are presented. The first one deals with a copper powder including artificially created pores which sintering has been observed in situ at the European synchrotron and simulated by DEM. 3D images with a resolution of 1.5 μm have been taken at various times of the sintering cycle. The comparison of the real displacement of particle centers with the displacement derived from the mean field assumption demonstrates significant particle rearrangement in some regions of the sample. Although DEM simulation showed less rearrangement, it has been able to accurately predict the densification kinetics. The second example concerns multilayer ceramic capacitors (MLCCs) composed of hundreds of alternated metal electrode and ceramic dielectric layers. The observation of Ni-based MLCCs by synchrotron nanotomography at Argon National Laboratory with a spatial resolution between 10 and 50 nm allowed understanding the origin of heterogeneities formed in Ni layers during sintering. DEM simulations confirmed this analysis and provided clues for reducing these defects.

  14. Coupling in-situ X-ray micro- and nano-tomography and discrete element method for investigating high temperature sintering of metal and ceramic powders

    Directory of Open Access Journals (Sweden)

    Yan Zilin

    2017-01-01

    Full Text Available The behaviour of various powder systems during high temperature sintering has been investigated by coupling X-ray microtomography and discrete element method (DEM. Both methods are particularly relevant to analyse particle interactions and porosity changes occurring during sintering. Two examples are presented. The first one deals with a copper powder including artificially created pores which sintering has been observed in situ at the European synchrotron and simulated by DEM. 3D images with a resolution of 1.5 μm have been taken at various times of the sintering cycle. The comparison of the real displacement of particle centers with the displacement derived from the mean field assumption demonstrates significant particle rearrangement in some regions of the sample. Although DEM simulation showed less rearrangement, it has been able to accurately predict the densification kinetics. The second example concerns multilayer ceramic capacitors (MLCCs composed of hundreds of alternated metal electrode and ceramic dielectric layers. The observation of Ni-based MLCCs by synchrotron nanotomography at Argon National Laboratory with a spatial resolution between 10 and 50 nm allowed understanding the origin of heterogeneities formed in Ni layers during sintering. DEM simulations confirmed this analysis and provided clues for reducing these defects.

  15. Characterization and modeling of transition edge sensors for high resolution X-ray calorimeter arrays

    Energy Technology Data Exchange (ETDEWEB)

    Saab, T. E-mail: tsaab@milkyway.gsfc.nasa.gov; Apodacas, E.; Bandler, S.R.; Boyce, K.; Chervenak, J.; Figueroa-Feliciano, E.; Finkbeiner, F.; Hammock, C.; Kelley, R.; Lindeman, M.; Porter, F.S.; Stahle, C.K

    2004-03-11

    Characterizing and understanding, in detail, the behavior of a Transition Edge Sensor (TES) is required for achieving an energy resolution of 2 eV at 6 keV desired for future X-ray observatory missions. This paper will report on a suite of measurements (e.g. impedance and I-V among others) and simulations that were developed to extract a comprehensive set of TES parameters such as heat capacity, thermal conductivity, and R(T,I), {alpha}(T,I), and {beta}{sub i}(T,I) surfaces. These parameters allow for the study of the TES calorimeter behavior at and beyond the small signal regime.

  16. Non-destructive quantification of cereal roots in soil using high-resolution X-ray tomography.

    Science.gov (United States)

    Flavel, Richard J; Guppy, Christopher N; Tighe, Matthew; Watt, Michelle; McNeill, Ann; Young, Iain M

    2012-04-01

    One key constraint to further understanding plant root development is the inability to observe root growth in situ due to the opaque nature of soil. Of the present non-destructive techniques, computed tomography (CT) is best able to capture the complexities of the edaphic environment. This study compared the accuracy and impact of X-ray CT measurement of in situ root systems with standard technology (soil core washing and WinRhizo analysis) in the context of treatments that differed in the vertical placement of phosphorus fertilizers within the soil profile. Although root lengths quantified using WinRhizo were 8% higher than that observed in the same plants using CT, measurements of root length by the two methodologies were highly correlated. Comparison of scanned and unscanned plants revealed no effect of repeated scanning on plant growth and CT was not able to detect any changes in roots between phosphorus treatments that was observed using WinRhizo. Overall, the CT technique was found to be fast, safe, and able to detect roots at high spatial resolutions. The potential drawbacks of CT relate to the software to digitally segment roots from soil and air, which will improve significantly as automated segmentation algorithms are developed. The combination of very fast scans and automated segmentation will allow CT methodology to realize its potential as a high-throughput technique for the quantification of roots in soils.

  17. Ultra-high Resolution Optics for EUV and Soft X-ray Inelastic Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Voronov, Dmitry L.; Cambie, Rossana; Ahn, Minseung; Anderson, Erik H.; Chang, Chih-Hao; Gullikson, Eric M.; Heilmann, Ralf K.; Salmassi, Farhad; Schattenburg, Mark L.; Yashchuk, Valeriy V.; Padmore, Howard A.

    2009-09-16

    We describe a revolutionary new approach to high spectral resolution soft x-ray optics. Conventionally in the soft x-ray energy range, high spectral resolution is obtained by use of a relatively low line density grating operated in 1st order with small slits. This severely limits throughput. This limitation can be removed by use of a grating either in very high order, or with very high line density, if one can maintain high diffraction efficiency. We have developed a new technology for achieving both of these goals which should allow high throughput spectroscopy, at resolving powers of up to 106 at 1 keV. Such optics should provide a revolutionary advance for high resolution lifetime free spectroscopy, such as RIXS, and for pulse compression of chirped beams. We report recent developmental fabrication and characterization of a prototype grating optimized for 14.2 nm EUV light. The prototype grating with a 200 nm period of the blazed grating substrate coated with 20 Mo/Si bilayers with a period of 7.1 nm demonstrates good dispersion in the third order (effective groove density of 15,000 lines per mm) with a diffraction efficiency of more than 33percent.

  18. Towards 10 meV resolution: The design of an ultrahigh resolution soft X-ray RIXS spectrometer.

    Science.gov (United States)

    Dvorak, Joseph; Jarrige, Ignace; Bisogni, Valentina; Coburn, Scott; Leonhardt, William

    2016-11-01

    We present the optical design of the Centurion soft X-ray resonant inelastic X-ray scattering (RIXS) spectrometer to be located on the SIX beamline at NSLS-II. The spectrometer is designed to reach a resolving power of 100 000 at 1000 eV at its best resolution. It is also designed to have continuously variable 2θ motion over a range of 112° using a custom triple rotating flange. We have analyzed several possible spectrometer designs capable of reaching the target resolution. After careful analysis, we have adopted a Hettrick-Underwood spectrometer design, with an additional plane mirror to maintain a fixed direction for the outgoing beam. The spectrometer can cancel defocus and coma aberrations at all energies, has an erect focal plane, and minimizes mechanical motions of the detector. When the beamline resolution is accounted for, the net spectral resolution will be 14 meV at 1000 eV. This will open up many low energy excitations to study and will expand greatly the power of soft X-ray RIXS.

  19. Jackson Pollock’s Number 1A, 1948 : a non-invasive study using macro-x-ray fluorescence mapping (MA-XRF) and multivariate curve resolution-alternating least squares (MCR-ALS) analysis

    NARCIS (Netherlands)

    Martins, A; Coddington, J; Van der Snickt, G; van Driel, B.A.; McGlinchey, C.; Dahlberg, D.; Janssens, K; Dik, J.

    2016-01-01

    Jackson Pollock’s Number 1A, 1948 painting was investigated using in situ scanning macro-x-ray fluorescence mapping (MA-XRF) to help characterize the artist’s materials and his creative process. A multivariate curve resolution-alternating least squares (MCR-ALS) approach was used to examine the

  20. Examining the angular resolution of the ASTRO-H's soft x-ray telescopes

    Science.gov (United States)

    Sato, Toshiki; Iizuka, Ryo; Ishida, Manabu; Kikuchi, Naomichi; Maeda, Yoshitomo; Kurashima, Sho; Nakaniwa, Nozomi; Tomikawa, Kazuki; Hayashi, Takayuki; Mori, Hideyuki; Okajima, Takashi; Serlemitsos, Peter J.; Soong, Yang; Izumiya, Takanori; Minami, Sari

    2016-10-01

    The international x-ray observatory ASTRO-H was renamed "Hitomi" after launch. It covers a wide energy range from a few hundred eV to 600 keV. It is equipped with two soft x-ray telescopes (SXTs: SXT-I and SXT-S) for imaging the soft x-ray sky up to ˜12 keV, which focus an image onto the respective focal-plane detectors: CCD camera (SXI) and a calorimeter (SXS). The SXTs are fabricated in a quadrant unit. The angular resolution in half-power diameter (HPD) of each quadrant of the SXTs ranges between 1.1 and 1.4 arc min at 4.51 keV. It was also found that one quadrant has an energy dependence on the HPD. We examine the angular resolution with "spot scan" measurements. In order to understand the cause of imaging capability deterioration and to reflect it to the future telescope development, we carried out spot scan measurements, in which we illuminate all over the aperture of each quadrant with a square beam 8 mm on a side. Based on the scan results, we made "maps" of image blurring and a focus position. The former and the latter reflect figure error and positioning error, respectively, of the foils that are within the incident 8 mm×8 mm beam. As a result, we estimated those errors in a quadrant to be ˜0.9 to 1.0 and ˜0.6 to 0.9 arc min, respectively. We found that the larger the positioning error in a quadrant is, the larger its HPD is. The HPD map, which manifests the local image blurring, is very similar from quadrant to quadrant, but the map of the focus position is different from location to location in each telescope. It is also found that the difference in local performance causes energy dependence of the HPD.

  1. Examining the Angular Resolution of the Astro-H's Soft X-Ray Telescopes

    Science.gov (United States)

    Sato, Toshiki; Iizuka, Ryo; Ishida, Manabu; Kikuchi, Naomichi; Maeda, Yoshitomo; Kurashima, Sho; Nakaniwa, Nozomi; Tomikawa, Kazuki; Hayashi, Takayuki; Mori, Hideyuki; hide

    2016-01-01

    The international x-ray observatory ASTRO-H was renamed Hitomi after launch. It covers a wide energy range from a few hundred eV to 600 keV. It is equipped with two soft x-ray telescopes (SXTs: SXT-I and SXT-S) for imaging the soft x-ray sky up to 12 keV, which focus an image onto the respective focal-plane detectors: CCD camera (SXI) and a calorimeter (SXS). The SXTs are fabricated in a quadrant unit. The angular resolution in half-power diameter (HPD) of each quadrant of the SXTs ranges between 1.1 and 1.4 arc min at 4.51 keV. It was also found that one quadrant has an energy dependence on the HPD. We examine the angular resolution with spot scan measurements. In order to understand the cause of imaging capability deterioration and to reflect it to the future telescope development, we carried out spot scan measurements, in which we illuminate all over the aperture of each quadrant with a square beam 8 mm on a side. Based on the scan results, we made maps of image blurring and a focus position. The former and the latter reflect figure error and positioning error, respectively, of the foils that are within the incident 8 mm x 8 mm beam. As a result, we estimated those errors in a quadrant to be approx. 0.9 to 1.0 and approx. 0.6 to 0.9 arc min, respectively. We found that the larger the positioning error in a quadrant is, the larger its HPD is. The HPD map, which manifests the local image blurring, is very similar from quadrant to quadrant, but the map of the focus position is different from location to location in each telescope. It is also found that the difference in local performance causes energy dependence of the HPD.

  2. Pressure-induced amorphization of cubic Zr W2 O8 studied in situ and ex situ by synchrotron x-ray diffraction and absorption

    Science.gov (United States)

    Varga, Tamas; Wilkinson, Angus P.; Jupe, Andrew C.; Lind, Cora; Bassett, William A.; Zha, Chang-Sheng

    2005-07-01

    The behavior of cubic ZrW2O8 on compression in a DAC to 7.6GPa was examined in situ by a combination of synchrotron x-ray diffraction and x-ray absorption spectroscopy (XAS). These data were compared with x-ray absorption measurements on an amorphous sample of ZrW2O8 recovered from 7.5GPa in a multianvil apparatus. The in situ diffraction data show the complete formation of orthorhombic ZrW2O8 at low pressure (2.4GPa with completion at <7.6GPa . The corresponding in situ XAS data suggest a continuous evolution of the local tungsten coordination environment on compression after forming the orthorhombic phase, with the average WO bond length increasing, indicating an increase in the average coordination number, and the W LI pre-edge peak decreasing in magnitude, indicating a movement toward tungsten coordination that is closer to centrosymmetric These observations are inconsistent with a model for the amorphization that simply involves a loss of orientational/positional order among existing coordination polyhedra. The XANES data for the amorphous sample recovered from the multianvil apparatus are unlike any of the XANES seen in the in situ measurements, suggesting that the local structure in the glassy material relaxes on decompression. The XANES for the recovered sample are very similar to those for ammonium paratungstate, a material that contains tungsten in a variety of heavily distorted octahedral environments.

  3. Ultrahigh resolution soft x-ray emission spectrometer at BL07LSU in SPring-8

    Energy Technology Data Exchange (ETDEWEB)

    Harada, Yoshihisa [Department of Applied Chemistry, Graduate School of Engineering, University of Tokyo, Hongo, Bunkyo, Tokyo 113-8656 (Japan); Synchrotron Radiation Research Organization, University of Tokyo, Koto, Shingu-cho, Tatsuno, Hyogo 679-5165 (Japan); RIKEN/SPring-8, Sayo-cho, Sayo, Hyogo 679-5148 (Japan); CREST, Japan Science and Technology (JST), Kawaguchi, Saitama 332-0012 (Japan); Kobayashi, Masaki [Department of Applied Chemistry, Graduate School of Engineering, University of Tokyo, Hongo, Bunkyo, Tokyo 113-8656 (Japan); Synchrotron Radiation Research Organization, University of Tokyo, Koto, Shingu-cho, Tatsuno, Hyogo 679-5165 (Japan); RIKEN/SPring-8, Sayo-cho, Sayo, Hyogo 679-5148 (Japan); Niwa, Hideharu [Department of Applied Chemistry, Graduate School of Engineering, University of Tokyo, Hongo, Bunkyo, Tokyo 113-8656 (Japan); Synchrotron Radiation Research Organization, University of Tokyo, Koto, Shingu-cho, Tatsuno, Hyogo 679-5165 (Japan); Senba, Yasunori; Ohashi, Haruhiko [Japan Synchrotron Radiation Research Institute (JASRI), Koto, Sayo-cho, Sayo, Hyogo 679-5198 (Japan); Tokushima, Takashi; Horikawa, Yuka [RIKEN/SPring-8, Sayo-cho, Sayo, Hyogo 679-5148 (Japan); Shin, Shik [RIKEN/SPring-8, Sayo-cho, Sayo, Hyogo 679-5148 (Japan); CREST, Japan Science and Technology (JST), Kawaguchi, Saitama 332-0012 (Japan); Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581 (Japan); Oshima, Masaharu [Department of Applied Chemistry, Graduate School of Engineering, University of Tokyo, Hongo, Bunkyo, Tokyo 113-8656 (Japan); Synchrotron Radiation Research Organization, University of Tokyo, Koto, Shingu-cho, Tatsuno, Hyogo 679-5165 (Japan); CREST, Japan Science and Technology (JST), Kawaguchi, Saitama 332-0012 (Japan)

    2012-01-15

    An extremely high resolution flat field type slit less soft x-ray emission spectrometer has been designed and constructed for the long undulator beamline BL07LSU in SPring-8. By optimizing the ruling parameters of two cylindrical gratings, a high energy resolution {Delta}E < 100 meV and/or an E/{Delta}E{approx} 10 000 are expected for the energy range of 350 eV - 750 eV taking into account the broadening by the spatial resolution (25 {mu}m) of a CCD detector. A coma-free operation mode proposed by Strocov et al., is also applied to eliminate both defocus and coma aberrations. The spectrometer demonstrated experimentally that E/{Delta}E= 10 050 and 8046 for N 1s (402.1 eV) and Mn 2p (641.8 eV) edges, respectively.

  4. Stability of a Bifunctional Cu-Based Core@Zeolite Shell Catalyst for Dimethyl Ether Synthesis Under Redox Conditions Studied by Environmental Transmission Electron Microscopy and In Situ X-Ray Ptychography

    DEFF Research Database (Denmark)

    Baier, Sina; Damsgaard, Christian Danvad; Klumpp, Michael

    2017-01-01

    gas. The catalyst stability was studied in a hierarchical manner by complementary environmental transmission electron microscopy (ETEM), scanning electron microscopy (SEM) and in situ hard X-ray ptychography with a specially designed in situ cell. Both reductive activation and reoxidation were applied....... The core-shell interface was found to be stable during reducing and oxidizing treatment at 250°C as observed by ETEM and in situ X-ray ptychography, although strong changes occurred in the core on a 10 nm scale due to the reduction of copper oxide to metallic copper particles. At 350°C, in situ X-ray...

  5. High-pressure, high-temperature deformation of dunite, eclogite, clinopyroxenite and garnetite using in situ X-ray diffraction

    Science.gov (United States)

    Farla, R.; Rosenthal, A.; Bollinger, C.; Petitgirard, S.; Guignard, J.; Miyajima, N.; Kawazoe, T.; Crichton, W. A.; Frost, D. J.

    2017-09-01

    The rheology of eclogite, garnetite and clinopyroxenite in the peridotitic upper mantle was experimentally investigated in a large volume press combined with in situ synchrotron X-ray diffraction techniques to study the impact on mantle convection resulting from the subduction of oceanic lithosphere. Experiments were carried out over a range of constant strain rates (2 ×10-6- 3 ×10-5 s-1), pressures (4.3 to 6.7 GPa) and temperatures (1050 to 1470 K). Results show substantial strength variations among eclogitic garnet and clinopyroxene and peridotitic olivine. At low temperatures (1400 K) eclogite is weaker than dunite by 0.2 GPa or more. Garnetite and clinopyroxenite exhibit higher strength than dunite at approximately 1200 K. However, at higher temperature (1370 K), clinopyroxenite is significantly weaker than garnetite (and dunite) by more than a factor of five. We explain these observations by transitions in deformation mechanisms among the mineral phases. In clinopyroxene, high temperature dislocation creep resulting in a strength reduction replaces low temperature twinning. Whereas garnet remains very rigid at all experimental conditions when nominally anhydrous ('dry'). Microstructural observations show phase segregation of clinopyroxene and garnet, development of a crystallographic and shape preferred orientation in the former but not in the latter, suggesting an overall weak seismic anisotropy. Detection of eclogite bodies in the peridotite-dominated mantle may only be possible via observation of high VP /VS1 ratios. A comparable or weaker rheology of eclogite to dunite suggests effective stirring and mixing of eclogite in the convecting mantle.

  6. Strain and crystalline defects in epitaxial GaN layers studied by high-resolution X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Chierchia, Rosa

    2007-07-01

    This thesis treats strain and dislocations in MOVPE GaN layers. The mosaic structure of metalorganic vapour phase epitaxy (MOVPE)-grown GaN layers was studied in dependence on the grain diameter utilizing high-resolution XRD. Different models for the defect structure were analyzed, the edge type TD densities were calculated under the assumption that the dislocations are not randomly distributed but localized at the grain boundaries. Moreover, in situ measurements have shown that the layers are under tension in the c-plane when a nucleation layer is used. The second part of this thesis treats a particular approach to reduce dislocations in MOVPE GaN layers, i.e. maskless pendeo epitaxial growth of MOVPE GAN layers. FE simulations assuming the strain to be completely induced during cooling of the structures after growth agree only partly with experimental data. The strain state of single layers and stripes of GaN grown on SiC was studied to exploit the evolution of the strain in the different phases of the PE growth. The biaxial compressive stress, due to the lattice mismatch between the GaN layer and the AlN nucleation layer is plastically relieved before overgrowth. Temperature dependent measurements show a linear reduction of the wing tilt with increasing temperature varying from sample to sample. Bent TDs have been observed in TEM images of maskless PE samples. Stress induced from the mismatch between the AlN buffer layer and the GaN also contributes to the remaining part of the wing tilt not relieved thermally. It has to be noted that the rest tilt value varies from sample to sample at the growth temperature. In fact some of the data indicate that the wing tilt decreases with increasing V/III ratio. In the last Chapter the application of X-ray techniques for the analysis of strain and composition in layers of inhomogeneous composition is explored. In the first part of the Chapter the strain state and the Al content of AlGaN buffer layers grown directly on (0001

  7. Development of a high resolution x-ray spectrometer for the National Ignition Facility (NIF).

    Science.gov (United States)

    Hill, K W; Bitter, M; Delgado-Aparicio, L; Efthimion, P C; Ellis, R; Gao, L; Maddox, J; Pablant, N A; Schneider, M B; Chen, H; Ayers, S; Kauffman, R L; MacPhee, A G; Beiersdorfer, P; Bettencourt, R; Ma, T; Nora, R C; Scott, H A; Thorn, D B; Kilkenny, J D; Nelson, D; Shoup, M; Maron, Y

    2016-11-01

    A high resolution (E/ΔE = 1200-1800) Bragg crystal x-ray spectrometer is being developed to measure plasma parameters in National Ignition Facility experiments. The instrument will be a diagnostic instrument manipulator positioned cassette designed mainly to infer electron density in compressed capsules from Stark broadening of the helium-β (1s 2 -1s3p) lines of krypton and electron temperature from the relative intensities of dielectronic satellites. Two conically shaped crystals will diffract and focus (1) the Kr Heβ complex and (2) the Heα (1s 2 -1s2p) and Lyα (1s-2p) complexes onto a streak camera photocathode for time resolved measurement, and a third cylindrical or conical crystal will focus the full Heα to Heβ spectral range onto an image plate to provide a time integrated calibration spectrum. Calculations of source x-ray intensity, spectrometer throughput, and spectral resolution are presented. Details of the conical-crystal focusing properties as well as the status of the instrumental design are also presented.

  8. Preparation of clay mineral samples for high resolution x-ray imaging

    Science.gov (United States)

    Abbati, Gennaro; Seim, Christian; Legall, Herbert; Stiel, Holger; Thomas, Noel; Wilhein, Thomas

    2013-10-01

    In the development of optimum ceramic materials for plastic forming, it is of fundamental importance to gain insight into the compositions of the clay minerals. Whereas spectroscopic methods are adequate for determining the elemental composition of a given sample, a knowledge of the spatial composition, together with the shape and size of the particles leads to further, valuable insight. This requires an imaging technique such as high resolution X-ray microscopy. In addition, fluorescence spectroscopy provides a viable element mapping technique. Since the fine particle fraction of the materials has a major effect on physical properties like plasticity, the analysis is focused mainly on the smallest particles. To separate these from the bigger agglomerates, the raw material has to pass through several procedures like centrifugation and filtering. After that, one has to deposit a layer of appropriate thickness on to a suitable substrate. These preparative techniques are described here, starting from the clay mineral raw materials and proceeding through to samples that are ready to analyze. First results using high resolution x-ray imaging are shown.

  9. High resolution X-ray detector for synchrotron-based microtomography

    CERN Document Server

    Stampanoni, M; Wyss, P; Abela, R; Patterson, B; Hunt, S; Vermeulen, D; Rueegsegger, P

    2002-01-01

    Synchrotron-based microtomographic devices are powerful, non-destructive, high-resolution research tools. Highly brilliant and coherent X-rays extend the traditional absorption imaging techniques and enable edge-enhanced and phase-sensitive measurements. At the Materials Science Beamline MS of the Swiss Light Source (SLS), the X-ray microtomographic device is now operative. A high performance detector based on a scintillating screen optically coupled to a CCD camera has been developed and tested. Different configurations are available, covering a field of view ranging from 715x715 mu m sup 2 to 7.15x7.15 mm sup 2 with magnifications from 4x to 40x. With the highest magnification 480 lp/mm had been achieved at 10% modulation transfer function which corresponds to a spatial resolution of 1.04 mu m. A low-noise fast-readout CCD camera transfers 2048x2048 pixels within 100-250 ms at a dynamic range of 12-14 bit to the file server. A user-friendly graphical interface gives access to the main parameters needed for ...

  10. X-ray Interferometry with Transmissive Beam Combiners for Ultra-High Angular Resolution Astronomy

    Science.gov (United States)

    Skinner, G. K.; Krismanic, John F.

    2009-01-01

    Abstract Interferometry provides one of the possible routes to ultra-high angular resolution for X-ray and gamma-ray astronomy. Sub-micro-arc-second angular resolution, necessary to achieve objectives such as imaging the regions around the event horizon of a super-massive black hole at the center of an active galaxy, can be achieved if beams from parts of the incoming wavefront separated by 100s of meters can be stably and accurately brought together at small angles. One way of achieving this is by using grazing incidence mirrors. We here investigate an alternative approach in which the beams are recombined by optical elements working in transmission. It is shown that the use of diffractive elements is a particularly attractive option. We report experimental results from a simple 2-beam interferometer using a low-cost commercially available profiled film as the diffractive elements. A rotationally symmetric filled (or mostly filled) aperture variant of such an interferometer, equivalent to an X-ray axicon, is shown to offer a much wider bandpass than either a Phase Fresnel Lens (PFL) or a PFL with a refractive lens in an achromatic pair. Simulations of an example system are presented.

  11. Development of a high resolution x-ray spectrometer for the National Ignition Facility (NIF)

    Science.gov (United States)

    Hill, K. W.; Bitter, M.; Delgado-Aparicio, L.; Efthimion, P. C.; Ellis, R.; Gao, L.; Maddox, J.; Pablant, N. A.; Schneider, M. B.; Chen, H.; Ayers, S.; Kauffman, R. L.; MacPhee, A. G.; Beiersdorfer, P.; Bettencourt, R.; Ma, T.; Nora, R. C.; Scott, H. A.; Thorn, D. B.; Kilkenny, J. D.; Nelson, D.; Shoup, M.; Maron, Y.

    2016-11-01

    A high resolution (E/ΔE = 1200-1800) Bragg crystal x-ray spectrometer is being developed to measure plasma parameters in National Ignition Facility experiments. The instrument will be a diagnostic instrument manipulator positioned cassette designed mainly to infer electron density in compressed capsules from Stark broadening of the helium-β (1s2-1s3p) lines of krypton and electron temperature from the relative intensities of dielectronic satellites. Two conically shaped crystals will diffract and focus (1) the Kr Heβ complex and (2) the Heα (1s2-1s2p) and Lyα (1s-2p) complexes onto a streak camera photocathode for time resolved measurement, and a third cylindrical or conical crystal will focus the full Heα to Heβ spectral range onto an image plate to provide a time integrated calibration spectrum. Calculations of source x-ray intensity, spectrometer throughput, and spectral resolution are presented. Details of the conical-crystal focusing properties as well as the status of the instrumental design are also presented.

  12. CO2-selective methanol steam reforming on In-doped Pd studied by in situ X-ray photoelectron spectroscopy

    Science.gov (United States)

    Rameshan, Christoph; Lorenz, Harald; Mayr, Lukas; Penner, Simon; Zemlyanov, Dmitry; Arrigo, Rosa; Haevecker, Michael; Blume, Raoul; Knop-Gericke, Axel; Schlögl, Robert; Klötzer, Bernhard

    2012-01-01

    In situ X-ray photoelectron spectroscopy (in situ XPS) was used to study the structural and catalytic properties of Pd–In near-surface intermetallic phases in correlation with previously studied PdZn and PdGa. Room temperature deposition of ∼4 monolayer equivalents (MLEs) of In metal on Pd foil and subsequent annealing to 453 K in vacuum yields a ∼1:1 Pd/In near-surface multilayer intermetallic phase. This Pd1In1 phase exhibits a similar “Cu-like” electronic structure and indium depth distribution as its methanol steam reforming (MSR)-selective multilayer Pd1Zn1 counterpart. Catalytic characterization of the multilayer Pd1In1 phase in MSR yielded a CO2-selectivity of almost 100% between 493 and 550 K. In contrast to previously studied In2O3-supported PdIn nanoparticles and pure In2O3, intermediate formaldehyde is only partially converted to CO2 using this Pd1In1 phase. Strongly correlated with PdZn, on an In-diluted PdIn intermetallic phase with “Pd-like” electronic structure, prepared by thermal annealing at 623 K, methanol steam reforming is suppressed and enhanced CO formation via full methanol dehydrogenation is observed. To achieve CO2-TOF values on the isolated Pd1In1 intermetallic phase as high as on supported PdIn/In2O3, at least 593 K reaction temperature is required. A bimetal-oxide synergism, with both bimetallic and oxide synergistically contributing to the observed catalytic activity and selectivity, manifests itself by accelerated formaldehyde-to-CO2 conversion at markedly lowered temperatures as compared to separate oxide and bimetal. Combination of suppression of full methanol dehydrogenation to CO on Pd1In1 inhibited inverse water–gas-shift reaction on In2O3 and fast water activation/conversion of formaldehyde is the key to the low-temperature activity and high CO2-selectivity of the supported catalyst. PMID:23226689

  13. CO(2)-selective methanol steam reforming on In-doped Pd studied by in situ X-ray photoelectron spectroscopy.

    Science.gov (United States)

    Rameshan, Christoph; Lorenz, Harald; Mayr, Lukas; Penner, Simon; Zemlyanov, Dmitry; Arrigo, Rosa; Haevecker, Michael; Blume, Raoul; Knop-Gericke, Axel; Schlögl, Robert; Klötzer, Bernhard

    2012-11-01

    In situ X-ray photoelectron spectroscopy (in situ XPS) was used to study the structural and catalytic properties of Pd-In near-surface intermetallic phases in correlation with previously studied PdZn and PdGa.Room temperature deposition of ∼4 monolayer equivalents (MLEs) of In metal on Pd foil and subsequent annealing to 453 K in vacuum yields a ∼1:1 Pd/In near-surface multilayer intermetallic phase. This Pd(1)In(1) phase exhibits a similar "Cu-like" electronic structure and indium depth distribution as its methanol steam reforming (MSR)-selective multilayer Pd(1)Zn(1) counterpart.Catalytic characterization of the multilayer Pd(1)In(1) phase in MSR yielded a CO(2)-selectivity of almost 100% between 493 and 550 K. In contrast to previously studied In(2)O(3)-supported PdIn nanoparticles and pure In(2)O(3), intermediate formaldehyde is only partially converted to CO(2) using this Pd(1)In(1) phase. Strongly correlated with PdZn, on an In-diluted PdIn intermetallic phase with "Pd-like" electronic structure, prepared by thermal annealing at 623 K, methanol steam reforming is suppressed and enhanced CO formation via full methanol dehydrogenation is observed.To achieve CO(2)-TOF values on the isolated Pd(1)In(1) intermetallic phase as high as on supported PdIn/In(2)O(3), at least 593 K reaction temperature is required. A bimetal-oxide synergism, with both bimetallic and oxide synergistically contributing to the observed catalytic activity and selectivity, manifests itself by accelerated formaldehyde-to-CO(2) conversion at markedly lowered temperatures as compared to separate oxide and bimetal. Combination of suppression of full methanol dehydrogenation to CO on Pd(1)In(1) inhibited inverse water-gas-shift reaction on In(2)O(3) and fast water activation/conversion of formaldehyde is the key to the low-temperature activity and high CO(2)-selectivity of the supported catalyst.

  14. The supersoft X-ray source in V5116 Sagittarii. I. The high resolution spectra

    Science.gov (United States)

    Sala, G.; Ness, J. U.; Hernanz, M.; Greiner, J.

    2017-05-01

    Context. Classical nova explosions occur on the surface of an accreting white dwarf in a binary system. After ejection of a fraction of the envelope and when the expanding shell becomes optically thin to X-rays, a bright source of supersoft X-rays arises, powered by residual H burning on the surface of the white dwarf. While the general picture of the nova event is well established, the details and balance of accretion and ejection processes in classical novae are still full of unknowns. The long-term balance of accreted matter is of special interest for massive accreting white dwarfs, which may be promising supernova Ia progenitor candidates. Nova V5116 Sgr 2005b was observed as a bright and variable supersoft X-ray source by XMM-Newton in March 2007, 610 days after outburst. The light curve showed a periodicity consistent with the orbital period. During one third of the orbit the luminosity was a factor of seven brighter than during the other two thirds of the orbital period. Aims: In the present work we aim to disentangle the X-ray spectral components of V5116 Sgr and their variability. Methods: We present the high resolution spectra obtained with XMM-Newton RGS and Chandra LETGS/HRC-S in March and August 2007. Results: The grating spectrum during the periods of high-flux shows a typical hot white dwarf atmosphere dominated by absorption lines of N VI and N VII. During the low-flux periods, the spectrum is dominated by an atmosphere with the same temperature as during the high-flux period, but with several emission features superimposed. Some of the emission lines are well modeled with an optically thin plasma in collisional equilibrium, rich in C and N, which also explains some excess in the spectra of the high-flux period. No velocity shifts are observed in the absorption lines, with an upper limit set by the spectral resolution of 500 km s-1, consistent with the expectation of a non-expanding atmosphere so late in the evolution of the post-nova. Based on

  15. A flow cell for transient voltammetry and in situ grazing incidence X-ray diffraction characterization of electrocrystallized cadmium(II) tetracyanoquinodimethane

    Energy Technology Data Exchange (ETDEWEB)

    Veder, Jean-Pierre [Nanochemistry Research Institute, Department of Chemistry, Curtin University, GPO Box U1987, Perth, Western Australia 6845 (Australia); Nafady, Ayman [School of Chemistry, Monash University, Clayton, Victoria 3800 (Australia); Clarke, Graeme [Nanochemistry Research Institute, Department of Chemistry, Curtin University, GPO Box U1987, Perth, Western Australia 6845 (Australia); Williams, Ross P. [Centre for Materials Research, Department of Imaging and Applied Physics, Curtin University, GPO Box U1987, Perth, Western Australia 6845 (Australia); De Marco, Roland, E-mail: r.demarco@curtin.edu.a [Nanochemistry Research Institute, Department of Chemistry, Curtin University, GPO Box U1987, Perth, Western Australia 6845 (Australia); Bond, Alan M. [School of Chemistry, Monash University, Clayton, Victoria 3800 (Australia)

    2011-01-01

    An easy to fabricate and versatile cell that can be used with a variety of electrochemical techniques, also meeting the stringent requirement for undertaking cyclic voltammetry under transient conditions in in situ electrocrystallization studies and total external reflection X-ray analysis, has been developed. Application is demonstrated through an in situ synchrotron radiation-grazing incidence X-ray diffraction (SR-GIXRD) characterization of electrocrystallized cadmium (II)-tetracyanoquinodimethane material, Cd(TCNQ){sub 2}, from acetonitrile (0.1 mol dm{sup -3} [NBu{sub 4}][PF{sub 6}]). Importantly, this versatile cell design makes SR-GIXRD suitable for almost any combination of total external reflection X-ray analysis (e.g., GIXRF and GIXRD) and electrochemical perturbation, also allowing its application in acidic, basic, aqueous, non-aqueous, low and high flow pressure conditions. Nevertheless, the cell design separates the functions of transient voltammetry and SR-GIXRD measurements, viz., voltammetry is performed at high flow rates with a substantially distended window to minimize the IR (Ohmic) drop of the electrolyte, while SR-GIXRD is undertaken using stop-flow conditions with a very thin layer of electrolyte to minimize X-ray absorption and scattering by the solution.

  16. Magnetically-coupled microcalorimeter arrays for x-ray astrophysics with sub-eV spectral resolution and large format capability Project

    Data.gov (United States)

    National Aeronautics and Space Administration — "We propose to develop a revolutionary x-ray camera for astrophysical imaging spectroscopy. High-resolution x-ray spectroscopy is a powerful tool for studying the...

  17. X-Ray Nanofocus CT: Visualising Of Internal 3D-Structures With Submicrometer Resolution

    Science.gov (United States)

    Weinekoetter, Christian

    2008-09-01

    High-resolution X-ray Computed Tomography (CT) allows the visualization and failure analysis of the internal micro structure of objects—even if they have complicated 3D-structures where 2D X-ray microscopy would give unclear information. During the past several years, computed tomography has progressed to higher resolution and quicker reconstruction of the 3D-volume. Most recently it even allows a three-dimensional look into the inside of materials with submicron resolution. With the use of nanofocus® tube technology, nanoCT®-systems are pushing forward into application fields that were exclusive to high cost and rare available synchrotron techniques. The study was performed with the new nanotom, a very compact laboratory system which allows the analysis of samples up to 120 mm in diameter and weighing up to 1 kg with exceptional voxel-resolution down to volumes, the nanotom® includes a variety of effective software tools to reduce ring-artefacts and correct beam hardenings or drift effects which occurred during data acquisition. The resulting CT volume data set can be displayed in various ways, for example by virtual slicing and sectional views in any direction of the volume. By the fact that this requires only a mouse click, this technique will substitute destructive mechanical slicing and cutting in many applications. The initial CT results obtained with the nanotom® demonstrate that it is now possible to analyze the three-dimensional micro structure of materials and small objects with submicrometer resolution. Any internal difference in material, density or porosity within a sample can be visualized and data like distances can be measured. NanoCT® widely expands the spectrum of detectable micro-structures. The nanotom® opens a new dimension of 3D-microanalysis and will replace more destructive methods—saving costs and time per sample inspected.

  18. High-Resolution Detector for At-Wavelength Metrology of X-Ray Optics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Since the launch of the first X-ray focusing telescope in 1963, the development of grazing incidence X-ray optics has been crucial to the development of the field of...

  19. Monodisperse Iron Oxide Nanoparticles by Thermal Decomposition: Elucidating Particle Formation by Second-Resolved in Situ Small-Angle X-ray Scattering

    Science.gov (United States)

    2017-01-01

    The synthesis of iron oxide nanoparticles (NPs) by thermal decomposition of iron precursors using oleic acid as surfactant has evolved to a state-of-the-art method to produce monodisperse, spherical NPs. The principles behind such monodisperse syntheses are well-known: the key is a separation between burst nucleation and growth phase, whereas the size of the population is set by the precursor-to-surfactant ratio. Here we follow the thermal decomposition of iron pentacarbonyl in the presence of oleic acid via in situ X-ray scattering. This method allows reaction kinetics and precursor states to be followed with high time resolution and statistical significance. Our investigation demonstrates that the final particle size is directly related to a phase of inorganic cluster formation that takes place between precursor decomposition and particle nucleation. The size and concentration of clusters were shown to be dependent on precursor-to-surfactant ratio and heating rate, which in turn led to differences in the onset of nucleation and concentration of nuclei after the burst nucleation phase. This first direct observation of prenucleation formation of inorganic and micellar structures in iron oxide nanoparticle synthesis by thermal decomposition likely has implications for synthesis of other NPs by similar routes. PMID:28572705

  20. Development of a High Resolution X-ray Spectrometer on the National Ignition Facility

    Science.gov (United States)

    Gao, L.; Kraus, B.; Hill, K. W.; Bitter, M.; Efthimion, P.; Schneider, M. B.; Chen, H.; Ayers, J.; Liedahl, D.; Macphee, A. G.; Le, H. P.; Thorn, D.; Nelson, D.

    2017-10-01

    A high-resolution x-ray spectrometer has been designed, calibrated, and deployed on the National Ignition Facility (NIF) to measure plasma parameters for a Kr-doped surrogate capsule imploded at NIF conditions. Two conical crystals, each diffracting the He α and He β complexes respectively, focus the spectra onto a steak camera photocathode for time-resolved measurements with a temporal resolution of NIF experimental results will also be discussed. This work was performed under the auspices of the U.S. Department of Energy by Princeton Plasma Physics Laboratory under contract DE-AC02-09CH11466 and by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.

  1. Multiple-wave diffraction in high energy resolution back-reflecting x-ray optics.

    Science.gov (United States)

    Stetsko, Yuri P; Keister, J W; Coburn, D S; Kodituwakku, C N; Cunsolo, A; Cai, Y Q

    2011-10-07

    We have studied the effects of multiple-wave diffraction in a novel optical scheme recently published by Shvyd'ko et al. utilizing Bragg diffraction of x rays in backscattering geometry from asymmetrically cut crystals for achieving energy resolutions beyond the intrinsic width of the Bragg reflection. By numerical simulations based on dynamic x-ray diffraction and by experimentation involving two-dimensional angular scans of the back-reflecting crystal, multiple-wave diffraction was found to contribute up to several tens percent loss of efficiency but can be avoided without degrading the energy resolution of the original scheme by careful choice of azimuthal orientation of the diffracting crystal surface and by tilting of the crystal perpendicular to the dispersion plane.

  2. In situ characterization of delamination and crack growth of a CGO–LSM multi-layer ceramic sample investigated by X-ray tomographic microscopy

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Esposito, Vincenzo; Lauridsen, Erik Mejdal

    2014-01-01

    The densification, delamination and crack growth behavior in a Ce0.9Gd0.1O1.95 (CGO) and (La0.85Sr0.15)0.9MnO3 (LSM) multi-layer ceramic sample was studied using in situ X-ray tomographic microscopy (microtomography) to investigate the critical dynamics of crack propagation and delamination...... and delamination only accelerates when sintering occurs....

  3. An in situ x-ray photoelectron spectroscopy study of the initial stages of rf magnetron sputter deposition of indium tin oxide on p-type Si substrate

    Energy Technology Data Exchange (ETDEWEB)

    Rein, M. H.; Holt, A. O. [Institute for Energy Technology, Department of Solar Energy, Instituttveien 18, 2008 Kjeller (Norway); Hohmann, M. V.; Klein, A. [Technische Universitaet Darmstadt, Institute of Materials Science, Surface Science Division, Petersenstrasse 32, D-64287 Darmstadt (Germany); Thogersen, A. [SINTEF-Materials and Chemistry Syntesis and Properties, Forskningsveien 1, Pb. 124 Blindern, 0314 Oslo (Norway); Mayandi, J. [Department of Materials Science, School of Chemistry, Madurai Kamaraj University, Tamil Nadu, Madurai (India); Monakhov, E. V. [Institute for Energy Technology, Department of Solar Energy, Instituttveien 18, 2008 Kjeller (Norway); Department of Physics/Centre for Materials Science and Nanotechnology, University of Oslo, 0316 Oslo (Norway)

    2013-01-14

    The interface between indium tin oxide and p-type silicon is studied by in situ X-ray photoelectron spectroscopy (XPS). This is done by performing XPS without breaking vacuum after deposition of ultrathin layers in sequences. Elemental tin and indium are shown to be present at the interface, both after 2 and 10 s of deposition. In addition, the silicon oxide layer at the interface is shown to be composed of mainly silicon suboxides rather than silicon dioxide.

  4. In-situ small-angle x-ray scattering study of nanoparticles in the plasma plume induced by pulsed laser irradiation of metallic targets

    Energy Technology Data Exchange (ETDEWEB)

    Lavisse, L.; Jouvard, J.-M.; Girault, M.; Potin, V.; Andrzejewski, H.; Marco de Lucas, M. C.; Bourgeois, S. [Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS-Universite de Bourgogne, 9 Avenue A. Savary, BP 47870-21078 Dijon Cedex (France); Le Garrec, J.-L.; Carles, S.; Mitchell, J. B. A. [Institut de Physique de Rennes, UMR 6251 CNRS-Universite de Rennes 1, 35042 Rennes Cedex (France); Hallo, L. [CEA CESTA, 15 Avenue des Sablieres CS 60001, 33116 Le Barp Cedex (France); Perez, J. [Synchrotron SOLEIL, L' Orme des Merisiers, Saint-Aubin, F-91192 Gif-sur-Yvette Cedex (France); Decloux, J. [Kaluti System, Optique et Laser, Centre Scientifique d' Orsay, 91400 Orsay (France)

    2012-04-16

    Small angle x-ray scattering was used to probe in-situ the formation of nanoparticles in the plasma plume generated by pulsed laser irradiation of a titanium metal surface under atmospheric conditions. The size and morphology of the nanoparticles were characterized as function of laser irradiance. Two families of nanoparticles were identified with sizes on the order of 10 and 70 nm, respectively. These results were confirmed by ex-situ transmission electron microscopy experiments.

  5. In situ X-ray diffraction of catalysts. Phase transformations of Cu/Cr-oxides with different initial structure under redox conditions

    Energy Technology Data Exchange (ETDEWEB)

    Krieger, T.A.; Plyasova, L.M.; Yurieva, T.M. [Boreskov Inst. of Catalysis, Novosibirsk (Russian Federation)

    2000-07-01

    The installation design and a chamber-reactor were proposed for laboratory-scale in situ X-ray diffraction studies of solid phase transformations. Dynamics of phase transformations was studied for low-temperature copper chromite under the action of the reaction medium. Common and distinctive features of the behavior of low- and high-temperature copper chromites under redox conditions at the temperature below 300 C were revealed. (orig.)

  6. High Resolution Energetic X-ray Imager (HREXI) for a Prototype 12U CubeSat

    Science.gov (United States)

    Hong, JaeSub; Allen, Branden; Grindlay, Jonathan E.; Barthelmy, Scott Douglas; Harrison, Fiona

    2017-08-01

    Our High Resolution Energetic X-ray Imager (HREXI) program is developing an Engineering Model (EM) for a 12U CubeSat wide-field hard X-ray (3-200 keV) coded-aperture imaging telescope. HREXI employs an array of CdZnTe (CZT) detectors (each 2 x 2 x 0.3 cm) with a fine-pixellated Tungsten coded aperture mask. The detector assembly utilizes the new technology of Through-Silicon-Vias (TSVs) to control and readout signals from the ASIC bonded to each CZT. TSVs eliminate the need for conventional wire-bonds for electric connections between the ASIC and back end electronics, greatly lowering the assembly complexity and cost, and thus enabling close-tiling of HREXI detectors in a small form factor with comfortable margins. For HREXI EM, we have successfully implemented TSVs on NuSTAR ASICs, which can cover an energy range of 3-200 keV with a FWHM spectral resolution of 1-2 keV. The 12U CubeSat HREXI EM prototype with 64 CZT detectors would image 0.5 sr of sky with FWHM field of view with 11 arcmin resolution for the current generation of the TSV-ASIC and a 20 cm mask - detector plane separation. A flight test of this 12U-HREXI will be proposed after full development and environmental testing to enable a future proposed array of SmallSat-HREXI telescopes with ~2 arcmin resolution for simultaneous full-sky studies of high redshift GRBs and a wide range of transients in the post-Swift era. (This work is supported by NASA grant NNX17AE62G)

  7. So Many Rockets - The Road to High Resolution Imaging in X-rays

    Science.gov (United States)

    Murray, Stephen S.

    2013-01-01

    When I first begin to work on new imaging detectors for X-ray Astronomy I was at AS&E and I worked with Leon Van Speybroeck and Ed Kellogg on a sounding rocket project. We starting by using a microchannel plate image intensifier to detect X-ray photons and convert them to flashes of light that were recorded on 35 mm film frames. Simultaneously there was a 16 mm star camera taking frames so we could tell where the X-rays were coming from. I spent about 6 years working on this payload, eventually becoming the PI and evolving the detector from a film readout to an electronic readout (the crossed grid charge detector) that was the basis for the Einstein, ROSAT and Chandra High Resolution Imagers and Cameras. We had a series of about 6 or so rocket flights culminating in the 1978 flight that actually worked. We detected three photons from Sco X1, and background data from that flight allowed us to set the detector front bias voltage to minimize non-X-ray background for the Einstein HRI. Just about everything that could go wrong on those rockets did go wrong, from a switch not closing to a rocket misfire, to pointing 180 degrees off target. But we learned something each flight and kept coming back to try again. The worse thing for me was having to stay up all night at White Sands in a small darkroom where I could avoid the night crawlers and scorpions that frightened me to death. Not to mention the daredevil helicopter pilots who flew us to the recovery site hugging the ground at top speed all the way there! None-the-less, in the end we succeeded in our goals, and there is nothing so exciting as watching your payload being launched at night (even it did mean sneaking out from the bunker to do it!). Thanks to NASA and the US Navy's White Sands USS Desert Ship (LLS-1; Land Locked Ship - 1) for all the support.

  8. Non-destructive in situ study of “Mad Meg” by Pieter Bruegel the Elder using mobile X-ray fluorescence, X-ray diffraction and Raman spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Van de Voorde, Lien, E-mail: lien.vandevoorde@ugent.be [Ghent University, Department of Analytical Chemistry, X-ray Microspectroscopy and Imaging Research Group, Krijgslaan 281 S12, B-9000 Gent (Belgium); Van Pevenage, Jolien [Ghent University, Department of Analytical Chemistry, Raman Spectroscopy Research Group, Krijgslaan 281 S12, B-9000 Gent (Belgium); De Langhe, Kaat [Ghent University, Department of Archaeology, Archaeometry Research Group, Sint-Pietersnieuwstraat 35, B-9000 Gent (Belgium); De Wolf, Robin; Vekemans, Bart; Vincze, Laszlo [Ghent University, Department of Analytical Chemistry, X-ray Microspectroscopy and Imaging Research Group, Krijgslaan 281 S12, B-9000 Gent (Belgium); Vandenabeele, Peter [Ghent University, Department of Archaeology, Archaeometry Research Group, Sint-Pietersnieuwstraat 35, B-9000 Gent (Belgium); Martens, Maximiliaan P.J. [Ghent University, Department of Art, Music and Theatre Sciences, Blandijnberg 2, B-9000 Gent (Belgium)

    2014-07-01

    “Mad Meg”, a figure of Flemish folklore, is the subject of a famous oil-on-panel painting by the Flemish renaissance artist Pieter Bruegel the Elder, exhibited in the Museum Mayer van den Bergh (Antwerp, Belgium). This article reports on the in situ chemical characterization of this masterpiece by using currently available state-of-the-art portable analytical instruments. The applied non-destructive analytical approach involved the use of a) handheld X-ray fluorescence instrumentation for retrieving elemental information and b) portable X-ray fluorescence/X-ray diffraction instrumentation and laser-based Raman spectrometers for obtaining structural/molecular information. Next to material characterization of the used pigments and of the different preparation layers of the painting, also the verification of two important historical iconographic hypotheses is performed concerning the economic way of painting by Brueghel, and whether or not he used blue smalt pigment for painting the boat that appears towards the top of the painting. The pigments identified are smalt pigment (65% SiO{sub 2} + 15% K{sub 2}O + 10% CoO + 5% Al{sub 2}O{sub 3}) for the blue color present in all blue areas of the painting, probably copper resinate for the green colors, vermillion (HgS) as red pigment and lead white is used to form different colors. The comparison of blue pigments used on different areas of the painting gives no differences in the elemental fingerprint which confirms the existing hypothesis concerning the economic painting method by Bruegel. - Highlights: • In situ, non-destructive investigation of a famous painting by Pieter Bruegel. • Use of a new, commercial available, portable XRF/XRD instrumentation. • Multi-methodological approach: make also use of a mobile Raman spectrometer. • Used pigments and different preparation layers of the painting are characterized. • The verification of two important historical iconographic hypotheses are performed.

  9. Adjustable Grazing Incidence X-ray Optics with 0.5 Arc Second Resolution

    Science.gov (United States)

    Reid, Paul

    We seek to develop adjustable grazing incidence optics for x-ray astronomy. The goal of this development is thin, lightweight mirrors with angular resolution of 0.5 arc seconds, comparable to the Chandra X-ray Observatory. The new mirror design consists of thin segments of a Wolter-I grazing incidence mirror, with piezo-electric material deposited directly on the back surface of the mirror. Depositing a pattern of independently addressable electrodes on top of the piezoelectric material produces an array of independent piezo cells. Energizing a particular cell introduces a localized deformation in the mirror without the need for a reaction structure. By applying the appropriate voltage to the piezo cells, it is possible to correct mirror figure errors that result from mirror fabrication, gravity release, mounting, and thermal effects. Because the thin mirrors segments are lightweight, they can be densely nested to produce collecting area thirty times that of Chandra, on an affordably priced mission. This Supporting Technology program is a follow-on to an existing APRA program. In the existing program we demonstrated the first successful deposition of piezoelectric material on thermally formed glass substrates. We showed that the localized deformations produced by the piezo cells match finite element predictions, and the piezo cell adjustment range meets requirements necessary to achieve the desired figure correction. We have also shown through simulation that representative mirror figure errors can be corrected via modeled influence functions to achieve 0.5 arc sec imaging performance. This provides a firm foundation on which to develop further the technology. We will continue to optimize the deposition of thin piezoelectric films onto thermally formed glass and electroplated metal mirror segments to improve yield and manufacturability. We will deposit piezoelectric material onto conical mirror segments and demonstrate figure correction in agreement with prediction

  10. Room temperature redox reaction by oxide ion migration at carbon/Gd-doped CeO2 heterointerface probed by an in situ hard x-ray photoemission and soft x-ray absorption spectroscopies

    Directory of Open Access Journals (Sweden)

    Takashi Tsuchiya, Shogo Miyoshi, Yoshiyuki Yamashita, Hideki Yoshikawa, Kazuya Terabe, Keisuke Kobayashi and Shu Yamaguchi

    2013-01-01

    Full Text Available In situ hard x-ray photoemission spectroscopy (HX-PES and soft x-ray absorption spectroscopy (SX-XAS have been employed to investigate a local redox reaction at the carbon/Gd-doped CeO2 (GDC thin film heterointerface under applied dc bias. In HX-PES, Ce3d and O1s core levels show a parallel chemical shift as large as 3.2 eV, corresponding to the redox window where ionic conductivity is predominant. The window width is equal to the energy gap between donor and acceptor levels of the GDC electrolyte. The Ce M-edge SX-XAS spectra also show a considerable increase of Ce3+ satellite peak intensity, corresponding to electrochemical reduction by oxide ion migration. In addition to the reversible redox reaction, two distinct phenomena by the electrochemical transport of oxide ions are observed as an irreversible reduction of the entire oxide film by O2 evolution from the GDC film to the gas phase, as well as a vigorous precipitation of oxygen gas at the bottom electrode to lift off the GDC film. These in situ spectroscopic observations describe well the electrochemical polarization behavior of a metal/GDC/metal capacitor-like two-electrode cell at room temperature.

  11. Solid state synthesis of layered sodium manganese oxide for sodium-ion battery by in-situ high energy X-ray diffraction and X-ray absorption near edge spectroscopy

    Science.gov (United States)

    Ma, Tianyuan; Xu, Gui-Liang; Zeng, Xiaoqiao; Li, Yan; Ren, Yang; Sun, Chengjun; Heald, Steve M.; Jorne, Jacob; Amine, Khalil; Chen, Zonghai

    2017-02-01

    In situ high energy X-ray diffraction (HEXRD) and in situ X-ray absorption near edge spectroscopy (XANES) were carried out to understand the solid state synthesis of NaxMnO2, with particular interest on the synthesis of P2 type Na2/3MnO2. It was found that there were multi intermediate phases formed before NaMnO2 appeared at about 600 °C. And the final product after cooling process is a combination of O‧3 NaMnO2 with P2 Na2/3MnO2. A P2 type Na2/3MnO2 was synthesized at reduced temperature (600 °C). The influence of Na2CO3 impurity on the electrochemical performance of P2 Na2/3MnO2 was thoroughly investigated in our work. It was found that the content of Na2CO3 can be reduced by optimizing Na2CO3/MnCO3 ratio during the solid state reaction or other post treatment such as washing with water. We expected our results could provide a good guide for future development of high performance cathode materials for sodium-ion batteries.

  12. X-ray phase-contrast tomography for high-spatial-resolution zebrafish muscle imaging

    Science.gov (United States)

    Vågberg, William; Larsson, Daniel H.; Li, Mei; Arner, Anders; Hertz, Hans M.

    2015-11-01

    Imaging of muscular structure with cellular or subcellular detail in whole-body animal models is of key importance for understanding muscular disease and assessing interventions. Classical histological methods for high-resolution imaging methods require excision, fixation and staining. Here we show that the three-dimensional muscular structure of unstained whole zebrafish can be imaged with sub-5 μm detail with X-ray phase-contrast tomography. Our method relies on a laboratory propagation-based phase-contrast system tailored for detection of low-contrast 4-6 μm subcellular myofibrils. The method is demonstrated on 20 days post fertilization zebrafish larvae and comparative histology confirms that we resolve individual myofibrils in the whole-body animal. X-ray imaging of healthy zebrafish show the expected structured muscle pattern while specimen with a dystrophin deficiency (sapje) displays an unstructured pattern, typical of Duchenne muscular dystrophy. The method opens up for whole-body imaging with sub-cellular detail also of other types of soft tissue and in different animal models.

  13. Revisit of alpha-chitin crystal structure using high resolution X-ray diffraction data.

    Science.gov (United States)

    Sikorski, Pawel; Hori, Ritsuko; Wada, Masahisa

    2009-05-11

    High resolution synchrotron X-ray fiber diffraction data recorded from crab tendon chitin have been used to describe the crystal structure of alpha-chitin. Crystal structures at 100 and 300 K have been solved using restrained crystallographic refinement against diffraction intensities measured from the fiber diffraction patterns. The unit cell contains two polymer chains in a 2(1) helix conformation and in the antiparallel orientation. The best agreement between predicated and observed X-ray diffraction intensities is obtained for a model that includes two distinctive conformations of C6-O6 hydroxymethl group. Those conformations are different from what is proposed in the generally accepted alpha-chitin crystal structure (J. Mol. Biol. 1978, 120, 167-181). Based on refined positions of the O6 atoms, a network of hydrogen bonds involving O6 is proposed. This network of hydrogen bonds can explain the main features of the polarized FTIR spectra of alpha-chitin and sheds some light on the origin of splitting of the amide I band observed on alpha-chitin IR spectra.

  14. Quantitative analysis of nanoparticle internalization in mammalian cells by high resolution X-ray microscopy

    Directory of Open Access Journals (Sweden)

    Hua Tzu-En

    2011-04-01

    Full Text Available Abstract Background Quantitative analysis of nanoparticle uptake at the cellular level is critical to nanomedicine procedures. In particular, it is required for a realistic evaluation of their effects. Unfortunately, quantitative measurements of nanoparticle uptake still pose a formidable technical challenge. We present here a method to tackle this problem and analyze the number of metal nanoparticles present in different types of cells. The method relies on high-lateral-resolution (better than 30 nm transmission x-ray microimages with both absorption contrast and phase contrast -- including two-dimensional (2D projection images and three-dimensional (3D tomographic reconstructions that directly show the nanoparticles. Results Practical tests were successfully conducted on bare and polyethylene glycol (PEG coated gold nanoparticles obtained by x-ray irradiation. Using two different cell lines, EMT and HeLa, we obtained the number of nanoparticle clusters uptaken by each cell and the cluster size. Furthermore, the analysis revealed interesting differences between 2D and 3D cultured cells as well as between 2D and 3D data for the same 3D specimen. Conclusions We demonstrated the feasibility and effectiveness of our method, proving that it is accurate enough to measure the nanoparticle uptake differences between cells as well as the sizes of the formed nanoparticle clusters. The differences between 2D and 3D cultures and 2D and 3D images stress the importance of the 3D analysis which is made possible by our approach.

  15. Studies of X-ray burst reactions with radioactive ion beams from RESOLUT

    Science.gov (United States)

    Blackmon, J. C.; Wiedenhöver, I.; Belarge, J.; Kuvin, S. A.; Anastasiou, M.; Baby, L. T.; Baker, J.; Colbert, K.; Deibel, C. M.; de Lucio, O.; Gardiner, H. E.; Gay, D. L.; Good, E.; Höflich, P.; Hood, A. A. D.; Keely, N.; Lai, J.; Laminack, A.; Linhardt, L. E.; Lighthall, J.; Macon, K. T.; Need, E.; Quails, N.; Rasco, B. C.; Rijal, N.; Volya, A.

    2018-01-01

    Reactions on certain proton-rich, radioactive nuclei have been shown to have a significant influence on X-ray bursts. We provide an overview of two recent measurements of important X-ray burst reactions using in-flight radioactive ion beams from the RESOLUT facility at the J. D. Fox Superconducting Accelerator Laboratory at Florida State University. The 17F(d,n)18Ne reaction was measured, and Asymptotic Normalization Coefficients were extracted for bound states in 18Ne that determine the direct-capture cross section dominating the 17F(p,γ)18Ne reaction rate for T≲ 0.45 GK. Unbound resonant states were also studied, and the single-particle strength for the 4.523-MeV (3+) state was found to be consistent with previous results. The 19Ne(d,n)20Na proton transfer reaction was used to study resonances in the 19Ne(p,γ)20Na reaction. The most important 2.65-MeV state in 20Na was observed to decay by proton emission to both the ground and first-excited states in 19Ne, providing strong evidence for a 3+ spin assignment and indicating that proton capture on the thermally-populated first-excited state in 19Ne is an important contributor to the 19Ne(p,γ)20Na reaction rate.

  16. Development Status of Adjustable X-Ray Optics with 0.5 Arcsecond Resolution

    Science.gov (United States)

    Reid, P. B.; ODell, Stephen; Elsner, Ron; Ramsey, Brian; Gubarev, Misha; Aldcroft, T.; Allured, R.; Cotroneo, V.; Johnson-Wilke, R. L.; McMuldroch, S.; hide

    2014-01-01

    We report on the continuing development of adjustable, grazing incidence X-ray optics for 0.5 arcsec telescopes. Adjustable X-ray optics offer the potential for achieving sub-arcsecond imaging resolution while sufficiently thin and light-weight to constitute a mirror assembly with several square meters collecting area. The adjustable mirror concept employs a continuous thin film of piezoelectric material deposited on the back of the paraboloid and hyperboloid mirror segments. Individually addressable electrodes on the piezoelectric layer allow the introduction of deformations in localized "cells" which are used to correct mirror figure errors resulting from fabrication, mounting and aligning the thin mirrors, residual gravity release and temperature changes. We describe recent results of this development. These include improving cell yield to approx. 100 per cent, measurements of hysteresis and stability, comparisons of modeled and measured behavior, simulations of mirror performance, and the development and testing of conical Wolter- I mirror segments. We also present our plans going forward toward the eventual goal of achieving TRL 6 prior to the 2020 Decadal Review.

  17. Metrology of Epitaxial Thin Films and Periodic Nanostructures using High Resolution X-Ray Diffraction Techniques

    Science.gov (United States)

    Medikonda, Manasa

    The continued scaling of device size to achieve higher performance and/or lower power operation at lower cost is driving research and development into new, 3D transistor structures such as the FinFET. This research and development effort is highlighting the need for new, advanced measurement capability that is highly accurate, reliable, rapid, and nondestructive. Periodic arrays of fin structures enable process monitoring at each level of fabrication and the maintenance of overall device yield. High resolution x-ray diffraction (HR XRD) has been shown to provide unique capability of characterizing blanket thin films and structural parameters of periodic arrays of fins fabricated in single crystal materials. Application of HR XRD techniques to characterize fin structures with critical dimensions of 1x-2x nm has been very limited. The main objective of my research is to develop and apply HR XRD techniques that analyze critical parameters such as the lithographic pitch, pitch walking, sidewall slope, and fin top width in arrays of advanced fin structures. This research also investigates the stress state of initially pseudomorphic epilayers at the top of the fin, and identification of defects. The results for non-patterned epitaxial fully strained SiGe and GeSn alloys are presented and the methods of detecting periodicity, strain state and shape of arrays of lithographically patterned silicon and silicon-germanium fins are demonstrated using synchrotron source and laboratory x-ray diffractometers.

  18. Studies of X-ray burst reactions with radioactive ion beams from RESOLUT

    Directory of Open Access Journals (Sweden)

    Blackmon J. C.

    2017-01-01

    Full Text Available Reactions on certain proton-rich, radioactive nuclei have been shown to have a significant influence on X-ray bursts. We provide an overview of two recent measurements of important X-ray burst reactions using in-flight radioactive ion beams from the RESOLUT facility at the J. D. Fox Superconducting Accelerator Laboratory at Florida State University. The 17F(d,n18Ne reaction was measured, and Asymptotic Normalization Coefficients were extracted for bound states in 18Ne that determine the direct-capture cross section dominating the 17F(p,γ18Ne reaction rate for T≲ 0.45 GK. Unbound resonant states were also studied, and the single-particle strength for the 4.523-MeV (3+ state was found to be consistent with previous results. The 19Ne(d,n20Na proton transfer reaction was used to study resonances in the 19Ne(p,γ20Na reaction. The most important 2.65-MeV state in 20Na was observed to decay by proton emission to both the ground and first-excited states in 19Ne, providing strong evidence for a 3+ spin assignment and indicating that proton capture on the thermally-populated first-excited state in 19Ne is an important contributor to the 19Ne(p,γ20Na reaction rate.

  19. Novel micro-reactor flow cell for investigation of model catalysts using in situ grazing-incidence X-ray scattering

    DEFF Research Database (Denmark)

    Kehres, Jan; Pedersen, Thomas; Masini, Federico

    2016-01-01

    at synchrotron facilities are performed utilizing the micro-reactor and a designed transportable gas feed and analysis system. The feasibility of simultaneous in situ GISAXS/GIWAXS experiments in the novel micro-reactor flow cell was confirmed with CO oxidation over mass-selected Ru nanoparticles.......The design, fabrication and performance of a novel and highly sensitive micro-reactor device for performing in situ grazing-incidence X-ray scattering experiments of model catalyst systems is presented. The design of the reaction chamber, etched in silicon on insulator (SIO), permits grazing...

  20. Beam collimation with polycapillary x-ray optics for high contrast high resolution monochromatic imaging.

    Science.gov (United States)

    Sugiro, Francisca R; Li, Danhong; MacDonald, C A

    2004-12-01

    Monochromatic imaging can provide better contrast and resolution than conventional broadband radiography. In broadband systems, low energy photons do not contribute to the image, but are merely absorbed, while high energy photons produce scattering that degrades the image. By tuning to the optimal energy, one can eliminate undesirable lower and higher energies. Monochromatization is achieved by diffraction from a single crystal. A crystal oriented to diffract at a particular energy, in this case the characteristic line energy, diffracts only those photons within a narrow range of angles. The resultant beam from a divergent source is nearly parallel, but not very intense. To increase the intensity, collimation was performed with polycapillary x-ray optics, which can collect radiation from a divergent source and redirect it into a quasi parallel beam. Contrast and resolution measurements were performed with diffracting crystals with both high and low angular acceptance. Testing was first done at 8 keV with an intense copper rotating anode x-ray source, then 17.5 keV measurements were made with a low power molybdenum source. At 8 keV, subject contrast was a factor of five higher than for the polychromatic case. At 17.5 keV, monochromatic contrast was two times greater than the conventional polychromatic contrast. The subject contrasts measured at both energies were in good agreement with theory. An additional factor of two increase in contrast, for a total gain of four, is expected at 17.5 keV from the removal of scatter. Scatter might be simply removed using an air gap, which does not degrade resolution with a parallel beam.

  1. Two-dimensional position-sensitive gaseous detectors for high-resolution neutron and X-ray diffraction

    CERN Document Server

    Marmotti, M; Kampmann, R

    2002-01-01

    Two-dimensional position-sensitive gaseous detectors have been developed at the Geesthacht Neutron Facility (GeNF) for high-resolution neutron and X-ray diffractometry. They are multi-wire proportional counters with delay-line readout and sensitive areas of 300 mm x 300 mm or 500 mm x 500 mm. For detecting X-rays, neutrons and hard X-rays the counters are filled with Ar/CO sub 2 , sup 3 He/CF sub 4 and Xe/CO sub 2 , respectively. One neutron detector is used at the ARES diffractometer at GKSS, which is dedicated to the analysis of residual stresses. Further ones are used for analysing textures and residual stresses at the hard-X-ray beamline PETRA-2 at HASYLAB, and one detector is being developed for the neutron reflectometer REFSANS at the research reactor FRM-II in Munich, Germany. (orig.)

  2. Improvement of density resolution in short-pulse hard x-ray radiographic imaging using detector stacks

    Energy Technology Data Exchange (ETDEWEB)

    Borm, B.; Gärtner, F.; Khaghani, D. [GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt (Germany); Johann Wolfgang Goethe-Universität, Frankfurt am Main (Germany); Neumayer, P. [GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt (Germany)

    2016-09-15

    We demonstrate that stacking several imaging plates (IPs) constitutes an easy method to increase hard x-ray detection efficiency. Used to record x-ray radiographic images produced by an intense-laser driven hard x-ray backlighter source, the IP stacks resulted in a significant improvement of the radiograph density resolution. We attribute this to the higher quantum efficiency of the combined detectors, leading to a reduced photon noise. Electron-photon transport simulations of the interaction processes in the detector reproduce the observed contrast improvement. Increasing the detection efficiency to enhance radiographic imaging capabilities is equally effective as increasing the x-ray source yield, e.g., by a larger drive laser energy.

  3. Design and performance of a soft-x-ray interferometer for ultra-high-resolution fourier transform spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Moler, E.J.; Hussain, Z.; Duarte, R.M.; Howells, M.R. [Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    A Fourier Transform Soft X-ray spectrometer (FT-SX) has been designed and is under construction for the Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory as a branch of beamline 9.3.2. The spectrometer is a novel soft x-ray interferometer designed for ultra-high resolution (theoretical resolving power E/{delta}E{approximately}10{sup 6}) spectroscopy in the photon energy region of 60-120 eV. This instrument is expected to provide experimental results which sensitively test models of correlated electron processes in atomic and molecular physics. The design criteria and consequent technical challenges posed by the short wavelengths of x-rays and desired resolving power are discussed. The fundamental and practical aspects of soft x-ray interferometry are also explored.

  4. High-resolution x-ray imaging using a structured scintillator

    Energy Technology Data Exchange (ETDEWEB)

    Hormozan, Yashar, E-mail: hormozan@kth.se; Sychugov, Ilya; Linnros, Jan [Materials and Nano Physics, School of Information and Communication Technology, KTH Royal Institute of Technology, Electrum 229, Kista, Stockholm SE-16440 (Sweden)

    2016-02-15

    Purpose: In this study, the authors introduce a new generation of finely structured scintillators with a very high spatial resolution (a few micrometers) compared to conventional scintillators, yet maintaining a thick absorbing layer for improved detectivity. Methods: Their concept is based on a 2D array of high aspect ratio pores which are fabricated by ICP etching, with spacings (pitches) of a few micrometers, on silicon and oxidation of the pore walls. The pores were subsequently filled by melting of powdered CsI(Tl), as the scintillating agent. In order to couple the secondary emitted photons of the back of the scintillator array to a CCD device, having a larger pixel size than the pore pitch, an open optical microscope with adjustable magnification was designed and implemented. By imaging a sharp edge, the authors were able to calculate the modulation transfer function (MTF) of this finely structured scintillator. Results: The x-ray images of individually resolved pores suggest that they have been almost uniformly filled, and the MTF measurements show the feasibility of a few microns spatial resolution imaging, as set by the scintillator pore size. Compared to existing techniques utilizing CsI needles as a structured scintillator, their results imply an almost sevenfold improvement in resolution. Finally, high resolution images, taken by their detector, are presented. Conclusions: The presented work successfully shows the functionality of their detector concept for high resolution imaging and further fabrication developments are most likely to result in higher quantum efficiencies.

  5. Effect of C16TMA contents on the thermal stability of organo-bentonites: In situ X-ray diffraction analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kooli, Fethi, E-mail: fkooli@taibahu.edu.sa [Taibah University, Department of Chemistry, PO Box 30002, Al-Madinah Al-Munawwarah (Saudi Arabia)

    2013-01-10

    Highlights: Black-Right-Pointing-Pointer Organo-bentonites were prepared at C16TMABr/CEC ratios up to 11. Black-Right-Pointing-Pointer Disorder configuration of C16TMA cations was observed at higher C16TMABr/CEC ratios. Black-Right-Pointing-Pointer The evolved gases during the calcinations of organoclays were analyzed by MS-TG. Black-Right-Pointing-Pointer In situ XRD technique detected clearly the phase disorder in the range 50-150 Degree-Sign C. Black-Right-Pointing-Pointer Collapse of organoclays depended on the temperature and the used atmospheres. - Abstract: Different concentrations of cetyl trimethylammonium bromide solutions were cation exchanged with bentonite clay mineral, at room temperature. The resulting organoclays were characterized by elemental analysis C and N, X-ray diffraction and thermal gravimetric analysis. The evolved gases during the calcination of organoclays were identified by online mass spectrometry coupled with thermal gravimetry technique. Meanwhile, in situ X-ray diffraction was used to have insight on the thermal stability of the organoclays in air atmosphere. X-ray diffraction at room temperature indicated that a disorder transition phase from bilayer to paraffin configuration occurred at higher surfactant-cation exchange capacity ratios, with two phases at 3.25 and 2.00 nm, respectively. The in situ X-ray diffraction confirmed the presence of these two phases with improved reflections intensities in the range of 100-200 Degree-Sign C. Above this temperature, both phases collapsed due to the decomposition of the surfactants as recorded by mass spectrometry thermal gravimetric analysis.

  6. HIGH-ENERGY X-RAY PINHOLE CAMERA FOR HIGH-RESOLUTION ELECTRON BEAM SIZE MEASUREMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Yang, B.; Morgan, J.; Lee, S.H.; Shang, H.

    2017-03-25

    The Advanced Photon Source (APS) is developing a multi-bend achromat (MBA) lattice based storage ring as the next major upgrade, featuring a 20-fold reduction in emittance. Combining the reduction of beta functions, the electron beam sizes at bend magnet sources may be reduced to reach 5 – 10 µm for 10% vertical coupling. The x-ray pinhole camera currently used for beam size monitoring will not be adequate for the new task. By increasing the operating photon energy to 120 – 200 keV, the pinhole camera’s resolution is expected to reach below 4 µm. The peak height of the pinhole image will be used to monitor relative changes of the beam sizes and enable the feedback control of the emittance. We present the simulation and the design of a beam size monitor for the APS storage ring.

  7. High Resolution X-ray Computed Tomography: An Emerging Tool for Small Animal Cancer Research

    Directory of Open Access Journals (Sweden)

    Michael J. Paulus

    2000-01-01

    Full Text Available Dedicated high-resolution small animal imaging systems have recently emerged as important new tools for cancer research. These new imaging systems permit researchers to noninvasively screen animals for mutations or pathologies and to monitor disease progression and response to therapy. One imaging modality, X-ray microcomputed tomography (microCT shows promise as a cost-effective means for detecting and characterizing soft-tissue structures, skeletal abnormalities, and tumors in live animals. MicroCT systems provide highresolution images (typically 50 microns or less, rapid data acquisition (typically 5 to 30 minutes, excellent sensitivity to skeletal tissue and good sensitivity to soft tissue, particularly when contrast-enhancing media are employed. The development of microCT technology for small animal imaging is reviewed, and key considerations for designing small animal microCT imaging protocols are summarized. Recent studies on mouse prostate, lung and bone tumor models are overviewed.

  8. High-resolution X-ray absorption spectroscopy of iron carbonyl complexes.

    Science.gov (United States)

    Atkins, Andrew J; Bauer, Matthias; Jacob, Christoph R

    2015-06-07

    We apply high-energy-resolution fluorescence-detected (HERFD) X-ray absorption near-edge spectroscopy (XANES) to study iron carbonyl complexes. Mono-, bi-, and tri-nuclear carbonyl complexes and pure carbonyl complexes as well as carbonyl complexes containing hydrocarbon ligands are considered. The HERFD-XANES spectra reveal multiple pre-edge peaks with individual signatures for each complex, which could not be detected previously with conventional XANES spectroscopy. These peaks are assigned and analysed with the help of TD-DFT calculations. We demonstrate that the pre-edge peaks can be used to distinguish the different types of iron-iron interactions in carbonyl complexes. This opens up new possibilities for applying HERFD-XANES spectroscopy to probe the electronic structure of iron catalysts.

  9. An inelastic X-ray spectrometer with 2.2 meV energy resolution

    CERN Document Server

    Sinn, H; Alatas, A; Barraza, J; Bortel, G; Burkel, E; Shu, D; Sturhahn, W; Sutter, J P; Toellner, T S; Zhao, J

    2001-01-01

    We present a new spectrometer at the Advanced Photon Source for inelastic X-ray scattering with an energy resolution of 2.2 meV at an incident energy of 21.6 keV. For monochromatization, a nested structure of one silicon channel cut and one 'artificial' channel cut is used in forward-scattering geometry. The energy analysis is achieved by a two-dimensional focusing silicon analyzer in backscattering geometry. In the first demonstration experiments, elastic scattering from a Plexiglas sup T sup M sample and two dispersion curves in a beryllium single crystal were measured. Based on these data sets, the performance of the new spectrometer is discussed.

  10. Conception of broadband stigmatic high-resolution spectrometers for the soft X-ray range

    Energy Technology Data Exchange (ETDEWEB)

    Vishnyakov, E A; Shatokhin, A N; Ragozin, E N [P N Lebedev Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

    2015-04-30

    We formulate an approach to the development of stigmatic high-resolution spectral instruments for the soft X-ray range (λ ≤ 300 Å), which is based on the combined operation of normalincidence multilayer mirrors (including broadband aperiodic ones) and grazing-incidence reflection gratings with nonequidistant grooves (so-called VLS gratings). A concave multilayer mirror serves to produce a slightly astigmatic image of the radiation source (for instance, an entrance slit), and the diffraction grating produces a set of its dispersed stigmatic spectral images. The width of the operating spectral region is determined by the aperiodic structure of the multilayer mirror and may range up to an octave in wavelength. (laser applications and other topics in quantum electronics)

  11. Applied x-ray computed tomography with high resolution in paleontology using laboratory and synchrotron sources

    Science.gov (United States)

    Bidola, Pidassa; Pacheco, Mirian L. A. F.; Stockmar, Marco K.; Achterhold, Klaus; Pfeiffer, Franz; Beckmann, Felix; Tafforeau, Paul; Herzen, Julia

    2014-09-01

    X-ray computed tomography (CT) has become an established technique in the biomedical imaging or materials science research. Its ability to non-destructively provide high-resolution images of samples makes it attractive for diverse fields of research especially the paleontology. Exceptionally, the Precambrian is a geological time of rocks deposition containing several fossilized early animals, which still need to be investigated in order to predict the origin and evolution of early life. Corumbella werneri is one of those fossils skeletonized in Corumbá (Brazil). Here, we present a study on selected specimens of Corumbella werneri using absorption-based contrast imaging at diverse tomographic setups. We investigated the potential of conventional laboratory-based device and synchrotron radiation sources to visualize internal structures of the fossils. The obtained results are discussed as well as the encountered limitations of those setups.

  12. Super-resolution in solution X-ray scattering and its applications to structural systems biology.

    Science.gov (United States)

    Rambo, Robert P; Tainer, John A

    2013-01-01

    Small-angle X-ray scattering (SAXS) is a robust technique for the comprehensive structural characterizations of biological macromolecular complexes in solution. Here, we present a coherent synthesis of SAXS theory and experiment with a focus on analytical tools for accurate, objective, and high-throughput investigations. Perceived SAXS limitations are considered in light of its origins, and we present current methods that extend SAXS data analysis to the super-resolution regime. In particular, we discuss hybrid structural methods, illustrating the role of SAXS in structure refinement with NMR and ensemble refinement with single-molecule FRET. High-throughput genomics and proteomics are far outpacing macromolecular structure determinations, creating information gaps between the plethora of newly identified genes, known structures, and the structure-function relationship in the underlying biological networks. SAXS can bridge these information gaps by providing a reliable, high-throughput structural characterization of macromolecular complexes under physiological conditions.

  13. High resolution X-ray fluorescence imaging for a microbeam radiation therapy treatment planning system

    Science.gov (United States)

    Chtcheprov, Pavel; Inscoe, Christina; Burk, Laurel; Ger, Rachel; Yuan, Hong; Lu, Jianping; Chang, Sha; Zhou, Otto

    2014-03-01

    Microbeam radiation therapy (MRT) uses an array of high-dose, narrow (~100 μm) beams separated by a fraction of a millimeter to treat various radio-resistant, deep-seated tumors. MRT has been shown to spare normal tissue up to 1000 Gy of entrance dose while still being highly tumoricidal. Current methods of tumor localization for our MRT treatments require MRI and X-ray imaging with subject motion and image registration that contribute to the measurement error. The purpose of this study is to develop a novel form of imaging to quickly and accurately assist in high resolution target positioning for MRT treatments using X-ray fluorescence (XRF). The key to this method is using the microbeam to both treat and image. High Z contrast media is injected into the phantom or blood pool of the subject prior to imaging. Using a collimated spectrum analyzer, the region of interest is scanned through the MRT beam and the fluorescence signal is recorded for each slice. The signal can be processed to show vascular differences in the tissue and isolate tumor regions. Using the radiation therapy source as the imaging source, repositioning and registration errors are eliminated. A phantom study showed that a spatial resolution of a fraction of microbeam width can be achieved by precision translation of the mouse stage. Preliminary results from an animal study showed accurate iodine profusion, confirmed by CT. The proposed image guidance method, using XRF to locate and ablate tumors, can be used as a fast and accurate MRT treatment planning system.

  14. Meta-shell Approach for Constructing Lightweight and High Resolution X-Ray Optics

    Science.gov (United States)

    McClelland, Ryan S.

    2016-01-01

    Lightweight and high resolution optics are needed for future space-based x-ray telescopes to achieve advances in high-energy astrophysics. Past missions such as Chandra and XMM-Newton have achieved excellent angular resolution using a full shell mirror approach. Other missions such as Suzaku and NuSTAR have achieved lightweight mirrors using a segmented approach. This paper describes a new approach, called meta-shells, which combines the fabrication advantages of segmented optics with the alignment advantages of full shell optics. Meta-shells are built by layering overlapping mirror segments onto a central structural shell. The resulting optic has the stiffness and rotational symmetry of a full shell, but with an order of magnitude greater collecting area. Several meta-shells so constructed can be integrated into a large x-ray mirror assembly by proven methods used for Chandra and XMM-Newton. The mirror segments are mounted to the meta-shell using a novel four point semi-kinematic mount. The four point mount deterministically locates the segment in its most performance sensitive degrees of freedom. Extensive analysis has been performed to demonstrate the feasibility of the four point mount and meta-shell approach. A mathematical model of a meta-shell constructed with mirror segments bonded at four points and subject to launch loads has been developed to determine the optimal design parameters, namely bond size, mirror segment span, and number of layers per meta-shell. The parameters of an example 1.3 m diameter mirror assembly are given including the predicted effective area. To verify the mathematical model and support opto-mechanical analysis, a detailed finite element model of a meta-shell was created. Finite element analysis predicts low gravity distortion and low thermal distortion. Recent results are discussed including Structural Thermal Optical Performance (STOP) analysis as well as vibration and shock testing of prototype meta-shells.

  15. High-resolution X-ray diffraction with no sample preparation.

    Science.gov (United States)

    Hansford, G M; Turner, S M R; Degryse, P; Shortland, A J

    2017-07-01

    It is shown that energy-dispersive X-ray diffraction (EDXRD) implemented in a back-reflection geometry is extremely insensitive to sample morphology and positioning even in a high-resolution configuration. This technique allows high-quality X-ray diffraction analysis of samples that have not been prepared and is therefore completely non-destructive. The experimental technique was implemented on beamline B18 at the Diamond Light Source synchrotron in Oxfordshire, UK. The majority of the experiments in this study were performed with pre-characterized geological materials in order to elucidate the characteristics of this novel technique and to develop the analysis methods. Results are presented that demonstrate phase identification, the derivation of precise unit-cell parameters and extraction of microstructural information on unprepared rock samples and other sample types. A particular highlight was the identification of a specific polytype of a muscovite in an unprepared mica schist sample, avoiding the time-consuming and difficult preparation steps normally required to make this type of identification. The technique was also demonstrated in application to a small number of fossil and archaeological samples. Back-reflection EDXRD implemented in a high-resolution configuration shows great potential in the crystallographic analysis of cultural heritage artefacts for the purposes of scientific research such as provenancing, as well as contributing to the formulation of conservation strategies. Possibilities for moving the technique from the synchrotron into museums are discussed. The avoidance of the need to extract samples from high-value and rare objects is a highly significant advantage, applicable also in other potential research areas such as palaeontology, and the study of meteorites and planetary materials brought to Earth by sample-return missions.

  16. In situ electrochemical high-energy X-ray diffraction using a capillary working electrode cell geometry

    Energy Technology Data Exchange (ETDEWEB)

    Young, Matthias J.; Bedford, Nicholas M.; Jiang, Naisheng; Lin, Deqing; Dai, Liming

    2017-05-26

    The ability to generate new electrochemically active materials for energy generation and storage with improved properties will likely be derived from an understanding of atomic-scale structure/function relationships during electrochemical events. Here, the design and implementation of a new capillary electrochemical cell designed specifically forin situhigh-energy X-ray diffraction measurements is described. By increasing the amount of electrochemically active material in the X-ray path while implementing low-Zcell materials with anisotropic scattering profiles, an order of magnitude enhancement in diffracted X-ray signal over traditional cell geometries for multiple electrochemically active materials is demonstrated. This signal improvement is crucial for high-energy X-ray diffraction measurements and subsequent Fourier transformation into atomic pair distribution functions for atomic-scale structural analysis. As an example, clear structural changes in LiCoO2under reductive and oxidative conditions using the capillary cell are demonstrated, which agree with prior studies. Accurate modeling of the LiCoO2diffraction data using reverse Monte Carlo simulations further verifies accurate background subtraction and strong signal from the electrochemically active material, enabled by the capillary working electrode geometry.

  17. High spectral resolution x-ray optics with highly oriented pyrolytic graphite.

    Science.gov (United States)

    Legall, H; Stiel, H; Arkadiev, V; Bjeoumikhov, A A

    2006-05-15

    Thin films of highly oriented pyrolytic graphite (HOPG) give the opportunity to realize crystal optics with arbitrary geometry by mounting it on a mould of any shape. A specific feature of HOPG is its mosaicity accompanied by a high integral reflectivity, which is by an order of magnitude higher than that of all other known crystals in an energy range between 2 keV up to several 10 keV. These characteristics make it possible to realize highly efficient collecting optics, which could be also relevant for compact x-ray diagnostic tools and spectrometers. For these applications the achievable spectral resolution of the crystal optics is of interest. In this article measurements with a spectral resolution of E/DeltaE=2900 in the second order reflection and E/DeltaE=1800 in the first order reflection obtained with HOPG crystals are presented. These are by far the highest spectral resolutions reported for HOPG crystals. The integral reflectivity of these very thin films is still comparable with that of ideal Ge crystals. The trade-off between energy resolution and high integral reflectivity for HOPG is demonstrated by determining these parameters for HOPG films of different thickness.

  18. In situ observation of fracture processes in high-strength concretes and limestone using high-speed X-ray phase-contrast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Parab, Niranjan D.; Guo, Zherui; Hudspeth, Matthew; Claus, Benjamin; Lim, Boon Him; Sun, Tao; Xiao, Xianghui; Fezzaa, Kamel; Chen, Weinong W.

    2016-12-12

    The mechanical properties and fracture mechanisms of geomaterials and construction materials such as concrete are reported to be dependent on the loading rates. However, the in situ cracking inside such specimens cannot be visualized using traditional optical imaging methods since the materials are opaque. In this study, the in situ sub-surface failure/damage mechanisms in Cor-Tuf (a reactive powder concrete), a high-strength concrete (HSC) and Indiana limestone under dynamic loading were investigated using high-speed synchrotron X-ray phase-contrast imaging. Dynamic compressive loading was applied using a modified Kolsky bar and fracture images were recorded using a synchronized high-speed synchrotron X-ray imaging set-up. Three-dimensional synchrotron X-ray tomography was also performed to record the microstructure of the specimens before dynamic loading. In the Cor-Tuf and HSC specimens, two different modes of cracking were observed: straight cracking or angular cracking with respect to the direction of loading. In limestone, cracks followed the grain boundaries and voids, ultimately fracturing the specimen. Cracks in HSC were more tortuous than the cracks in Cor-Tuf specimens. The effects of the microstructure on the observed cracking behaviour are discussed. This article is part of the themed issue ‘Experimental testing and modelling of brittle materials at high strain rates’.

  19. In situ Raman spectroscopy and X-ray diffraction of pressure-induced phase transition in columbite CaNb{sub 2}O{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jing [State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012 (China); Feng, Guanlin [State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012 (China); China Electronic Product Reliability and Environmental Testing Research Institute, Guangzhou 510610 (China); Li, Liang; Huang, Fengxian; Shen, Hongzhi; Yang, Hang [State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012 (China); Wang, Wenquan [College of Physics, Jilin University, Changchun 130000 (China); Zhou, Qiang [State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012 (China); College of Physics, Jilin University, Changchun 130000 (China); Xu, Dapeng, E-mail: xudp@jlu.edu.cn [State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012 (China); College of Physics, Jilin University, Changchun 130000 (China)

    2013-12-05

    Highlights: •The phase transition of CaNb{sub 2}O{sub 6} was investigated for the first time under high pressure. •In situ Raman spectroscopy and Synchrotron X-ray diffraction were measured. •A pressure-induced reversible phase transition was observed below 23 GPa. •The orthorhombic columbite Pbcn transforms to monoclinic structure P2{sub 1}/c. •The lattice parameters of the new phase were obtained by the Pawley refinements. -- Abstract: The in situ high pressure studies of CaNb{sub 2}O{sub 6} have been performed using Raman spectroscopy and Synchrotron X-ray diffraction in a DAC up to 23 GPa. Raman experiments show that most Raman peaks decrease in intensity and shift toward high wave numbers with increasing pressure. Two turn points in the slope of frequency–pressure curve of the slopes of Raman modes turn up at the pressure around 8 and 15 GPa. ADXRD results display that the old peaks disappear and some new peaks appear above 9.4 GPa, and the patterns remain unchanged above 15 GPa. Both Raman and X-ray diffraction data provide evidence of a reversible phase transition beginning from about 8 GPa and completing at 15 GPa.

  20. Developing a CCD camera with high spatial resolution for RIXS in the soft X-ray range

    Energy Technology Data Exchange (ETDEWEB)

    Soman, M.R., E-mail: m.r.soman@open.ac.uk [e2v centre for electronic imaging, The Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Hall, D.J.; Tutt, J.H.; Murray, N.J.; Holland, A.D. [e2v centre for electronic imaging, The Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Schmitt, T.; Raabe, J.; Schmitt, B. [Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland)

    2013-12-11

    The Super Advanced X-ray Emission Spectrometer (SAXES) at the Swiss Light Source contains a high resolution Charge-Coupled Device (CCD) camera used for Resonant Inelastic X-ray Scattering (RIXS). Using the current CCD-based camera system, the energy-dispersive spectrometer has an energy resolution (E/ΔE) of approximately 12,000 at 930 eV. A recent study predicted that through an upgrade to the grating and camera system, the energy resolution could be improved by a factor of 2. In order to achieve this goal in the spectral domain, the spatial resolution of the CCD must be improved to better than 5 µm from the current 24 µm spatial resolution (FWHM). The 400 eV–1600 eV energy X-rays detected by this spectrometer primarily interact within the field free region of the CCD, producing electron clouds which will diffuse isotropically until they reach the depleted region and buried channel. This diffusion of the charge leads to events which are split across several pixels. Through the analysis of the charge distribution across the pixels, various centroiding techniques can be used to pinpoint the spatial location of the X-ray interaction to the sub-pixel level, greatly improving the spatial resolution achieved. Using the PolLux soft X-ray microspectroscopy endstation at the Swiss Light Source, a beam of X-rays of energies from 200 eV to 1400 eV can be focused down to a spot size of approximately 20 nm. Scanning this spot across the 16 µm square pixels allows the sub-pixel response to be investigated. Previous work has demonstrated the potential improvement in spatial resolution achievable by centroiding events in a standard CCD. An Electron-Multiplying CCD (EM-CCD) has been used to improve the signal to effective readout noise ratio achieved resulting in a worst-case spatial resolution measurement of 4.5±0.2 μm and 3.9±0.1 μm at 530 eV and 680 eV respectively. A method is described that allows the contribution of the X-ray spot size to be deconvolved from these

  1. Developing a CCD camera with high spatial resolution for RIXS in the soft X-ray range

    Science.gov (United States)

    Soman, M. R.; Hall, D. J.; Tutt, J. H.; Murray, N. J.; Holland, A. D.; Schmitt, T.; Raabe, J.; Schmitt, B.

    2013-12-01

    The Super Advanced X-ray Emission Spectrometer (SAXES) at the Swiss Light Source contains a high resolution Charge-Coupled Device (CCD) camera used for Resonant Inelastic X-ray Scattering (RIXS). Using the current CCD-based camera system, the energy-dispersive spectrometer has an energy resolution (E/ΔE) of approximately 12,000 at 930 eV. A recent study predicted that through an upgrade to the grating and camera system, the energy resolution could be improved by a factor of 2. In order to achieve this goal in the spectral domain, the spatial resolution of the CCD must be improved to better than 5 μm from the current 24 μm spatial resolution (FWHM). The 400 eV-1600 eV energy X-rays detected by this spectrometer primarily interact within the field free region of the CCD, producing electron clouds which will diffuse isotropically until they reach the depleted region and buried channel. This diffusion of the charge leads to events which are split across several pixels. Through the analysis of the charge distribution across the pixels, various centroiding techniques can be used to pinpoint the spatial location of the X-ray interaction to the sub-pixel level, greatly improving the spatial resolution achieved. Using the PolLux soft X-ray microspectroscopy endstation at the Swiss Light Source, a beam of X-rays of energies from 200 eV to 1400 eV can be focused down to a spot size of approximately 20 nm. Scanning this spot across the 16 μm square pixels allows the sub-pixel response to be investigated. Previous work has demonstrated the potential improvement in spatial resolution achievable by centroiding events in a standard CCD. An Electron-Multiplying CCD (EM-CCD) has been used to improve the signal to effective readout noise ratio achieved resulting in a worst-case spatial resolution measurement of 4.5±0.2 μm and 3.9±0.1 μm at 530 eV and 680 eV respectively. A method is described that allows the contribution of the X-ray spot size to be deconvolved from these

  2. High-resolution soft X-ray beamline ADRESS at the Swiss Light Source for resonant inelastic X-ray scattering and angle-resolved photoelectron spectroscopies

    Science.gov (United States)

    Strocov, V. N.; Schmitt, T.; Flechsig, U.; Schmidt, T.; Imhof, A.; Chen, Q.; Raabe, J.; Betemps, R.; Zimoch, D.; Krempasky, J.; Wang, X.; Grioni, M.; Piazzalunga, A.; Patthey, L.

    2010-01-01

    The concepts and technical realisation of the high-resolution soft X-ray beamline ADRESS operating in the energy range from 300 to 1600 eV and intended for resonant inelastic X-ray scattering (RIXS) and angle-resolved photoelectron spectroscopy (ARPES) are described. The photon source is an undulator of novel fixed-gap design where longitudinal movement of permanent magnetic arrays controls not only the light polarization (including circular and 0–180° rotatable linear polarizations) but also the energy without changing the gap. The beamline optics is based on the well established scheme of plane-grating monochromator operating in collimated light. The ultimate resolving power E/ΔE is above 33000 at 1 keV photon energy. The choice of blazed versus lamellar gratings and optimization of their profile parameters is described. Owing to glancing angles on the mirrors as well as optimized groove densities and profiles of the gratings, the beamline is capable of delivering high photon flux up to 1 × 1013 photons s−1 (0.01% BW)−1 at 1 keV. Ellipsoidal refocusing optics used for the RIXS endstation demagnifies the vertical spot size down to 4 µm, which allows slitless operation and thus maximal transmission of the high-resolution RIXS spectrometer delivering E/ΔE > 11000 at 1 keV photon energy. Apart from the beamline optics, an overview of the control system is given, the diagnostics and software tools are described, and strategies used for the optical alignment are discussed. An introduction to the concepts and instrumental realisation of the ARPES and RIXS endstations is given. PMID:20724785

  3. High-Resolution X-Ray Spectroscopy of Galactic Supernova Remnants

    Directory of Open Access Journals (Sweden)

    Satoru Katsuda

    2014-12-01

    Full Text Available High-resolution X-ray spectroscopy of Galactic supernova remnants (SNRs, based on grating spectrometers onboard XMM-Newton and Chandra, has been revealing a variety of new astrophysical phenomena. Broadened oxygen lines for a northwestern compact knot in SN 1006 clearly show a high oxygen temperature of ~300 keV. The high temperature together with a lower electron temperature (kTe ~ 1 keV can be reasonably interpreted as temperature non-equilibration between electrons and oxygen behind a collisionless shock. An ejecta knot in the Puppis A SNR shows blueshifted line emission by ~ 1500kms-1. The line widths are fairly narrow in contrast to the SN 1006's knot; an upper limit of 0.9 eV is obtained for O VIII Lyα, which translates to an oxygen temperature of kTO < 30 keV. The low temperature suggests that the knot was heated by a reverse shock whose velocity is 4 times slower than that of a forward shock. Anomalous intensity ratios in O VII Heα lines, i.e., a stronger forbidden line than a resonance line, is found in a cloud-shock interaction region in Puppis A. The line ratio can be best explained by the charge-exchange emission that should arise at interfaces between the cold/warm clouds and the hot plasma. There are several other targets for which we plan to analyze high-quality grating data prior to the operation of the soft X-ray spectrometer onboard Astro-H.

  4. High-resolution synchrotron X-ray analysis of bioglass-enriched hydrogels.

    Science.gov (United States)

    Gorodzha, Svetlana; Douglas, Timothy E L; Samal, Sangram K; Detsch, Rainer; Cholewa-Kowalska, Katarzyna; Braeckmans, Kevin; Boccaccini, Aldo R; Skirtach, Andre G; Weinhardt, Venera; Baumbach, Tilo; Surmeneva, Maria A; Surmenev, Roman A

    2016-05-01

    Enrichment of hydrogels with inorganic particles improves their suitability for bone regeneration by enhancing their mechanical properties, mineralizability, and bioactivity as well as adhesion, proliferation, and differentiation of bone-forming cells, while maintaining injectability. Low aggregation and homogeneous distribution maximize particle surface area, promoting mineralization, cell-particle interactions, and homogenous tissue regeneration. Hence, determination of the size and distribution of particles/particle agglomerates in the hydrogel is desirable. Commonly used techniques have drawbacks. High-resolution techniques (e.g., SEM) require drying. Distribution in the dry state is not representative of the wet state. Techniques in the wet state (histology, µCT) are of lower resolution. Here, self-gelling, injectable composites of Gellan Gum (GG) hydrogel and two different types of sol-gel-derived bioactive glass (bioglass) particles were analyzed in the wet state using Synchrotron X-ray radiation, enabling high-resolution determination of particle size and spatial distribution. The lower detection limit volume was 9 × 10(-5) mm(3) . Bioglass particle suspensions were also studied using zeta potential measurements and Coulter analysis. Aggregation of bioglass particles in the GG hydrogels occurred and aggregate distribution was inhomogeneous. Bioglass promoted attachment of rat mesenchymal stem cells (rMSC) and mineralization. © 2016 Wiley Periodicals, Inc.

  5. Growth and structure of water on SiO2 films on Si investigated byKelvin probe microscopy and in situ X-ray Spectroscopies

    Energy Technology Data Exchange (ETDEWEB)

    Verdaguer, A.; Weis, C.; Oncins, G.; Ketteler, G.; Bluhm, H.; Salmeron, M.

    2007-06-14

    The growth of water on thin SiO{sub 2} films on Si wafers at vapor pressures between 1.5 and 4 torr and temperatures between -10 and 21 C has been studied in situ using Kelvin Probe Microscopy and X-ray photoemission and absorption spectroscopies. From 0 to 75% relative humidity (RH) water adsorbs forming a uniform film 4-5 layers thick. The surface potential increases in that RH range by about 400 mV and remains constant upon further increase of the RH. Above 75% RH the water film grows rapidly, reaching 6-7 monolayers at around 90% RH and forming a macroscopic drop near 100%. The O K-edge near-edge X-ray absorption spectrum around 75% RH is similar to that of liquid water (imperfect H-bonding coordination) at temperatures above 0 C and ice-like below 0 C.

  6. In-situ synchrotron x-ray studies of the microstructure and stability of In 2 O 3 epitaxial films

    Energy Technology Data Exchange (ETDEWEB)

    Highland, M. J.; Hruszkewycz, S. O.; Fong, D. D.; Thompson, Carol; Fuoss, P. H.; Calvo-Almazan, I.; Maddali, S.; Ulvestad, A.; Nazaretski, E.; Huang, X.; Yan, H.; Chu, Y. S.; Zhou, H.; Baldo, P. M.; Eastman, J. A.

    2017-10-16

    We report on the synthesis, stability, and local structure of In2O3 thin films grown via rf-magnetron sputtering and characterized by in-situ x-ray scattering and focused x-ray nanodiffraction. We find that In2O3 deposited onto (0 0 1)-oriented single crystal yttria-stabilized zirconia substrates adopts a Stranski-Krastanov growth mode at a temperature of 850 degrees C, resulting in epitaxial, truncated square pyramids with (1 1 1) side walls. We find that at this temperature, the pyramids evaporate unless they are stabilized by a low flux of In2O3 from the magnetron source. We also find that the internal lattice structure of one such pyramid is made up of differently strained volumes, revealing local structural heterogeneity that may impact the properties of In2O3 nanostructures and films.

  7. X-Ray Absorption with Transmission X-Ray Microscopes

    NARCIS (Netherlands)

    de Groot, F.M.F.|info:eu-repo/dai/nl/08747610X

    2016-01-01

    In this section we focus on the use of transmission X-ray microscopy (TXM) to measure the XAS spectra. In the last decade a range of soft X-ray and hard X-ray TXM microscopes have been developed, allowing the measurement of XAS spectra with 10–100 nm resolution. In the hard X-ray range the TXM

  8. Methodology for in situ synchrotron X-ray studies in the laser-heated diamond anvil cell

    DEFF Research Database (Denmark)

    Mezouar, M.; Giampaoli, R.; Garbarino, G.

    2017-01-01

    in the case of elemental tantalum. Preliminary results of a comparison between reflective and refractive optics for high temperature measurements in the laser-heated diamond anvil cell are briefly discussed. Finally, the importance of the size and relative alignment of X-ray and laser beams for quantitative X...

  9. High resolution tip-tilt positioning system for a next generation MLL-based x-ray microscope

    Science.gov (United States)

    Xu, Weihe; Schlossberger, Noah; Xu, Wei; Yan, Hanfei; Huang, Xiaojing; Chu, Yong S.; Nazaretski, E.

    2017-12-01

    Multilayer Laue lenses (MLLs) are x-ray focusing optics with the potential to focus hard x-rays down to a single nanometer level. In order to achieve point focus, an MLL microscope needs to have the capability to perform tip-tilt motion of MLL optics and to hold the angular position for an extended period of time. In this work, we present a 2D tip-tilt system that can achieve an angular resolution of over 100 microdegree with a working range of 4°, by utilizing a combination of laser interferometer and mini retroreflector. The linear dimensions of the developed system are about 30 mm in all directions, and the thermal dissipation of the system during operation is negligible. Compact design and high angular resolution make the developed system suitable for MLL optics alignment in the next generation of MLL-based x-ray microscopes.

  10. Investigation of high-resolution superconducting tunnel junction detectors for low-energy X-ray fluorescence analysis

    CERN Document Server

    Beckhoff, B; Ulm, G

    2003-01-01

    The energy resolution of conventional semiconductor detectors is insufficient for simultaneously separating the leading fluorescence lines of low Z and medium Z materials in the soft X-ray regime. It is therefore important to investigate alternative detection instruments offering higher energy resolution and evaluate their applicability to soft X-ray fluorescence (XRF) analysis. In this paper, various results of the characterization and evaluation of a cryogenic superconducting tunnel junction (STJ) detector, which was provided to the Physikalisch-Technische Bundesanstalt (PTB) by the Lawrence Livermore National Laboratory, are given with respect to both detector response functions and XRF. For this investigation, monochromatized undulator radiation of high spectral purity, available to the PTB X-ray radiometry laboratory at the electron storage ring BESSY II, was employed, by which it was possible to record the STJ response functions at various photon energies of interest ranging from 180 to 1600 eV. By scan...

  11. X-ray in-situ study of copper electrodeposition on UHV prepared GaAs(001) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Gruender, Yvonne

    2008-06-02

    For this work a unique setup for in-situ electrochemical studies was employed and improved. This setup permits UHV preparation of the GaAs(001) surface with a defined surface termination (arsenic-rich or gallium-rich) and its characterization by SXRD in UHV, under ambient pressure in inert gas and in electrolyte under potential control without passing through air. The GaAs(001) surfaces were capped by amorphous arsenic. This permitted to ship them through ambient air. Afterwards smooth well defined GaAs(001) surfaces could be recovered by thermal annealing in UHV. A first investigation of the arsenic capped sample was done by atomic force microscopy (AFM) and Surface X-Ray Diffraction (SXRD). The non bulk like termination of the arsenic buried GaAs(001) surface was revealed. For the electrochemical metal deposition, arsenic terminated (2 x 4) reconstructed and gallium terminated (4 x 2) reconstructed GaAs(001) surfaces were employed. These surfaces were characterized by STM, LEED and a first time by SXRD. The surfaces are smooth, however, a higher degree of disorder than for MBE prepared reconstructed GaAs(001) is found. After exposure of the sample to nitrogen, the surfaces were then again studied by SXRD. These two steps characterizing the bare GaAs(001) surfaces permitted us to get a better knowledge of the starting surface and its influence on the later electrodeposited copper. At ambient pressure both reconstructions are lifted, but the surface is not bulk-like terminated as can be deduced from the crystal truncation rods. Epitaxial copper clusters grow upon electrodeposition on the UHV prepared GaAs(001) surface. The copper lattice is rotated and inclined with respect to the GaAs substrate lattice, leading to eight symmetry equivalent domains. The influence of the surface termination as well as the nucleation potential on the structure of the electrodeposited copper were investigated. The tilt and rotation angles do not depend on the deposition potential but

  12. Support Effects in Catalysis Studied by in-situ Sum Frequency Generation Vibrational Spectroscopy and in-situ X-Ray Spectroscopies

    Science.gov (United States)

    Kennedy, Griffin John

    Kinetic measurements are paired with in-situ spectroscopic characterization tools to investigate colloidally based, supported Pt catalytic model systems in order to elucidate the mechanisms by which metal and support work in tandem to dictate activity and selectivity. The results demonstrate oxide support materials, while inactive in absence of Pt nanoparticles, possess unique active sites for the selective conversion of gas phase molecules when paired with an active metal catalyst. In order to establish a paradigm for metal-support interactions using colloidally synthesized Pt nanoparticles the ability of the organic capping agent to inhibit reactivity and interaction with the support must first be assessed. Pt nanoparticles capped by poly(vinylpyrrolidone) (PVP), and those from which the PVP is removed by UV light exposure, are investigated for two reactions, the hydrogenation of ethylene and the oxidation of methanol. It is shown that prior to PVP removal the particles are moderately active for both reactions. Following removal, the activity for the two reactions diverges, the ethylene hydrogenation rate increases 10-fold, while the methanol oxidation rate decreases 3-fold. To better understand this effect the capping agent prior to, and the residual carbon remaining after UV treatment are probed by sum frequency generation vibrational spectroscopy. Prior to removal no major differences are observed when the particles are exposed to alternating H2 and O2 environments. When the PVP is removed, carbonaceous fragments remain on the surface that dynamically restructure in H2 and O2. These fragments create a tightly bound shell in an oxygen environment and a porous coating of hydrogenated carbon in the hydrogen environment. Reaction rate measurements of thermally cleaned PVP and oleic acid capped particles show this effect to be independent of cleaning method or capping agent. In all this demonstrates the ability of the capping agent to mediate nanoparticle catalysis

  13. Multi-anode linear SDDs for high-resolution X-ray spectroscopy

    NARCIS (Netherlands)

    Sonsky, J.

    2002-01-01

    Radiation detectors are used in a variety of fields to sense X-rays and y-rays, visible, UV and IR photons, neutrons or charged particles. With their help, advanced medical diagnostics can be performed (e.g. X-ray radiography, computed tomography, fluoroscopy), material research can undergo a rapid

  14. Equally sloped X-ray microtomography of living insects with low radiation dose and improved resolution capability

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Shengkun; Fan, Jiadong; Zong, Yunbing; Sun, Zhibin; Zhang, Jianhua; Jiang, Huaidong, E-mail: hdjiang@sdu.edu.cn [State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100 (China); He, You; Zhou, Guangzhao; Xiao, Tiqiao [Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Huang, Qingjie [School of Information Science and Engineering, Shandong University, Jinan 250100 (China)

    2016-03-21

    Three-dimensional X-ray imaging of living specimens is challenging due to the limited resolution of conventional absorption contrast X-ray imaging and potential irradiation damage of biological specimens. In this letter, we present microtomography of a living specimen combining phase-contrast imaging and a Fourier-based iterative algorithm termed equally sloped tomography. Non-destructive 3D imaging of an anesthetized living yellow mealworm Tenebrio molitor was demonstrated with a relatively low dose using synchrotron generated X-rays. Based on the high-quality 3D images, branching tracheoles and different tissues of the insect in a natural state were identified and analyzed, demonstrating a significant advantage of the technique over conventional X-ray radiography or histotomy. Additionally, the insect survived without problem after a 1.92-s X-ray exposure and subsequent absorbed radiation dose of ∼1.2 Gy. No notable physiological effects were observed after reviving the insect from anesthesia. The improved static tomographic method demonstrated in this letter shows advantage in the non-destructive structural investigation of living insects in three dimensions due to the low radiation dose and high resolution capability, and offers many potential applications in biological science.

  15. Equally sloped X-ray microtomography of living insects with low radiation dose and improved resolution capability

    Science.gov (United States)

    Yao, Shengkun; Fan, Jiadong; Zong, Yunbing; He, You; Zhou, Guangzhao; Sun, Zhibin; Zhang, Jianhua; Huang, Qingjie; Xiao, Tiqiao; Jiang, Huaidong

    2016-03-01

    Three-dimensional X-ray imaging of living specimens is challenging due to the limited resolution of conventional absorption contrast X-ray imaging and potential irradiation damage of biological specimens. In this letter, we present microtomography of a living specimen combining phase-contrast imaging and a Fourier-based iterative algorithm termed equally sloped tomography. Non-destructive 3D imaging of an anesthetized living yellow mealworm Tenebrio molitor was demonstrated with a relatively low dose using synchrotron generated X-rays. Based on the high-quality 3D images, branching tracheoles and different tissues of the insect in a natural state were identified and analyzed, demonstrating a significant advantage of the technique over conventional X-ray radiography or histotomy. Additionally, the insect survived without problem after a 1.92-s X-ray exposure and subsequent absorbed radiation dose of ˜1.2 Gy. No notable physiological effects were observed after reviving the insect from anesthesia. The improved static tomographic method demonstrated in this letter shows advantage in the non-destructive structural investigation of living insects in three dimensions due to the low radiation dose and high resolution capability, and offers many potential applications in biological science.

  16. Damage localisation and fracture propagation in granite: 4D synchrotron x-ray microtomographic observations from an in-situ triaxial deformation experiment at SOLEIL

    Science.gov (United States)

    Cartwright-Taylor, Alexis; Fusseis, Florian; Butler, Ian; Flynn, Michael; King, Andrew

    2017-04-01

    To date, most studies of damage localisation and failure have utilised indirect techniques to visualise the pathway to failure. The advent of synchrotron tomography and x-ray transparent experimental cells provides for the first time the opportunity to image localisation and fracture propagation in-situ, in real time with spatial resolutions of a few microns. We present 4D x-ray microtomographic data collected during a triaxial deformation experiment carried out at the imaging beamline PSICHE at the French Synchrotron SOLEIL. The data document damage localisation and fracture propagation in a microgranite. The sample was deformed at 15 MPa confining pressure and 3x10-5 s-1 strain rate, in a novel, miniature, x-ray transparent, triaxial deformation apparatus, designed and built at the University of Edinburgh. We used a 2.97 mm diameter x 9.46 mm long cylindrical sample of Ailsa Craig microgranite, heat treated to 600 ˚ C to introduce flaws in the form of pervasive crack damage. As the sample was loaded to failure, 21 microtomographic volumes were acquired in intervals of 5-20 MPa (decreasing as failure approached), including one scan at peak differential stress of 200 MPa (1.4 kN end load) and three post-failure scans. The scan at peak stress contained the incipient fault, and the sample failed immediately when loading continued afterwards. During scanning, a constant stress level was maintained. Individual datasets were collected in ˜10 minutes using a white beam with an energy maximum at 66 keV in a spiral configuration. Reconstructions yielded image stacks with a dimension of 1700x1700x4102 voxels with a voxel size of 2.7 μm. We analysed damage localisation and fracture propagation in the time series data. Fractures were segmented from the image data using a Multiscale Hessian fracture filter [1] and analysed for their orientations, dimensions and spatial distributions and changes in these properties during loading. Local changes in volumetric and shear

  17. Breast tumor segmentation in high resolution x-ray phase contrast analyzer based computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Brun, E., E-mail: emmanuel.brun@esrf.fr [European Synchrotron Radiation Facility (ESRF), Grenoble 380000, France and Department of Physics, Ludwig-Maximilians University, Garching 85748 (Germany); Grandl, S.; Sztrókay-Gaul, A.; Gasilov, S. [Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, 81377 Munich (Germany); Barbone, G. [Department of Physics, Harvard University, Cambridge, Massachusetts 02138 (United States); Mittone, A.; Coan, P. [Department of Physics, Ludwig-Maximilians University, Garching 85748, Germany and Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, 81377 Munich (Germany); Bravin, A. [European Synchrotron Radiation Facility (ESRF), Grenoble 380000 (France)

    2014-11-01

    Purpose: Phase contrast computed tomography has emerged as an imaging method, which is able to outperform present day clinical mammography in breast tumor visualization while maintaining an equivalent average dose. To this day, no segmentation technique takes into account the specificity of the phase contrast signal. In this study, the authors propose a new mathematical framework for human-guided breast tumor segmentation. This method has been applied to high-resolution images of excised human organs, each of several gigabytes. Methods: The authors present a segmentation procedure based on the viscous watershed transform and demonstrate the efficacy of this method on analyzer based phase contrast images. The segmentation of tumors inside two full human breasts is then shown as an example of this procedure’s possible applications. Results: A correct and precise identification of the tumor boundaries was obtained and confirmed by manual contouring performed independently by four experienced radiologists. Conclusions: The authors demonstrate that applying the watershed viscous transform allows them to perform the segmentation of tumors in high-resolution x-ray analyzer based phase contrast breast computed tomography images. Combining the additional information provided by the segmentation procedure with the already high definition of morphological details and tissue boundaries offered by phase contrast imaging techniques, will represent a valuable multistep procedure to be used in future medical diagnostic applications.

  18. Ultra-high resolution water window x ray microscope optics design and analysis

    Science.gov (United States)

    Shealy, David L.; Wang, C.

    1993-01-01

    This project has been focused on the design and analysis of an ultra-high resolution water window soft-x-ray microscope. These activities have been accomplished by completing two tasks contained in the statement of work of this contract. The new results from this work confirm: (1) that in order to achieve resolutions greater than three times the wavelength of the incident radiation, it will be necessary to use spherical mirror surfaces and to use graded multilayer coatings on the secondary in order to accommodate the large variations of the angle of incidence over the secondary when operating the microscope at numerical apertures of 0.35 or greater; (2) that surface contour errors will have a significant effect on the optical performance of the microscope and must be controlled to a peak-to-valley variation of 50-100 A and a frequency of 8 periods over the surface of a mirror; and (3) that tolerance analysis of the spherical Schwarzschild microscope has been shown that the water window operations will require 2-3 times tighter tolerances to achieve a similar performance of operations with 130 A radiation. These results have been included in a manuscript included in the appendix.

  19. Fundamental Limits on Spatial Resolution in Ultrafast X-ray Diffraction

    Directory of Open Access Journals (Sweden)

    Adam Kirrander

    2017-05-01

    Full Text Available X-ray Free-Electron Lasers have made it possible to record time-sequences of diffraction images to determine changes in molecular geometry during ultrafast photochemical processes. Using state-of-the-art simulations in three molecules (deuterium, ethylene, and 1,3-cyclohexadiene, we demonstrate that the nature of the nuclear wavepacket initially prepared by the pump laser, and its subsequent dispersion as it propagates along the reaction path, limits the spatial resolution attainable in a structural dynamics experiment. The delocalization of the wavepacket leads to a pronounced damping of the diffraction signal at large values of the momentum transfer vector q, an observation supported by a simple analytical model. This suggests that high-q measurements, beyond 10–15 Å − 1 , provide scant experimental payback, and that it may be advantageous to prioritize the signal-to-noise ratio and the time-resolution of the experiment as determined by parameters such as the repetition-rate, the photon flux, and the pulse durations. We expect these considerations to influence future experimental designs, including source development and detection schemes.

  20. Atomic and electronic aspects of the coloration mechanism of gasochromic Pt/Mo-modified V2O5 smart films: an in situ X-ray spectroscopic study.

    Science.gov (United States)

    Lu, Ying-Rui; Hsu, Hsin-Hua; Chen, Jeng-Lung; Chang, Han-Wei; Chen, Chi-Liang; Chou, Wu-Ching; Dong, Chung-Li

    2016-02-21

    In this work, gasochromic pristine and Mo-modified V2O5 thin films were prepared by the sol-gel spin coating method. Both films exhibit excellent gasochromic coloration. Synchrotron grazing incidence X-ray diffraction reveals that the Mo-modified V2O5 thin film is more amorphous than the pristine V2O5 thin film. X-ray absorption spectroscopy (XAS) was utilized to elucidate the modifications of the local electronic and atomic structures that are caused by Mo. In situ soft-XAS and in situ hard-XAS were performed to monitor the effect of the adsorption of dihydrogen on the charge state of vanadium and local atomic rearrangement in the gasochromic thin films. The gasochromic V2O5 film has a significantly pyramid-like oxygen-coordinated environment. However, the Mo-modified film exhibits mixed pyramid- and octahedral-like structures. Analytic results indicate that upon gasochromic coloration, adsorption of hydrogen adds electrons to the V 3d t2g orbital, lowering the charge state of vanadium. The films undergo structural modification before the valence is changed. The Mo-modified V2O5 film exhibits faster coloration because the apical V-O bond differs from that in the pristine V2O5 film. This in situ XAS allows real-time monitoring of changes in the element-specific local atomic structure during the gasochromic reaction and enables the elucidation of the gasochromic mechanism.

  1. Maskless X-Ray Writing of Electrical Devices on a Superconducting Oxide with Nanometer Resolution and Online Process Monitoring.

    Science.gov (United States)

    Mino, Lorenzo; Bonino, Valentina; Agostino, Angelo; Prestipino, Carmelo; Borfecchia, Elisa; Lamberti, Carlo; Operti, Lorenza; Fretto, Matteo; De Leo, Natascia; Truccato, Marco

    2017-08-22

    X-ray nanofabrication has so far been usually limited to mask methods involving photoresist impression and subsequent etching. Herein we show that an innovative maskless X-ray nanopatterning approach allows writing electrical devices with nanometer feature size. In particular we fabricated a Josephson device on a Bi2Sr2CaCu2O8+δ (Bi-2212) superconducting oxide micro-crystal by drawing two single lines of only 50 nm in width using a 17.4 keV synchrotron nano-beam. A precise control of the fabrication process was achieved by monitoring in situ the variations of the device electrical resistance during X-ray irradiation, thus finely tuning the irradiation time to drive the material into a non-superconducting state only in the irradiated regions, without significantly perturbing the crystal structure. Time-dependent finite element model simulations show that a possible microscopic origin of this effect can be related to the instantaneous temperature increase induced by the intense synchrotron picosecond X-ray pulses. These results prove that a conceptually new patterning method for oxide electrical devices, based on the local change of electrical properties, is actually possible with potential advantages in terms of heat dissipation, chemical contamination, miniaturization and high aspect ratio of the devices.

  2. In situ synchrotron X-ray diffraction study of deformation behavior and load transfer in a Ti2Ni-NiTi composite

    Science.gov (United States)

    Zhang, Junsong; Liu, Yinong; Ren, Yang; Huan, Yong; Hao, Shijie; Yu, Cun; Shao, Yang; Ru, Yadong; Jiang, Daqiang; Cui, Lishan

    2014-07-01

    The deformation behavior and load transfer of a dual-phase composite composed of martensite NiTi embedded in brittle Ti2Ni matrices were investigated by using in situ synchrotron x-ray diffraction during compression. The composite exhibits a stage-wise deformation feature and a double-yielding phenomenon, which were caused by the interaction between Ti2Ni and NiTi with alternative microscopic deformation mechanism. No load transfer occurs from the soft NiTi dendrites to the hard Ti2Ni matrices during the pseudoplastic deformation (detwinning) of NiTi, which is significantly different from that previously reported in bulk metallic glasses matrices composites.

  3. In situ soft X-ray absorption spectroscopy investigation of electrochemical corrosion of copper in aqueous NaHCO3 solution

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Peng; Chen, Jeng-Lung; Borondics, Ferenc; Glans, Per-Anders; West, Mark W.; Chang, Ching-Lin; Salmeron, Miquel; Guo, Jinghua

    2010-03-31

    A novel electrochemical setup has been developed for soft x-ray absorption studies of the electronic structure of electrode materials during electrochemical cycling. In this communication we illustrate the operation of the cell with a study of the corrosion behavior of copper in aqueous NaHCO3 solution via the electrochemically induced changes of its electronic structure. This development opens the way for in situ investigations of electrochemical processes, photovoltaics, batteries, fuel cells, water splitting, corrosion, electrodeposition, and a variety of important biological processes.

  4. Potential controlled stripping of an amorphous As layer on GaAs(001) in an electrolyte: An in situ x-ray scattering study

    DEFF Research Database (Denmark)

    Scherb, G.; Kazimirov, A.; Zegenhagen, J.

    1997-01-01

    2SO4. we monitored the stripping process of the 50 nm As cap over a period of hours in situ with x-ray diffraction. Our results suggest that, using this potential controlled stripping, smooth and well ordered GaAs(001) surfaces can be obtained in an aqueous electrolyte. (C) 1997 American Institute......We demonstrate that an amorphous As layer deposited as protection on a GaAs(001) surface frown by molecular beam epitaxy can be removed via reductive etching in an electrolytical cell at sufficiently negative electrode potentials. Employing a specially constructed electrochemical cell filled with H...

  5. In situ and ex situ electron microscopy and X-ray diffraction characterization of the evolution of a catalytic system - from synthesis to deactivation

    DEFF Research Database (Denmark)

    Gardini, Diego

    the understanding of the structural properties and mechanisms at the origin of catalytic activity. This thesis presents the potential and uniqueness of ex situ and in situ transmission electron microscopy (TEM) and X-ray diffraction (XRD) techniques in the characterization of several supported material systems...... TEM (HRTEM) and electron energy loss spectroscopy (EELS) revealed the degradation of the supported carbide particles probably due to the formation of volatile molybdenum hydroxide species. The activity of silver nanoparticles as catalyst for soot oxidation was studied in operative conditions...

  6. Stability of dislocation structures in copper towards stress relaxation investigated by high angular resolution 3D X-ray diffraction

    DEFF Research Database (Denmark)

    Jakobsen, Bo; Poulsen, Henning Friis; Lienert, Ulrich

    2009-01-01

    A 300 µm thick tensile specimen of OFHC copper is subjected to a tensile loading sequence and deformed to a maximal strain of 3.11%. Using the novel three-dimensional X-ray diffraction method High angular resolution 3DXRD', the evolution of the microstructure within a deeply embedded grain is cha...

  7. Determination of the resolution of the x-ray microscope XM-1 at beamline 6.1

    Energy Technology Data Exchange (ETDEWEB)

    Heck, J.M.; Meyer-Ilse, W.; Attwood, D.T. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    Resolution determination in x-ray microscopy is a complex issue which depends on many factors. Many different criteria and experimental setups are used to characterize resolution. Some of the important factors affecting resolution include the partial coherence and spectrum of the illumination. The purpose of this research has been to measure the resolution of XM-1 at beamline 6.1 taking into account these factors, and to compare the measurements to theoretical calculations. The x-ray microscope XM-1, built by the Center for X-ray Optics (CXRO), has been operational since 1994 at the Advanced Light Source at E.O. Lawrence Berkeley National Laboratory. It is of the conventional (i.e. full-field) type, utilizing zone plate optics. ALS bending magnet radiation is focused by a condenser zone plate onto a monochromator pinhole immediately in front of the sample. X-rays transmitted through the sample are focused by a micro-zone plate onto a CCD camera. The pinhole and the condenser with a central stop constitute a linear monochromator. The spectral distribution of the light illuminating the sample has been calculated assuming geometrical optics.

  8. Online in situ x-ray diffraction setup for structural modification studies during swift heavy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Grygiel, C.; Lebius, H.; Bouffard, S.; Quentin, A.; Ramillon, J. M.; Madi, T.; Guillous, S.; Been, T.; Guinement, P.; Lelievre, D.; Monnet, I. [CIMAP, CEA-CNRS-ENSICAEN-UCBN, BP 5133, 14070 Caen Cedex 5 (France)

    2012-01-15

    The high energy density of electronic excitations due to the impact of swift heavy ions can induce structural modifications in materials. We present an x-ray diffractometer called ALIX (''Analyse en Ligne sur IRRSUD par diffraction de rayons X''), which has been set up at the low-energy beamline (IRRadiation SUD - IRRSUD) of the Grand Accelerateur National d'Ions Lourds facility, to allow the study of structural modification kinetics as a function of the ion fluence. The x-ray setup has been modified and optimized to enable irradiation by swift heavy ions simultaneously to x-ray pattern recording. We present the capability of ALIX to perform simultaneous irradiation-diffraction by using energy discrimination between x-rays from diffraction and from ion-target interaction. To illustrate its potential, results of sequential or simultaneous irradiation-diffraction are presented in this article to show radiation effects on the structural properties of ceramics. Phase transition kinetics have been studied during xenon ion irradiation of polycrystalline MgO and SrTiO{sub 3}. We have observed that MgO oxide is radiation-resistant to high electronic excitations, contrary to the high sensitivity of SrTiO{sub 3}, which exhibits transition from the crystalline to the amorphous state during irradiation. By interpreting the amorphization kinetics of SrTiO{sub 3}, defect overlapping models are discussed as well as latent track characteristics. Together with a transmission electron microscopy study, we conclude that a single impact model describes the phase transition mechanism.

  9. Amorphous iron-(hydr) oxide networks at liquid/vapor interfaces: in situ X-ray scattering and spectroscopy studies.

    Science.gov (United States)

    Wang, Wenjie; Pleasants, Jacob; Bu, Wei; Park, Rebecca Y; Kuzmenko, Ivan; Vaknin, David

    2012-10-15

    Surface sensitive X-ray reflectivity (XR), fluorescence (XF), and grazing incidence X-ray diffraction (GIXD) experiments were conducted to determine the accumulation of ferric iron Fe (III) or ferrous iron Fe (II) under dihexadecyl phosphate (DHDP) or arachidic acid (AA) Langmuir monolayers at liquid/vapor interfaces. Analysis of the X-ray reflectivity and fluorescence data of monolayers on the aqueous subphases containing FeCl(3) indicates remarkably high levels of surface-bound Fe (III) in number of Fe(3+) ions per molecule (DHDP or AA) that exceed the amount necessary to neutralize a hypothetically completely deprotonated monolayer (DHDP or AA). These results suggest that nano-scale iron (hydr) oxide complexes (oxides, hydroxides or oxyhydroxides) bind to the headgroups and effectively overcompensate the maximum possible charges at the interface. The lack of evidence of in-plane ordering in GIXD measurements and strong effects on the surface-pressure versus molecular area isotherms indicate that an amorphous network of iron (hydr) oxide complexes contiguous to the headgroups is formed. Similar experiments with FeCl(2) generally resulted with the oxidation of Fe (II)-Fe (III) which consequently leads to ferric Fe (III) complexes binding albeit with less iron at the interface. Controlling the oxidation of Fe (II) changes the nature and amount of binding significantly. The implications to biomineralization of iron (hydr) oxides are briefly discussed. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Amorphous iron-(hydr) oxide networks at liquid/vapor interfaces: In situ X-ray scattering and spectroscopy studies

    Energy Technology Data Exchange (ETDEWEB)

    Wang, W.; Pleasants, J.; Bu, W.; Park, R.Y.; Kuzmenko, I.; Vaknin, D.

    2012-06-23

    Surface sensitive X-ray reflectivity (XR), fluorescence (XF), and grazing incidence X-ray diffraction (GIXD) experiments were conducted to determine the accumulation of ferric iron Fe (III) or ferrous iron Fe (II) under dihexadecyl phosphate (DHDP) or arachidic acid (AA) Langmuir monolayers at liquid/vapor interfaces. Analysis of the X-ray reflectivity and fluorescence data of monolayers on the aqueous subphases containing FeCl3 indicates remarkably high levels of surface-bound Fe (III) in number of Fe3þ ions per molecule (DHDP or AA) that exceed the amount necessary to neutralize a hypothetically completely deprotonated monolayer (DHDP or AA). These results suggest that nano-scale iron (hydr) oxide complexes (oxides, hydroxides or oxyhydroxides) bind to the headgroups and effectively overcompensate the maximum possible charges at the interface. The lack of evidence of in-plane ordering in GIXD measurements and strong effects on the surface-pressure versus molecular area isotherms indicate that an amorphous network of iron (hydr) oxide complexes contiguous to the headgroups is formed. Similar experiments with FeCl2 generally resulted with the oxidation of Fe (II)–Fe (III) which consequently leads to ferric Fe (III) complexes binding albeit with less iron at the interface. Controlling the oxidation of Fe (II) changes the nature and amount of binding significantly. The implications to biomineralization of iron (hydr) oxides are briefly discussed.

  11. High-resolution x-ray characterization of mosaic crystals for hard x-and gamma-ray astronomy

    Science.gov (United States)

    Ferrari, Claudio; Buffagni, Elisa; Marchini, Laura; Zappettini, Andrea

    2011-09-01

    We have analyzed GaAs, Cu, CdTe, and CdZnTe crystals as possible optical elements for hard x-ray lenses for x-ray astronomy. We used high resolution x-ray diffraction at 8keV in Bragg geometry and Laue transmission diffraction at synchrotron at energies up to 500 keV. A good agreement was found between the mosaicity evaluated in Bragg diffraction geometry with x-ray penetration of the order of few tens micrometers and in Laue transmission geometry at synchrotron. All the analyzed crystals showed mosaicity values in a range between a few to 150 arcseconds and suitable for the application. Nevertheless -CdTe and CdZnTe crystals exhibit non-uniformity due to the presence of low angle grain boundaries; -Cu crystals exhibit mosaicity of the order of several arcminutes; they indeed suffer by a severe cutting damage that had to be removed with a very deep etching. The FWHM was also rapidly decreasing with the x-ray energy showing that the mosaic spread is not the only origin of peak broadening; -GaAs crystals grown by Czochralski method show mosaicity up to 30 arcseconds and good diffraction efficiency up to energies of 500 keV. The use of thermal treatments as a possible method to increase the mosaic spread is also evaluated.

  12. X-Ray Polarimetry

    OpenAIRE

    Kaaret, Philip

    2014-01-01

    We review the basic principles of X-ray polarimetry and current detector technologies based on the photoelectric effect, Bragg reflection, and Compton scattering. Recent technological advances in high-spatial-resolution gas-filled X-ray detectors have enabled efficient polarimeters exploiting the photoelectric effect that hold great scientific promise for X-ray polarimetry in the 2-10 keV band. Advances in the fabrication of multilayer optics have made feasible the construction of broad-band ...

  13. Development of high spatial resolution X-ray CT system at BL47XU in SPring-8

    CERN Document Server

    Uesugi, K; Yagi, N; Tsuchiyama, A; Nakano, T

    2001-01-01

    High spatial resolution, micrometer range, X-ray CT system has been developed at SPring-8. The experiments were performed at the undulator beam line BL47XU. An 'in-vacuum type' undulator is employed as an X-ray source, and the X-rays are monochromatized with a liquid nitrogen cooled Si(1 1 1) double crystal monochromator. High precision rotation stage with air bearing was used for sample rotation. The transmitted images were obtained with a two-dimensional image detector, which consists of a single crystal phosphor screen (Lu sub 2 SiO sub 5 : Ce), an objective lens and a cooled CCD camera. In this system the smallest effective pixel size was set to 0.5 mu mx0.5 mu m. As a result of the experiments, three-dimensional images of a few micrometer-order texture has been successfully obtained with the developed CT system.

  14. Observation of immuno-labeled cells at high resolution using soft X-ray microscope at Ritsumeikan University SR Center

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, A [Nagahama Institute of Bio-Science and Technology, 1266, Tamura-cho, Nagahama, Shiga, 526-0829 (Japan); Takemoto, K; Kihara, H [Department of Physics, Kansai Medical University, 18-89 Uyamahigashi, Hirakata, Osaka, 573-1136 (Japan); Fukui, T; Yoshimura, Y; Namba, H [Department of Physical Science, Ritsumeikan University, 1-1-1, Noji-Higashi, Kusatsu, Shiga, 525-8577 (Japan); Okuno, K, E-mail: takemoto@makino.kmu.ac.j [SR Center, Ritsumeikan University, 1-1-1, Noji-Higashi Kusatsu, Shiga, 525-8577 (Japan)

    2009-09-01

    Mouse fibroblast cell line NIH3T3 cells were labeled with the heavy metal (silver and gold) and observed intracellular structure under an X-ray microscope. Microtubules, Golgi apparatus and early endosomes of NIH3T3 cells were stained with immuno-gold nanoparticles, and immuno-staining was intensified by silver or gold enhancement procedure. Using a transmission soft X-ray microscope beamline (BL12) at Ritsumeikan University SR center, we observed immuno-stained NIH3T3 cells with several wavelengths just below and above oxygen edge ({lambda} = 2.32 nm). Using this method, cytoskeleton (microtubules) and organelles (Golgi apparatus and early endosomes) were successfully imaged with high resolution. Thus, immuno-gold silver and gold enhancement technique is useful for specific labeling of intracellular structure under an X-ray microscope.

  15. In situ observation of Cu-Ni alloy nanoparticle formation by X-ray diffraction, X-ray absorption spectroscopy, and transmission electron microscopy: Influence of Cu/Ni ratio

    DEFF Research Database (Denmark)

    Wu, Qiongxiao; Duchstein, Linus Daniel Leonhard; Chiarello, Gian Luca

    2014-01-01

    Silica-supported, bimetallic Cu-Ni nanomaterials were prepared with different ratios of Cu to Ni by incipient wetness impregnation without a specific calcination step before reduction. Different in situ characterization techniques, in particular transmission electron microscopy (TEM), X-ray diffr......Silica-supported, bimetallic Cu-Ni nanomaterials were prepared with different ratios of Cu to Ni by incipient wetness impregnation without a specific calcination step before reduction. Different in situ characterization techniques, in particular transmission electron microscopy (TEM), X......, which results in improved reducibility of the Ni species compared with monometallic Ni. At high Ni concentrations silica-supported Cu-Ni alloys form a homogeneous solid solution of Cu and Ni, whereas at lower Ni contents Cu and Ni are partly segregated and form metallic Cu and Cu-Ni alloy phases. Under...... the same reduction conditions, the particle sizes of reduced Cu-Ni alloys decrease with increasing Ni content. Estimates of the metal surface area from sulfur chemisorption and from the XRD particle size generally agree well on the trend across the composition range, but show some disparity in terms...

  16. X-ray structure of imidazolonepropionase from Agrobacterium tumefaciens at 1.87 Å resolution

    Energy Technology Data Exchange (ETDEWEB)

    Tyagi, Rajiv; Kumaran, Desigan; Burley, Stephen K.; Swaminathan, Subramanyam (SGX); (BNL)

    2010-01-12

    Histidine degradation in Agrobacterium tumefaciens involves four enzymes, including histidase (EC 4.3.1.3), urocanase (EC 4.2.1.49), imidazolonepropionase (EC 3.5.2.7), and N-formylglutamate amidohydrolase (EC 3.5.3.8). The third enzyme of the pathway, imidazolone-propionase, a 45.6 kDa protein, catalyzes conversion of imidazolone-5-propanoate to N-forminio-L-glutamate. Initial studies of the role of imidazolonepropionase in histidine degradation were published in 1953. Subsequent publications have been limited to enzyme kinetics, crystallization, and a recently reported structure determination. The imidazolonepropionases are members of metallodepenent-hydrolases (or amidohydroase) superfamily, which includs ureases, adenosine deaminases, phosphotriesterases, dihydroorotases, allantoinases, hydantoinases, adenine and cytosine deaminases, imidazolonepropionases, aryldial-kylphosphatases, chlorohydrolases, and formylmethanofuran dehydroases. Proteins belonging to this large group share a common three-dimensional structural motif (an eightfold {alpha}/{beta} or TIM barrel) with similar active sites. Most superfamily members also share a conserved metal binding site, involving four histidine residues and one aspartic acid. Imidazolonepropionase is one of the targets selected for X-ray crystallpgrahpic structure determination by the New York Structural GenomiX Research Consortium (NYSGXRC) Target ID: 9252b to correlate the structure function relationship of poorly studied by important enzyme. Here they report the crystal structure of imidazolonepropionase from Agrobacterium tumefaciens determined at 1.87 {angstrom} resolution.

  17. Upgrades of the high resolution imaging x-ray crystal spectrometers on experimental advanced superconducting tokamaka)

    Science.gov (United States)

    Lu, B.; Wang, F.; Shi, Y.; Bitter, M.; Hill, K. W.; Lee, S. G.; Fu, J.; Li, Y.; Wan, B.

    2012-10-01

    Two imaging x-ray crystal spectrometers, the so-called "poloidal" and "tangential" spectrometers, were recently implemented on experimental advanced superconducting tokamak (EAST) to provide spatially and temporally resolved impurity ion temperature (Ti), electron temperature (Te) and rotation velocity profiles. They are derived from Doppler width of W line for Ti, the intensity ratio of Li-like satellites to W line for Te, and Doppler shift of W line for rotation. Each spectrometer originally consisted of a spherically curved crystal and a two-dimensional multi-wire proportional counter (MWPC) detector. Both spectrometers have now been upgraded. The layout of the tangential spectrometer was modified, since it had to be moved to a different port, and the spectrometer was equipped with two high count rate Pilatus detectors (Model 100 K) to overcome the count rate limitation of the MWPC and to improve its time resolution. The poloidal spectrometer was equipped with two spherically bent crystals to record the spectra of He-like and H-like argon simultaneously and side by side on the original MWPC. These upgrades are described, and new results from the latest EAST experimental campaign are presented.

  18. Upgrades of the high resolution imaging x-ray crystal spectrometers on experimental advanced superconducting tokamak.

    Science.gov (United States)

    Lu, B; Wang, F; Shi, Y; Bitter, M; Hill, K W; Lee, S G; Fu, J; Li, Y; Wan, B

    2012-10-01

    Two imaging x-ray crystal spectrometers, the so-called "poloidal" and "tangential" spectrometers, were recently implemented on experimental advanced superconducting tokamak (EAST) to provide spatially and temporally resolved impurity ion temperature (T(i)), electron temperature (T(e)) and rotation velocity profiles. They are derived from Doppler width of W line for Ti, the intensity ratio of Li-like satellites to W line for Te, and Doppler shift of W line for rotation. Each spectrometer originally consisted of a spherically curved crystal and a two-dimensional multi-wire proportional counter (MWPC) detector. Both spectrometers have now been upgraded. The layout of the tangential spectrometer was modified, since it had to be moved to a different port, and the spectrometer was equipped with two high count rate Pilatus detectors (Model 100 K) to overcome the count rate limitation of the MWPC and to improve its time resolution. The poloidal spectrometer was equipped with two spherically bent crystals to record the spectra of He-like and H-like argon simultaneously and side by side on the original MWPC. These upgrades are described, and new results from the latest EAST experimental campaign are presented.

  19. High-resolution x-ray scattering studies of charge ordering in highly correlated electron systems

    CERN Document Server

    Ghazi, M E

    2002-01-01

    addition, another very weak satellites with wavevector (1/2, 1, 1/2) were observed possibly due to spin ordering. two-dimensional in nature both by measurements of their correlation lengths and by measurement of the critical exponents of the charge stripe melting transition with an anomaly at x = 0.25. The results show by decreasing the hole concentration from the x = 0.33 to 0.2, the well-correlated charge stripes change to a glassy state at x = 0.25. The electronic transition into the charge stripe phase is second-order without any corresponding structural transition. Above the second-order transition critical scattering was observed due to fluctuations into the charge stripe phase. In a single-crystal of Nd sub 1 sub / sub 2 Sr sub 1 sub / sub 2 MnO sub 3 a series of phase transitions were observed using high-resolution synchrotron X-ray scattering. Above the charge ordering transition temperature, T sub C sub O , by measuring the peak profiles of Bragg reflections as a function of temperature, it was foun...

  20. Three-dimensional grain fabric measurements using high-resolution X-ray computed tomography

    Science.gov (United States)

    Ketcham, Richard A.

    2005-07-01

    High-resolution X-ray computed tomography (HRXCT) provides detailed imagery of the interiors of rocks up to hand-sample size, non-destructively and in three dimensions. New tools described here allow these data to be used for analysis of grain fabrics. Two separate sets of measurement techniques have been developed. The first concentrates on quantifying individual crystals (phenocrysts, porphyroblasts) or other discrete objects or void spaces within a sample. Quantifiable properties include location, size, shape, orientation, and contact relationships with adjacent objects. The second set of techniques performs a more general fabric analysis on any distinguishable component in a sample. A fabric tensor can be computed based on a number of metrics, including the star volume distribution (SVD), star length distribution (SLD), and mean intercept length (MIL) methods. The fabric tensors provide principal component directions and magnitudes, which in turn provide a measure of degree of anisotropy and shape indices. Because the SVD and SLD measure only the material of interest, whereas the MIL is also influenced by spatial distribution, results can be divergent for sparse phases. Also introduced is a three-dimensional rose diagram that can be viewed interactively and inspected to reveal further details about non-orthogonal directional components. These techniques are demonstrated through analysis of a garnet-kyanite schist from Mica Dam, British Columbia.

  1. Toward a practical X-ray Fourier holography at high resolution

    CERN Document Server

    Howells, M R; Marchesini, S; Miller, S; Spence, J C H; Weirstall, U

    2001-01-01

    We consider the theory and data analysis in Fourier-transform X-ray holography. We also report studies and experimental investigations of practical ways to generate a suitable holographic reference wave.

  2. Capillary based Li-air batteries for in situ synchrotron X-ray powder diffraction studies

    DEFF Research Database (Denmark)

    Storm, Mie Møller; Johnsen, Rune E.; Younesi, Reza

    2015-01-01

    For Li-air batteries to reach their full potential as energy storage system, a complete understanding of the conditions and reactions in the battery during operation is needed. To follow the reactions in situ a capillary-based Li-O2 battery has been developed for synchrotron-based in situ X...

  3. In-situ CdCl{sub 2}-treated CdTe film surface analysis by X-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Vamsi Krishna, K.; Dutta, V. [Centre for Energy Studies, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 100 016 (India)

    2004-07-01

    CdTe thin films are deposited using a spray pyrolysis technique without and with in-situ CdCl{sub 2} treatment. An X-ray photoelectron spectroscopy technique is used to study the Cd, Te, O and Cl chemical environments and the valence-band spectra of the CdTe film surface. A shift in the Fermi-level position of {proportional_to}200 meV towards the valence-band maximum is observed in the CdTe film after the in-situ CdCl{sub 2} treatment, which is attributed to the increment of the Cl concentration and the improvement in the grain growth of the CdTe film. In addition to the increment of the Cl concentration, less surface oxidation is observed compared to that for ex-situ treatment. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. New developments in laser-heated diamond anvil cell with in situ synchrotron x-ray diffraction at High Pressure Collaborative Access Team.

    Science.gov (United States)

    Meng, Yue; Hrubiak, Rostislav; Rod, Eric; Boehler, Reinhard; Shen, Guoyin

    2015-07-01

    An overview of the in situ laser heating system at the High Pressure Collaborative Access Team, with emphasis on newly developed capabilities, is presented. Since its establishment at the beamline 16-ID-B a decade ago, laser-heated diamond anvil cell coupled with in situ synchrotron x-ray diffraction has been widely used for studying the structural properties of materials under simultaneous high pressure and high temperature conditions. Recent developments in both continuous-wave and modulated heating techniques have been focusing on resolving technical issues of the most challenging research areas. The new capabilities have demonstrated clear benefits and provide new opportunities in research areas including high-pressure melting, pressure-temperature-volume equations of state, chemical reaction, and time resolved studies.

  5. X-ray High-resolution Spectroscopy for Laser-produced Plasma

    Science.gov (United States)

    Barbato, F.; Scarpellini, D.; Malizia, A.; Gaudio, P.; Richetta, M.; Antonelli, L.

    The study of the emission spectrum gives information about the material generating the spectrum itself and the condition in which this is generated. The wavelength spectra lines are linked to the specific element and plasma conditions (electron temperature, density), while their shape is influenced by several physical effects like Stark and Doppler ones. In this work we study the X-ray emission spectra of a copper laser-produced plasma by using a spherical bent crystal spectrometer to measure the electron temperature. The facility used is the laser TVLPS, at the Tor Vergata University in Rome. It consists of a Nd:Glass source (in first harmonic - 1064 nm) whose pulse parameters are: 8 J in energy, time duration of 15 ns and a focal spot diameter of 200 μm. The adopted spectrometer is based on a spherical bent crystal of muscovite. The device combines the focusing property of a spherical mirror with the Bragg's law. This allows to obtain a great power resolution but a limited range of analysis. In our case the resolution is on average 80 eV. As it is well-known, the position of the detector on the Rowland's circle is linked to the specific spectral range which has been studied. To select the area to be investigated, we acquired spectra by means of a flat spectrometer. The selected area is centered on 8.88 Å. To calibrate the spectrum we wrote a ray-tracing MATLAB code, which calculates the detector alignment parameters and calibration curve. We used the method of line ratio to measure the electron temperature. This is possible because we assumed the plasma to be in LTE condition. The temperature value was obtained comparing the experimental one, given by the line ratio, with the theoretical one, preceded by FLYCHK simulations.

  6. Position resolution limits in pure noble gaseous detectors for X-ray energies from 1 to 60 keV

    Directory of Open Access Journals (Sweden)

    C.D.R. Azevedo

    2015-02-01

    Full Text Available The calculated position resolutions for X-ray photons (1–60 keV in pure noble gases at atmospheric pressure are presented. In this work we show the influence of the atomic shells and the detector dimensions on the intrinsic position resolution of the used noble gas. The calculated results were obtained by using a new software tool, Degrad, and compared to the available experimental data.

  7. In situ multi-element analyses by energy-dispersive X-ray fluorescence on varnishes of historical violins

    Energy Technology Data Exchange (ETDEWEB)

    Echard, Jean-Philippe [Laboratoire de recherche et de restauration, Musee de la musique, Cite de la musique, 221, avenue Jean-Jaures, 75019 Paris (France)]. E-mail: jpechard@cite-musique.fr

    2004-10-08

    Varnishes of Italian violins and other historical stringed instruments have been analyzed by energy-dispersive X-ray fluorescence (EDXRF). The instruments whose varnishes were to be analyzed were chosen from the collection kept in Musee de la Musique in Paris. Direct analyses were performed on instrument varnishes, without any sampling and non-destructively, showing inorganic elements such as lead, mercury and iron that could be related to siccatives or pigments. Analytical results and their comparison with old formulae or traditional recipes of violin varnishes, as with the few previous analytical results, will be discussed.

  8. Strength of shock-loaded single-crystal tantalum [100] determined using in situ broadband x-ray Laue diffraction.

    Science.gov (United States)

    Comley, A J; Maddox, B R; Rudd, R E; Prisbrey, S T; Hawreliak, J A; Orlikowski, D A; Peterson, S C; Satcher, J H; Elsholz, A J; Park, H-S; Remington, B A; Bazin, N; Foster, J M; Graham, P; Park, N; Rosen, P A; Rothman, S R; Higginbotham, A; Suggit, M; Wark, J S

    2013-03-15

    The strength of shock-loaded single crystal tantalum [100] has been experimentally determined using in situ broadband x-ray Laue diffraction to measure the strain state of the compressed crystal, and elastic constants calculated from first principles. The inferred strength reaches 35 GPa at a shock pressure of 181 GPa and is in excellent agreement with a multiscale strength model [N. R. Barton et al., J. Appl. Phys. 109, 073501 (2011)], which employs a hierarchy of simulation methods over a range of length scales to calculate strength from first principles.

  9. X-ray imaging with sub-micron resolution using large-area photon counting detectors Timepix

    Science.gov (United States)

    Dudak, J.; Karch, J.; Holcova, K.; Zemlicka, J.

    2017-12-01

    As X-ray micro-CT became a popular tool for scientific purposes a number of commercially available CT systems have emerged on the market. Micro-CT systems have, therefore, become widely accessible and the number of research laboratories using them constantly increases. However, even when CT scans with spatial resolution of several micrometers can be performed routinely, data acquisition with sub-micron precision remains a complicated task. Issues come mostly from prolongation of the scan time inevitably connected with the use of nano-focus X-ray sources. Long exposure time increases the noise level in the CT projections. Furthermore, considering the sub-micron resolution even effects like source-spot drift, rotation stage wobble or thermal expansion become significant and can negatively affect the data. The use of dark-current free photon counting detectors as X-ray cameras for such applications can limit the issue of increased image noise in the data, however the mechanical stability of the whole system still remains a problem and has to be considered. In this work we evaluate the performance of a micro-CT system equipped with nano-focus X-ray tube and a large area photon counting detector Timepix for scans with effective pixel size bellow one micrometer.

  10. Quantitative study of particle size distribution in an in-situ grown Al–TiB{sub 2} composite by synchrotron X-ray diffraction and electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Y. [State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240 (China); Chen, Z., E-mail: zhe.chen@sjtu.edu.cn [State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240 (China); Borbély, A. [SMS Materials Center, LGF-CNRS UMR 5307, Ecole des Mines de Saint Etienne, 158, Cours Fauriel, 42023 Saint Etienne (France); Ji, G. [Unité Matériaux et Transformations, CNRS UMR 8207, Université Lille 1, Villeneuve d' Ascq 59655 (France); Zhong, S.Y. [State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240 (China); Schryvers, D. [Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium); Ji, V. [ICMMO/LEMHE, UMR CNRS 8182, Université Paris-Sud 11, Orsay Cedex 91405, France. (France); Wang, H.W. [State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2015-04-15

    Synchrotron X-ray diffraction and transmission electron microscopy (TEM) were applied to quantitatively characterize the average particle size and size distribution of free-standing TiB{sub 2} particles and TiB{sub 2} particles in an in-situ grown Al–TiB{sub 2} composite. The detailed evaluations were carried out by X-ray line profile analysis using the restricted moment method and multiple whole profile fitting procedure (MWP). Both numerical methods indicate that the formed TiB{sub 2} particles are well crystallized and free of crystal defects. The average particle size determined from different Bragg reflections by the restricted moment method ranges between 25 and 55 nm, where the smallest particle size is determined using the 110 reflection suggesting the highest lateral-growth velocity of (110) facets. The MWP method has shown that the in-situ grown TiB{sub 2} particles have a very low dislocation density (~ 10{sup 11} m{sup −} {sup 2}) and their size distribution can be described by a log-normal distribution. Good agreement was found between the results obtained from the restricted moment and MWP methods, which was further confirmed by TEM. - Highlights: • Accurate quantitative characterization of in-situ grown T{sub i}B{sub 2} particles has been achieved. • Particle size anisotropy was revealed indicating 110 facets being largest during T{sub i}B{sub 2} growth. • A wide size distribution was observed for T{sub i}B{sub 2} particles with a dominant size smaller than 100 nm.

  11. Optical Demonstration of a Medical Imaging System with an EMCCD-Sensor Array for Use in a High Resolution Dynamic X-ray Imager

    OpenAIRE

    Qu, Bin; Huang, Ying; Wang, Weiyuan; Sharma, Prateek; Kuhls-Gilcrist, Andrew T.; Cartwright, Alexander N.; Titus, Albert H.; Bednarek, Daniel R.; Rudin, Stephen

    2010-01-01

    Use of an extensible array of Electron Multiplying CCDs (EMCCDs) in medical x-ray imager applications was demonstrated for the first time. The large variable electronic-gain (up to 2000) and small pixel size of EMCCDs provide effective suppression of readout noise compared to signal, as well as high resolution, enabling the development of an x-ray detector with far superior performance compared to conventional x-ray image intensifiers and flat panel detectors. We are developing arrays of EMCC...

  12. In situ probing calcium carbonate formation by combining fast controlled precipitation method and small-angle X-ray scattering.

    Science.gov (United States)

    Chao, Yanjia; Horner, Olivier; Vallée, Philippe; Meneau, Florian; Alos-Ramos, Olga; Hui, Franck; Turmine, Mireille; Perrot, Hubert; Lédion, Jean

    2014-04-01

    The initial stage of calcium carbonate nucleation and growth, found usually in "natural" precipitation conditions, is still not well understood. The calcium carbonate formation for moderate supersaturation level could be achieved by an original method called the fast controlled precipitation (FCP) method. FCP was coupled with SAXS (small-angle X-ray scattering) measurements to get insight into the nucleation and growth mechanisms of calcium carbonate particles in Ca(HCO3)2 aqueous solutions. Two size distributions of particles were observed. The particle size evolutions of these two distributions were obtained by analyzing the SAXS data. A nice agreement was obtained between the total volume fractions of CaCO3 obtained by SAXS analysis and by pH-resistivity curve modeling (from FCP tests).

  13. Direct and quantitative comparison of pixelated density profiles with high-resolution X-ray reflectivity data.

    Science.gov (United States)

    Fenter, P; Lee, S S; Skelton, A A; Cummings, P T

    2011-03-01

    A method for comparing pixelated density profiles (e.g. obtained from molecular dynamics or other computational techniques) with experimental X-ray reflectivity data both directly and quantitatively is described. The conditions under which such a comparison can be made quantitatively (e.g. with errors X-ray reflectivity calculations for binned density profiles is defined in terms of the inter-relationships between resolution of the X-ray reflectivity data (i.e. its range in momentum transfer), the chosen bin size and the width of the intrinsic density profile. These factors play a similar role in the application of any structure-factor calculations that involve the use of pixelated density profiles, such as those obtained from iterative phasing algorithms for inverting structures from X-ray reflectivity and coherent diffraction imaging data. Finally, it is shown how simulations of a quartz-water interface can be embedded into an exact description of the `bulk' phases (including the substrate crystal and the fluid water, below and above the actual interface) to quantitatively reproduce the experimental reflectivity data of a solid-liquid interface.

  14. Spatial resolution measurements of the advanced radiographic capability x-ray imaging system at energies relevant to Compton radiography

    Science.gov (United States)

    Hall, G. N.; Izumi, N.; Landen, O. L.; Tommasini, R.; Holder, J. P.; Hargrove, D.; Bradley, D. K.; Lumbard, A.; Cruz, J. G.; Piston, K.; Lee, J. J.; Romano, E.; Bell, P. M.; Carpenter, A. C.; Palmer, N. E.; Felker, B.; Rekow, V.; Allen, F. V.

    2016-11-01

    Compton radiography provides a means to measure the integrity, ρR and symmetry of the DT fuel in an inertial confinement fusion implosion near peak compression. Upcoming experiments at the National Ignition Facility will use the ARC (Advanced Radiography Capability) laser to drive backlighter sources for Compton radiography experiments and will use the newly commissioned AXIS (ARC X-ray Imaging System) instrument as the detector. AXIS uses a dual-MCP (micro-channel plate) to provide gating and high DQE at the 40-200 keV x-ray range required for Compton radiography, but introduces many effects that contribute to the spatial resolution. Experiments were performed at energies relevant to Compton radiography to begin characterization of the spatial resolution of the AXIS diagnostic.

  15. Spatial resolution measurements of the advanced radiographic capability x-ray imaging system at energies relevant to Compton radiography

    Energy Technology Data Exchange (ETDEWEB)

    Hall, G. N., E-mail: hall98@llnl.gov; Izumi, N.; Landen, O. L.; Tommasini, R.; Holder, J. P.; Hargrove, D.; Bradley, D. K.; Lumbard, A.; Cruz, J. G.; Piston, K.; Bell, P. M.; Carpenter, A. C.; Palmer, N. E.; Felker, B.; Rekow, V.; Allen, F. V. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States); Lee, J. J.; Romano, E. [National Security Technologies LLC, 161 S Vasco Rd., Livermore, California 94551 (United States)

    2016-11-15

    Compton radiography provides a means to measure the integrity, ρR and symmetry of the DT fuel in an inertial confinement fusion implosion near peak compression. Upcoming experiments at the National Ignition Facility will use the ARC (Advanced Radiography Capability) laser to drive backlighter sources for Compton radiography experiments and will use the newly commissioned AXIS (ARC X-ray Imaging System) instrument as the detector. AXIS uses a dual-MCP (micro-channel plate) to provide gating and high DQE at the 40–200 keV x-ray range required for Compton radiography, but introduces many effects that contribute to the spatial resolution. Experiments were performed at energies relevant to Compton radiography to begin characterization of the spatial resolution of the AXIS diagnostic.

  16. Composition measurement in substitutionally disordered materials by atomic resolution energy dispersive X-ray spectroscopy in scanning transmission electron microscopy.

    Science.gov (United States)

    Chen, Z; Taplin, D J; Weyland, M; Allen, L J; Findlay, S D

    2017-05-01

    The increasing use of energy dispersive X-ray spectroscopy in atomic resolution scanning transmission electron microscopy invites the question of whether its success in precision composition determination at lower magnifications can be replicated in the atomic resolution regime. In this paper, we explore, through simulation, the prospects for composition measurement via the model system of AlxGa1-xAs, discussing the approximations used in the modelling, the variability in the signal due to changes in configuration at constant composition, and the ability to distinguish between different compositions. Results are presented in such a way that the number of X-ray counts, and thus the expected variation due to counting statistics, can be gauged for a range of operating conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Hot-Electron Tunneling sensors for high-resolution x-ray and gamma-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Mears, C.A.; Labov, S.E.; Frank, M.; Netel, H.

    1997-02-07

    Over the past 2 years, we have been studying the use of Hot Electron Tunneling sensors for use in high-energy-resolution x-ray and gamma-ray spectrometers. These sensors promise several advantages over existing cryogenic sensors, including simultaneous high count rate and high resolution capability, and relative ease of use. Using simple shadow mask lithography, we verified the basic principles of operation of these devices and discovered new physics in their thermal behavior as a function applied voltage bias. We also began to develop ways to use this new sensor in practical x-ray and gamma-ray detectors based on superconducting absorbers. This requires the use of quasiparticle trapping to concentrate the signal in the sensing elements.

  18. Using x-ray computed tomography in hydrology: Systems, resolutions, and limitations

    DEFF Research Database (Denmark)

    Wildenschild, Dorthe; Hopmans, J.W.; Vaz, C.M.P.

    2002-01-01

    A combination of advances in experimental techniques and mathematical analysis has made it possible to characterize phase distribution and pore geometry in porous media using non-destructive X-ray computed tomography (CT). We present qualitative and quantitative CT results for partially saturated...

  19. The X-Ray Optics for the High Angular Resolution Imager (HARI)

    Science.gov (United States)

    Weisskopf, M. C.

    2010-01-01

    This slide presentation shows the basic parameters of the x-ray optics, the housing,a graph of the effective area vs energy, another graph showing the angular off-set vs HEW, and a series of graphs showing the detector offsets and tilts,

  20. Imaging outside the box: Resolution enhancement in X-ray coherent diffraction imaging by extrapolation of diffraction patterns

    Energy Technology Data Exchange (ETDEWEB)

    Latychevskaia, Tatiana, E-mail: tatiana@physik.uzh.ch; Fink, Hans-Werner [Physics Institute, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich (Switzerland); Chushkin, Yuriy; Zontone, Federico [The European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000 Grenoble (France)

    2015-11-02

    Coherent diffraction imaging is a high-resolution imaging technique whose potential can be greatly enhanced by applying the extrapolation method presented here. We demonstrate the enhancement in resolution of a non-periodical object reconstructed from an experimental X-ray diffraction record which contains about 10% missing information, including the pixels in the center of the diffraction pattern. A diffraction pattern is extrapolated beyond the detector area and as a result, the object is reconstructed at an enhanced resolution and better agreement with experimental amplitudes is achieved. The optimal parameters for the iterative routine and the limits of the extrapolation procedure are discussed.

  1. In-situ investigations of structural changes during cyclic loading by high resolution reciprocal space mapping

    DEFF Research Database (Denmark)

    Diederichs, Annika M.; Thiel, Felix; Lienert, Ulrich

    2017-01-01

    dislocation structures can be identified using advanced electron microscopy and synchrotron techniques. A detailed characterization of the microstructure during cyclic loading by in-situ monitoring the internal structure within individual grains with high energy x-rays can help to understand and predict...... the materials behavior during cyclic deformation and to improve the material design. While monitoring macroscopic stress and strain during cyclic loading, reciprocal space maps of diffraction peaks from single grains are obtained with high resolution. High Resolution Reciprocal Space Mapping was applied...

  2. Frontiers in x-ray components for high-resolution spectroscopy and imaging laminar type varied-line-spacing holographic gratings for soft x-ray

    CERN Document Server

    Sano, K

    2003-01-01

    Laminar-type varied-line-spacing gratings have been widely used for soft x-ray monochromator recently because of the features of low stray lights and higher order lights. We have developed and advanced holographic recording and an ion-beam etching methods for the laminar type varied-line spacing gratings. This report describes a short review of the soft x-ray spectrometers using varied-line-spacing gratings, the fabrication process of the laminar-type holographic gratings, and the performance of the flat field spectrographs equipped with the laminar type varied-line spacing gratings comparing with the mechanically ruled replica gratings. It is concluded that, for the sake of the advanced design and fabrication processes and excellent spectroscopic performance, laminar-type holographic gratings will be widely used for soft x-ray spectrometers for various purposes in the near future. (author)

  3. 4D in situ visualization of electrode morphology changes during accelerated degradation in fuel cells by X-ray computed tomography

    Science.gov (United States)

    White, Robin T.; Wu, Alex; Najm, Marina; Orfino, Francesco P.; Dutta, Monica; Kjeang, Erik

    2017-05-01

    A four-dimensional visualization approach, featuring three dimensions in space and one dimension in time, is proposed to study local electrode degradation effects during voltage cycling in fuel cells. Non-invasive in situ micro X-ray computed tomography (XCT) with a custom fuel cell fixture is utilized to track the same cathode catalyst layer domain throughout various degradation times from beginning-of-life (BOL) to end-of-life (EOL). With this unique approach, new information regarding damage features and trends are revealed, including crack propagation and catalyst layer thinning being quantified by means of image processing and analysis methods. Degradation heterogeneities as a result of local environmental variations under land and channel are also explored, with a higher structural degradation rate under channels being observed. Density and compositional changes resulting from carbon corrosion and catalyst layer collapse and thinning are observed by changes in relative X-ray attenuation from BOL to EOL, which also indicate possible vulnerable regions where crack initiation and propagation may occur. Electrochemical diagnostics and morphological features observed by micro-XCT are correlated by additionally collecting effective catalyst surface area, double layer capacitance, and polarization curves prior to imaging at various stages of degradation.

  4. In situ X-ray absorption fine structure studies of a manganese dioxide electrode in a rechargeable MnO{sub 2}/Zn alkaline battery environment

    Energy Technology Data Exchange (ETDEWEB)

    Mo, Y.; Hu, Y.; Bae, I.T.; Miller, B.; Scherson, D.A. [Case Western Reserve Univ., Cleveland, OH (United States). Dept. of Chemistry; Antonio, M.R. [Argonne National Lab., IL (United States). Chemistry Div.

    1996-12-31

    Electronic and structural aspects of a MnO{sub 2} electrode in a rechargeable MnO{sub 2}/Zn battery environment have been investigated by in situ Mn K-edge X-ray absorption fine structure (XAFS). The relative amplitudes of the three major Fourier transform shells of the EXAFS (extended XAFS) function of the rechargeable MnO{sub 2} electrode in the undischarged state were found to be similar to those found for ramsdellite, a MnO{sub 2} polymorph with substantial corner-sharing linkages among the basic MnO{sub 6} octahedral units. The analyses of the background-subtracted pre-edge peaks and absorption edge regions for the nominally 1-e{sup {minus}} discharged electrode were consistent with Mn{sup 3+} as being the predominant constituent species, rather than a mixture of Mn{sup 4+} and Mn{sup 2+} sites. Furthermore, careful inspection of both the XANES (X-ray absorption near edge structure) and EXAFS indicated that the full recharge of MnO, which had been previously discharged either by a 1- or 2-equivalent corner-sharing linkages compared to the original undischarged MnO{sub 2}.

  5. Temperature effect of elastic anisotropy and internal strain development in advanced nanostructured alloys: An in-situ synchrotron X-ray investigation

    Energy Technology Data Exchange (ETDEWEB)

    Gan, Yingye; Mo, Kun; Yun, Di; Hoelzer, David T.; Miao, Yinbin; Liu, Xiang; Lan, Kuan-Che; Park, Jun-Sang; Almer, Jonathan; Chen, Tianyi; Zhao, Huijuan

    2017-04-01

    Nanostructured ferritic alloys (NFAs) are a promising structural material for advanced nuclear systems due to their exceptional radiation tolerance and high-temperature mechanical properties. Their remarkable properties result from the ultrafine ultrahigh density Y-Ti-O nanoclusters dispersed within the ferritic matrix. In this work, we performed in-situ synchrotron X-ray diffraction tests to study the tensile deformation process of the three types of NFAs: 9YWTV, 14YWT-sm13, and 14YWT-sm170 at both room temperature and elevated temperatures. A technique was developed, combining Kroner’s model and X-ray measurement, to determine the intrinsic monocrystal elastic-stiffness constants, and polycrystal Young’s modulus and Poisson’s ratio of the NFAs. Temperature dependence of elastic anisotropy was observed in the NFAs. An analysis of intergranular strain and strengthening factors determined that 14YWT-sm13 had a higher resistance to temperature softening compared to 9YWTV, attributed to the more effective nanoparticle strengthening during high-temperature mechanical loading.

  6. In situ observation of high-pressure phase transition in silicon carbide under shock loading using ultrafast x-ray diffraction

    Science.gov (United States)

    Tracy, Sally June

    2017-06-01

    SiC is an important high-strength ceramic material used for a range of technological applications, including lightweight impact shielding and abrasives. SiC is also relevant to geology and planetary science. It may be a host of reduced carbon in the Earth's interior and also occurs in meteorites and impact sites. SiC has also been put forward as a possible major constituent in the proposed class of extra-solar planets known as carbon planets. Previous studies have used wave profile measurements to identify a phase transition under shock loading near 1 Mbar, but lattice-level structural information was not obtained. Here we present the behavior of silicon carbide under shock loading as investigated through a series of time-resolved pump-probe x-ray diffraction measurements up to 200 GPa. Our experiments were conducted at the Materials in Extreme Conditions beamline of the Linac Coherent Light Source. In situ x-ray diffraction data on shock-compressed SiC was collected using a free electron laser source combined with a pulsed high-energy laser. These measurements allow for the determination of time-dependent atomic arrangements, demonstrating that the wurtzite phase of SiC transforms directly to the B1 structure. Our measurements also reveal details of the material texture evolution under shock loading and release.

  7. Chain-length dependent growth dynamics of n-alkanes on silica investigated by energy-dispersive x-ray reflectivity in situ and in real-time.

    Science.gov (United States)

    Weber, C; Frank, C; Bommel, S; Rukat, T; Leitenberger, W; Schäfer, P; Schreiber, F; Kowarik, S

    2012-05-28

    We compare the growth dynamics of the three n-alkanes C(36)H(74), C(40)H(82), and C(44)H(90) on SiO(2) using real-time and in situ energy-dispersive x-ray reflectivity. All molecules investigated align in an upright-standing orientation on the substrate and exhibit a transition from layer-by-layer growth to island growth after about 4 monolayers under the conditions employed. Simultaneous fits of the reflected intensity at five distinct points in reciprocal space show that films formed by longer n-alkanes roughen faster during growth. This behavior can be explained by a chain-length dependent height of the Ehrlich-Schwoebel barrier. Further x-ray diffraction measurements after growth indicate that films consisting of longer n-alkanes also incorporate more lying-down molecules in the top region. While the results reveal behavior typical for chain-like molecules, the findings can also be useful for the optimization of organic field effect transistors where smooth interlayers of n-alkanes without coexistence of two or more molecular orientations are required.

  8. In-situ Raman and X-ray photoelectron spectroscopic studies on the pitting corrosion of modified 9Cr-1Mo steel in neutral chloride solution

    Science.gov (United States)

    Ramya, S.; Nanda Gopala Krishna, D.; Mudali, U. Kamachi

    2018-01-01

    In-situ Raman and X-ray photoelectron spectroscopic studies were performed for the identification of native and corroded surface oxide layers of modified 9Cr-1Mo steel. The Raman data obtained for native oxide layer of modified 9Cr-1Mo steel revealed that it was mainly composed of oxides of Fe and Cr. The presence of alloying element Mo was found to be less significant in the native oxide film. The oxides of Cr were dominant at the surface and were found to be decreasing closer to metal/oxide layer interface. The changes in the chemical composition of the native films upon in-situ pitting during potentiostatic polarization experiment were characterized by in-situ Raman analysis. The corrosion products of potentiostatically polarized modified 9Cr-1Mo steel was composed of dominant Fe (III) phases viz., γ- Fe2O3, α and γ - FeOOH along with the oxides of chromium. The results from Raman analysis were corroborated with the XPS experiments on as received and pitted samples of modified 9Cr-1Mo steel specimens. It was observed that the oxides of Cr and Mo contributed for the stability of the surface layer by forming Cr2O3 and MoO3. Also, the study attempted to find out the intermediate corrosion products inside the metastable pits to account for the pseudo passive behavior of modified 9Cr-1Mo steel in 0.1 M NaCl solution.

  9. Study of the mechanical behavior of the hydride blister/rim structure in Zircaloy-4 using in-situ synchrotron X-ray diffraction

    Science.gov (United States)

    Lin, Jun-li; Han, Xiaochun; Heuser, Brent J.; Almer, Jonathan D.

    2016-04-01

    High-energy synchrotron X-ray diffraction was utilized to study the mechanical response of the f.c.c δ hydride phase, the intermetallic precipitation with hexagonal C14 lave phase and the α-Zr phase in the Zircaloy-4 materials with a hydride rim/blister structure near one surface of the material during in-situ uniaxial tension experiment at 200 °C. The f.c.c δ was the only hydride phase observed in the rim/blister structure. The conventional Rietveld refinement was applied to measure the macro-strain equivalent response of the three phases. Two regions were delineated in the applied load versus lattice strain measurement: a linear elastic strain region and region that exhibited load partitioning. Load partitioning was quantified by von Mises analysis. The three phases were observed to have similar elastic modulus at 200 °C.

  10. Look fast: Crystallization of conjugated molecules during solution shearing probed in-situ and in real time by X-ray scattering

    KAUST Repository

    Smilgies, Detlef Matthias

    2012-12-20

    High-speed solution shearing, in which a drop of dissolved material is spread by a coating knife onto the substrate, has emerged as a versatile, yet simple coating technique to prepare high-mobility organic thin film transistors. Solution shearing and subsequent drying and crystallization of a thin film of conjugated molecules is probed in situ using microbeam grazing incidence wide-angle X-ray scattering (μGIWAXS). We demonstrate the advantages of this approach to study solution based crystal nucleation and growth, and identify casting parameter combinations to cast highly ordered and laterally aligned molecular thin films. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Performance of a size-selected nanocluster deposition facility and in situ characterization of grown films by x-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Mondal, Shyamal; Bhattacharyya, S. R., E-mail: satyar.bhattacharyya@saha.ac.in [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700 064 (India)

    2014-06-15

    We report here on a newly installed gas aggregation type nanocluster deposition unit based on magnetron sputtering ion source with mass selection of the clusters by quadrupole mass filter. The system is ultra high vacuum compatible and is equipped with an in situ X-ray Photoelectron Spectroscopy facility, giving compositional information of the films formed by nanoclusters deposition on a substrate. Detailed descriptions and working of the components of the system are presented. For the characterization of the nanocluster source and associated mass filter for size selected clusters, the dependence of output performance as a function of aggregation length, sputter gas flow and magnetron power of the cluster source have been studied. Copper nanoclusters deposited on Silicon (100) surface and on transmission electron microscope grids are, respectively, studied with scanning electron microscopy and transmission electron microscopy for the morphology.

  12. In situ synchrotron X-ray diffraction study of deformation behavior and load transfer in a Ti{sub 2}Ni-NiTi composite

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Junsong; Hao, Shijie; Yu, Cun; Shao, Yang; Ru, Yadong; Jiang, Daqiang; Cui, Lishan, E-mail: lscui@cup.edu.cn [Department of Materials Science and Engineering, China University of Petroleum-Beijing, Changping, Beijing 102249 (China); Liu, Yinong [School of Mechanical and Chemical Engineering, The University of Western Australia, Crawley, WA 6009 (Australia); Ren, Yang [X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Huan, Yong [State Key Laboratory of Nonlinear Mechanics (LNM), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-07-28

    The deformation behavior and load transfer of a dual-phase composite composed of martensite NiTi embedded in brittle Ti{sub 2}Ni matrices were investigated by using in situ synchrotron x-ray diffraction during compression. The composite exhibits a stage-wise deformation feature and a double-yielding phenomenon, which were caused by the interaction between Ti{sub 2}Ni and NiTi with alternative microscopic deformation mechanism. No load transfer occurs from the soft NiTi dendrites to the hard Ti{sub 2}Ni matrices during the pseudoplastic deformation (detwinning) of NiTi, which is significantly different from that previously reported in bulk metallic glasses matrices composites.

  13. In-situ X-ray diffraction reveals the degradation of crystalline CH3NH3PbI3 by water-molecule collisions at room temperature

    Science.gov (United States)

    Hada, Masaki; Hasegawa, Yoichi; Nagaoka, Ryota; Miyake, Tomoya; Abdullaev, Ulugbek; Ota, Hiromi; Nishikawa, Takeshi; Yamashita, Yoshifumi; Hayashi, Yasuhiko

    2018-02-01

    We have developed a vacuum-compatible chamber for in-situ X-ray diffraction (XRD) studies and have used it to characterize the changing crystal structure of an inorganic–organic hybrid perovskite material, CH3NH3PbI3 (MAPbI3), during interactions with water vapor at room temperature. In the XRD spectra, we have observed the degradation of MAPbI3 and the creation of MAPbI3 hydrates, which follow simple rate equations. The time constant for the degradation of MAPbI3 during accelerated aging suggests that multiple collisions of water molecules with the MAPbI3 crystal trigger the degradation of the crystal.

  14. Evidence for Degradation of the Chrome Yellows in Van Gogh's Sunflowers: A Study Using Noninvasive In Situ Methods and Synchrotron-Radiation-Based X-ray Techniques.

    Science.gov (United States)

    Monico, Letizia; Janssens, Koen; Hendriks, Ella; Vanmeert, Frederik; Van der Snickt, Geert; Cotte, Marine; Falkenberg, Gerald; Brunetti, Brunetto Giovanni; Miliani, Costanza

    2015-11-16

    This paper presents firm evidence for the chemical alteration of chrome yellow pigments in Van Gogh's Sunflowers (Van Gogh Museum, Amsterdam). Noninvasive in situ spectroscopic analysis at several spots on the painting, combined with synchrotron-radiation-based X-ray investigations of two microsamples, revealed the presence of different types of chrome yellow used by Van Gogh, including the lightfast PbCrO4 and the sulfur-rich PbCr1-x Sx O4 (x≈0.5) variety that is known for its high propensity to undergo photoinduced reduction. The products of this degradation process, i.e., Cr(III) compounds, were found at the interface between the paint and the varnish. Selected locations of the painting with the highest risk of color modification by chemical deterioration of chrome yellow are identified, thus calling for careful monitoring in the future. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. In situ x-ray observations of the diamond formation process in the C-H sub 2 O-MgO system

    CERN Document Server

    Okada, T; Shimomura, O

    2002-01-01

    The diamond formation process in aqueous fluid catalyst under high-pressure and high-temperature conditions has been observed for the first time. Quench experiments and in situ x-ray diffraction experiments using synchrotron radiation have been performed upon a mixture of brucite (Mg(OH) sub 2) and graphite as the starting material. It was confirmed that brucite decomposed into periclase and H sub 2 O at 3.6 GPa and 1050 deg. C while its complete melting occurred at 6.2 GPa and 1150 deg. C, indicating that the solubility of MgO in H sub 2 O greatly increases with increasing pressure. The conversion of carbon from its graphite to its diamond form in aqueous fluid was observed at 7.7 GPa and 1835 deg. C.

  16. Role of Bi promotion and solvent in platinum-catalyzed alcohol oxidation probed by in situ X-ray absorption and ATR-IR spectroscopy

    DEFF Research Database (Denmark)

    Mondelli, C.; Grunwaldt, Jan-Dierk; Ferri, D.

    2010-01-01

    the catalysts under working conditions using in situ X-ray absorption spectroscopy (XAS) and attenuated total reflection infrared spectroscopy (ATR-IR), aiming at uncovering the roles of the metal promoter and the reaction medium. XAS confirms that Bi is oxidized more easily than Pt, maintaining the catalytic....... This behaviour is not observed in the presence of Bi, whose geometric effect (site blocking) is interpreted as additionally limiting the adsorption of toluene and the premature deactivation of Pt. ATR-IR spectroscopy during CO adsorption on Pt and during reaction indicates that Bi is located rather on extended...... surfaces than on step or kink sites. Side products, CO and benzoate species, appearing during the reaction reveal that the geometric suppression of undesired reactions does not occur to the same extent on Pt-based catalysts as on Pd, suggesting that decarbonylation of the produced aldehyde on Pt may occur...

  17. Hydrogen-Mediated Electron Doping of Gold Clusters As Revealed by In Situ X-ray and UV-vis Absorption Spectroscopy.

    Science.gov (United States)

    Ishida, Ryo; Hayashi, Shun; Yamazoe, Seiji; Kato, Kazuo; Tsukuda, Tatsuya

    2017-06-01

    We previously reported that small (∼1.2 nm) gold clusters stabilized by poly(N-vinyl-2-pyrrolidone) (Au:PVP) exhibited a localized surface plasmon resonance (LSPR) band at ∼520 nm in the presence of NaBH4. To reveal the mechanism of this phenomenon, the electronic structure of Au:PVP during the reaction with NaBH4 in air was examined by means of in situ X-ray absorption spectroscopy at Au L3-edge and UV-vis spectroscopy. These measurements indicated that the appearance of the LSPR band is not associated with the growth in size but is ascribed to electron doping to the Au sp band by the adsorbed H atoms.

  18. Solvent exchange in a metal–organic framework single crystal monitored by dynamic in situ X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Cox, Jordan M.; Walton, Ian M.; Bateman, Gage; Benson, Cassidy A.; Mitchell, Travis; Sylvester, Eric; Chen, Yu-Sheng; Benedict, Jason B. (UC); (Buffalo)

    2017-07-25

    Understanding the processes by which porous solid-state materials adsorb and release guest molecules would represent a significant step towards developing rational design principles for functional porous materials. To elucidate the process of liquid exchange in these materials, dynamicin situX-ray diffraction techniques have been developed which utilize liquid-phase chemical stimuli. Using these time-resolved diffraction techniques, the ethanol solvation process in a flexible metal–organic framework [Co(AIP)(bpy)0.5(H2O)]·2H2O was examined. The measurements provide important insight into the nature of the chemical transformation in this system including the presence of a previously unreported neat ethanol solvate structure.

  19. In situ measurement of electromigration-induced transient stress in Pb-free Sn-Cu solder joints by synchrotron radiation based X-ray polychromatic microdiffraction

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Kai; Tamura, Nobumichi; Kunz, Martin; Tu, King-Ning; Lai, Yi-Shao

    2009-05-15

    Electromigration-induced hydrostatic elastic stress in Pb-free SnCu solder joints was studied by in situ synchrotron X-ray white beam microdiffraction. The elastic stresses in two different grains with similar crystallographic orientation, one located at the anode end and the other at the cathode end, were analyzed based on the elastic anisotropy of the {beta}-Sn crystal structure. The stress in the grain at the cathode end remained constant except for temperature fluctuations, while the compressive stress in the grain at the anode end was built-up as a function of time during electromigration until a steady state was reached. The measured compressive stress gradient between the cathode and the anode is much larger than what is needed to initiate Sn whisker growth. The effective charge number of {beta}-Sn derived from the electromigration data is in good agreement with the calculated value.

  20. In situ measurement of electromigration-induced transient stress in Pb-free Sn-Cu solder joints by synchrotron radiation based X-ray polychromatic microdiffraction

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Kai; Tamura, Nobumichi; Kunz, Martin; Tu, King-Ning; Lai, Yi-Shao

    2009-12-01

    Electromigration-induced hydrostatic elastic stress in Pb-free SnCu solder joints was studied by in situ synchrotron X-ray white beam microdiffraction. The elastic stresses in two different grains with similar crystallographic orientation, one located at the anode end and the other at the cathode end, were analyzed based on the elastic anisotropy of the Beta-Sn crystal structure. The stress in the grain at the cathode end remained constant except for temperature fluctuations, while the compressive stress in the grain at the anode end was built-up as a function of time during electromigration until a steady state was reached. The measured compressive stress gradient between the cathode and the anode is much larger than what is needed to initiate Sn whisker growth. The effective charge number of Beta-Sn derived from the electromigration data is in good agreement with the calculated value.

  1. In Situ X-ray Diffraction Studies on the De/rehydrogenation Processes of the K$_{2}$[Zn(NH$_{2}$)$_{4}$]-8LiH System

    OpenAIRE

    Cao, Hujun; Pistidda, Claudio; Niewa, Rainer; Ping, Chen; Klassen, Thomas; Dornheim, Martin; Richter, Theresia M. M.; Santoru, Antonio; Milanese, Chiara; Garroni, Sebastiano; Bednarcik, Jozef; Chaudhary, Anna-Lisa; Gizer, Gökhan; Liermann, Hanns-Peter

    2017-01-01

    In this work, the hydrogen absorption and desorption properties of the system K$_2$[Zn(NH$_2$)$_4$]-8LiH are investigated in detail via in situ synchrotron radiation powder X-ray diffraction (SR-PXD), Fourier transform infrared spectroscopy (FT-IR), and volumetric methods. Upon milling, K$_2$[Zn(NH$_2$)$_4$] and 8LiH react to form 4LiNH$_2$-4LiH-K$_2$ZnH$_4$, and then 4LiNH$_2$-4LiH-K$_2$ZnH$_2$ releases H$_2$ in multiple steps. The final products of the desorption reaction are KH, LiZn$_{13}...

  2. Micro-X-Ray Fluorescence and the Old Masters . Non-destructive in situ characterisation of the varnish of historical Low Countries stringed musical instruments

    Science.gov (United States)

    Caruso, Francesco; Saverwyns, Steven; Van Bos, Marina; Chillura Martino, Delia Francesca; Ceulemans, Anne-Emmanuelle; de Valck, Joris; Caponetti, Eugenio

    2012-04-01

    In recent years, a growing attention has been addressed to the study of the varnish from early musical instruments. The surfaces of nine historical Low Countries stringed musical instruments from the collection of the "Musical Instruments Museum" in Brussels were non-destructively analysed by in situ micro-X-Ray Fluorescence spectroscopy in dispersive mode. It was found that the main pigments dispersed in the varnish were iron- and manganese-based earths. The presence of a chromium-based pigment in one of the analysed instruments makes it appreciably different from the others. Other findings were discussed and compared with previously published results. The collection of such information plays a relevant role in the recovery of the applied formulations that is an interesting issue for conservators, luthiers and art historians.

  3. Dynamics of mineral crystallization from precipitated slab-derived fluid phase: first in situ synchrotron X-ray measurements

    Science.gov (United States)

    Malaspina, Nadia; Alvaro, Matteo; Campione, Marcello; Wilhelm, Heribert; Nestola, Fabrizio

    2015-03-01

    Remnants of the fluid phase at ultrahigh pressure (UHP) in subduction environments may be preserved as primary multiphase inclusions in UHP minerals. The mode of crystallization of daughter minerals during precipitation within the inclusion and/or the mechanism of interaction between the fluid at supercritical conditions and the host mineral are still poorly understood from a crystallographic point of view. A case study is represented by garnet-orthopyroxenites from the Maowu Ultramafic Complex (China) deriving from harzburgite precursors metasomatized at ~4 GPa, 750 °C by a silica- and incompatible trace element-rich fluid phase. This metasomatism produced poikilitic orthopyroxene and inclusion-rich garnet porphyroblasts. Solid multiphase primary inclusions in garnet display a size within a few tens of micrometres and negative crystal shapes. Infilling minerals (spinel: 10-20 vol%; amphibole, chlorite, talc, mica: 80-90 vol%) occur with constant volume proportions and derive from trapped solute-rich aqueous fluids. To constrain the possible mode of precipitation of daughter minerals, we performed for the first time a single-crystal X-ray diffraction experiment by synchrotron radiation at Diamond Light Source. In combination with electron probe microanalyses, this measurement allowed the unique identification of each mineral phase and reciprocal orientations. We demonstrated the epitaxial relationship between spinel and garnet and between some hydrous minerals. Such information is discussed in relation to the physico-chemical aspects of nucleation and growth, shedding light on the mode of mineral crystallization from a fluid phase trapped at supercritical conditions.

  4. In situ X-ray data collection and structure phasing of protein crystals at Structural Biology Center 19-ID.

    Science.gov (United States)

    Michalska, Karolina; Tan, Kemin; Chang, Changsoo; Li, Hui; Hatzos-Skintges, Catherine; Molitsky, Michael; Alkire, Randy; Joachimiak, Andrzej

    2015-11-01

    A prototype of a 96-well plate scanner for in situ data collection has been developed at the Structural Biology Center (SBC) beamline 19-ID, located at the Advanced Photon Source, USA. The applicability of this instrument for protein crystal diffraction screening and data collection at ambient temperature has been demonstrated. Several different protein crystals, including selenium-labeled, were used for data collection and successful SAD phasing. Without the common procedure of crystal handling and subsequent cryo-cooling for data collection at T = 100 K, crystals in a crystallization buffer show remarkably low mosaicity (Data presented here show that cryo-cooling can cause some unexpected structural changes. Based on the results of this study, the integration of the plate scanner into the 19-ID end-station with automated controls is being prepared. With improvement of hardware and software, in situ data collection will become available for the SBC user program including remote access.

  5. Development of a Laboratory Micron-Resolution X-ray Microprobe to Map Mineralogy and Trace Elements at PPM Sensitivity for Digital Rock, Magma, and Mining Applications

    Science.gov (United States)

    Yun, W.; Lewis, S.; Stripe, B.; Chen, S.; Reynolds, D.; Spink, I.; Lyon, A.

    2015-12-01

    We are developing a patent-pending x-ray microprobe with substantially unprecedented performance attributes: 2 cm, narrow spectral bandwidth, and large x-ray flux. The outstanding performance is enabled by: (1) a revolutionary new type of high flux x-ray source designed to be >10X brighter than the brightest rotating anode x-ray source available; (2) an axially symmetric x-ray mirror lens with large solid angle collection and high focusing efficiency; and (3) a detector configuration that enables the collection of 10X more x-rays than current microXRF designs. The sensitivity will be ppm-scale, far surpassing charged particle analysis (e.g. EPMA and SEM-EDS), and >1000X throughput over the leading micro-XRFs. Despite the introduction of a number of laboratory microXRF systems in the past decade, the state-of-the-art has been limited primarily by low resolution (~30 μm) and low throughput. This is substantially attributable to a combination of low x-ray source brightness and poor performance x-ray optics. Here we present our initial results in removing the x-ray source bottleneck, in which we use a novel x-ray source using Fine Anode Array Source Technology (Sigray FAAST™). When coupled with our proprietary high efficiency x-ray mirror lens, the throughput achieved is comparable to that of many synchrotron microXRF beamlines. Potential applications of the x-ray microprobe include high throughput mapping of mineralogy at high resolution, including trace elements, such as rare earth metals, and deposits (e.g. siderite, clays), with ppm sensitivity, providing information for properties such as permeability and elastic/mechanical properties, and to provide compositional information for Digital Rock. Additional applications include those in which the limited penetration of electrons limits achieving adequate statistics, such as determining the concentration of precious minerals in mine tailings.

  6. Calibration of a High Resolution X-ray Spectrometer for High-Energy-Density Plasmas on NIF

    Science.gov (United States)

    Kraus, B.; Gao, L.; Hill, K. W.; Bitter, M.; Efthimion, P.; Schneider, M. B.; Chen, H.; Ayers, J.; Beiersdorfer, P.; Liedahl, D.; Macphee, A. G.; Thorn, D. B.; Bettencourt, R.; Kauffman, R.; Le, H.; Nelson, D.

    2017-10-01

    A high-resolution, DIM-based (Diagnostic Instrument Manipulator) x-ray crystal spectrometer has been calibrated for and deployed at the National Ignition Facility (NIF) to diagnose plasma conditions and mix in ignition capsules near stagnation times. Two conical crystals in the Hall geometry focus rays from the Kr He- α, Ly- α, and He- β complexes onto a streak camera for time-resolved spectra, in order to measure electron density and temperature by observing Stark broadening and relative intensities of dielectronic satellites. Signals from these two crystals are correlated with a third crystal that time-integrates the intervening energy range. The spectrometer has been absolutely calibrated using a microfocus x-ray source, an array of CCD and single-photon-counting detectors, and K- and L-absorption edge filters. Measurements of the integrated reflectivity, energy range, and energy resolution for each crystal will be presented. The implications of the calibration on signal levels from NIF implosions and x-ray filter choices will be discussed. This work was performed under the auspices of the U.S. DoE by Princeton Plasma Physics Laboratory under contract DE-AC02-09CH11466 and by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.

  7. A High Position Resolution X-ray Detector: an Edge on Illuminated Capillary Plate Combined with a Gas Amplification Structure

    CERN Document Server

    Iacobaeus, C.; Lund-Jensen, B.; Ostling, J.; Pavlopoulos, P.; Peskov, V.; Tokanai, F.

    2006-01-01

    We have developed and successfully tested a prototype of a new type of high position resolution hybrid X-ray detector. It contains a thin wall lead glass capillary plate converter of X-rays combined with a microgap parallel-plate avalanche chamber filled with gas at 1 atm. The operation of these converters was studied in a wide range of X-ray energies (from 6 to 60 keV) at incident angles varying from 0-90 degree. The detection efficiency, depending on the geometry, photon energy, incident angle and the mode of operation, was between 5-30 percent in a single step mode and up to 50 percent in a multi-layered combination. Depending on the capillary geometry, the position resolution achieved was between 0.050-0.250 mm in digital form and was practically independent of the photon energy or gas mixture. The usual lead glass capillary plates operated without noticeable charging up effects at counting rates of 50 Hz/mm2, and hydrogen treated capillaries up to 10E5 Hz/mm2. The developed detector may open new possibil...

  8. High-resolution monochromator using a high-efficiency single-mode x-ray resonator at Laue incidence.

    Science.gov (United States)

    Wu, Yu-Hsin; Tsai, Yi-Wei; Liu, Wen-Chung; Chih, Yu-Chieh; Chang, Shih-Lin

    2017-07-01

    We report a high-resolution and high-efficiency monochromator with energy resolution, ΔE/E∼2.08*10-7, utilizing a hard x-ray single-mode Fabry-Perot (FP) resonator at Laue incidence at 14.4388 keV. Instead of using multiple-crystal diffraction via several asymmetric-cut crystals, a 3 meV single-peak is generated from the interference of a Si-made two-plate cavity with a thickness of 70 μm and a gap of 45 μm, where a (0-40) Laue reflection is used to excite the backreflection (12 4 0) for the enhancement of the FP efficiency. Due to the large angular acceptance of (12 4 0) and (0-40), the energy tunability can be achieved by changing the incident angle into the resonator. The application of x-ray resonators at Laue incidence as a monochromator can be further implemented to x-ray optics.

  9. High-Resolution X-Ray Spectroscopy of the Galactic Supernova Remnant Puppis A with the XMM-Newton RGS

    Science.gov (United States)

    Katsuda, Satoru; Tsunemi, Hiroshi; Mori, Koji; Uchida, Hiroyuki; Petre, Robert; Yamada, Shinya; Akamatsu, Hiroki; Konami, Saori; Tamagawa, Toru

    2012-01-01

    We present high-resolution X-ray spectra of cloud-shock interaction regions in the eastern and northern rims of the Galactic supernova remnant Puppis A, using the Reflection Grating Spectrometer onboard the XMM-Newton satellite. A number of emission lines including K(alpha) triplets of He-like N, O , and Ne are clearly resolved for the first time. Intensity ratios of forbidden to resonance lines in the triplets are found to be higher than predictions by thermal emission models having plausible plasma parameters. The anomalous line ratios cannot be reproduced by effects of resonance scattering, recombination, or inner-shell ionization processes, but could be explained by charge-exchange emission that should arise at interfaces between the cold/warm clouds and the hot plasma. Our observations thus provide observational support for charge-exchange X-ray emission in supernova remnants.

  10. High spatial resolution grain orientation and strain mapping in thin films using polychromatic submicron X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, N.; MacDowell, A.A.; Celestre, R.S.; Padmore, H.A.; Valek, B.C.; Bravman, J.C.; Spolenak, R.; Brown, W.L.; Marieb, T.; Fujimoto, H.; Batterman, B.W.; Patel, J.R.

    2002-03-26

    The availability of high brilliance synchrotron sources, coupled with recent progress in achromatic focusing optics and large area 2D detector technology, have allowed us to develop an X-ray synchrotron technique capable of mapping orientation and strain/stress in polycrystalline thin films with submicron spatial resolution. To demonstrate the capabilities of this instrument, we have employed it to study the microstructure of aluminum thin film structures at the granular and subgranular level. Owing to the relatively low absorption of X-rays in materials, this technique can be used to study passivated samples, an important advantage over most electron probes given the very different mechanical behavior of buried and unpassivated materials.

  11. High Spatial Resolution Grain Orientation and Strain Mapping in Thin Films using Polychromatic Submicron X-ray Diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Jamshed R.

    2002-06-14

    The availability of high brilliance synchrotron sources, coupled with recent progress in achromatic focusing optics and large area 2D detector technology, have allowed us to develop a X-ray synchrotron technique capable of mapping orientation and strain/stress in polycrystalline thin films with submicron spatial resolution. To demonstrate the capabilities of this instrument, we have employed it to study the microstructure of aluminum thin film structures at the granular and subgranular level. Owing to the relatively low absorption of X-rays in materials, this technique can be used to study passivated samples, an important advantage over most electron probes given the very different mechanical behavior of buried and unpassivated materials.

  12. Electrochemical (de)lithiation of silver ferrite and composites: mechanistic insights from ex situ, in situ, and operando X-ray techniques.

    Science.gov (United States)

    Durham, Jessica L; Brady, Alexander B; Cama, Christina A; Bock, David C; Pelliccione, Christopher J; Zhang, Qing; Ge, Mingyuan; Li, Yue Ru; Zhang, Yiman; Yan, Hanfei; Huang, Xiaojing; Chu, Yong; Takeuchi, Esther S; Takeuchi, Kenneth J; Marschilok, Amy C

    2017-08-23

    The structure of pristine AgFeO2 and phase makeup of Ag0.2FeO1.6 (a one-pot composite comprised of nanocrystalline stoichiometric AgFeO2 and amorphous γ-Fe2O3 phases) was investigated using synchrotron X-ray diffraction. A new stacking-fault model was proposed for AgFeO2 powder synthesized using the co-precipitation method. The lithiation/de-lithiation mechanisms of silver ferrite, AgFeO2 and Ag0.2FeO1.6 were investigated using ex situ, in situ, and operando characterization techniques. An amorphous γ-Fe2O3 component in the Ag0.2FeO1.6 sample is quantified. Operando XRD of electrochemically reduced AgFeO2 and Ag0.2FeO1.6 composites demonstrated differences in the structural evolution of the nanocrystalline AgFeO2 component. As complimentary techniques to XRD, ex situ X-ray Absorption Spectroscopy (XAS) provided insight into the short-range structure of the (de)lithiated nanocrystalline electrodes, and a novel in situ high energy X-ray fluorescence nanoprobe (HXN) mapping measurement was applied to spatially resolve the progression of discharge. Based on the results, a redox mechanism is proposed where the full reduction of Ag(+) to Ag(0) and partial reduction of Fe(3+) to Fe(2+) occur on reduction to 1.0 V, resulting in a Li1+yFe(III)Fe(II)yO2 phase. The Li1+yFe(III)Fe(II)yO2 phase can then reversibly cycle between Fe(3+) and Fe(2+) oxidation states, permitting good capacity retention over 50 cycles. In the Ag0.2FeO1.6 composite, a substantial amorphous γ-Fe2O3 component is observed which discharges to rock salt LiFe2O3 and Fe(0) metal phase in the 3.5-1.0 V voltage range (in parallel with the AgFeO2 mechanism), and reversibly reoxidizes to a nanocrystalline iron oxide phase.

  13. High-resolution x-ray CT screening of mutant mouse models

    Science.gov (United States)

    Paulus, Michael J.; Gleason, Shaun S.; Sari-Sarraf, Hamed; Johnson, Dabney K.; Foltz, Charmaine J.; Austin, Derek W.; Easterly, M. E.; Michaud, Edward J.; Dhar, Madhu S.; Hunsicker, Patricia R.; Wall, J. W.; Schell, M.

    2000-04-01

    A dedicated small animal x-ray computed tomography system has been developed to screen mutagenized mice for anatomical phenotypes. The key components of the data acquisition instrumentation are described along with the system performance parameters. Image reconstruction, visualization and segmentation software algorithms are described. Two contrast media regimens are described and representative studies of mice with adipose, soft and skeletal tissue abnormalities are presented.

  14. High Resolution X-ray Characterization Of Mosaic Crystals For Hard X- And Gamma-ray Astronomy

    Science.gov (United States)

    Marchini, L.; Ferrari, C.; Buffagni, E.; Zappettini, A.

    2011-09-01

    For hard X-ray astronomy in the 70-1000 keV energy range Laue lenses have been proposed where the focusing elements are made of single mosaic crystals, in order to increase the diffraction efficiency with respect to perfect crystals. Suitable crystals to be used for such application should have a sufficient density to increase the diffraction efficiency and a mosaicity ranging between 30 arcsec and 1-2 arcmin, depending on the lens focusing distance and resolution. In the past germanium and copper crystals, often employed as monochromators for neutrons, have been considered. In this work we propose several crystalline materials of different degree of crystal perfection such as GaAs, Cu, CdTe, and CdZnTe as possible mosaic crystals for hard X-ray astronomy. They were analyzed by high resolution X-ray diffraction at 8 keV and by diffraction at energies up to 700 keV at synchrotron. It was found that: CdTe and CdZnTe crystals exhibit low angle grain boundaries preventing the formation of a single diffracted X-ray beam; Cu crystals exhibit mosaicity of the order of several arcmin, however a deep etching is needed to remove the cutting damage; GaAs crystals grown by LEC method show mosaicity between 15 and 30 arcsec and good diffraction efficiency up to energies of 700 keV. Annealing and surface damage were considered as possible methods to increase the GaAs crystal mosaicity.

  15. Low-cost and high-resolution x-ray lithography utilizing a lift-off sputtered lead film mask on a Mylar substrate

    Science.gov (United States)

    Wisitsoraat, A.; Mongpraneet, S.; Phatthanakun, R.; Chomnawang, N.; Phokharatkul, D.; Patthanasettakul, V.; Tuantranont, A.

    2010-07-01

    In this work, a low-cost and high-resolution x-ray micromask is developed by sputtered lead film on a Mylar sheet substrate with the lift-off process and the x-ray mask is experimented for patterning SU-8 negative photoresist on a glass substrate. Sputtering is selected for Pb thick film deposition due to its high sputtering yield. The Pb mask is used for x-ray lithography of SU-8 photoresist with 5 µm closely spaced square array patterns, designed for electrowetting electrodes on a microfluidic chip. For 140 µm thick SU-8 photoresist, a Pb film thickness of around 10 µm was used to block x-rays with 95% x-ray image contrast at a critical dose of 4200 mJ cm-3. A high aspect ratio of 26.5 of SU8 microstructure with 5 µm lateral resolution has been demonstrated by the developed low-cost Pb-based x-ray mask. In addition, a steep sidewall angle of nearly 90° for SU-8 structure is confirmed. The results demonstrate that the Pb-based x-ray mask offers high-resolution x-ray lithography at a very low cost. Therefore, it is highly promising for commercial applications.

  16. Microstructure evolution in copper under severe plastic deformation detected by in situ X-ray diffraction using monochromatic synchrotron light

    Energy Technology Data Exchange (ETDEWEB)

    Kilmametov, A.R. [Institute of Physics of Advanced Materials, Ufa State Aviation Technical University, K. Marx St. 12, Ufa 450000 (Russian Federation); Vaughan, G. [European Synchrotron Radiation Facilities ESRF, Grenoble (France); Yavari, A.R.; LeMoulec, A. [Euronano, LTPCM-CNRS umr 5614, Institut National Polytechnique de Grenoble, 38402 St-Martin-d' Heres (France); Botta, W.J. [Depto. Engenharia de Materiais, Universidade Federal de Sao Carlos (UFSCar), SP, Brazil. 3UNIVA, Av. Shishima Hifumi, 2911 Sao Jose dos Campos, SP (Brazil); Valiev, R.Z. [Institute of Physics of Advanced Materials, Ufa State Aviation Technical University, K. Marx St. 12, Ufa 450000 (Russian Federation)], E-mail: rzvaliev@mail.rb.ru

    2009-03-15

    Microstructure evolution in severely deformed Cu has been investigated using high-energy synchrotron light during in situ high-pressure torsion (HPT) at room temperature. Relative changes in broadening of Bragg peaks and crystal lattice expansion were studied in the loading-unloading regime of torsion straining. Experimental results revealed fast relaxation (on the order of hundred of seconds) that occurred due to annihilation of HPT-induced crystal lattice defects, which were generated directly during deformation. The kinetics of relaxation is probably diffusion-controlled; therefore, the enhanced diffusivity can be explained by extremely high excess vacancy concentration, which is usually achieved at thermal equilibrium near the melting point.

  17. A directly converting high-resolution intra-oral X-ray imaging sensor

    CERN Document Server

    Spartiotis, K; Schulman, T; Puhakka, K; Muukkonen, K

    2003-01-01

    A digital intra-oral X-ray imaging sensor with an active area of 3.6x2.9 cm sup 2 and consisting of six charge-integrating CMOS signal readout circuits bump bonded to one high-resistivity silicon pixel detector has been developed and tested. The pixel size is 35 mu m. The X-rays entering the sensor window are converted directly to electrical charge in the depleted detector material yielding minimum lateral signal spread and maximum image sharpness. The signal charge is collected on the gates of the input field effect transistors of the CMOS signal readout circuits. The analog signal readout is performed by multiplexing in the current mode independent of the signal charge collection enabling multiple readout cycles with negligible dead time and thus imaging with wide dynamic range. Since no intermediate conversion material of X-rays to visible light is needed, the sensor structure is very compact. The analog image signals are guided from the sensor output through a thin cable to signal processing, AD conversio...

  18. Imaging outside the box: Resolution enhancement in X-ray coherent diffraction imaging by extrapolation of diffraction patterns

    CERN Document Server

    Latychevskaia, Tatiana; Zontone, Federico; Fink, Hans-Werner

    2015-01-01

    We demonstrate enhancement in resolution of a noncrystalline object reconstructed from an experimental X-ray diffraction pattern by extrapolating the measured diffraction intensities beyond the detector area. The experimental record contains about 10% missing information, including the pixels in the center of the diffraction pattern. The extrapolation is done by applying an iterative routine. The optimal parameters for implementing the iterative routine, including initial padding distribution and an object support, are studied. Extrapolation results in resolution enhancement and better matching between the recovered and experimental amplitudes in the Fourier domain. The limits of the extrapolation procedure are discussed.

  19. Development of a low-noise readout ASIC for Silicon Drift Detectors in high energy resolution X-ray spectrometry

    Science.gov (United States)

    Atkin, E.; Levin, V.; Malankin, E.; Shumikhin, V.

    2017-03-01

    ASIC with a low-noise readout channel for Silicon Drift Detectors in high energy resolution X-ray spectrometry was designed and prototyped in the AMS 350 nm CMOS process via Europractice as a miniASIC. For the analog readout channel tests there was used the detector module SDD-10-130-PTW LTplus-ic (PNDetector GmbH). The measured energy resolution of this module with the designed readout channel: 200 eV (FWHM) at 55Fe, -16 °C, 1 kcps and a peaking time of 8 μs.

  20. Objectives and Layout of a High-Resolution X-ray Imaging Crystal Spectrometer for the Large Helical Device (LHD)

    Energy Technology Data Exchange (ETDEWEB)

    Bitter, M; Gates, D; Monticello, D; Neilson, H; Reiman, A; Roquemore, A L; Morita, S; Goto, M; Yamada, H

    2010-07-29

    A high-resolution X-ray imaging crystal spectrometer, whose concept was tested on NSTX and Alcator C-Mod, is being designed for LHD. This instrument will record spatially resolved spectra of helium-like Ar16+ and provide ion temperature profiles with spatial and temporal resolutions of < 2 cm and ≥ 10 ms. The stellarator equilibrium reconstruction codes, STELLOPT and PIES, will be used for the tomographic inversion of the spectral data. The spectrometer layout and instrumental features are largely determined by the magnetic field structure of LHD.

  1. Objectives and layout of a high-resolution x-ray imaging crystal spectrometer for the large helical device

    Energy Technology Data Exchange (ETDEWEB)

    Bitter, M.; Hill, K.; Gates, D.; Monticello, D.; Neilson, H.; Reiman, A.; Roquemore, A. L. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Morita, S.; Goto, M.; Yamada, H. [National Institute for Fusion Science, Toki 509-5292, Gifu (Japan); Rice, J. E. [Plasma Fusion Center, MIT, Cambridge, Massachusetts 02139-4307 (United States)

    2010-10-15

    A high-resolution x-ray imaging crystal spectrometer, whose concept was tested on NSTX and Alcator C-Mod, is being designed for the large helical device (LHD). This instrument will record spatially resolved spectra of helium-like Ar{sup 16+} and will provide ion temperature profiles with spatial and temporal resolutions of <2 cm and {>=}10 ms, respectively. The spectrometer layout and instrumental features are largely determined by the magnetic field structure of LHD. The stellarator equilibrium reconstruction codes, STELLOPT and PIES, will be used for the tomographic inversion of the spectral data.

  2. In Situ Synchrotron X-Ray Diffraction Characterization of the Synthesis of Graphene Oxide and Reduced Graphene Oxide

    DEFF Research Database (Denmark)

    Storm, Mie Møller; Johnsen, Rune E.; Norby, Poul

    2015-01-01

    by placing a mixture of permanganate and sulphuric acid in a capillary next to graphite. The synthesis was then initiated by gently pushing the fluid mixture into the powder with N2 gas. The in situ XRD of the GO synthesis showed how the oxidation reaction proceeds in three separate stages, as seen in Figure...... the third stage. The in situ XRD results of the thermal reduction of GO to rGO showed a dependence on the temperature ramping and addition of diamond powder. Syntheses were measured at 1, 5, 10, 20 and 50 °/min temperature ramps. The syntheses were performed in a capillary with GO being heated by a hot air...... blower under constant N2 flow. Three stages were observed for the reduction process; a GO stage, an amorphous stage and a rGO stage. The change in stage was defined from the changing of the d-value of the initial 001 GO peak, see Figure 2. The initial GO diffraction pattern changed during the heating...

  3. In-situ observation of zinc electrodeposition on iron single crystal using synchrotron radiation x-ray diffraction

    CERN Document Server

    Kurosaki, M; Kawasaki, K

    2002-01-01

    Continuous in-situ observations of changes in crystal orientation during zinc electrodeposition were performed using novel electrolysis cell that secure uniform current distribution through thin electrolyte layer. It has been clarified that electrodeposition can be separated into the two regions. First one is epitaxial deposition region in which orientations of deposited zinc and substrate keep following relations; Fe(100)//Zn(10 centre dot 1) Fe(110)//Zn(00 centre dot 2), Fe(111)//Zn(00 centre dot 2). This region continued until the thickness of the deposit became about 0.5 mu m. Second one is bulk deposition region, in which the overpotential settled by electrolysis conditions determines the crystal orientation. Low overpotential leads to promoting Zn(00 centre dot 2) deposition, and higher overpotential Zn(10 centre dot 1) and Zn(11 centre dot 0). Influences of the current density changes on the crystal orientation were also clarified. The use of an adsorbing organic additive influences both on the epitaxi...

  4. Resonant x-ray emission spectroscopy of liquid water: novel instrumentation, high resolution, and the"map" approach

    Energy Technology Data Exchange (ETDEWEB)

    Weinhardt, L.; Fuchs, O.; Blum, M.; B& #228; r, M.; Weigand, M.; Denlinger, J.D.; Zubavichus, Y.; Zharnikov, M.; Grunze, M.; Heske, C.; Umbach, E.

    2008-06-17

    Techniques to study the electronic structure of liquids are rare. Most recently, resonant x-ray emission spectroscopy (XES) has been shown to be an extremely versatile spectroscopy to study both occupied and unoccupied electronic states for liquids in thermodynamic equilibrium. However, XES requires high-brilliance soft x-ray synchrotron radiation and poses significant technical challenges to maintain a liquid sample in an ultra-high vacuum environment. Our group has therefore developed and constructed a novel experimental setup for the study of liquids, with the long-term goal of investigating the electronic structure of biological systems in aqueous environments. We have developed a flow-through liquid cell in which the liquid is separated from vacuum by a thin Si3N4 or SiC window and which allows a precise control of temperature. This approach has significant advantages compared to static liquids cells used in the past. Furthermore, we have designed a dedicated high-transmission, high-resolution soft x-ray spectrometer. The high transmission makes it possible to measure complete resonant XES"maps" in less than an hour, giving unprecedented detailed insight into the electronic structure of the investigated sample. Using this new equipment we have investigated the electronic structure of liquid water. Furthermore, our XES spectra and maps give information about ultra-fast dissociation on the timescale of the O 1s core hole lifetime, which is strongly affected by the initial state hydrogen bonding configuration.

  5. Probing evaporation induced assembly across a drying colloidal droplet using in situ small-angle X-ray scattering at the synchrotron source.

    Science.gov (United States)

    Sen, D; Bahadur, J; Mazumder, S; Santoro, G; Yu, S; Roth, S V

    2014-03-14

    Colloidal particles in a tiny drying droplet are forced to assemble due to attractive capillary forces. Jamming of the particles throughout the droplet remains either isotropic or anisotropic depending upon the drying kinetics and the physicochemical environment. In this work, we explore the dynamical evolution of such an assembly process across a single evaporative droplet by in situ scanning small-angle scattering using a micro-focused X-ray beam at the synchrotron source. A methodology has been elucidated to differentiate quantitatively between the isotropic and the anisotropic jamming process. Switching of jamming behaviour depending on the initial particle volume fraction in the droplet has been demonstrated. Three distinct stages of assembly, associated with droplet shrinkage, have been revealed even during isotropic jamming. This is in contrast to the drying of a pure liquid droplet under diffusion limited evaporation. It has been established that such in situ scattering measurements can also be used to estimate the temporal evolutions of the viscosity of a drying suspension as well as the diffusivity of nanoparticles in a droplet.

  6. In-situ energy dispersive x-ray diffraction study of the growth of CuO nanowires by annealing method

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Himanshu; Ganguli, Tapas; Deb, S. K. [Indus Synchrotrons Utilization Division, Raja Ramanna Centre for Advanced technology, Indore-452013 (India); Sant, Tushar; Poswal, H. K.; Sharma, Surinder M. [High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai (India)

    2013-10-14

    The in-situ growth of CuO nanowires was studied by Energy Dispersive X-ray Diffraction (EDXRD) to observe the mechanism of growth. The study was carried out for comparison at two temperatures—at 500 °C, the optimum temperature of the nanowires growth, and at 300 °C just below the temperature range of the growth. The in situ observation revealed the successive oxidation of Cu foil to Cu{sub 2}O layer and finally to CuO layer. Further analysis showed the presence of a compressive stress in CuO layer due to interface at CuO and Cu{sub 2}O layers. The compressive stress was found to increase with the growth of the nanowires at 500 °C while it relaxed with the growth of CuO layer at 300 °C. The present results do not support the existing model of stress relaxation induced growth of nanowires. Based on the detailed Transmission Electron Microscope, Scanning Electron Microscope, and EDXRD results, a microstructure based growth model has been suggested.

  7. Theory-driven design of high-valence metal sites for water oxidation confirmed using in situ soft X-ray absorption

    Science.gov (United States)

    Zheng, Xueli; Zhang, Bo; de Luna, Phil; Liang, Yufeng; Comin, Riccardo; Voznyy, Oleksandr; Han, Lili; García de Arquer, F. Pelayo; Liu, Min; Dinh, Cao Thang; Regier, Tom; Dynes, James J.; He, Sisi; Xin, Huolin L.; Peng, Huisheng; Prendergast, David; Du, Xiwen; Sargent, Edward H.

    2018-02-01

    The efficiency with which renewable fuels and feedstocks are synthesized from electrical sources is limited at present by the sluggish oxygen evolution reaction (OER) in pH-neutral media. We took the view that generating transition-metal sites with high valence at low applied bias should improve the activity of neutral OER catalysts. Here, using density functional theory, we find that the formation energy of desired Ni4+ sites is systematically modulated by incorporating judicious combinations of Co, Fe and non-metal P. We therefore synthesized NiCoFeP oxyhydroxides and probed their oxidation kinetics with in situ soft X-ray absorption spectroscopy (sXAS). In situ sXAS studies of neutral-pH OER catalysts indicate ready promotion of Ni4+ under low overpotential conditions. The NiCoFeP catalyst outperforms IrO2 and retains its performance following 100 h of operation. We showcase NiCoFeP in a membrane-free CO2 electroreduction system that achieves a 1.99 V cell voltage at 10 mA cm-2, reducing CO2 into CO and oxidizing H2O to O2 with a 64% electricity-to-chemical-fuel efficiency.

  8. Intrinsic stress in ZrN thin films: Evaluation of grain boundary contribution from in situ wafer curvature and ex situ x-ray diffraction techniques

    Energy Technology Data Exchange (ETDEWEB)

    Koutsokeras, L. E. [Departement Physique et Mecanique des Materiaux, Institut Pprime, CNRS-Universite de Poitiers-ENSMA, UPR 3346, SP2MI, Teleport 2, Bd M et P Curie, F 86962 Chasseneuil-Futuroscope (France); Department of Materials Science and Engineering, University of Ioannina, Ioannina 45110 (Greece); Abadias, G. [Departement Physique et Mecanique des Materiaux, Institut Pprime, CNRS-Universite de Poitiers-ENSMA, UPR 3346, SP2MI, Teleport 2, Bd M et P Curie, F 86962 Chasseneuil-Futuroscope (France)

    2012-05-01

    Low-mobility materials, like transition metal nitrides, usually undergo large residual stress when sputter-deposited as thin films. While the origin of stress development has been an active area of research for high-mobility materials, atomistic processes are less understood for low-mobility systems. In the present work, the contribution of grain boundary to intrinsic stress in reactively magnetron-sputtered ZrN films is evaluated by combining in situ wafer curvature measurements, providing information on the overall biaxial stress, and ex situ x-ray diffraction, giving information on elastic strain (and related stress) inside crystallites. The thermal stress contribution was also determined from the in situ stress evolution during cooling down, after deposition was stopped. The stress data are correlated with variations in film microstructure and growth energetics, in the 0.13-0.42 Pa working pressure range investigated, and discussed based on existing stress models. At low pressure (high energetic bombardment conditions), a large compressive stress is observed due to atomic peening, which induces defects inside crystallites but also promotes incorporation of excess atoms in the grain boundary. Above 0.3-0.4 Pa, the adatom surface mobility is reduced, leading to the build-up of tensile stress resulting from attractive forces between under-dense neighbouring column boundary and possible void formation, while crystallites can still remain under compressive stress.

  9. Support effects in catalysis studied by in-situ sum frequency generation vibrational spectroscopy and in-situ x-ray spectroscopies

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, Griffin John [Univ. of California, Berkeley, CA (United States)

    2017-04-14

    Here, kinetic measurements are paired with in-situ spectroscopic characterization tools to investigate colloidally based, supported Pt catalytic model systems in order to elucidate the mechanisms by which metal and support work in tandem to dictate activity and selectivity. The results demonstrate oxide support materials, while inactive in absence of Pt nanoparticles, possess unique active sites for the selective conversion of gas phase molecules when paired with an active metal catalyst.

  10. Combinatorial Screening of Advanced Scintillators for High Resolution X-ray Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Shifan; Tao, Dejie; Lynch, Michael; Yuan, Xianglong; Li, Yiqun

    2008-05-12

    The lack of efficient scintillators is a major problem for developing powerful x-ray detectors that are widely used in homeland security, industrial and scientific research. Intematix has developed and applied a high throughput screening process and corresponding crystal growth technology to significantly speed up the discovery process for new efficient scintillators. As a result, Intematix has invented and fabricated three new scintillators both in powder and bulk forms, which possess promising properties such as better radiation hardness and better matching for silicon diode.

  11. Direct Polishing of Full-Shell, High-Resolution X-Ray Optics

    Science.gov (United States)

    Roche, Jacqueline M.; Gubarev, Mikhail V.; Smith, W. Scott; O'Dell, Stephen L.; Kolodziejczak, Jeffrey J.; Weisskopf, Martin C.; Ramsey, Brian D.; Elsner, Ronald F.

    2014-01-01

    Future x-ray telescopes will likely require lightweight mirrors to attain the large collecting areas needed to accomplish the science objectives. Understanding and demonstrating processes now is critical to achieving sub-arcsecond performance in the future. Consequently, designs not only of the mirrors but of fixtures for supporting them during fabrication, metrology, handling, assembly, and testing must be adequately modeled and verified. To this end, MSFC is using finite-element modeling to study the effects of mounting on thin, full-shell grazing-incidence mirrors, during all processes leading to a flight.

  12. A hybrid concept (segmented plus monolithic fused silica shells) for a high-throughput and high-angular resolution x-ray mission (Lynx/X-Ray Surveyor like)

    Science.gov (United States)

    Basso, Stefano; Civitani, Marta; Pareschi, Giovanni; Parodi, Giancarlo

    2017-09-01

    Lynx is a large area and high angular resolution X-ray mission being studied by NASA to be presented to the next Decadal Survey for the implementation in the next decade. It aims to realize an X-ray telescope with the effective area similar to Athena (2 m2 at 1 keV) but with the same angular resolution of Chandra and a much larger Field Of View (up 20 arcmin x 20 arcmin). The science of X-ray Surveyor requires a large-throughput mirror assembly with sub-arcsec angular resolution. These future X-ray mirrors have a set of requirements which, collectively, represents very substantial advances over any currently in operation or planned for missions other than X-ray Surveyor. Of particular importance is achieving low mass per unit collecting area, while maintaining Chandra like angular resolution. Among the possible solutions under study, the direct polishing of both thin monolithic pseudo-cylindrical shells and segments made of fused silica are being considered as viable solutions for the implementation of the mirrors. Fused silica has very good thermomechanical parameters (including a very low CTE), making the material particularly well suited for for the production of the Lynx mirrors. It should be noted that the use of close shells is also very attractive, since the operations for the integration of the shells will be greatly simplified and the area lost due to the vignetting from the interfacing structures minimized even if the management of such big (diameter of 3 m) and thin shells have to be demonstrated. In this paper we will discuss a possible basic layout for a full shell mirror and a hybrid concept (segmented plus monolithic shells made of fused silica) as a second solution, for the Lynx/XRS telescope, discussing preliminary results in terms of optical and mechanical performance.

  13. Study of pressure induced polyamorphic transition in Ce-based ternary BMG using in situ x-ray scattering and electrical conductivity measurement

    Science.gov (United States)

    Chen, J.; Ma, C.; Tang, R.; Li, L.; Liu, H.; Gao, C.; Yang, W.

    2015-12-01

    In situ high energy x-ray scattering and electrical conductivity measurements on Ce70Al10Cu20 bulk metallic glass have been conducted using a diamond anvil cell (DAC) in conjunction with synchrotron x-rays or a laboratory electrical measurement system. The relative volumetric change (V/V0) as a function of pressure is inferred using the first sharp diffraction peak (FSDP) and the universal fractional noncubic power law[1]. The result indicates a pressure-induced polyamorphic transition at about 4 GPa in the ternary system. While the observed pressure of such polyamorphic transition in the Ce-base binary BMG is not very sensitive to its composition based on some of the previous studies[2, 3], this study indicates that such transition pressure increases considerably when a new component is added to the system. In the electrical conductivity measurement, a significant resistance change was observed in the pressure range coupled to polyamorphic transition. More discussions will be given regarding the electrical conductivity behavior of this system under high pressure to illustrate the delocalization of 4f electrons as the origin of the observed polyamorphic transition. References: 1. Zeng Q, Kono Y, Lin Y, Zeng Z, Wang J, Sinogeikin SV, Park C, Meng Y, Yang W, Mao H-K (2014) Universal fractional noncubic power law for density of metallic glasses. Physical Review Letters 112: 185502-185502 2. Zeng Q-S, Ding Y, Mao WL, Yang W, Sinogeikin SV, Shu J, Mao H-K, Jiang JZ (2010) Origin of pressure-induced polyamorphism in Ce75Al25 metallic glass. Physical Review Letters 104: 105702-105702 3. Sheng HW, Liu HZ, Cheng YQ, Wen J, Lee PL, Luo WK, Shastri SD, Ma E (2007) Polyamorphism in a metallic glass. Nature Materials DOI: 10.1038/nmat1839.

  14. Preparation and characterization of pixelated phosphor screens for high-resolution linear imaging in the vacuum ultraviolet and x-ray ranges

    Science.gov (United States)

    Rodríguez-Barquero, L.; Zurro, B.; Martin, P.; McCarthy, K. J.; Baciero, A.

    2004-10-01

    Indirect digital imaging sensors employ tailored phosphors screens to convert incident x-ray or vacuum-ultraviolet (VUV) photons to visible light quanta A convenient method to prepare pixelated phosphor screens that can be easily tailored in thickness, type, and spatial resolution is presented. The characterization and evaluation of these screens in the laboratory is addressed and their application to high-resolution VUV and x-ray cameras is discussed.

  15. In-situ curvature monitoring and X-ray diffraction study of InGaAsP/InGaP quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Sayed, Islam E. H.; Jain, Nikhil; Steiner, Myles A.; Geisz, John F.; Dippo, Pat; Kuciauskas, Darius; Colter, Peter C.

    2017-10-01

    The use of InGaAsP/InGaP quantum well structures is a promising approach for subcells in next generation multi-junction devices due to their tunable bandgap (1.50-1.80 eV) and for being aluminum-free. Despite these potentials, the accumulation of stress during the growth of these structures and high background doping in the quantum well region have previously limited the maximum number of quantum wells and barriers that can be included in the intrinsic region and the sub-bandgap external quantum efficiency to less than 30.0%. In this paper, we report on the use of in-situ curvature monitoring by multi-beam optical stress (MOS) sensor measurements during the growth of this quantum well structure to monitor the stress evolution in these thin films. A series of In0.32Ga0.68AsP/In0.49Ga0.51P quantum wells with various arsine to phosphine ratios have been analyzed by in-situ curvature monitoring and X-ray diffraction (XRD) to obtain nearly strain-free lattice matched structures. Sharp interfaces, as indicated by the XRD fringes, have been achieved by using triethyl-gallium and trimethyl-gallium as gallium precursors in InGaAsP and InGaP, respectively, with constant flows of trimethyl-indium and phosphine through the entire quantum well structure. The effect of the substrate miscut on quantum well growth was compared and analyzed using XRD, photoluminescence and time resolved photoluminescence. A 100 period quantum well device was successfully grown with minimal stress and approximately flat in-situ curvature.

  16. Development of an ultra-high resolution diffraction grating forsoft x-rays

    Energy Technology Data Exchange (ETDEWEB)

    Voronov, Dmitriy L.; Cambie, Rossana; Feshchenko, Ruslan M.; Gullikson, Eric M.; Padmore, Howard A.; Vinogradov, Alexander V.; Yashchuk, Valeriy V.

    2007-08-21

    Resonant Inelastic X-ray Scattering (RIXS) is the one of themost powerful methods for investigation of the electronic structure ofmaterials, specifically of excitations in correlated electron systems.However the potential of the RIXS technique has not been fully exploitedbecause conventional grating spectrometers have not been capable ofachieving the extreme resolving powers that RIXS can utilize. State ofthe art spectrometers in the soft x-ray energy range achieve ~;0.25 eVresolution, compared to the energy scales of soft excitations andsuperconducting gap openings down to a few meV. Development ofdiffraction gratings with super high resolving power is necessary tosolve this problem. In this paper we study the possibilities offabrication of gratings of resolving power of up to 106 for the 0.5 1.5KeV energy range. This energy range corresponds to all or most of theuseful dipole transitions for elements of interest in most correlatedelectronic systems, i.e., oxygen K-edge of relevance to all oxides, thetransition metal L2,3 edges, and the M4,5 edges of the rare earths.Various approaches based on different kinds of diffraction gratings suchas deep-etched multilayer gratings, and multilayer coated echelettes arediscussed. We also present simulations of diffraction efficiency for suchgratings, and investigate the necessary fabricationtolerances.

  17. Improving the off-axis spatial resolution and dynamic range of the NIF X-ray streak cameras (invited).

    Science.gov (United States)

    MacPhee, A G; Dymoke-Bradshaw, A K L; Hares, J D; Hassett, J; Hatch, B W; Meadowcroft, A L; Bell, P M; Bradley, D K; Datte, P S; Landen, O L; Palmer, N E; Piston, K W; Rekow, V V; Hilsabeck, T J; Kilkenny, J D

    2016-11-01

    We report simulations and experiments that demonstrate an increase in spatial resolution of the NIF core diagnostic x-ray streak cameras by at least a factor of two, especially off axis. A design was achieved by using a corrector electron optic to flatten the field curvature at the detector plane and corroborated by measurement. In addition, particle in cell simulations were performed to identify the regions in the streak camera that contribute the most to space charge blurring. These simulations provide a tool for convolving synthetic pre-shot spectra with the instrument function so signal levels can be set to maximize dynamic range for the relevant part of the streak record.

  18. The x-ray light valve: a low-cost, digital radiographic imaging system--spatial resolution.

    Science.gov (United States)

    MacDougall, Robert D; Koprinarov, Ivaylo; Rowlands, J A

    2008-09-01

    An x-ray light valve (XLV) coupled with an optical scanner has the potential to meet the need for a low-cost, high quality digital imaging system for general radiography. The XLV/scanner concept combines three well-established, and hence, low-cost technologies: An amorphous selenium (a-Se) layer as an x-ray-to-charge transducer, a liquid crystal (LC) cell as an analog display, and an optical scanner for image digitization. The XLV consists of an a-Se layer and LC cell in a sandwich structure which produces an optical image in the LC layer upon x-ray exposure. The XLV/scanner system consists of an XLV in combination with an optical scanner for image readout. Here, the effect of each component on the spatial resolution of an XLV/scanner system is investigated. A theoretical model of spatial resolution of an XLV is presented based on calculations of the modulation transfer function (MTF) for a-Se and a LC cell. From these component MTFs, the theoretical MTF of the XLV is derived. The model was validated by experiments on a prototype XLV/scanner system. The MTF of the scanner alone was obtained by scanning an optical test target and the MTF of the XLV/scanner system was measured using x rays. From the measured MTF of the scanner, the theoretical MTF of the XLV/scanner system was established and compared with the experimental results. Good general agreement exists between experimental and theoretical results in the frequency range of interest for general radiography, although the theoretical curves slightly overstate the measured MTFs. The experimental MTF of the XLV was compared with the MTF of two clinical systems and was shown to have the capability to exceed the resolution of flat-panel detectors. From this, the authors can conclude that the XLV has an adequate resolution for general radiography. The XLV/scanner also has the potential to eliminate aliasing while maintaining a MTF that exceeds that of a flat-panel imager.

  19. Lattice dynamics of Al-based quasicrystals studied by high-resolution inelastic X-ray scattering with synchrotron radiation

    CERN Document Server

    Burkel, E; Ponkratz, U; Sinn, H; Alatas, A; Alp, E E

    2003-01-01

    Quasicrystals are aperiodic long-range ordered solids expected to exhibit peculiar dynamical properties. For these new intermetallic phases, previous theoretical work predicted the existence of phason dynamics and a highly structured vibrational density of states. We used the high-resolution inelastic X-ray scattering method to investigate the lattice dynamics of Al-Cu-Fe and Al-Pd-Mn quasicrystals, near the (18,29) diffraction peak situated on the fivefold axis. Phonon dispersion relations were determined for both quasicrystals. In addition to propagating acoustic modes, dispersionless ('optic') low-energy modes were observed.

  20. Improving the off-axis spatial resolution and dynamic range of the NIF X-ray streak cameras (invited)

    Science.gov (United States)

    MacPhee, A. G.; Dymoke-Bradshaw, A. K. L.; Hares, J. D.; Hassett, J.; Hatch, B. W.; Meadowcroft, A. L.; Bell, P. M.; Bradley, D. K.; Datte, P. S.; Landen, O. L.; Palmer, N. E.; Piston, K. W.; Rekow, V. V.; Hilsabeck, T. J.; Kilkenny, J. D.

    2016-11-01

    We report simulations and experiments that demonstrate an increase in spatial resolution of the NIF core diagnostic x-ray streak cameras by at least a factor of two, especially off axis. A design was achieved by using a corrector electron optic to flatten the field curvature at the detector plane and corroborated by measurement. In addition, particle in cell simulations were performed to identify the regions in the streak camera that contribute the most to space charge blurring. These simulations provide a tool for convolving synthetic pre-shot spectra with the instrument function so signal levels can be set to maximize dynamic range for the relevant part of the streak record.

  1. Portable energy dispersive X-ray fluorescence and X-ray diffraction and radiography system for archaeometry

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza Cuevas, Ariadna, E-mail: ariadna@mail.or [Archaeometry Laboratory, Colegio Universitario San Geronimo de La Habana, Obispo, entre San Ignacio y Mercaderes, Habana Vieja, cp 10 100, Havana (Cuba); Perez Gravie, Homero, E-mail: homero.perezgravie@mail.co [Archaeometry Laboratory, Colegio Universitario San Geronimo de La Habana, Obispo, entre San Ignacio y Mercaderes, Habana Vieja, cp 10 100, Havana (Cuba)

    2011-03-21

    Starting on a laboratory developed portable X-ray fluorescence (PXRF) spectrometer; three different analytical results can be performed: analysis of chemical elements, analysis of major chemical crystalline phase and structural analysis, which represents a contribution to a new, low cost development of portable X-ray analyzer; since these results are respectively obtained with independent equipments for X-ray fluorescence, X-ray diffraction and radiography. Detection limits of PXRF were characterized using standard reference materials for ceramics, glass, bronze and bones, which are the main materials requiring quantitative analysis in art and archeological objects. A setup for simultaneous energy dispersive X-ray fluorescence and diffraction (ED (XRF-XRD)) in the reflection mode has been tested for in situ and non-destructive analysis according to the requirements of art objects inspection. The system uses a single low power X-ray tube and an X-ray energy dispersive detector to measure X-ray diffraction spectrum at a fixed angle. Application to the identification of jadeite-jade mineral in archeological objects by XRD is presented. A local high resolution radiography image obtained with the same low power X-ray tube allows for studies in painting and archeological bones.

  2. High-Energy Resolution Fluorescence Detected X-Ray Absorption Spectroscopy: A Powerful New Structural Tool in Environmental Biogeochemistry Sciences.

    Science.gov (United States)

    Proux, Olivier; Lahera, Eric; Del Net, William; Kieffer, Isabelle; Rovezzi, Mauro; Testemale, Denis; Irar, Mohammed; Thomas, Sara; Aguilar-Tapia, Antonio; Bazarkina, Elena F; Prat, Alain; Tella, Marie; Auffan, Mélanie; Rose, Jérôme; Hazemann, Jean-Louis

    2017-11-01

    The study of the speciation of highly diluted elements by X-ray absorption spectroscopy (XAS) is extremely challenging, especially in environmental biogeochemistry sciences. Here we present an innovative synchrotron spectroscopy technique: high-energy resolution fluorescence detected XAS (HERFD-XAS). With this approach, measurement of the XAS signal in fluorescence mode using a crystal analyzer spectrometer with a ∼1-eV energy resolution helps to overcome restrictions on sample concentrations that can be typically measured with a solid-state detector. We briefly describe the method, from both an instrumental and spectroscopic point of view, and emphasize the effects of energy resolution on the XAS measurements. We then illustrate the positive impact of this technique in terms of detection limit with two examples dealing with Ce in ecologically relevant organisms and with Hg species in natural environments. The sharp and well-marked features of the HERFD-X-ray absorption near-edge structure spectra obtained enable us to determine unambiguously and with greater precision the speciation of the probed elements. This is a major technological advance, with strong benefits for the study of highly diluted elements using XAS. It also opens new possibilities to explore the speciation of a target chemical element at natural concentration levels, which is critical in the fields of environmental and biogeochemistry sciences. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  3. High-resolution resonant inelastic X-ray scattering with soft X-rays at the ADRESS beamline of the Swiss light source: Instrumental developments and scientific highlights

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, Thorsten, E-mail: thorsten.schmitt@psi.ch [Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Strocov, Vladimir N.; Zhou, Ke-Jin; Schlappa, Justine; Monney, Claude; Flechsig, Uwe; Patthey, Luc [Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland)

    2013-06-15

    Highlights: ► We have optimized the grating optics for VLS type RIXS spectrometers. ► Cu L{sub 3} RIXS can efficiently probe magnetic fluctuations in quasi-one dimensional cuprates. ► RIXS is sensitive to spin–orbital separation in one-dimensional cuprates. ► RIXS is capable to give information on interface states in oxide heterostructures. ► Mapping of electron–hole pair excitations with RIXS probes the unoccupied band structure. -- Abstract: The experimental development of the resonant inelastic X-ray scattering (RIXS) technique in the soft X-ray energy range has been tremendous during the last years. The ADRESS beamline at the Paul Scherrer Institut in Switzerland and its RIXS spectrometer SAXES has boosted the scientific capabilities with soft X-ray RIXS. Increased resolving power above 10,000 and the possibility to rotate the spectrometer to different scattering geometries allows analyzing the collective behavior of charge, orbital and spin excitations by assessing their momentum dependence. Focus of most projects at this facility lies in the investigation of low- and medium-energy excitations in correlated electron materials. In addition ADRESS has also been used for RIXS investigations on molecules in the liquid and gaseous phase. This review reports on the recent extension of the optics of the SAXES RIXS spectrometer with an additional grating optimized for the spectral range from ca. 400 to 700 eV. Furthermore, the scientific opportunities emerging from ADRESS are highlighted in RIXS studies on quasi one-dimensional cuprates, oxide heterostructures and a weakly correlated broad band material.

  4. Monitoring early stages of silver particle formation in a polymer solution by in situ and time resolved small angle X-ray scattering

    Science.gov (United States)

    Campi, Gaetano; Mari, Alessandra; Amenitsch, Heinz; Pifferi, Augusto; Cannas, Carla; Suber, Lorenza

    2010-11-01

    Silver particles have been prepared by reduction of silver nitrate with ascorbic acid in acidic aqueous solution containing a low concentration of a commercial polynaphthalene sulfonate polymer (Daxad 19) as dispersant agent. The reduction has been induced and controlled by the slow addition of ascorbic acid at a fixed rate; in this way, we were able to monitor the formation of a silver crystalline colloidal dispersion by in situ and time resolved Small Angle X-ray Scattering measurements. Modeling the scattering intensity with interacting spherical particles in a polymer-Ag like-fractal template allowed us to distinguish different stages involving liquid-like ordered cluster nucleation, cluster growth up to primary particle formation and particle coalescence. Between primary particle formation and particle coalescence, we observed the occurrence of a transient phase of core-shell type structures having primary particles as stable cores in expanding shells built by the organic polymer. We discuss these results in a twofold perspective pertaining both to technology, relative to controlled fabrication of metal nanoparticles and to basic chemical physics, dealing with non standard stepwise crystallization from solutions.Silver particles have been prepared by reduction of silver nitrate with ascorbic acid in acidic aqueous solution containing a low concentration of a commercial polynaphthalene sulfonate polymer (Daxad 19) as dispersant agent. The reduction has been induced and controlled by the slow addition of ascorbic acid at a fixed rate; in this way, we were able to monitor the formation of a silver crystalline colloidal dispersion by in situ and time resolved Small Angle X-ray Scattering measurements. Modeling the scattering intensity with interacting spherical particles in a polymer-Ag like-fractal template allowed us to distinguish different stages involving liquid-like ordered cluster nucleation, cluster growth up to primary particle formation and particle

  5. Spatially-resolved in-situ structural study of organic electronic devices with nanoscale resolution: the plasmonic photovoltaic case study.

    Science.gov (United States)

    Paci, B; Bailo, D; Albertini, V Rossi; Wright, J; Ferrero, C; Spyropoulos, G D; Stratakis, E; Kymakis, E

    2013-09-14

    A novel high spatial resolution synchrotron X-ray diffraction stratigraphy technique has been applied in-situ to an integrated plasmonic nanoparticle-based organic photovoltaic device. This original approach allows for the disclosure of structure-property relations linking large scale organic devices to length scales of local nano/hetero structures and interfaces between the different components. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. New room temperature high resolution solid-state detector (CdZnTe) for hard x rays and gamma rays

    Science.gov (United States)

    Stewart, Amyelizabeth C.; Desai, Upendra D.

    1993-01-01

    The new CdZnTe high 'Z' material represents a significant improvement in detectors for high energy photons. With the thicknesses available, photons up to 100 keV can be efficiently detected. This material has a wide band gap of 1.5 - 2.2 eV which allows it to operate at room temperature while providing high spectral resolution. Results of resolution evaluations are presented. This detector can be used for high resolution spectral measurements of photons in x-ray and gamma-ray astronomy, offering a significant reduction in the weight, power, and volume of the detector system compared to more conventional detector types such as scintillation counters. In addition, the detector will have the simplicity and reliability of solid-state construction. The CdZnTe detector, as a new development, has not yet been evaluated in space. The Get Away Special program can provide this opportunity.

  7. Three dimensional characterization of laser ablation craters using high resolution X-ray computed tomography

    Science.gov (United States)

    Galmed, A. H.; du Plessis, A.; le Roux, S. G.; Hartnick, E.; Von Bergmann, H.; Maaza, M.

    2018-01-01

    Laboratory X-ray computed tomography is an emerging technology for the 3D characterization and dimensional analysis of many types of materials. In this work we demonstrate the usefulness of this characterization method for the full three dimensional analysis of laser ablation craters, in the context of a laser induced breakdown spectroscopy setup. Laser induced breakdown spectroscopy relies on laser ablation for sampling the material of interest. We demonstrate here qualitatively (in images) and quantitatively (in terms of crater cone angles, depths, diameters and volume) laser ablation crater analysis in 3D for metal (aluminum) and rock (false gold ore). We show the effect of a Gaussian beam profile on the resulting crater geometry, as well as the first visual evidence of undercutting in the rock sample, most likely due to ejection of relatively large grains. The method holds promise for optimization of laser ablation setups especially for laser induced breakdown spectroscopy.

  8. Ultrahigh resolution and brilliance laser wakefield accelerator betatron x-ray source for rapid in vivo tomographic microvasculature imaging in small animal models

    Science.gov (United States)

    Fourmaux, Sylvain; Kieffer, Jean-Claude; Krol, Andrzej

    2017-03-01

    We are developing ultrahigh spatial resolution (FWHM microvasculature imaging micro-CT angiography (μCTA) in small animal models using optimized contrast agent. It exploits Laser Wakefield Accelerator (LWFA) betatron x-ray emission phenomenon. Ultrashort high-intensity laser pulse interacting with a supersonic gas jet produces an ion cavity ("bubble") in the plasma in the wake of the laser pulse. Electrons that are injected into this bubble gain energy, perform wiggler-like oscillations and generate burst of incoherent x-rays with characteristic duration time comparable to the laser pulse duration, continuous synchrotron-like spectral distribution that might extend to hundreds keV, very high brilliance, very small focal spot and highly directional emission in the cone-beam geometry. Such LWFA betatron x-ray source created in our lab produced 1021 -1023 photonsṡ shot-1ṡmrad-2ṡmm-2/0.1%bw with mean critical energy in the12-30 keV range. X-ray source size for a single laser shot was FWHM=1.7 μm x-ray beam divergence 20-30 mrad, and effective focal spot size for multiple shots FWHM= 2 μm. Projection images of simple phantoms and complex biological objects including insects and mice were obtained in single laser shots. We conclude that ultrahigh spatial resolution μCTA (FWHM 2 μm) requiring thousands of projection images could be accomplished using LWFA betatron x-ray radiation in approximately 40 s with our existing 220 TW laser and sub seconds with next generation of ultrafast lasers and x-ray detectors, as opposed to several hours required using conventional microfocal x-ray tubes. Thus, sub second ultrahigh resolution in vivo microtomographic microvasculature imaging (in both absorption and phase contrast mode) in small animal models of cancer and vascular diseases will be feasible with LWFA betatron x-ray source.

  9. High-resolution non-invasive 3D imaging of paint microstructure by synchrotron-based X-ray laminography

    Energy Technology Data Exchange (ETDEWEB)

    Reischig, Peter [Karlsruhe Institute of Technology, Institute for Photon Science and Synchrotron Radiation, Eggenstein-Leopoldshafen (Germany); Delft University of Technology, Department of Materials Science and Engineering, Delft (Netherlands); Helfen, Lukas [Karlsruhe Institute of Technology, Institute for Photon Science and Synchrotron Radiation, Eggenstein-Leopoldshafen (Germany); European Synchrotron Radiation Facility, BP 220, Grenoble Cedex (France); Wallert, Arie [Rijksmuseum, Postbus 74888, Amsterdam (Netherlands); Baumbach, Tilo [Karlsruhe Institute of Technology, Institute for Photon Science and Synchrotron Radiation, Eggenstein-Leopoldshafen (Germany); Dik, Joris [Delft University of Technology, Department of Materials Science and Engineering, Delft (Netherlands)

    2013-06-15

    The characterisation of the microstructure and micromechanical behaviour of paint is key to a range of problems related to the conservation or technical art history of paintings. Synchrotron-based X-ray laminography is demonstrated in this paper to image the local sub-surface microstructure in paintings in a non-invasive and non-destructive way. Based on absorption and phase contrast, the method can provide high-resolution 3D maps of the paint stratigraphy, including the substrate, and visualise small features, such as pigment particles, voids, cracks, wood cells, canvas fibres etc. Reconstructions may be indicative of local density or chemical composition due to increased attenuation of X-rays by elements of higher atomic number. The paint layers and their interfaces can be distinguished via variations in morphology or composition. Results of feasibility tests on a painting mockup (oak panel, chalk ground, vermilion and lead white paint) are shown, where lateral and depth resolution of up to a few micrometres is demonstrated. The method is well adapted to study the temporal evolution of the stratigraphy in test specimens and offers an alternative to destructive sampling of original works of art. (orig.)

  10. Toward Large FOV High-Resolution X-Ray Imaging Spectrometer: Microwave Multiplexed Readout of 32 TES Microcalorimeters

    Science.gov (United States)

    Yoon, Wonsik; Adams, Joseph S.; Bandler, Simon R.; Chervenak, James A.; Datesman, Aaron M.; Eckart, Megan E.; Finkbeiner, Fred M.; Kelley, Richard L.; Kilbourne, Caroline A.; Miniussi, Antoine R.; hide

    2017-01-01

    We performed a small-scale demonstration at GSFC of high-resolution x-ray TES microcalorimeters read out using a microwave SQUID multiplexer. This work is part of our effort to develop detector and readout technologies for future space based x-ray instruments such as the microcalorimeter spectrometer envisaged for Lynx, a large mission concept under development for the Astro 2020 Decadal Survey. In this paper we describe our experiment, including details of a recently designed, microwave-optimized low-temperature setup that is thermally anchored to the 50 mK stage of our laboratory ADR. Using a ROACH2 FPGA at room temperature, we simultaneously read out 32 pixels of a GSFC-built detector array via a NIST-built multiplexer chip with Nb coplanar waveguide resonators coupled to RF SQUIDs. The resonators are spaced 6 MHz apart (at approx. 5.9 GHz) and have quality factors of approximately 15,000. Using flux-ramp modulation frequencies of 160 kHz we have achieved spectral resolutions of 3 eV FWHM on each pixel at 6 keV. We will present the measured system-level noise and maximum slew rates, and briefly describe the implications for future detector and readout design.

  11. High-resolution soft X-ray spectroscopy of 2.3 keV/u N sup 7 sup + ions through a microcapillary target

    CERN Document Server

    Iwai, Y; Kanai, Y; Oyama, H; Ando, K; Masuda, H; Nishio, K; Nakao, M; Tamamura, T; Komaki, K; Yamazaki, Y

    2002-01-01

    X-rays emitted from 2.3 keV/u sup 1 sup 5 N sup 7 sup + ions transmitted through a highly ordered Ni microcapillary were measured with a high-resolution soft X-ray spectrometer. The highly ordered microcapillary has recently become available employing a nano-lithographic technique. A transmission ratio and charge state distribution of ions through the microcapillary target were found to be consistent with theoretical predictions. A preliminary analysis showed that a series of X-rays from np-1s transitions with n as high as 8 were identified, which is consistent with the classical over barrier model.

  12. High resolution X-ray emission spectroscopy of water and aqueous ions using the micro-jet technique

    Energy Technology Data Exchange (ETDEWEB)

    Lange, Kathrin M.; Koennecke, Rene; Ghadimi, Samira; Golnak, Ronny [Helmholtz-Zentrum Berlin fuer Materialien und Energie, c/o BESSY GmbH, Albert-Einstein-Strasse 15, 12489 Berlin (Germany); Soldatov, Mikhail A. [Helmholtz-Zentrum Berlin fuer Materialien und Energie, c/o BESSY GmbH, Albert-Einstein-Strasse 15, 12489 Berlin (Germany); Research Center for Nanoscale Structure of Matter, Southern Federal University, Sorge 5, Rostov-na-Donu 344090 (Russian Federation); Hodeck, Kai F. [Helmholtz-Zentrum Berlin fuer Materialien und Energie, c/o BESSY GmbH, Albert-Einstein-Strasse 15, 12489 Berlin (Germany); Soldatov, Alexander [Research Center for Nanoscale Structure of Matter, Southern Federal University, Sorge 5, Rostov-na-Donu 344090 (Russian Federation); Aziz, Emad F., E-mail: Emad.Aziz@helmholtz-berlin.de [Helmholtz-Zentrum Berlin fuer Materialien und Energie, c/o BESSY GmbH, Albert-Einstein-Strasse 15, 12489 Berlin (Germany); Freie Universitaet Berlin, FB Physik, Arnimallee 14, D-14195 Berlin (Germany)

    2010-11-25

    Graphical abstract: Soft X-ray absorption (XA) and emission (XE) spectroscopy is a powerful method for probing the local electronic structure of light elements (e.g. C, O, N, S) and transition metals, which are all of importance for biochemical systems. Here, we report for the first time on the XE spectra of a liquid micro-jet sample in a vacuum environment. We developed a high resolution X-ray emission spectrometer and recorded the spectra of pure water in full agreement with those of the literature, as well as of an aqueous solution of NiCl{sub 2}. For the latter system, ground state Hartree-Fock calculations using a self-consistent reaction field (SCRF) approach were carried out to specify the nature of the d-occupied orbital. Our results confirm the dark-channel-fluorescence-yield mechanism that we recently proposed for the case of metal ions in aqueous solutions. The ability to record absorption and emission spectra of an aqueous liquid-jet opens the way for the study of biochemical systems in physiological media. - Abstract: Soft X-ray absorption (XA) and emission (XE) spectroscopy is a powerful method for probing the local electronic structure of light elements (e.g. C, O, N, S) and transition metals, which are all of importance for biochemical systems. Here, we report for the first time on the XE spectra of a liquid micro-jet sample in a vacuum environment. We developed a high resolution X-ray emission spectrometer and recorded the spectra of pure water in full agreement with those of the literature, as well as of an aqueous solution of NiCl{sub 2}. For the latter system, ground state Hartree-Fock calculations using a self-consistent reaction field (SCRF) approach were carried out to specify the nature of the d-occupied orbital. Our results confirm the dark-channel-fluorescence-yield mechanism that we recently proposed for the case of metal ions in aqueous solutions. The ability to record absorption and emission spectra of an aqueous liquid-jet opens the

  13. Crystallization kinetics of Fe-B based amorphous alloys studied in-situ using X-rays diffraction and differential scanning calorimetry

    Directory of Open Access Journals (Sweden)

    Santos D.R. dos

    2001-01-01

    Full Text Available The crystallization processes for the amorphous metallic alloys Fe74B17Si2Ni4Mo3 and Fe86B6Zr7Cu1 (at. % were investigated using X-rays diffraction measurements performed in-situ during Joule-heating, with simultaneous monitoring of the electrical resistance. We determined the main structural transitions and crystalline phases formed during heating, and correlated these results to the observed resistance variations. As the annealing current is increased, the resistance shows an initial decrease due to stress relaxation, followed by a drop to a minimum value due to massive nucleation and growth of alpha-Fe nanocrystals. Further annealing causes the formation of small fractions of Fe-B, B2Zr or ZrO2, while the resistance increases due to temperature enhancement. In situ XRD measurements allowed the identification of metastable phases, as the gamma-Fe phase which occurs at high temperatures. The exothermal peaks observed in the differential scanning calorimetry (DSC for each alloy corroborate the results. We also have performed DSC measurements with several heating rates, which allowed the determination of the Avrami exponent and crystallization activation energy for each alloy. The obtained activation energies (362 and 301 kJ/mol for Fe-B-Zr-Cu; 323 kJ/mol for Fe-B-Si-Ni-Mo are comparable to reported values for amorphous iron alloys, while the Avrami exponent values (n = 1.0 or n = 1.2 are consistent with diffusion controlled crystallization processes with nucleation rates close to zero.

  14. Phase transitions in lithiated Cu{sub 2}Sb anodes for lithium batteries : an in-situ x-ray diffraction study.

    Energy Technology Data Exchange (ETDEWEB)

    Fransson, L. M. L.; Vaughey, J. T.; Benedek, R.; Edstrom, K.; Thomas, J. O.; Thackeray, M. M.; Chemical Engineering; Uppsala Univ.

    2001-07-01

    Copper antimonide, Cu{sub 2}Sb, has been investigated as a negative electrode (anode) for rechargeable lithium batteries by in situ X-ray diffraction of Li/Cu{sub 2}Sb cells. The data show that lithium isinserted into Cu{sub 2}Sb with a concomitant extrusion of copper, which initiates a phase transition to a lithiated zinc-blende-type structure, Li{sub x}Cu{sub 2-y}Sb for 0 < x {<=} 2 and 0 {<=} y {<=} 1, yielding Li{sub 2}CuSb at x = 2, y = 1. Further lithiation results in the displacement of the remaining copper to yield Li{sub 2+z}Cu{sub 1-z}Sb compositions (0 < z {<=} 1) with the end member Li{sub 3}Sb. The Sb array remains intact in a face-centred arrangement throughout these reactions, despite a 42% expansion of the array. The reactions are reversible; they occur between 1.0 and 0 V vs. Li{sup 0}, and deliver a steady capacity of approximately 290 mAh/g after one conditioning cycle. The lithium insertion/metal extrusion reactions with the Cu{sub 2}Sb structure bear a resemblance to those observed previously with Cu{sub 6}Sn{sub 5} and InSb.

  15. Simultaneous in-situ real-time measurements of X-ray reflectivity and optical spectra of organic semiconductor thin film during growth

    Energy Technology Data Exchange (ETDEWEB)

    Hosokai, Takuya; Gerlach, Alexander; Hinderhofer, Alexander; Frank, Christian; Heinemeyer, Ute; Schreiber, Frank [Institut fuer Angewandte Physik, Universitaet Tuebingen (Germany)

    2010-07-01

    The relation between optical and structural properties of organic semiconductors in thin films is crucial for their fundamental understanding as well as their application in electronic devices. Here we present first results of simultaneous in-situ real-time measurements of X-ray reflectivity (XRR) and differential reflectance spectroscopy (DRS) of perfluorinated copper phthalocyanine (F{sub 16}CuPc) thin films grown on SiO{sub 2}/Si wafers. Using DRS we determine the optical absorption spectra of the thin films starting from monolayer coverage whereas real-time XRR provides structural information about the film growth. After a rapid decrease of the reflectivity in the monolayer regime we observe intensity oscillations in time at constant q{sub z} with a strong damping. By calibrating film thickness d(t), we found oscillation period of 1.45 nm at 1/2q Bragg, which correspond to the lattice spacing of standing F{sub 16}CuPc molecules. This behaviour is characteristic for layer-growth with a finite roughness. In the monolayer regime the DRS signal shows a broad absorption peak at {proportional_to}2.0 eV, while for coverages of more than one monolayer an additional and relatively sharp peak appears at {proportional_to}1.6 eV. These results indicate that the film structure in the monolayer regime is different from the layer-growth regime.

  16. A multipurpose ultra-high vacuum-compatible chamber for in situ X-ray surface scattering studies over a wide range of temperature and pressure environment conditions

    Science.gov (United States)

    Ferrer, P.; Rubio-Zuazo, J.; Heyman, C.; Esteban-Betegón, F.; Castro, G. R.

    2013-03-01

    A low/high temperature (60-1000K) and pressure (10-10-3x103 mbar) "baby chamber", specially adapted to the grazing-incidence X-ray scattering station, has been designed, developed and installed at the Spanish CRG BM25 SpLine beamline at European Synchrotron Radiation Facility. The chamber has a cylindrical form with 100 mm of diameter, built on a 360° beryllium nipple of 150 mm height. The UHV equipment and a turbo pump are located on the upper part of the chamber to leave a wide solid angle for exploring reciprocal space. The chamber features 4 CF16 and 5 CF40 ports for electrical feed through and leak valves, ion gun, etc. The heat exchanger is a customized compact LN2 (or LHe) continuous flow cryostat. The sample is mounted on a Mo support on the heat exchanger, which has in the back side a BORALECTRIC® Heater Elements. Experiments of surfaces/interfaces/ multilayer materials, thin films or single crystals in a huge variety of environments can be performed, also in situ studies of growth or evolution of the samples. Data measurement can be collected with a punctual and a bi-dimensional detector, being possible to simultaneously use them.

  17. Evidence from in situ X-ray absorption spectroscopy for the involvement of terminal disulfide in the reduction of protons by an amorphous molybdenum sulfide electrocatalyst.

    Science.gov (United States)

    Lassalle-Kaiser, Benedikt; Merki, Daniel; Vrubel, Heron; Gul, Sheraz; Yachandra, Vittal K; Hu, Xile; Yano, Junko

    2015-01-14

    The reduction of protons into dihydrogen is important because of its potential use in a wide range of energy applications. The preparation of efficient and cheap catalysts for this reaction is one of the issues that need to be tackled to allow the widespread use of hydrogen as an energy carrier. In this paper, we report the study of an amorphous molybdenum sulfide (MoSx) proton reducing electrocatalyst under functional conditions, using in situ X-ray absorption spectroscopy. We probed the local and electronic structures of both the molybdenum and sulfur elements for the as prepared material as well as the precatalytic and catalytic states. The as prepared material is very similar to MoS3 and remains unmodified under functional conditions (pH = 2 aqueous HNO3) in the precatalytic state (+0.3 V vs RHE). In its catalytic state (-0.3 V vs RHE), the film is reduced to an amorphous form of MoS2 and shows spectroscopic features that indicate the presence of terminal disulfide units. These units are formed concomitantly with the release of hydrogen, and we suggest that the rate-limiting step of the HER is the reduction and protonation of these disulfide units. These results show the implication of terminal disulfide chemical motifs into HER driven by transition-metal sulfides and provide insight into their reaction mechanism.

  18. A study on the phase transformation of the nanosized hydroxyapatite synthesized by hydrolysis using in situ high temperature X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Shih, W.-J. [Department of Materials Science and Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan, 70101, Taiwan (China); Wang, J.-W. [Department of Enviromental and Safety Engineering, Chung Hwa College of Medical Technology, 89 Wen-Hua 1st St., Rende Shiang, Tainan, 71703, Taiwan (China); Wang, M.-C. [Department of Materials Science and Engineering, National United University, 1 Lien-Da, Kung-Ching Li, Miao Li 360, Taiwan (China)]. E-mail: mcwang@nuu.edu.tw; Hon, M.-H. [Department of Materials Science and Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan, 70101, Taiwan (China); Dayeh University, 112 Shan-Jiau Road, Da-Tsuen, Changhua 515, Taiwan (China)

    2006-09-15

    The biodegradable hydroxyapatite (HA) was synthesized by hydrolysis and characterized using high temperature X-ray diffraction (HT-XRD), differential thermal analysis and thermogravimetry (DTA/TG), and scanning electron microscopy (SEM). The in situ phase transformation of the HA synthesized from CaHPO{sub 4}.2H{sub 2}O (DCPD) and CaCO{sub 3} with a Ca / P = 1.5 in 2.5 M NaOH{sub (aq)} at 75 deg. C for 1 h was investigated by HT-XRD between 25 and 1500 deg. C. The HA was crystallized at 600 deg. C and maintained as the major phase until 1400 deg. C. The HA steadily transformed to the {alpha}-tricalcium phosphate ({alpha}-TCP) which became the major phosphate phase at 1500 deg. C. At 700 deg. C, the minor CaO phase appeared and vanished at 1300 deg. C. The Na{sup +} impurity from the hydrolysis process was responsible for the formation of the NaCaPO{sub 4} phase, which appeared above 800 deg. C and disappeared at 1200 deg. C.

  19. Depth profiling study of in situ CdCl{sub 2} treated CdTe/CdS heterostructure with glancing angle incidence X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Vamsi Krishna, K.; Dutta, V

    2004-03-01

    CdTe thin films have been deposited using spray pyrolysis technique without and with in situ CdCl{sub 2} treatment. Scanning electron microscopy studies show enhanced grain growth in the presence of CdCl{sub 2}. Glancing angle incidence X-ray diffraction is used for the micro structural study of polycrystalline CdS/CdTe heterostructure at different depths by changing the incident angle. Spraying of CdCl{sub 2} on CdS prior to CdTe deposition promotes S diffusion throughout CdTe film and also Te diffusion into CdS. Whereas spraying of CdCl{sub 2} in between CdTe deposition prevents S diffusion partially and Te diffusion completely. There is an associated change in the microstress of the CdTe film at different layers. The films without CdCl{sub 2} treatment show compressive microstress varying from -98 to -158 MPa with increasing incident angle. CdCl{sub 2} spray during CdTe deposition shows compressive microstress, which varies from -98 MPa at the interface to -19 MPa near the surface and CdCl{sub 2} spray prior to CdTe deposition leads to a mildly tensile stress, from +40 to +20 MPa, which is very close to the standard shear stress of {approx}10 MPa for CdTe.

  20. In situ synchrotron high-energy X-ray diffraction study of microscopic deformation behavior of a hard-soft dual phase composite containing phase transforming matrix

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Junsong; Hao, Shijie; Jiang, Daqiang; Huan, Yong; Cui, Lishan; Liu, Yinong; Yang, Hong; Ren, Yang

    2017-05-01

    This study explored a novel intermetallic composite design concept based on the principle of lattice strain matching enabled by the collective atomic load transfer. It investigated the hard-soft microscopic deformation behavior of a Ti3Sn/TiNi eutectic hard-soft dual phase composite by means of in situ synchrotron high-energy X-ray diffraction (HE-XRD) during compression. The composite provides a unique micromechanical system with distinctive deformation behaviors and mechanisms from the two components, with the soft TiNi matrix deforming in full compliance via martensite variant reorientation and the hard Ti3Sn lamellae deforming predominantly by rigid body rotation, producing a crystallographic texture for the TiNi matrix and a preferred alignment for the Ti3Sn lamellae. HE-XRD reveals continued martensite variant reorientation during plastic deformation well beyond the stress plateau of TiNi. The hard and brittle Ti3Sn is also found to produce an exceptionally large elastic strain of 1.95% in the composite. This is attributed to the effect of lattice strain matching between the transformation lattice distortion of the TiNi matrix and the elastic strain of Ti3Sn lamellae. With such unique micromechanic characteristics, the composite exhibits high strength and large ductility.

  1. In situ synchrotron X-ray powder diffraction study of the early hydration of α-tricalcium phosphate/tricalcium silicate composite bone cement

    Energy Technology Data Exchange (ETDEWEB)

    Morejon-Alonso, Loreley; Correa, Jose Raul, E-mail: lmorejon@fq.uh.cu [Departamento de Quimica General, Facultad de Quimica, Universidad de La Habana, UH (Cuba); Motisuke, Mariana [Universidade Federal de Sao Paulo (UNIFESP), Sao Jose dos Campos, SP (Brazil); Carrodeguas, Raul Garcia [Universidade Federal de Campina Grande (UFCG), Campina Grande, PB (Brazil). Laboratorio de Avaliacao e Desenvolvimento de Biomateriais do Nordeste; Santos, Luis Alberto dos [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Escola de Engenharia. Departamento de Materiais

    2015-01-15

    Bioactivity, osteogenicity and mechanical properties of α-tricalcium phosphate (α-TCP) based phosphates cements can be improved by adding tricalcium silicate (C{sub 3}S); however, the addition of C{sub 3}S delays the precipitation and growth of calcium deficient hydroxyapatite (CDHA). Thus, the aim of this work was the study of in situ setting reaction of α-TCP/C{sub 3}S composite bone cement under high energy X-ray generated by a synchrotron source within the first 72h. The results showed that the addition of C{sub 3}S induces the precipitation of nanosized CDHA at early times depending on the added content. Calculated crystallite sizes showed that the higher the content of C{sub 3}S, the smaller the crystal size at the beginning of the precipitation. These results are different from those obtained by conventional XRD method, suggesting that the proposed technique is a powerful tool in determining the composition and extent of reaction of CPCs surfaces in real time. (author)

  2. In-situ grazing incidence X-ray diffraction measurements of relaxation in Fe/MgO/Fe epitaxial magnetic tunnel junctions during annealing

    Energy Technology Data Exchange (ETDEWEB)

    Eastwood, D.S. [Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom); Ali, M.; Hickey, B.J. [Department of Physics and Astronomy, University of Leeds, Leeds LS2 1JT (United Kingdom); Tanner, B.K., E-mail: b.k.tanner@dur.ac.uk [Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom)

    2013-12-15

    The relaxation of Fe/MgO/Fe tunnel junctions grown epitaxially on (001) MgO substrates has been measured by in-situ grazing incidence in-plane X-ray diffraction during the thermal annealing cycle. We find that the Fe layers are fully relaxed and that there are no irreversible changes during annealing. The MgO tunnel barrier is initially strained towards the Fe but on annealing, relaxes and expands towards the bulk MgO value. The strain dispersion is reduced in the MgO by about 40% above 480 K post-annealing. There is no significant change in the “twist” mosaic. Our results indicate that the final annealing stage of device fabrication, crucial to attainment of high TMR, induces substantial strain relaxation at the MgO barrier/lower Fe electrode interface. - Highlights: • Lattice relaxation of Fe/MgO/Fe epitaxial magnetic tunnel junctions measured. • In-plane lattice parameter of Fe equal to bulk value; totally relaxed. • MgO barrier initially strained towards the Fe but relaxes on annealing. • Reduction in strain dispersion in the MgO barrier by 40% above about 470 K. • No change in the in-plane “twist” mosaic throughout the annealing cycle.

  3. Rapid crystallization of WS{sub 2} films assisted by a thin nickel layer: An in situ energy-dispersive X-ray diffraction study

    Energy Technology Data Exchange (ETDEWEB)

    Ellmer, K.; Seeger, S. [Hahn-Meitner-Institut Berlin, Dept. Solare Energetik, Glienicker Str. 100, 14109 Berlin (Germany); Mientus, R. [Opto-Transmitter-Umweltschutz-Technologie e.V., Koepenicker Str. 325b, 12555 Berlin (Germany)

    2006-08-15

    By rapid thermal crystallization of an amorphous WS{sub 3+x} film, deposited by reactive magnetron sputtering at temperatures below 150 C, layer-type semiconducting tungsten disulfide films (WS{sub 2}) were grown. The rapid crystallization was monitored in real-time by in situ energy-dispersive X-ray diffraction. The films crystallize very fast (>40 nm/s), provided that a thin nickel film acts as nucleation seeds. Experiments on different substrates and the onset of the crystallization only at a temperature between 600 and 700 C points to the decisive role of seeds for the textured growth of WS{sub 2}, most probably liquid NiS{sub x} drops. The rapidly crystallized WS{sub 2} films exhibit a pronounced (001) texture with the van der Waals planes oriented parallel to the surface, leading to photoactive layers with a high hole mobility of about 80 cm{sup 2}/Vs making such films suitable as absorbers for thin film solar cells. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Insights into Surface Interactions between Metal Organic Frameworks and Gases during Transient Adsorption and Diffusion by In-Situ Small Angle X-ray Scattering

    Directory of Open Access Journals (Sweden)

    Ludovic F. Dumée

    2016-09-01

    Full Text Available The fabrication of molecular gas sieving materials with specific affinities for a single gas species and able to store large quantities of materials at a low or atmospheric pressure is desperately required to reduce the adverse effects of coal and oil usage in carbon capture. Fundamental understanding of the dynamic adsorption of gas, the diffusion mechanisms across thin film membranes, and the impact of interfaces play a vital role in developing these materials. In this work, single gas permeation tests across micro-porous membrane materials, based on metal organic framework crystals grown on the surface of carbon nanotubes (ZiF-8@CNT, were performed for the first time in-situ at the Australian Synchrotron on the small angle X-ray scattering beamline in order to reveal molecular sieving mechanisms and gas adsorption within the material. The results show that specific chemi-sorption of CO2 across the ZiF-8 crystal lattices affected the morphology and unit cell parameters, while the sieving of other noble or noble like gases across the ZiF-8@CNT membranes was found to largely follow Knudsen diffusion. This work demonstrates for the first time a novel and effective technique to assess molecular diffusion at the nano-scale across sub-nano-porous materials by probing molecular flexibility across crystal lattice and single cell units.

  5. Dynamic study of sub-micro sized LiFePO4 cathodes by in-situ tender X-ray absorption near edge structure

    Science.gov (United States)

    Wang, Dongniu; Wang, Huixin; Yang, Jinli; Zhou, Jigang; Hu, Yongfeng; Xiao, Qunfeng; Fang, Haitao; Sham, Tsun-Kong

    2016-01-01

    Olivine-type phosphates (LiMPO4, M = Fe, Mn, Co) are promising cathode materials for lithium-ion batteries that are generally accepted to follow first order equilibrium phase transformations. Herein, the phase transformation dynamics of sub-micro sized LiFePO4 particles with limited rate capability at a low current density of 0.14 C was investigated. An in-situ X-ray Absorption Near Edge Structure (XANES) measurement was conducted at the Fe and P K-edge for the dynamic studies upon lithiation and delithiation. Fe K-edge XANES spectra demonstrate that not only lithium-rich intermediate phase LixFePO4 (x = 0.6-0.75), but also lithium-poor intermediate phase LiyFePO4 (y = 0.1-0.25) exist during the charge and discharge, respectively. Furthermore, during charge and discharge, a fluctuation of the FePO4 and LiFePO4 fractions obtained by liner combination fitting around the imaginary phase fractions followed Faraday's law and the equilibrium first-order two-phase transformation versus reaction time is present, respectively. The charging and discharging process has a reversible phase transformation dynamics with symmetric structural evolution routes. P K-edge XANES spectra reveal an enrichment of PF6-1 anions at the surface of the electrode during charging.

  6. New Pyrazole-Hydrazone Derivatives: X-ray Analysis, Molecular Structure Investigation via Density Functional Theory (DFT) and Their High In-Situ Catecholase Activity.

    Science.gov (United States)

    Karrouchi, Khalid; Yousfi, El Bekkaye; Sebbar, Nada Kheira; Ramli, Youssef; Taoufik, Jamal; Ouzidan, Younes; Ansar, M'hammed; Mabkhot, Yahia N; Ghabbour, Hazem A; Radi, Smaail

    2017-10-25

    The development of low-cost catalytic systems that mimic the activity of tyrosinase enzymes (Catechol oxidase) is of great promise for future biochemistry technologic demands. Herein, we report the synthesis of new biomolecules systems based on hydrazone derivatives containing a pyrazole moiety (L1-L6) with superior catecholase activity. Crystal structures of L1 and L2 biomolecules were determined by X-ray single crystal diffraction (XRD). Optimized geometrical parameters were calculated by density functional theory (DFT) at B3LYP/6-31G (d, p) level and were found to be in good agreement with single crystal XRD data. Copper (II) complexes of the compounds (L1-L6), generated in-situ, were investigated for their catalytic activities towards the oxidation reaction of catechol to ortho-quinone with the atmospheric dioxygen, in an attempt to model the activity of the copper containing enzyme tyrosinase. The studies showed that the activities depend on four parameters: the nature of the ligand, the nature of counter anion, the nature of solvent and the concentration of ligand. The Cu(II)-ligands, given here, present the highest catalytic activity (72.920 μmol·L(-1)·min(-1)) among the catalysts recently reported in the existing literature.

  7. Frequencies of X-ray induced chromosome aberrations in lymphocytes of xeroderma pigmentosum and Fanconi anemia patients estimated by Giemsa and fluorescence in situ hybridization staining techniques

    Directory of Open Access Journals (Sweden)

    Saraswathy Radha

    2000-01-01

    Full Text Available Blood lymphocytes from xeroderma pigmentosum (XP and Fanconi anemia (FA patients were assessed for their sensitivity to ionizing radiation by estimating the frequency of X-ray (1 and 2 Gy-induced chromosome aberrations (CA. The frequencies of aberrations in the whole genome were estimated in Giemsa-stained preparations of lymphocytes irradiated at G0 or G2 stages. The frequencies of translocations and dicentrics involving chromosomes 1 and 3 as well as the X-chromosome were determined in slides stained by fluorescence in situ hybridization (FISH technique. An increase in all types of CA was observed in XP and FA lymphocytes irradiated at G0 when compared to controls. The frequency of dicentrics and rings was 6 to 27% higher (at 1 and 2 Gy in XP lymphocytes and 37% higher (at 2 Gy in FA lymphocytes than in controls, while chromosome deletions were higher in irradiated (30% in 1 Gy and 72% in 2 Gy than in control XP lymphocytes and 28 to 102% higher in FA lymphocytes. In G2-irradiated lymphocytes the frequency of CA was 24 to 55% higher in XP lymphocytes than in controls. In most cases the translocation frequencies were higher than the frequencies of dicentrics (21/19.

  8. In-Situ Observations of Phase Transformations During Welding of 1045 Steel using Spatially Resolved and Time Resolved X-Ray Diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Elmer, J; Palmer, T; DebRoy, T

    2005-10-28

    Synchrotron-based methods have been developed at Lawrence Livermore National Laboratory (LLNL) for the direct observation of microstructure evolution during welding. These techniques, known as spatially resolved (SRXRD) and time resolved (TRXRD) x-ray diffraction, allow in-situ experiments to be performed during welding and provide direct observations of high temperature phases that form under the intense thermal cycles that occur. This paper presents observations of microstructural evolution that occur during the welding of a medium carbon AISI 1045 steel, using SRXRD to map the phases that are present during welding, and TRXRD to dynamically observe transformations during rapid heating and cooling. SRXRD was further used to determine the influence of welding heat input on the size of the high temperature austenite region, and the time required to completely homogenize this region during welding. These data can be used to determine the kinetics of phase transformations under the steep thermal gradients of welds, as well as benchmark and verify phase transformation models.

  9. The High Performance Shape Memory Effect (HP-SME in Ni Rich NiTi Wires: In Situ X-Ray Diffraction on Thermal Cycling

    Directory of Open Access Journals (Sweden)

    Coduri Mauro

    2015-01-01

    Full Text Available A novel approach for using Shape Memory Alloys (SMA was recently proposed and named highperformance shape memory effect (HP-SME. The HP-SME exploits the thermal cycling of stress-induced martensite for producing extremely high mechanical work with a very stable functional fatigue behaviour in Ni rich NiTi alloy. The latter was found to differ significantly from the functional fatigue behaviour observed for conventional SMA. This study was undertaken in order to elucidate the microstructural modifications at the basis of this particular feature. To this purpose, the functional fatigue was coupled to in situ Synchrotron Radiation X-Ray Diffraction, by recording patterns on wires thermally cycled by Joule effect under a constant applied stress (800 MPa. The accurate analysis the line profile XRD data suggests the accumulation of defects upon functional cycling, while the fibre texture was not observed to change. The functional fatigue exhibits a very similar behaviour as the line broadening of XRD peaks, thus suggesting the accumulation of dislocations as the origin of the mechanism of the permanent deformation.

  10. In-Situ Coherent Grazing Incidence Small Angle X-ray Scattering (Co-GISAXS) Studies of Surface Fluctuations of Sputter Deposited WSi2 using X-ray Photon Correlation Spectroscopy (XPCS)

    Science.gov (United States)

    Dahal, Som; Ulbrandt, Jeffrey; Headrick, Randall; Demasi, Alexander; Ludwig, Karl

    2014-03-01

    We performed Coherent Grazing Incidence Small Angle X-ray Scattering (Co-GISAXS) studies of surface dynamics during magnetron sputtering deposited WSi2 amorphous thin films. The local dynamics of surface fluctuations was studied by X-ray Photon Correlation Spectroscopy (XPCS) in the late time regime where the static GIXAXS stops evolving. Our studies reveal that the correlation time of the sputtered species varies as a power law with the in-plane momentum transfer. The experimentally obtained results are compared with predictions from continuum models of surface growth.

  11. Stability of a Bifunctional Cu-Based Core@Zeolite Shell Catalyst for Dimethyl Ether Synthesis Under Redox Conditions Studied by Environmental Transmission Electron Microscopy and In Situ X-Ray Ptychography.

    Science.gov (United States)

    Baier, Sina; Damsgaard, Christian D; Klumpp, Michael; Reinhardt, Juliane; Sheppard, Thomas; Balogh, Zoltan; Kasama, Takeshi; Benzi, Federico; Wagner, Jakob B; Schwieger, Wilhelm; Schroer, Christian G; Grunwaldt, Jan-Dierk

    2017-06-01

    When using bifunctional core@shell catalysts, the stability of both the shell and core-shell interface is crucial for catalytic applications. In the present study, we elucidate the stability of a CuO/ZnO/Al2O3@ZSM-5 core@shell material, used for one-stage synthesis of dimethyl ether from synthesis gas. The catalyst stability was studied in a hierarchical manner by complementary environmental transmission electron microscopy (ETEM), scanning electron microscopy (SEM) and in situ hard X-ray ptychography with a specially designed in situ cell. Both reductive activation and reoxidation were applied. The core-shell interface was found to be stable during reducing and oxidizing treatment at 250°C as observed by ETEM and in situ X-ray ptychography, although strong changes occurred in the core on a 10 nm scale due to the reduction of copper oxide to metallic copper particles. At 350°C, in situ X-ray ptychography indicated the occurrence of structural changes also on the µm scale, i.e. the core material and parts of the shell undergo restructuring. Nevertheless, the crucial core-shell interface required for full bifunctionality appeared to remain stable. This study demonstrates the potential of these correlative in situ microscopy techniques for hierarchically designed catalysts.

  12. A novel technique combining high-resolution synchrotron x-ray microtomography and x-ray diffraction for characterization of micro particulates

    Science.gov (United States)

    Merrifield, David R.; Ramachandran, Vasuki; Roberts, Kevin J.; Armour, Wesley; Axford, Danny; Basham, Mark; Connolley, Thomas; Evans, Gwyndaf; McAuley, Katherine E.; Owen, Robin L.; Sandy, James

    2011-11-01

    The processing of solids, such as crystals, is strongly influenced by the surface properties of the material. In recent years the pharmaceutical industry has shown great interest in identifying, or chemically speciating, the molecular components of crystal faces. Formerly, characterization of the molecular identity of crystal faces was restricted to the study of large single crystals. This would have been primarily for structure determination as part of the drug registration process. Diamond Light Source in Oxfordshire is a new synchrotron facility in the UK, having 18 operational beamlines with 4 more in the construction phase. Beamlines at this medium energy light source enable the study of micron-sized objects in great detail. It is well known that x-ray microtomography (XMT) can be used to investigate the external morphology of a crystal whereas x-ray diffraction (XRD) is used to study the molecular orientation, structure and packing within the crystal. The objective of this research is to assess the feasibility of, and thereby develop a new methodology for, characterizing the molecular identity of a particular face of a crystalline particle at a scale of scrutiny of 20-50 µm by combining these two powerful techniques. This work demonstrates the application of XMT and XRD to investigate respectively the shape and crystalline phase/orientation of relevant test crystals. This research has applications in the pharmaceutical industry in that when the exact molecular nature of a particular face is known, the important physico-pharmaceutical properties stemming from that can be better understood. Some initial data are presented and discussed.

  13. 1.55 Å resolution X-ray crystal structure of Rv3902c from Mycobacterium tuberculosis

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, Bharat G.; Moates, Derek B. [University of Alabama at Birmingham, 1025 18th Street South, Birmingham, AL 35233 (United States); Kim, Heung-Bok [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Green, Todd J. [University of Alabama at Birmingham, 1025 18th Street South, Birmingham, AL 35233 (United States); Kim, Chang-Yub; Terwilliger, Thomas C. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); DeLucas, Lawrence J., E-mail: duke2@uab.edu [University of Alabama at Birmingham, 1025 18th Street South, Birmingham, AL 35233 (United States)

    2014-03-25

    The 1.55 Å resolution X-ray crystal structure of Rv3902c from M. tuberculosis reveals a novel fold. The crystallographic structure of the Mycobacterium tuberculosis (TB) protein Rv3902c (176 residues; molecular mass of 19.8 kDa) was determined at 1.55 Å resolution. The function of Rv3902c is unknown, although several TB genes involved in bacterial pathogenesis are expressed from the operon containing the Rv3902c gene. The unique structural fold of Rv3902c contains two domains, each consisting of antiparallel β-sheets and α-helices, creating a hand-like binding motif with a small binding pocket in the palm. Structural homology searches reveal that Rv3902c has an overall structure similar to that of the Salmonella virulence-factor chaperone InvB, with an r.m.s.d. for main-chain atoms of 2.3 Å along an aligned domain.