WorldWideScience

Sample records for resolution hypernuclear spectroscopy

  1. Hypernuclear Spectroscopy at JLab Hall C

    International Nuclear Information System (INIS)

    Hashimoto, Osamu; Chiba, Atsushi; Doi, Daisuke; Fujii, Yu; Toshiyuki, Gogami; Kanda, Hiroki; Kaneta, M.; Kawama, Daisuke; Maeda, Kazushige; Maruta, Tomofumi; Matsumura, Akihiko; Nagao, Sho; Nakamura, Satoshi; Shichijo, Ayako; Tamura, Hirokazu; Taniya, Naotaka; Yamamoto, Taku; Yokota, Kosuke; Kato, S.; Sato, Yoshinori; Takahashi, Toshiyuki; Noumi, Hiroyuki; Motoba, T.; Hiyama, E.; Albayrak, Ibrahim; Ates, Ozgur; Chen, Chunhua; Christy, Michael; Keppel, Cynthia; Kohl, Karl; Li, Ya; Liyanage, Anusha Habarakada; Tang, Liguang; Walton, T.; Ye, Zhihong; Yuan, Lulin; Zhu, Lingyan; Baturin, Pavlo; Boeglin, Werner; Dhamija, Seema; Markowitz, Pete; Raue, Brian; Reinhold, Joerg; Hungerford, Ed; Ent, Rolf; Fenker, Howard; Gaskell, David; Horn, Tanja; Jones, Mark; Smith, Gregory; Vulcan, William; Wood, Stephen; Johnston, C.; Simicevic, Neven; Wells, Stephen; Samanta, Chhanda; Hu, Bitao; Shen, Ji; Wang, W.; Zhang, Xiaozhuo; Zhang, Yi; Feng, Jing; Fu, Y.; Zhou, Jian; Zhou, S.; Jiang, Yi; Lu, H.; Yan, Xinhu; Ye, Yunxiu; Gan, Liping; Ahmidouch, Abdellah; Danagoulian, Samuel; Gasparian, Ashot; Elaasar, Mostafa; Wesselmann, Frank; Asaturyan, Arshak; Margaryan, Amur; Mkrtchyan, Arthur; Mkrtchyan, Hamlet; Tadevosyan, Vardan; Androic, Darko; Furic, Miroslav; Petkovic, Tomislav; Seva, Tomislav; Niculescu, Gabriel; Niculescu, Maria-Ioana; Rodriguez, Victor; Cisbani, Evaristo; Cusanno, Francesco; Garibaldi, Franco; Urciuoli, Guido; De Leo, Raffaele; Maronne, S.; Achenbach, Carsten; Pochodzalla, J.

    2010-01-01

    Since the 1st generation experiment, E89-009, which was successfully carried out as a pilot experiment of (e,e(prime)K + ) hypernuclear spectroscopy at JLab Hall C in 2000, precision hypernuclear spectroscopy by the (e,e(prime)K + ) reactions made considerable progress. It has evolved to the 2nd generation experiment, E01-011, in which a newly constructed high resolution kaon spectrometer (HKS) was installed and the 'Tilt method' was adopted in order to suppress large electromagnetic background and to run with high luminosity. Preliminary high-resolution spectra of 7 ΛHe and 28 ΛAl together with that of 12 ΛB that achieved resolution better than 500 keV(FWHM) were obtained. The third generation experiment, E05-115, has completed data taking with an experimental setup combining a new splitter magnet, high resolution electron spectrometer (HES) and the HKS used in the 2nd generation experiment. The data were accumulated with targets of 7 Li, 9 Be, 10 B, 12 C and 52 Cr as well as with those of CH 2 and H 2 O for calibration. The analysis is under way with particular emphasis of determining precision absolute hypernuclear masses. In this article, hypernuclear spectroscopy program in the wide mass range at JLab Hall C that has undergone three generation is described.

  2. High resolution hypernuclear spectroscopy at Jefferson Lab Hall A

    International Nuclear Information System (INIS)

    Garibaldi, F.; Bydžovský, P.; Cisbani, E.; Cusanno, F.; De Leo, R.; Frullani, S.; Iodice, M.; LeRose, J.J.; Markowitz, P.; Millener, D.J.; Urciuoli, G.M.

    2013-01-01

    The characteristics of the Jefferson Lab electron beam, together with those of the experimental equipment, offer a unique opportunity to study hypernuclear spectroscopy via electromagnetic induced (e,e ′ K + ) reactions. Experiment 94-107 started a systematic study on 1p-shell targets, 12 C, 9 Be and 16 O. For 12 C for the first time measurable strength in the core-excited part of the spectrum between the ground state and the p state was shown in the 12 Λ B spectrum. For 16 O a high-quality 16 Λ N spectrum was produced for the first time with sub-MeV energy resolution. A very precise Λ binding energy value for 16 Λ N, calibrated against the elementary (e,e ′ K + ) reaction on hydrogen, has also been obtained. Preliminary data on the 9 Λ Li spectrum shows some disagreement in strength for the second and third doublet with respect to the theory

  3. Hypernuclear spectroscopy with the (e, e-prime K+) reaction

    Energy Technology Data Exchange (ETDEWEB)

    Yu Fujii

    2003-06-16

    Experimental conditions of the (e,e'K+) reaction for hypernuclear spectroscopy at Jefferson Lab Hall C are considered. Then two hypernuclear experiments at Hall C, Jlab E89-009 and E01-011 are introduced and compared, and possibility to extract information on hypernuclear states are discussed by referring expected spectra obtained with a DWIA calculation.

  4. Open problems and future prospects for hypernuclear physics

    International Nuclear Information System (INIS)

    Dover, C.B.

    1992-01-01

    We appraise the current status of our knowledge of hypernuclear structure physics, and emphasize the unsolved problems. The prospects for significant advances in high resolution hypernuclear spectroscopy with CW electron beams at CEBAF or intense pion beams at the proposed PILAC facility at LPF are discussed. These facilities could greatly extend our understanding of strangeness S = -1 hypernuclear systems. For S = -2 systems, new events have been seen in a (K - ,K + ) hybrid counter-emulsion experiment at KEK in Japan. We give a theoretical interpretation of one of these events, as well as some further possibilities for the exploration of ΛΛ hypernuclear spectroscopy via Ξ - -atoms. We mention some possible enhancements of (K - ,K + ) or (K - ,K 0 ) cross sections to discrete states, due to ΞN-ΛΛ configuration mixing in a shell model description of S = -2 hypernuclei. Finally, we explore the possibilities for producing multi-strange nuclei or droplets of strange quark matter (''strangelets'') in relativistic heavy ion collisions

  5. Investigation of high-precision Λ hypernuclear spectroscopy via the (e,e'K+) reaction

    Energy Technology Data Exchange (ETDEWEB)

    Kawama, Daisuke [Tohoku Univ., Sendai (Japan)

    2011-01-01

    The study of Λ hypernuclear structure is very interesting in point of the understanding of the interaction between Λ and nucleon (Λ-N interaction) and its strange structure itself due to the containment of a Λ hyperon which has a strangeness as a new degree of freedom. In the several way to study the Lamda hypernuclei, the (e,e'K+) reaction spectroscopy is a powerful tool for the precise investigation of Λ hypernuclear structure. The purpose of the preset thesis is the establishment of the experimental design with the efficient data analysis method for the (e,e'K+) hypernuclear spectroscopic experiment in the wide mass region (from A=7 to A=52). It is very challenging to perform the (e,e'K+) spectroscopic experiment with such a heavy target, because of the huge electron background due to the bremsstrahlung process. In the experiment, it is required to obtain the necessary hypernuclear yield, suppressing the background event ratio. We achieved these requirements by newly constructing the high resolution electron spectrometer (HES) and splitter magnet (SPL) dedicated to the (e,e'K+) spectroscopic experiment. The HES consists of two quadrupole magnets and a dipole magnets (Q-Q-D) with a momentum resolution of dp/p = 3x10-4 at p = 0.84 GeV/c. It was used being vertically tilted by 6.5 degree so as to optimize signal to noise ratio and hypernuclear yield. The SPL is a dipole magnet. The experimental target was placed at the entrance of this magnet. The role of the SPL is to separate four kind of particles; scattered kaons, photons created by the bremsstrahlung, the post beam and scattered electrons. In addition, since the SPL is a part of the kaon and electron spectrometers. We designed the magnet shape carefully considering these points. The experiment was performed with 2.344 GeV/c electron beam from CEBAF at Jefferson Lab. The experimental setup consists of the HES, SPL and HKS (high momentum resolution kaon

  6. Update of High Resolution (e, e ' K+) Hypernuclear Spectroscopy at Jefferson Lab's Hall A

    Czech Academy of Sciences Publication Activity Database

    Cusanno, F.; Acha, A.; Bydžovský, Petr; Chang, C. C.; Cisbani, E.; de Jager, C.W.; De Leo, R.; Frullani, S.; Garibaldi, F.; Higinbotham, D. W.; Iodice, M.; LeRose, J. J.; Markowitz, P.; Marrone, S.; Sotona, Miloslav; Urciuoli, G.M.

    2010-01-01

    Roč. 835, 1-4 (2010), s. 129-135 ISSN 0375-9474. [10th International Conference on Hypernuclear and Strange Particle Physics. Tokai, 14.09.2009-18.09.2009] R&D Projects: GA ČR GA202/08/0984 Institutional research plan: CEZ:AV0Z10480505 Keywords : hypernuclei * electroproduction reactions * strangeness Subject RIV: BE - Theoretical Physics Impact factor: 1.986, year: 2010

  7. SPECTROSCOPY OF MEDIUM-MASS HYPERNUCLEAR PRODUCTION

    Czech Academy of Sciences Publication Activity Database

    Motoba, T.; Bydžovský, Petr; Sotona, Miloslav; Itonaga, K.; Ogawa, K.; Hashimoto, O.

    2010-01-01

    Roč. 19, č. 12 (2010), s. 2470-2479 ISSN 0218-3013. [Sendai International Conference on Strangeness in Nuclear and Hadronic Systems. Sendai, 15.12.2008-18.12.2008] Institutional research plan: CEZ:AV0Z10480505 Keywords : Hypernuclear photoproduction * DWIA * unnatural parity states Subject RIV: BE - Theoretical Physics Impact factor: 0.695, year: 2010

  8. Hypernuclear spectroscopy via (e,e'K+) in JLab's Hall A

    International Nuclear Information System (INIS)

    LeRose, John J.; Jager, C.W. de; Feuerbach, R.J.; Higinbotham, D.W.; Reitz, B.; Acha, A.; Markowitz, P.; Bydzovsky, P.; Sotona, M.; Chang, C.C.; Cisbani, E.; Cusanno, F.; Frullani, S.; Garibaldi, F.; De Leo, R.; Lagamba, L.; Marrone, S.; Iodice, M.; Urciuoli, G.M.

    2008-01-01

    Results are presented from a new experiment (E94-107) in Hall A of the Thomas Jefferson National Accelerator Facility (JLab) producing 12 Λ B, 16 Λ N, and 9 Λ Li using electroproduction, (e,e ' K + ). In the hypernuclear missing-mass spectrum the experiment achieves very good energy resolution (670 keV FWHM) by exploiting the characteristics of the High Resolution spectrometer pair and the exceptional beam quality available at JLab. The spectrometers were used with the addition of an INFN provided pair of septum magnets to reach the desired small angles. Also, the Hall A standard complement of equipment was further augmented by the addition of a Ring Imaging Cherenkov detector (RICH) to achieve the best possible kaon identification

  9. High resolution spectroscopy of the 12Lambda B hypernucleus produced by the (e,e'K+) reaction.

    Science.gov (United States)

    Miyoshi, T; Sarsour, M; Yuan, L; Zhu, X; Ahmidouch, A; Ambrozewicz, P; Androic, D; Angelescu, T; Asaturyan, R; Avery, S; Baker, O K; Bertovic, I; Breuer, H; Carlini, R; Cha, J; Chrien, R; Christy, M; Cole, L; Danagoulian, S; Dehnhard, D; Elaasar, M; Empl, A; Ent, R; Fenker, H; Fujii, Y; Furic, M; Gan, L; Garrow, K; Gasparian, A; Gueye, P; Harvey, M; Hashimoto, O; Hinton, W; Hu, B; Hungerford, E; Jackson, C; Johnston, K; Juengst, H; Keppel, C; Lan, K; Liang, Y; Likhachev, V P; Liu, J H; Mack, D; Margaryan, A; Markowitz, P; Martoff, J; Mkrtchyan, H; Nakamura, S N; Petkovic, T; Reinhold, J; Roche, J; Sato, Y; Sawafta, R; Simicevic, N; Smith, G; Stepanyan, S; Tadevosyan, V; Takahashi, T; Tanida, K; Tang, L; Ukai, M; Uzzle, A; Vulcan, W; Wells, S; Wood, S; Xu, G; Yamaguchi, H; Yan, C

    2003-06-13

    High-energy, cw electron beams at new accelerator facilities allow electromagnetic production and precision study of hypernuclear structure, and we report here on the first experiment demonstrating the potential of the (e,e'K+) reaction for hypernuclear spectroscopy. This experiment is also the first to take advantage of the enhanced virtual photon flux available when electrons are scattered at approximately zero degrees. The observed energy resolution was found to be approximately 900 keV for the (12)(Lambda)B spectrum, and is substantially better than any previous hypernuclear experiment using magnetic spectrometers. The positions of the major excitations are found to be in agreement with a theoretical prediction and with a previous binding energy measurement, but additional structure is also observed in the core excited region, underlining the future promise of this technique.

  10. Hypernuclear physics studies of the P̅ANDA experiment at FAIR

    Science.gov (United States)

    Sanchez Lorente, Alicia

    2015-05-01

    Hypernuclear research will be one of the main topics addressed by the PANDA experiment at the planned Facility for Antiproton and Ion Research FAIR at Darmstadt (Germany). [1, 2] Thanks to the use of stored p̅ beams, copious production of double Λ hypernuclei is expected at the PANDA experiment, which will enable high precision γ spectroscopy of such nuclei for the first time, and consequently a unique chance to explore the hyperon-hyperon interaction. In particular, ambiguities of past experiments in determining the strength of the ΛΛ interaction will be avoided thanks to the excellent energy precision of a few keV (FWHM) achieved by germanium detectors. Such a resolution capability is particularly needed to resolve the small energy spacing of the order of (10-100) keV, which is characteristic from the spin doublet in hypernuclei the so -called "hypernuclear fine structure". In comparison to previous experiments, PANDA will benefit from a novel technique to assign the various observable γ-transitions in a unique way to specific double hypernuclei by exploring various light targets. Nevertheless, the ability to carry out unique assignments requires a devoted hypernuclear detector setup. This consists of a primary nuclear target for the production of Ξ- + overline Xi pairs, a secondary active target for the hypernuclei formation and the identification of associated decay products and a germanium array detector to perform γ spectroscopy. Moreover, one of the most challenging issues of this project is the fact that all detector systems need to operate in the presence of a high magnetic field and a large hadronic background. Accordingly, the need of an innovative detector concept will require dramatic improvements to fulfil these conditions and that will likely lead to a new generation of detectors. In the present work details concerning the current status of the activities related to the detector developments for this challenging programme will be given. Among

  11. Hypernuclear physics studies of the PANDA experiment at FAIR

    Science.gov (United States)

    Sanchez Lorente, Alicia

    2014-09-01

    Hypernuclear research will be one of the main topics addressed by the PANDA experiment at the planned Facility for Antiproton and Ion Research FAIR at Darmstadt (Germany). http://www. gsi.de, http://www.gsi.de/fair/. Thanks to the use of stored overline {p} beams, copious production of double Λ hypernuclei is expected at the PANDA experiment, which will enable high precision γ spectroscopy of such nuclei for the first time, and consequently a unique chance to explore the hyperon-hyperon interaction. In particular, ambiguities of past experiments in determining the strength of the ΛΛ interaction will be avoided thanks to the excellent energy precision of a few keV (FWHM) achieved by germanium detectors. Such a resolution capability is particularly needed to resolve the small energy spacing of the order of (10-100) keV, which is characteristic from the spin doublet in hypernuclei the so -called "hypernuclear fine structure". In comparison to previous experiments, PANDA will benefit from a novel technique to assign the various observable γ-transitions in a unique way to specific double hypernuclei by exploring various light targets. Nevertheless, the ability to carry out unique assignments requires a devoted hypernuclear detector setup. This consists of a primary nuclear target for the production of {Ξ }-+overline {Ξ } pairs, a secondary active target for the hypernuclei formation and the identification of associated decay products and a germanium array detector to perform γ spectroscopy. Moreover, one of the most challenging issues of this project is the fact that all detector systems need to operate in the presence of a high magnetic field and a large hadronic background. Accordingly, the need of an innovative detector concept will require dramatic improvements to fulfil these conditions and that will likely lead to a new generation of detectors. In the present talk details concerning the current status of the activities related to the detector developments

  12. Narrow Sigma -hypernuclear states

    CERN Document Server

    Gal, A

    1980-01-01

    It is shown that the spin-isospin dependence of low-energy Sigma N to Lambda N conversion leads to substantial quenching of nuclear-matter estimates of the widths of some Sigma -hypernuclear states produced in (K/sup -/, pi ) reactions, to a level below 10 MeV. The estimated widths compare favorably with those of the Sigma -hypernuclear peaks recently observed at CERN for /sup 7/Li, /sup 9/Be, and /sup 12/C. Tentative quantum number assignments are suggested for these states. (10 refs).

  13. Experiments with the High Resolution Kaon Spectrometer at Jlab Hall C and the New Spectroscopy of ^12_Lambda B Hypernuclei

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Liguang; Chen, Chunhua; Gogami, Toshiyuki; Kawama, Daisuke; Han, Yuncheng; Yuan, Lulin; Matsumura, Akihiko; Okayasu, Yuichi; Seva, Tomislav; Rodriguez, Victor; Baturin, Pavlo; Acha Quimper, Armando; Achenbach, Carsten; Ahmidouch, Abdellah; Albayrak, Ibrahim; Androic, Darko; Asaturyan, Arshak; Asaturyan, Razmik; Ates, Ozgur; Badui, Rafael; Baker, Oliver; Benmokhtar, Fatiha; Boeglin, Werner; Bono, Jason; Bosted, Peter; Brash, Edward; Carter, Philip; Carlini, Roger; Chiba, Atsushi; Christy, Michael; Cole, Leon; Dalton, Mark; Danagoulian, Samuel; Daniel, Aji; De Leo, Raffaele; Dharmawardane, Kahanawita; Doi, Daisuke; Egiyan, Kim; Elaasar, Mostafa; Ent, Rolf; Fenker, Howard; Fujii, Yu; Furic, Miroslav; Gabrielyan, Marianna; Gan, Liping; Garibaldi, Franco; Gaskell, David; Gasparian, Ashot; Gibson, Edward; Gueye, Paul; Hashimoto, Osamu; Honda, D; Horn, Tanja; Hu, Bitao; Hungerford, Ed; Jayalath, Chandana; Jones, Mark; Johnston, Kathleen; Kalantarians, Narbe; Kanda, Hiroki; Kaneta, M; Kato, F; Kato, Seigo; Kawai, Masaharu; Keppel, Cynthia; Khanal, Hari; Kohl, M; Kramer, Laird; Lan, Kejian; Li, Ya; Habarakada Liyanage, Anusha; Luo, Wei; Mack, David; Maeda, Kazushige; Malace, Simona; Margaryan, Amur; Marikyan, Gagik; Markowitz, Pete; Maruta, Tomofumi; Maruyama, Nayuta; Maxwell, Victor; Millener, David; Miyoshi, Toshinobu; Mkrtchyan, Arthur; Mkrtchyan, Hamlet; Motoba, Toshio; Nagao, Sho; Nakamura, Satoshi; Narayan, Amrendra; Neville, Casey; Niculescu, Gabriel; Niculescu, Maria; Nunez, Angel; Nuruzzaman, nfn; Nomura, Hiroshi; Nonaka, Kenichi; Ohtani, Atsushi; Oyamada, Masamichi; Perez, Naipy; Petkovic, Tomislav; Pochodzalla, J; Qiu, Xiyu; Randeniya, Kapugodage; Raue, Brian; Reinhold, Joerg; Rivera, R; Roche, Julie; Samanta, Chhanda; Sato, Yoshinori; Sawatzky, Bradley; Segbefia, Edwin; Schott, Diane; Shichijo, Ayako; Simicevic, Neven; Smith, Gregory; Song, Yushou; Sumihama, Mizuki; Tadevosyan, Vardan; Takahashi, Toshiyuki; Taniya, Naotaka; Tsukada, Kyo; Tvaskis, Vladas; Veilleux, Micah; Vulcan, William; Wells, Steven; Wesselmann, Frank; Wood, Stephen; Yamamoto, Taku; Yan, Chen; Ye, Z; Yokota, Kosuke; Zhamkochyan, Simon; Zhu, Lingyan

    2014-09-01

    Since the pioneering experiment, E89-009 studying hypernuclear spectroscopy using the $(e,e^{\\prime}K^+)$ reaction was completed, two additional experiments, E01-011 and E05-115, were performed at Jefferson Lab. These later experiments used a modified experimental design, the "Tilt Method", to dramatically suppress the large electromagnetic background, and allowed for a substantial increase in luminosity. Additionally, a new kaon spectrometer, HKS (E01-011), a new electron spectrometer, HES, and a new splitting magnet were added to produce precision, high-resolution hypernuclear spectroscopy. These two experiments, E01-011 and E05-115, resulted in two new data sets, producing sub-MeV energy resolution in the spectra of ${}^{7}_{\\Lambda}\\text{He}$, ${}^{12}_{\\Lambda}\\text{B}$ and ${}^{28}_{\\Lambda} \\text{Al}$ and ${}^{7}_{\\Lambda}\\text{He}$, ${}^{10}_{\\Lambda}\\text{Be}$, ${}^{12}_{\\Lambda}\\text{B}$ and ${}^{52}_{\\Lambda}\\text{V}$. All three experiments obtained a ${}^{12}_{\\Lambda}\\text{B}$, spectrum, which is the most characteristic $p$-shell hypernucleus and is commonly used for calibration. Independent analyses of these different experiments demonstrate excellent consistency and provide the clearest level structure to date of this hypernucleus as produced by the $(e,e^{\\prime}K^+)$ reaction. This paper presents details of these experiments, and the extraction and analysis of the observed ${}^{12}_{\\Lambda}\\text{B}$ spectrum.

  14. Spectroscopy of #Lambda#28Al, #Lambda#12B and #Lambda#7He by the (e,e(prime)K+) Reaction

    International Nuclear Information System (INIS)

    Matsumura, Akihiko

    2010-01-01

    Hypernuclear spectroscopy by the (e,e(prime)K + ) reaction is one of the powerful tools to investigate precise structures of hypernuclei and to study ΛN interaction. The second generation hypernuclear experiment at JLab Hall C(E01-011) was successfully performed in 2005, introducing the two novel experimental configurations, High resolution and large acceptance Kaon Spectrometer(HKS) and Tilt method. Thanks to these new configurations, various hypernuclei such as # Lambda# 28 Al, # Lambda# 12 B and # Lambda# 7 He were measured with precise energy resolution of 500 keV (FWHM). Obtained absolute binding energies and cross sections were compared with other experimental data and recent theoretical calculations based on shell model and cluster model. The results of this study provided new information on ΛN interaction.

  15. A high resolution germanium detector array for hypernuclear studies at PANDA

    Energy Technology Data Exchange (ETDEWEB)

    Bleser, Sebastian; Sanchez Lorente, Alicia; Steinen, Marcell [Helmholtz-Institut Mainz (Germany); Gerl, Juergen; Kojouharova, Jasmina; Kojouharov, Ivan [GSI Darmstadt (Germany); Iazzi, Felice [Politecnico, Torino (Italy); INFN, Torino (Italy); Pochodzalla, Josef; Rittgen, Kai; Sahin, Cihan [Institute for Nuclear Physics, JGU Mainz (Germany)

    2014-07-01

    The PANDA experiment, planned at the FAIR facility in Darmstadt, aims at the high resolution γ-spectroscopy of double Λ hypernuclei. For this purpose a devoted detector setup is required, consisting of a primary nuclear target, an active secondary target and a germanium detector array for the γ-spectroscopy. Due to the limited space within the PANDA detector a compact design is required. In particular the conventional LN{sub 2} cooling system must be replaced by an electro mechanical device and a new arrangement of the crystals is needed. This presentation shows the progress in the development of the germanium detectors. First results of in-beam measurements at COSY with a new electro mechanically cooled single crystal prototype are presented. Digital pulse shape analysis is used to disentangle pile up events due to the high event rate. This analysis technique also allows to recover the high original energy resolution in case of neutron damage. Finally the status of the new triple crystal detector prototype is given.

  16. Hypernuclear matter in strong magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Monika [Institute for Theoretical Physics, J.W. Goethe-University, D-60438 Frankfurt am Main (Germany); Indian Institute of Technology Rajasthan, Old Residency Road, Ratanada, Jodhpur 342011 (India); Mukhopadhyay, Banibrata [Department of Physics, Indian Institute of Science, Bangalore 560012 (India); Sedrakian, Armen, E-mail: sedrakian@th.physik.uni-frankfurt.de [Institute for Theoretical Physics, J.W. Goethe-University, D-60438 Frankfurt am Main (Germany)

    2013-01-17

    Compact stars with strong magnetic fields (magnetars) have been observationally determined to have surface magnetic fields of order of 10{sup 14}–10{sup 15} G, the implied internal field strength being several orders larger. We study the equation of state and composition of dense hypernuclear matter in strong magnetic fields in a range expected in the interiors of magnetars. Within the non-linear Boguta–Bodmer–Walecka model we find that the magnetic field has sizable influence on the properties of matter for central magnetic field B⩾10{sup 17} G, in particular the matter properties become anisotropic. Moreover, for the central fields B⩾10{sup 18} G, the magnetized hypernuclear matter shows instability, which is signalled by the negative sign of the derivative of the pressure parallel to the field with respect to the density, and leads to vanishing parallel pressure at the critical value B{sub cr}≃10{sup 19} G. This limits the range of admissible homogeneously distributed fields in magnetars to fields below the critical value B{sub cr}.

  17. Cooling of hypernuclear compact stars

    Science.gov (United States)

    Raduta, Adriana R.; Sedrakian, Armen; Weber, Fridolin

    2018-04-01

    We study the thermal evolution of hypernuclear compact stars constructed from covariant density functional theory of hypernuclear matter and parametrizations which produce sequences of stars containing two-solar-mass objects. For the input in the simulations, we solve the Bardeen-Cooper-Schrieffer gap equations in the hyperonic sector and obtain the gaps in the spectra of Λ, Ξ0, and Ξ- hyperons. For the models with masses M/M⊙ ≥ 1.5 the neutrino cooling is dominated by hyperonic direct Urca processes in general. In the low-mass stars the (Λp) plus leptons channel is the dominant direct Urca process, whereas for more massive stars the purely hyperonic channels (Σ-Λ) and (Ξ-Λ) are dominant. Hyperonic pairing strongly suppresses the processes on Ξ-s and to a lesser degree on Λs. We find that intermediate-mass 1.5 ≤ M/M⊙ ≤ 1.8 models have surface temperatures which lie within the range inferred from thermally emitting neutron stars, if the hyperonic pairing is taken into account. Most massive models with M/M⊙ ≃ 2 may cool very fast via the direct Urca process through the (Λp) channel because they develop inner cores where the S-wave pairing of Λs and proton is absent.

  18. A high resolution germanium detector array for hypernuclear studies at PANDA

    Energy Technology Data Exchange (ETDEWEB)

    Bleser, Sebastian; Sanchez Lorente, Alicia; Steinen, Marcell [Helmholtz-Institut Mainz (Germany); Gerl, Juergen; Kojouharov, Ivan [GSI, Darmstadt (Germany); Iazzi, Felice [Politecnico, Torino, Turin (Italy); INFN, Torino, Turin (Italy); Pochodzalla, Josef; Rittgen, Kai; Sahin, Cihan [Institute for Nuclear Physics, JGU Mainz (Germany); Collaboration: PANDA-Collaboration

    2013-07-01

    The PANDA experiment, planned at the FAIR facility in Darmstadt, aims at the high resolution γ-spectroscopy of double Λ hypernuclei. For this purpose a devoted detector setup is required, consisting of a primary nuclear target, an active secondary target and a germanium detector array for the γ-spectroscopy. Due to the limited space within the PANDA detector a compact design is required. In particular the conventional LN{sub 2} cooling system must be replaced by an electro-mechanical device and a new arrangement of the crystals is needed. This poster shows the ongoing development of the germanium detectors. Test measurements of a single crystal prototype with an improved cooling concept are shown. Thermal simulations for a triple crystal detector are presented. Aditionally studies of the optimization of the detector arrangement inside the PANDA barrel spectrometer are shown. Finally the status on digital pulse shape analysis is presented which will be necessary to deal with high counting rates and to recover the high original energy resolution in case of neutron damage.

  19. Essence of hypernuclear physics

    International Nuclear Information System (INIS)

    Bando, H.

    1982-09-01

    This is a lecture on the present status of hypernuclear physics so that a gross picture can be obtained on what have been done and what should be done. The baryons with non-zero strangeness quantum number are generally called hyperons (hereafter denoted as Y), of which the lambda, sigma and xi particles together with the nucleon (N) constitute the baryon octet. A hypernucleus is the nuclear many-body system which contains hyperons in addition to nucleons as its constituent particles. The properties of the Y-N interaction can be extracted from the Y-N scattering data and information of hypernuclei along with theoretical consideration. The binding energy of a lambda particle in hypernuclei has been obtained from emulsion experiment. The hypernuclear excited states were observed in the (K - , pi - ) reaction experiment. The theoretical studies to understand the properties of the lambda single particle potential have been made within the framework of the G-matrix theory by employing Nijmegen OBE Y-N potential. The collective excitation of lambda hypernuclei is discussed. Spectroscopic information can be obtained by measuring the gamma-ray from hypernuclei. The sigma-hypernuclei have been observed through (K - , pi - ) reaction, while the experimental evidence of the xi-hypernuclei is not yet reported. The properties of both hypernuclei are discussed. The production and the properties of multi-hypernuclei are also discussed. The decay of lambda-hypernuclei will give structural characteristics of parents and daughters. Discussion of flavour nuclei and the concluding remarks are presented. (Kato, T.)

  20. Hyperon and hypernuclear physics with intense beams

    International Nuclear Information System (INIS)

    Gibson, B.F.

    1983-01-01

    A brief examination of progress in the study of hypernuclear physics and the hyperon-nucleon interaction is presented. The use of #betta#-hypernuclei in the study of conventional (nonstrange) nuclei is explored. The status of the hyperon-nucleon force problem is reviewed. Anecdotal results are discussed for baryon numbers 4 and 13. μ-hypernuclei are discussed. Production of S = -2 hypernuclei is mentioned

  1. Unified description of quasi-free and resonant processes of hypernuclear production and decay

    International Nuclear Information System (INIS)

    Wuensch, R.

    1992-03-01

    We review a unified description of resonant and quasi-free hypernuclear production reactions on the basis of the continuum shell-model. Both reaction mechanisms are considered as boundary cases of the same process. We apply the model to the (K - , π) and to the (π, K + ) reaction on light target nuclei. Particular attention is given to the consequences of the shallow hyperon-nucleus potential. Hypernuclear disintegration by baryon emission is considered as transition from the bound to the unbound part of the configurational space. (orig.)

  2. Hypernuclear physics with a neutral meson spectrometer

    International Nuclear Information System (INIS)

    Peng, J.C.

    1993-01-01

    The (K - , π degrees) reaction, which complements the (K - , π - ) and the (π + , K + ) reactions, offers another means to study hypernuclear physics. The physics motivation for measuring the (K - , π degrees) reaction is discussed. The feasibility for detecting π degrees using the LAMPF Neutral Meson Spectrometer is studied with Monte-Carlo simulations. We conclude that the (K - , π degrees) reaction can be well measured at existing kaon beam lines

  3. Optimization of the target system for the hypernuclear experiment at PANDA

    Energy Technology Data Exchange (ETDEWEB)

    Bleser, Sebastian; Sanchez Lorente, Alicia; Steinen, Marcell [Helmholtz-Institut Mainz (Germany); Iazzi, Felice [Politecnico, Torino (Italy); INFN, Torino (Italy); Pochodzalla, Josef; Rittgen, Kai; Sahin, Cihan [Institut fuer Kernphysik, Johannes Gutenberg-Universitaet, Mainz (Germany)

    2014-07-01

    Gamma spectroscopy of double Λ hypernuclei will be one of the main topics addressed by the PANDA experiment at the planned FAIR-facility at Darmstadt, Germany. For this project a dedicated hypernuclear detector setup will be installed. In addition to the general purpose of the PANDA detector it consists of a primary nuclear target for the production of Ξ{sup -} + anti Ξ pairs, a secondary active target for the formation of hypernuclei and the identification of associated decay products as well as a germanium detector array to perform γ spectroscopy. Results of the current hardware development will be presented in the talk: For the positioning of the primary filament target in the beam halo the functionality of piezo motors is investigated in vacuum. Stability tests of the primary target chamber are performed with various thin materials. For the secondary target the readout of silicon microstrip detectors with ultra-thin flexible cables is checked to fan out the readout electronics. Furthermore, design studies of support structures for the whole detector setup are considered. On the simulation side a compromise between the stopping probability of Ξ{sup -} hyperons and the reconstruction accuracy of weak decay pions is discussed.

  4. Optimization of the target system for the hypernuclear experiment at anti PANDA

    Energy Technology Data Exchange (ETDEWEB)

    Bleser, Sebastian; Sanchez Lorente, Alicia; Steinen, Marcell [Helmholtz-Institut Mainz (Germany); Iazzi, Felice [Politecnico di Torino, Turin (Italy); INFN, Turin (Italy); Pochodzalla, Josef; Rittgen, Kai; Sahin, Cihan [Mainz Univ. (Germany). Inst. fuer Kernphysik; Collaboration: PANDA-Collaboration

    2013-07-01

    Gamma spectroscopy of double Λ hypernuclei will be one of the main topics addressed by the anti PANDA experiment at the planned FAIR-Facility at Darmstadt, Germany. For this project a dedicated hypernuclear detector setup will be installed. In addition to the general purpose of the anti PANDA detector it consists of a primary nuclear target for the production of Ξ{sup -}+ anti Ξ pairs, a secondary active target for the formation of hypernuclei and the identification of associated decay products as well as a germanium detector array to perform γ spectroscopy. In order to stop the Ξ{sup -} particles and track pions from the decay of the produced hypernuclei, the secondary target is composed as a compact structure of silicon microstrip detectors and absorber material. Results of the current hardware development will be presented on the poster including stability tests for the primary target chamber, the readout of silicon microstrip detectors with ultra-thin flexible cables to fan out the readout electronics and design studies of support structures for the whole detector setup. On the simulation side a compromise between the stopping of Ξ{sup -} hyperons and the reconstruction accuracy of weak decay pions is discussed.

  5. 1 to 2 GeV/c beam line for hypernuclear and kaon research

    International Nuclear Information System (INIS)

    Chrien, R.E.

    1985-01-01

    A kaon beam line operating in the range from 1.0 to 2.0 GeV/c is proposed. The line is meant for kaon and pion research in a region hitherto inaccessible to experimenters. Topics in hypernuclear and kaon physics of high current interest include the investigation of doubly strange nuclear systems with the K - ,K + reaction, searching for dibaryon resonances, hyperon-nucleon interactions, hypernuclear γ rays, and associated production of excited hypernuclei. The beam line would provide separated beams of momentum analyzed kaons at intensities greater than 10 6 particles per spill with a momentum determined to one part in a thousand. This intensity is an order of magnitude greater than that currently available. 63 references

  6. Exchange currents for hypernuclear magnetic moments

    International Nuclear Information System (INIS)

    Saito, K.; Oka, M.; Suzuki, T.

    1997-01-01

    The meson (K and π) exchange currents for the hypernuclear magnetic moments are calculated using the effective Lagrangian method. The seagull diagram, the mesonic diagram and the Σ 0 -excitation diagram are considered. The Λ-N exchange magnetic moments for 5 Λ He and A=6 hypernuclei are calculated employing the harmonic oscillator shell model. It is found that the two-body correction is about -9% of the single particle value for 5 Λ He. The π exchange current, induced only in the Σ 0 -excitation diagram, is found to give dominant contribution for the isovector magnetic moments of hypernuclei with A=6. (orig.)

  7. A high resolution portable spectroscopy system

    International Nuclear Information System (INIS)

    Kulkarni, C.P.; Vaidya, P.P.; Paulson, M.; Bhatnagar, P.V.; Pande, S.S.; Padmini, S.

    2003-01-01

    Full text: This paper describes the system details of a High Resolution Portable Spectroscopy System (HRPSS) developed at Electronics Division, BARC. The system can be used for laboratory class, high-resolution nuclear spectroscopy applications. The HRPSS consists of a specially designed compact NIM bin, with built-in power supplies, accommodating a low power, high resolution MCA, and on-board embedded computer for spectrum building and communication. A NIM based spectroscopy amplifier and a HV module for detector bias are integrated (plug-in) in the bin. The system communicates with a host PC via a serial link. Along-with a laptop PC, and a portable HP-Ge detector, the HRPSS offers a laboratory class performance for portable applications

  8. Is nuclear structure relevant to non-mesonic hyper-nuclear weak decay?

    International Nuclear Information System (INIS)

    Wu, H.C.; Ponce, W.A.

    2001-01-01

    Full text: The focus of existing studies of the non-mesonic hypernuclear weak decay has been on the two-body process ΛN → NN, whereas the investigation on effects of nuclear structure is relatively rare. Some authors even assumed that the nuclear structure is irrelevant to the non mesonic hypernuclear weak decay. In this work we try to reveal the importance of nuclear structure in non mesonic weak decay of the Λ - hypernuclei through examining the relevance of many-body properties as well as the single particle properties of different nuclear models. For hypernucleus 12 Λ C, a comparison between the L-S coupling (realized by the symmetry model SU(4) x SU(3) and the j-j coupling (realized by the single particle shell model) gives an estimate of the range of nuclear structure effects. It has been found that while the total decay rate is almost independent of coupling schemes, the ratio Γn/Γp has a difference of around 30% between the two limits of many-body wave functions. There also exists a strong dependence of the total decay rate and the ratio Γn/Γp on the single particle properties of shell model, such as the binding energy of nucleon and the parameters of harmonic oscillator orbits, etc. Therefore, one may conclude that the nuclear structure is relevant to the non-mesonic hypernuclear weak decay. With the mechanism of ΛN → NN transition being restricted to one pion exchange (OPE) only, the consequences of possible contribution from the ΔI = 3/2 channel is investigated in a phenomenological manner. It has been shown that a mixing of ΔI = 3/2 channel will change the total decay rate as well as the ratio Γn/Γp considerably. (Author)

  9. Hypernuclear properties derived from the Nijmegen soft-core OBE potential

    International Nuclear Information System (INIS)

    Yamamoto, Yasuo; Bando, Hiroharu.

    1990-01-01

    The Nijmegen soft-core YN potential is applied to the G-matrix calculation in nuclear matter, characteristics of which are investigated in comparison with the hard-core models D and F. The ΛN G-matrix interaction is simulated in a three-range Gaussian form and applied to various hypernuclear calculations. Λ binding energies in ground and excited states are wholly reproduced from light to medium heavy hypernuclei observed in experiments. (author)

  10. High resolution hypernuclear spectroscopy at Jefferson Lab Hall A

    Czech Academy of Sciences Publication Activity Database

    Garibaldi, F.; Bydžovský, Petr; Cisbani, E.; Cusanno, F.; De Leo, R.; Frullani, S.; Iodice, M.; LeRose, J. J.; Markowitz, P.; Millener, D.J.; Urciuoli, G. M.

    2013-01-01

    Roč. 914, SEP (2013), s. 34-40 ISSN 0375-9474 R&D Projects: GA ČR(CZ) GAP203/12/2126 Institutional support: RVO:61389005 Keywords : hypernuclei * electroproduction reactions Subject RIV: BE - Theoretical Physics Impact factor: 2.499, year: 2013 http://www.sciencedirect.com/science/article/pii/S037594741300170X

  11. Achieving sensitive, high-resolution laser spectroscopy at CRIS

    Energy Technology Data Exchange (ETDEWEB)

    Groote, R. P. de [Instituut voor Kern- en Stralingsfysica, KU Leuven (Belgium); Lynch, K. M., E-mail: kara.marie.lynch@cern.ch [EP Department, CERN, ISOLDE (Switzerland); Wilkins, S. G. [The University of Manchester, School of Physics and Astronomy (United Kingdom); Collaboration: the CRIS collaboration

    2017-11-15

    The Collinear Resonance Ionization Spectroscopy (CRIS) experiment, located at the ISOLDE facility, has recently performed high-resolution laser spectroscopy, with linewidths down to 20 MHz. In this article, we present the modifications to the beam line and the newly-installed laser systems that have made sensitive, high-resolution measurements possible. Highlights of recent experimental campaigns are presented.

  12. High-resolution coherent three-dimensional spectroscopy of Br2.

    Science.gov (United States)

    Chen, Peter C; Wells, Thresa A; Strangfeld, Benjamin R

    2013-07-25

    In the past, high-resolution spectroscopy has been limited to small, simple molecules that yield relatively uncongested spectra. Larger and more complex molecules have a higher density of peaks and are susceptible to complications (e.g., effects from conical intersections) that can obscure the patterns needed to resolve and assign peaks. Recently, high-resolution coherent two-dimensional (2D) spectroscopy has been used to resolve and sort peaks into easily identifiable patterns for molecules where pattern-recognition has been difficult. For very highly congested spectra, however, the ability to resolve peaks using coherent 2D spectroscopy is limited by the bandwidth of instrumentation. In this article, we introduce and investigate high-resolution coherent three-dimensional spectroscopy (HRC3D) as a method for dealing with heavily congested systems. The resulting patterns are unlike those in high-resolution coherent 2D spectra. Analysis of HRC3D spectra could provide a means for exploring the spectroscopy of large and complex molecules that have previously been considered too difficult to study.

  13. Proceedings of TRIUMF/KEK workshop on hypernuclear physics at KAON

    International Nuclear Information System (INIS)

    1989-07-01

    A workshop on 'Hypernuclear Physics at KAON' was held on June 17-18, 1989 at KEK. 18 participants from abroad and more than 30 domestic participants attended. Following the general reviews of pre-KAON status, active discussions of future possibilities with KAON were carried out. Fundamental questions which stimulate experimental efforts were raised and various new ambitious ideas for experimental possibilities were presented. The discussions assist design studies of the KAON beam lines and help to promote the field of KAON physics. This publication is the collection of the transparencies and memoranda of the presentations and discussions. (A.Y.)

  14. HIGH-RESOLUTION HYPERNUCLEAR SPECTROSCOPY ELECTRON SCATTERING AT JLab, HALL A

    Czech Academy of Sciences Publication Activity Database

    Garibaldi, F.; Cisbani, E.; Cusanno, F.; Frullani, S.; Iodice, M.; Urciuoli, G.M.; De Leo, R.; Lagamba, L.; Marrone, S.; LeRose, J. J.; de Jager, C.W.; Feuerbach, R. J.; Higinbotham, D. W.; Reitz, B.; Acha, A.; Markowitz, P.; Bydžovský, Petr; Sotona, Miloslav; Chang, C. C.; Millener, J.

    2010-01-01

    Roč. 19, č. 12 (2010), s. 2487-2496 ISSN 0218-3013. [Sendai International Conference on Strangeness in Nuclear and Hadronic Systems. Sendai, 15.12.2008-18.12.2008] R&D Projects: GA ČR GA202/05/2142 Institutional research plan: CEZ:AV0Z10480505 Keywords : ELECTROMAGNETIC PRODUCTION * JEFFERSON-LAB * STRANGENESS Subject RIV: BE - Theoretical Physics Impact factor: 0.695, year: 2010

  15. Modelling high-resolution electron microscopy based on core-loss spectroscopy

    International Nuclear Information System (INIS)

    Allen, L.J.; Findlay, S.D.; Oxley, M.P.; Witte, C.; Zaluzec, N.J.

    2006-01-01

    There are a number of factors affecting the formation of images based on core-loss spectroscopy in high-resolution electron microscopy. We demonstrate unambiguously the need to use a full nonlocal description of the effective core-loss interaction for experimental results obtained from high angular resolution electron channelling electron spectroscopy. The implications of this model are investigated for atomic resolution scanning transmission electron microscopy. Simulations are used to demonstrate that core-loss spectroscopy images formed using fine probes proposed for future microscopes can result in images that do not correspond visually with the structure that has led to their formation. In this context, we also examine the effect of varying detector geometries. The importance of the contribution to core-loss spectroscopy images by dechannelled or diffusely scattered electrons is reiterated here

  16. High resolution UV spectroscopy and laser-focused nanofabrication

    NARCIS (Netherlands)

    Myszkiewicz, G.

    2005-01-01

    This thesis combines two at first glance different techniques: High Resolution Laser Induced Fluorescence Spectroscopy (LIF) of small aromatic molecules and Laser Focusing of atoms for Nanofabrication. The thesis starts with the introduction to the high resolution LIF technique of small aromatic

  17. High energy resolution off-resonant X-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wojciech, Blachucki [Univ. of Fribourg (Switzerland). Dept. of Physics

    2015-10-16

    This work treats of the high energy resolution off-resonant X-ray spectroscopy (HEROS) method of determining the density of unoccupied electronic states in the vicinity of the absorption edge. HEROS is an alternative to the existing X-ray absorption spectroscopy (XAS) methods and opens the way for new studies not achievable before.

  18. High resolution mid-infrared spectroscopy based on frequency upconversion

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin; Hu, Qi; Tidemand-Lichtenberg, Peter

    2013-01-01

    signals can be analyzed. The obtainable frequency resolution is usually in the nm range where sub nm resolution is preferred in many applications, like gas spectroscopy. In this work we demonstrate how to obtain sub nm resolution when using upconversion. In the presented realization one object point...... high resolution spectral performance by observing emission from hot water vapor in a butane gas burner....

  19. High resolution photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Arko, A.J.

    1988-01-01

    Photoelectron Spectroscopy (PES) covers a very broad range of measurements, disciplines, and interests. As the next generation light source, the FEL will result in improvements over the undulator that are larger than the undulater improvements over bending magnets. The combination of high flux and high inherent resolution will result in several orders of magnitude gain in signal to noise over measurements using synchrotron-based undulators. The latter still require monochromators. Their resolution is invariably strongly energy-dependent so that in the regions of interest for many experiments (h upsilon > 100 eV) they will not have a resolving power much over 1000. In order to study some of the interesting phenomena in actinides (heavy fermions e.g.) one would need resolving powers of 10 4 to 10 5 . These values are only reachable with the FEL

  20. Spectroscopic study of the Lambda hypernuclei by the (e,e'K+) reaction

    Energy Technology Data Exchange (ETDEWEB)

    Miyoshi, Toshinobu [Tohoku Univ., Sendai (Japan)

    2002-01-01

    Hypernuclear spectroscopy study via the (e,e'K+) reaction has been carried out for the first time, establishing a new technique to study Lambda hypernuclei. The high quality electron beam at Jefferson Lab made it possible to measure Lambda hypernuclear spectra with an energy resolution better than 1 MeV (FWHM). The present experiment was designed to make full use of the virtual photon flux, which peaks at very forward angles, by detecting scattered electrons at 0 degrees. Scattered positive kaons were also detected near 0 degrees, where the cross section of the kaon photo-production is maximized. This unique kinematical configuration was realized with the HyperNuclear Spectrometer System (HNSS), which consisted of the Short-Orbit Spectrometer, the Enge Split-Pole Spectrometer, and the splitter magnet. The $12\\atop{Λ}$B mass spectrum was measured in the 12C(e,e'K+)$12\\atop{Λ}$ reaction with 0.9 MeV (FWHM) energy resolution. The averaged binding energy of the $12\\atop{Λ}$B ground state doublet was obtained to be 11.7 ± 0.1 (statistical) ± 0.3 (systematic) MeV, which is consistent with emulsion data. The general spectral structure of the 12C(e,e'K+) $12\\atop{Λ}$B reaction was found to be similar to that of the 12C(Λ+,K+)$12\\atop{Λ}$C reaction, showing characteristic peaks corresponding to sLambda and pLambda orbits, as well as a few core-excited states. The cross section of the $12\\atop{Λ}$B ground state doublet was derived to be 117 ± 13 (statistical) ± 14 (systematic) nb/sr. The theoretical prediction of the cross section was consistent with the present result, validating DWIA calculation for hypernuclear yields. The present study proved the effectiveness of the (e,e'K+) reaction for future Lambda hypernuclear spectroscopy studies.

  1. Weak decay of Λ hypernuclei. Recent results from Korea-Japan collaboration research on hypernuclear physics at KEK

    International Nuclear Information System (INIS)

    Bhang, H.; Park, H.; Kim, J.H.

    1999-01-01

    Through the last 7-8 years of collaboration with the SKS hypernuclear physics group at KEK, we have concentrated on the measurement of Λ hypernuclear decays. Non-mesonic weak decay mode of Λ hypernucleus is especially interesting and has been the central theme of our collaboration researches. We have measured the weak decay observables of Λ hypernuclei over a broad mass range, A = 11 - 89, from which their characteristic mass dependences are clearly observed. The lifetime decreases slightly from that of free Λ and quickly saturates at ∼80 percent of τ Λ in free space as the mass number increases. The preliminary results on Γ n /Γ p confirm the domination of the ratio Γ n over Γ p and restate the existing discrepancy between the values of experimental data and theoretical calculation. Much improved neutron detection efficiency in the experiment, KEK-PS E369, will shed light on the understanding of this puzzling ratio. The collaboration produced a series of excellent data on the decay. (author)

  2. Hypernuclear properties derived from the Juelich hyperon-nucleon interaction (in comparison with the Nijmegen interactions)

    International Nuclear Information System (INIS)

    Yamamoto, Y.; Reuber, A.; Himeno, H.; Nagata, S.; Motoba, T.

    1992-01-01

    The G-matrix interactions are derived from the Juelich YN interaction models A and B, compared with those from the Nijmegen models. The DDHF calculations for heavy Λ hypernuclei and the shell-model analysis for spin-doublet states of light hypernuclei are performed by use of the G-matrix interactions. It is demonstrated that the OBE models can be tested by the hypernuclear calculations. (author) 3 tabs., 5 figs., 23 refs

  3. High resolution spectroscopy in the microwave and far infrared

    Science.gov (United States)

    Pickett, Herbert M.

    1990-01-01

    High resolution rotational spectroscopy has long been central to remote sensing techniques in atmospheric sciences and astronomy. As such, laboratory measurements must supply the required data to make direct interpretation of data for instruments which sense atmospheres using rotational spectra. Spectral measurements in the microwave and far infrared regions are also very powerful tools when combined with infrared measurements for characterizing the rotational structure of vibrational spectra. In the past decade new techniques were developed which have pushed high resolution spectroscopy into the wavelength region between 25 micrometers and 2 mm. Techniques to be described include: (1) harmonic generation of microwave sources, (2) infrared laser difference frequency generation, (3) laser sideband generation, and (4) ultrahigh resolution interferometers.

  4. High-resolution γ-ray spectroscopy of hyperfragments produced by stopped K- reactions

    International Nuclear Information System (INIS)

    Miwa, K.; Tanida, K.; Akikawa, H.; Fukao, Y.; Hiyama, E.; Hotchi, H.; Imai, K.; Miura, Y.; Mizunuma, K.; Nakamura, S.N.; Niiyama, M.; Ota, S.; Saha, P.K.; Takahashi, H.; Takahashi, T.; Tamura, H.; Terashima, S.; Togawa, M.; Ukai, M.

    2005-01-01

    We performed an experiment to measure γ rays of hyperfragments produced by stopped K- reactions on light (A= 1/2+) in 7 Λ Li with 10 B, 11 B and 12 C targets and obtained the γ-ray intensity to be (7.5+/-1.6)x10-4 per stopped K- for 10 B target. In addition, a candidate for a new hypernuclear γ ray was observed. These results show that this method is quite suitable for the systematic study of hypernuclei

  5. Improving depth resolutions in positron beam spectroscopy by concurrent ion-beam sputtering

    Science.gov (United States)

    John, Marco; Dalla, Ayham; Ibrahim, Alaa M.; Anwand, Wolfgang; Wagner, Andreas; Böttger, Roman; Krause-Rehberg, Reinhard

    2018-05-01

    The depth resolution of mono-energetic positron annihilation spectroscopy using a positron beam is shown to improve by concurrently removing the sample surface layer during positron beam spectroscopy. During ion-beam sputtering with argon ions, Doppler-broadening spectroscopy is performed with energies ranging from 3 keV to 5 keV allowing for high-resolution defect studies just below the sputtered surface. With this technique, significantly improved depth resolutions could be obtained even at larger depths when compared to standard positron beam experiments which suffer from extended positron implantation profiles at higher positron energies. Our results show that it is possible to investigate layered structures with a thickness of about 4 microns with significantly improved depth resolution. We demonstrated that a purposely generated ion-beam induced defect profile in a silicon sample could be resolved employing the new technique. A depth resolution of less than 100 nm could be reached.

  6. Novel techniques in VUV high-resolution spectroscopy

    NARCIS (Netherlands)

    Ubachs, W.M.G.; Salumbides, E.J.; Eikema, K.S.E.; de Oliveira, N.; Nahon, L.

    2014-01-01

    Novel VUV sources and techniques for VUV spectroscopy are reviewed. Laser-based VUV sources have been developed via non-linear upconversion of laser pulses in the nanosecond (ns), the picosecond (ps), and femtosecond (fs) domain, and are applied in high-resolution gas phase spectroscopic studies.

  7. Feasibility study of performing high precision gamma spectroscopy of {lambda}{lambda} hypernuclei in the anti PANDA experiment

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Lorente, Alicia

    2010-09-30

    hyperfragments {sup 4}{sub {lambda}}H and {sup 9}{sub {lambda}}Be, have been well identified. For the background handling a method based on time measurement has also been implemented. However, the percentage of tagged events related to the production of {xi}{sup -}+ anti {xi} pairs, varies between 20% and 30% of the total number of produced events of this type. As a consequence, further considerations have to be made to increase the tagging efficiency by a factor of 2. The contribution of the background reactions to the radiation damage on the germanium detectors has also been studied within the simulation. Additionally, a test to check the degradation of the energy resolution of the germanium detectors in the presence of a magnetic field has also been performed. No significant degradation of the energy resolution or in the electronics was observed. A correlation between rise time and the pulse shape has been used to correct the measured energy. Based on the present results, one can say that the performance of {gamma} spectroscopy of double {lambda} hypernuclei at the anti PANDA experiment seems feasible. A further improvement of the statistics is needed for the background rejection studies. Moreover, a more realistic layout of the hypernuclear detectors has been suggested using the results of these studies to accomplish a better balance between the physical and the technical requirements. (orig.)

  8. Beam-transport system for high-resolution heavy-ion spectroscopy

    International Nuclear Information System (INIS)

    Roussel, P.; Kashy, E.

    1980-01-01

    A method is given to adjust a beam-transport system to the requirements of high-energy resolution heavy-ion spectroscopy. The results of a test experiment performed on a MP tandem with a 12 C beam are shown. A drastic improvement in energy resolution is obtained for a kinematical factor K=1/p dp/dtheta=0.12 [fr

  9. High-resolution inverse Raman and resonant-wave-mixing spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Rahn, L.A. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    These research activities consist of high-resolution inverse Raman spectroscopy (IRS) and resonant wave-mixing spectroscopy to support the development of nonlinear-optical techniques for temperature and concentration measurements in combustion research. Objectives of this work include development of spectral models of important molecular species needed to perform coherent anti-Stokes Raman spectroscopy (CARS) measurements and the investigation of new nonlinear-optical processes as potential diagnostic techniques. Some of the techniques being investigated include frequency-degenerate and nearly frequency-degenerate resonant four-wave-mixing (DFWM and NDFWM), and resonant multi-wave mixing (RMWM).

  10. High precision γ spectroscopy of ΛΛ-Hypernuclei at the PANDA experiment

    International Nuclear Information System (INIS)

    Sanchez Lorente, A

    2013-01-01

    Hypernuclear research will be one of the main topics addressed by the PANDA experiment at FAIR at Darmstadt (Germany). Thanks to the use of stored antiproton beams, copious production of double ΛΛ-Hypernuclei is expected at the PANDA experiment, which will enable high precision gamma spectroscopy of such nuclei for the first time. At PANDA excited states of hypernuclei will be used as a starting point for the formation of double ΛΛ-Hypernuclei. In order to predict the yield of particle-stable double hypernuclei a microcanonical decay model was developed. For the detection of these nuclei, a devoted hypernuclear detector setup is planned. This set-up consists, in addition to the general purpose of the PANDA set-up, of a primary nuclear target for the production of pairs, a secondary active target for the hypernuclei formation and the identification of associated decay products and a germanium array detector to perform gamma spectroscopy. Moreover, one of the most challenging issues of this project is the fact that all detector systems need to operate in the presence of a high magnetic field and a large hadronic background. In these proceedings details concerning the identification procedure of double hypernuclei and the suppression of background will be presented. In addition, the current status of the activities related to the detector developments for this challenging programme will be briefly given.

  11. The HKS experiment on Lambda--hypernuclear spectroscopy via electroproduction at JLab

    International Nuclear Information System (INIS)

    Tang, Liguang; Yuan, Lulin; Acha Quimper, Armando; Ahmidouch, Abdellah; Androic, Darko; Asaturyan, Arshak; Asaturyan, Razmik; Baker, O.; Baturin, Pavlo; Benmokhtar, Fatiha; Bosted, Peter; Carlini, Roger; Chen, X.; Christy, Michael; Cole, Leon; Danagoulian, Samuel; Daniel, Aji; Dharmawardane, Kahanawita; Egiyan, Kim; Elaasar, Mostafa; Ent, Rolf; Fenker, Howard; Fujii, Yu; Furic, Miroslav; Gan, Liping; Gaskell, David; Gasparian, Ashot; Gibson, Edward; Gueye, Paul; Halkyard, Rebekah; Hashimoto, Osamu; Honda, D.; Horn, Tanja; Hu, Bitao; Hu, S.; Hungerford, Ed; Ispiryan, Mikayel; Johnston, Kathleen; Jones, Mark; Kalantarians, Narbe; Kaneta, M.; Kato, F.; Kato, Seigo; Kawama, Daisuke; Keppel, Cynthia; Li, Y.; Luo, Wei; Mack, David; Margaryan, Amur; Marikyan, Gagik; Maruyama, Nayuta; Matsumura, Akihiko; Miyoshi, Toshinobu; Mkrtchyan, Arthur; Mkrtchyan, Hamlet; Nakamura, Satoshi; Navasardyan, Tigran; Niculescu, Gabriel; Niculescu, Maria-Ioana; Nomura, Hiroshi; Nonaka, Kenichi; Ohtani, Atsushi; Okayasu, Yuichi; Pamela, Priscilla; Perez, Naipy; Petkovic, Tomislav; Randeniya, Kapugodage; Reinhold, Joerg; Rivera Castillo, Roberto; Roche, Julie; Rodriguez, Victor; Sato, Yoshinori; Seva, Tomislav; Simicevic, Neven; Smith, Gregory; Sumihama, Mizuki; Song, Yujun; Tadevosyan, Vardan; Takahashi, Toshiyuki; Tamura, Hirokazu; Tvaskis, Vladas; Vulcan, William; Wang, B.; Wells, Stephen; Wood, Stephen; Yan, Chen; Zamkochian, S.

    2008-01-01

    The HKS (Jlab E01-011) experiment on spectroscopy of Lambda-hypernuclei using (e,e'K+) reaction was successfully carried out in 2005. This paper gives a brief description of the experiment and its technique and shows some of the preliminary spectra that are still under analysis.

  12. Picometer-resolution dual-comb spectroscopy with a free-running fiber laser.

    Science.gov (United States)

    Zhao, Xin; Hu, Guoqing; Zhao, Bofeng; Li, Cui; Pan, Yingling; Liu, Ya; Yasui, Takeshi; Zheng, Zheng

    2016-09-19

    Dual-comb spectroscopy holds the promise as real-time, high-resolution spectroscopy tools. However, in its conventional schemes, the stringent requirement on the coherence between two lasers requires sophisticated control systems. By replacing control electronics with an all-optical dual-comb lasing scheme, a simplified dual-comb spectroscopy scheme is demonstrated using one dual-wavelength, passively mode-locked fiber laser. Pulses with a intracavity-dispersion-determined repetition-frequency difference are shown to have good mutual coherence and stability. Capability to resolve the comb teeth and a picometer-wide optical spectral resolution are demonstrated using a simple data acquisition system. Energy-efficient, free-running fiber lasers with a small comb-tooth-spacing could enable low-cost dual-comb systems.

  13. MULTIVARIATE CURVE RESOLUTION OF NMR SPECTROSCOPY METABONOMIC DATA

    Science.gov (United States)

    Sandia National Laboratories is working with the EPA to evaluate and develop mathematical tools for analysis of the collected NMR spectroscopy data. Initially, we have focused on the use of Multivariate Curve Resolution (MCR) also known as molecular factor analysis (MFA), a tech...

  14. The HKS experiment on {lambda}-hypernuclear spectroscopy via electroproduction at JLab

    Energy Technology Data Exchange (ETDEWEB)

    Tang, L. [Department of Physics, Hampton University, Hampton, VA 23668, U.S.A. (United States); Physics Division, Thomas Jefferson National Accelerator Facility, Newport News, VA 23606, U.S.A. (United States); Yuan, L. [Department of Physics, Hampton University, Hampton, VA 23668 (United States); Acha, A.; Ahmidouch, A.; Androic, D.; Asaturyan, A.; Asaturyan, R.; Baker, O.K.; Baturin, P.; Benmokhtar, F.; Bosted, P.; Carlini, R.; Chen, X.; Christy, M.; Cole, L.; Danagoulian, S.; Daniel, A.; Dharmawardane, V.; Egiyan, K.; Elaasar, M.; Ent, R.; Fenker, H.; Fujii, Y.; Furic, M.; Gan, L.; Gaskell, D.; Gasparian, A.; Gibson, Ed.F.; Gueye, P.; Halkyard, R.; Hashimoto, O.; Honda, D.; Horn, T.; Hu, B.; Hu, S.; Hungerford, Ed.V.; Ispiryan, M.; Johnston, K.; Jones, M.; Kalantarians, N.; Kaneta, M.; Kato, F.; Kato, S.; Kawama, D.; Kepple, C.; Li, Y.; Luo, W.; Mack, D.; Margaryan, A.; Marikyan, G.; Maruyama, N.; Matsumura, A.; Miyoshi, T.; Mkrtchyan, A.; Mkrtchyan, H.; Nakamura, S.N.; Navasardyan, T.; Niculescu, G.; Niculescu, M.-I.; Nomura, H.; Nonaka, K.; Ohtani, A.; Okayasu, Y.; Pamela, P.; Perez, N.; Petkovic, T.; Randeniya, S.; Reinhold, J.; Rivera, R.; Roche, J.; Rodriguez, V.M.; Sato, Y.; Seva, T.; Simicevic, N.; Smith, G.; Sumihama, M.; Song, Y.; Tadevosyan, V.; Takahashi, T.; Tamura, H.; Tvaskis, V.; Vulcan, W.; Wang, B.; Wells, S.; Wood, S.; Yan, C.; Zamkochian, S

    2007-06-15

    The HKS (Jlab E01-011) experiment on spectroscopy of {lambda}-hypernuclei using (e,e'K{sup +}) reaction was successfully carried out in 2005. This paper gives a brief description of the experiment and its technique and shows some of the preliminary spectra that are still under analysis.

  15. High-Resolution X-ray Emission and X-ray Absorption Spectroscopy

    NARCIS (Netherlands)

    Groot, F.M.F. de

    2000-01-01

    In this review, high-resolution X-ray emission and X-ray absorption spectroscopy will be discussed. The focus is on the 3d transition-metal systems. To understand high-resolution X-ray emission and reso-nant X-ray emission, it is first necessary to spend some time discussing the X-ray absorption

  16. True resolution enhancement for optical spectroscopy

    Science.gov (United States)

    Cooper, Justin T.; Oleske, Jeffrey B.

    2018-02-01

    Resolving spectrally adjacent peaks is important for techniques, such as tracking small shifts in Raman or fluorescence spectra, quantifying pharmaceutical polymorph ratios, or molecular orientation studies. Thus, suitable spectral resolution is a vital consideration when designing most spectroscopic systems. Most parameters that influence spectral resolution are fixed for a given system (spectrometer length, grating groove density, excitation source, CCD pixel size, etc.). Inflexible systems are non-problematic if the spectrometer is dedicated for a single purpose; however, these specifications cannot be optimized for different applications with wider range resolution requirements. Data processing techniques, including peak fitting, partial least squares, or principal component analysis, are typically used to achieve sub-optical resolution information. These techniques can be plagued by spectral artifacts introduced by post-processing as well as the subjective implementation of statistical parameters. TruRes™, from Andor Technology, uses an innovative optical means to greatly improve and expand the range of spectral resolutions accessible on a single setup. True spectral resolution enhancement of >30% is achieved without mathematical spectral alteration, dataprocessing, or spectrometer component changes. Discreet characteristic spectral lines from Laser-Induced Breakdown Spectroscopy (LIBS) and atomic calibration sources are now fully resolved from spectrally-adjacent peaks under otherwise identical configuration. TruRes™ has added advantage of increasing the spectral resolution without sacrificing bandpass. Using TruRes™ the Kymera 328i resolution can approach that of a 500 mm focal spectrometer. Furthermore, the bandpass of a 500 mm spectrograph with would be 50% narrower than the Kymera 328i with all other spectrometer components constant. However, the Kymera 328i with TruRes™ is able to preserve a 50% wider bandpass.

  17. A Framework to Combine Low- and High-resolution Spectroscopy for the Atmospheres of Transiting Exoplanets

    NARCIS (Netherlands)

    Brogi, M.; Line, M.; Bean, J.; Désert, J.-M.; Schwarz, H.

    2017-01-01

    Current observations of the atmospheres of close-in exoplanets are predominantly obtained with two techniques: low-resolution spectroscopy with space telescopes and high-resolution spectroscopy from the ground. Although the observables delivered by the two methods are in principle highly

  18. A high-resolution Fourier Transform Spectrometer for planetary spectroscopy

    Science.gov (United States)

    Cruikshank, D. P.; Sinton, W. M.

    1973-01-01

    The employment of a high-resolution Fourier Transform Spectrometer (FTS) is described for planetary and other astronomical spectroscopy in conjunction with the 88-inch telescope at Mauna Kea Observatory. The FTS system is designed for a broad range of uses, including double-beam laboratory spectroscopy, infrared gas chromatography, and nuclear magnetic resonance spectroscopy. The data system is well-suited to astronomical applications because of its great speed in acquiring and transforming data, and because of the enormous storage capability of the magnetic tape unit supplied with the system. The basic instrument is outlined 2nd some of the initial results from the first attempted use on the Mauna Kea 88-inch telescope are reported.

  19. Toward high-resolution NMR spectroscopy of microscopic liquid samples

    Energy Technology Data Exchange (ETDEWEB)

    Butler, Mark C.; Mehta, Hardeep S.; Chen, Ying; Reardon, Patrick N.; Renslow, Ryan S.; Khbeis, Michael; Irish, Duane; Mueller, Karl T.

    2017-01-01

    A longstanding limitation of high-resolution NMR spectroscopy is the requirement for samples to have macroscopic dimensions. Commercial probes, for example, are designed for volumes of at least 5 mL, in spite of decades of work directed toward the goal of miniaturization. Progress in miniaturizing inductive detectors has been limited by a perceived need to meet two technical requirements: (1) minimal separation between the sample and the detector, which is essential for sensitivity, and (2) near-perfect magnetic-field homogeneity at the sample, which is typically needed for spectral resolution. The first of these requirements is real, but the second can be relaxed, as we demonstrate here. By using pulse sequences that yield high-resolution spectra in an inhomogeneous field, we eliminate the need for near-perfect field homogeneity and the accompanying requirement for susceptibility matching of microfabricated detector components. With this requirement removed, typical imperfections in microfabricated components can be tolerated, and detector dimensions can be matched to those of the sample, even for samples of volume << 5 uL. Pulse sequences that are robust to field inhomogeneity thus enable small-volume detection with optimal sensitivity. We illustrate the potential of this approach to miniaturization by presenting spectra acquired with a flat-wire detector that can easily be scaled to subnanoliter volumes. In particular, we report high-resolution NMR spectroscopy of an alanine sample of volume 500 pL.

  20. High-resolution ultrasonic spectroscopy

    Directory of Open Access Journals (Sweden)

    V. Buckin

    2018-03-01

    Full Text Available High-resolution ultrasonic spectroscopy (HR-US is an analytical technique for direct and non-destructive monitoring of molecular and micro-structural transformations in liquids and semi-solid materials. It is based on precision measurements of ultrasonic velocity and attenuation in analysed samples. The application areas of HR-US in research, product development, and quality and process control include analysis of conformational transitions of polymers, ligand binding, molecular self-assembly and aggregation, crystallisation, gelation, characterisation of phase transitions and phase diagrams, and monitoring of chemical and biochemical reactions. The technique does not require optical markers or optical transparency. The HR-US measurements can be performed in small sample volumes (down to droplet size, over broad temperature range, at ambient and elevated pressures, and in various measuring regimes such as automatic temperature ramps, titrations and measurements in flow.

  1. High-resolution flurescence spectroscopy in immunoanalysis

    Energy Technology Data Exchange (ETDEWEB)

    Grubor, Nenad M. [Iowa State Univ., Ames, IA (United States)

    2005-01-01

    The work presented in this dissertation combines highly sensitive and selective fluorescence line-narrowing spectroscopy (FLNS) detection with various modes of immunoanalytical techniques. It has been shown that FLNS is capable of directly probing molecules immunocomplexed with antibodies, eliminating analytical ambiguities that may arise from interferences that accompany traditional immunochemical techniques. Moreover, the utilization of highly cross-reactive antibodies for highly specific analyte determination has been demonstrated. Finally, they demonstrate the first example of the spectral resolution of diastereomeric analytes based on their interaction with a cross-reactive antibody.

  2. Hypernuclear physics: A brief past and bright future

    International Nuclear Information System (INIS)

    Gibson, B.F.

    2000-01-01

    A primary reason for investigating the structure and reactions of baryon systems is to achieve an understanding the fundamental baryon-baryon force in the realm of non-perturbative QCD. Few-baryon systems play an essential role, because one can calculate complete solutions to test a particular baryon-baryon interaction ansatz. Hypernuclei, exotic nuclei containing one or more hyperons (Y = Λ, Σ, or Ξ) are crucial to this investigation, because they permit one to probe models based upon our experience in the nonstrange sector; they lie outside of the conventional world where our models were developed. That is, we can test whether our sophisticated models of the nucleon-nucleon (NN) interaction extrapolate successfully beyond the zero strangeness region in which the parameters were determined, or whether the models merely interpolate. The presence of the strangeness degree of freedom (flavor) adds a new dimension to our evolving picture of nuclear physics. We shall see that the physics of hypernuclei is both novel and puzzling, stretching our intuition and analysis capability beyond that developed during the more than half century that we have explored conventional nuclear physics. The hypernuclear sector of hadronic physics is not just a simple extension of zero-strangeness phenomena

  3. High-resolution spectroscopy of gases for industrial applications

    DEFF Research Database (Denmark)

    Fateev, Alexander; Clausen, Sønnik

    High-resolution spectroscopy of gases is a powerful technique which has various fundamental and practical applications: in situ simultaneous measurements of gas temperature and gas composition, radiative transfer modeling, validation of existing and developing of new databases and etc. Existing...... databases (e.g. HITRAN, HITEMP or CDSD) can normally be used for absorption spectra calculations at limited temperature/pressure ranges. Therefore experimental measurements of absorption/transmission spectra gases (e.g. CO2, H2O or SO2) at high-resolution and elevated temperatures are essential both...... for analysis of complex experimental data and further development of the databases. High-temperature gas cell facilities available at DTU Chemical Engineering are presented and described. The gas cells and high-resolution spectrometers allow us to perform high-quality reference measurements of gases relevant...

  4. Broadband high-resolution two-photon spectroscopy with laser frequency combs

    OpenAIRE

    Hipke, Arthur; Meek, Samuel A.; Ideguchi, Takuro; Hänsch, Theodor W.; Picqué, Nathalie

    2013-01-01

    Two-photon excitation spectroscopy with broad spectral span is demonstrated at Doppler-limited resolution. We describe first Fourier transform two-photon spectroscopy of an atomic sample with two mode-locked laser oscillators in a dual-comb technique. Each transition is uniquely identified by the modulation imparted by the interfering comb excitations. The temporal modulation of the spontaneous two-photon fluorescence is monitored with a single photodetector, and the spectrum is revealed by a...

  5. High-resolution spectroscopy of gases for industrial applications

    OpenAIRE

    Fateev, Alexander; Clausen, Sønnik

    2012-01-01

    High-resolution spectroscopy of gases is a powerful technique which has various fundamental and practical applications: in situ simultaneous measurements of gas temperature and gas composition, radiative transfer modeling, validation of existing and developing of new databases and etc. Existing databases (e.g. HITRAN, HITEMP or CDSD) can normally be used for absorption spectra calculations at limited temperature/pressure ranges. Therefore experimental measurements of absorption/transmission s...

  6. Optimization of Monochromated TEM for Ultimate Resolution Imaging and Ultrahigh Resolution Electron Energy Loss Spectroscopy

    KAUST Repository

    Lopatin, Sergei; Cheng, Bin; Liu, Wei-Ting; Tsai, Meng-Lin; He, Jr-Hau; Chuvilin, Andrey

    2017-01-01

    The performance of a monochromated transmission electron microscope with Wien type monochromator is optimized to achieve an extremely narrow energy spread of electron beam and an ultrahigh energy resolution with spectroscopy. The energy spread in the beam is improved by almost an order of magnitude as compared to specified values. The optimization involves both the monochromator and the electron energy loss detection system. We demonstrate boosted capability of optimized systems with respect to ultra-low loss EELS and sub-angstrom resolution imaging (in a combination with spherical aberration correction).

  7. Optimization of Monochromated TEM for Ultimate Resolution Imaging and Ultrahigh Resolution Electron Energy Loss Spectroscopy

    KAUST Repository

    Lopatin, Sergei

    2017-09-01

    The performance of a monochromated transmission electron microscope with Wien type monochromator is optimized to achieve an extremely narrow energy spread of electron beam and an ultrahigh energy resolution with spectroscopy. The energy spread in the beam is improved by almost an order of magnitude as compared to specified values. The optimization involves both the monochromator and the electron energy loss detection system. We demonstrate boosted capability of optimized systems with respect to ultra-low loss EELS and sub-angstrom resolution imaging (in a combination with spherical aberration correction).

  8. A study of human liver ferritin and chicken liver and spleen using Moessbauer spectroscopy with high velocity resolution

    Energy Technology Data Exchange (ETDEWEB)

    Oshtrakh, M. I., E-mail: oshtrakh@mail.utnet.ru [Ural State Technical University-UPI, Faculty of Physical Techniques and Devices for Quality Control (Russian Federation); Milder, O. B.; Semionkin, V. A. [Ural State Technical University-UPI, Faculty of Experimental Physics (Russian Federation)

    2008-01-15

    Lyophilized samples of human liver ferritin and chicken liver and spleen were measured at room temperature using Moessbauer spectroscopy with high velocity resolution. An increase in the velocity resolution of Moessbauer spectroscopy permitted us to increase accuracy and decrease experimental error in determining the hyperfine parameters of human liver ferritin and chicken liver and spleen. Moessbauer spectroscopy with high velocity resolution may be very useful for revealing small differences in hyperfine parameters during biomedical research.

  9. Insight into Resolution Enhancement in Generalized Two-Dimensional Correlation Spectroscopy

    OpenAIRE

    Ma, Lu; Sikirzhytski, Vitali; Hong, Zhenmin; Lednev, Igor K.; Asher, Sanford A.

    2013-01-01

    Generalized two-dimensional correlation spectroscopy (2D COS) can be used to enhance spectral resolution in order to help differentiate highly overlapped spectral bands. Despite the numerous extensive 2D COS investigations, the origin of the 2D spectral resolution enhancement mechanism(s) are not completely understood. In the work here we studied the 2D COS of simulated spectra in order to develop new insights into the dependence of the 2D COS spectral features on the overlapping band separat...

  10. Secondary electron spectroscopy and Auger microscopy at high spatial resolution. Application to scanning electron microscopy

    International Nuclear Information System (INIS)

    Le Gressus, Claude; Massignon, Daniel; Sopizet, Rene

    1979-01-01

    Secondary electron spectroscopy (SES), Auger electron spectroscopy (AES) and electron energy loss spectroscopy (ELS) are combined with ultra high vacuum scanning microscopy (SEM) for surface analysis at high spatial resolution. Reliability tests for the optical column for the vacuum and for the spectrometer are discussed. Furthermore the sensitivity threshold in AES which is compatible with a non destructive surface analysis at high spatial resolution is evaluated. This combination of all spectroscopies is used in the study of the beam damage correlated with the well known secondary electron image (SEI) darkening still observed in ultra high vacuum. The darkening is explained as a bulk decontamination of the sample rather than as a surface contamination from the residual vacuum gas [fr

  11. High-resolution in-source laser spectroscopy in perpendicular geometry

    Energy Technology Data Exchange (ETDEWEB)

    Heinke, R., E-mail: reinhard.heinke@uni-mainz.de; Kron, T. [Universität Mainz, Institut für Physik (Germany); Raeder, S. [Helmholtz-Institut Mainz (Germany); Reich, T.; Schönberg, P. [Universität Mainz, Institut für Kernchemie (Germany); Trümper, M.; Weichhold, C.; Wendt, K. [Universität Mainz, Institut für Physik (Germany)

    2017-11-15

    Operation of the novel laser ion source unit LIST (Laser Ion Source and Trap), operating at the on-line radioactive ion beam facility ISOLDE at CERN allowed for the production of ultra-pure beams of exotic isotopes far-off stability as well as direct isobar-free laser spectroscopy, giving access to the study of atomic and nuclear properties of so far inaccessible nuclides. We present a specific upgrade and adaption of the LIST targeted for high resolution spectroscopy with a Doppler-reduced perpendicular atom - laser beam geometry. With this PI-LIST (Perpendicularly Illuminated Laser Ion Source and Trap) setup, experimental linewidths below 100 MHz could be demonstrated in optical laser spectroscopy off-line, applying a pulsed injection-locked high repetition rate Ti:sapphire laser. A dual repeller configuration ensured highest suppression of isobaric interferences and almost background-free measurements on small samples in the order of 10{sup 11} atoms.

  12. Picometer-resolution dual-comb spectroscopy with a free-running fibre laser

    OpenAIRE

    Zhao, Xin; Hu, Guoqing; Zhao, Bofeng; Li, Cui; Pan, Yingling; Liu, Ya; Yasui, Takeshi; Zheng, Zheng

    2016-01-01

    Dual-comb spectroscopy utilizes two sets of comb lines with slightly different comb-tooth-spacings, and optical spectral information is acquired by measuring the radio-frequency beat notes between the sets of comb lines. It holds the promise as a real-time, high-resolution analytical spectroscopy tool for a range of applications. However, the stringent requirement on the coherence between comb lines from two separate lasers and the sophisticated control system to achieve that have confined th...

  13. Spectral Resolution-linked Bias in Transit Spectroscopy of Extrasolar Planets

    Science.gov (United States)

    Deming, Drake; Sheppard, Kyle

    2017-05-01

    We re-visit the principles of transmission spectroscopy for transiting extrasolar planets, focusing on the overlap between the planetary spectrum and the illuminating stellar spectrum. Virtually all current models of exoplanetary transmission spectra utilize an approximation that is inaccurate when the spectrum of the illuminating star has a complex line structure, such as molecular bands in M-dwarf spectra. In those cases, it is desirable to model the observations using a coupled stellar-planetary radiative transfer model calculated at high spectral resolving power, followed by convolution to the observed resolution. Not consistently accounting for overlap of stellar M-dwarf and planetary lines at high spectral resolution can bias the modeled amplitude of the exoplanetary transmission spectrum, producing modeled absorption that is too strong. We illustrate this bias using the exoplanet TRAPPIST-1b, as observed using Hubble Space Telescope/WFC3. The bias in this case is about 250 ppm, 12% of the modeled transit absorption. Transit spectroscopy using JWST will have access to longer wavelengths where the water bands are intrinsically stronger, and the observed signal-to-noise ratios will be higher than currently possible. We therefore expect that this resolution-linked bias will be especially important for future JWST observations of TESS-discovered super-Earths and mini-Neptunes transiting M-dwarfs.

  14. Spectral Resolution-linked Bias in Transit Spectroscopy of Extrasolar Planets

    Energy Technology Data Exchange (ETDEWEB)

    Deming, Drake; Sheppard, Kyle [Department of Astronomy, University of Maryland at College Park, College Park, MD 20742 (United States)

    2017-05-20

    We re-visit the principles of transmission spectroscopy for transiting extrasolar planets, focusing on the overlap between the planetary spectrum and the illuminating stellar spectrum. Virtually all current models of exoplanetary transmission spectra utilize an approximation that is inaccurate when the spectrum of the illuminating star has a complex line structure, such as molecular bands in M-dwarf spectra. In those cases, it is desirable to model the observations using a coupled stellar–planetary radiative transfer model calculated at high spectral resolving power, followed by convolution to the observed resolution. Not consistently accounting for overlap of stellar M-dwarf and planetary lines at high spectral resolution can bias the modeled amplitude of the exoplanetary transmission spectrum, producing modeled absorption that is too strong. We illustrate this bias using the exoplanet TRAPPIST-1b, as observed using Hubble Space Telescope /WFC3. The bias in this case is about 250 ppm, 12% of the modeled transit absorption. Transit spectroscopy using JWST will have access to longer wavelengths where the water bands are intrinsically stronger, and the observed signal-to-noise ratios will be higher than currently possible. We therefore expect that this resolution-linked bias will be especially important for future JWST observations of TESS-discovered super-Earths and mini-Neptunes transiting M-dwarfs.

  15. Spectral Resolution-linked Bias in Transit Spectroscopy of Extrasolar Planets

    International Nuclear Information System (INIS)

    Deming, Drake; Sheppard, Kyle

    2017-01-01

    We re-visit the principles of transmission spectroscopy for transiting extrasolar planets, focusing on the overlap between the planetary spectrum and the illuminating stellar spectrum. Virtually all current models of exoplanetary transmission spectra utilize an approximation that is inaccurate when the spectrum of the illuminating star has a complex line structure, such as molecular bands in M-dwarf spectra. In those cases, it is desirable to model the observations using a coupled stellar–planetary radiative transfer model calculated at high spectral resolving power, followed by convolution to the observed resolution. Not consistently accounting for overlap of stellar M-dwarf and planetary lines at high spectral resolution can bias the modeled amplitude of the exoplanetary transmission spectrum, producing modeled absorption that is too strong. We illustrate this bias using the exoplanet TRAPPIST-1b, as observed using Hubble Space Telescope /WFC3. The bias in this case is about 250 ppm, 12% of the modeled transit absorption. Transit spectroscopy using JWST will have access to longer wavelengths where the water bands are intrinsically stronger, and the observed signal-to-noise ratios will be higher than currently possible. We therefore expect that this resolution-linked bias will be especially important for future JWST observations of TESS-discovered super-Earths and mini-Neptunes transiting M-dwarfs.

  16. Linear and nonlinear optical spectroscopy: Spectral, temporal and spatial resolution

    DEFF Research Database (Denmark)

    Hvam, Jørn Marcher

    1997-01-01

    Selected linear and nonlinear optical spectroscopies are being described with special emphasis on the possibility of obtaining simultaneous spectral, temporal and spatial resolution. The potential of various experimental techniques is being demonstrated by specific examples mostly taken from inve...... investigations of the electronic, and opto-electronic, properties of semiconductor nanostructures....

  17. SALT high-resolution spectroscopy of nova PNV J15384000-4744500

    Science.gov (United States)

    Aydi, E.; Buckley, D. A. H.; Mohamed, S.; Whitelock, P. A.

    2018-06-01

    We report on high-resolution spectroscopy of PNV J15384000-4744500 which was reported as a possible nova by Rob Kaufman (Bright, Victoria, Australia; CBAT follow-up: http://www.cbat.eps.harvard.edu/unconf/followups/J15384000-4744500.html) and confirmed as a classical nova by F. Walter (ATel #11681).

  18. Low-resolution VLT spectroscopy of GRBs 991216, 011211 and 021211

    NARCIS (Netherlands)

    Vreeswijk, P.M.; Smette, A.; Fruchter, A.S.; Palazzi, E.; Rol, E.; Wijers, R.A.M.J.; Kouveliotou, C.; Kaper, L.; Pian, E.; Masetti, N.; Frontera, F.; Hjorth, J.; Gorosabel, J.; Piro, L.; Fynbo, J.P.U.; Jakobsson, P.; Watson, D.; O'Brien, P.T.; Ledoux, C.

    2006-01-01

    We present low-resolution VLT spectroscopy of the afterglow of the gamma-ray bursts (GRBs) 991216, 011211 and 021211. Our spectrum of GRB 991216 is the only optical spectrum for this afterglow. It shows two probable absorption systems at z=0.80 and z=1.02, where the highest redshift most likely

  19. High resolution spectroscopy in solids by nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Bonagamba, T.J.

    1991-07-01

    The nuclear magnetic resonance (NMR) techniques for High Resolution Spectroscopy in Solids are described. Also the construction project of a partially home made spectrometer and its applications in the characterization of solid samples are shown in detail. The high resolution spectrometer used is implemented with the double resonance multiple pulses sequences and magic angle spinning (MAS) and can be used with solid and liquid samples. The maximum spinning frequency for the MAS experiment is in excess of 5 Khz, the double resonance sequences can be performed with any type of nucleus, in the variable temperature operating range with nitrogen gas: -120 0 C to +160 0 C, and is fully controlled by a Macintosh IIci microcomputer. (author)

  20. High resolution NMR spectroscopy of nanocrystalline proteins at ultra-high magnetic field

    International Nuclear Information System (INIS)

    Sperling, Lindsay J.; Nieuwkoop, Andrew J.; Lipton, Andrew S.; Berthold, Deborah A.; Rienstra, Chad M.

    2010-01-01

    Magic-angle spinning (MAS) solid-state NMR (SSNMR) spectroscopy of uniformly- 13 C, 15 N labeled protein samples provides insight into atomic-resolution chemistry and structure. Data collection efficiency has advanced remarkably in the last decade; however, the study of larger proteins is still challenged by relatively low resolution in comparison to solution NMR. In this study, we present a systematic analysis of SSNMR protein spectra acquired at 11.7, 17.6 and 21.1 Tesla ( 1 H frequencies of 500, 750, and 900 MHz). For two protein systems-GB1, a 6 kDa nanocrystalline protein and DsbA, a 21 kDa nanocrystalline protein-line narrowing is demonstrated in all spectral regions with increasing field. Resolution enhancement is greatest in the aliphatic region, including methine, methylene and methyl sites. The resolution for GB1 increases markedly as a function of field, and for DsbA, resolution in the C-C region increases by 42%, according to the number of peaks that can be uniquely picked and integrated in the 900 MHz spectra when compared to the 500 MHz spectra. Additionally, chemical exchange is uniquely observed in the highest field spectra for at least two isoleucine Cδ1 sites in DsbA. These results further illustrate the benefits of high-field MAS SSNMR spectroscopy for protein structural studies.

  1. Immersion Gratings for Infrared High-resolution Spectroscopy

    Science.gov (United States)

    Sarugaku, Yuki; Ikeda, Yuji; Kobayashi, Naoto; Kaji, Sayumi; Sukegawa, Takashi; Sugiyama, Shigeru; Nakagawa, Takao; Arasaki, Takayuki; Kondo, Sohei; Nakanishi, Kenshi; Yasui, Chikako; Kawakita, Hideyo

    2016-10-01

    High-resolution spectroscopy in the infrared wavelength range is essential for observations of minor isotopologues, such as HDO for water, and prebiotic organic molecules like hydrocarbons/P-bearing molecules because numerous vibrational molecular bands (including non-polar molecules) are located in this wavelength range. High spectral resolution enables us to detect weak lines without spectral line confusion. This technique has been widely used in planetary sciences, e.g., cometary coma (H2O, CO, and organic molecules), the martian atmosphere (CH4, CO2, H2O and HDO), and the upper atmosphere of gas giants (H3+ and organic molecules such as C2H6). Spectrographs with higher resolution (and higher sensitivity) still have a potential to provide a plenty of findings. However, because the size of spectrographs scales with the spectral resolution, it is difficult to realize it.Immersion grating (IG), which is a diffraction grating wherein the diffraction surface is immersed in a material with a high refractive index (n > 2), provides n times higher spectral resolution compared to a reflective grating of the same size. Because IG reduces the size of spectrograph to 1/n compared to the spectrograph with the same spectral resolution using a conventional reflective grating, it is widely acknowledged as a key optical device to realize compact spectrographs with high spectral resolution.Recently, we succeeded in fabricating a CdZnTe immersion grating with the theoretically predicted diffraction efficiency by machining process using an ultrahigh-precision five-axis processing machine developed by Canon Inc. Using the same technique, we completed a practical germanium (Ge) immersion grating with both a reflection coating on the grating surface and the an AR coating on the entrance surface. It is noteworthy that the wide wavelength range from 2 to 20 um can be covered by the two immersion gratings.In this paper, we present the performances and the applications of the immersion

  2. High resolution infrared spectroscopy of symbiotic stars

    International Nuclear Information System (INIS)

    Bensammar, S.

    1989-01-01

    We report here very early results of high resolution (5x10 3 - 4x10 4 ) infrared spectroscopy (1 - 2.5 μm) of different symbiotic stars (T CrB, RW Hya, CI Cyg, PU Vul) observed with the Fourier Transform Spectrometer of the 3.60m Canada France Hawaii Telescope. These stars are usually considered as interacting binaries and only little details are known about the nature of their cool component. CO absorption lines are detected for the four stars. Very different profiles of hydrogen Brackett γ and helium 10830 A lines are shown for CI Cyg observed at different phases, while Pu Vul shows very intense emission lines

  3. Photon-Counting Microwave Kinetic Inductance Detectors (MKIDs) for High Resolution Far-Infrared Spectroscopy

    Data.gov (United States)

    National Aeronautics and Space Administration — We are developing ultrasensitive Microwave Kinetic Inductance Detectors (MKIDs) for high resolution far-infrared spectroscopy applications, with a long-term goal of...

  4. High resolution NMR spectroscopy of physiological fluids: from metabolism to physiology

    International Nuclear Information System (INIS)

    Vion-Dury, J.; Nicoli, F.; Torri, G.; Torri, J.; Kriat, M.; Sciaky, M.; Davin, A.; Viout, P.; Confort-Gouny, S.; Cozzone, P.J.

    1992-01-01

    High resolution NMR spectroscopy of physiological fluids provides quantitative, qualitative and dynamic information on the metabolic status of the interstitial and plasma compartments under a variety of pathophysiological conditions. The simultaneous detection and quantitation by NMR spectroscopy of numerous compounds of the intermediary metabolism offers a new insight in the understanding of the 'milieu interieur'.NMR spectroscopy of physiological fluids offers a unique way to define and monitor the global metabolic homeostasis in humans. The development of this analytical approach is still limited by the scarcity of pluridisciplinary teams able to fully exploit the wealth of information present on the NMR spectrum of a fluid. While application in pharmacology and toxicology is already established, the main areas of current development are cancer, hereditary metabolic disorders, organ transplantation and neurological diseases

  5. High-resolution gas-phase spectroscopy of a single-bond axle rotary motor

    NARCIS (Netherlands)

    Maltseva, Elena; Amirjalayer, Saeed; Cnossen, Arjen; Browne, Wesley R.; Feringa, Ben L.; Buma, Wybren Jan

    2017-01-01

    High-resolution laser spectroscopy in combination with molecular beams and mass-spectrometry has been applied to study samples of a prototypical rotary motor. Vibrationally well-resolved excitation spectra have been recorded that are assigned, however, to a structural isomer of the original rotary

  6. The alpha decay rates of heavy hypernuclei

    International Nuclear Information System (INIS)

    Thakkar, Kaushal; Majethiya, Ajay; Vinodkumar, P.C.

    2012-01-01

    Hypernuclear physics is of great interest because it stands at the intersection of nuclear physics, particle physics as well as astro physics. Hypernuclear physics has recently received lot of attention as large number of hypernuclei are produced and studied experimentally. Many future experimental facilities are also planned to study this field of strange matter. For example, the Hyperball collaboration developed an array of germanium detectors with fast electronics for hypernuclear spectroscopy. Details on the progress and scope of this field are available in recent review articles. Here, the paper makes an attempt to identify and study the decay tunneling probability and half life time of energetically allowed Λ - hypernuclei

  7. What can we Expect of High-Resolution Spectroscopies on Carbohydrates?

    Science.gov (United States)

    Cocinero, Emilio J.; Ecija, Patricia; Uriarte, Iciar; Usabiaga, Imanol; Fernández, José A.; Basterretxea, Francisco J.; Lesarri, Alberto; Davis, Benjamin G.

    2015-06-01

    Carbohydrates are one of the most multifaceted building blocks, performing numerous roles in living organisms. We present several structural investigations on carbohydrates exploiting an experimental strategy which combines microwave (MW) and laser spectroscopies in high-resolution. Laser spectroscopy offers high sensitivity coupled to mass and conformer selectivity, making it ideal for polysaccharides studies. On the other hand, microwave spectroscopy provides much higher resolution and direct access to molecular structure of monosaccharides. This combined approach provides not only accurate chemical insight on conformation, structure and molecular properties, but also benchmarking standards guiding the development of theoretical calculations. In order to illustrate the possibilities of a combined MW-laser approach we present results on the conformational landscape and structural properties of several monosaccharides and oligosaccharides including microsolvation and molecular recognition processes of carbohydrates. E.J. Cocinero, A. Lesarri, P. écija, F.J. Basterretxea, J.-U. Grabow, J.A. Fernández and F. Casta {n}o Angew. Chem. Int. Ed. 51, 3119-3124, 2012. E.J. Cocinero, A. Lesarri, P. écija, Á. Cimas, B.G. Davis, F.J. Basterretxea, J.A. Fernández and F. Casta {n}o J. Am. Chem. Soc. 135, 2845-2852, 2013. E.J. Cocinero, P. Çarçabal, T.D. Vaden, J.P. Simons and B.G. Davis Nature 469, 76-80, 2011. C.S. Barry, E.J. Cocinero, P. Çarçabal, D.P. Gamblin, E.C. Stanca-Kaposta, S. M. Fernández-Alonso, S. Rudić, J.P. Simons and B.G. Davis J. Am. Chem. Soc. 135, 16895-16903, 2013.

  8. Nuclear physics with hyperons

    International Nuclear Information System (INIS)

    Povh, B.

    1981-01-01

    Results of hypernuclear spectroscopy and their interpretations are presented. The kinematical properties and, in particular, the distortion in strangeness exchange reactions are considered and experimental methods developed for hypernuclear spectroscopy discussed. The present understanding and knowledge of the Λ-nucleus interaction obtained from classical emulsion work on the ground state of light hypernuclei and the systematic study of the (K - , π - ) reaction on nuclei in more recent counter experiments are reviewed. The problem of the quasiparticle behaviour in nuclear matter is considered in the light of interactions. Finally recent results on the Σ-nucleus interactions are presented. (U.K.)

  9. High Resolution Gamma Ray Spectroscopy at MHz Counting Rates With LaBr3 Scintillators for Fusion Plasma Applications

    Science.gov (United States)

    Nocente, M.; Tardocchi, M.; Olariu, A.; Olariu, S.; Pereira, R. C.; Chugunov, I. N.; Fernandes, A.; Gin, D. B.; Grosso, G.; Kiptily, V. G.; Neto, A.; Shevelev, A. E.; Silva, M.; Sousa, J.; Gorini, G.

    2013-04-01

    High resolution γ-ray spectroscopy measurements at MHz counting rates were carried out at nuclear accelerators, combining a LaBr 3(Ce) detector with dedicated hardware and software solutions based on digitization and off-line analysis. Spectra were measured at counting rates up to 4 MHz, with little or no degradation of the energy resolution, adopting a pile up rejection algorithm. The reported results represent a step forward towards the final goal of high resolution γ-ray spectroscopy measurements on a burning plasma device.

  10. Insight into resolution enhancement in generalized two-dimensional correlation spectroscopy.

    Science.gov (United States)

    Ma, Lu; Sikirzhytski, Vitali; Hong, Zhenmin; Lednev, Igor K; Asher, Sanford A

    2013-03-01

    Generalized two-dimensional correlation spectroscopy (2D-COS) can be used to enhance spectral resolution in order to help differentiate highly overlapped spectral bands. Despite the numerous extensive 2D-COS investigations, the origin of the 2D spectral resolution enhancement mechanism(s) is not completely understood. In the work here, we studied the 2D-COS of simulated spectra in order to develop new insights into the dependence of 2D-COS spectral features on the overlapping band separations, their intensities and bandwidths, and their band intensity change rates. We found that the features in the 2D-COS maps that are derived from overlapping bands were determined by the spectral normalized half-intensities and the total intensity changes of the correlated bands. We identified the conditions required to resolve overlapping bands. In particular, 2D-COS peak resolution requires that the normalized half-intensities of a correlating band have amplitudes between the maxima and minima of the normalized half-intensities of the overlapping bands.

  11. Electronic excitation of furfural as probed by high-resolution vacuum ultraviolet spectroscopy, electron energy loss spectroscopy, and ab initio calculations

    Science.gov (United States)

    Ferreira da Silva, F.; Lange, E.; Limão-Vieira, P.; Jones, N. C.; Hoffmann, S. V.; Hubin-Franskin, M.-J.; Delwiche, J.; Brunger, M. J.; Neves, R. F. C.; Lopes, M. C. A.; de Oliveira, E. M.; da Costa, R. F.; Varella, M. T. do N.; Bettega, M. H. F.; Blanco, F.; García, G.; Lima, M. A. P.; Jones, D. B.

    2015-10-01

    The electronic spectroscopy of isolated furfural (2-furaldehyde) in the gas phase has been investigated using high-resolution photoabsorption spectroscopy in the 3.5-10.8 eV energy-range, with absolute cross section measurements derived. Electron energy loss spectra are also measured over a range of kinematical conditions. Those energy loss spectra are used to derive differential cross sections and in turn generalised oscillator strengths. These experiments are supported by ab initio calculations in order to assign the excited states of the neutral molecule. The good agreement between the theoretical results and the measurements allows us to provide the first quantitative assignment of the electronic state spectroscopy of furfural over an extended energy range.

  12. Electronic excitation of furfural as probed by high-resolution vacuum ultraviolet spectroscopy, electron energy loss spectroscopy, and ab initio calculations

    International Nuclear Information System (INIS)

    Ferreira da Silva, F.; Lange, E.; Limão-Vieira, P.; Jones, N. C.; Hoffmann, S. V.; Hubin-Franskin, M.-J.; Delwiche, J.; Brunger, M. J.

    2015-01-01

    The electronic spectroscopy of isolated furfural (2-furaldehyde) in the gas phase has been investigated using high-resolution photoabsorption spectroscopy in the 3.5–10.8 eV energy-range, with absolute cross section measurements derived. Electron energy loss spectra are also measured over a range of kinematical conditions. Those energy loss spectra are used to derive differential cross sections and in turn generalised oscillator strengths. These experiments are supported by ab initio calculations in order to assign the excited states of the neutral molecule. The good agreement between the theoretical results and the measurements allows us to provide the first quantitative assignment of the electronic state spectroscopy of furfural over an extended energy range

  13. Electronic excitation of furfural as probed by high-resolution vacuum ultraviolet spectroscopy, electron energy loss spectroscopy, and ab initio calculations

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira da Silva, F.; Lange, E. [Laboratório de Colisões Atómicas e Moleculares, CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Limão-Vieira, P., E-mail: plimaovieira@fct.unl.pt, E-mail: michael.brunger@flinders.edu.au, E-mail: maplima@ifi.unicamp.br [Laboratório de Colisões Atómicas e Moleculares, CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, South Australia 5001 (Australia); Jones, N. C.; Hoffmann, S. V. [ISA, Department of Physics and Astronomy, Aarhus University, Ny Munkegade, DK-8000 Århus C (Denmark); Hubin-Franskin, M.-J.; Delwiche, J. [Départment de Chimie, Institut de Chimie-Bât. B6C, Université de Liège, B-4000 Liège 1 (Belgium); Brunger, M. J., E-mail: plimaovieira@fct.unl.pt, E-mail: michael.brunger@flinders.edu.au, E-mail: maplima@ifi.unicamp.br [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, South Australia 5001 (Australia); Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur (Malaysia); and others

    2015-10-14

    The electronic spectroscopy of isolated furfural (2-furaldehyde) in the gas phase has been investigated using high-resolution photoabsorption spectroscopy in the 3.5–10.8 eV energy-range, with absolute cross section measurements derived. Electron energy loss spectra are also measured over a range of kinematical conditions. Those energy loss spectra are used to derive differential cross sections and in turn generalised oscillator strengths. These experiments are supported by ab initio calculations in order to assign the excited states of the neutral molecule. The good agreement between the theoretical results and the measurements allows us to provide the first quantitative assignment of the electronic state spectroscopy of furfural over an extended energy range.

  14. Free radicals. High-resolution spectroscopy and molecular structure

    International Nuclear Information System (INIS)

    Hirota, E.

    1983-01-01

    High-resolution, high-sensitivity spectroscopy using CW laser and microwave sources has been applied to free radicals and transient molecules to establish their existence and to explore their properties in detail. The radicals studied were mainly generated by discharge-induced reactions. A few molecules are used as typical examples to illustrate the results so far obtained. The molecular and electronic structures of free radicals, intramolecular motions of large amplitudes in some labile molecules, and metastable electronic states of carbenes are given special emphasis. The significance of the present spectroscopic results in other related fields such as astronomy and atmospheric chemistry is stressed. 4 figures, 3 tables

  15. High-resolution monochromated electron energy-loss spectroscopy of organic photovoltaic materials.

    Science.gov (United States)

    Alexander, Jessica A; Scheltens, Frank J; Drummy, Lawrence F; Durstock, Michael F; Hage, Fredrik S; Ramasse, Quentin M; McComb, David W

    2017-09-01

    Advances in electron monochromator technology are providing opportunities for high energy resolution (10 - 200meV) electron energy-loss spectroscopy (EELS) to be performed in the scanning transmission electron microscope (STEM). The energy-loss near-edge structure in core-loss spectroscopy is often limited by core-hole lifetimes rather than the energy spread of the incident illumination. However, in the valence-loss region, the reduced width of the zero loss peak makes it possible to resolve clearly and unambiguously spectral features at very low energy-losses (photovoltaics (OPVs): poly(3-hexlythiophene) (P3HT), [6,6] phenyl-C 61 butyric acid methyl ester (PCBM), copper phthalocyanine (CuPc), and fullerene (C 60 ). Data was collected on two different monochromated instruments - a Nion UltraSTEM 100 MC 'HERMES' and a FEI Titan 3 60-300 Image-Corrected S/TEM - using energy resolutions (as defined by the zero loss peak full-width at half-maximum) of 35meV and 175meV, respectively. The data was acquired to allow deconvolution of plural scattering, and Kramers-Kronig analysis was utilized to extract the complex dielectric functions. The real and imaginary parts of the complex dielectric functions obtained from the two instruments were compared to evaluate if the enhanced resolution in the Nion provides new opto-electronic information for these organic materials. The differences between the spectra are discussed, and the implications for STEM-EELS studies of advanced materials are considered. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Highly sensitive high resolution Raman spectroscopy using resonant ionization methods

    International Nuclear Information System (INIS)

    Owyoung, A.; Esherick, P.

    1984-05-01

    In recent years, the introduction of stimulated Raman methods has offered orders of magnitude improvement in spectral resolving power for gas phase Raman studies. Nevertheless, the inherent weakness of the Raman process suggests the need for significantly more sensitive techniques in Raman spectroscopy. In this we describe a new approach to this problem. Our new technique, which we call ionization-detected stimulated Raman spectroscopy (IDSRS), combines high-resolution SRS with highly-sensitive resonant laser ionization to achieve an increase in sensitivity of over three orders of magnitude. The excitation/detection process involves three sequential steps: (1) population of a vibrationally excited state via stimulated Raman pumping; (2) selective ionization of the vibrationally excited molecule with a tunable uv source; and (3) collection of the ionized species at biased electrodes where they are detected as current in an external circuit

  17. Velocity-space observation regions of high-resolution two-step reaction gamma-ray spectroscopy

    DEFF Research Database (Denmark)

    Salewski, Mirko; Nocente, M.; Gorini, G.

    2015-01-01

    High-resolution γ-ray spectroscopy (GRS) measurements resolve spectral shapes of Dopplerbroadened γ-rays. We calculate weight functions describing velocity-space sensitivities of any two-step reaction GRS measurements in magnetized plasmas using the resonant nuclear reaction 9Be(α, nγ)12C...

  18. Search for $\\Sigma$ Hypernuclear States using the Strangeness Exchange Reactions $(K^{-},\\pi^{-})$ and $(K^{-},\\pi^{+})$

    CERN Multimedia

    2002-01-01

    In previous $\\Lambda$ hypernuclei experiments details of the $\\Lambda$ nucleus interaction have been deduced, the most outstanding being a very small spin orbit interaction in p$^{-}$ and sd shell $\\Lambda$ hypernuclei. This kind of information is decisive in the understanding of the baryon interaction and will contribute to distinguish between the boson exchange and the QCD motivated picture of the baryon baryon interaction. To further exploit the hyperon nucleus interaction one has to investigate hypernuclei with hyperons of different quark configuration, i.e. $\\Sigma$ hypernuclei. Since the $\\Sigma\\$ particle can, in contrast to the $\\Lambda$, decay by strong interaction in the nucleus, the existence of narrow states was not obvious. A small momentum transfer guarantees that the spectra are dominated by a few strong transitions to narrow hypernuclear states with the same spin and space quantum numbers as the target nucleus. Therefore a new kaon beamline was built with a lower momentum of 400~MeV/c and a co...

  19. High resolution terahertz spectroscopy of a whispering gallery mode bubble resonator using Hilbert analysis.

    Science.gov (United States)

    Vogt, Dominik Walter; Leonhardt, Rainer

    2017-07-10

    We report on data processing for continuous wave (CW) terahertz (THz) spectroscopy measurements based on a Hilbert spectral analysis to achieve MHz resolution. As an example we investigate the spectral properties of a whispering gallery mode (WGM) THz bubble resonator at critical coupling. The experimental verification clearly demonstrates the significant advantages in relative frequency resolution and required acquisition time of the proposed method over the traditional data analysis. An effective frequency resolution, only limited by the precision and stability of the laser beat signal, can be achieved without complex extensions to a standard commercially available CW THz spectrometer.

  20. Very high resolution UV and X-ray spectroscopy and imagery of solar active regions

    Science.gov (United States)

    Bruner, M.; Brown, W. A.; Haisch, B. M.

    1987-01-01

    A scientific investigation of the physics of the solar atmosphere, which uses the techniques of high resolution soft X-ray spectroscopy and high resolution UV imagery, is described. The experiments were conducted during a series of three sounding rocket flights. All three flights yielded excellent images in the UV range, showing unprecedented spatial resolution. The second flight recorded the X-ray spectrum of a solar flare, and the third that of an active region. A normal incidence multi-layer mirror was used during the third flight to make the first astronomical X-ray observations using this new technique.

  1. Application of spectroscopy and super-resolution microscopy: Excited state

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharjee, Ujjal [Iowa State Univ., Ames, IA (United States)

    2016-02-19

    Photophysics of inorganic materials and organic molecules in complex systems have been extensively studied with absorption and emission spectroscopy.1-4 Steady-state and time-resolved fluorescence studies are commonly carried out to characterize excited-state properties of fluorophores. Although steady-state fluorescence measurements are widely used for analytical applications, time-resolved fluorescence measurements provide more detailed information about excited-state properties and the environment in the vicinity of the fluorophore. Many photophysical processes, such as photoinduced electron transfer (PET), rotational reorientation, solvent relaxation, and energy transfer, occur on a nanosecond (10-9 s) timescale, thus affecting the lifetime of the fluorophores. Moreover, time-resolved microscopy methods, such as lifetimeimaging, combine the benefits of the microscopic measurement and information-rich, timeresolved data. Thus, time-resolved fluorescence spectroscopy combined with microscopy can be used to quantify these processes and to obtain a deeper understanding of the chemical surroundings of the fluorophore in a small area under investigation. This thesis discusses various photophysical and super-resolution microscopic studies of organic and inorganic materials, which have been outlined below.

  2. Effective temporal resolution in pump-probe spectroscopy with strongly chirped pulses

    International Nuclear Information System (INIS)

    Polli, D.; Lanzani, G.; Brida, D.; Cerullo, G.; Mukamel, S.

    2010-01-01

    This paper introduces a general theoretical description of femtosecond pump-probe spectroscopy with chirped pulses whose joint spectral and temporal profile is expressed by Wigner spectrograms. We demonstrate that the actual experimental time resolution intimately depends on the pulse-sample interaction and that the commonly used instrumental response function needs to be replaced by a sample-dependent effective response function. We also show that, using the proper configurations in excitation and/or detection, it is possible to overcome the temporal smearing of the measured dynamics due to chirp-induced pulse broadening and recover the temporal resolution that would be afforded by the transform-limited pulses. We verify these predictions with experiments using broadband chirped pump and probe pulses. Our results allow optimization of the temporal resolution in the common case when the chirp of the pump and/or probe pulse is not corrected and may be extended to a broad range of time-resolved experiments.

  3. A RICH detector for strangeness physics in Hall A at Jefferson Lab

    International Nuclear Information System (INIS)

    Cusanno, F.; Garibaldi, F.; Cisbani, E.; Colilli, S.; De Cataldo, G.; De Leo, R.; Giuliani, F.; Gricia, M.; Lagamba, L.; Lucentini, M.; Reitz, B.; Santavenere, F.; Urciuoli, G.M.

    2004-01-01

    The high-resolution hypernuclear spectroscopy experiment at Jefferson Lab, Hall A (E94-107), needs unambiguous kaon identification. Due to the huge pion and proton background, the standard Hall A hadron particle identification, based on a time of flight and two aerogel threshold Cherenkov detectors, is not sufficient. For this task a proximity focusing C 6 F 14 /CsI RICH has been built. Recently, after some improvements to the mechanical structure of its wire chamber and to its electronics rate capability, the RICH has been tested with cosmic rays. This paper represents a status report of the RICH detector

  4. High-Resolution Metallic Magnetic Calorimeters for beta-Spectroscopy on 187-Rhenium and Position Resolved X-Ray Spectroscopy

    OpenAIRE

    Porst, Jan-Patrick

    2010-01-01

    This thesis describes the development of metallic magnetic calorimeters (MMCs) for high resolution spectroscopy. MMCs are energy dispersive particle detectors based on the calorimetric principle which are typically operated at temperatures below 100 mK. The detectors make use of a paramagnetic temperature sensor to transform the temperature rise upon the absorption of a particle in the detector into a measurable magnetic flux change in a dc-SQUID. The application of MMCs for neutrino mass mea...

  5. High-resolution X-ray emission spectroscopy with transition-edge sensors: present performance and future potential

    Energy Technology Data Exchange (ETDEWEB)

    Uhlig, J.; Doriese, W. B.; Fowler, J. W.; Swetz, D. S.; Jaye, C.; Fischer, D. A.; Reintsema, C. D.; Bennett, D. A.; Vale, L. R.; Mandal, U.; O' Neil, G. C.; Miaja-Avila, L.; Joe, Y. I.; El Nahhas, A.; Fullagar, W.; Parnefjord Gustafsson, F.; Sundström, V.; Kurunthu, D.; Hilton, G. C.; Schmidt, D. R.; Ullom, J. N.

    2015-04-21

    X-ray emission spectroscopy (XES) is a powerful element-selective tool to analyze the oxidation states of atoms in complex compounds, determine their electronic configuration, and identify unknown compounds in challenging environments. Until now the low efficiency of wavelength-dispersive X-ray spectrometer technology has limited the use of XES, especially in combination with weaker laboratory X-ray sources. More efficient energy-dispersive detectors have either insufficient energy resolution because of the statistical limits described by Fano or too low counting rates to be of practical use. This paper updates an approach to high-resolution X-ray emission spectroscopy that uses a microcalorimeter detector array of superconducting transition-edge sensors (TESs). TES arrays are discussed and compared with conventional methods, and shown under which circumstances they are superior. It is also shown that a TES array can be integrated into a table-top time-resolved X-ray source and a soft X-ray synchrotron beamline to perform emission spectroscopy with good chemical sensitivity over a very wide range of energies.

  6. High-Resolution Solid-State NMR Spectroscopy: Characterization of Polymorphism in Cimetidine, a Pharmaceutical Compound

    Science.gov (United States)

    Pacilio, Julia E.; Tokarski, John T.; Quiñones, Rosalynn; Iuliucci, Robbie J.

    2014-01-01

    High-resolution solid-state NMR (SSNMR) spectroscopy has many advantages as a tool to characterize solid-phase material that finds applications in polymer chemistry, nanotechnology, materials science, biomolecular structure determination, and others, including the pharmaceutical industry. The technology associated with achieving high resolution…

  7. Direct Detection Electron Energy-Loss Spectroscopy: A Method to Push the Limits of Resolution and Sensitivity.

    Science.gov (United States)

    Hart, James L; Lang, Andrew C; Leff, Asher C; Longo, Paolo; Trevor, Colin; Twesten, Ray D; Taheri, Mitra L

    2017-08-15

    In many cases, electron counting with direct detection sensors offers improved resolution, lower noise, and higher pixel density compared to conventional, indirect detection sensors for electron microscopy applications. Direct detection technology has previously been utilized, with great success, for imaging and diffraction, but potential advantages for spectroscopy remain unexplored. Here we compare the performance of a direct detection sensor operated in counting mode and an indirect detection sensor (scintillator/fiber-optic/CCD) for electron energy-loss spectroscopy. Clear improvements in measured detective quantum efficiency and combined energy resolution/energy field-of-view are offered by counting mode direct detection, showing promise for efficient spectrum imaging, low-dose mapping of beam-sensitive specimens, trace element analysis, and time-resolved spectroscopy. Despite the limited counting rate imposed by the readout electronics, we show that both core-loss and low-loss spectral acquisition are practical. These developments will benefit biologists, chemists, physicists, and materials scientists alike.

  8. Development of a metallic magnetic calorimeter for high resolution spectroscopy

    International Nuclear Information System (INIS)

    Linck, M.

    2007-01-01

    In this thesis the development of a metallic magnetic calorimeter for high resolution detection of single x-ray quanta is described. The detector consists of an X-ray absorber and a paramagnetic temperature sensor. The raise in temperature of the paramagnetic sensor due to the absorption of a single X-ray is measured by the change in magnetization of the sensor using a low-noise SQUID magnetometer. The thermodynamic properties of the detector can be described by a theoretical model based on a mean field approximation. This allows for an optimization of the detector design with respect to signal size. The maximal archivable energy resolution is limited by thermodynamic energy fluctuations between absorber, heat bath and thermometer. An interesting field of application for a metallic magnetic calorimeter is X-ray astronomy and the investigation of X-ray emitting objects. Through high-resolution X-ray spectroscopy it is possible to obtain information about physical processes of even far distant objects. The magnetic calorimeter that was developed in this thesis has a metallic absorber with a quantum efficiency of 98% at 6 keV. The energy resolution of the magnetic calorimeter is EFWHM=2.7 eV at 5.9 keV. The deviation of the detector response from a linear behavior of the detector is only 0.8% at 5.9 keV. (orig.)

  9. High resolution neutron spectroscopy - a tool for the investigation of dynamics of polymers and soft matter

    International Nuclear Information System (INIS)

    Monkenbusch, M.; Richter, D.

    2007-01-01

    Neutron scattering, with the ability to vary the contrast of molecular items by hydrogen/deuterium exchanges, is an invaluable tool for soft matter research. Besides the structural information on the mesoscopic scale that is obtained by diffraction methods like small angle neutron scattering, the slow dynamics of molecular motion on mesoscopic scale is accessible by high resolution neutron spectroscopy. The basic features of neutron backscattering spectroscopy, and in particular neutron spin-echo spectroscopy, are presented, in combination with illustrations of results from polymer melt dynamics to protein dynamics which are obtained by these techniques. (authors)

  10. A comparative study of the energy resolution achievable with digital signal processors in x-ray spectroscopy

    International Nuclear Information System (INIS)

    Geraci, A.; Zambusi, M.; Ripamonti, G.

    1996-01-01

    Interest for digital processing of signals from radiation detectors is subject to a growing attention due to its intrinsic adaptivity, easiness of calibration, etc. This work compares two digital processing methods: a multiple-delay-line (DL) N filter and a least-mean-squares (LMS) adaptive filter for applications in high resolution X-ray spectroscopy. The signal pulse, as appears at the output of a proper analog conditioning circuit, is digitized; the samples undergo a digital filtering procedure. Both digital filters take advantage of the possibility of synthesizing the best possible weighting function with respect to the actual noise conditions. A noticeable improvement of more than 10% in energy resolution has been achieved with both systems with respect to state-of-the-art systems based on analog circuitry. In particular, the two digital processors are shown to be the best choice respectively; for on-line use with critical ballistic deficit conditions and for very-high-resolution spectroscopy systems, ultimately limited by 1/f noise

  11. Ultrahigh-Resolution Magnetic Resonance in Inhomogeneous Magnetic Fields: Two-Dimensional Long-Lived-Coherence Correlation Spectroscopy

    Science.gov (United States)

    Chinthalapalli, Srinivas; Bornet, Aurélien; Segawa, Takuya F.; Sarkar, Riddhiman; Jannin, Sami; Bodenhausen, Geoffrey

    2012-07-01

    A half-century quest for improving resolution in Nuclear Magnetic Resonance (NMR) and Magnetic Resonance Imaging (MRI) has enabled the study of molecular structures, biological interactions, and fine details of anatomy. This progress largely relied on the advent of sophisticated superconducting magnets that can provide stable and homogeneous fields with temporal and spatial variations below ΔB0/B0LLC-COSY) opens the way to overcome both inhomogeneous and homogeneous broadening, which arise from local variations in static fields and fluctuating dipole-dipole interactions, respectively. LLC-COSY makes it possible to obtain ultrahigh resolution two-dimensional spectra, with linewidths on the order of Δν=0.1 to 1 Hz, even in very inhomogeneous fields (ΔB0/B0>10ppm or 5000 Hz at 9.7 T), and can improve resolution by a factor up to 9 when the homogeneous linewidths are determined by dipole-dipole interactions. The resulting LLC-COSY spectra display chemical shift differences and scalar couplings in two orthogonal dimensions, like in “J spectroscopy.” LLC-COSY does not require any sophisticated gradient switching or frequency-modulated pulses. Applications to in-cell NMR and to magnetic resonance spectroscopy (MRS) of selected volume elements in MRI appear promising, particularly when susceptibility variations tend to preclude high resolution.

  12. High-Resolution Light Transmission Spectroscopy of Nanoparticles in Real Time

    Science.gov (United States)

    Tanner, Carol; Sun, Nan; Deatsch, Alison; Li, Frank; Ruggiero, Steven

    2017-04-01

    As implemented here, Light Transmission Spectroscopy (LTS) is a high-resolution real-time technique for eliminating spectral noise and systematic effects in wide band spectroscopic measurements of nanoparticles. In this work, we combine LTS with spectral inversion for the purpose of characterizing the size, shape, and number of nanoparticles in solution. The apparatus employs a wide-band multi-wavelength light source and grating spectrometers coupled to CCD detectors. The light source ranges from 210 to 2000 nm, and the wavelength dependent light detection system ranges from 200 to 1100 nm with model the total extinction cross-section, and spectral inversion is employed to obtain quantitative particle size distributions. Discussed are the precision, accuracy, resolution, and sensitivity of our results. The technique is quite versatile and can be applied to spectroscopic investigations where wideband, accurate, low-noise, real-time spectra are desired. University of Notre Dame Office of Research, College of Science, Department of Physics, and USDA.

  13. High-Resolution Spectroscopy of Laser Ablation Plumes Using Laser-Induced Fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Harilal, Sivanandan S.; LaHaye, Nicole L.; Phillips, Mark C.

    2017-02-06

    We used a CW laser as a narrow-band (~50kHz) tunable LIF excitation source to probe absorption from selected atomic transitions (Al, U etc. ) in a ns laser ablation plume. A comparison of fluorescence signal with respect to emission spectroscopy show significant increase in the magnitude and persistence from selected Al and U transitions in a LIBS plume. The high spectral resolution provided by the LIF measurement allows peaks to be easily separated even if they overlap in the emission spectra.

  14. High-Resolution Spectroscopy of Jet-Cooled 1,1 '-Diphenylethylene: Electronically Excited and Ionic States of a Prototypical Cross-Conjugated System

    NARCIS (Netherlands)

    Smolarek, S.; Vdovin, A.; Rijs, A.; van Walree, C. A.; Zgierski, M. Z.; Buma, W. J.

    2011-01-01

    The photophysics of a prototypical cross-conjugated pi-system, 1,1'-diphenylethylene, have been studied using high-resolution resonance enhanced multiphoton ionization excitation spectroscopy and zero kinetic energy photoelectron spectroscopy, in combination with advanced ab initio

  15. An ultrastable Michelson interferometer for high-resolution spectroscopy in the XUV.

    Science.gov (United States)

    Corsi, C; Liontos, I; Cavalieri, S; Bellini, M; Venturi, G; Eramo, R

    2015-02-23

    We developed an ultra-stable and accurately-controllable Michelson interferometer to be used in a deeply unbalanced arm configuration for split-pulse XUV Ramsey-type spectroscopy with high-order laser harmonics. The implemented active and passive stabilization systems allow one to reach instabilities in the nanometer range over meters of relative optical path differences. Producing precisely delayed pairs of pump pulses will generate XUV harmonic pulses that may significantly improve the achievable spectral resolution and the precision of absolute frequency measurements in the XUV.

  16. Calculation of the spatial resolution in two-photon absorption spectroscopy applied to plasma diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Lechuga, M. [Departamento de Física Teórica, Atómica y Óptica, Universidad de Valladolid, 47011-Valladolid (Spain); Laser Processing Group, Instituto de Óptica “Daza de Valdés,” CSIC, 28006-Madrid (Spain); Fuentes, L. M. [Departamento de Física Aplicada, Universidad de Valladolid, 47011-Valladolid (Spain); Grützmacher, K.; Pérez, C., E-mail: concha@opt.uva.es; Rosa, M. I. de la [Departamento de Física Teórica, Atómica y Óptica, Universidad de Valladolid, 47011-Valladolid (Spain)

    2014-10-07

    We report a detailed characterization of the spatial resolution provided by two-photon absorption spectroscopy suited for plasma diagnosis via the 1S-2S transition of atomic hydrogen for optogalvanic detection and laser induced fluorescence (LIF). A precise knowledge of the spatial resolution is crucial for a correct interpretation of measurements, if the plasma parameters to be analysed undergo strong spatial variations. The present study is based on a novel approach which provides a reliable and realistic determination of the spatial resolution. Measured irradiance distribution of laser beam waists in the overlap volume, provided by a high resolution UV camera, are employed to resolve coupled rate equations accounting for two-photon excitation, fluorescence decay and ionization. The resulting three-dimensional yield distributions reveal in detail the spatial resolution for optogalvanic and LIF detection and related saturation due to depletion. Two-photon absorption profiles broader than the Fourier transform-limited laser bandwidth are also incorporated in the calculations. The approach allows an accurate analysis of the spatial resolution present in recent and future measurements.

  17. Calculation of the spatial resolution in two-photon absorption spectroscopy applied to plasma diagnosis

    International Nuclear Information System (INIS)

    Garcia-Lechuga, M.; Fuentes, L. M.; Grützmacher, K.; Pérez, C.; Rosa, M. I. de la

    2014-01-01

    We report a detailed characterization of the spatial resolution provided by two-photon absorption spectroscopy suited for plasma diagnosis via the 1S-2S transition of atomic hydrogen for optogalvanic detection and laser induced fluorescence (LIF). A precise knowledge of the spatial resolution is crucial for a correct interpretation of measurements, if the plasma parameters to be analysed undergo strong spatial variations. The present study is based on a novel approach which provides a reliable and realistic determination of the spatial resolution. Measured irradiance distribution of laser beam waists in the overlap volume, provided by a high resolution UV camera, are employed to resolve coupled rate equations accounting for two-photon excitation, fluorescence decay and ionization. The resulting three-dimensional yield distributions reveal in detail the spatial resolution for optogalvanic and LIF detection and related saturation due to depletion. Two-photon absorption profiles broader than the Fourier transform-limited laser bandwidth are also incorporated in the calculations. The approach allows an accurate analysis of the spatial resolution present in recent and future measurements.

  18. High Resolution Infrared Spectroscopy in Astronomy Proceedings of an ESO Workshop Held at Garching, Germany, 18-21 November 2003

    CERN Document Server

    Käufl, Hans Ulrich; Moorwood, Alan F. M

    2005-01-01

    Two specialized new instruments for ESO's VLT, VISIR and CRIRES, spawned the idea for this workshop. CRIRES is a dedicated very high resolution infrared spectrograph; VISIR features a high resolution spectroscopic mode. Together, the instruments combine the sensitivity of an 8m-telescope with the now well-established reliability of VLT-facility instruments. High resolution here means that lines in cool stellar atmospheres and HII-regions can be resolved. The astrophysical topics discussed in this rather specialized workshop range from the inner solar system to active galactic nuclei. There are many possibilities for new discoveries with these instruments, but the unique capability, which becomes available through high-resolution infrared spectroscopy, is the observation of molecular rotational-vibrational transitions in many astrophysical environments. Particularly interesting and surprising in this context, many papers on modeling and laboratory spectroscopy at the workshop appear to indicate that astronomic...

  19. High-resolution spectroscopy of jet-cooled 1,1 '-diphenylethylene: electronically excited and ionic states of a prototypical cross-conjugated system

    NARCIS (Netherlands)

    Smolarek, S.; Vdovin, A.; Rijs, A.; van Walree, C.A.; Zgierski, M.Z.; Buma, W.J.

    2011-01-01

    The photophysics of a prototypical cross-conjugated π-system, 1,1′-diphenylethylene, have been studied using high-resolution resonance enhanced multiphoton ionization excitation spectroscopy and zero kinetic energy photoelectron spectroscopy, in combination with advanced ab initio calculations. We

  20. Synchrotron radiation spectroscopy including X-ray absorption spectroscopy and industrial applications

    International Nuclear Information System (INIS)

    Oshima, Masaharu

    2016-01-01

    Recent trends of synchrotron radiation spectroscopy, especially X-ray absorption spectroscopy for industrial applications are introduced based on our latest results for energy efficient devices such as magnetic RAM, LSI and organic FET, power generation devices such as fuel cells, and energy storage devices such as Li ion batteries. Furthermore, future prospects of spectroscopy with higher energy resolution, higher spatial resolution, higher temporal resolution and operando spectroscopy taking advantage of much brighter synchrotron radiation beam at low emittance SR rings are discussed from the view point of practical applications. (author)

  1. HIGH-RESOLUTION INFRARED IMAGING AND SPECTROSCOPY OF THE Z CANIS MAJORIS SYSTEM DURING QUIESCENCE AND OUTBURST

    Energy Technology Data Exchange (ETDEWEB)

    Hinkley, Sasha; Hillenbrand, Lynne; Crepp, Justin R. [Department of Astronomy, California Institute of Technology, 1200 E. California Blvd, MC 249-17, Pasadena, CA 91125 (United States); Oppenheimer, Ben R.; Zimmerman, Neil; Brenner, Douglas [Astrophysics Department, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024 (United States); Rice, Emily L. [Department of Engineering Science and Physics, College of Staten Island, City University of New York, 2800 Victory Bvld, Staten Island, NY 10314 (United States); Pueyo, Laurent [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Vasisht, Gautam; Roberts, Jennifer E.; Roberts, Lewis C. Jr.; Burruss, Rick; Wallace, J. Kent; Cady, Eric; Zhai, Chengxing [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109 (United States); Kraus, Adam L. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA, 02138 (United States); Ireland, Michael J. [Department of Physics and Astronomy, Macquarie University, New South Wales, NSW 2109 (Australia); Beichman, Charles [NASA Exoplanet Science Institute, California Institute of Technology, Pasadena, CA 91125 (United States); Dekany, Richard [Caltech Optical Observatories, California Institute of Technology, Pasadena, CA 91125 (United States); Parry, Ian R. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); and others

    2013-01-20

    We present adaptive optics photometry and spectra in the JHKL bands along with high spectral resolution K-band spectroscopy for each component of the Z Canis Majoris system. Our high angular resolution photometry of this very young ({approx}<1 Myr) binary, comprised of an FU Ori object and a Herbig Ae/Be star, was gathered shortly after the 2008 outburst while our high-resolution spectroscopy was gathered during a quiescent phase. Our photometry conclusively determines that the outburst was due solely to the embedded Herbig Ae/Be member, supporting results from earlier works, and that the optically visible FU Ori component decreased slightly ({approx}30%) in luminosity during the same period, consistent with previous works on the variability of FU Ori type systems. Further, our high-resolution K-band spectra definitively demonstrate that the 2.294 {mu}m CO absorption feature seen in composite spectra of the system is due solely to the FU Ori component, while a prominent CO emission feature at the same wavelength, long suspected to be associated with the innermost regions of a circumstellar accretion disk, can be assigned to the Herbig Ae/Be member. These findings clarify previous analyses of the origin of the CO emission in this complex system.

  2. High resolution neutron spectroscopy - a tool for the investigation of dynamics of polymers and soft matter; La spectroscopie de neutrons a haute resolution-un outil pour l'etude de la dynamique des polymeres et de la matiere molle

    Energy Technology Data Exchange (ETDEWEB)

    Monkenbusch, M.; Richter, D. [Institut fur Festkorperforschung (IFF), Forschungszentrum Julich, Julich (Germany)

    2007-09-15

    Neutron scattering, with the ability to vary the contrast of molecular items by hydrogen/deuterium exchanges, is an invaluable tool for soft matter research. Besides the structural information on the mesoscopic scale that is obtained by diffraction methods like small angle neutron scattering, the slow dynamics of molecular motion on mesoscopic scale is accessible by high resolution neutron spectroscopy. The basic features of neutron backscattering spectroscopy, and in particular neutron spin-echo spectroscopy, are presented, in combination with illustrations of results from polymer melt dynamics to protein dynamics which are obtained by these techniques. (authors)

  3. 256-pixel microcalorimeter array for high-resolution γ-ray spectroscopy of mixed-actinide materials

    Energy Technology Data Exchange (ETDEWEB)

    Winkler, R., E-mail: rwinkler@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM (United States); Hoover, A.S.; Rabin, M.W. [Los Alamos National Laboratory, Los Alamos, NM (United States); Bennett, D.A.; Doriese, W.B.; Fowler, J.W.; Hays-Wehle, J.; Horansky, R.D.; Reintsema, C.D.; Schmidt, D.R.; Vale, L.R.; Ullom, J.N. [National Institute of Standards and Technology, Boulder, CO (United States)

    2015-01-11

    The application of cryogenic microcalorimeter detectors to γ-ray spectroscopy allows for measurements with unprecedented energy resolution. These detectors are ideally suited for γ-ray spectroscopy applications for which the measurement quality is limited by the spectral overlap of many closely spaced transitions using conventional detector technologies. The non-destructive analysis of mixed-isotope Pu materials is one such application where the precision can be potentially improved utilizing microcalorimeter detectors compared to current state-of-the-art high-purity Ge detectors (HPGe). The LANL-NIST γ-ray spectrometer, a 256-pixel microcalorimeter array based on transition-edge sensors (TESs), was recently commissioned and used to collect data on a variety of Pu isotopic standards to characterize the instrument performance. These measurements represent the first time the simultaneous readout of all 256 pixels for measurements of mixed-isotope Pu materials has been achieved. The LANL-NIST γ-ray spectrometer has demonstrated an average pixel resolution of 55 eV full-width-at-half-maximum at 100 keV, nearly an order of magnitude better than HPGe detectors. Some challenges of the analysis of many-channel ultra-high resolution data and the techniques used to produce quality spectra for isotopic analysis will be presented. The LANL-NIST γ-ray spectrometer has also demonstrated stable operation and obtained high resolution measurements at total array event rates beyond 1 kHz. For a total event rate of 1.25 kHz, approximately 5.6 cps/pixel, a 72.2 eV average FWHM for the 103 keV photopeak of {sup 153}Gd was achieved.

  4. Extracting chemical information from high-resolution Kβ X-ray emission spectroscopy

    Science.gov (United States)

    Limandri, S.; Robledo, J.; Tirao, G.

    2018-06-01

    High-resolution X-ray emission spectroscopy allows studying the chemical environment of a wide variety of materials. Chemical information can be obtained by fitting the X-ray spectra and observing the behavior of some spectral features. Spectral changes can also be quantified by means of statistical parameters calculated by considering the spectrum as a probability distribution. Another possibility is to perform statistical multivariate analysis, such as principal component analysis. In this work the performance of these procedures for extracting chemical information in X-ray emission spectroscopy spectra for mixtures of Mn2+ and Mn4+ oxides are studied. A detail analysis of the parameters obtained, as well as the associated uncertainties is shown. The methodologies are also applied for Mn oxidation state characterization of double perovskite oxides Ba1+xLa1-xMnSbO6 (with 0 ≤ x ≤ 0.7). The results show that statistical parameters and multivariate analysis are the most suitable for the analysis of this kind of spectra.

  5. Development of micro-optics for high-resolution IL spectroscopy with a proton microbeam probe

    International Nuclear Information System (INIS)

    Kada, Wataru; Satoh, Takahiro; Yokoyama, Akihito; Koka, Masashi; Kamiya, Tomihiro

    2014-01-01

    Confocal optics for ion luminescence (IL) was developed for the precise analysis of the chemical composition of microscopic targets with an external proton microbeam probe. Anti-reflection-coated confocal micro-lens optics with an effective focus area of approximately 800 × 800 μm was installed on the microbeam line of a single-ended accelerator. Chromatic aberrations of the confocal optics were examined at wavelengths of 300–900 nm. An electrically-cooled back-thinned charge coupled device spectrometer with a wavelength resolution of 0.5 nm was used for the microscopic spectroscopy and IL imaging of microscopic mineral targets. Simultaneous microscopic IL and micro-PIXE analysis were performed using an external 3 MeV H + microbeam with a current of less than 100 pA. A spectral resolution of 3 nm was achieved for a single IL peak which corresponded to Cr 3+ impurities in a single-crystal of aluminum oxide. The use of IL spectroscopy and imaging for aerosol targets revealed microscopic distributions of the chemical and elemental composition in the atmosphere

  6. High resolution laser spectroscopy as a diagnostic tool in beams

    International Nuclear Information System (INIS)

    Bergmann, K.; Hefter, U.; Hering, P.

    1977-01-01

    The combination of high resolution laser spectroscopy with the technique of molecular beams allows a very detailed beam research since molecules or atoms in specific quantum states can be sampled yielding previously unavailable sources of data. In these experiments a Na/Na 2 beam emerges from a 0.2 mm nozzle and is collimated by a 2 mm wide slit 50 cm downstream. To probe the molecules a single mode Ar + -laser was used which can be tuned within the gain profile of the laser line (8 GHz) to several transitions between specific levels in the ground state and second electronically excited state of the Na 2 molecule. (Auth.)

  7. Very high resolution UV and x-ray spectroscopy and imagery of solar active regions. Final report

    International Nuclear Information System (INIS)

    Bruner, M.; Brown, W.A.; Haisch, B.M.

    1987-01-01

    A scientific investigation of the physics of the solar atmosphere, which uses the techniques of high resolution soft x-ray spectroscopy and high resolution UV imagery, is described. The experiments were conducted during a series of three sounding rocket flights. All three flights yielded excellent images in the UV range, showing unprecedented spatial resolution. The second flight recorded the x-ray spectrum of a solar flare, and the third that of an active region. A normal incidence multi-layer mirror was used during the third flight to make the first astronomical x-ray observations using this new technique

  8. High-resolution metallic magnetic calorimeters for β-spectroscopy on 187rhenium and position resolved X-ray spectroscopy

    International Nuclear Information System (INIS)

    Porst, Jan-Patrick

    2011-01-01

    This thesis describes the development of metallic magnetic calorimeters (MMCs) for high resolution spectroscopy. MMCs are energy dispersive particle detectors based on the calorimetric principle which are typically operated at temperatures below 100 mK. The detectors make use of a paramagnetic temperature sensor to transform the temperature rise upon the absorption of a particle in the detector into a measurable magnetic flux change in a dc-SQUID. The application of MMCs for neutrino mass measurements and their advantages with respect to other approaches are discussed. In view of this application the development of an MMC optimized for β-endpoint spectroscopy on 187 rhenium is presented. A fully micro-fabricated X-ray detector is characterized and performs close to design values. Furthermore, a new technique to more efficiently couple rhenium absorbers mechanically and thermally to the sensor was developed and successfully tested. By employing a metallic contact, signal rise times faster than 5 μs could be observed with superconducting rhenium absorbers. In addition to the single pixel detectors, an alternative approach of reading out multiple pixels was developed in this work, too. Here, the individual absorbers have a different thermal coupling to only one temperature sensor resulting in a distribution of different pulse shapes. Straightforward position discrimination by means of rise time analysis is demonstrated for a four pixel MMC and a thermal model of the detector is provided. Unprecedented so far, an energy resolution of less than ΔE FWHM <5 eV for 5.9 keV X-rays was achieved across all absorbers. (orig.)

  9. Mastering high resolution tip-enhanced Raman spectroscopy: towards a shift of perception.

    Science.gov (United States)

    Richard-Lacroix, Marie; Zhang, Yao; Dong, Zhenchao; Deckert, Volker

    2017-07-03

    Recent years have seen tremendous improvement of our understanding of high resolution reachable in TERS experiments, forcing us to re-evaluate our understanding of the intrinsic limits of this field, but also exposing several inconsistencies. On the one hand, more and more recent experimental results have provided us with clear indications of spatial resolutions down to a few nanometres or even on the subnanometre scale. Moreover, lessons learned from recent theoretical investigations clearly support such high resolutions, and vice versa the obvious theoretical impossibility to evade high resolution from a purely plasmonic point of view. On the other hand, most of the published TERS results still, to date, claim a resolution on the order of tens of nanometres that would be somehow limited by the tip apex, a statement well accepted for the past 2 decades. Overall, this now leads the field to a fundamental question: how can this divergence be justified? The answer to this question brings up an equally critical one: how can this gap be bridged? This review aims at raising a fundamental discussion related to the resolution limits of tip-enhanced Raman spectroscopy, at revisiting our comprehension of the factors limiting it both from a theoretical and an experimental point of view and at providing indications on how to move the field ahead. It is our belief that a much deeper understanding of the real accessible lateral resolution in TERS and the practical factors that limit them will simultaneously help us to fully explore the potential of this technique for studying nanoscale features in organic, inorganic and biological systems, and also to improve both the reproducibility and the accuracy of routine TERS studies. A significant improvement of our comprehension of the accessible resolution in TERS is thus critical for a broad audience, even in certain contexts where high resolution TERS is not the desired outcome.

  10. Metallic magnetic calorimeters for high resolution X-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Krantz, M.; Hengstler, D.; Geist, J.; Schoetz, C.; Hassel, K.; Hendricks, S.; Keller, M.; Kempf, S.; Gastaldo, L.; Fleischmann, A.; Enss, C. [Heidelberg Univ. (Germany). KIP

    2015-07-01

    We develop microfabricated, energy dispersive particle detector arrays based on metallic magnetic calorimeters (MMCs) for high resolution X-ray spectroscopy to challenge bound-state QED calculations. Our MMCs are operated at about T=30 mK and use a paramagnetic temperature sensor, read-out by a SQUID, to measure the energy deposited by single X-ray photons. We discuss the physics of MMCs, the detector performance and the cryogenic setups for two different detector arrays. We present their microfabrication layouts with focus on challenges like the heatsinking of each pixel of the detector and the overhanging absorbers. The maXs-20 detector is a linear 1x8-pixel array with excellent linearity in its designated energy range up to 20 keV and unsurpassed energy resolution of 1.6 eV for 6 keV x-rays. MaXs-20 operated in a highly portable pulse tube cooled ADR setup has already been used at the EBIT facilities of the MPI-K for new reference measurements of V-like and Ti-like tungsten. The maXs-30 detector currently in development is a 8x8-pixel 2d-array with an active detection area of 16 mm{sup 2} and is designed to detect X-rays up to 50 keV with a designated energy resolution below 5 eV. MaXs-30 will be operated in a cryogen free 3He/4He-dilution refrigerator at the tip of a 40 cm long cold finger at T=20 mK.

  11. Using elastic peak electron spectroscopy for enhanced depth resolution in sputter profiling

    International Nuclear Information System (INIS)

    Hofmann, S.; Kesler, V.

    2002-01-01

    Elastic peak electron spectroscopy (EPES) is an alternative to AES in sputter depth profiling of thin film structures. In contrast to AES, EPES depth profiling is not influenced by chemical effects. The high count rate ensures a good signal to noise ratio, that is lower measurement times and/or higher precision. In addition, because of the elastically scattered electrons travel twice through the sample, the effective escape depth is reduced, an important factor for the depth resolution function. Thus, the depth resolution is increased. EPES depth profiling was successfully applied to a Ge/Si multilayer structure. For an elastic peak energy of 1.0 keV the information depth is considerably lower (0.8 nm) as compared to the Ge (LMM, 1147 eV) peak (1.6 nm) used in AES depth profiling, resulting in a respectively improved depth resolution for EPES profiling under otherwise similar profiling conditions. EPES depth profiling is successfully applied to measure small diffusion lengths at Ge/Si interfaces of the order of 1 nm. (Authors)

  12. Very High Spectral Resolution Imaging Spectroscopy: the Fluorescence Explorer (FLEX) Mission

    Science.gov (United States)

    Moreno, Jose F.; Goulas, Yves; Huth, Andreas; Middleton, Elizabeth; Miglietta, Franco; Mohammed, Gina; Nedbal, Ladislav; Rascher, Uwe; Verhoef, Wouter; Drusch, Matthias

    2016-01-01

    The Fluorescence Explorer (FLEX) mission has been recently selected as the 8th Earth Explorer by the European Space Agency (ESA). It will be the first mission specifically designed to measure from space vegetation fluorescence emission, by making use of very high spectral resolution imaging spectroscopy techniques. Vegetation fluorescence is the best proxy to actual vegetation photosynthesis which can be measurable from space, allowing an improved quantification of vegetation carbon assimilation and vegetation stress conditions, thus having key relevance for global mapping of ecosystems dynamics and aspects related with agricultural production and food security. The FLEX mission carries the FLORIS spectrometer, with a spectral resolution in the range of 0.3 nm, and is designed to fly in tandem with Copernicus Sentinel-3, in order to provide all the necessary spectral / angular information to disentangle emitted fluorescence from reflected radiance, and to allow proper interpretation of the observed fluorescence spatial and temporal dynamics.

  13. New ultra metal-poor stars from SDSS: follow-up GTC medium-resolution spectroscopy

    Science.gov (United States)

    Aguado, D. S.; Allende Prieto, C.; González Hernández, J. I.; Rebolo, R.; Caffau, E.

    2017-07-01

    Context. The first generation of stars formed in the Galaxy left behind the chemical signatures of their nucleosynthesis in the interstellar medium, visible today in the atmospheres of low-mass stars that formed afterwards. Sampling the chemistry of those low-mass provides insight into the first stars. Aims: We aim to increase the samples of stars with extremely low metal abundances, identifying ultra metal-poor stars from spectra with modest spectral resolution and signal-to-noise ratio (S/N). Achieving this goal involves deriving reliable metallicities and carbon abundances from such spectra. Methods: We carry out follow-up observations of faint, V > 19, metal-poor candidates selected from SDSS spectroscopy and observed with the Optical System for Imaging and low-Intermediate-Resolution Integrated Spectroscopy (OSIRIS) at GTC. The SDSS and follow-up OSIRIS spectra were analyzed using the FERRE code to derive effective temperatures, surface gravities, metallicities and carbon abundances. In addition, a well-known extremely metal-poor star has been included in our sample to calibrate the analysis methodology. Results: We observed and analyzed five metal-poor candidates from modest-quality SDSS spectra. All stars in our sample have been confirmed as extremely metal-poor stars, in the [Fe/H] Palma. Programme ID GTC2E-16A and ID GTC65-16B.

  14. Kaon-nucleus reactions and hypernuclei

    International Nuclear Information System (INIS)

    Dover, C.B.

    1987-01-01

    Recent advances in hypernuclear physics and kaon-nucleus scattering are discussed, with emphasis on the spectroscopy of Λ single particle states in heavy systems, as revealed by the (π + ,K + ) reaction. 26 refs., 8 figs

  15. High-intensity xenon plasma discharge lamp for bulk-sensitive high-resolution photoemission spectroscopy.

    Science.gov (United States)

    Souma, S; Sato, T; Takahashi, T; Baltzer, P

    2007-12-01

    We have developed a highly brilliant xenon (Xe) discharge lamp operated by microwave-induced electron cyclotron resonance (ECR) for ultrahigh-resolution bulk-sensitive photoemission spectroscopy (PES). We observed at least eight strong radiation lines from neutral or singly ionized Xe atoms in the energy region of 8.4-10.7 eV. The photon flux of the strongest Xe I resonance line at 8.437 eV is comparable to that of the He Ialpha line (21.218 eV) from the He-ECR discharge lamp. Stable operation for more than 300 h is achieved by efficient air-cooling of a ceramic tube in the resonance cavity. The high bulk sensitivity and high-energy resolution of PES using the Xe lines are demonstrated for some typical materials.

  16. Beamline 9.0.1 - a high-resolution undulator beamline for gas-phase spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bozek, J.D.; Heimann, P.A.; Mossessian, D. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    Beamline 9.0.1 at the Advanced Light Source is an undulator beamline with a Spherical Grating Monochromator (SGM) which provides very high resolution and flux over the photon energy range 20-320eV. The beamline has been used primarily by the atomic and molecular science community to conduct spectroscopy experiments using electron, ion and fluorescence photon detection. A description of the beamline and its performance will be provided in this abstract.

  17. High-resolution reflection spectroscopy

    International Nuclear Information System (INIS)

    Ducloy, Martial

    1997-01-01

    In this article some recent developments in selective reflection spectroscopy is reviewed and the various ways to extend Doppler free techniques to this spectroscopic field is discussed. Its main feature is to probe atomic gas close to the cell boundaries

  18. A tunable low-energy photon source for high-resolution angle-resolved photoemission spectroscopy

    International Nuclear Information System (INIS)

    Harter, John W.; Monkman, Eric J.; Shai, Daniel E.; Nie Yuefeng; Uchida, Masaki; Burganov, Bulat; Chatterjee, Shouvik; King, Philip D. C.; Shen, Kyle M.

    2012-01-01

    We describe a tunable low-energy photon source consisting of a laser-driven xenon plasma lamp coupled to a Czerny-Turner monochromator. The combined tunability, brightness, and narrow spectral bandwidth make this light source useful in laboratory-based high-resolution photoemission spectroscopy experiments. The source supplies photons with energies up to ∼7 eV, delivering under typical conditions >10 12 ph/s within a 10 meV spectral bandwidth, which is comparable to helium plasma lamps and many synchrotron beamlines. We first describe the lamp and monochromator system and then characterize its output, with attention to those parameters which are of interest for photoemission experiments. Finally, we present angle-resolved photoemission spectroscopy data using the light source and compare its performance to a conventional helium plasma lamp.

  19. Applications of Cr:ZnSe and Cr:ZnS lasers to ultrabroadband high-resolution spectroscopy

    International Nuclear Information System (INIS)

    Sorokin, E.; Sorokina, I.; Picque, N.; Guelachvili, G.

    2006-01-01

    Full text: Cr 2+ :ZnSe laser, and since recently also the Cr 2+ :ZnS laser proved to be versatile laser sources for trace gas measurements in the whole range between 2 and 3.1 μm. Among the existing methods of sensitive gas detection, intracavity laser absorption spectroscopy (ICLAS) offers some distinct advantages such as the simultaneous coverage of a broad spectral domain and large dynamic range. Under ICLAS the absorbing medium is put inside a laser cavity with broadband gain. As a result, the laser cavity acts as a multipass cell. Equivalent absorption path length of tens of kilometers can be achieved, corresponding to high detection sensitivities of the order of 10 -8 cm -1 and better. Only few examples of ICLAS spectrometers were demonstrated beyond 2 μm. Among them are: KCl:Li Fa(II) color center laser with coverage up to 4 nm at 2638 nm, Co:MgF 2 , covering up to 30 nm around 2040 and 2245 nm, Tm:YAG with coverage up to 35 nm at 2030 nm, and pulsed Cr:ZnSe, with coverage up to 50 nmat 2500 nm. In this talk we discuss application of a Cr 2+ :ZnSe laser to high-resolution and high-sensitivity intracavity absorption spectroscopy (ICLAS) analyzed by time-resolved Fourier transform spectroscopy. This represents the extreme limit presently reached in the infrared by ICLAS with Doppler limited resolution. Our most recent works concern application of a Cr 2+ :ZnS laser for broadband ultrasensitive intracavity laser spectroscopy (ICLAS), with effective absorption path up to about 50 km in the 2.4 μm range. The spectrometer operates with both Er-fiber and direct diode pumping in the very interesting water-free window between ∼ 2.1 and 2.5 μm. The sensitivity of 2 x 10 -9 cm -1 at Doppler-limited resolution allows obtaining spectral information that was previously unreachable in laboratory conditions. Summarizing, intracavity laser spectroscopy technique has been successfully used for measuring and detecting gas constituents with extreme sensitivity and

  20. High-resolution magnetic resonance spectroscopy using a solid-state spin sensor

    Science.gov (United States)

    Glenn, David R.; Bucher, Dominik B.; Lee, Junghyun; Lukin, Mikhail D.; Park, Hongkun; Walsworth, Ronald L.

    2018-03-01

    Quantum systems that consist of solid-state electronic spins can be sensitive detectors of nuclear magnetic resonance (NMR) signals, particularly from very small samples. For example, nitrogen–vacancy centres in diamond have been used to record NMR signals from nanometre-scale samples, with sensitivity sufficient to detect the magnetic field produced by a single protein. However, the best reported spectral resolution for NMR of molecules using nitrogen–vacancy centres is about 100 hertz. This is insufficient to resolve the key spectral identifiers of molecular structure that are critical to NMR applications in chemistry, structural biology and materials research, such as scalar couplings (which require a resolution of less than ten hertz) and small chemical shifts (which require a resolution of around one part per million of the nuclear Larmor frequency). Conventional, inductively detected NMR can provide the necessary high spectral resolution, but its limited sensitivity typically requires millimetre-scale samples, precluding applications that involve smaller samples, such as picolitre-volume chemical analysis or correlated optical and NMR microscopy. Here we demonstrate a measurement technique that uses a solid-state spin sensor (a magnetometer) consisting of an ensemble of nitrogen–vacancy centres in combination with a narrowband synchronized readout protocol to obtain NMR spectral resolution of about one hertz. We use this technique to observe NMR scalar couplings in a micrometre-scale sample volume of approximately ten picolitres. We also use the ensemble of nitrogen–vacancy centres to apply NMR to thermally polarized nuclear spins and resolve chemical-shift spectra from small molecules. Our technique enables analytical NMR spectroscopy at the scale of single cells.

  1. Optimized high energy resolution in γ-ray spectroscopy with AGATA triple cluster detectors

    Energy Technology Data Exchange (ETDEWEB)

    Wiens, Andreas

    2011-06-20

    The AGATA demonstrator consists of five AGATA Triple Cluster (ATC) detectors. Each triple cluster detector contains three asymmetric, 36-fold segmented, encapsulated high purity germanium detectors. The purpose of the demonstrator is to show the feasibility of position-dependent γ-ray detection by means of γ-ray tracking, which is based on pulse shape analysis. The thesis describes the first optimization procedure of the first triple cluster detectors. Here, a high signal quality is mandatory for the energy resolution and the pulse shape analysis. The signal quality was optimized and the energy resolution was improved through the modification of the electronic properties, of the grounding scheme of the detector in particular. The first part of the work was the successful installation of the first four triple cluster detectors at INFN (National Institute of Nuclear Physics) in Legnaro, Italy, in the demonstrator frame prior to the AGATA commissioning experiments and the first physics campaign. The four ATC detectors combine 444 high resolution spectroscopy channels. This number combined with a high density were achieved for the first time for in-beam γ-ray spectroscopy experiments. The high quality of the ATC detectors is characterized by the average energy resolutions achieved for the segments of each crystal in the range of 1.943 and 2.131 keV at a γ-ray energy of 1.33 MeV for the first 12 crystals. The crosstalk level between individual detectors in the ATC is negligible. The crosstalk within one crystal is at a level of 10{sup -3}. In the second part of the work new methods for enhanced energy resolution in highly segmented and position sensitive detectors were developed. The signal-to-noise ratio was improved through averaging of the core and the segment signals, which led to an improvement of the energy resolution of 21% for γ-energies of 60 keV to a FWHM of 870 eV. In combination with crosstalk correction, a clearly improved energy resolution was

  2. High-resolution proton NMR spectroscopy of cerebrospinal fluid: methodological issues and potential clinical applications

    International Nuclear Information System (INIS)

    Kriat, M.; Nicoli, F.; Vion-Dury, J.; Confort-Gouny, S.; Cozzone, P.J.; Nicoli, F.; Gastaut, J.L.; Dano, P.; Grisoli, F.

    1991-01-01

    High resolution proton nuclear magnetic resonance (NMR) spectroscopy is a new analytical technique which allows to readily identify and quantitate a variety of key metabolites in cerebrospinal fluid (CSF) in relation to normal and pathological brain activity. Proton NMR spectroscopy can be performed on native CSF, with or without addition of exchange reagent (NH 4 Cl). The analysis of native CSF provides qualitative information (identification) of metabolites or xenobiotics present in the fluid. Alternately, CSF can be lyophilized and dissolved in deuterated water. This concentration offers 2 advantages: additional compounds are detected and a precise quantification of all CSF metabolites can be obtained. Both protocols require a very small volume of CFS (1-2 ml). The high informational content available on the NMR spectra of CSF, the ease-of-use of NMR spectroscopy and its cost effectiveness concur to predict that this analytical approach will keep developing to completement the array of existing tests which are already routinely performed on CSF. 6 figs [fr

  3. High-resolution metallic magnetic calorimeters for {beta}-spectroscopy on {sup 187}rhenium and position resolved X-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Porst, Jan-Patrick

    2011-02-01

    This thesis describes the development of metallic magnetic calorimeters (MMCs) for high resolution spectroscopy. MMCs are energy dispersive particle detectors based on the calorimetric principle which are typically operated at temperatures below 100 mK. The detectors make use of a paramagnetic temperature sensor to transform the temperature rise upon the absorption of a particle in the detector into a measurable magnetic flux change in a dc-SQUID. The application of MMCs for neutrino mass measurements and their advantages with respect to other approaches are discussed. In view of this application the development of an MMC optimized for {beta}-endpoint spectroscopy on {sup 187}rhenium is presented. A fully micro-fabricated X-ray detector is characterized and performs close to design values. Furthermore, a new technique to more efficiently couple rhenium absorbers mechanically and thermally to the sensor was developed and successfully tested. By employing a metallic contact, signal rise times faster than 5 {mu}s could be observed with superconducting rhenium absorbers. In addition to the single pixel detectors, an alternative approach of reading out multiple pixels was developed in this work, too. Here, the individual absorbers have a different thermal coupling to only one temperature sensor resulting in a distribution of different pulse shapes. Straightforward position discrimination by means of rise time analysis is demonstrated for a four pixel MMC and a thermal model of the detector is provided. Unprecedented so far, an energy resolution of less than {delta}E{sub FWHM}<5 eV for 5.9 keV X-rays was achieved across all absorbers. (orig.)

  4. High spatial and temporal resolution charge exchange recombination spectroscopy on the HL-2A tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Y. L.; Yu, D. L., E-mail: yudl@swip.ac.cn; Liu, L.; Cao, J. Y.; Sun, A. P.; Ma, Q.; Chen, W. J.; Liu, Yi; Yan, L. W.; Yang, Q. W.; Duan, X. R.; Liu, Yong [Southwestern Institute of Physics, Chengdu 610041 (China); Ida, K. [National Institute for Fusion Science, Toki 509-5292 (Japan); Hellermann, M. von [ITER Diagnostic Team, IO, Route de Vinon sur Verdon, 13115 St Paul lez Durance (France); FOM-Institute for Plasma physics “Rijnhuizen,” Association EURATOM, Trilateral Euregio Cluster, 3430 BE Nieuwegein (Netherlands)

    2014-10-01

    A 32/64-channel charge exchange recombination spectroscopy (CXRS) diagnostic system is developed on the HL-2A tokamak (R = 1.65 m, a = 0.4 m), monitoring plasma ion temperature and toroidal rotation velocity simultaneously. A high throughput spectrometer (F/2.8) and a pitch-controlled fiber bundle enable the temporal resolution of the system up to 400 Hz. The observation geometry and an optimized optic system enable the highest radial resolution up to ~1 cm at the plasma edge. The CXRS system monitors the carbon line emission (C VI, n = 8–7, 529.06 nm) whose Doppler broadening and Doppler shift provide ion temperature and plasma rotation velocity during the neutral beam injection. The composite CX spectral data are analyzed by the atomic data and analysis structure charge exchange spectroscopy fitting (ADAS CXSFIT) code. First experimental results are shown for the case of HL-2A plasmas with sawtooth oscillations, electron cyclotron resonance heating, and edge transport barrier during the high-confinement mode (H-mode)

  5. Exploring high-resolution magic angle spinning (HR-MAS) NMR spectroscopy for metabonomic analysis of apples.

    Science.gov (United States)

    Vermathen, Martina; Marzorati, Mattia; Vermathen, Peter

    2012-01-01

    Classical liquid-state high-resolution (HR) NMR spectroscopy has proved a powerful tool in the metabonomic analysis of liquid food samples like fruit juices. In this paper the application of (1)H high-resolution magic angle spinning (HR-MAS) NMR spectroscopy to apple tissue is presented probing its potential for metabonomic studies. The (1)H HR-MAS NMR spectra are discussed in terms of the chemical composition of apple tissue and compared to liquid-state NMR spectra of apple juice. Differences indicate that specific metabolic changes are induced by juice preparation. The feasibility of HR-MAS NMR-based multivariate analysis is demonstrated by a study distinguishing three different apple cultivars by principal component analysis (PCA). Preliminary results are shown from subsequent studies comparing three different cultivation methods by means of PCA and partial least squares discriminant analysis (PLS-DA) of the HR-MAS NMR data. The compounds responsible for discriminating organically grown apples are discussed. Finally, an outlook of our ongoing work is given including a longitudinal study on apples.

  6. Bulk superconducting gap of V_3Si studied by low-energy ultrahigh-resolution photoemission spectroscopy

    International Nuclear Information System (INIS)

    Sato, T.; Souma, S.; Nakayama, K.; Sugawara, K.; Toyota, N.; Takahashi, T.

    2016-01-01

    Highlights: • We report ultrahigh-resolution photoemission spectroscopy of A15 compound V_3Si. • We found a sharp quasiparticle peak due to superconducting-gap opening. • The surface metallic component is negligibly small in the bulk-sensitive measurement. • We show that V_3Si is a single-gap s-wave superconductor. - Abstract: We have performed low-energy ultrahigh-resolution photoemission spectroscopy (PES) of A15 compound V_3Si with a xenon-plasma discharge lamp to elucidate the bulk superconducting gap. Below the superconducting transition temperature (T_c = 15.9 K), we found a sharp quasiparticle peak at the Fermi level in the PES spectrum. The gap spectrum is well fitted by a single s-wave superconducting-gap function together with a dip structure at ∼30 meV suggestive of a strong electron-phonon coupling. The anomalous in-gap state previously observed in the PES measurement with high-energy photons is absent or negligibly small in the present bulk-sensitive measurement. The present PES result shows that V_3Si is a single-gap s-wave superconductor.

  7. Development of an Apparatus for High-Resolution Auger Photoelectron Coincidence Spectroscopy (APECS) and Electron Ion Coincidence (EICO) Spectroscopy

    Science.gov (United States)

    Kakiuchi, Takuhiro; Hashimoto, Shogo; Fujita, Narihiko; Mase, Kazuhiko; Tanaka, Masatoshi; Okusawa, Makoto

    We have developed an electron electron ion coincidence (EEICO) apparatus for high-resolution Auger photoelectron coincidence spectroscopy (APECS) and electron ion coincidence (EICO) spectroscopy. It consists of a coaxially symmetric mirror electron energy analyzer (ASMA), a miniature double-pass cylindrical mirror electron energy analyzer (DP-CMA), a miniature time-of-flight ion mass spectrometer (TOF-MS), a magnetic shield, an xyz stage, a tilt-adjustment mechanism, and a conflat flange with an outer diameter of 203 mm. A sample surface was irradiated by synchrotron radiation, and emitted electrons were energy-analyzed and detected by the ASMA and the DP-CMA, while desorbed ions were mass-analyzed and detected by the TOF-MS. The performance of the new EEICO analyzer was evaluated by measuring Si 2p photoelectron spectra of clean Si(001)-2×1 and Si(111)-7×7, and by measuring Si-L23VV-Si-2p Auger photoelectron coincidence spectra (Si-L23VV-Si-2p APECS) of clean Si(001)-2×1.

  8. High Resolution Rotational Spectroscopy of a Flexible Cyclic Ether

    Science.gov (United States)

    Gámez, F.; Martínez-Haya, B.; Blanco, S.; López, J. C.; Alonso, J. L.

    2011-06-01

    Crown ethers stand as one cornerstone molecular class inhost-guest Supramolecular Chemistry and constitute building blocks for a broad range of modern materials. We report here the first high resolution rotational study of a crown ether: 1,4,7,10,13-pentaoxacyclopentadecane (15-crown-5 ether,15c5). Molecular beam Fourier transform microwave spectroscopy has been employed. The liquid sample of 15c5 has been vaporized using heating methods. The considerable size of 15c5 and the broad range of conformations allowed by the flexibility of its backbone pose important challenges to spectroscopy approaches. In fact, the ab-initio computational study for isolated 15c5, yields at least six stable conformers with relative free energies within 2 kJ Mol-1 (167 Cm-1). Nevertheless, in this investigation it has been possible to identify and characterize in detail one stable rotamer of the 15c5 molecule and to challenge different quantum methods for the accurate description of this system. The results pave the ground for an extensive description of the conformational landscape of 15c5 and related cyclic ethers in the near term. J. L. Alonso, F. J. Lorenzo, J. C. López, A. Lesarri, S. Mata and H. Dreizler, Chem. Phys., 218, 267 (1997) S. Blanco, J.C López, J.L. Alonso, P. Ottaviani, W. Caminati, J. Chem. Phys. 119, 880 (2003) S.E. Hill, D. Feller, Int. J. Mass Spectrom. 201, 41 (2000)

  9. Digital synthesis of pulse shapes in real time for high resolution radiation spectroscopy

    International Nuclear Information System (INIS)

    Jordanov, Valentin T.; Knoll, Glenn F.

    1994-01-01

    Techniques have been developed for the synthesis of pulse shapes using fast digital schemes in place of the traditional analog methods of pulse shaping. Efficient recursive algorithms have been developed that allow real time implementation of a shaper that can produce either trapezoidal or triangular pulse shapes. Other recursive techniques are presented which allow a synthesis of finite cusp-like shapes. Preliminary experimental tests show potential advantages of using these techniques in high resolution, high count rate pulse spectroscopy. ((orig.))

  10. Do quarks play an explicit role as nuclear constituents ?

    International Nuclear Information System (INIS)

    Yamazaki, Toshimitsu.

    1986-10-01

    Experimental signatures for explicit roles of quarks as nuclear constituents are looked for. It is stressed that hyperons in nuclei may reveal unique information on nuclear interior and possible quark deconfinement. Future directions of hypernuclear spectroscopy are discussed. (author)

  11. Pluto's atmosphere in 2015 from high-resolution spectroscopy

    Science.gov (United States)

    Roe, Henry G.; Cook, Jason C.; Mace, Gregory N.; Holler, Bryan J.; Young, Leslie A.; McLane, Jacob N.; Jaffe, Daniel T.

    2015-11-01

    Pluto's thin N2/CH4 atmosphere is in vapor-pressure equilibrium with ices on its surface. The atmosphere evolves seasonally with the varying insolation pattern on Pluto's heterogenous surface, perhaps even largely freezing out to the surface during the coldest portion of Pluto's year. We use high-resolution (R≈25,000-50,000) near-infrared spectroscopy to resolve atmospheric methane absorption lines from Pluto's continuum spectra, as well as separate Pluto's atmospheric lines from the telluric spectrum. In addition to measuring the abundance and temperature of Pluto's atmospheric CH4, with broad wavelength coverage we are able to search for the inevitable products of N2/CH4 photochemistry. In 2015 we are undertaking an intensive campaign using NIRSPEC at Keck Observatory and IGRINS (Immersion Grating INfrared Spectrometer) at McDonald Observatory to coincide with the New Horizons Pluto encounter. We will report initial results from this 2015 campaign and compare the state of Pluto's atmosphere at the time of the New Horizons encounter with earlier years.

  12. New Optimizations of Microcalorimeter Arrays for High-Resolution Imaging X-ray Spectroscopy

    Science.gov (United States)

    Kilbourne, Caroline

    We propose to continue our successful research program in developing arrays of superconducting transition-edge sensors (TES) for x-ray astrophysics. Our standard 0.3 mm TES pixel achieves better than 2.5-eV resolution, and we now make 32x32 arrays of such pixels. We have also achieved better than 1-eV resolution in smaller pixels, and promising performance in a range of position-sensitive designs. We propose to continue to advance the designs of both the single-pixel and position-sensitive microcalorimeters so that we can produce arrays suitable for several x-ray spectroscopy observatories presently in formulation. We will also investigate various array and pixel optimizations such as would be needed for large arrays for surveys, large- pixel arrays for diffuse soft x-ray measurements, or sub-arrays of fast pixels optimized for neutron-star burst spectroscopy. In addition, we will develop fabrication processes for integrating sub-arrays with very different pixel designs into a monolithic focal-plane array to simplify the design of the focal-plane assembly and make feasible new detector configurations such as the one currently baselined for AXSIO. Through a series of measurements on test devices, we have improved our understanding of the weak-link physics governing the observed resistive transitions in TES detectors. We propose to build on that work and ultimately use the results to improve the immunity of the detector to environmental magnetic fields, as well as its fundamental performance, in each of the targeted optimizations we are developing.

  13. Study of the performance of HPGe detectors operating in very high magnetic fields

    International Nuclear Information System (INIS)

    Agnello, M.; Botta, E.; Bressani, T.; Bruschi, M.; Bufalino, S.; De Napoli, M.; Feliciello, A.; Fontana, A.; Giacobbe, B.; Lavezzi, L.; Raciti, G.; Rapisarda, E.; Rotondi, A.; Sbarra, C.; Sfienti, C.; Zoccoli, A.

    2009-01-01

    A new generation of high-resolution hypernuclear γ-spectroscopy experiments using high-purity germanium (HPGe) detectors is presently designed for the FINUDA spectrometer at DAΦNE, the Frascati Φ-factory, and for PANDA, the p-p-bar hadron spectrometer at the future FAIR facility. In both spectrometers the HPGe detectors have to be operated in strong magnetic fields. In this paper we report on a series of measurements performed on a HPGe detector inserted in a magnetic field of intensity up to 2.5 T, the highest ever reached for operations with a HPGe, and with different orientations of the detector's axis with respect to field direction. A significant worsening of the energy resolution was found, but with a moderate loss of the efficiency. The most relevant features of the peak shapes, described by bi-Gaussian functions, are parametrized in terms of field intensity and energy: this allows to correct the spectra measured in magnetic field and to recover the energy resolution almost completely.

  14. Moessbauer spectroscopy with a high velocity resolution: advances in biomedical, pharmaceutical, cosmochemical and nano technological research

    International Nuclear Information System (INIS)

    Oshtrakha, M.I.; Semionkina, V.A.

    2011-01-01

    Full text: Velocity resolution is a term denoted the smallest velocity step (2V/2 n ) in velocity driving system of Moessbauer spectrometer and velocity step for the one point in Moessbauer spectrum. Velocity resolution coefficient 1/2 n in velocity driving system is constant and velocity resolution value depends on velocity range (2V) only while velocity resolution in Moessbauer spectrum may be the same or less. Moessbauer spectroscopy with a high velocity resolution is a new method to measure precision high quality spectra. It is well known that one of the main parts of Moessbauer spectrometer is velocity driving system. Usual spectrometers are used sinusoidal or triangular velocity reference signal and 256 or 512 channels to form velocity signal. Such velocity driving system provides spectra measurement with a low velocity resolution (2 n =256 or 512 channels) with possibility to decrease measurement time and reach needed signal/noise ratio by spectra folding on the direct and reverse motion. However, these driving systems do not provide a low systematic error for velocity signal while folding increases integral velocity error due to different velocity errors on the direct and reverse motions. These problems can be neglected if a high precision is not required for spectra measurement. Nevertheless, further development of Moessbauer spectroscopy may be related to increase in precision and quality of spectra measurement with less instrumental (systematic) velocity error and to increase in velocity resolution for both spectrometer and spectrum. A new velocity driving system was developed for Moessbauer spectrometer SM- 2201. This system uses saw-tooth shape velocity reference signal and 2 n =4096 channels to form velocity signal. On the basis of SM-2201 and liquid nitrogen cryostat with moving absorber and temperature variation in the range of 295-85 K a new automated precision Moessbauer spectrometric system with a high velocity resolution was created

  15. High resolution main-ion charge exchange spectroscopy in the DIII-D H-mode pedestal.

    Science.gov (United States)

    Grierson, B A; Burrell, K H; Chrystal, C; Groebner, R J; Haskey, S R; Kaplan, D H

    2016-11-01

    A new high spatial resolution main-ion (deuterium) charge-exchange spectroscopy system covering the tokamak boundary region has been installed on the DIII-D tokamak. Sixteen new edge main-ion charge-exchange recombination sightlines have been combined with nineteen impurity sightlines in a tangentially viewing geometry on the DIII-D midplane with an interleaving design that achieves 8 mm inter-channel radial resolution for detailed profiles of main-ion temperature, velocity, charge-exchange emission, and neutral beam emission. At the plasma boundary, we find a strong enhancement of the main-ion toroidal velocity that exceeds the impurity velocity by a factor of two. The unique combination of experimentally measured main-ion and impurity profiles provides a powerful quasi-neutrality constraint for reconstruction of tokamak H-mode pedestals.

  16. High-resolution gamma-ray spectroscopy with a microwave-multiplexed transition-edge sensor array

    Energy Technology Data Exchange (ETDEWEB)

    Noroozian, Omid [National Institute of Standards and Technology, Boulder, Colorado 80305 (United States); Center for Astrophysics and Space Astronomy, University of Colorado, Boulder, Colorado 80309 (United States); Mates, John A. B.; Bennett, Douglas A.; Brevik, Justus A.; Fowler, Joseph W.; Gao, Jiansong; Hilton, Gene C.; Horansky, Robert D.; Irwin, Kent D.; Schmidt, Daniel R.; Vale, Leila R.; Ullom, Joel N. [National Institute of Standards and Technology, Boulder, Colorado 80305 (United States); Kang, Zhao [Department of Physics, University of Colorado, Boulder, Colorado 80309 (United States)

    2013-11-11

    We demonstrate very high resolution photon spectroscopy with a microwave-multiplexed two-pixel transition-edge sensor (TES) array. We measured a {sup 153}Gd photon source and achieved an energy resolution of 63 eV full-width-at-half-maximum at 97 keV and an equivalent readout system noise of 86 pA/√(Hz) at the TES. The readout circuit consists of superconducting microwave resonators coupled to radio-frequency superconducting-quantum-interference-devices and transduces changes in input current to changes in phase of a microwave signal. We use flux-ramp modulation to linearize the response and evade low-frequency noise. This demonstration establishes one path for the readout of cryogenic X-ray and gamma-ray sensor arrays with more than 10{sup 3} elements and spectral resolving powers R=λ/Δλ>10{sup 3}.

  17. Spectroscopic Investigation of p-Shell Lambda Hypernuclei by the (e,e'K+) Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chunhua [Hampton Univ., Hampton, VA (United States)

    2014-08-01

    Hypernuclear spectroscopy is a powerful tool to investigate Lambda-N interaction. Compared with other Lambda hypernuclei productions, electroproduction via the (e,e'K+) reaction has the advantage of exciting states deeply inside of the hypernucleus and achieving sub-MeV energy resolution. The E05-115 experiment, which was successfully performed in 2009, is the third generation hypernuclear experiment in JLab Hall C. A new splitter magnet and electron spectrometer were installed, and beam energy of 2.344 GeV was selected in this experiment. These new features gave better field uniformity, optics quality and made the tilt method more effective in improving yield-to-background ratio. The magnetic optics of the spectrometers were carefully studied with GEANT simulation, and corrections were applied to compensate for the fringe field cross talk between the compact spectrometer magnets. The non-linear least chi-squared method was used to further calibrate the spectrometer with the events from Lambda, Sigma0 and B12Lambda and uniform magnetic optics as well as precise kinematics were achieved. Several p-shell Lambda hypernuclear spectra, including B12Λ, Be10Λ, He7Λ, were obtained with high energy resolution and good accuracy. For B12Λ, eight peaks were recognized with the resolution of ~540keV (FWHM), and the ground state binding energy was obtained as 11.529 ± 0.012(stat.) ± 0.110(syst.) MeV. Be10Λ, twelve peaks were recognized with the resolution of ~520keV (FWHM), and the binding energy of the ground state was determined as 8.710 ± 0.059(stat.) ± 0.114(syst.) MeV. For He7Λ, three peaks were recognized with the resolution of ~730keV, and the ground state binding energy was obtained as 5.510 ± 0.050(stat.) ± 0.120(syst.) MeV. Compared with the published data of B12Λ from the JLab Hall A experiment

  18. High-resolution broadband terahertz spectroscopy via electronic heterodyne detection of photonically generated terahertz frequency comb.

    Science.gov (United States)

    Pavelyev, D G; Skryl, A S; Bakunov, M I

    2014-10-01

    We report an alternative approach to the terahertz frequency-comb spectroscopy (TFCS) based on nonlinear mixing of a photonically generated terahertz pulse train with a continuous wave signal from an electronic synthesizer. A superlattice is used as a nonlinear mixer. Unlike the standard TFCS technique, this approach does not require a complex double-laser system but retains the advantages of TFCS-high spectral resolution and wide bandwidth.

  19. High-resolution photon spectroscopy with a microwave-multiplexed 4-pixel transition edge sensor array

    Science.gov (United States)

    Guss, Paul; Rabin, Michael; Croce, Mark; Hoteling, Nathan; Schwellenbach, David; Kruschwitz, Craig; Mocko, Veronika; Mukhopadhyay, Sanjoy

    2017-09-01

    We demonstrate very high-resolution photon spectroscopy with a microwave-multiplexed 4-pixel transition edge sensor (TES) array. The readout circuit consists of superconducting microwave resonators coupled to radio frequency superconducting-quantum-interference devices (RF-SQUIDs) and transduces changes in input current to changes in phase of a microwave signal. We used a flux-ramp modulation to linearize the response and avoid low-frequency noise. The result is a very high-resolution photon spectroscopy with a microwave-multiplexed 4-pixel transition edge sensor array. We performed and validated a small-scale demonstration and test of all the components of our concept system, which encompassed microcalorimetry, microwave multiplexing, RF-SQUIDs, and software-defined radio (SDR). We shall display data we acquired in the first simultaneous combination of all key innovations in a 4-pixel demonstration, including microcalorimetry, microwave multiplexing, RF-SQUIDs, and SDR. We present the energy spectrum of a gadolinium-153 (153Gd) source we measured using our 4-pixel TES array and the RF-SQUID multiplexer. For each pixel, one can observe the two 97.4 and 103.2 keV photopeaks. We measured the 153Gd photon source with an achieved energy resolution of 70 eV, full width half maximum (FWHM) at 100 keV, and an equivalent readout system noise of 90 pA/pHz at the TES. This demonstration establishes a path for the readout of cryogenic x-ray and gamma ray sensor arrays with more elements and spectral resolving powers. We believe this project has improved capabilities and substantively advanced the science useful for missions such as nuclear forensics, emergency response, and treaty verification through the explored TES developments.

  20. Use of radiochromic film as a high-spatial resolution dosimeter by Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Mirza, Jamal Ahmad; Park, Hyeonsuk [Program in Biomedical Radiation Sciences, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826 (Korea, Republic of); Park, So-Yeon [Interdisciplinary Program in Radiation Applied Life Sciences, Seoul National University College of Medicine, Seoul 03080 (Korea, Republic of); Ye, Sung-Joon, E-mail: sye@snu.ac.kr [Program in Biomedical Radiation Sciences, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826 (Korea, Republic of)

    2016-08-15

    Purpose: Due to increasing demand for high-spatial resolution dosimetry, radiochromic films have been investigated as potential candidates but are often limited by the scanning system, e.g., flatbed optical scanner. In this study, Raman spectroscopy in conjunction with a microscope was selected as an alternative method for high-spatial resolution dosimetry of radiochromic film. Methods: Unlaminated Gafchromic™ EBT3 films were irradiated with doses between 0 and 50 Gy using 6 MV x-rays of a clinical linear accelerator. Depth profiling from the surface of unlaminated film was performed to acquire the maximum Raman intensity peaks of C≡C and C=C stretching bands of diacetylene polymer. The Raman mapping technique for a region of interest (200 × 200, 30 × 30 μm{sup 2}) was developed to reduce a large variation in a Raman spectrum produced with a sampling resolution of a few μm. The preprocessing of Raman spectra was carried out to determine a dosimetric relationship with the amount of diacetylene polymerization. Results: Due to partial diacetylene polymerization upon irradiation, two Raman peaks of C=C and C≡C stretching bands were observed around 1447 and 2060 cm{sup −1}, respectively. The maximum intensities of the two peaks were obtained by positioning a focused laser spot on the surface of unlaminated film. For the dose range of 0–50 Gy, the band heights of both C≡C and C=C peaks increase asymptotically with increasing doses and can be fit with an exponential function of two components. The relative standard deviation in Raman mapping was found to be less than ±5%. By using this technique, dose uniformity was found to be within ±2%. Conclusions: The Raman intensity for C=C and C≡C peaks increases with an increase in the amount of diacetylene polymerization due to an increase in dose. This study shows the potential of Raman spectroscopy as an alternative for absolute dosimetry verifications with a high-spatial resolution of a few μm, but these

  1. Optimization of the detector and associated electronics used for high-resolution liquid-scintillation alpha spectroscopy

    International Nuclear Information System (INIS)

    Thorngate, J.H.; Christian, D.J.

    1977-01-01

    The performance of various reflector geometries, light coupling liquids, photomultiplier tubes, preamplifiers and linear amplifiers were compared and the configuration found that optimized the combination of pulse-height resolution and pulse-shape discrimination. The best combination used a hemispherical reflector, filled with distilled water, coupled to an 8575 photomultiplier tube, the output of which was conditioned by a special integrating preamplifier and a double-delay-line linear amplifier. Careful choice of the scintillator, sample preparation procedures, and electronic apparatus can produce liquid-scintillation alpha spectroscopy with a pulse-height resolution of 300 keV, or less, and, by using pulse-shape discrimination, background levels as low as 0.01 counts/min. (author)

  2. High resolution optical spectroscopy of air-induced electrical instabilities in n-type polymer semiconductors.

    Science.gov (United States)

    Di Pietro, Riccardo; Sirringhaus, Henning

    2012-07-03

    We use high-resolution charge-accumulation optical spectroscopy to measure charge accumulation in the channel of an n-type organic field-effect transistor. We monitor the degradation of device performance in air, correlate the onset voltage shift with the reduction of charge accumulated in the polymer semiconductor, and explain the results in view of the redox reaction between the polymer, water and oxygen in the accumulation layer. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Determination of channel temperature for AlGaN/GaN HEMTs by high spectral resolution micro-Raman spectroscopy

    International Nuclear Information System (INIS)

    Zhang Guangchen; Feng Shiwei; Li Jingwan; Guo Chunsheng; Zhao Yan

    2012-01-01

    Channel temperature determinations of AlGaN/GaN high electron mobility transistors (HEMTs) by high spectral resolution micro-Raman spectroscopy are proposed. The temperature dependence of the E2 phonon frequency of GaN material is calibrated by using a JYT-64000 micro-Raman system. By using the Lorentz fitting method, the measurement uncertainty for the Raman phonon frequency of ±0.035 cm −1 is achieved, corresponding to a temperature accuracy of ±3.2 °C for GaN material, which is the highest temperature resolution in the published works. The thermal resistance of the tested AlGaN/GaN HEMT sample is 22.8 °C/W, which is in reasonably good agreement with a three dimensional heat conduction simulation. The difference among the channel temperatures obtained by micro-Raman spectroscopy, the pulsed electrical method and the infrared image method are also investigated quantificationally. (semiconductor devices)

  4. Bulk superconducting gap of V{sub 3}Si studied by low-energy ultrahigh-resolution photoemission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sato, T., E-mail: t-sato@arpes.phys.tohoku.ac.jp [Department of Physics, Tohoku University, Sendai 980-8578 (Japan); Souma, S. [WPI Research Center, Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Nakayama, K. [Department of Physics, Tohoku University, Sendai 980-8578 (Japan); Sugawara, K. [WPI Research Center, Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Toyota, N. [Department of Physics, Tohoku University, Sendai 980-8578 (Japan); Takahashi, T. [Department of Physics, Tohoku University, Sendai 980-8578 (Japan); WPI Research Center, Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan)

    2016-04-15

    Highlights: • We report ultrahigh-resolution photoemission spectroscopy of A15 compound V{sub 3}Si. • We found a sharp quasiparticle peak due to superconducting-gap opening. • The surface metallic component is negligibly small in the bulk-sensitive measurement. • We show that V{sub 3}Si is a single-gap s-wave superconductor. - Abstract: We have performed low-energy ultrahigh-resolution photoemission spectroscopy (PES) of A15 compound V{sub 3}Si with a xenon-plasma discharge lamp to elucidate the bulk superconducting gap. Below the superconducting transition temperature (T{sub c} = 15.9 K), we found a sharp quasiparticle peak at the Fermi level in the PES spectrum. The gap spectrum is well fitted by a single s-wave superconducting-gap function together with a dip structure at ∼30 meV suggestive of a strong electron-phonon coupling. The anomalous in-gap state previously observed in the PES measurement with high-energy photons is absent or negligibly small in the present bulk-sensitive measurement. The present PES result shows that V{sub 3}Si is a single-gap s-wave superconductor.

  5. High-resolution imaging and near-infrared spectroscopy of penumbral decay

    Science.gov (United States)

    Verma, M.; Denker, C.; Balthasar, H.; Kuckein, C.; Rezaei, R.; Sobotka, M.; Deng, N.; Wang, H.; Tritschler, A.; Collados, M.; Diercke, A.; Manrique, S. J. González

    2018-06-01

    Aims: Combining high-resolution spectropolarimetric and imaging data is key to understanding the decay process of sunspots as it allows us to scrutinize the velocity and magnetic fields of sunspots and their surroundings. Methods: Active region NOAA 12597 was observed on 2016 September 24 with the 1.5-meter GREGOR solar telescope using high-spatial-resolution imaging as well as imaging spectroscopy and near-infrared (NIR) spectropolarimetry. Horizontal proper motions were estimated with local correlation tracking, whereas line-of-sight (LOS) velocities were computed with spectral line fitting methods. The magnetic field properties were inferred with the "Stokes Inversions based on Response functions" (SIR) code for the Si I and Ca I NIR lines. Results: At the time of the GREGOR observations, the leading sunspot had two light bridges indicating the onset of its decay. One of the light bridges disappeared, and an elongated, dark umbral core at its edge appeared in a decaying penumbral sector facing the newly emerging flux. The flow and magnetic field properties of this penumbral sector exhibited weak Evershed flow, moat flow, and horizontal magnetic field. The penumbral gap adjacent to the elongated umbral core and the penumbra in that penumbral sector displayed LOS velocities similar to granulation. The separating polarities of a new flux system interacted with the leading and central part of the already established active region. As a consequence, the leading spot rotated 55° clockwise over 12 h. Conclusions: In the high-resolution observations of a decaying sunspot, the penumbral filaments facing the flux emergence site contained a darkened area resembling an umbral core filled with umbral dots. This umbral core had velocity and magnetic field properties similar to the sunspot umbra. This implies that the horizontal magnetic fields in the decaying penumbra became vertical as observed in flare-induced rapid penumbral decay, but on a very different time-scale.

  6. Development of Compton X-ray spectrometer for high energy resolution single-shot high-flux hard X-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, Sadaoki, E-mail: kojima-s@ile.osaka-u.ac.jp, E-mail: sfujioka@ile.osaka-u.ac.jp; Ikenouchi, Takahito; Arikawa, Yasunobu; Sakata, Shohei; Zhang, Zhe; Abe, Yuki; Nakai, Mitsuo; Nishimura, Hiroaki; Shiraga, Hiroyuki; Fujioka, Shinsuke, E-mail: kojima-s@ile.osaka-u.ac.jp, E-mail: sfujioka@ile.osaka-u.ac.jp; Azechi, Hiroshi [Institute of Laser Engineering, Osaka University, 2-6 Yamada-oka, Suita, Osaka 565-0871 (Japan); Ozaki, Tetsuo [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Miyamoto, Shuji; Yamaguchi, Masashi; Takemoto, Akinori [Laboratory of Advanced Science and Technology for Industry, University of Hyogo, 3-1-2 Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1205 (Japan)

    2016-04-15

    Hard X-ray spectroscopy is an essential diagnostics used to understand physical processes that take place in high energy density plasmas produced by intense laser-plasma interactions. A bundle of hard X-ray detectors, of which the responses have different energy thresholds, is used as a conventional single-shot spectrometer for high-flux (>10{sup 13} photons/shot) hard X-rays. However, high energy resolution (Δhv/hv < 0.1) is not achievable with a differential energy threshold (DET) X-ray spectrometer because its energy resolution is limited by energy differences between the response thresholds. Experimental demonstration of a Compton X-ray spectrometer has already been performed for obtaining higher energy resolution than that of DET spectrometers. In this paper, we describe design details of the Compton X-ray spectrometer, especially dependence of energy resolution and absolute response on photon-electron converter design and its background reduction scheme, and also its application to the laser-plasma interaction experiment. The developed spectrometer was used for spectroscopy of bremsstrahlung X-rays generated by intense laser-plasma interactions using a 200 μm thickness SiO{sub 2} converter. The X-ray spectrum obtained with the Compton X-ray spectrometer is consistent with that obtained with a DET X-ray spectrometer, furthermore higher certainly of a spectral intensity is obtained with the Compton X-ray spectrometer than that with the DET X-ray spectrometer in the photon energy range above 5 MeV.

  7. Exploitation of high resolution beam spectroscopy diagnostics on MAST

    Science.gov (United States)

    Michael, Clive; Debock, Maarten; Conway, Neil; Akers, Rob; Appel, Lynton; Field, Anthony; Walsh, Mike; Wisse, Marco

    2009-11-01

    Recent developments in beam spectroscopy on MAST, including CXRS, MSE and a pilot FIDA system have revealed new information about phenomena such as ITBs, MHD instabilities, transport and fast particle physics. For example, ITBs in the ion temperature and toroidal rotation have been observed with the 64ch CXRS system, while reverse-shear q profiles have been observed with the recently commissioned 35ch MSE system. Thus, the synergy of these diagnostics helps us to understand, among other things, the role of magnetic and rotational shear on ITBs. MSE measurements have also helped to understand MHD phenomena such as locked modes (characterized by changes in toroidal momentum, revealed by CXRS), sawteeth, and internal reconnection events. Finally, the temporal/spatial resolution and SNR of the MSE system have been exploited. Interesting results include the detection of low frequency (˜2kHz) magnetic field fluctuations, characterization of the radial structure of higher frequency (<100kHz) broadband and coherent density (BES) fluctuations, and the identification of short scale length features (˜1.8cm) in the current profile near the edge pedestal.

  8. Improvement of sensitivity in high-resolution Rutherford backscattering spectroscopy

    International Nuclear Information System (INIS)

    Hashimoto, H.; Nakajima, K.; Suzuki, M.; Kimura, K.; Sasakawa, K.

    2011-01-01

    The sensitivity (limit of detection) of high-resolution Rutherford backscattering spectroscopy (HRBS) is mainly determined by the background noise of the spectrometer. There are two major origins of the background noise in HRBS, one is the stray ions scattered from the inner wall of the vacuum chamber of the spectrometer and the other is the dark noise of the microchannel plate (MCP) detector which is commonly used as a focal plane detector of the spectrometer in HRBS. In order to reject the stray ions, several barriers are installed inside the spectrometer and a thin Mylar foil is mounted in front of the detector. The dark noise of the MCP detector is rejected by the coincidence measurement with the secondary electrons emitted from the Mylar foil upon the ion passage. After these improvements, the background noise is reduced by a factor of 200 at a maximum. The detection limit can be improved down to 10 ppm for As in Si at a measurement time of 1 h under ideal conditions.

  9. Impact of detector efficiency and energy resolution on gamma-ray background rejection in mobile spectroscopy and imaging systems

    Energy Technology Data Exchange (ETDEWEB)

    Aucott, Timothy J., E-mail: Timothy.Aucott@SRS.gov [Lawrence Berkeley National Laboratory, Nuclear Science Division, Berkeley, CA (United States); Bandstra, Mark S. [Lawrence Berkeley National Laboratory, Nuclear Science Division, Berkeley, CA (United States); Negut, Victor; Curtis, Joseph C. [University of California, Berkeley, Department of Nuclear Engineering, Berkeley, CA (United States); Meyer, Ross E.; Chivers, Daniel H. [Lawrence Berkeley National Laboratory, Nuclear Science Division, Berkeley, CA (United States); Vetter, Kai [University of California, Berkeley, Department of Nuclear Engineering, Berkeley, CA (United States); Lawrence Berkeley National Laboratory, Nuclear Science Division, Berkeley, CA (United States)

    2015-07-21

    The presence of gamma-ray background significantly reduces detection sensitivity when searching for radioactive sources in the field, and the systematic variability in the background will limit the size and energy resolution of systems that can be used effectively. An extensive survey of the background was performed using both sodium iodide and high-purity germanium. By using a bivariate negative binomial model for the measured counts, these measurements can be resampled to simulate the performance of a detector array of arbitrary size and resolution. The response of the system as it moved past a stationary source was modeled for spectroscopic and coded aperture imaging algorithms and used for source injection into the background. The performance of both techniques is shown for various sizes and resolutions, as well as the relative performance for sodium iodide and germanium. It was found that at smaller detector sizes or better energy resolution, spectroscopy has higher detection sensitivity than imaging, while imaging is better suited to larger or poorer resolution detectors.

  10. Performance of HPGe detectors in high magnetic fields

    Czech Academy of Sciences Publication Activity Database

    Lorente, A.S.; Achenbach, P.; Agnello, M.; Majling, Lubomír

    2007-01-01

    Roč. 573, č. 3 (2007), s. 410-417 ISSN 0168-9002 R&D Projects: GA ČR GA202/05/2142 Institutional research plan: CEZ:AV0Z10480505 Keywords : hypernuclear gamma-spectroscopy * HPGe detectors Subject RIV: BE - Theoretical Physics Impact factor: 1.114, year: 2007

  11. High-resolution gamma spectroscopy with whole-body and partial-body counters. Experience, recommendations. Report

    International Nuclear Information System (INIS)

    Sahre, P.

    1997-12-01

    The application of high-resolution gamma spectroscopy with whole-body and partial-body counters shows a steadily rising upward trend over the last few years. This induced the ''Arbeitskreis Inkorporationsueberwachung'' of the association ''Fachverband fuer Strahlenschutz e.V.'' to organise a meeting for joint elaboration of a guide on recommended applications of this measuring technique, based on a review of existing experience and results. A key item on the agenda of the meeting was the comparative evaluation of the Ge semiconductor detector and the NaI solid scintillation detector. (orig./CB) [de

  12. Tunable Microcavity-Stabilized Quantum Cascade Laser for Mid-IR High-Resolution Spectroscopy and Sensing.

    Science.gov (United States)

    Borri, Simone; Siciliani de Cumis, Mario; Insero, Giacomo; Bartalini, Saverio; Cancio Pastor, Pablo; Mazzotti, Davide; Galli, Iacopo; Giusfredi, Giovanni; Santambrogio, Gabriele; Savchenkov, Anatoliy; Eliyahu, Danny; Ilchenko, Vladimir; Akikusa, Naota; Matsko, Andrey; Maleki, Lute; De Natale, Paolo

    2016-02-17

    The need for highly performing and stable methods for mid-IR molecular sensing and metrology pushes towards the development of more and more compact and robust systems. Among the innovative solutions aimed at answering the need for stable mid-IR references are crystalline microresonators, which have recently shown excellent capabilities for frequency stabilization and linewidth narrowing of quantum cascade lasers with compact setups. In this work, we report on the first system for mid-IR high-resolution spectroscopy based on a quantum cascade laser locked to a CaF₂ microresonator. Electronic locking narrows the laser linewidth by one order of magnitude and guarantees good stability over long timescales, allowing, at the same time, an easy way for finely tuning the laser frequency over the molecular absorption line. Improvements in terms of resolution and frequency stability of the source are demonstrated by direct sub-Doppler recording of a molecular line.

  13. High-Resolution Spectroscopy of the Lunar Sodium Exosphere

    Science.gov (United States)

    Mierkiewicz, E. J.; Oliversen, R. J.; Roesler, F. L.; Lupie, O. L.

    2014-01-01

    We have applied high-resolution Fabry-Perot spectroscopy to the study of the lunar sodium exosphere for the study of exospheric effective temperature and velocity variations. Observing from the National Solar Observatory McMath-Pierce Telescope, we used a dual-etalon Fabry-Perot spectrometer with a resolving power of 180,000 to measure line widths and Doppler shifts of the sodium D2 (5889.95 Å) emission line. Our field of view was 360 km, and measurements were made in equatorial and polar regions from 500 km to 3500 km off the limb. Data were obtained from full moon to 3 days following full moon (waning phase) in March 2009. Measured Doppler line widths within 1100 km of the sunlit east and south lunar limbs for observations between 5 and 40 deg lunar phase imply effective temperatures ranging between 3260 +/- 190 and 1000 +/- 135 K. Preliminary line center analysis indicates velocity displacements between different locations off the lunar limb ranging between 100 and 600 m/s from the lunar rest velocity with a precision of +/-20 to +/-50 m/s depending on brightness. Based on the success of these exploratory observations, an extensive program has been initiated that is expected to constrain lunar atmospheric and surface-process modeling and help quantify source and escape mechanisms.

  14. High-resolution high-speed dynamic mechanical spectroscopy of cells and other soft materials with the help of atomic force microscopy.

    Science.gov (United States)

    Dokukin, M; Sokolov, I

    2015-07-28

    Dynamic mechanical spectroscopy (DMS), which allows measuring frequency-dependent viscoelastic properties, is important to study soft materials, tissues, biomaterials, polymers. However, the existing DMS techniques (nanoindentation) have limited resolution when used on soft materials, preventing them from being used to study mechanics at the nanoscale. The nanoindenters are not capable of measuring cells, nanointerfaces of composite materials. Here we present a highly accurate DMS modality, which is a combination of three different methods: quantitative nanoindentation (nanoDMA), gentle force and fast response of atomic force microscopy (AFM), and Fourier transform (FT) spectroscopy. This new spectroscopy (which we suggest to call FT-nanoDMA) is fast and sensitive enough to allow DMS imaging of nanointerfaces, single cells, while attaining about 100x improvements on polymers in both spatial (to 10-70 nm) and temporal resolution (to 0.7 s/pixel) compared to the current art. Multiple frequencies are measured simultaneously. The use of 10 frequencies are demonstrated here (up to 300 Hz which is a rather relevant range for biological materials and polymers, in both ambient conditions and liquid). The method is quantitatively verified on known polymers and demonstrated on cells and polymers blends. Analysis shows that FT-nanoDMA is highly quantitative. The FT-nanoDMA spectroscopy can easily be implemented in the existing AFMs.

  15. Vibrational spectroscopy in the electron microscope.

    Science.gov (United States)

    Krivanek, Ondrej L; Lovejoy, Tracy C; Dellby, Niklas; Aoki, Toshihiro; Carpenter, R W; Rez, Peter; Soignard, Emmanuel; Zhu, Jiangtao; Batson, Philip E; Lagos, Maureen J; Egerton, Ray F; Crozier, Peter A

    2014-10-09

    Vibrational spectroscopies using infrared radiation, Raman scattering, neutrons, low-energy electrons and inelastic electron tunnelling are powerful techniques that can analyse bonding arrangements, identify chemical compounds and probe many other important properties of materials. The spatial resolution of these spectroscopies is typically one micrometre or more, although it can reach a few tens of nanometres or even a few ångströms when enhanced by the presence of a sharp metallic tip. If vibrational spectroscopy could be combined with the spatial resolution and flexibility of the transmission electron microscope, it would open up the study of vibrational modes in many different types of nanostructures. Unfortunately, the energy resolution of electron energy loss spectroscopy performed in the electron microscope has until now been too poor to allow such a combination. Recent developments that have improved the attainable energy resolution of electron energy loss spectroscopy in a scanning transmission electron microscope to around ten millielectronvolts now allow vibrational spectroscopy to be carried out in the electron microscope. Here we describe the innovations responsible for the progress, and present examples of applications in inorganic and organic materials, including the detection of hydrogen. We also demonstrate that the vibrational signal has both high- and low-spatial-resolution components, that the first component can be used to map vibrational features at nanometre-level resolution, and that the second component can be used for analysis carried out with the beam positioned just outside the sample--that is, for 'aloof' spectroscopy that largely avoids radiation damage.

  16. Resolution Improvement in Multidimensional Nuclear Magnetic Resonance Spectroscopy of Proteins

    International Nuclear Information System (INIS)

    Duma, L.

    2004-01-01

    The work presented in this thesis is concerned with both liquid-state and solid-state nuclear magnetic resonance (NMR) spectroscopy. Most of this work is devoted to the investigation by solid-state NMR of C 13 -enriched compounds with the principal aim of presenting techniques devised for further improving the spectral resolution in multidimensional NMR of microcrystalline proteins. In fully C 13 -labelled compounds, the J-coupling induces a broadening of the carbon lineshapes. We show that spin-state-selective technique called IPAP can be successfully combined with standard polarisation transfer schemes in order to remove the J-broadening in multidimensional solid-state NMR correlation experiments of fully C 13 -enriched proteins. We present subsequently two techniques tailored for liquid-state NMR spectroscopy. The carbon directly detected techniques provide chemical shift information for all backbone hetero-nuclei. They are very attracting for the study of large bio-molecular systems or for the investigation of paramagnetic proteins. In the last part of this thesis, we study the spin-echo J-modulation for homonuclear two-spin 1/2 systems. Under magic-angle spinning, the theory of J-induced spin-echo modulation allows to derive a set of modulation regimes which give a spin-echo modulation exactly equal to the J-coupling. We show that the chemical-shift anisotropy and the dipolar interaction tend to stabilize the spin-echo J-modulation. The theoretical conclusions are supported by numerical simulations and experimental results obtained for three representative samples containing C 13 spin pairs. (author)

  17. Design and development of high-resolution atomic beam fluorescence spectroscopy facility for isotope shift and hyperfine structure measurements

    International Nuclear Information System (INIS)

    Acharyulu, G.V.S.G.; Sankari, M.; Kiran Kumar, P.V.; Suryanarayana, M.V.

    2012-01-01

    A high-resolution atomic beam fluorescence spectroscopy facility for the determination of isotope shifts and hyperfine structure in atomic species has been designed and developed. A resistively heated graphite tube atomic beam source was designed, tested and integrated into a compact interaction chamber for atomic beam fluorescence experiments. The design of the laser-atom interaction chamber and the source has been modified in a phased manner so as to achieve sub-Doppler resolution. The system has been used to record the hyperfine spectrum of the D2 transitions of Rb and K isotopes. The spectral resolution achieved is ∼ 26 MHz and is adequate to carry out high resolution measurement of isotope shifts and hyperfine structure of various atomic species. The other major advantage of the source is that it requires very small amounts of sample for achieving very good signal to noise ratio. (author)

  18. Quantitative atomic resolution elemental mapping via absolute-scale energy dispersive X-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Z. [School of Physics and Astronomy, Monash University, Clayton, Victoria 3800 (Australia); Weyland, M. [Monash Centre for Electron Microscopy, Monash University, Clayton, Victoria 3800 (Australia); Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800 (Australia); Sang, X.; Xu, W.; Dycus, J.H.; LeBeau, J.M. [Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695 (United States); D' Alfonso, A.J.; Allen, L.J. [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Findlay, S.D., E-mail: scott.findlay@monash.edu [School of Physics and Astronomy, Monash University, Clayton, Victoria 3800 (Australia)

    2016-09-15

    Quantitative agreement on an absolute scale is demonstrated between experiment and simulation for two-dimensional, atomic-resolution elemental mapping via energy dispersive X-ray spectroscopy. This requires all experimental parameters to be carefully characterized. The agreement is good, but some discrepancies remain. The most likely contributing factors are identified and discussed. Previous predictions that increasing the probe forming aperture helps to suppress the channelling enhancement in the average signal are confirmed experimentally. It is emphasized that simple column-by-column analysis requires a choice of sample thickness that compromises between being thick enough to yield a good signal-to-noise ratio while being thin enough that the overwhelming majority of the EDX signal derives from the column on which the probe is placed, despite strong electron scattering effects. - Highlights: • Absolute scale quantification of 2D atomic-resolution EDX maps is demonstrated. • Factors contributing to remaining small quantitative discrepancies are identified. • Experiment confirms large probe-forming apertures suppress channelling enhancement. • The thickness range suitable for reliable column-by-column analysis is discussed.

  19. High-resolution laser spectroscopy of rare-earth doped insulators: a personal perspective

    International Nuclear Information System (INIS)

    Macfarlane, Roger M.

    2002-01-01

    I offer some reflections on the past three decades of high-resolution spectroscopy of rare-earth ions in solids which was ushered in by the development of tunable lasers in the mid 1970s. A brief review is given of some of the accomplishments in the area of spectral hole-burning and coherent transient spectroscopy, emphasizing work with which the author has been associated. Spectral hole-burning has been characterized by a richness of mechanisms. These include population storage in nuclear-spin and electron-spin Zeeman sub-levels, hyperfine and superhyperfine levels and metastable optical levels with corresponding hole lifetimes from many hours to microseconds. In addition, persistent hole-burning has been seen in disordered materials and in those showing photo-ionization or photo-chemistry following excitation into zero-phonon lines. This has made hole-burning a generally useful technique for the measurement of magnetic and electric dipole moments, hyperfine interactions, spin relaxation and thermally induced line-broadening. Photon-echoes have proven to be the prime source of coherence-time information and coherence times as long as several milliseconds corresponding to optical resonance widths of less than 100 Hz have been reported. Tables summarizing these results and providing references to original work are included

  20. Tunable Microcavity-Stabilized Quantum Cascade Laser for Mid-IR High-Resolution Spectroscopy and Sensing

    Directory of Open Access Journals (Sweden)

    Simone Borri

    2016-02-01

    Full Text Available The need for highly performing and stable methods for mid-IR molecular sensing and metrology pushes towards the development of more and more compact and robust systems. Among the innovative solutions aimed at answering the need for stable mid-IR references are crystalline microresonators, which have recently shown excellent capabilities for frequency stabilization and linewidth narrowing of quantum cascade lasers with compact setups. In this work, we report on the first system for mid-IR high-resolution spectroscopy based on a quantum cascade laser locked to a CaF2 microresonator. Electronic locking narrows the laser linewidth by one order of magnitude and guarantees good stability over long timescales, allowing, at the same time, an easy way for finely tuning the laser frequency over the molecular absorption line. Improvements in terms of resolution and frequency stability of the source are demonstrated by direct sub-Doppler recording of a molecular line.

  1. General survey of recent development of photoemission spectroscopy

    International Nuclear Information System (INIS)

    Edamoto, Kazuyuki

    1994-01-01

    On the present state of the recent development of photoemission spectroscopy, by limiting the topics to the development of the spectroscopy proper and the development contributing to the progress of surface science, general explanation is made. As to the development that enabled to heighten spectrum resolution, surface core-level shift and the precise measurement of the Fermi surface of surface level are described, showing the example. Also a number of the developments which enabled the utilization of the light source, of which the wavelength is variable, and which was brought about by synchrotron radiation beam, were mentioned. Besides, spin polarized photoelectron spectroscopy, the development of photoelectron microscope and others are outlined. Photoemission spectroscopy is very useful for analyzing the electron condition of solid surfaces. There are two factors in heightening core level spectrum resolution, namely, heightening the resolution of an electron energy analyzer proper and the utilization of synchrotron radiation as a light source. High resolution core-level spectra, angle-resolved photoemission spectroscopy, and as the light source of which the wavelength is variable, resonance photoemission spectroscopy, constant initial state spectroscopy and soft X-ray photoemission spectroscopy, and as the recently developed spectroscopy, spin polarized photoemission spectroscopy, Auger photoelectron coincidence spectroscopy and photoelectron microscope are explained. (K.I.)

  2. High-resolution inner-shell spectroscopies of free atoms and molecules using soft-x-ray beamlines at the third-generation synchrotron radiation sources

    International Nuclear Information System (INIS)

    Ueda, Kiyoshi

    2003-01-01

    This article reviews the current status of inner-shell spectroscopies of free atoms and molecules using high-resolution soft-x-ray monochromators installed in the soft-x-ray beamlines at the third-generation synchrotron radiation facilities. Beamlines and endstations devoted to atomic and molecular inner-shell spectroscopies and various types of experimental techniques, such as ion yield spectroscopy, resonant photoemission spectroscopy and multiple-coincidence momentum imaging, are described. Experimental results for K-shell excitation of Ne, O K-shell excitation of H 2 O and CO 2 , C K-shell excitation and ionization of CO 2 and B K-shell excitation of BF 3 , obtained at beamline 27SU of SPring-8 in Japan, are discussed as examples of atomic and molecular inner-shell spectroscopies using the third-generation synchrotron radiation sources. (topical review)

  3. The extraction of gold nanoparticles from oat and wheat biomasses using sodium citrate and cetyltrimethylammonium bromide, studied by x-ray absorption spectroscopy, high-resolution transmission electron microscopy, and UV-visible spectroscopy

    International Nuclear Information System (INIS)

    Armendariz, Veronica; Parsons, Jason G; Lopez, Martha L; Peralta-Videa, Jose R; Gardea-Torresdey, Jorge L; Jose-Yacaman, Miguel

    2009-01-01

    Gold (Au) nanoparticles can be produced through the interaction of Au(III) ions with oat and wheat biomasses. This paper describes a procedure to recover gold nanoparticles from oat and wheat biomasses using cetyltrimethylammonium bromide or sodium citrate. Extracts were analyzed using UV-visible spectroscopy, high-resolution transmission electron microscopy (HRTEM), and x-ray absorption spectroscopy. The HRTEM data demonstrated that smaller nanoparticles are extracted first, followed by larger nanoparticles. In the fourth extraction, coating of chelating agents is visible on the extracted nanoparticles.

  4. The extraction of gold nanoparticles from oat and wheat biomasses using sodium citrate and cetyltrimethylammonium bromide, studied by x-ray absorption spectroscopy, high-resolution transmission electron microscopy, and UV-visible spectroscopy.

    Science.gov (United States)

    Armendariz, Veronica; Parsons, Jason G; Lopez, Martha L; Peralta-Videa, Jose R; Jose-Yacaman, Miguel; Gardea-Torresdey, Jorge L

    2009-03-11

    Gold (Au) nanoparticles can be produced through the interaction of Au(III) ions with oat and wheat biomasses. This paper describes a procedure to recover gold nanoparticles from oat and wheat biomasses using cetyltrimethylammonium bromide or sodium citrate. Extracts were analyzed using UV-visible spectroscopy, high-resolution transmission electron microscopy (HRTEM), and x-ray absorption spectroscopy. The HRTEM data demonstrated that smaller nanoparticles are extracted first, followed by larger nanoparticles. In the fourth extraction, coating of chelating agents is visible on the extracted nanoparticles.

  5. A laboratory-based hard x-ray monochromator for high-resolution x-ray emission spectroscopy and x-ray absorption near edge structure measurements

    Energy Technology Data Exchange (ETDEWEB)

    Seidler, G. T., E-mail: seidler@uw.edu; Mortensen, D. R.; Remesnik, A. J.; Pacold, J. I.; Ball, N. A.; Barry, N.; Styczinski, M.; Hoidn, O. R. [Physics Department, University of Washington, Seattle, Washington 98195-1560 (United States)

    2014-11-15

    We report the development of a laboratory-based Rowland-circle monochromator that incorporates a low power x-ray (bremsstrahlung) tube source, a spherically bent crystal analyzer, and an energy-resolving solid-state detector. This relatively inexpensive, introductory level instrument achieves 1-eV energy resolution for photon energies of ∼5 keV to ∼10 keV while also demonstrating a net efficiency previously seen only in laboratory monochromators having much coarser energy resolution. Despite the use of only a compact, air-cooled 10 W x-ray tube, we find count rates for nonresonant x-ray emission spectroscopy comparable to those achieved at monochromatized spectroscopy beamlines at synchrotron light sources. For x-ray absorption near edge structure, the monochromatized flux is small (due to the use of a low-powered x-ray generator) but still useful for routine transmission-mode studies of concentrated samples. These results indicate that upgrading to a standard commercial high-power line-focused x-ray tube or rotating anode x-ray generator would result in monochromatized fluxes of order 10{sup 6}–10{sup 7} photons/s with no loss in energy resolution. This work establishes core technical capabilities for a rejuvenation of laboratory-based hard x-ray spectroscopies that could have special relevance for contemporary research on catalytic or electrical energy storage systems using transition-metal, lanthanide, or noble-metal active species.

  6. Annual report 1979

    International Nuclear Information System (INIS)

    1980-01-01

    The research and development activities of the ISN for 1979 are reported. The main thrust is directed towards the SARA (Rhone-Alpes Accelerator System) project and the various technical and experimental aspects. Research work was carried out in the following areas: nuclear spectroscopy, giant resonances, reaction processes, experiments at ILL, intermediate energy physics and for the theoretical group: nuclear structure, nuclear reactions, three-body problem, thermal neutron capture and hypernuclear spectroscopy [fr

  7. Annual report 1980

    International Nuclear Information System (INIS)

    The activities of the Nuclear Sciences Institute are reviewed for the year 1980 in the following fields of interest: the Grenoble cyclotron and the construction of the post-accelerator, numerical calculus, data handling, experimental methods, then in experimental physics: nuclear spectroscopy, giant resonances, reaction processes, weak interactions, intermediate energy experiments; in theoretical physics: nuclear structure, nuclear reactions, three-body problem, hypernuclear spectroscopy, various activities as medical applications and archeometry are reviewed [fr

  8. On-line high-resolution mass spectroscopy. Progress report, July 1, 1975--July 1, 1976

    International Nuclear Information System (INIS)

    Macfarlane, R.D.; Torgerson, D.F.

    1976-08-01

    The search for second-class currents in nuclear beta decay continued with measurements of beta--gamma correlations for the mirror decays 20 F(β - ) 20 Ne*(1.63) and 20 Na(β + ) 20 Ne*(1.63). The 20 F beta--gamma correlation was measured in beam, and the results are being compared with values obtained using the He-jet method. A careful analysis of ion velocity distributions emitted from fission fragment tracks in solids yielded new information on the nature of the process. The temperature of the microplasma formed by a fission fragment was determined to be of the order 10 4 K, and the temperature is dependent on the fission fragment's energy. A mass reflectron is being developed for high mass resolution using time-of-flight mass spectroscopy. The application of 252 Cf-PDMS (plasma desorption mass spectroscopy) to new classes of involatile compounds continued. Techniques are being studied for the routine analysis of involatile species of mass greater than 2000. The report is basically descriptive in nature. 5 figures, 1 table

  9. High resolution inner-shell spectroscopies of atoms and molecules in gas phase using the soft x-ray photochemistry beamline at SPring-8

    International Nuclear Information System (INIS)

    Ueda, Kiyoshi

    2003-01-01

    This article describes recent activities on inner-shell spectroscopies of atoms and molecules on beamline 27SU, nicknamed soft X-ray photochemistry beamline, at SPring-8, an 8-GeV synchrotron radiation facility in Japan. This beamline provides linearly polarized monochromatic soft X-rays at the resolution higher than 10,000. The end station is designed so that one can perform various kinds of excitation and de-excitation spectroscopies as well as coincidence spectroscopies. Following the description of the beamline and the end station, we present recent results for inner-shell spectroscopies on Ne, CO 2 , BF 3 , and CF 4 . Emphasis is given to illustrate the strategy of the research on this beamline and performance of the beamline and the end station. (author)

  10. Coherent cavity-enhanced dual-comb spectroscopy

    OpenAIRE

    Fleisher, Adam J.; Long, David A.; Reed, Zachary D.; Hodges, Joseph T.; Plusquellic, David F.

    2016-01-01

    Dual-comb spectroscopy allows for the rapid, multiplexed acquisition of high-resolution spectra without the need for moving parts or low-resolution dispersive optics. This method of broadband spectroscopy is most often accomplished via tight phase locking of two mode-locked lasers or via sophisticated signal processing algorithms, and therefore, long integration times of phase coherent signals are difficult to achieve. Here we demonstrate an alternative approach to dual-comb spectroscopy usin...

  11. Hypernuclear production cross section in the reaction of 6Li + 12C at 2A GeV

    Directory of Open Access Journals (Sweden)

    C. Rappold

    2015-07-01

    Full Text Available Hypernuclear production cross sections have been deduced for the first time with induced reaction of heavy ion beam on fixed target and by means of the invariant mass method by the HypHI Collaboration exploiting the reaction of 6Li + 12C at 2A GeV or sNN=2.70 GeV. A production cross section of 3.9±1.4 μb for 3ΛH and of 3.1±1.0 μb for 4ΛH respectively in the projectile rapidity region was inferred as well as the total production cross section of the Λ hyperon was measured and found to be equal to 1.7±0.8 mb. A global fit based on a Bayesian approach was performed in order to include and propagate statistical and systematic uncertainties. Production ratios of 3ΛH/4ΛH, 3ΛH/Λ and 4ΛH/Λ were included in the inference procedure. The strangeness population factors S3 and S4 of 3ΛH and 4ΛH respectively were extracted. In addition, the multiplicities of the Λ hyperon, 3ΛH, and 4ΛH together with the rapidity and transversal momentum density distributions of the observed hypernuclei were extracted and reported.

  12. Structural Characterization of Laboratory Made Tholins by IRMPD Action Spectroscopy and Ultrahigh Resolution Mass Spectrometry

    Science.gov (United States)

    Thissen, R.; Somogyi, A.; Vuitton, V.; Bégué, D.; Lemaire, J.; Steinmetz, V.

    2011-10-01

    The complex organic material that is found on the surface and within the haze layer of Titan is attributed to chemistry occurring in its thick N2/CH4 atmosphere. Although several groups are producing in various laboratory setting the socalled tholins which have been investigated by using analytical methods including UV/Vis, fluorescence, IR, and MS1-5, these very complex organic mixtures still hold many unanswered questions, especially related to the potentiality for their prebiotic chemistry. In addition to tholins characterization and analysis, we recently investigated quantitatively the hydrolysis kinetics of tholins in pure and NH3 containing water at different temperatures.7-8 Our groups at UJF (Grenoble) and at U of Arizona (Tucson) have been collaborating on mass spectral analyses of tholins samples for several years.9 Here, we report our most recent results on the structural characterization of tholins by infrared multiphoton dissociation (IRMPD) action spectroscopy10 and ultrahigh resolution MS. IRMPD action spectroscopy is a recently developed technique that uses IR photons of variable wavelengths to activate ions trapped inside an ion trap. When photons are absorbed at a given wavelength, the selected ion fragments and this fragmentation is monitored as a function of wavelength, analog to an absorption spectrum (impossible to record otherwise because of the much reduced density). This technique can, therefore, be used to determine IR spectra of ions in the gas phase, and provides with very acute structural information. IRMPD action spectroscopy is often used to distinguish between structural isomers of isobaric ions. The drawback is that it requests for high power lasers. Only two Free Electron Lasers (FEL) are available in the world and allow to record spectra with reasonable resolution (20-25 cm-1). IRMPD action spectra of selected ions from tholins will be presented and discussed together with observed fragmentation processes that reveal structural

  13. Monitoring of Antarctic moss ecosystems using a high spatial resolution imaging spectroscopy

    Science.gov (United States)

    Malenovsky, Zbynek; Lucieer, Arko; Robinson, Sharon; Harwin, Stephen; Turner, Darren; Veness, Tony

    2013-04-01

    The most abundant photosynthetically active plants growing along the rocky Antarctic shore are mosses of three species: Schistidium antarctici, Ceratodon purpureus, and Bryum pseudotriquetrum. Even though mosses are well adapted to the extreme climate conditions, their existence in Antarctica depends strongly on availability of liquid water from snowmelt during the short summer season. Recent changes in temperature, wind speed and stratospheric ozone are stimulating faster evaporation, which in turn influences moss growing rate, health state and abundance. This makes them an ideal bio-indicator of the Antarctic climate change. Very short growing season, lasting only about three months, requires a time efficient, easily deployable and spatially resolved method for monitoring the Antarctic moss beds. Ground and/or low-altitude airborne imaging spectroscopy (called also hyperspectral remote sensing) offers a fast and spatially explicit approach to investigate an actual spatial extent and physiological state of moss turfs. A dataset of ground-based spectral images was acquired with a mini-Hyperspec imaging spectrometer (Headwall Inc., the USA) during the Antarctic summer 2012 in the surroundings of the Australian Antarctic station Casey (Windmill Islands). The collection of high spatial resolution spectral images, with pixels about 2 cm in size containing from 162 up to 324 narrow spectral bands of wavelengths between 399 and 998 nm, was accompanied with point moss reflectance measurements recorded with the ASD HandHeld-2 spectroradiometer (Analytical Spectral Devices Inc., the USA). The first spectral analysis indicates significant differences in red-edge and near-infrared reflectance of differently watered moss patches. Contrary to high plants, where the Normalized Difference Vegetation Index (NDVI) represents an estimate of green biomass, NDVI of mosses indicates mainly the actual water content. Similarly to high plants, reflectance of visible wavelengths is

  14. EROIC: a BiCMOS pseudo-gaussian shaping amplifier for high-resolution X-ray spectroscopy

    Science.gov (United States)

    Buzzetti, Siro; Guazzoni, Chiara; Longoni, Antonio

    2003-10-01

    We present the design and complete characterization of a fifth-order pseudo-gaussian shaping amplifier with 1 μs shaping time. The circuit is optimized for the read-out of signals coming from Silicon Drift Detectors for high-resolution X-ray spectroscopy. The novelty of the designed chip stands in the use of a current feedback loop to place the poles in the desired position on the s-plane. The amplifier has been designed in 0.8 μm BiCMOS technology and fully tested. The EROIC chip comprises also the peak stretcher, the peak detector, the output buffer to drive the external ADC and the pile-up rejection system. The circuit needs a single +5 V power supply and the dissipated power is 5 mW per channel. The digital outputs can be directly coupled to standard digital CMOS ICs. The measured integral-non-linearity of the whole chip is below 0.05% and the achieved energy resolution at the Mn Kα line detected by a 5 mm 2 Peltier-cooled Silicon Drift Detector is 167 eV FWHM.

  15. EROIC: a BiCMOS pseudo-gaussian shaping amplifier for high-resolution X-ray spectroscopy

    International Nuclear Information System (INIS)

    Buzzetti, Siro; Guazzoni, Chiara; Longoni, Antonio

    2003-01-01

    We present the design and complete characterization of a fifth-order pseudo-gaussian shaping amplifier with 1 μs shaping time. The circuit is optimized for the read-out of signals coming from Silicon Drift Detectors for high-resolution X-ray spectroscopy. The novelty of the designed chip stands in the use of a current feedback loop to place the poles in the desired position on the s-plane. The amplifier has been designed in 0.8 μm BiCMOS technology and fully tested. The EROIC chip comprises also the peak stretcher, the peak detector, the output buffer to drive the external ADC and the pile-up rejection system. The circuit needs a single +5 V power supply and the dissipated power is 5 mW per channel. The digital outputs can be directly coupled to standard digital CMOS ICs. The measured integral-non-linearity of the whole chip is below 0.05% and the achieved energy resolution at the Mn Kα line detected by a 5 mm 2 Peltier-cooled Silicon Drift Detector is 167 eV FWHM

  16. a Thz Photomixing Synthesizer Based on a Fiber Frequency Comb for High Resolution Rotational Spectroscopy

    Science.gov (United States)

    Hindle, Francis; Mouret, Gael; Cuisset, Arnaud; Yang, Chun; Eliet, Sophie; Bocquet, Robin

    2010-06-01

    To date the principal application for photomixing sources has been for high resolution spectroscopy of gases due to the large tuning range and spectral purity. New Developments of the Opto-Electronic THz Spectrometer have been performed in order to obtain a powerful tool for High-Resolution Spectroscopy. The combination of two extended cavity laser diodes and fast charge carrier lifetime semiconductor materials has allowed a continuous-wave THz spectrometer to be constructed based on optical heterodyning. Unlike many THz sources, this instrument gives access to all frequencies in the range 0.3 to 3.5 THz with a resolution of 1 MHz. The main spectroscopic applications of this spectrometer were dedicated to line profile analysis of rotational transitions referenced in the spectroscopic databases. One limitation of the THz spectrometer was accuracy with which the generated frequency is known. Recently, this obstacle has been circled with the construction of a photomixing spectrometer where the two pump lasers are phase locked to two modes of a repetition rate stabilized frequency doubled fiber laser frequency comb. In order to achieve a tuning range in excess to 100 MHz a third cw laser was required in the new configuration of the THz spectrometer. To assess the performances of this instrument, the frequencies of the pure rotational transitions of OCS molecules have been measured between 0,8 to 1,2 THz. A rms inferior to 100 kHz, deduced from the frequencies measured, demonstrates that the THz photomixing synthesizer is now able to be competitive with microwave and submillimeter techniques. S. Matton, F. Rohart, R. Bocquet, D. Bigourd, A. Cuisset, F. Hindle, G. Mouret, J. Mol. Spectrosc., 2006, 239: 182. C. Yang, J. Buldyreva, I. E. Gordon, F. Rohart, A. Cuisset, G. Mouret, R. Bocquet, F. Hindle, J. Quant. Spectrosc. Radiat. Transfer, 2008, 109: 2857. G. Mouret, F. Hindle, A. Cuisset, C. Yang, R. Bocquet, M. Lours, D. Rovera, Opt. Express, 2009, 17: 22031.

  17. Dual-resolution Raman spectroscopy for measurements of temperature and twelve species in hydrocarbon–air flames

    Energy Technology Data Exchange (ETDEWEB)

    Magnotti, Gaetano; Barlow, Robert S.

    2016-07-12

    This study introduces dual-resolution Raman spectroscopy as a novel diagnostics approach for measurements of temperature and species in flames where multiple hydrocarbons are present. Simultaneous measurement of multiple hydrocarbons is challenging because their vibrational Raman spectra in the C–H stretch region are closely overlapped and are not well known over the range of temperature encountered in flames. Overlap between the hydrocarbon spectra is mitigated by adding a second spectrometer, with a higher dispersion grating, to collect the Raman spectra in the C–H stretch region. A dual-resolution Raman spectroscopy instrument has been developed and optimized for measurements of major species (N2, O2, H2O, CO2, CO, H2, DME) and major combustion intermediates (CH4, CH2O, C2H2, C2H4 and C2H6) in DME–air flames. The temperature dependences of the hydrocarbon Raman spectra over fixed spectral regions have been determined through a series of measurements in laminar Bunsen-burner flames, and have been used to extend a library of previously acquired Raman spectra up to flame temperature. The paper presents the first Raman measurements of up to twelve species in hydrocarbon flames, and the first quantitative Raman measurements of formaldehyde in flames. Lastly, the accuracy and precision of the instrument are determined from measurements in laminar flames and the applicability of the instrument to turbulent DME–air flames is discussed.

  18. High-resolution laser spectroscopy of nickel isotopes

    CERN Multimedia

    This proposal aims to measure the nuclear ground-state spins, moments and mean-square charge radii of $^{56-71}$Ni using collinear laser spectroscopy. This will enable direct measurements of isotopes in the region of shell closure $^{56}$Ni, structural change $^{68}$Ni and monopole migration beyond N = 40. Optical spectroscopy serves as a detailed probe not only of the changing single-particle behaviour, but also for the study of collective properties such as size and shape. Measurements of the most neutron-rich isotopes available at ISOLDE will critically test models which seek to extrapolate the data to the doubly magic region of $^{78}$Ni.

  19. Optimization of a coherent synchrotron radiation source in the Tera-hertz range for high-resolution spectroscopy of molecules of astrophysical interest

    International Nuclear Information System (INIS)

    Barros, J.

    2012-01-01

    Fourier Transform spectroscopy is the most used multiplex tool for high-resolution measurements in the infrared range. Its extension to the Tera-hertz domain is of great interest for spectroscopic studies of interstellar molecules. This application is however hampered by the lack of dedicated, broadband sources with a sufficient intensity and stability. In this work, Coherent Synchrotron Radiation (CSR) was used as a source for molecular spectroscopy at high resolution on the AILES infrared and Tera-hertz beamline of SOLEIL synchrotron. The beamline being optimized for far-infrared, we could characterize the properties of CSR and compare them to the incoherent synchrotron radiation. A double detection system allowed to correct the effect of the source-related instabilities, hence to significantly increase the signal-to-noise ratio. Pure rotational spectra were measured using these developments. The case of the propynal molecule, for which a refined set of rotational and centrifugal distortion constants was calculated, proves the complementarity between CSR and the classical microwave or infrared sources. (author)

  20. The Israeli EA-FEL Upgrade Towards Long Pulse Operation for Ultra-High Resolution Single Pulse Coherent Spectroscopy

    CERN Document Server

    Gover, A; Kanter, M; Kapilevich, B; Litvak, B; Peleg, S; Socol, Y; Volshonok, M

    2005-01-01

    The Israeli Electrostatic Accelerator FEL (EA-FEL) is now being upgraded towards long pulse (1005s) operation and ultra-high resolution (10(-6)) single pulse coherent spectroscopy. We present quantitative estimations regarding the applications of controlled radiation chirp for spectroscopic applications with pulse-time Fourier Transform limited spectral resolution. Additionally, we describe a novel extraction-efficiency-improving scheme based on increase of accelerating voltage (boosting) after saturation is achieved. The efficiency of the proposed scheme is confirmed by theoretical and numerical calculations. The latter are performed using software, based on 3D space-frequency domain model. The presentation provides an overview of the upgrade status: the high-voltage terminal is being reconfigured to accept the accelerating voltage boost system; a new broad band low-loss resonator is being manufactured; multi-stage depressed collector is assembled.

  1. Resolution enhancement in MR spectroscopy of red bone marrow fat via intermolecular double-quantum coherences

    Science.gov (United States)

    Bao, Jianfeng; Cui, Xiaohong; Huang, Yuqing; Zhong, Jianhui; Chen, Zhong

    2015-08-01

    High-resolution 1H magnetic resonance spectroscopy (MRS) is generally inaccessible in red bone marrow (RBM) tissues using conventional MRS techniques. This is because signal from these tissues suffers from severe inhomogeneity in the main static B0 field originated from the intrinsic honeycomb structures in trabecular bone. One way to reduce effects of B0 field inhomogeneity is by using the intermolecular double quantum coherence (iDQC) technique, which has been shown in other systems to obtain signals insensitive to B0 field inhomogeneity. In the present study, we employed an iDQC approach to enhance the spectral resolution of RBM. The feasibility and performance of this method for achieving high resolution MRS was verified by experiments on phantoms and pig vertebral bone samples. Unsaturated fatty acid peaks which overlap in the conventional MRS were well resolved and identified in the iDQC spectrum. Quantitative comparison of fractions of three types of fatty acids was performed between iDQC spectra on the in situ RMB and conventional MRS on the extracted fat from the same RBM. Observations of unsaturated fatty acids with iDQC MRS may provide valuable information and may hold potential in diagnosis of diseases such as obesity, diabetes, and leukemia.

  2. High-Resolution Spectroscopy at the Wyoming Infrared Observatory: Setting TESS Science on FHiRE

    Science.gov (United States)

    Jang-Condell, Hannah; Pierce, Michael J.; Pilachowski, C. A.; Kobulnicky, Henry; McLane, Jacob N.

    2018-01-01

    The Fiber High Resolution Echelle (FHiRE) spectrograph is a new instrument designed for the 2.3-m Wyoming InfraRed Observatory (WIRO). With the construction of a vacuum chamber for FHiRE to stabilize the spectrograph and a temperature-stabilized Thorium-Argon lamp for precise velocity calibration, we will be able to achieve 1 m/s RV precision, making it an ideal instrument for finding exoplanets. Details of the design of FHiRE are presented in a companion poster (Pierce et al.). The construction of this instrument is well-timed with the planned 2018 launch of NASA's Transiting Exoplanet Survey Satellite (TESS) mission. TESS will require a great deal of follow-up spectroscopy to characterize potential exoplanet host stars as well as radial velocity measurements to confirm new exoplanets. WIRO is ideally suited to acquire the long-term, high-cadence observations that will be required to make progress in this frontier area of astrophysics. We will coordinate our efforts with the TESS Follow-up Observing Program (TFOP), specifically as part of the Recon Spectroscopy and Precise Radial Velocity Work sub-groups.This work is supported by a grant from NASA EPSCOR.

  3. Styrylpyrylium Salts: 1H and 13C NMR High-Resolution Spectroscopy (1D and 2D

    Directory of Open Access Journals (Sweden)

    Jean Claude W. Ouédraogo

    2010-01-01

    Full Text Available 1H and 13C NMR high-resolution spectroscopy (1D and 2D (1H, 1H-COSY, HSQC, HMBC for four styrylpyrylium perchlorates were carried out and signal attributions are reported. Chemical shifts observed on 13C NMR spectra for the styrylpyrylium salts were compared with net atomic charge for carbon obtained by AM1 semiempirical calculations. The position of the styryl group present low effect on chemical shifts for carbon atoms, while the presence of methyl group led to the unshielding of the substituted carbon.

  4. Hyperon compound nucleus

    International Nuclear Information System (INIS)

    Yamazaki, Toshimitsu.

    1987-11-01

    The formation of various hypernuclei from K - absorption at rest is discussed from the viewpoints of compound decay of highly excited hypernuclei in contrast to the direct reaction mechanism. Recent (stopped K - , π) experiments at KEK as well as old data of emulsion and bubble chamber experiments are discussed. Some future direction of hypernuclear spectroscopy is suggested. (author)

  5. Overview of strangeness nuclear physics

    International Nuclear Information System (INIS)

    Gibson, B.F.

    1998-01-01

    Novel as well as puzzling aspects of strangeness (S = -1 and S = -2) nuclear physics are highlighted. Opportunities to gain new insights into hypernuclear spectroscopy, structure, and weak decays and to contribute to the continuing effort to understand the fundamental baryon-baryon force are outlined. Connections to strangeness in heavy-ion reactions and astrophysics are noted

  6. Near Infrared High Resolution Spectroscopy and Spectro-astrometry of Gas in Disks around Herbig Ae/Be Stars

    OpenAIRE

    Brittain, Sean D.; Najita, Joan R.; Carr, John S.

    2015-01-01

    In this review, we describe how high resolution near infrared spectroscopy and spectro-astrometry have been used to study the disks around Herbig~Ae/Be stars. We show how these tools can be used to identify signposts of planet formation and elucidate the mechanism by which Herbig Ae/Be stars accrete. We also highlight some of the artifacts that can complicate the interpretation of spectro-astrometric measurements and discuss best practices for mitigating these effects. We conclude with a brie...

  7. Innovative diffraction gratings for high-resolution resonant inelastic soft x-ray scattering spectroscopy

    International Nuclear Information System (INIS)

    Voronov, D.L.; Warwick, T.; Gullikson, E. M.; Salmassi, F.; Padmore, H. A.

    2016-01-01

    High-resolution Resonant Inelastic X-ray Scattering (RIXS) requires diffraction gratings with very exacting characteristics. The gratings should provide both very high dispersion and high efficiency which are conflicting requirements and extremely challenging to satisfy in the soft x-ray region for a traditional grazing incidence geometry. To achieve high dispersion one should increase the groove density of a grating; this however results in a diffraction angle beyond the critical angle range and results in drastic efficiency loss. The problem can be solved by use of multilayer coated blazed gratings (MBG). In this work we have investigated the diffraction characteristics of MBGs via numerical simulations and have developed a procedure for optimization of grating design for a multiplexed high resolution imaging spectrometer for RIXS spectroscopy to be built in sector 6 at the Advanced Light Source (ALS). We found that highest diffraction efficiency can be achieved for gratings optimized for 4"t"h or 5"t"h order operation. Fabrication of such gratings is an extremely challenging technological problem. We present a first experimental prototype of these gratings and report its performance. High order and high line density gratings have the potential to be a revolutionary new optical element that should have great impact in the area of soft x-ray RIXS.

  8. Absorption Spectroscopy, Molecular Dynamics Calculations, and Multivariate Curve Resolution on the Phthalocyanine Aggregation

    Energy Technology Data Exchange (ETDEWEB)

    Ajloo, Davood; Ghadamgahi, Maryam; Shaheri, Freshte; Zarei, Kobra [Damghan Univ., Damghan (Iran, Islamic Republic of)

    2014-05-15

    Co(II)-tetrasulfonated phthalocyanine (CoTSP) is known to be aggregated to dimer at high concentration levels in water. A study on the aggregation of CoTSP using multivariate curve resolution analysis of the visible absorbance spectra over a concentration range of 30, 40 and 50 μM in the presence of dimethyl sulfoxide (DMSO), dimethyl formamide (DMF), acetonitrile (AN) and ethanol (EtOH) in the concentration range of 0 to 3.57 M is conducted. A hard modeling-based multivariate curve resolution method was applied to determine the dissociation constants of the CoTSP aggregates at various temperatures ranging from 25, 45 and 65 .deg. C and in the presence of various co-solvents. Dissociation constant for aggregation was increased and then decrease by temperature and concentration of phthalocyanine, respectively. Utilizing the vant Hoff relation, the enthalpy and entropy of the dissociation equilibriums were calculated. For the dissociation of both aggregates, the enthalpy and entropy changes were positive and negative, respectively. Molecular dynamics simulation of cosolvent effect on CoTSP aggregation was done to confirm spectroscopy results. Results of radial distribution function (RDF), root mean square deviation (RMSD) and distance curves confirmed more effect of polar solvent to decrease monomer formation.

  9. Absorption Spectroscopy, Molecular Dynamics Calculations, and Multivariate Curve Resolution on the Phthalocyanine Aggregation

    International Nuclear Information System (INIS)

    Ajloo, Davood; Ghadamgahi, Maryam; Shaheri, Freshte; Zarei, Kobra

    2014-01-01

    Co(II)-tetrasulfonated phthalocyanine (CoTSP) is known to be aggregated to dimer at high concentration levels in water. A study on the aggregation of CoTSP using multivariate curve resolution analysis of the visible absorbance spectra over a concentration range of 30, 40 and 50 μM in the presence of dimethyl sulfoxide (DMSO), dimethyl formamide (DMF), acetonitrile (AN) and ethanol (EtOH) in the concentration range of 0 to 3.57 M is conducted. A hard modeling-based multivariate curve resolution method was applied to determine the dissociation constants of the CoTSP aggregates at various temperatures ranging from 25, 45 and 65 .deg. C and in the presence of various co-solvents. Dissociation constant for aggregation was increased and then decrease by temperature and concentration of phthalocyanine, respectively. Utilizing the vant Hoff relation, the enthalpy and entropy of the dissociation equilibriums were calculated. For the dissociation of both aggregates, the enthalpy and entropy changes were positive and negative, respectively. Molecular dynamics simulation of cosolvent effect on CoTSP aggregation was done to confirm spectroscopy results. Results of radial distribution function (RDF), root mean square deviation (RMSD) and distance curves confirmed more effect of polar solvent to decrease monomer formation

  10. Online UV-visible spectroscopy and multivariate curve resolution as powerful tool for model-free investigation of laccase-catalysed oxidation.

    Science.gov (United States)

    Kandelbauer, A; Kessler, W; Kessler, R W

    2008-03-01

    The laccase-catalysed transformation of indigo carmine (IC) with and without a redox active mediator was studied using online UV-visible spectroscopy. Deconvolution of the mixture spectra obtained during the reaction was performed on a model-free basis using multivariate curve resolution (MCR). Thereby, the time courses of educts, products, and reaction intermediates involved in the transformation were reconstructed without prior mechanistic assumptions. Furthermore, the spectral signature of a reactive intermediate which could not have been detected by a classical hard-modelling approach was extracted from the chemometric analysis. The findings suggest that the combined use of UV-visible spectroscopy and MCR may lead to unexpectedly deep mechanistic evidence otherwise buried in the experimental data. Thus, although rather an unspecific method, UV-visible spectroscopy can prove useful in the monitoring of chemical reactions when combined with MCR. This offers a wide range of chemists a cheap and readily available, highly sensitive tool for chemical reaction online monitoring.

  11. Multidimensional high harmonic spectroscopy

    International Nuclear Information System (INIS)

    Bruner, Barry D; Soifer, Hadas; Shafir, Dror; Dudovich, Nirit; Serbinenko, Valeria; Smirnova, Olga

    2015-01-01

    High harmonic generation (HHG) has opened up a new frontier in ultrafast science where attosecond time resolution and Angstrom spatial resolution are accessible in a single measurement. However, reconstructing the dynamics under study is limited by the multiple degrees of freedom involved in strong field interactions. In this paper we describe a new class of measurement schemes for resolving attosecond dynamics, integrating perturbative nonlinear optics with strong-field physics. These approaches serve as a basis for multidimensional high harmonic spectroscopy. Specifically, we show that multidimensional high harmonic spectroscopy can measure tunnel ionization dynamics with high precision, and resolves the interference between multiple ionization channels. In addition, we show how multidimensional HHG can function as a type of lock-in amplifier measurement. Similar to multi-dimensional approaches in nonlinear optical spectroscopy that have resolved correlated femtosecond dynamics, multi-dimensional high harmonic spectroscopy reveals the underlying complex dynamics behind attosecond scale phenomena. (paper)

  12. Two-beam ultrabroadband coherent anti-Stokes Raman spectroscopy for high resolution gas-phase multiplex imaging

    International Nuclear Information System (INIS)

    Bohlin, Alexis; Kliewer, Christopher J.

    2014-01-01

    We propose and develop a method for wideband coherent anti-Stokes Raman spectroscopy (CARS) in the gas phase and demonstrate the single-shot measurement of N 2 , H 2 , CO 2 , O 2 , and CH 4 . Pure-rotational and vibrational O-, Q-, and S- branch spectra are collected simultaneously, with high spectral and spatial resolution, and within a single-laser-shot. The relative intensity of the rotational and vibrational signals can be tuned arbitrarily using polarization techniques. The ultrashort 7 fs pump and Stokes pulses are automatically overlapped temporally and spatially using a two-beam CARS technique, and the crossed probe beam allows for excellent spatial sectioning of the probed location

  13. High resolution spectroscopy in solids by nuclear magnetic resonance; Espectroscopia de alta resolucao em solidos por ressonancia magnetica nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Bonagamba, T J

    1991-07-01

    The nuclear magnetic resonance (NMR) techniques for High Resolution Spectroscopy in Solids are described. Also the construction project of a partially home made spectrometer and its applications in the characterization of solid samples are shown in detail. The high resolution spectrometer used is implemented with the double resonance multiple pulses sequences and magic angle spinning (MAS) and can be used with solid and liquid samples. The maximum spinning frequency for the MAS experiment is in excess of 5 Khz, the double resonance sequences can be performed with any type of nucleus, in the variable temperature operating range with nitrogen gas: -120{sup 0} C to +160{sup 0} C, and is fully controlled by a Macintosh IIci microcomputer. (author).

  14. High resolution transmission spectroscopy as a diagnostic for Jovian exoplanet atmospheres: constraints from theoretical models

    Energy Technology Data Exchange (ETDEWEB)

    Kempton, Eliza M.-R. [Department of Physics, Grinnell College, Grinnell, IA 50112 (United States); Perna, Rosalba [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794 (United States); Heng, Kevin, E-mail: kemptone@grinnell.edu [University of Bern, Center for Space and Habitability, Sidlerstrasse 5, CH-3012 Bern (Switzerland)

    2014-11-01

    We present high resolution transmission spectra of giant planet atmospheres from a coupled three-dimensional (3D) atmospheric dynamics and transmission spectrum model that includes Doppler shifts which arise from winds and planetary motion. We model Jovian planets covering more than two orders of magnitude in incident flux, corresponding to planets with 0.9-55 day orbital periods around solar-type stars. The results of our 3D dynamical models reveal certain aspects of high resolution transmission spectra that are not present in simple one-dimensional (1D) models. We find that the hottest planets experience strong substellar to anti-stellar (SSAS) winds, resulting in transmission spectra with net blueshifts of up to 3 km s{sup –1}, whereas less irradiated planets show almost no net Doppler shifts. We find only minor differences between transmission spectra for atmospheres with temperature inversions and those without. Compared to 1D models, peak line strengths are significantly reduced for the hottest atmospheres owing to Doppler broadening from a combination of rotation (which is faster for close-in planets under the assumption of tidal locking) and atmospheric winds. Finally, high resolution transmission spectra may be useful in studying the atmospheres of exoplanets with optically thick clouds since line cores for very strong transitions should remain optically thick to very high altitude. High resolution transmission spectra are an excellent observational test for the validity of 3D atmospheric dynamics models, because they provide a direct probe of wind structures and heat circulation. Ground-based exoplanet spectroscopy is currently on the verge of being able to verify some of our modeling predictions, most notably the dependence of SSAS winds on insolation. We caution that interpretation of high resolution transmission spectra based on 1D atmospheric models may be inadequate, as 3D atmospheric motions can produce a noticeable effect on the absorption

  15. Effects of cations and cholesterol with sphingomyelin membranes investigated by high-resolution broadband sum frequency vibrational spectroscopy

    Science.gov (United States)

    Zhang, Zhen; Feng, Rong-juan; Li, Yi-yi; Liu, Ming-hua; Guo, Yuan

    2017-08-01

    Sphingomyelin(SM) is specifically enriched in the plasma membrane of mammalian cells. Its molecular structure is compose by N-acyl-Derythro-sphingosylphosphorylcholine. The function of the SM related to membrane signaling and protein trafficking are relied on the interactions of the SM, cations, cholesterol and proteins. In this report, the interaction of three different nature SMs, cations and cholesterol at air/aqueous interfaces studied by high-resolution broadband sum frequency vibrational spectroscopy, respectively. Our results shed lights on understanding the relationship between SMs monolayer, cholesterol and Cations.

  16. Microscopic resolution broadband dielectric spectroscopy

    International Nuclear Information System (INIS)

    Mukherjee, S; Watson, P; Prance, R J

    2011-01-01

    Results are presented for a non-contact measurement system capable of micron level spatial resolution. It utilises the novel electric potential sensor (EPS) technology, invented at Sussex, to image the electric field above a simple composite dielectric material. EP sensors may be regarded as analogous to a magnetometer and require no adjustments or offsets during either setup or use. The sample consists of a standard glass/epoxy FR4 circuit board, with linear defects machined into the surface by a PCB milling machine. The sample is excited with an a.c. signal over a range of frequencies from 10 kHz to 10 MHz, from the reverse side, by placing it on a conducting sheet connected to the source. The single sensor is raster scanned over the surface at a constant working distance, consistent with the spatial resolution, in order to build up an image of the electric field, with respect to the reference potential. The results demonstrate that both the surface defects and the internal dielectric variations within the composite may be imaged in this way, with good contrast being observed between the glass mat and the epoxy resin.

  17. Microscopic resolution broadband dielectric spectroscopy

    Science.gov (United States)

    Mukherjee, S.; Watson, P.; Prance, R. J.

    2011-08-01

    Results are presented for a non-contact measurement system capable of micron level spatial resolution. It utilises the novel electric potential sensor (EPS) technology, invented at Sussex, to image the electric field above a simple composite dielectric material. EP sensors may be regarded as analogous to a magnetometer and require no adjustments or offsets during either setup or use. The sample consists of a standard glass/epoxy FR4 circuit board, with linear defects machined into the surface by a PCB milling machine. The sample is excited with an a.c. signal over a range of frequencies from 10 kHz to 10 MHz, from the reverse side, by placing it on a conducting sheet connected to the source. The single sensor is raster scanned over the surface at a constant working distance, consistent with the spatial resolution, in order to build up an image of the electric field, with respect to the reference potential. The results demonstrate that both the surface defects and the internal dielectric variations within the composite may be imaged in this way, with good contrast being observed between the glass mat and the epoxy resin.

  18. CEBAF/SURA [Continuous Electron Beam Accelerator Facility]/[Southeastern Universities Research Association] 1987 summer workshop

    International Nuclear Information System (INIS)

    Gross, F.; Williamson, C.

    1987-10-01

    This report contains papers from the CEBAF accelerator facility summer workshop. Some topics covered are: baryon-baryon interactions, deuteron form factors; neutron detection; high resolution spectrometers; nuclear strangeness; parity violation; photon-deuteron interactions; chemical reactions in ion sources; quantum chromodynamics; hypernuclear magnetic moments; and photoproduction of π + from 14 N

  19. Photoelectron spectroscopy in a wide hν region from 6 eV to 8 keV with full momentum and spin resolution

    International Nuclear Information System (INIS)

    Suga, Shigemasa; Tusche, Christian

    2015-01-01

    Highlights: • Full two-dimensional angle resolved photoelectron spectroscopy (2D-ARPES). • Spin-resolved ARPES (SP-ARPES) with very high spin detection efficiency. • Aberration corrected double hemispherical deflection analyzers (HDAs). • Momentum microscopy (M.M.) with high energy and momentum resolutions. • Spin resolved momentum microscopy with capability of micro-nano region detection. - Abstract: High resolution photoelectron spectroscopy is recognized to be a very powerful approach to study surface and bulk electronic structures of various solids by employing different photon energies (hν). In particular, angle resolved photoelectron spectroscopy (ARPES) has progressed dramatically in the last few decades providing useful information on Fermi surface (FS) topology and band dispersions. The information of the electron spin is often decisive to fully understand the electronic properties of many material classes. However, spin-resolved studies by photoelectron spectroscopy were strongly hindered by the low detection efficiency of spin detectors. In the case of surface electronic structures, possible surface degradation with time is a serious problem to discuss intrinsic electronic effects. Therefore rather fast and high efficiency detection is required in the case of surface sensitive spin-resolved ARPES. Two-dimensional (2D) detection is nowadays widely employed in ARPES. In the use of a conventional hemispherical deflection analyzer (HDA), one direction on the 2D detector corresponds to the binding energy E_B and the other direction to the emission angle. The novel concept of momentum microscopy, however, directly provides 2D (k_x,k_y) maps of the photoemission intensities. The reciprocal space image directly represents the cross section through the valence band structure of the sample at a selected energy. By scanning E_B, very high resolution three-dimensional E_B(k_x,k_y) maps of the band-dispersion can be obtained with high efficiency. If

  20. High-resolution 1H NMR spectroscopy of fish muscle, eggs and small whole fish via Hadamard-encoded intermolecular multiple-quantum coherence.

    Directory of Open Access Journals (Sweden)

    Honghao Cai

    Full Text Available BACKGROUND AND PURPOSE: Nuclear magnetic resonance (NMR spectroscopy has become an important technique for tissue studies. Since tissues are in semisolid-state, their high-resolution (HR spectra cannot be obtained by conventional NMR spectroscopy. Because of this restriction, extraction and high-resolution magic angle spinning (HR MAS are widely applied for HR NMR spectra of tissues. However, both of the methods are subject to limitations. In this study, the feasibility of HR (1H NMR spectroscopy based on intermolecular multiple-quantum coherence (iMQC technique is explored using fish muscle, fish eggs, and a whole fish as examples. MATERIALS AND METHODS: Intact salmon muscle tissues, intact eggs from shishamo smelt and a whole fish (Siamese algae eater are studied by using conventional 1D one-pulse sequence, Hadamard-encoded iMQC sequence, and HR MAS. RESULTS: When we use the conventional 1D one-pulse sequence, hardly any useful spectral information can be obtained due to the severe field inhomogeneity. By contrast, HR NMR spectra can be obtained in a short period of time by using the Hadamard-encoded iMQC method without shimming. Most signals from fatty acids and small metabolites can be observed. Compared to HR MAS, the iMQC method is non-invasive, but the resolution and the sensitivity of resulting spectra are not as high as those of HR MAS spectra. CONCLUSION: Due to the immunity to field inhomogeneity, the iMQC technique can be a proper supplement to HR MAS, and it provides an alternative for the investigation in cases with field distortions and with samples unsuitable for spinning. The acquisition time of the proposed method is greatly reduced by introduction of the Hadamard-encoded technique, in comparison with that of conventional iMQC method.

  1. Low energy nuclear spin excitations in Ho metal investigated by high resolution neutron spectroscopy.

    Science.gov (United States)

    Chatterji, Tapan; Jalarvo, Niina

    2013-04-17

    We have investigated the low energy excitations in metallic Ho by high resolution neutron spectroscopy. We found at T = 3 K clear inelastic peaks in the energy loss and energy gain sides, along with the central elastic peak. The energy of this low energy excitation, which is 26.59 ± 0.02 μeV at T = 3 K, decreased continuously and became zero at TN ≈ 130 K. By fitting the data in the temperature range 100-127.5 K with a power law we obtained the power-law exponent β = 0.37 ± 0.02, which agrees with the expected value β = 0.367 for a three-dimensional Heisenberg model. Thus the energy of the low energy excitations can be associated with the order parameter.

  2. Self-calibration and self-optimization in DSP-based high resolution spectroscopy systems

    International Nuclear Information System (INIS)

    Geraci, A.; Ripamonti, G.; Pullia, A.

    1996-01-01

    We propose a mathematical method to automatically evaluate the weights of the digital filters used for high resolution spectroscopy in a mixed analog-digital setup. The optimum filter weighting function WF is obtained from the noise autocorrelation; an ultra-accurate estimate of the singularities of the antialiasing, filter is derived from its experimental pulse response. From these data the procedure automatically computes the optimum WF and the digital filter weights. We show that the method provides a much better flatness of the flat top (to within 0.1% of the peak value); a more precise elimination of tails in the WF (to better than 0.1% of the peak value) and a much lower quantization noise (more than a factor 10) at the filter output than other possible methods. It was successfully tested in the generation of trapezoidal and optimum cusp-like WFs even in presence of non negligible 1/f noise. It is run in around one second with no additional hardware

  3. High-resolution γ-ray spectroscopy: a versatile tool for nuclear β-decay studies at TRIUMF-ISAC

    Science.gov (United States)

    Ball, G. C.; Achtzehn, T.; Albers, D.; Khalili, J. S. Al; Andreoiu, C.; Andreyev, A.; Ashley, S. F.; Austin, R. A. E.; Becker, J. A.; Bricault, P.; Chan, S.; Chakrawarthy, R. S.; Churchman, R.; Coombes, H.; Cunningham, E. S.; Daoud, J.; Dombsky, M.; Drake, T. E.; Eshpeter, B.; Finlay, P.; Garrett, P. E.; Geppert, C.; Grinyer, G. F.; Hackman, G.; Hanemaayer, V.; Hyland, B.; Jones, G. A.; Koopmans, K. A.; Kulp, W. D.; Lassen, J.; Lavoie, J. P.; Leslie, J. R.; Litvinov, Y.; Macdonald, J. A.; Mattoon, C.; Melconian, D.; Morton, A. C.; Osborne, C. J.; Pearson, C. J.; Pearson, M.; Phillips, A. A.; Ressler, J. J.; Sarazin, F.; Schumaker, M. A.; Schwarzenberg, J.; Scraggs, H. C.; Smith, M. B.; Svensson, C. E.; Valiente-Dobon, J. J.; Waddington, J. C.; Walker, P. M.; Wendt, K.; Williams, S. J.; Wood, J. L.; Zganjar, E. F.

    2005-10-01

    High-resolution γ-ray spectroscopy is essential to fully exploit the unique, high-quality beams available at the next generation of radioactive ion beam facilities such as the TRIUMF isotope separator and accelerator (ISAC). The 8π spectrometer, which consists of 20 Compton-suppressed HPGe detectors, has recently been reconfigured for a vigorous research programme in weak interaction and nuclear structure physics. With the addition of a variety of ancillary detectors it has become the world's most powerful device dedicated to β-decay studies. This paper provides a brief overview of the apparatus and highlights from recent experiments.

  4. M31 GLOBULAR CLUSTER ABUNDANCES FROM HIGH-RESOLUTION, INTEGRATED-LIGHT SPECTROSCOPY

    International Nuclear Information System (INIS)

    Colucci, Janet E.; Bernstein, Rebecca A.; Cameron, Scott; McWilliam, Andrew; Cohen, Judith G.

    2009-01-01

    We report the first detailed chemical abundances for five globular clusters (GCs) in M31 from high-resolution (R ∼ 25,000) spectroscopy of their integrated light (IL). These GCs are the first in a larger set of clusters observed as part of an ongoing project to study the formation history of M31 and its GC population. The data presented here were obtained with the HIRES echelle spectrograph on the Keck I telescope and are analyzed using a new IL spectra analysis method that we have developed. In these clusters, we measure abundances for Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Y, and Ba, ages ≥10 Gyr, and a range in [Fe/H] of -0.9 to -2.2. As is typical of Milky Way GCs, we find these M31 GCs to be enhanced in the α-elements Ca, Si, and Ti relative to Fe. We also find [Mg/Fe] to be low relative to other [α/Fe], and [Al/Fe] to be enhanced in the IL abundances. These results imply that abundances of Mg, Al (and likely O, Na) recovered from IL do display the inter- and intra-cluster abundance variations seen in individual Milky Way GC stars, and that special care should be taken in the future in interpreting low- or high-resolution IL abundances of GCs that are based on Mg-dominated absorption features. Fe-peak and the neutron-capture elements Ba and Y also follow Milky Way abundance trends. We also present high-precision velocity dispersion measurements for all five M31 GCs, as well as independent constraints on the reddening toward the clusters from our analysis.

  5. High-resolution three-dimensional compositional imaging by double-pulse laser-induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Schiavo, C.; Grifoni, E.; Legnaioli, S.; Lorenzetti, G.; Poggialini, F.; Pagnotta, S.; Palleschi, V.; Menichetti, L.

    2016-01-01

    In this paper we present a new instrument specifically realized for high-resolution three-dimensional compositional analysis and mapping of materials. The instrument is based on the coupling of a Double-Pulse Laser-Induced Breakdown Spectroscopy (LIBS) instrument with an optical microscope. The compositional mapping of the samples is obtained by scanning the laser beam across the surface of the sample, while the in depth analysis is performed by sending multiple laser pulses on the same point. Depths of analysis of several tens of microns can be obtained. The instrument presented has definite advantages with respect to Laser Ablation-ICP Mass Spectrometry in many applications related to material analysis, biomedicine and environmental diagnostics. An application to the diagnostics of industrial ceramics is presented, demonstrating the feasibility of Double-Pulse LIBS Imaging and its advantages with respect to conventional single-pulse LIBS imaging.

  6. Progress in atomic spectroscopy

    International Nuclear Information System (INIS)

    Beyer, H.J.; Kleinpoppen, H.

    1984-01-01

    This book presents reviews by leading experts in the field covering areas of research at the forefront of atomic spectroscopy. Topics considered include the k ordering of atomic structure, multiconfiguration Hartree-Fock calculations for complex atoms, new methods in high-resolution laser spectroscopy, resonance ionization spectroscopy (inert atom detection), trapped ion spectroscopy, high-magnetic-field atomic physics, the effects of magnetic and electric fields on highly excited atoms, x rays from superheavy collision systems, recoil ion spectroscopy with heavy ions, investigations of superheavy quasi-atoms via spectroscopy of electron rays and positrons, impact ionization by fast projectiles, and amplitudes and state parameters from ion- and atom-atom excitation processes

  7. High resolution neutron spectroscopy for helium isotopes

    International Nuclear Information System (INIS)

    Abdel-Wahab, M.S.; Klages, H.O.; Schmalz, G.; Haesner, B.H.; Kecskemeti, J.; Schwarz, P.; Wilczynski, J.

    1992-01-01

    A high resolution fast neutron time-of-flight spectrometer is described, neutron time-of-flight spectra are taken using a specially designed TDC in connection to an on-line computer. The high time-of-flight resolution of 5 ps/m enabled the study of the total cross section of 4 He for neutrons near the 3/2 + resonance in the 5 He nucleus. The resonance parameters were determined by a single level Breit-Winger fit to the data. (orig.)

  8. Development Of High-Resolution Mechanical Spectroscopy, HRMS: Status And Perspectives. HRMS Coupled With A Laser Dilatometer

    Directory of Open Access Journals (Sweden)

    Magalas L.B.

    2015-09-01

    Full Text Available Recent achievements in the development of low-frequency high-resolution mechanical spectroscopy (HRMS are briefly reported. It is demonstrated that extremely low values of the loss angle, ϕ, (tanϕb = 1×10−5 can be measured as a function of frequency, and the precision in estimation of the dynamic modulus is better than 1×10−5 in arbitrary units. Three conditions must be fulfilled to obtain high resolution in subresonant and resonant mechanical loss measurements: (1 noise in stress and elastic strain signals must be lower than 70 dB, (2 high quality of stress and strain signals must be tested both in the frequency- and time-domains, and (3 the estimation of the mechanical loss and modulus must be verified by at least two different computing methods operating in the frequency- and time-domains. It is concluded that phase measurements in the subresonant domain are no longer determined by precision in estimation of the loss angle. Recent developments in high-resolution resonant mechanical loss measurements stem from the application of advanced nonparametric and parametric computing methods and algorithms to estimate the logarithmic decrement and the elastic modulus from exponentially damped free decaying oscillations embedded in experimental noise.

  9. Strange quarks in nuclei

    International Nuclear Information System (INIS)

    Dover, C.B.

    1991-06-01

    We survey the field of strange particle nuclear physics, starting with the spectroscopy of strangeness S = -1 Λ hypernuclei, proceeding to an interpretation of recent data on S = -2 ΛΛ hypernuclear production and decay, and finishing with some speculations on the production of multi-strange nuclear composites (hypernuclei or ''strangelets'') in relativistic heavy ion collisions. 41 refs., 5 figs

  10. High resolution X-ray photoelectron spectroscopy of styrene oxide adsorption and reaction on Ag(1 1 1)

    Science.gov (United States)

    Piao, H.; Enever, M. C. N.; Adib, K.; Hrbek, J.; Barteau, M. A.

    2004-11-01

    Synchrotron-based X-ray photoelectron spectroscopy (XPS) has been used to investigate the adsorption and reaction of styrene oxide on Ag(1 1 1). When adsorption is carried out at 250 K or above, ring opening of styrene oxide forms a stable surface oxametallacycle intermediate which eventually reacts at 485 K to regenerate styrene oxide. High resolution XPS is capable of distinguishing the oxametallacycle from molecularly adsorbed and condensed styrene oxide on the basis of different C1s peak separations. The observed separations are well accounted for by the results of DFT calculations.

  11. Triple aldose reductase/α-glucosidase/radical scavenging high-resolution profiling combined with high-performance liquid chromatography – high-resolution mass spectrometry – solid-phase extraction – nuclear magnetic resonance spectroscopy for identification of antidiabetic constituents in crude, extract of Radix Scutellariae

    DEFF Research Database (Denmark)

    Tahtah, Yousof; Kongstad, Kenneth Thermann; Wubshet, Sileshi Gizachew

    2015-01-01

    high-performance liquid chromatography – high-resolution mass spectrometry – solid-phase extraction – nuclear magnetic resonance spectroscopy. The only α-glucosidase inhibitor was baicalein, whereas main aldose reductase inhibitors in the crude extract were baicalein and skullcapflavone II, and main....../α-glucosidase/radical scavenging high-resolution inhibition profile - allowing proof of concept with Radix Scutellariae crude extract as a polypharmacological herbal drug. The triple bioactivity high-resolution profiles were used to pinpoint bioactive compounds, and subsequent structure elucidation was performed with hyphenated...

  12. High resolution NMR spectroscopy of synthetic polymers in bulk

    International Nuclear Information System (INIS)

    Komorski, R.A.

    1986-01-01

    The contents of this book are: Overview of high-resolution NMR of solid polymers; High-resolution NMR of glassy amorphous polymers; Carbon-13 solid-state NMR of semicrystalline polymers; Conformational analysis of polymers of solid-state NMR; High-resolution NMR studies of oriented polymers; High-resolution solid-state NMR of protons in polymers; and Deuterium NMR of solid polymers. This work brings together the various approaches for high-resolution NMR studies of bulk polymers into one volume. Heavy emphasis is, of course, given to 13C NMR studies both above and below Tg. Standard high-power pulse and wide-line techniques are not covered

  13. A Search for Water in a Super-Earth Atmosphere: High-resolution Optical Spectroscopy of 55Cancri e

    Energy Technology Data Exchange (ETDEWEB)

    Esteves, Lisa J. [Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, Ontario M5S 3H4 (Canada); De Mooij, Ernst J. W.; Watson, Chris [Astrophysics Research Centre, School of Mathematics and Physics, Queens University, Belfast (United Kingdom); Jayawardhana, Ray [Physics and Astronomy, York University, Toronto, Ontario L3T 3R1 (Canada); De Kok, Remco, E-mail: esteves@astro.utoronto.ca, E-mail: ernst.demooij@dcu.ie, E-mail: c.a.watson@qub.ac.uk, E-mail: rayjay@yorku.ca, E-mail: r.j.de.kok@sron.nl [Leiden Observatory, Leiden University, Postbus 9513, 2300 RA, Leiden (Netherlands)

    2017-06-01

    We present the analysis of high-resolution optical spectra of four transits of 55Cnc e, a low-density super-Earth that orbits a nearby Sun-like star in under 18 hr. The inferred bulk density of the planet implies a substantial envelope, which, according to mass–radius relationships, could be either a low-mass extended or a high-mass compact atmosphere. Our observations investigate the latter scenario, with water as the dominant species. We take advantage of the Doppler cross-correlation technique, high-spectral resolution, and the large wavelength coverage of our observations to search for the signature of thousands of optical water absorption lines. Using our observations with HDS on the Subaru telescope and ESPaDOnS on the Canada–France–Hawaii Telescope, we are able to place a 3 σ lower limit of 10 g mol{sup −1} on the mean-molecular weight of 55Cnc e’s water-rich (volume mixing ratio >10%), optically thin atmosphere, which corresponds to an atmospheric scale-height of ∼80 km. Our study marks the first high-spectral resolution search for water in a super-Earth atmosphere, and demonstrates that it is possible to recover known water-vapor absorption signals in a nearby super-Earth atmosphere, using high-resolution transit spectroscopy with current ground-based instruments.

  14. Robust high-resolution quantification of time signals encoded by in vivo magnetic resonance spectroscopy

    Science.gov (United States)

    Belkić, Dževad; Belkić, Karen

    2018-01-01

    This paper on molecular imaging emphasizes improving specificity of magnetic resonance spectroscopy (MRS) for early cancer diagnostics by high-resolution data analysis. Sensitivity of magnetic resonance imaging (MRI) is excellent, but specificity is insufficient. Specificity is improved with MRS by going beyond morphology to assess the biochemical content of tissue. This is contingent upon accurate data quantification of diagnostically relevant biomolecules. Quantification is spectral analysis which reconstructs chemical shifts, amplitudes and relaxation times of metabolites. Chemical shifts inform on electronic shielding of resonating nuclei bound to different molecular compounds. Oscillation amplitudes in time signals retrieve the abundance of MR sensitive nuclei whose number is proportional to metabolite concentrations. Transverse relaxation times, the reciprocal of decay probabilities of resonances, arise from spin-spin coupling and reflect local field inhomogeneities. In MRS single voxels are used. For volumetric coverage, multi-voxels are employed within a hybrid of MRS and MRI called magnetic resonance spectroscopic imaging (MRSI). Common to MRS and MRSI is encoding of time signals and subsequent spectral analysis. Encoded data do not provide direct clinical information. Spectral analysis of time signals can yield the quantitative information, of which metabolite concentrations are the most clinically important. This information is equivocal with standard data analysis through the non-parametric, low-resolution fast Fourier transform and post-processing via fitting. By applying the fast Padé transform (FPT) with high-resolution, noise suppression and exact quantification via quantum mechanical signal processing, advances are made, presented herein, focusing on four areas of critical public health importance: brain, prostate, breast and ovarian cancers.

  15. Two-beam ultrabroadband coherent anti-Stokes Raman spectroscopy for high resolution gas-phase multiplex imaging

    Energy Technology Data Exchange (ETDEWEB)

    Bohlin, Alexis; Kliewer, Christopher J., E-mail: cjkliew@sandia.gov [Combustion Research Facility, Sandia National Laboratories, Livermore, California 94550 (United States)

    2014-01-20

    We propose and develop a method for wideband coherent anti-Stokes Raman spectroscopy (CARS) in the gas phase and demonstrate the single-shot measurement of N{sub 2}, H{sub 2}, CO{sub 2}, O{sub 2}, and CH{sub 4}. Pure-rotational and vibrational O-, Q-, and S- branch spectra are collected simultaneously, with high spectral and spatial resolution, and within a single-laser-shot. The relative intensity of the rotational and vibrational signals can be tuned arbitrarily using polarization techniques. The ultrashort 7 fs pump and Stokes pulses are automatically overlapped temporally and spatially using a two-beam CARS technique, and the crossed probe beam allows for excellent spatial sectioning of the probed location.

  16. High speed, High resolution terahertz spectrometers

    International Nuclear Information System (INIS)

    Kim, Youngchan; Yee, Dae Su; Yi, Miwoo; Ahn, Jaewook

    2008-01-01

    A variety of sources and methods have been developed for terahertz spectroscopy during almost two decades. Terahertz time domain spectroscopy (THz TDS)has attracted particular attention as a basic measurement method in the fields of THz science and technology. Recently, asynchronous optical sampling (AOS)THz TDS has been demonstrated, featuring rapid data acquisition and a high spectral resolution. Also, terahertz frequency comb spectroscopy (TFCS)possesses attractive features for high precision terahertz spectroscopy. In this presentation, we report on these two types of terahertz spectrometer. Our high speed, high resolution terahertz spectrometer is demonstrated using two mode locked femtosecond lasers with slightly different repetition frequencies without a mechanical delay stage. The repetition frequencies of the two femtosecond lasers are stabilized by use of two phase locked loops sharing the same reference oscillator. The time resolution of our terahertz spectrometer is measured using the cross correlation method to be 270 fs. AOS THz TDS is presented in Fig. 1, which shows a time domain waveform rapidly acquired on a 10ns time window. The inset shows a zoom into the signal with 100ps time window. The spectrum obtained by the fast Fourier Transformation (FFT)of the time domain waveform has a frequency resolution of 100MHz. The dependence of the signal to noise ratio (SNR)on the measurement time is also investigated

  17. High-resolution spectroscopy of deeply-bound pionic atoms in heavy nuclei by pion-transfer reactions of inverse kinematics using the GSI cooler ring ESR

    International Nuclear Information System (INIS)

    Yamazaki, Toshimitsu.

    1991-02-01

    Many studies published in the past are reviewed first in relation to high-resolution spectroscopy of deeply-bound pionic atoms in heavy nuclei. The report then describes a procedure for applying the method of inverse kinematics to the case of (d, 3 He) reactions. The (d, 3 He) reaction in inverse kinematics is feasible from practical viewpoints. Thus a discussion is made of the inverse kinematics in which a heavy-ion beam ( 208 Pb for instance) with a projectile kinetic energy hits a deuteron target and ejected recoil 3 He nuclei are measured in the forward direction. The recoil momentum is calculated as a function of the Q value. Analysis shows that the recoil spectroscopy with inverse kinematics can be applied to the case of (d, 3 He) reaction, which will yield a very high mass resolution. The experimental setup for use in the first stage is then outlined, and a simple detector configuration free of magnetic field is discussed. These investigations demonstrate that the (d, 3 He) reaction in inverse kinematics provides a promising tool for obtaining high-resolution spectra of deeply-bound pionic atoms. (N.K.)

  18. Microresonator soliton dual-comb spectroscopy

    Science.gov (United States)

    Suh, Myoung-Gyun; Yang, Qi-Fan; Yang, Ki Youl; Yi, Xu; Vahala, Kerry J.

    2016-11-01

    Measurement of optical and vibrational spectra with high resolution provides a way to identify chemical species in cluttered environments and is of general importance in many fields. Dual-comb spectroscopy has emerged as a powerful approach for acquiring nearly instantaneous Raman and optical spectra with unprecedented resolution. Spectra are generated directly in the electrical domain, without the need for bulky mechanical spectrometers. We demonstrate a miniature soliton-based dual-comb system that can potentially transfer the approach to a chip platform. These devices achieve high-coherence pulsed mode locking. They also feature broad, reproducible spectral envelopes, an essential feature for dual-comb spectroscopy. Our work shows the potential for integrated spectroscopy with high signal-to-noise ratios and fast acquisition rates.

  19. Optimizing 1-μs-Resolution Single-Molecule Force Spectroscopy on a Commercial Atomic Force Microscope.

    Science.gov (United States)

    Edwards, Devin T; Faulk, Jaevyn K; Sanders, Aric W; Bull, Matthew S; Walder, Robert; LeBlanc, Marc-Andre; Sousa, Marcelo C; Perkins, Thomas T

    2015-10-14

    Atomic force microscopy (AFM)-based single-molecule force spectroscopy (SMFS) is widely used to mechanically measure the folding and unfolding of proteins. However, the temporal resolution of a standard commercial cantilever is 50-1000 μs, masking rapid transitions and short-lived intermediates. Recently, SMFS with 0.7-μs temporal resolution was achieved using an ultrashort (L = 9 μm) cantilever on a custom-built, high-speed AFM. By micromachining such cantilevers with a focused ion beam, we optimized them for SMFS rather than tapping-mode imaging. To enhance usability and throughput, we detected the modified cantilevers on a commercial AFM retrofitted with a detection laser system featuring a 3-μm circular spot size. Moreover, individual cantilevers were reused over multiple days. The improved capabilities of the modified cantilevers for SMFS were showcased by unfolding a polyprotein, a popular biophysical assay. Specifically, these cantilevers maintained a 1-μs response time while eliminating cantilever ringing (Q ≅ 0.5). We therefore expect such cantilevers, along with the instrumentational improvements to detect them on a commercial AFM, to accelerate high-precision AFM-based SMFS studies.

  20. High-resolution narrowband CARS spectroscopy in the spectral fingerprint region

    NARCIS (Netherlands)

    Chimento, P.F.; Jurna, M.; Bouwmans, H.S.P.; Garbacik, E.T.; Garbacik, E.T.; Hartsuiker, Liesbeth; Otto, Cornelis; Herek, Jennifer Lynn; Offerhaus, Herman L.

    2010-01-01

    Coherent anti-Stokes Raman scattering (CARS) spectroscopy is an important technique for spectroscopy and chemically selective microscopy, but wider implementation requires dedicated versatile tunable sources. We describe an optical parametric oscillator (OPO) based on a magnesium oxide-doped

  1. Broadband pump-probe spectroscopy with sub-10-fs resolution for probing ultrafast internal conversion and coherent phonons in carotenoids

    International Nuclear Information System (INIS)

    Polli, D.; Antognazza, M.R.; Brida, D.; Lanzani, G.; Cerullo, G.; De Silvestri, S.

    2008-01-01

    We use pump-probe spectroscopy with broadband detection to study electronic energy relaxation and coherent vibrational dynamics in carotenoids. A fast optical multichannel analyzer combined with a non-collinear optical parametric amplifier allows simultaneous acquisition of the differential transmission dynamics on the 500-700 nm wavelength range with sub-10-fs temporal resolution. The broad spectral coverage enables on the one hand a detailed study of the ultrafast bright-to-dark state internal conversion process; on the other hand, the tracking of the motion of the vibrational wavepacket launched on the ground state multidimensional potential energy surface. We present results on all-trans β-carotene and on a long-chain polyene in solution. The developed experimental setup enables the straightforward acquisition and analysis of coherent vibrational dynamics, highlighting time-frequency domain features with extreme resolution

  2. Composition measurement in substitutionally disordered materials by atomic resolution energy dispersive X-ray spectroscopy in scanning transmission electron microscopy.

    Science.gov (United States)

    Chen, Z; Taplin, D J; Weyland, M; Allen, L J; Findlay, S D

    2017-05-01

    The increasing use of energy dispersive X-ray spectroscopy in atomic resolution scanning transmission electron microscopy invites the question of whether its success in precision composition determination at lower magnifications can be replicated in the atomic resolution regime. In this paper, we explore, through simulation, the prospects for composition measurement via the model system of Al x Ga 1-x As, discussing the approximations used in the modelling, the variability in the signal due to changes in configuration at constant composition, and the ability to distinguish between different compositions. Results are presented in such a way that the number of X-ray counts, and thus the expected variation due to counting statistics, can be gauged for a range of operating conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Energy analyzer for Auger electron spectroscopy and low-energy backscattering ion spectroscopy

    International Nuclear Information System (INIS)

    Volkov, S.S.; Gorelik, V.A.; Gutenko, V.T.; Protopopov, O.D.; Trubitsin, A.A.; Shuvalova, Z.A.; Yakushev, G.A.

    1988-01-01

    Energy analyzer for electron Auger spectroscopy and low-energy backscattering ion spectroscopy is described. Analyzer presents one-cascade variant of cylindrical mirror with second-order focusing. Energy relative resolution is continuously adjusted within 0.2-1.2% limits. Signal/noise relation by Cu Auger-line at 1 muA current of exciting beam changes upper limit of range 150-450

  4. Photoelectron spectroscopy in a wide hν region from 6 eV to 8 keV with full momentum and spin resolution

    Energy Technology Data Exchange (ETDEWEB)

    Suga, Shigemasa, E-mail: ssmsuga@gmail.com [Institute of Scientific and Industrial Research, Osaka University, Osaka (Japan); Max-Planck-Institute für Mikrostrukturphysik, Weinberg 2, 06120 Halle (Germany); Tusche, Christian [Max-Planck-Institute für Mikrostrukturphysik, Weinberg 2, 06120 Halle (Germany)

    2015-04-15

    Highlights: • Full two-dimensional angle resolved photoelectron spectroscopy (2D-ARPES). • Spin-resolved ARPES (SP-ARPES) with very high spin detection efficiency. • Aberration corrected double hemispherical deflection analyzers (HDAs). • Momentum microscopy (M.M.) with high energy and momentum resolutions. • Spin resolved momentum microscopy with capability of micro-nano region detection. - Abstract: High resolution photoelectron spectroscopy is recognized to be a very powerful approach to study surface and bulk electronic structures of various solids by employing different photon energies (hν). In particular, angle resolved photoelectron spectroscopy (ARPES) has progressed dramatically in the last few decades providing useful information on Fermi surface (FS) topology and band dispersions. The information of the electron spin is often decisive to fully understand the electronic properties of many material classes. However, spin-resolved studies by photoelectron spectroscopy were strongly hindered by the low detection efficiency of spin detectors. In the case of surface electronic structures, possible surface degradation with time is a serious problem to discuss intrinsic electronic effects. Therefore rather fast and high efficiency detection is required in the case of surface sensitive spin-resolved ARPES. Two-dimensional (2D) detection is nowadays widely employed in ARPES. In the use of a conventional hemispherical deflection analyzer (HDA), one direction on the 2D detector corresponds to the binding energy E{sub B} and the other direction to the emission angle. The novel concept of momentum microscopy, however, directly provides 2D (k{sub x},k{sub y}) maps of the photoemission intensities. The reciprocal space image directly represents the cross section through the valence band structure of the sample at a selected energy. By scanning E{sub B}, very high resolution three-dimensional E{sub B}(k{sub x},k{sub y}) maps of the band-dispersion can be

  5. Cavity-enhanced resonant photoacoustic spectroscopy with optical feedback cw diode lasers: A novel technique for ultratrace gas analysis and high-resolution spectroscopy.

    Science.gov (United States)

    Hippler, Michael; Mohr, Christian; Keen, Katherine A; McNaghten, Edward D

    2010-07-28

    Cavity-enhanced resonant photoacoustic spectroscopy with optical feedback cw diode lasers (OF-CERPAS) is introduced as a novel technique for ultratrace gas analysis and high-resolution spectroscopy. In the scheme, a single-mode cw diode laser (3 mW, 635 nm) is coupled into a high-finesse linear cavity and stabilized to the cavity by optical feedback. Inside the cavity, a build-up of laser power to at least 2.5 W occurs. Absorbing gas phase species inside the cavity are detected with high sensitivity by the photoacoustic effect using a microphone embedded in the cavity. To increase sensitivity further, coupling into the cavity is modulated at a frequency corresponding to a longitudinal resonance of an organ pipe acoustic resonator (f=1.35 kHz and Q approximately 10). The technique has been characterized by measuring very weak water overtone transitions near 635 nm. Normalized noise-equivalent absorption coefficients are determined as alpha approximately 4.4x10(-9) cm(-1) s(1/2) (1 s integration time) and 2.6x10(-11) cm(-1) s(1/2) W (1 s integration time and 1 W laser power). These sensitivities compare favorably with existing state-of-the-art techniques. As an advantage, OF-CERPAS is a "zero-background" method which increases selectivity and sensitivity, and its sensitivity scales with laser power.

  6. Spectroscopy of electroproduced light to medium mass lambda hypernuclei

    Energy Technology Data Exchange (ETDEWEB)

    Baturin, Pavlo [Florida Intl Univ., Miami, FL (United States)

    2010-01-01

    and at the same time performs a generalization of the above mentioned interaction for systems with a third quark flavor – strangeness [1]. Production reactions of Λ particles and hypernuclei, as well as spectroscopy and decay modes, provide valuable information on the hyperon interaction. For example, analysis of Λ and hypernuclear decay modes gives knowledge of the properties of weak interactions. The study of the energy of ground and excited states exposes the laws of baryon distribution inside of the nucleus. Investigation of ΛN and ΛΛ potentials is important for baryon-baryon theories that include strange quarks, e.g. SU(3). These potentials are more short-ranged than the ones for NN and therefore the additional degrees of freedom play an essential role.

  7. High resolution 4-D spectroscopy with sparse concentric shell sampling and FFT-CLEAN.

    Science.gov (United States)

    Coggins, Brian E; Zhou, Pei

    2008-12-01

    Recent efforts to reduce the measurement time for multidimensional NMR experiments have fostered the development of a variety of new procedures for sampling and data processing. We recently described concentric ring sampling for 3-D NMR experiments, which is superior to radial sampling as input for processing by a multidimensional discrete Fourier transform. Here, we report the extension of this approach to 4-D spectroscopy as Randomized Concentric Shell Sampling (RCSS), where sampling points for the indirect dimensions are positioned on concentric shells, and where random rotations in the angular space are used to avoid coherent artifacts. With simulations, we show that RCSS produces a very low level of artifacts, even with a very limited number of sampling points. The RCSS sampling patterns can be adapted to fine rectangular grids to permit use of the Fast Fourier Transform in data processing, without an apparent increase in the artifact level. These artifacts can be further reduced to the noise level using the iterative CLEAN algorithm developed in radioastronomy. We demonstrate these methods on the high resolution 4-D HCCH-TOCSY spectrum of protein G's B1 domain, using only 1.2% of the sampling that would be needed conventionally for this resolution. The use of a multidimensional FFT instead of the slow DFT for initial data processing and for subsequent CLEAN significantly reduces the calculation time, yielding an artifact level that is on par with the level of the true spectral noise.

  8. High-Resolution X-Ray Spectroscopy of Galactic Supernova Remnants

    Directory of Open Access Journals (Sweden)

    Satoru Katsuda

    2014-12-01

    Full Text Available High-resolution X-ray spectroscopy of Galactic supernova remnants (SNRs, based on grating spectrometers onboard XMM-Newton and Chandra, has been revealing a variety of new astrophysical phenomena. Broadened oxygen lines for a northwestern compact knot in SN 1006 clearly show a high oxygen temperature of ~300 keV. The high temperature together with a lower electron temperature (kTe ~ 1 keV can be reasonably interpreted as temperature non-equilibration between electrons and oxygen behind a collisionless shock. An ejecta knot in the Puppis A SNR shows blueshifted line emission by ~ 1500kms-1. The line widths are fairly narrow in contrast to the SN 1006's knot; an upper limit of 0.9 eV is obtained for O VIII Lyα, which translates to an oxygen temperature of kTO < 30 keV. The low temperature suggests that the knot was heated by a reverse shock whose velocity is 4 times slower than that of a forward shock. Anomalous intensity ratios in O VII Heα lines, i.e., a stronger forbidden line than a resonance line, is found in a cloud-shock interaction region in Puppis A. The line ratio can be best explained by the charge-exchange emission that should arise at interfaces between the cold/warm clouds and the hot plasma. There are several other targets for which we plan to analyze high-quality grating data prior to the operation of the soft X-ray spectrometer onboard Astro-H.

  9. UBVJHKLM Photometry and Low-Resolution Spectroscopy of Nova Delphini 2013 (V339 Del

    Directory of Open Access Journals (Sweden)

    Burlak M. A.

    2015-03-01

    Full Text Available We present UBVJHKLM photometric observations of Nova Delphini 2013 that started several hours before maximum light and lasted for 130 nights. Using the obtained data, we derived several photometric parameters of the Nova: the time of maximum light, brightness at maximum, rate of decline, t2 = 11 d. This places Nova Del 2013 among fast novae according to the classification introduced by Payne-Gaposchkin. We estimated the interstellar reddening EB−V = 0.18 using maps of Galactic extinction and the absolute brightness in maximum light via the MMRD relation that allowed us to determine the distance D ≈ 2.7 kpc and height above the Galactic plane z ≈ 440 pc. Low-resolution spectroscopy shows that Nova Del 2013 belongs to the Fe II spectral type of novae. The broad emission feature near 6825 Å observed during 2013 August and September may be the Raman-scattered OVI 1032 Å line.

  10. Alkyl-terminated Si(111) surfaces: A high-resolution, core level photoelectron spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Terry, J.; Linford, M.R.; Wigren, C.; Cao, R.; Pianetta, P.; Chidsey, C.E. [Stanford University, Stanford, California 94309 (United States)

    1999-01-01

    The bonding of alkyl monolayers to Si(111) surfaces has been studied with high-resolution core level photoelectron spectroscopy (PES). Two very different wet-chemical methods have been used to prepare the alkyl monolayers: (i) Olefin insertion into the H{endash}Si bond of the H{endash}Si(111) surface, and (ii) replacement of Cl on the Cl{endash}Si(111) surface by an alkyl group from an alkyllithium reagent. In both cases, PES has revealed a C 1s component shifted to lower binding energy and a Si 2p component shifted to higher binding energy. Both components are attributed to the presence of a C{endash}Si bond at the interface. Along with photoelectron diffraction data [Appl. Phys. Lett. {bold 71}, 1056, (1997)], these data are used to show that these two synthetic methods can be used to functionalize the Si(111) surface. {copyright} {ital 1999 American Institute of Physics.}

  11. Rapid high-resolution spin- and angle-resolved photoemission spectroscopy with pulsed laser source and time-of-flight spectrometer

    Science.gov (United States)

    Gotlieb, K.; Hussain, Z.; Bostwick, A.; Lanzara, A.; Jozwiak, C.

    2013-09-01

    A high-efficiency spin- and angle-resolved photoemission spectroscopy (spin-ARPES) spectrometer is coupled with a laboratory-based laser for rapid high-resolution measurements. The spectrometer combines time-of-flight (TOF) energy measurements with low-energy exchange scattering spin polarimetry for high detection efficiencies. Samples are irradiated with fourth harmonic photons generated from a cavity-dumped Ti:sapphire laser that provides high photon flux in a narrow bandwidth, with a pulse timing structure ideally matched to the needs of the TOF spectrometer. The overall efficiency of the combined system results in near-EF spin-resolved ARPES measurements with an unprecedented combination of energy resolution and acquisition speed. This allows high-resolution spin measurements with a large number of data points spanning multiple dimensions of interest (energy, momentum, photon polarization, etc.) and thus enables experiments not otherwise possible. The system is demonstrated with spin-resolved energy and momentum mapping of the L-gap Au(111) surface states, a prototypical Rashba system. The successful integration of the spectrometer with the pulsed laser system demonstrates its potential for simultaneous spin- and time-resolved ARPES with pump-probe based measurements.

  12. Admittance spectroscopy or deep level transient spectroscopy: A contrasting juxtaposition

    Science.gov (United States)

    Bollmann, Joachim; Venter, Andre

    2018-04-01

    A comprehensive understanding of defects in semiconductors remains of primary importance. In this paper the effectiveness of two of the most commonly used semiconductor defect spectroscopy techniques, viz. deep level transient spectroscopy (DLTS) and admittance spectroscopy (AS) are reviewed. The analysis of defects present in commercially available SiC diodes shows that admittance spectroscopy allows the identification of deep traps with reduced measurement effort compared to deep Level Transient Spectroscopy (DLTS). Besides the N-donor, well-studied intrinsic defects were detected in these diodes. Determination of their activation energy and defect density, using the two techniques, confirm that the sensitivity of AS is comparable to that of DLTS while, due to its well defined peak shape, the spectroscopic resolution is superior. Additionally, admittance spectroscopy can analyze faster emission processes which make the study of shallow defects more practical and even that of shallow dopant levels, possible. A comparative summary for the relevant spectroscopic features of the two capacitance methods are presented.

  13. High-resolution photoluminescence spectroscopy of Sn-doped ZnO single crystals

    International Nuclear Information System (INIS)

    Kumar, E. Senthil; Mohammadbeigi, F.; Boatner, L.A.; Watkins, S.P.

    2016-01-01

    Group IV donors in ZnO are poorly understood, despite evidence that they are effective n-type dopants. Here we present high-resolution photoluminescence (PL) spectroscopy studies of unintentionally doped and Sn-doped ZnO single crystals grown by the chemical vapor transport method. Doped samples showed greatly increased emission from the I 10 bound exciton transition that was recently proven to be related to the incorporation of Sn impurities based on radio-isotope studies. The PL linewidths are exceptionally sharp for these samples, enabling a clear identification of several donor species. Temperature-dependent PL measurements of the I 10 line emission energy and intensity dependence reveal a behavior that is similar to other shallow donors in ZnO. Ionized donor bound-exciton and two-electron satellite transitions of the I 10 transition are unambiguously identified and yield a donor binding energy of 71 meV. In contrast to recent reports of Ge-related donors in ZnO, the spectroscopic binding energy for the Sn-related donor bound exciton follows a linear relationship with donor binding energy (Haynes rule) similar to recently observed carbon related donors, and confirming the shallow nature of this defect center, which was recently attributed to a Sn Zn double donor compensated by an unknown single acceptor.

  14. Magnetic properties of iron oxide-based nanoparticles: Study using Mössbauer spectroscopy with a high velocity resolution and magnetization measurements

    Energy Technology Data Exchange (ETDEWEB)

    Ushakov, M.V. [Institute of Physics and Technology, Ural Federal University, Ekaterinburg 620002 (Russian Federation); Oshtrakh, M.I., E-mail: oshtrakh@gmail.com [Institute of Physics and Technology, Ural Federal University, Ekaterinburg 620002 (Russian Federation); Felner, I. [Racah Institute of Physics, The Hebrew University, Jerusalem (Israel); Semenova, A.S.; Kellerman, D.G. [Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences, Ekaterinburg 620990 (Russian Federation); Šepelák, V. [Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Semionkin, V.A. [Institute of Physics and Technology, Ural Federal University, Ekaterinburg 620002 (Russian Federation); Morais, P.C. [School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601 (China); Universidade de Brasília, Instituto de Física, DF, Brasília 70910-900 (Brazil)

    2017-06-01

    We review the results of the study of magnetite, maghemite and nickel ferrite nanoparticles (NPs), applying for magnetic fluids, using Mössbauer spectroscopy with a high velocity resolution and magnetization measurements. The Mössbauer spectra of these NPs were fitted using a large number of magnetic sextets reflecting NPs complicity. The presence of polar molecules at the magnetite surface in magnetic fluid increases the NPs magnetic moment and the median hyperfine magnetic field. However, surface coating of maghemite NPs with dimeracptosuccinic acid decreases the median hyperfine magnetic field. An example of nickel ferrite NPs demonstrated a new physical model based on distribution of Ni{sup 2+} in the local microenvironment of Fe{sup 3+} which can explain a large number of magnetic sextets in the Mössbauer spectra measured with a high velocity resolution.

  15. Optical Frequency Comb Fourier Transform Spectroscopy with Resolution Exceeding the Limit Set by the Optical Path Difference

    Science.gov (United States)

    Foltynowicz, Aleksandra; Rutkowski, Lucile; Johanssson, Alexandra C.; Khodabakhsh, Amir; Maslowski, Piotr; Kowzan, Grzegorz; Lee, Kevin; Fermann, Martin

    2015-06-01

    Fourier transform spectrometers (FTS) based on optical frequency combs (OFC) allow detection of broadband molecular spectra with high signal-to-noise ratios within acquisition times orders of magnitude shorter than traditional FTIRs based on thermal sources. Due to the pulsed nature of OFCs the interferogram consists of a series of bursts rather than a single burst at zero optical path difference (OPD). The comb mode structure can be resolved by acquiring multiple bursts, in both mechanical FTS systems and dual-comb spectroscopy. However, in all existing demonstrations the resolution was ultimately limited either by the maximum available OPD between the interferometer arms or by the total acquisition time enabled by the storage memory. We present a method that provides spectral resolution exceeding the limit set by the maximum OPD using an interferogram containing only a single burst. The method allows measurements of absorption lines narrower than the OPD-limited resolution without any influence of the instrumental lineshape function. We demonstrate this by measuring undistorted CO2 and CO absorption lines with linewidth narrower than the OPD-limited resolution using OFC-based mechanical FTS in the near- and mid-infrared wavelength ranges. The near-infrared system is based on an Er:fiber femtosecond laser locked to a high finesse cavity, while the mid-infrared system is based on a Tm:fiber-laser-pumped optical parametric oscillator coupled to a multi-pass cell. We show that the method allows acquisition of high-resolution molecular spectra with interferometer length orders of magnitude shorter than traditional FTIR. Mandon, J., G. Guelachvili, and N. Picque, Nat. Phot., 2009. 3(2): p. 99-102. Zeitouny, M., et al., Ann. Phys., 2013. 525(6): p. 437-442. Zolot, A.M., et al., Opt. Lett., 2012. 37(4): p. 638-640.

  16. High resolution collinear resonance ionization spectroscopy of neutron-rich $^{76,77,78}$Cu isotopes

    CERN Document Server

    AUTHOR|(CDS)2083035

    In this work, nuclear magnetic dipole moments, electric quadrupole moments, nuclear spins and changes in the mean-squared charge radii of radioactive copper isotopes are presented. Reaching up to $^{78}$Cu ($Z=29$, $N=49$), produced at rates of only 10 particles per second, these measurements represent the most exotic laser spectroscopic investigations near the doubly-magic and very exotic $^{78}$Ni ($Z=28$,$N=50$) to date. This thesis outlines the technical developments and investigations of laser-atom interactions that were performed during this thesis. These developments were crucial for establishing a high-resolution, high sensitivity collinear resonance ionization spectroscopy experiment at ISOLDE, CERN. This thesis furthermore provides a detailed description of the analysis tools that were implemented and applied to extract the nuclear observables from the experimental data. The results were compared to several large-scale shell model calculations, and provide deep insight into the structure of $^{78}$N...

  17. Neutron molecular spectroscopy: future prospects

    International Nuclear Information System (INIS)

    Tomkinson, J.; Carlile, C.J.; Krishna, P.S.R.

    1994-07-01

    The recent revolution in Neutron Molecular Spectroscopy, caused by extending the spectral range, is briefly reviewed. The need to constantly improve the spectral resolution is underlined and the likely benefits are identified. Recent work on improving the energy resolution on TFXA is presented and three future options for TFXA are outlined. Some preliminary high resolution results, from a mock-up spectrometer, are reported. These clearly show that narrow bands are available in solids and improved resolutions can be achieved to observe them. (Author)

  18. Temperature evaluation of UF6 and cluster detection in nozzle expansion using low-resolution infrared absorption spectroscopy

    International Nuclear Information System (INIS)

    Sbampato, M.E.; Antunes, L.M.D.; Miranda, S.F.; Sena, S.C.; Santos, A.M.

    1998-01-01

    The continuous supersonic expansion of pure gaseous UF 6 and mixtures of UF 6 with argon and nitrogen through a bidimensional nozzle was studied using low-resolution infrared spectroscopy in the ν 3 absorption band region. The experiments were carried out in order to calculate the molecular temperature of the beam and also to verify cluster formation in the expansion. The molecular beam temperature evaluation was based on the measurements of the low-resolution bandwidth, which were compared to simulated spectra results. The temperatures were also evaluated using the measured pressure at the end of the nozzle by a Pitot tube. In the conditions where no cluster formation was observed the calculated theoretical temperatures using an equilibrium expansion model are in good agreement with the data obtained through the analysis of the experimental spectra and through the Pitot tube pressure measurement. Cluster formation was observed for temperatures below about 120 K. In these conditions the infrared spectra showed shoulders in the region above 630 cm -1 and a shoulder or band between 616 and 600 cm -1 . (orig.)

  19. Neutron resonance transmission spectroscopy with high spatial and energy resolution at the J-PARC pulsed neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Tremsin, A.S., E-mail: ast@ssl.berkeley.edu [University of California at Berkeley, 7 Gauss Way, Berkeley, CA 94720 (United States); Shinohara, T.; Kai, T.; Ooi, M. [Japan Atomic Energy Agency, 2–4 Shirakata-shirane, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Kamiyama, T.; Kiyanagi, Y.; Shiota, Y. [Hokkaido University, Kita 13 Nishi 8 Kita-ku, Sapporo-shi, Hokkaido 060-8628 (Japan); McPhate, J.B.; Vallerga, J.V.; Siegmund, O.H.W. [University of California at Berkeley, 7 Gauss Way, Berkeley, CA 94720 (United States); Feller, W.B. [NOVA Scientific, Inc., 10 Picker Rd., Sturbridge, MA 01566 (United States)

    2014-05-11

    The sharp variation of neutron attenuation at certain energies specific to particular nuclides (the lower range being from ∼1 eV up to ∼1 keV), can be exploited for the remote mapping of element and/or isotope distributions, as well as temperature probing, within relatively thick samples. Intense pulsed neutron beam-lines at spallation sources combined with a high spatial, high-timing resolution neutron counting detector, provide a unique opportunity to measure neutron transmission spectra through the time-of-flight technique. We present the results of experiments where spatially resolved neutron resonances were measured, at energies up to 50 keV. These experiments were performed with the intense flux low background NOBORU neutron beamline at the J-PARC neutron source and the high timing resolution (∼20 ns at epithermal neutron energies) and spatial resolution (∼55 µm) neutron counting detector using microchannel plates coupled to a Timepix electronic readout. Simultaneous element-specific imaging was carried out for several materials, at a spatial resolution of ∼150 µm. The high timing resolution of our detector combined with the low background beamline, also enabled characterization of the neutron pulse itself – specifically its pulse width, which varies with neutron energy. The results of our measurements are in good agreement with the predicted results for the double pulse structure of the J-PARC facility, which provides two 100 ns-wide proton pulses separated by 600 ns, broadened by the neutron energy moderation process. Thermal neutron radiography can be conducted simultaneously with resonance transmission spectroscopy, and can reveal the internal structure of the samples. The transmission spectra measured in our experiments demonstrate the feasibility of mapping elemental distributions using this non-destructive technique, for those elements (and in certain cases, specific isotopes), which have resonance energies below a few keV, and with lower

  20. High-Resolution Spectroscopy of Stratospheric Ethane Following the Jupiter Impact of 2009

    Science.gov (United States)

    Fast, Kelly; Kostiuk, Theodor; Livengood, Timothy A.; Hewagama, Tilak; Amen, John

    2010-01-01

    We report on high-resolution infrared spectroscopy of ethane (C2H6) performed at the latitude of an impact site on Jupiter discovered on 19 July 2009 by A. Wesley from a location in Murrumbateman, Australia. The observations used the NASA Goddard Space Flight Center's Heterodyne Instrument for Planetary Wind and Composition (HIPWAC) at the NASA Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii. HIPWAC is a mid-infrared (9-12 microns) heterodyne spectrometer operating at the highest limit of spectral resolving power (lambda\\Delta\\lambda > l06), providing information on atmospheric constituent abundance and temperature through fully resolved tine shapes. Ethane is a stable trace product of methane photochemistry that is nearly uniformly mixed in Jupiter's stratosphere, providing an effective probe of that altitude region. Ethane emission line profiles near 11,74 microns in the Ug band were measured in Jupiter's stratosphere at 25 MHz (11.00083/cm) resolution. A sequence of spectra of ethane acquired over a range of longitude at the impact latitude (56S planetocentric) probes constituent abundance and temperature profile, both on and off the impact region. Near the site of the impact, ethane emission increased above levels measured well outside the impact region. Radiative transfer analysis indicates increased ethane mole fraction (30% greater). Variation in the measured continuum level and line intensities within 75deg of the impact longitude indicate the presence of an opacity source (haze) at altitudes near and above the tropopause and as high as the 10-mbar level near the impact site. The indication of possible haze opacity up to the 10-mbar level in the atmosphere is consistent with measurements made by HIPWAC's predecessor as part of the IRTF Shoemaker Levy-9 campaign in 1994.

  1. Advances in Computational High-Resolution Mechanical Spectroscopy HRMS Part I: Logarithmic Decrement

    International Nuclear Information System (INIS)

    Majewski, M; Magalas, L B; Piłat, A

    2012-01-01

    The comparison between different methods used to compute the logarithmic decrement in high-resolution mechanical spectroscopy (HRMS) is analyzed. The performance of parametric OMI method (Optimization in Multiple Intervals) and interpolated discrete Fourier transform (IpDFT) methods are investigated as a function of the sampling frequency used to digitize free decaying oscillations in low-frequency resonant mechanical spectrometers. It is clearly demonstrated that a new Yoshida-Magalas (YM) method is the most powerful IpDFT-based method which outperforms the standard Yoshida (Y) method and other DFT-based methods. Four IpDFT methods and the OMI method are carefully analyzed as a function of the sampling frequency. The results presented in this work clearly show that the relative error in the estimation of the logarithmic decrement depends both on the length of free decaying signal and on the sampling frequency. The effect of the sampling frequency was not yet reported in the literature. The performance of different methods used in the computations of the logarithmic decrement can be listed in the following order: (1) the OMI, (2) the Yoshida-Magalas YM, (3) the Yoshida-Magalas YMC, and finally (4) the Yoshida Y.

  2. Design and performance of a soft-x-ray interferometer for ultra-high-resolution fourier transform spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Moler, E.J.; Hussain, Z.; Duarte, R.M.; Howells, M.R. [Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    A Fourier Transform Soft X-ray spectrometer (FT-SX) has been designed and is under construction for the Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory as a branch of beamline 9.3.2. The spectrometer is a novel soft x-ray interferometer designed for ultra-high resolution (theoretical resolving power E/{delta}E{approximately}10{sup 6}) spectroscopy in the photon energy region of 60-120 eV. This instrument is expected to provide experimental results which sensitively test models of correlated electron processes in atomic and molecular physics. The design criteria and consequent technical challenges posed by the short wavelengths of x-rays and desired resolving power are discussed. The fundamental and practical aspects of soft x-ray interferometry are also explored.

  3. Power quality considerations for nuclear spectroscopy applications: Grounding

    Science.gov (United States)

    García-Hernández, J. M.; Ramírez-Jiménez, F. J.; Mondragón-Contreras, L.; López-Callejas, R.; Torres-Bribiesca, M. A.; Peña-Eguiluz, R.

    2013-11-01

    Traditionally the electrical installations are designed for supplying power and to assure the personnel safety. In nuclear analysis laboratories, additional issues about grounding also must be considered for proper operation of high resolution nuclear spectroscopy systems. This paper shows the traditional ways of grounding nuclear spectroscopy systems and through different scenarios, it shows the effects on the more sensitive parameter of these systems: the energy resolution, it also proposes the constant monitoring of a power quality parameter as a way to preserve or to improve the resolution of the systems, avoiding the influence of excessive extrinsic noise.

  4. Development of a metallic magnetic calorimeter for high resolution spectroscopy; Entwicklung eines metallischen magnetischen Kalorimeters fuer die hochaufloesende Roentgenspektroskopie

    Energy Technology Data Exchange (ETDEWEB)

    Linck, M.

    2007-05-02

    In this thesis the development of a metallic magnetic calorimeter for high resolution detection of single x-ray quanta is described. The detector consists of an X-ray absorber and a paramagnetic temperature sensor. The raise in temperature of the paramagnetic sensor due to the absorption of a single X-ray is measured by the change in magnetization of the sensor using a low-noise SQUID magnetometer. The thermodynamic properties of the detector can be described by a theoretical model based on a mean field approximation. This allows for an optimization of the detector design with respect to signal size. The maximal archivable energy resolution is limited by thermodynamic energy fluctuations between absorber, heat bath and thermometer. An interesting field of application for a metallic magnetic calorimeter is X-ray astronomy and the investigation of X-ray emitting objects. Through high-resolution X-ray spectroscopy it is possible to obtain information about physical processes of even far distant objects. The magnetic calorimeter that was developed in this thesis has a metallic absorber with a quantum efficiency of 98% at 6 keV. The energy resolution of the magnetic calorimeter is EFWHM=2.7 eV at 5.9 keV. The deviation of the detector response from a linear behavior of the detector is only 0.8% at 5.9 keV. (orig.)

  5. High-resolution continuous flow analysis setup for water isotopic measurement from ice cores using laser spectroscopy

    Science.gov (United States)

    Emanuelsson, B. D.; Baisden, W. T.; Bertler, N. A. N.; Keller, E. D.; Gkinis, V.

    2014-12-01

    Here we present an experimental setup for water stable isotopes (δ18O and δD) continuous flow measurements. It is the first continuous flow laser spectroscopy system that is using Off-Axis Integrated Cavity Output Spectroscopy (OA-ICOS; analyzer manufactured by Los Gatos Research - LGR) in combination with an evaporation unit to continuously analyze sample from an ice core. A Water Vapor Isotopic Standard Source (WVISS) calibration unit, manufactured by LGR, was modified to: (1) increase the temporal resolution by reducing the response time (2) enable measurements on several water standards, and (3) to reduce the influence from memory effects. While this setup was designed for the Continuous Flow Analysis (CFA) of ice cores, it can also continuously analyze other liquid or vapor sources. The modified setup provides a shorter response time (~54 and 18 s for 2013 and 2014 setup, respectively) compared to the original WVISS unit (~62 s), which is an improvement in measurement resolution. Another improvement compared to the original WVISS is that the modified setup has a reduced memory effect. Stability tests comparing the modified WVISS and WVISS setups were performed and Allan deviations (σAllan) were calculated to determine precision at different averaging times. For the 2013 modified setup the precision after integration times of 103 s are 0.060 and 0.070‰ for δ18O and δD, respectively. For the WVISS setup the corresponding σAllan values are 0.030, 0.060 and 0.043‰ for δ18O, δD and δ17O, respectively. For the WVISS setup the precision is 0.035, 0.070 and 0.042‰ after 103 s for δ18O, δD and δ17O, respectively. Both the modified setups and WVISS setup are influenced by instrumental drift with δ18O being more drift sensitive than δD. The σAllan values for δ18O of 0.30 and 0.18‰ for the modified (2013) and WVISS setup, respectively after averaging times of 104 s (2.78 h). The Isotopic Water Analyzer (IWA)-modified WVISS setup used during the

  6. Atomic-resolution structure of the CAP-Gly domain of dynactin on polymeric microtubules determined by magic angle spinning NMR spectroscopy.

    Science.gov (United States)

    Yan, Si; Guo, Changmiao; Hou, Guangjin; Zhang, Huilan; Lu, Xingyu; Williams, John Charles; Polenova, Tatyana

    2015-11-24

    Microtubules and their associated proteins perform a broad array of essential physiological functions, including mitosis, polarization and differentiation, cell migration, and vesicle and organelle transport. As such, they have been extensively studied at multiple levels of resolution (e.g., from structural biology to cell biology). Despite these efforts, there remain significant gaps in our knowledge concerning how microtubule-binding proteins bind to microtubules, how dynamics connect different conformational states, and how these interactions and dynamics affect cellular processes. Structures of microtubule-associated proteins assembled on polymeric microtubules are not known at atomic resolution. Here, we report a structure of the cytoskeleton-associated protein glycine-rich (CAP-Gly) domain of dynactin motor on polymeric microtubules, solved by magic angle spinning NMR spectroscopy. We present the intermolecular interface of CAP-Gly with microtubules, derived by recording direct dipolar contacts between CAP-Gly and tubulin using double rotational echo double resonance (dREDOR)-filtered experiments. Our results indicate that the structure adopted by CAP-Gly varies, particularly around its loop regions, permitting its interaction with multiple binding partners and with the microtubules. To our knowledge, this study reports the first atomic-resolution structure of a microtubule-associated protein on polymeric microtubules. Our approach lays the foundation for atomic-resolution structural analysis of other microtubule-associated motors.

  7. Detection and quantification of phenolic compounds in olive oil by high resolution 1H nuclear magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Christophoridou, Stella; Dais, Photis

    2009-01-01

    High resolution 1 H NMR spectroscopy has been employed as a versatile and rapid method to analyze the polar fraction of extra virgin olive oils containing various classes of phenolic compounds. The strategy for identification of phenolic compounds is based on the NMR chemical shifts of a large number of model compounds assigned by using two-dimensional (2D) NMR spectroscopy. Furthermore, 2D NMR was applied to phenolic extracts in an attempt to discover additional phenolic compounds. The 1 H NMR methodology was successful in detecting simple phenols, such as p-coumaric acid, vanillic acid, homovanillyl alcohol, vanillin, free tyrosol, and free hydroxytyrosol, the flavonols apigenin and luteolin, the lignans (+) pinoresinol, (+) 1-acetoxypinoresinol and syringaresinol, two isomers of the aldehydic form of oleuropein and ligstroside, the dialdehydic form of oleuropein and ligstroside lacking a carboxymethyl group, and finally total hydroxytyrosol and total tyrosol reflecting the total amounts of free and esterified hydroxytyrol and tyrosol, respectively. The absolute amount of each phenolic constituent was determined in the polar fraction by using anhydrous 1,3,5-triazine as an internal standard

  8. High resolution spectroscopy of the OsO4 stretching fundamental at 961 cm-1

    International Nuclear Information System (INIS)

    McDowell, R.S.; Radziemski, L.J.; Flicker, H.; Galbraith, H.W.; Kennedy, R.C.; Nereson, N.G.; Krohn, B.J.; Aldridge, J.P.; King, J.D.; Fox, K.

    1978-01-01

    The ν 3 bands of 187 Os 16 O 4 , 189 Os 16 O 4 , and 192 Os 16 O 4 have been recorded using both a Michelson interferometer (resolution 0.06 cm -1 ) and a tunable semiconductor diode laser (resolution limited by the Doppler width, approx.0.0007 cm -1 ). The rotational fine structure differs from that of most other spherical-top molecules, for only rotational levels of A symmetry exist. A total of 112 individual vibration--rotation lines in the P and R branches of the three isotopic species were calibrated against stimulated emission lines from a high-voltage CO 2 gain cell, and were used to determine three scalar and two tensor spectroscopic constants for each species; an additional scalar constant was obtained from an analysis of the Q branch of 192 OsO 4 . The strength of P (11) A 2 /sup ts0/ was measured for 192 OsO 4 and yields a vibrational transition moment for ν 3 of 0.17 +- 0.02 D. Transitions of all isotopic species that are expected to fall near CO 2 laser lines in the region 949--972 cm -1 are tabulated as an aid in the interpreation of saturation spectroscopy experiments. The general quadratic symmetry and valence force constants of OsO 4 were redetermined, using the isotope shifts in ν 3 as the additional constraints for the F 2 symmetry block

  9. Phonon spectrum of single-crystalline FeSe probed by high-resolution electron energy-loss spectroscopy

    Science.gov (United States)

    Zakeri, Khalil; Engelhardt, Tobias; Le Tacon, Matthieu; Wolf, Thomas

    2018-06-01

    Utilizing high-resolution electron energy-loss spectroscopy (HREELS) we measure the phonon frequencies of β-FeSe(001), cleaved under ultra-high vacuum conditions. At the zone center (Γ bar-point) three prominent loss features are observed at loss energies of about ≃ 20.5 and 25.6 and 40 meV. Based on the scattering selection rules we assign the observed loss features to the A1g, B1g, and A2u phonon modes of β-FeSe(001). The experimentally measured phonon frequencies do not agree with the results of density functional based calculations in which a nonmagnetic, a checkerboard or a strip antiferromagnetic order is assumed for β-FeSe(001). Our measurements suggest that, similar to the other Fe-based materials, magnetism has a profound impact on the lattice dynamics of β-FeSe(001).

  10. Structure of Se-rich As-Se glasses by high-resolution x-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Golovchak, R.; Kovalskiy, A.; Miller, A. C.; Jain, H.; Shpotyuk, O.

    2007-01-01

    To establish the validity of various proposed structural models, we have investigated the structure of the binary As x Se 100-x chalcogenide glass family (x≤40) by high-resolution x-ray photoelectron spectroscopy. From the composition dependence of the valence band, the contributions to the density of states from the 4p lone pair electrons of Se and the 4p bonding states and 4s electrons of Se and As are identified in the top part of the band. The analysis of Se 3d and As 3d core-level spectra supports the so-called chain crossing model for the atomic structure of Se-rich As x Se 100-x bulk glasses. The results also indicate small deviations (∼3-8%) from this model, especially for glass compositions with short Se chains (25 40 Se 60 and of Se-Se-Se fragments in a glass with composition x=30 is established

  11. Internal structure of InP/ZnS nanocrystals unraveled by high-resolution soft X-ray photoelectron spectroscopy.

    Science.gov (United States)

    Huang, Kai; Demadrille, Renaud; Silly, Mathieu G; Sirotti, Fausto; Reiss, Peter; Renault, Olivier

    2010-08-24

    High-energy resolution photoelectron spectroscopy (DeltaE InP/ZnS core/shell nanocrystals synthesized using a single-step procedure (core and shell precursors added at the same time), a homogeneously alloyed InPZnS core structure is evidenced by quantitative analysis of their In3d(5/2) spectra recorded at variable excitation energy. When using a two-step method (core InP nanocrystal synthesis followed by subsequent ZnS shell growth), XPS analysis reveals a graded core/shell interface. We demonstrate the existence of In-S and S(x)-In-P(1-x) bonding states in both types of InP/ZnS nanocrystals, which allows a refined view on the underlying reaction mechanisms.

  12. Resolution Improvement in Multidimensional Nuclear Magnetic Resonance Spectroscopy of Proteins; Amelioration de la resolution dans la resonance magnetique nucleaire multidimensionnelle des proteines

    Energy Technology Data Exchange (ETDEWEB)

    Duma, L

    2004-07-01

    The work presented in this thesis is concerned with both liquid-state and solid-state nuclear magnetic resonance (NMR) spectroscopy. Most of this work is devoted to the investigation by solid-state NMR of C{sup 13}-enriched compounds with the principal aim of presenting techniques devised for further improving the spectral resolution in multidimensional NMR of microcrystalline proteins. In fully C{sup 13}-labelled compounds, the J-coupling induces a broadening of the carbon lineshapes. We show that spin-state-selective technique called IPAP can be successfully combined with standard polarisation transfer schemes in order to remove the J-broadening in multidimensional solid-state NMR correlation experiments of fully C{sup 13}-enriched proteins. We present subsequently two techniques tailored for liquid-state NMR spectroscopy. The carbon directly detected techniques provide chemical shift information for all backbone hetero-nuclei. They are very attracting for the study of large bio-molecular systems or for the investigation of paramagnetic proteins. In the last part of this thesis, we study the spin-echo J-modulation for homonuclear two-spin 1/2 systems. Under magic-angle spinning, the theory of J-induced spin-echo modulation allows to derive a set of modulation regimes which give a spin-echo modulation exactly equal to the J-coupling. We show that the chemical-shift anisotropy and the dipolar interaction tend to stabilize the spin-echo J-modulation. The theoretical conclusions are supported by numerical simulations and experimental results obtained for three representative samples containing C{sup 13} spin pairs. (author)

  13. Recent trends in spin-resolved photoelectron spectroscopy

    Science.gov (United States)

    Okuda, Taichi

    2017-12-01

    Since the discovery of the Rashba effect on crystal surfaces and also the discovery of topological insulators, spin- and angle-resolved photoelectron spectroscopy (SARPES) has become more and more important, as the technique can measure directly the electronic band structure of materials with spin resolution. In the same way that the discovery of high-Tc superconductors promoted the development of high-resolution angle-resolved photoelectron spectroscopy, the discovery of this new class of materials has stimulated the development of new SARPES apparatus with new functions and higher resolution, such as spin vector analysis, ten times higher energy and angular resolution than conventional SARPES, multichannel spin detection, and so on. In addition, the utilization of vacuum ultra violet lasers also opens a pathway to the realization of novel SARPES measurements. In this review, such recent trends in SARPES techniques and measurements will be overviewed.

  14. High-resolution electron collision spectroscopy with multicharged ions in merged beams

    Energy Technology Data Exchange (ETDEWEB)

    Lestinsky, M.

    2007-04-18

    The Heidelberg ion storage ring Tsr is currently the only ring equipped with two independent devices for the collinear merging of a cold electron beam with stored ions. This greatly improves the potential of electron-ion collision experiments, as the ion beam can be cooled with one electron beam, while the other one is used as a dedicated target for energy-resolved electron collision processes, such as recombination. The work describes the implementation of this system for rst electron collision spectroscopy experiments. A detection system has been realized including an ion detector and specroscopic beam-control software and instrumentation. Moreover, in order to improve the spectroscopic resolution systematical studies of intrinsic relaxation processes in the electron beam have been carried out. These include the dependence on the electron beam density, the magnetic guiding eld strength, and the acceleration geometry. The recombination measurements on low-lying resonances in lithiumlike Sc{sup 18+} yield a high-precision measurement of the 2s-2p{sub 3/2} transition energy in this system. Operation of the two-electron-beam setup at high collision energy ({approx}1000 eV) is established using resonances of hydrogenlike Mg{sup 11+}, while the unique possibility of modifying the beam-merging geometry con rms its importance for the electron-ion recombination rate at lowest relative energy, as demonstrated on F{sup 6+}. (orig.)

  15. High-resolution electron collision spectroscopy with multicharged ions in merged beams

    International Nuclear Information System (INIS)

    Lestinsky, M.

    2007-01-01

    The Heidelberg ion storage ring Tsr is currently the only ring equipped with two independent devices for the collinear merging of a cold electron beam with stored ions. This greatly improves the potential of electron-ion collision experiments, as the ion beam can be cooled with one electron beam, while the other one is used as a dedicated target for energy-resolved electron collision processes, such as recombination. The work describes the implementation of this system for rst electron collision spectroscopy experiments. A detection system has been realized including an ion detector and specroscopic beam-control software and instrumentation. Moreover, in order to improve the spectroscopic resolution systematical studies of intrinsic relaxation processes in the electron beam have been carried out. These include the dependence on the electron beam density, the magnetic guiding eld strength, and the acceleration geometry. The recombination measurements on low-lying resonances in lithiumlike Sc 18+ yield a high-precision measurement of the 2s-2p 3/2 transition energy in this system. Operation of the two-electron-beam setup at high collision energy (∼1000 eV) is established using resonances of hydrogenlike Mg 11+ , while the unique possibility of modifying the beam-merging geometry con rms its importance for the electron-ion recombination rate at lowest relative energy, as demonstrated on F 6+ . (orig.)

  16. The Spitzer Infrared Nearby Galaxies Survey: A High-Resolution Spectroscopy Anthology

    Science.gov (United States)

    Dale, Daniel A.; SINGS Team

    2009-05-01

    Results from high resolution mid-infrared spectroscopy are presented for 155 nuclear and extranuclear regions from SINGS. The SINGS sample shows a wide range in the ratio of [SIII]18.71/[SIII]33.48, but the average ratio of the ensemble indicates a typical interstellar electron density of 300--400 cm-3 on 23"x15" scales and 500--600 cm-3 using 11"x9" apertures, independent of whether the region probed is a star-forming nuclear, a star-forming extranuclear, or an AGN environment. Evidence is provided that variations in gas-phase metallicity play an important role in driving variations in radiation field hardness, as indicated by [NeIII]15.56/[NeII]12.81, for regions powered by star formation. Conversely, the radiation hardness for galaxy nuclei powered by accretion around a massive black hole is independent of metal abundance. Furthermore, for metal-rich environments AGN are distinguishable from star-forming regions by significantly larger [NeIII]15.56/[NeII]12.81 ratios. Finally, [FeII]25.99/[NeII]12.81 versus [SiII]34.82/[SIII]33.48 also provides an empirical method for discerning AGN from normal star-forming sources. However, similar to [NeIII]15.56/[NeII]12.81, these mid-infrared line ratios lose their AGN/star-formation diagnostic powers for very low metallicity star-forming systems with hard radiation fields.

  17. Principles and applications of force spectroscopy using atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Kyu; Kim, Woong; Park, Joon Won [Dept. of Chemistry, Pohang University of Science and Technology, Pohang (Korea, Republic of)

    2016-12-15

    Single-molecule force spectroscopy is a powerful technique for addressing single molecules. Unseen structures and dynamics of molecules have been elucidated using force spectroscopy. Atomic force microscope (AFM)-based force spectroscopy studies have provided picoNewton force resolution, subnanometer spatial resolution, stiffness of substrates, elasticity of polymers, and thermodynamics and kinetics of single-molecular interactions. In addition, AFM has enabled mapping the distribution of individual molecules in situ, and the quantification of single molecules has been made possible without modification or labeling. In this review, we describe the basic principles, sample preparation, data analysis, and applications of AFM-based force spectroscopy and its future.

  18. Tropospheric and total ozone columns over Paris (France measured using medium-resolution ground-based solar-absorption Fourier-transform infrared spectroscopy

    Directory of Open Access Journals (Sweden)

    C. Viatte

    2011-10-01

    Full Text Available Ground-based Fourier-transform infrared (FTIR solar absorption spectroscopy is a powerful remote sensing technique providing information on the vertical distribution of various atmospheric constituents. This work presents the first evaluation of a mid-resolution ground-based FTIR to measure tropospheric ozone, independently of stratospheric ozone. This is demonstrated using a new atmospheric observatory (named OASIS for "Observations of the Atmosphere by Solar absorption Infrared Spectroscopy", installed in Créteil (France. The capacity of the technique to separate stratospheric and tropospheric ozone is demonstrated. Daily mean tropospheric ozone columns derived from the Infrared Atmospheric Sounding Interferometer (IASI and from OASIS measurements are compared for summer 2009 and a good agreement of −5.6 (±16.1 % is observed. Also, a qualitative comparison between in-situ surface ozone measurements and OASIS data reveals OASIS's capacity to monitor seasonal tropospheric ozone variations, as well as ozone pollution episodes in summer 2009 around Paris. Two extreme pollution events are identified (on the 1 July and 6 August 2009 for which ozone partial columns from OASIS and predictions from a regional air-quality model (CHIMERE are compared following strict criteria of temporal and spatial coincidence. An average bias of 0.2%, a mean square error deviation of 7.6%, and a correlation coefficient of 0.91 is found between CHIMERE and OASIS, demonstrating the potential of a mid-resolution FTIR instrument in ground-based solar absorption geometry for tropospheric ozone monitoring.

  19. Photoelectron photoion molecular beam spectroscopy

    International Nuclear Information System (INIS)

    Trevor, D.J.

    1980-12-01

    The use of supersonic molecular beams in photoionization mass spectroscopy and photoelectron spectroscopy to assist in the understanding of photoexcitation in the vacuum ultraviolet is described. Rotational relaxation and condensation due to supersonic expansion were shown to offer new possibilities for molecular photoionization studies. Molecular beam photoionization mass spectroscopy has been extended above 21 eV photon energy by the use of Stanford Synchrotron Radiation Laboratory (SSRL) facilities. Design considerations are discussed that have advanced the state-of-the-art in high resolution vuv photoelectron spectroscopy. To extend gas-phase studies to 160 eV photon energy, a windowless vuv-xuv beam line design is proposed

  20. Challenges for energy dispersive X-ray absorption spectroscopy at the ESRF: microsecond time resolution and Mega-bar pressures

    International Nuclear Information System (INIS)

    Aquilanti, G.

    2002-01-01

    This Thesis concerns the development of two different applications of energy-dispersive X-ray absorption spectroscopy at the ESRF: time-resolved studies pushed to the microsecond time resolution and high-pressure studies at the limit of the Mega-bar pressures. The work has been developed in two distinct parts, and the underlying theme has been the exploitation of the capabilities of an X-ray absorption spectrometer in dispersive geometry on a third generation synchrotron source. For time-resolved studies, the study of the triplet excited state following a laser excitation of Pt 2 (P 2 O 5 H 2 ) 4 4- has been chosen to push the technique to the microsecond time resolution. In the high-pressure part, the suitability of the energy dispersive X-ray absorption spectrometer for high-pressure studies using diamond anvils cell is stressed. Some technical developments carried out on beamline ID24 are discussed. Finally, the most extensive scientific part concerns a combined X-ray absorption and diffraction study of InAs under pressure. (author)

  1. J-Spectroscopy in the presence of residual dipolar couplings: determination of one-bond coupling constants and scalable resolution

    International Nuclear Information System (INIS)

    Furrer, Julien; John, Michael; Kessler, Horst; Luy, Burkhard

    2007-01-01

    The access to weak alignment media has fuelled the development of methods for efficiently and accurately measuring residual dipolar couplings (RDCs) in NMR-spectroscopy. Among the wealth of approaches for determining one-bond scalar and RDC constants only J-modulated and J-evolved techniques retain maximum resolution in the presence of differential relaxation. In this article, a number of J-evolved experiments are examined with respect to the achievable minimum linewidth in the J-dimension, using the peptide PA 4 and the 80-amino-acid-protein Saposin C as model systems. With the JE-N-BIRD d,X -HSQC experiment, the average full-width at half height could be reduced to approximately 5 Hz for the protein, which allows the additional resolution of otherwise unresolved peaks by the active (J+D)-coupling. Since RDCs generally can be scaled by the choice of alignment medium and alignment strength, the technique introduced here provides an effective resort in cases when chemical shift differences alone are insufficient for discriminating signals. In favorable cases even secondary structure elements can be distinguished

  2. High resolution spectroscopy in the quasi continuum. Final report

    International Nuclear Information System (INIS)

    Janda, K.C.

    1986-01-01

    Studies of the spectroscopy of vibrationally metastable molecules are briefly described. The research concentrates on two types of molecules, complexes involving ethylene and rare gas atoms bonded to halogen molecules

  3. High resolution x-ray fluorescence spectroscopy - a new technique for site- and spin-selectivity

    International Nuclear Information System (INIS)

    Wang, Xin

    1996-12-01

    X-ray spectroscopy has long been used to elucidate electronic and structural information of molecules. One of the weaknesses of x-ray absorption is its sensitivity to all of the atoms of a particular element in a sample. Through out this thesis, a new technique for enhancing the site- and spin-selectivity of the x-ray absorption has been developed. By high resolution fluorescence detection, the chemical sensitivity of K emission spectra can be used to identify oxidation and spin states; it can also be used to facilitate site-selective X-ray Absorption Near Edge Structure (XANES) and site-selective Extended X-ray Absorption Fine Structure (EXAFS). The spin polarization in K fluorescence could be used to generate spin selective XANES or spin-polarized EXAFS, which provides a new measure of the spin density, or the nature of magnetic neighboring atoms. Finally, dramatic line-sharpening effects by the combination of absorption and emission processes allow observation of structure that is normally unobservable. All these unique characters can enormously simplify a complex x-ray spectrum. Applications of this novel technique have generated information from various transition-metal model compounds to metalloproteins. The absorption and emission spectra by high resolution fluorescence detection are interdependent. The ligand field multiplet model has been used for the analysis of Kα and Kβ emission spectra. First demonstration on different chemical states of Fe compounds has shown the applicability of site selectivity and spin polarization. Different interatomic distances of the same element in different chemical forms have been detected using site-selective EXAFS

  4. Detection and quantification of phenolic compounds in olive oil by high resolution {sup 1}H nuclear magnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Christophoridou, Stella [NMR Laboratory, Department of Chemistry, University of Crete, P.O. Box 2208, Voutes, 71003 Heraklion, Crete (Greece); Dais, Photis [NMR Laboratory, Department of Chemistry, University of Crete, P.O. Box 2208, Voutes, 71003 Heraklion, Crete (Greece)], E-mail: dais@chemistry.uoc.gr

    2009-02-09

    High resolution {sup 1}H NMR spectroscopy has been employed as a versatile and rapid method to analyze the polar fraction of extra virgin olive oils containing various classes of phenolic compounds. The strategy for identification of phenolic compounds is based on the NMR chemical shifts of a large number of model compounds assigned by using two-dimensional (2D) NMR spectroscopy. Furthermore, 2D NMR was applied to phenolic extracts in an attempt to discover additional phenolic compounds. The {sup 1}H NMR methodology was successful in detecting simple phenols, such as p-coumaric acid, vanillic acid, homovanillyl alcohol, vanillin, free tyrosol, and free hydroxytyrosol, the flavonols apigenin and luteolin, the lignans (+) pinoresinol, (+) 1-acetoxypinoresinol and syringaresinol, two isomers of the aldehydic form of oleuropein and ligstroside, the dialdehydic form of oleuropein and ligstroside lacking a carboxymethyl group, and finally total hydroxytyrosol and total tyrosol reflecting the total amounts of free and esterified hydroxytyrol and tyrosol, respectively. The absolute amount of each phenolic constituent was determined in the polar fraction by using anhydrous 1,3,5-triazine as an internal standard.

  5. Coherent spectroscopies on ultrashort time and length scales

    Directory of Open Access Journals (Sweden)

    Schneider C.

    2013-03-01

    Full Text Available Three spectroscopic techniques are presented that provide simultaneous spatial and temporal resolution: modified confocal microscopy with heterodyne detection, space-time-resolved spectroscopy using coherent control concepts, and coherent two-dimensional nano-spectroscopy. Latest experimental results are discussed.

  6. Spatio-temporal image correlation spectroscopy and super-resolution microscopy to quantify molecular dynamics in T cells.

    Science.gov (United States)

    Ashdown, George W; Owen, Dylan M

    2018-02-02

    Many cellular processes are regulated by the spatio-temporal organisation of signalling complexes, cytoskeletal components and membranes. One such example is at the T cell immunological synapse where the retrograde flow of cortical filamentous (F)-actin from the synapse periphery drives signalling protein microclusters towards the synapse centre. The density of this mesh however, makes visualisation and analysis of individual actin fibres difficult due to the resolution limit of conventional microscopy. Recently, super-resolution methods such as structured illumination microscopy (SIM) have surpassed this resolution limit. Here, we apply SIM to better visualise the dense cortical actin meshwork in T cell synapses formed against activating, antibody-coated surfaces and image under total-internal reflection fluorescence (TIRF) illumination. To analyse the observed molecular flows, and the relationship between them, we apply spatio-temporal image correlation spectroscopy (STICS) and its cross-correlation variant (STICCS). We show that the dynamic cortical actin mesh can be visualised with unprecedented detail and that STICS/STICCS can output accurate, quantitative maps of molecular flow velocity and directionality from such data. We find that the actin flow can be disrupted using small molecule inhibitors of actin polymerisation. This combination of imaging and quantitative analysis may provide an important new tool for researchers to investigate the molecular dynamics at cellular length scales. Here we demonstrate the retrograde flow of F-actin which may be important for the clustering and dynamics of key signalling proteins within the plasma membrane, a phenomenon which is vital to correct T cell activation and therefore the mounting of an effective immune response. Copyright © 2018. Published by Elsevier Inc.

  7. Hypernuclear physics studies of the P̅ANDA experiment at FAIR

    Directory of Open Access Journals (Sweden)

    Lorente Alicia Sanchez

    2015-01-01

    Among these improvements is the new concept for a cooling system for the germanium detector based on a electro-mechanical device. In the present work, the cooling efficiency of such devices has been successfully tested, showing their capability to reach liquid nitrogen temperatures and therefore the possibility to use them as a good alternative to the standard liquid nitrogen dewars. Furthermore, since the momentum resolution of low momentum particles is crucial for the unique identification of hypernuclei, an analysis procedure for improving the momentum resolution in few layer silicon based trackers is presented.

  8. Simulation studies of the hypernuclear experiment at anti PANDA to optimize the production and detection rates of ΛΛ hypernuclei

    Energy Technology Data Exchange (ETDEWEB)

    Bleser, Sebastian; Martinez Rojo, Marta; Sanchez Lorente, Alicia; Steinen, Marcell [Helmholtz-Institut Mainz (Germany); Gerl, Juergen; Kojouharova, Jasmina; Kojouharov, Ivan [GSI, Darmstadt (Germany); Iazzi, Felice [Politecnico, Torino (Italy); INFN, Torino (Italy); Pochodzalla, Josef [Helmholtz-Institut Mainz (Germany); Inst. fuer Kernphysik, JGU Mainz (Germany); Rathmann, Torben [Inst. fuer Kernphysik, JGU Mainz (Germany); Collaboration: PANDA-Collaboration

    2015-07-01

    A key aspect of the anti PANDA experiment at the future FAIR facility is the production and spectroscopy of ΛΛ hypernuclei. The double hypernuclei are produced in a two-stage target system consisting of a primary in-beam filament to produce Ξ{sup -} hyperons which are stopped and converted into two lambda hyperons in a secondary external target. This device is composed of a sandwich structure of layers of absorber material and silicon strip detectors for the formation of ΛΛ hypernuclei and the detection of their charged decay pions. In particular the detection of these pions give a signature of a ΛΛ hypernuclei and tag the event. The high resolution γ spectroscopy of the excited hypernuclei is performed by an array of germanium detectors. This poster shows the simulation studies to optimize the setup concerning the production of the hypernuclei and the tracking of their decay pions. In addition the absorption of γ in the target material is taken into account. Furthermore the influence of background is studied since it might damage the germanium detectors and on the other hand is crucial to provide a good signal-to-noise ratio.

  9. Neutron spin echo and high resolution inelastic spectroscopy

    International Nuclear Information System (INIS)

    Mezei, F.; Hungarian Academy of Sciences, Budapest. Central Research Inst. for Physics)

    1982-01-01

    The principles of neutrons spin echo (NSE) technique are considered. It is shown that the basis of NSE principle is a single step measurement of the change of the neutron velocity in the scattering process. The backscattering soectroscopy and the NSE techniques are compared. The NSF spectrometer is described. It is shown that 0.5 MeV energy resolution achieved in the NSE experiment is about 40 times superior to those achieved by the other techniques. The NSE technique has the unique feature that provides high resolution in neutron energy change independently of the monochromatization of the beam. The NSE instrument not only covers a wider dynamic range on a pulsed source that on a continuous one, but also collects data more efficiently

  10. Damped Lyman-alpha absorption by disk galaxies with large redshifts. III. Intermediate-resolution spectroscopy

    International Nuclear Information System (INIS)

    Turnshek, D.A.; Wolfe, A.M.; Lanzetta, K.M.; Briggs, F.H.; Cohen, R.D.

    1989-01-01

    New intermediate-resolution spectroscopy for six members of a sample of 68 moderate- to high-redshift QSOs is presented. Evidence is reported which indicates that seven strong absorption features in the QSO spectra are due to damped Ly-alpha absorption. A standard curve-of-growth analysis on five of the damped systems is performed, and relevant properties are tabulated and discussed. Six of the seven damped Ly-alpha systems have H I column densities of 2 x 10 to the 20th/sq cm or larger, while the remaining system has an H I column density of about 10 to the 20th/sq cm. It is suggested that damped Ly-alpha systems arise when a sight line intercepts a high-redshift protogalaxy disk containing a quiescent cloud component characterized by high column density and low effective velocity dispersion. At the same time, the sight line usually intercepts a broader turbulent component, which is identified as the halo, characterized by much lower column density and higher effective velocity dispersion. 42 refs

  11. High Resolution Thz and FIR Spectroscopy of SOCl_2

    Science.gov (United States)

    Martin-Drumel, M. A.; Cuisset, A.; Sadovskii, D. A.; Mouret, G.; Hindle, F.; Pirali, O.

    2013-06-01

    Thionyl chloride (SOCl_2) is an extremely powerful oxidant widely used in industrial processes and playing a role in the chemistry of the atmosphere. In addition, it has a molecular configuration similar to that of phosgene (COCl_2), and is therefore of particular interest for security and defense applications. Low resolution vibrational spectra of gas phase SOCl_2 as well as high resolution pure rotational transitions up to 25 GHz have previously been investigated. To date no high resolution data are reported at frequencies higher than 25 GHz. We have investigated the THz absorption spectrum of SOCl_2 in the spectral region 70-650 GHz using a frequency multiplier chain coupled to a 1 m long single path cell containing a pressure of about 15 μbar. At the time of the writing, about 8000 pure rotational transitions of SO^{35}Cl_2 with highest J and K_a values of 110 and 50 respectively have been assigned on the spectrum. We have also recorded the high resolution FIR spectra of SOCl_2 in the spectral range 50-700 wn using synchrotron radiation at the AILES beamline of SOLEIL facility. A White-type cell aligned with an absorption path length of 150 m has been used to record, at a resolution of 0.001 wn, two spectra at pressures of 5 and 56 μbar of SOCl_2. On these spectra all FIR modes of SOCl_2 are observed (ν_2 to ν_6) and present a resolved rotational structure. Their analysis is in progress. T. J. Johnson et al., J. Phys. Chem. A 107, 6183 (2003) D. E. Martz and R. T. Lagemann, J. Chem. Phys. 22,1193 (1954) H. S. P. Müller and M. C. L. Gerry, J. Chem. Soc. Faraday Trans. 90, 3473 (1994)

  12. A continuous-wave optical parametric oscillator around 5-μm wavelength for high-resolution spectroscopy.

    Science.gov (United States)

    Krieg, J; Klemann, A; Gottbehüt, I; Thorwirth, S; Giesen, T F; Schlemmer, S

    2011-06-01

    We present a continuous-wave optical parametric oscillator (OPO) capable of high resolution spectroscopy at wavelengths between 4.8 μm and 5.4 μm. It is based on periodically poled lithium niobate (PPLN) and is singly resonant for the signal radiation around 1.35 μm. Because of the strong absorption of PPLN at wavelengths longer than 4.5 μm, the OPO threshold rises to the scale of several watts, while it produces idler powers of more than 1 mW and offers continuous tuning over 15 GHz. A supersonic jet spectrometer is used in combination with the OPO to perform measurements of the transient linear molecule Si(2)C(3) at 1968.2 cm(-1). Fifty rovibrational transition frequencies of the ν(3) antisymmetric stretching mode have been determined with an accuracy on the order of 10(-4) cm(-1), and molecular parameters for the ground and the v(3) = 1 state have been determined most precisely. © 2011 American Institute of Physics

  13. High resolution laser spectroscopy of radioactive isotopes using a RFQ cooler-buncher at CERN-ISOLDE

    CERN Document Server

    Mané, E

    2009-01-01

    At CERN, the European Organization for Nuclear Research, radioactive nuclear beams are produced at the On-Line Isotope Mass Separator facility, ISOLDE. This facility provides a variety of exotic nuclear species for multidisciplinary experiments including nuclear physics. A gas-filled linear Paul trap was commissioned off-line and on-line and now is fully integrated at the focal plane of the high resolution separator magnets of ISOLDE. Ion beams with reduced transverse emitance and energy spread are now available for all experiments located downstream the separator beam line. This device is also able to accumulate the ion beam and release the collected sample in short bunches. Typical accumulation times are 100 ms and the released bunch width is 5-20 $\\mu{s}$. Such bunching capabilities has substantially increased the sensitivity of collinear laser spectroscopy with fluorescence detection by reducing the background from laser scatter by up to four orders of magnitude. The spectroscopic quadrupole moments of $^...

  14. Authentication of virgin olive oil by a novel curve resolution approach combined with visible spectroscopy.

    Science.gov (United States)

    Ferreiro-González, Marta; Barbero, Gerardo F; Álvarez, José A; Ruiz, Antonio; Palma, Miguel; Ayuso, Jesús

    2017-04-01

    Adulteration of olive oil is not only a major economic fraud but can also have major health implications for consumers. In this study, a combination of visible spectroscopy with a novel multivariate curve resolution method (CR), principal component analysis (PCA) and linear discriminant analysis (LDA) is proposed for the authentication of virgin olive oil (VOO) samples. VOOs are well-known products with the typical properties of a two-component system due to the two main groups of compounds that contribute to the visible spectra (chlorophylls and carotenoids). Application of the proposed CR method to VOO samples provided the two pure-component spectra for the aforementioned families of compounds. A correlation study of the real spectra and the resolved component spectra was carried out for different types of oil samples (n=118). LDA using the correlation coefficients as variables to discriminate samples allowed the authentication of 95% of virgin olive oil samples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Monitoring uranium, hydrogen, and lithium and their isotopes using a compact laser-induced breakdown spectroscopy (LIBS) probe and high-resolution spectrometer.

    Science.gov (United States)

    Cremers, David A; Beddingfield, Alan; Smithwick, Robert; Chinni, Rosemarie C; Jones, C Randy; Beardsley, Burt; Karch, Larry

    2012-03-01

    The development of field-deployable instruments to monitor radiological, nuclear, and explosive (RNE) threats is of current interest for a number of assessment needs such as the on-site screening of suspect facilities and nuclear forensics. The presence of uranium and plutonium and radiological materials can be determined through monitoring the elemental emission spectrum using relatively low-resolution spectrometers. In addition, uranium compounds, explosives, and chemicals used in nuclear fuel processing (e.g., tributyl-phosphate) can be identified by applying chemometric analysis to the laser-induced breakdown (LIBS) spectrum recorded by these spectrometers. For nuclear forensic applications, however, isotopes of U and Pu and other elements (e.g., H and Li) must also be determined, requiring higher resolution spectrometers given the small magnitude of the isotope shifts for some of these elements (e.g., 25 pm for U and 13 pm for Pu). High-resolution spectrometers will be preferred for several reasons but these must fit into realistic field-based analysis scenarios. To address the need for field instrumentation, we evaluated a previously developed field-deployable hand-held LIBS interrogation probe combined with two relatively new high-resolution spectrometers (λ/Δλ ~75,000 and ~44,000) that have the potential to meet field-based analysis needs. These spectrometers are significantly smaller and lighter in weight than those previously used for isotopic analysis and one unit can provide simultaneous wide spectral coverage and high resolution in a relatively small package. The LIBS interrogation probe was developed initially for use with low resolution compact spectrometers in a person-portable backpack LIBS instrument. Here we present the results of an evaluation of the LIBS probe combined with a high-resolution spectrometer and demonstrate rapid detection of isotopes of uranium and hydrogen and highly enriched samples of (6)Li and (7)Li. © 2012 Society for

  16. Searching for chemical classes among metal-poor stars using medium-resolution spectroscopy

    Science.gov (United States)

    Cruz, Monique A.; Cogo-Moreira, Hugo; Rossi, Silvia

    2018-04-01

    Astronomy is in the era of large spectroscopy surveys, with the spectra of hundreds of thousands of stars in the Galaxy being collected. Although most of these surveys have low or medium resolution, which makes precise abundance measurements not possible, there is still important information to be extracted from the available data. Our aim is to identify chemically distinct classes among metal-poor stars, observed by the Sloan Digital Sky Survey, using line indices. The present work focused on carbon-enhanced metal-poor (CEMP) stars and their subclasses. We applied the latent profile analysis technique to line indices for carbon, barium, iron and europium, in order to separate the sample into classes with similar chemical signatures. This technique provides not only the number of possible groups but also the probability of each object to belong to each class. The method was able to distinguish at least two classes among the observed sample, with one of them being probable CEMP stars enriched in s-process elements. However, it was not able to separate CEMP-no stars from the rest of the sample. Latent profile analysis is a powerful model-based tool to be used in the identification of patterns in astrophysics. Our tests show the potential of the technique for the attainment of additional chemical information from `poor' data.

  17. 2012 ELECTRONIC SPECTROSCOPY & DYNAMICS GORDON RESEARCH CONFERENCE, JULY 22-27, 2012

    Energy Technology Data Exchange (ETDEWEB)

    Kohler, Bern

    2012-07-27

    Topics covered in this GRC include high-resolution spectroscopy, coherent electronic energy transport in biology, excited state theory and dynamics, excitonics, electronic spectroscopy of cold and ultracold molecules, and the spectroscopy of nanostructures. Several sessions will highlight innovative techniques such as time-resolved x-ray spectroscopy, frequency combs, and liquid microjet photoelectron spectroscopy that have forged stimulating new connections between gas-phase and condensed-phase work.

  18. XPS, AES and laser raman spectroscopy: A fingerprint for a materials surface characterisation

    International Nuclear Information System (INIS)

    Zaidi Embong

    2011-01-01

    This review briefly describes some of the techniques available for analysing surfaces and illustrates their usefulness with a few examples such as a metal and alloy. In particular, Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS) and laser Raman spectroscopy are all described as advanced surface analytical techniques. In analysing a surface, AES and XPS would normally be considered first, with AES being applied where high spatial resolution is required and XPS where chemical state information is needed. Laser Raman spectroscopy is useful for determining molecular bonding. A combination of XPS, AES and Laser Raman spectroscopy can give quantitative analysis from the top few atomic layers with a lateral spatial resolution of < 10 nm. (author)

  19. Far Infrared High Resolution Synchrotron FTIR Spectroscopy of the Low Frequency Bending Modes of Dmso

    Science.gov (United States)

    Cuisset, Arnaud; Smirnova, Irina; Bocquet, Robin; Hindle, Francis; Mouret, Gael; Sadovskii, Dmitrii A.; Pirali, Olivier; Roy, Pascale

    2010-06-01

    In addition to its importance for industrial and environmental studies, the monitoring of DiMethylSulfOxyde (DMSO, (CH_3)_2SO) concentrations is of considerable interest for civil protection. The existing high resolution gas phase spectroscopic data of DMSO only concerned the pure rotational transitions in the ground state. In the Far-IR domain, the low-frequency rovibrational transitions have never previously resolved. The high brightness of the AILES beamline of the synchrotron SOLEIL and the instrumental sensitivity provided by the multipass cell allowed to measure for the first time these transitions. 1581 A-type and C-type transitions in the ν11 band have been assigned and 25 molecular constants of Watson's s-form hamiltonian developed to degree 8 have been fitted within the experimental accuracy. The use of then synchrotron radiation has opened many possibilities for new spectroscopic studies. Together with several other recent studies, our successful measurement and analysis of DMSO convincingly demonstrates the potential of the AILES beamline for high resolution FIR spectroscopy. Thus our present work is just at the beginning of unraveling the rovibrational structure of low frequency bending and torsional vibrational states of DMSO and yielding important comprehensive structural and spectroscopic information on this molecule. L. Margules, R. A. Motienko, E. A. Alekseev, J. Demaison, J. Molec. Spectrosc., 260(23),2009 V. Typke, M. Dakkouri, J. Molec. Struct., 599(177),2001 A. Cuisset, L. Nanobashvili, I. Smirnova, R. Bocquet, F. Hindle, G. Mouret, O. Pirali, P. Roy, D. Sadovskii, Chem. Phys. Lett., accepted for publication

  20. Low Q2 kaon electroproduction

    International Nuclear Information System (INIS)

    Markowitz, P.; Acha, A.

    2010-01-01

    A measurement of the H(e, e′ K + ) reaction was performed at Hall A, TJNAF as part of the hypernuclear experiment E94-107. Data was taken at very low Q 2 (~ 0.07 (GeV/c) 2 ) and W = 2.2 GeV. Kaons were detected along the direction of q-vector, the momentum transferred by the incident electron (θ CM = 6°). These measurements provide data about the Σ 0 /Λ ratio which drops rapidly with Q 2 , the angular dependence of the cross sections as Q 2 → 0, and the dependence of the cross section with respect to Q 2 ,W and θ CM . The dependence of the cross section at very forward angles has been poorly known. Available models are inadequate to describe the results. The measurement of the elementary cross section will constrain models for the elementary reaction which are inadequate to describe these results. It is also a key ingredient in the hypernuclear spectroscopy studies performed at the same kinematics. Details of the calculations and results will be shown. (author)

  1. Laser Spectroscopy and Frequency Combs

    International Nuclear Information System (INIS)

    Hänsch, Theodor W; Picqué, Nathalie

    2013-01-01

    The spectrum of a frequency comb, commonly generated by a mode-locked femtosecond laser consists of several hundred thousand precisely evenly spaced spectral lines. Such laser frequency combs have revolutionized the art measuring the frequency of light, and they provide the long-missing clockwork for optical atomic clocks. The invention of the frequency comb technique has been motivated by precision laser spectroscopy of the simple hydrogen atom. The availability of commercial instruments is facilitating the evolution of new applications far beyond the original purpose. Laser combs are becoming powerful instruments for broadband molecular spectroscopy by dramatically improving the resolution and recording speed of Fourier spectrometers and by creating new opportunities for highly multiplexed nonlinear spectroscopy, such as two-photon spectroscopy or coherent Raman spectroscopy. Other emerging applications of frequency combs range from fundamental research in astronomy, chemistry, or attosecond science to telecommunications and satellite navigation

  2. Opportunities for sub-laser-cycle spectroscopy in condensed phase

    International Nuclear Information System (INIS)

    Ivanov, Misha; Smirnova, Olga

    2013-01-01

    Highlights: ► We discuss how sub-cycle attosecond spectroscopy can be extended from gas to condensed phase. ► We show that attosecond streaking measurements can be applied to bound electrons. ► We discuss time-resolving the formation of band structure in laser fields. - Abstract: To a large extent, progress of attosecond spectroscopy in the gas phase has been driven by designing approaches where time-resolution is not limited by the pulse duration. Instead, the time resolution comes from exploiting the sensitivity of electronic response to the oscillations of the electric field in the laser pulse and attosecond control over these oscillations. This paper discusses perspectives and opportunities for transporting the ideas of sub-cycle spectroscopy from gas to condensed phase

  3. High-resolution spectroscopy diagnostics for measuring impurity ion temperature and velocity on the COMPASS tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Weinzettl, Vladimir, E-mail: vwei@ipp.cas.cz [Institute of Plasma Physics ASCR, Prague (Czech Republic); Shukla, Gaurav [Institute of Plasma Physics ASCR, Prague (Czech Republic); Department of Applied Physics, Ghent University, Ghent (Belgium); Faculty of Mathematics and Physics, Charles University in Prague, Prague (Czech Republic); Ghosh, Joydeep [Institute for Plasma Research, Bhat, Gandhinagar (India); Melich, Radek; Panek, Radomir [Institute of Plasma Physics ASCR, Prague (Czech Republic); Tomes, Matej; Imrisek, Martin; Naydenkova, Diana [Institute of Plasma Physics ASCR, Prague (Czech Republic); Faculty of Mathematics and Physics, Charles University in Prague, Prague (Czech Republic); Varju, Josef [Institute of Plasma Physics ASCR, Prague (Czech Republic); Pereira, Tiago [Instituto de Plasmas e Fusão Nuclear, Lisboa (Portugal); Instituto Superior Técnico, Universidade de Lisboa, Lisboa (Portugal); Gomes, Rui [Instituto de Plasmas e Fusão Nuclear, Lisboa (Portugal); Abramovic, Ivana; Jaspers, Roger [Eindhoven University of Technology, Eindhoven (Netherlands); Pisarik, Michael [SQS Vlaknova optika a.s., Nova Paka (Czech Republic); Department of Electromagnetic Field, Faculty of Electrical Engineering, Czech Technical University in Prague (Czech Republic); Odstrcil, Tomas [Max-Planck-Institut fur Plasmaphysik, Garching (Germany); Van Oost, Guido [Department of Applied Physics, Ghent University, Ghent (Belgium)

    2015-10-15

    Highlights: • We built a new diagnostic of poloidal plasma rotation on the COMPASS tokamak. • Improvements in throughput via toroidal integration and fiber optimizations shown. • Poloidal rotation and ion temperature measured in L- and H-mode and during RMP. • Design and parameters of a new CXRS diagnostic for COMPASS are introduced. - Abstract: High-resolution spectroscopy is a powerful tool for the measurement of plasma rotation as well as ion temperature using the Doppler shift of the emitted spectral lines and their Doppler broadening, respectively. Both passive and active diagnostic variants for the COMPASS tokamak are introduced. The passive diagnostic focused on the C III lines at about 465 nm is utilized for the observation of the poloidal plasma rotation. The current set-up of the measuring system is described, including the intended high-throughput optics upgrade. Different options to increase the fiber collection area are mentioned, including a flower-like fiber bundle, and the use of micro-lenses or tapered fibers. Recent measurements of poloidal plasma rotation of the order of 0–6 km/s are shown. The design of the new active diagnostic using a deuterium heating beam and based on charge exchange recombination spectroscopy (C VI line at 529 nm) is introduced. The tool will provide both space (0.5–5 cm) and time (10 ms) resolved toroidal plasma rotation and ion temperature profiles. The results of the Simulation of Spectra code used to examine the feasibility of charge exchange measurements on COMPASS are shown and connected with a selection of the spectrometer coupled with the CCD camera.

  4. High-resolution spectroscopy diagnostics for measuring impurity ion temperature and velocity on the COMPASS tokamak

    International Nuclear Information System (INIS)

    Weinzettl, Vladimir; Shukla, Gaurav; Ghosh, Joydeep; Melich, Radek; Panek, Radomir; Tomes, Matej; Imrisek, Martin; Naydenkova, Diana; Varju, Josef; Pereira, Tiago; Gomes, Rui; Abramovic, Ivana; Jaspers, Roger; Pisarik, Michael; Odstrcil, Tomas; Van Oost, Guido

    2015-01-01

    Highlights: • We built a new diagnostic of poloidal plasma rotation on the COMPASS tokamak. • Improvements in throughput via toroidal integration and fiber optimizations shown. • Poloidal rotation and ion temperature measured in L- and H-mode and during RMP. • Design and parameters of a new CXRS diagnostic for COMPASS are introduced. - Abstract: High-resolution spectroscopy is a powerful tool for the measurement of plasma rotation as well as ion temperature using the Doppler shift of the emitted spectral lines and their Doppler broadening, respectively. Both passive and active diagnostic variants for the COMPASS tokamak are introduced. The passive diagnostic focused on the C III lines at about 465 nm is utilized for the observation of the poloidal plasma rotation. The current set-up of the measuring system is described, including the intended high-throughput optics upgrade. Different options to increase the fiber collection area are mentioned, including a flower-like fiber bundle, and the use of micro-lenses or tapered fibers. Recent measurements of poloidal plasma rotation of the order of 0–6 km/s are shown. The design of the new active diagnostic using a deuterium heating beam and based on charge exchange recombination spectroscopy (C VI line at 529 nm) is introduced. The tool will provide both space (0.5–5 cm) and time (10 ms) resolved toroidal plasma rotation and ion temperature profiles. The results of the Simulation of Spectra code used to examine the feasibility of charge exchange measurements on COMPASS are shown and connected with a selection of the spectrometer coupled with the CCD camera.

  5. A study of thermal decomposition and combustion products of disposable polyethylene terephthalate (PET) plastic using high resolution fourier transform infrared spectroscopy selected ion flow tube mass spectrometry...

    Czech Academy of Sciences Publication Activity Database

    Sovová, Kristýna; Ferus, Martin; Matulková, Irena; Španěl, Patrik; Dryahina, Kseniya; Dvořák, O.; Civiš, Svatopluk

    2009-01-01

    Roč. 106, 9-10 (2009), s. 1205-1214 ISSN 0026-8976 R&D Projects: GA AV ČR IAA400400705; GA ČR GA202/06/0776 Institutional research plan: CEZ:AV0Z40400503 Keywords : polyethylene terephthalate (PET) * coimbustion * high resolution FTIR spectroscopy * SIFT-MS Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.634, year: 2009

  6. Auger electron and X-ray spectroscopy of hollow atoms

    NARCIS (Netherlands)

    Morgenstern, R; Johnson, RL; Schmidtbocking, H; Sonntag, BF

    1997-01-01

    Hollow atoms as formed during collisions of multiply charged ions on metallic, semiconducting and insulating surfaces have in recent years successfully been investigated by various spectroscopic methods: low- and high-resolution X-ray spectroscopy as well as high resolution Auger electron

  7. Laser techniques for spectroscopy of core-excited atomic levels

    Science.gov (United States)

    Harris, S. E.; Young, J. F.; Falcone, R. W.; Rothenberg, J. E.; Willison, J. R.

    1982-01-01

    We discuss three techniques which allow the use of tunable lasers for high resolution and picosecond time scale spectroscopy of core-excited atomic levels. These are: anti-Stokes absorption spectroscopy, laser induced emission from metastable levels, and laser designation of selected core-excited levels.

  8. Optical and mechanical design for 1 nm resolution Auger spectroscopy in an electron microscope

    International Nuclear Information System (INIS)

    Bleeker, A.J.

    1991-01-01

    Detailed information about the atomic structure of surfaces and interfaces is vital for the progress in materials science and physics. One widely used surface sensitive technique is Auger spectroscopy (AS). This technique, in which the electron energy spectrum emerging from the sample is evaluated, gives information about the average elemental composition of the surface over a relative large surface area (>30nm). Electron microscopy (EM), on the other hand, is capable of producing surface structural, but no elemental, information with almost atomic resolution. EM and AS techniques have not been combined so far because of the different nature of the instrumentation used in both techniques. In AS instruments the sample is placed in an Ultra High Vacuum (UHV) system with a relatively large open space around the sample. In EM the sample is situated in the tight volume between the magnetic polepieces of the probe forming objective lens. The space around the sample is therefore tight. Furthermore the vacuum in most electron microscopes is not in UHV range. Radical mechanical changes to improve the vacuum are necessary to do AS in an electron microscope. Since the sample is immersed in the strong magnetic field of the objective lens the Auger electrons can not be extracted with conventional electrostatical methods. The only possibility to extract the Auger electrons is through the upper bore of the objective lens. However, this has large implications on the optical system of the microscope and requires a thorough investigation of the extraction of the Auger electrons. In this work it will be discussed how the surface sensitive AS can be combined with the high spatial resolution of the electron microscope in a practical instrument. (author). 102 refs.; 81 figs.; 4 tabs

  9. High resolution spectroscopy of jet cooled phenyl radical: The ν{sub 1} and ν{sub 2} a{sub 1} symmetry C–H stretching modes

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chih-Hsuan; Nesbitt, David J. [JILA, National Institute of Standards and Technology, University of Colorado, Boulder, Colorado 80309, USA and Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309 (United States)

    2016-07-28

    A series of CH stretch modes in phenyl radical (C{sub 6}H{sub 5}) has been investigated via high resolution infrared spectroscopy at sub-Doppler resolution (∼60 MHz) in a supersonic discharge slit jet expansion. Two fundamental vibrations of a{sub 1} symmetry, ν{sub 1} and ν{sub 2}, are observed and rotationally analyzed for the first time, corresponding to in-phase and out-of-phase symmetric CH stretch excitation at the ortho/meta/para and ortho/para C atoms with respect to the radical center. The ν{sub 1} and ν{sub 2} band origins are determined to be 3073.968 50(8) cm{sup −1} and 3062.264 80(7) cm{sup −1}, respectively, which both agree within 5 cm{sup −1} with theoretical anharmonic scaling predictions based on density functional B3LYP/6-311g++(3df,3dp) calculations. Integrated band strengths for each of the CH stretch bands are analyzed, with the relative intensities agreeing remarkably well with theoretical predictions. Frequency comparison with previous low resolution Ar-matrix spectroscopy [A. V. Friderichsen et al., J. Am. Chem. Soc. 123, 1977 (2001)] reveals a nearly uniform Δν ≈ + 10-12 cm{sup −1} blue shift between gas phase and Ar matrix values for ν{sub 1} and ν{sub 2}. This differs substantially from the much smaller red shift (Δν ≈ − 1 cm{sup −1}) reported for the ν{sub 19} mode, and suggests a simple physical model in terms of vibrational mode symmetry and crowding due to the matrix environment. Finally, the infrared phenyl spectra are well described by a simple asymmetric rigid rotor Hamiltonian and show no evidence for spectral congestion due to intramolecular vibrational coupling, which bodes well for high resolution studies of other ring radicals and polycyclic aromatic hydrocarbons. In summary, the combination of slit jet discharge methods with high resolution infrared lasers enables spectroscopic investigation of even highly reactive combustion and interstellar radical intermediates under gas phase, jet

  10. Understanding reconstructed Dante spectra using high resolution spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    May, M. J., E-mail: may13@llnl.gov; Widmann, K.; Kemp, G. E.; Thorn, D.; Colvin, J. D.; Schneider, M. B.; Moore, A.; Blue, B. E. [L-170 Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, California 94551 (United States); Weaver, J. [Naval Research Laboratory, 4555 Overlook Ave. SW, Washington, DC 20375 (United States)

    2016-11-15

    The Dante is an 18 channel filtered diode array used at the National Ignition Facility (NIF) to measure the spectrally and temporally resolved radiation flux between 50 eV and 20 keV from various targets. The absolute flux is determined from the radiometric calibration of the x-ray diodes, filters, and mirrors and a reconstruction algorithm applied to the recorded voltages from each channel. The reconstructed spectra are very low resolution with features consistent with the instrument response and are not necessarily consistent with the spectral emission features from the plasma. Errors may exist between the reconstructed spectra and the actual emission features due to assumptions in the algorithm. Recently, a high resolution convex crystal spectrometer, VIRGIL, has been installed at NIF with the same line of sight as the Dante. Spectra from L-shell Ag and Xe have been recorded by both VIRGIL and Dante. Comparisons of these two spectroscopic measurements yield insights into the accuracy of the Dante reconstructions.

  11. High-Resolution EUV Spectroscopy of White Dwarfs

    Science.gov (United States)

    Kowalski, Michael P.; Wood, K. S.; Barstow, M. A.

    2014-01-01

    We compare results of high-resolution EUV spectroscopic measurements of the isolated white dwarf G191-B2B and the binary system Feige 24 obtained with the J-PEX (Joint Plasmadynamic Experiment), which was sponsored jointly by the U.S. Naval Research Laboratory and NASA. J-PEX delivers the world's highest resolution in EUV and does so at high effective area (e.g., more effective area in a sounding rocket than is available with Chandra at adjacent energies, but in a waveband Chandra cannot reach). The capability J-PEX represents is applicable to the astrophysics of hot plasmas in stellar coronae, white dwarfs and the ISM. G191-B2B and Feige 24 are quite distinct hot white dwarf systems having in common that they are bright in the portion of the EUV where He emission features and edges occur, hence they can be exploited to probe both the stellar atmosphere and the ISM, separating those components by model-fitting that sums over all relevant (He) spectral features in the band. There is evidence from these fits that atmospheric He is being detected but the result is more conservatively cast as a pair of upper limits. We discuss how longer duration satellite observations with the same instrumentation could increase exposure to detect atmospheric He in these and other nearby hot white dwarfs.

  12. Nanometric resolution in glow discharge optical emission spectroscopy and Rutherford backscattering spectrometry depth profiling of metal (Cr, Al) nitride multilayers

    International Nuclear Information System (INIS)

    Escobar Galindo, R.; Gago, R.; Fornies, E.; Munoz-Martin, A.; Climent Font, A.; Albella, J.M.

    2006-01-01

    In this work, we address the capability of glow discharge optical emission spectroscopy (GDOES) for fast and accurate depth profiling of multilayer nitride coatings down to the nanometer range. This is shown by resolving the particular case of CrN/AlN structures with individual thickness ranging from hundreds to few nanometers. In order to discriminate and identify artefacts in the GDOES depth profile due to the sputtering process, the layered structures were verified by Rutherford backscattering spectrometry (RBS) and scanning electron microscopy (SEM). The interfaces in the GDOES profiles for CrN/AlN structures are sharper than the ones measured for similar metal multilayers due to the lower sputtering rate of the nitrides. However, as a consequence of the crater shape, there is a linear degradation of the depth resolution with depth (approximately 40 nm/μm), saturating at a value of approximately half the thickness of the thinner layer. This limit is imposed by the simultaneous sputtering of consecutive layers. The ultimate GDOES depth resolution at the near surface region was estimated to be of 4-6 nm

  13. High resolution gamma-ray spectroscopy and the fascinating angular momentum realm of the atomic nucleus

    International Nuclear Information System (INIS)

    Riley, M A; Simpson, J; Paul, E S

    2016-01-01

    In 1974 Aage Bohr and Ben Mottelson predicted the different ‘phases’ that may be expected in deformed nuclei as a function of increasing angular momentum and excitation energy all the way up to the fission limit. While admitting their picture was highly conjectural they confidently stated ‘...with the ingenious experimental approaches that are being developed, we may look forward with excitement to the detailed spectroscopic studies that will illuminate the behaviour of the spinning quantised nucleus’ . High resolution gamma-ray spectroscopy has indeed been a major tool in studying the structure of atomic nuclei and has witnessed numerous significant advances over the last four decades. This article will select highlights from investigations at the Niels Bohr Institute, Denmark, and Daresbury Laboratory, UK, in the late 1970s and early 1980s, some of which have continued at other national laboratories in Europe and the USA to the present day. These studies illustrate the remarkable diversity of phenomena and symmetries exhibited by nuclei in the angular momentum–excitation energy plane that continue to surprise and fascinate scientists. (invited comment)

  14. Helium temperature measurements in a hot filament magnetic mirror plasma using high resolution Doppler spectroscopy

    Science.gov (United States)

    Knott, S.; McCarthy, P. J.; Ruth, A. A.

    2016-09-01

    Langmuir probe and spectroscopic diagnostics are used to routinely measure electron temperature and density over a wide operating range in a reconfigured Double Plasma device at University College Cork, Ireland. The helium plasma, generated through thermionic emission from a negatively biased tungsten filament, is confined by an axisymmetric magnetic mirror configuration using two stacks of NdFeB permanent magnets, each of length 20 cm and diameter 3 cm placed just outside the 15 mm water cooling jacket enclosing a cylindrical vacuum vessel of internal diameter 25 cm. Plasma light is analysed using a Fourier Transform-type Bruker spectrometer with a highest achievable resolution of 0.08 cm-1 . In the present work, the conventional assumption of room temperature ions in the analysis of Langmuir probe data from low temperature plasmas is examined critically using Doppler spectroscopy of the 468.6 nm He II line. Results for ion temperatures obtained from spectroscopic data for a variety of engineering parameters (discharge voltage, gas pressure and plasma current) will be presented.

  15. High resolution gamma-ray spectroscopy and the fascinating angular momentum realm of the atomic nucleus

    Science.gov (United States)

    Riley, M. A.; Simpson, J.; Paul, E. S.

    2016-12-01

    In 1974 Aage Bohr and Ben Mottelson predicted the different ‘phases’ that may be expected in deformed nuclei as a function of increasing angular momentum and excitation energy all the way up to the fission limit. While admitting their picture was highly conjectural they confidently stated ‘...with the ingenious experimental approaches that are being developed, we may look forward with excitement to the detailed spectroscopic studies that will illuminate the behaviour of the spinning quantised nucleus’. High resolution gamma-ray spectroscopy has indeed been a major tool in studying the structure of atomic nuclei and has witnessed numerous significant advances over the last four decades. This article will select highlights from investigations at the Niels Bohr Institute, Denmark, and Daresbury Laboratory, UK, in the late 1970s and early 1980s, some of which have continued at other national laboratories in Europe and the USA to the present day. These studies illustrate the remarkable diversity of phenomena and symmetries exhibited by nuclei in the angular momentum-excitation energy plane that continue to surprise and fascinate scientists.

  16. Photoelectron spectroscopy bulk and surface electronic structures

    CERN Document Server

    Suga, Shigemasa

    2014-01-01

    Photoelectron spectroscopy is now becoming more and more required to investigate electronic structures of various solid materials in the bulk, on surfaces as well as at buried interfaces. The energy resolution was much improved in the last decade down to 1 meV in the low photon energy region. Now this technique is available from a few eV up to 10 keV by use of lasers, electron cyclotron resonance lamps in addition to synchrotron radiation and X-ray tubes. High resolution angle resolved photoelectron spectroscopy (ARPES) is now widely applied to band mapping of materials. It attracts a wide attention from both fundamental science and material engineering. Studies of the dynamics of excited states are feasible by time of flight spectroscopy with fully utilizing the pulse structures of synchrotron radiation as well as lasers including the free electron lasers (FEL). Spin resolved studies also made dramatic progress by using higher efficiency spin detectors and two dimensional spin detectors. Polarization depend...

  17. High resolution deep level transient spectroscopy and process-induced defects in silicon

    International Nuclear Information System (INIS)

    Evans-Freeman, J.H.; Emiroglu, D.; Vernon-Parry, K.D.

    2004-01-01

    High resolution, or Laplace, deep level transient spectroscopy (LDLTS) enables the identification of very closely spaced energetic levels in a semiconductor bandgap. DLTS may resolve peaks with a separation of tens of electron volts, but LDLTS can resolve defect energy separations as low as a few MeV. In this paper, we present results from LDLTS applied to ion implantation-induced defects in silicon, with particular emphasis on characterisation of end-of-range interstitial type defects. Silicon was implanted with a variety of ions from mass 28 to 166. A combination of LDLTS and direct capture cross-section measurements was employed to show that electrically active small extended defects were present in the as-implanted samples. Larger dislocations were then generated in Si by oxygenation to act as a control sample. These stacking faults had typical lengths of microns, and their electrical activity was subsequently characterised by LDLTS. This was to establish the sensitivity of LDLTS to defects whose carrier capture is characterised by a non-exponential filling process and an evolving band structure as carrier capture proceeds. The LDLTS spectra show several components in capacitance transients originating from both the end-of-range defects, and the stacking faults, and also clearly show that the carrier emission rates reduce as these extended defects fill with carriers. The end-of-range defects and the stacking faults are shown to have the same electrical behaviour

  18. Cerebrospinal fluid metabolic profiles in multiple sclerosis and degenerative dementias obtained by high resolution proton magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Vion-Dury, J.; Confort-Gouny, S.; Maillet, S.; Cozzone, P.J.; Nicoli, F.; Gastaut, J.L.

    1996-01-01

    We have analyzed the cerebrospinal fluid (CSF) of 19 patients with multiple sclerosis (MS), 12 patients with degenerative dementia and 17 control patients using in vitro high resolution proton magnetic resonance spectroscopy (MRS) at 400 MHz. The CSF metabolic profile is slightly modified in MS patients (increased lactate and fructose concentrations, decreased creatinine and phenylalanine concentrations) and is not correlated with the intensity of the intrathecal inflammation. Proton MRS of CSF does not differentiate relapsing-remitting MS and primary progressive MS. We have not detected any specific abnormal resonance in native or lyophilized CSF. The CSF metabolic profile of demented patients is much more altered (increased concentration of lactate, pyruvate, alanine, lysine, valine, leucine-isoleucine, tyrosine, glutamine) and is in agreement with a brain oxidative metabolism impairment as already described in Alzheimer's disease. Unassigned abnormal but non specific or constant resonances have been detected on MR spectra of demented patients. CSF inositol concentration is also increased in the CSF of patients with Alzheimer's disease. In vitro high resolution proton MRS of the CSF constitutes a new and original way to explore CSF for the differential and/or early diagnosis of dementias, as a complement to in vivo proton cerebral MRS. (authors). 22 refs., 4 figs., 2 tabs

  19. Cerebrospinal fluid metabolic profiles in multiple sclerosis and degenerative dementias obtained by high resolution proton magnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Vion-Dury, J.; Confort-Gouny, S.; Maillet, S.; Cozzone, P.J. [Centre Hospitalier Universitaire de la Timone, 13 - Marseille (France); Nicoli, F. [Centre Hospitalier Universitaire de la Timone, 13 - Marseille (France)]|[Hopital Sainte-Marguerite, 13 - Marseille (France); Gastaut, J.L. [Hopital Sainte-Marguerite, 13 - Marseille (France)

    1996-07-01

    We have analyzed the cerebrospinal fluid (CSF) of 19 patients with multiple sclerosis (MS), 12 patients with degenerative dementia and 17 control patients using in vitro high resolution proton magnetic resonance spectroscopy (MRS) at 400 MHz. The CSF metabolic profile is slightly modified in MS patients (increased lactate and fructose concentrations, decreased creatinine and phenylalanine concentrations) and is not correlated with the intensity of the intrathecal inflammation. Proton MRS of CSF does not differentiate relapsing-remitting MS and primary progressive MS. We have not detected any specific abnormal resonance in native or lyophilized CSF. The CSF metabolic profile of demented patients is much more altered (increased concentration of lactate, pyruvate, alanine, lysine, valine, leucine-isoleucine, tyrosine, glutamine) and is in agreement with a brain oxidative metabolism impairment as already described in Alzheimer`s disease. Unassigned abnormal but non specific or constant resonances have been detected on MR spectra of demented patients. CSF inositol concentration is also increased in the CSF of patients with Alzheimer`s disease. In vitro high resolution proton MRS of the CSF constitutes a new and original way to explore CSF for the differential and/or early diagnosis of dementias, as a complement to in vivo proton cerebral MRS. (authors). 22 refs., 4 figs., 2 tabs.

  20. Soil profile property estimation with field and laboratory VNIR spectroscopy

    Science.gov (United States)

    Diffuse reflectance spectroscopy (DRS) soil sensors have the potential to provide rapid, high-resolution estimation of multiple soil properties. Although many studies have focused on laboratory-based visible and near-infrared (VNIR) spectroscopy of dried soil samples, previous work has demonstrated ...

  1. Dual THz comb spectroscopy

    Science.gov (United States)

    Yasui, Takeshi

    2017-08-01

    Optical frequency combs are innovative tools for broadband spectroscopy because a series of comb modes can serve as frequency markers that are traceable to a microwave frequency standard. However, a mode distribution that is too discrete limits the spectral sampling interval to the mode frequency spacing even though individual mode linewidth is sufficiently narrow. Here, using a combination of a spectral interleaving and dual-comb spectroscopy in the terahertz (THz) region, we achieved a spectral sampling interval equal to the mode linewidth rather than the mode spacing. The spectrally interleaved THz comb was realized by sweeping the laser repetition frequency and interleaving additional frequency marks. In low-pressure gas spectroscopy, we achieved an improved spectral sampling density of 2.5 MHz and enhanced spectral accuracy of 8.39 × 10-7 in the THz region. The proposed method is a powerful tool for simultaneously achieving high resolution, high accuracy, and broad spectral coverage in THz spectroscopy.

  2. Covariance J-resolved spectroscopy: Theory and application in vivo.

    Science.gov (United States)

    Iqbal, Zohaib; Verma, Gaurav; Kumar, Anand; Thomas, M Albert

    2017-08-01

    Magnetic resonance spectroscopy (MRS) is a powerful tool capable of investigating the metabolic status of several tissues in vivo. In particular, single-voxel-based 1 H spectroscopy provides invaluable biochemical information from a volume of interest (VOI) and has therefore been used in a variety of studies. Unfortunately, typical one-dimensional MRS data suffer from severe signal overlap and thus important metabolites are difficult to distinguish. One method that is used to disentangle overlapping resonances is the two-dimensional J-resolved spectroscopy (JPRESS) experiment. Due to the long acquisition duration of the JPRESS experiment, a limited number of points are acquired in the indirect dimension, leading to poor spectral resolution along this dimension. Poor spectral resolution is problematic because proper peak assignment may be hindered, which is why the zero-filling method is often used to improve resolution as a post-processing step. However, zero-filling leads to spectral artifacts, which may affect visualization and quantitation of spectra. A novel method utilizing a covariance transformation, called covariance J-resolved spectroscopy (CovJ), was developed in order to improve spectral resolution along the indirect dimension (F 1 ). Comparison of simulated data demonstrates that peak structures remain qualitatively similar between JPRESS and the novel method along the diagonal region (F 1 = 0 Hz), whereas differences arise in the cross-peak (F 1 ≠0 Hz) regions. In addition, quantitative results of in vivo JPRESS data acquired on a 3T scanner show significant correlations (r 2 >0.86, pCOVariance Spectral Evaluation of 1 H Acquisitions using Representative prior knowledge' (Cov-SEHAR), was developed in order to quantify γ-aminobutyric acid and glutamate from the CovJ spectra. These preliminary findings indicate that the CovJ method may be used to improve spectral resolution without hindering metabolite quantitation for J-resolved spectra

  3. High resolution, high speed ultrahigh vacuum microscopy

    International Nuclear Information System (INIS)

    Poppa, Helmut

    2004-01-01

    spectroscopy, ultraviolet photoelectron spectroscopy, Auger electron spectroscopy, low-energy electron diffraction, temperature programmed desorption, high-resolution electron energy-loss and Fourier-transform infrared spectroscopies, and others. Material systems ranging from atomic layers of metals and semiconductors to biology related depositions are being investigated. In the case of biological materials, however, strict limitations to high-resolution applications are imposed by electron radiation damage considerations

  4. High resolution γ-ray spectroscopy: The first 85 years

    International Nuclear Information System (INIS)

    Deslattes, R.D.

    2000-01-01

    This opening review attempts to follow the main trends in crystal diffraction spectrometry of nuclear γ rays from its 1914 beginning in Rutherford's laboratory to the ultra-high resolution instrumentation realized in the current generation of spectrometers at the Institute Laue Langeven (ILL). The authors perspective is that of an instrumentalist hoping to convey a sense of intellectual debt to a number of predecessors, each of whom realized a certain elegance in making the tools that have enabled much good science, including that to which the remainder of this workshop is dedicated. This overview follows some of the main ideas along a trajectory toward higher resolution at higher energies, thereby enabling not only the disentangling of dense spectra, but also allowing detailed study of aspects of spectral profiles sensitive to excited state lifetimes and interatomic potentials. The parallel evolution toward increasing efficiency while preserving needed resolution is also an interesting story of artful compromise that should not be neglected. Finally, it is the robustness of the measurement chain connecting γ-ray wavelengths with optical wave-lengths associated with the Rydberg constant that only recently has allowed γ-ray data to contribute to determine of particle masses and fundamental constants, as will be described in more detail in other papers from this workshop

  5. Trapping and spectroscopy of hydrogen

    International Nuclear Information System (INIS)

    Cesar, Claudio Lenz

    1997-01-01

    I review the results and techniques used by the MIT H↑ group to achieve a fractional resolution of 2 parts in 10 12 in the 1S-2S transition in hydrogen [Cesar, D. Fried, T. Killian, A. Polcyn, J. Sandberg, I.A. Yu, T. Greytak, D. Kleppner and J. Doyle, Two-photon spectroscopy of trapped atomic hydrogen, Phys. Rev. Lett. 77 (1996) 255.] With some improvements, this system should deliver 100 times higher resolution with an improved signal count rate getting us closer to an old advertised goal of a precision of 1 part in 10 18 . While these developments are very important for the proposed test of the CPT theorem through the comparison with anti-hydrogen, some of the techniques used with hydrogen are not applicable to anti-hydrogen and I discuss some difficulties and alternatives for the trapping and spectroscopy of anti-hydrogen

  6. a Study of Vibrational Mode Coupling in 2-FLUOROETHANOL and 1,2-DIFLUOROETHANE Using High-Resolution Infrared Spectroscopy.

    Science.gov (United States)

    Mork, Steven Wayne

    High resolution infrared spectroscopy was used to examine intramolecular vibrational interactions in 2 -fluoroethanol (2FE) and 1,2-difluoroethane (DFE). A high resolution infrared spectrophotometer capable of better than 10 MHz spectral resolution was designed and constructed. The excitation source consists of three lasers: an argon-ion pumped dye laser which pumps a color -center laser. The infrared beam from the color-center laser is used to excite sample molecules which are rotationally and vibrationally cooled in a supersonic molecular beam. Rovibrational excitation of the sample molecules is detected by monitoring the kinetic energy of the molecular beam with a bolometer. The high resolution infrared spectrum of 2FE was collected and analyzed over the 2977-2990 cm^ {-1}^ectral region. This region contains the asymmetric CH stretch on the fluorinated carbon. The spectrum revealed extensive perturbations in the rotational fine structure. Analysis of these perturbations has provided a quantitative measure of selective vibrational mode coupling between the C-H stretch and its many neighboring dark vibrational modes. Interestingly, excitation of the C-H stretch is known to induce a photoisomerization reaction between 2FE's Gg^' and Tt conformers. Implications of the role of mode coupling in the reaction mechanism are also addressed. Similarly, the high resolution infrared spectrum of DFE was collected and analyzed over the 2978-2996 cm ^{-1}^ectral region. This region contains the symmetric combination of asymmetric C-H stretches in DFE. Perturbations in the rotational fine structure indicate vibrational mode coupling to a single dark vibrational state. The dark state is split by approximately 19 cm^{-1} due to tunneling between two identical gauche conformers. The coupling mechanism is largely anharmonic with a minor component of B/C-plane Coriolis coupling. Effects of centrifugal distortion along the molecular A-axis are also observed. The coupled vibrational

  7. Structure and orbital ordering of ultrathin LaVO{sub 3} probed by atomic resolution electron microscopy and Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lindfors-Vrejoiu, Ionela; Engelmayer, Johannes; Loosdrecht, Paul H.M. van [II. Physikalisches Institut, Koeln Univ. (Germany); Jin, Lei; Jia, Chun-Lin [Peter Gruenberg Institut (PGI-5) and Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C), Forschungszentrum Juelich GmbH (Germany); Himcinschi, Cameliu [Institut fuer Theoretische Physik, TU Bergakademie Freiberg (Germany); Hensling, Felix; Waser, Rainer; Dittmann, Regina [Peter Gruenberg Institut (PGI-7), Forschungszentrum Juelich GmbH (Germany)

    2017-03-15

    Orbital ordering has been less investigated in epitaxial thin films, due to the difficulty to evidence directly the occurrence of this phenomenon in thin film samples. Atomic resolution electron microscopy enabled us to observe the structural details of the ultrathin LaVO{sub 3} films. The transition to orbital ordering of epitaxial layers as thin as ∼4 nm was probed by temperature-dependent Raman scattering spectroscopy of multilayer samples. From the occurrence and temperature dependence of the 700 cm{sup -1} Raman active mode it can be inferred that the structural phase transition associated with orbital ordering takes place in ultrathin LaVO{sub 3} films at about 130 K. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Low resolution spectroscopy of selected Algol systems

    Science.gov (United States)

    Devarapalli, Shanti Priya; Jagirdar, Rukmini; Parthasarathy, M.; Sahu, D. K.; Mohan, Vijay; Bhatt, B. C.; Thomas, Vineet S.

    2018-04-01

    The analysis of spectroscopic data for 30 Algol-type binaries is presented. All these systems are short period Algols having primaries with spectral types B and A. Dominant spectral lines were identified for the spectra collected and their equivalent widths were calculated. All the spectra were examined to understand presence of mass transfer, a disk or circumstellar matter and chromospheric emission. We also present first spectroscopic and period study for few Algols and conclude that high resolution spectra within and outside the primary minimum are needed for better understanding of these Algol type close binaries.

  9. Call for papers for special issue of Journal of Molecular Spectroscopy focusing on "Frequency-comb spectroscopy"

    Science.gov (United States)

    Foltynowicz, Aleksandra; Picqué, Nathalie; Ye, Jun

    2018-05-01

    Frequency combs are becoming enabling tools for many applications in science and technology, beyond the original purpose of frequency metrology of simple atoms. The precisely evenly spaced narrow lines of a laser frequency comb inspire intriguing approaches to molecular spectroscopy, designed and implemented by a growing community of scientists. Frequency-comb spectroscopy advances the frontiers of molecular physics across the entire electro-magnetic spectrum. Used as frequency rulers, frequency combs enable absolute frequency measurements and precise line shape studies of molecular transitions, for e.g. tests of fundamental physics and improved determination of fundamental constants. As light sources interrogating the molecular samples, they dramatically improve the resolution, precision, sensitivity and acquisition time of broad spectral-bandwidth spectroscopy and open up new opportunities and applications at the leading edge of molecular spectroscopy and sensing.

  10. Laser magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Ferrari, C.A.

    1985-01-01

    The technique of laser resonance magnetic resonance allows one to study the high-resolution spectroscopy of transient paramagnetic species, viz, atoms, radicals, and molecular ions. This article is a brief exposition of the method, describing the principles, instrumentation and applicability of the IR and FIR-LMR and shows results of HF + . (Author) [pt

  11. Assessing the Impact of Spectral Resolution on Classification of Lowland Native Grassland Communities Based on Field Spectroscopy in Tasmania, Australia

    Directory of Open Access Journals (Sweden)

    Bethany Melville

    2018-02-01

    Full Text Available This paper presents a case study for the analysis of endangered lowland native grassland communities in the Tasmanian Midlands region using field spectroscopy and spectral convolution techniques. The aim of the study was to determine whether there was significant improvement in classification accuracy for lowland native grasslands and other vegetation communities based on hyperspectral resolution datasets over multispectral equivalents. A spectral dataset was collected using an ASD Handheld-2 spectroradiometer at Tunbridge Township Lagoon. The study then employed a k-fold cross-validation approach for repeated classification of a full hyperspectral dataset, a reduced hyperspectral dataset, and two convoluted multispectral datasets. Classification was performed on each of the four datasets a total of 30 times, based on two different class configurations. The classes analysed were Themeda triandra grassland, Danthonia/Poa grassland, Wilsonia rotundifolia/Selliera radicans, saltpan, and a simplified C3 vegetation class. The results of the classifications were then tested for statistically significant differences using ANOVA and Tukey’s post-hoc comparisons. The results of the study indicated that hyperspectral resolution provides small but statistically significant increases in classification accuracy for Themeda and Danthonia grasslands. For other classes, differences in classification accuracy for all datasets were not statistically significant. The results obtained here indicate that there is some potential for enhanced detection of major lowland native grassland community types using hyperspectral resolution datasets, and that future analysis should prioritise good performance in these classes over others. This study presents a method for identification of optimal spectral resolution across multiple datasets, and constitutes an important case study for lowland native grassland mapping in Tasmania.

  12. Characterization of tunable light source by optical parametric oscillator for high resolution spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wu, J. W. [Ewha Womens Univ., Seoul (Korea); Rhee, B. G. [Sejong Univ., Seoul (Korea); Park, S. W. [Yonsei Univ., Seoul (Korea); Noh, J. W. [Inha Univ., Incheon (Korea)

    1998-04-01

    A tunable light source is developed by the optical parametric oscillator, which is very useful for a high resolution spectroscopy. The electronic structure of molecules and atoms can be examined by a proper coherent light source. Optical parametric oscillator provides light sources stable and widely tunable. In this work, the characteristics of the parametric optical generation are examined in the LiNbO{sub 3}. The theoretical analysis as well as the experimental measurement is performed. The pump laser is a second harmonic of Nd:YAG laser, and the parametric gain is measured. The characteristics of singly resonant oscillator and doubly resonant oscillator is studied as a function of temperature. It is found that 1mole% MgO:LiNbO{sub 3} crystal provides the tunability from 0.6{mu}m to 3.0{mu}m wavelength. Both the critical and noncritical phase matching are studied. The optical damage occurring in a congruent LiNbO{sub 3} crystal was not observed in 1mole% MgO:LiNbO{sub 3} crystal, opening a possibility for a high power optical parametric oscillation generation. The current work can be extended to an experiment employing the fundamental Nd:YAG as pump to provide a coherent light source for the study of molecular vibrations. 28 refs., 14 figs., 3 tabs. (Author)

  13. A high resolution 16 k multi-channel analyzer PC add-on card

    International Nuclear Information System (INIS)

    Kulkarni, C.P.; Paulson, Molly; Vaidya, P.P.

    2001-01-01

    This paper describes the system details of a 16 K channel resolution Multi-Channel Analyzer (MCA) developed at Electronics Division, BARC, which is used in high resolution nuclear spectroscopy systems for pulse height analysis. The high resolution data acquisition PC add-on card is architectured using a state of the art digital circuit design technology which makes use of a Field Programmable Gate Array (FPGA), and some of the most modern and advanced analog counterparts like low power, high speed and high precision comparators, Op-amps, ADCs and DACs etc. The 16 K MCA card gives an economic, compact, and low power alternative for nuclear pulse spectroscopy use. (author)

  14. Electron-probe microanalysis: x-ray spectroscopy

    International Nuclear Information System (INIS)

    1987-01-01

    The main principles on X-ray, energy and wave length dispersive spectroscopy are reviewed. In order to allow the choice of the best operating conditions, the importance of the regulation and control systems is underlined. Emission theory, X-rays nature and its interaction with matter and electrons in the matter is shown. The structure, operating procedures and necessary electronics (single channel - analysis chain) automatic-control system for the threshold-energies discrimination and the energy distribution visualization) associated to the wavelength dispersive spectroscopy are described. The focusing control, resolution, influence of chemical bonds and multilayer-structure monochromators relaled to wavelength dispersive spectroscopy are studied. Concerning the energy-dispersive spectroscopy, the detector, preamplifier, amplifier, analog-digital converter, as well as the utilization and control of the spectrometer are described. Problems and instrumental progress on energy-dispersive spectroscopy related to the electronic-noise control, charge collection and light-elements detection are discussed [fr

  15. High-resolution two-photon spectroscopy of a 5 p56 p ←5 p6 transition of xenon

    Science.gov (United States)

    Altiere, Emily; Miller, Eric R.; Hayamizu, Tomohiro; Jones, David J.; Madison, Kirk W.; Momose, Takamasa

    2018-01-01

    We report high-resolution Doppler-free two-photon excitation spectroscopy of Xe from the ground state to the 5 p5(P 3 /2 2 ) 6 p [3 /2 ] 2 2 electronic excited state. This is a first step to developing a comagnetometer using polarized 129Xe atoms for planned neutron electric dipole moment measurements at TRIUMF. Narrow linewidth radiation at 252.5 nm produced by a continuous wave laser was built up in an optical cavity to excite the two-photon transition, and the near-infrared emission from the 5 p56 p excited state to the 5 p56 s intermediate electronic state was used to detect the two-photon transition. Hyperfine constants and isotope shift parameters were evaluated and compared with previously reported values. In addition, the detected photon count rate was estimated from the observed intensities.

  16. Brillouin micro-spectroscopy through aberrations via sensorless adaptive optics

    Science.gov (United States)

    Edrei, Eitan; Scarcelli, Giuliano

    2018-04-01

    Brillouin spectroscopy is a powerful optical technique for non-contact viscoelastic characterizations which has recently found applications in three-dimensional mapping of biological samples. Brillouin spectroscopy performances are rapidly degraded by optical aberrations and have therefore been limited to homogenous transparent samples. In this work, we developed an adaptive optics (AO) configuration designed for Brillouin scattering spectroscopy to engineer the incident wavefront and correct for aberrations. Our configuration does not require direct wavefront sensing and the injection of a "guide-star"; hence, it can be implemented without the need for sample pre-treatment. We used our AO-Brillouin spectrometer in aberrated phantoms and biological samples and obtained improved precision and resolution of Brillouin spectral analysis; we demonstrated 2.5-fold enhancement in Brillouin signal strength and 1.4-fold improvement in axial resolution because of the correction of optical aberrations.

  17. Ultrafast surface-enhanced Raman spectroscopy.

    Science.gov (United States)

    Keller, Emily L; Brandt, Nathaniel C; Cassabaum, Alyssa A; Frontiera, Renee R

    2015-08-07

    Ultrafast surface-enhanced Raman spectroscopy (SERS) with pico- and femtosecond time resolution has the ability to elucidate the mechanisms by which plasmons mediate chemical reactions. Here we review three important technological advances in these new methodologies, and discuss their prospects for applications in areas including plasmon-induced chemistry and sensing at very low limits of detection. Surface enhancement, arising from plasmonic materials, has been successfully incorporated with stimulated Raman techniques such as femtosecond stimulated Raman spectroscopy (FSRS) and coherent anti-Stokes Raman spectroscopy (CARS). These techniques are capable of time-resolved measurement on the femtosecond and picosecond time scale and can be used to follow the dynamics of molecules reacting near plasmonic surfaces. We discuss the potential application of ultrafast SERS techniques to probe plasmon-mediated processes, such as H2 dissociation and solar steam production. Additionally, we discuss the possibilities for high sensitivity SERS sensing using these stimulated Raman spectroscopies.

  18. High resolution gamma spectroscopy well logging system

    International Nuclear Information System (INIS)

    Giles, J.R.; Dooley, K.J.

    1997-01-01

    A Gamma Spectroscopy Logging System (GSLS) has been developed to study sub-surface radionuclide contamination. The absolute counting efficiencies of the GSLS detectors were determined using cylindrical reference sources. More complex borehole geometries were modeled using commercially available shielding software and correction factors were developed based on relative gamma-ray fluence rates. Examination of varying porosity and moisture content showed that as porosity increases, and as the formation saturation ratio decreases, relative gamma-ray fluence rates increase linearly for all energies. Correction factors for iron and water cylindrical shields were found to agree well with correction factors determined during previous studies allowing for the development of correction factors for type-304 stainless steel and low-carbon steel casings. Regression analyses of correction factor data produced equations for determining correction factors applicable to spectral gamma-ray well logs acquired under non-standard borehole conditions

  19. Estimation of soil profile properties using field and laboratory VNIR spectroscopy

    Science.gov (United States)

    Diffuse reflectance spectroscopy (DRS) soil sensors have the potential to provide rapid, high-resolution estimation of multiple soil properties. Although many studies have focused on laboratory-based visible and near-infrared (VNIR) spectroscopy of dried soil samples, previous work has demonstrated ...

  20. High resolution X-ray emission spectroscopy: An advanced tool for actinide research

    Science.gov (United States)

    Vitova, T.; Brendebach, B.; Dardenne, K.; Denecke, M. A.; Lebid, A.; Löble, M.; Rothe, J.; Batuk, O. N.; Hormes, J.; Liu, D.; Breher, F.; Geckeis, H.

    2010-03-01

    High resolution X-ray emission spectroscopy (HRXES) is becoming increasingly important for our understanding of electronic and coordination structures. The combination of such information with development of quantum theoretical tools will advance our capability for predicting reactivity and physical behavior especially of 5f elements. HRXES can be used to remove lifetime broadening by registering the partial fluorescence yield emitted by the sample (i.e., recording a windowed signal from the energy dispersed fluorescence emission while varying incident photon energy), thereby yielding highly resolved X-ray absorption fine structure (XAFS) spectra. Such spectra often display resonant features not observed in conventional XAFS. The spectrometer set-up can also be used for a wide range of other experiments, for example, resonant inelastic X-ray scattering (RIXS), where bulk electron configuration information in solids, liquids and gases is obtained. Valence-selective XAFS studies, where the local structure of a selected element's valence state present in a mixture of valence states can be obtained, as well as site-selective XAFS studies, where the coordination structure of a metal bound to selected elements can be differentiated from that of all the other ligating atoms. A HRXES spectrometer has been constructed and is presently being commissioned for use at the INE-Beamline for actinide research at the synchrotron source ANKA at FZK. We present the spectrometer's compact, modular design, optimized for attaining a wide range of energies, and first test measurement results. Examples from HRXES studies of lanthanides, actinides counter parts, are also shown.

  1. High-Resolution Integrated Optical System

    Science.gov (United States)

    Prakapenka, V. B.; Goncharov, A. F.; Holtgrewe, N.; Greenberg, E.

    2017-12-01

    Raman and optical spectroscopy in-situ at extreme high pressure and temperature conditions relevant to the planets' deep interior is a versatile tool for characterization of wide range of properties of minerals essential for understanding the structure, composition, and evolution of terrestrial and giant planets. Optical methods, greatly complementing X-ray diffraction and spectroscopy techniques, become crucial when dealing with light elements. Study of vibrational and optical properties of minerals and volatiles, was a topic of many research efforts in past decades. A great deal of information on the materials properties under extreme pressure and temperature has been acquired including that related to structural phase changes, electronic transitions, and chemical transformations. These provide an important insight into physical and chemical states of planetary interiors (e.g. nature of deep reservoirs) and their dynamics including heat and mass transport (e.g. deep carbon cycle). Optical and vibrational spectroscopy can be also very instrumental for elucidating the nature of the materials molten states such as those related to the Earth's volatiles (CO2, CH4, H2O), aqueous fluids and silicate melts, planetary ices (H2O, CH4, NH3), noble gases, and H2. The optical spectroscopy study performed concomitantly with X-ray diffraction and spectroscopy measurements at the GSECARS beamlines on the same sample and at the same P-T conditions would greatly enhance the quality of this research and, moreover, will provide unique new information on chemical state of matter. The advanced high-resolution user-friendly integrated optical system is currently under construction and expected to be completed by 2018. In our conceptual design we have implemented Raman spectroscopy with five excitation wavelengths (266, 473, 532, 660, 946 nm), confocal imaging, double sided IR laser heating combined with high temperature Raman (including coherent anti-Stokes Raman scattering) and

  2. Plasma polarization spectroscopy. Time resolved spectroscopy in soft x-ray region on recombining plasma

    International Nuclear Information System (INIS)

    Iwamae, Atsushi; Hasuo, Masahiro; Atake, Makoto; Hasegawa, Noboru; Kawachi, Tetsuya

    2007-01-01

    We present an experimental study of polarization of emission radiations from recombining plasmas generated by the interaction of 60 fs ultra-short laser pulses with a gas jet. Time-resolved spectroscopy with a temporal resolution of 5 ps with repetitive accumulation is used to follow the recombination time histories. (author)

  3. High-resolution photoelectron spectroscopy of TiO3H2-: Probing the TiO2- + H2O dissociative adduct

    Science.gov (United States)

    DeVine, Jessalyn A.; Abou Taka, Ali; Babin, Mark C.; Weichman, Marissa L.; Hratchian, Hrant P.; Neumark, Daniel M.

    2018-06-01

    Slow electron velocity-map imaging spectroscopy of cryogenically cooled TiO3H2- anions is used to probe the simplest titania/water reaction, TiO20/- + H2O. The resultant spectra show vibrationally resolved structure assigned to detachment from the cis-dihydroxide TiO(OH)2- geometry based on density functional theory calculations, demonstrating that for the reaction of the anionic TiO2- monomer with a single water molecule, the dissociative adduct (where the water is split) is energetically preferred over a molecularly adsorbed geometry. This work represents a significant improvement in resolution over previous measurements, yielding an electron affinity of 1.2529(4) eV as well as several vibrational frequencies for neutral TiO(OH)2. The energy resolution of the current results combined with photoelectron angular distributions reveals Herzberg-Teller coupling-induced transitions to Franck-Condon forbidden vibrational levels of the neutral ground state. A comparison to the previously measured spectrum of bare TiO2- indicates that reaction with water stabilizes neutral TiO2 more than the anion, providing insight into the fundamental chemical interactions between titania and water.

  4. Laser Induced Breakdown Spectroscopy, advances in resolution and portability

    International Nuclear Information System (INIS)

    Ponce, L.; Flores, T.; Arronte, M.; Moreira, L.; Hernandez, L. C.; Posada, E. de

    2009-01-01

    Laser Induced Breakdown Spectroscopy (LIBS), can be considered as one of the most dynamic and promising technique in the field of analytical spectroscopy. LIBS has turned into a powerful alternative for a wide front of applications, from the geological exploration to the industrial inspection, including the environmental monitoring, the biomedical analysis, the study of patrimonial works, the safety and defense. The advances in LIBS instrumentation have allowed improving gradually the analysis services and quality, on the basis of a better knowledge of the technology principles. Recently, systems of double pulse have facilitated a better dosing of energy, the improvement of the signal-noise relation and the study of the different process stages. Femtosecond lasers offers the possibility of study in detail the ablation and atomic emission processes. New advances like multi-pulse or multi-wavelength systems -in fact stilling without exploring, must offer new information to advance in this knowledge. Finally, which it does to this technology really attractive, is the aptitude to be employed in field conditions, or for the detection of the elementary composition at long distances. In this presentation there are discussed the designs of portable instrumentation, compact and low cost, which can improve substantially the LIBS possibilities. (Author)

  5. Complete system for portable gamma spectroscopy

    International Nuclear Information System (INIS)

    Fuess, D.A.

    1978-01-01

    The report described a system built around the Computing Gamma Spectrometer (PSA) LEA 74-008. The software primarily supports high-resolution gamma-ray spectroscopy using either a high-purity intrinsic germanium detector (HPGe) or a lithium-drifted germanium detector [Ge(Li)

  6. Three instruments for positron annihilation spectroscopy (PAS)

    International Nuclear Information System (INIS)

    Ivanov, E.A.; Plostinaru, D.; Catana, D.; Racolta, P.M.; Vata, I.

    2003-01-01

    The instruments presented here and dedicated to positron annihilation spectroscopy, PAS, are: 1. High Resolution Life Time Spectrometer (LTS) with time resolution τ = 260 ps, based on large BaF 2 scintillators; 2. Doppler Broadening Spectrometer (DBS) having a 1.6 keV resolution at 514 keV; 3. Positronium Life Time - Perturbed Angular Distribution Spectrometer ( PLT-PAD); positronium life time, in samples under high vacuum in magnetic field, is measured for time intervals up to 500 ns. Results of measurements are shown to illustrate performances of the instruments. (authors)

  7. A Global Survey of Cloud Thermodynamic Phase using High Spatial Resolution VSWIR Spectroscopy, 2005-2015

    Science.gov (United States)

    Thompson, D. R.; Kahn, B. H.; Green, R. O.; Chien, S.; Middleton, E.; Tran, D. Q.

    2017-12-01

    Clouds' variable ice and liquid content significantly influences their optical properties, evolution, and radiative forcing potential (Tan and Storelvmo, J. Atmos. Sci, 73, 2016). However, most remote measurements of thermodynamic phase have spatial resolutions of 1 km or more and are insensitive to mixed phases. This under-constrains important processes, such as spatial partitioning within mixed phase clouds, that carry outsize radiative forcing impacts. These uncertainties could shift Global Climate Model (GCM) predictions of future warming by over 1 degree Celsius (Tan et al., Science 352:6282, 2016). Imaging spectroscopy of reflected solar energy from the 1.4 - 1.8 μm shortwave infrared (SWIR) spectral range can address this observational gap. These observations can distinguish ice and water absorption, providing a robust and sensitive measurement of cloud top thermodynamic phase including mixed phases. Imaging spectrometers can resolve variations at scales of tens to hundreds of meters (Thompson et al., JGR-Atmospheres 121, 2016). We report the first such global high spatial resolution (30 m) survey, based on data from 2005-2015 acquired by the Hyperion imaging spectrometer onboard NASA's EO-1 spacecraft (Pearlman et al., Proc. SPIE 4135, 2001). Estimated seasonal and latitudinal distributions of cloud thermodynamic phase generally agree with observations made by other satellites such as the Atmospheric Infrared Sounder (AIRS). Variogram analyses reveal variability at different spatial scales. Our results corroborate previously observed zonal distributions, while adding insight into the spatial scales of processes governing cloud top thermodynamic phase. Figure: Thermodynamic phase retrievals. Top: Example of a cloud top thermodynamic phase map from the EO-1/Hyperion. Bottom: Latitudinal distributions of pure and mixed phase clouds, 2005-2015, showing Liquid Thickness Fraction (LTF). LTF=0 corresponds to pure ice absorption, while LTF=1 is pure liquid. The

  8. Opto-mechano-electrical tripling in ZnO nanowires probed by photocurrent spectroscopy in a high-resolution transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, C.; Golberg, D., E-mail: xuzhi@iphy.ac.cn, E-mail: golberg.dmitri@nims.go.jp [International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki 3050044 (Japan); Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennodai 1, Tsukuba, Ibaraki 3058577 (Japan); Xu, Z., E-mail: xuzhi@iphy.ac.cn, E-mail: golberg.dmitri@nims.go.jp [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Kvashnin, D. G. [National University of Science and Technology, MISIS, Leninskiy Prospect 4, Moscow 119049 (Russian Federation); Tang, D.-M.; Xue, Y. M.; Bando, Y. [International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki 3050044 (Japan); Sorokin, P. B. [National University of Science and Technology, MISIS, Leninskiy Prospect 4, Moscow 119049 (Russian Federation); Moscow Institute of Physics and Technology, Institutsky Lane 9, Dolgoprudny 141700 (Russian Federation)

    2015-08-31

    Photocurrent spectroscopy of individual free-standing ZnO nanowires inside a high-resolution transmission electron microscope (TEM) is reported. By using specially designed optical in situ TEM system capable of scanning tunneling microscopy probing paired with light illumination, opto-mechano-electrical tripling phenomenon in ZnO nanowires is demonstrated. Splitting of photocurrent spectra at around 3.3 eV under in situ TEM bending of ZnO nanowires directly corresponds to nanowire deformation and appearance of expanded and compressed nanowire sides. Theoretical simulation of a bent ZnO nanowire has an excellent agreement with the experimental data. The splitting effect could be explained by a change in the valence band structure of ZnO nanowires due to a lattice strain. The strain-induced splitting provides important clues for future flexible piezo-phototronics.

  9. Double {Lambda}-hypernuclei at the PANDA experiment

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez Lorente, Alicia, E-mail: a.sanchez@gsi.de [Helmholtz Institut Mainz (Germany); Collaboration: P-bar ANDA Collaboration

    2012-12-15

    Hypernuclear research will be one of the main topics addressed by the PANDA experiment at the planned Facility for Antiproton and Ion Research FAIR at Darmstadt (Germany). Thanks to the use of stored p-bar beams, copious production of double {Lambda} hypernuclei is expected at the PANDA experiment, which will enable high precision {gamma} spectroscopy of such nuclei for the first time. At PANDA excited states of {Xi}{sup }- hypernuclei will be used as a starting point for the formation of double {Lambda} hypernuclei. In order to predict the yield of particle stable double hypernuclei a microcanonical decay model was developed. For the detection of these nuclei, a devoted hypernuclear detector setup is planned. This set-up consists, in addition to the general purpose of the PANDA set-up, of a primary nuclear target for the production of {Xi}{sup -} + {Xi}-bar pairs, a secondary active target for the hypernuclei formation and the identification of associated decay products and a germanium array detector to perform {gamma} spectroscopy. Furthermore, the presence of {Xi}-bar can be used as an alternative to tag the strangeness in the {Xi}{sup -} + {Xi}-bar. All systems need to operate in the presence of a high magnetic field and a large hadronic background. In the present talk details concerning simulations, the identification procedure of double hypernuclei and the suppression of background will be presented. In addition, the present status of the detector developments for this programme will be briefly given.

  10. Waveguide image-slicers for ultrahigh resolution spectroscopy

    Science.gov (United States)

    Beckert, Erik; Strassmeier, Klaus G.; Woche, Manfred; Eberhardt, Ramona; Tünnermann, Andreas; Andersen, Michael

    2008-07-01

    Waveguide image-slicer prototypes with resolutions up to 310.000 for the fiber fed PEPSI echelle spectrograph at the LBT and single waveguide thicknesses of down to 30 μm have been manufactured. The waveguides were macroscopically prepared, stacked up to an order of 7 and thinned back to square stack cross sections. A high filling ratio was achieved by realizing homogenous adhesive gaps of 4.6 μm, using index matching adhesives for TIR within the waveguides. The image-slicer stacks can be used in immersion mode and are miniaturized to be implemented in a set of four, measurements indicate an overall efficiency of above 80% for them.

  11. High resolution Moessbauer spectroscopy with 67Zn in metallic systems

    International Nuclear Information System (INIS)

    Potzel, W.

    1985-01-01

    Moessbauer experiments on metallic systems are described where the high resolution 93.3 keV resonance in 67 Zn is used. In the first part, the Cu-Zn alloy system is investigated and the high energy resolution of this Moessbauer transition is employed to determine small changes of the s-electron density at the 67 Zn nucleus when the Zn concentration is changed. In the second part, Zn metal is taken as an example to demonstrate that the 93.3 keV transition is also extremely sensitive to small changes of lattice dynamical effects. 7 refs., 18 figs. (author)

  12. High-speed assembly language (80386/80387) programming for laser spectra scan control and data acquisition providing improved resolution water vapor spectroscopy

    Science.gov (United States)

    Allen, Robert J.

    1988-01-01

    An assembly language program using the Intel 80386 CPU and 80387 math co-processor chips was written to increase the speed of data gathering and processing, and provide control of a scanning CW ring dye laser system. This laser system is used in high resolution (better than 0.001 cm-1) water vapor spectroscopy experiments. Laser beam power is sensed at the input and output of white cells and the output of a Fabry-Perot. The assembly language subroutine is called from Basic, acquires the data and performs various calculations at rates greater than 150 faster than could be performed by the higher level language. The width of output control pulses generated in assembly language are 3 to 4 microsecs as compared to 2 to 3.7 millisecs for those generated in Basic (about 500 to 1000 times faster). Included are a block diagram and brief description of the spectroscopy experiment, a flow diagram of the Basic and assembly language programs, listing of the programs, scope photographs of the computer generated 5-volt pulses used for control and timing analysis, and representative water spectrum curves obtained using these programs.

  13. Developing a structure-function model for the cryptophyte phycoerythrin 545 using ultrahigh resolution crystallography and ultrafast laser spectroscopy.

    Science.gov (United States)

    Doust, Alexander B; Marai, Christopher N J; Harrop, Stephen J; Wilk, Krystyna E; Curmi, Paul M G; Scholes, Gregory D

    2004-11-12

    Cryptophyte algae differ from cyanobacteria and red algae in the architecture of their photosynthetic light harvesting systems, even though all three are evolutionarily related. Central to cryptophyte light harvesting is the soluble antenna protein phycoerythrin 545 (PE545). The ultrahigh resolution crystal structure of PE545, isolated from a unicellular cryptophyte Rhodomonas CS24, is reported at both 1.1A and 0.97A resolution, revealing details of the conformation and environments of the chromophores. Absorption, emission and polarized steady state spectroscopy (298K, 77K), as well as ultrafast (20fs time resolution) measurements of population dynamics are reported. Coupled with complementary quantum chemical calculations of electronic transitions of the bilins, these enable assignment of spectral absorption characteristics to each chromophore in the structure. Spectral differences between the tetrapyrrole pigments due to chemical differences between bilins, as well as their binding and interaction with the local protein environment are described. Based on these assignments, and considering customized optical properties such as strong coupling, a model for light harvesting by PE545 is developed which explains the fast, directional harvesting of excitation energy. The excitation energy is funnelled from four peripheral pigments (beta158,beta82) into a central chromophore dimer (beta50/beta61) in approximately 1ps. Those chromophores, in turn, transfer the excitation energy to the red absorbing molecules located at the periphery of the complex in approximately 4ps. A final resonance energy transfer step sensitizes just one of the alpha19 bilins on a time scale of 22ps. Furthermore, it is concluded that binding of PE545 to the thylakoid membrane is not essential for efficient energy transfer to the integral membrane chlorophyll a-containing complexes associated with PS-II.

  14. Attosecond transient absorption spectroscopy of molecular hydrogen

    International Nuclear Information System (INIS)

    Martín, Fernando; González-Castrillo, Alberto; Palacios, Alicia; Argenti, Luca; Cheng, Yan; Chini, Michael; Wang, Xiaowei; Chang, Zenghu

    2015-01-01

    We extend attosecond transient absorption spectroscopy (ATAS) to the study of hydrogen molecules, demonstrating the potential of the technique to resolve – simultaneously and with state resolution – both the electronic and nuclear dynamics. (paper)

  15. The goals of gamma-ray spectroscopy in high energy astrophysics

    Science.gov (United States)

    Lingenfelter, Richard E.; Higdon, James C.; Leventhal, Marvin; Ramaty, Reuven; Woosley, Stanford E.

    1990-01-01

    The use of high resolution gamma-ray spectroscopy in astrophysics is discussed with specific attention given to the application of the Nuclear Astrophysics Explorer (NAE). The gamma-ray lines from nuclear transitions in radionucleic decay and positron annihilation permits the study of current sites, rates and models of nucleosynthesis, and galactic structure. Diffuse galactic emission is discussed, and the high-resolution observations of gamma-ray lines from discrete sites are also described. Interstellar mixing and elemental abundances can also be inferred from high-resolution gamma-ray spectroscopy of nucleosynthetic products. Compact objects can also be examined by means of gamma-ray emissions, allowing better understanding of neutron stars and the accreting black hole near the galactic center. Solar physics can also be investigated by examining such features as solar-flare particle acceleration and atmospheric abundances.

  16. ESSENSE: Ultra high resolution spectroscopy for the ESS

    International Nuclear Information System (INIS)

    Pasini, Stefano; Monkenbusch, Michael; Kozielewski, Tadeusz

    2016-01-01

    The instrument concept for a very high intensity neutron spin-echo spectrometer with ultimate resolution properties has been developed and submitted as an instrument proposal to ESS. Effective intensity gain factors up to 30 compared to the best current instruments are anticipated. In addition the resolution will be boosted to the technical limits by newly designed superconducting precession solenoids. The intensity gain results from the use of an optimized guide transporting the high flux from the ESS cold moderator on the one side and from the utilization of an extended wavelength frame of 8 Å yielding a multiplication of information collection rate on the other side. The instrument thus enables novel views on soft matter systems ranging from polymers, functional gels and more to to dynamics of biological molecules with relevance for MD development; the employment of new techniques for surface NSE (GINSE) may contribute to new knowledge in tribology and lubrication and other surface phenomena that currently are hampered by low intensity. New developments in “intelligent” polymers as e.g. self-healing, the properties of which depend on molecular mobility and dynamics, require observation at many 100 ns of correlation times with high intensity, which can be made with ESSENSE. (paper)

  17. Linear and Nonlinear Molecular Spectroscopy with Laser Frequency Combs

    Science.gov (United States)

    Picque, Nathalie

    2013-06-01

    The regular pulse train of a mode-locked femtosecond laser can give rise to a comb spectrum of millions of laser modes with a spacing precisely equal to the pulse repetition frequency. Laser frequency combs were conceived a decade ago as tools for the precision spectroscopy of atomic hydrogen. They are now becoming enabling tools for an increasing number of applications, including molecular spectroscopy. Recent experiments of multi-heterodyne frequency comb Fourier transform spectroscopy (also called dual-comb spectroscopy) have demonstrated that the precisely spaced spectral lines of a laser frequency comb can be harnessed for new techniques of linear absorption spectroscopy. The first proof-of-principle experiments have demonstrated a very exciting potential of dual-comb spectroscopy without moving parts for ultra-rapid and ultra-sensitive recording of complex broad spectral bandwidth molecular spectra. Compared to conventional Michelson-based Fourier transform spectroscopy, recording times could be shortened from seconds to microseconds, with intriguing prospects for spectroscopy of short lived transient species. The resolution improves proportionally to the measurement time. Therefore longer recordings allow high resolution spectroscopy of molecules with extreme precision, since the absolute frequency of each laser comb line can be known with the accuracy of an atomic clock. Moreover, since laser frequency combs involve intense ultrashort laser pulses, nonlinear interactions can be harnessed. Broad spectral bandwidth ultra-rapid nonlinear molecular spectroscopy and imaging with two laser frequency combs is demonstrated with coherent Raman effects and two-photon excitation. Real-time multiplex accessing of hyperspectral images may dramatically expand the range of applications of nonlinear microscopy. B. Bernhardt et al., Nature Photonics 4, 55-57 (2010); A. Schliesser et al. Nature Photonics 6, 440-449 (2012); T. Ideguchi et al. arXiv:1201.4177 (2012) T

  18. Spectroscopy of laser-produced plasmas

    Indian Academy of Sciences (India)

    It is a well-known fact that laser-induced breakdown spectroscopy (LIBS) has emerged as one of the best analytical techniques for multi-elemental compositional analysis of samples. We report assembling and optimization of LIBS set up using high resolution and broad-range echelle spectrograph coupled to an intensified ...

  19. A high resolution gridded ionization chamber for nuclear spectroscopy

    International Nuclear Information System (INIS)

    Vitale, E.R.

    1988-01-01

    This paper describes some techniques used in the design of high resolution gridded ionisation chambers for measurements of absolute activity of radionuclides. Details of the geometry of the system and its electrodes are presented; their shape and the spacing between the grid wire was studied with the help of an electrolytic tank. The experimental spectra obtained with an Am 241 source using Ar + 10% methane as a flow gas show a total resolution of 39,07 KeV in very good agreement with the best results available in the literature. An application of the methods developed was used in the design ans construction of a proportional counter provided with three sequential grids disposed in such a way that the pulses from the first stage had their amplitude multiplied by the two further stages. Multiplication factors of the order of 10 sup(3) were obtained but higher values are expected. (author)

  20. Inner-shell electron spectroscopy for microanalysis

    International Nuclear Information System (INIS)

    Joy, D.C.; Maher, D.M.

    1979-01-01

    The transmission electron energy-loss spectrum shows characteristic edges corresponding to the excitation of inner-shell electrons of atoms in a thin sample. Analysis of these edges provides detailed chemical, structural, and electronic data from the radiated volume. By combining electron spectroscopy and electron microscopy, this microanalytical technique can be performed in conjunction with high-resolution imaging of the sample. It is shown that this approach has advantages of sensitivity, spatial resolution, and convenience over other comparable techniques. 7 figures

  1. Performance of long straw tubes using dimethyl ether

    International Nuclear Information System (INIS)

    Benussi, L.; Bertani, M.; Bianco, S.; Fabbri, F.L.; Gianotti, P.; Giardoni, M.; Guaraldo, C.; Lanaro, A.; Lucherini, V.; Mecozzi, A.; Passamonti, L.; Russo, V.; Sarwar, S.

    1995-01-01

    A cylindrical tracking detector with an inner radius of one meter employing straw tubes is being envisaged for the FINUDA experiment aimed at hyper-nuclear physics at DAΦNE, the Frascati φ-factory. A prototype using several 10 mm and 20 mm diameter, two meter long aluminized mylar straws has been assembled and tested with a one GeV/c pion beam. While operating with dimethyl ether, gas gain, space resolution, and device systematics have been studied. A simple method of correction for systematics due to straw eccentricity has been developed and, once applied, a space resolution better than 40 μm can be reached. (orig.)

  2. The experiment PANDA: physics with antiprotons at FAIR

    Directory of Open Access Journals (Sweden)

    Boca Gianluigi

    2015-01-01

    The PANDA experiment is designed to achieve the above mentioned physics goals with a setup with the following characteristics: an almost full solid angle acceptance; excellent tracking capabilities with high resolution (1–2 % at 1 GeV/c in the central region; secondary vertex detection with resolution ≈ 100 microns or better; electromagnetic calorimetry for detections of gammas and electrons up to 10 GeV; good particle identification of charge tracks (electrons, muons, pions, kaons, protons; a dedicated interchangeable central apparatus for the hypernuclear physics; detector and data acquisition system capable of working at 20 MHz interaction rate with an intelligent software trigger that can provide maximum flexibility.

  3. High-resolution continuous-flow analysis setup for water isotopic measurement from ice cores using laser spectroscopy

    Science.gov (United States)

    Emanuelsson, B. D.; Baisden, W. T.; Bertler, N. A. N.; Keller, E. D.; Gkinis, V.

    2015-07-01

    Here we present an experimental setup for water stable isotope (δ18O and δD) continuous-flow measurements and provide metrics defining the performance of the setup during a major ice core measurement campaign (Roosevelt Island Climate Evolution; RICE). We also use the metrics to compare alternate systems. Our setup is the first continuous-flow laser spectroscopy system that is using off-axis integrated cavity output spectroscopy (OA-ICOS; analyzer manufactured by Los Gatos Research, LGR) in combination with an evaporation unit to continuously analyze water samples from an ice core. A Water Vapor Isotope Standard Source (WVISS) calibration unit, manufactured by LGR, was modified to (1) enable measurements on several water standards, (2) increase the temporal resolution by reducing the response time and (3) reduce the influence from memory effects. While this setup was designed for the continuous-flow analysis (CFA) of ice cores, it can also continuously analyze other liquid or vapor sources. The custom setups provide a shorter response time (~ 54 and 18 s for 2013 and 2014 setup, respectively) compared to the original WVISS unit (~ 62 s), which is an improvement in measurement resolution. Another improvement compared to the original WVISS is that the custom setups have a reduced memory effect. Stability tests comparing the custom and WVISS setups were performed and Allan deviations (σAllan) were calculated to determine precision at different averaging times. For the custom 2013 setup the precision after integration times of 103 s is 0.060 and 0.070 ‰ for δ18O and δD, respectively. The corresponding σAllan values for the custom 2014 setup are 0.030, 0.060 and 0.043 ‰ for δ18O, δD and δ17O, respectively. For the WVISS setup the precision is 0.035, 0.070 and 0.042 ‰ after 103 s for δ18O, δD and δ17O, respectively. Both the custom setups and WVISS setup are influenced by instrumental drift with δ18O being more drift sensitive than δD. The

  4. Non-periodic multi-slit masking for a single counter rotating 2-disc chopper and channeling guides for high resolution and high intensity neutron TOF spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bartkowiak, M.; Hofmann, T.; Stüßer, N.

    2017-02-01

    Energy resolution is an important design goal for time-of-flight instruments and neutron spectroscopy. For high-resolution applications, it is required that the burst times of choppers be short, going down to the µs-range. To produce short pulses while maintaining high neutron flux, we propose beam masks with more than two slits on a counter-rotating 2-disc chopper, behind specially adapted focusing multi-channel guides. A novel non-regular arrangement of the slits ensures that the beam opens only once per chopper cycle, when the masks are congruently aligned. Additionally, beam splitting and intensity focusing by guides before and after the chopper position provide high intensities even for small samples. Phase-space analysis and Monte Carlo simulations on examples of four-slit masks with adapted guide geometries show the potential of the proposed setup.

  5. Neutron irradiation damage of nuclear graphite studied by high-resolution transmission electron microscopy and Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Krishna, R. [Dalton Cumbrian Facility, Dalton Nuclear Institute, The University of Manchester, Westlakes Science & Technology Park, Moor Row, Whitehaven, Cumbria, CA24 3HA (United Kingdom); Jones, A.N., E-mail: Abbie.Jones@manchester.ac.uk [Nuclear Graphite Research Group, School of MACE, The University of Manchester, Manchester, M13 9PL (United Kingdom); McDermott, L.; Marsden, B.J. [Nuclear Graphite Research Group, School of MACE, The University of Manchester, Manchester, M13 9PL (United Kingdom)

    2015-12-15

    Nuclear graphite components are produced from polycrystalline artificial graphite manufacture from a binder and filler coke with approximately 20% porosity. During the operational lifetime, nuclear graphite moderator components are subjected to fast neutron irradiation which contributes to the change of material and physical properties such as thermal expansion co-efficient, young's modulus and dimensional change. These changes are directly driven by irradiation-induced changes to the crystal structure as reflected through the bulk microstructure. It is therefore of critical importance that these irradiation changes and there implication on component property changes are fully understood. This work examines a range of irradiated graphite samples removed from the British Experimental Pile Zero (BEPO) reactor; a low temperature, low fluence, air-cooled Materials Test Reactor which operated in the UK. Raman spectroscopy and high-resolution transmission electron microscopy (HRTEM) have been employed to characterise the effect of increased irradiation fluence on graphite microstructure and understand low temperature irradiation damage processes. HRTEM confirms the structural damage of the crystal lattice caused by irradiation attributed to a high number of defects generation with the accumulation of dislocation interactions at nano-scale range. Irradiation-induced crystal defects, lattice parameters and crystallite size compared to virgin nuclear graphite are characterised using selected area diffraction (SAD) patterns in TEM and Raman Spectroscopy. The consolidated ‘D’peak in the Raman spectra confirms the formation of in-plane point defects and reflected as disordered regions in the lattice. The reduced intensity and broadened peaks of ‘G’ and ‘D’ in the Raman and HRTEM results confirm the appearance of turbulence and disordering of the basal planes whilst maintaining their coherent layered graphite structure. - Highlights: • Irradiated graphite

  6. Neutron irradiation damage of nuclear graphite studied by high-resolution transmission electron microscopy and Raman spectroscopy

    International Nuclear Information System (INIS)

    Krishna, R.; Jones, A.N.; McDermott, L.; Marsden, B.J.

    2015-01-01

    Nuclear graphite components are produced from polycrystalline artificial graphite manufacture from a binder and filler coke with approximately 20% porosity. During the operational lifetime, nuclear graphite moderator components are subjected to fast neutron irradiation which contributes to the change of material and physical properties such as thermal expansion co-efficient, young's modulus and dimensional change. These changes are directly driven by irradiation-induced changes to the crystal structure as reflected through the bulk microstructure. It is therefore of critical importance that these irradiation changes and there implication on component property changes are fully understood. This work examines a range of irradiated graphite samples removed from the British Experimental Pile Zero (BEPO) reactor; a low temperature, low fluence, air-cooled Materials Test Reactor which operated in the UK. Raman spectroscopy and high-resolution transmission electron microscopy (HRTEM) have been employed to characterise the effect of increased irradiation fluence on graphite microstructure and understand low temperature irradiation damage processes. HRTEM confirms the structural damage of the crystal lattice caused by irradiation attributed to a high number of defects generation with the accumulation of dislocation interactions at nano-scale range. Irradiation-induced crystal defects, lattice parameters and crystallite size compared to virgin nuclear graphite are characterised using selected area diffraction (SAD) patterns in TEM and Raman Spectroscopy. The consolidated ‘D’peak in the Raman spectra confirms the formation of in-plane point defects and reflected as disordered regions in the lattice. The reduced intensity and broadened peaks of ‘G’ and ‘D’ in the Raman and HRTEM results confirm the appearance of turbulence and disordering of the basal planes whilst maintaining their coherent layered graphite structure. - Highlights: • Irradiated graphite exhibits

  7. Spectrally Resolved and Functional Super-resolution Microscopy via Ultrahigh-Throughput Single-Molecule Spectroscopy.

    Science.gov (United States)

    Yan, Rui; Moon, Seonah; Kenny, Samuel J; Xu, Ke

    2018-03-20

    As an elegant integration of the spatial and temporal dimensions of single-molecule fluorescence, single-molecule localization microscopy (SMLM) overcomes the diffraction-limited resolution barrier of optical microscopy by localizing single molecules that stochastically switch between fluorescent and dark states over time. While this type of super-resolution microscopy (SRM) technique readily achieves remarkable spatial resolutions of ∼10 nm, it typically provides no spectral information. Meanwhile, current scanning-based single-location approaches for mapping the positions and spectra of single molecules are limited by low throughput and are difficult to apply to densely labeled (bio)samples. In this Account, we summarize the rationale, design, and results of our recent efforts toward the integration of the spectral dimension of single-molecule fluorescence with SMLM to achieve spectrally resolved SMLM (SR-SMLM) and functional SRM ( f-SRM). By developing a wide-field scheme for spectral measurement and implementing single-molecule fluorescence on-off switching typical of SMLM, we first showed that in densely labeled (bio)samples it is possible to record the fluorescence spectra and positions of millions of single molecules synchronously within minutes, giving rise to ultrahigh-throughput single-molecule spectroscopy and SR-SMLM. This allowed us to first show statistically that for many dyes, single molecules of the same species exhibit near identical emission in fixed cells. This narrow distribution of emission wavelengths, which contrasts markedly with previous results at solid surfaces, allowed us to unambiguously identify single molecules of spectrally similar dyes. Crosstalk-free, multiplexed SRM was thus achieved for four dyes that were merely 10 nm apart in emission spectrum, with the three-dimensional SRM images of all four dyes being automatically aligned within one image channel. The ability to incorporate single-molecule fluorescence measurement with

  8. Exploration of X-ray and charged-particle spectroscopy with CCDs and PSDs

    International Nuclear Information System (INIS)

    Simons, D.P.L.; Mutsaers, P.H.A.; Ijzendoorn, L.J. van; Voigt, M.J.A. de

    1998-01-01

    Two alternative detector types have been studied for use in the Eindhoven scanning ion microprobe set-up. First, the applicability of a charge coupled device (CCD) system for X-ray spectroscopy has been explored. Second, some properties of the SiTek type 1L30 position sensitive detector (PSD) for charged-particle spectroscopy have been studied. A literature survey shows that excellent X-ray spectroscopy with a CCD system is feasible, particularly with a deep-depletion backside-illuminated CCD and low speed read-out. If, however, high-speed CCD read-out is required, such as for scanning microprobe experiments, a CCD system cannot be used for spectroscopy due to excess read-out noise. For the PSD, noise theory calculations are presented, which result in a noise shaping time for optimal energy and position resolution. In practice, however, a much longer time is needed to obtain sufficient energy and position linearity. Characterization measurements of the PSD using our 4 MeV He + microprobe are also described. A position resolution of 0.47 mm and a position linearity of better than 0.15% detector length are found. In addition, an energy linearity better than 0.3% and an energy resolution of 36 keV are measured. The latter will have to be improved, to make the PSD suitable for charged-particle spectroscopy applications. (orig.)

  9. Gamma-Ray Imager With High Spatial And Spectral Resolution

    Science.gov (United States)

    Callas, John L.; Varnell, Larry S.; Wheaton, William A.; Mahoney, William A.

    1996-01-01

    Gamma-ray instrument developed to enable both two-dimensional imaging at relatively high spatial resolution and spectroscopy at fractional-photon-energy resolution of about 10 to the negative 3rd power in photon-energy range from 10 keV to greater than 10 MeV. In its spectroscopic aspect, instrument enables identification of both narrow and weak gamma-ray spectral peaks.

  10. Spectroscopy of element 115 decay chains.

    Science.gov (United States)

    Rudolph, D; Forsberg, U; Golubev, P; Sarmiento, L G; Yakushev, A; Andersson, L-L; Di Nitto, A; Düllmann, Ch E; Gates, J M; Gregorich, K E; Gross, C J; Heßberger, F P; Herzberg, R-D; Khuyagbaatar, J; Kratz, J V; Rykaczewski, K; Schädel, M; Åberg, S; Ackermann, D; Block, M; Brand, H; Carlsson, B G; Cox, D; Derkx, X; Eberhardt, K; Even, J; Fahlander, C; Gerl, J; Jäger, E; Kindler, B; Krier, J; Kojouharov, I; Kurz, N; Lommel, B; Mistry, A; Mokry, C; Nitsche, H; Omtvedt, J P; Papadakis, P; Ragnarsson, I; Runke, J; Schaffner, H; Schausten, B; Thörle-Pospiech, P; Torres, T; Traut, T; Trautmann, N; Türler, A; Ward, A; Ward, D E; Wiehl, N

    2013-09-13

    A high-resolution α, x-ray, and γ-ray coincidence spectroscopy experiment was conducted at the GSI Helmholtzzentrum für Schwerionenforschung. Thirty correlated α-decay chains were detected following the fusion-evaporation reaction 48Ca + 243Am. The observations are consistent with previous assignments of similar decay chains to originate from element Z=115. For the first time, precise spectroscopy allows the derivation of excitation schemes of isotopes along the decay chains starting with elements Z>112. Comprehensive Monte Carlo simulations accompany the data analysis. Nuclear structure models provide a first level interpretation.

  11. High-resolution photoelectron spectroscopy analysis of sulfidation of brass at the rubber/brass interface

    International Nuclear Information System (INIS)

    Ozawa, Kenichi; Kakubo, Takashi; Shimizu, Katsunori; Amino, Naoya; Mase, Kazuhiko; Komatsu, Takayuki

    2013-01-01

    Highlights: ► Chemical composition at the rubber/brass interface is investigated. ► The 2-min vulcanization reaction is enough to convert the interface composition. ► Five S-containing species are identified at the interface. ► Strong rubber–brass adhesion is related to the Cu 2 S/CuS ratio. ► Degradation of adhesion proceeds along with desulfidation of the interface. - Abstract: High resolution photoelectron spectroscopy is utilized to investigate the chemical composition at the rubber/brass interface to elucidate the origin of strong adhesion as well as the degradation between rubber and brass. Special attention has been given to copper sulfides formed at the interface during the vulcanization reaction at 170 °C. At least five sulfur-containing species are identified in the adhesive interlayer including crystalline CuS and amorphous Cu x S (x ≃ 2). These copper sulfide species are not uniformly distributed within the layer, but there exits the concentration gradation; the concentration of Cu x S is high in the region on the rubber side and is diminished in the deeper region, while vice versa for that of CuS. Degradation of the interface adhesive strength by prolonged vulcanization arises from the decrease in the Cu x S/CuS ratio accompanying desulfurization of the adhesive layer.

  12. High Resolution Optical Spectroscopy of the Classical Nova V5668 Sgr Showing the Presence of Lithium

    Science.gov (United States)

    Wagner, R. Mark; Woodward, Charles E.; Starrfield, Sumner; Ilyin, Ilya; Strassmeier, Klaus

    2018-01-01

    The classical nova (CN) V5668 Sgr was discovered on 2015 March 15.634 and initial optical spectra implied it was an Fe II-class CN. We obtained high resolution optical spectroscopy on 30 nights between 2015 April 3 and 2016 June 5 with the 2 x 8.4 m Large Binocular Telescope (LBT) and the 1.8 m Vatican Advanced Technology Telescope (VATT) using the Potsdam Echelle Polarimetric Spectroscopic Instrument (PEPSI). The spectra cover all or part of the 3830-9065 Å spectral region at a spectral resolution of up to 270,000 (1 km/s); the highest resolution currently available on any 8-10 m class telescope. The early spectra are dominated by emission lines of the Balmer and Paschen series of hydrogen, Fe II, Ca II, and Na I with P Cyg-type line profiles as well as emission lines of [O I]. Numerous interstellar lines and bands are readily apparent at high spectral resolution. The permitted line profiles show complex and dramatic variations in the multi-component P Cyg-type line profiles with time. We detect a weak blue-shifted absorption line at a velocity consistent with Li I 6708 Å when compared with the line profiles of Hβ, Fe II 5169 Å, and Na I D. This line is present in spectra obtained on 7 of 8 consecutive nights up to day 21 of the outburst; but absent on day 42 when it is evident that the ionization of the ejecta has significantly increased. The equivalent width of the line converted to a column density, and the resulting mass fraction, imply a significant enrichment of 7Li in the ejecta. 7Li is produced by the decay of unstable 7Be created during the thermonuclear runaway. The discovery of the resonance lines of 7Be II in the optical spectra of the recent CNe V339 Del, V2944 Oph, and V5668 Sgr by Tajitsu et al. (2016) and its subsequent decay to 7Li (half life of 53 days) suggests a significant enrichment of 7Li in the Galaxy from CNe is possible. Our observations of the Li I 6708 Å line in the early optical spectra of V5668 Sgr mark the second direct

  13. Threshold photoelectron spectroscopy and photoionization total ion yield spectroscopy of simple organic acids, aldehydes, ketones and amines

    International Nuclear Information System (INIS)

    Yencha, Andrew J; Malins, Andrew E R; Siggel-King, Michele R F; Eypper, Marie; King, George C

    2009-01-01

    We have initiated a research program to investigate the ionization behavior of some simple organic molecules containing the carboxyl group (R 2 C=O), where R could be H, OH, NH 2 , or CH 3 or other aliphatic or aromatic carbon groups, using threshold photoelectron spectroscopy and photoionization total ion yield spectroscopy. We report here on the simplest organic acid, formic acid, and two simple aldehydes: acetaldehyde and the simplest unsaturated aldehyde, 2-propenal (acrolein). The objective of this study was to characterize the valence cationic states of these molecules with vibrational structural resolution.

  14. Photoelectron spectroscopy of supersonic molecular beams

    International Nuclear Information System (INIS)

    Pollard, J.E.

    1982-05-01

    A new technique for performing high resolution molecular photoelectron spectroscopy is described, beginning with its conceptual development, through the construction of a prototypal apparatus, to the initial applications on a particularly favorable molecular system. The distinguishing features of this technique are: (1) the introduction of the sample in the form of a collimated supersonic molecular beam; and (2) the use of an electrostatic deflection energy analyzer which is carefully optimized in terms of sensitivity and resolution. This combination makes it possible to obtain photoelectron spectra at a new level of detail for many small molecules. Three experiments are described which rely on the capability to perform rotationally-resolved photoelectron spectroscopy on the hydrogen molecule and its isotopes. The first is a measurement of the ionic vibrational and rotational spectroscopic constants and the vibrationally-selected photoionization cross sections. The second is a determination of the photoelectron asymmetry parameter, β, for selected rotational transitions. The third is an investigation of the rotational relaxation in a free jet expansion, using photoelectron spectroscopy as a probe of the rotational state population distributions. In the closing chapter an assessment is made of the successes and limitations of the technique, and an indication is given of areas for further improvement in future spectrometers

  15. Coherent cavity-enhanced dual-comb spectroscopy.

    Science.gov (United States)

    Fleisher, Adam J; Long, David A; Reed, Zachary D; Hodges, Joseph T; Plusquellic, David F

    2016-05-16

    Dual-comb spectroscopy allows for the rapid, multiplexed acquisition of high-resolution spectra without the need for moving parts or low-resolution dispersive optics. This method of broadband spectroscopy is most often accomplished via tight phase locking of two mode-locked lasers or via sophisticated signal processing algorithms, and therefore, long integration times of phase coherent signals are difficult to achieve. Here we demonstrate an alternative approach to dual-comb spectroscopy using two phase modulator combs originating from a single continuous-wave laser capable of > 2 hours of coherent real-time averaging. The dual combs were generated by driving the phase modulators with step-recovery diodes where each comb consisted of > 250 teeth with 203 MHz spacing and spanned > 50 GHz region in the near-infrared. The step-recovery diodes are passive devices that provide low-phase-noise harmonics for efficient coupling into an enhancement cavity at picowatt optical powers. With this approach, we demonstrate the sensitivity to simultaneously monitor ambient levels of CO2, CO, HDO, and H2O in a single spectral region at a maximum acquisition rate of 150 kHz. Robust, compact, low-cost and widely tunable dual-comb systems could enable a network of distributed multiplexed optical sensors.

  16. A new microcalorimeter concept for photon counting X-ray spectroscopy

    International Nuclear Information System (INIS)

    Silver, E.H.; Labov, S.E.

    1989-01-01

    We present an innovative approach for performing photon counting X-ray spectroscopy with cryogenic microcalorimeters. The detector concept takes advantage of the temperature dependence of the dielectric constant in ferroelectric materials. A dielectric calorimeter has many potential advantages over traditional resistive devices, particularly in the reduction of Johnson noise. This makes the energy resolution for photon counting spectroscopy limited only to the noise produced by the intrinsic temperature fluctuations of the device. The detector concept is presented and its predicted performance is compared with resistive calorimeters. Calculations have shown that practical instruments operating with an energy resolution less than 20 eV may be possible at 300 mK. (orig.)

  17. The primary target for the hypernuclear experiment at PANDA

    Energy Technology Data Exchange (ETDEWEB)

    Bleser, Sebastian; Martinez Rojo, Marta; Sanchez Lorente, Alicia; Steinen, Marcell [Helmholtz-Institut Mainz (Germany); Iazzi, Felice [INFN, Torino (Italy); Politecnico di Torino (Italy); Pochodzalla, Josef [Helmholtz-Institut Mainz (Germany); Institut fuer Kernphysik, JGU Mainz (Germany); Rausch, Nicolas [Institut fuer Kernphysik, JGU Mainz (Germany); Collaboration: PANDA-Collaboration

    2016-07-01

    A key aspect of the PANDA experiment at the future FAIR facility is the production and spectroscopy of ΛΛ hypernuclei. The double hypernuclei are produced in a two-stage target system consisting of a primary in-beam filament to produce low momentum Ξ{sup -} hyperons which are stopped and converted into two Λ hyperons in a secondary external target. A system of piezo motors will be used to steer the primary target in two dimensions. This allows to achieve a constant luminosity by adjusting the position and provides the replacement of eventually broken target wires. The poster shows the mechanical integration of this system within the vacuum chamber attached to the beampipe. Its motion is controlled using the EPICS framework as planned for PANDA. In addition the results of radiation tests with foreseen target wires are presented.

  18. Neutron spectroscopy measurements of 14 MeV neutrons at unprecedented energy resolution and implications for deuterium-tritium fusion plasma diagnostics

    Science.gov (United States)

    Rigamonti, D.; Giacomelli, L.; Gorini, G.; Nocente, M.; Rebai, M.; Tardocchi, M.; Angelone, M.; Batistoni, P.; Cufar, A.; Ghani, Z.; Jednorog, S.; Klix, A.; Laszynska, E.; Loreti, S.; Pillon, M.; Popovichev, S.; Roberts, N.; Thomas, D.; Contributors, JET

    2018-04-01

    An accurate calibration of the JET neutron diagnostics with a 14 MeV neutron generator was performed in the first half of 2017 in order to provide a reliable measurement of the fusion power during the next JET deuterium-tritium (DT) campaign. In order to meet the target accuracy, the chosen neutron generator has been fully characterized at the Neutron Metrology Laboratory of the National Physical Laboratory (NPL), Teddington, United Kingdom. The present paper describes the measurements of the neutron energy spectra obtained using a high-resolution single-crystal diamond detector (SCD). The measurements, together with a new neutron source routine ‘ad hoc’ developed for the MCNP code, allowed the complex features of the neutron energy spectra resulting from the mixed D/T beam ions interacting with the T/D target nuclei to be resolved for the first time. From the spectral analysis a quantitative estimation of the beam ion composition has been made. The unprecedented intrinsic energy resolution (<1% full width at half maximum (FWHM) at 14 MeV) of diamond detectors opens up new prospects for diagnosing DT plasmas, such as, for instance, the possibility to study non-classical slowing down of the beam ions by neutron spectroscopy on ITER.

  19. Selected problems in nuclear/high energy physics: Experimental hypernuclear physics, muon rare decay, and development of new detector system applicable to nuclear/high energy physics experiments. Final close-out report, June 1, 1994--May 31, 1997

    International Nuclear Information System (INIS)

    Tang, L.; Continuous Electron Beam Accelerator Facility, Newport News, VA

    1998-08-01

    Under this DOE funding, the experimental program described in this report now consists of two major approved experiments at Jlab: Investigation of the Spin Dependence of the Effective AN interaction in p Shell (E89-009) which is tentatively scheduled to be completed in the fall of 1999 and Direct measurement of the Lifetime of the Heavy Λ-Hypernuclei at CEBAF (E95-002) which will be run in parasitic mode with E89-009. Also, a new experiment (E97-008) which attempts a directly observation of the spin-orbital splitting in the higher orbits with medium heavy targets was proposed and conditionally approved by Jlab PAC-12 in 1997. The condition for this experiment is simply to run E89-009 first and study the best possible energy resolution. The experimental group at Hampton University has played a leadership role in the development and preparation of these experiments. The Principal Investigator (PI) of this grant is spokesperson and acting program coordinator for all three experiments. Establishment of Jlab experiments is the group's main focus. In addition as originally proposed in the grant proposal, the group also contributed in completing the MEGA experiment at LAMPF. The detector development program established in the NuHEP Center has successfully constructed a large active area Lucite detector which uses a total internal reflection technique as a part of the kaon identification system for the Jlab Hall C SOS spectrometer. Its application in the first two experiments using the (e,e'K) reaction, E91-16 and E93-18 in 1996, has proved its effectiveness to reject the proton background both on-line and off-line. The author continued the program to develop new techniques and equipment associated with the Jlab experiments and possible future experiments at different national laboratories. This new work included developing: (1) a fission fragment detector with excellent timing and position resolution for the lifetime measurement of heavy hypernuclei and (2) new

  20. A compact, high resolution Michelson interferometer for atmospheric spectroscopy in the near ultraviolet

    Science.gov (United States)

    Sander, Stanley P.; Cageao, Richard P.; Friedl, Randall R.

    1993-01-01

    A new, compact Fourier Transform Michelson interferometer (FTUV) with an apodized resolving power greater than 300,000 at 300 nm, high throughput and wide spectral coverage has been developed. The objectives include atmospheric spectroscopy (direct solar absorption and solar scattering) and laboratory spectroscopy of transient species. In this paper, we will briefly describe the prototype FTUV instrument and the results of preliminary laboratory investigations of OH and ClO spectra in emission and absorption.

  1. Laser spectroscopy of gas confined in nanoporous materials

    OpenAIRE

    Svensson, Tomas; Shen, Zhijian

    2010-01-01

    We show that high-resolution laser spectroscopy can probe surface interactions of gas confined in nanocavities of porous materials. We report on strong line broadening and unfamiliar line shapes due to tight confinement, as well as signal enhancement due to multiple photon scattering. This new domain of laser spectroscopy constitute a challenge for the theory of collisions and spectroscopic line shapes, and open for new ways of analyzing porous materials and processes taking place therein.

  2. Atomic Force Microscope for Imaging and Spectroscopy

    Science.gov (United States)

    Pike, W. T.; Hecht, M. H.; Anderson, M. S.; Akiyama, T.; Gautsch, S.; deRooij, N. F.; Staufer, U.; Niedermann, Ph.; Howald, L.; Mueller, D.

    2000-01-01

    We have developed, built, and tested an atomic force microscope (AFM) for extraterrestrial applications incorporating a micromachined tip array to allow for probe replacement. It is part of a microscopy station originally intended for NASA's 2001 Mars lander to identify the size, distribution, and shape of Martian dust and soil particles. As well as imaging topographically down to nanometer resolution, this instrument can be used to reveal chemical information and perform infrared and Raman spectroscopy at unprecedented resolution.

  3. Fourier Deconvolution Methods for Resolution Enhancement in Continuous-Wave EPR Spectroscopy.

    Science.gov (United States)

    Reed, George H; Poyner, Russell R

    2015-01-01

    An overview of resolution enhancement of conventional, field-swept, continuous-wave electron paramagnetic resonance spectra using Fourier transform-based deconvolution methods is presented. Basic steps that are involved in resolution enhancement of calculated spectra using an implementation based on complex discrete Fourier transform algorithms are illustrated. Advantages and limitations of the method are discussed. An application to an experimentally obtained spectrum is provided to illustrate the power of the method for resolving overlapped transitions. © 2015 Elsevier Inc. All rights reserved.

  4. High-resolution imaging gamma-ray spectroscopy with externally segmented germanium detectors

    Science.gov (United States)

    Callas, J. L.; Mahoney, W. A.; Varnell, L. S.; Wheaton, W. A.

    1993-01-01

    Externally segmented germanium detectors promise a breakthrough in gamma-ray imaging capabilities while retaining the superb energy resolution of germanium spectrometers. An angular resolution of 0.2 deg becomes practical by combining position-sensitive germanium detectors having a segment thickness of a few millimeters with a one-dimensional coded aperture located about a meter from the detectors. Correspondingly higher angular resolutions are possible with larger separations between the detectors and the coded aperture. Two-dimensional images can be obtained by rotating the instrument. Although the basic concept is similar to optical or X-ray coded-aperture imaging techniques, several complicating effects arise because of the penetrating nature of gamma rays. The complications include partial transmission through the coded aperture elements, Compton scattering in the germanium detectors, and high background count rates. Extensive electron-photon Monte Carlo modeling of a realistic detector/coded-aperture/collimator system has been performed. Results show that these complicating effects can be characterized and accounted for with no significant loss in instrument sensitivity.

  5. Evaluation of Cancer Metabolomics Using ex vivo High Resolution Magic Angle Spinning (HRMAS Magnetic Resonance Spectroscopy (MRS

    Directory of Open Access Journals (Sweden)

    Taylor L. Fuss

    2016-03-01

    Full Text Available According to World Health Organization (WHO estimates, cancer is responsible for more deaths than all coronary heart disease or stroke worldwide, serving as a major public health threat around the world. High resolution magic angle spinning (HRMAS magnetic resonance spectroscopy (MRS has demonstrated its usefulness in the identification of cancer metabolic markers with the potential to improve diagnosis and prognosis for the oncology clinic, due partially to its ability to preserve tissue architecture for subsequent histological and molecular pathology analysis. Capable of the quantification of individual metabolites, ratios of metabolites, and entire metabolomic profiles, HRMAS MRS is one of the major techniques now used in cancer metabolomic research. This article reviews and discusses literature reports of HRMAS MRS studies of cancer metabolomics published between 2010 and 2015 according to anatomical origins, including brain, breast, prostate, lung, gastrointestinal, and neuroendocrine cancers. These studies focused on improving diagnosis and understanding patient prognostication, monitoring treatment effects, as well as correlating with the use of in vivo MRS in cancer clinics.

  6. MULTI-EPOCH OBSERVATIONS OF HD 69830: HIGH-RESOLUTION SPECTROSCOPY AND LIMITS TO VARIABILITY

    Energy Technology Data Exchange (ETDEWEB)

    Beichman, C. A.; Tanner, A. M.; Bryden, G.; Akeson, R. L.; Ciardi, D. R. [NASA Exoplanet Science Institute, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91125 (United States); Lisse, C. M. [Johns Hopkins University, Applied Physics Laboratory, Laurel, MD 20723 (United States); Boden, A. F. [Caltech Optical Observatories, California Institute of Technology, Pasadena, CA 91125 (United States); Dodson-Robinson, S. E.; Salyk, C. [University of Texas, Astronomy Department, Austin, TX 78712 (United States); Wyatt, M. C., E-mail: chas@pop.jpl.nasa.gov [Institute of Astronomy, University of Cambridge, Cambridge, CB3 0HA (United Kingdom)

    2011-12-10

    The main-sequence solar-type star HD 69830 has an unusually large amount of dusty debris orbiting close to three planets found via the radial velocity technique. In order to explore the dynamical interaction between the dust and planets, we have performed multi-epoch photometry and spectroscopy of the system over several orbits of the outer dust. We find no evidence for changes in either the dust amount or its composition, with upper limits of 5%-7% (1{sigma} per spectral element) on the variability of the dust spectrum over 1 year, 3.3% (1{sigma}) on the broadband disk emission over 4 years, and 33% (1{sigma}) on the broadband disk emission over 24 years. Detailed modeling of the spectrum of the emitting dust indicates that the dust is located outside of the orbits of the three planets and has a composition similar to main-belt, C-type asteroids in our solar system. Additionally, we find no evidence for a wide variety of gas species associated with the dust. Our new higher signal-to-noise spectra do not confirm our previously claimed detection of H{sub 2}O ice leading to a firm conclusion that the debris can be associated with the break-up of one or more C-type asteroids formed in the dry, inner regions of the protoplanetary disk of the HD 69830 system. The modeling of the spectral energy distribution and high spatial resolution observations in the mid-infrared are consistent with a {approx}1 AU location for the emitting material.

  7. IGRINS NEAR-IR HIGH-RESOLUTION SPECTROSCOPY OF MULTIPLE JETS AROUND LkHα 234

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Heeyoung; Yuk, In-Soo; Park, Byeong-Gon; Park, Chan; Chun, Moo-Young; Kim, Kang-Min; Oh, Jae Sok; Jeong, Ueejeong; Yu, Young Sam; Lee, Jae-Joon; Kim, Hwihyun; Hwang, Narae; Lee, Sungho [Korea Astronomy and Space Science Institute, 776 Daedeok-daero, Yuseong-gu, Daejeon 305-348 (Korea, Republic of); Pyo, Tae-Soo [Subaru Telescope, National Astronomical Observatory of Japan, 650 North A’ohoku Place, Hilo, HI 96720 (United States); Pak, Soojong; Lee, Hye-In; Le, Huynh Anh Nguyen [School of Space Research and Institute of Natural Sciences, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104 (Korea, Republic of); Kaplan, Kyle; Pavel, Michael; Mace, Gregory, E-mail: hyoh@kasi.re.kr [Department of Astronomy, University of Texas at Austin, Austin, TX (United States); and others

    2016-02-01

    We present the results of high-resolution near-IR spectroscopy toward the multiple outflows around the Herbig Be star LkHα 234 using the Immersion Grating Infrared Spectrograph. Previous studies indicate that the region around LkHα 234 is complex, with several embedded young stellar objects and the outflows associated with them. In simultaneous H- and K-band spectra from HH 167, we detected 5 [Fe ii] and 14 H{sub 2} emission lines. We revealed a new [Fe ii] jet driven by radio continuum source VLA 3B. Position–velocity diagrams of the H{sub 2} 1−0 S(1) λ2.122 μm line show multiple velocity peaks. The kinematics may be explained by a geometrical bow shock model. We detected a component of H{sub 2} emission at the systemic velocity (V{sub LSR} = −10.2 km s{sup −1}) along the whole slit in all slit positions, which may arise from the ambient photodissociation region. Low-velocity gas dominates the molecular hydrogen emission from knots A and B in HH 167, which is close to the systemic velocity; [Fe ii] emission lines are detected farther from the systemic velocity, at V{sub LSR} = −100–−130 km s{sup −1}. We infer that the H{sub 2} emission arises from shocked gas entrained by a high-velocity outflow. Population diagrams of H{sub 2} lines imply that the gas is thermalized at a temperature of 2500–3000 K and the emission results from shock excitation.

  8. Imaging three-dimensional surface objects with submolecular resolution by atomic force microscopy

    Czech Academy of Sciences Publication Activity Database

    Moreno, C.; Stetsovych, Oleksandr; Shimizu, T.K.; Custance, O.

    2015-01-01

    Roč. 15, č. 4 (2015), s. 2257-2262 ISSN 1530-6984 Institutional support: RVO:68378271 Keywords : noncontact atomic force microscopy (NC- AFM ) * submolecular resolution * three-dimensional dynamic force spectroscopy * high-resolution imaging Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 13.779, year: 2015

  9. Adaptive real-time dual-comb spectroscopy

    Science.gov (United States)

    Ideguchi, Takuro; Poisson, Antonin; Guelachvili, Guy; Picqué, Nathalie; Hänsch, Theodor W.

    2014-01-01

    The spectrum of a laser frequency comb consists of several hundred thousand equally spaced lines over a broad spectral bandwidth. Such frequency combs have revolutionized optical frequency metrology and they now hold much promise for significant advances in a growing number of applications including molecular spectroscopy. Despite an intriguing potential for the measurement of molecular spectra spanning tens of nanometres within tens of microseconds at Doppler-limited resolution, the development of dual-comb spectroscopy is hindered by the demanding stability requirements of the laser combs. Here we overcome this difficulty and experimentally demonstrate a concept of real-time dual-comb spectroscopy, which compensates for laser instabilities by electronic signal processing. It only uses free-running mode-locked lasers without any phase-lock electronics. We record spectra spanning the full bandwidth of near-infrared fibre lasers with Doppler-limited line profiles highly suitable for measurements of concentrations or line intensities. Our new technique of adaptive dual-comb spectroscopy offers a powerful transdisciplinary instrument for analytical sciences. PMID:24572636

  10. Adaptive real-time dual-comb spectroscopy

    Science.gov (United States)

    Ideguchi, Takuro; Poisson, Antonin; Guelachvili, Guy; Picqué, Nathalie; Hänsch, Theodor W.

    2014-02-01

    The spectrum of a laser frequency comb consists of several hundred thousand equally spaced lines over a broad spectral bandwidth. Such frequency combs have revolutionized optical frequency metrology and they now hold much promise for significant advances in a growing number of applications including molecular spectroscopy. Despite an intriguing potential for the measurement of molecular spectra spanning tens of nanometres within tens of microseconds at Doppler-limited resolution, the development of dual-comb spectroscopy is hindered by the demanding stability requirements of the laser combs. Here we overcome this difficulty and experimentally demonstrate a concept of real-time dual-comb spectroscopy, which compensates for laser instabilities by electronic signal processing. It only uses free-running mode-locked lasers without any phase-lock electronics. We record spectra spanning the full bandwidth of near-infrared fibre lasers with Doppler-limited line profiles highly suitable for measurements of concentrations or line intensities. Our new technique of adaptive dual-comb spectroscopy offers a powerful transdisciplinary instrument for analytical sciences.

  11. EXAFS-spectroscopy on synchrotron radiation beam

    CERN Document Server

    Aksenov, V L; Kuzmin, A Y; Purans, Y

    2001-01-01

    In the review the basis theoretical principles of EXAFS spectroscopy are given, as one of principal directions of an absorption spectroscopy permitting with a high accuracy to gain parameters of the short-range order in multicomponent amorphous and quasi-crystal mediums. The methods of the analysis of EXAFS spectra with allowance of effects of multiply scattering are featured. The exposition of the experimental set-ups, which realize the method of EXAFS spectroscopy on beams of SR, requirement of the monochromatization of radiation beams are given. For investigation of phase transition and external effects the energy-dispersive EXAFS spectrometer is creating at the National center of SR Kurchatov Institute which can measure the EXAFS spectrum with a time resolution 3-5 ms. The experimental results on investigation (by the EXAFS spectroscopy method) of oxides of tungsten and molybdenum are given, which have unique property: the variable valence of an ion of metal is depending on external action. The most inter...

  12. High-Resolution Two-Dimensional Optical Spectroscopy of Electron Spins

    Directory of Open Access Journals (Sweden)

    M. Salewski

    2017-08-01

    Full Text Available Multidimensional coherent optical spectroscopy is one of the most powerful tools for investigating complex quantum mechanical systems. While it was conceived decades ago in magnetic resonance spectroscopy using microwaves and radio waves, it has recently been extended into the visible and UV spectral range. However, resolving MHz energy splittings with ultrashort laser pulses still remains a challenge. Here, we analyze two-dimensional Fourier spectra for resonant optical excitation of resident electrons to localized trions or donor-bound excitons in semiconductor nanostructures subject to a transverse magnetic field. Particular attention is devoted to Raman coherence spectra, which allow one to accurately evaluate tiny splittings of the electron ground state and to determine the relaxation times in the electron spin ensemble. A stimulated steplike Raman process induced by a sequence of two laser pulses creates a coherent superposition of the ground-state doublet which can be retrieved only optically because of selective excitation of the same subensemble with a third pulse. This provides the unique opportunity to distinguish between different complexes that are closely spaced in energy in an ensemble. The related experimental demonstration is based on photon-echo measurements in an n-type CdTe/(Cd,MgTe quantum-well structure detected by a heterodyne technique. The difference in the sub-μeV range between the Zeeman splittings of donor-bound electrons and electrons localized at potential fluctuations can be resolved even though the homogeneous linewidth of the optical transitions is larger by 2 orders of magnitude.

  13. High-cadence Imaging and Imaging Spectroscopy at the GREGOR Solar Telescope—A Collaborative Research Environment for High-resolution Solar Physics

    Science.gov (United States)

    Denker, Carsten; Kuckein, Christoph; Verma, Meetu; González Manrique, Sergio J.; Diercke, Andrea; Enke, Harry; Klar, Jochen; Balthasar, Horst; Louis, Rohan E.; Dineva, Ekaterina

    2018-05-01

    In high-resolution solar physics, the volume and complexity of photometric, spectroscopic, and polarimetric ground-based data significantly increased in the last decade, reaching data acquisition rates of terabytes per hour. This is driven by the desire to capture fast processes on the Sun and the necessity for short exposure times “freezing” the atmospheric seeing, thus enabling ex post facto image restoration. Consequently, large-format and high-cadence detectors are nowadays used in solar observations to facilitate image restoration. Based on our experience during the “early science” phase with the 1.5 m GREGOR solar telescope (2014–2015) and the subsequent transition to routine observations in 2016, we describe data collection and data management tailored toward image restoration and imaging spectroscopy. We outline our approaches regarding data processing, analysis, and archiving for two of GREGOR’s post-focus instruments (see http://gregor.aip.de), i.e., the GREGOR Fabry–Pérot Interferometer (GFPI) and the newly installed High-Resolution Fast Imager (HiFI). The heterogeneous and complex nature of multidimensional data arising from high-resolution solar observations provides an intriguing but also a challenging example for “big data” in astronomy. The big data challenge has two aspects: (1) establishing a workflow for publishing the data for the whole community and beyond and (2) creating a collaborative research environment (CRE), where computationally intense data and postprocessing tools are colocated and collaborative work is enabled for scientists of multiple institutes. This requires either collaboration with a data center or frameworks and databases capable of dealing with huge data sets based on virtual observatory (VO) and other community standards and procedures.

  14. High-coherence mid-infrared dual-comb spectroscopy spanning 2.6 to 5.2 μm

    Science.gov (United States)

    Ycas, Gabriel; Giorgetta, Fabrizio R.; Baumann, Esther; Coddington, Ian; Herman, Daniel; Diddams, Scott A.; Newbury, Nathan R.

    2018-04-01

    Mid-infrared dual-comb spectroscopy has the potential to supplant conventional Fourier-transform spectroscopy in applications requiring high resolution, accuracy, signal-to-noise ratio and speed. Until now, mid-infrared dual-comb spectroscopy has been limited to narrow optical bandwidths or low signal-to-noise ratios. Using digital signal processing and broadband frequency conversion in waveguides, we demonstrate a mid-infrared dual-comb spectrometer covering 2.6 to 5.2 µm with comb-tooth resolution, sub-MHz frequency precision and accuracy, and a spectral signal-to-noise ratio as high as 6,500. As a demonstration, we measure the highly structured, broadband cross-section of propane from 2,840 to 3,040 cm-1, the complex phase/amplitude spectra of carbonyl sulfide from 2,000 to 2,100 cm-1, and of a methane, acetylene and ethane mixture from 2,860 to 3,400 cm-1. The combination of broad bandwidth, comb-mode resolution and high brightness will enable accurate mid-infrared spectroscopy in precision laboratory experiments and non-laboratory applications including open-path atmospheric gas sensing, process monitoring and combustion.

  15. Femtosecond infrared spectroscopy: study, development and applications

    International Nuclear Information System (INIS)

    Bonvalet, Adeline

    1997-01-01

    This work has been devoted to the development and the applications of a new technique of infrared (5-20 μm) spectroscopy allowing a temporal resolution of 100 fs. This technique relies on a source of ultrashort infrared pulses obtained by frequency mixing in a nonlinear material. In particular, the optical rectification of 12-fs visible pulses in gallium arsenide has allowed us to obtain 40-fs infrared pulses with a spectrum extending from 5 pm up to 15 μm. Spectral resolution has been achieved by Fourier transform spectroscopy, using a novel device we have called Diffracting FTIR. These developments allow to study inter-subband transitions in quantum-well structures. The inter-subband relaxation time has been measured by a pump-probe experiment, in which the sample was excited with a visible pulse, and the variations of inter-subband absorption probed with an infrared pulse. Besides, we have developed a method of coherent emission spectroscopy allowing to monitor the electric field emitted by coherent charge oscillations in quantum wells. The decay of the oscillations due to the loss of coherence between excited levels yields a direct measurement of the dephasing time between these levels. Other applications include biological macromolecules like reaction centers of photosynthetic bacteria. We have shown that we were able to monitor variations of infrared absorption of about 10 -4 optical densities with a temporal resolution of 100 fs. This would constitute a relevant tool to study the role of molecular vibrations during the primary steps of biological processes. (author) [fr

  16. GLOBULAR CLUSTER ABUNDANCES FROM HIGH-RESOLUTION, INTEGRATED-LIGHT SPECTROSCOPY. III. THE LARGE MAGELLANIC CLOUD: Fe AND AGES

    International Nuclear Information System (INIS)

    Colucci, Janet E.; Bernstein, Rebecca A.; Cameron, Scott A.; McWilliam, Andrew

    2011-01-01

    In this paper, we refine our method for the abundance analysis of high-resolution spectroscopy of the integrated light of unresolved globular clusters (GCs). This method was previously demonstrated for the analysis of old (>10 Gyr) Milky Way (MW) GCs. Here, we extend the technique to young clusters using a training set of nine GCs in the Large Magellanic Cloud. Depending on the signal-to-noise ratio of the data, we use 20-100 Fe lines per cluster to successfully constrain the ages of old clusters to within a ∼5 Gyr range, the ages of ∼2 Gyr clusters to a 1-2 Gyr range, and the ages of the youngest clusters (0.05-1 Gyr) to a ∼200 Myr range. We also demonstrate that we can measure [Fe/H] in clusters with any age less than 12 Gyr with similar or only slightly larger uncertainties (0.1-0.25 dex) than those obtained for old MW GCs (0.1 dex); the slightly larger uncertainties are due to the rapid evolution in stellar populations at these ages. In this paper, we present only Fe abundances and ages. In the next paper in this series, we present our complete analysis of ∼20 elements for which we are able to measure abundances. For several of the clusters in this sample, there are no high-resolution abundances in the literature from individual member stars; our results are the first detailed chemical abundances available. The spectra used in this paper were obtained at Las Campanas with the echelle on the du Pont Telescope and with the MIKE spectrograph on the Magellan Clay Telescope.

  17. Laser-induced blurring of molecular structure information in high harmonic spectroscopy

    DEFF Research Database (Denmark)

    Risoud, Francois; Leveque, Camille; Labeye, Marie

    2017-01-01

    High harmonic spectroscopy gives access to molecular structure with Angstrom resolution. Such information is encoded in the destructive interferences occurring between the harmonic emissions from the different parts of the molecule. By solving the time-dependent Schrodinger equation, either....... These findings have important consequences for molecular imaging and orbital tomography using high harmonic spectroscopy....

  18. In gas laser ionization and spectroscopy experiments at the Superconducting Separator Spectrometer (S3): Conceptual studies and preliminary design

    International Nuclear Information System (INIS)

    Ferrer, R.; Bastin, B.; Boilley, D.; Creemers, P.; Delahaye, P.; Liénard, E.; Fléchard, X.; Franchoo, S.; Ghys, L.; Huyse, M.; Kudryavtsev, Yu.; Lecesne, N.; Lu, H.; Lutton, F.; Mogilevskiy, E.; Pauwels, D.; Piot, J.; Radulov, D.; Rens, L.; Savajols, H.

    2013-01-01

    Highlights: • A setup to perform In-Gas Laser Ionization and Spectroscopy experiments at the Super Separator Spectrometer is presented. • The reported studies address important aspects necessary to applied the IGLIS technique to short-lived isotopes. • An R and D phase required to reach an enhanced spectral resolution will be carried out at KU Leuven. • High-sensitivity and enhanced-resolution laser spectroscopy studies will be possible with the IGLIS setup at S 3 . -- Abstract: The results of preparatory experiments and the preliminary designs of a new in-gas laser ionization and spectroscopy setup, to be coupled to the Super Separator Spectrometer S 3 of SPIRAL2-GANIL, are reported. Special attention is given to the development and tests to carry out a full implementation of the in-gas jet laser spectroscopy technique. Application of this novel technique to radioactive species will allow high-sensitivity and enhanced-resolution laser spectroscopy studies of ground- and excited-state properties of exotic nuclei

  19. Doppler-free laser spectroscopy of buffer-gas-cooled molecular radicals

    International Nuclear Information System (INIS)

    Skoff, S M; Hendricks, R J; Sinclair, C D J; Tarbutt, M R; Hudson, J J; Segal, D M; Sauer, B E; Hinds, E A

    2009-01-01

    We demonstrate Doppler-free saturated absorption spectroscopy of cold molecular radicals formed by laser ablation inside a cryogenic buffer gas cell. By lowering the temperature, congested regions of the spectrum can be simplified, and by using different temperatures for different regions of the spectrum a wide range of rotational states can be studied optimally. We use the technique to study the optical spectrum of YbF radicals with a resolution of 30 MHz, measuring the magnetic hyperfine parameters of the electronic ground state. The method is suitable for high-resolution spectroscopy of a great variety of molecules at controlled temperature and pressure, and is particularly well suited to those that are difficult to produce in the gas phase.

  20. CsI(Tl)-photodiode detectors for gamma-ray spectroscopy

    CERN Document Server

    Fioretto, E; Viesti, G; Cinausero, M; Zuin, L; Fabris, D; Lunardon, M; Nebbia, G; Prete, G

    2000-01-01

    We report on the performances of CsI(Tl)-photodiode detectors for gamma-ray spectroscopy applications. Light output yield and energy resolution have been measured for different crystals and read-out configurations.

  1. High resolution X-ray spectroscopy of thermal plasmas

    International Nuclear Information System (INIS)

    Canizares, C.R.

    1990-01-01

    This paper concentrates on reviewing highlights of the Focal Plane Crystal Spectrometer (FPCS) results on thermal plasmas, particularly supernova remnants (SNRs) and clusters of galaxies from the Einstein observatory. During Einstein's short but happy life, we made over 400 observations with the FPCS of 40 different objects. Three quarters of these were objects in which the emission was primarily from optically thin thermal plasma, primarily supernova remnants (SNRs) and clusters of galaxies. Thermal plasmas provide an excellent illustration of how spectral data, particularly high resolution spectral data, can be an important tool for probing the physical properties of astrophysical objects. (author)

  2. Development and Optical Testing of the Camera, Hand Lens, and Microscope Probe with Scannable Laser Spectroscopy (CHAMP-SLS)

    Science.gov (United States)

    Mungas, Greg S.; Gursel, Yekta; Sepulveda, Cesar A.; Anderson, Mark; La Baw, Clayton; Johnson, Kenneth R.; Deans, Matthew; Beegle, Luther; Boynton, John

    2008-01-01

    Conducting high resolution field microscopy with coupled laser spectroscopy that can be used to selectively analyze the surface chemistry of individual pixels in a scene is an enabling capability for next generation robotic and manned spaceflight missions, civil, and military applications. In the laboratory, we use a range of imaging and surface preparation tools that provide us with in-focus images, context imaging for identifying features that we want to investigate at high magnification, and surface-optical coupling that allows us to apply optical spectroscopic analysis techniques for analyzing surface chemistry particularly at high magnifications. The camera, hand lens, and microscope probe with scannable laser spectroscopy (CHAMP-SLS) is an imaging/spectroscopy instrument capable of imaging continuously from infinity down to high resolution microscopy (resolution of approx. 1 micron/pixel in a final camera format), the closer CHAMP-SLS is placed to a feature, the higher the resultant magnification. At hand lens to microscopic magnifications, the imaged scene can be selectively interrogated with point spectroscopic techniques such as Raman spectroscopy, microscopic Laser Induced Breakdown Spectroscopy (micro-LIBS), laser ablation mass-spectrometry, Fluorescence spectroscopy, and/or Reflectance spectroscopy. This paper summarizes the optical design, development, and testing of the CHAMP-SLS optics.

  3. High-resolution photoelectron spectroscopy analysis of sulfidation of brass at the rubber/brass interface

    Energy Technology Data Exchange (ETDEWEB)

    Ozawa, Kenichi, E-mail: ozawa.k.ab@m.titech.ac.jp [Department of Chemistry and Materials Science, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8551 (Japan); Kakubo, Takashi; Shimizu, Katsunori; Amino, Naoya [Yokohama Rubber Co., Ltd., Oiwake, Hiratsuka 254-8601 (Japan); Mase, Kazuhiko [Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801 (Japan); Komatsu, Takayuki [Department of Chemistry and Materials Science, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8551 (Japan)

    2013-01-01

    Highlights: Black-Right-Pointing-Pointer Chemical composition at the rubber/brass interface is investigated. Black-Right-Pointing-Pointer The 2-min vulcanization reaction is enough to convert the interface composition. Black-Right-Pointing-Pointer Five S-containing species are identified at the interface. Black-Right-Pointing-Pointer Strong rubber-brass adhesion is related to the Cu{sub 2}S/CuS ratio. Black-Right-Pointing-Pointer Degradation of adhesion proceeds along with desulfidation of the interface. - Abstract: High resolution photoelectron spectroscopy is utilized to investigate the chemical composition at the rubber/brass interface to elucidate the origin of strong adhesion as well as the degradation between rubber and brass. Special attention has been given to copper sulfides formed at the interface during the vulcanization reaction at 170 Degree-Sign C. At least five sulfur-containing species are identified in the adhesive interlayer including crystalline CuS and amorphous Cu{sub x}S (x Asymptotically-Equal-To 2). These copper sulfide species are not uniformly distributed within the layer, but there exits the concentration gradation; the concentration of Cu{sub x}S is high in the region on the rubber side and is diminished in the deeper region, while vice versa for that of CuS. Degradation of the interface adhesive strength by prolonged vulcanization arises from the decrease in the Cu{sub x}S/CuS ratio accompanying desulfurization of the adhesive layer.

  4. Energy dispersive X-ray spectroscopy with microcalorimeters

    International Nuclear Information System (INIS)

    Hollerith, C.; Wernicke, D.; Buehler, M.; Feilitzsch, F. von; Huber, M.; Hoehne, J.; Hertrich, T.; Jochum, J.; Phelan, K.; Stark, M.; Simmnacher, B.; Weiland, W.; Westphal, W.

    2004-01-01

    Shrinking feature sizes in semiconductor device production as well as the use of new materials demand innovation in device technology and material analysis. X-ray spectrometers based on superconducting sensor technology are currently closing the gap between fast energy dispersive spectroscopy (EDS) and high-resolution wavelength dispersive spectroscopy (WDS). This work reports on the successful integration of iridium/gold transition edge sensors in the first industrially used microcalorimeter EDS. The POLARIS microcalorimeter system is installed at the failure analysis lab FA5 at Infineon Technologies AG in Neuperlach (Munich) and is used in routine analysis

  5. Trace gas absorption spectroscopy using laser difference-frequency spectrometer for environmental application

    Science.gov (United States)

    Chen, W.; Cazier, F.; Boucher, D.; Tittel, F. K.; Davies, P. B.

    2001-01-01

    A widely tunable infrared spectrometer based on difference frequency generation (DFG) has been developed for organic trace gas detection by laser absorption spectroscopy. On-line measurements of concentration of various hydrocarbons, such as acetylene, benzene, and ethylene, were investigated using high-resolution DFG trace gas spectroscopy for highly sensitive detection.

  6. The (π+,K+) reaction: Past, present, and future

    International Nuclear Information System (INIS)

    Chrien, R.E.

    1990-01-01

    The (π + , K + ) reaction applied to hypernuclear research is discussed. A brief history of its origins and its relation to strangeness changing reactions (K - , π - ) is given, and the current status of the field is described. Some ideas for future hypernuclear research are discussed and some specific examples treated. 21 refs., 7 figs., 2 tabs

  7. Quantum cascade laser infrared spectroscopy of single cancer cells

    KAUST Repository

    Patel, Imran; Rajamanickam, Vijayakumar Palanisamy; Bertoncini, Andrea; Pagliari, Francesca; Tirinato, Luca; Laptenok, Sergey P.; Liberale, Carlo

    2017-01-01

    Quantum cascade laser infrared spectroscopy is a next generation novel imaging technique allowing high resolution spectral imaging of cells. We show after spectral pre-processing, identification of different cancer cell populations within minutes.

  8. Quantum cascade laser infrared spectroscopy of single cancer cells

    KAUST Repository

    Patel, Imran

    2017-03-27

    Quantum cascade laser infrared spectroscopy is a next generation novel imaging technique allowing high resolution spectral imaging of cells. We show after spectral pre-processing, identification of different cancer cell populations within minutes.

  9. Two dimensional molecular electronics spectroscopy for molecular fingerprinting, DNA sequencing, and cancerous DNA recognition.

    Science.gov (United States)

    Rajan, Arunkumar Chitteth; Rezapour, Mohammad Reza; Yun, Jeonghun; Cho, Yeonchoo; Cho, Woo Jong; Min, Seung Kyu; Lee, Geunsik; Kim, Kwang S

    2014-02-25

    Laser-driven molecular spectroscopy of low spatial resolution is widely used, while electronic current-driven molecular spectroscopy of atomic scale resolution has been limited because currents provide only minimal information. However, electron transmission of a graphene nanoribbon on which a molecule is adsorbed shows molecular fingerprints of Fano resonances, i.e., characteristic features of frontier orbitals and conformations of physisorbed molecules. Utilizing these resonance profiles, here we demonstrate two-dimensional molecular electronics spectroscopy (2D MES). The differential conductance with respect to bias and gate voltages not only distinguishes different types of nucleobases for DNA sequencing but also recognizes methylated nucleobases which could be related to cancerous cell growth. This 2D MES could open an exciting field to recognize single molecule signatures at atomic resolution. The advantages of the 2D MES over the one-dimensional (1D) current analysis can be comparable to those of 2D NMR over 1D NMR analysis.

  10. Highly multiplexible thermal kinetic inductance detectors for x-ray imaging spectroscopy

    International Nuclear Information System (INIS)

    Ulbricht, Gerhard; Mazin, Benjamin A.; Szypryt, Paul; Walter, Alex B.; Bockstiegel, Clint; Bumble, Bruce

    2015-01-01

    For X-ray imaging spectroscopy, high spatial resolution over a large field of view is often as important as high energy resolution, but current X-ray detectors do not provide both in the same device. Thermal Kinetic Inductance Detectors (TKIDs) are being developed as they offer a feasible way to combine the energy resolution of transition edge sensors with pixel counts approaching CCDs and thus promise significant improvements for many X-ray spectroscopy applications. TKIDs are a variation of Microwave Kinetic Inductance Detectors (MKIDs) and share their multiplexibility: working MKID arrays with 2024 pixels have recently been demonstrated and much bigger arrays are under development. In this work, we present a TKID prototype, which is able to achieve an energy resolution of 75 eV at 5.9 keV, even though its general design still has to be optimized. We further describe TKID fabrication, characterization, multiplexing, and working principle and demonstrate the necessity of a data fitting algorithm in order to extract photon energies. With further design optimizations, we expect to be able to improve our TKID energy resolution to less than 10 eV at 5.9 keV

  11. Highly multiplexible thermal kinetic inductance detectors for x-ray imaging spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ulbricht, Gerhard, E-mail: ulbricht@physics.ucsb.edu; Mazin, Benjamin A.; Szypryt, Paul; Walter, Alex B.; Bockstiegel, Clint [Department of Physics, University of California, Santa Barbara, California 93106 (United States); Bumble, Bruce [NASA Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, California 91125 (United States)

    2015-06-22

    For X-ray imaging spectroscopy, high spatial resolution over a large field of view is often as important as high energy resolution, but current X-ray detectors do not provide both in the same device. Thermal Kinetic Inductance Detectors (TKIDs) are being developed as they offer a feasible way to combine the energy resolution of transition edge sensors with pixel counts approaching CCDs and thus promise significant improvements for many X-ray spectroscopy applications. TKIDs are a variation of Microwave Kinetic Inductance Detectors (MKIDs) and share their multiplexibility: working MKID arrays with 2024 pixels have recently been demonstrated and much bigger arrays are under development. In this work, we present a TKID prototype, which is able to achieve an energy resolution of 75 eV at 5.9 keV, even though its general design still has to be optimized. We further describe TKID fabrication, characterization, multiplexing, and working principle and demonstrate the necessity of a data fitting algorithm in order to extract photon energies. With further design optimizations, we expect to be able to improve our TKID energy resolution to less than 10 eV at 5.9 keV.

  12. Sum frequency generation for surface vibrational spectroscopy

    International Nuclear Information System (INIS)

    Hunt, J.H.; Guyot-Sionnest, P.; Shen, Y.R.

    1987-01-01

    Surface vibrational spectroscopy is one of the best means for characterizing molecular adsorbates. For this reason, many techniques have been developed in the past. However, most of them suffer from poor sensitivity, low spectral and temporal resolution, and applications limited to vacuum solid interfaces. Recently, the second harmonic generation (SHG) technique was proved repeatedly to be a simple but versatile surface probe. It is highly sensitive and surface specific; it is also capable of achieving high temporal, spatial, and spectral resolution. Being an optical technique, it can be applied to any interface accessible by light. The only serious drawback is its lack of molecular selectivity. An obvious remedy is the extension of the technique to IR-visible sum frequency generation (SFG). Surface vibrational spectroscopy with submonolayer sensitivity is then possible using SFG with the help of a tunable IR laser. The authors report here an SFG measurement of the C-H stretch vibration of monolayers of molecules at air-solid and air-liquid interfaces

  13. Electronic excitation of carbonyl sulphide (COS) by high-resolution vacuum ultraviolet photoabsorption and electron-impact spectroscopy in the energy region from 4 to 11 eV

    Energy Technology Data Exchange (ETDEWEB)

    Limão-Vieira, P., E-mail: plimaovieira@fct.unl.pt [Laboratório de Colisões Atómicas e Moleculares, CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Department of Physics, Sophia University, Tokyo 102-8554 (Japan); Department of Physical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Ferreira da Silva, F.; Almeida, D. [Laboratório de Colisões Atómicas e Moleculares, CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Hoshino, M.; Tanaka, H. [Department of Physics, Sophia University, Tokyo 102-8554 (Japan); Mogi, D. [Development and Marketing Department, New Products Development Division, Kanto Denka, Kogyo Co., Ltd., Chiyoda-ku, Tokyo 101-0063 (Japan); Tanioka, T. [Shibukawa Development Research Laboratory, New Products Development Division, Kanto Denka Kogyo Co., Ltd., Shibukawa City, Gunma 377-8513 (Japan); Mason, N. J. [Department of Physical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Hoffmann, S. V. [ISA, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Århus C (Denmark); Hubin-Franskin, M.-J.; Delwiche, J. [Départment de Chimie, Université de Liège, Institut de Chimie-Bât. B6C, allée de la Chimie 3, B-4000 Liège 1 (Belgium)

    2015-02-14

    The electronic state spectroscopy of carbonyl sulphide, COS, has been investigated using high resolution vacuum ultraviolet photoabsorption spectroscopy and electron energy loss spectroscopy in the energy range of 4.0–10.8 eV. The spectrum reveals several new features not previously reported in the literature. Vibronic structure has been observed, notably in the low energy absorption dipole forbidden band assigned to the (4π←3π) ({sup 1}Δ←{sup 1}Σ{sup +}) transition, with a new weak transition assigned to ({sup 1}Σ{sup −}←{sup 1}Σ{sup +}) reported here for the first time. The absolute optical oscillator strengths are determined for ground state to {sup 1}Σ{sup +} and {sup 1}Π transitions. Based on our recent measurements of differential cross sections for the optically allowed ({sup 1}Σ{sup +} and {sup 1}Π) transitions of COS by electron impact, the optical oscillator strength f{sub 0} value and integral cross sections (ICSs) are derived by applying a generalized oscillator strength analysis. Subsequently, ICSs predicted by the scaling are confirmed down to 60 eV in the intermediate energy region. The measured absolute photoabsorption cross sections have been used to calculate the photolysis lifetime of carbonyl sulphide in the upper stratosphere (20–50 km)

  14. Nuclear physics at the KAON factory

    International Nuclear Information System (INIS)

    Kitching, R.

    1989-05-01

    The author surveys the range of nuclear physics issues which can be addressed with a high intensity hadron facility such as the KAON factory. He discusses hadron spectroscopy, kaon scattering, hypernuclear physics, spin physics, and nuclear physics with neutrinos. Nuclear Physics is defined rather broadly, encompassing the study of strongly interacting systems, and including the structure of individual hadrons, hadron-hadron interactions, hadronic weak and electromagnetic currents (in nuclei too), conventional nuclear structure, and exotic nuclei. The basic theme is how the KAON Factory can shed light on non-perturbative QCD and its relation to conventional nuclear physics

  15. Proline adsorption on TiO 2(1 1 0) single crystal surface: A study by high resolution photoelectron spectroscopy

    Science.gov (United States)

    Fleming, G. J.; Adib, K.; Rodriguez, J. A.; Barteau, M. A.; Idriss, H.

    2007-12-01

    The surface chemistry and binding of DL-proline were investigated on the oxidised (stoichiometric) and reduced (sub-stoichiometric) TiO 2(1 1 0) single crystal surfaces. TiO 2 was chosen as the substrate as it best represents the surface of a biomedical implant, which bio-molecules interact with during the healing of bone/teeth fractures (molecular recognition). High resolution X-ray photoelectron spectroscopy (HR-XPS) studies of the C1s and N1s regions revealed that DL-proline is present in two forms (dissociated and zwitterionic) on the oxidised TiO 2 surface. On TiO 2(1 1 0) surfaces reduced by Ar + sputtering, a significant increase in the amount of zwitterionic proline at the surface was detected when compared with the oxidised surface. Study of the temperature effect showed that in both cases the zwitterionic structure was the less stable structure. The reason for its relative instability appears to be thermodynamic.

  16. High-resolution magic angle spinning 1H-NMR spectroscopy studies on the renal biochemistry in the bank vole (Clethrionomys glareolus) and the effects of arsenic (As3+) toxicity.

    Science.gov (United States)

    Griffin, J L; Walker, L; Shore, R F; Nicholson, J K

    2001-06-01

    1. High-resolution magic angle spinning (MAS) 1H-NMR spectroscopy was used to study renal metabolism and the toxicity of As3+, a common environmental contaminant, in the bank vole (Clethrionomys glareolus), a wild species of rodent. 2. Following a 14-day exposure to an environmentally relevant dose of As2O3 (28 mg kg(-1) feed), voles displayed tissue damage at autopsy. MAS 1H spectra indicated abnormal lipid profiles in these samples. 3. Tissue necrosis was also evident from measurements of the apparent diffusion coefficient of water in the intact tissue using MAS 1H diffusion-weighted spectroscopy, its first application to toxicology. 4. Comparison of renal tissue from the wood mouse (Apodemus sylvaticus) exposed to identical exposure levels of As3+ suggested that the bank vole is particularly vulnerable to As3+ toxicity.

  17. In Vivo EPR Resolution Enhancement Using Techniques Known from Quantum Computing Spin Technology.

    Science.gov (United States)

    Rahimi, Robabeh; Halpern, Howard J; Takui, Takeji

    2017-01-01

    A crucial issue with in vivo biological/medical EPR is its low signal-to-noise ratio, giving rise to the low spectroscopic resolution. We propose quantum hyperpolarization techniques based on 'Heat Bath Algorithmic Cooling', allowing possible approaches for improving the resolution in magnetic resonance spectroscopy and imaging.

  18. High-resolution electron-energy-loss spectroscopy studies of clean and hydrogen-covered tungsten (100) surfaces

    International Nuclear Information System (INIS)

    Woods, J.P.

    1986-01-01

    High-resolution (10-meV FWHM) low-energy (≤ 100eV) electrons are scattered from the tungsten (100) surface. Electron-energy-loss spectroscopy (EELS) selection rules are utilized to identify vibrational modes of the surface tungsten atoms. A 36-meV mode is measured on the c(2 X 2) thermally reconstructed surface and is modeled as an overtone of the 18-meV mode at M in the surface Brillouin zone. The superstructure of the reconstructed surface allows this mode to be observed in specular scattering. The surface tungsten atoms return to their bulk lateral positions with saturated hydrogen (β 1 phase) adsorption; and a 26-meV mode identified is due to the perpendicular vibration of the surface tungsten layers. The clean-room temperature surface does not display either low-energy vibrations and the surface is modeled as disordered. The three β 1 phase hydrogen vibrations are observed and a new vibration at 118 meV is identified. The 118-meV cross section displays characteristics of a parallel mode, but calculations show this assignment to be erroneous. There are two hydrogen atoms for each surface tungsten atom in the β 1 phase, and lattice-dynamical calculations show that the 118-meV mode is due to a hydrogen-zone edge vibration. The predicted breakdown of the parallel hydrogen vibration selection rule was not observed

  19. Silicon drift detectors for high resolution room temperature X-ray spectroscopy

    International Nuclear Information System (INIS)

    Lechner, P.; Eckbauer, S.; Hauff, D.; Strueder, L.; Gatti, E.; Longoni, A.; Sampietro, M.

    1996-01-01

    New cylindrical silicon drift detectors have been designed, fabricated and tested. They comprise an integrated on-chip amplifier system with continuous reset, on-chip voltage divider, electron accumulation layer stabilizer, large area, homogeneous radiation entrance window and a drain for surface generated leakage current. The test of the 3.5 mm 2 large individual devices, which have also been grouped together to form a sensitive area up to 21 mm 2 have shown the following spectroscopic results: at room temperature (300 K) the devices have shown a full width at half maximum at the Mn Kα line of a radioactive 55 Fe source of 225 eV with shaping times of 250 to 500 ns. At -20 C the resolution improves to 152 eV at 2 μs Gaussian shaping. At temperatures below 200 K the energy resolution is below 140 eV. With the implementation of a digital filtering system the resolution approaches 130 eV. The system was operated with count rates up to 800 000 counts per second and per readout node, still conserving the spectroscopic qualities of the detector system. (orig.)

  20. High-resolution spectroscopic probes of collisions and half-collisions

    Energy Technology Data Exchange (ETDEWEB)

    Hall, G.E. [Brookhaven National Laboratory, Upton, NY (United States)

    1993-12-01

    Research in this program explores the dynamics of gas phase collisions and photodissociation by high-resolution laser spectroscopy. Simultaneous state and velocity detection frequently permits a determination of scalar or vector correlations among products. The correlated product distributions are always more informative, and often easier to interpret than the uncorrelated product state distributions. The authors have recently built an apparatus to record transient absorption spectra with 50 nS time resolution and 20 MHz frequency resolution using a single frequency Ti:sapphire laser. The photodissociation of NCCN and C{sub 2}H{sub 5}SCN at 193 nm is discussed.

  1. Auger electron spectroscopy

    International Nuclear Information System (INIS)

    Gopalaraman, C.P.

    1975-01-01

    General features of electron excited Auger electron spectroscopy (AES) which is a nondestructive technique for the analysis of surfaces upto about 15 Adeg depth with a detection limit of about 0.1% of a monolayer. Methods of measuring the Auger electron energies and recent improvements in the instrumentation are reviewed. Typical energy resolution is found to be about 0.5% which is specially suited for the detection of light elements. It is widely used in metallurgy, surface chemistry and thin film studies. (K.B.)

  2. The Advanced X-ray Spectroscopy and Imaging Observatory (AXSIO)

    Science.gov (United States)

    White, Nicholas E.; Bookbinder, Jay; Petre, Robert; Smith, Randall; Ptak, Andrew; Tananbaum, Harvey; Garcia, Michael

    2012-01-01

    Following recommendations from the 2010 "New Worlds, New Horizons" (NWNH) report, the Advanced X-ray Spectroscopy and Imaging Observatory (AXSIO) concept streamlines the International X-ray Observatory (IXO) mission to concentrate on the science objectives that are enabled by high-resolution spectroscopic capabilities. AXSIO will trace orbits close to the event horizon of black holes, measure black hole spin for tens of supermassive black holes (SMBH), use spectroscopy to characterize outflows and the environment of AGN during their peak activity, observe 5MBH out to redshift z=6, map bulk motions and turbulence in galaxy clusters, find the missing baryons in the cosmic web using background quasars, and observe the process of cosmic feedback where black holes and supernovae inject energy on galactic and intergalactic scales. These measurements are enabled by a 0.9 sq m collecting area at 1.25 keV, a micro calorimeter array providing high-resolution spectroscopic imaging and a deployable high efficiency grating spectrometer. AXSIO delivers a 30-fold increase in effective area for high resolution spectroscopy. The key simplifications are guided by recommendations in the NWNH panel report include a reduction in focal length from 20m to 10m, eliminating the extendable optical bench, and a reduction in the instrument complement from six to two, avoiding a movable instrument platform. A focus on spectroscopic science allows the spatial resolution requirement to be relaxed to 10 arc sec (with a 5 arc sec goal). These simplifications decrease the total mission cost to under the $2B cost to NASA recommended by NWNH. AXSIO will be available to the entire astronomical community with observing allocations based on peer-review.

  3. High resolution spectroscopy of six SOCl2 isotopologues from the microwave to the far-infrared

    Science.gov (United States)

    Martin-Drumel, M. A.; Roucou, A.; Brown, G. G.; Thorwirth, S.; Pirali, O.; Mouret, G.; Hindle, F.; McCarthy, M. C.; Cuisset, A.

    2016-02-01

    Despite its potential role as an atmospheric pollutant, thionyl chloride, SOCl2, remains poorly characterized in the gas phase. In this study, the pure rotational and ro-vibrational spectra of six isotopologues of this molecule, all detected in natural abundance, have been extensively studied from the cm-wave band to the far-infrared region by means of three complementary techniques: chirped-pulse Fourier transform microwave spectroscopy, sub-millimeter-wave spectroscopy using frequency multiplier chain, and synchrotron-based far-infrared spectroscopy. Owing to the complex line pattern which results from two nuclei with non-zero spins, new, high-level quantum-chemical calculations of the hyperfine structure played a crucial role in the spectroscopic analysis. From the combined experimental and theoretical work, an accurate semi-experimental equilibrium structure (reSE) of SOCl2 has been derived. With the present data, spectroscopy-based methods can now be applied with confidence to detect and monitor this species, either by remote sensing or in situ.

  4. A study of thermaů decomposition and combustion products of disposable polyethylene terephtalate plastic using high resolution fourier transform infrared spectroscopy, selected ion flow tube mass spectrometry and gas chromatography mass spectrometry

    Czech Academy of Sciences Publication Activity Database

    Sovová, Kristýna; Ferus, Martin; Matulková, Irena; Španěl, Patrik; Dryahina, Kseniya; Dvořák, O.; Civiš, Svatopluk

    2008-01-01

    Roč. 106, 9-10 (2008), s. 1205-1214 ISSN 0026-8976 R&D Projects: GA AV ČR IAA400400705; GA ČR GA202/06/0776 Institutional research plan: CEZ:AV0Z40400503 Keywords : polyethylene terephtalate (PET) * combustion * high resolution FTIR spectroscopy * GC-MS * SIFT-MS Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.478, year: 2008

  5. Spectroscopy of element 115 decay chains

    Energy Technology Data Exchange (ETDEWEB)

    Rudolph, Dirk [Lund University, Sweden; Forsberg, U. [Lund University, Sweden; Golubev, P. [Lund University, Sweden; Sarmiento, L. G. [Lund University, Sweden; Yakushev, A. [Gesellschaft fur Schwerionenforschung (GSI), Germany; Andersson, L.-L. [Johannes Gutenberg-Universitaet Mainz, Mainz, Germany; Di Nitto, A. [Johannes Gutenberg-Universitaet Mainz, Mainz, Germany; Duehllmann, Ch. E. [Gesellschaft fur Schwerionenforschung (GSI), Germany; Gates, J. M. [Lawrence Berkeley National Laboratory (LBNL); Gregorich, K. E. [Lawrence Berkeley National Laboratory (LBNL); Gross, Carl J [ORNL; Hessberger, F. P. [Gesellschaft fur Schwerionenforschung (GSI), Germany; Herzberg, R.-D [University of Liverpool; Khuyagbaatar, J. [Johannes Gutenberg-Universitaet Mainz, Mainz, Germany; Kratz, J. V. [Johannes Gutenberg-Universitaet Mainz, Mainz, Germany; Rykaczewski, Krzysztof Piotr [ORNL; Schaedel, M. [Gesellschaft fur Schwerionenforschung (GSI), Germany; Aberg, S. [Lund University, Sweden; Ackermann, D. [GSI-Hemholtzzentrum fur Schwerionenforschung, Darmstadt, Germany; Block, M. [Gesellschaft fur Schwerionenforschung (GSI), Germany; Brand, H. [Gesellschaft fur Schwerionenforschung (GSI), Germany; Carlsson, B. G. [Lund University, Sweden; Cox, D. [University of Liverpool; Derkx, X. [Johannes Gutenberg-Universitaet Mainz, Mainz, Germany; Eberhardt, K. [Johannes Gutenberg-Universitaet Mainz, Mainz, Germany; Even, J. [Johannes Gutenberg-Universitaet Mainz, Mainz, Germany; Fahlander, C. [Lund University, Sweden; Gerl, J. [Gesellschaft fur Schwerionenforschung (GSI), Germany; Jaeger, E. [Gesellschaft fur Schwerionenforschung (GSI), Germany; Kindler, B. [Gesellschaft fur Schwerionenforschung (GSI), Germany; Krier, J. [Gesellschaft fur Schwerionenforschung (GSI), Germany; Kojouharov, I. [Gesellschaft fur Schwerionenforschung (GSI), Germany; Kurz, N. [Gesellschaft fur Schwerionenforschung (GSI), Germany; Lommel, B. [Gesellschaft fur Schwerionenforschung (GSI), Germany; Mistry, A. [University of Liverpool; Mokry, C. [Johannes Gutenberg-Universitaet Mainz, Mainz, Germany; Nitsche, H. [Lawrence Berkeley National Laboratory (LBNL); Omtvedt, J. P. [Paul Scherrer Institut, Villigen, Switzerland; Papadakis, P. [University of Liverpool; Ragnarsson, I. [Lund University, Sweden; Runke, J. [Gesellschaft fur Schwerionenforschung (GSI), Germany; Schaffner, H. [Gesellschaft fur Schwerionenforschung (GSI), Germany; Schausten, B. [Gesellschaft fur Schwerionenforschung (GSI), Germany; Thoerle-Pospiech, P. [Johannes Gutenberg-Universitaet Mainz, Mainz, Germany; Torres, T. [Gesellschaft fur Schwerionenforschung (GSI), Germany; Traut, T. [Johannes Gutenberg-Universitaet Mainz, Mainz, Germany; Trautmann, N. [Johannes Gutenberg-Universitaet Mainz, Mainz, Germany; Tuerler, A. [Paul Scherrer Institut, Villigen, Switzerland; Ward, A. [University of Liverpool; Ward, D. E. [Lund University, Sweden; Wiehl, N. [Johannes Gutenberg-Universitaet Mainz, Mainz, Germany

    2013-01-01

    A high-resolution a, X-ray and -ray coincidence spectroscopy experiment was conducted at the GSI Helmholtzzentrum fu r Schwerionenforschung. Thirty correlated a-decay chains were detected following the fusion-evaporation reaction 48Ca + 243Am. The observations are consistent with previous assignments of similar decay chains to originate from element Z = 115. The data includes first candidates of fingerprinting the decay step Mt --> Bh with characteristic X rays. For the first time, precise spectroscopy allows the derivation of excitation schemes of isotopes along the decay chains starting with elements Z > 112. Comprehensive Monte-Carlo simulations accompany the data analysis. Nuclear structure models provide a first level interpretation.

  6. Electron energy-loss spectrometry at the frontier of spatial and energy resolution

    International Nuclear Information System (INIS)

    Hofer, F.; Grogger, W.; Kothleitner, G.

    2004-01-01

    Full text: Electron energy-loss spectroscopy (EELS) in the transmission electron microscope (TEM) is now used routinely as a means of measuring chemical and structural properties of very small regions of a thin specimen. The power of this technique depends significantly on two parameters: its spatial resolution and the energy resolution available in the spectrum and in the energy-filtered TEM (EFTEM) image. The cold field emission source and the Schottky emitter have made an energy resolution below 1 eV possible and it is now feasible to obtain data with a spatial resolution close to atomic dimensions, given the right instrumentation and specimen. EFTEM allows to record elemental maps at sub-nanometre resolution, being mainly limited by chromatic and spherical aberration of the objective lens and by delocalization of inelastic scattering. Recently the possibility of correcting spherical and even chromatic aberrations of electron lenses has become a practical reality thus improving the point resolution of the TEM to below 0.1 nm. The other limiting factor for EFTEM resolution is delocalization. However, recent measurements show that resolution values in the range of 1 nm and below can be achieved, even for energy-losses of only a few eV. In terms of energy-resolution, EELS and EFTEM compare less favourably with other spectroscopies. For common TEMs, the overall energy-resolution is mainly determined by the energy width of the electron source, typically between 0.5 and 1.5 eV. For comparison, synchrotron x-ray sources and beam line spectrometers, provide a resolution well below 0.1 eV for absorption spectroscopy. During the early sixties, the energy spread of an electron beam could be reduced by incorporating an energy-filter into the illumination system, but the system lacked spatial resolution. Later developments combined high energy resolution in the range of 0.1 eV with improved spatial resolution. Recently, FEI introduced a new high resolution EELS system based

  7. Digital signal processors for cryogenic high-resolution x-ray detector readout

    International Nuclear Information System (INIS)

    Friedrich, Stephan; Drury, Owen B.; Bechstein, Sylke; Hennig, Wolfgang; Momayezi, Michael

    2003-01-01

    We are developing fast digital signal processors (DSPs) to read out superconducting high-resolution X-ray detectors with on-line pulse processing. For superconducting tunnel junction (STJ) detector read-out, the DSPs offer online filtering, rise time discrimination and pile-up rejection. Compared to analog pulse processing, DSP readout somewhat degrades the detector resolution, but improves the spectral purity of the detector response. We discuss DSP performance with our 9-channel STJ array for synchrotron-based high-resolution X-ray spectroscopy. (author)

  8. Electron spectrometer for gas-phase spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bozek, J.D.; Schlachter, A.S. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    An electron spectrometer for high-resolution spectroscopy of gaseous samples using synchrotron radiation has been designed and constructed. The spectrometer consists of a gas cell, cylindrical electrostatic lens, spherical-sector electron energy analyzer, position-sensitive detector and associated power supplies, electronics and vacuum pumps. Details of the spectrometer design are presented together with some representative spectra.

  9. Nanoscale Infrared Spectroscopy of Biopolymeric Materials

    Science.gov (United States)

    Curtis Marcott; Michael Lo; Kevin Kjoller; Craig Prater; Roshan Shetty; Joseph Jakes; Isao Noda

    2012-01-01

    Atomic Force Microscopy (AFM) and infrared (IR) spectroscopy have been combined in a single instrument capable of producing 100 nm spatial resolution IR spectra and images. This new capability enables the spectroscopic characterization of biomaterial domains at levels not previously possible. A tunable IR laser source generating pulses on the order of 10 ns was used...

  10. New frontiers of high-resolution spectroscopy: Probing the atmospheres of brown dwarfs and reflected light from exoplanets

    Science.gov (United States)

    Birkby, Jayne; Alonso, Roi; Brogi, Matteo; Charbonneau, David; Fortney, Jonathan; Hoyer, Sergio; Johnson, John Asher; de Kok, Remco; Lopez-Morales, Mercedes; Montet, Ben; Snellen, Ignas

    2015-12-01

    High-resolution spectroscopy (R>25,000) is a robust and powerful tool in the near-infrared characterization of exoplanet atmospheres. It has unambiguously revealed the presence of carbon monoxide and water in several hot Jupiters, measured the rotation rate of beta Pic b, and suggested the presence of fast day-to-night winds in one atmosphere. The method is applicable to transiting, non-transiting, and directly-imaged planets. It works by resolving broad molecular bands in the planetary spectrum into a dense, unique forest of individual lines and tracing them directly by their Doppler shift, while the star and tellurics remain essentially stationary. I will focus on two ongoing efforts to expand this technique. First, I will present new results on 51 Peg b revealing its infrared atmospheric compositional properties, then I will discuss an ongoing optical HARPS-N/TNG campaign (due mid October 2015) to obtain a detailed albedo spectrum of 51 Peg b at 387-691 nm in bins of 50nm. This spectrum would provide strong constraints on the previously claimed high albedo and potentially cloudy nature of this planet. Second, I will discuss preliminary results from Keck/NIRSPAO observations (due late September 2015) of LHS 6343 C, a 1000 K transiting brown dwarf with an M-dwarf host star. The high-resolution method converts this system into an eclipsing, double-lined spectroscopic binary, thus allowing dynamical mass and radius estimates of the components, free from astrophysical assumptions. Alongside probing the atmospheric composition of the brown dwarf, these data would provide the first model-independent study of the bulk properties of an old brown dwarf, with masses accurate to <5%, placing a crucial constraint on brown dwarf evolution models.

  11. Note: Electron energy spectroscopy mapping of surface with scanning tunneling microscope.

    Science.gov (United States)

    Li, Meng; Xu, Chunkai; Zhang, Panke; Li, Zhean; Chen, Xiangjun

    2016-08-01

    We report a novel scanning probe electron energy spectrometer (SPEES) which combines a double toroidal analyzer with a scanning tunneling microscope to achieve both topography imaging and electron energy spectroscopy mapping of surface in situ. The spatial resolution of spectroscopy mapping is determined to be better than 0.7 ± 0.2 μm at a tip sample distance of 7 μm. Meanwhile, the size of the field emission electron beam spot on the surface is also measured, and is about 3.6 ± 0.8 μm in diameter. This unambiguously demonstrates that the spatial resolution of SPEES technique can be much better than the size of the incident electron beam.

  12. Note: Electron energy spectroscopy mapping of surface with scanning tunneling microscope

    Energy Technology Data Exchange (ETDEWEB)

    Li, Meng; Xu, Chunkai, E-mail: xuck@ustc.edu.cn, E-mail: xjun@ustc.edu.cn; Zhang, Panke; Li, Zhean; Chen, Xiangjun, E-mail: xuck@ustc.edu.cn, E-mail: xjun@ustc.edu.cn [Hefei National Laboratory for Physical Science at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026 (China)

    2016-08-15

    We report a novel scanning probe electron energy spectrometer (SPEES) which combines a double toroidal analyzer with a scanning tunneling microscope to achieve both topography imaging and electron energy spectroscopy mapping of surface in situ. The spatial resolution of spectroscopy mapping is determined to be better than 0.7 ± 0.2 μm at a tip sample distance of 7 μm. Meanwhile, the size of the field emission electron beam spot on the surface is also measured, and is about 3.6 ± 0.8 μm in diameter. This unambiguously demonstrates that the spatial resolution of SPEES technique can be much better than the size of the incident electron beam.

  13. Note: Electron energy spectroscopy mapping of surface with scanning tunneling microscope

    International Nuclear Information System (INIS)

    Li, Meng; Xu, Chunkai; Zhang, Panke; Li, Zhean; Chen, Xiangjun

    2016-01-01

    We report a novel scanning probe electron energy spectrometer (SPEES) which combines a double toroidal analyzer with a scanning tunneling microscope to achieve both topography imaging and electron energy spectroscopy mapping of surface in situ. The spatial resolution of spectroscopy mapping is determined to be better than 0.7 ± 0.2 μm at a tip sample distance of 7 μm. Meanwhile, the size of the field emission electron beam spot on the surface is also measured, and is about 3.6 ± 0.8 μm in diameter. This unambiguously demonstrates that the spatial resolution of SPEES technique can be much better than the size of the incident electron beam.

  14. Comparison of high-resolution ultrasonic resonator technology and Raman spectroscopy as novel process analytical tools for drug quantification in self-emulsifying drug delivery systems.

    Science.gov (United States)

    Stillhart, Cordula; Kuentz, Martin

    2012-02-05

    Self-emulsifying drug delivery systems (SEDDS) are complex mixtures in which drug quantification can become a challenging task. Thus, a general need exists for novel analytical methods and a particular interest lies in techniques with the potential for process monitoring. This article compares Raman spectroscopy with high-resolution ultrasonic resonator technology (URT) for drug quantification in SEDDS. The model drugs fenofibrate, indomethacin, and probucol were quantitatively assayed in different self-emulsifying formulations. We measured ultrasound velocity and attenuation in the bulk formulation containing drug at different concentrations. The formulations were also studied by Raman spectroscopy. We used both, an in-line immersion probe for the bulk formulation and a multi-fiber sensor for measuring through hard-gelatin capsules that were filled with SEDDS. Each method was assessed by calculating the relative standard error of prediction (RSEP) as well as the limit of quantification (LOQ) and the mean recovery. Raman spectroscopy led to excellent calibration models for the bulk formulation as well as the capsules. The RSEP depended on the SEDDS type with values of 1.5-3.8%, while LOQ was between 0.04 and 0.35% (w/w) for drug quantification in the bulk. Similarly, the analysis of the capsules led to RSEP of 1.9-6.5% and LOQ of 0.01-0.41% (w/w). On the other hand, ultrasound attenuation resulted in RSEP of 2.3-4.4% and LOQ of 0.1-0.6% (w/w). Moreover, ultrasound velocity provided an interesting analytical response in cases where the drug strongly affected the density or compressibility of the SEDDS. We conclude that ultrasonic resonator technology and Raman spectroscopy constitute suitable methods for drug quantification in SEDDS, which is promising for their use as process analytical technologies. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Hith resolution β-spectroscopy of the isotope 36Cl using magnetic calorimeters

    International Nuclear Information System (INIS)

    Rotzinger, H.

    2006-01-01

    This thesis describes the development of a high resolution magnetic calorimeter for the detection of the β-spectrum of the isotope 36 Cl with endpoint energy of 709.6 keV. The temperature rise of a metallic paramagnetic sensor due to an energy deposition is sensed by measuring its magnetization using a sensitive DC-SQUID magnetometer. For a high detection efficiency an 4π gold absorber was used. The heat capacity and the geometry of the absorber is optimally matched by a flat sensor and an optimized meander shaped readout coil. The fabrication of the superconducting structures and the detector setup are described. In addition, the relevant noise sources, the energy resolution and the quantum efficiency are discussed. A measured 36 Cl-spectrum with an energy resolution of ΔE FWHM =750 eV is presented and compared with existing experimental and theoretical data. (orig.)

  16. Transistor reset preamplifier for high-rate high-resolution spectroscopy

    International Nuclear Information System (INIS)

    Landis, D.A.; Cork, C.P.; Madden, N.W.; Goulding, F.S.

    1981-10-01

    Pulsed transistor reset of high resolution charge sensitive preamplifiers used in cooled semiconductor spectrometers can sometimes have an advantage over pulsed light reset systems. Several versions of transistor reset spectrometers using both silicon and germanium detectors have been built. This paper discusses the advantages of the transistor reset system and illustrates several configurations of the packages used for the FET and reset transistor. It also describes the preamplifer circuit and shows the performance of the spectrometer at high rates

  17. Laser spectroscopy and dynamics of transient species

    Energy Technology Data Exchange (ETDEWEB)

    Clouthier, D.J. [Univ. of Kentucky, Lexington (United States)

    1993-12-01

    The goal of this program is to study the vibrational and electronic spectra and excited state dynamics of a number of transient sulfur and oxygen species. A variety of supersonic jet techniques, as well as high resolution FT-IR and intracavity dye laser spectroscopy, have been applied to these studies.

  18. Laser spectroscopy of molecules: State-of-the-art and possible trends

    International Nuclear Information System (INIS)

    Demtroeder, W.

    1990-01-01

    A review is given on different techniques in laser spectroscopy of atoms and molecules, which allow high spectral resolution and a very high detection sensitivity of small samples. Analytical applications of the techniques are discussed for basic scientific research, as well as for environmental problems and technical processes. Possible trends of laser spectroscopy, in particular with respect to applications in biology and medicine are shortly outlined. (orig.)

  19. [Real time diagnostics of instantaneous temperature of combustion and explosion process by modern spectroscopy].

    Science.gov (United States)

    Zhou, Xue-tie; Wang, Jun-de; Li, Yan; Liu, Da-bing

    2003-04-01

    The combustion temperature is one of the important parameters to express flame combustion and explosion characteristics. It will effectively guide the design and manufacture of new model explosives, industrial explosive materials, and weapons. The recent developments and applications of real time diagnostics of instantaneous temperature of combustion and explosion processes by modern spectroscopic methods, such as atomic absorption-emission method, atomic emission two-line spectroscopy, atomic emission multiline spectroscopy, molecular rotation-vibration spectroscopy, coherent anti-stokes Raman scattering (CARS) and plane laser-induced fluorescence (PLIF), were reviewed in this paper. The maximum time resolution of atomic absorption-emission method is 25 microseconds. The time resolution of atomic emission two-line spectroscopy can reach 0.1 microsecond. These two methods can completely suit the need of real time and instantaneous temperature diagnostics of violent explosion and flame combustion. Other methods will also provide new effective research methods for the processes and characteristics of combustion, flame and explosion.

  20. Real-time dual-comb spectroscopy with a free-running bidirectionally mode-locked fiber laser

    Science.gov (United States)

    Mehravar, S.; Norwood, R. A.; Peyghambarian, N.; Kieu, K.

    2016-06-01

    Dual-comb technique has enabled exciting applications in high resolution spectroscopy, precision distance measurements, and 3D imaging. Major advantages over traditional methods can be achieved with dual-comb technique. For example, dual-comb spectroscopy provides orders of magnitude improvement in acquisition speed over standard Fourier-transform spectroscopy while still preserving the high resolution capability. Wider adoption of the technique has, however, been hindered by the need for complex and expensive ultrafast laser systems. Here, we present a simple and robust dual-comb system that employs a free-running bidirectionally mode-locked fiber laser operating at telecommunication wavelength. Two femtosecond frequency combs (with a small difference in repetition rates) are generated from a single laser cavity to ensure mutual coherent properties and common noise cancellation. As the result, we have achieved real-time absorption spectroscopy measurements without the need for complex servo locking with accurate frequency referencing, and relatively high signal-to-noise ratio.

  1. Optical Fiber Sensing Based on Reflection Laser Spectroscopy

    Directory of Open Access Journals (Sweden)

    Gianluca Gagliardi

    2010-03-01

    Full Text Available An overview on high-resolution and fast interrogation of optical-fiber sensors relying on laser reflection spectroscopy is given. Fiber Bragg-gratings (FBGs and FBG resonators built in fibers of different types are used for strain, temperature and acceleration measurements using heterodyne-detection and optical frequency-locking techniques. Silica fiber-ring cavities are used for chemical sensing based on evanescent-wave spectroscopy. Various arrangements for signal recovery and noise reduction, as an extension of most typical spectroscopic techniques, are illustrated and results on detection performances are presented.

  2. Single-mode molecular beam epitaxy grown PbEuSeTe/PbTe buried-heterostructure diode lasers for CO2 high-resolution spectroscopy

    International Nuclear Information System (INIS)

    Feit, Z.; Kostyk, D.; Woods, R.J.; Mak, P.

    1991-01-01

    Buried-heterostructure tunable PbEuSeTe/PbTe lasers were fabricated using a two-stage molecular beam epitaxy growth procedure. Improvements in the processing technique yielded lasers that show performance characteristics significantly better than those reported previously. A continuous wave (cw) operating temperature of 203 K was realized, which is the highest cw operating temperature ever reported for lead-chalcogenides diode lasers. This laser exhibited exceptionally low-threshold currents of 1.4 mA at 90 K and 43 mA at 160 K with single-mode operation for injection currents up to 30I th and 0.18 mW power at 100 K. The usefulness of the laser, when operating cw at 200 K, was demonstrated by the ability to perform high-resolution spectroscopy of a low-pressure CO 2 gas sample

  3. IXO and the Missing Baryons: The Need High Resolution Spectroscopy

    Science.gov (United States)

    Nicastro, Fabrizio

    2009-01-01

    About half of the baryons in the Universe are currently eluding detection. Hydrodynamical simulations for the formation of Large Scale Structures (LSSs), predict that these baryons, at zmatter: the Warm-Hot Intergalactic Medium (WHIM). The WHIM has probably been progressively enriched with metals, during phases of intense starburst and AGN activity, up to possibly solar metallicity (Cen & Ostriker, 2006), and should therefore shine and/or absorb in in the soft X-ray band, via electronic transitions from the most abundant metals. The importance of detecting and studying the WHIM lies not only in the possibility of finally making a complete census of all baryons in the Universe, but also in the possibility of (a) directly measuring the metallicity history of the Universe, and so investigating on metal-transport in the Universe and galaxy-IGM, AGN-IGM feedback mechanisms, (b) directly measuring the heating history of the Universe, and so understanding the process of LSS formation and shocks, and (c) performing cosmological parameter measurements through a 3D 2-point angular correlation function analysis of the WHIM filaments. Detecting, and studying the WHIM with the current X-ray instrumentation however, is extremely challenging, because of the low sensitivity and resolution of the Chandra and XMM-Newton gratings, and the very low 'grasp' of all currently available imaging-spectrometers. IXO, instead, thanks to its large grating effective area (> 1000 cm2 at 0.5 keV) and high spectral resolution (R>2500 at 0.5 keV) will be perfectly suited to attack the problem in a systematic way. Here we demonstrate that high resolution gratings are crucial for these kind of studies and show that the IXO gratings will be able to detect more than 300-700 OVII WHIM filaments along about 70 lines of sight, in less than 0.7.

  4. Spectroscopy and reactions of vibrationally excited transient molecules

    Energy Technology Data Exchange (ETDEWEB)

    Dai, H.L. [Univ. of Pennsylvania, Philadelphia (United States)

    1993-12-01

    Spectroscopy, energy transfer and reactions of vibrationally excited transient molecules are studied through a combination of laser-based excitation techniques and efficient detection of emission from the energized molecules with frequency and time resolution. Specifically, a Time-resolved Fourier Transform Emission Spectroscopy technique has been developed for detecting dispersed laser-induced fluorescence in the IR, visible and UV regions. The structure and spectroscopy of the excited vibrational levels in the electronic ground state, as well as energy relaxation and reactions induced by specific vibronic excitations of a transient molecule can be characterized from time-resolved dispersed fluorescence in the visible and UV region. IR emissions from highly vibrational excited levels, on the other hand, reveal the pathways and rates of collision induced vibrational energy transfer.

  5. High resolution X-ray spectroscopy of laser generated plasmas

    International Nuclear Information System (INIS)

    Faenov, A.Ya.; Skobelev, I.Yu.; Rosmej, F.B.

    1999-01-01

    The application of recently developed spectroscopic instruments in laser produced plasmas with simultaneous high spectral and spatial resolution combined with high luminosity discovered new types of X-ray spectra. These new types are characterised by the disappearance of the resonance lines and the strong emission of dielectronic satellite spectra. Several types of transitions of highly charged ions are discovered which are unknown from usual sources employed in atomic physics. New theoretical models are developed and successfully applied for the interpretation and for plasma diagnostics. (orig.)

  6. High resolution X-ray spectroscopy of laser generated plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Faenov, A.Ya.; Skobelev, I.Yu. [Multicharged Ions Spectra Data Center of VNIIFTRI, Mendeleevo (Russian Federation); Rosmej, F.B. [Technische Hochschule Darmstadt (Germany). Inst. fuer Kernphysik

    1999-11-01

    The application of recently developed spectroscopic instruments in laser produced plasmas with simultaneous high spectral and spatial resolution combined with high luminosity discovered new types of X-ray spectra. These new types are characterised by the disappearance of the resonance lines and the strong emission of dielectronic satellite spectra. Several types of transitions of highly charged ions are discovered which are unknown from usual sources employed in atomic physics. New theoretical models are developed and successfully applied for the interpretation and for plasma diagnostics. (orig.) 28 refs.

  7. On-line high-resolution mass spectroscopy. Progress report, January 1, 1975--July 1, 1975

    International Nuclear Information System (INIS)

    Macfarlane, R.D.

    1975-01-01

    The report begins with a brief introduction, summary of activities, and lists of personnel, facilities used, publications, and presentations. Work on xanthine--tyrosine and sulfuric acid esters was completed in the project on 252 Cf-plasma desorption mass spectroscopy of involatile molecules. Work is continuing in the following areas: beta--gamma directional correlations and second-class currents in nuclear beta decay (mass-20 system), beta--neutrino directional correlations in mass 8, atomic mass measurements, and 252 Cf-plasma desorption mass spectroscopy of large biomolecules. (3 figures) (RWR)

  8. Electron energy-loss spectroscopy

    International Nuclear Information System (INIS)

    Egerton, R.

    1997-01-01

    As part of the commemorative series of articles to mark the hundredth anniversary of the discovery of the electron, this article discusses electron energy-loss spectroscopy. The physical and chemical properties of materials can be studied by considering the energy that electrons use as they travel through a solid, often in conjunction with other analytical techniques. The technique is often combined with electron diffraction and high-resolution imaging and can be used to provide elemental identification down to the atomic scale. (UK)

  9. Electronic states of model hydrocarbon chromophores investigated by Synchrotron Radiation Linear Dichroism (SRLD) spectroscopy on aligned samples

    DEFF Research Database (Denmark)

    Nguyen, Duy Duc; Hoffmann, Søren Vrønning; Jones, Nykola

    2010-01-01

    Conventional UV-VIS absorption spectroscopy provides information on transition energies and intensities. Linear dichroism (LD) spectroscopy on aligned molecular samples yields additional information on transition moment directions, thereby frequently leading to resolution of otherwise overlapping...

  10. Homogeneity of Gd-based garnet transparent ceramic scintillators for gamma spectroscopy

    Science.gov (United States)

    Seeley, Z. M.; Cherepy, N. J.; Payne, S. A.

    2013-09-01

    Transparent polycrystalline ceramic scintillators based on the composition Gd1.49Y1.49Ce0.02Ga2.2Al2.8O12 are being developed for gamma spectroscopy detectors. Scintillator light yield and energy resolution depend on the details of various processing steps, including powder calcination, green body formation, and sintering atmosphere. We have found that gallium sublimation during vacuum sintering creates compositional gradients in the ceramic and can degrade the energy resolution. While sintering in oxygen produces ceramics with uniform composition and little afterglow, light yields are reduced, compared to vacuum sintering. By controlling the atmosphere during the various process steps, we were able to minimize the gallium sublimation, resulting in a more homogeneous composition and improved gamma spectroscopy performance.

  11. Photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Bosch, A.

    1982-01-01

    In this work examples of the various aspects of photoelectron spectroscopy are given. The investigation was started with the development of an angle-resolved spectrometer so that the first chapters deal with angle-resolved ultra-violet photoelectron spectroscopy. To indicate the possibilities and pitfalls of the technique, in chapter II the theory is briefly reviewed. In chapter III the instrument is described. The system is based on the cylindrical mirror deflection analyzer, which is modified and improved for angle-resolved photoelectron spectroscopy. In combination with a position sensitive detector, a spectrometer is developed with which simultaneously several angle-resolved spectra can be recorded. In chapter IV, the results are reported of angle-integrated UPS experiments on dilute alloys. Using the improved energy resolution of the instrument the author was able to study the impurity states more accurately and shows that the photoemission technique has become an important tool in the study of impurities and the interactions involved. XPS and Auger results obtained from dilute alloys are presented in chapter V. It is shown that these systems are especially suited for the study of correlation effects and can provide interesting problems related to the satellite structure and the interaction of the impurity with the host. In chapter VI, the valence bands of ternary alloys are studied with UPS and compared to recent band structure calculation. The core level shifts are analyzed in a simple, thermodynamic scheme. (Auth.)

  12. High-resolution Raman Spectroscopy for the Nanostructural Characterization of Explosive Nanodiamond Precursors.

    Science.gov (United States)

    Deckert-Gaudig, Tanja; Pichot, Vincent; Spitzer, Denis; Deckert, Volker

    2017-01-18

    The specific attributes of nanodiamonds have attracted increasing interest for electronics or biomedical applications. An efficient synthetic route towards nanodiamonds is via detonation of hexolite (i.e. a mixture of TNT [2,4,6-trinitrotoluene] and RDX [1,3,5-trinitro-1,3,5-triazine]). In particular, detonation of hexolite crystallized by spray flash evaporation (SFE) yields extremely small diamonds (<4 nm). To unravel the detonation mechanism, a structural characterization of the explosives is required but is challenging due to their thermal instability. We demonstrate a combination of conventional Raman spectroscopy and tip-enhanced Raman spectroscopy (TERS) for resolving morphological and structural differences of differently prepared hexolite nanocomposites. The experiments allow for the first time a structural differentiation of individual TNT and RDX crystals and 15-20 nm sized core-shell structures, consequently providing a general approach to investigate the actual composition of mixtures on the nanometer scale. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Study of Chemical Intermediates by Means of ATR-IR Spectroscopy and Hybrid Hard- and Soft-Modelling Multivariate Curve Resolution-Alternating Least Squares

    Directory of Open Access Journals (Sweden)

    Junxiu Ma

    2017-01-01

    Full Text Available 3,5-Diamino-1,2,4-triazole (DAT became a significant energetic materials intermediate, and the study of its reaction mechanism has fundamental significance in chemistry. The aim of this study is to investigate the ability of online attenuated total reflection infrared (ATR-IR spectroscopy combined with the novel approach of hybrid hard- and soft-modelling multivariate curve resolution-alternating least squares (HS-MCR analysis to monitor and detect changes in structural properties of compound during 3,5-diamino-1,2,4-triazole (DAT synthesis processes. The subspace comparison method (SCM was used to obtain the principal components number, and then the pure IR spectra of each substance were obtained by independent component analysis (ICA and HS-MCR. The extent of rotation ambiguity was estimated from the band boundaries of feasible solutions calculated using the MCR-BANDS procedure. There were five principal components including two intermediates in the process in the results. The reaction rate constants of DAT formation reaction were also obtained by HS-MCR. HS-MCR was used to analyze spectroscopy data in chemical synthesis process, which not only increase the information domain but also reduce the ambiguities of the obtained results. This study provides the theoretical basis for the optimization of synthesis process and technology of energetic materials and provides a strong technical support of research and development of energy material with extraordinary damage effects.

  14. Study of Chemical Intermediates by Means of ATR-IR Spectroscopy and Hybrid Hard- and Soft-Modelling Multivariate Curve Resolution-Alternating Least Squares.

    Science.gov (United States)

    Ma, Junxiu; Qi, Juan; Gao, Xinyu; Yan, Chunhua; Zhang, Tianlong; Tang, Hongsheng; Li, Hua

    2017-01-01

    3,5-Diamino-1,2,4-triazole (DAT) became a significant energetic materials intermediate, and the study of its reaction mechanism has fundamental significance in chemistry. The aim of this study is to investigate the ability of online attenuated total reflection infrared (ATR-IR) spectroscopy combined with the novel approach of hybrid hard- and soft-modelling multivariate curve resolution-alternating least squares (HS-MCR) analysis to monitor and detect changes in structural properties of compound during 3,5-diamino-1,2,4-triazole (DAT) synthesis processes. The subspace comparison method (SCM) was used to obtain the principal components number, and then the pure IR spectra of each substance were obtained by independent component analysis (ICA) and HS-MCR. The extent of rotation ambiguity was estimated from the band boundaries of feasible solutions calculated using the MCR-BANDS procedure. There were five principal components including two intermediates in the process in the results. The reaction rate constants of DAT formation reaction were also obtained by HS-MCR. HS-MCR was used to analyze spectroscopy data in chemical synthesis process, which not only increase the information domain but also reduce the ambiguities of the obtained results. This study provides the theoretical basis for the optimization of synthesis process and technology of energetic materials and provides a strong technical support of research and development of energy material with extraordinary damage effects.

  15. Magnetically-coupled microcalorimeter arrays for x-ray astrophysics with sub-eV spectral resolution and large format capability Project

    Data.gov (United States)

    National Aeronautics and Space Administration — "We propose to develop a revolutionary x-ray camera for astrophysical imaging spectroscopy. High-resolution x-ray spectroscopy is a powerful tool for studying the...

  16. Neutron spin-echo spectroscopy for diffusion in crystalline solids

    International Nuclear Information System (INIS)

    Kaisermayr, M.; Rennhofer, M.; Vogl, G.; Pappas, C.; Longeville, S.

    2002-01-01

    Neutron spin-echo spectroscopy (NSE) offers unprecedented opportunities in the investigation of diffusion in crystalline systems due to its outstanding energy resolution. NSE not only enables measurements at lower diffusivities than the established techniques of neutron spectroscopy, but it also gives a very immediate access to the different time scales involved in the diffusion process. This is demonstrated in detail on the example of the binary alloy NiGa where the Ni atoms hop between regular sites on the Ni sublattice and anti-sites on the Ga sublattice. Experiments on two different NSE instruments are compared to measurements using neutron backscattering spectroscopy. The potential of NSE for the investigation of jump diffusion and experimental requirements are discussed

  17. Future projects of light kaonic atom X-ray spectroscopy

    International Nuclear Information System (INIS)

    Tatsuno, H.; Bazzi, M.; Beer, G.; Bellotti, G.; Berucci, C.; Bragadireanu, A.M.; Bosnar, D.; Cargnelli, M.; Curceanu, C.; Butt, A.D.; D’Uffizi, A.; Fiorini, C.; Ghio, F.; Guaraldo, C.; Hayano, R.S.; Iliescu, M.; Ishiwatari, T.; Iwasaki, M.; Sandri, P. Levi; Marton, J.; Okada, S.; Pietreanu, D.; Piscicchia, K.; Vidal, A. Romero; Sbardella, E.; Scordo, A.; Shi, H.; Sirghi, D.L.; Sirghi, F.; Doce, O. Vazquez; Widmann, E.; Zmeskal, J.

    2016-01-01

    X-ray spectroscopy of light kaonic atoms is a unique tool to provide precise information on the fundamental K̄N interaction at the low-energy limit and the in-medium nuclear interaction of K"−. The future experiments of kaonic deuterium strong-interaction shift and width (SIDDHARTA-2 and J-PARC E57) can extract the isospin dependent K"−N interaction at threshold. The high-resolution X-ray spectroscopy of kaonic helium with microcalorimeters (J-PARC E62) has the possibility to solve the long-standing potential-strength problem of the attractive K"−-nucleus interaction. Here, the recent experimental results and the future projects of X-ray spectroscopy of light kaonic atoms are presented.

  18. High resolution X-ray spectroscopy from the Einstein Observatory

    International Nuclear Information System (INIS)

    Winkler, P.F.; Canizares, C.R.; Clark, G.W.; Markert, T.H.; Berg, C.; Jernigan, J.G.; Schattenberg, M.L.; Massachusetts Inst. of Tech., Cambridge

    1980-01-01

    This paper is devoted to a discussion of some results which we have recently obtained from the fourth of the principal intruments on board the Einstein Observatory: M.I.T.'s Focal Plane Crystal Spectrometer (FPCS). We shall begin whith a few general remarks about X-ray spectroscopy, followed by a brief description of the FPCS instrument. The results we present here deal primarily with supernova remnants (SNRs): Puppis A and Cas A in the Galaxy, and N132D and N63A in the Large Magellanic Cloud. In addition we shall briefly discuss a member of the other class of thermal X-ray source under discussion at present; namely, to report our detection of oxygen emission from the vicinity of M87 in the Virgo Cluster. (orig.)

  19. 40 keV atomic resolution TEM

    International Nuclear Information System (INIS)

    Bell, David C.; Russo, Christopher J.; Kolmykov, Dmitry V.

    2012-01-01

    Here we present the first atomic resolution TEM imaging at 40 keV using an aberration-corrected, monochromated source TEM. Low-voltage High-Resolution Electron Microscopy (LVHREM) has several advantages, including increased cross-sections for inelastic and elastic scattering, increased contrast per electron and improved spectroscopy efficiency, decreased delocalization effects and reduced knock-on damage. Together, these often improve the contrast to damage ratio obtained on a large class of samples. Third-order aberration correction now allows us to operate the TEM at low energies while retaining atomic resolution, which was previously impossible. At low voltage the major limitation to resolution becomes the chromatic aberration limit. We show that using a source monochromator we are able to reduce the effect of chromatic aberration and achieve a usable high-resolution limit at 40 keV to less than 1 Å. We show various materials' examples of the application of the technique to image graphene and silicon, and compare atomic resolution images with electron multislice simulations. -- Highlights: ► We present the first atomic resolution images recorded at 40 keV using an aberration-corrected, monochromated TEM. ► We show information transfer measured to better than 1 Å. ► At 40 keV an aberration-corrected monochromated TEM is limited by fifth-order spherical aberration. ► We show that using a monochromator the effect of chromatic aberration is reduced to enable high resolution imaging. ► Low voltage high resolution electron microscopy will be beneficial for imaging the organic/inorganic materials interface.

  20. High-resolution molybdenum K-edge X-ray absorption spectroscopy analyzed with time-dependent density functional theory.

    Science.gov (United States)

    Lima, Frederico A; Bjornsson, Ragnar; Weyhermüller, Thomas; Chandrasekaran, Perumalreddy; Glatzel, Pieter; Neese, Frank; DeBeer, Serena

    2013-12-28

    X-ray absorption spectroscopy (XAS) is a widely used experimental technique capable of selectively probing the local structure around an absorbing atomic species in molecules and materials. When applied to heavy elements, however, the quantitative interpretation can be challenging due to the intrinsic spectral broadening arising from the decrease in the core-hole lifetime. In this work we have used high-energy resolution fluorescence detected XAS (HERFD-XAS) to investigate a series of molybdenum complexes. The sharper spectral features obtained by HERFD-XAS measurements enable a clear assignment of the features present in the pre-edge region. Time-dependent density functional theory (TDDFT) has been previously shown to predict K-pre-edge XAS spectra of first row transition metal compounds with a reasonable degree of accuracy. Here we extend this approach to molybdenum K-edge HERFD-XAS and present the necessary calibration. Modern pure and hybrid functionals are utilized and relativistic effects are accounted for using either the Zeroth Order Regular Approximation (ZORA) or the second order Douglas-Kroll-Hess (DKH2) scalar relativistic approximations. We have found that both the predicted energies and intensities are in excellent agreement with experiment, independent of the functional used. The model chosen to account for relativistic effects also has little impact on the calculated spectra. This study provides an important calibration set for future applications of molybdenum HERFD-XAS to complex catalytic systems.

  1. Cell signaling, post-translational protein modifications and NMR spectroscopy

    International Nuclear Information System (INIS)

    Theillet, Francois-Xavier; Smet-Nocca, Caroline; Liokatis, Stamatios; Thongwichian, Rossukon; Kosten, Jonas; Yoon, Mi-Kyung; Kriwacki, Richard W.; Landrieu, Isabelle; Lippens, Guy; Selenko, Philipp

    2012-01-01

    Post-translationally modified proteins make up the majority of the proteome and establish, to a large part, the impressive level of functional diversity in higher, multi-cellular organisms. Most eukaryotic post-translational protein modifications (PTMs) denote reversible, covalent additions of small chemical entities such as phosphate-, acyl-, alkyl- and glycosyl-groups onto selected subsets of modifiable amino acids. In turn, these modifications induce highly specific changes in the chemical environments of individual protein residues, which are readily detected by high-resolution NMR spectroscopy. In the following, we provide a concise compendium of NMR characteristics of the main types of eukaryotic PTMs: serine, threonine, tyrosine and histidine phosphorylation, lysine acetylation, lysine and arginine methylation, and serine, threonine O-glycosylation. We further delineate the previously uncharacterized NMR properties of lysine propionylation, butyrylation, succinylation, malonylation and crotonylation, which, altogether, define an initial reference frame for comprehensive PTM studies by high-resolution NMR spectroscopy.

  2. High resolution backscattering instruments

    International Nuclear Information System (INIS)

    Coldea, R.

    2001-01-01

    The principle of operation of indirect-geometry time-of-flight spectrometers are presented, including the IRIS at the ISIS spallation neutron source. The key features that make those types of spectrometers ideally suited for low-energy spectroscopy are: high energy resolution over a wide dynamic range, and simultaneous measurement over a large momentum transfer range provided by the wide angular detector coverage. To exemplify these features are discussed of single-crystal experiments of the spin dynamics in the two-dimensional frustrated quantum magnet Cs 2 CuCl 4 . (R.P.)

  3. Energy-modulation spectroscopy in hard X-ray region

    CERN Document Server

    Suzuki, M; Ishikawa, T

    2001-01-01

    An energy-modulation technique has been developed for XAFS spectroscopies requiring high energy resolution and high precision. Fast energy switching at 40 Hz has been achieved by adopting a Si channel-cut crystal as a second monochromator together with a piezo-driven oscillation stage, and the resulting variation in sample absorption was detected using an amplifier locked to the energy-modulation frequency. An energy-derivative XAFS spectrum was directly obtained at the Mn K-edge, and illustrated the advantages of this technique in high energy resolution and noise reduction.

  4. Comparison of infrared spectroscopy techniques: developing an efficient method for high resolution analysis of sediment properties from long records

    Science.gov (United States)

    Hahn, Annette; Rosén, Peter; Kliem, Pierre; Ohlendorf, Christian; Persson, Per; Zolitschka, Bernd; Pasado Science Team

    2010-05-01

    The analysis of sediment samples in visible to mid-infrared spectra is ideal for high-resolution records. It requires only small amounts (0.01-0.1g dry weight) of sample material and facilitates rapid and cost efficient analysis of a wide variety of biogeochemical properties on minerogenic and organic substances (Kellner et al. 1998). One of these techniques, the Diffuse Reflectance Fourier Transform Infrared Spectrometry (DRIFTS), has already been successfully applied to lake sediment from very different settings and has shown to be a promising technique for high resolution analyses of long sedimentary records on glacial-interglacial timescales (Rosén et al. 2009). However, the DRIFTS technique includes a time-consuming step where sediment samples are mixed with KBr. To assess if alternative and more rapid infrared (IR) techniques can be used, four different IR spectroscopy techniques are compared for core catcher sediment samples from Laguna Potrok Aike - an ICDP site located in southernmost South America. Partial least square (PLS) calibration models were developed using the DRIFTS technique. The correlation coefficients (R) for correlations between DRIFTS-inferred and conventionally measured biogeochemical properties show values of 0.80 for biogenic silica (BSi), 0.95 for total organic carbon (TOC), 0.91 for total nitrogen (TN), and 0.92 for total inorganic carbon (TIC). Good statistical performance was also obtained by using the Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy ATR-FTIRS technique which requires less sample preparation. Two devices were used, the full-sized Bruker Equinox 252 and the smaller and less expensive Bruker Alpha. R for ATR-FTIRS-inferred and conventionally measured biogeochemical properties were 0.87 (BSi), 0.93 (TOC), 0.90 (TN), and 0.91 (TIC) for the Alpha, and 0.78 (TOC), 0.85 (TN), 0.79 (TIC) for the Equinox 252 device. As the penetration depth of the IR beam is frequency dependent, a firm surface contact of

  5. Fast amplification system for gamma spectroscopy

    International Nuclear Information System (INIS)

    Jesus, E.F.O.; Lopes, R.T.

    1992-01-01

    An amplification system for gamma spectroscopy with high counting rates was developed. The system was constructed with operational amplifiers, and tested and compared with ORTEC conventional system, using Iridium-192 as source of 9,25 x 10 1 0 Bq of activity and NaI (Tl) detector. The constructed system showed a better performance in relation to efficiency and resolution parameters, tested before. (C.G.C.)

  6. High-resolution spectroscopy of jet-cooled CH{sub 5}{sup +}: Progress

    Energy Technology Data Exchange (ETDEWEB)

    Savage, C.; Dong, F.; Nesbitt, D. J. [JILA, University of Colorado and National Institute of Standards and Technology, and Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0440 (United States)

    2015-01-22

    Protonated methane (CH{sub 5}{sup +}) is thought to be a highly abundant molecular ion in interstellar medium, as well as a potentially bright μwave- mm wave emitter that could serve as a tracer for methane. This paper describes progress and first successful efforts to obtain a high resolution, supersonically cooled spectrum of CH{sub 5}{sup +} in the 2900-3100 cm{sup −1} region, formed in a slit supersonic discharge at low jet temperatures and with sub-Doppler resolution. Short term precision in frequency measurement (< 5 MHz on an hour time scale) is obtained from a thermally controlled optical transfer cavity servoloop locked onto a frequency stabilized HeNe laser. Long term precision (< 20 MHz day-to-day) due to pressure, temperature and humidity dependent index of refraction effects in the optical transfer cavity is also present and discussed.

  7. Medium Resolution Spectroscopy and Chemical Composition of Galactic Globular Clusters

    Directory of Open Access Journals (Sweden)

    Khamidullina D. A.

    2014-12-01

    Full Text Available We used integrated-light medium-resolution spectra of six Galactic globular clusters and model stellar atmospheres to carry out population synthesis and to derive chemical composition and age of the clusters. We used medium-resolution spectra of globular clusters published by Schiavon et al. (2005, as well as our long-slit observations with the 1.93 m telescope of the Haute Provence Observatory. The observed spectra were fitted to the theoretical ones interactively. As an initial approach, we used masses, radii and log g of stars in the clusters corresponding to the best fitting isochrones in the observed color-magnitude diagrams. The computed synthetic blanketed spectra of stars were summed according to the Chabrier mass function. To improve the determination of age and helium content, the shape and depth of the Balmer absorption lines was analysed. The abundances of Mg, Ca, C and several other elements were derived. A reasonable agreement with the literature data both in chemical composition and in age of the clusters is found. Our method might be useful for the development of stellar population models and for a better understanding of extragalactic star clusters.

  8. Medium resolution spectroscopy and chemical composition of Galactic globular clusters

    Science.gov (United States)

    Khamidullina, D. A.; Sharina, M. E.; Shimansky, V. V.; Davoust, E.

    We used integrated-light medium-resolution spectra of six Galactic globular clusters and model stellar atmospheres to carry out population synthesis and to derive chemical composition and age of the clusters. We used medium-resolution spectra of globular clusters published by Schiavon et al. (2005), as well as our long-slit observations with the 1.93 m telescope of the Haute Provence Observatory. The observed spectra were fitted to the theoretical ones interactively. As an initial approach, we used masses, radii and log g of stars in the clusters corresponding to the best fitting isochrones in the observed color-magnitude diagrams. The computed synthetic blanketed spectra of stars were summed according to the Chabrier mass function. To improve the determination of age and helium content, the shape and depth of the Balmer absorption lines was analysed. The abundances of Mg, Ca, C and several other elements were derived. A reasonable agreement with the literature data both in chemical composition and in age of the clusters is found. Our method might be useful for the development of stellar population models and for a better understanding of extragalactic star clusters.

  9. Quality control and authentication of packaged integrated circuits using enhanced-spatial-resolution terahertz time-domain spectroscopy and imaging

    Science.gov (United States)

    Ahi, Kiarash; Shahbazmohamadi, Sina; Asadizanjani, Navid

    2018-05-01

    In this paper, a comprehensive set of techniques for quality control and authentication of packaged integrated circuits (IC) using terahertz (THz) time-domain spectroscopy (TDS) is developed. By material characterization, the presence of unexpected materials in counterfeit components is revealed. Blacktopping layers are detected using THz time-of-flight tomography, and thickness of hidden layers is measured. Sanded and contaminated components are detected by THz reflection-mode imaging. Differences between inside structures of counterfeit and authentic components are revealed through developing THz transmission imaging. For enabling accurate measurement of features by THz transmission imaging, a novel resolution enhancement technique (RET) has been developed. This RET is based on deconvolution of the THz image and the THz point spread function (PSF). The THz PSF is mathematically modeled through incorporating the spectrum of the THz imaging system, the axis of propagation of the beam, and the intensity extinction coefficient of the object into a Gaussian beam distribution. As a result of implementing this RET, the accuracy of the measurements on THz images has been improved from 2.4 mm to 0.1 mm and bond wires as small as 550 μm inside the packaging of the ICs are imaged.

  10. Simultaneous broadband observations and high-resolution X-ray spectroscopy of the transitional millisecond pulsar PSR J1023+0038

    Science.gov (United States)

    Coti Zelati, F.; Campana, S.; Braito, V.; Baglio, M. C.; D'Avanzo, P.; Rea, N.; Torres, D. F.

    2018-03-01

    We report on the first simultaneous XMM-Newton, NuSTAR, and Swift observations of the transitional millisecond pulsar PSR J1023+0038 in the X-ray active state. Our multi-wavelength campaign allowed us to investigate with unprecedented detail possible spectral variability over a broad energy range in the X-rays, as well as correlations and lags among emissions in different bands. The soft and hard X-ray emissions are significantly correlated, with no lags between the two bands. On the other hand, the X-ray emission does not correlate with the UV emission. We refine our model for the observed mode switching in terms of rapid transitions between a weak propeller regime and a rotation-powered radio pulsar state, and report on a detailed high-resolution X-ray spectroscopy using all XMM-Newton Reflection Grating Spectrometer data acquired since 2013. We discuss our results in the context of the recent discoveries on the system and of the state of the art simulations on transitional millisecond pulsars, and show how the properties of the narrow emission lines in the soft X-ray spectrum are consistent with an origin within the accretion disc.

  11. Polarization contrast linear spectroscopies for cubic semiconductors under stress: macro- and micro-reflectance difference spectroscopies

    Energy Technology Data Exchange (ETDEWEB)

    Lastras-Martinez, L.F.; Balderas-Navarro, R.E.; Castro-Garcia, R.; Herrera-Jasso, R.; Lastras-Martinez, A. [Instituto de Investigacion en Comunicacion Optica, Universidad Autonoma de San Luis Potosi, Alvaro Obregon 64, 78000 San Luis Potosi, S.L.P. (Mexico); Chavira-Rodriguez, M. [Departamento de Fisico Matematicas, Universidad Autonoma de San Luis Potosi, Alvaro Obregon 64, 78000 San Luis Potosi, S.L.P. (Mexico)

    2011-01-15

    The technique to measure optical anisotropies (OA) in cubic semiconductors is termed either reflectance difference spectroscopy (RDS) or reflectance anisotropy spectroscopy (RAS). In this paper we report on the application of RDS/RAS to a number of cubic semiconductors. We discuss RD spectra of GaAs, Si, CdTe, GaP, InP and GaSb (001) surfaces, induced by an uniaxial stress applied along [110] crystal directions. We show that all RD spectra can be explained in terms of a phenomenological model based on a perturbative Hamiltonian. We further report on measurements of spatial-resolved RDS measurements of GaAs employing a newly developed micro-RD spectrometer with a spatial resolution of 5 {mu}m. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Uncovering molecular relaxation processes with nonlinear spectroscopies in the deep UV

    International Nuclear Information System (INIS)

    West, Brantley A.; Molesky, Brian P.; Giokas, Paul G.; Moran, Andrew M.

    2013-01-01

    Highlights: • We discuss the outlook for multidimensional spectroscopies in the deep UV. • Photophysics are examined in small DNA components at cryogenic temperatures. • Wavepacket motions are detected in ring-opening systems with 2DUV spectroscopy. • Measurements of electronic wavepacket motions in molecules are proposed. - Abstract: Nonlinear laser spectroscopies in the deep UV spectral range are motivated by studies of biological systems and elementary processes in small molecules. This perspective article discusses recent technical advances in this area with a particular emphasis on diffractive optic based approaches to four-wave mixing spectroscopies. Applications to two classes of systems illustrate present experimental capabilities. First, experiments on DNA components at cryogenic temperatures are used to uncover features of excited state potential energy surfaces and vibrational cooling mechanisms. Second, sub-200 fs internal conversion processes and coherent wavepacket motions are investigated in cyclohexadiene and α-terpinene. Finally, we propose new experimental directions that combine methods for producing few-cycle UV laser pulses in noble gases with incoherent detection methods (e.g., photoionization) in experiments with time resolution near a singlefemtosecond. These measurements are motivated by knowledge of extremely fast non-adiabatic dynamics and the resolution of electronic wavepacket motions in molecules

  13. electron energy-loss spectroscopy

    International Nuclear Information System (INIS)

    Egerton, R.

    1997-01-01

    As part of a commemorative series of articles to mark the hundredth anniversary of the discovery of the electron, this article describes the use of electron energy-loss spectroscopy. The physical and chemical properties of materials can be studied by considering the energy that electrons use as they travel through a solid, often in conjunction with other analytical techniques. The technique is often combined with electron diffraction and high-resolution imaging and can be used to provide elemental identification down to the atomic scale. 6 figs

  14. Time resolved spectroscopy of GRB 030501 using INTEGRAL

    DEFF Research Database (Denmark)

    Beckmann, V.; Borkowski, J.; Courvoisier, T.J.L.

    2003-01-01

    The gamma-ray instruments on-board INTEGRAL offer an unique opportunity to perform time resolved analysis on GRBs. The imager IBIS allows accurate positioning of GRBs and broad band spectral analysis, while SPI provides high resolution spectroscopy. GRB 030501 was discovered by the INTEGRAL Burst...... the Ulysses and RHESSI experiments....

  15. Radiation-induced defects in chalcogenide glasses characterized by combined optical spectroscopy, XPS and PALS methods

    International Nuclear Information System (INIS)

    Shpotyuk, O.; Kovalskiy, A.; Jain, H.; Golovchak, R.; Zurawska, A.

    2007-01-01

    Temperature-dependent optical absorption spectroscopy, high-resolution X-ray photoelectron spectroscopy and positron annihilation lifetimes spectroscopy are utilized to understand radiation-induced changes in Ge-Sb-S chalcogenide glasses. Theoretically predicted topological scheme of γ-induced coordination defect formation in stoichiometric Ge 23.5 Sb 11.8 S 64.7 glass composition is supported by these measurements. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. High resolution spectroscopy of six new extreme helium stars

    Science.gov (United States)

    Heber, U.; Jones, G.; Drilling, J. S.

    1986-01-01

    High resolution spectra of six newly discovered extreme helium stars are presented. LSS 5121 is shown to be a spectroscopical twin of the hot extreme helium star HD 160641. A preliminary LTE analysis of LSS 3184 yielded an effective temperature of 22,000 K and a surface gravity of log g = 3.2. Four stars form a new subgroup, classified by sharp-lined He I spectra and pronounced O II spectra, and it is conjectured that these lie close to the Eddington limit. The whole group of extreme helium stars apparently is inhomogeneous with respect to luminosity to mass ratio and chemical composition.

  17. Local Optical Spectroscopies for Subnanometer Spatial Resolution Chemical Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, Paul

    2014-01-20

    The evanescently coupled photon scanning tunneling microscopes (STMs) have special requirements in terms of stability and optical access. We have made substantial improvements to the stability, resolution, and noise floor of our custom-built visible-photon STM, and will translate these advances to our infrared instrument. Double vibration isolation of the STM base with a damping system achieved increased rigidity, giving high tunneling junction stability for long-duration and high-power illumination. Light frequency modulation with an optical chopper and phase-sensitive detection now enhance the signal-to-noise ratio of the tunneling junction during irradiation.

  18. High resolution X-ray spectroscopy in light antiprotonic atoms

    CERN Document Server

    Borchert, G L; Augsburger, M A; Castelli, C M; Chatellard, D; Egger, J P; El-Khoury, P; Elble, M; Gorke, H; Gotta, D; Hauser, P R; Indelicato, P J; Kirch, K; Lenz, S; Nelms, N; Rashid, K; Schult, O W B; Siems, T; Simons, L M

    2000-01-01

    At the LEAR facility, CERN, antiprotonic L alpha transitions in light elements have been investigated with a focussing crystal spectrometer. The high resolution of the experiment allowed for the first time to resolve in pH/pH the 2/sup 3/P/sub 0/ state from the close-lying states 2/sup 3/P/sub 2/, 2/sup 1/P/sub 1/, and 2/sup 3/P /sub 1/. In pD the corresponding transitions were found to be more than an order of magnitude broader. To a large extent the results for pH support the meson exchange model. (15 refs).

  19. COMPLIS: COllinear spectroscopy Measurements using a Pulsed Laser Ion Source

    CERN Multimedia

    2002-01-01

    A Pulsed Laser spectroscopy experiment has been installed for the study of hyperfine structure and isotope shift of refractory and daughter elements from ISOLDE beams. It includes decelerated ion-implantation, element-selective laser ionization, magnetic and time-of-flight mass separation. The laser spectroscopy has been performed on the desorbed atoms in a set-up at ISOLDE-3 but later on high resolution laser collinear spectroscopy with the secondary pulsed ion beam is planned for the Booster ISOLDE set-up. During the first operation time of ISOLDE-3 we restricted our experiments to Doppler-limited resonant ionization laser and $\\gamma$-$\\gamma$ nuclear spectroscopy on neutron deficient platinum isotopes of even mass number down to A~=~186 and A~=~179 respectively. These isotopes have been produced by implantation of radioactive Hg and their subsequent $\\beta$-decay.

  20. In situ scanning probe spectroscopy at nanoscale solid/liquid interfaces

    International Nuclear Information System (INIS)

    Schindler, W.; Hugelmann, M.; Hugelmann, Ph.

    2005-01-01

    Electrochemistry provides unique features for the preparation of low-dimensional structures, but in situ spectroscopy with atomic/molecular resolution at such structures is at present not well established yet. This paper shows that in situ scanning probe spectroscopy at solid/liquid interfaces can be utilized to study electronic properties at nanoscale, if appropriate conditions are applied. Tunneling spectroscopy provides information about tunneling barrier heights and electronic states in the tunneling gap, as shown on Au(1 1 1) substrates, contact spectroscopy allows for transport measurements at single nanostructures, as shown at Au/n-Si(1 1 1) nanodiodes. The influence of the electrolytic environment on spectroscopic investigations is not a principal limitation, but offers additional degrees of freedom, which allow, for example, spectroscopic studies of potential dependent surface phenomena at solid/liquid interfaces

  1. The HypHI Phase 0 experiment

    Energy Technology Data Exchange (ETDEWEB)

    Saito, T.R. [GSI Helmholtz Center for Heavy Ion Research, Planckstrasse 1, 64291 Darmstadt (Germany); Inst. fuer Kernphysik, Johannes Gutenberg Univ. Mainz, J.J.Becherweg 45, 55099 Mainz (Germany)], E-mail: t.saito@gsi.de; Bianchin, S. [GSI Helmholtz Center for Heavy Ion Research, Planckstrasse 1, 64291 Darmstadt (Germany); Borodina, O. [GSI Helmholtz Center for Heavy Ion Research, Planckstrasse 1, 64291 Darmstadt (Germany); Inst. fuer Kernphysik, Johannes Gutenberg Univ. Mainz, J.J. Becherweg 45, 55099 Mainz (Germany); Bozkurt, V.; Goekuezuem, B. [GSI Helmholtz Center for Heavy Ion Research, Planckstrasse 1, 64291 Darmstadt (Germany); Dept. of Physics, Nigde Univ., 51100 Nigde (Turkey); Kavatsyuk, M. [KVI, Zernikelaan 25, NL-9747 AA Groningen (Netherlands); Kim, E. [GSI Helmholtz Center for Heavy Ion Research, Planckstrasse 1, 64291 Darmstadt (Germany); Dept. of Physics and Astronomy, Seoul National Univ., Gwanakro Sillim-dong, Gwanak-gu, Seoul 151-747 (Korea, Republic of); Minami, S. [GSI Helmholtz Center for Heavy Ion Research, Planckstrasse 1, 64291 Darmstadt (Germany); Nakajima, D. [GSI Helmholtz Center for Heavy Ion Research, Planckstrasse 1, 64291 Darmstadt (Germany); Dept. of Physics, Graduate School of Science, Univ. of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Ozel-Tashenov, B. [GSI Helmholtz Center for Heavy Ion Research, Planckstrasse 1, 64291 Darmstadt (Germany); Rappold, C. [GSI Helmholtz Center for Heavy Ion Research, Planckstrasse 1, 64291 Darmstadt (Germany); Univ. Louis Pasteur Strasbourg, 4 rue Blaise Pascal, 67070 Strasbourg Cedex (France); Achenbach, P. [Inst. fuer Kernphysik, Johannes Gutenberg Univ. Mainz, J.J.Becherweg 45, 55099 Mainz (Germany); Ajimura, S. [Research Center for Nuclear Physics (RCNP), 10-1 Mihogaoka, Ibaraki, Osaka, 567-0047 (Japan); Aumann, T.; Caesar, C. [GSI Helmholtz Center for Heavy Ion Research, Planckstrasse 1, 64291 Darmstadt (Germany)] (and others)

    2010-04-01

    The HypHI Phase 0 experiment to demonstrate the feasibility of precise hypernuclear spectroscopy with induced reactions of heavy ion beams was performed at GSI in August and October in 2009, with a projectile of {sup 6}Li at 2 A GeV impinged on carbon graphite target with a thickness of 8 g/cm{sup 2}. The experiment mainly aims to reconstruct events of {sup 3}{sub {lambda}}H, {sup 4}{sub {lambda}}H and {sup 5}{sub {lambda}}He by observing the {pi}{sup -} decay channel. Details of the HypHI Phase 0 experiment performed in August in 2009 will be discussed.

  2. Energy-gap spectroscopy of superconductors using a tunneling microscope

    International Nuclear Information System (INIS)

    Le Duc, H.G.; Kaiser, W.J.; Stern, J.A.

    1987-01-01

    A unique scanning tunneling microscope (STM) system has been developed for spectroscopy of the superconducting energy gap. High-resolution control of tunnel current and voltage allows for measurement of superconducting properties at tunnel resistance levels 10 2 --10 3 greater than that achieved in prior work. The previously used STM methods for superconductor spectroscopy are compared to those developed for the work reported here. Superconducting energy-gap spectra are reported for three superconductors, Pb, PbBi, and NbN, over a range of tunnel resistance. The measured spectra are compared directly to theory

  3. Negative-Ion source for mass selective photodetachment photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Kaesmaier, R.; Baemann, C.; Drechsler, G.; Boesl, U.

    1995-01-01

    We have designed and constructed a negative ion source for mass spectrometry and mass selective photodetachement photoelectron spectroscopy. The characteristics of the source are high anion densities and a large variety of accessible systems. Thus, mass spectra and photoelectron spectra of large unvolatile moelcules (biomolecules), of metal-organic compounds and of molecule water clusters, especially mentioned in this article, have been measured. Combining mass spectrometry, photoelectron spectroscopy (PES) and high resolution ZEKE (zero kinetic energy)-PES (1) should make the apparatus to an ideal diagnostic tool for structural assignment

  4. High temperature and high resolution uv photoelectron spectroscopy using supersonic molecular beams

    International Nuclear Information System (INIS)

    Wang, Lai-Sheng; Reutt-Robey, J.E.; Niu, B.; Lee, Y.T.; Shirley, D.A.

    1989-07-01

    A high temperature molecular beam source with electron bombardment heating has been built for high resolution photoelectron spectroscopic studies of high temperature species and clusters. This source has the advantages of: producing an intense, continuous, seeded molecular beam, eliminating the interference of the heating mechanism from the photoelectron measurement. Coupling the source with our hemispherical electron energy analyzer, we can obtain very high resolution HeIα (584 angstrom) photoelectron spectra of high temperature species. Vibrationally-resolved photoelectron spectra of PbSe, As 2 , As 4 , and ZnCl 2 are shown to demonstrate the performance of the new source. 25 refs., 8 figs., 1 tab

  5. Present needs and future trends in neutron crystallography and spectroscopy

    International Nuclear Information System (INIS)

    Williams, J.M.

    1978-11-01

    Topics covered include: structural investigation by neutron and x-ray diffraction; sources and characteristics of neutron radiation; time-of-flight techniques; overview of neutron crystallography and structural chemistry; hydrogen bonds; transition-metal hydride complexes; actinide and lanthanide complexes; carbon-hydrogen-metal interactions in organometallic chemistry and catalysis; metal clusters and catalysis; materials with unusual solid-state properties; biochemical molecules and biological systems; electron and spin density distributions in crystalline solids; incoherent neutron-scattering spectroscopy; and quasielastic neutron scattering and high resolution spectroscopy

  6. Experimental approaches for the development of gamma spectroscopy well logging system

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jehyun; Hwang, Seho; Kim, Jongman [Korea Institute of Geoscience and Mineral Resources (124 Gwahang-no, Yuseong-gu, Daejeon, Korea) (Korea, Republic of); Won, Byeongho [Heesong Geotek Co., Ltd (146-8 Sangdaewon-dong, Jungwon-gu, Seongnam-si, Gyeonggi-do, Korea) (Korea, Republic of)

    2015-03-10

    This article discusses experimental approaches for the development of gamma spectroscopy well logging system. Considering the size of borehole sonde, we customize 2 x 2 inches inorganic scintillators and the system including high voltage, preamplifier, amplifier and multichannel analyzer (MCA). The calibration chart is made by test using standard radioactive sources so that the measured count rates are expressed by energy spectrum. Optimum high-voltage supplies and the measurement parameters of each detector are set up by experimental investigation. Also, the responses of scintillation detectors have been examined by analysis according to the distance between source and detector. Because gamma spectroscopy well logging needs broad spectrum, high sensitivity and resolution, the energy resolution and sensitivity as a function of gamma ray energy are investigated by analyzing the gamma ray activities of the radioactive sources.

  7. Space- and time-resolved raman and breakdown spectroscopy: advanced lidar techniques

    Science.gov (United States)

    Silviu, Gurlui; Marius Mihai, Cazacu; Adrian, Timofte; Oana, Rusu; Georgiana, Bulai; Dimitriu, Dan

    2018-04-01

    DARLIOES - the advanced LIDAR is based on space- and time-resolved RAMAN and breakdown spectroscopy, to investigate chemical and toxic compounds, their kinetics and physical properties at high temporal (2 ns) and spatial (1 cm) resolution. The high spatial and temporal resolution are needed to resolve a large variety of chemical troposphere compounds, emissions from aircraft, the self-organization space charges induced light phenomena, temperature and humidity profiles, ice nucleation, etc.

  8. Laser-produced lithium plasma as a narrow-band extended ultraviolet radiation source for photoelectron spectroscopy.

    Science.gov (United States)

    Schriever, G; Mager, S; Naweed, A; Engel, A; Bergmann, K; Lebert, R

    1998-03-01

    Extended ultraviolet (EUV) emission characteristics of a laser-produced lithium plasma are determined with regard to the requirements of x-ray photoelectron spectroscopy. The main features of interest are spectral distribution, photon flux, bandwidth, source size, and emission duration. Laser-produced lithium plasmas are characterized as emitters of intense narrow-band EUV radiation. It can be estimated that the lithium Lyman-alpha line emission in combination with an ellipsoidal silicon/molybdenum multilayer mirror is a suitable EUV source for an x-ray photoelectron spectroscopy microscope with a 50-meV energy resolution and a 10-mum lateral resolution.

  9. Performance of high-resolution position-sensitive detectors developed for storage-ring decay experiments

    International Nuclear Information System (INIS)

    Yamaguchi, T.; Suzaki, F.; Izumikawa, T.; Miyazawa, S.; Morimoto, K.; Suzuki, T.; Tokanai, F.; Furuki, H.; Ichihashi, N.; Ichikawa, C.; Kitagawa, A.; Kuboki, T.; Momota, S.; Nagae, D.; Nagashima, M.; Nakamura, Y.; Nishikiori, R.; Niwa, T.; Ohtsubo, T.; Ozawa, A.

    2013-01-01

    Highlights: • Position-sensitive detectors were developed for storage-ring decay spectroscopy. • Fiber scintillation and silicon strip detectors were tested with heavy ion beams. • A new fiber scintillation detector showed an excellent position resolution. • Position and energy detection by silicon strip detectors enable full identification. -- Abstract: As next generation spectroscopic tools, heavy-ion cooler storage rings will be a unique application of highly charged RI beam experiments. Decay spectroscopy of highly charged rare isotopes provides us important information relevant to the stellar conditions, such as for the s- and r-process nucleosynthesis. In-ring decay products of highly charged RI will be momentum-analyzed and reach a position-sensitive detector set-up located outside of the storage orbit. To realize such in-ring decay experiments, we have developed and tested two types of high-resolution position-sensitive detectors: silicon strips and scintillating fibers. The beam test experiments resulted in excellent position resolutions for both detectors, which will be available for future storage-ring experiments

  10. CeBr3 as a room-temperature, high-resolution gamma-ray detector

    International Nuclear Information System (INIS)

    Guss, Paul; Reed, Michael; Yuan Ding; Reed, Alexis; Mukhopadhyay, Sanjoy

    2009-01-01

    Cerium bromide (CeBr 3 ) has become a material of interest in the race for high-resolution gamma-ray spectroscopy at room temperature. This investigation quantified the potential of CeBr 3 as a room-temperature, high-resolution gamma-ray detector. The performance of CeBr 3 crystals was compared to other scintillation crystals of similar dimensions and detection environments. Comparison of self-activity of CeBr 3 to cerium-doped lanthanum tribromide (LaBr 3 :Ce) was performed. Energy resolution and relative intrinsic efficiency were measured and are presented.

  11. Comparative study of the iron cores in human liver ferritin, its pharmaceutical models and ferritin in chicken liver and spleen tissues using Moessbauer spectroscopy with a high velocity resolution

    Energy Technology Data Exchange (ETDEWEB)

    Alenkina, I.V.; Semionkin, V.A. [Faculty of Physical Techniques and Devices for Quality Control, Ural Federal University, Ekaterinburg (Russian Federation); Faculty of Experimental Physics, Ural Federal University, Ekaterinburg (Russian Federation); Oshtrakh, M.I. [Faculty of Physical Techniques and Devices for Quality Control, Ural Federal University, Ekaterinburg (Russian Federation); Klepova, Yu.V.; Sadovnikov, N.V. [Faculty of Physiology and Biotechnology, Ural State Agricultural Academy, Ekaterinburg, (Russian Federation); Dubiel, S.M. [Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Krakow (Poland)

    2011-07-01

    Full text: Application of the Moessbauer spectroscopy with a high velocity resolution (4096 channels) for a study of iron-containing biological species is of great interest. Improving the velocity resolution allows to reveal small variations in the electronic structure of iron, and to obtain hyperfine parameters with smaller instrumental (systematic) errors in comparison with measurements performed in 512 channels or less. It also allows a more reliable fitting of complex Moessbauer spectra. In the present study the Moessbauer spectroscopy with the high velocity resolution was used for a comparative analysis of ferritin and its pharmaceutically important models as well as iron storage proteins in a chicken liver and a spleen. The ferritin, an iron storage protein, consists of a nanosized polynuclear iron core formed by a ferrihydrite surrounded by a protein shell. Iron-polysaccharide complexes contain {beta}-FeOOH iron cores coated with various polysaccharides. The Moessbauer spectra of the ferritin and commercial products Imferon, MaltoferR and Ferrum Lek as well as those of the chicken liver and spleen tissues were measured with the high velocity resolution at 295 and 90 K. They were fitted using two models: (1) with a homogeneous iron core (an approximation using one quadrupole doublet), and (2) with a heterogeneous iron core (an approximation using several quadrupole doublets). The model (1) can be used as the first approximation fit to visualize small variations in the hyperfine parameters. Using this model, differences in the Moessbauer hyperfine parameters were obtained in both 295 and 90 K Moessbauer spectra. However, this model was considered as a rough approximation because the measured Moessbauer spectra had non-Lorentzian line shapes. Therefore, the spectra of the ferritin, Imferon, MaltoferR and Ferrum Lek as well as those of the liver and spleen tissues were fitted again using the model (2) in which a different number of the quadrupole doublets was

  12. INTERMEDIATE RESOLUTION NEAR-INFRARED SPECTROSCOPY OF 36 LATE M DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Deshpande, R. [Center for Exoplanets and Habitable Worlds, The Pennsylvania State University, University Park, PA 16802 (United States); Martin, E. L.; Zapatero Osorio, M. R.; Bouy, H. [Centro de Astrobiologia (CSIC-INTA), Ctra. Ajalvir km 4, E-28850 Torrejon de Ardoz, Madrid (Spain); Montgomery, M. M. [Department of Physics, University of Central Florida, P.O. Box 162385, Orlando, FL 32816-2385 (United States); Rodler, F. [Institut de Ciencies de l' Espai (CSIC-IEEC), Campus UAB, Torre C5-parell-2a planta, E-08193 Bellaterra (Spain); Del Burgo, C. [Instituto Nacional de Astrofisica, Optica y Electronica (INAOE), Aptdo. Postal 51 y 216, 72000 Puebla, Pue. (Mexico); Phan Bao, N. [Department of Physics, HCMIU, Vietnam National University Administrative Building, Block 6, Linh Trung Ward, Thu Duc District, HCM (Viet Nam); Lyubchik, Y.; Pavlenko, Y. [Main Astronomical Observatory of Academy of Sciences of Ukraine, Zabolotnoho, 27, Kyiv 03680 (Ukraine); Tata, R., E-mail: rohit@psu.edu [Instituto de Astrofisica de Canarias, c/Via Lactea, s/n, E-38205 La Laguna, Tenerife, Islas Canarias (Spain)

    2012-10-01

    We present observations of 36 late M dwarfs obtained with the Keck II/NIRSPEC in the J band at a resolution of {approx}20,000. We have measured projected rotational velocities, absolute radial velocities, and pseudo-equivalent widths of atomic lines. Twelve of our targets did not have previous measurements in the literature. For the other 24 targets, we confirm previously reported measurements. We find that 13 stars from our sample have v sin i below our measurement threshold (12 km s{sup -1}) whereas four of our targets are fast rotators (v sin i > 30 km s{sup -1}). As fast rotation causes spectral features to be washed out, stars with low projected rotational velocities are sought for radial velocity surveys. At our intermediate spectral resolution, we have confirmed the identification of neutral atomic lines reported in McLean et al. We also calculated pseudo-equivalent widths of 12 atomic lines. Our results confirm that the pseudo-equivalent width of K I lines is strongly dependent on spectral types. We observe that the pseudo-equivalent width of Fe I and Mn I lines remains fairly constant with later spectral type. We suggest that these lines are particularly suitable for deriving metallicities for late M dwarfs.

  13. THz Electron Paramagnetic Resonance / THz Spectroscopy at BESSY II

    Directory of Open Access Journals (Sweden)

    Karsten Holldack

    2016-02-01

    Full Text Available The THz beamline at BESSY II employs high power broadband femto- to picosecond long THz pulses for magneto-optical THz and FIR studies. A newly designed set-up exploits the unique properties of ultrashort THz pulses generated by laser-energy modulation of electron bunches in the storage ring or alternatively from compressed electron bunches. Experiments from 0.15 to 5 THz (~ 5 – 150 cm-1 may be conducted at a user station equipped with a fully evacuated high resolution FTIR spectrometer (0.0063 cm-1, lHe cooled bolometer detectors, a THz TDS set-up and different sample environments, including a superconducting high field magnet (+11 T - 11T with variable temperature insert (1.5 K – 300 K, a sample cryostat and a THz attenuated total reflection chamber.  Main applications are Frequency Domain Fourier transform THz-Electron Paramagnetic Resonance (FD-FT THz-EPR, THz-FTIR spectroscopy and optical pump - THz probe time domain spectroscopy (TDS, with sub-ps time resolution.

  14. Adaptive real-time dual-comb spectroscopy

    OpenAIRE

    Ideguchi, Takuro; Poisson, Antonin; Guelachvili, Guy; Picque, Nathalie; Hansch, Theodor W.

    2014-01-01

    The spectrum of a laser frequency comb consists of several hundred thousand equally spaced lines over a broad spectral bandwidth. Such frequency combs have revolutionized optical frequency metrology and they now hold much promise for significant advances in a growing number of applications including molecular spectroscopy. Despite an intriguing potential for the measurement of molecular spectra spanning tens of nanometres within tens of microseconds at Doppler-limited resolution, the developm...

  15. Radiation-induced defects in chalcogenide glasses characterized by combined optical spectroscopy, XPS and PALS methods

    Energy Technology Data Exchange (ETDEWEB)

    Shpotyuk, O. [Institute of Physics of Jan Dlugosz University, 13/15 al. Armii Krajowej, Czestochowa 42201 (Poland); Lehigh University, 5 East Packer Avenue, Bethlehem, PA 18015-3195 (United States); Lviv Institute of Materials of SRC ' ' Carat' ' , 202, Stryjska str., 79031 Lviv (Ukraine); Kovalskiy, A.; Jain, H. [Lehigh University, 5 East Packer Avenue, Bethlehem, PA 18015-3195 (United States); Golovchak, R. [Lehigh University, 5 East Packer Avenue, Bethlehem, PA 18015-3195 (United States); Lviv Institute of Materials of SRC ' ' Carat' ' , 202, Stryjska str., 79031 Lviv (Ukraine); Zurawska, A. [Opole University of Technology, 75, Ozimska str., Opole 45370 (Poland)

    2007-03-15

    Temperature-dependent optical absorption spectroscopy, high-resolution X-ray photoelectron spectroscopy and positron annihilation lifetimes spectroscopy are utilized to understand radiation-induced changes in Ge-Sb-S chalcogenide glasses. Theoretically predicted topological scheme of {gamma}-induced coordination defect formation in stoichiometric Ge{sub 23.5}Sb{sub 11.8}S{sub 64.7} glass composition is supported by these measurements. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Femtosecond Broadband Stimulated Raman Spectroscopy

    International Nuclear Information System (INIS)

    Lee, Soo-Y; Yoon, Sagwoon; Mathies, Richard A

    2006-01-01

    Femtosecond broadband stimulated Raman spectroscopy (FSRS) is a new technique where a narrow bandwidth picosecond Raman pump pulse and a red-shifted broadband femtosecond Stokes probe pulse (with or without time delay between the pulses) act on a sample to produce a high resolution Raman gain spectrum with high efficiency and speed, free from fluorescence background interference. It can reveal vibrational structural information and dynamics of stationary or transient states. Here, the quantum picture for femtosecond broadband stimulated Raman spectroscopy (FSRS) is used to develop the semiclassical coupled wave theory of the phenomenon and to derive an expression for the measurable Raman gain in FSRS. The semiclassical theory is applied to study the dependence of lineshapes in FSRS on the pump-probe time delay and to deduce vibrational dephasing times in cyclohexane in the ground state

  17. Direct band gap measurement of Cu(In,Ga)(Se,S)2 thin films using high-resolution reflection electron energy loss spectroscopy

    International Nuclear Information System (INIS)

    Heo, Sung; Lee, Hyung-Ik; Park, Jong-Bong; Ko, Dong-Su; Chung, JaeGwan; Kim, KiHong; Kim, Seong Heon; Yun, Dong-Jin; Ham, YongNam; Park, Gyeong Su; Song, Taewon; Lee, Dongho; Nam, Junggyu; Kang, Hee Jae; Choi, Pyung-Ho; Choi, Byoung-Deog

    2015-01-01

    To investigate the band gap profile of Cu(In 1−x ,Ga x )(Se 1−y S y ) 2 of various compositions, we measured the band gap profile directly as a function of in-depth using high-resolution reflection energy loss spectroscopy (HR-REELS), which was compared with the band gap profile calculated based on the auger depth profile. The band gap profile is a double-graded band gap as a function of in-depth. The calculated band gap obtained from the auger depth profile seems to be larger than that by HR-REELS. Calculated band gaps are to measure the average band gap of the spatially different varying compositions with respect to considering its void fraction. But, the results obtained using HR-REELS are to be affected by the low band gap (i.e., out of void) rather than large one (i.e., near void). Our findings suggest an analytical method to directly determine the band gap profile as function of in-depth

  18. Fluorine substitution and nonconventional OH...pi intramolecular bond: high-resolution UV spectroscopy and ab initio calculations of 2-(p-fluorophenyl)ethanol.

    Science.gov (United States)

    Karaminkov, Rosen; Chervenkov, Sotir; Neusser, Hans J

    2008-05-21

    The para-fluorinated flexible neurotransmitter analogue 2-phenylethanol has been investigated by highly resolved resonance-enhanced two-photon ionisation two-colour UV laser spectroscopy with mass resolution and ab initio structural optimisations and energy calculations. Two stable conformations, gauche and anti, separated by a high potential barrier have been identified in the cold molecular beam by rotational analysis of the vibronic band structures. The theoretically predicted higher-lying conformations most likely relax to these two structures during the adiabatic expansion. The lowest-energy gauche conformer is stabilised by an intramolecular nonconventional OH...pi-type hydrogen bond between the terminal OH group of the side chain and the pi electrons of the phenyl ring. The good agreement between the experimental and theoretical results demonstrates that even the substitution with a strongly electronegative atom of 2-phenylethanol at the para position has no noticeable effect on the strength and orientation of the OH...pi bond.

  19. Application of high-resolution photoelectron spectroscopy: Vibrational resolved C 1s and O 1s spectra of CO adsorbed on Ni(100)

    Energy Technology Data Exchange (ETDEWEB)

    Foehlisch, A.; Nilsson, A.; Martensson, N. [Uppsala Univ. (Sweden)] [and others

    1997-04-01

    There are various effects which determine the line shape of a core-level electron spectrum. These are due to the finite life-time of the core hole, inelastic scattering of the outgoing photoelectron, electronic shake-up and shake-off processes and vibrational excitations. For free atoms and molecules the different contributions to the observed line shapes can often be well separated. For solids, surfaces and adsorbates the line shapes are in general much broader and it has in the past been assumed that no separation of the various contributions can be made. In the present report the authors will show that this is indeed not the case. Surprisingly, the vibrational fine structure of CO adsorbed on Ni(100) can be resolved in the C 1s and O 1s electron spectra. This was achieved by the combination of highly monochromatized soft X-rays from B18.0 with a high resolution Scienta 200 mm photoelectron spectrometer. X-ray photoelectron spectroscopy (XPS) with tunable excitation energy yields as a core level spectroscopy atomic and site-specific information. The presented measurements allow for a determination of internuclear distances and potential energy curves in corehole ionized adsorbed molecules. The authors analysis of the c(2x2) phase CO/Ni(100) on {open_quotes}top{close_quotes} yielded a vibrational splitting of 217 +/- 2 meV for C 1s ionization. For O 1s ionization a splitting of 173 +/- 8 meV was found.

  20. Imaging Optical Frequencies with 100 μ Hz Precision and 1.1 μ m Resolution

    Science.gov (United States)

    Marti, G. Edward; Hutson, Ross B.; Goban, Akihisa; Campbell, Sara L.; Poli, Nicola; Ye, Jun

    2018-03-01

    We implement imaging spectroscopy of the optical clock transition of lattice-trapped degenerate fermionic Sr in the Mott-insulating regime, combining micron spatial resolution with submillihertz spectral precision. We use these tools to demonstrate atomic coherence for up to 15 s on the clock transition and reach a record frequency precision of 2.5 ×10-19. We perform the most rapid evaluation of trapping light shifts and record a 150 mHz linewidth, the narrowest Rabi line shape observed on a coherent optical transition. The important emerging capability of combining high-resolution imaging and spectroscopy will improve the clock precision, and provide a path towards measuring many-body interactions and testing fundamental physics.