WorldWideScience

Sample records for resolution dynamic ct

  1. High-resolution dynamic imaging and quantitative analysis of lung cancer xenografts in nude mice using clinical PET/CT.

    Science.gov (United States)

    Wang, Ying Yi; Wang, Kai; Xu, Zuo Yu; Song, Yan; Wang, Chu Nan; Zhang, Chong Qing; Sun, Xi Lin; Shen, Bao Zhong

    2017-08-08

    Considering the general application of dedicated small-animal positron emission tomography/computed tomography is limited, an acceptable alternative in many situations might be clinical PET/CT. To estimate the feasibility of using clinical PET/CT with [F-18]-fluoro-2-deoxy-D-glucose for high-resolution dynamic imaging and quantitative analysis of cancer xenografts in nude mice. Dynamic clinical PET/CT scans were performed on xenografts for 60 min after injection with [F-18]-fluoro-2-deoxy-D-glucose. Scans were reconstructed with or without SharpIR method in two phases. And mice were sacrificed to extracting major organs and tumors, using ex vivo γ-counting as a reference. Strikingly, we observed that the image quality and the correlation between the all quantitive data from clinical PET/CT and the ex vivo counting was better with the SharpIR reconstructions than without. Our data demonstrate that clinical PET/CT scanner with SharpIR reconstruction is a valuable tool for imaging small animals in preclinical cancer research, offering dynamic imaging parameters, good image quality and accurate data quatification.

  2. Dynamic (4D) CT perfusion offers simultaneous functional and anatomical insights into pulmonary embolism resolution

    Energy Technology Data Exchange (ETDEWEB)

    Mirsadraee, Saeed, E-mail: saeed.mirsadraee@ed.ac.uk [Clinical Research Imaging Centre, Queen' s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ (United Kingdom); Reid, John H.; Connell, Martin [Clinical Research Imaging Centre, Queen' s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ (United Kingdom); MacNee, William; Hirani, Nikhil [The Queen' s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ (United Kingdom); Murchison, John T. [Department of Radiology, Royal Infirmary of Edinburgh, 51 Little France Crescent, Edinburgh EH16 4SA (United Kingdom); Beek, Edwin J. van [Clinical Research Imaging Centre, Queen' s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ (United Kingdom)

    2016-10-15

    Objective: Resolution and long-term functional effects of pulmonary emboli are unpredictable. This study was carried out to assess persisting vascular bed perfusion abnormalities and resolution of arterial thrombus in patients with recent pulmonary embolism (PE). Methods and materials: 26 Patients were prospectively evaluated by dynamic (4D) contrast enhanced CT perfusion dynamic pulmonary CT perfusion. Intermittent volume imaging was performed every 1.5–1.7 s during breath-hold and perfusion values were calculated by maximum-slope technique. Thrombus load (modified Miller score; MMS) and ventricular diameter were determined. Perfusion maps were visually scored and correlated with residual endoluminal filling defects. Results: The mean initial thrombus load was 13.1 ± 4.6 MMS (3–16), and 1.2 ± 2.1 MMS (0–8) at follow up. From the 24 CTPs with diagnostic quality perfusion studies, normal perfusion was observed in 7 (29%), and mildly-severely abnormal in 17 (71%). In 15 patients with no residual thrombus on follow up CTPA, normal perfusion was observed in 6, and abnormal perfusion in 9. Perfusion was abnormal in all patients with residual thrombus on follow up CTPA. Pulmonary perfusion changes were classified as reduced (n = 4), delayed (systemic circulation pattern; n = 5), and absent (no-flow; n = 5). The right ventricle was dilated in 12/25 (48%) at presentation, and normal in all 26 follow up scans. Weak correlation was found between initial ventricular dilatation and perfusion abnormality at follow up (r = 0.15). Conclusions: Most patients had substantial perfusion abnormality at 3–6 months post PE. Abnormal perfusion patterns were frequently observed in patients and in regions with no corresponding evidence of residual thrombus on CTPA. Some defects exhibit delayed, presumed systemic, enhancement (which we have termed ‘stunned’ lung). CT perfusion provides combined anatomical and functional information about PE resolution.

  3. High resolution extremity CT for biomechanics modeling

    International Nuclear Information System (INIS)

    Ashby, A.E.; Brand, H.; Hollerbach, K.; Logan, C.M.; Martz, H.E.

    1995-01-01

    With the advent of ever more powerful computing and finite element analysis (FEA) capabilities, the bone and joint geometry detail available from either commercial surface definitions or from medical CT scans is inadequate. For dynamic FEA modeling of joints, precise articular contours are necessary to get appropriate contact definition. In this project, a fresh cadaver extremity was suspended in parafin in a lucite cylinder and then scanned with an industrial CT system to generate a high resolution data set for use in biomechanics modeling

  4. High resolution extremity CT for biomechanics modeling

    Energy Technology Data Exchange (ETDEWEB)

    Ashby, A.E.; Brand, H.; Hollerbach, K.; Logan, C.M.; Martz, H.E.

    1995-09-23

    With the advent of ever more powerful computing and finite element analysis (FEA) capabilities, the bone and joint geometry detail available from either commercial surface definitions or from medical CT scans is inadequate. For dynamic FEA modeling of joints, precise articular contours are necessary to get appropriate contact definition. In this project, a fresh cadaver extremity was suspended in parafin in a lucite cylinder and then scanned with an industrial CT system to generate a high resolution data set for use in biomechanics modeling.

  5. Automated method for relating regional pulmonary structure and function: integration of dynamic multislice CT and thin-slice high-resolution CT

    Science.gov (United States)

    Tajik, Jehangir K.; Kugelmass, Steven D.; Hoffman, Eric A.

    1993-07-01

    We have developed a method utilizing x-ray CT for relating pulmonary perfusion to global and regional anatomy, allowing for detailed study of structure to function relationships. A thick slice, high temporal resolution mode is used to follow a bolus contrast agent for blood flow evaluation and is fused with a high spatial resolution, thin slice mode to obtain structure- function detail. To aid analysis of blood flow, we have developed a software module, for our image analysis package (VIDA), to produce the combined structure-function image. Color coded images representing blood flow, mean transit time, regional tissue content, regional blood volume, regional air content, etc. are generated and imbedded in the high resolution volume image. A text file containing these values along with a voxel's 3-D coordinates is also generated. User input can be minimized to identifying the location of the pulmonary artery from which the input function to a blood flow model is derived. Any flow model utilizing one input and one output function can be easily added to a user selectable list. We present examples from our physiologic based research findings to demonstrate the strengths of combining dynamic CT and HRCT relative to other scanning modalities to uniquely characterize pulmonary normal and pathophysiology.

  6. Improved accuracy of quantitative parameter estimates in dynamic contrast-enhanced CT study with low temporal resolution

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sun Mo, E-mail: Sunmo.Kim@rmp.uhn.on.ca [Radiation Medicine Program, Princess Margaret Hospital/University Health Network, Toronto, Ontario M5G 2M9 (Canada); Haider, Masoom A. [Department of Medical Imaging, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada and Department of Medical Imaging, University of Toronto, Toronto, Ontario M5G 2M9 (Canada); Jaffray, David A. [Radiation Medicine Program, Princess Margaret Hospital/University Health Network, Toronto, Ontario M5G 2M9, Canada and Department of Radiation Oncology, University of Toronto, Toronto, Ontario M5G 2M9 (Canada); Yeung, Ivan W. T. [Radiation Medicine Program, Princess Margaret Hospital/University Health Network, Toronto, Ontario M5G 2M9 (Canada); Department of Medical Physics, Stronach Regional Cancer Centre, Southlake Regional Health Centre, Newmarket, Ontario L3Y 2P9 (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario M5G 2M9 (Canada)

    2016-01-15

    Purpose: A previously proposed method to reduce radiation dose to patient in dynamic contrast-enhanced (DCE) CT is enhanced by principal component analysis (PCA) filtering which improves the signal-to-noise ratio (SNR) of time-concentration curves in the DCE-CT study. The efficacy of the combined method to maintain the accuracy of kinetic parameter estimates at low temporal resolution is investigated with pixel-by-pixel kinetic analysis of DCE-CT data. Methods: The method is based on DCE-CT scanning performed with low temporal resolution to reduce the radiation dose to the patient. The arterial input function (AIF) with high temporal resolution can be generated with a coarsely sampled AIF through a previously published method of AIF estimation. To increase the SNR of time-concentration curves (tissue curves), first, a region-of-interest is segmented into squares composed of 3 × 3 pixels in size. Subsequently, the PCA filtering combined with a fraction of residual information criterion is applied to all the segmented squares for further improvement of their SNRs. The proposed method was applied to each DCE-CT data set of a cohort of 14 patients at varying levels of down-sampling. The kinetic analyses using the modified Tofts’ model and singular value decomposition method, then, were carried out for each of the down-sampling schemes between the intervals from 2 to 15 s. The results were compared with analyses done with the measured data in high temporal resolution (i.e., original scanning frequency) as the reference. Results: The patients’ AIFs were estimated to high accuracy based on the 11 orthonormal bases of arterial impulse responses established in the previous paper. In addition, noise in the images was effectively reduced by using five principal components of the tissue curves for filtering. Kinetic analyses using the proposed method showed superior results compared to those with down-sampling alone; they were able to maintain the accuracy in the

  7. High-resolution dynamic angiography using flat-panel volume CT: feasibility demonstration for neuro and lower limb vascular applications

    International Nuclear Information System (INIS)

    Mehndiratta, Amit; Rabinov, James D.; Grasruck, Michael; Liao, Eric C.; Crandell, David; Gupta, Rajiv

    2015-01-01

    This paper evaluates a prototype flat-panel volume CT (fpVCT) for dynamic in vivo imaging in a variety of neurovascular and lower limb applications. Dynamic CTA was performed on 12 patients (neuro = 8, lower limb = 4) using an fpVCT with 120 kVp, 50 mA, rotation time varying from 8 to 19 s, and field of view of 25 x 25 x 18 cm 3 . Four-dimensional data sets (i.e. 3D images over time) were reconstructed and reviewed. Dynamic CTA demonstrated sufficient spatio-temporal resolution to elucidate first-pass and recirculation dynamics of contrast bolus through neurovasclar pathologies and phasic blood flow though lower-limb vasculature and grafts. The high spatial resolution of fpVCT resulted in reduced partial volume and metal beam-hardening artefacts. This facilitated assessment of vascular lumen in the presence of calcified plaque and evaluation of fractures, especially in the presence of fixation hardware. Evaluation of arteriovenous malformation using dynamic fpVCT angiography was of limited utility. Dynamic CTA using fpVCT can visualize time-varying phenomena in neuro and lower limb vascular applications and has sufficient diagnostic imaging quality to evaluate a number of pathologies affecting these regions. (orig.)

  8. Ultra-high resolution flat-panel volume CT: fundamental principles, design architecture, and system characterization

    International Nuclear Information System (INIS)

    Gupta, Rajiv; Brady, Tom; Grasruck, Michael; Suess, Christoph; Schmidt, Bernhard; Stierstorfer, Karl; Popescu, Stefan; Flohr, Thomas; Bartling, Soenke H.

    2006-01-01

    Digital flat-panel-based volume CT (VCT) represents a unique design capable of ultra-high spatial resolution, direct volumetric imaging, and dynamic CT scanning. This innovation, when fully developed, has the promise of opening a unique window on human anatomy and physiology. For example, the volumetric coverage offered by this technology enables us to observe the perfusion of an entire organ, such as the brain, liver, or kidney, tomographically (e.g., after a transplant or ischemic event). By virtue of its higher resolution, one can directly visualize the trabecular structure of bone. This paper describes the basic design architecture of VCT. Three key technical challenges, viz., scatter correction, dynamic range extension, and temporal resolution improvement, must be addressed for successful implementation of a VCT scanner. How these issues are solved in a VCT prototype and the modifications necessary to enable ultra-high resolution volumetric scanning are described. The fundamental principles of scatter correction and dose reduction are illustrated with the help of an actual prototype. The image quality metrics of this prototype are characterized and compared with a multi-detector CT (MDCT). (orig.)

  9. Ultra-high resolution flat-panel volume CT: fundamental principles, design architecture, and system characterization

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Rajiv; Brady, Tom [Massachusetts General Hospital, Department of Radiology, Founders House, FND-2-216, Boston, MA (United States); Grasruck, Michael; Suess, Christoph; Schmidt, Bernhard; Stierstorfer, Karl; Popescu, Stefan; Flohr, Thomas [Siemens Medical Solutions, Forchheim (Germany); Bartling, Soenke H. [Hannover Medical School, Department of Neuroradiology, Hannover (Germany)

    2006-06-15

    Digital flat-panel-based volume CT (VCT) represents a unique design capable of ultra-high spatial resolution, direct volumetric imaging, and dynamic CT scanning. This innovation, when fully developed, has the promise of opening a unique window on human anatomy and physiology. For example, the volumetric coverage offered by this technology enables us to observe the perfusion of an entire organ, such as the brain, liver, or kidney, tomographically (e.g., after a transplant or ischemic event). By virtue of its higher resolution, one can directly visualize the trabecular structure of bone. This paper describes the basic design architecture of VCT. Three key technical challenges, viz., scatter correction, dynamic range extension, and temporal resolution improvement, must be addressed for successful implementation of a VCT scanner. How these issues are solved in a VCT prototype and the modifications necessary to enable ultra-high resolution volumetric scanning are described. The fundamental principles of scatter correction and dose reduction are illustrated with the help of an actual prototype. The image quality metrics of this prototype are characterized and compared with a multi-detector CT (MDCT). (orig.)

  10. Clinical application of gated CT and dynamic CT

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, T; Oyama, Y; Ashida, H; Uji, T [Saint Marianna Univ., Kawasaki, Kanagawa (Japan). School of Medicine

    1980-03-01

    Gated CT and dynamic CT were outlined. Experiences of portal hypertension accompanied by venous mass in posterior mediastinum and the usefulness of dynamic CT for this disease were described. Gated CT of the heart could visualize intracardiac structures and morphological abnormalities by improving technique of post-data-aquisition correlation. Changes with time in CT images of normal kidneys were discussed on patients whose unilateral or bilateral kidneys were thought to be normal and who had received dynamic scan. Dynamic scan could visualize well blood circulation and mechanism of urine excretion in the kidney, which suggests a possibility of CT to detect not only morphological abnormalities but also functional disturbance of the kidney. The effectiveness of conventional CT study might be promoted in dynamic CT of the head.

  11. Dynamic perfusion CT: Optimizing the temporal resolution for the calculation of perfusion CT parameters in stroke patients

    Energy Technology Data Exchange (ETDEWEB)

    Kaemena, Andreas [Department of Radiology, Charite-Medical University Berlin, Augustenburger Platz 1, D-13353 Berlin (Germany)], E-mail: andreas.kaemena@charite.de; Streitparth, Florian; Grieser, Christian; Lehmkuhl, Lukas [Department of Radiology, Charite-Medical University Berlin, Augustenburger Platz 1, D-13353 Berlin (Germany); Jamil, Basil [Department of Radiotherapy, Charite-Medical University Berlin, Schumannstr. 20/21, D-10117 Berlin (Germany); Wojtal, Katarzyna; Ricke, Jens; Pech, Maciej [Department of Radiology, Charite-Medical University Berlin, Augustenburger Platz 1, D-13353 Berlin (Germany)

    2007-10-15

    Purpose: To assess the influence of different temporal sampling rates on the accuracy of the results from cerebral perfusion CTs in patients with an acute ischemic stroke. Material and methods: Thirty consecutive patients with acute stroke symptoms received a dynamic perfusion CT (LightSpeed 16, GE). Forty millilitres of iomeprol (Imeron 400) were administered at an injection rate of 4 ml/s. After a scan delay of 7 s, two adjacent 10 mm slices at 80 kV and 190 mA were acquired in a cine mode technique with a cine duration of 49 s. Parametric maps for the blood flow (BF), blood volume (BV) and mean transit time (MTT) were calculated for temporal sampling intervals of 0.5, 1, 2, 3 and 4 s using GE's Perfusion 3 software package. In addition to the quantitative ROI data analysis, a visual perfusion map analysis was performed. Results: The perfusion analysis proved to be technically feasible with all patients. The calculated perfusion values revealed significant differences with regard to the BF, BV and MTT, depending on the employed temporal resolution. The perfusion contrast between ischemic lesions and healthy brain tissue decreased continuously at the lower temporal resolutions. The visual analysis revealed that ischemic lesions were best depicted with sampling intervals of 0.5 and 1 s. Conclusion: We recommend a temporal scan resolution of two images per second for the best detection and depiction of ischemic areas.

  12. High-resolution dynamic angiography using flat-panel volume CT: feasibility demonstration for neuro and lower limb vascular applications

    Energy Technology Data Exchange (ETDEWEB)

    Mehndiratta, Amit [Massachusetts General Hospital, Department of Radiology, Harvard Medical School, Boston, MA (United States); University of Oxford, Institute of Biomedical Engineering and Keble College, Oxford (United Kingdom); Indian Institute of Technology Delhi and All India Institute of Medical Science, Centre for Biomedical Engineering, New Delhi (India); Rabinov, James D. [Massachusetts General Hospital, Interventional Neuroradiology, Harvard Medical School, Boston, MA (United States); Grasruck, Michael [Siemens Medical Solutions, Forchheim (Germany); Liao, Eric C. [Massachusetts General Hospital, Department of Plastic and Reconstructive Surgery and Center for Regenerative Medicine, Harvard Medical School, Boston, MA (United States); Crandell, David [Spaulding Rehabilitation Hospital, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Charlestown, MA (United States); Gupta, Rajiv [Massachusetts General Hospital, Department of Radiology, Harvard Medical School, Boston, MA (United States)

    2015-07-15

    This paper evaluates a prototype flat-panel volume CT (fpVCT) for dynamic in vivo imaging in a variety of neurovascular and lower limb applications. Dynamic CTA was performed on 12 patients (neuro = 8, lower limb = 4) using an fpVCT with 120 kVp, 50 mA, rotation time varying from 8 to 19 s, and field of view of 25 x 25 x 18 cm{sup 3}. Four-dimensional data sets (i.e. 3D images over time) were reconstructed and reviewed. Dynamic CTA demonstrated sufficient spatio-temporal resolution to elucidate first-pass and recirculation dynamics of contrast bolus through neurovasclar pathologies and phasic blood flow though lower-limb vasculature and grafts. The high spatial resolution of fpVCT resulted in reduced partial volume and metal beam-hardening artefacts. This facilitated assessment of vascular lumen in the presence of calcified plaque and evaluation of fractures, especially in the presence of fixation hardware. Evaluation of arteriovenous malformation using dynamic fpVCT angiography was of limited utility. Dynamic CTA using fpVCT can visualize time-varying phenomena in neuro and lower limb vascular applications and has sufficient diagnostic imaging quality to evaluate a number of pathologies affecting these regions. (orig.)

  13. Application of Super-Resolution Convolutional Neural Network for Enhancing Image Resolution in Chest CT.

    Science.gov (United States)

    Umehara, Kensuke; Ota, Junko; Ishida, Takayuki

    2017-10-18

    In this study, the super-resolution convolutional neural network (SRCNN) scheme, which is the emerging deep-learning-based super-resolution method for enhancing image resolution in chest CT images, was applied and evaluated using the post-processing approach. For evaluation, 89 chest CT cases were sampled from The Cancer Imaging Archive. The 89 CT cases were divided randomly into 45 training cases and 44 external test cases. The SRCNN was trained using the training dataset. With the trained SRCNN, a high-resolution image was reconstructed from a low-resolution image, which was down-sampled from an original test image. For quantitative evaluation, two image quality metrics were measured and compared to those of the conventional linear interpolation methods. The image restoration quality of the SRCNN scheme was significantly higher than that of the linear interpolation methods (p < 0.001 or p < 0.05). The high-resolution image reconstructed by the SRCNN scheme was highly restored and comparable to the original reference image, in particular, for a ×2 magnification. These results indicate that the SRCNN scheme significantly outperforms the linear interpolation methods for enhancing image resolution in chest CT images. The results also suggest that SRCNN may become a potential solution for generating high-resolution CT images from standard CT images.

  14. High resolution CT of the chest

    Energy Technology Data Exchange (ETDEWEB)

    Barneveld Binkhuysen, F H [Eemland Hospital (Netherlands), Dept. of Radiology

    1996-12-31

    Compared to conventional CT high resolution CT (HRCT) shows several extra anatomical structures which might effect both diagnosis and therapy. The extra anatomical structures were discussed briefly in this article. (18 refs.).

  15. CT of portal vein tumor thrombosis. Usefulness of dynamic CT

    Energy Technology Data Exchange (ETDEWEB)

    Takemoto, Kazumasa; Inoue, Yuichi; Tanaka, Masahiro; Nemoto, Yutaka; Nakamura, Kenji [Osaka City Univ. (Japan). Faculty of Medicine

    1983-08-01

    We evaluated CT findings of portal vein tumor thrombosis in 16 hepatomas by plain, contrast and dynamic CT. Plain and contrast CT findings were an enlargement of the portal vein (81%), intraluminal low density area (63%). Dynamic CT enhanced the diagnostic capability of the tumor thrombus as a relatively low density area because of the marked enhancement of the portal vein. In addition, dynamic CT newly demonstrated hyperdense peripheral ring (35%) and arterio portal shunt (35%). It is advisable to select the scan level to include the portal vein when dynamic CT is performed in the patient of hepatocellular carcinoma.

  16. Dynamic CT of hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, Nobuyuki; Shirato, Hiroki; Shinohara, Masahiro; Miyasaka, Kazuo; Morita, Yutaka; Irie, Goro

    1983-03-01

    We performed dynamic CT in 30 cases of hepatocellular carcinoma, and concluded as below. Detecting the stain in the early phase of the dynamic series, it is possible to make a diagnosis of hepatocellular carcinoma. The dynamic CT is effective in a case of small hepatocellular carcinoma in which it is difficult to gain an accurate diagnosis in the routine CT study. The dynamic CT is also effective in the differential diagnosis of hepatic lesions, as other hepatic lesions such as hemangioma and metastatic liver cancer show different patterns compared with hepatocellular carcinoma.

  17. Flat-Panel Computed Tomography (DYNA-CT) in Neuroradiology. From High-Resolution Imaging of Implants to One-Stop-Shopping for Acute Stroke.

    Science.gov (United States)

    Doerfler, A; Gölitz, P; Engelhorn, T; Kloska, S; Struffert, T

    2015-10-01

    Originally aimed at improving standard radiography by providing higher absorption efficiency and a wider dynamic range, flat-panel detector technology has meanwhile got widely accepted in the neuroradiological community. Especially flat-panel detector computed tomography (FD-CT) using rotational C-arm mounted flat-panel detector technology is capable of volumetric imaging with a high spatial resolution. By providing CT-like images of the brain within the angio suite, FD-CT is able to rapidly visualize hemorrhage and may thus improve complication management without the need of patient transfer. As "Angiographic CT" FD-CT may be helpful during many diagnostic and neurointerventional procedures and for noninvasive monitoring and follow-up. In addition, spinal interventions and high-resolution imaging of the temporal bone might also benefit from FD-CT. Finally, using novel dynamic perfusion and angiographic protocols, FD-CT may provide functional information on brain perfusion and vasculature with the potential to replace standard imaging in selected acute stroke patients.

  18. Dynamic CT of hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Fujita, Nobuyuki; Shirato, Hiroki; Shinohara, Masahiro; Miyasaka, Kazuo; Morita, Yutaka; Irie, Goro

    1983-01-01

    We performed dynamic CT in 30 cases of hepatocellular carcinoma, and concluded as below. 1 Decting the stain in the early phase of the dynamic series, it is possible to make a diagnosis of hepatocellular carcinoma. 2 The dinamic CT is effective in a case of small hepatocellular carcinoma in which it is difficult to gain an accurate diagnosis in the routine CT study. 3 The dynamic CT is also effective in the differential diagnosis of hepatic lesions, as other hepatic lesions such as hemangioma and metastatic liver cancer show different patterns compared with hepatocellular carcinoma. (author)

  19. Dynamic CT of the renal parenchyma

    International Nuclear Information System (INIS)

    Ohyama, Yukio; Imanishi, Yoshimasa; Ishikawa, Tohru; Fujii, Masamichi; Uji, Teruyuki

    1985-01-01

    Normal renal dynamic CT findings of 57 cases were analysed in termes of sequential change of renal parenchymal CT image. Cortex, outer medulla and inner medulla were delineated and their sequential CT image was well correlated with the anatomicophysiological character of the kidney. Dynamic CT of 32 abnormal cases showed abnormal sequential CT findings explaining the mechanism of the abnormalities. Especially, delayed enhancement of renal cortex was noted in 17 of 19 kidneys with arterial obstruction and delayed enhancement of renal medulla in 22 of 25 cases with renal dysfunction. Compaired with excretory urography in 11 cases with renal dysfunction, advantage of dynamic CT were noted. (author)

  20. Volumetric expiratory high-resolution CT of the lung

    International Nuclear Information System (INIS)

    Nishino, Mizuki; Hatabu, Hiroto

    2004-01-01

    We developed a volumetric expiratory high-resolution CT (HRCT) protocol that provides combined inspiratory and expiratory volumetric imaging of the lung without increasing radiation exposure, and conducted a preliminary feasibility assessment of this protocol to evaluate diffuse lung disease with small airway abnormalities. The volumetric expiratory high-resolution CT increased the detectability of the conducting airway to the areas of air trapping (P<0.0001), and added significant information about extent and distribution of air trapping (P<0.0001)

  1. High resolution CT of temporal bone trauma

    International Nuclear Information System (INIS)

    Youn, Eun Kyung

    1986-01-01

    Radiographic studies of the temporal bone following head trauma are indicated when there is cerebrospinal fluid otorrhea or rhinorrhoea, hearing loss, or facial nerve paralysis. Plain radiography displays only 17-30% of temporal bone fractures and pluridirectional tomography is both difficult to perform, particularly in the acutely ill patient, and less satisfactory for the demonstration of fine fractures. Consequently, high resolution CT is the imaging method of choice for the investigation of suspected temporal bone trauma and allows special resolution of fine bony detail comparable to that attainable by conventional tomography. Eight cases of temporal bone trauma examined at Korea General Hospital April 1985 through May 1986. The results were as follows: Seven patients (87%) suffered longitudinal fractures. In 6 patients who had purely conductive hearing loss, CT revealed various ossicular chain abnormality. In one patient who had neuro sensory hearing loss, CT demonstrated intract ossicular with a fracture nearing lateral wall of the lateral semicircular canal. In one patient who had mixed hearing loss, CT showed complex fracture.

  2. A temporal interpolation approach for dynamic reconstruction in perfusion CT

    International Nuclear Information System (INIS)

    Montes, Pau; Lauritsch, Guenter

    2007-01-01

    This article presents a dynamic CT reconstruction algorithm for objects with time dependent attenuation coefficient. Projection data acquired over several rotations are interpreted as samples of a continuous signal. Based on this idea, a temporal interpolation approach is proposed which provides the maximum temporal resolution for a given rotational speed of the CT scanner. Interpolation is performed using polynomial splines. The algorithm can be adapted to slow signals, reducing the amount of data acquired and the computational cost. A theoretical analysis of the approximations made by the algorithm is provided. In simulation studies, the temporal interpolation approach is compared with three other dynamic reconstruction algorithms based on linear regression, linear interpolation, and generalized Parker weighting. The presented algorithm exhibits the highest temporal resolution for a given sampling interval. Hence, our approach needs less input data to achieve a certain quality in the reconstruction than the other algorithms discussed or, equivalently, less x-ray exposure and computational complexity. The proposed algorithm additionally allows the possibility of using slow rotating scanners for perfusion imaging purposes

  3. High-resolution CT of the lungs: Anatomic-pathologic correlation

    International Nuclear Information System (INIS)

    Stein, M.G.; Webb, W.R.; Finkbeiner, W.; Gamsu, G.

    1986-01-01

    The interpretation of thin-section (1.5-mm), high-resolution CT scans of the lungs has been limited by lack of direct radiologic and pathologic correlation. The author scanned fresh inflated isolated lungs from ten healthy and five diseased subjects using thin-section, high-resolution techniques. The lungs were then fixed by inflation with endobronchial Formalin. Gough sections (1 mm thick) were obtained at the same levels as the CT scans. In healthy subjects, secondary lobules were identified by the presence of visible interlobular septa and central arterioles. In some patients with disease, septal thickening was visible. In patients with honeycombing cystic areas of destroyed lung were seen, along with areas of fibrosis. Emphysema was well evaluated. Thin-section, high-resolution CT can define lung architecture and may resolve mild changes of the interstitium

  4. Reduction of ring artefacts in high resolution micro-CT reconstructions

    International Nuclear Information System (INIS)

    Sijbers, Jan; Postnov, Andrei

    2004-01-01

    High resolution micro-CT images are often corrupted by ring artefacts, prohibiting quantitative analysis and hampering post processing. Removing or at least significantly reducing such artefacts is indispensable. However, since micro-CT systems are pushed to the extremes in the quest for the ultimate spatial resolution, ring artefacts can hardly be avoided. Moreover, as opposed to clinical CT systems, conventional correction schemes such as flat-field correction do not lead to satisfactory results. Therefore, in this note a simple but efficient and fast post processing method is proposed that effectively reduces ring artefacts in reconstructed μ-CT images. (note)

  5. High resolution CT of the lung

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Harumi (Kyoto Univ. (Japan). Faculty of Medicine)

    1991-02-01

    The emergence of computed tomography (CT) in the early 1970s has greatly contributed to diagnostic radiology. The brain was the first organ examined with CT, followed by the abdomen. For the chest, CT has also come into use shortly after the introduction in the examination of the thoracic cavity and mediastinum. CT techniques were, however, of limited significance in the evaluation of pulmonary diseases, especially diffuse pulmonary diseases. High-resolution CT (HRCT) has been introduced in clinical investigations of the lung field. This article is designed to present chest radiographic and conventional tomographic interpretations and to introduce findings of HRCT corresponding to the same shadows, with a summation of the significance of HRCT and issues of diagnostic imaging. Materials outlined are tuberculosis, pneumoconiosis, bronchopneumonia, mycoplasma pneumonia, lymphangitic carcinomatosis, sarcoidosis, diffuse panbronchiolitis, interstitial pneumonia, and pulmonary emphysema. Finally, an overview of basic investigations evolved from HRCT is given. (N.K.) 140 refs.

  6. High-resolution CT findings in Streptococcus milleri pulmonary infection

    International Nuclear Information System (INIS)

    Okada, F.; Ono, A.; Ando, Y.; Nakayama, T.; Ishii, H.; Hiramatsu, K.; Sato, H.; Kira, A.; Otabe, M.; Mori, H.

    2013-01-01

    Aim: To assess pulmonary high-resolution computed tomography (CT) findings in patients with acute Streptococcus milleri pulmonary infection. Materials and methods: Sixty consecutive patients with acute S. milleri pneumonia who had undergone high-resolution CT chest examinations between January 2004 and March 2010 were retrospectively identified. Twenty-seven patients with concurrent infections were excluded. The final study group comprised 33 patients (25 men, 8 women; aged 20–88 years, mean 63.1 years) with S. milleri infection. The patients' clinical findings were assessed. Parenchymal abnormalities, enlarged lymph nodes, and pleural effusion were evaluated on high-resolution CT. Results: Underlying conditions included malignancy (n = 15), a smoking habit (n = 11), and diabetes mellitus (n = 8). CT images of all patients showed abnormal findings, including ground-glass opacity (n = 24), bronchial wall thickening (n = 23), consolidation (n = 17), and cavities (n = 7). Pleural effusion was found in 18 patients, and complex pleural effusions were found in seven patients. Conclusion: Pulmonary infection caused by S. milleri was observed mostly in male patients with underlying conditions such as malignancy or a smoking habit. The CT findings in patients with S. milleri consisted mainly of ground-glass opacity, bronchial wall thickening, pleural effusions, and cavities

  7. Diagnosis of pituitary adenoma by dynamic CT scanning

    International Nuclear Information System (INIS)

    Tanabe, Sumiyoshi; Uede, Teiji; Daibo, Masahiko; Niwa, Jun; Hashi, Kazuo

    1988-01-01

    The advantage of high resolution CT in the diagnosis of pituitary microadenomas has been established, but the diagnosis becomes more difficult when the pituitary microadenoma is less than 5 mm in diameter. We have studied the usefulness of dynamic CT scans particularly for diagnosis of small microadenomas. The dynamic CT scans were performed for 61 normal pituitary glands and 68 pituitary adenomas (36 microadenomas, 32 macroadenomas) with a GECT/T 9800 scanner. Coronal sections of 1.5 mm thickness were taken at the plane just in front of the pituitary stalk of the pituitary gland. Following a bolus intra-venous injection of 40 - 60 ml of contrast media using an automatic injector, ten consecutive CT scans of 2 seconds scan time were obtained, beginning 2 seconds from the start of intravenous injection. The first seven scans were taken with an interval of 2.3 seconds, and the last three scans with an interval of 10 seconds. Then, time-density curves were obtained at the ROI which were set on the anterior pituitary gland, the vascular bed of the pituitary gland, the pituitary stalk and the area of the pituitary adenoma respectively. In a normal pituitary gland, the density increases gradually and makes an S shaped curve, then attains the maximum density value (92.3 CT number) approximately 60 seconds after the administration of contrast media. The pituitary vascular bed is located in midline on the upper surface of the pituitary gland, and shows a symmetrical square, triangular or rhomboid shape. In case of pituitary adenoma, the time-density curve makes a plateau curve and attains the maximum density value (60.1 CT number) approximately 60 seconds after the administration of contrast media. In microadenoma, the pituitary vascular bed is either deformed or compressed, showing an asymmetrical shape. (author)

  8. 1024 matrix image reconstruction: usefulness in high resolution chest CT

    International Nuclear Information System (INIS)

    Jeong, Sun Young; Chung, Myung Jin; Chong, Se Min; Sung, Yon Mi; Lee, Kyung Soo

    2006-01-01

    We tried to evaluate whether high resolution chest CT with a 1,024 matrix has a significant advantage in image quality compared to a 512 matrix. Each set of 512 and 1024 matrix high resolution chest CT scans with both 0.625 mm and 1.25 mm slice thickness were obtained from 26 patients. Seventy locations that contained twenty-four low density lesions without sharp boundary such as emphysema, and forty-six sharp linear densities such as linear fibrosis were selected; these were randomly displayed on a five mega pixel LCD monitor. All the images were masked for information concerning the matrix size and slice thickness. Two chest radiologists scored the image quality of each ar rowed lesion as follows: (1) undistinguishable, (2) poorly distinguishable, (3) fairly distinguishable, (4) well visible and (5) excellently visible. The scores were compared from the aspects of matrix size, slice thickness and the different observers by using ANOVA tests. The average and standard deviation of image quality were 3.09 (± .92) for the 0.625 mm x 512 matrix, 3.16 (± .84) for the 0.625 mm x 1024 matrix, 2.49 (± 1.02) for the 1.25 mm x 512 matrix, and 2.35 (± 1.02) for the 1.25 mm x 1024 matrix, respectively. The image quality on both matrices of the high resolution chest CT scans with a 0.625 mm slice thickness was significantly better than that on the 1.25 mm slice thickness (ρ < 0.001). However, the image quality on the 1024 matrix high resolution chest CT scans was not significantly different from that on the 512 matrix high resolution chest CT scans (ρ = 0.678). The interobserver variation between the two observers was not significant (ρ = 0.691). We think that 1024 matrix image reconstruction for high resolution chest CT may not be clinical useful

  9. High speed imaging of dynamic processes with a switched source x-ray CT system

    International Nuclear Information System (INIS)

    Thompson, William M; Lionheart, William R B; Morton, Edward J; Cunningham, Mike; Luggar, Russell D

    2015-01-01

    Conventional x-ray computed tomography (CT) scanners are limited in their scanning speed by the mechanical constraints of their rotating gantries and as such do not provide the necessary temporal resolution for imaging of fast-moving dynamic processes, such as moving fluid flows. The Real Time Tomography (RTT) system is a family of fast cone beam CT scanners which instead use multiple fixed discrete sources and complete rings of detectors in an offset geometry. We demonstrate the potential of this system for use in the imaging of such high speed dynamic processes and give results using simulated and real experimental data. The unusual scanning geometry results in some challenges in image reconstruction, which are overcome using algebraic iterative reconstruction techniques and explicit regularisation. Through the use of a simple temporal regularisation term and by optimising the source firing pattern, we show that temporal resolution of the system may be increased at the expense of spatial resolution, which may be advantageous in some situations. Results are given showing temporal resolution of approximately 500 µs with simulated data and 3 ms with real experimental data. (paper)

  10. Clinical values of CT and dynamic CT in brain infarction

    International Nuclear Information System (INIS)

    Lim, Soo Il; Jang, Do; Seo, Eun Joo; Sohn, Myung Hee; Choi, Ki Chul

    1985-01-01

    With the advent of faster scan time and new computer program, a scanning technique called 'dynamic computed tomography' has become possible. Dynamic computed tomography consisted of performing multiple rapid sequence scans after injection of contrast material. The authors have evaluated the clinical usefulness of computed tomography and dynamic computed tomography of 93 patients with brain infarction and/or ischemia during the period of 17 months from April 1983 to August 1984 in Department of Radiology, Chonbuk National University Hospital. The results were as follows; 1. The age distribution ranged from 18 years to 78 years. Among them the most common age group was between 50 years and 59 years (40.9%). 2. The sites of brain infarction were cerebral lobes (63 cases,68), basal ganglia (15 cases, 16.1%) and multiple sites (6 cases, 6.4%). The common affected site was middle cerebral artery territories. 3. The contrast enhancement of acute infarction was noted in 14 cases (17.5%) which occurred commonly between 3 days and 2 weeks from ictus. 4. The patterns of time-density curve in brain infarction and/or ischemia were as follow: a. Depression of slow wash-in phase was 20 cases (59%). b. Lower peak concentration was 17 cases (50%). c. Lower and delayed peak concentration was 7 cases (21%). d. No definite peak concentration was 6 cases (18%). First three patterns of time-density curve were thought as relatively characteristic curve of brain infarction and/or ischemia. 5. Two cases that showed negative findings on precontrast CT scan appeared to be positive findings as hypodensity on postcontrast CT scan and were confirmed as brain infarction by dynamic CT. 6. The diagnostic entity of dynamic CT scan were as follows; a. large artery thrombotic infarction were 23 cases (58%). b. lacnar infarction were 6 cases (15%). c. ischemia were 5 cases (13%). d. normal were 5 cases (13%). In six cases of lacunar infarction which was double hypodensity on pre-and postcontrast CT

  11. Clinical values of CT and dynamic CT in brain infarction

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Soo Il; Jang, Do; Seo, Eun Joo; Sohn, Myung Hee; Choi, Ki Chul [Chonbuk National University College of Medicine, Jeonju (Korea, Republic of)

    1985-04-15

    With the advent of faster scan time and new computer program, a scanning technique called 'dynamic computed tomography' has become possible. Dynamic computed tomography consisted of performing multiple rapid sequence scans after injection of contrast material. The authors have evaluated the clinical usefulness of computed tomography and dynamic computed tomography of 93 patients with brain infarction and/or ischemia during the period of 17 months from April 1983 to August 1984 in Department of Radiology, Chonbuk National University Hospital. The results were as follows; 1. The age distribution ranged from 18 years to 78 years. Among them the most common age group was between 50 years and 59 years (40.9%). 2. The sites of brain infarction were cerebral lobes (63 cases,68), basal ganglia (15 cases, 16.1%) and multiple sites (6 cases, 6.4%). The common affected site was middle cerebral artery territories. 3. The contrast enhancement of acute infarction was noted in 14 cases (17.5%) which occurred commonly between 3 days and 2 weeks from ictus. 4. The patterns of time-density curve in brain infarction and/or ischemia were as follow: a. Depression of slow wash-in phase was 20 cases (59%). b. Lower peak concentration was 17 cases (50%). c. Lower and delayed peak concentration was 7 cases (21%). d. No definite peak concentration was 6 cases (18%). First three patterns of time-density curve were thought as relatively characteristic curve of brain infarction and/or ischemia. 5. Two cases that showed negative findings on precontrast CT scan appeared to be positive findings as hypodensity on postcontrast CT scan and were confirmed as brain infarction by dynamic CT. 6. The diagnostic entity of dynamic CT scan were as follows; a. large artery thrombotic infarction were 23 cases (58%). b. lacnar infarction were 6 cases (15%). c. ischemia were 5 cases (13%). d. normal were 5 cases (13%). In six cases of lacunar infarction which was double hypodensity on pre

  12. Focal airtrapping at expiratory high-resolution CT: comparison with pulmonary function tests

    International Nuclear Information System (INIS)

    Kauczor, H.U.; Hast, J.; Heussel, C.P.; Mildenberger, P.; Thelen, M.; Schlegel, J.

    2000-01-01

    This study was undertaken to determine prevalence, extent, and severity of focal airtrapping at expiratory high-resolution CT, and to compare focal airtrapping with age, gender, pulmonary function tests, and blood gas analysis. Two-hundred seventeen patients with and without pulmonary disease underwent paired inspiratory/expiratory high-resolution CT. Six scan pairs with corresponding scan levels were visually assessed for focal - not diffuse - airtrapping using a four-point scale. Pulmonary function tests and blood gas analysis were available for correlation in all patients (mean interval 5 days). Focal airtrapping with lower lung predominance was observed in 80 % of patients. Twenty-six of 26 patients with restrictive lung function impairment exhibited focal airtrapping (mean score 2.4), whereas only 72 of 98 (74 %) patients with obstruction did (mean score 1.5; p < 0.05). Fifty-eight of 70 (83 %) patients with normal lung function (mean score 1.8) and 19 of 23 (83 %) patients with mixed impairment (mean score 1.8) had focal airtrapping. Focal airtrapping showed negative correlations with static lung volumes (-0.27 to -0.37; p < 0.001) in all patients and moderate positive correlations with dynamic parameters (0.3-0.4; p < 0.001) in patients with obstruction. No significant correlations were found with age, gender, and blood gas analysis. Visual assessment of focal - not diffuse - airtrapping at expiratory high-resolution CT does not correlate with physiological evidence of obstruction as derived from pulmonary function tests since the perception of focal airtrapping requires an adequate expiratory increase in lung density. (orig.)

  13. Ring artifact correction for high-resolution micro CT

    International Nuclear Information System (INIS)

    Kyriakou, Yiannis; Prell, Daniel; Kalender, Willi A

    2009-01-01

    In high-resolution micro CT using flat detectors (FD), imperfect or defect detector elements may cause concentric-ring artifacts due to their continuous over- or underestimation of attenuation values, which often disturb image quality. We here present a dedicated image-based ring artifact correction method for high-resolution micro CT, based on median filtering of the reconstructed image and working on a transformed version of the reconstructed images in polar coordinates. This post-processing method reduced ring artifacts in the reconstructed images and improved image quality for phantom and in in vivo scans. Noise and artifacts were reduced both in transversal and in multi-planar reformations along the longitudinal axis. (note)

  14. Application of high resolution synchrotron micro-CT radiation in dental implant osseointegration

    DEFF Research Database (Denmark)

    Neldam, Camilla Albeck; Lauridsen, Torsten; Rack, Alexander

    2015-01-01

    The purpose of this study was to describe a refined method using high-resolution synchrotron radiation microtomography (SRmicro-CT) to evaluate osseointegration and peri-implant bone volume fraction after titanium dental implant insertion. SRmicro-CT is considered gold standard evaluating bone...... microarchitecture. Its high resolution, high contrast, and excellent high signal-to-noise-ratio all contribute to the highest spatial resolutions achievable today. Using SRmicro-CT at a voxel size of 5 μm in an experimental goat mandible model, the peri-implant bone volume fraction was found to quickly increase...

  15. The demonstration of the auditory ossicles by high resolution CT

    International Nuclear Information System (INIS)

    Lloyd, G.A.S.; Boulay, G.H. du; Phelps, P.D.; Pullicino, P.

    1979-01-01

    The high resolution CT scanning system introduced by EMI in 1978 has added a new dimension to computerised tomography in otology. The apparatus used for this study was an EMI CT 5005 body scanner adapted for head and neck scanning and incorporating a high resolution facility. The latter has proved most advantageous in areas of relatively high differential absorption, so that its application to the demonstration of abnormalities in the petrous temporal bone, and in particular middle ear disease, has been very rewarding. Traumatic ossicular disruptions may now be demonstrated and the high contrast of CT often shows them better than conventional hypocycloidal tomography. The stapes is also better visualised and congenital abnormalities of its superstructure have been recorded. These studies have been achieved with a very acceptable level of radiation to the eye, lens and cornea and the technique is clearly a rival to conventional pluridirectional tomography in the assessment of the petrous temporal bone. With further design improvements high resolution CT could completely replace existing techniques. (orig.) [de

  16. Dynamic CT in dissecting aortic aneurysm

    International Nuclear Information System (INIS)

    Fujita, Nobuyuki; Matsuoka, Yosuke; Mizuo, Hideyo; Shirato, Hiroki; Irie, Goro

    1985-01-01

    especially about the branching of major vessels Eight cases of aortic dissection were analysed to evaluate detectability of the branching of major vessels from a ture or false lumen, by dynamic CT. Although recognition of the branching is easy when the direct continuity to a dissected lumen is demonstrated, but without visualization of direct continuity or with no information about dissected lumens, it is sometimes difficult or leads us to misdiagnosis. The diagnostic accuracy is 100% when direct continuity to a dissected lumen is demonstrated, or dynamic CT revealed branching pattern distinctly. Dynamic CT is useful for a diagnosis of dissecting aneurysm and branching pattern of major vessels. (author)

  17. Resolution enhancement of lung 4D-CT via group-sparsity

    International Nuclear Information System (INIS)

    Bhavsar, Arnav; Wu, Guorong; Shen, Dinggang; Lian, Jun

    2013-01-01

    Purpose: 4D-CT typically delivers more accurate information about anatomical structures in the lung, over 3D-CT, due to its ability to capture visual information of the lung motion across different respiratory phases. This helps to better determine the dose during radiation therapy for lung cancer. However, a critical concern with 4D-CT that substantially compromises this advantage is the low superior-inferior resolution due to less number of acquired slices, in order to control the CT radiation dose. To address this limitation, the authors propose an approach to reconstruct missing intermediate slices, so as to improve the superior-inferior resolution.Methods: In this method the authors exploit the observation that sampling information across respiratory phases in 4D-CT can be complimentary due to lung motion. The authors’ approach uses this locally complimentary information across phases in a patch-based sparse-representation framework. Moreover, unlike some recent approaches that treat local patches independently, the authors’ approach employs the group-sparsity framework that imposes neighborhood and similarity constraints between patches. This helps in mitigating the trade-off between noise robustness and structure preservation, which is an important consideration in resolution enhancement. The authors discuss the regularizing ability of group-sparsity, which helps in reducing the effect of noise and enables better structural localization and enhancement.Results: The authors perform extensive experiments on the publicly available DIR-Lab Lung 4D-CT dataset [R. Castillo, E. Castillo, R. Guerra, V. Johnson, T. McPhail, A. Garg, and T. Guerrero, “A framework for evaluation of deformable image registration spatial accuracy using large landmark point sets,” Phys. Med. Biol. 54, 1849–1870 (2009)]. First, the authors carry out empirical parametric analysis of some important parameters in their approach. The authors then demonstrate, qualitatively as well as

  18. Dynamic CT in the abdominal organ, 1

    International Nuclear Information System (INIS)

    Fukuda, Kunihiko

    1980-01-01

    By utilizing a 4.5-second CT (computed tomography) scanner which allows sequential scans the changes of the iodine concentration in abdominal organs can be observed as dynamics reflected in CT number. The abdominal dynamic CT was performed as following method. After performing the preliminary scan 50ml of 60% meglumine iothalamate was rapidly injected intravenously by hands. The sequential scanning was initiated when a half dose of contrast medium was injected. In completion of the 4 sequential scans under arrested respiration the conventional post contrast scanning was performed. The analysis of 112 cases dynamically studied by CT came to the following conclusion. CT number of the abdominal aorta was greatest on the 1st or 2nd scan of the sequential scans (7.5 - 20.5 seconds after initiation of injection). Following this peak formation, CT number of the abdominal aorta declined rapidly due to both prompt diffusion of contrast medium into the extravascular space and dilution by the intravascular fluid. Iodine concentration of the abdominal aorta during the peak period was calculated as 11.3 mg/ml by the present method, being theoretically sufficient for delineation of the vessels smaller than medium size. In the patients with impaired renal function, several characteristic patterns were noted on the dynamics of contrast medium within the abdominal organs. The abdominal dynamic CT was felt to be promissing for evaluation of the renal function. (author)

  19. Usefulness of multi-plane dynamic subtraction CT (MPDS-CT) for intracranial high density lesions

    Energy Technology Data Exchange (ETDEWEB)

    Takagi, Ryo; Kumazaki, Tatsuo [Nippon Medical School, Tokyo (Japan)

    1996-02-01

    We present a new CT technique using the high speed CT scanner in detection and evaluation of temporal and spatial contrast enhancement of intracranial high density lesions. A multi-plane dynamic subtraction CT (MPDS-CT) was performed in 21 patients with intracranial high density lesions. These lesions consisted of 10 brain tumors, 7 intracerebral hemorrhages and 4 vascular malformations (2 untreated, 2 post-embolization). Baseline study was first performed, and 5 sequential planes of covering total high density lesions were selected. After obtaining the 5 sequential CT images as mask images, three series of multi-plane dynamic CT were performed for the same 5 planes with an intravenous bolus injection of contrast medium. MPDS-CT images were reconstructed by subtracting dynamic CT images from the mask ones. MPDS-CT were compared with conventional contrast-enhanced CT. MPDS-CT images showed the definite contrast enhancement of high density brain tumors and vascular malformations which were not clearly identified on conventional contrast-enhanced CT images because of calcified or hemorrhagic lesions and embolic materials, enabling us to eliminate enhanced abnormalities with non-enhanced areas such as unusual intracerebral hemorrhages. MPDS-CT will provide us further accurate and objective information and will be greatly helpful for interpreting pathophysiologic condition. (author).

  20. Computed tomography of hepatocellular carcinoma: Usefulness of dynamic CT

    Energy Technology Data Exchange (ETDEWEB)

    Takemoto, Kazumasa; Inoue, Yuichi; Matsuoka, Toshiyuki; Nakatsuka, Haruki; Oda, Junro [Osaka City Univ. (Japan). Faculty of Medicine

    1983-04-01

    Dynamic computed tomography (CT) scans in 65 hepatocellular carcinomas were analyzed and compared to plain and drip infusion contrast CT scans of those. Scans were obtained before, 10, 30, and 50 seconds after an intravenous bolus injection of 50ml 65% Angiografin. By this method, 49 hepatomas had moderate to marked enhancement at the arterial phase while the enhancement of normal liver parenchyma was only slight at the arterial phase and peaked at the portal phase. Compared to a drip infusion contrast CT, a dynamic CT had advantages to detect an isodense hepatoma in 4 and daughter tumors in 16 both of which were not appreciated by a plain and a drip infusion contrast CT. The tumor extension was also better delineated by a dynamic CT because a part of hepatoma had an isodense area. An arterio-portal shunt was visualized in one. Tumor thrombus in the portal vein was clearly demonstrated in 6 at the portal phase of a dynamic CT. Since a dynamic CT is convenient to perform without any special program or soft wear and gives us very useful information, we believe that it should be routinely employed as a part of a liver CT examination.

  1. High resolution CT in the investigation of bone destruction in the outer ear

    International Nuclear Information System (INIS)

    Koester, O.; Straehler-Pohl, H.J.; Bonn Univ.

    1986-01-01

    Eleven patients with known malignant tumours of the outer ear and three patients with otitis externa maligna were examined by high resolution CT. CT provided accurate information concerning soft tissue infiltration into the parotid or subtemporal tissues, and of the bony destruction in the mastoid, meatus and tympanic cavity. Absolute differentiation between a malignant tumour and otitis cisterna maligna is not possible, not even by high resolution CT. (orig.) [de

  2. Dynamic CT in the abdominal organ, 2. Dynamics in the abdominal malignancies

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, K [Jikei Univ., Tokyo (Japan). School of Medicine

    1980-03-01

    The potential role of the abdominal dynamic CT in malignant tumors was evaluated. Among total of 112 cases dynamically studied included were, 22 cases of abdominal malignancies, renal cell carcinoma in 7, hepatocellular carcinoma in 7, metastatic liver tumor in 5, renal pelvic carcinoma in 2, and pancreatic cystadenocarcinoma in one. The results led to the following advantages of the abdominal dynamic CT over conventional CT. (1) The tumor thrombus and the lymphnode involvement could be better demonstrated. (2) The tumor vessels and the tumor stain could be depicted. (3) The extent of the tumor in the parenchyma could be better appreciated. The more invasive catheter angiography would likely to be replaced by the abdominal dynamic CT in the selected case.

  3. High-resolution CT of otosclerosis

    International Nuclear Information System (INIS)

    Dewen, Yang; Kodama, Takao; Tono, Tetsuya; Ochiai, Reiji; Kiyomizu, Kensuke; Suzuki, Yukiko; Yano, Takanori; Watanabe, Katsushi

    1997-01-01

    High-resolution CT (HRCT) scans of thirty-two patients (60 ears) with the clinical diagnosis of fenestral otosclerosis were evaluated retrospectively. HRCT was performed with 1-mm-thick targeted sections and 1-mm (36 ears) or 0.5-mm (10 ears) intervals in the semiaxial projection. Seven patients (14 ears) underwent helical scanning with a 1-mm slice thickness and 1-mm/sec table speed. Forty-five ears (75%) were found to have one or more otospongiotic or otosclerotic foci on HRCT. In most instances (30 ears), the otospongiotic foci were found in the region of the fissula ante fenestram. No significant correlations between CT findings and air conduction threshold were observed. We found a significant relationship between lesions of the labyrinthine capsule and sensorineural hearing loss. We conclude that HRCT is a valuable modality for diagnosing otosclerosis, especially when otospongiotic focus is detected. (author)

  4. Motion estimation and compensation in dynamic spiral CT reconstruction

    International Nuclear Information System (INIS)

    Kimdon, J.; Grangeat, P.; Koenig, A.; Bonnet, St.

    2004-01-01

    Respiratory and cardiac motion causes blurring in dynamic X-ray Computed Tomography (CT). Fast scans reduce this problem, but they require a higher radiation dose per time period to maintain the signal to noise ratio of the resulting images, thereby magnifying the health risk to the patient. As an alternative to increased radiation, our team has already developed a cone-beam reconstruction algorithm based on a dynamic particle model that estimates, predicts, and compensates for respiratory motion in circular X-ray CT. The current paper presents an extension of this method to spiral CT, applicable to modern multi-slice scanners that take advantage of the speed and dose benefits of helical trajectories. We adapted all three main areas of the algorithm: backprojection, prediction, and compensation/accumulation. In backprojection, we changed the longitudinal re-binning technique, filter direction, and the method of enforcing the data sufficiency requirements. For prediction, we had to be careful of objects appearing and disappearing as the scanner bed advanced. For compensation/accumulation, we controlled the reconstruction time and combined images to cover a greater longitudinal extent for each phase in the respiratory or cardiac cycle. Tests with moving numerical phantoms demonstrate that the algorithm successfully improves the temporal resolution of the images without increasing the dose or reducing the signal-to-noise ratio. (authors)

  5. Dynamic CT scan in cerebral infarction

    International Nuclear Information System (INIS)

    Kobayashi, Shigeki; Oka, Nobuo; Mitsuhashi, Hiromitsu

    1984-01-01

    Forty-two dynamic CT studies were performed on 27 patients with cerebral infarction (11 to 75 years of age), and perfusion patterns of low density areas on plain CT were evaluated. The initial studies were performed 1.5 hours to 60 days after acute onset. The following results were obtained. 1) The perfusion pattern in the low density area on plain CT varies among patients at any periods after onset, ranging from absent perfusion pattern to hyperfusion pattern. No consisitent perfusion pattern was obtained at any given time after onset. 2) Repeat dynamic CT revealed that the perfusion pattern in the low density area changed with time variously. 3) The perfusion pattern or change of perfusion pattern did not correlate with outcome of the patient. 4) At an acute stage, when no abnormal findings were obtained on plain CT, dynamic CT revealed abnormal perfusion pattern, enabling early diagnosis of cerebral infarction and estimation of blood perfusion in the infarcted area. In determining the treatment for the cerebral infarction at an acute stage, it is important to know the condition of the blood perfusion in the infarcted area. For the patients in whom recanalization has already taken place, mannitol or steroid might be effective, providing protection against severe brain edema and hemorrhagic infarction. On the other hand, if recanalization has not taken place, revascularization therapy might be worth trying within 6 hours since the onset. It has been said that ischemic brain damage may not be reversed by the revascularization after 6 hours. Dynamic CT is safe, less invasive, convenient and very useful for early diagnosis of the cerebral infarction and determination of the treatment at the acute stage. (J.P.N.)

  6. Dynamic CT myocardial perfusion imaging

    International Nuclear Information System (INIS)

    Caruso, Damiano; Eid, Marwen; Schoepf, U. Joseph; Jin, Kwang Nam; Varga-Szemes, Akos; Tesche, Christian; Mangold, Stefanie

    2016-01-01

    Highlights: • CT myocardial perfusion provides functional assessment of the myocardium. • CCTA is limited in determining the hemodynamic significance of coronary stenosis. • CT-MPI can accurately detect hemodynamically significant coronary artery stenosis. - Abstract: Non-invasive cardiac imaging has rapidly evolved during the last decade due to advancements in CT based technologies. Coronary CT angiography has been shown to reliably assess coronary anatomy and detect high risk coronary artery disease. However, this technique is limited to anatomical assessment, thus non-invasive techniques for functional assessment of the heart are necessary. CT myocardial perfusion is a new CT based technique that provides functional assessment of the myocardium and allows for a comprehensive assessment of coronary artery disease with a single modality when combined with CTA. This review aims to discuss dynamic CT myocardial perfusion as a new technique in the assessment of CAD.

  7. Dynamic CT myocardial perfusion imaging

    Energy Technology Data Exchange (ETDEWEB)

    Caruso, Damiano [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Department of Radiological Sciences, Oncological and Pathological Sciences, University of Rome “Sapienza”, Latina (Italy); Eid, Marwen [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Schoepf, U. Joseph, E-mail: schoepf@musc.edu [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC (United States); Jin, Kwang Nam [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Department of Radiology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul (Korea, Republic of); Varga-Szemes, Akos [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Tesche, Christian [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Department of Cardiology and Intensive Care Medicine, Heart Center Munich-Bogenhausen, Munich (Germany); Mangold, Stefanie [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Department of Diagnostic and Interventional Radiology, University Hospital of Tuebingen, Tuebingen (Germany); and others

    2016-10-15

    Highlights: • CT myocardial perfusion provides functional assessment of the myocardium. • CCTA is limited in determining the hemodynamic significance of coronary stenosis. • CT-MPI can accurately detect hemodynamically significant coronary artery stenosis. - Abstract: Non-invasive cardiac imaging has rapidly evolved during the last decade due to advancements in CT based technologies. Coronary CT angiography has been shown to reliably assess coronary anatomy and detect high risk coronary artery disease. However, this technique is limited to anatomical assessment, thus non-invasive techniques for functional assessment of the heart are necessary. CT myocardial perfusion is a new CT based technique that provides functional assessment of the myocardium and allows for a comprehensive assessment of coronary artery disease with a single modality when combined with CTA. This review aims to discuss dynamic CT myocardial perfusion as a new technique in the assessment of CAD.

  8. Tuberculous otitis media: findings on high-resolution CT

    International Nuclear Information System (INIS)

    Lungenschmid, D.; Buchberger, W.; Schoen, G.; Schoepf, R.; Mihatsch, T.; Birbamer, G.; Wicke, K.

    1993-01-01

    We describe two cases of tuberculous otitis media studied with high-resolution computed tomography (CT). Findings included extensive soft tissue densities with fluid levels in the tympanic cavity, the antrum, the mastoid and petrous air cells. Multifocal bony erosions and reactive bone sclerosis were seen as well. CT proved valuable for planning therapy by accurately displaying the involvement of the various structures of the middle and inner ear. However, the specific nature of the disease could only be presumed. (orig.)

  9. Pneumonia: high-resolution CT findings in 114 patients

    Energy Technology Data Exchange (ETDEWEB)

    Reittner, Pia [Department of Radiology, Vancouver Hospital and Health Sciences Center, 855 W. 12th Ave., Vancouver, BC (Canada); Department of Radiology, Karl Franzens University and University Hospital Graz, Auenbruggerplatz 9, 8036 Graz (Austria); Ward, Suzanne; Heyneman, Laura; Mueller, Nestor L. [Department of Radiology, Vancouver Hospital and Health Sciences Center, 855 W. 12th Ave., Vancouver, BC (Canada); Johkoh, Takeshi [Department of Radiology, Osaka University Medical School, 2-2 Yamadaoka, Suita, Osaka 565-0825 (Japan)

    2003-03-01

    The objective of the present study was to assess the high-resolution CT appearances of different types of pneumonia. The high-resolution CT scans obtained in 114 patients (58 immunocompetent, 59 immunocompromised) with bacterial, Mycoplasma pneumoniae, viral, fungal, and Pneumocystis carinii pneumonias were analyzed retrospectively by two independent observers for presence, pattern, and distribution of abnormalities. Areas of air-space consolidation were not detected in patients with viral pneumonia and were less frequently seen in patients with Pneumocystis carinii pneumonia (2 of 22 patients, 9%) than in bacterial (30 of 35, 85%), Mycoplasma pneumoniae (22 of 28, 79%), and fungal pneumonias (15 of 20, 75%; p<0.01). There was no significant difference in the prevalence or distribution of consolidation between bacterial, Mycoplasma pneumoniae, and fungal pneumonias. Extensive symmetric bilateral areas of ground-glass attenuation were present in 21 of 22 (95%) patients with Pneumocystis carinii pneumonia and were not seen in other pneumonias except in association with areas of consolidation and nodules. Centrilobular nodules were present less commonly in bacterial pneumonia (6 of 35 patients, 17%) than in Mycoplasma pneumoniae (24 of 28, 96%), viral (7 of 9, 78%), or fungal (12 of 20, 92%) pneumonia (p<0.01). Except for Pneumocystis carinii pneumonia and Mycoplasma pneumoniae pneumonia, which often have a characteristic appearance, high-resolution CT is of limited value in the differential diagnosis of the various types of infective pneumonia. (orig.)

  10. Pneumonia: high-resolution CT findings in 114 patients

    International Nuclear Information System (INIS)

    Reittner, Pia; Ward, Suzanne; Heyneman, Laura; Mueller, Nestor L.; Johkoh, Takeshi

    2003-01-01

    The objective of the present study was to assess the high-resolution CT appearances of different types of pneumonia. The high-resolution CT scans obtained in 114 patients (58 immunocompetent, 59 immunocompromised) with bacterial, Mycoplasma pneumoniae, viral, fungal, and Pneumocystis carinii pneumonias were analyzed retrospectively by two independent observers for presence, pattern, and distribution of abnormalities. Areas of air-space consolidation were not detected in patients with viral pneumonia and were less frequently seen in patients with Pneumocystis carinii pneumonia (2 of 22 patients, 9%) than in bacterial (30 of 35, 85%), Mycoplasma pneumoniae (22 of 28, 79%), and fungal pneumonias (15 of 20, 75%; p<0.01). There was no significant difference in the prevalence or distribution of consolidation between bacterial, Mycoplasma pneumoniae, and fungal pneumonias. Extensive symmetric bilateral areas of ground-glass attenuation were present in 21 of 22 (95%) patients with Pneumocystis carinii pneumonia and were not seen in other pneumonias except in association with areas of consolidation and nodules. Centrilobular nodules were present less commonly in bacterial pneumonia (6 of 35 patients, 17%) than in Mycoplasma pneumoniae (24 of 28, 96%), viral (7 of 9, 78%), or fungal (12 of 20, 92%) pneumonia (p<0.01). Except for Pneumocystis carinii pneumonia and Mycoplasma pneumoniae pneumonia, which often have a characteristic appearance, high-resolution CT is of limited value in the differential diagnosis of the various types of infective pneumonia. (orig.)

  11. Temporal resolution and motion artifacts in single-source and dual-source cardiac CT.

    Science.gov (United States)

    Schöndube, Harald; Allmendinger, Thomas; Stierstorfer, Karl; Bruder, Herbert; Flohr, Thomas

    2013-03-01

    The temporal resolution of a given image in cardiac computed tomography (CT) has so far mostly been determined from the amount of CT data employed for the reconstruction of that image. The purpose of this paper is to examine the applicability of such measures to the newly introduced modality of dual-source CT as well as to methods aiming to provide improved temporal resolution by means of an advanced image reconstruction algorithm. To provide a solid base for the examinations described in this paper, an extensive review of temporal resolution in conventional single-source CT is given first. Two different measures for assessing temporal resolution with respect to the amount of data involved are introduced, namely, either taking the full width at half maximum of the respective data weighting function (FWHM-TR) or the total width of the weighting function (total TR) as a base of the assessment. Image reconstruction using both a direct fan-beam filtered backprojection with Parker weighting as well as using a parallel-beam rebinning step are considered. The theory of assessing temporal resolution by means of the data involved is then extended to dual-source CT. Finally, three different advanced iterative reconstruction methods that all use the same input data are compared with respect to the resulting motion artifact level. For brevity and simplicity, the examinations are limited to two-dimensional data acquisition and reconstruction. However, all results and conclusions presented in this paper are also directly applicable to both circular and helical cone-beam CT. While the concept of total TR can directly be applied to dual-source CT, the definition of the FWHM of a weighting function needs to be slightly extended to be applicable to this modality. The three different advanced iterative reconstruction methods examined in this paper result in significantly different images with respect to their motion artifact level, despite exactly the same amount of data being used

  12. Temporal resolution and motion artifacts in single-source and dual-source cardiac CT

    International Nuclear Information System (INIS)

    Schöndube, Harald; Allmendinger, Thomas; Stierstorfer, Karl; Bruder, Herbert; Flohr, Thomas

    2013-01-01

    Purpose: The temporal resolution of a given image in cardiac computed tomography (CT) has so far mostly been determined from the amount of CT data employed for the reconstruction of that image. The purpose of this paper is to examine the applicability of such measures to the newly introduced modality of dual-source CT as well as to methods aiming to provide improved temporal resolution by means of an advanced image reconstruction algorithm. Methods: To provide a solid base for the examinations described in this paper, an extensive review of temporal resolution in conventional single-source CT is given first. Two different measures for assessing temporal resolution with respect to the amount of data involved are introduced, namely, either taking the full width at half maximum of the respective data weighting function (FWHM-TR) or the total width of the weighting function (total TR) as a base of the assessment. Image reconstruction using both a direct fan-beam filtered backprojection with Parker weighting as well as using a parallel-beam rebinning step are considered. The theory of assessing temporal resolution by means of the data involved is then extended to dual-source CT. Finally, three different advanced iterative reconstruction methods that all use the same input data are compared with respect to the resulting motion artifact level. For brevity and simplicity, the examinations are limited to two-dimensional data acquisition and reconstruction. However, all results and conclusions presented in this paper are also directly applicable to both circular and helical cone-beam CT. Results: While the concept of total TR can directly be applied to dual-source CT, the definition of the FWHM of a weighting function needs to be slightly extended to be applicable to this modality. The three different advanced iterative reconstruction methods examined in this paper result in significantly different images with respect to their motion artifact level, despite exactly the same

  13. A comparative study for spatial resolution and subjective image characteristics of a multi-slice CT and a cone-beam CT for dental use

    International Nuclear Information System (INIS)

    Watanabe, Hiroshi; Honda, Eiichi; Tetsumura, Akemi; Kurabayashi, Tohru

    2011-01-01

    Purpose: Multi-slice CT (MSCT) and cone-beam CT (CBCT) are widely used in dental practice. This study compared the spatial resolution of these CT systems to elucidate which CT modalities should be selected for various clinical cases. Materials and methods: As MSCT and CBCT apparatuses, Somatom Sensation 64 and 3D Accuitomo instruments, respectively, were used. As an objective evaluation of spatial resolution of these CT systems, modulation transfer function (MTF) analysis was performed employing an over-sampling method. The results of MTF analysis were confirmed with a line-pair test using CATPHAN. As a subjective evaluation, a microstructure visualization ability study was performed using a Jcl:SD rat and a head CT phantom. Results: MTF analysis showed that for the in-plane direction, the z-axis ultrahigh resolution mode (zUHR) of the Sensation 64 and 3D Accuitomo instruments had higher spatial resolutions than the conventional mode (64x) of the Sensation 64, but for the longitudinal direction, the 3D Accuitomo had clearly higher spatial resolution than either mode of the Sensation 64. A line-pair test study and microstructure visualization ability studies confirmed the results for MTF analysis. However, images of the rat and the CT phantom revealed that the 3D Accuitomo demonstrated the failure to visualize the soft tissues along with aliasing and beam-hardening artifacts, which were not observed in the Sensation 64. Conclusions: This study successfully applied spatial resolution analysis using MSCT and CBCT systems in a comparative manner. These findings could help in deciding which CT modality should be selected for various clinical cases.

  14. High-resolution CT in eosinophilic granuloma (histiocytosis X) of the lung

    International Nuclear Information System (INIS)

    Godwin, J.D.; Buschman, D.L.; Moore, A.D.A.; Muller, N.L.; Naidich, D.P.; Carvalho, C.R.R.; Takasugi, J.E.; Schmidt, R.A.

    1988-01-01

    Eosinophilic granuloma of the lung is fascinating but poorly understood. Computed tomographic (CT) scans in 18 cases (11 high resolution) showed a variety of striking patterns: cysts up to 4 cm with thin or indiscernible walls, ranging from a few lesions to confluent honeycombing; retriculonodular infiltrate; and nodules 2 mm-2cm, sometimes cavitated. CT showed that the ill-defined lucencies barely visible on radiographs are indeed cysts, rather than preserved normal lung surrounded by infiltrate. High-resolution CT showed that some of the early, small nodules were concentrated along terminal bronchioles within the secondary lobules. The differential diagnosis includes sarcoidosis and idiopathic fibrosis, but the prominent cystic abnormality and the lack of peripheral concentration help to distinguish eosinophilic granuloma

  15. Development of high resolution x-ray CT technique for irradiated fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Ishimi, Akihiro; Katsuyama, Kozo; Maeda, Koji; Asaga, Takeo [Japan Atomic Energy Agency, Oarai Research and Development Center, Oarai, Ibaraki (Japan)

    2012-03-15

    High X-ray CT technique was developed to observe the irradiation performance of FBR fuel assembly and MOX fuel. In this technique, the high energy X-ray pulse (12MeV) was used synchronizing detection system with the X-ray pulse to reduce the effect of the gamma ray emissions from the irradiated fuel assembly. In this study, this technique was upgraded to obtain high resolution X-ray CT image. In this upgrading, the collimator which had slit width of 0.1 mm and X-ray detector of a highly sensitive silicon semiconductor detector (100 channels) was introduced in the X-ray CT system. As a result of these developments, high resolution X-ray CT images could be obtained on the transverse cross section of irradiated fuel assembly. (author)

  16. Basic examination of in-plane spatial resolution in multi-slice CT

    International Nuclear Information System (INIS)

    Hara, Takanori; Kato, Hideki; Akiyama, Mitsutoshi; Murata, Katsutoshi

    2002-01-01

    In computed tomography (single-slice spiral CT, conventional CT), in-plane (x-y plane) spatial resolution is consistently identified as depending on the detector density of the in-plane (x-y plane). However, we considered that the in-plane (x-y plane) spatial resolution of multi-slice CT (MSCT) was influenced by an error in the detector's sensitivity to the Z-axis and by the frequency of use of direct row data and complementary row data when the image of spiral pitches (SP) was reconstructed. Our goal in this experiment was to analyze the relationship of the in-plane (x-y plane) spatial resolution of an asymmetric-type detector in MSCT to SP, tube current, and rotation time. By employing a tungsten wire phantom of 0.2 mm in diameter, we examined modulation transfer functions (MTF) by point-spread functions (PSF) of CT-images. Next, using the mean-square-root bandwidth theory, we analyzed the MTF of wire phantoms. The analysis of in-plane (x-y plane) spatial resolution revealed that various tube currents had no effect on the value of the mean-square-root bandwidth. However, rotation time and high spiral pitch did have an effect on mean-square-root bandwidth. Considering the results mentioned above, spiral pitch (z-axis reconstruction algorithm) had a slight effect on in-plane (x-y plane) spatial resolution of asymmetric-type detectors in MSCT. Accordingly, we proposed a new general view of VDDz (view/mm) in MSCT that considered view data density on the Z-axis according to spiral pitch (mm/rotation), rotation time (view/rotation), and slice collimation. (author)

  17. Comparison of Dynamic Contrast-Enhanced MRI and PET/CT in the Evaluation of Laryngeal Cancer After Inadequate CT Results

    International Nuclear Information System (INIS)

    Citil, Serdal; Dogan, Serap; Atilgan, Hasan Ikbal; Menzilcioglu, Mehmet Sait; Sahin, Tuna; Abdulrezzak, Ummuhan; Duymus, Mahmut; Ozturk, Mustafa

    2015-01-01

    To investigate the diagnostic value of dynamic magnetic resonance imaging (MRI) and positron emission tomography/computed tomography (PET/CT) for laryngeal cancers after inadequate CT results. The study comprised 45 patients investigated for primary laryngeal cancer or recurrence-residue in which CT was considered inadequate. A mass was found in 20 patients. Dynamic MRI and PET/CT were compared for diagnosis of mass, lymph node involvement, recurrence and residue. The dynamic curves formed in dynamic MRI were investigated for diagnostic contributions. The sensitivity and specificity of the dynamic MRI, for supraglottic, glottic and subglottic location, was 100%, 80%, and 92%; 100%, 85%, and 100%, respectively. In PET/CT the sensitivity and specificity were 100% for all of those localizations. For lymph node involvement, the sensitivity of dynamic MRI and PET/CT was 100%, the specificity was 100% and 93%, respectively. For recurrence-residue, the sensitivity and specificity of dynamic MRI were 86% and 67%, respectively, with 100% sensitivity and specificity in PET/CT. The sensitivity of type A curve for detection of malignancy was 40%, and specificity was 100%. When type A and B curves were included, the sensitivity was 100%. For patients investigated for laryngeal cancer in which CT is considered inadequate, dynamic MRI or PET/CT is useful

  18. Comparison of Dynamic Contrast-Enhanced MRI and PET/CT in the Evaluation of Laryngeal Cancer After Inadequate CT Results.

    Science.gov (United States)

    Citil, Serdal; Dogan, Serap; Atilgan, Hasan Ikbal; Menzilcioglu, Mehmet Sait; Sahin, Tuna; Abdulrezzak, Ummuhan; Duymus, Mahmut; Ozturk, Mustafa

    2015-01-01

    To investigate the diagnostic value of dynamic magnetic resonance imaging (MRI) and positron emission tomography/computed tomography (PET/CT) for laryngeal cancers after inadequate CT results. The study comprised 45 patients investigated for primary laryngeal cancer or recurrence-residue in which CT was considered inadequate. A mass was found in 20 patients. Dynamic MRI and PET/CT were compared for diagnosis of mass, lymph node involvement, recurrence and residue. The dynamic curves formed in dynamic MRI were investigated for diagnostic contributions. The sensitivity and specificity of the dynamic MRI, for supraglottic, glottic and subglottic location, was 100%, 80%, and 92%; 100%, 85%, and 100%, respectively. In PET/CT the sensitivity and specificity were 100% for all of those localizations. For lymph node involvement, the sensitivity of dynamic MRI and PET/CT was 100%, the specificity was 100% and 93%, respectively. For recurrence-residue, the sensitivity and specificity of dynamic MRI were 86% and 67%, respectively, with 100% sensitivity and specificity in PET/CT. The sensitivity of type A curve for detection of malignancy was 40%, and specificity was 100%. When type A and B curves were included, the sensitivity was 100%. For patients investigated for laryngeal cancer in which CT is considered inadequate, dynamic MRI or PET/CT is useful.

  19. Solitary pulmonary nodules: Comparison of dynamic first-pass contrast-enhanced perfusion area-detector CT, dynamic first-pass contrast-enhanced MR imaging, and FDG PET/CT.

    Science.gov (United States)

    Ohno, Yoshiharu; Nishio, Mizuho; Koyama, Hisanobu; Seki, Shinichiro; Tsubakimoto, Maho; Fujisawa, Yasuko; Yoshikawa, Takeshi; Matsumoto, Sumiaki; Sugimura, Kazuro

    2015-02-01

    To prospectively compare the capabilities of dynamic perfusion area-detector computed tomography (CT), dynamic magnetic resonance (MR) imaging, and positron emission tomography (PET) combined with CT (PET/CT) with use of fluorine 18 fluorodeoxyglucose (FDG) for the diagnosis of solitary pulmonary nodules. The institutional review board approved this study, and written informed consent was obtained from each subject. A total of 198 consecutive patients with 218 nodules prospectively underwent dynamic perfusion area-detector CT, dynamic MR imaging, FDG PET/CT, and microbacterial and/or pathologic examinations. Nodules were classified into three groups: malignant nodules (n = 133) and benign nodules with low (n = 53) or high (n = 32) biologic activity. Total perfusion was determined with dual-input maximum slope models at area-detector CT, maximum and slope of enhancement ratio at MR imaging, and maximum standardized uptake value (SUVmax) at PET/CT. Next, all indexes for malignant and benign nodules were compared with the Tukey honest significant difference test. Then, receiver operating characteristic analysis was performed for each index. Finally, sensitivity, specificity, and accuracy were compared with the McNemar test. All indexes showed significant differences between malignant nodules and benign nodules with low biologic activity (P Dynamic perfusion area-detector CT is more specific and accurate than dynamic MR imaging and FDG PET/CT in the diagnosis of solitary pulmonary nodules in routine clinical practice. © RSNA, 2014.

  20. Comparison of the image quality between volumetric and conventional high-resolution CT with 64-slice row CT

    International Nuclear Information System (INIS)

    Gao Yanli; Zhang Lei; Zhao Xia; Ma Min; Zhai Renyou

    2008-01-01

    Objective: To compare the image quality between volumetric high-resolution CT (VHRCT) and conventional high-resolution CT (CHRCT), and investigate the feasibility of VHRCT. Methods: Catphan 412 phantom was scanned with protocols of CHRCT and VHRCT on a set of GE Lightspeed VCT. The spatial-resolution (LP/cm), noise (standard deviation in an ROI) and radiation close (CTDI) were recorded for each CT scan. Difference of noise between CHRCT and VHRCT were evaluated by paired t test. In clinical study, 32 patients were scanned with VHRCT and CHRCT protocols. The image quality of CHRCT and VHRCT was rated and compared. The quality difference between CHRCT and VHRCT was assessed by Wilcoxon paired signed rank sum test. Results: In phantom study, the in-plane spatial-resolution of both VHRCT and CHRCT was 11 LP/cm for axial images and 12 LP/cm for coronal reformatted images. The noise of VHRCT and CHRCT was (69.18±2.77)HU and (54.62±2.12) HU respectively (t=-15.929, P 0.05). The quality assessment scores of VHRCT coronal reformatted images and CHRCT coronal reformatted images were 3.05 and 1.88 respectively with significant difference (Z= -5.088, P<0.01). Conclusion: The image quality of VHRCT cross-sectional image is similar to that of CHRCT. Multiplanar images with high resolution of VHRCT are recommended. The radiation dose of VHRCT remains to be optimized. (authors)

  1. High resolution CT in diffuse lung disease

    International Nuclear Information System (INIS)

    Webb, W.R.

    1995-01-01

    High resolution CT (computerized tomography) was discussed in detail. The conclusions were HRCT is able to define lung anatomy at the secondary lobular level and define a variety of abnormalities in patients with diffuse lung diseases. Evidence from numerous studies indicates that HRCT can play a major role in the assessment of diffuse infiltrative lung disease and is indicate clinically (95 refs.)

  2. High resolution CT in diffuse lung disease

    Energy Technology Data Exchange (ETDEWEB)

    Webb, W R [California Univ., San Francisco, CA (United States). Dept. of Radiology

    1996-12-31

    High resolution CT (computerized tomography) was discussed in detail. The conclusions were HRCT is able to define lung anatomy at the secondary lobular level and define a variety of abnormalities in patients with diffuse lung diseases. Evidence from numerous studies indicates that HRCT can play a major role in the assessment of diffuse infiltrative lung disease and is indicate clinically (95 refs.).

  3. High-resolution CT of temporal bone trauma: review of 38 cases

    International Nuclear Information System (INIS)

    Hiroual, M.R.; Zougarhi, A.; Cherif Idrissi El Ganouni, N.; Essadki, O.; Ousehal, A.; Tijani Adil, O.; Maliki, O.; Aderdour, L.; Raji, A.

    2010-01-01

    Purpose Temporal bone trauma is frequent but difficult to assess due to the diversity of clinical presentations and complex anatomy. We have sought to assess the different types of fractures and complications on high-resolution CT. Materials and methods Descriptive retrospective study over a 24 month period performed in the ENT radiology section of the Mohammed 6 university medical center in Marrakech. A total of 38 cases of temporal bone trauma were reviewed. All patients underwent ENT evaluation and high-resolution CT of the temporal bone using 1 mm axial and coronal sections. Results Mean patient age was 33 years (range: 14-55 years) with male predominance (sex ratio: 36/2). Clinical symptoms were mainly otorrhagia and conductive hearing loss. Oblique extra-labyrinthine fractures were most frequent. Two cases of pneumo-labyrinth were noted. Management was conservative in most cases with deafness in 3 cases. Conclusion High-resolution CT of the temporal bone provides accurate depiction of lesions explaining the clinical symptoms and helps guide management. MRI is complimentary to further assess the labyrinth and VII-VIII nerve complex. (author)

  4. Dual resolution cone beam breast CT: A feasibility study

    International Nuclear Information System (INIS)

    Chen Lingyun; Shen Youtao; Lai, Chao-Jen; Han Tao; Zhong Yuncheng; Ge Shuaiping; Liu Xinming; Wang Tianpeng; Yang, Wei T.; Whitman, Gary J.; Shaw, Chris C.

    2009-01-01

    Purpose: In this study, the authors investigated the feasibility of a dual resolution volume-of-interest (VOI) cone beam breast CT technique and compared two implementation approaches in terms of dose saving and scatter reduction. Methods: With this technique, a lead VOI mask with an opening is inserted between the x-ray source and the breast to deliver x-ray exposure to the VOI while blocking x rays outside the VOI. A CCD detector is used to collect the high resolution projection data of the VOI. Low resolution cone beam CT (CBCT) images of the entire breast, acquired with a flat panel (FP) detector, were used to calculate the projection data outside the VOI with the ray-tracing reprojection method. The Feldkamp-Davis-Kress filtered backprojection algorithm was used to reconstruct the dual resolution 3D images. Breast phantoms with 180 μm and smaller microcalcifications (MCs) were imaged with both FP and FP-CCD dual resolution CBCT systems, respectively. Two approaches of implementing the dual resolution technique, breast-centered approach and VOI-centered approach, were investigated and evaluated for dose saving and scatter reduction with Monte Carlo simulation using a GEANT4 package. Results: The results showed that the breast-centered approach saved more breast absorbed dose than did VOI-centered approach with similar scatter reduction. The MCs in fatty breast phantom, which were invisible with FP CBCT scan, became visible with the FP-CCD dual resolution CBCT scan. Conclusions: These results indicate potential improvement of the image quality inside the VOI with reduced breast dose both inside and outside the VOI.

  5. Super resolution reconstruction of μ-CT image of rock sample using neighbour embedding algorithm

    Science.gov (United States)

    Wang, Yuzhu; Rahman, Sheik S.; Arns, Christoph H.

    2018-03-01

    X-ray computed tomography (μ-CT) is considered to be the most effective way to obtain the inner structure of rock sample without destructions. However, its limited resolution hampers its ability to probe sub-micro structures which is critical for flow transportation of rock sample. In this study, we propose an innovative methodology to improve the resolution of μ-CT image using neighbour embedding algorithm where low frequency information is provided by μ-CT image itself while high frequency information is supplemented by high resolution scanning electron microscopy (SEM) image. In order to obtain prior for reconstruction, a large number of image patch pairs contain high- and low- image patches are extracted from the Gaussian image pyramid generated by SEM image. These image patch pairs contain abundant information about tomographic evolution of local porous structures under different resolution spaces. Relying on the assumption of self-similarity of porous structure, this prior information can be used to supervise the reconstruction of high resolution μ-CT image effectively. The experimental results show that the proposed method is able to achieve the state-of-the-art performance.

  6. Thin-slice high-resolution CT study of pulmonary asbestosis and idiopathic interstitial pneumonia

    International Nuclear Information System (INIS)

    Hatakeyama, Masayuki; Maeda, Munehiro; Ohmura, Takuya

    1987-01-01

    Thin-slice high-resolution CT findings were compared between 36 patients with pulmonary asbestos exposure (AS) and 33 patients with idiopathic interstitial pneumonia (IIP). The CT scans of these patients were classified into 5 types (0-IV) by the subpleural curvilinear shadow (SCLS) and honey-comb shadow (HS). SCLS was detected in 22 (62 %) patients with AS and 7 (21 %) with IIP. HS was detected in 14 (39 %) patients with AS and 33 (100 %) with IIP. In both the diseases, SCLS was distributed mainly in the lower lobe in CT types I and II, and in mildly fibrotic segments in types III and IV. In CT types II, III and IV, SCLS was always communicated with HS. Thin-slice high-resolution CT is considered very helpful in diagnosis and staging of not only AS and IIP but also pulmonary fibrosis. (author)

  7. Budd-Chiari syndrome: dynamic enhancement findings with multi-slice helical CT and CT angiography analysis

    International Nuclear Information System (INIS)

    Meng Xiaochun; Shan Hong; Zhu Kangshun; Xu Chuan; Zhang Jiansheng; Liu Lingyun; Ye Binbin

    2005-01-01

    Objective: To investigate the dynamic enhancement regulations of liver and their mechanism in Budd-Chiari syndrome (BCS) by using multi-slice CT and evaluate the value of CT angiography in the diagnosis of BCS. Methods: 28 cases with BCS confirmed by digital subtraction angiography (DSA) were retrospectively analyzed. All patients underwent dynamic enhancement examinations with multi-slice CT within 1 week before DSA. The relevant vessels were reconstructed respectively with MIP, VR and MPR. Compared with the results of DSA, we analyzed the dynamic enhancement regulations of liver in BCS, estimated the value of dynamic enhancement CT exams and CTA techniques in judging the obstruction level and showing collateral vessels. Results: Of all 28 cases, CT correctly showed the obstruction level in 26 cases, and 2 had incorrect results which proved to be membranous obstruction of the inferior vena cava superior to diaphragm. In 22 cases with hepatic vein obstructions, hepatic parenchyma displayed typical patchy enhancement in 19, atypical patchy enhancement in 3.8 cases among these showed benign nodules. Simultaneously, CT showed stenosis and rigidity of portal vein branches in 20, enlargement of hepatic artery in 14, hepatic collateral vessels in 20 out of 22 cases. In 6 cases with simple obstruction of inferior vena cava, hepatic changes were not found. Collateral circulations in or out of liver corresponded to the obstruction level. Conclusion: Dynamic enhancement examinations with multi-slice CT can correctly reflect the hepatic hemodynamic changes. Transverse images, combined with CTA, can explicitly display the obstruction level of vascular lesions and collateral circulations in BCS. (authors)

  8. Dynamic helical CT mammography of breast cancer

    International Nuclear Information System (INIS)

    Yamamoto, Akira; Fukushima, Hitoshi; Okamura, Ryuji; Nakamura, Yoshiaki; Morimoto, Taisuke; Urata, Yoji; Mukaihara, Sumio; Hayakawa, Katsumi

    2006-01-01

    The purpose of this study was to determine whether dynamic helical computed tomography (CT)-mammography could assist in selecting the most appropriate surgical method in women with breast cancer. Preoperative contrast-enhanced helical CT scanning of the breast was performed on 133 female patients with suspicion of breast cancer at the same time as clinical, mammographic, and/or ultrasonographic examinations. The patients were scanned in the prone position with a specially designed CT-compatible device. A helical scan was made with rapid intravenous bolus injection (3 ml/s) of 100 ml of iodine contrast material. Three-dimensional maximum intensity projection (MIP) images were reconstructed, and CT findings were correlated with surgical and histopathological findings. Histopathological analysis revealed 84 malignant lesions and seven benign lesions. The sensitivity, specificity, and accuracy levels of the CT scanning were 94.6%, 58.6%, and 78.9%. Helical scanning alone revealed additional contralateral carcinomas in three of four patients and additional ipsilateral carcinomas in three of five patients. However, the technique gave false-positive readings in 24 patients. The preoperative CT-mammogram altered the surgical method in six patients. Dynamic helical CT-mammography in the prone position may be one of the choices of adjunct imaging in patients with suspected breast cancer scheduled for surgery. (author)

  9. CT imaging of the internal human ear: Test of a high resolution scanner

    Energy Technology Data Exchange (ETDEWEB)

    Bettuzzi, M., E-mail: matteo.bettuzzi@unibo.it [Department of Physics, University of Bologna and National Institute of Nuclear Physics Section of Bologna (Italy); Brancaccio, R.; Morigi, M.P. [Department of Physics, University of Bologna and National Institute of Nuclear Physics Section of Bologna (Italy); Gallo, A. [Medicine Faculty, Magna Graecia University, Catanzaro and INFN Cosenza (Italy); Strolin, S.; Casali, F. [Department of Physics, University of Bologna and National Institute of Nuclear Physics Section of Bologna (Italy); Lamanna, Ernesto [Medicine Faculty, Magna Graecia University, Catanzaro and INFN Cosenza (Italy); Ariu, Marilu [CEFLA Dental Group, Imola (Italy)

    2011-08-21

    During the course of 2009, in the framework of a project supported by the National Institute of Nuclear Physics, a number of tests were carried out at the Department of Physics of the University of Bologna in order to achieve a good quality CT scan of the internal human ear. The work was carried out in collaboration with the local 'S. Orsola' Hospital in Bologna and a company (CEFLA) already involved in the production and commercialization of a CT scanner dedicated to dentistry. A laboratory scanner with a simple concept detector (CCD camera-lens-mirror-scintillator) was used to see to what extent it was possible to enhance the quality of a conventional CT scanner when examining the internal human ear. To test the system, some conventional measurements were made, such as the spatial resolution calculation with the MTF and dynamic range evaluation. Different scintillators were compared to select the most suitable for the purpose. With 0.5 mm thick structured cesium iodide and a field of view of 120x120 mm{sup 2}, a spatial resolution of 6.5l p/mm at 5% MTF was obtained. The CT of a pair of human head phantoms was performed at an energy of 120 kVp. The first phantom was a rough representation of the human head shape, with soft tissue made of coarse slabs of Lucite. Some inserts, like small aluminum cylinders and cubes, with 1 mm diameter drilled holes, were used to simulate the channels that one finds inside the human inner ear. The second phantom is a plastic PVC fused head with a real human cranium inside. The bones in the cranium are well conserved and the inner ear features, such as the cochlea and semicircular channels, are clearly detectable. After a number of CT tests we obtained good results as far as structural representation and channel detection are concerned. Some images of the 3D rendering of the CT volume are shown below. The doctors of the local hospital who followed our experimentation expressed their satisfaction. The CT was compared to a

  10. Clinical evaluation of high-resolution CT, 1. CT diagnosis of liver tumors and its limit

    Energy Technology Data Exchange (ETDEWEB)

    Araki, T [Tokyo Univ. (Japan). Faculty of Medicine

    1980-03-01

    To estimate diagnostic accuracy of CT in liver tumors, CT diagnosis in 120 patients with primary hepatocellular carcinoma was discussed. As a result, primary hepatocellular carcinoma less than 2 cm in diameter could not be visualized by CT. Even tumors between 4 and 8 cm in diameter showed false negative caused by isodense tumors on images of 4 patients. To improve the detectability of liver tumors by CT, the higher resolution of low contrast regions on images are required. As a method to improve qualitative diagnosis of liver tumors, rapid intravenous injection of contrast medium was performed on 42 patients with liver tumors, As a result, images reflecting vascularity of tumors were obtained, and the differential diagnosis was possible to some extent by observing the movement of the contrast. Especially, cavernous hemangioma could be distinguished from hepatocellular carcinoma, because cavernous hemangioma showed specific images and could be diagnosed accurately.

  11. Gas scintillation glass GEM detector for high-resolution X-ray imaging and CT

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, T., E-mail: fujiwara-t@aist.go.jp [Research Institute for Measurement and Analytical Instrumentation, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Mitsuya, Y. [Nuclear Professional School, The University of Tokyo, Tokai, Naka, Ibaraki 319-1188 (Japan); Fushie, T. [Radiment Lab. Inc., Setagaya, Tokyo 156-0044 (Japan); Murata, K.; Kawamura, A.; Koishikawa, A. [XIT Co., Naruse, Machida, Tokyo 194-0045 (Japan); Toyokawa, H. [Research Institute for Measurement and Analytical Instrumentation, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Takahashi, H. [Institute of Engineering Innovation, School of Engineering, The University of Tokyo, Bunkyo, Tokyo 113-8654 (Japan)

    2017-04-01

    A high-spatial-resolution X-ray-imaging gaseous detector has been developed with a single high-gas-gain glass gas electron multiplier (G-GEM), scintillation gas, and optical camera. High-resolution X-ray imaging of soft elements is performed with a spatial resolution of 281 µm rms and an effective area of 100×100 mm. In addition, high-resolution X-ray 3D computed tomography (CT) is successfully demonstrated with the gaseous detector. It shows high sensitivity to low-energy X-rays, which results in high-contrast radiographs of objects containing elements with low atomic numbers. In addition, the high yield of scintillation light enables fast X-ray imaging, which is an advantage for constructing CT images with low-energy X-rays.

  12. Bronchiolitis obliterans in children with Stevens-Johnson syndrome: follow-up with high resolution CT

    International Nuclear Information System (INIS)

    Kim, M.J.; Lee, K.Y.

    1996-01-01

    About one third of children with Stevens-Johnson syndrome have pulmonary involvement. As a consequence of airway epithelial injury, bronchiolitis obliterans can occur in these patients. Two cases of Stevens-Johnson syndrome-associated bronchiolitis obliterans in children were diagnosed and followed by high resolution CT without open lung biopsy. Serial changes of high resolution CT features of bronchiolitis obliterans are discussed and the literature is reviewed. (orig.)

  13. Application of high resolution synchrotron micro-CT radiation in dental implant osseointegration.

    Science.gov (United States)

    Neldam, Camilla Albeck; Lauridsen, Torsten; Rack, Alexander; Lefolii, Tore Tranberg; Jørgensen, Niklas Rye; Feidenhans'l, Robert; Pinholt, Else Marie

    2015-06-01

    The purpose of this study was to describe a refined method using high-resolution synchrotron radiation microtomography (SRmicro-CT) to evaluate osseointegration and peri-implant bone volume fraction after titanium dental implant insertion. SRmicro-CT is considered gold standard evaluating bone microarchitecture. Its high resolution, high contrast, and excellent high signal-to-noise-ratio all contribute to the highest spatial resolutions achievable today. Using SRmicro-CT at a voxel size of 5 μm in an experimental goat mandible model, the peri-implant bone volume fraction was found to quickly increase to 50% as the radial distance from the implant surface increased, and levelled out to approximately 80% at a distance of 400 μm. This method has been successful in depicting the bone and cavities in three dimensions thereby enabling us to give a more precise answer to the fraction of the bone-to-implant contact compared to previous methods. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  14. Pulmonary langerhans cell histiocytosis in adults: high-resolution CT - pathology comparisons and evolutional changes at CT

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyo Jin; Lee, Ho Yun; Kim, Tae Sung [Sungkyunkwan University School of Medicine, Department of Radiology and Center for Imaging Science, Samsung Medical Center, Seoul (Korea, Republic of); Lee, Kyung Soo [Sungkyunkwan University School of Medicine, Department of Radiology and Center for Imaging Science, Samsung Medical Center, Seoul (Korea, Republic of); Samsung Medical Center, Department of Radiology, Seoul (Korea, Republic of); Johkoh, Takeshi [Kinki Central Hospital of Mutual Aid Association of Public School Teachers, Department of Radiology, Hyoko (Japan); Tomiyama, Noriyuki [Osaka University Graduate School of Medicine, Department of Radiology, Osaka (Japan); Han, Joungho [Sungkyunkwan University School of Medicine, Department of Pathology, Samsung Medical Center, Seoul (Korea, Republic of)

    2011-07-15

    To compare high-resolution (HR) CT and histopathological findings and to evaluate serial CT findings in pulmonary Langerhans cell histiocytosis (PLCH). We reviewed CT of lung lesions in 27 adults (M:F = 20:7, mean age, 41 {+-} 12.3 years) with PLCH. After evaluating lung abnormalities including nodules, micronodules, thick-walled, thin-walled, and bizarre-shaped cysts and reticulation, observers compared CT findings obtained at lung biopsy sites with histopathological findings. The final CT was compared with the initial CT to determine disease extent changes. The most frequently observed patterns of lung abnormalities were micronodules (n = 24, 89%), thick-walled (n = 22, 82%), and thin-walled (n = 22, 82%) cysts. Even thin-walled and bizarre cysts harboured active inflammatory Langerhans cell sheets and eosinophils in their walls. In thin-walled cysts, we noted pericystic inflammatory cell infiltrations along the alveolar walls, as well as pericystic emphysema. Thin-walled or bizarre cysts demonstrated a tendency to coalesce with surrounding cysts via their cystic wall destruction. Fourteen (52%) patients showed improvement and nine (33%) showed progressing disease. More than half of patients with pulmonary PLCH show improvement at follow-up CT. Even thin-walled cysts harbour active inflammatory cells on histopathology and exhibit improvement at follow-up CT. (orig.)

  15. Lymphocytic interstitial pneumonia in children with AIDS: high-resolution CT findings

    International Nuclear Information System (INIS)

    Becciolini, V.; Gudinchet, F.; Schnyder, P.; Cheseaux, J.J.

    2001-01-01

    Pulmonary involvement in children with acquired immunodeficiency syndrome (AIDS) represents a wide spectrum of diseases. Among the non-infectious, non-neoplastic affections associated with AIDS, lymphocytic interstitial pneumonia (LIP) is now a well-recognized entity, but its radiological pattern studied with high-resolution computed tomography (HRCT) has rarely been described in children. The aim of this study was to illustrate the HRCT spectrum of pulmonary involvement in children with LIP and to evaluate its usefulness in the early diagnosis of this entity. Twelve children with AIDS, aged 3-9 years (mean age 5 years 7 months), underwent chest radiographs and HRCT. A control group of 7 healthy aged-matched children was also studied in the same conditions. Diagnosis of LIP was based on clinical data and HRCT findings. Eight children of 12 had a reticulonodular pattern on chest radiographs. Two children had normal chest films and two children showed peribronchiolar thickening. High-resolution CT displayed micronodules, 1-3 mm in diameter, with a perilymphatic distribution in all patients. High-resolution CT demonstrated also subpleural nodules in children without reticulonodular opacities on chest radiographs. High-resolution CT is able to define a more specific pattern of abnormalities than conventional chest radiographs in children with LIP, allows an earlier and more confident diagnosis and may be useful for the detection of other pathologies associated with AIDS, such as opportunistic infections or superimposed malignancies. (orig.)

  16. High resolution CT in children with cystic fibrosis

    International Nuclear Information System (INIS)

    Stiglbauer, R.; Schurawitzki, H.; Eichler, I.; Goetz, M.

    1992-01-01

    High resolution CT (HRCT) was performed in 24 children (median age 57.9 months) suffering from cystic fibrosis (CF). In 23 patients (one examination unacceptable because of motion artifacts) the most frequent finding was bronchial wall thickening, shown in 21 patients (91%), followed by bronchiectasis in 15 patients (65%). Less frequent findings were mucus plugging and patchy consolidations, which could be demonstrated in 11 patients each (48%). Findings were classified using a CT scoring system and including only irreversible pulmonary changes; a statistically significant correlation with lung function tests could be established. HRCT to date seems to be the most valuable method to determine extent and severity of lung involvement in children with CF and should therefore be routinely used for the staging of this disease. (orig.)

  17. High spatial resolution CT image reconstruction using parallel computing

    International Nuclear Information System (INIS)

    Yin Yin; Liu Li; Sun Gongxing

    2003-01-01

    Using the PC cluster system with 16 dual CPU nodes, we accelerate the FBP and OR-OSEM reconstruction of high spatial resolution image (2048 x 2048). Based on the number of projections, we rewrite the reconstruction algorithms into parallel format and dispatch the tasks to each CPU. By parallel computing, the speedup factor is roughly equal to the number of CPUs, which can be up to about 25 times when 25 CPUs used. This technique is very suitable for real-time high spatial resolution CT image reconstruction. (authors)

  18. On the way to isotopic spatial resolution: technical principles and applications of 16-slice CT

    International Nuclear Information System (INIS)

    Flohr, T.; Ohnesorge, B.; Stierstorfer, K.

    2005-01-01

    The broad introduction of multi-slice CT by all major vendors in 1998 was a milestone with regard to extended volume coverage, improved axial resolution and better utilization of the tube output. New clinical applications such as CT-examinations of the heart and the coronary arteries became possible. Despite all promising advances, some limitations remain for 4-slice CT systems. They come close to isotropic resolution, but do not fully reach it in routine clinical applications. Cardiac CT-examinations require careful patient selection. The new generation of multi-slice CT-systems offer simultaneous acquisition of up to 16 sub-millimeter slices and improved temporal resolution for cardiac examinations by means of reduced gantry rotation time (0.4 s). In this overview article we present the basic technical principles and potential applications of 16-slice technology for the example of a 16-slice CT-system (SOMATOM Sensation 16, Siemens AG, Forchheim). We discuss detector design and dose efficiency as well as spiral scan- and reconstruction techniques. At comparable slice thickness, 16-slice CT-systems have a better dose efficiency than 4-slice CT-systems. The cone-beam geometry of the measurement rays requires new reconstruction approaches, an example is the adaptive multiple plane reconstruction, AMPR. First clinical experience indicates that sub-millimeter slice width in combination with reduced gantry rotation-time improves the clinical stability of cardiac examinations and expands the spectrum of patients accessible to cardiac CT. 16-slice CT-systems have the potential to cover even large scan ranges with sub-millimeter slices at considerably reduced examination times, thus approaching the goal of routine isotropic imaging [de

  19. Resolution enhancement of lung 4D-CT data using multiscale interphase iterative nonlocal means

    International Nuclear Information System (INIS)

    Zhang Yu; Yap, Pew-Thian; Wu Guorong; Feng Qianjin; Chen Wufan; Lian Jun; Shen Dinggang

    2013-01-01

    Purpose: Four-dimensional computer tomography (4D-CT) has been widely used in lung cancer radiotherapy due to its capability in providing important tumor motion information. However, the prolonged scanning duration required by 4D-CT causes considerable increase in radiation dose. To minimize the radiation-related health risk, radiation dose is often reduced at the expense of interslice spatial resolution. However, inadequate resolution in 4D-CT causes artifacts and increases uncertainty in tumor localization, which eventually results in extra damages of healthy tissues during radiotherapy. In this paper, the authors propose a novel postprocessing algorithm to enhance the resolution of lung 4D-CT data. Methods: The authors' premise is that anatomical information missing in one phase can be recovered from the complementary information embedded in other phases. The authors employ a patch-based mechanism to propagate information across phases for the reconstruction of intermediate slices in the longitudinal direction, where resolution is normally the lowest. Specifically, the structurally matching and spatially nearby patches are combined for reconstruction of each patch. For greater sensitivity to anatomical details, the authors employ a quad-tree technique to adaptively partition the image for more fine-grained refinement. The authors further devise an iterative strategy for significant enhancement of anatomical details. Results: The authors evaluated their algorithm using a publicly available lung data that consist of 10 4D-CT cases. The authors’ algorithm gives very promising results with significantly enhanced image structures and much less artifacts. Quantitative analysis shows that the authors’ algorithm increases peak signal-to-noise ratio by 3–4 dB and the structural similarity index by 3%–5% when compared with the standard interpolation-based algorithms. Conclusions: The authors have developed a new algorithm to improve the resolution of 4D-CT. It

  20. Effects of ray profile modeling on resolution recovery in clinical CT

    International Nuclear Information System (INIS)

    Hofmann, Christian; Knaup, Michael; Kachelrieß, Marc

    2014-01-01

    Purpose: Iterative image reconstruction gains more and more interest in clinical routine, as it promises to reduce image noise (and thereby patient dose), to reduce artifacts, or to improve spatial resolution. However, among vendors and researchers, there is no consensus of how to best achieve these goals. The authors are focusing on the aspect of geometric ray profile modeling, which is realized by some algorithms, while others model the ray as a straight line. The authors incorporate ray-modeling (RM) in nonregularized iterative reconstruction. That means, instead of using one simple single needle beam to represent the x-ray, the authors evaluate the double integral of attenuation path length over the finite source distribution and the finite detector element size in the numerical forward projection. Our investigations aim at analyzing the resolution recovery (RR) effects of RM. Resolution recovery means that frequencies can be recovered beyond the resolution limit of the imaging system. In order to evaluate, whether clinical CT images can benefit from modeling the geometrical properties of each x-ray, the authors performed a 2D simulation study of a clinical CT fan-beam geometry that includes the precise modeling of these geometrical properties. Methods: All simulations and reconstructions are performed in native fan-beam geometry. A water phantom with resolution bar patterns and a Forbild thorax phantom with circular resolution patterns representing calcifications in the heart region are simulated. An FBP reconstruction with a Ram–Lak kernel is used as a reference reconstruction. The FBP is compared to iterative reconstruction techniques with and without RM: An ordered subsets convex (OSC) algorithm without any RM (OSC), an OSC where the forward projection is modeled concerning the finite focal spot and detector size (OSC-RM) and an OSC with RM and with a matched forward and backprojection pair (OSC-T-RM, T for transpose). In all cases, noise was matched to

  1. [Adult transient intestinal intussusception: can abdominal CT guide resolution?].

    Science.gov (United States)

    Stabile Ianora, Amato Antonio; Telegrafo, Michele; Lorusso, Valentina; Rella, Leonarda; Niccoli Asabella, Artor; La Porta, Michele; Moschetta, Marco

    2013-01-01

    The purpose of this study was to evaluate the adult transient intestinal intussusceptions on CT before and after the administration of gastrointestinal contrast material. We evaluated two different gastrointestinal contrast materials: hyperdense and hypodense. In all cases the gastrointestinal contrast agent solved the invaginations. In the group of patients treated with hypodense contrast medium relapses occurred in the short and long term; no recurrence was observed in the other group. CT is useful in the recognition of intestinal intussusception. The gastrointestinal contrast agent could define the real transience of intussusceptions and hyperdense contrast agent could be more effective in short and long term resolution.

  2. Super-resolution reconstruction of 4D-CT lung data via patch-based low-rank matrix reconstruction

    Science.gov (United States)

    Fang, Shiting; Wang, Huafeng; Liu, Yueliang; Zhang, Minghui; Yang, Wei; Feng, Qianjin; Chen, Wufan; Zhang, Yu

    2017-10-01

    Lung 4D computed tomography (4D-CT), which is a time-resolved CT data acquisition, performs an important role in explicitly including respiratory motion in treatment planning and delivery. However, the radiation dose is usually reduced at the expense of inter-slice spatial resolution to minimize radiation-related health risk. Therefore, resolution enhancement along the superior-inferior direction is necessary. In this paper, a super-resolution (SR) reconstruction method based on a patch low-rank matrix reconstruction is proposed to improve the resolution of lung 4D-CT images. Specifically, a low-rank matrix related to every patch is constructed by using a patch searching strategy. Thereafter, the singular value shrinkage is employed to recover the high-resolution patch under the constraints of the image degradation model. The output high-resolution patches are finally assembled to output the entire image. This method is extensively evaluated using two public data sets. Quantitative analysis shows that the proposed algorithm decreases the root mean square error by 9.7%-33.4% and the edge width by 11.4%-24.3%, relative to linear interpolation, back projection (BP) and Zhang et al’s algorithm. A new algorithm has been developed to improve the resolution of 4D-CT. In all experiments, the proposed method outperforms various interpolation methods, as well as BP and Zhang et al’s method, thus indicating the effectivity and competitiveness of the proposed algorithm.

  3. Finite detector based projection model for super resolution CT

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Hengyong; Wang, Ge [Wake Forest Univ. Health Sciences, Winston-Salem, NC (United States). Dept. of Radiology; Virgina Tech, Blacksburg, VA (United States). Biomedical Imaging Div.

    2011-07-01

    For finite detector and focal spot sizes, here we propose a projection model for super resolution CT. First, for a given X-ray source point, a projection datum is modeled as an area integral over a narrow fan-beam connecting the detector elemental borders and the X-ray source point. Then, the final projection value is expressed as the integral obtained in the first step over the whole focal spot support. An ordered-subset simultaneous algebraic reconstruction technique (OS-SART) is developed using the proposed projection model. In the numerical simulation, our method produces super spatial resolution and suppresses high-frequency artifacts. (orig.)

  4. Vanishing lung syndrome: the importance of the high-resolution CT in its diagnostic

    International Nuclear Information System (INIS)

    Rodriguez Cerezo, M.I.; Porres Azcona, E.; Pina Insausti, L.; Inchusta Sarasibar, M.I.; Mellado Rodriguez, M.

    1995-01-01

    Vanishing lung syndrome, also referred to as idiopathic giant bullions emphysema is a dissolver that has yet to be fully characterized. It is considered a different entry from classic pulmonary emphysema. It is characterized by the presence of large bullae associated with some type of emphysema. High-resolution CT is the best imaging technique to identify the underlying type of emphysema and it helps to determine the viability of the nonbullous lung. We present the case of an asymptomatic patient in whom the diagnosis was suspected on the basis of plain chest X ray and was confirmed by high-resolution CT. 13 refs

  5. High-resolution CT with histopathological correlates of the classic metaphyseal lesion of infant abuse

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Andy; Kleinman, Paul K. [Boston Children' s Hospital, Department of Radiology, Boston, MA (United States); McDonald, Anna G. [Office of the Chief Medical Examiner, Boston, MA (United States); Rosenberg, Andrew E. [University of Miami Hospital, Department of Pathology, Miami, FL (United States); Gupta, Rajiv [Massachusetts General Hospital, Department of Radiology, Boston, MA (United States)

    2014-02-15

    The classic metaphyseal lesion (CML) is a common high specificity indicator of infant abuse and its imaging features have been correlated histopathologically in infant fatalities. High-resolution CT imaging and histologic correlates were employed to (1) characterize the normal infant anatomy surrounding the chondro-osseous junction, and (2) confirm the 3-D model of the CML previously inferred from planar radiography and histopathology. Long bone specimens from 5 fatally abused infants, whose skeletal survey showed definite or suspected CMLs, were studied postmortem. After skeletal survey, selected specimens were resected and imaged with high-resolution digital radiography. They were then scanned with micro-CT (isotropic resolution of 45 μm{sup 3}) or with high-resolution flat-panel CT (isotropic resolutions of 200 μm{sup 3}). Visualization of the bony structures was carried out using image enhancement, segmentation and isosurface extraction, together with volume rendering and multiplanar reformatting. These findings were then correlated with histopathology. Study of normal infant bone clarifies the 3-D morphology of the subperiosteal bone collar (SPBC) and the radiographic zone of provisional calcification (ZPC). Studies on specimens with CML confirm that this lesion is a fracture extending in a planar fashion through the metaphysis, separating a mineralized fragment. This disk-like mineralized fragment has two components: (1) a thick peripheral component encompassing the SPBC; and (2) a thin central component comprised predominantly of the radiologic ZPC. By manipulating the 3-D model, the varying appearances of the CML are displayed. High-resolution CT coupled with histopathology provides elucidation of the morphology of the CML, a strong indicator of infant abuse. This new information may prove useful in assessing the biomechanical factors that produce this strong indicator of abusive assaults in infants. (orig.)

  6. High-resolution CT with histopathological correlates of the classic metaphyseal lesion of infant abuse

    International Nuclear Information System (INIS)

    Tsai, Andy; Kleinman, Paul K.; McDonald, Anna G.; Rosenberg, Andrew E.; Gupta, Rajiv

    2014-01-01

    The classic metaphyseal lesion (CML) is a common high specificity indicator of infant abuse and its imaging features have been correlated histopathologically in infant fatalities. High-resolution CT imaging and histologic correlates were employed to (1) characterize the normal infant anatomy surrounding the chondro-osseous junction, and (2) confirm the 3-D model of the CML previously inferred from planar radiography and histopathology. Long bone specimens from 5 fatally abused infants, whose skeletal survey showed definite or suspected CMLs, were studied postmortem. After skeletal survey, selected specimens were resected and imaged with high-resolution digital radiography. They were then scanned with micro-CT (isotropic resolution of 45 μm 3 ) or with high-resolution flat-panel CT (isotropic resolutions of 200 μm 3 ). Visualization of the bony structures was carried out using image enhancement, segmentation and isosurface extraction, together with volume rendering and multiplanar reformatting. These findings were then correlated with histopathology. Study of normal infant bone clarifies the 3-D morphology of the subperiosteal bone collar (SPBC) and the radiographic zone of provisional calcification (ZPC). Studies on specimens with CML confirm that this lesion is a fracture extending in a planar fashion through the metaphysis, separating a mineralized fragment. This disk-like mineralized fragment has two components: (1) a thick peripheral component encompassing the SPBC; and (2) a thin central component comprised predominantly of the radiologic ZPC. By manipulating the 3-D model, the varying appearances of the CML are displayed. High-resolution CT coupled with histopathology provides elucidation of the morphology of the CML, a strong indicator of infant abuse. This new information may prove useful in assessing the biomechanical factors that produce this strong indicator of abusive assaults in infants. (orig.)

  7. High-resolution three-dimensional visualization of the rat spinal cord microvasculature by synchrotron radiation micro-CT

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jianzhong; Cao, Yong; Wu, Tianding; Li, Dongzhe [Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008 (China); Lu, Hongbin, E-mail: hongbinlu@hotmail.com [Department of Sports Medicine, Research Centre of Sports Medicine, Xiangya Hospital, Central South University, Changsha 410008 (China)

    2014-10-15

    Purpose: Understanding the three-dimensional (3D) morphology of the spinal cord microvasculature has been limited by the lack of an effective high-resolution imaging technique. In this study, synchrotron radiation microcomputed tomography (SRµCT), a novel imaging technique based on absorption imaging, was evaluated with regard to the detection of the 3D morphology of the rat spinal cord microvasculature. Methods: Ten Sprague-Dawley rats were used in this ex vivo study. After contrast agent perfusion, their spinal cords were isolated and scanned using conventional x-rays, conventional micro-CT (CµCT), and SRµCT. Results: Based on contrast agent perfusion, the microvasculature of the rat spinal cord was clearly visualized for the first time ex vivo in 3D by means of SRµCT scanning. Compared to conventional imaging techniques, SRµCT achieved higher resolution 3D vascular imaging, with the smallest vessel that could be distinguished approximately 7.4 μm in diameter. Additionally, a 3D pseudocolored image of the spinal cord microvasculature was generated in a single session of SRµCT imaging, which was conducive to detailed observation of the vessel morphology. Conclusions: The results of this study indicated that SRµCT scanning could provide higher resolution images of the vascular network of the spinal cord. This modality also has the potential to serve as a powerful imaging tool for the investigation of morphology changes in the 3D angioarchitecture of the neurovasculature in preclinical research.

  8. Utility of bolus dynamic CT for the detection of hypervascular malignant hepatic tumors. Mainly referring to the comparison with delayed phase contrast-enhanced CT

    International Nuclear Information System (INIS)

    Matsuda, Hiromichi; Abe, Kimihiko; Freeny, P.C.

    1996-01-01

    In order to analyze the usefulness of dynamic contrast-enhanced CT, 84 patients who had hepatocellular carcinoma or suspected hypervascular metastases were studied with conventional incremental dynamic CT (CID-CT) or double helical CT (DH-CT). Delayed phase contrast-enhanced CT studies were consecutively performed in all patients. Thirty-six of 84 patients had malignant hepatic neoplasms; six had hepatocellular carcinoma and 30 had metastatic tumors. At first, the detectability of hepatic lesions was evaluated with bolus dynamic CT and delayed phase CT. Dynamic CT has detected more lesions than delayed CT. Some hepatic lesions described as isodensity were missed on CID-CT. Therefore, delayed phase CT cannot be eliminated when CID-CT is performed. Secondly, hepatic lesion detectability with CID-CT was compared with that of DH-CT. DH-CT did not miss the hepatic lesions picked up by delayed phase CT and was expected to provide excellent detectability of hypervascular hepatic neoplasms. In addition, first helical CT showed most hepatic lesions as areas of obvious hyperdensity, while CID-CT did not show their correct vascularities. So-called hypervascular hepatic tumors, however, were not always hypervascular and were demonstrated as areas of iso-hypodensity even on initial helical scanning. Second helical CT was useful to detect these so-called hypervascular, but actually hypovascular lesions. In conclusion, dynamic CT was helpful in detecting hypervascular hepatic malignant neoplasms, and DH-CT was more accurate than-CID-CT for the detection of hepatic lesions and the evaluation of vascular lesion. (author)

  9. Flat-detector computed tomography (FD-CT)

    International Nuclear Information System (INIS)

    Kalender, Willi A.; Kyriakou, Yiannis

    2007-01-01

    Flat-panel detectors or, synonymously, flat detectors (FDs) have been developed for use in radiography and fluoroscopy with the defined goal to replace standard X-ray film, film-screen combinations and image intensifiers by an advanced sensor system. FD technology in comparison to X-ray film and image intensifiers offers higher dynamic range, dose reduction, fast digital readout and the possibility for dynamic acquisitions of image series, yet keeping to a compact design. It appeared logical to employ FD designs also for computed tomography (CT) imaging. Respective efforts date back a few years only, but FD-CT has meanwhile become widely accepted for interventional and intra-operative imaging using C-arm systems. FD-CT provides a very efficient way of combining two-dimensional (2D) radiographic or fluoroscopic and 3D CT imaging. In addition, FD technology made its way into a number of dedicated CT scanner developments, such as scanners for the maxillo-facial region or for micro-CT applications. This review focuses on technical and performance issues of FD technology and its full range of applications for CT imaging. A comparison with standard clinical CT is of primary interest. It reveals that FD-CT provides higher spatial resolution, but encompasses a number of disadvantages, such as lower dose efficiency, smaller field of view and lower temporal resolution. FD-CT is not aimed at challenging standard clinical CT as regards to the typical diagnostic examinations; but it has already proven unique for a number of dedicated CT applications, offering distinct practical advantages, above all the availability of immediate CT imaging in the interventional suite or the operating room. (orig.)

  10. Detecting metastasis of gastric carcinoma using high-resolution micro-CT system: in vivo small animal study

    Science.gov (United States)

    Liu, Junting; Tian, Jie; Liang, Jimin; Li, Xiangsi; Yang, Xiang; Chen, Xiaofeng; Chen, Yi; Zhou, Yuanfang; Wang, Xiaorui

    2011-03-01

    Immunocytochemical and immunofluorescence staining are used for identifying the characteristics of metastasis in traditional ways. Micro-computed tomography (micro-CT) is a useful tool for monitoring and longitudinal imaging of tumor in small animal in vivo. In present study, we evaluated the feasibility of the detection for metastasis of gastric carcinoma by high-resolution micro-CT system with omnipaque accumulative enhancement method in the organs. Firstly, a high-resolution micro-CT ZKKS-MCT-sharp micro-CT was developed by our research group and Guangzhou Zhongke Kaisheng Medical Technology Co., Ltd. Secondly, several gastric carcinoma models were established through inoculating 2x106 BGC-823 gastric carcinoma cells subcutaneously. Thirdly, micro-CT scanning was performed after accumulative enhancement method of intraperitoneal injection of omnipaque contrast agent containing 360 mg iodine with a concentration of 350 mg I/ml. Finally, we obtained high-resolution anatomical information of the metastasis in vivo in a BALB/c NuNu nude mouse, the 3D tumor architecture is revealed in exquisite detail at about 35 μm spatial resolution. In addition, the accurate shape and volume of the micrometastasis as small as 0.78 mm3 can be calculated with our software. Overall, our data suggest that this imaging approach and system could be used to enhance the understanding of tumor proliferation, metastasis and could be the basis for evaluating anti-tumor therapies.

  11. Arterio-venous anastomoses in mice affect perfusion measurements with dynamic contrast enhanced CT

    International Nuclear Information System (INIS)

    Gabra, Peter; Lee, Ting-Yim; Shen, Gang; Xuan, Jim

    2010-01-01

    Accurate measurement of perfusion with dynamic contrast enhanced CT requires an arterial input curve (AIC) uncontaminated by venous sources. Arterio-venous anastomoses (AVAs) are sources of contamination if contrast is injected intravenously. We seek to identify AVAs in mice and associated errors in perfusion measurements. Six transgenic mice with spontaneous prostate tumor were scanned with a micro-CT scanner (GE Healthcare (GE)) using a high resolution anatomical and a lower resolution perfusion protocol. For the anatomical protocol, a CT scan was performed during injection of an iodinated contrast agent (Hypaque) into a tail vein. Images covering the thoracic, abdominal and pelvic regions at an isotropic resolution of 175 µm were reconstructed and rendered in 3D to show the arterial and venous tree (Advantage Window, GE). For the perfusion protocol, each mouse was continuously scanned for 40 s and the contrast agent (Hypaque) was injected via a tail vein 5 s into scanning. Tumor images were reconstructed every second. Tumor blood flow (BF) and volume (BV) maps were calculated with CT perfusion software (GE) using AIC measured either from abdominal aorta (AA) or tail (caudal) artery (TA). In all mice, there was an AVA from the bifurcation of the inferior vena cava to the tail artery shunting venous blood and portion of the contrast agent injected into the tail vein into the TA. Contrast arrival time at the TA preceded that at the AA by 3.3 ± 0.5 s (P < 0.05). Mean tumor BV and BF values calculated with AA versus TA were 10.0 ± 1.8 versus 4.8 ± 2.1 ml (100 g) −1 (P < 0.05) and 108.8 ± 26.5 versus 33.0 ± 8.5 ml min −1 100 g −1 (P < 0.05), respectively. AVA in the murine pelvic region can result in inaccurate and more variable measurements of pelvic organ/tissue perfusion when the tail artery is used as the AIC

  12. Dynamic computed tomography findings in cerebrovascular diseases

    International Nuclear Information System (INIS)

    Araki, Yutaka; Tomoda, Kaname; Kariya, Mitsumasa; Mori, Shigeru; Mitomo, Masanori.

    1988-01-01

    Dynamic CT was performed with 41 patients with the clinically diagnosed cerebrovascular diseases. A visual evaluation based on the dynamic CT images classified six patterns of brain parenchymal enhancement, especially four patterns of which could only be detected by dynamic CT technique. Dynamic CT was proved of great value in detecting regional cerebral tissue filled by collaterals in retrograde fashion because of the occlusion of main arteries, namely brain tissue perfusion of internal carotid occlusion disease and moyamoya disease was best understood by dynamic CT with adequate resolution. (author)

  13. The use of thin-section high-resolution CT in pediatric pulmonary disease

    International Nuclear Information System (INIS)

    Hay, T.C.; Horgan, J.G.; Rumack, C.M.

    1989-01-01

    High-resolution thin-section CT of the chest was used successfully to characterize the extent of pulmonary disease. This paper reports on a study in which ten children with chronic lung disorders (including cystic fibrosis, reactive airway disease, and idiopathic disease) were evaluated to test the accuracy of the posteroanterior and lateral chest CT, with both thick (1 cm) and thin (1-3 mm) sections. Unsuspected bronchiectasis was established n two patients with reactive airway disease, and the extent of bronchiectasis in other patients was best defined on thin-section CT. Technique was crucial for an accurate study, and magnification views of each lung were useful. Thin-section CT of the chest was helpful in defining and localizing the extent of these pulmonary disorders

  14. Imatron CT C100 presentation. Limits-advantages

    International Nuclear Information System (INIS)

    Molle, M.; Molle, S.; Hernigou, A.

    1994-01-01

    Principles of Electron Beam CT are described and compared to conventional CT. Fast acquisitions and a short exposure time are the major qualities of the machine. Despite of a lower spatial resolution than in mechanical CT it allows exploration of moving organs and especially morphological and dynamic heart studies. The new possibilities of the Continuous Volume Scanning seems to present a promising future outlook. (authors). 5 refs., 4 figs., 1 tab

  15. Anatomy of the minor fissure: assessment with high-resolution CT and classification

    International Nuclear Information System (INIS)

    Ariyuerek, Macit O.; Yelgec, Selcuk N.; Guelsuen, Meltem; Karabulut, Nevzat

    2002-01-01

    The aims of this study were to investigate the anatomy of the minor fissure and its variations on high-resolution CT (HRCT) sections and to propose a detailed classification. The prospective study included 67 patients who were referred to CT for various indications. High-resolution CT examinations (1.5-mm collimation) were obtained through the region of the minor fissure. The CT scans were assessed for the presence, completeness, and configuration of the minor fissure. Various configurations of the minor fissure were classified into four major types, based on whether the highest portion of the middle lobe upper surface was medial (type I), lateral (type II), posterior (type III), or central (type IV). Minor fissure was identified in 65 (97%) of 67 patients, and absent in 2 (3%) cases. The fissure was incomplete in 35 (54%) of 65 patients. Type-I minor fissure is seen in 28 (43%) patients, type II in 22 (34%), type III in 5 (8%), and type IV in 2 (3%) patients. Because the majority of the fissure was absent in 8 (12%) of 35 patients with incomplete fissure, they were considered indeterminate. Comprehensive knowledge of the various configurations of the minor fissure is helpful in correct localization of a lesion and its extension. In equivocal cases, limited thin-section CT scans through the fissure delineate the anatomy more clearly and provide greater degree of precision in localizing pulmonary lesions. (orig.)

  16. Vascular anatomy of the liver and porta hepatis with dynamic CT scan

    International Nuclear Information System (INIS)

    Hiramatsu, Yoshihiro; Wada, Mitsuyoshi; Nakajima, Teiichi; Tonooka, Reiko; Matsumoto, Kunihiko

    1983-01-01

    Vascular anatomy of the liver and porta heaptis demonstrated by dynamic CT scan was studied Identification of the individual vessels was sometimes difficult due to slight differencies in respiratory depths among the scans. Limitation in the number of slices also made the evalution of the vascular anatomy difficult. Angiography was therefore utilized for comparison in identifying the vessels. Dynamic CT scan was proved to be usefull in demonstrating the anteroposterior relationship of the vessels and surrounding structures, which is difficult with convetional angiography without multiple projections. Three dimensional understanding of the vessels was then possible with dynamic CT scan and angiography. When combined with recently advancing digital subtraction angiography, dynamic CT scan might reduce the necessity for conventional angiography with Seldinger's technique. (author)

  17. Evaluation of high-resolution CT after tympanoplasty

    International Nuclear Information System (INIS)

    Torizuka, T.; Hayakawa, K.; Sato, Y.; Tanaka, F.; Okuno, Y.

    1991-01-01

    This paper reports on the condition of the middle ear cavity following tympanoplasty which is always of great interest to radiologists and otosurgeons. This study consisted of 21 patients who had various types of tympanoplasty (types I-IV) for chronic otitis media and cholesteatoma by using high-resolution CT (HRCT). HRCT following tympanoplasty was a valuable method for assessing the middle ear aeration and the state of ossicular reconstruction, including stapes prosthesis, although in some cases of soft-tissue mass in the middle ear it was necessary to correlate with clinical findings in order to differentiate between granulation and recurrence

  18. Dynamic CT for Parathyroid Adenoma Detection: How Does Radiation Dose Compare With Nuclear Medicine?

    Science.gov (United States)

    Czarnecki, Caroline A; Einsiedel, Paul F; Phal, Pramit M; Miller, Julie A; Lichtenstein, Meir; Stella, Damien L

    2018-05-01

    Dynamic CT is increasingly used for preoperative localization of parathyroid adenomas, but concerns remain about the radiation effective dose of CT compared with that of 99m Tc-sestamibi scintigraphy. The purpose of this study was to compare the radiation dose delivered by three-phase dynamic CT with that delivered by 99m Tc-sestamibi SPECT/CT performed in accordance with our current protocols and to assess the possible reduction in effective dose achieved by decreasing the scan length (i.e., z-axis) of two phases of the dynamic CT protocol. The effective dose of a 99m Tc-sestamibi nuclear medicine parathyroid study performed with and without coregistration CT was calculated and compared with the effective dose of our current three-phase dynamic CT protocol as well as a proposed protocol involving CT with reduced scan length. The median effective dose for a 99m Tc-sestamibi nuclear medicine study was 5.6 mSv. This increased to 12.4 mSv with the addition of coregistration CT, which is higher than the median effective dose of 9.3 mSv associated with the dynamic CT protocol. Reducing the scan length of two phases in the dynamic CT protocol could reduce the median effective dose to 6.1 mSv, which would be similar to that of the dose from the 99m Tc-sestamibi study alone. Dynamic CT used for the detection of parathyroid adenoma can deliver a lower radiation dose than 99m Tc-sestamibi SPECT/CT. It may be possible to reduce the dose further by decreasing the scan length of two of the phases, although whether this has an impact on accuracy of the localization needs further investigation.

  19. Chronic pneumonitis of infancy: high-resolution CT findings

    International Nuclear Information System (INIS)

    Olsen, Oeystein E.; Owens, Catherine M.; Sebire, Neil J.; Jaffe, Adam

    2004-01-01

    Chronic pneumonitis of infancy (CPI) is a very rare entity. We report the chest radiography and high-resolution CT (HRCT) findings in an infant with histopathologically confirmed CPI. The child was admitted for intensive care 18 h after birth and died at 39 days of age. On HRCT there was diffuse ground-glass change, interlobular septal thickening and discrete centrilobular nodules. An accurate diagnosis is crucial for correct management; however, several entities with the same HRCT findings are recognized. (orig.)

  20. Multimodality functional imaging of spontaneous canine tumors using 64CU-ATSM and 18FDG PET/CT and dynamic contrast enhanced perfusion CT

    DEFF Research Database (Denmark)

    Hansen, Anders E; Kristensen, Annemarie T; Law, Ian

    2012-01-01

    To compare the distribution and uptake of the hypoxia tracer (64)Cu-diacetyl-bis(N(4)-methylthiosemicarbazone) ((64)Cu-ATSM) PET/CT, FDG PET/CT and dynamic contrast enhanced perfusion CT (DCE-pCT) in spontaneous canine tumors. In addition (64)Cu-ATSM distribution over time was evaluated.......To compare the distribution and uptake of the hypoxia tracer (64)Cu-diacetyl-bis(N(4)-methylthiosemicarbazone) ((64)Cu-ATSM) PET/CT, FDG PET/CT and dynamic contrast enhanced perfusion CT (DCE-pCT) in spontaneous canine tumors. In addition (64)Cu-ATSM distribution over time was evaluated....

  1. High-resolution CT of airway reactivity

    International Nuclear Information System (INIS)

    Herold, C.J.; Brown, R.H.; Hirshman, C.A.; Mitzner, W.; Zerhouni, E.A.

    1990-01-01

    Assessment of airway reactivity has generally been limited to experimental nonimaging models. This authors of this paper used high-resolution CT (HRCT) to evaluate airway reactivity and to calculate airway resistance (Raw) compared with lung resistance (RL). Ten anesthetized and ventilated dogs were investigated with HRCT (10 contiguous 2-mm sections through the lower lung lobes) during control state, following aerosol histamine challenge, and following posthistamine hyperinflation. The HRCT scans were digitized, and areas of 10 airways per dog (diameter, 1-10 mm) were measured with a computer edging process. Changes in airway area and Raw (calculated by 1/[area] 2 ) were measured. RL was assessed separately, following the same protocol. Data were analyzed by use of a paired t-test with significance at p < .05

  2. Development of a dynamic flow imaging phantom for dynamic contrast-enhanced CT

    International Nuclear Information System (INIS)

    Driscoll, B.; Keller, H.; Coolens, C.

    2011-01-01

    Purpose: Dynamic contrast enhanced CT (DCE-CT) studies with modeling of blood flow and tissue perfusion are becoming more prevalent in the clinic, with advances in wide volume CT scanners allowing the imaging of an entire organ with sub-second image frequency and sub-millimeter accuracy. Wide-spread implementation of perfusion DCE-CT, however, is pending fundamental validation of the quantitative parameters that result from dynamic contrast imaging and perfusion modeling. Therefore, the goal of this work was to design and construct a novel dynamic flow imaging phantom capable of producing typical clinical time-attenuation curves (TACs) with the purpose of developing a framework for the quantification and validation of DCE-CT measurements and kinetic modeling under realistic flow conditions. Methods: The phantom is based on a simple two-compartment model and was printed using a 3D printer. Initial analysis of the phantom involved simple flow measurements and progressed to DCE-CT experiments in order to test the phantoms range and reproducibility. The phantom was then utilized to generate realistic input TACs. A phantom prediction model was developed to compute the input and output TACs based on a given set of five experimental (control) parameters: pump flow rate, injection pump flow rate, injection contrast concentration, and both control valve positions. The prediction model is then inversely applied to determine the control parameters necessary to generate a set of desired input and output TACs. A protocol was developed and performed using the phantom to investigate image noise, partial volume effects and CT number accuracy under realistic flow conditionsResults: This phantom and its surrounding flow system are capable of creating a wide range of physiologically relevant TACs, which are reproducible with minimal error between experiments (σ/μ 2 ) for the input function between 0.95 and 0.98, while the maximum enhancement differed by no more than 3.3%. The

  3. Low dose dynamic CT myocardial perfusion imaging using a statistical iterative reconstruction method

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Yinghua [Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705 (United States); Chen, Guang-Hong [Department of Medical Physics and Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin 53705 (United States); Hacker, Timothy A.; Raval, Amish N. [Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53792 (United States); Van Lysel, Michael S.; Speidel, Michael A., E-mail: speidel@wisc.edu [Department of Medical Physics and Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53705 (United States)

    2014-07-15

    Purpose: Dynamic CT myocardial perfusion imaging has the potential to provide both functional and anatomical information regarding coronary artery stenosis. However, radiation dose can be potentially high due to repeated scanning of the same region. The purpose of this study is to investigate the use of statistical iterative reconstruction to improve parametric maps of myocardial perfusion derived from a low tube current dynamic CT acquisition. Methods: Four pigs underwent high (500 mA) and low (25 mA) dose dynamic CT myocardial perfusion scans with and without coronary occlusion. To delineate the affected myocardial territory, an N-13 ammonia PET perfusion scan was performed for each animal in each occlusion state. Filtered backprojection (FBP) reconstruction was first applied to all CT data sets. Then, a statistical iterative reconstruction (SIR) method was applied to data sets acquired at low dose. Image voxel noise was matched between the low dose SIR and high dose FBP reconstructions. CT perfusion maps were compared among the low dose FBP, low dose SIR and high dose FBP reconstructions. Numerical simulations of a dynamic CT scan at high and low dose (20:1 ratio) were performed to quantitatively evaluate SIR and FBP performance in terms of flow map accuracy, precision, dose efficiency, and spatial resolution. Results: Forin vivo studies, the 500 mA FBP maps gave −88.4%, −96.0%, −76.7%, and −65.8% flow change in the occluded anterior region compared to the open-coronary scans (four animals). The percent changes in the 25 mA SIR maps were in good agreement, measuring −94.7%, −81.6%, −84.0%, and −72.2%. The 25 mA FBP maps gave unreliable flow measurements due to streaks caused by photon starvation (percent changes of +137.4%, +71.0%, −11.8%, and −3.5%). Agreement between 25 mA SIR and 500 mA FBP global flow was −9.7%, 8.8%, −3.1%, and 26.4%. The average variability of flow measurements in a nonoccluded region was 16.3%, 24.1%, and 937

  4. Low dose dynamic CT myocardial perfusion imaging using a statistical iterative reconstruction method

    International Nuclear Information System (INIS)

    Tao, Yinghua; Chen, Guang-Hong; Hacker, Timothy A.; Raval, Amish N.; Van Lysel, Michael S.; Speidel, Michael A.

    2014-01-01

    Purpose: Dynamic CT myocardial perfusion imaging has the potential to provide both functional and anatomical information regarding coronary artery stenosis. However, radiation dose can be potentially high due to repeated scanning of the same region. The purpose of this study is to investigate the use of statistical iterative reconstruction to improve parametric maps of myocardial perfusion derived from a low tube current dynamic CT acquisition. Methods: Four pigs underwent high (500 mA) and low (25 mA) dose dynamic CT myocardial perfusion scans with and without coronary occlusion. To delineate the affected myocardial territory, an N-13 ammonia PET perfusion scan was performed for each animal in each occlusion state. Filtered backprojection (FBP) reconstruction was first applied to all CT data sets. Then, a statistical iterative reconstruction (SIR) method was applied to data sets acquired at low dose. Image voxel noise was matched between the low dose SIR and high dose FBP reconstructions. CT perfusion maps were compared among the low dose FBP, low dose SIR and high dose FBP reconstructions. Numerical simulations of a dynamic CT scan at high and low dose (20:1 ratio) were performed to quantitatively evaluate SIR and FBP performance in terms of flow map accuracy, precision, dose efficiency, and spatial resolution. Results: Forin vivo studies, the 500 mA FBP maps gave −88.4%, −96.0%, −76.7%, and −65.8% flow change in the occluded anterior region compared to the open-coronary scans (four animals). The percent changes in the 25 mA SIR maps were in good agreement, measuring −94.7%, −81.6%, −84.0%, and −72.2%. The 25 mA FBP maps gave unreliable flow measurements due to streaks caused by photon starvation (percent changes of +137.4%, +71.0%, −11.8%, and −3.5%). Agreement between 25 mA SIR and 500 mA FBP global flow was −9.7%, 8.8%, −3.1%, and 26.4%. The average variability of flow measurements in a nonoccluded region was 16.3%, 24.1%, and 937

  5. CT study of pancreatic diseases with modified dynamic scanning

    International Nuclear Information System (INIS)

    Qian Minghui; Zhu Guangying

    1990-01-01

    Experience of 20 cases modified dynamic CT scanning is presented. With a slight increased X-ray tube burden, it is possible to investigate tumor blood supply and find small pancreatic insulinoma with this method. The capsular sign typical for chronic traumatic pancreatic hematoma on CT is presented

  6. High-resolution CT of lymphoid interstitial pneumonia

    International Nuclear Information System (INIS)

    Vilgrain, V.; Frija, J.; Yana, C.; Couderc, L.J.; David, M.; Clauvel, J.P.; Laval-Jeantet, M.

    1989-01-01

    Three patients with lymphoid interstitial pneumonia (two HIV 1+ patients with chronic lymphadenopathic syndromes and one with a not-characterized autoimmune disease) have been studied with high-resolution computed tomography (HR-CT). This technique reveals septal lines, small reticulonodular opacities, polyhedral micronodular opacities, 'ground-glass' opacities and a dense, subpleural, curved broken line in one patient. The lesions dominate in the bases of the lungs. They are not characteristic for lymphoid interstitial pneumonia. If a patient presents with a chronic lymphadenopathic syndrome, the diagnosis of an opportunistic infection should not be automatically made, since the syndrome can be caused by lymphoid interstitial pneumonia [fr

  7. Acute pulmonary injury: high-resolution CT and histopathological spectrum

    Science.gov (United States)

    Obadina, E T; Torrealba, J M

    2013-01-01

    Acute lung injury usually causes hypoxaemic respiratory failure and acute respiratory distress syndrome (ARDS). Although diffuse alveolar damage is the hallmark of ARDS, other histopathological patterns of injury, such as acute and fibrinoid organising pneumonia, can be associated with acute respiratory failure. Acute eosinophilic pneumonia can also cause acute hypoxaemic respiratory failure and mimic ARDS. This pictorial essay reviews the high-resolution CT findings of acute lung injury and the correlative histopathological findings. PMID:23659926

  8. Evaluation of experimental cartilage lesions with ultrahigh-resolution multi-slice-CT in comparison to histology

    International Nuclear Information System (INIS)

    Stork, A.; Kemper, J.; Begemann, P. G. C.; Habermann, C.R.; Adam, G.; Priemel, M.; Kummer, T.; Amling, M.

    2004-01-01

    Purpose: histologic validation of ultrahigh-resolution multislice (MS)-CT for the evaluation of focal, experimental cartilage lesions with special regard to the subchondral bone. Testing of micro-CTCT) as alternative reference standard. Methods: 32 experimental cartilage lesions in bovine patellae were imaged surrounded by air (MS-CT-air) and immersed in a contrast material solution (MS-CT-CM) with MS-CT (collimation 2 x 0,5 mm). After the μCT (8 μm-voxelsite) examination in three specimen and histologic work-up of 29 specimen two radiologist graded the defects on MS-CT images in consensus (subchondral bone involvement yes or no) and results were compared to the results of histomorphometry and μCT. Results: the MS-CT-air and -CM had an accuracy of 94% (30/32) and 88% (28/32), respectively. MS-CT-air led to one false-positive (remaining cartilage: = 0,1 mm) and false-negative result, each. MS-CT-CM showed false-positive results if the remaining cartilage was [de

  9. Enhancement pattern of small hepatic hemangioma: findings on multiphase spiral CT and dynamic MRI

    International Nuclear Information System (INIS)

    Choi, Byung In; Lee, Seung Koo; Kim, Myeong Jin; Chung, Jae Joon; Yoo, Hyung Sik; Lee, Jong Tae

    1999-01-01

    To compare the enhancement characteristics of small hemangiomas seen on multiphase spiral CT and dynamic MR imaging. Thirteen patients with 20 hepatic hemangiomas less than 25mm in diameter underwent both multiphase spiral CT and dynamic MR imaging. All lesions were assigned to one of three classified into 3 categories according to the enhancement pattern seen on multiphase spiral CT : typical delayed pooling, atypical early enhancement, or continuous low attenuation. The enhancement patterns seen on spiral CT and on dynamic MRI were correlated. On CT scans, ten lesions (50%) showed delayed pooling. Six (30%) showed early arterial enhancement and four (20%) showed continuous low attenuation. On delayed-phase MRI, all lesions showed delayed high signal intensity compared to adjacent liver parenchyma. Four of six lesions with early enhancement on CT showed peripheral globular enhancement on early arterial-phase MRI. On multiphase spiral CT scans, small hemangiomas can show variable atypical enhancement features. In this situation, contrast-enhanced dynamic MRI is helpful for the diagnosis of hemangiomas

  10. Diagnostic value of dynamic CT in early cerebral infarct

    International Nuclear Information System (INIS)

    Huang, K.-M.; Shih, T.T.F.

    1989-01-01

    The authors have tried to demonstrate early cerebral infarct by dynamic CT scanning without any CT change. They also have tried to find a correlation between the clinical outcome and the hemodynamic change of the damaged brain tissue supplied by the occluded vessels. (author) 14 refs.; 3 figs

  11. Automated movement correction for dynamic PET/CT images: evaluation with phantom and patient data.

    Science.gov (United States)

    Ye, Hu; Wong, Koon-Pong; Wardak, Mirwais; Dahlbom, Magnus; Kepe, Vladimir; Barrio, Jorge R; Nelson, Linda D; Small, Gary W; Huang, Sung-Cheng

    2014-01-01

    Head movement during a dynamic brain PET/CT imaging results in mismatch between CT and dynamic PET images. It can cause artifacts in CT-based attenuation corrected PET images, thus affecting both the qualitative and quantitative aspects of the dynamic PET images and the derived parametric images. In this study, we developed an automated retrospective image-based movement correction (MC) procedure. The MC method first registered the CT image to each dynamic PET frames, then re-reconstructed the PET frames with CT-based attenuation correction, and finally re-aligned all the PET frames to the same position. We evaluated the MC method's performance on the Hoffman phantom and dynamic FDDNP and FDG PET/CT images of patients with neurodegenerative disease or with poor compliance. Dynamic FDDNP PET/CT images (65 min) were obtained from 12 patients and dynamic FDG PET/CT images (60 min) were obtained from 6 patients. Logan analysis with cerebellum as the reference region was used to generate regional distribution volume ratio (DVR) for FDDNP scan before and after MC. For FDG studies, the image derived input function was used to generate parametric image of FDG uptake constant (Ki) before and after MC. Phantom study showed high accuracy of registration between PET and CT and improved PET images after MC. In patient study, head movement was observed in all subjects, especially in late PET frames with an average displacement of 6.92 mm. The z-direction translation (average maximum = 5.32 mm) and x-axis rotation (average maximum = 5.19 degrees) occurred most frequently. Image artifacts were significantly diminished after MC. There were significant differences (Pdynamic brain FDDNP and FDG PET/CT scans could improve the qualitative and quantitative aspects of images of both tracers.

  12. Dynamic CT findings of eosinophilic hepatic abscess and its clinical course

    International Nuclear Information System (INIS)

    Cho, Dae Hyoun; Chang, Jae Chun; Seong, Ki Ho

    1996-01-01

    To evaluate dynamic CT features and its clinical courses of eosinophilic hepatic abscess. Two-phase dynamic CT findings and the clinical courses of 13 pathologically proven cases of eosinophilic abscess were reviewed. All patients showed peripheral eosinophilia, and diagnoses were confirmed by ultrasound-guided biopsy(n=9) or operation(n=4). In two of the four patients who underwent segmental hepatectomy, worms of the species fasciola hepatica were detected. Follow-up CT scans after treatment with antibiotics or praziquantel were available in seven and eitht patients, respectively. All hepatic lesions were found in a subcapsular location or in contact with Glisson's capsule around the bile duct Arterial-dominant phase CT(n=11) demonstrated clusters of ill-defined low density masses without rim enhancement. Late-phase CT(n=13) more clearly depicted clustering lesions with enhancing rims and diminyution of the low-density area. Follow-up CT scans after treatment with antibiotics(n=7) showed no change in the lesions in three patients and slight shrinkage of the main mass with additional new lesions in four. On CT scans of nine patients performad after praziquantel therapy, hepatic masses were seen in all patients to be very slightly smaller after improvement of peripheral hypereosinophilia. Two-phase dynamic CT features appear to be helpful for the diagnosis of eosinophilic hepatic abscess in patients with peripheral eosinophilia. Parasitic infestation by Fasciola hepatica for example, is the presumed cause of such abscesses, though further studies are required

  13. Dynamic CT findings of eosinophilic hepatic abscess and its clinical course

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Dae Hyoun; Chang, Jae Chun; Seong, Ki Ho [Yeungnam Univ. School of Medicine, Taegu (Korea, Republic of)

    1996-01-01

    To evaluate dynamic CT features and its clinical courses of eosinophilic hepatic abscess. Two-phase dynamic CT findings and the clinical courses of 13 pathologically proven cases of eosinophilic abscess were reviewed. All patients showed peripheral eosinophilia, and diagnoses were confirmed by ultrasound-guided biopsy(n=9) or operation(n=4). In two of the four patients who underwent segmental hepatectomy, worms of the species fasciola hepatica were detected. Follow-up CT scans after treatment with antibiotics or praziquantel were available in seven and eitht patients, respectively. All hepatic lesions were found in a subcapsular location or in contact with Glisson's capsule around the bile duct Arterial-dominant phase CT(n=11) demonstrated clusters of ill-defined low density masses without rim enhancement. Late-phase CT(n=13) more clearly depicted clustering lesions with enhancing rims and diminyution of the low-density area. Follow-up CT scans after treatment with antibiotics(n=7) showed no change in the lesions in three patients and slight shrinkage of the main mass with additional new lesions in four. On CT scans of nine patients performad after praziquantel therapy, hepatic masses were seen in all patients to be very slightly smaller after improvement of peripheral hypereosinophilia. Two-phase dynamic CT features appear to be helpful for the diagnosis of eosinophilic hepatic abscess in patients with peripheral eosinophilia. Parasitic infestation by Fasciola hepatica for example, is the presumed cause of such abscesses, though further studies are required.

  14. Interior tomography in microscopic CT with image reconstruction constrained by full field of view scan at low spatial resolution

    Science.gov (United States)

    Luo, Shouhua; Shen, Tao; Sun, Yi; Li, Jing; Li, Guang; Tang, Xiangyang

    2018-04-01

    In high resolution (microscopic) CT applications, the scan field of view should cover the entire specimen or sample to allow complete data acquisition and image reconstruction. However, truncation may occur in projection data and results in artifacts in reconstructed images. In this study, we propose a low resolution image constrained reconstruction algorithm (LRICR) for interior tomography in microscopic CT at high resolution. In general, the multi-resolution acquisition based methods can be employed to solve the data truncation problem if the project data acquired at low resolution are utilized to fill up the truncated projection data acquired at high resolution. However, most existing methods place quite strict restrictions on the data acquisition geometry, which greatly limits their utility in practice. In the proposed LRICR algorithm, full and partial data acquisition (scan) at low and high resolutions, respectively, are carried out. Using the image reconstructed from sparse projection data acquired at low resolution as the prior, a microscopic image at high resolution is reconstructed from the truncated projection data acquired at high resolution. Two synthesized digital phantoms, a raw bamboo culm and a specimen of mouse femur, were utilized to evaluate and verify performance of the proposed LRICR algorithm. Compared with the conventional TV minimization based algorithm and the multi-resolution scout-reconstruction algorithm, the proposed LRICR algorithm shows significant improvement in reduction of the artifacts caused by data truncation, providing a practical solution for high quality and reliable interior tomography in microscopic CT applications. The proposed LRICR algorithm outperforms the multi-resolution scout-reconstruction method and the TV minimization based reconstruction for interior tomography in microscopic CT.

  15. Contrast-enhanced dedicated breast CT detection of invasive breast cancer preceding mammographic diagnosis

    Directory of Open Access Journals (Sweden)

    Nicolas D. Prionas, MD, PhD

    2015-01-01

    Full Text Available Dedicated breast computed tomography (bCT generates high-resolution, three-dimensional images of the pendent uncompressed breast. Intravenous iodinated contrast during bCT provides additional physiologic information. In this case, a 10.0-mm invasive ductal carcinoma was visualized using contrast-enhanced breast CT one year before mammographic detection. Mammography four months before bCT was negative. The bCT contrast enhancement pattern closely matched the dynamic contrast-enhanced MRI obtained after diagnosis. Lesion enhancement at contrast-enhanced breast CT matched previously published enhancement values of breast cancer. Contrast-enhanced dedicated bCT provided high-resolution tomographic images and physiologic contrast enhancement data that facilitated the detection of an early breast cancer.

  16. Three-rooted premolar analyzed by high-resolution and cone beam CT.

    Science.gov (United States)

    Marca, Caroline; Dummer, Paul M H; Bryant, Susan; Vier-Pelisser, Fabiana Vieira; Só, Marcus Vinicius Reis; Fontanella, Vania; Dutra, Vinicius D'avila; de Figueiredo, José Antonio Poli

    2013-07-01

    The aim of this study was to analyze the variations in canal and root cross-sectional area in three-rooted maxillary premolars between high-resolution computed tomography (μCT) and cone beam computed tomography (CBCT). Sixteen extracted maxillary premolars with three distinct roots and fully formed apices were scanned using μCT and CBCT. Photoshop CS software was used to measure root and canal cross-sectional areas at the most cervical and the most apical points of each root third in images obtained using the two tomographic computed (CT) techniques, and at 30 root sections equidistant from both root ends using μCT images. Canal and root areas were compared between each method using the Student t test for paired samples and 95 % confidence intervals. Images using μCT were sharper than those obtained using CBCT. There were statistically significant differences in mean area measurements of roots and canals between the μCT and CBCT techniques (P < 0.05). Root and canal areas had similar variations in cross-sectional μCT images and became proportionally smaller in a cervical to apical direction as the cementodentinal junction was approached, from where the area then increased apically. Although variation was similar in the roots and canals under study, CBCT produced poorer image details than μCT. Although CBCT is a strong diagnosis tool, it still needs improvement to provide accuracy in details of the root canal system, especially in cases with anatomical variations, such as the three-rooted maxillary premolars.

  17. A high-resolution EPR-CT microscope using cavity-resonators equipped with small field gradient coils

    International Nuclear Information System (INIS)

    Miki, T.; Murata, T.; Kumai, H.; Yamashiro, A.

    1996-01-01

    Cylindrical cavity resonators equipped with field gradient coils were developed for two-dimensional EPR-CT microscope systems. The field gradient coils lie in four (or six) thin metal tubes placed along the direction of the microwave magnetic field in the cavity to minimize impact on the resonator's quality factor. Two pairs of the tubes carry a 100 kHz current for magnetic field modulation. This cavity has high spin-detection sensitivity and can provide EPR images with submillimeter resolution. In order to reconstruct better images from fewer projections, we used an algebraic reconstruction technique (ART) for the two-dimensional image reconstruction. The ART method may be suitable for not only spectral-spatial two-dimensional EPR imaging, but also spatio-temporal EPR imaging in dynamic spin systems. (author)

  18. Improved dynamic CT angiography visualization by flow territory masking

    Directory of Open Access Journals (Sweden)

    Søren Christensen

    2015-01-01

    Full Text Available Backgound and Purpose: Computerized tomography (CT perfusion (or CTP source images from CT scanners with small detector widths can be used to create a dynamic CT angiogram (CTA similar to digital subtraction angiography (DSA. Because CTP studies use a single intravenous injection, all arterial territories enhance simultaneously, and individual arterial territories [i.e., anterior cerebral artery (ACA, middle cerebral artery (MCA, and posterior cerebral artery (PCA] cannot be delineated. This limits the ability to assess collateral flow patterns on dynamic CTAs. The aim of this study was to devise and test a postprocessing method to selectively color-label the major arterial territories on dynamic CTA. Materials and Methods: We identified 22 acute-stroke patients who underwent CTP on a 320-slice CT scanner within 6 h from symptom onset. For each case, two investigators independently generated an arterial territory map from CTP bolus arrival maps using a semiautomated method. The volumes of the arterial territories were calculated for each map and the average relative difference between these volumes was calculated for each case as a measure of interrater agreement. Arterial territory maps were superimposed on the dynamic CTA to create a vessel-selective dynamic CTA with color-coding of the main arterial territories. Two experts rated the arterial territory maps and the color-coded CTAs for consistency with expected arterial territories on a 3-point scale (excellent, moderate, poor. Results: Arterial territory maps were generated for all 22 patients. The median difference in arterial territory volumes between investigators was 2.2% [interquartile range (IQR 0.6-8.5%]. Based on expert review, the arterial territory maps and the vessel-selective dynamic CTAs showed excellent consistency with the expected arterial territories in 18 of 22 patients, moderate consistency in 2 patients, and poor consistency in another 2 patients. Conclusion: Using a

  19. Pulmonary tuberculosis with airspace consolidation vs mycoplasma pneumonia in adults: high-resolution CT findings

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Chull Hee; Choi, Gyo Chang; Park, Jai Soung; Hwang, Jung Hwa; Kim, Kyung Rak; Im, Han Haek; Kim, Dae Ho; Choi, Deuk Lin [Soonchunghyang Univ. College of Medicine, Seoul (Korea, Republic of)

    1997-02-01

    To analyse and compare high-resolution CT findings of pulmonary tuberculosis with consolidation and mycoplasma pneumonia. Twenty patients with pulmonary tuberculosis [confirmed by sputum culture (n=9) and bronchoscopic biopsy (n=11)] and airspace consolidation on high-resolution CT and 17 patients with mycoplasma pneumonia, confirmed by serologic test, were included in this study. High-resolution CT findings were analyzed in terms of ground-glass opacities, distribution of consolidation, type of nodules, cavities, interlobular septal thickening, bronchial dilatations, bronchial wall thickening and pleural effusion. In patients with tuberculosis, average age was 33.5 years (range, 20-67); in those with mycoplasma pneumonia it was 32.5 years (range, 17-74). Segmental and subsegmental distributions were most common in both diseases; the preferred site of consolidation was different, however; for tuberculosis it was the upper lobes (13 cases, 65%; bilateral involvement, 7 cases); for mycoplasma pneumonia it was the lower lobes (11 cases, 64.7%). Non-segmental (diffuse and random) distribution of ground-glass opacities were seen in two patients(11.8%) with mycoplasma pneumonia. Centrilobular nodules, branching linear opacities and alveolar nodules were not different in both diseases, but there were nodules above 10mm in 14 cases of tuberculosis and in only one case of mycoplasma pneumonia. Tree-in-bud appearances were seen in five cases of tuberculosis. Cavities without air-fluid level were noted in ten cases of tuberculosis. Other interlobular septal thickening, bronchial wall thickening, bronchial dilatation and pleural effusion were not different in both diseases. There was considerable overlap between high resolution CT findings of tuberculosis with airspace consolidation and those of mycoplasma pneumonia. The location of consolidation, type of nodules, and the presence of tree-in-bud appearance and cavities help in the differentiation of the two diseases, however.

  20. Pulmonary tuberculosis with airspace consolidation vs mycoplasma pneumonia in adults: high-resolution CT findings

    International Nuclear Information System (INIS)

    Cha, Chull Hee; Choi, Gyo Chang; Park, Jai Soung; Hwang, Jung Hwa; Kim, Kyung Rak; Im, Han Haek; Kim, Dae Ho; Choi, Deuk Lin

    1997-01-01

    To analyse and compare high-resolution CT findings of pulmonary tuberculosis with consolidation and mycoplasma pneumonia. Twenty patients with pulmonary tuberculosis [confirmed by sputum culture (n=9) and bronchoscopic biopsy (n=11)] and airspace consolidation on high-resolution CT and 17 patients with mycoplasma pneumonia, confirmed by serologic test, were included in this study. High-resolution CT findings were analyzed in terms of ground-glass opacities, distribution of consolidation, type of nodules, cavities, interlobular septal thickening, bronchial dilatations, bronchial wall thickening and pleural effusion. In patients with tuberculosis, average age was 33.5 years (range, 20-67); in those with mycoplasma pneumonia it was 32.5 years (range, 17-74). Segmental and subsegmental distributions were most common in both diseases; the preferred site of consolidation was different, however; for tuberculosis it was the upper lobes (13 cases, 65%; bilateral involvement, 7 cases); for mycoplasma pneumonia it was the lower lobes (11 cases, 64.7%). Non-segmental (diffuse and random) distribution of ground-glass opacities were seen in two patients(11.8%) with mycoplasma pneumonia. Centrilobular nodules, branching linear opacities and alveolar nodules were not different in both diseases, but there were nodules above 10mm in 14 cases of tuberculosis and in only one case of mycoplasma pneumonia. Tree-in-bud appearances were seen in five cases of tuberculosis. Cavities without air-fluid level were noted in ten cases of tuberculosis. Other interlobular septal thickening, bronchial wall thickening, bronchial dilatation and pleural effusion were not different in both diseases. There was considerable overlap between high resolution CT findings of tuberculosis with airspace consolidation and those of mycoplasma pneumonia. The location of consolidation, type of nodules, and the presence of tree-in-bud appearance and cavities help in the differentiation of the two diseases, however

  1. The effect of spatial micro-CT image resolution and surface complexity on the morphological 3D analysis of open porous structures

    Energy Technology Data Exchange (ETDEWEB)

    Pyka, Grzegorz, E-mail: gregory.pyka@mtm.kuleuven.be [Department of Metallurgy and Materials Engineering, KU Leuven, Kasteelpark Arenberg 44 – PB2450, B-3001 Leuven (Belgium); Kerckhofs, Greet [Department of Metallurgy and Materials Engineering, KU Leuven, Kasteelpark Arenberg 44 – PB2450, B-3001 Leuven (Belgium); Biomechanics Research Unit, Université de Liege, Chemin des Chevreuils 1 - BAT 52/3, B-4000 Liège (Belgium); Schrooten, Jan; Wevers, Martine [Department of Metallurgy and Materials Engineering, KU Leuven, Kasteelpark Arenberg 44 – PB2450, B-3001 Leuven (Belgium)

    2014-01-15

    In material science microfocus X-ray computed tomography (micro-CT) is one of the most popular non-destructive techniques to visualise and quantify the internal structure of materials in 3D. Despite constant system improvements, state-of-the-art micro-CT images can still hold several artefacts typical for X-ray CT imaging that hinder further image-based processing, structural and quantitative analysis. For example spatial resolution is crucial for an appropriate characterisation as the voxel size essentially influences the partial volume effect. However, defining the adequate image resolution is not a trivial aspect and understanding the correlation between scan parameters like voxel size and the structural properties is crucial for comprehensive material characterisation using micro-CT. Therefore, the objective of this study was to evaluate the influence of the spatial image resolution on the micro-CT based morphological analysis of three-dimensional (3D) open porous structures with a high surface complexity. In particular the correlation between the local surface properties and the accuracy of the micro-CT-based macro-morphology of 3D open porous Ti6Al4V structures produced by selective laser melting (SLM) was targeted and revealed for rough surfaces a strong dependence of the resulting structure characteristics on the scan resolution. Reducing the surface complexity by chemical etching decreased the sensitivity of the overall morphological analysis to the spatial image resolution and increased the detection limit. This study showed that scan settings and image processing parameters need to be customized to the material properties, morphological parameters under investigation and the desired final characteristics (in relation to the intended functional use). Customization of the scan resolution can increase the reliability of the micro-CT based analysis and at the same time reduce its operating costs. - Highlights: • We examine influence of the image resolution

  2. Adaptive patch-based POCS approach for super resolution reconstruction of 4D-CT lung data

    International Nuclear Information System (INIS)

    Wang, Tingting; Cao, Lei; Yang, Wei; Feng, Qianjin; Chen, Wufan; Zhang, Yu

    2015-01-01

    Image enhancement of lung four-dimensional computed tomography (4D-CT) data is highly important because image resolution remains a crucial point in lung cancer radiotherapy. In this paper, we proposed a method for lung 4D-CT super resolution (SR) by using an adaptive-patch-based projection onto convex sets (POCS) approach, which is in contrast with the global POCS SR algorithm, to recover fine details with lesser artifacts in images. The main contribution of this patch-based approach is that the interfering local structure from other phases can be rejected by employing a similar patch adaptive selection strategy. The effectiveness of our approach is demonstrated through experiments on simulated images and real lung 4D-CT datasets. A comparison with previously published SR reconstruction methods highlights the favorable characteristics of the proposed method. (paper)

  3. Statistical model based iterative reconstruction (MBIR) in clinical CT systems. Part II. Experimental assessment of spatial resolution performance

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ke; Chen, Guang-Hong, E-mail: gchen7@wisc.edu [Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705 and Department of Radiology, University of Wisconsin-Madison, 600 Highland Avenue, Madison, Wisconsin 53792 (United States); Garrett, John; Ge, Yongshuai [Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705 (United States)

    2014-07-15

    Purpose: Statistical model based iterative reconstruction (MBIR) methods have been introduced to clinical CT systems and are being used in some clinical diagnostic applications. The purpose of this paper is to experimentally assess the unique spatial resolution characteristics of this nonlinear reconstruction method and identify its potential impact on the detectabilities and the associated radiation dose levels for specific imaging tasks. Methods: The thoracic section of a pediatric phantom was repeatedly scanned 50 or 100 times using a 64-slice clinical CT scanner at four different dose levels [CTDI{sub vol} =4, 8, 12, 16 (mGy)]. Both filtered backprojection (FBP) and MBIR (Veo{sup ®}, GE Healthcare, Waukesha, WI) were used for image reconstruction and results were compared with one another. Eight test objects in the phantom with contrast levels ranging from 13 to 1710 HU were used to assess spatial resolution. The axial spatial resolution was quantified with the point spread function (PSF), while the z resolution was quantified with the slice sensitivity profile. Both were measured locally on the test objects and in the image domain. The dependence of spatial resolution on contrast and dose levels was studied. The study also features a systematic investigation of the potential trade-off between spatial resolution and locally defined noise and their joint impact on the overall image quality, which was quantified by the image domain-based channelized Hotelling observer (CHO) detectability index d′. Results: (1) The axial spatial resolution of MBIR depends on both radiation dose level and image contrast level, whereas it is supposedly independent of these two factors in FBP. The axial spatial resolution of MBIR always improved with an increasing radiation dose level and/or contrast level. (2) The axial spatial resolution of MBIR became equivalent to that of FBP at some transitional contrast level, above which MBIR demonstrated superior spatial resolution than

  4. Stopping power accuracy and achievable spatial resolution of helium ion imaging using a prototype particle CT detector system

    Directory of Open Access Journals (Sweden)

    Volz Lennart

    2017-09-01

    Full Text Available A precise relative stopping power map of the patient is crucial for accurate particle therapy. Charged particle imaging determines the stopping power either tomographically – particle computed tomography (pCT – or by combining prior knowledge from particle radiography (pRad and x-ray CT. Generally, multiple Coulomb scattering limits the spatial resolution. Compared to protons, heavier particles scatter less due to their lower charge/mass ratio. A theoretical framework to predict the most likely trajectory of particles in matter was developed for light ions up to carbon and was found to be the most accurate for helium comparing for fixed initial velocity. To further investigate the potential of helium in particle imaging, helium computed tomography (HeCT and radiography (HeRad were studied at the Heidel-berg Ion-Beam Therapy Centre (HIT using a prototype pCT detector system registering individual particles, originally developed by the U.S. pCT collaboration. Several phantoms were investigated: modules of the Catphan QA phantom for analysis of spatial resolution and achievable stopping power accuracy, a paediatric head phantom (CIRS and a custom-made phantom comprised of animal meat enclosed in a 2 % agarose mixture representing human tissue. The pCT images were reconstructed applying the CARP iterative reconstruction algorithm. The MTF10% was investigated using a sharp edge gradient technique. HeRad provides a spatial resolution above that of protons (MTF1010%=6.07 lp/cm for HeRad versus MTF10%=3.35 lp/cm for proton radiography. For HeCT, the spatial resolution was limited by the number of projections acquired (90 projections for a full scan. The RSP accuracy for all inserts of the Catphan CTP404 module was found to be 2.5% or better and is subject to further optimisation. In conclusion, helium imaging appears to offer higher spatial resolution compared to proton imaging. In future studies, the advantage of helium imaging compared to other

  5. Pituitary gland and its stalk observed by high resolution CT

    International Nuclear Information System (INIS)

    Nakagawa, Yoshinobu; Fukami, Tsuneharu; Matsumoto, Keizo.

    1982-01-01

    It seemed to be important to recognize the CT findings of normal pituitary gland and the stalk for the acurate morphological diagnosis of pituitary microadenoma. In a consecutive series of normal 103 cases, the CT scans obtained by high resolution CT (CE-CT, Metrizamide CT) were analized and compared with 6 cases of microadenoma. The pituitary stalk demonstrated by the reconstructed coronal CT was examined and the inclination of the stalk was measured. The mean value of the inclination of pituitary stalk was 1.4 +- 1.7 0 in normal group and 9.3 +- 2.4 0 in microadenoma group. The form of the pituitary gland demonstrated by a reconstructed mid-saggital CT were classified into the following 3 types. Type I : The gland filling the whole pituitary fossa. Type II : The gland filled with small CSF space localized in the upper-anterior part in the pituitary fossa. Type III : The enlarged CSF space of more than half of the depth of pituitary fossa and the gland localized in the retro-lower part. As for the shape of pituitary gland, type I was revealed in 26 cases (7 cases in male and 19 cases in female), Type II was revealed in 31 cases (12 cases in male and 19 cases in female), Type III was revealed in 46 cases (25 cases in male and 21 cases in female). Type I was shown in female, especially in 10 years old young female. In 19 cases of 30 years to 40 years female, Type II was shown in 9 cases. In 44 male cases, Type I and Type II were shown in all ages. In the aged, Type III was shown in more than the other types. On the other hand, Type I was noted in 5 out of 6 cases of microadenoma group. (author)

  6. Quantitative myocardial perfusion from static cardiac and dynamic arterial CT

    Science.gov (United States)

    Bindschadler, Michael; Branch, Kelley R.; Alessio, Adam M.

    2018-05-01

    Quantitative myocardial blood flow (MBF) estimation by dynamic contrast enhanced cardiac computed tomography (CT) requires multi-frame acquisition of contrast transit through the blood pool and myocardium to inform the arterial input and tissue response functions. Both the input and the tissue response functions for the entire myocardium are sampled with each acquisition. However, the long breath holds and frequent sampling can result in significant motion artifacts and relatively high radiation dose. To address these limitations, we propose and evaluate a new static cardiac and dynamic arterial (SCDA) quantitative MBF approach where (1) the input function is well sampled using either prediction from pre-scan timing bolus data or measured from dynamic thin slice ‘bolus tracking’ acquisitions, and (2) the whole-heart tissue response data is limited to one contrast enhanced CT acquisition. A perfusion model uses the dynamic arterial input function to generate a family of possible myocardial contrast enhancement curves corresponding to a range of MBF values. Combined with the timing of the single whole-heart acquisition, these curves generate a lookup table relating myocardial contrast enhancement to quantitative MBF. We tested the SCDA approach in 28 patients that underwent a full dynamic CT protocol both at rest and vasodilator stress conditions. Using measured input function plus single (enhanced CT only) or plus double (enhanced and contrast free baseline CT’s) myocardial acquisitions yielded MBF estimates with root mean square (RMS) error of 1.2 ml/min/g and 0.35 ml/min/g, and radiation dose reductions of 90% and 83%, respectively. The prediction of the input function based on timing bolus data and the static acquisition had an RMS error compared to the measured input function of 26.0% which led to MBF estimation errors greater than threefold higher than using the measured input function. SCDA presents a new, simplified approach for quantitative

  7. Cardiac MR imaging: Comparison with echocardiography and dynamic CT

    International Nuclear Information System (INIS)

    Colletti, P.M.; Norris, S.; Raval, J.; Boswell, W.; Lee, K.; Ralls, P.; Haywood, J.; Halls, J.

    1986-01-01

    The authors compared gated cardiac MR imaging with two-dimensional and Doppler echocardiography and dynamic CT. Gated cardiac MR imaging (VISTA unit, 0.5 T) was performed in 55 patients with a variety of conditions. Accuracy of diagnosis was compared. CT showed arterial, valvular, and pericardial calcifications not seen on MR imaging. Many lesions were seen as well on CT as on MR imaging. Two-dimensional echocardiography was superior in demonstrating wall motion and valvular disease. MR imaging was superior in demonstrating myocardial structures

  8. Comparative study between ultrahigh spatial frequency algorithm and high spatial frequency algorithm in high-resolution CT of the lungs

    International Nuclear Information System (INIS)

    Oh, Yu Whan; Kim, Jung Kyuk; Suh, Won Hyuck

    1994-01-01

    To date, the high spatial frequency algorithm (HSFA) which reduces image smoothing and increases spatial resolution has been used for the evaluation of parenchymal lung diseases in thin-section high-resolution CT. In this study, we compared the ultrahigh spatial frequency algorithm (UHSFA) with the high spatial frequency algorithm in the assessment of thin section images of the lung parenchyma. Three radiologists compared the UHSFA and HSFA on identical CT images in a line-pair resolution phantom, one lung specimen, 2 patients with normal lung and 18 patients with abnormal lung parenchyma. Scanning of a line-pair resolution phantom demonstrated no difference in resolution between two techniques but it showed that outer lines of the line pairs with maximal resolution looked thicker on UHSFA than those on HSFA. Lung parenchymal detail with UHSFA was judged equal or superior to HSFA in 95% of images. Lung parenchymal sharpness was improved with UHSFA in all images. Although UHSFA resulted in an increase in visible noise, observers did not found that image noise interfered with image interpretation. The visual CT attenuation of normal lung parenchyma is minimally increased in images with HSFA. The overall visual preference of the images reconstructed on UHSFA was considered equal to or greater than that of those reconstructed on HSFA in 78% of images. The ultrahigh spatial frequency algorithm improved the overall visual quality of the images in pulmonary parenchymal high-resolution CT

  9. Coronary artery visibility in free-breathing young children on non-gated chest CT: impact of temporal resolution

    Energy Technology Data Exchange (ETDEWEB)

    Bridoux, Alexandre; Hutt, Antoine; Faivre, Jean-Baptiste; Pagniez, Julien; Remy, Jacques; Remy-Jardin, Martine [CHRU et Universite de Lille, Department of Thoracic Imaging, Hospital Calmette (EA 2694), 59037 Lille Cedex (France); Flohr, Thomas [Siemens Healthcare, Department of Research and Development in CT, Forchheim (Germany); Duhamel, Alain [Universite de Lille, Department of Biostatistics, Lille (France)

    2015-11-15

    Dual-source CT allows scanning of the chest with high pitch and high temporal resolution, which can improve the detection of proximal coronary arteries in infants and young children when scanned without general anesthesia, sedation or beta-blockade. To compare coronary artery visibility between higher and standard temporal resolution. We analyzed CT images in 93 children who underwent a standard chest CT angiographic examination with reconstruction of images with a temporal resolution of 75 ms (group 1) and 140 ms (group 2). The percentage of detected coronary segments was higher in group 1 than in group 2 when considering all segments (group 1: 27%; group 2: 24%; P = 0.0004) and proximal segments (group 1: 37%; group 2: 32%; P = 0.0006). In both groups, the highest rates of detection were observed for the left main coronary artery (S1) (group 1: 65%; group 2: 58%) and proximal left anterior descending coronary artery (S2) (group 1: 43%; group 2: 42%). Higher rates of detection were seen in group 1 for the left main coronary artery (P = 0.03), proximal right coronary artery (P = 0.01), proximal segments of the left coronary artery (P = 0.02) and proximal segments of the left and right coronary arteries (P = 0.0006). Higher temporal resolution improved the visibility of proximal coronary arteries in pediatric chest CT. (orig.)

  10. 68Ga-PSMA-11 Dynamic PET/CT Imaging in Primary Prostate Cancer.

    Science.gov (United States)

    Sachpekidis, Christos; Kopka, Klaus; Eder, Matthias; Hadaschik, Boris A; Freitag, Martin T; Pan, Leyun; Haberkorn, Uwe; Dimitrakopoulou-Strauss, Antonia

    2016-11-01

    The aim of our study is to assess the pharmacokinetics and biodistribution of Ga-PSMA-11 in patients suffering from primary prostate cancer (PC) by means of dynamic and whole-body PET/CT. Twenty-four patients with primary, previously untreated PC were enrolled in the study. All patients underwent dynamic PET/CT (dPET/CT) scanning of the pelvis and whole-body PET/CT studies with Ga-PSMA-11. The evaluation of dPET/CT studies was based on qualitative evaluation, SUV calculation, and quantitative analysis based on two-tissue compartment modeling and a noncompartmental approach leading to the extraction of fractal dimension (FD). A total of 23/24 patients (95.8%) were Ga-PSMA-11 positive. In 9/24 patients (37.5%), metastatic lesions were detected. PC-associated lesions demonstrated the following mean values: SUVaverage = 14.3, SUVmax = 23.4, K1 = 0.24 (1/min), k3 = 0.34 (1/min), influx = 0.15 (1/min), and FD = 1.27. The parameters SUVaverage, SUVmax, k3, influx, and FD derived from PC-associated lesions were significantly higher than respective values derived from reference prostate tissue. Time-activity curves derived from PC-associated lesions revealed an increasing Ga-PSMA-11 accumulation during dynamic PET acquisition. Correlation analysis revealed a moderate but significant correlation between PSA levels and SUVaverage (r = 0.60) and SUVmax (r = 0.57), and a weak but significant correlation between Gleason score and SUVaverage (r = 0.33) and SUVmax (r = 0.28). Ga-PSMA-11 PET/CT confirmed its capacity in detecting primary PC with a detection rate of 95.8%. Dynamic PET/CT studies of the pelvis revealed an increase in tracer uptake in PC-associated lesions during the 60 minutes of dynamic PET acquisition, a finding with potential applications in anti-PSMA approaches.

  11. Tracheomalacia in adults with cystic fibrosis: determination of prevalence and severity with dynamic cine CT.

    LENUS (Irish Health Repository)

    McDermott, Shaunagh

    2012-02-01

    PURPOSE: To determine the prevalence and severity of tracheomalacia in adults with cystic fibrosis (CF) by using dynamic cine multidetector computed tomography (CT) and to correlate these findings with pulmonary function test (PFT) results and the severity of parenchymal lung disease. MATERIALS AND METHODS: In this institutional review board-approved HIPAA-compliant study, 40 patients with CF (22 men, 18 women; mean age, 28 years +\\/- 8 [standard deviation]; age range, 18-54 years) prospectively underwent PFTs, standard thin-section CT, and two dynamic cine multidetector CT acquisitions. Ten control subjects underwent dynamic cine multidetector CT. After standard thin-section CT was completed, dynamic cine multidetector CT was performed during a forced expiratory maneuver and during coughing. Dynamic cine multidetector CT images in nine patients were excluded. Maximal inspiratory, dynamic expiratory, and end-expiratory tracheal luminal areas were compared (Student t test) and correlated (Spearman rank) with PFT results and severity of parenchymal lung disease. RESULTS: Mean predicted forced expiratory volume in 1 second (FEV(1)) was 70.6% +\\/- 20.7, and mean Bhalla CT score was 41.8% +\\/- 13.6. In patients with CF, dynamic cine mean tracheal cross-sectional area reduction was 51.7% +\\/- 18.4 (range, 9%-89%) for forced expiratory maneuvers and 68.8% +\\/- 11.7 (range, 18%-88%) for coughing (P = .001). Tracheomalacia was demonstrated in 24 (69%) patients and no control subjects during forced expiratory maneuvers (P = .001) and in 10 (29%) patients and one (10%) control subject during coughing. For end-expiration images, mean tracheal luminal reduction was 16.1% +\\/- 14.0% (range, 0.0%-53.0%), with one patient demonstrating tracheal luminal reduction of more than 50%. There was no correlation between tracheal cross-sectional luminal reduction and either predicted FEV(1) or CT Bhalla score. CONCLUSION: Tracheomalacia depicted at dynamic cine multidetector CT is a

  12. Automatic extraction of forward stroke volume using dynamic PET/CT

    DEFF Research Database (Denmark)

    Harms, Hans; Tolbod, Lars Poulsen; Hansson, Nils Henrik

    Background: Dynamic PET can be used to extract forward stroke volume (FSV) by the indicator dilution principle. The technique employed can be automated and is in theory independent on the tracer used and may therefore be added to any dynamic cardiac PET protocol. The aim of this study...... was to validate automated methods for extracting FSV directly from dynamic PET studies for two different tracers and to examine potential scanner hardware bias. Methods: 21 subjects underwent a dynamic 27 min 11C-acetate PET scan on a Siemens Biograph TruePoint 64 PET/CT scanner (scanner I). In addition, 8...... subjects underwent a dynamic 6 min 15O-water PET scan followed by a 27 min 11C-acetate PET scan on a GE Discovery ST PET/CT scanner (scanner II). The LV-aortic time-activity curve (TAC) was extracted automatically from dynamic PET data using cluster analysis. The first-pass peak was isolated by automatic...

  13. Comparison of quantitative myocardial perfusion imaging CT to fluorescent microsphere-based flow from high-resolution cryo-images

    Science.gov (United States)

    Eck, Brendan L.; Fahmi, Rachid; Levi, Jacob; Fares, Anas; Wu, Hao; Li, Yuemeng; Vembar, Mani; Dhanantwari, Amar; Bezerra, Hiram G.; Wilson, David L.

    2016-03-01

    Myocardial perfusion imaging using CT (MPI-CT) has the potential to provide quantitative measures of myocardial blood flow (MBF) which can aid the diagnosis of coronary artery disease. We evaluated the quantitative accuracy of MPI-CT in a porcine model of balloon-induced LAD coronary artery ischemia guided by fractional flow reserve (FFR). We quantified MBF at baseline (FFR=1.0) and under moderate ischemia (FFR=0.7) using MPI-CT and compared to fluorescent microsphere-based MBF from high-resolution cryo-images. Dynamic, contrast-enhanced CT images were obtained using a spectral detector CT (Philips Healthcare). Projection-based mono-energetic images were reconstructed and processed to obtain MBF. Three MBF quantification approaches were evaluated: singular value decomposition (SVD) with fixed Tikhonov regularization (ThSVD), SVD with regularization determined by the L-Curve criterion (LSVD), and Johnson-Wilson parameter estimation (JW). The three approaches over-estimated MBF compared to cryo-images. JW produced the most accurate MBF, with average error 33.3+/-19.2mL/min/100g, whereas LSVD and ThSVD had greater over-estimation, 59.5+/-28.3mL/min/100g and 78.3+/-25.6 mL/min/100g, respectively. Relative blood flow as assessed by a flow ratio of LAD-to-remote myocardium was strongly correlated between JW and cryo-imaging, with R2=0.97, compared to R2=0.88 and 0.78 for LSVD and ThSVD, respectively. We assessed tissue impulse response functions (IRFs) from each approach for sources of error. While JW was constrained to physiologic solutions, both LSVD and ThSVD produced IRFs with non-physiologic properties due to noise. The L-curve provided noise-adaptive regularization but did not eliminate non-physiologic IRF properties or optimize for MBF accuracy. These findings suggest that model-based MPI-CT approaches may be more appropriate for quantitative MBF estimation and that cryo-imaging can support the development of MPI-CT by providing spatial distributions of MBF.

  14. Performance evaluation of the CT component of the IRIS PET/CT preclinical tomograph

    Energy Technology Data Exchange (ETDEWEB)

    Panetta, Daniele [CNR Institute of Clinical Physiology (IFC-CNR), v. G. Moruzzi 1, I-56124 Pisa (Italy); Belcari, Nicola [Department of Physics “E. Fermi”, University of Pisa, L.go B. Pontecorvo 3, I-56127 Pisa (Italy); Tripodi, Maria [CNR Institute of Clinical Physiology (IFC-CNR), v. G. Moruzzi 1, I-56124 Pisa (Italy); Burchielli, Silvia [Fondazione CNR/Toscana “G. Monasterio” – FTGM, v. G. Moruzzi 1, I-56124 Pisa (Italy); Salvadori, Piero A. [CNR Institute of Clinical Physiology (IFC-CNR), v. G. Moruzzi 1, I-56124 Pisa (Italy); Del Guerra, Alberto [Department of Physics “E. Fermi”, University of Pisa, L.go B. Pontecorvo 3, I-56127 Pisa (Italy)

    2016-01-01

    In this paper, we evaluate the physical performance of the CT component of the IRIS scanner, a novel combined PET/CT scanner for preclinical imaging. The performance assessment is based on phantom measurement for the determination of image quality parameters (spatial resolution, linearity, geometric accuracy, contrast to noise ratio) and reproducibility in dynamic (4D) imaging. The CTDI{sub 100} has been measured free in air with a pencil ionization chamber, and the animal dose was calculated using Monte Carlo derived conversion factors taken from the literature. The spatial resolution at the highest quality protocol was 6.9 lp/mm at 10% of the MTF, using the smallest reconstruction voxel size of 58.8 μm. The accuracy of the reconstruction voxel size was within 0.1%. The linearity of the CT numbers as a function of the concentration of iodine was very good, with R{sup 2}>0.996 for all the tube voltages. The animal dose depended strongly on the scanning protocol, ranging from 158 mGy for the highest quality protocol (2 min, 80 kV) to about 12 mGy for the fastest protocol (7.3 s, 80 kV). In 4D dynamic modality, the maximum scanning rate reached was 3.1 frames per minute, using a short-scan protocol with 7.3 s of scan time per frame at the isotropic voxel size of 235 μm. The reproducibility of the system was high throughout the 10 frames acquired in dynamic modality, with a standard deviation of the CT values of all frames <8 HU and an average spatial reproducibility within 30% of the voxel size across all the field of view. Example images obtained during animal experiments are also shown.

  15. Performance evaluation of the CT component of the IRIS PET/CT preclinical tomograph

    Science.gov (United States)

    Panetta, Daniele; Belcari, Nicola; Tripodi, Maria; Burchielli, Silvia; Salvadori, Piero A.; Del Guerra, Alberto

    2016-01-01

    In this paper, we evaluate the physical performance of the CT component of the IRIS scanner, a novel combined PET/CT scanner for preclinical imaging. The performance assessment is based on phantom measurement for the determination of image quality parameters (spatial resolution, linearity, geometric accuracy, contrast to noise ratio) and reproducibility in dynamic (4D) imaging. The CTDI100 has been measured free in air with a pencil ionization chamber, and the animal dose was calculated using Monte Carlo derived conversion factors taken from the literature. The spatial resolution at the highest quality protocol was 6.9 lp/mm at 10% of the MTF, using the smallest reconstruction voxel size of 58.8 μm. The accuracy of the reconstruction voxel size was within 0.1%. The linearity of the CT numbers as a function of the concentration of iodine was very good, with R2>0.996 for all the tube voltages. The animal dose depended strongly on the scanning protocol, ranging from 158 mGy for the highest quality protocol (2 min, 80 kV) to about 12 mGy for the fastest protocol (7.3 s, 80 kV). In 4D dynamic modality, the maximum scanning rate reached was 3.1 frames per minute, using a short-scan protocol with 7.3 s of scan time per frame at the isotropic voxel size of 235 μm. The reproducibility of the system was high throughout the 10 frames acquired in dynamic modality, with a standard deviation of the CT values of all frames <8 HU and an average spatial reproducibility within 30% of the voxel size across all the field of view. Example images obtained during animal experiments are also shown.

  16. Performance evaluation of the CT component of the IRIS PET/CT preclinical tomograph

    International Nuclear Information System (INIS)

    Panetta, Daniele; Belcari, Nicola; Tripodi, Maria; Burchielli, Silvia; Salvadori, Piero A.; Del Guerra, Alberto

    2016-01-01

    In this paper, we evaluate the physical performance of the CT component of the IRIS scanner, a novel combined PET/CT scanner for preclinical imaging. The performance assessment is based on phantom measurement for the determination of image quality parameters (spatial resolution, linearity, geometric accuracy, contrast to noise ratio) and reproducibility in dynamic (4D) imaging. The CTDI_1_0_0 has been measured free in air with a pencil ionization chamber, and the animal dose was calculated using Monte Carlo derived conversion factors taken from the literature. The spatial resolution at the highest quality protocol was 6.9 lp/mm at 10% of the MTF, using the smallest reconstruction voxel size of 58.8 μm. The accuracy of the reconstruction voxel size was within 0.1%. The linearity of the CT numbers as a function of the concentration of iodine was very good, with R"2>0.996 for all the tube voltages. The animal dose depended strongly on the scanning protocol, ranging from 158 mGy for the highest quality protocol (2 min, 80 kV) to about 12 mGy for the fastest protocol (7.3 s, 80 kV). In 4D dynamic modality, the maximum scanning rate reached was 3.1 frames per minute, using a short-scan protocol with 7.3 s of scan time per frame at the isotropic voxel size of 235 μm. The reproducibility of the system was high throughout the 10 frames acquired in dynamic modality, with a standard deviation of the CT values of all frames <8 HU and an average spatial reproducibility within 30% of the voxel size across all the field of view. Example images obtained during animal experiments are also shown.

  17. Comparison of AMI-25 enhanced MRI and helical dynamic CT in the detection of hepatic lesions

    International Nuclear Information System (INIS)

    Saitou, Kazuhiro; Matsuda, Hiromichi; Fukushima, Hiroaki; Kanzaki, Hiroshi; Hirose, Takashi; Karizaki, Dai; Abe, Kimihiko; Amino, Saburou

    1994-01-01

    We performed AMI-25 enhanced MRI and helical dynamic CT in 12 cases of hepatic lesions. Nine of these were hepatocellular carcinomas. Two cases were metastatic liver tumors (the primary lesion was gastric in one and the other was gallbladder cancer). One case was suspected to be adenomatous hyperplasia. Thirty-two lesions were detected in T2-weighted SE images before AMI-25 administration, while 46 lesions were detected in AMI-25 enhanced MRI images. In particular, AMI-25 enhanced MRI was superior to plain MRI in lesions less than 10 mm in size. A total of 48 lesions were detected in helical dynamic CT. Although AMI-25 enhanced MRI almost equaled helical dynamic CT in the detection of liver tumors, helical dynamic CT was slightly superior to AMI-25 enhanced MRI in the detection of subphrenic lesions. It was possible to know the hemodynamics in each hepatic lesion by helical dynamic CT. AMI-25 enhanced MRI was useful to know the inclusion of reticuloendothelial system, and that yielded different diagnoses in adenomatous hyperplasia and well differentiated hepatocellular carcinoma. Helical dynamic CT was useful for qualitative diagnosis. Both AMI-25 enhanced MRI and helical dynamic CT contributed to the detection of liver tumor and qualitative diagnosis. (author)

  18. TH-EF-207A-06: High-Resolution Optical-CT/ECT Imaging of Unstained Mice Femur, Brain, Spleen, and Tumor

    International Nuclear Information System (INIS)

    Yoon, S; Dewhirst, M; Oldham, M; Boss, M; Birer, S

    2016-01-01

    Purpose: Optical transmission and emission computed tomography (optical-CT/ECT) provides high-resolution 3D attenuation and emission maps in unsectioned large (∼1cm 3 ) ex vivo tissue samples at a resolution of 12.9µm 3 per voxel. Here we apply optical-CT/ECT to investigate high-resolution structure and auto-fluorescence in a range of optically cleared mice organs, including, for the first time, mouse bone (femur), opening the potential for study of bone metastasis and bone-mediated immune response. Methods: Three BALBc mice containing 4T1 flank tumors were sacrificed to obtain spleen, brain, tumor, and femur. Tissues were washed in 4% PFA, fixed in EtOH solution (for 5, 10, 10, and 2 days respectively), and then optically cleared for 3 days in BABBs. The femur was also placed in 0.25M aqueous EDTA for 15–30 days to remove calcium. Optical-CT/ECT attenuation and emission maps at 633nm (the latter using 530nm excitation light) were obtained for all samples. Bi-telecentric optical-CT was compared side-by-side with conventional optical projection tomography (OPT) imaging to evaluate imaging capability of these two rival techniques. Results: Auto-fluorescence mapping of femurs reveals vasculatures and fluorescence heterogeneity. High signals (A.U.=10) are reported in the medullary cavity but not in the cortical bone (A.U.=1). The brain strongly and uniform auto-fluoresces (A.U.=5). Thick, optically dense organs such as the spleen and the tumor (0.12, 0.46OD/mm) are reconstructed at depth without significant loss of resolution, which we attribute to the bi-telecentric optics of optical-CT. The attenuation map of tumor reveals vasculature, attenuation heterogeneity, and possibly necrotic tissue. Conclusion: We demonstrate the feasibility of optical-CT/ECT imaging of un-sectioned mice bones (femurs) and spleen with high resolution. This result, and the characterization of unstained organs, are important steps enabling future studies involving optical-CT/ECT applied

  19. Diagnostic value of contrast-enhanced dynamic CT in predicting the malignancy of solitary pulmonary nodules

    International Nuclear Information System (INIS)

    Goo, Hyun Woo; Song, Koun Sik; Lee, Eun Hye; Kim, Ji Hoon; Lee, Jin Seong; Lim, Tae Hwan

    1997-01-01

    To determine whether the maximal enhancement time in dynamic CT is different between benign and malignant solitary pulmonary nodules (SPN)s, and to evaluate the value of densitometry on dynamic CT in predicting the malignancy of SPN. Fifty-six patients with SPN of less than 4cm in diameter as seen on chest radiograph and SPN without benign pattern of calcification or fat, as seen on pre-enhance-ment spiral CT scans were included in this study. SPN with small cavitation sufficient to measure CT density, were also included. Thirty-four SPNs were diagnosed pathologically or radiologically as 20 malignant nodules and 14 benign nodules. Dynamic CT was performed by two techniques after injection of 50ml of nonionic contrast media at the rate of 2ml/sec. In 28 patients, incremental dynamic CT was performed before and of 15 seconds, 1 minute, 2 minutes, 3 minutes, and 4 minutes after injection of contrast media during shallow respiration. In 28 patients, double spiral CT was performed 2 minutes and 3 minutes after injection of contrast media during single breath hold. CT readings were taken at the central portion of SPNs, with a circular region of interest. The degree and time of maximal enhancement were recorded. In dynamic CT the maximal enhancement time of SPNs was not significantly different between malignant (2.73±1.27 minute) and benign nodules (2.56±1.24 minute). The enhancement of malignant nodules was significantly greater (21.42±12.17 HU) than of benign nodules (5.15±5.25 HU) (p<.0001). In dynamic CT of SPNs, there is no difference in maximal enhancement time between benign and malignant nodules;enhancement of the latter is significantly greater than that of the former. Maximal enhancement greater than 15 HU can be a good predictor of malignancy of SPNs

  20. Metabolic liver function measured in vivo by dynamic (18)F-FDGal PET/CT without arterial blood sampling.

    Science.gov (United States)

    Horsager, Jacob; Munk, Ole Lajord; Sørensen, Michael

    2015-01-01

    Metabolic liver function can be measured by dynamic PET/CT with the radio-labelled galactose-analogue 2-[(18)F]fluoro-2-deoxy-D-galactose ((18)F-FDGal) in terms of hepatic systemic clearance of (18)F-FDGal (K, ml blood/ml liver tissue/min). The method requires arterial blood sampling from a radial artery (arterial input function), and the aim of this study was to develop a method for extracting an image-derived, non-invasive input function from a volume of interest (VOI). Dynamic (18)F-FDGal PET/CT data from 16 subjects without liver disease (healthy subjects) and 16 patients with liver cirrhosis were included in the study. Five different input VOIs were tested: four in the abdominal aorta and one in the left ventricle of the heart. Arterial input function from manual blood sampling was available for all subjects. K*-values were calculated using time-activity curves (TACs) from each VOI as input and compared to the K-value calculated using arterial blood samples as input. Each input VOI was tested on PET data reconstructed with and without resolution modelling. All five image-derived input VOIs yielded K*-values that correlated significantly with K calculated using arterial blood samples. Furthermore, TACs from two different VOIs yielded K*-values that did not statistically deviate from K calculated using arterial blood samples. A semicircle drawn in the posterior part of the abdominal aorta was the only VOI that was successful for both healthy subjects and patients as well as for PET data reconstructed with and without resolution modelling. Metabolic liver function using (18)F-FDGal PET/CT can be measured without arterial blood samples by using input data from a semicircle VOI drawn in the posterior part of the abdominal aorta.

  1. High resolution CT in pulmonary sarcoidosis

    International Nuclear Information System (INIS)

    Spina, Juan C.; Curros, Marisela L.; Gomez, M.; Gonzalez, A.; Chacon, Carolina; Guerendiain, G.

    2000-01-01

    Objectives: To establish the particular advantages of High Resolution CT (HRCT) for the diagnosis of pulmonary sarcoidosis. Material and Methods: A series of fourteen patients, (4 men and 10 women; mean age 44,5 years) with thoracic sarcoidosis. All patients were studied using HRCT and diagnosis was confirmed for each case. Confidence intervals were obtained for different disease manifestations. Results: The most common findings were: lymph node enlargement (n=14 patients), pulmonary nodules (n=13), thickening of septa (n=6), peribronquial vascular thickening (n=5) pulmonary pseudo mass (n=5) and signs of fibrosis (n=4). The stage most commonly observed was stage II. It is worth noting that no cases of pleural effusion or cavitations of pulmonary lesions were observed. Conclusions: In this series, confidence interval overlapping for lymph node enlargement, single pulmonary nodules and septum thickening, allows to infer that their presence in a young adult, with few clinical symptoms, forces to rule out first the possibility of sarcoidosis. (author)

  2. Technical feasibility proof for high-resolution low-dose photon-counting CT of the breast

    Energy Technology Data Exchange (ETDEWEB)

    Kalender, Willi A.; Kolditz, Daniel; Lueck, Ferdinand [University of Erlangen-Nuernberg, Institute of Medical Physics (IMP), Erlangen (Germany); CT Imaging GmbH, Erlangen (Germany); Steiding, Christian [University of Erlangen-Nuernberg, Institute of Medical Physics (IMP), Erlangen (Germany); CT Imaging GmbH, Erlangen (Germany); University Hospital of Erlangen, Institute of Radiology, Erlangen (Germany); Ruth, Veikko; Roessler, Ann-Christin [University of Erlangen-Nuernberg, Institute of Medical Physics (IMP), Erlangen (Germany); Wenkel, Evelyn [University Hospital of Erlangen, Institute of Radiology, Erlangen (Germany)

    2017-03-15

    X-ray computed tomography (CT) has been proposed and evaluated multiple times as a potentially alternative method for breast imaging. All efforts shown so far have been criticized and partly disapproved because of their limited spatial resolution and higher patient dose when compared to mammography. Our concept for a dedicated breast CT (BCT) scanner therefore aimed at novel apparatus and detector design to provide high spatial resolution of about 100 μm and average glandular dose (AGD) levels of 5 mGy or below. Photon-counting technology was considered as a solution to reach these goals. The complete concept was previously evaluated and confirmed by simulations and basic experiments on laboratory setups. We here present measurements of dose, technical image quality parameters and surgical specimen results on such a scanner. For comparison purposes, the specimens were also imaged with digital mammography (DM) and breast tomosynthesis (BT) apparatus. Results show that photon-counting BCT (pcBCT) at 5 mGy AGD offers sufficiently high 3D spatial resolution for reliable detectability of calcifications and soft tissue delineation. (orig.)

  3. Development of high-resolution x-ray CT system using parallel beam geometry

    Energy Technology Data Exchange (ETDEWEB)

    Yoneyama, Akio, E-mail: akio.yoneyama.bu@hitachi.com; Baba, Rika [Central Research Laboratory, Hitachi Ltd., Hatoyama, Saitama (Japan); Hyodo, Kazuyuki [Institute of Materials Science, High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan); Takeda, Tohoru [School of Allied Health Sciences, Kitasato University, Sagamihara, Kanagawa (Japan); Nakano, Haruhisa; Maki, Koutaro [Department of Orthodontics, School of Dentistry Showa University, Ota-ku, Tokyo (Japan); Sumitani, Kazushi; Hirai, Yasuharu [Kyushu Synchrotron Light Research Center, Tosu, Saga (Japan)

    2016-01-28

    For fine three-dimensional observations of large biomedical and organic material samples, we developed a high-resolution X-ray CT system. The system consists of a sample positioner, a 5-μm scintillator, microscopy lenses, and a water-cooled sCMOS detector. Parallel beam geometry was adopted to attain a field of view of a few mm square. A fine three-dimensional image of birch branch was obtained using a 9-keV X-ray at BL16XU of SPring-8 in Japan. The spatial resolution estimated from the line profile of a sectional image was about 3 μm.

  4. Computed tomography of liver tumors, 2. Differential diagnosis between hepatocellular carcinoma and metastatic hepatic tumor by dynamic CT scanning

    Energy Technology Data Exchange (ETDEWEB)

    Naito, Akira; Fukuoka, Haruhito; Kashiwado, Kouzou; Ichiki, Toshio; Makidono, Yoko [Hiroshima Red Cross Hospital (Japan)

    1984-02-01

    Differential diagnosis between hepatocellular carcinoma and metastatic hepatic tumor was attempted using dynamic CT scanning. Homogeneous and patchy types were peculiar to hepatocellular carcinoma, and ring-like type to metastatic hepatic tumor. However, with no enhancement, hepatocellular carcinoma could not be denied. Hepatocellular carcinoma was characterized by the enhancement shown on the early stage of dynamic CT. Ring enhancement was not visualized on dynamic CT but visualized on conventional contrast enhanced CT in hepatocellular carcinomas; it was visualized on conventional contrast enhanced CT and on dynamic CT in metastatic hepatic tumors.

  5. Accurate heterogeneous dose calculation for lung cancer patients without high‐resolution CT densities

    Science.gov (United States)

    Li, Jonathan G.; Liu, Chihray; Olivier, Kenneth R.; Dempsey, James F.

    2009-01-01

    The aim of this study was to investigate the relative accuracy of megavoltage photon‐beam dose calculations employing either five bulk densities or independent voxel densities determined by calibration of the CT Houndsfield number. Full‐resolution CT and bulk density treatment plans were generated for 70 lung or esophageal cancer tumors (66 cases) using a commercial treatment planning system with an adaptive convolution dose calculation algorithm (Pinnacle3, Philips Medicals Systems). Bulk densities were applied to segmented regions. Individual and population average densities were compared to the full‐resolution plan for each case. Monitor units were kept constant and no normalizations were employed. Dose volume histograms (DVH) and dose difference distributions were examined for all cases. The average densities of the segmented air, lung, fat, soft tissue, and bone for the entire set were found to be 0.14, 0.26, 0.89, 1.02, and 1.12 g/cm3, respectively. In all cases, the normal tissue DVH agreed to better than 2% in dose. In 62 of 70 DVHs of the planning target volume (PTV), agreement to better than 3% in dose was observed. Six cases demonstrated emphysema, one with bullous formations and one with a hiatus hernia having a large volume of gas. These required the additional assignment of density to the emphysemic lung and inflammatory changes to the lung, the regions of collapsed lung, the bullous formations, and the hernia gas. Bulk tissue density dose calculation provides an accurate method of heterogeneous dose calculation. However, patients with advanced emphysema may require high‐resolution CT studies for accurate treatment planning. PACS number: 87.53.Tf

  6. The characteristics of cerebral meningiomas and surrounding tissues on dynamic CT

    International Nuclear Information System (INIS)

    Jinkins, J.R.; Sener, R.N.

    1991-01-01

    Dynamic CT was utilized to evaluate 11 patients with histologically benign meningiomas. While it was found that all demonstrated macroscopic neovascularity, subtle differences in the dynamic perfusion curves were identified both between different meningiomas and from region to region within the same tumor. Other than basic anatomic differences, these changes may reflect intratumoral ischemia and hypothetically herald cystic/necrotic alteration within the neoplasm. The dynamic calculations over the surrounding brain showed areas of gross hyper- and hypoperfused cerebral cortex, and hypoperfused white matter in regions of peritumoral edema. These latter findings are of uncertain clinical importance. The dynamic examination also confirmed cases of dural venous sinus invasion and calvarial permeation by tumor. In addition, the dynamic series showed macroscopic neovascularity in one case with a completely negative selective cerebral arteriogram. It is felt that certain cases which have previously been evaluated by static CT may benefit from further study utilizing the dynamic method. (orig.)

  7. Serial dynamic CT scan in patients with acute basal ganglia infarctions

    International Nuclear Information System (INIS)

    Node, Yoji; Nakazawa, Shozo; Tsuji, Yukihide.

    1987-01-01

    Dynamic computed tomography (CT) was performed on 15 patients (37 to 93 years of age) with acute basal ganglia infarctions, and the perfusion patterns of the infarcted regions on CT were evaluated. The initial dynamic CT was performed within 12 hours after onset, while the serial studies of the dynamic CT were performed on the 3rd and 7th days. The left-over-right ratio in the peak value in the basal ganglia in 15 normal subjects was 1.01 ± 0.03 (mean ± SD), so there were no differences in the peak values of the bilateral basal ganglia. We also examined the left-over-right ratio in the peak value and in the rapid-washout ratio in the basal ganglia in the 15 normal subjects. There was no difference in the peak values of the bilateral basal ganglia. The mean rapid-washout ratio was 0.62 ± 0.11 (mean ± SD). The prognoses of these patients three months after onset were as follows: 8 showed a good recovery, 5 had a moderate disability, and 2 had a severe disability. The perfusions on admission were as follows. 10 were hypoperfusions, 3 were hypo + late perfusions, one was a normoperfusion, and one was a late perfusion. There was a tendency for the rapid-washout ratio decrease more in the hypo + late perfusion group than in the other groups. Twelve patients showed an iso-density, while 3 showed a low density, on admission. The ''low-density'' group showed a decrease in the A/N ratio of the peak value. We performed serial dynamic CT in 11 cases. The group with severe disabilities (2 cases) showed a hypo + late perfusion in the initial CT, one case kept a hypo + late perfusion, and another case changed to a hypoperfusion; also, there was a tendency for there to be a poor improvement in the A/N ratio of the peak value in these two ''severe-disability'' patients. (J.P.N.)

  8. Novel ultrahigh resolution data acquisition and image reconstruction for multi-detector row CT

    International Nuclear Information System (INIS)

    Flohr, T. G.; Stierstorfer, K.; Suess, C.; Schmidt, B.; Primak, A. N.; McCollough, C. H.

    2007-01-01

    We present and evaluate a special ultrahigh resolution mode providing considerably enhanced spatial resolution both in the scan plane and in the z-axis direction for a routine medical multi-detector row computed tomography (CT) system. Data acquisition is performed by using a flying focal spot both in the scan plane and in the z-axis direction in combination with tantalum grids that are inserted in front of the multi-row detector to reduce the aperture of the detector elements both in-plane and in the z-axis direction. The dose utilization of the system for standard applications is not affected, since the grids are moved into place only when needed and are removed for standard scanning. By means of this technique, image slices with a nominal section width of 0.4 mm (measured full width at half maximum=0.45 mm) can be reconstructed in spiral mode on a CT system with a detector configuration of 32x0.6 mm. The measured 2% value of the in-plane modulation transfer function (MTF) is 20.4 lp/cm, the measured 2% value of the longitudinal (z axis) MTF is 21.5 lp/cm. In a resolution phantom with metal line pair test patterns, spatial resolution of 20 lp/cm can be demonstrated both in the scan plane and along the z axis. This corresponds to an object size of 0.25 mm that can be resolved. The new mode is intended for ultrahigh resolution bone imaging, in particular for wrists, joints, and inner ear studies, where a higher level of image noise due to the reduced aperture is an acceptable trade-off for the clinical benefit brought about by the improved spatial resolution

  9. Comparison of quantitatively analyzed dynamic area-detector CT using various mathematic methods with FDG PET/CT in management of solitary pulmonary nodules.

    Science.gov (United States)

    Ohno, Yoshiharu; Nishio, Mizuho; Koyama, Hisanobu; Fujisawa, Yasuko; Yoshikawa, Takeshi; Matsumoto, Sumiaki; Sugimura, Kazuro

    2013-06-01

    The objective of our study was to prospectively compare the capability of dynamic area-detector CT analyzed with different mathematic methods and PET/CT in the management of pulmonary nodules. Fifty-two consecutive patients with 96 pulmonary nodules underwent dynamic area-detector CT, PET/CT, and microbacterial or pathologic examinations. All nodules were classified into the following groups: malignant nodules (n = 57), benign nodules with low biologic activity (n = 15), and benign nodules with high biologic activity (n = 24). On dynamic area-detector CT, the total, pulmonary arterial, and systemic arterial perfusions were calculated using the dual-input maximum slope method; perfusion was calculated using the single-input maximum slope method; and extraction fraction and blood volume (BV) were calculated using the Patlak plot method. All indexes were statistically compared among the three nodule groups. Then, receiver operating characteristic analyses were used to compare the diagnostic capabilities of the maximum standardized uptake value (SUVmax) and each perfusion parameter having a significant difference between malignant and benign nodules. Finally, the diagnostic performances of the indexes were compared by means of the McNemar test. No adverse effects were observed in this study. All indexes except extraction fraction and BV, both of which were calculated using the Patlak plot method, showed significant differences among the three groups (p method, pulmonary arterial perfusion calculated using the dual-input method, and perfusion calculated using the single-input method were significantly larger than that of SUVmax (p method (69.8%, p method has better potential for the diagnosis of pulmonary nodules than dynamic area-detector CT analyzed using other methods and than PET/CT.

  10. CT of the heart

    International Nuclear Information System (INIS)

    Lipton, M.J.

    1986-01-01

    Advances based upon the detector elements instead of X-ray film have greatly increased the power of X-ray imaging. Computed tomography (CT) creates cross sectional rather than projected images. Recently, high speed CT devices have been developed for cardiovascular studies. The Cine-CT scanner employs a scanning electron beam deflected on an extended tungsten target ring. Fast scans of 50 millisecond exposures at multiple levels can provide information concerning blood flow in vessels and tissues, myocardial wall motion, valve integrity, coronary bypass graft patency and proximal coronary artery anatomy. Cine-CT dynamic scanning can also provide volume imaging with small quantities (0.05 - 1.5 ml/kg) of contrast medium administered via peripheral vein injections. Cine-CT provides simultaneous measurements of cardiac dimensions and function and is rapidly becoming a new tool for quantitating myocardial blood flow, cardiac chamber volumes and wall mechanics. The future outlook is very promising for this three-dimensional cine-CT technique with high spatial resolution. High speed CT should provide unique diagnostic information and as the technology continues to improve at a rapid speed, this new imaging modality could be a challenge for angiography. (Auth.)

  11. Atypical adenomatous hyperplasia of the lung: correlation between high-resolution CT findings and histopathologic features

    International Nuclear Information System (INIS)

    Kawakami, S.; Takashima, S.; Li, F.; Yang, Z.G.; Maruyama, Y.; Hasegawa, M.; Wang, J.C.; Sone, S.; Honda, T.

    2001-01-01

    We describe herein the CT features of atypical adenomatous hyperplasia (AAH) of the lung and its histopathological characteristics. Among 17,919 individuals screened for lung cancer by CT scanning, ten AAH nodules were detected in nine asymptomatic subjects. On high-resolution CT, the lesions measured from 6 x 6 mm to 15 x 17 mm and their CT number ranged from -500 to -760 HU. The AAHs appeared as round nodules with smooth and distinct borders and showed a ground-glass opacity. Plain chest radiographs failed to identify all lesions. Histopathologically, AAH lesions showed atypical epithelial cell proliferation along slightly thickened alveolar septa. Whereas it is often easy to differentiate these nodules from inflammatory and benign lung lesions, histopathological examination remains at present the only method to differentiate AAH from lung cancers. (orig.)

  12. Atypical adenomatous hyperplasia of the lung: correlation between high-resolution CT findings and histopathologic features

    Energy Technology Data Exchange (ETDEWEB)

    Kawakami, S.; Takashima, S.; Li, F.; Yang, Z.G.; Maruyama, Y.; Hasegawa, M.; Wang, J.C. [Dept. of Radiology, Shinshu University School of Medicine, Matsumoto (Japan); Sone, S. [Dept. of Radiology, Shinshu University School of Medicine, Matsumoto (Japan); Azumi General Hospital, Ikeda, Nagano (Japan); Honda, T. [Dept. of Laboratory Medicine, Shinshu University School of Medicine, Matsumoto (Japan)

    2001-05-01

    We describe herein the CT features of atypical adenomatous hyperplasia (AAH) of the lung and its histopathological characteristics. Among 17,919 individuals screened for lung cancer by CT scanning, ten AAH nodules were detected in nine asymptomatic subjects. On high-resolution CT, the lesions measured from 6 x 6 mm to 15 x 17 mm and their CT number ranged from -500 to -760 HU. The AAHs appeared as round nodules with smooth and distinct borders and showed a ground-glass opacity. Plain chest radiographs failed to identify all lesions. Histopathologically, AAH lesions showed atypical epithelial cell proliferation along slightly thickened alveolar septa. Whereas it is often easy to differentiate these nodules from inflammatory and benign lung lesions, histopathological examination remains at present the only method to differentiate AAH from lung cancers. (orig.)

  13. Significance and problems of the dynamic CT scan for the diagnosis and treatment of cerebral infarctions

    International Nuclear Information System (INIS)

    Morita, Akio; Teraoka, Akira

    1985-01-01

    Dynamic CT scan is a very useful method for the diagnosis of cerebral infarctions and other ischemic disorders. We have used this method for 1) the ultra-early stage diagnosis of major infarctions, 2) the detection of the recanalization and the disruption of the blood-brain barrier, and 3) the detection of latent ischemic lesions. In this report we discussed the clinical cases and the usual use of this dynamic CT scan. We used a GE CT/T8800 scanner for dynamic CT scanning. Manual bolus-contrast-medium injection was done simultaneously with the first scanning, and 6 sequential scannings (scan time: 4.8 s; scan interval: 1.4 s) were done on the same slice level. Especially in major infarctions (e.g., MCA occlusion), OM 40 was the most preferred slice. In cases of ultra-early stage infarctions (i.e., no abnormal lesions in non-enhanced CT), we used this dynamic CT scan immediately after the non-enhanced CT; we could thus obtain information on the ischemic lesions and the ischemic degree. After that we repeated this examination on Days 3, 7, and 14 for the evaluation of the recanalization and blood-brain-barrier disruption. In the cases of TIA and impending or progressing strokes, dynamic CT scan could disclose latent ischemic lesions; in there instances, we treated the patients with intensive to prevent the prognosis from worsening. These benefits and also some problems were discussed. (author)

  14. Cardiac cone-beam CT

    International Nuclear Information System (INIS)

    Manzke, Robert

    2005-01-01

    This doctoral thesis addresses imaging of the heart with retrospectively gated helical cone-beam computed tomography (CT). A thorough review of the CT reconstruction literature is presented in combination with a historic overview of cardiac CT imaging and a brief introduction to other cardiac imaging modalities. The thesis includes a comprehensive chapter about the theory of CT reconstruction, familiarizing the reader with the problem of cone-beam reconstruction. The anatomic and dynamic properties of the heart are outlined and techniques to derive the gating information are reviewed. With the extended cardiac reconstruction (ECR) framework, a new approach is presented for the heart-rate-adaptive gated helical cardiac cone-beam CT reconstruction. Reconstruction assessment criteria such as the temporal resolution, the homogeneity in terms of the cardiac phase, and the smoothness at cycle-to-cycle transitions are developed. Several reconstruction optimization approaches are described: An approach for the heart-rate-adaptive optimization of the temporal resolution is presented. Streak artifacts at cycle-to-cycle transitions can be minimized by using an improved cardiac weighting scheme. The optimal quiescent cardiac phase for the reconstruction can be determined automatically with the motion map technique. Results for all optimization procedures applied to ECR are presented and discussed based on patient and phantom data. The ECR algorithm is analyzed for larger detector arrays of future cone-beam systems throughout an extensive simulation study based on a four-dimensional cardiac CT phantom. The results of the scientific work are summarized and an outlook proposing future directions is given. The presented thesis is available for public download at www.cardiac-ct.net

  15. Serial high resolution CT in non-specific interstitial pneumonia: prognostic value of the initial pattern

    Energy Technology Data Exchange (ETDEWEB)

    Screaton, N.J. [Department of Radiology, Addenbrooke' s Hospital, Cambridge (United Kingdom)]. E-mail: nicholas.screaton@papworth.nhs.uk; Hiorns, M.P. [Department of Radiology, Great Ormond Street Hospital, London (United Kingdom); Lee, K.S. [Samsung Medical Centre, Seoul (Korea); Franquet, T. [Hospital de Saint Pau, Universidad Autonoma de Barcelona, Barcelona (Spain); Johkoh, T. [Department of Medical Physics and Radiology, Osaka University Graduate School of Medicine, Osaka (Japan); Fujimoto, K. [Department of Radiology, Kurume University School of Medicine, Kurume (Japan); Ichikado, K. [First Department of Internal Medicine, Kumamoto University School of Medicine, Kumamoto (Japan); Colby, T.V. [Department of Laboratory Medicine/Pathology, Mayo Clinic Scottsdale, AZ (United States); Mueller, N.L. [Department of Radiology, Vancouver General Hospital, Vancouver (Canada)

    2005-01-01

    AIM: To assess the relationship between initial CT pattern and serial changes in CT findings and pulmonary function tests (PFTs) in patients with non-specific interstitial pneumonia (NSIP). MATERIALS AND METHODS: Serial high resolution (HR) CTs and PFTs were retrospectively analyzed in 38 cases of histologically proven NSIP, including 4 with cellular NSIP, 13 with mixed cellular and fibrotic NSIP, and 21 with fibrotic NSIP. The presence and extent of various CT findings were assessed. A fibrosis index (defined as the ratio of the extent of a reticular/honeycomb pattern to the overall extent of abnormal parenchyma) was derived. RESULTS: The predominant CT pattern was reticular/honeycomb in 27 (84%) cases and ground-glass/consolidation in 6 (16%) cases. Between scans, mean disease extent reduced by 5.2%. Disease extent reduced by >10% in 13 (34%) and increased by >10% in 6 (16%) patients. Histopathological subtype of NSIP did not correlate with individual CT pattern, predominant pattern, fibrosis index or serial change in disease extent on CT or PFTs. Response on follow-up CT was associated with fibrosis index, predominant pattern and extent of consolidation on initial CT. CONCLUSION: In NSIP disease, progression on CT correlates with the predominant CT pattern, fibrosis index, and extent of consolidation but not with histopathological subtype. An inflammatory (ground-glass/consolidation) predominant pattern is associated with better outcome in terms of disease extent on HRCT.

  16. A quality assurance phantom for the performance evaluation of volumetric micro-CT systems

    Energy Technology Data Exchange (ETDEWEB)

    Du, Louise Y [Department of Medical Biophysics, University of Western Ontario, London, ON (Canada); Umoh, Joseph [Imaging Research Laboratories, Robarts Research Institute, London, ON (Canada); Nikolov, Hristo N [Imaging Research Laboratories, Robarts Research Institute, London, ON (Canada); Pollmann, Steven I [Imaging Research Laboratories, Robarts Research Institute, London, ON (Canada); Lee, Ting-Yim [Department of Medical Biophysics, University of Western Ontario, London, ON (Canada); Holdsworth, David W [Department of Medical Biophysics, University of Western Ontario, London, ON (Canada)

    2007-12-07

    Small-animal imaging has recently become an area of increased interest because more human diseases can be modeled in transgenic and knockout rodents. As a result, micro-computed tomography (micro-CT) systems are becoming more common in research laboratories, due to their ability to achieve spatial resolution as high as 10 {mu}m, giving highly detailed anatomical information. Most recently, a volumetric cone-beam micro-CT system using a flat-panel detector (eXplore Ultra, GE Healthcare, London, ON) has been developed that combines the high resolution of micro-CT and the fast scanning speed of clinical CT, so that dynamic perfusion imaging can be performed in mice and rats, providing functional physiological information in addition to anatomical information. This and other commercially available micro-CT systems all promise to deliver precise and accurate high-resolution measurements in small animals. However, no comprehensive quality assurance phantom has been developed to evaluate the performance of these micro-CT systems on a routine basis. We have designed and fabricated a single comprehensive device for the purpose of performance evaluation of micro-CT systems. This quality assurance phantom was applied to assess multiple image-quality parameters of a current flat-panel cone-beam micro-CT system accurately and quantitatively, in terms of spatial resolution, geometric accuracy, CT number accuracy, linearity, noise and image uniformity. Our investigations show that 3D images can be obtained with a limiting spatial resolution of 2.5 mm{sup -1} and noise of {+-}35 HU, using an acquisition interval of 8 s at an entrance dose of 6.4 cGy.

  17. A quality assurance phantom for the performance evaluation of volumetric micro-CT systems

    International Nuclear Information System (INIS)

    Du, Louise Y; Umoh, Joseph; Nikolov, Hristo N; Pollmann, Steven I; Lee, Ting-Yim; Holdsworth, David W

    2007-01-01

    Small-animal imaging has recently become an area of increased interest because more human diseases can be modeled in transgenic and knockout rodents. As a result, micro-computed tomography (micro-CT) systems are becoming more common in research laboratories, due to their ability to achieve spatial resolution as high as 10 μm, giving highly detailed anatomical information. Most recently, a volumetric cone-beam micro-CT system using a flat-panel detector (eXplore Ultra, GE Healthcare, London, ON) has been developed that combines the high resolution of micro-CT and the fast scanning speed of clinical CT, so that dynamic perfusion imaging can be performed in mice and rats, providing functional physiological information in addition to anatomical information. This and other commercially available micro-CT systems all promise to deliver precise and accurate high-resolution measurements in small animals. However, no comprehensive quality assurance phantom has been developed to evaluate the performance of these micro-CT systems on a routine basis. We have designed and fabricated a single comprehensive device for the purpose of performance evaluation of micro-CT systems. This quality assurance phantom was applied to assess multiple image-quality parameters of a current flat-panel cone-beam micro-CT system accurately and quantitatively, in terms of spatial resolution, geometric accuracy, CT number accuracy, linearity, noise and image uniformity. Our investigations show that 3D images can be obtained with a limiting spatial resolution of 2.5 mm -1 and noise of ±35 HU, using an acquisition interval of 8 s at an entrance dose of 6.4 cGy

  18. Lipoid pneumonia in children following aspiration of mineral oil used in the treatment of constipation: high-resolution CT findings in 17 patients

    International Nuclear Information System (INIS)

    Zanetti, Glaucia; Marchiori, Edson; Gasparetto, Taisa D.; Escuissato, Dante L.; Soares Souza, Arthur

    2007-01-01

    Exogenous lipoid pneumonia is a rare disorder caused by aspiration of mineral, vegetable and animal oils. High-resolution CT findings of lipoid pneumonia in children taking mineral oil for constipation have been rarely reported. To evaluate the high-resolution CT findings in 17 children with exogenous lipoid pneumonia following aspiration of mineral oil. The study included nine boys and eight girls, with ages ranging from 2 months to 9 years. All patients underwent high-resolution CT and the images were reviewed by two radiologists who reached decisions by consensus. The inclusion criteria were an abnormal radiograph, history of taking mineral oil and the presence of intrapulmonary lipids proved by bronchoalveolar lavage or open lung biopsy. The most common symptoms were cough (n = 13), mild fever (n = 11), and progressive dyspnea (n = 9). The main CT findings were air-space consolidations (100%), usually with areas of fatty attenuation (70.6%), areas of ground-glass attenuation (52.9%), and a crazy-paving pattern (17.6%), predominating bilaterally in the posterior and lower regions of the lungs. The high-resolution CT features in children with exogenous lipoid pneumonia are air-space consolidations and ground-glass attenuation, occasionally with a crazy-paving pattern, distributed bilaterally in the posterior and lower zones of the lungs. (orig.)

  19. Lipoid pneumonia in children following aspiration of mineral oil used in the treatment of constipation: high-resolution CT findings in 17 patients

    Energy Technology Data Exchange (ETDEWEB)

    Zanetti, Glaucia [University of Rio de Janeiro, Department of Radiology, Rio de Janeiro (Brazil); Marchiori, Edson [University of Rio de Janeiro, Department of Radiology, University Federal Fluminense, Rio de Janeiro (Brazil); Gasparetto, Taisa D. [University Federal Fluminense, Department of Radiology, Rio de Janeiro (Brazil); Escuissato, Dante L. [University of Parana, Department of Radiology, Curitiba (Brazil); Soares Souza, Arthur [School of Medicine of Sao Jose do Rio Preto (ASSJ), Department of Radiology, Sao Jose do Rio Preto (Brazil)

    2007-11-15

    Exogenous lipoid pneumonia is a rare disorder caused by aspiration of mineral, vegetable and animal oils. High-resolution CT findings of lipoid pneumonia in children taking mineral oil for constipation have been rarely reported. To evaluate the high-resolution CT findings in 17 children with exogenous lipoid pneumonia following aspiration of mineral oil. The study included nine boys and eight girls, with ages ranging from 2 months to 9 years. All patients underwent high-resolution CT and the images were reviewed by two radiologists who reached decisions by consensus. The inclusion criteria were an abnormal radiograph, history of taking mineral oil and the presence of intrapulmonary lipids proved by bronchoalveolar lavage or open lung biopsy. The most common symptoms were cough (n = 13), mild fever (n = 11), and progressive dyspnea (n = 9). The main CT findings were air-space consolidations (100%), usually with areas of fatty attenuation (70.6%), areas of ground-glass attenuation (52.9%), and a crazy-paving pattern (17.6%), predominating bilaterally in the posterior and lower regions of the lungs. The high-resolution CT features in children with exogenous lipoid pneumonia are air-space consolidations and ground-glass attenuation, occasionally with a crazy-paving pattern, distributed bilaterally in the posterior and lower zones of the lungs. (orig.)

  20. Pulmonary lymphangioleiomyomatosis: high-resolution CT findings

    International Nuclear Information System (INIS)

    Kirchner, J.; Stein, A.; Thalhammer, A.; Jacobi, V.

    1999-01-01

    Lymphangioleiomyomatosis (LAM) of the lung is a very rare disease. There are obvious discrepancies in the literature concerning the appearance of LAM on CT scans of the lung. This study adds the imaging findings of 11 patients and demonstrates how the imaging findings changed over time in four patients. Twenty-two CT examinations, and radiographs that had been obtained close to the CT examinations, of 11 patients with LAM confirmed by open lung biopsy were retrospectively evaluated with particular attention to the size of cystic lesions and wall thickness. Furthermore the CT scans were analysed for the type of pulmonary infiltration process and its distribution, presence or absence of pleural effusion, pneumothorax and lymph node enlargement. Clinical and CT follow-up studies were available in four patients. The CT scans revealed an increase in the interstitial pattern in all patients. Architectural distortion was seen in two patients and cystic lesions were present in all. The size of the cysts varied from small lesions to bullous emphysema. The cystic lesions revealed a wall thickness up to 2 mm but a wall was not perceptible in all. Pneumothorax was seen in only two patients; pleural effusion was seen in two patients. CT examination of patients with LAM reveals neither a uniform nor a pathognomonic appearance. In the early stages of LAM or in cases with interstitial changes the differential diagnosis of centrilobular emphysema or idiopathic pulmonary fibrosis seems to be more difficult than most authors believe. (orig.) (orig.)

  1. Renal stone characterization using high resolution imaging mode on a photon counting detector CT system

    Science.gov (United States)

    Ferrero, A.; Gutjahr, R.; Henning, A.; Kappler, S.; Halaweish, A.; Abdurakhimova, D.; Peterson, Z.; Montoya, J.; Leng, S.; McCollough, C.

    2017-03-01

    In addition to the standard-resolution (SR) acquisition mode, a high-resolution (HR) mode is available on a research photon-counting-detector (PCD) whole-body CT system. In the HR mode each detector consists of a 2x2 array of 0.225 mm x 0.225 mm subpixel elements. This is in contrast to the SR mode that consists of a 4x4 array of the same subelements, and results in 0.25 mm isotropic resolution at iso-center for the HR mode. In this study, we quantified ex vivo the capabilities of the HR mode to characterize renal stones in terms of morphology and mineral composition. Forty pure stones - 10 uric acid (UA), 10 cystine (CYS), 10 calcium oxalate monohydrate (COM) and 10 apatite (APA) - and 14 mixed stones were placed in a 20 cm water phantom and scanned in HR mode, at radiation dose matched to that of routine dual-energy stone exams. Data from micro CT provided a reference for the quantification of morphology and mineral composition of the mixed stones. The area under the ROC curve was 1.0 for discriminating UA from CYS, 0.89 for CYS vs COM and 0.84 for COM vs APA. The root mean square error (RMSE) of the percent UA in mixed stones was 11.0% with a medium-sharp kernel and 15.6% with the sharpest kernel. The HR showed qualitatively accurate characterization of stone morphology relative to micro CT.

  2. Dynamic CT myocardial perfusion imaging: detection of ischemia in a porcine model with FFR verification

    Science.gov (United States)

    Fahmi, Rachid; Eck, Brendan L.; Vembar, Mani; Bezerra, Hiram G.; Wilson, David L.

    2014-03-01

    Dynamic cardiac CT perfusion (CTP) is a high resolution, non-invasive technique for assessing myocardial blood ow (MBF), which in concert with coronary CT angiography enable CT to provide a unique, comprehensive, fast analysis of both coronary anatomy and functional ow. We assessed perfusion in a porcine model with and without coronary occlusion. To induce occlusion, each animal underwent left anterior descending (LAD) stent implantation and angioplasty balloon insertion. Normal ow condition was obtained with balloon completely de ated. Partial occlusion was induced by balloon in ation against the stent with FFR used to assess the extent of occlusion. Prospective ECG-triggered partial scan images were acquired at end systole (45% R-R) using a multi-detector CT (MDCT) scanner. Images were reconstructed using FBP and a hybrid iterative reconstruction (iDose4, Philips Healthcare). Processing included: beam hardening (BH) correction, registration of image volumes using 3D cubic B-spline normalized mutual-information, and spatio-temporal bilateral ltering to reduce partial scan artifacts and noise variation. Absolute blood ow was calculated with a deconvolutionbased approach using singular value decomposition (SVD). Arterial input function was estimated from the left ventricle (LV) cavity. Regions of interest (ROIs) were identi ed in healthy and ischemic myocardium and compared in normal and occluded conditions. Under-perfusion was detected in the correct LAD territory and ow reduction agreed well with FFR measurements. Flow was reduced, on average, in LAD territories by 54%.

  3. Crackle analysis for chest auscultation and comparison with high-resolution CT findings.

    Science.gov (United States)

    Kawamura, Takeo; Matsumoto, Tsuneo; Tanaka, Nobuyuki; Kido, Shoji; Jiang, Zhongwei; Matsunaga, Naofumi

    2003-01-01

    The purpose of our study was to clarify the correlation between respiratory sounds and the high-resolution CT (HRCT) findings of lung diseases. Respiratory sounds were recorded using a stethoscope in 41 patients with crackles. All had undergone inspiratory and expiratory CT. Subjects included 18 patients with interstitial pneumonia and 23 without interstitial pneumonia. Two parameters, two-cycle duration (2CD) and initial deflection width (IDW) of the "crackle," were induced by time-expanded waveform analysis. Two radiologists independently assessed 11 HRCT findings. An evaluation was carried out to determine whether there was a significant difference in the two parameters between the presence and absence of each HRCT finding. The two parameters of crackles were significantly shorter in the interstitial pneumonia group than the non-interstitial pneumonia group. Ground-glass opacity, honeycombing, lung volume reduction, traction bronchiectasis, centrilobular nodules, emphysematous change, and attenuation and volume change between inspiratory and expiratory CT were correlated with one or two parameters in all patients, whereas the other three findings were not. Among the interstitial pneumonia group, traction bronchiectasis, emphysematous change, and attenuation and volume change between inspiratory and expiratory CT were significantly correlated with one or two parameters. Abnormal respiratory sounds were correlated with some HRCT findings.

  4. Crackle analysis for chest auscultation and comparison with high-resolution CT findings

    International Nuclear Information System (INIS)

    Kawamura, Takeo; Matsumoto, Tsuneo; Tanaka, Nobuyuki; Matsunaga, Naofumi; Kido, Shoji; Jiang Zhongwei

    2003-01-01

    The purpose of our study was to clarify the correlation between respiratory sounds and the high-resolution CT (HRCT) findings of lung diseases. Respiratory sounds were recorded using a stethoscope in 41 patients with crackles. All had undergone inspiratory and expiratory CT. Subjects included 18 patients with interstitial pneumonia and 23 without interstitial pneumonia. Two parameters, two-cycle duration (2CD) and initial deflection width (IDW) of the ''crackle,'' were induced by time-expanded waveform analysis. Two radiologists independently assessed 11 HRCT findings. An evaluation was carried out to determine whether there was a significant difference in the two parameters between the presence and absence of each HRCT finding. The two parameters of crackles were significantly shorter in the interstitial pneumonia group than the non-interstitial pneumonia group. Ground-glass opacity, honeycombing, lung volume reduction, traction bronchiectasis, centrilobular nodules, emphysematous change, and attenuation and volume change between inspiratory and expiratory CT were correlated with one or two parameters in all patients, whereas the other three findings were not. Among the interstitial pneumonia group, traction bronchiectasis, emphysematous change, and attenuation and volume change between inspiratory and expiratory CT were significantly correlated with one or two parameters. Abnormal respiratory sounds were correlated with some HRCT findings. (author)

  5. WE-FG-207B-09: Experimental Assessment of Noise and Spatial Resolution in Virtual Non-Contrast Dual-Energy CT Images Across Multiple Patient Sizes and CT Systems

    International Nuclear Information System (INIS)

    Montoya, J; Ferrero, A; Yu, L; Leng, S; McCollough, C

    2016-01-01

    Purpose: To investigate the noise and spatial resolution properties of virtual non-contrast (VNC) dual-energy CT images compared to true non-contrast (TNC) images across multiple patient sizes and CT systems. Methods: Torso-shaped water phantoms with lateral widths of 25, 30, 35, 40 and 45 cm and a high resolution bar pattern phantom (Catphan CTP528) were scanned using 2nd and 3rd generation dual-source CT systems (Scanner A: Somatom Definition Flash, Scanner B: Somatom Force, Siemens Healthcare) in dual-energy scan mode with the same radiation dose for a given phantom size. Tube potentials of 80/Sn140 and 100/Sn140 on Scanner A and 80/Sn150, 90/Sn150 and 100/Sn150 on Scanner B were evaluated to examine the impact of spectral separation. Images were reconstructed using a medium sharp quantitative kernel (Qr40), 1.0-mm thickness, 1.0-mm interval and 20 cm field of view. Mixed images served as TNC images. VNC images were created using commercial software (Virtual Unenhanced, Syngo VIA Version VA30, Siemens Healthcare). The noise power spectrum (NPS), area under the NPS, peak frequency of the NPS and image noise were measured for every phantom size and tube potential combination in TNC and VNC images. Results were compared within and between CT systems. Results: Minimal shift in NPS peak frequencies was observed in VNC images compared to TNC for NPS having pronounced peaks. Image noise and area under the NPS were higher in VNC images compared to TNC images across all tube potentials and for scanner A compared to scanner B. Limiting spatial resolution was deemed to be identical between VNC and TNC images. Conclusion: Quantitative assessment of image quality in VNC images demonstrated higher noise but equivalent spatial resolution compared to TNC images. Decreased noise was observed in the 3rd generation dual-source CT system for tube potential pairs having greater spectral separation. Dr. McCollough receives research support from Siemens Healthcare

  6. WE-FG-207B-09: Experimental Assessment of Noise and Spatial Resolution in Virtual Non-Contrast Dual-Energy CT Images Across Multiple Patient Sizes and CT Systems

    Energy Technology Data Exchange (ETDEWEB)

    Montoya, J; Ferrero, A; Yu, L; Leng, S; McCollough, C [Mayo Clinic, Rochester, MN (United States)

    2016-06-15

    Purpose: To investigate the noise and spatial resolution properties of virtual non-contrast (VNC) dual-energy CT images compared to true non-contrast (TNC) images across multiple patient sizes and CT systems. Methods: Torso-shaped water phantoms with lateral widths of 25, 30, 35, 40 and 45 cm and a high resolution bar pattern phantom (Catphan CTP528) were scanned using 2nd and 3rd generation dual-source CT systems (Scanner A: Somatom Definition Flash, Scanner B: Somatom Force, Siemens Healthcare) in dual-energy scan mode with the same radiation dose for a given phantom size. Tube potentials of 80/Sn140 and 100/Sn140 on Scanner A and 80/Sn150, 90/Sn150 and 100/Sn150 on Scanner B were evaluated to examine the impact of spectral separation. Images were reconstructed using a medium sharp quantitative kernel (Qr40), 1.0-mm thickness, 1.0-mm interval and 20 cm field of view. Mixed images served as TNC images. VNC images were created using commercial software (Virtual Unenhanced, Syngo VIA Version VA30, Siemens Healthcare). The noise power spectrum (NPS), area under the NPS, peak frequency of the NPS and image noise were measured for every phantom size and tube potential combination in TNC and VNC images. Results were compared within and between CT systems. Results: Minimal shift in NPS peak frequencies was observed in VNC images compared to TNC for NPS having pronounced peaks. Image noise and area under the NPS were higher in VNC images compared to TNC images across all tube potentials and for scanner A compared to scanner B. Limiting spatial resolution was deemed to be identical between VNC and TNC images. Conclusion: Quantitative assessment of image quality in VNC images demonstrated higher noise but equivalent spatial resolution compared to TNC images. Decreased noise was observed in the 3rd generation dual-source CT system for tube potential pairs having greater spectral separation. Dr. McCollough receives research support from Siemens Healthcare.

  7. Automatic extraction of forward stroke volume using dynamic PET/CT

    DEFF Research Database (Denmark)

    Harms, Hans; Tolbod, Lars Poulsen; Hansson, Nils Henrik Stubkjær

    2015-01-01

    Background The aim of this study was to develop and validate an automated method for extracting forward stroke volume (FSV) using indicator dilution theory directly from dynamic positron emission tomography (PET) studies for two different tracers and scanners. Methods 35 subjects underwent...... a dynamic 11 C-acetate PET scan on a Siemens Biograph TruePoint-64 PET/CT (scanner I). In addition, 10 subjects underwent both dynamic 15 O-water PET and 11 C-acetate PET scans on a GE Discovery-ST PET/CT (scanner II). The left ventricular (LV)-aortic time-activity curve (TAC) was extracted automatically...... from PET data using cluster analysis. The first-pass peak was isolated by automatic extrapolation of the downslope of the TAC. FSV was calculated as the injected dose divided by the product of heart rate and the area under the curve of the first-pass peak. Gold standard FSV was measured using phase...

  8. Pulmonary lymphangioleiomyomatosis: high-resolution CT findings

    Energy Technology Data Exchange (ETDEWEB)

    Kirchner, J.; Stein, A.; Thalhammer, A.; Jacobi, V. [Mainz Univ. (Germany). Inst. fuer Allgemeine Roentgendiagnostik; Viel, K.; Dietrich, C.F. [Frankfurt Univ. (Germany). Medizinische Klinik II; Schneider, M. [Zentrum fuer Pathologie, Frankfurt Univ. (Germany)

    1999-02-01

    Lymphangioleiomyomatosis (LAM) of the lung is a very rare disease. There are obvious discrepancies in the literature concerning the appearance of LAM on CT scans of the lung. This study adds the imaging findings of 11 patients and demonstrates how the imaging findings changed over time in four patients. Twenty-two CT examinations, and radiographs that had been obtained close to the CT examinations, of 11 patients with LAM confirmed by open lung biopsy were retrospectively evaluated with particular attention to the size of cystic lesions and wall thickness. Furthermore the CT scans were analysed for the type of pulmonary infiltration process and its distribution, presence or absence of pleural effusion, pneumothorax and lymph node enlargement. Clinical and CT follow-up studies were available in four patients. The CT scans revealed an increase in the interstitial pattern in all patients. Architectural distortion was seen in two patients and cystic lesions were present in all. The size of the cysts varied from small lesions to bullous emphysema. The cystic lesions revealed a wall thickness up to 2 mm but a wall was not perceptible in all. Pneumothorax was seen in only two patients; pleural effusion was seen in two patients. CT examination of patients with LAM reveals neither a uniform nor a pathognomonic appearance. In the early stages of LAM or in cases with interstitial changes the differential diagnosis of centrilobular emphysema or idiopathic pulmonary fibrosis seems to be more difficult than most authors believe. (orig.) (orig.) With 5 figs., 2 tabs., 21 refs.

  9. Gamma-ray CT from incomplete projections for two-phase pipe flow.

    Science.gov (United States)

    Xin, S; Wang, H X

    2017-02-01

    A low-energy low-dose γ-ray computed tomography (CT) system used in the gas-liquid two-phase pipe flow measurement has been studied at Tianjin University in recent years. The γ-ray CT system, having a third-generation X-ray CT scanning configuration, is comprised of one 300mCi 241 Am source and 17 CdZnTe detector units and achieves a spatial image resolution of about 7 mm. It is primarily intended to measure the two-phase pipe flow and provide improvement suggestions for industrial CT system. Recently we improve the design for image reconstruction from incomplete projection to optimize the scanning parameters and reduce the radiation dose. First, tomographic problem from incomplete projections is briefly described. Next, a system structure and a hardware circuit design are listed and explained, especially on time parameter setting of the pulse shaper. And then a detailed system analysis is provided in Section II, mainly focusing on spatial resolution, temporal resolution, system noise, and imaging algorithm. Finally, we carry on necessary static and dynamic experiments in a full scan (360°) and two sets of partial scan reconstruction tests to determine the feasibility of this γ-ray CT system for reconstructing the images from insufficient projections. And based on an A-variable algebraic reconstruction technique method, a specially designed algorithm, we evaluate the system performance and noise level of this CT system working quantitatively and qualitatively. Results of dynamic test indicate that the acceptable results can be acquired using a multi-source γ-ray CT system with the same parameters when the flow rate is less than 0.04 m/s and the imaging speed is slower than 33 frames/s.

  10. Technical Note: Measuring contrast- and noise-dependent spatial resolution of an iterative reconstruction method in CT using ensemble averaging

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Lifeng, E-mail: yu.lifeng@mayo.edu; Vrieze, Thomas J.; Leng, Shuai; Fletcher, Joel G.; McCollough, Cynthia H. [Department of Radiology, Mayo Clinic, Rochester, Minnesota 55905 (United States)

    2015-05-15

    Purpose: The spatial resolution of iterative reconstruction (IR) in computed tomography (CT) is contrast- and noise-dependent because of the nonlinear regularization. Due to the severe noise contamination, it is challenging to perform precise spatial-resolution measurements at very low-contrast levels. The purpose of this study was to measure the spatial resolution of a commercially available IR method using ensemble-averaged images acquired from repeated scans. Methods: A low-contrast phantom containing three rods (7, 14, and 21 HU below background) was scanned on a 128-slice CT scanner at three dose levels (CTDI{sub vol} = 16, 8, and 4 mGy). Images were reconstructed using two filtered-backprojection (FBP) kernels (B40 and B20) and a commercial IR method (sinogram affirmed iterative reconstruction, SAFIRE, Siemens Healthcare) with two strength settings (I40-3 and I40-5). The same scan was repeated 100 times at each dose level. The modulation transfer function (MTF) was calculated based on the edge profile measured on the ensemble-averaged images. Results: The spatial resolution of the two FBP kernels, B40 and B20, remained relatively constant across contrast and dose levels. However, the spatial resolution of the two IR kernels degraded relative to FBP as contrast or dose level decreased. For a given dose level at 16 mGy, the MTF{sub 50%} value normalized to the B40 kernel decreased from 98.4% at 21 HU to 88.5% at 7 HU for I40-3 and from 97.6% to 82.1% for I40-5. At 21 HU, the relative MTF{sub 50%} value decreased from 98.4% at 16 mGy to 90.7% at 4 mGy for I40-3 and from 97.6% to 85.6% for I40-5. Conclusions: A simple technique using ensemble averaging from repeated CT scans can be used to measure the spatial resolution of IR techniques in CT at very low contrast levels. The evaluated IR method degraded the spatial resolution at low contrast and high noise levels.

  11. Asbestosis and other pulmonary fibrosis in asbestos-exposed workers: high-resolution CT features with pathological correlations

    Energy Technology Data Exchange (ETDEWEB)

    Arakawa, Hiroaki [Dokkyo Medical University, Department of Radiology, Mibu, Tochigi (Japan); Kishimoto, Takumi [Okayama Rosai Hospital, Asbestos Research Center, Okayama (Japan); Ashizawa, Kazuto [Nagasaki University Graduate School of Biomedical Sciences, Department of Clinical Oncology, Nagasaki (Japan); Kato, Katsuya [Kawasaki Medical School, Department of Diagnostic Radiology 2, Okayama (Japan); Okamoto, Kenzo [Hokkaido Chuo Hospital, Department of Pathology, Iwamizawa, Hokkaido (Japan); Honma, Koichi [Dokkyo Medical University, Department of Pathology, Mibu, Tochigi (Japan); Hayashi, Seiji [National Hospital Organization Kinki-Chuo Chest Medical Center, Osaka (Japan); Akira, Masanori [National Hospital Organization Kinki-Chuo Chest Medical Center, Department of Radiology, Osaka (Japan)

    2016-05-15

    The purpose was to identify distinguishing CT features of pathologically diagnosed asbestosis, and correlate diagnostic confidence with asbestos body burden. Thirty-three workers (mean age at CT: 73 years) with clinical diagnoses of asbestosis, who were autopsied (n = 30) or underwent lobectomy (n = 3), were collected. Two radiologists independently scored high-resolution CT images for various CT findings and the likelihood of asbestosis was scored. Two pathologists reviewed the pathology specimens and scored the confidence of their diagnoses. Asbestos body count was correlated with CT and pathology scores. Pathologically, 15 cases were diagnosed as asbestosis and 18 cases with various lung fibroses other than asbestosis. On CT, only the score of the subpleural curvilinear lines was significantly higher in asbestosis (p = 0.03). Accuracy of CT diagnosis of asbestosis with a high confidence ranged from 0.73 to 0.79. Asbestos body count positively correlated with CT likelihood of asbestosis (r = 0.503, p = 0.003), and with the confidence level of pathological diagnosis (r = 0.637, p < 0.001). Subpleural curvilinear lines were the only clue for the diagnosis of asbestosis. However, this was complicated by other lung fibrosis, especially at low asbestos body burden. (orig.)

  12. Enhanced temporal resolution at cardiac CT with a novel CT image reconstruction algorithm: Initial patient experience

    Energy Technology Data Exchange (ETDEWEB)

    Apfaltrer, Paul, E-mail: paul.apfaltrer@medma.uni-heidelberg.de [Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, PO Box 250322, 169 Ashley Avenue, Charleston, SC 29425 (United States); Institute of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim (Germany); Schoendube, Harald, E-mail: harald.schoendube@siemens.com [Siemens Healthcare, CT Division, Forchheim Siemens, Siemensstr. 1, 91301 Forchheim (Germany); Schoepf, U. Joseph, E-mail: schoepf@musc.edu [Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, PO Box 250322, 169 Ashley Avenue, Charleston, SC 29425 (United States); Allmendinger, Thomas, E-mail: thomas.allmendinger@siemens.com [Siemens Healthcare, CT Division, Forchheim Siemens, Siemensstr. 1, 91301 Forchheim (Germany); Tricarico, Francesco, E-mail: francescotricarico82@gmail.com [Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, PO Box 250322, 169 Ashley Avenue, Charleston, SC 29425 (United States); Department of Bioimaging and Radiological Sciences, Catholic University of the Sacred Heart, “A. Gemelli” Hospital, Largo A. Gemelli 8, Rome (Italy); Schindler, Andreas, E-mail: andreas.schindler@campus.lmu.de [Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, PO Box 250322, 169 Ashley Avenue, Charleston, SC 29425 (United States); Vogt, Sebastian, E-mail: sebastian.vogt@siemens.com [Siemens Healthcare, CT Division, Forchheim Siemens, Siemensstr. 1, 91301 Forchheim (Germany); Sunnegårdh, Johan, E-mail: johan.sunnegardh@siemens.com [Siemens Healthcare, CT Division, Forchheim Siemens, Siemensstr. 1, 91301 Forchheim (Germany); and others

    2013-02-15

    Objective: To evaluate the effect of a temporal resolution improvement method (TRIM) for cardiac CT on diagnostic image quality for coronary artery assessment. Materials and methods: The TRIM-algorithm employs an iterative approach to reconstruct images from less than 180° of projections and uses a histogram constraint to prevent the occurrence of limited-angle artifacts. This algorithm was applied in 11 obese patients (7 men, 67.2 ± 9.8 years) who had undergone second generation dual-source cardiac CT with 120 kV, 175–426 mAs, and 500 ms gantry rotation. All data were reconstructed with a temporal resolution of 250 ms using traditional filtered-back projection (FBP) and of 200 ms using the TRIM-algorithm. Contrast attenuation and contrast-to-noise-ratio (CNR) were measured in the ascending aorta. The presence and severity of coronary motion artifacts was rated on a 4-point Likert scale. Results: All scans were considered of diagnostic quality. Mean BMI was 36 ± 3.6 kg/m{sup 2}. Average heart rate was 60 ± 9 bpm. Mean effective dose was 13.5 ± 4.6 mSv. When comparing FBP- and TRIM reconstructed series, the attenuation within the ascending aorta (392 ± 70.7 vs. 396.8 ± 70.1 HU, p > 0.05) and CNR (13.2 ± 3.2 vs. 11.7 ± 3.1, p > 0.05) were not significantly different. A total of 110 coronary segments were evaluated. All studies were deemed diagnostic; however, there was a significant (p < 0.05) difference in the severity score distribution of coronary motion artifacts between FBP (median = 2.5) and TRIM (median = 2.0) reconstructions. Conclusion: The algorithm evaluated here delivers diagnostic imaging quality of the coronary arteries despite 500 ms gantry rotation. Possible applications include improvement of cardiac imaging on slower gantry rotation systems or mitigation of the trade-off between temporal resolution and CNR in obese patients.

  13. Cholestrol granuloma of the breast incidentally detected on dynamic abdominal CT: A case report

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Sun Hye; Lee, Eun Hye; Hong, Hyun Sook; Kwak, Jeong Ja [Soonchunhyang University College of Medicine, Bucheon Hospital, Bucheon (Korea, Republic of)

    2016-01-15

    A breast cholesterol granuloma is an uncommon nodular breast lesion. We incidentally detected a persistently enhancing breast mass on the dynamic abdominal computed tomography (CT) of a 78-year-old woman. The mass decreased in diameter over 50 days following a core needle biopsy. This report is the first to describe the dynamic-enhanced CT features of a breast cholesterol granuloma.

  14. Direct microCT imaging of non-mineralized connective tissues at high resolution.

    Science.gov (United States)

    Naveh, Gili R S; Brumfeld, Vlad; Dean, Mason; Shahar, Ron; Weiner, Steve

    2014-01-01

    The 3D imaging of soft tissues in their native state is challenging, especially when high resolution is required. An X-ray-based microCT is, to date, the best choice for high resolution 3D imaging of soft tissues. However, since X-ray attenuation of soft tissues is very low, contrasting enhancement using different staining materials is needed. The staining procedure, which also usually involves tissue fixation, causes unwanted and to some extent unknown tissue alterations. Here, we demonstrate that a method that enables 3D imaging of soft tissues without fixing and staining using an X-ray-based bench-top microCT can be applied to a variety of different tissues. With the sample mounted in a custom-made loading device inside a humidity chamber, we obtained soft tissue contrast and generated 3D images of fresh, soft tissues with a resolution of 1 micron voxel size. We identified three critical conditions which make it possible to image soft tissues: humidified environment, mechanical stabilization of the sample and phase enhancement. We demonstrate the capability of the technique using different specimens: an intervertebral disc, the non-mineralized growth plate, stingray tessellated radials (calcified cartilage) and the collagenous network of the periodontal ligament. Since the scanned specimen is fresh an interesting advantage of this technique is the ability to scan a specimen under load and track the changes of the different structures. This method offers a unique opportunity for obtaining valuable insights into 3D structure-function relationships of soft tissues.

  15. High resolution CT for localization of early hilar lung carcinoma

    International Nuclear Information System (INIS)

    Minami, Yuko; Ishikawa, Shigemi; Saida, Yukihisa; Kajitani, Motomasa; Yamamoto, Tatsuo; Sato, Yukio; Onizuka, Masataka; Sakakibara, Yuzuru; Noguchi, Masayuki

    2002-01-01

    The purpose of this study was to analyse the usefulness of high resolution CT (HRCT) for the diagnosis and localization of roentgenographically occult lung cancer. HRCT was performed prospectively on chest X-ray negative patients with bloody sputum or suspicious or positive cells on sputum cytology between 1998 and 2000. After the HRCT scan, white light bronchoscopy and autofluorescence bronchoscopy were performed. HRCT depicted 19 hilar bronchial lesions in 13 cases out of 19 patients, of which 9 lesions were confirmed by white light broncoscope. Of 8 hilar squamous cell carcinomas diagnosed in this study, 7 lesions (87.5%) were depicted by HRCT. One CT-negative case (12.5%) was an in situ carcinoma in left B 1+2 . Four out of 20 lesions which showed bronchoscopic abnormality, could not be depicted by HRCT. HRCT could prospectively detect 80% of the bronchoscopic abnormalities and 87.5% of the hilar squamous cell carcinomas of the tracheobronchial lesions of the lung. Therefore, HRCT can be an effective supplemental means for screening for hilar squamous cell carcinoma. (author)

  16. Evaluation of detectability of right inferior phrenic artery root in dynamic CT

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Osamu [Akashi Municipal Hospital, Hyogo (Japan); Kizu, Osamu; Shimizu, Toshihisa; Takahashi, Takeshi; Ohno, Koji; Ohmura, Makoto; Maeda, Tomoho

    1995-05-01

    We evaluated the detectability of the root of the right inferior phrenic artery in dynamic CT over the entire liver as used for the diagnosis of hepatocellular carcinoma. The results showed no detection in three cases, poor detection in seven, detection in 12 and good detection in eight. The right inferior phrenic artery could be detected in many cases. Identification was easier in cases with direct branching from the aorta. It can be concluded that for angiographic examination, dynamic CT over the entire liver is useful for catheterization to the right inferior phrenic artery. (author).

  17. Evaluation of detectability of right inferior phrenic artery root in dynamic CT

    International Nuclear Information System (INIS)

    Sato, Osamu; Kizu, Osamu; Shimizu, Toshihisa; Takahashi, Takeshi; Ohno, Koji; Ohmura, Makoto; Maeda, Tomoho.

    1995-01-01

    We evaluated the detectability of the root of the right inferior phrenic artery in dynamic CT over the entire liver as used for the diagnosis of hepatocellular carcinoma. The results showed no detection in three cases, poor detection in seven, detection in 12 and good detection in eight. The right inferior phrenic artery could be detected in many cases. Identification was easier in cases with direct branching from the aorta. It can be concluded that for angiographic examination, dynamic CT over the entire liver is useful for catheterization to the right inferior phrenic artery. (author)

  18. Exogenous lipoid pneumonia: high-resolution CT findings

    International Nuclear Information System (INIS)

    Lee, J.S.; Song, K.S.; Lim, T.H.; Im, J.G.; Seo, J.B.

    1999-01-01

    The aim of this study was to assess high-resolution computed tomography (HRCT) findings of exogenous lipoid pneumonia. High-resolution computed tomography was obtained in 25 patients with proven exogenous lipoid pneumonia resulting from aspiration of squalene (derived from shark liver oil). Diagnosis was based on biopsy (n = 9), bronchoalveolar lavage (n = 8), or sputum cytology and clinical findings (n = 8). The clinical history of taking squalene was confirmed in all patients. The CT findings were classified into three patterns: diffuse ground-glass opacity, consolidation, and interstitial abnormalities. Distribution of the abnormalities, duration of taking squalene, predisposing factors for aspiration, and route of administration were analyzed. Ten patients showed diffuse ground-glass opacity pattern. Seven of 10 patients had predisposing conditions such as unconsciousness, pharyngeal dysmotility, or motor disturbances, and 6 patients had a recent history of taking large amount of squalene through nasal route. Seven patients who had consolidation pattern had a history of taking squalene for several months and did not have any predisposing factor. All of the 5 patients who had a pattern of interstitial abnormalities had a history of taking squalene longer than 1 year and showed segmental distribution of interstitial thickening with interposing ground-glass opacities. Three patients simultaneously had two different patterns at different lobes of the lung. The HRCT findings of lipoid pneumonia are ground-glass opacities, consolidation, and interstitial abnormalities. These HRCT findings with appropriate inquiries could be useful for diagnosis of exogeneous lipoid pneumonia. (orig.)

  19. Fully automatic segmentation of femurs with medullary canal definition in high and in low resolution CT scans.

    Science.gov (United States)

    Almeida, Diogo F; Ruben, Rui B; Folgado, João; Fernandes, Paulo R; Audenaert, Emmanuel; Verhegghe, Benedict; De Beule, Matthieu

    2016-12-01

    Femur segmentation can be an important tool in orthopedic surgical planning. However, in order to overcome the need of an experienced user with extensive knowledge on the techniques, segmentation should be fully automatic. In this paper a new fully automatic femur segmentation method for CT images is presented. This method is also able to define automatically the medullary canal and performs well even in low resolution CT scans. Fully automatic femoral segmentation was performed adapting a template mesh of the femoral volume to medical images. In order to achieve this, an adaptation of the active shape model (ASM) technique based on the statistical shape model (SSM) and local appearance model (LAM) of the femur with a novel initialization method was used, to drive the template mesh deformation in order to fit the in-image femoral shape in a time effective approach. With the proposed method a 98% convergence rate was achieved. For high resolution CT images group the average error is less than 1mm. For the low resolution image group the results are also accurate and the average error is less than 1.5mm. The proposed segmentation pipeline is accurate, robust and completely user free. The method is robust to patient orientation, image artifacts and poorly defined edges. The results excelled even in CT images with a significant slice thickness, i.e., above 5mm. Medullary canal segmentation increases the geometric information that can be used in orthopedic surgical planning or in finite element analysis. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  20. Pulmonary spheral tuberculosis: features and clinical significance of spiral dynamic CT

    International Nuclear Information System (INIS)

    Xie Ruming; Ma Daqing; Li Tieyi; Chen Yi; Lu Fudong; Zhou Xinhua

    2001-01-01

    Objective: To assess the features and clinical significance of spiral dynamic CT in patients with pulmonary spheral tuberculosis. Methods: The 54 foci in 42 patients with pulmonary spheral tuberculosis were studied. Thin-sections at 2 mm thickness and 2 mm interval through the nodular center were obtained before and after administration of contrast material. Results: In 54 pulmonary spheral tuberculosis, maximum enhanced CT value in 51 (94.4%, 51/54) foci was less than 20 HU, and more than 20 HU in the other 3(5.6%, 3/54) foci. 27(50.0%, 27/54) foci showed no any enhancement, 24, (44%, 24/54) foci showed capsular enhancement, 1(1.9%, 1/54) focus showed peripheral enhancement and 2(3.7%, 2/54) foci showed extensive enhancement. The accuracy of the correct diagnosis was 25.9% in terms of plain CT and 94.4% in terms of enhanced CT scanning. The difference was significant (x 2 = 50.1, P < 0.05). The curative effect of extensive enhanced foci and peripheral enhanced foci was optimal, capsular enhanced foci was second, and non-enhanced foci was barely satisfactory. Conclusion: Spiral dynamic CT technique may improve the accuracy of diagnosing pulmonary spheral tuberculosis. No enhancement and/or capsular enhancement were suggestive of tuberculosis. The enhancing character of foci might contribute to assess the curative effect of anti-tuberculosis

  1. Visual quantification of diffuse emphysema with Sakal's method and high-resolution chest CT

    International Nuclear Information System (INIS)

    Feuerstein, I.M.; McElvaney, N.G.; Simon, T.R.; Hubbard, R.C.; Crystal, R.G.

    1990-01-01

    This paper determines the accuracy and efficacy of visual quantitation for a diffuse form of pulmonary emphysema with high-resolution CT (HRCT). Twenty- five adults patients with symptomatic emphysema due to α-antitrypsin deficiency prospectively underwent HRCT with 1.5-mm sections, a high-spatial-resolution algorithm, and targeted reconstruction. Photography was performed with narrow lung windows to accentuate diffuse emphysema. Emphysema was then scored with use of a modification of Sakai's extent and severity scoring method. The scans were all scored by the same blinded observer. Pulmonary function testing (PFT), including diffusing capacity measurement, was performed in all patients. Results were statistically correlated with the use of regression analysis

  2. Examination of the fine interstitial changes of pneumoconiosis with high resolution computed tomography (HR-CT)

    International Nuclear Information System (INIS)

    Kido, Masamitsu; Miyazaki, Nobuyoshi; Harada, Susumu; Nakata, Hajime

    1986-01-01

    High resolution CT was performed in 14 patients with fine interstitial changes of pneumoconiosis and Review image was evaluated for the diagnostic accuracy as compared with conventional chest roentgenogram. Of the 14 Patients in the study, 7 were divided category 1 by the ILO U/C classification, 4 were category 2, 3 were category 3. Studies of lung function showed obstructive ventilatory disturbance characterized by moderate reduction in FEV 1.0% (58.6 ± 16.5 %) and V25/H (0.34 ± 0.24 l/sec/m). HR-CT defined more sensitive in the presence of fine lung nodules than conventional X-p, and showed high contrast interfaces provided by the aerated lung. HR-CT was also of value in detecting bulla, bleb, peripleural changes and hilar lymphadenopathy. Radiologic-pathologic correlation was examined on tne specimens of transbronchial lung biopsy in 4 patients, and revealed the diagnostic usefullness of HR-CT. (author)

  3. Investigating the role of SPECT/CT in dynamic sentinel lymph node biopsy for penile cancers

    Energy Technology Data Exchange (ETDEWEB)

    Saad, Ziauddin Zia; Bomanji, Jamshed [University College Hospitals London, Department of Nuclear Medicine, London (United Kingdom); UCLH NHS Foundation Trust, Institute of Nuclear Medicine, 5th Floor, London (United Kingdom); Omorphos, Savvas; Malone, Peter; Nigam, Raj; Muneer, Asif [University College Hospitals London, Department of Urology, London (United Kingdom); Michopoulou, Sofia; Gacinovic, Svetislav [University College Hospitals London, Department of Nuclear Medicine, London (United Kingdom)

    2017-07-15

    Currently, most centres use 2-D planar lymphoscintigraphy when performing dynamic sentinel lymph node biopsy in penile cancer patients with clinically impalpable inguinal nodes. This study aimed to investigate the role of SPECT/CT following 2-D planar lymphoscintigraphy (dynamic and static) in the detection and localization of sentinel lymph nodes in the groin. A qualitative (visual) review was performed on planar followed by SPECT/CT lymphoscintigraphy in 115 consecutive patients (age 28-86 years) who underwent injection of {sup 99m}Tc-nanocolloid followed by immediate acquisition of dynamic (20 min) and early static scans (5 min) initially and further delayed static (5 min) images at 120 min followed by SPECT/CT imaging. The lymph nodes detected in each groin on planar lymphoscintigraphy and SPECT/CT were compared. A total of 440 and 467 nodes were identified on planar scintigraphy and SPECT/CT, respectively. Overall, SPECT/CT confirmed the findings of planar imaging in 28/115 cases (24%). In the remaining 87 cases (76%), gross discrepancies were observed between planar and SPECT/CT images. SPECT/CT identified 17 instances of skin contamination (16 patients, 13%) and 36 instances of in-transit lymphatic tract activity (24 patients, 20%) that had been interpreted as tracer-avid lymph nodes on planar imaging. In addition, SPECT/CT identified 53 tracer-avid nodes in 48 patients (42%) that were not visualized on planar imaging and led to reclassification of the drainage basins (pelvic/inguinal) of 27 tracer-avid nodes. The addition of SPECT/CT improved the rate of detection of true tracer-avid lymph nodes and delineated their precise (3-D) anatomic localization in drainage basins. (orig.)

  4. Patient-specific quantification of image quality: An automated method for measuring spatial resolution in clinical CT images

    Energy Technology Data Exchange (ETDEWEB)

    Sanders, Jeremiah, E-mail: jeremiah.sanders@duke.edu [Medical Physics Graduate Program, Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Clinical Imaging Physics Group, Duke University, Durham, North Carolina 27710 (United States); Hurwitz, Lynne [Department of Radiology, Duke University, Durham, North Carolina 27710 (United States); Samei, Ehsan [Medical Physics Graduate Program, Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Clinical Imaging Physics Group, Duke University, Durham, North Carolina 27710 and Departments of Physics, Biomedical Engineering, Electrical and Computer Engineering, Duke University, Durham, North Carolina 27710 (United States)

    2016-10-15

    Purpose: To develop and validate an automated technique for evaluating the spatial resolution characteristics of clinical computed tomography (CT) images. Methods: Twenty one chest and abdominopelvic clinical CT datasets were examined in this study. An algorithm was developed to extract a CT resolution index (RI) analogous to the modulation transfer function from clinical CT images by measuring the edge-spread function (ESF) across the patient’s skin. A polygon mesh of the air-skin boundary was created. The faces of the mesh were then used to measure the ESF across the air-skin interface. The ESF was differentiated to obtain the line-spread function (LSF), and the LSF was Fourier transformed to obtain the RI. The algorithm’s ability to detect the radial dependence of the RI was investigated. RIs measured with the proposed method were compared with a conventional phantom-based method across two reconstruction algorithms (FBP and iterative) using the spatial frequency at 50% RI, f{sub 50}, as the metric for comparison. Three reconstruction kernels were investigated for each reconstruction algorithm. Finally, an observer study was conducted to determine if observers could visually perceive the differences in the measured blurriness of images reconstructed with a given reconstruction method. Results: RI measurements performed with the proposed technique exhibited the expected dependencies on the image reconstruction. The measured f{sub 50} values increased with harder kernels for both FBP and iterative reconstruction. Furthermore, the proposed algorithm was able to detect the radial dependence of the RI. Patient-specific measurements of the RI were comparable to the phantom-based technique, but the patient data exhibited a large spread in the measured f{sub 50}, indicating that some datasets were blurrier than others even when the projection data were reconstructed with the same reconstruction algorithm and kernel. Results from the observer study substantiated this

  5. Dynamic CT findings of pulmonary hamartoma: A comparison with histopathologic findings

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Wanglae; Jeong, Yeon Joo; Lee, Chang Hun; Lee, Ji Won; Kim, Yeong Dae [Pusan National University Hospital, Pusan National University School of Medicine and Medical Research Institute, Busan (Korea, Republic of); Kim, Kun Il [Dept. of Radiology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine and Medical Research Institute, Yangsan (Korea, Republic of)

    2013-12-15

    Describe the dynamic CT findings of pulmonary hamartoma and to compare these findings with histopathologic findings. he Institutional Review Board approved this retrospective study and the requirement for patient informed consent was waived. The hemodynamic CT features of 11 patients (M : F = 6 : 5; mean age, 53.6 years) with pathologically proven pulmonary hamartoma were evaluated. All 11 patients underwent enhanced dynamic CT using a helical technique. A series of images were obtained throughout each nodule with 2.5-mm collimation at 0, 30, 60, 90 and 120 seconds and at 4, 5 and 15 minutes after an intravenous injection of contrast medium. Extents and patterns of enhancement were correlated with histologic tumor components. ll 11 tumors showed persistent enhancement with variable degrees of net enhancement [mean tumor peak enhancement, 48.6 ± 19.0 Hounsfield unit (HU); mean tumor net enhancement, 31.9 ± 11.8 HU] and thick capsular and septal enhancement. Histologically, all 11 tumors were composed of mature cartilage and loose mesenchymal tissue. A significant positive correlation was found between the net enhancement values and loose connective tissue component percentages (r = 0.749, p = 0.008); further, a negative correlation was found between the net enhancement values and cartilaginous component percentages (r = -0.813, p = 0.002). n dynamic CT, hamartoma exhibited persistent enhancement without washout as well as thick capsular and septal enhancements. Net enhancement values were found to be positively correlated with the proportion of the loose connective tissue component. Thick capsular and septal enhancements were attributed histopathologically to loose connective tissue, separating tumors into cartilaginous lobules.

  6. Dynamic CT findings of pulmonary hamartoma: A comparison with histopathologic findings

    International Nuclear Information System (INIS)

    Cho, Wanglae; Jeong, Yeon Joo; Lee, Chang Hun; Lee, Ji Won; Kim, Yeong Dae; Kim, Kun Il

    2013-01-01

    Describe the dynamic CT findings of pulmonary hamartoma and to compare these findings with histopathologic findings. he Institutional Review Board approved this retrospective study and the requirement for patient informed consent was waived. The hemodynamic CT features of 11 patients (M : F = 6 : 5; mean age, 53.6 years) with pathologically proven pulmonary hamartoma were evaluated. All 11 patients underwent enhanced dynamic CT using a helical technique. A series of images were obtained throughout each nodule with 2.5-mm collimation at 0, 30, 60, 90 and 120 seconds and at 4, 5 and 15 minutes after an intravenous injection of contrast medium. Extents and patterns of enhancement were correlated with histologic tumor components. ll 11 tumors showed persistent enhancement with variable degrees of net enhancement [mean tumor peak enhancement, 48.6 ± 19.0 Hounsfield unit (HU); mean tumor net enhancement, 31.9 ± 11.8 HU] and thick capsular and septal enhancement. Histologically, all 11 tumors were composed of mature cartilage and loose mesenchymal tissue. A significant positive correlation was found between the net enhancement values and loose connective tissue component percentages (r = 0.749, p = 0.008); further, a negative correlation was found between the net enhancement values and cartilaginous component percentages (r = -0.813, p = 0.002). n dynamic CT, hamartoma exhibited persistent enhancement without washout as well as thick capsular and septal enhancements. Net enhancement values were found to be positively correlated with the proportion of the loose connective tissue component. Thick capsular and septal enhancements were attributed histopathologically to loose connective tissue, separating tumors into cartilaginous lobules.

  7. Adenosine-stress dynamic real-time myocardial perfusion CT and adenosine-stress first-pass dual-energy myocardial perfusion CT for the assessment of acute chest pain: Initial results

    Energy Technology Data Exchange (ETDEWEB)

    Weininger, Markus [Medical University of South Carolina, Department of Radiology and Radiological Science, Charleston, SC (United States); Schoepf, U. Joseph, E-mail: schoepf@musc.edu [Medical University of South Carolina, Department of Radiology and Radiological Science, Charleston, SC (United States); Department of Medicine, Division of Cardiology, Medical University of South Carolina, Charleston, SC (United States); Ramachandra, Ashok [Medical University of South Carolina, Department of Radiology and Radiological Science, Charleston, SC (United States); Fink, Christian [Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University (Germany); Rowe, Garrett W.; Costello, Philip [Medical University of South Carolina, Department of Radiology and Radiological Science, Charleston, SC (United States); Henzler, Thomas [Medical University of South Carolina, Department of Radiology and Radiological Science, Charleston, SC (United States); Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University (Germany)

    2012-12-15

    Purpose: Recent innovations in CT enable the evolution from mere morphologic imaging to dynamic and functional testing. We describe our initial experience performing myocardial stress perfusion CT in a clinical population with acute chest pain. Methods and materials: Myocardial stress perfusion CT was performed on twenty consecutive patients (15 men, 5 women; mean age 65 ± 8 years) who presented with acute chest pain and were clinically referred for stress/rest SPECT and cardiac MRI. Prior to CT each patient was randomly assigned either to Group A or to Group B in a consecutive order (10 patients per group). Group A underwent adenosine-stress dynamic real-time myocardial perfusion CT using a novel “shuttle” mode on a 2nd generation dual-source CT. Group B underwent adenosine-stress first-pass dual-energy myocardial perfusion CT using the same CT scanner in dual-energy mode. Two experienced observers visually analyzed all CT perfusion studies. CT findings were compared with MRI and SPECT. Results: In Group A 149/170 myocardial segments (88%) could be evaluated. Real-time perfusion CT (versus SPECT) had 86% (84%) sensitivity, 98% (92%) specificity, 94% (88%) positive predictive value, and 96% (92%) negative predictive value in comparison with perfusion MRI for the detection of myocardial perfusion defects. In Group B all myocardial segments were available for analysis. Compared with MRI, dual-energy myocardial perfusion CT (versus SPECT) had 93% (94%) sensitivity, 99% (98%) specificity, 92% (88%) positive predictive value, and 96% (94%) negative predictive value for detecting hypoperfused myocardial segments. Conclusion: Our results suggest the clinical feasibility of myocardial perfusion CT imaging in patients with acute chest pain. Compared to MRI and SPECT both, dynamic real-time perfusion CT and first-pass dual-energy perfusion CT showed good agreement for the detection of myocardial perfusion defects.

  8. Adenosine-stress dynamic real-time myocardial perfusion CT and adenosine-stress first-pass dual-energy myocardial perfusion CT for the assessment of acute chest pain: Initial results

    International Nuclear Information System (INIS)

    Weininger, Markus; Schoepf, U. Joseph; Ramachandra, Ashok; Fink, Christian; Rowe, Garrett W.; Costello, Philip; Henzler, Thomas

    2012-01-01

    Purpose: Recent innovations in CT enable the evolution from mere morphologic imaging to dynamic and functional testing. We describe our initial experience performing myocardial stress perfusion CT in a clinical population with acute chest pain. Methods and materials: Myocardial stress perfusion CT was performed on twenty consecutive patients (15 men, 5 women; mean age 65 ± 8 years) who presented with acute chest pain and were clinically referred for stress/rest SPECT and cardiac MRI. Prior to CT each patient was randomly assigned either to Group A or to Group B in a consecutive order (10 patients per group). Group A underwent adenosine-stress dynamic real-time myocardial perfusion CT using a novel “shuttle” mode on a 2nd generation dual-source CT. Group B underwent adenosine-stress first-pass dual-energy myocardial perfusion CT using the same CT scanner in dual-energy mode. Two experienced observers visually analyzed all CT perfusion studies. CT findings were compared with MRI and SPECT. Results: In Group A 149/170 myocardial segments (88%) could be evaluated. Real-time perfusion CT (versus SPECT) had 86% (84%) sensitivity, 98% (92%) specificity, 94% (88%) positive predictive value, and 96% (92%) negative predictive value in comparison with perfusion MRI for the detection of myocardial perfusion defects. In Group B all myocardial segments were available for analysis. Compared with MRI, dual-energy myocardial perfusion CT (versus SPECT) had 93% (94%) sensitivity, 99% (98%) specificity, 92% (88%) positive predictive value, and 96% (94%) negative predictive value for detecting hypoperfused myocardial segments. Conclusion: Our results suggest the clinical feasibility of myocardial perfusion CT imaging in patients with acute chest pain. Compared to MRI and SPECT both, dynamic real-time perfusion CT and first-pass dual-energy perfusion CT showed good agreement for the detection of myocardial perfusion defects.

  9. Motion estimation and compensation in dynamic spiral CT reconstruction; Estimation et compensation de mouvement en reconstruction dynamique de tomodensitometrie helicoidale

    Energy Technology Data Exchange (ETDEWEB)

    Kimdon, J.; Grangeat, P.; Koenig, A.; Bonnet, St

    2004-07-01

    Respiratory and cardiac motion causes blurring in dynamic X-ray Computed Tomography (CT). Fast scans reduce this problem, but they require a higher radiation dose per time period to maintain the signal to noise ratio of the resulting images, thereby magnifying the health risk to the patient. As an alternative to increased radiation, our team has already developed a cone-beam reconstruction algorithm based on a dynamic particle model that estimates, predicts, and compensates for respiratory motion in circular X-ray CT. The current paper presents an extension of this method to spiral CT, applicable to modern multi-slice scanners that take advantage of the speed and dose benefits of helical trajectories. We adapted all three main areas of the algorithm: backprojection, prediction, and compensation/accumulation. In backprojection, we changed the longitudinal re-binning technique, filter direction, and the method of enforcing the data sufficiency requirements. For prediction, we had to be careful of objects appearing and disappearing as the scanner bed advanced. For compensation/accumulation, we controlled the reconstruction time and combined images to cover a greater longitudinal extent for each phase in the respiratory or cardiac cycle. Tests with moving numerical phantoms demonstrate that the algorithm successfully improves the temporal resolution of the images without increasing the dose or reducing the signal-to-noise ratio. (authors)

  10. Dynamic high resolution imaging of rats

    International Nuclear Information System (INIS)

    Miyaoka, R.S.; Lewellen, T.K.; Bice, A.N.

    1990-01-01

    A positron emission tomography with the sensitivity and resolution to do dynamic imaging of rats would be an invaluable tool for biological researchers. In this paper, the authors determine the biological criteria for dynamic positron emission imaging of rats. To be useful, 3 mm isotropic resolution and 2-3 second time binning were necessary characteristics for such a dedicated tomograph. A single plane in which two objects of interest could be imaged simultaneously was considered acceptable. Multi-layered detector designs were evaluated as a possible solution to the dynamic imaging and high resolution imaging requirements. The University of Washington photon history generator was used to generate data to investigate a tomograph's sensitivity to true, scattered and random coincidences for varying detector ring diameters. Intrinsic spatial uniformity advantages of multi-layered detector designs over conventional detector designs were investigated using a Monte Carlo program. As a result, a modular three layered detector prototype is being developed. A module will consist of a layer of five 3.5 mm wide crystals and two layers of six 2.5 mm wide crystals. The authors believe adequate sampling can be achieved with a stationary detector system using these modules. Economical crystal decoding strategies have been investigated and simulations have been run to investigate optimum light channeling methods for block decoding strategies. An analog block decoding method has been proposed and will be experimentally evaluated to determine whether it can provide the desired performance

  11. Semiquantifying regional cerebral blood flow by dynamic CT scanning

    International Nuclear Information System (INIS)

    Takeuchi, Totaro; Kasahara, Eishi; Takahashi, Eriko; Kojima, Seiichi; Ogawa, Haruhiko; Suzuki, Keiko; Miyamae, Tatsuya; Yamazaki, Setsuo.

    1990-01-01

    The study was undertaken to evaluate the semi-quantitative significance of the absolute value obtained by calculating the regional cerebral blood flow index (rCBFI) from dynamic CT in comparison with SPECT. rCBFI was calculated from mean transit time (MTT) and blood capacity index (BCI) obtained by rapidly infusing 50 ml of Omnipurk into the elbow vein by the use of Hitachi's W-600. [rCBFI=BCI/MTT unit/sec (U/S)] measurment of the rCBF by SPECT was made according to the semi-quantitative method by Matsuda et al. by the use of SHIMADZU's improved type HEADTOME SET-050 with rapid infusion of 123 I-IMP in 3.5 m Ci from the elbow vein. Patients in whom no abnormality was observed in the cardiopulmonary function were enrolled as subjects. The rCBFI in each intracranial site was calculated from dynamic CT in 10 normal adults (aged 35-60, averaging 46.7) as subjects and compared with the rCBF obtained from SPECT in the same cases and same site. Comparative investigation was made similarly between rCBFI and rCBF regarding 10 patients with tracranial diseases (age 29-65, averaging 51.2). The mean rCBFIs in the normal adults obtained from dynamic CT were 1.15±0.18 U/S in the frontal lobar cortex, 1.28±0.19 U/S in the temporal lobar cortex, 1.43±0.1 U/S in the occipital lobar cortex, 1.27±0.2 U/S in the basal ganglia region and 0.43±0.1 U/S in the white matter. On the other hand, the mean rCBFs by SPECT were 47.36±3.93 ml/100 g/min, 55.19±2.22 ml/100 g/min, 61.92±5.42 ml/100 g/min, 54.38±3.51 ml/100 g/min and 38.68±6.18 ml/100 g/min, respectively. Positive correlation was observed between rCBFIs and rCBFs of 10 normal adults and 10 patients with intracranial disease, totalling 20 cases (r=0.79, P<0.005). The rCBFI by dynamic CT has a correlation with the rCBF by SPECT, suggesting the possibility of its evaluation as an absolute value, though semi-quantitatively. (author)

  12. Ventilation imaging of the paranasal sinuses using xenon-enhanced dynamic single-energy CT and dual-energy CT: a feasibility study in a nasal cast

    Energy Technology Data Exchange (ETDEWEB)

    Thieme, Sven F.; Helck, Andreas D.; Reiser, Maximilian F.; Johnson, Thorsten R.C. [Ludwig Maximilians University Hospital Munich, Institute for Clinical Radiology, Munich (Germany); Moeller, Winfried; Eickelberg, Oliver [Institute for Lung Biology and Disease (iLBD) and Comprehensive Pneumology Center (CPC), Helmholtz Zentrum Muenchen, Neuherberg, Munich (Germany); Becker, Sven [Ludwig-Maximilians-Universitaet, Department of Otorhinolaryngology - Head and Neck Surgery, Munich (Germany); Schuschnig, Uwe [Pari Pharma GmbH, Graefelfing (Germany)

    2012-10-15

    To show the feasibility of dual-energy CT (DECT) and dynamic CT for ventilation imaging of the paranasal sinuses in a nasal cast. In a first trial, xenon gas was administered to a nasal cast with a laminar flow of 7 L/min. Dynamic CT acquisitions of the nasal cavity and the sinuses were performed. This procedure was repeated with pulsating xenon flow. Local xenon concentrations in the different compartments of the model were determined on the basis of the enhancement levels. In a second trial, DECT measurements were performed both during laminar and pulsating xenon administration and the xenon concentrations were quantified directly. Neither with dynamic CT nor DECT could xenon-related enhancement be detected in the sinuses during laminar airflow. Using pulsating flow, dynamic imaging showed a xenon wash-in and wash-out in the sinuses that followed a mono-exponential function with time constants of a few seconds. Accordingly, DECT revealed xenon enhancement in the sinuses only after pulsating xenon administration. The feasibility of xenon-enhanced DECT for ventilation imaging was proven in a nasal cast. The superiority of pulsating gas flow for the administration of gas or aerosolised drugs to the paranasal sinuses was demonstrated. (orig.)

  13. Diagnosis of hearing impairment by high resolution CT scanning of inner ear anomalies

    International Nuclear Information System (INIS)

    Murata, Kiyotaka; Isono, Michio; Ohta, Fumihiko

    1988-01-01

    High resolution CT scanning of the temporal bone in our clinic has provided a more detailed radiological classification of inner ear anomalies than before. The statistical analysis of inner ear malformations based on the theory of quantification II has produced discriminant equations for the measurable diagnosis of hearing impairment and development of the inner ear. This analysis may make it possible to diagnose total and partial deafness on ipsi- and contralateral sides. (author)

  14. Functioning islet cell tumor of the pancreas. Localization with dynamic spiral CT

    International Nuclear Information System (INIS)

    Chung, M.J.; Choi, B.I.; Han, J.K.; Chung, J.W.; Han, M.C.; Bae, S.H.

    1997-01-01

    Purpose: The purpose of this study was to evaluate the usefulness of dynamic spiral CT, including multidimensional reformation, in the detection and localization of islet cell tumors of the pancreas. Material and Methods: Seven patients with histopathologically proven functioning islet cell tumors of the pancreas were studied with 2-phase contrast-enhanced spiral CT. Scanning of the arterial phase and late phase was started 30 s and 180 s, respectively, after injection of 100 ml of contrast medium at a rate of 3 ml/s. Results: Axial images in the arterial phase depicted the lesions in 5 patients, but in the late phase in only one patient. Multiplanar reformatted images of the arterial phase depicted the lesions in all 7 patients. Maximal intensity projection images demonstrated all lesions with information of their relationship to the vascular structure. Conclusion: Dynamic spiral CT with scanning during the arterial phase and retrospective multidimensional reformation is useful for preoperative detection and localization of small islet cell tumors of the pancreas. (orig.)

  15. Characterizing, measuring, and utilizing the resolution of CT imagery for improved quantification of fine-scale features

    Energy Technology Data Exchange (ETDEWEB)

    Ketcham, Richard A., E-mail: ketcham@jsg.utexas.edu; Hildebrandt, Jordan

    2014-04-01

    Quantitative results extracted from computed tomographic (CT) data sets should be the same across resolutions and between different instruments and laboratory groups. Despite the proliferation of scanners and data processing methods and tools, and scientific studies utilizing them, relatively little emphasis has been given to ensuring that these results are comparable or reproducible. This issue is particularly pertinent when the features being imaged and measured are of the same order size as data voxels, as is often the case with fracture apertures, pore throats, and cell walls. We have created a tool that facilitates quantification of the spatial resolution of CT data via its point-spread function (PSF), in which the user draws a traverse across a sharp interface between two materials and a Gaussian PSF is fitted to the blurring across that interface. Geometric corrections account for voxel shape and the angle of the traverse to the interface, which does not need to be orthogonal. We use the tool to investigate a series of grid phantoms scanned at varying conditions and observe how the PSF varies within and between slices. The PSF increases with increasing radial distance within slices, and can increase tangentially with increasing radial distance in CT data sets acquired with relatively few projections. The PSF between CT slices is similar to that within slices when a 2-D detector is used, but is much sharper when the data are acquired one slice at a time with a collimated linear detector array. The capability described here can be used not only to calibrate processing algorithms that use deconvolution operations, but it can also help evaluate scans on a routine basis within and between CT research groups, and with respect to the features within the imagery that are being measured.

  16. Cosolvent-free polymer gel dosimeters with improved dose sensitivity and resolution for x-ray CT dose response

    Energy Technology Data Exchange (ETDEWEB)

    Chain, J N M; McAuley, K B [Department of Chemical Engineering, Queen' s University, Kingston, K7L 3N6 (Canada); Jirasek, A [Department of Physics and Astronomy, University of Victoria, Victoria, V8W 3P6 (Canada); Schreiner, L J, E-mail: kim.mcauley@chee.queensu.ca [Cancer Centre of Southeastern Ontario, Kingston, K7L 5P9 (Canada)

    2011-04-07

    This study reports new N-isopropylacrylamide (NIPAM) polymer gel recipes with increased dose sensitivity and improved dose resolution for x-ray CT readout. NIPAM can be used to increase the solubility of N, N'-methylenebisacrylamide (Bis) in aqueous solutions from approximately 3% to 5.5% by weight, enabling the manufacture of dosimeters containing up to 19.5%T, which is the total concentration of NIPAM and Bis by weight. Gelatin is shown to have a mild influence on dose sensitivity when gels are imaged using x-ray CT, and a stronger influence when gels are imaged optically. Phantoms that contain only 3% gelatin and 5 mM tetrakis hydroxymethyl phosphonium chloride are sufficiently stiff for dosimetry applications. The best cosolvent-free gel formulation has a dose sensitivity in the linear range ({approx}0.88 H Gy{sup -1}) that is a small improvement compared to the best NIPAM-based gels that incorporate isopropanol as a cosolvent ({approx}0.80 H Gy{sup -1}). This new gel formulation results in enhanced dose resolution ({approx}0.052 Gy) for x-ray CT readout, making clinical applications of this imaging modality more feasible.

  17. Cosolvent-free polymer gel dosimeters with improved dose sensitivity and resolution for x-ray CT dose response

    International Nuclear Information System (INIS)

    Chain, J N M; McAuley, K B; Jirasek, A; Schreiner, L J

    2011-01-01

    This study reports new N-isopropylacrylamide (NIPAM) polymer gel recipes with increased dose sensitivity and improved dose resolution for x-ray CT readout. NIPAM can be used to increase the solubility of N, N'-methylenebisacrylamide (Bis) in aqueous solutions from approximately 3% to 5.5% by weight, enabling the manufacture of dosimeters containing up to 19.5%T, which is the total concentration of NIPAM and Bis by weight. Gelatin is shown to have a mild influence on dose sensitivity when gels are imaged using x-ray CT, and a stronger influence when gels are imaged optically. Phantoms that contain only 3% gelatin and 5 mM tetrakis hydroxymethyl phosphonium chloride are sufficiently stiff for dosimetry applications. The best cosolvent-free gel formulation has a dose sensitivity in the linear range (∼0.88 H Gy -1 ) that is a small improvement compared to the best NIPAM-based gels that incorporate isopropanol as a cosolvent (∼0.80 H Gy -1 ). This new gel formulation results in enhanced dose resolution (∼0.052 Gy) for x-ray CT readout, making clinical applications of this imaging modality more feasible.

  18. Prediction of bone strength by μCT and MDCT-based finite-element-models: How much spatial resolution is needed?

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Jan S., E-mail: jsb@tum.de [Department of Radiology, Technische Universität München, Munich (Germany); Department of Radiology, University of California, San Francisco, CA (United States); Max Planck Institute for Extraterrestrial Physics, Garching (Germany); Sidorenko, Irina [Max Planck Institute for Extraterrestrial Physics, Garching (Germany); Mueller, Dirk [Department of Radiology, Universität Köln (Germany); Baum, Thomas [Department of Radiology, Technische Universität München, Munich (Germany); Department of Radiology, University of California, San Francisco, CA (United States); Max Planck Institute for Extraterrestrial Physics, Garching (Germany); Issever, Ahi Sema [Department of Radiology, University of California, San Francisco, CA (United States); Department of Radiology, Charite, Berlin (Germany); Eckstein, Felix [Institute of Anatomy and Musculoskeletal Research, Paracelsus Medical University, Salzburg (Austria); Rummeny, Ernst J. [Department of Radiology, Technische Universität München, Munich (Germany); Link, Thomas M. [Department of Radiology, University of California, San Francisco, CA (United States); Raeth, Christoph W. [Max Planck Institute for Extraterrestrial Physics, Garching (Germany)

    2014-01-15

    Objectives: Finite-element-models (FEM) are a promising technology to predict bone strength and fracture risk. Usually, the highest spatial resolution technically available is used, but this requires excessive computation time and memory in numerical simulations of large volumes. Thus, FEM were compared at decreasing resolutions with respect to local strain distribution and prediction of failure load to (1) validate MDCT-based FEM and to (2) optimize spatial resolution to save computation time. Materials and methods: 20 cylindrical trabecular bone specimens (diameter 12 mm, length 15–20 mm) were harvested from elderly formalin-fixed human thoracic spines. All specimens were examined by micro-CT (isotropic resolution 30 μm) and whole-body multi-row-detector computed tomography (MDCT, 250 μm × 250 μm × 500 μm). The resolution of all datasets was lowered in eight steps to ∼2000 μm × 2000 μm × 500 μm and FEM were calculated at all resolutions. Failure load was determined by biomechanical testing. Probability density functions of local micro-strains were compared in all datasets and correlations between FEM-based and biomechanically measured failure loads were determined. Results: The distribution of local micro-strains was similar for micro-CT and MDCT at comparable resolutions and showed a shift toward higher average values with decreasing resolution, corresponding to the increasing apparent trabecular thickness. Small micro-strains (ε{sub eff} < 0.005) could be calculated down to 250 μm × 250 μm × 500 μm. Biomechanically determined failure load showed significant correlations with all FEM, up to r = 0.85 and did not significantly change with lower resolution but decreased with high thresholds, due to loss of trabecular connectivity. Conclusion: When choosing connectivity-preserving thresholds, both micro-CT- and MDCT-based finite-element-models well predicted failure load and still accurately revealed the distribution of local micro-strains in

  19. Prediction of bone strength by μCT and MDCT-based finite-element-models: How much spatial resolution is needed?

    International Nuclear Information System (INIS)

    Bauer, Jan S.; Sidorenko, Irina; Mueller, Dirk; Baum, Thomas; Issever, Ahi Sema; Eckstein, Felix; Rummeny, Ernst J.; Link, Thomas M.; Raeth, Christoph W.

    2014-01-01

    Objectives: Finite-element-models (FEM) are a promising technology to predict bone strength and fracture risk. Usually, the highest spatial resolution technically available is used, but this requires excessive computation time and memory in numerical simulations of large volumes. Thus, FEM were compared at decreasing resolutions with respect to local strain distribution and prediction of failure load to (1) validate MDCT-based FEM and to (2) optimize spatial resolution to save computation time. Materials and methods: 20 cylindrical trabecular bone specimens (diameter 12 mm, length 15–20 mm) were harvested from elderly formalin-fixed human thoracic spines. All specimens were examined by micro-CT (isotropic resolution 30 μm) and whole-body multi-row-detector computed tomography (MDCT, 250 μm × 250 μm × 500 μm). The resolution of all datasets was lowered in eight steps to ∼2000 μm × 2000 μm × 500 μm and FEM were calculated at all resolutions. Failure load was determined by biomechanical testing. Probability density functions of local micro-strains were compared in all datasets and correlations between FEM-based and biomechanically measured failure loads were determined. Results: The distribution of local micro-strains was similar for micro-CT and MDCT at comparable resolutions and showed a shift toward higher average values with decreasing resolution, corresponding to the increasing apparent trabecular thickness. Small micro-strains (ε eff < 0.005) could be calculated down to 250 μm × 250 μm × 500 μm. Biomechanically determined failure load showed significant correlations with all FEM, up to r = 0.85 and did not significantly change with lower resolution but decreased with high thresholds, due to loss of trabecular connectivity. Conclusion: When choosing connectivity-preserving thresholds, both micro-CT- and MDCT-based finite-element-models well predicted failure load and still accurately revealed the distribution of local micro-strains in spatial

  20. An application of dynamic CT for diagnosis of abnormal external ocular muscle movement

    International Nuclear Information System (INIS)

    Tomita, Kazumi; Ogura, Yuuko; Takeshita, Gen; Koga, Sukehiko; Katada, Kazuhiro; Anno, Hirofumi.

    1993-01-01

    To evaluate the movements of retrobulbar structures radiologically, we have developed a new technique called 'external ocular muscle movement CT' (EOM CT), in which dynamic CT scanning is performed while the patient performs controlled eye movements. This new technique was applied in one volunteer and 72 patients with external ophthalmoplegia due to orbital mass lesion, hyperthyroid ophthalmopathy, blowout fracture, and other retrobulbar lesions. EOM CT permits the assessment of extraocular muscle contraction in cases of blowout fracture, the evaluation of muscular contraction in hypertrophy of the extraocular muscles, and the diagnosis of adhesions between the extraocular muscles and intraorbital masses. Radiation dose to the lens from EOM CT was measured using a phantom and TLD, and was compared with that of conventional CT scanning with a 5 mm slice thickness. The dose to the lens from EOM CT was three times higher than that for conventional CT in axial scanning, but in the coronal section of the retrobulbar region, the dose to the lens from EOM CT decreases to one twelfth of that of conventional CT. EOM CT promises to be a powerful modality for functional evaluation of the extraocular muscles and other retrobulbar structures. (author)

  1. Detectors for high resolution dynamic pet

    International Nuclear Information System (INIS)

    Derenzo, S.E.; Budinger, T.F.; Huesman, R.H.

    1983-05-01

    This report reviews the motivation for high spatial resolution in dynamic positron emission tomography of the head and the technical problems in realizing this objective. We present recent progress in using small silicon photodiodes to measure the energy deposited by 511 keV photons in small BGO crystals with an energy resolution of 9.4% full-width at half-maximum. In conjunction with a suitable phototube coupled to a group of crystals, the photodiode signal to noise ratio is sufficient for the identification of individual crystals both for conventional and time-of-flight positron tomography

  2. The Road to the Common PET/CT Detector

    Science.gov (United States)

    Nassalski, Antoni; Moszynski, Marek; Szczesniak, Tomasz; Wolski, Dariusz; Batsch, Tadeusz

    2007-10-01

    Growing interest in the development of dual modality positron emission/X-rays tomography (PET/CT) systems prompts researchers to face a new challenge: to acquire both the anatomical and functional information in the same measurement, simultaneously using the same detection system and electronics. The aim of this work was to study a detector consisting of LaBr3, LSO or LYSO pixel crystals coupled to an avalanche photodiode (APD). The measurements covered tests of the detectors in PET and CT modes, respectively. The measurements included the determination of light output, energy resolution, the non-proportionality of the light yield and the time resolution for 511 keV annihilation quanta; analysis also included characterizing the PET detector, and determining the dependence of counting rate versus mean current of the APD in the X-ray detection. In the present experiment, the use of counting and current modes in the CT detection increases the dynamic range of the measured dose of X-rays by a factor of 20, compared to the counting mode alone.

  3. SU-F-I-54: Spatial Resolution Studies in Proton CT Using a Phase-II Prototype Head Scanner

    Energy Technology Data Exchange (ETDEWEB)

    Plautz, Tia E.; Johnson, R. P.; Sadrozinski, H. F.-W.; Zatserklyaniy, A. [University of California, Santa Cruz, Santa Cruz, CA (United States); Bashkirov, V.; Hurley, R. F.; Schulte, R. W. [Loma Linda University, Loma Linda, CA (United States); Piersimoni, P. [University of California, San Francisco, San Francisco, CA (United States); Giacometti, V. [University of Wollongong, Wollongong, NSW (Australia)

    2016-06-15

    Purpose: To characterize the modulation transfer function (MTF) of the pre-clinical (phase II) head scanner developed for proton computed tomography (pCT) by the pCT collaboration. To evaluate the spatial resolution achievable by this system. Methods: Our phase II proton CT scanner prototype consists of two silicon telescopes that track individual protons upstream and downstream from a phantom, and a 5-stage scintillation detector that measures a combination of the residual energy and range of the proton. Residual energy is converted to water equivalent path length (WEPL) of the protons in the scanned object. The set of WEPL values and associated paths of protons passing through the object over a 360° angular scan is processed by an iterative parallelizable reconstruction algorithm that runs on GP-GPU hardware. A custom edge phantom composed of water-equivalent polymer and tissue-equivalent material inserts was constructed. The phantom was first simulated in Geant4 and then built to perform experimental beam tests with 200 MeV protons at the Northwestern Medicine Chicago Proton Center. The oversampling method was used to construct radial and azimuthal edge spread functions and modulation transfer functions. The spatial resolution was defined by the 10% point of the modulation transfer function in units of lp/cm. Results: The spatial resolution of the image was found to be strongly correlated with the radial position of the insert but independent of the relative stopping power of the insert. The spatial resolution varies between roughly 4 and 6 lp/cm in both the the radial and azimuthal directions depending on the radial displacement of the edge. Conclusion: The amount of image degradation due to our detector system is small compared with the effects of multiple Coulomb scattering, pixelation of the image and the reconstruction algorithm. Improvements in reconstruction will be made in order to achieve the theoretical limits of spatial resolution.

  4. Signal Amplification Technique (SAT): an approach for improving resolution and reducing image noise in computed tomography

    International Nuclear Information System (INIS)

    Phelps, M.E.; Huang, S.C.; Hoffman, E.J.; Plummer, D.; Carson, R.

    1981-01-01

    Spatial resolution improvements in computed tomography (CT) have been limited by the large and unique error propagation properties of this technique. The desire to provide maximum image resolution has resulted in the use of reconstruction filter functions designed to produce tomographic images with resolution as close as possible to the intrinsic detector resolution. Thus, many CT systems produce images with excessive noise with the system resolution determined by the detector resolution rather than the reconstruction algorithm. CT is a rigorous mathematical technique which applies an increasing amplification to increasing spatial frequencies in the measured data. This mathematical approach to spatial frequency amplification cannot distinguish between signal and noise and therefore both are amplified equally. We report here a method in which tomographic resolution is improved by using very small detectors to selectively amplify the signal and not noise. Thus, this approach is referred to as the signal amplification technique (SAT). SAT can provide dramatic improvements in image resolution without increases in statistical noise or dose because increases in the cutoff frequency of the reconstruction algorithm are not required to improve image resolution. Alternatively, in cases where image counts are low, such as in rapid dynamic or receptor studies, statistical noise can be reduced by lowering the cutoff frequency while still maintaining the best possible image resolution. A possible system design for a positron CT system with SAT is described

  5. Ultra-high-resolution CT angiography of the artery of Adamkiewicz. A feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Yoshioka, Kunihiro; Tanaka, Ryoichi; Takagi, Hidenobu [Iwate Medical University, Division of Cardiovascular Radiology, Department of Radiology, Morioka (Japan); Ueyama, Yuta; Kikuchi, Kei; Chiba, Takuya [Iwate Medical University Hospital, Center for Radiological Science, Morioka (Japan); Arakita, Kazumasa [Center for Medical Research and Development, Toshiba Medical Systems Corporation, Otawara (Japan); Schuijf, Joanne D. [Center for Medical Research and Development Europe, Toshiba Medical Systems Europe, Zoetermeer (Netherlands); Saito, Yasuo [CT Systems Development Department, Toshiba Medical Systems Corporation, Otawara (Japan)

    2018-01-15

    Preoperative identification of the artery of Adamkiewicz can help prevent postoperative spinal cord injury following thoracic and thoracoabdominal aortic repair. Several studies have demonstrated the feasibility of evaluating the artery of Adamkiewicz using multi-detector row computed tomography (CT), but precise visualization remains a challenge. The present study was conducted to evaluate the usefulness of ultra-high-resolution CT for visualizing the artery of Adamkiewicz with a slice thickness of 0.25 versus 0.5 mm in patients with aortic aneurysms. Our institutional review board approved this study. Twenty-four patients with thoracic and thoracoabdominal aneurysms were scanned with beam collimation of 0.25 mm x 128. Images were reconstructed with slice thicknesses of 0.25 and 0.5 mm. The signal-to-noise ratio (SNR) of the aorta and contrast-to-noise ratio (CNR) between the anterior spinal artery and spinal cord were measured. Two independent observers evaluated visualization of the artery of Adamkiewicz and its continuity between the anterior spinal artery and the aorta using a four-point scale. No significant differences in the SNR of the aorta or CNR of the anterior spinal artery were observed between 0.25- and 0.5-mm slices. The average visualization score was significantly higher for 0.25-mm slices (3.58 ± 0.78) than for 0.5-mm slices (3.13 ± 0.99) (p = 0.01). The percentage of patients with nondiagnostic image quality was significantly lower for 0.25-mm slices (8.3%) than for 0.5-mm slices (33.3%) (p = 0.03). In patients with aortic aneurysms, ultra-high-resolution CT with 0.25-mm slices significantly improves visualization of the artery of Adamkiewicz compared to 0.5-mm slices. (orig.)

  6. Can lymphovascular invasion be predicted by preoperative multiphasic dynamic CT in patients with advanced gastric cancer?

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Zelan; Liang, Cuishan; Huang, Xiaomei; Liu, Zaiyi [Southern Medical University, Guangzhou, Guangdong (China); Guangdong General Hospital, Guangdong Academy of Medical Sciences, Department of Radiology, Guangzhou, Guangdong Province (China); Liang, Changhong; Huang, Yanqi [Guangdong General Hospital, Guangdong Academy of Medical Sciences, Department of Radiology, Guangzhou, Guangdong Province (China); He, Lan [Guangdong General Hospital, Guangdong Academy of Medical Sciences, Department of Radiology, Guangzhou, Guangdong Province (China); South China University of Technology, School of Medicine, Guangzhou, Guangdong (China); Chen, Xin [The Affiliated Guangzhou First People' Hospital, Guangzhou Medical University, Department of Radiology, Guangzhou, Guangdong (China); Xiong, Yabing [Southern Medical University, Guangzhou, Guangdong (China)

    2017-08-15

    To determine whether multiphasic dynamic CT can preoperatively predict lymphovascular invasion (LVI) in advanced gastric cancer (AGC). 278 patients with AGC who underwent preoperative multiphasic dynamic CT were retrospectively recruited. Tumour CT attenuation difference between non-contrast and arterial (Δ{sub AP}), portal (Δ{sub PP}) and delayed phase (Δ{sub DP}), tumour-spleen attenuation difference in the portal phase (Δ{sub T-S}), tumour contrast enhancement ratios (CERs), tumour-to-spleen ratio (TSR) and tumour volumes were obtained. All CT-derived parameters and clinicopathological variables associated with LVI were analysed by univariate analysis, followed by multivariate and receiver operator characteristics (ROC) analysis. Associations between CT predictors for LVI and histopathological characteristics were evaluated by the chi-square test. Δ{sub PP} (OR, 1.056; 95% CI: 1.032-1.080) and Δ{sub T-S} (OR, 1.043; 95% CI: 1.020-1.066) are independent predictors for LVI in AGC. Δ{sub PP}, Δ{sub T-S} and their combination correctly predicted LVI in 74.8% (AUC, 0.775; sensitivity, 88.6%; specificity, 54.1%), 68.7% (AUC, 0.747; sensitivity, 68.3%; specificity, 69.4%) and 71.7% (AUC, 0.800; sensitivity, 67.6%; specificity, 77.8%), respectively. There were significant associations between CT predictors for LVI with tumour histological differentiation and Lauren classification. Multiphasic dynamic CT provides a non-invasive method to predict LVI in AGC through quantitative enhancement measurement. (orig.)

  7. Algorithms of CT value correction for reconstructing a radiotherapy simulation image through axial CT images

    International Nuclear Information System (INIS)

    Ogino, Takashi; Egawa, Sunao

    1991-01-01

    New algorithms of CT value correction for reconstructing a radiotherapy simulation image through axial CT images were developed. One, designated plane weighting method, is to correct CT value in proportion to the position of the beam element passing through the voxel. The other, designated solid weighting method, is to correct CT value in proportion to the length of the beam element passing through the voxel and the volume of voxel. Phantom experiments showed fair spatial resolution in the transverse direction. In the longitudinal direction, however, spatial resolution of under slice thickness could not be obtained. Contrast resolution was equivalent for both methods. In patient studies, the reconstructed radiotherapy simulation image was almost similar in visual perception of the density resolution to a simulation film taken by X-ray simulator. (author)

  8. Prospective evaluation of solitary thyroid nodule on 18F-FDG PET/CT and high-resolution ultrasonography

    International Nuclear Information System (INIS)

    D'Souza, M.M.; Marwaha, R.K.; Sharma, R.

    2010-01-01

    The utility of 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/CT in the assessment of thyroid nodules is unclear as there are several conflicting reports on the usefulness of standardized uptake value (SUV) as an indicator to distinguish benign from malignant thyroid lesions. This study incorporated an additional parameter, namely dual time point imaging, to determine the diagnostic accuracy of PET/CT imaging. The performance of 18F-FDG PET/CT was compared to that of high-resolution ultrasound which is routinely used for the evaluation of thyroid nodules. Two hundred patients with incidentally detected solitary thyroid nodules were included in the study. Each patient underwent ultrasound and PET/CT evaluation within 7 days of each other, reported by an experienced radiologist and nuclear medicine specialist, respectively, in a blinded manner. The PET/CT criteria employed were maximum SUV (SUV max ) at 60 min and change in SUV max at delayed (120 min) imaging. Final diagnosis was based on pathological evaluation and follow-up. Of the 200 patients, 26 had malignant and 174 had benign nodules. The sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and accuracy of ultrasound were 80.8, 81.6, 39.6, 96.6 and 81.5%, respectively. Using SUV max at 60 min as the diagnostic criterion, the above indices were 80.8, 84.5, 43.8, 96.7 and 84%, respectively, for PET/CT. The SUV max of malignant thyroid lesions was significantly higher than benign lesions (16.2±10.6 vs. 4.5±3.1, respectively; p=0.0001). Incorporation of percentage change in SUV max at delayed imaging as the diagnostic criterion yielded a slightly improved sensitivity, specificity, PPV, NPV and accuracy of 84.6, 85.6, 46.8, 97.4 and 85.5%, respectively. There was a significant difference in percentage change in SUV max between malignant and benign thyroid lesions (14.9±11.4 vs. -1.6±13.7, respectively; p=0.0001). However, there was no statistically

  9. Advanced gastric cancer. The findings of delayed phase dynamic CT and radiologic-histopathologic correlation

    International Nuclear Information System (INIS)

    Monzawa, Shuichi; Omata, Kosaku; Nakazima, Hiroto; Yokosuka, Noriko; Ito, Atuko; Araki, Tsutomu

    2000-01-01

    The aim of this study was to describe delayed phase dynamic CT findings of advanced (T2-T4) gastric cancer and to correlate with histopathologic findings. Quadruple phase dynamic CT including delayed imaging taken five minutes after the start of injection of contrast material was performed in 43 patients with 45 advanced gastric cancer and 20 control subjects with no gastric lesions. On delayed phase CT scans, the attenuation of the gastric wall was equal to or lower than that of the liver parenchyma in the control subjects, therefore, the presence of higher attenuation in the gastric wall was considered to be abnormal and defined as delayed enhancement. Histopathologic findings in the tumors showing delayed enhancement were compared with those in the tumors without this feature. Delayed enhancement was seen in 26 (57%) of the 45 tumors. Eleven of 25 differentiated-type tumors and 15 of 20 undifferentiated-type tumors showed delayed enhancement (p<.05). Delayed enhancement was seen in one of five medullary type tumors, in 11 of 25 intermediate-type tumors, and in 14 of 15 scirrhous-type tumors (p<.005). Delayed enhancement was frequently seen in the tumors with abundant fibrous tissue stroma. Delayed phase dynamic CT may be useful for the characterization of advanced gastric cancer. (author)

  10. Nerve canals at the fundus of the internal auditory canal on high-resolution temporal bone CT

    International Nuclear Information System (INIS)

    Ji, Yoon Ha; Youn, Eun Kyung; Kim, Seung Chul

    2001-01-01

    To identify and evaluate the normal anatomy of nerve canals in the fundus of the internal auditory canal which can be visualized on high-resolution temporal bone CT. We retrospectively reviewed high-resolution (1 mm thickness and interval contiguous scan) temporal bone CT images of 253 ears in 150 patients who had not suffered trauma or undergone surgery. Those with a history of uncomplicated inflammatory disease were included, but those with symptoms of vertigo, sensorineural hearing loss, or facial nerve palsy were excluded. Three radiologists determined the detectability and location of canals for the labyrinthine segment of the facial, superior vestibular and cochlear nerve, and the saccular branch and posterior ampullary nerve of the inferior vestibular nerve. Five bony canals in the fundus of the internal auditory canal were identified as nerve canals. Four canals were identified on axial CT images in 100% of cases; the so-called singular canal was identified in only 68%. On coronal CT images, canals for the labyrinthine segment of the facial and superior vestibular nerve were seen in 100% of cases, but those for the cochlear nerve, the saccular branch of the inferior vestibular nerve, and the singular canal were seen in 90.1%, 87.4% and 78% of cases, respectiveIy. In all detectable cases, the canal for the labyrinthine segment of the facial nerve was revealed as one which traversed anterolateralIy, from the anterosuperior portion of the fundus of the internal auditory canal. The canal for the cochlear nerve was located just below that for the labyrinthine segment of the facial nerve, while that canal for the superior vestibular nerve was seen at the posterior aspect of these two canals. The canal for the saccular branch of the inferior vestibular nerve was located just below the canal for the superior vestibular nerve, and that for the posterior ampullary nerve, the so-called singular canal, ran laterally or posteolateralIy from the posteroinferior aspect of

  11. Nerve canals at the fundus of the internal auditory canal on high-resolution temporal bone CT

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Yoon Ha; Youn, Eun Kyung; Kim, Seung Chul [Sungkyunkwan Univ., School of Medicine, Seoul (Korea, Republic of)

    2001-12-01

    To identify and evaluate the normal anatomy of nerve canals in the fundus of the internal auditory canal which can be visualized on high-resolution temporal bone CT. We retrospectively reviewed high-resolution (1 mm thickness and interval contiguous scan) temporal bone CT images of 253 ears in 150 patients who had not suffered trauma or undergone surgery. Those with a history of uncomplicated inflammatory disease were included, but those with symptoms of vertigo, sensorineural hearing loss, or facial nerve palsy were excluded. Three radiologists determined the detectability and location of canals for the labyrinthine segment of the facial, superior vestibular and cochlear nerve, and the saccular branch and posterior ampullary nerve of the inferior vestibular nerve. Five bony canals in the fundus of the internal auditory canal were identified as nerve canals. Four canals were identified on axial CT images in 100% of cases; the so-called singular canal was identified in only 68%. On coronal CT images, canals for the labyrinthine segment of the facial and superior vestibular nerve were seen in 100% of cases, but those for the cochlear nerve, the saccular branch of the inferior vestibular nerve, and the singular canal were seen in 90.1%, 87.4% and 78% of cases, respectiveIy. In all detectable cases, the canal for the labyrinthine segment of the facial nerve was revealed as one which traversed anterolateralIy, from the anterosuperior portion of the fundus of the internal auditory canal. The canal for the cochlear nerve was located just below that for the labyrinthine segment of the facial nerve, while that canal for the superior vestibular nerve was seen at the posterior aspect of these two canals. The canal for the saccular branch of the inferior vestibular nerve was located just below the canal for the superior vestibular nerve, and that for the posterior ampullary nerve, the so-called singular canal, ran laterally or posteolateralIy from the posteroinferior aspect of

  12. Three-dimensional visualization and measurement of water distributions in PEFC by dynamic CT method on neutron radiography

    International Nuclear Information System (INIS)

    Hashimoto, Michinori; Murakawa, Hideki; Sugimoto, Katsumi; Asano, Hitoshi; Takenaka, Nobuyuki; Mochiki, Koh-ichi

    2011-01-01

    Visualization of dynamic three-dimensional water behavior in a PEFC stack was carried out by neutron CT for clarifying water effects on performances of a Polymer Electrolyte Fuel Cell (PEFC) stack. Neutron radiography system at JRR-3 in Japan Atomic Energy Agency was used. An operating stack with three cells based on Japan Automobile Research Institute standard was visualized. A consecutive CT reconstruction method by rotating the fuel stack continuously was developed by using a neutron image intensifier and a C-MOS high speed video camera. The dynamic water behavior in channels in the operating PEFC stack was clearly visualized 15 sec in interval by the developed dynamic neutron CT system. From the CT reconstructed images, evaluation of water amount in each cell was carried out. It was shown that the water distribution in each cell was correlated well with power generation characteristics in each cell. (author)

  13. High-resolution CT findings in infants with bronchopulmonary dysplasia: preliminary report

    International Nuclear Information System (INIS)

    Chung, Yoon Ho; Lee, Young Seok; Kim, Ji Hye; Han, Heon; Chung, Hyo Sun; Cha, Yoo Mi; Kim, Young Chae; Kim, Sang Hee

    1996-01-01

    To evaluate high resolution CT(HRCT) findings in infants with bronchopulmonary dysplasia(BPD). In 13 infants(age range, 1-12 months;11 premature babies, two full-term babies; birth weight, 0.97-3.88kg;mean 2,03kg) with clinico-radiologically suggested BPD, HRCT findings of the lung were reviewed retrospectively. Spiral CT using ultra high bone algorithm, 1mm collimation with 5-8mm interval, and 0.7sec scan time was performed without regard to breathing-control of infants. Three radiologists each analysed the HRCT findings twice. HRCT findings of BPD were as follows:parenchymal bands(n=13), interlobular septal thickenings (n=12), multifocal hyperaeration involving lobar or segmental distribution(n=7), and involving lobular distribution or small cyst-like lesion(n=4), centrilobular nodules(n=7), consolidation and/or atelectasis(n=7), and bronchovascular bundle thickening(n=6). Parenchymal bands, interlobular septal thickenings, and multifocal hyperaerations were the major findings in cases of bronchopulmonary dysplasia whereas, centrilobular nodules, consolidation and/or atelectasis, and bronchovascular bundle thickenings were the minor findings. These findings may be used as basic data in the evaluation of BPD in future studies

  14. {sup 18}F-FDG PET/CT imaging versus dynamic contrast-enhanced CT for staging and prognosis of inflammatory breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Champion, Laurence; Edeline, Veronique; Giraudet, Anne-Laure; Wartski, Myriam [Service de Medecine Nucleaire, Saint-Cloud (France); Lerebours, Florence [Service d' Oncologie Medicale, Saint-Cloud (France); Cherel, Pascal [Institut Curie, Hopital Rene Huguenin, Service de Radiologie, Saint-Cloud (France); Bellet, Dominique [Service de Medecine Nucleaire, Saint-Cloud (France); Universite Paris Descartes, Pharmacologie Chimique et Genetique and Imagerie, Inserm U1022 CNRS UMR 8151, Faculte des sciences pharmaceutiques et biologiques, Paris (France); Alberini, Jean-Louis [Service de Medecine Nucleaire, Saint-Cloud (France); Universite Versailles Saint-Quentin, Faculte de medecine, Saint-Quentin-en-Yvelines (France)

    2013-08-15

    Inflammatory breast cancer (IBC) is the most aggressive type of breast cancer with a poor prognosis. Locoregional staging is based on dynamic contrast-enhanced (DCE) CT or MRI. The aim of this study was to compare the performances of FDG PET/CT and DCE CT in locoregional staging of IBC and to assess their respective prognostic values. The study group comprised 50 women (median age: 51 {+-} 11 years) followed in our institution for IBC who underwent FDG PET/CT and DCE CT scans (median interval 5 {+-} 9 days). CT enhancement parameters were net maximal enhancement, net early enhancement and perfusion. The PET/CT scans showed intense FDG uptake in all primary tumours. Concordance rate between PET/CT and DCE CT for breast tumour localization was 92 %. No significant correlation was found between SUVmax and CT enhancement parameters in primary tumours (p > 0.6). PET/CT and DCE CT results were poorly correlated for skin infiltration (kappa = 0.19). Ipsilateral foci of increased axillary FDG uptake were found in 47 patients (median SUV: 7.9 {+-} 5.4), whereas enlarged axillary lymph nodes were observed on DCE CT in 43 patients. Results for axillary node involvement were fairly well correlated (kappa = 0.55). Nineteen patients (38 %) were found to be metastatic on PET/CT scan with a significant shorter progression-free survival than patients without distant lesions (p = 0.01). In the primary tumour, no statistically significant difference was observed between high and moderate tumour FDG uptake on survival, using an SUVmax cut-off of 5 (p = 0.7 and 0.9), or between high and low tumour enhancement on DCE CT (p > 0.8). FDG PET/CT imaging provided additional information concerning locoregional involvement to that provided by DCE CT on and allowed detection of distant metastases in the same whole-body procedure. Tumour FDG uptake or CT enhancement parameters were not correlated and were not found to have any prognostic value. (orig.)

  15. Hydro-dynamic CT preoperative staging of gastric cancer: correlation with pathological findings. A prospective study of 107 cases

    International Nuclear Information System (INIS)

    D'Elia, F.; Zingarelli, A.; Grani, M.; Palli, D.

    2000-01-01

    The aim of this study was to evaluate the accuracy of dynamic CT in the preoperative staging of gastric cancer. One hundred seven patients affected by gastric cancer diagnosed by endoscopic biopsy were prospectively staged by dynamic CT prior to tumor resection. After an oral intake of 400-600 ml of tap water and an intravenous infusion of a hypotonic agent, 200 ml of non-ionic contrast agent were administered by power injector using a biphasic technique. The CT findings were prospectively analyzed and correlated with the pathological findings at surgery. The accuracy of dynamic CT for tumor detection was 80 and 99 % in early and advanced gastric cancer, respectively, with overall detection rate of 96 % (103 of 107). Three early (pT1) and one advanced (pT2) cancers were undetected. Tumor stage as determined by dynamic CT agreed with pathological findings in 83 of 107 patients with an overall accuracy of 78 %. The accuracy of CT in detecting increasing degrees of depth of tumor invasion when compared with pathological TNM staging was 20 % (3 of 15) and 87 % (80 of 92) in early and advanced cancer, respectively. The sensitivity, specificity, and accuracy of CT in the preoperative staging (pT3-pT4 vs pT1-pT2) was 93, 90, and 91.6 %, respectively. The sensitivity, specificity, and accuracy of CT in assessing metastasis to regional lymph nodes was 97.2, 65.7, and 87 %, respectively. Computed tomography correctly staged liver metastases in 105 of 107 patients with an overall sensitivity of 87.5 % and specificity of 99 %. The sensitivity of peritoneal involvement was 30 % when ascites or peritoneal nodules were absent. Our findings show that dynamic CT can play a role in the preoperative definition of gastric cancer stage. The results can be used to optimize the therapeutic strategy for each individual patient prior to surgery, thus avoiding unnecessary intervention and allowing careful planning of extended surgery in eligible patients. (orig.)

  16. The application of high-resolution CT in the visualization of the vestibular aqueduct (Meniere's disease) and labyrinthine otospongiosis

    International Nuclear Information System (INIS)

    Zonneveld, F.W.; Groot, J.A.M. de; Huizing, E.H.; Damsma, H.; Waes, P.F.G.M. van

    1984-01-01

    Ever since the introduction of temporal bone imaging by means of high-resolution CT, it appears that the combination of high spatial resolution, high density resolution and the freedom of patient positioning for scanning of optimal otological planes may play a unique role in the diagnosis and follow-up of a number of otological disorder. Two examples are described here. The first is the possibility of determining whether the vestibular aqueduct in idiopathic Meniere's disease is obliterated or not, and if so, whether it is a bony or a fibrous obliteration. Although the results are preliminary, there are indications that all three cathegories occur and that the efficacy of drainage of the endolymphatic sac can be evaluated prior to surgery. The second example is the possibility of outlining and quantifying the bone mineral loss in cases of labyrinthine otospongiosis. Preliminary studies have outlined that there is a relationship between the degree of decalcification and the severity of sensorineural hearing loss. These examples show high-resolution, thin-section multiplanar CT to have great potential in the diagnosis and treatment of otological disorders. This will become evident as the techniques that were used here are worked out in more detail and become more widely known. (orig.)

  17. 'Crazy-Paving' Patterns on High-Resolution CT Scans in Patients with Pulmonary Complications after Hematopoietic Stem Cell Transplantation

    International Nuclear Information System (INIS)

    Marchiori, Edson; Escuissato, Dante L.; Gasparetto, Taisa Davaus; Considera, Daniela Peixoto; Franquet, Tomas

    2009-01-01

    To describe the pulmonary complications following hematopoietic stem cell transplantation (HSCT) that can present with a 'crazy-paving' pattern in high-resolution CT scans. Retrospective review of medical records from 2,537 patients who underwent HSCT. The 'crazy-paving' pattern consists of interlobular and intralobular septal thickening superimposed on an area of ground-glass attenuation on high-resolution CT scans. The CT scans were retrospectively reviewed by two radiologists, who reached final decisions by consensus. We identified 10 cases (2.02%), seven male and three female, with pulmonary complications following HSCT that presented with the 'crazy-paving' pattern. Seven (70%) patients had infectious pneumonia (adenovirus, herpes simplex, influenza virus, cytomegalovirus, respiratory syncytial virus, and toxoplasmosis), and three patients presented with non-infectious complications (idiopathic pneumonia syndrome and acute pulmonary edema). The 'crazy-paving' pattern was bilateral in all cases, with diffuse distribution in nine patients (90%), predominantly in the middle and inferior lung regions in seven patients (70%), and involving the anterior and posterior regions of the lungs in nine patients (90%). The 'crazy-paving' pattern is rare in HSCT recipients with pulmonary complications and is associated with infectious complications more commonly than non-infectious conditions

  18. Pneumonia in novel swine-origin influenza A (H1N1) virus infection: High-resolution CT findings

    Energy Technology Data Exchange (ETDEWEB)

    Li Ping, E-mail: pinglee_2000@yahoo.com [Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, 246 Xue Fu Road, Harbin 150086 (China); Su Dongju, E-mail: hyd_sdj@yahoo.com.cn [Department of Respiratory, The Second Affiliated Hospital of Harbin Medical University, 246 Xue Fu Road, Harbin 150086 (China); Zhang Jifeng, E-mail: zjf2005520@163.com [Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, 246 Xue Fu Road, Harbin 150086 (China); Xia Xudong, E-mail: xiaxd888@163.com [Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, 246 Xue Fu Road, Harbin 150086 (China); Sui Hong, E-mail: suisuihong@126.com [Department of Statistics, Harbin Medical University, 240 Xue Fu Road, Harbin 150086 (China); Zhao Donghui, E-mail: yhwoooooo@yahoo.com.cn [Centers for Disease Control and Prevention of Heilongjiang, 187 Xiang An Street, Harbin 150036 (China)

    2011-11-15

    Objective: The purpose of our study was to review the initial high-resolution CT (HRCT) findings in pneumonia patients with presumed/laboratory-confirmed novel swine-origin influenza A (H1N1) virus (S-OIV) infection and detect pneumonia earlier. Materials and methods: High-resolution CT (HRCT) findings of 106 patients with presumed/laboratory-confirmed novel S-OIV (H1N1) infection were reviewed. The 106 patients were divided into two groups according to the serious condition of the diseases. The pattern (consolidation, ground-glass, nodules, and reticulation), distribution, and extent of abnormality on the HRCT were evaluated in both groups. The dates of the onset of symptoms of the patients were recorded. Results: The predominant CT findings in the patients at presentation were unilateral or bilateral multifocal asymmetric ground-glass opacities alone (n = 29, 27.4%), with unilateral or bilateral consolidation (n = 50, 47.2%). The consolidation had peribronchovascular and subpleural predominance. The areas of consolidation were found mainly in the posterior, middle and lower regions of the lungs. Reticular opacities were found in 6 cases of the initial MDCT scan. The extent of disease was greater in group 1 patients requiring advanced mechanical ventilation, with diffuse involvement in 19 patients (63.3%) of group 1 patients, and only 15/76 (19.7%) of group 2 patients (p < 0.01, {chi}{sup 2} test). 20 cases (19%) of the 106 patients had small bilateral or unilateral pleural effusions. None had evidence of hilar or mediastinal lymph node enlargement on CT performed at admission or later. Conclusions: The most common radiographic and CT findings in patients with S-OIV infection are unilateral or bilateral ground-glass opacities with or without associated focal or multifocal areas of consolidation. On HRCT, the ground-glass opacities had a predominant peribronchovascular and subpleural distribution. CT plays an important role in the early recognition of severe S

  19. Pneumonia in novel swine-origin influenza A (H1N1) virus infection: High-resolution CT findings

    International Nuclear Information System (INIS)

    Li Ping; Su Dongju; Zhang Jifeng; Xia Xudong; Sui Hong; Zhao Donghui

    2011-01-01

    Objective: The purpose of our study was to review the initial high-resolution CT (HRCT) findings in pneumonia patients with presumed/laboratory-confirmed novel swine-origin influenza A (H1N1) virus (S-OIV) infection and detect pneumonia earlier. Materials and methods: High-resolution CT (HRCT) findings of 106 patients with presumed/laboratory-confirmed novel S-OIV (H1N1) infection were reviewed. The 106 patients were divided into two groups according to the serious condition of the diseases. The pattern (consolidation, ground-glass, nodules, and reticulation), distribution, and extent of abnormality on the HRCT were evaluated in both groups. The dates of the onset of symptoms of the patients were recorded. Results: The predominant CT findings in the patients at presentation were unilateral or bilateral multifocal asymmetric ground-glass opacities alone (n = 29, 27.4%), with unilateral or bilateral consolidation (n = 50, 47.2%). The consolidation had peribronchovascular and subpleural predominance. The areas of consolidation were found mainly in the posterior, middle and lower regions of the lungs. Reticular opacities were found in 6 cases of the initial MDCT scan. The extent of disease was greater in group 1 patients requiring advanced mechanical ventilation, with diffuse involvement in 19 patients (63.3%) of group 1 patients, and only 15/76 (19.7%) of group 2 patients (p 2 test). 20 cases (19%) of the 106 patients had small bilateral or unilateral pleural effusions. None had evidence of hilar or mediastinal lymph node enlargement on CT performed at admission or later. Conclusions: The most common radiographic and CT findings in patients with S-OIV infection are unilateral or bilateral ground-glass opacities with or without associated focal or multifocal areas of consolidation. On HRCT, the ground-glass opacities had a predominant peribronchovascular and subpleural distribution. CT plays an important role in the early recognition of severe S-OIV (H1N1).

  20. Use of dynamic images in radiology education: Movies of CT and MRI in the anatomy classroom.

    Science.gov (United States)

    Jang, Hye Won; Oh, Chang-Seok; Choe, Yeon Hyeon; Jang, Dong Su

    2018-04-19

    Radiology education is a key component in many preclinical anatomy courses. However, the reported effectiveness of radiology education within such anatomy classrooms has varied. This study was conducted to determine if a novel educational method using dynamic images of movies of computed tomography (CT) and magnetic resonance imaging (MRI) was effective in radiology education during a preclinical anatomy course, aided by clay modeling, specific hand gestures (digit anatomy), and reports from dissection findings uploaded to the anatomy course website (digital reports). Feedback surveys using a five-point Likert scale were administered to better clarify students' opinions regarding their understanding of CT and MRI of anatomical structures, as well as to determine if such preclinical radiology education was helpful in their clinical studies. After completion of the anatomy course taught with dynamic images of CT and MRI, most students demonstrated an adequate understanding of basic CT and MR images. Additionally, students in later clinical years generally believed that their study of radiologic images during the preclinical anatomy course was helpful for their clinical studies and clerkship rotations. Moreover, student scores on imaging anatomy examinations demonstrated meaningful improvements in performance after using dynamic images from movies of CT and MRI. Anat Sci Educ. © 2018 American Association of Anatomists. © 2018 American Association of Anatomists.

  1. Improvement of the temporal resolution of cardiac CT reconstruction algorithms using an optimized filtering step

    International Nuclear Information System (INIS)

    Roux, S.; Desbat, L.; Koenig, A.; Grangeat, P.

    2005-01-01

    In this paper we study a property of the filtering step of multi-cycle reconstruction algorithm used in the field of cardiac CT. We show that the common filtering step procedure is not optimal in the case of divergent geometry and decrease slightly the temporal resolution. We propose to use the filtering procedure related to the work of Noo at al ( F.Noo, M. Defrise, R. Clakdoyle, and H. Kudo. Image reconstruction from fan-beam projections on less than a short-scan. Phys. Med.Biol., 47:2525-2546, July 2002)and show that this alternative allows to reach the optimal temporal resolution with the same computational effort. (N.C.)

  2. Radiographic and high resolution CT findings of non-specific interstitial pneumonia/fibrosis

    Energy Technology Data Exchange (ETDEWEB)

    Kondoh, Yasuhiro; Taniguchi, Hiroyuki; Nishiyama, Satoshi [Tosei General Hospital, Seto, Aichi (Japan); Yokoi, Toyoharu; Suzuki, Ryujiro; Noda, Yasunobu; Kato, Toshiyuki; Kaneko, Michie

    1999-01-01

    We evaluated the radiographic and high resolution CT findings in fifteen patients with biopsy proven nonspecific interstitial pneumonia. The most common radiographic findings in NSIP were bilateral infiltrates involving alveolar pattern, interstitial pattern, and mixed alveolar-interstitial pattern, which distributed mainly in the middle and lower lung zones. Loss of lung volumes were common. The predominant findings of linear and reticular opacities on HRCT were peribronchovascular interstitial thickening, parenchymal bands, intralobular interstitial thickening, and traction bronchiectasis. Honeycombing was not noted in any patient on initial CT scans. The predominant findings of increased lung opacity were mixed pattern of ground glass opacity and consolidation. Because these findings mimic those of idiopathic pulmonary fibrosis/usual interstitial pneumonia, distinction between NSIP and IPF/UIP seems to be difficult by radiographic and HRCT findings. The response to corticosteroid therapy was good. At follow up HRCT, the pulmonary abnormalities observed on initial scans had disappeared or were diminished in most cases. Intralobular interstitial thickening and traction bronchiectasis, that have been considered to be an indicator of irreversible fibrosis, occasionally disappeared after corticosteroid therapy. (author)

  3. Ultra-high resolution C-Arm CT arthrography of the wrist: Radiation dose and image quality compared to conventional multidetector computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Werncke, Thomas, E-mail: Werncke.Thomas@mh-hannover.de [Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover (Germany); Sonnow, Lena; Meyer, Bernhard C. [Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover (Germany); Lüpke, Matthias [University of Veterinary Medicine Hannover, Institute for General Radiology and Medical Physics, Bischofsholer Damm 15, 30173 Hannover (Germany); Hinrichs, Jan; Wacker, Frank K.; Falck, Christian von [Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover (Germany)

    2017-04-15

    Objective: Objective of this phantom and cadaveric study was to compare the effective radiation dose (ED) and image quality (IQ) between C-arm computed tomography (CACT) using an ultra-high resolution 1 × 1 binning with a standard 16-slice CT (MDCT) arthrography of the wrist. Methods: ED was determined with thermoluminescence dosimetry using an anthropomorphic phantom and different patient positions. Imaging was conducted in 10 human cadaveric wrists after tri-compartmental injection of diluted iodinated contrast material and a wire phantom. IQ of MDCT was compared with CACT reconstructed with a soft (CACT1) and sharp (CACT2) kernel. High and low contrast resolution was determined. Three radiologists assessed IQ of wrist structures and occurrence of image artifacts using a 5-point Likert scale. Results: ED of MDCT was comparable to standard CACT (4.3 μSv/3.7 μSv). High contrast resolution was best for CACT2, decreased to CACT1 and MDCT. Low contrast resolution increased between CACT2 and MDCT (P < 0.001). IQ was best for CACT2 (1.3 ± 0.5), decreased to CACT1 (1.9 ± 0.6) and MDCT (3.5 ± 0.6). Non-compromising artifacts were only reported for CACT. Conclusions: The results of this phantom and cadaveric study indicate that ultra-high resolution C-Arm CT arthrography of the wrist bears the potential to outperform MDCT arthrography in terms of image quality and workflow at the cost of mildly increasing image artifacts while radiation dose to the patient is comparably low for both, MDCT and C-Arm CT.

  4. Can low-dose CT with iterative reconstruction reduce both the radiation dose and the amount of iodine contrast medium in a dynamic CT study of the liver?

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Hiroto; Okada, Masahiro; Hyodo, Tomoko; Hidaka, Syojiro; Kagawa, Yuki; Matsuki, Mitsuru; Tsurusaki, Masakatsu; Murakami, Takamichi, E-mail: murakami@med.kindai.ac.jp

    2014-04-15

    Purpose: To investigate whether low-dose dynamic CT of the liver with iterative reconstruction can reduce both the radiation dose and the amount of contrast medium. Materials and methods: This study was approved by our institutional review board. 113 patients were randomly assigned to one of two groups. Group A/group B (fifty-eight/fifty-five patients) underwent liver dynamic CT at 120/100 kV, with 0/40% adaptive statistical iterative reconstruction (ASIR), with a contrast dose of 600/480 mg I/kg, respectively. Radiation exposure was estimated based on the manufacturer's phantom data. The enhancement value of the hepatic parenchyma, vessels and the tumor-to-liver contrast of hepatocellular carcinomas (HCCs) were compared between two groups. Two readers independently assessed the CT images of the hepatic parenchyma and HCCs. Results: The mean CT dose indices: 6.38/4.04 mGy, the dose-length products: 194.54/124.57 mGy cm, for group A/group B. The mean enhancement value of the hepatic parenchyma and the tumor-to-liver contrast of HCCs with diameters greater than 1 cm in the post-contrast all phases did not differ significantly between two groups (P > 0.05). The enhancement values of vessels in group B were significantly higher than that in group A in the delayed phases (P < 0.05). Two reader's confidence levels for the hepatic parenchyma in the delayed phases and HCCs did not differ significantly between the groups (P > 0.05). Conclusions: Low-dose dynamic CT with ASIR can reduce both the radiation dose and the amount of contrast medium without image quality degradation, compared to conventional dynamic CT without ASIR.

  5. Comparison of cerebrospinal fluid dynamics studied by computed tomography (CT) and radioisotope (RI) cisternography

    International Nuclear Information System (INIS)

    Tamaki, N.; Kanazawa, Y.; Asada, M.; Kusunoki, T.; Matsumoto, S.

    1978-01-01

    CT and RI cisternography were done on 55 cases with normal and abnormal CSF circulation. Of 19 cases in which both studies were done, 14 cases disclosed a good correspondence. The remaining five cases showed no correspondence because of technical failure. Analyzing the results, CT cisternography demonstrates pathology of the CSF dynamics in a more precise and quantitative manner than RI cisternography does. Metrizamide CT cisternography will soon be the most reliable method of investigation for the evaluation of the CSF kinetics. (orig.) [de

  6. Data Driven Approach for High Resolution Population Distribution and Dynamics Models

    Energy Technology Data Exchange (ETDEWEB)

    Bhaduri, Budhendra L [ORNL; Bright, Eddie A [ORNL; Rose, Amy N [ORNL; Liu, Cheng [ORNL; Urban, Marie L [ORNL; Stewart, Robert N [ORNL

    2014-01-01

    High resolution population distribution data are vital for successfully addressing critical issues ranging from energy and socio-environmental research to public health to human security. Commonly available population data from Census is constrained both in space and time and does not capture population dynamics as functions of space and time. This imposes a significant limitation on the fidelity of event-based simulation models with sensitive space-time resolution. This paper describes ongoing development of high-resolution population distribution and dynamics models, at Oak Ridge National Laboratory, through spatial data integration and modeling with behavioral or activity-based mobility datasets for representing temporal dynamics of population. The model is resolved at 1 km resolution globally and describes the U.S. population for nighttime and daytime at 90m. Integration of such population data provides the opportunity to develop simulations and applications in critical infrastructure management from local to global scales.

  7. Predicting tumor hypoxia in non-small cell lung cancer by combining CT, FDG PET and dynamic contrast-enhanced CT.

    Science.gov (United States)

    Even, Aniek J G; Reymen, Bart; La Fontaine, Matthew D; Das, Marco; Jochems, Arthur; Mottaghy, Felix M; Belderbos, José S A; De Ruysscher, Dirk; Lambin, Philippe; van Elmpt, Wouter

    2017-11-01

    Most solid tumors contain inadequately oxygenated (i.e., hypoxic) regions, which tend to be more aggressive and treatment resistant. Hypoxia PET allows visualization of hypoxia and may enable treatment adaptation. However, hypoxia PET imaging is expensive, time-consuming and not widely available. We aimed to predict hypoxia levels in non-small cell lung cancer (NSCLC) using more easily available imaging modalities: FDG-PET/CT and dynamic contrast-enhanced CT (DCE-CT). For 34 NSCLC patients, included in two clinical trials, hypoxia HX4-PET/CT, planning FDG-PET/CT and DCE-CT scans were acquired before radiotherapy. Scans were non-rigidly registered to the planning CT. Tumor blood flow (BF) and blood volume (BV) were calculated by kinetic analysis of DCE-CT images. Within the gross tumor volume, independent clusters, i.e., supervoxels, were created based on FDG-PET/CT. For each supervoxel, tumor-to-background ratios (TBR) were calculated (median SUV/aorta SUV mean ) for HX4-PET/CT and supervoxel features (median, SD, entropy) for the other modalities. Two random forest models (cross-validated: 10 folds, five repeats) were trained to predict the hypoxia TBR; one based on CT, FDG, BF and BV, and one with only CT and FDG features. Patients were split in a training (trial NCT01024829) and independent test set (trial NCT01210378). For each patient, predicted, and observed hypoxic volumes (HV) (TBR > 1.2) were compared. Fifteen patients (3291 supervoxels) were used for training and 19 patients (1502 supervoxels) for testing. The model with all features (RMSE training: 0.19 ± 0.01, test: 0.27) outperformed the model with only CT and FDG-PET features (RMSE training: 0.20 ± 0.01, test: 0.29). All tumors of the test set were correctly classified as normoxic or hypoxic (HV > 1 cm 3 ) by the best performing model. We created a data-driven methodology to predict hypoxia levels and hypoxia spatial patterns using CT, FDG-PET and DCE-CT features in NSCLC. The

  8. Labyrinthine otosclerosis studied by high-resolution CT

    International Nuclear Information System (INIS)

    Funai, Hiroaki; Horiuchi, Yasuharu; Yano, Jun; Ushijima, Tatujiro; Iinuma, Toshitaka; Oyama, Kazuyuki

    1986-01-01

    Labyrinthine lesions of 10 patients (20 ears) with surgically confirmed otosclerosis were investigated by means of high-resolution CT (HRCT). All ears were scaned in horizontal plane and a slice thickness of 2.0 mm was used to avoid the excessive loss of sharpness by partial volume averaging. HRCTs of 14 normal ears and 18 ears with otitis media were analyzed as controls. (1) Three patients (6 ears) demonstrated lucent zones around the cochleae. In one of 3 cases the zone extended to involve the vestibule and the semicircular canals. (2) The definitive lucent zone was not observed in the control scans. (3) The clinical data of the 3 patients whose HRCTs demonstrated the lucent zones were compared with the other 7 patients with clinical otosclerosis. Three patients showed no distinctive features regarding to age, sex, Schwartze sign and the operative findings. (4) Average bone conduction loss was significantly greater in ears with lucent zones than those without the lucent zones. Serial audiograms revealed progressive hearing impairment in 3 ears of 2 patients with the definitive lucent zone. The present report confirmed that foci of demineralization (otospongiotic lesion) in the labyrinthine capsule were imaged by the HRCT as lucent areas. HRCT provides a reproducible and reliable mean of diagnosis for the labyrinthine otosclerosis. (author)

  9. Cone Beam CT vs. Fan Beam CT: A Comparison of Image Quality and Dose Delivered Between Two Differing CT Imaging Modalities.

    Science.gov (United States)

    Lechuga, Lawrence; Weidlich, Georg A

    2016-09-12

    A comparison of image quality and dose delivered between two differing computed tomography (CT) imaging modalities-fan beam and cone beam-was performed. A literature review of quantitative analyses for various image quality aspects such as uniformity, signal-to-noise ratio, artifact presence, spatial resolution, modulation transfer function (MTF), and low contrast resolution was generated. With these aspects quantified, cone beam computed tomography (CBCT) shows a superior spatial resolution to that of fan beam, while fan beam shows a greater ability to produce clear and anatomically correct images with better soft tissue differentiation. The results indicate that fan beam CT produces superior images to that of on-board imaging (OBI) cone beam CT systems, while providing a considerably less dose to the patient.

  10. Primary pulmonary low-grade angiosarcoma characterized by mismatch between {sup 18}F-FDG FET and dynamic contrast-enhanced CT

    Energy Technology Data Exchange (ETDEWEB)

    KIm, Eun Young; Lee, Ho Yun; Han, Joung Ho; Choi, Joon Young [Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2015-10-15

    We report a rare case of primary pulmonary low-grade angiosarcoma on dynamic contrast-enhanced CT and {sup 18}F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/CT imaging. A 38-year-old, asymptomatic woman was hospitalized because of an abnormality on chest radiography. A dynamic contrast-enhanced chest CT showed a 1.2 cm-sized irregular-margined nodule with strong and persistent enhancement in the right lower lobe. The lesion had low metabolic activity on an {sup 18}F-FDG PET/CT scan. The patient underwent a wedge resection for the lesion, and pathology revealed a primary pulmonary low-grade angiosarcoma.

  11. Modeling Stokes flow in real pore geometries derived by high resolution micro CT imaging

    Science.gov (United States)

    Halisch, M.; Müller, C.

    2012-04-01

    Meanwhile, numerical modeling of rock properties forms an important part of modern petrophysics. Substantially, equivalent rock models are used to describe and assess specific properties and phenomena, like fluid transport or complex electrical properties. In recent years, non-destructive computed X-ray tomography got more and more important - not only to take a quick and three dimensional look into rock samples but also to get access to in-situ sample information for highly accurate modeling purposes. Due to - by now - very high resolution of the 3D CT data sets (micron- to submicron range) also very small structures and sample features - e.g. micro porosity - can be visualized and used for numerical models of very high accuracy. Special demands even arise before numerical modeling can take place. Inappropriate filter applications (e.g. improper type of filter, wrong kernel, etc.) may lead to a significant corruption of spatial sample structure and / or even sample or void space volume. Because of these difficulties, especially small scale mineral- and pore space textures are very often lost and valuable in-situ information is erased. Segmentation of important sample features - porosity as well as rock matrix - based upon grayscale values strongly depends upon the scan quality and upon the experience of the application engineer, respectively. If the threshold for matrix-porosity separation is set too low, porosity can be quickly (and even more, due to restrictions of scanning resolution) underestimated. Contrary to this, a too high threshold over-determines porosity and small void space features as well as interfaces are changed and falsified. Image based phase separation in close combination with "conventional" analytics, as scanning electron microscopy or thin sectioning, greatly increase the reliability of this preliminary work. For segmentation and quantification purposes, a special CT imaging and processing software (Avizo Fire) has been used. By using this

  12. (68)Ga-PSMA-11 dynamic PET/CT imaging in biochemical relapse of prostate cancer.

    Science.gov (United States)

    Sachpekidis, C; Eder, M; Kopka, K; Mier, W; Hadaschik, B A; Haberkorn, U; Dimitrakopoulou-Strauss, A

    2016-07-01

    We aim to investigate the pharmacokinetics and distribution of the recently clinically introduced radioligand (68)Ga-PSMA-11 in men with recurrent prostate cancer (PC) by means of dynamic and whole-body PET/CT. The correlation between PSA levels and (68)Ga-PSMA-11 PET parameters is also investigated. 31 patients with biochemical failure after primary PC treatment with curative intent (median age 71.0 years) were enrolled in the analysis. The median PSA value was 2.0 ng/mL (range = 0.1 - 130.0 ng/mL) and the median Gleason score was 7 (range = 5 - 9). 8/31 (25.8 %) of the included patients had a PSA value dynamic PET/CT (dPET/CT) scanning (60 min) of the pelvis and lower abdomen as well as whole-body PET/CT with (68)Ga-PSMA-11. dPET/CT assessment was based on qualitative evaluation, SUV calculation, and quantitative analysis based on a two-tissue compartment model and a non-compartmental approach leading to the extraction of fractal dimension (FD). 22/31 patients (71.0 %) were (68)Ga-PSMA-11-positive, while 9/31 (29.0 %) patients were (68)Ga-PSMA-11-negative. The median PSA value in the (68)Ga-PSMA-11-positive group was significantly higher (median = 2.35 ng/mL; range = 0.19 - 130.0 ng/mL) than in the (68)Ga-PSMA-11-negative group (median value: 0.34 ng/mL; range = 0.10 - 4.20 ng/mL). A total of 76 lesions were semi-quantitatively evaluated. PC recurrence-associated lesions demonstrated a mean SUVaverage = 12.4 (median = 9.0; range = 2.2 - 84.5) and mean SUVmax = 18.8 (median = 14.1; range = 3.1 - 120.3). Dynamic PET/CT studies of the pelvis revealed the following mean values for the PC recurrence-suspicious lesions: K1 = 0.26, k3 = 0.30, influx = 0.14 and FD = 1.24. Time-activity curves derived from PC-recurrence indicative lesions revealed an increasing (68)Ga-PSMA-11 accumulation during dynamic PET acquisition. Correlation analysis revealed a moderate, but significant, correlation between PSA

  13. Dynamic multislice helical CT of maxillomandibular lesions. Distinction of ameloblastomas from other cystic lesions

    Energy Technology Data Exchange (ETDEWEB)

    Tozaki, Mitsuhiro; Hayashi, Katsuhiko; Fukuda, Kunihiko [Jikei Univ., Tokyo (Japan). School of Medicine

    2001-10-01

    The purpose of this study was to evaluate the clinical usefulness of dynamic multislice helical CT in differentiating ameloblastoma from other cystic lesions in cases of maxillomandibular cystic lesions. The study included 32 patients with maxillomandibular cystic lesions (ameloblastoma [n=6], myxofibroma [n=1], odontogenic keratocyst [n=3], dentigerous cyst [n=11], radicular cyst [n=11], and paradental cyst [n=2]). Dynamic study was performed before and 30 sec, and 90 sec after intravenous contrast medium administration. CT density values and percentage of density increase were calculated at 30 and 90 sec. In five cases of ameloblastoma, a rapidly enhancing area was detected within the cystic lesions at 30 sec, while no apparent rapid enhancement was seen in the other cystic lesions. Three cysts showed gradual enhancement in the marginal area at 90 sec. Comparing ameloblastoma and other kinds of cysts, we found significant differences in the percentage of density increase at 30 sec (p<0.01) and 90 sec (p<0.05). Dynamic multislice helical CT is useful in the diagnosis of cystic lesions of the maxillomandibular region, especially in the detection of neovascularities in ameloblastoma. (author)

  14. Dynamic multislice helical CT of maxillomandibular lesions. Distinction of ameloblastomas from other cystic lesions

    International Nuclear Information System (INIS)

    Tozaki, Mitsuhiro; Hayashi, Katsuhiko; Fukuda, Kunihiko

    2001-01-01

    The purpose of this study was to evaluate the clinical usefulness of dynamic multislice helical CT in differentiating ameloblastoma from other cystic lesions in cases of maxillomandibular cystic lesions. The study included 32 patients with maxillomandibular cystic lesions (ameloblastoma [n=6], myxofibroma [n=1], odontogenic keratocyst [n=3], dentigerous cyst [n=11], radicular cyst [n=11], and paradental cyst [n=2]). Dynamic study was performed before and 30 sec, and 90 sec after intravenous contrast medium administration. CT density values and percentage of density increase were calculated at 30 and 90 sec. In five cases of ameloblastoma, a rapidly enhancing area was detected within the cystic lesions at 30 sec, while no apparent rapid enhancement was seen in the other cystic lesions. Three cysts showed gradual enhancement in the marginal area at 90 sec. Comparing ameloblastoma and other kinds of cysts, we found significant differences in the percentage of density increase at 30 sec (p<0.01) and 90 sec (p<0.05). Dynamic multislice helical CT is useful in the diagnosis of cystic lesions of the maxillomandibular region, especially in the detection of neovascularities in ameloblastoma. (author)

  15. The frequency and the degree of fusion of the lung on high-resolution CT

    International Nuclear Information System (INIS)

    Shin, Hwan Sik; Kim, Sung Jin; Bae, Il Hun; Song, Kyung Sup; Kim, Joo Chang; Han, Ki Suk; Cha, Sang Hoon; Park, Kil Sun

    2000-01-01

    To evaluate the frequency and degree of fusion of the lung as seen on high-resolution CT (HRCT). In 210 patients high-resolution CT scans from the apex to the diaphragm were obtained at 1 mm collimation and 7 mm interval. We retrospectively analysed the frequency and degree of fusion of the lung bordering each interlobar fissure. Fusion of the lung was defined when fissure appeared without complete lobar separation. The degree of lung fusion was classified as mild (less than 1/3 of the fissure), moderate (greater than 1/3 and less than 2/3 of fissure), or severe (greater than 2/3 of the fissure). In 90 of 210 patients, all fissures were identified. In 73 of these 90 (81.1%), lung fusion was noted, the most frequent site of this being between the right upper and right middle lobe (53.3%) . The least frequent site was between the upper portion of the left upper and left lower lobe (32.2%). Am mild degree of fusion was most frequently found between the right middle and right lower lobe (83.9%0, while a severe degree was most frequent between the right middle and right upper lobe (50.0%), followed by the lingular division and the left lower lobe (41.9%). HRCT can be used to evaluate the frequency and degree of interlobar lung fusion. (author)

  16. Physics and basic technology of CT

    International Nuclear Information System (INIS)

    Mahesh, Mahadevappa

    2017-01-01

    Computed Tomography is one of the prime imaging modalities in any hospital around the globe. From its inception in 1973, CT technology have advanced leaps and bounds in medical diagnosis. Advances in X-ray tubes, detection technologies and image reconstruction methods led to the development of multiple-row detector CT (MDCT) technologies in early 2000, that has been the impetus for new fields such as Cardiovascular CT, Hybrid CT (PET-CT and SPECT-CT), CT Perfusion, Cone Beam CT, etc. It is now possible to image the entire organ (such as heart) in less than 0.3 seconds providing isotropic resolution images with high temporal resolution. With all X-ray imaging modalities, including CT, the concern is the radiation dose. Since CT procedures are one of the major imaging procedures performed in any hospital, it is important to optimize CT protocols in order to provide quality images at optimal radiation dose

  17. High-Resolution C-Arm CT and Metal Artifact Reduction Software: A Novel Imaging Modality for Analyzing Aneurysms Treated with Stent-Assisted Coil Embolization.

    Science.gov (United States)

    Yuki, I; Kambayashi, Y; Ikemura, A; Abe, Y; Kan, I; Mohamed, A; Dahmani, C; Suzuki, T; Ishibashi, T; Takao, H; Urashima, M; Murayama, Y

    2016-02-01

    Combination of high-resolution C-arm CT and novel metal artifact reduction software may contribute to the assessment of aneurysms treated with stent-assisted coil embolization. This study aimed to evaluate the efficacy of a novel Metal Artifact Reduction prototype software combined with the currently available high spatial-resolution C-arm CT prototype implementation by using an experimental aneurysm model treated with stent-assisted coil embolization. Eight experimental aneurysms were created in 6 swine. Coil embolization of each aneurysm was performed by using a stent-assisted technique. High-resolution C-arm CT with intra-arterial contrast injection was performed immediately after the treatment. The obtained images were processed with Metal Artifact Reduction. Five neurointerventional specialists reviewed the image quality before and after Metal Artifact Reduction. Observational and quantitative analyses (via image analysis software) were performed. Every aneurysm was successfully created and treated with stent-assisted coil embolization. Before Metal Artifact Reduction, coil loops protruding through the stent lumen were not visualized due to the prominent metal artifacts produced by the coils. These became visible after Metal Artifact Reduction processing. Contrast filling in the residual aneurysm was also visualized after Metal Artifact Reduction in every aneurysm. Both the observational (P software. The combination of high-resolution C-arm CT and Metal Artifact Reduction enables differentiation of the coil mass, stent, and contrast material on the same image by significantly reducing the metal artifacts produced by the platinum coils. This novel image technique may improve the assessment of aneurysms treated with stent-assisted coil embolization. © 2016 by American Journal of Neuroradiology.

  18. Multidetector CT of the colon

    International Nuclear Information System (INIS)

    Luboldt, W.; Hoepffner, N.; Holzer, K.

    2003-01-01

    Multidetector technology, enabling faster imaging, higher spatial resolution and reduction in radiation dose, increases the role of CT in colonic diagnostic. The higher spatial resolution in the z-direction also changes the way to analyze the images. Instead of reading axial sections, now the colon can be systematically assessed in 3D by scrolling through multiplanar reconstructions or in CT colonography by virtual endoscopy. With ongoing improvements in computer-aided diagnosis CT colonography becomes an alternative to fiberoptic colonocopy for screening (http://www.multiorganscreening.org). In this article we propose a CT examination protocol for the colon, describe the typical imaging findings of different colonic diseases, and summarize the current status of CT colonography. (orig.)

  19. A case of severe acute pancreatitis with near total pancreatic necrosis diagnosed by dynamic CT scanning

    International Nuclear Information System (INIS)

    Takeda, Kazunori; Kakugawa, Yoichiro; Amikura, Katsumi; Miyagawa, Kikuo; Matsuno, Seiki; Sato, Toshio

    1987-01-01

    A 42 year-old woman with severe acute pancreatitis had drainage of the pancreatic bed, cholecystostomy and jejunostomy on admission, but symptoms were not improved. Fourteen days after admission, clinical sepsis and septisemia were recognized. Dynamic CT scanning of the pancreas showed near total pancreatic necrosis. Symptoms were improved after necrosectomy of the pancreas and debridement of the peripancreatic necrotic tissue were performed. Our experience suggests the usefulness of dynamic CT scanning for detection of pancreatic necrosis in severe acute pancreatitis. (author)

  20. Early Dynamic 68Ga-DOTA-D-Phe1-Tyr3-Octreotide PET/CT in Patients With Hepatic Metastases of Neuroendocrine Tumors.

    Science.gov (United States)

    Sänger, Philipp Wilhelm; Freesmeyer, Martin

    2016-06-01

    Whole-body PET with Ga-DOTA-D-Phe-Tyr-octreotide (Ga-DOTATOC) and contrast-enhanced CT (ceCT) are considered a standard for the staging of neuroendocrine tumors (NETs). This study sought to verify whether early dynamic (ed) Ga-DOTATOC PET/CT can reliably detect liver metastases of NETs (hypervascular, nonhypervascular; positive or negative for somatostatin receptors) and to verify if the receptor positivity has a significant impact on the detection of tumor hypervascularization. Twenty-seven patients with NET were studied by ceCT and standard whole-body PET according to established Ga-DOTATOC protocols. In addition, edPET data were obtained by continuous scanning during the first 300 seconds after bolus injections of the radiotracer. Early dynamic PET required an additional low-dose, native CT image of the liver for the purpose of attenuation correction. Time-activity and time-contrast curves were obtained, the latter being calculated by the difference between tumor and reference regions. Early dynamic PET/CT proved comparable with ceCT in readily identifying hypervascular lesions, irrespective of the receptor status, with activities rising within 16 to 40 seconds. Early dynamic PET/CT also readily identified nonhypervascular, receptor-positive lesions. Positive image contrasts were obtained for hypervascular, receptor-positive lesions, whereas early negative contrasts were obtained for nonhypervascular, receptor-negative lesions. The high image contrast of hypervascular NET metastases in early arterial phases suggests that edPET/CT can become a useful alternative in patients with contraindications to ceCT. The high density of somatostatin receptors did not seem to interfere with the detection of the lesion's hypervascularization.

  1. Hepatic blood flow mapping by dynamic CT method in liver diseases

    International Nuclear Information System (INIS)

    Sugano, Shigeo; Mizuyosi, Hideo; Okajima, Tsugio; Ishii, Kouji; Abei, Tohru; Machida, Keiichi

    1986-01-01

    Two parameters of dynamic CT, peak time (PT) and first moment (M1), were compared among healthy control, chronic hepatitis (CH) and liver cirrhosis (LC). The means of PT and M1 in each 9 (3 x 3) pixels on a slice of hepatic CT were computed and converted to gray spots by gray scale, so that deep gray represented high values and light gray low values of these parameters. The distribution of these gray spots in each pixels was depicted on the slice as a blood flow mapping, and it was compared among the groups. In normal control, dynamic CT showed the shortest PT and deep gray spots were distributed diffusely in the slice. In CH, where PT was longer than control, lighter gray spots were diffusely seen. LC had the longest PT and its mapping showed mottles of light gray and black, the latter indicating the presence of spots with scanty blood flow, scattering throughout the slice. The mapping of M1 gave almost the same picture as PT for each group, revieling that the disappearring time of the media in CH and LC was impaired in the same manner as in PT. This method of hepatic blood flow mapping was thought to be useful to add evidences for the understanding of abnormal blood flow in liver diseases. (author)

  2. Gastric stromal tumor: two-phase dynamic CT findings with water as oral contrast agents

    International Nuclear Information System (INIS)

    Lee, Se Hyo; Cho, June Sik; Shin, Kyung Sook; Jeong, Ki Ho; Park, Jin Yong; Yu, Ho Jun; Kim, Young Min; Jeon, Kwang Jin

    2000-01-01

    To evaluate two-phase dynamic CT with water as oral contrast agents in the CT diagnosis of gastric stromal tumors. We retrospectively reviewed the CT findings in 21 patients with pathologically proven gastric stromal tumors. Six were found to be benign, twelve were malignant, and there were three cases of STUMP (stromal tumor uncertain malignant potential). Two-phase dynamic CT scans with water as oral contrast agents were obtained 60-70 secs (portal phase) and 3 mins (equilibrium phase) after the start of IV contrast administration. We determined the size, growth pattern, and enhancement pattern of the tumors and overlying mucosa, the presence or absence of ulceration and necrosis, tumor extent, and lymph nod and distant metastasis. The CT and pathologic findings were correlated. All six benign tumors and three STUMP were less than 5.5 cm in size, and during the portal phase showed round endogastric masses with highly enhanced, intact overlying mucosa. Twelve malignant tumors were 4.5-15.5 cm in size (mean, 11.5 cm); an endogastric mass was seen in three cases, an exogastric mass in one, and a mixed pattern in eight. On portal phase images the tumors were not significantly enhanced, but highly enhanced feeding vessels were noted in five larger tumors (greater than 10 cm). All 12 malignant tumors showed ulceration and necrosis, and interruption of overlying mucosa was clearly seen during the portal phase. We were readily able to evaluate tumor extent during this phase, and in ten malignant tumors there was no invasion of adjacent organs. Seven malignant tumors showed air density within their necrotic portion (p less than 0.05). On equilibrium phase images, all malignant tumors showed heterogeneous enhancement due to necrosis, and poorly enhanced overlying mucosa. Dynamic CT during the portal phase with water as oral contrast agents was useful for depicting the submucosal origin of gastric stromal tumors and for evaluating the extent of malignant stromal tumors. Our

  3. Dynamic contrast-enhanced CT appearances of the intraductal papillary neoplasms of the bile duct

    International Nuclear Information System (INIS)

    Song Fengxiang; Zhou Jianjun; Zeng Mengsu; Zhou Kangrong; Ding Yuqin; He Deming; Shi Yuxin; Zhou Jun

    2013-01-01

    Objective: To analyze the dynamic contrast-enhanced CT appearances of intraductal papillary neoplasms of the bile duct and improve its diagnostic accuracy. Methods: Sixteen patients with intraductal papillary neoplasms of the bile duct confirmed histopathologically after surgical operation underwent dynamic contrast-enhanced multi-detector row CT scans. All imaging data were reviewed and analyzed retrospectively in correlation with surgical and pathological findings. CT values of 38 well-visualized lesions in 12 of the 16 patients at the pre-contrast phase, arterial phase and venous phase were measured. Four of the 12 patients with 17 lesions had benign tumors, and 8 of the 12 patients with 21 lesions had malignant tumors. Comparisons of CT values at the three phases between the two groups were carried out using independent sample t test. The bile CT values were measured in these 12 cases, 40 normal volunteers, and 40 subjects with bile duct stones, and the Wilcoxon signed-rank test was applied to compare the bile CT values between tumor group and the normal group and between tumor group and the bile duct stone group. The diameters of the bile ducts proximal to and distal to tumors were also measured, and Fisher exact method was carried to analyze the data. Results: Lesions located at the left lobe in 8 out of the 16 patients, the right lobe in 1 case, both the left and right lobes in 1 case, the hepatic hilum in 1 case, the common bile duct in 3 cases, and both the right lobe and the common bile duct in 2 cases. Eleven lesions appeared as papillary masses, 3 as flat masses, 1 as mixed papillary and flat masses. In one case, tumor mass could not be definitely visualized, and only dilated bile ducts and stones were demonstrated. The mean CT values of the benign tumors were (25.8 ± 8.0), (37.7 ± 10.3) and (51.7 ± 17.1) HU respectively at pre-contrast phase, arterial phase, and venous phase, and the malignant tumors were (38.4 ± 10.2), (56.6 ± 18.0) and (68.4

  4. Pathological manifestation of difference in washout pattern of adrenal hyperplasia on dynamic CT

    International Nuclear Information System (INIS)

    Nishie, Akihiro; Asayama, Yoshiki; Ishigami, Kousei

    2014-01-01

    The relationship between the washout pattern and constituent cell in adrenal hyperplasia (AH) has not been fully investigated. The purpose of this study was to elucidate the radiological or pathological factors determining the washout pattern of AH on dynamic CT. Ten patients with 14 surgically proven AHs were enrolled. Dynamic CT was scanned before (pre-contrast image) and 60 seconds (early phase) and 240 seconds (delayed phase) after administration of iodine contrast. The absolute percentage washout (APW) of each nodular lesion was calculated using the following formula: APW(%)=(TAearly-TAdelay) / (TAearly-TApre)×100, when TApre, TAearly and TAdelay were defined as tumour attenuation values of pre-contrast, early and delayed phases, respectively. Pathologically, the clear cell ratio (CCR) constituting each nodular lesion was qualitatively assessed. Regression analysis was performed to evaluate a correlation between each pair of CCR, TApre, (TAearly-TAdelay) and APW. There was a significant correlation between each pair of CCR, TApre and APW. CCR decreased as TApre increased (r=0.81, P<0.001). APW increased as CCR decreased r=0.80, P<0.001) or as TApre increased (r=0.74, P<0.01). The key factors of washout pattern of AH on dynamic CT were CCR and TApre. The difference in constituent cell was associated with variability in APW of AH.

  5. Dual-energy computed tomography for the assessment of early treatment effects of regorafenib in a preclinical tumor model: comparison with dynamic contrast-enhanced CT and conventional contrast-enhanced single-energy CT

    International Nuclear Information System (INIS)

    Knobloch, Gesine; Hamm, Bernd; Jost, Gregor; Pietsch, Hubertus; Huppertz, Alexander

    2014-01-01

    The potential diagnostic value of dual-energy computed tomography (DE-CT) compared to dynamic contrast-enhanced CT (DCE-CT) and conventional contrast-enhanced CT (CE-CT) in the assessment of early regorafenib treatment effects was evaluated in a preclinical setting. A rat GS9L glioma model was examined with contrast-enhanced dynamic DE-CT measurements (80 kV/140 kV) for 4 min before and on days 1 and 4 after the start of daily regorafenib or placebo treatment. Tumour time-density curves (0-240 s, 80 kV), DE-CT (60 s) derived iodine maps and the DCE-CT (0-30 s, 80 kV) based parameters blood flow (BF), blood volume (BV) and permeability (PMB) were calculated and compared to conventional CE-CT (60 s, 80 kV). The regorafenib group showed a marked decrease in the tumour time-density curve, a significantly lower iodine concentration and a significantly lower PMB on day 1 and 4 compared to baseline, which was not observed for the placebo group. CE-CT showed a significant decrease in tumour density on day 4 but not on day 1. The DE-CT-derived iodine concentrations correlated with PMB and BV but not with BF. DE-CT allows early treatment monitoring, which correlates with DCE-CT. Superior performance was observed compared to single-energy CE-CT. circle Regorafenib treatment response was evaluated by CT in a rat tumour model. (orig.)

  6. Dual-energy computed tomography for the assessment of early treatment effects of regorafenib in a preclinical tumor model: comparison with dynamic contrast-enhanced CT and conventional contrast-enhanced single-energy CT

    Energy Technology Data Exchange (ETDEWEB)

    Knobloch, Gesine; Hamm, Bernd [Charite - Universitaetsmedizin Berlin, Department of Radiology, Berlin (Germany); Jost, Gregor; Pietsch, Hubertus [Bayer Healthcare, MR and CT Contrast Media Research, Berlin (Germany); Huppertz, Alexander [Imaging Science Institute Charite - Siemens, Berlin (Germany)

    2014-08-15

    The potential diagnostic value of dual-energy computed tomography (DE-CT) compared to dynamic contrast-enhanced CT (DCE-CT) and conventional contrast-enhanced CT (CE-CT) in the assessment of early regorafenib treatment effects was evaluated in a preclinical setting. A rat GS9L glioma model was examined with contrast-enhanced dynamic DE-CT measurements (80 kV/140 kV) for 4 min before and on days 1 and 4 after the start of daily regorafenib or placebo treatment. Tumour time-density curves (0-240 s, 80 kV), DE-CT (60 s) derived iodine maps and the DCE-CT (0-30 s, 80 kV) based parameters blood flow (BF), blood volume (BV) and permeability (PMB) were calculated and compared to conventional CE-CT (60 s, 80 kV). The regorafenib group showed a marked decrease in the tumour time-density curve, a significantly lower iodine concentration and a significantly lower PMB on day 1 and 4 compared to baseline, which was not observed for the placebo group. CE-CT showed a significant decrease in tumour density on day 4 but not on day 1. The DE-CT-derived iodine concentrations correlated with PMB and BV but not with BF. DE-CT allows early treatment monitoring, which correlates with DCE-CT. Superior performance was observed compared to single-energy CE-CT. circle Regorafenib treatment response was evaluated by CT in a rat tumour model. (orig.)

  7. Super-resolution optical microscopy for studying membrane structure and dynamics.

    Science.gov (United States)

    Sezgin, Erdinc

    2017-07-12

    Investigation of cell membrane structure and dynamics requires high spatial and temporal resolution. The spatial resolution of conventional light microscopy is limited due to the diffraction of light. However, recent developments in microscopy enabled us to access the nano-scale regime spatially, thus to elucidate the nanoscopic structures in the cellular membranes. In this review, we will explain the resolution limit, address the working principles of the most commonly used super-resolution microscopy techniques and summarise their recent applications in the biomembrane field.

  8. 4D-CT Lung registration using anatomy-based multi-level multi-resolution optical flow analysis and thin-plate splines.

    Science.gov (United States)

    Min, Yugang; Neylon, John; Shah, Amish; Meeks, Sanford; Lee, Percy; Kupelian, Patrick; Santhanam, Anand P

    2014-09-01

    The accuracy of 4D-CT registration is limited by inconsistent Hounsfield unit (HU) values in the 4D-CT data from one respiratory phase to another and lower image contrast for lung substructures. This paper presents an optical flow and thin-plate spline (TPS)-based 4D-CT registration method to account for these limitations. The use of unified HU values on multiple anatomy levels (e.g., the lung contour, blood vessels, and parenchyma) accounts for registration errors by inconsistent landmark HU value. While 3D multi-resolution optical flow analysis registers each anatomical level, TPS is employed for propagating the results from one anatomical level to another ultimately leading to the 4D-CT registration. 4D-CT registration was validated using target registration error (TRE), inverse consistency error (ICE) metrics, and a statistical image comparison using Gamma criteria of 1 % intensity difference in 2 mm(3) window range. Validation results showed that the proposed method was able to register CT lung datasets with TRE and ICE values <3 mm. In addition, the average number of voxel that failed the Gamma criteria was <3 %, which supports the clinical applicability of the propose registration mechanism. The proposed 4D-CT registration computes the volumetric lung deformations within clinically viable accuracy.

  9. Separation of left and right lungs using 3D information of sequential CT images and a guided dynamic programming algorithm

    Science.gov (United States)

    Park, Sang Cheol; Leader, Joseph Ken; Tan, Jun; Lee, Guee Sang; Kim, Soo Hyung; Na, In Seop; Zheng, Bin

    2011-01-01

    Objective this article presents a new computerized scheme that aims to accurately and robustly separate left and right lungs on CT examinations. Methods we developed and tested a method to separate the left and right lungs using sequential CT information and a guided dynamic programming algorithm using adaptively and automatically selected start point and end point with especially severe and multiple connections. Results the scheme successfully identified and separated all 827 connections on the total 4034 CT images in an independent testing dataset of CT examinations. The proposed scheme separated multiple connections regardless of their locations, and the guided dynamic programming algorithm reduced the computation time to approximately 4.6% in comparison with the traditional dynamic programming and avoided the permeation of the separation boundary into normal lung tissue. Conclusions The proposed method is able to robustly and accurately disconnect all connections between left and right lungs and the guided dynamic programming algorithm is able to remove redundant processing. PMID:21412104

  10. Effect of CT image size and resolution on the accuracy of rock property estimates

    Science.gov (United States)

    Bazaikin, Y.; Gurevich, B.; Iglauer, S.; Khachkova, T.; Kolyukhin, D.; Lebedev, M.; Lisitsa, V.; Reshetova, G.

    2017-05-01

    In order to study the effect of the micro-CT scan resolution and size on the accuracy of upscaled digital rock property estimation of core samples Bentheimer sandstone images with the resolution varying from 0.9 μm to 24 μm are used. We statistically show that the correlation length of the pore-to-matrix distribution can be reliably determined for the images with the resolution finer than 9 voxels per correlation length and the representative volume for this property is about 153 correlation length. Similar resolution values for the statistically representative volume are also valid for the estimation of the total porosity, specific surface area, mean curvature, and topology of the pore space. Only the total porosity and the number of isolated pores are stably recovered, whereas geometry and the topological measures of the pore space are strongly affected by the resolution change. We also simulate fluid flow in the pore space and estimate permeability and tortuosity of the sample. The results demonstrate that the representative volume for the transport property calculation should be greater than 50 correlation lengths of pore-to-matrix distribution. On the other hand, permeability estimation based on the statistical analysis of equivalent realizations shows some weak influence of the resolution on the transport properties. The reason for this might be that the characteristic scale of the particular physical processes may affect the result stronger than the model (image) scale.

  11. Combined early dynamic (18)F-FDG PET/CT and conventional whole-body (18)F-FDG PET/CT provide one-stop imaging for detecting hepatocellular carcinoma.

    Science.gov (United States)

    Wang, Shao-Bo; Wu, Hu-Bing; Wang, Quan-Shi; Zhou, Wen-Lan; Tian, Ying; Li, Hong-Sheng; Ji, Yun-Hai; Lv, Liang

    2015-06-01

    It is widely accepted that conventional (18)F-FDG PET/CT (whole-body static (18)F-FDG PET/CT, WB (18)F-FDG PET/CT) has a low detection rate for hepatocellular carcinoma (HCC). We prospectively assessed the role of early dynamic (18)F-FDG PET/CT (ED (18)F-FDG PET/CT) and WB (18)F-FDG PET/CT in detecting HCC, and we quantified the added value of ED (18)F-FDG PET/CT to WB (18)F-FDG PET/CT. Twenty-two patients with 37 HCC tumors (HCCs) who underwent both a liver ED (18)F-FDG PET/CT (performed simultaneously with a 5.5 MBq/kg (18)F-FDG bolus injection and continued for 240 s) and a WB (18)F-FDG PET/CT were enrolled in the study. The WB (18)F-FDG PET/CT and ED (18)F-FDG PET/CT scans were positive in 56.7% (21/37) and 78.4% (29/37) HCCs, respectively (PPET/CT in conjunction with WB (18)F-FDG PET/CT (one-stop (18)F-FDG PET/CT) improved the positive detection rates of WB and ED (18)F-FDG PET/CT alone from 56.7% and 78.4% to 91.9% (34/37) (P0.05, respectively). One-stop (18)F-FDG PET/CT appears to be useful to improve WB (18)F-FDG PET/CT for HCC detection. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  12. Determination of single-kidney glomerular filtration rate (GFR) with CT urography versus renal dynamic imaging Gates method

    Energy Technology Data Exchange (ETDEWEB)

    You, Shan [Hebei North University, Department of Graduate, Zhangjiakou City, Hebei Province (China); Ma, XianWu; Zhang, ChangZhu; Li, Qiang [Qiqihar Chinese Medicine Hospital, Department of Radiology, Qigihar City, Heilongjiang Province (China); Shi, WenWei; Zhang, Jing; Yuan, XiaoDong [The 309th Hospital of Chinese People' s Liberation Army, Department of Radiology, Beijing (China)

    2018-03-15

    To present a single-kidney CT-GFR measurement and compare it with the renal dynamic imaging Gates-GFR. Thirty-six patients with hydronephrosis referred for CT urography and 99mTc-DTPA renal dynamic imaging were prospectively included. Informed consent was obtained from all patients. The CT urography protocol included non-contrast, nephrographic, and excretory phase imaging. The total CT-GFR was calculated by dividing the CT number increments of the total urinary system between the nephrographic and excretory phase by the products of iodine concentration in the aorta and the elapsed time, then multiplied by (1- Haematocrit). The total CT-GFR was then split into single-kidney CT-GFR by a left and right kidney proportionality factor. The results were compared with single-kidney Gates-GFR by using paired t-test, correlation analysis, and Bland-Altman plots. Paired difference between single-kidney CT-GFR (45.02 ± 13.91) and single-kidney Gates-GFR (51.21 ± 14.76) was 6.19 ± 5.63 ml/min, p<0.001, demonstrating 12.1% systematic underestimation with ±11.03 ml/min (±21.5%) measurement deviation. A good correlation was revealed between both measurements (r=0.87, p<0.001). The proposed single-kidney CT-GFR correlates and agrees well with the reference standard despite a systematic underestimation, therefore it could be a one-stop-shop for evaluating urinary tract morphology and split renal function. (orig.)

  13. Determination of single-kidney glomerular filtration rate (GFR) with CT urography versus renal dynamic imaging Gates method

    International Nuclear Information System (INIS)

    You, Shan; Ma, XianWu; Zhang, ChangZhu; Li, Qiang; Shi, WenWei; Zhang, Jing; Yuan, XiaoDong

    2018-01-01

    To present a single-kidney CT-GFR measurement and compare it with the renal dynamic imaging Gates-GFR. Thirty-six patients with hydronephrosis referred for CT urography and 99mTc-DTPA renal dynamic imaging were prospectively included. Informed consent was obtained from all patients. The CT urography protocol included non-contrast, nephrographic, and excretory phase imaging. The total CT-GFR was calculated by dividing the CT number increments of the total urinary system between the nephrographic and excretory phase by the products of iodine concentration in the aorta and the elapsed time, then multiplied by (1- Haematocrit). The total CT-GFR was then split into single-kidney CT-GFR by a left and right kidney proportionality factor. The results were compared with single-kidney Gates-GFR by using paired t-test, correlation analysis, and Bland-Altman plots. Paired difference between single-kidney CT-GFR (45.02 ± 13.91) and single-kidney Gates-GFR (51.21 ± 14.76) was 6.19 ± 5.63 ml/min, p<0.001, demonstrating 12.1% systematic underestimation with ±11.03 ml/min (±21.5%) measurement deviation. A good correlation was revealed between both measurements (r=0.87, p<0.001). The proposed single-kidney CT-GFR correlates and agrees well with the reference standard despite a systematic underestimation, therefore it could be a one-stop-shop for evaluating urinary tract morphology and split renal function. (orig.)

  14. Static and dynamic CT imaging of the cervical spine in patients with rheumatoid arthritis

    Energy Technology Data Exchange (ETDEWEB)

    Soederman, Tomas; Shalabi, Adel; Sundin, Anders [Uppsala University Hospital, Department of Radiology, Uppsala (Sweden); Olerud, Claes; Alavi, Kamran [Uppsala University Hospital, Department of Orthopedic Surgery, Uppsala (Sweden)

    2014-09-18

    To compare CR with CT (static and dynamic) to evaluate upper spine instability and to determine if CT in flexion adds value compared to MR imaging in neutral position to assess compression of the subarachnoid space and of the spinal cord. Twenty-one consecutive patients with atlantoaxial subluxation due to rheumatoid arthritis planned for atlantoaxial fusion were included. CT and MRI were performed with the neck in the neutral position and CT also in flexion. CR in neutral position and flexion were obtained in all patients except for one subject who underwent examination in flexion and extension. CR and CT measurements of atlantoaxial subluxation correlated but were larger by CR than CT in flexion, however, the degree of vertical dislocation was similar with both techniques irrespective of the position of the neck. Cervical motion was larger at CR than at CT. The spinal cord compression was significantly worse at CT obtained in the flexed position as compared to MR imaging in the neutral position. Functional CR remains the primary imaging method but CT in the flexed position might be useful in the preoperative imaging work-up, as subarachnoid space involvement may be an indicator for the development of neurologic dysfunction. (orig.)

  15. Performance evaluation of the General Electric eXplore CT 120 micro-CT using the vmCT phantom

    Energy Technology Data Exchange (ETDEWEB)

    Bahri, M.A., E-mail: M.Bahri@ulg.ac.be [ULg-Liege University, Cyclotron Research Centre, Liege, Bat. 30, Allee du 6 aout, 8 (Belgium); Warnock, G.; Plenevaux, A. [ULg-Liege University, Cyclotron Research Centre, Liege, Bat. 30, Allee du 6 aout, 8 (Belgium); Choquet, P.; Constantinesco, A. [Biophysique et Medecine Nucleaire, Hopitaux universitaires de Strasbourg, Strasbourg (France); Salmon, E.; Luxen, A. [ULg-Liege University, Cyclotron Research Centre, Liege, Bat. 30, Allee du 6 aout, 8 (Belgium); Seret, A. [ULg-Liege University, Cyclotron Research Centre, Liege, Bat. 30, Allee du 6 aout, 8 (Belgium); ULg-Liege University, Experimental Medical Imaging, Liege (Belgium)

    2011-08-21

    The eXplore CT 120 is the latest generation micro-CT from General Electric. It is equipped with a high-power tube and a flat-panel detector. It allows high resolution and high contrast fast CT scanning of small animals. The aim of this study was to compare the performance of the eXplore CT 120 with that of the eXplore Ultra, its predecessor for which the methodology using the vmCT phantom has already been described . The phantom was imaged using typical a rat (fast scan or F) or mouse (in vivo bone scan or H) scanning protocols. With the slanted edge method, a 10% modulation transfer function (MTF) was observed at 4.4 (F) and 3.9-4.4 (H) mm{sup -1} corresponding to 114 {mu}m resolution. A fairly larger MTF was obtained by the coil method with the MTF for the thinnest coil (3.3 mm{sup -1}) equal to 0.32 (F) and 0.34 (H). The geometric accuracy was better than 0.3%. There was a highly linear (R{sup 2}>0.999) relationship between measured and expected CT numbers for both the CT number accuracy and linearity sections of the phantom. A cupping effect was clearly seen on the uniform slices and the uniformity-to-noise ratio ranged from 0.52 (F) to 0.89 (H). The air CT number depended on the amount of polycarbonate surrounding the area where it was measured; a difference as high as approximately 200 HU was observed. This hindered the calibration of this scanner in HU. This is likely due to the absence of corrections for beam hardening and scatter in the reconstruction software. However in view of the high linearity of the system, the implementation of these corrections would allow a good quality calibration of the scanner in HU. In conclusion, the eXplore CT 120 achieved a better spatial resolution than the eXplore Ultra (based on previously reported specifications) and future software developments will include beam hardening and scatter corrections that will make the new generation CT scanner even more promising.

  16. Partial scan artifact reduction (PSAR) for the assessment of cardiac perfusion in dynamic phase-correlated CT.

    Science.gov (United States)

    Stenner, Philip; Schmidt, Bernhard; Bruder, Herbert; Allmendinger, Thomas; Haberland, Ulrike; Flohr, Thomas; Kachelriess, Marc

    2009-12-01

    Cardiac CT achieves its high temporal resolution by lowering the scan range from 2pi to pi plus fan angle (partial scan). This, however, introduces CT-value variations, depending on the angular position of the pi range. These partial scan artifacts are of the order of a few HU and prevent the quantitative evaluation of perfusion measurements. The authors present the new algorithm partial scan artifact reduction (PSAR) that corrects a dynamic phase-correlated scan without a priori information. In general, a full scan does not suffer from partial scan artifacts since all projections in [0, 2pi] contribute to the data. To maintain the optimum temporal resolution and the phase correlation, PSAR creates an artificial full scan pn(AF) by projectionwise averaging a set of neighboring partial scans pn(P) from the same perfusion examination (typically N approximately 30 phase-correlated partial scans distributed over 20 s and n = 1, ..., N). Corresponding to the angular range of each partial scan, the authors extract virtual partial scans pn(V) from the artificial full scan pn(AF). A standard reconstruction yields the corresponding images fn(P), fn(AF), and fn(V). Subtracting the virtual partial scan image fn(V) from the artificial full scan image fn(AF) yields an artifact image that can be used to correct the original partial scan image: fn(C) = fn(P) - fn(V) + fn(AF), where fn(C) is the corrected image. The authors evaluated the effects of scattered radiation on the partial scan artifacts using simulated and measured water phantoms and found a strong correlation. The PSAR algorithm has been validated with a simulated semianthropomorphic heart phantom and with measurements of a dynamic biological perfusion phantom. For the stationary phantoms, real full scans have been performed to provide theoretical reference values. The improvement in the root mean square errors between the full and the partial scans with respect to the errors between the full and the corrected scans is

  17. Partial scan artifact reduction (PSAR) for the assessment of cardiac perfusion in dynamic phase-correlated CT

    International Nuclear Information System (INIS)

    Stenner, Philip; Schmidt, Bernhard; Bruder, Herbert; Allmendinger, Thomas; Haberland, Ulrike; Flohr, Thomas; Kachelriess, Marc

    2009-01-01

    Purpose: Cardiac CT achieves its high temporal resolution by lowering the scan range from 2π to π plus fan angle (partial scan). This, however, introduces CT-value variations, depending on the angular position of the π range. These partial scan artifacts are of the order of a few HU and prevent the quantitative evaluation of perfusion measurements. The authors present the new algorithm partial scan artifact reduction (PSAR) that corrects a dynamic phase-correlated scan without a priori information. Methods: In general, a full scan does not suffer from partial scan artifacts since all projections in [0, 2π] contribute to the data. To maintain the optimum temporal resolution and the phase correlation, PSAR creates an artificial full scan p n AF by projectionwise averaging a set of neighboring partial scans p n P from the same perfusion examination (typically N≅30 phase-correlated partial scans distributed over 20 s and n=1,...,N). Corresponding to the angular range of each partial scan, the authors extract virtual partial scans p n V from the artificial full scan p n AF . A standard reconstruction yields the corresponding images f n P , f n AF , and f n V . Subtracting the virtual partial scan image f n V from the artificial full scan image f n AF yields an artifact image that can be used to correct the original partial scan image: f n C =f n P -f n V +f n AF , where f n C is the corrected image. Results: The authors evaluated the effects of scattered radiation on the partial scan artifacts using simulated and measured water phantoms and found a strong correlation. The PSAR algorithm has been validated with a simulated semianthropomorphic heart phantom and with measurements of a dynamic biological perfusion phantom. For the stationary phantoms, real full scans have been performed to provide theoretical reference values. The improvement in the root mean square errors between the full and the partial scans with respect to the errors between the full and the

  18. Performance characteristics of 3D GSO PET/CT scanner (Philips GEMINI PET/CT)

    International Nuclear Information System (INIS)

    Kim, Jin Su; Lee, Jae Sung; Lee, Byeong Il; Lee, Dong Soo; Chung, June Key; Lee, Myung Chul

    2004-01-01

    Philips GEMINI is a newly introduced whole-body GSO PET/CT scanner. In this study, performance of the scanner including spatial resolution, sensitivity, scatter fraction, noise equivalent count ratio (NECR) was measured utilizing NEMA NU2-2001 standard protocol and compared with performance of LSO, BGO crystal scanner. GEMINI is composed of the Philips ALLEGRO PET and MX8000 D multi-slice CT scanners. The PET scanner has 28 detector segments which have an array of 29 by 22 GSO crystals (4*6*20 mm), covering axial FOV of 18 cm. PET data to measure spatial resolution, sensitivity, scatter fraction, and NECR were acquired in 3D mode according to the NEMA NU2 protocols (coincidence window: 8 ns, energy window : 409∼664 keV). For the measurement of spatial resolution, images were reconstructed with FBP using ramp filter and an iterative reconstruction algorithm, 3D RAMLA. Data for sensitivity measurement were acquired using NEMA sensitivity phantom filled with F-18 solution and surrounded by 1∼5 aluminum sleeves after we confirmed that dead time loss did not exceed 1%. To measure NECR and scatter fraction, 1110 MBq of F-18 solution was injected into a NEMA scatter phantom with a length of 70 cm and dynamic scan with 20-min frame duration was acquired for 7 half-lives. Oblique sinograms were collapsed into transaxial slices using single slice rebinning method, and true to background (scatter + random) ratio for each slice and frame was estimated. Scatter fraction was determined by averaging the true to background ratio of last 3 frames in which the dead time loss was below 1%. Transverse and axial resolutions at 1 cm radius were (1) 5.3 and 6.5 mm (FBP), (2) 5.1 and 5.9 mm (3D RAMLA). Transverse radial, transverse tangential, and axial resolution at 10 cm were (1) 5.7, 5.7, and 7.0 mm (FBP), (2) 5.4, 5.4, and 6.4 mm (3D RAMLA). Attenuation free values of sensitivity were 3,620 counts/sec/MBq at the center of transaxial FOV and 4,324 counts/sec/MBq at 10 cm offset

  19. Dual-source spiral CT with pitch up to 3.2 and 75 ms temporal resolution: image reconstruction and assessment of image quality.

    Science.gov (United States)

    Flohr, Thomas G; Leng, Shuai; Yu, Lifeng; Aiimendinger, Thomas; Bruder, Herbert; Petersilka, Martin; Eusemann, Christian D; Stierstorfer, Karl; Schmidt, Bernhard; McCollough, Cynthia H

    2009-12-01

    To present the theory for image reconstruction of a high-pitch, high-temporal-resolution spiral scan mode for dual-source CT (DSCT) and evaluate its image quality and dose. With the use of two x-ray sources and two data acquisition systems, spiral CT exams having a nominal temporal resolution per image of up to one-quarter of the gantry rotation time can be acquired using pitch values up to 3.2. The scan field of view (SFOV) for this mode, however, is limited to the SFOV of the second detector as a maximum, depending on the pitch. Spatial and low contrast resolution, image uniformity and noise, CT number accuracy and linearity, and radiation dose were assessed using the ACR CT accreditation phantom, a 30 cm diameter cylindrical water phantom or a 32 cm diameter cylindrical PMMA CTDI phantom. Slice sensitivity profiles (SSPs) were measured for different nominal slice thicknesses, and an anthropomorphic phantom was used to assess image artifacts. Results were compared between single-source scans at pitch = 1.0 and dual-source scans at pitch = 3.2. In addition, image quality and temporal resolution of an ECG-triggered version of the DSCT high-pitch spiral scan mode were evaluated with a moving coronary artery phantom, and radiation dose was assessed in comparison with other existing cardiac scan techniques. No significant differences in quantitative measures of image quality were found between single-source scans at pitch = 1.0 and dual-source scans at pitch = 3.2 for spatial and low contrast resolution, CT number accuracy and linearity, SSPs, image uniformity, and noise. The pitch value (1.6 pitch 3.2) had only a minor impact on radiation dose and image noise when the effective tube current time product (mA s/pitch) was kept constant. However, while not severe, artifacts were found to be more prevalent for the dual-source pitch = 3.2 scan mode when structures varied markedly along the z axis, particularly for head scans. Images of the moving coronary artery phantom

  20. Dual-source spiral CT with pitch up to 3.2 and 75 ms temporal resolution: Image reconstruction and assessment of image quality

    International Nuclear Information System (INIS)

    Flohr, Thomas G.; Leng Shuai; Yu Lifeng; Allmendinger, Thomas; Bruder, Herbert; Petersilka, Martin; Eusemann, Christian D.; Stierstorfer, Karl; Schmidt, Bernhard; McCollough, Cynthia H.

    2009-01-01

    Purpose: To present the theory for image reconstruction of a high-pitch, high-temporal-resolution spiral scan mode for dual-source CT (DSCT) and evaluate its image quality and dose. Methods: With the use of two x-ray sources and two data acquisition systems, spiral CT exams having a nominal temporal resolution per image of up to one-quarter of the gantry rotation time can be acquired using pitch values up to 3.2. The scan field of view (SFOV) for this mode, however, is limited to the SFOV of the second detector as a maximum, depending on the pitch. Spatial and low contrast resolution, image uniformity and noise, CT number accuracy and linearity, and radiation dose were assessed using the ACR CT accreditation phantom, a 30 cm diameter cylindrical water phantom or a 32 cm diameter cylindrical PMMA CTDI phantom. Slice sensitivity profiles (SSPs) were measured for different nominal slice thicknesses, and an anthropomorphic phantom was used to assess image artifacts. Results were compared between single-source scans at pitch=1.0 and dual-source scans at pitch=3.2. In addition, image quality and temporal resolution of an ECG-triggered version of the DSCT high-pitch spiral scan mode were evaluated with a moving coronary artery phantom, and radiation dose was assessed in comparison with other existing cardiac scan techniques. Results: No significant differences in quantitative measures of image quality were found between single-source scans at pitch=1.0 and dual-source scans at pitch=3.2 for spatial and low contrast resolution, CT number accuracy and linearity, SSPs, image uniformity, and noise. The pitch value (1.6≤pitch≤3.2) had only a minor impact on radiation dose and image noise when the effective tube current time product (mA s/pitch) was kept constant. However, while not severe, artifacts were found to be more prevalent for the dual-source pitch=3.2 scan mode when structures varied markedly along the z axis, particularly for head scans. Images of the moving

  1. Dual-source spiral CT with pitch up to 3.2 and 75 ms temporal resolution: Image reconstruction and assessment of image quality

    Energy Technology Data Exchange (ETDEWEB)

    Flohr, Thomas G.; Leng Shuai; Yu Lifeng; Allmendinger, Thomas; Bruder, Herbert; Petersilka, Martin; Eusemann, Christian D.; Stierstorfer, Karl; Schmidt, Bernhard; McCollough, Cynthia H. [Siemens Healthcare, Computed Tomography, 91301 Forchheim, Germany and Department of Diagnostic Radiology, Eberhard-Karls-Universitaet, 72076 Tuebingen (Germany); Department of Radiology, Mayo Clinic, Rochester, Minnesota 55905 (United States); Siemens Healthcare, Computed Tomography, 91301 Forchheim (Germany); Department of Radiology, Mayo Clinic, Rochester, Minnesota 55905 (United States)

    2009-12-15

    Purpose: To present the theory for image reconstruction of a high-pitch, high-temporal-resolution spiral scan mode for dual-source CT (DSCT) and evaluate its image quality and dose. Methods: With the use of two x-ray sources and two data acquisition systems, spiral CT exams having a nominal temporal resolution per image of up to one-quarter of the gantry rotation time can be acquired using pitch values up to 3.2. The scan field of view (SFOV) for this mode, however, is limited to the SFOV of the second detector as a maximum, depending on the pitch. Spatial and low contrast resolution, image uniformity and noise, CT number accuracy and linearity, and radiation dose were assessed using the ACR CT accreditation phantom, a 30 cm diameter cylindrical water phantom or a 32 cm diameter cylindrical PMMA CTDI phantom. Slice sensitivity profiles (SSPs) were measured for different nominal slice thicknesses, and an anthropomorphic phantom was used to assess image artifacts. Results were compared between single-source scans at pitch=1.0 and dual-source scans at pitch=3.2. In addition, image quality and temporal resolution of an ECG-triggered version of the DSCT high-pitch spiral scan mode were evaluated with a moving coronary artery phantom, and radiation dose was assessed in comparison with other existing cardiac scan techniques. Results: No significant differences in quantitative measures of image quality were found between single-source scans at pitch=1.0 and dual-source scans at pitch=3.2 for spatial and low contrast resolution, CT number accuracy and linearity, SSPs, image uniformity, and noise. The pitch value (1.6{<=}pitch{<=}3.2) had only a minor impact on radiation dose and image noise when the effective tube current time product (mA s/pitch) was kept constant. However, while not severe, artifacts were found to be more prevalent for the dual-source pitch=3.2 scan mode when structures varied markedly along the z axis, particularly for head scans. Images of the moving

  2. Improvement of temporal and dynamic subtraction images on abdominal CT using 3D global image matching and nonlinear image warping techniques

    International Nuclear Information System (INIS)

    Okumura, E; Sanada, S; Suzuki, M; Takemura, A; Matsui, O

    2007-01-01

    Accurate registration of the corresponding non-enhanced and arterial-phase CT images is necessary to create temporal and dynamic subtraction images for the enhancement of subtle abnormalities. However, respiratory movement causes misregistration at the periphery of the liver. To reduce these misregistration errors, we developed a temporal and dynamic subtraction technique to enhance small HCC by 3D global matching and nonlinear image warping techniques. The study population consisted of 21 patients with HCC. Using the 3D global matching and nonlinear image warping technique, we registered current and previous arterial-phase CT images or current non-enhanced and arterial-phase CT images obtained in the same position. The temporal subtraction image was obtained by subtracting the previous arterial-phase CT image from the warped current arterial-phase CT image. The dynamic subtraction image was obtained by the subtraction of the current non-enhanced CT image from the warped current arterial-phase CT image. The percentage of fair or superior temporal subtraction images increased from 52.4% to 95.2% using the new technique, while on the dynamic subtraction images, the percentage increased from 66.6% to 95.2%. The new subtraction technique may facilitate the diagnosis of subtle HCC based on the superior ability of these subtraction images to show nodular and/or ring enhancement

  3. High-resolution imaging of pulmonary ventilation and perfusion with 68Ga-VQ respiratory gated (4-D) PET/CT

    International Nuclear Information System (INIS)

    Callahan, Jason; Hofman, Michael S.; Siva, Shankar; Kron, Tomas; Schneider, Michal E.; Binns, David; Eu, Peter; Hicks, Rodney J.

    2014-01-01

    Our group has previously reported on the use of 68 Ga-ventilation/perfusion (VQ) PET/CT scanning for the diagnosis of pulmonary embolism. We describe here the acquisition methodology for 68 Ga-VQ respiratory gated (4-D) PET/CT and the effects of respiratory motion on image coregistration in VQ scanning. A prospective study was performed in 15 patients with non-small-cell lung cancer. 4-D PET and 4-D CT images were acquired using an infrared marker on the patient's abdomen as a surrogate for breathing motion following inhalation of Galligas and intravenous administration of 68 Ga-macroaggregated albumin. Images were reconstructed with phase-matched attenuation correction. The lungs were contoured on CT and PET VQ images during free-breathing (FB) and at maximum inspiration (Insp) and expiration (Exp). The similarity between PET and CT volumes was measured using the Dice coefficient (DC) comparing the following groups; (1) FB-PET/CT, (2) InspPET/InspCT, (3) ExpPET/Exp CT, and (4) FB-PET/AveCT. A repeated measures one-way ANOVA with multiple comparison Tukey tests were performed to evaluate any difference between the groups. Diaphragmatic motion in the superior-inferior direction on the 4-D CT scan was also measured. 4-D VQ scanning was successful in all patients without additional acquisition time compared to the nongated technique. The highest volume overlap was between ExpPET and ExpCT and between FB-PET and AveCT with a DC of 0.82 and 0.80 for ventilation and perfusion, respectively. This was significantly better than the DC comparing the other groups (0.78-0.79, p 68 Ga-VQ 4-D PET/CT is feasible and the blurring caused by respiratory motion is well corrected with 4-D acquisition, which principally reduces artefact at the lung bases. The images with the highest spatial overlap were the combined expiration phase or FB PET and average CT. With higher resolution than SPECT/CT, the PET/CT technique has a broad range of potential clinical applications including

  4. {sup 68}Ga-PSMA-11 dynamic PET/CT imaging in biochemical relapse of prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Sachpekidis, C. [German Cancer Research Center (DKFZ), Clinical Cooperation Unit Nuclear Medicine, Heidelberg (Germany); German Cancer Research Center, Medical PET Group-Biological Imaging, Clinical Cooperation Unit Nuclear Medicine, Heidelberg (Germany); Eder, M. [German Cancer Research Center (DKFZ), Division of Radiopharmaceutical Chemistry, Heidelberg (Germany); Kopka, K. [German Cancer Research Center (DKFZ), Division of Radiopharmaceutical Chemistry, Heidelberg (Germany); German Cancer Consortium (DKTK), Heidelberg (Germany); Mier, W. [University of Heidelberg, Division of Nuclear Medicine, Heidelberg (Germany); Hadaschik, B.A. [University Hospital Heidelberg, Department of Urology, Heidelberg (Germany); Haberkorn, U. [German Cancer Research Center (DKFZ), Clinical Cooperation Unit Nuclear Medicine, Heidelberg (Germany); German Cancer Consortium (DKTK), Heidelberg (Germany); University of Heidelberg, Division of Nuclear Medicine, Heidelberg (Germany); Dimitrakopoulou-Strauss, A. [German Cancer Research Center (DKFZ), Clinical Cooperation Unit Nuclear Medicine, Heidelberg (Germany)

    2016-07-15

    We aim to investigate the pharmacokinetics and distribution of the recently clinically introduced radioligand {sup 68}Ga-PSMA-11 in men with recurrent prostate cancer (PC) by means of dynamic and whole-body PET/CT. The correlation between PSA levels and {sup 68}Ga-PSMA-11 PET parameters is also investigated. 31 patients with biochemical failure after primary PC treatment with curative intent (median age 71.0 years) were enrolled in the analysis. The median PSA value was 2.0 ng/mL (range = 0.1 - 130.0 ng/mL) and the median Gleason score was 7 (range = 5 - 9). 8/31 (25.8 %) of the included patients had a PSA value < 0.5 ng/ml. All patients underwent dynamic PET/CT (dPET/CT) scanning (60 min) of the pelvis and lower abdomen as well as whole-body PET/CT with {sup 68}Ga-PSMA-11. dPET/CT assessment was based on qualitative evaluation, SUV calculation, and quantitative analysis based on a two-tissue compartment model and a non-compartmental approach leading to the extraction of fractal dimension (FD). 22/31 patients (71.0 %) were {sup 68}Ga-PSMA-11-positive, while 9/31 (29.0 %) patients were {sup 68}Ga-PSMA-11-negative. The median PSA value in the {sup 68}Ga-PSMA-11-positive group was significantly higher (median = 2.35 ng/mL; range = 0.19 - 130.0 ng/mL) than in the {sup 68}Ga-PSMA-11-negative group (median value: 0.34 ng/mL; range = 0.10 - 4.20 ng/mL). A total of 76 lesions were semi-quantitatively evaluated. PC recurrence-associated lesions demonstrated a mean SUV{sub average} = 12.4 (median = 9.0; range = 2.2 - 84.5) and mean SUV{sub max} = 18.8 (median = 14.1; range = 3.1 - 120.3). Dynamic PET/CT studies of the pelvis revealed the following mean values for the PC recurrence-suspicious lesions: K{sub 1} = 0.26, k{sub 3} = 0.30, influx = 0.14 and FD = 1.24. Time-activity curves derived from PC-recurrence indicative lesions revealed an increasing {sup 68}Ga-PSMA-11 accumulation during dynamic PET acquisition. Correlation analysis revealed a moderate, but significant

  5. Assessment of Lymph Nodes and Prostate Status Using Early Dynamic Curves with (18)F-Choline PET/CT in Prostate Cancer.

    Science.gov (United States)

    Mathieu, Cédric; Ferrer, Ludovic; Carlier, Thomas; Colombié, Mathilde; Rusu, Daniela; Kraeber-Bodéré, Françoise; Campion, Loic; Rousseau, Caroline

    2015-01-01

    Dynamic image acquisition with (18)F-Choline [fluorocholine (FCH)] PET/CT in prostate cancer is mostly used to overcome the bladder repletion, which could obstruct the loco-regional analysis. The aim of our study was to analyze early dynamic FCH acquisitions to define pelvic lymph node or prostate pathological status. Retrospective analysis was performed on 39 patients for initial staging (n = 18), or after initial treatment (n = 21). Patients underwent 10-min dynamic acquisitions centered on the pelvis, after injection of 3-4 MBq/kg of FCH. Whole-body images were acquired about 1 h after injection using a PET/CT GE Discovery LS (GE-LS) or Siemens Biograph mCT (mCT). Maximum and mean SUV according to time were measured on nodal and prostatic lesions. SUVmean was corrected for partial volume effect (PVEC) with suitable recovery coefficients. The status of each lesion was based on histological results or patient follow-up (>6 months). A Mann-Whitney test and ANOVA were used to compare mean and receiver operating characteristic (ROC) curve analysis. The median PSA was 8.46 ng/mL and the median Gleason score was 3 + 4. Ninety-two lesions (43 lymph nodes and 49 prostate lesions) were analyzed, including 63 malignant lesions. In early dynamic acquisitions, the maximum and mean SUV were significantly higher, respectively, on mCT and GE-LS, in malignant versus benign lesions (p dynamic imaging using PET/CT FCH allowed prostate cancer detection in situations where proof of malignancy is difficult to obtain.

  6. Diagnosis of small hepatocellular carcinoma by incremental dynamic CT

    International Nuclear Information System (INIS)

    Uchida, Masafumi; Kumabe, Tsutomu; Edamitsu, Osamu

    1993-01-01

    Thirty cases of pathologically confirmed small hepatocellular carcinoma were examined by Incremental Dynamic CT (ICT). ICT scanned the whole liver with single-breath-hold technique; therefore, effective early contrast enhancement could be obtained for diagnosis. Among the 30 tumors, 26 were detected. The detection rate was 87%. A high detection rate was obtained in tumors more than 20 mm in diameter. Twenty-two of 26 tumors could be diagnosed correctly. ICT examination was useful for detection of small hepatocellular carcinoma. (author)

  7. Alveolar architecture of clear cell renal carcinomas (≤5.0 cm) show high attenuation on dynamic CT scanning

    International Nuclear Information System (INIS)

    Fujimoto, Hiroyuki; Wakao, Fumihiko; Moriyama, Noriyuki; Tobisu, Kenichi; Kakizoe, Tadao; Sakamoto, Michiie

    1999-01-01

    To establish the correlation between tumor appearance on CT and tumor histology in renal cell carcinomas. The density and attenuation patterns of 96 renal cell carcinomas, each ≤5 cm in greatest diameter, were studied by non-enhanced CT and early and late after bolus injection of contrast medium using dynamic CT. The density and attenuation patterns and pathological maps of each tumor were individually correlated. High attenuated areas were present in 72 of the 96 tumors on early enhanced dynamic CT scanning. All 72 high attenuated areas were of the clear cell renal cell carcinoma and had alveolar architecture. The remaining 24 tumors that did not demonstrate high attenuated foci on early enhanced scanning included three clear cell, nine granular cell, six papillary, five chromophobe and one collecting duct type. With respect to tumor architecture, all clear cell tumors of alveolar architecture demonstrated high attenuation on early enhanced scanning. Clear cell renal cell carcinomas of alveolar architecture show high attenuation on early enhanced dynamic CT scanning. A larger number of patients are indispensable to obtaining clear results. However, these findings seem to be an important clue to the diagnosis of renal cell carcinomas as having an alveolar structure. (author)

  8. Bronchiectasis: correlation of high-resolution CT findings with health-related quality of life

    Energy Technology Data Exchange (ETDEWEB)

    Eshed, I. [Department of Diagnostic Radiology, E. Wolfson Medical Center, Holon (Israel)]. E-mail: iriseshed@gmail.com; Minski, I. [Department of Diagnostic Radiology, E. Wolfson Medical Center, Holon (Israel); Katz, R. [Department of Diagnostic Radiology, E. Wolfson Medical Center, Holon (Israel); Jones, P.W. [Department of Respiratory Medicine, St George' s Hospital Medical School, University of London (United Kingdom); Priel, I.E. [Department of Pulmonary Medicine, E. Wolfson Medical Center, Holon, Israel, Affiliated with the Sackler Faculty of Medicine, Tel-Aviv University (Israel)

    2007-02-15

    Aim: To evaluate the relationship between the severity of bronchiectatic diseases, as evident on high-resolution computed tomography (HRCT) and the patient's quality of life measured using the St George's Respiratory Questionnaire (SGRQ). Methods and materials: Forty-six patients (25 women, 21 men, mean age: 63 years) with bronchiectatic disease as evident on recent HRCT examinations were recruited. Each patient completed the SGRQ and underwent respiratory function tests. HRCT findings were blindly and independently scored by two radiologists, using the modified Bhalla scoring system. The relationships between HRCT scores, SGRQ scores and pulmonary function tests were evaluated. Results: The patients' total CT score did not correlate with the SGRQ scores. However, patients with more advanced disease on HRCT, significantly differed in their SGRQ scores from patients with milder bronchiectatic disease. A significant correlation was found between the CT scores for the middle and distal lung zones and the activity, impacts and total SGRQ scores. No correlation was found between CT scores and respiratory function test indices. However, a significant correlation was found between the SGRQ scores and most of the respiratory function test indices. Conclusion: A correlation between the severity of bronchiectatic disease as expressed in HRCT and the health-related quality of life exists in patients with a more severe bronchiectatic disease but not in patients with mild disease. Such correlation depends on the location of the bronchiectasis in the pulmonary tree.

  9. CT of diffuse pulmonary diseases

    International Nuclear Information System (INIS)

    Itoh, Harumi; Murata, Kiyoshi; Todo, Giro

    1987-01-01

    While the theory of chest radiographic interpretation in diagnosing diffuse pulmonary diseases has not yet been established, X-ray computed tomography (CT), having intrinsic high contrast resolution and improved spatial resolution, has proved to offer important imformation concerning the location and invasion of diffuse pulmonary lesions. This study related to CT-pathologic correlation, focusing on perivascular interstitial space and secondary pulmonary lobule at macroscopic levels. The perivascular interstitial space was thickened as a result of the infiltration of cancer, granulomas, and inflammatory cells. This finding appeared as irregular contour of the blood vessel on CT. Centrilobular nodules were distributed at the tip of the bronchus or pulmonary artery on CT. The distance from the terminal and respiratory bronchioles to the lobular border was 2 to 3 mm. Lobular lesions were delineated as clear margin on CT. Contribution of these CT features to chest radiographic interpretation must await further studies. (Namekawa, K.)

  10. Automated Voxel-Based Analysis of Volumetric Dynamic Contrast-Enhanced CT Data Improves Measurement of Serial Changes in Tumor Vascular Biomarkers

    Energy Technology Data Exchange (ETDEWEB)

    Coolens, Catherine, E-mail: catherine.coolens@rmp.uhn.on.ca [Radiation Medicine Program, Princess Margaret Cancer Center and University Health Network, Toronto, Ontario (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario (Canada); Driscoll, Brandon [Radiation Medicine Program, Princess Margaret Cancer Center and University Health Network, Toronto, Ontario (Canada); Chung, Caroline [Radiation Medicine Program, Princess Margaret Cancer Center and University Health Network, Toronto, Ontario (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); Shek, Tina; Gorjizadeh, Alborz [Radiation Medicine Program, Princess Margaret Cancer Center and University Health Network, Toronto, Ontario (Canada); Ménard, Cynthia [Radiation Medicine Program, Princess Margaret Cancer Center and University Health Network, Toronto, Ontario (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); Jaffray, David [Radiation Medicine Program, Princess Margaret Cancer Center and University Health Network, Toronto, Ontario (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario (Canada)

    2015-01-01

    Objectives: Development of perfusion imaging as a biomarker requires more robust methodologies for quantification of tumor physiology that allow assessment of volumetric tumor heterogeneity over time. This study proposes a parametric method for automatically analyzing perfused tissue from volumetric dynamic contrast-enhanced (DCE) computed tomography (CT) scans and assesses whether this 4-dimensional (4D) DCE approach is more robust and accurate than conventional, region-of-interest (ROI)-based CT methods in quantifying tumor perfusion with preliminary evaluation in metastatic brain cancer. Methods and Materials: Functional parameter reproducibility and analysis of sensitivity to imaging resolution and arterial input function were evaluated in image sets acquired from a 320-slice CT with a controlled flow phantom and patients with brain metastases, whose treatments were planned for stereotactic radiation surgery and who consented to a research ethics board-approved prospective imaging biomarker study. A voxel-based temporal dynamic analysis (TDA) methodology was used at baseline, at day 7, and at day 20 after treatment. The ability to detect changes in kinetic parameter maps in clinical data sets was investigated for both 4D TDA and conventional 2D ROI-based analysis methods. Results: A total of 7 brain metastases in 3 patients were evaluated over the 3 time points. The 4D TDA method showed improved spatial efficacy and accuracy of perfusion parameters compared to ROI-based DCE analysis (P<.005), with a reproducibility error of less than 2% when tested with DCE phantom data. Clinically, changes in transfer constant from the blood plasma into the extracellular extravascular space (K{sub trans}) were seen when using TDA, with substantially smaller errors than the 2D method on both day 7 post radiation surgery (±13%; P<.05) and by day 20 (±12%; P<.04). Standard methods showed a decrease in K{sub trans} but with large uncertainty (111.6 ± 150.5) %. Conclusions

  11. Automated Voxel-Based Analysis of Volumetric Dynamic Contrast-Enhanced CT Data Improves Measurement of Serial Changes in Tumor Vascular Biomarkers

    International Nuclear Information System (INIS)

    Coolens, Catherine; Driscoll, Brandon; Chung, Caroline; Shek, Tina; Gorjizadeh, Alborz; Ménard, Cynthia; Jaffray, David

    2015-01-01

    Objectives: Development of perfusion imaging as a biomarker requires more robust methodologies for quantification of tumor physiology that allow assessment of volumetric tumor heterogeneity over time. This study proposes a parametric method for automatically analyzing perfused tissue from volumetric dynamic contrast-enhanced (DCE) computed tomography (CT) scans and assesses whether this 4-dimensional (4D) DCE approach is more robust and accurate than conventional, region-of-interest (ROI)-based CT methods in quantifying tumor perfusion with preliminary evaluation in metastatic brain cancer. Methods and Materials: Functional parameter reproducibility and analysis of sensitivity to imaging resolution and arterial input function were evaluated in image sets acquired from a 320-slice CT with a controlled flow phantom and patients with brain metastases, whose treatments were planned for stereotactic radiation surgery and who consented to a research ethics board-approved prospective imaging biomarker study. A voxel-based temporal dynamic analysis (TDA) methodology was used at baseline, at day 7, and at day 20 after treatment. The ability to detect changes in kinetic parameter maps in clinical data sets was investigated for both 4D TDA and conventional 2D ROI-based analysis methods. Results: A total of 7 brain metastases in 3 patients were evaluated over the 3 time points. The 4D TDA method showed improved spatial efficacy and accuracy of perfusion parameters compared to ROI-based DCE analysis (P<.005), with a reproducibility error of less than 2% when tested with DCE phantom data. Clinically, changes in transfer constant from the blood plasma into the extracellular extravascular space (K trans ) were seen when using TDA, with substantially smaller errors than the 2D method on both day 7 post radiation surgery (±13%; P<.05) and by day 20 (±12%; P<.04). Standard methods showed a decrease in K trans but with large uncertainty (111.6 ± 150.5) %. Conclusions: Parametric

  12. Dynamic CT perfusion imaging of the myocardium: a technical note on improvement of image quality.

    Directory of Open Access Journals (Sweden)

    Daniela Muenzel

    Full Text Available OBJECTIVE: To improve image and diagnostic quality in dynamic CT myocardial perfusion imaging (MPI by using motion compensation and a spatio-temporal filter. METHODS: Dynamic CT MPI was performed using a 256-slice multidetector computed tomography scanner (MDCT. Data from two different patients-with and without myocardial perfusion defects-were evaluated to illustrate potential improvements for MPI (institutional review board approved. Three datasets for each patient were generated: (i original data (ii motion compensated data and (iii motion compensated data with spatio-temporal filtering performed. In addition to the visual assessment of the tomographic slices, noise and contrast-to-noise-ratio (CNR were measured for all data. Perfusion analysis was performed using time-density curves with regions-of-interest (ROI placed in normal and hypoperfused myocardium. Precision in definition of normal and hypoperfused areas was determined in corresponding coloured perfusion maps. RESULTS: The use of motion compensation followed by spatio-temporal filtering resulted in better alignment of the cardiac volumes over time leading to a more consistent perfusion quantification and improved detection of the extend of perfusion defects. Additionally image noise was reduced by 78.5%, with CNR improvements by a factor of 4.7. The average effective radiation dose estimate was 7.1±1.1 mSv. CONCLUSION: The use of motion compensation and spatio-temporal smoothing will result in improved quantification of dynamic CT MPI using a latest generation CT scanner.

  13. Evaluation of dynamic enhanced CT scanning in the differentiation of adrenal lipid-poor adenomas with metastases

    International Nuclear Information System (INIS)

    Fang Xiangming; Hu Chunhong; Hu Xiaoyun; Chen Hongwei; Wu Liyuan; Zou Xinnong; Qian Pingyan

    2006-01-01

    Objective: To evaluate dynamic enhanced CT in differentiating adrenal metastases from adrenal lipid-poor adenomas(ALPA). Methods: Both plain and dynamic enhanced CT scanning was performed in 9 metastases with 13 masses and 28 lipid-poor adenoma with 30 masses. The types of time-density curve according to peak time(PT) and relative washout percentage(Washr) besides shape, size, margin, internal structure, surrounding status and enhanced pattern of each lesion were measuerd and compared between the two groups of metastases and ALPA. Results: There is difference between metastases and ALPA in the aspects of shape, density, neighboring structure and the type of enhancement. The type of TDC of matastases was characterized by fast-washin and fast-washout, which was quite differed from the type of TDC of ALPA characterized by fast-washin and slow-washout. According to this, the sensitiveity and specificity for differentiating metastases from ALPA were 96.7%, 92.3%. Conclusion: The types of TDC of dynamic enhanced CT is of great value in differentiating metastases from ALPA. (authors)

  14. Development of a realistic, dynamic digital brain phantom for CT perfusion validation

    Science.gov (United States)

    Divel, Sarah E.; Segars, W. Paul; Christensen, Soren; Wintermark, Max; Lansberg, Maarten G.; Pelc, Norbert J.

    2016-03-01

    Physicians rely on CT Perfusion (CTP) images and quantitative image data, including cerebral blood flow, cerebral blood volume, and bolus arrival delay, to diagnose and treat stroke patients. However, the quantification of these metrics may vary depending on the computational method used. Therefore, we have developed a dynamic and realistic digital brain phantom upon which CTP scans can be simulated based on a set of ground truth scenarios. Building upon the previously developed 4D extended cardiac-torso (XCAT) phantom containing a highly detailed brain model, this work consisted of expanding the intricate vasculature by semi-automatically segmenting existing MRA data and fitting nonuniform rational B-spline surfaces to the new vessels. Using time attenuation curves input by the user as reference, the contrast enhancement in the vessels changes dynamically. At each time point, the iodine concentration in the arteries and veins is calculated from the curves and the material composition of the blood changes to reflect the expected values. CatSim, a CT system simulator, generates simulated data sets of this dynamic digital phantom which can be further analyzed to validate CTP studies and post-processing methods. The development of this dynamic and realistic digital phantom provides a valuable resource with which current uncertainties and controversies surrounding the quantitative computations generated from CTP data can be examined and resolved.

  15. TH-EF-207A-04: A Dynamic Contrast Enhanced Cone Beam CT Technique for Evaluation of Renal Functions

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Z; Shi, J; Yang, Y [University of Miami School of Medicine, Miami, FL (United States)

    2016-06-15

    Purpose: To develop a simple but robust method for the early detection and evaluation of renal functions using dynamic contrast enhanced cone beam CT technique. Methods: Experiments were performed on an integrated imaging and radiation research platform developed by our lab. Animals (n=3) were anesthetized with 20uL Ketamine/Xylazine cocktail, and then received 200uL injection of iodinated contrast agent Iopamidol via tail vein. Cone beam CT was acquired following contrast injection once per minute and up to 25 minutes. The cone beam CT was reconstructed with a dimension of 300×300×800 voxels of 130×130×130um voxel resolution. The middle kidney slices in the transvers and coronal planes were selected for image analysis. A double exponential function was used to fit the contrast enhanced signal intensity versus the time after contrast injection. Both pixel-based and region of interest (ROI)-based curve fitting were performed. Four parameters obtained from the curve fitting, namely the amplitude and flow constant for both contrast wash in and wash out phases, were investigated for further analysis. Results: Robust curve fitting was demonstrated for both pixel based (with R{sup 2}>0.8 for >85% pixels within the kidney contour) and ROI based (R{sup 2}>0.9 for all regions) analysis. Three different functional regions: renal pelvis, medulla and cortex, were clearly differentiated in the functional parameter map in the pixel based analysis. ROI based analysis showed the half-life T1/2 for contrast wash in and wash out phases were 0.98±0.15 and 17.04±7.16, 0.63±0.07 and 17.88±4.51, and 1.48±0.40 and 10.79±3.88 minutes for the renal pelvis, medulla and cortex, respectively. Conclusion: A robust method based on dynamic contrast enhanced cone beam CT and double exponential curve fitting has been developed to analyze the renal functions for different functional regions. Future study will be performed to investigate the sensitivity of this technique in the detection

  16. A case of severe sepsis presenting marked decrease of neutrophils and interesting findings on dynamic CT.

    Science.gov (United States)

    Makino, Isamu; Tajima, Hidehiro; Kitagawa, Hirohisa; Nakagawara, Hisatoshi; Miyashita, Tomoharu; Nakanuma, Shinichi; Hayashi, Hironori; Takamura, Hiroyuki; Fushida, Sachio; Ohta, Tetsuo

    2015-05-28

    In a patient with severe sepsis, we sometimes observe immediate decrease of the counts of white blood cells (WBCs) and neutrophils, which is known as an indicator for poor prognosis. We observed marked decrease of white blood cells and neutrophils on blood examination and interesting findings on dynamic CT. Here, we present the case of a patient with severe postoperative sepsis occurring after major abdominal surgery and we discuss the mechanism of such clinical presentations. A 60-year-old man received pancreatoduodenectomy with colectomy for pancreatic cancer. He developed a high fever on postoperative day 3. We observed marked decrease of WBCs and neutrophils on blood examination. We also observed slight swelling of the liver, inhomogeneous enhancement of liver parenchyma in arterial phase, and periportal low density in the Glisson capsule in portal phase, without any findings indicating infectious complications on dynamic CT. WBCs and neutrophils increased above normal range in just 6 hours. Blood culture examination performed while the patient had a high fever was positive for Aeromonas hydrophila. After receiving intensive care, he promptly recovered from severe sepsis. The CT findings disappeared on second dynamic CT examination performed 3 days after the first examination. We treated a patient with severe sepsis after major abdominal surgery who presented very rapid change of the counts of WBCs and neutrophils and interesting CT findings in the liver. We rescued him from a critical situation by prompt and intensive treatment. Research is needed to accumulate and analyze data from more patients who present a similar clinical course to better understand their pathophysiological conditions.

  17. 320-Multidetector row whole-head dynamic subtracted CT angiography and whole-brain CT perfusion before and after carotid artery stenting: Technical note

    International Nuclear Information System (INIS)

    San Millan Ruiz, Diego; Murphy, Kieran; Gailloud, Philippe

    2010-01-01

    Introduction: Multidetector CT (MDCT) is increasingly used for the investigation of neurovascular disorders, but restricted z-axis coverage (3.2 cm for 64-MDCT) currently limits perfusion to a small portion of the brain close to the circle of Willis, and precludes dynamic angiographic appreciation of the entire brain circulation. We illustrate the clinical potential of recently developed 320-MDCT extending the z-axis coverage to 16 cm in a patient with symptomatic carotid artery stenosis. Methods: In a 74-year-old patient presenting with critical symptomatic stenosis of the left CCA, pre- and post-carotid artery stenting whole-head subtracted dynamic MDCT angiography and perfusion were obtained in addition to CT angiography of the supra-aortic trunks. Both whole-head subtracted MDCT angiography and perfusion demonstrated delayed left ICA circulation, which normalized after carotid stenting. Discussion: 320-MDCT offers unprecedented z-axis coverage allowing for whole-brain perfusion and subtracted dynamic angiography of the entire intracranial circulation. These innovations can consolidate the role of MDCT as a first intention imaging technique for cerebrovascular disorders, in particular for the acute management of stroke.

  18. Multimodality functional imaging of spontaneous canine tumors using 64Cu-ATSM and 18FDG PET/CT and dynamic contrast enhanced perfusion CT

    International Nuclear Information System (INIS)

    Hansen, Anders E.; Kristensen, Annemarie T.; Law, Ian; McEvoy, Fintan J.; Kjær, Andreas; Engelholm, Svend A.

    2012-01-01

    Purpose: To compare the distribution and uptake of the hypoxia tracer 64 Cu-diacetyl-bis(N 4 -methylthiosemicarbazone) ( 64 Cu-ATSM) PET/CT, FDG PET/CT and dynamic contrast enhanced perfusion CT (DCE-pCT) in spontaneous canine tumors. In addition 64 Cu-ATSM distribution over time was evaluated. Methods and materials: Nine spontaneous cancer-bearing dogs were prospectively enrolled. FDG (1 h pi.) and 64 Cu-ATSM (3 and 24 h pi.) PET/CT were performed over three consecutive days. DCE-pCT was performed on day 2. Tumor uptake of FDG and 64 Cu-ATSM was assessed semi-quantitatively and the distribution of FDG, 64 Cu-ATSM and CT perfusion parameters correlated. Results: 64 Cu-ATSM distribution on scans performed 24 h apart displayed moderate to strong correlation; however, temporal changes were observed. The spatial distribution pattern of 64 Cu-ATSM between scans was moderately to strongly positively correlated to FDG, whereas the correlation of CT perfusion parameters to FDG and to 64 Cu-ATSM yielded more varying results. Conclusions: 64 Cu-ATSM uptake was positively correlated to FDG. 64 Cu-ATSM was found to be relatively stable between PET scans performed at different time points, important temporal changes were however observed in hypo-perfused regions. These findings potentially indicate that prolonged uptake periods for 64 Cu-ATSM imaging may be needed. Although a moderate to strong correlation between 64 Cu-ATSM and FDG PET/CT is observed, the two tracers provide different biological information with an overlapping spatial distribution.

  19. Evaluation of TSE- and T1-3D-GRE-sequences for focal cartilage lesions in vitro in comparison to ultrahigh resolution multi-slice CT

    International Nuclear Information System (INIS)

    Stork, A.; Schulze, D.; Koops, A.; Kemper, J.; Adam, G.

    2002-01-01

    Purpose: Evaluation of TSE- and T 1 -3D-GRE-sequences for focal cartilage lesions in vitro in comparison to ultrahigh resolution multi-slice CT. Materials and methods: Forty artificial cartilage lesions in ten bovine patellae were immersed in a solution of iodinated contrast medium and assessed with ultrahigh resolution multi-slice CT. Fat-suppressed TSE images with intermediate- and T 2 -weighting at a slice thickness of 2, 3 and 4 mm as well as fat-suppressed T 1 -weighted 3D-FLASH images with an effective slice thickness of 1, 2 and 3 mm were acquired at 1.5 T. After adding Gd-DTPA to the saline solution containing the patellae, the T 1 -weighted 3D-FLASH imaging was repeated. Results: All cartilage lesions were visualised and graded with ultrahigh resolution multi-slice CT. The TSE images had a higher sensitivity and a higher inter- and intraobserver kappa compared to the FLASH-sequences (TSE: 70-95%; 0.82-0.83; 0.85-0.9; FLASH: 57.5-85%; 0.53-0.72; 0.73-0.82, respectively). An increase in slice thickness decreased the sensitivity, whereby deep lesions were even reliably depicted on TSE images at a slice thickness of 3 and 4 mm. Adding Gd-DTPA to the saline solution increased the sensitivity by 10% with no detectable advantage over the T 2 -weighted TSE images. Conclusion: TSE sequences and application of Gd-DTPA seemed to be superior to T 1 -weighted 3D-FLASH sequences without Gd-DTPA in the detection of focal cartilage lesions. The ultrahigh resolution multi-slice CT can serve as in vitro reference standard for focal cartilage lesions. (orig.) [de

  20. Energy dispersive CdTe and CdZnTe detectors for spectral clinical CT and NDT applications

    Energy Technology Data Exchange (ETDEWEB)

    Barber, W.C., E-mail: william.barber@dxray.com [DxRay, Inc., Northridge, CA (United States); Interon AS, Asker (Norway); Wessel, J.C. [DxRay, Inc., Northridge, CA (United States); Interon AS, Asker (Norway); Nygard, E. [Interon AS, Asker (Norway); Iwanczyk, J.S. [DxRay, Inc., Northridge, CA (United States)

    2015-06-01

    We are developing room temperature compound semiconductor detectors for applications in energy-resolved high-flux single x-ray photon-counting spectral computed tomography (CT), including functional imaging with nanoparticle contrast agents for medical applications and non-destructive testing (NDT) for security applications. Energy-resolved photon-counting can provide reduced patient dose through optimal energy weighting for a particular imaging task in CT, functional contrast enhancement through spectroscopic imaging of metal nanoparticles in CT, and compositional analysis through multiple basis function material decomposition in CT and NDT. These applications produce high input count rates from an x-ray generator delivered to the detector. Therefore, in order to achieve energy-resolved single photon counting in these applications, a high output count rate (OCR) for an energy-dispersive detector must be achieved at the required spatial resolution and across the required dynamic range for the application. The required performance in terms of the OCR, spatial resolution, and dynamic range must be obtained with sufficient field of view (FOV) for the application thus requiring the tiling of pixel arrays and scanning techniques. Room temperature cadmium telluride (CdTe) and cadmium zinc telluride (CdZnTe) compound semiconductors, operating as direct conversion x-ray sensors, can provide the required speed when connected to application specific integrated circuits (ASICs) operating at fast peaking times with multiple fixed thresholds per pixel provided the sensors are designed for rapid signal formation across the x-ray energy ranges of the application at the required energy and spatial resolutions, and at a sufficiently high detective quantum efficiency (DQE). We have developed high-flux energy-resolved photon-counting x-ray imaging array sensors using pixellated CdTe and CdZnTe semiconductors optimized for clinical CT and security NDT. We have also fabricated high

  1. An unusual case of left aberrant innominate artery with right aortic arch: evaluation with high-resolution CT

    Energy Technology Data Exchange (ETDEWEB)

    Calcagni, Giulio [University Rene Descartes-Paris 5, Department of Pediatric Cardiology, Hopital Necker Enfants Malades, Paris (France); Gesualdo, Francesco; Brunelle, Francis; Ou, Phalla [University Rene Descartes-Paris 5, Department of Pediatric Radiology, Hopital Necker Enfants Malades, Paris Cedex 15 (France)

    2008-01-15

    A left aberrant innominate (brachiocephalic) artery is an angiographically well-known entity that may cause tracheal compression. We report a male newborn who was admitted for further investigation of a prenatally suspected major vessel anomaly. High-resolution CT was used to completely assess the abnormal anatomy and the relationship with the airway, as well as to guide the surgical approach for its correction. (orig.)

  2. An unusual case of left aberrant innominate artery with right aortic arch: evaluation with high-resolution CT

    International Nuclear Information System (INIS)

    Calcagni, Giulio; Gesualdo, Francesco; Brunelle, Francis; Ou, Phalla

    2008-01-01

    A left aberrant innominate (brachiocephalic) artery is an angiographically well-known entity that may cause tracheal compression. We report a male newborn who was admitted for further investigation of a prenatally suspected major vessel anomaly. High-resolution CT was used to completely assess the abnormal anatomy and the relationship with the airway, as well as to guide the surgical approach for its correction. (orig.)

  3. Dynamic multiscale boundary conditions for 4D CT of healthy and emphysematous rats.

    Directory of Open Access Journals (Sweden)

    Richard E Jacob

    Full Text Available Changes in the shape of the lung during breathing determine the movement of airways and alveoli, and thus impact airflow dynamics. Modeling airflow dynamics in health and disease is a key goal for predictive multiscale models of respiration. Past efforts to model changes in lung shape during breathing have measured shape at multiple breath-holds. However, breath-holds do not capture hysteretic differences between inspiration and expiration resulting from the additional energy required for inspiration. Alternatively, imaging dynamically--without breath-holds--allows measurement of hysteretic differences. In this study, we acquire multiple micro-CT images per breath (4DCT in live rats, and from these images we develop, for the first time, dynamic volume maps. These maps show changes in local volume across the entire lung throughout the breathing cycle and accurately predict the global pressure-volume (PV hysteresis. Male Sprague-Dawley rats were given either a full- or partial-lung dose of elastase or saline as a control. After three weeks, 4DCT images of the mechanically ventilated rats under anesthesia were acquired dynamically over the breathing cycle (11 time points, ≤100 ms temporal resolution, 8 cmH2O peak pressure. Non-rigid image registration was applied to determine the deformation gradient--a numerical description of changes to lung shape--at each time point. The registration accuracy was evaluated by landmark identification. Of 67 landmarks, one was determined misregistered by all three observers, and 11 were determined misregistered by two observers. Volume change maps were calculated on a voxel-by-voxel basis at all time points using both the Jacobian of the deformation gradient and the inhaled air fraction. The calculated lung PV hysteresis agrees with pressure-volume curves measured by the ventilator. Volume maps in diseased rats show increased compliance and ventilation heterogeneity. Future predictive multiscale models of rodent

  4. Collateral Ventilation to Congenital Hyperlucent Lung Lesions Assessed on Xenon-Enhanced Dynamic Dual-Energy CT: an Initial Experience

    OpenAIRE

    Goo, Hyun Woo; Yang, Dong Hyun; Kim, Namkug; Park, Seung Il; Kim, Dong Kwan; Kim, Ellen Ai-Rhan

    2011-01-01

    Objective We wanted to evaluate the resistance to collateral ventilation in congenital hyperlucent lung lesions and to correlate that with the anatomic findings on xenon-enhanced dynamic dual-energy CT. Materials and Methods Xenon-enhanced dynamic dual-energy CT was successfully and safely performed in eight children (median age: 5.5 years, 4 boys and 4 girls) with congenital hyperlucent lung lesions. Functional assessment of the lung lesions on the xenon map was done, including performing a ...

  5. Perivascular epithelioid cell tumour: Dynamic CT, MRI and clinicopathological characteristics—Analysis of 32 cases and review of the literature

    International Nuclear Information System (INIS)

    Tan, Y.; Zhang, H.; Xiao, E.-H.

    2013-01-01

    Aim: To evaluate the dynamic computed tomography (CT), magnetic resonance imaging (MRI), and clinicopathological characteristics of perivascular epithelioid cell tumours (PEComas), thus improving the diagnosis of the tumour. Materials and methods: A retrospective analysis was undertaken of the dynamic CT, MRI, and clinicopathological characteristics of 32 PEComas diagnosed at histopathology during the period 1 January 2005 to 1 March 2012 at two hospitals. Results: The age of the patients ranged from 14–80 years (mean 43.3 years). There were more women in this group (19/32). Solitary tumours were identified in kidney (n = 16), liver (n = 7), gynaecological organs (n = 2), retroperitoneal soft tissue (n = 2), lung (n = 2), palate (n = 1), left groin (n = 1). One patient had multiple tumours in the liver, kidney, and retroperitoneal soft tissue. Dynamic CT (32 cases) and MRI (15 cases) demonstrated tumours that were of low density or hypointense on T1-weighted imaging (WI) and hyperintense on T2WI; some were isodense with fat (CT: 10/32; MRI: 6/15). The tumours usually had well-defined borders and were of a regular shape (CT: 26/32; MRI: 12/15). Tumour diameters ranged from 1.5–18 cm (mean 5.1 cm). Most tumours (CT: 21/32, MRI: 10/15) enhanced heterogeneously and significantly on arterial and venous phases. Tumours appeared slightly hypodense on delayed CT imaging, although some (6/32) had delayed enhancement. The expression rate of HMB-45 (human melanoma black monoclonal antibody) was 100% (32/32). Histological classification in 22 cases (22/32) was epithelioid angiomyolipoma (AML), three (3/32) were clear cell “sugar” tumours (CCSTs), two (2/32) were lymphangioleiomyomatosis (LAM), and two (2/32) were clear cell myomelanocytic tumours of the falciform ligament/ligamentum teres (CCMMT). Three tumours did not have a specific classification. Conclusion: Knowledge of dynamic CT, MRI, and clinicopathological characteristics could help improve the diagnosis of

  6. Technical principles of dual source CT

    International Nuclear Information System (INIS)

    Petersilka, Martin; Bruder, Herbert; Krauss, Bernhard; Stierstorfer, Karl; Flohr, Thomas G.

    2008-01-01

    During the past years, multi-detector row CT (MDCT) has evolved into clinical practice with a rapid increase of the number of detector slices. Today's 64 slice CT systems allow whole-body examinations with sub-millimeter resolution in short scan times. As an alternative to adding even more detector slices, we describe the system concept and design of a CT scanner with two X-ray tubes and two detectors (mounted on a CT gantry with a mechanical offset of 90 deg.) that has the potential to overcome limitations of conventional MDCT systems, such as temporal resolution for cardiac imaging. A dual source CT (DSCT) scanner provides temporal resolution equivalent to a quarter of the gantry rotation time, independent of the patient's heart rate (83 ms at 0.33 s rotation time). In addition to the benefits for cardiac scanning, it allows to go beyond conventional CT imaging by obtaining dual energy information if the two tubes are operated at different voltages. Furthermore, we discuss how both acquisition systems can be used to add the power reserve of two X-ray tubes for long scan ranges and obese patients. Finally, future advances of DSCT are highlighted

  7. Combined SPECT/CT and PET/CT for breast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Russo, Paolo [Università di Napoli Federico II, Dipartimento di Fisica, Via Cintia, Naples I-80126 (Italy); INFN Sezione di Napoli, Via Cintia, Naples I-80126 (Italy); Larobina, Michele [Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche, Via Tommaso De Amicis, 95, Naples I-80145 (Italy); Di Lillo, Francesca [Università di Napoli Federico II, Dipartimento di Fisica, Via Cintia, Naples I-80126 (Italy); INFN Sezione di Napoli, Via Cintia, Naples I-80126 (Italy); Del Vecchio, Silvana [Università di Napoli Federico II, Dipartimento di Scienze Biomediche Avanzate, Via Pansini, 5, Naples I-80131 (Italy); Mettivier, Giovanni, E-mail: mettivier@na.infn.it [Università di Napoli Federico II, Dipartimento di Fisica, Via Cintia, Naples I-80126 (Italy); INFN Sezione di Napoli, Via Cintia, Naples I-80126 (Italy)

    2016-02-11

    In the field of nuclear medicine imaging, breast imaging for cancer diagnosis is still mainly based on 2D imaging techniques. Three-dimensional tomographic imaging with whole-body PET or SPECT scanners, when used for imaging the breast, has performance limits in terms of spatial resolution and sensitivity, which can be overcome only with a dedicated instrumentation. However, only few hybrid imaging systems for PET/CT or SPECT/CT dedicated to the breast have been developed in the last decade, providing complementary functional and anatomical information on normal breast tissue and lesions. These systems are still under development and clinical trials on just few patients have been reported; no commercial dedicated breast PET/CT or SPECT/CT is available. This paper reviews combined dedicated breast PET/CT and SPECT/CT scanners described in the recent literature, with focus on their technological aspects.

  8. A clinical study of major stroke cases of a low-perfusion pattern on a dynamic CT scan

    International Nuclear Information System (INIS)

    Shimada, Tsutomu; Kaneko, Mitsuo; Tanaka, Keisei; Sugiura, Masashi

    1986-01-01

    Preoperative dynamic CT scans have been done for the past 4 years in order to estimate the degree of ischemia in the region responsible. The hemodynamic patterns on the dynamic CT scans were consequently classified into three particular types: Type 1: The collateral flow was preserved considerably, and the peak value of the time-density curve exceeded 50 % of the opposite healthy side. Type 2: The residual flow was moderate, and the peak value was approximately from one-third to one-half of the normal side. Type 3: The residual flow was minimal, and the time-density curve was almost flat or the peak value did not reach even approximately one-third of the opposite side. In general, major stroke cases with a Type 1 pattern on the dynamic CT scan showed a considerably good recovery if the revascularization was completed within 6 hours after the attack. However, cases of the Type 3 pattern often developed into a massive cerebral infarction associated with a marked mid-line shift, and sometimes they were fulminent even after acute revascularization. In this paper, clinical results of 11 major stroke cases with the Type 2 pattern on dynamic CT scans were evaluated. All of them showed hemiplegia, with or without aphasia, just after the onset of the stroke, and dynamic CT scans were performed within 24 hours. The site of the occluded vessel was in the internal carotid artery (ICA) in 4 cases and in the middle cerebral artery (MCA) in 6; severe stenosis in ICA and MCA was found in only one case. The functional recovery was rather poor. Only one was capable of self-care at home; four others required partial care at home, and the other six were bed-ridden. In the 4 surgical cases of acute revascularization, the clinical symptoms did not improve, and the functional recovery was almost equivalent to the natural course. (J.P.N.)

  9. 'Crazy-Paving' Patterns on High-Resolution CT Scans in Patients with Pulmonary Complications after Hematopoietic Stem Cell Transplantation

    Energy Technology Data Exchange (ETDEWEB)

    Marchiori, Edson; Escuissato, Dante L.; Gasparetto, Taisa Davaus; Considera, Daniela Peixoto [Federal University, Sao Paulo (Brazil); Franquet, Tomas [Hospital de Sant Pau, Universitat Autonoma de Barcelona, Barcelona (Spain)

    2009-02-15

    To describe the pulmonary complications following hematopoietic stem cell transplantation (HSCT) that can present with a 'crazy-paving' pattern in high-resolution CT scans. Retrospective review of medical records from 2,537 patients who underwent HSCT. The 'crazy-paving' pattern consists of interlobular and intralobular septal thickening superimposed on an area of ground-glass attenuation on high-resolution CT scans. The CT scans were retrospectively reviewed by two radiologists, who reached final decisions by consensus. We identified 10 cases (2.02%), seven male and three female, with pulmonary complications following HSCT that presented with the 'crazy-paving' pattern. Seven (70%) patients had infectious pneumonia (adenovirus, herpes simplex, influenza virus, cytomegalovirus, respiratory syncytial virus, and toxoplasmosis), and three patients presented with non-infectious complications (idiopathic pneumonia syndrome and acute pulmonary edema). The 'crazy-paving' pattern was bilateral in all cases, with diffuse distribution in nine patients (90%), predominantly in the middle and inferior lung regions in seven patients (70%), and involving the anterior and posterior regions of the lungs in nine patients (90%). The 'crazy-paving' pattern is rare in HSCT recipients with pulmonary complications and is associated with infectious complications more commonly than non-infectious conditions.

  10. Dynamic X-ray computed tomography

    International Nuclear Information System (INIS)

    Grangeat, P.

    2003-01-01

    Paper Dynamic computed tomography (CT) imaging aims at reconstructing image sequences where the dynamic nature of the living human body is of primary interest. Main concerned applications are image-guided interventional procedures, functional studies and cardiac imaging. The introduction of ultra-fast rotating gantries along with multi-row detectors and in near future area detectors allows a huge progress toward the imaging of moving organs with low-contrast resolution. This paper gives an overview of the different concepts used in dynamic CT. A new reconstruction algorithm based on a voxel-specific dynamic evolution compensation is also presented. It provides four-dimensional image sequences with accurate spatio-temporal information, where each frame is reconstructed using a long-scan acquisition mode on several half-turns. In the same time, this technique permits to reduce the dose delivered per rotation while keeping the same signal to noise ratio for every frame using an adaptive motion-compensated temporal averaging. Results are illustrated on simulated data. (authors)

  11. Role of high-resolution CT in the diagnosis of small pulmonary nodules coexisting with potentially operable lung cancer

    International Nuclear Information System (INIS)

    Yuan, Yue; Matsumoto, Tsuneo; Hiyama, Atsuto; Miura, Goji; Tanaka, Nobuyuki; Matsunaga, Naofumi

    2002-01-01

    The purpose of this study was to evaluate whether high-resolution CT (HRCT) could facilitate the preoperative diagnosis of one or two small nodules of 1 cm or less coexisting with a lung cancer, i.e., coexisting small nodule. This study included 27 coexisting small nodules in 24 potentially operable lung cancer patients. An observer study was performed by five radiologists. The observer performances in differentiating malignant from benign coexisting small nodules were evaluated on conventional CT and HRCT using receiver operating characteristic (ROC) analysis. The area under the ROC curve of five observers was 0.731 on HRCT and 0.578 on conventional CT in the differential diagnosis of coexisting small nodules. A significant diagnostic improvement was found on HRCT (p=0.031). This was especially evident for nodules of ground-glass attenuation (p=0.005). HRCT plays an important role in determining the treatment of potentially operable lung cancer patients with coexisting small nodules. (author)

  12. Image quality of high-resolution CT with 16-channel multidetector-row CT. Comparison between helical scan and conventional step-shoot scan

    International Nuclear Information System (INIS)

    Sumikawa, Hiromitsu; Johkoh, Takeshi; Koyama, Mitsuhiro

    2005-01-01

    The aim of this study was to evaluate the image quality of high-resolution CT (HRCT) reconstructed from volumetric data with 16-channel multidetector-row CT (MDCT). Eleven autopsy lungs that were diagnosed histopathologically were scanned by 16-channel MDCT with the step-and-shoot scan mode and three helical scan modes. Each helical mode had each size of focal spot, pitch, and time of gantry rotation. HRCT images were reconstructed from the volumetric data with each helical mode and axial sequence data. Two observers evaluated the image quality and noted the most appropriate diagnosis for each imaging. Visualization of abnormal structures with one helical mode was equal to those with axial mode, whereas those with the other two helical modes were inferior to those with axial mode (Wilcoxon signed rank test; p<0.0001). There was no significant difference in diagnostic efficacy between modes. The image quality of HRCT with appropriate helical mode is equal to that with axial mode and diagnostic efficacy is equal among all modes. These results may indicate that sufficient HRCT images can be obtained by only one helical scan without the addition of conventional axial scans. (author)

  13. Collateral ventilation to congenital hyperlucent lung lesions assessed on xenon-enhanced dynamic dual-energy CT: an initial experience.

    Science.gov (United States)

    Goo, Hyun Woo; Yang, Dong Hyun; Kim, Namkug; Park, Seung Il; Kim, Dong Kwan; Kim, Ellen Ai-Rhan

    2011-01-01

    We wanted to evaluate the resistance to collateral ventilation in congenital hyperlucent lung lesions and to correlate that with the anatomic findings on xenon-enhanced dynamic dual-energy CT. Xenon-enhanced dynamic dual-energy CT was successfully and safely performed in eight children (median age: 5.5 years, 4 boys and 4 girls) with congenital hyperlucent lung lesions. Functional assessment of the lung lesions on the xenon map was done, including performing a time-xenon value curve analysis and assessing the amplitude of xenon enhancement (A) value, the rate of xenon enhancement (K) value and the time of arrival value. Based on the A value, the lung lesions were categorized into high or low (A value > 10 Hounsfield unit [HU]) resistance to collateral ventilation. In addition, the morphologic CT findings of the lung lesions, including cyst, mucocele and an accessory or incomplete fissure, were assessed on the weighted-average CT images. The xenon-enhanced CT radiation dose was estimated. Five of the eight lung lesions were categorized into the high resistance group and three lesions were categorized into the low resistance group. The A and K values in the normal lung were higher than those in the low resistance group. The time of arrival values were delayed in the low resistance group. Cysts were identified in five lesions, mucocele in four, accessory fissure in three and incomplete fissure in two. Either cyst or an accessory fissure was seen in four of the five lesions showing high resistance to collateral ventilation. The xenon-enhanced CT radiation dose was 2.3 ± 0.6 mSv. Xenon-enhanced dynamic dual-energy CT can help visualize and quantitate various degrees of collateral ventilation to congenital hyperlucent lung lesions in addition to assessing the anatomic details of the lung.

  14. Early smoking-induced lung lesions in asymptomatic subjects. Correlations between high resolution dynamic CT and pulmonary function testing

    International Nuclear Information System (INIS)

    Spaggiari, Enrica; Zompadori, Maurizio; Bna', Claudio; Ormitti, Francesca; Svaerzellati, Nicola; Rabaiotti, Enrico; Verduri, Alessia; Chetta, Alfredo

    2005-01-01

    Purpose: To evaluate the prevalence and significance of the pathological effects of cigarette smoking on the lung and the sensitivity of high-resolution CT (HRCT) in the recognition of early smoking-induced lesions in asymptomatic former of current smokers. Materials and methods: We performed a prospective and consecutive analysis of 36 volunteers (16 males, 20 females), 10 non-smokers (3 males, 7 females) and 26 smokers (13 males, 13 females / 17 current smokers; 9 former smokers), all asymptomatic and with normal respiratory flows. These subjects underwent lung function testing and HRCT, after providing written informed consent for the study. The HRCT scans were obtained at three pre-selected levels (aortic arch, tracheal carina and venous hilum). The same scans were obtained in post-expiration phase. At the level of the apical segmental bronchus of the right upper lobe, we measured on the monitor wall thickening, and the total and internal diameters using the techniques reported in literature. Each study was independently evaluated by two radiologists that were blinded to all clinical and functional data: they also evaluated the presence, prevalence and type of emphysema, areas of patchy hyperlucency and oligoemia in the inspiration phase and areas of expiratory air trapping. The extension was evaluated with the visual score method. The data obtained were analysed with the Windows SPSS package for statistical analysis. Results: The two groups (non smokers and smokers) showed significant differences in some functional tests such as FEV1 (p [it

  15. Contrast between hypervascularized liver lesions and hepatic parenchyma. Early dynamic PET versus contrast-enhanced CT

    International Nuclear Information System (INIS)

    Freesmeyer, M.; Winkens, T.; Schierz, J.-H.

    2014-01-01

    To detect hypervascularized liver lesions, early dynamic (ED) 18 F-FDG PET may be an alternative when contrast-enhanced (CE) imaging is infeasible. This retrospective pilot analysis compared contrast between such lesions and liver parenchyma, an important objective image quality variable, in ED PET versus CE CT. Twenty-eight hypervascularized liver lesions detected by CE CT [21 (75%) hepatocellular carcinomas; mean (range) diameter 4.9 ± 3.5 (1-14) cm] in 20 patients were scanned with ED PET. Using regions of interest, maximum and mean lesional and parenchymal signals at baseline, arterial and venous phases were calculated for ED PET and CE CT. Lesional/parenchymal signal ratio was significantly higher (P < 0.005) with ED PET versus CE CT at the arterial phase and similar between the methods at the venous phase. In liver imaging, ED PET generates greater lesional-parenchymal contrast during the arterial phase than does CE CT; these observations should be formally, prospectively evaluated. (author)

  16. Coronary CT angiography: Diagnostic value and clinical challenges.

    Science.gov (United States)

    Sabarudin, Akmal; Sun, Zhonghua

    2013-12-26

    Coronary computed tomography (CT) angiography has been increasingly used in the diagnosis of coronary artery disease due to improved spatial and temporal resolution with high diagnostic value being reported when compared to invasive coronary angiography. Diagnostic performance of coronary CT angiography has been significantly improved with the technological developments in multislice CT scanners from the early generation of 4-slice CT to the latest 320- slice CT scanners. Despite the promising diagnostic value, coronary CT angiography is still limited in some areas, such as inferior temporal resolution, motion-related artifacts and high false positive results due to severe calcification. The aim of this review is to present an overview of the technical developments of multislice CT and diagnostic value of coronary CT angiography in coronary artery disease based on different generations of multislice CT scanners. Prognostic value of coronary CT angiography in coronary artery disease is also discussed, while limitations and challenges of coronary CT angiography are highlighted.

  17. A study for the correlation of hemorrhagic cerebral infarction with the hemodynamics measured by dynamic CT

    International Nuclear Information System (INIS)

    Shibagaki, Yasuro

    1989-01-01

    In 15 cases of cerebral infarction (9 embolisms, 6 thromboses), dynamic CT scans were repeatedly undertaken during 4 week period of stroke. The ratio of peak height to mean transit time (PH/MTT), which was calculated from density time curve, was used as an index of cerebral blood flow. Hemorrhagic infarction was defined as a high density area with CT value over 50 within low density area. The PH/MTT was significantly increased after the appearance of hemorrhagic infarction. Nine of 10 areas, in which hemorrhagic infarctions were not recognized after recoverry of PH/MTT to over 0.5, did not show hemorrhagic infarctions during 4 week period of stroke. The areas in which hemorrhagic infarctions appeared during 4 week period of stroke had mdore prolonged period of low PH/MTT values than the areas in which hemorrhagic infarctions were not recognized. In conclusion dynamic CT is useful for predicting hemorrhagic infarction. (author)

  18. Usefulness evaluation of low-dose for emphysema: Compared with high-resolution CT

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Won Jeong [Dept. of Radiological Technology, Daejeon Health Institute of Technology, Daejeon (Korea, Republic of)

    2016-09-15

    The purpose of this study was to evaluate the usefulness of low-dose CT (LDCT) for emphysema compared with high-resolution CT (HRCT). Measurements of radiation dose and noise were repeated 3 times in same exposure condition which was similar with obtaining HRCT and LDCT images. We analysed reading results of 146 subjects. Six images per participants selected for emphysema grading. Emphysema was graded for all 6 zones on the left and right sides of the lungs by the consensus reading of two chest radiologists using a 4-point scale. Between the HRCT and LDCT images, diagnostic differences and agreements for emphysema were analyzed by McNemar's and unweighted kappa tests, and radiation doses and noise by a Mann-Whitney U-test, using the SPSS 19.0 program. Radiation dose from HRCT was significantly higher than that of LDCT, but the noise was significantly lower in HRCT than in LDCT. Diagnostic agreement for emphysema between HRCT and LDCT images was excellent (k-value=0.88). Emphysema grading scores were not significantly different between HRCT and LDCT images for all six lung zones. Emphysema grading scores from LDCT images were significantly correlated with increased scores on HRCT images (r=0.599, p < 0.001). Considering the tradeoff between radiation dose and image noise, LDCT could be used as the gold standard method instead of HRCT for emphysema detection and grading.

  19. Partial scan artifact reduction (PSAR) for the assessment of cardiac perfusion in dynamic phase-correlated CT

    Energy Technology Data Exchange (ETDEWEB)

    Stenner, Philip; Schmidt, Bernhard; Bruder, Herbert; Allmendinger, Thomas; Haberland, Ulrike; Flohr, Thomas; Kachelriess, Marc [Institute of Medical Physics, Henkestrasse 91, 91052 Erlangen (Germany); Siemens AG, Healthcare Sector, Siemensstrasse 1, 91301 Forchheim (Germany); Institute of Medical Physics, Henkestrasse. 91, 91052 Erlangen (Germany)

    2009-12-15

    Purpose: Cardiac CT achieves its high temporal resolution by lowering the scan range from 2{pi} to {pi} plus fan angle (partial scan). This, however, introduces CT-value variations, depending on the angular position of the {pi} range. These partial scan artifacts are of the order of a few HU and prevent the quantitative evaluation of perfusion measurements. The authors present the new algorithm partial scan artifact reduction (PSAR) that corrects a dynamic phase-correlated scan without a priori information. Methods: In general, a full scan does not suffer from partial scan artifacts since all projections in [0, 2{pi}] contribute to the data. To maintain the optimum temporal resolution and the phase correlation, PSAR creates an artificial full scan p{sub n}{sup AF} by projectionwise averaging a set of neighboring partial scans p{sub n}{sup P} from the same perfusion examination (typically N{approx_equal}30 phase-correlated partial scans distributed over 20 s and n=1,...,N). Corresponding to the angular range of each partial scan, the authors extract virtual partial scans p{sub n}{sup V} from the artificial full scan p{sub n}{sup AF}. A standard reconstruction yields the corresponding images f{sub n}{sup P}, f{sub n}{sup AF}, and f{sub n}{sup V}. Subtracting the virtual partial scan image f{sub n}{sup V} from the artificial full scan image f{sub n}{sup AF} yields an artifact image that can be used to correct the original partial scan image: f{sub n}{sup C}=f{sub n}{sup P}-f{sub n}{sup V}+f{sub n}{sup AF}, where f{sub n}{sup C} is the corrected image. Results: The authors evaluated the effects of scattered radiation on the partial scan artifacts using simulated and measured water phantoms and found a strong correlation. The PSAR algorithm has been validated with a simulated semianthropomorphic heart phantom and with measurements of a dynamic biological perfusion phantom. For the stationary phantoms, real full scans have been performed to provide theoretical reference

  20. Evaluation of pituitary adenomas by multidirectional multislice dynamic CT

    International Nuclear Information System (INIS)

    Abe, T.; Izumiyama, H.; Fujisawa, I.

    2002-01-01

    Purpose: Multidetector-row CT is a new technology with a short scanning time. Multislice dynamic CT (MSDCT) in various directions can be obtained using the multidetector-row CT with multiplanar reformatting (MPR) technique. Material and Methods: We evaluated the initial results of sagittal and coronal MSDCT images reconstructed by MPR (MSDCT-MPR) in 3 pituitary adenoma patients with a pacemaker. Results: In a patient with microadenoma, the maximum contrast between the normal anterior pituitary gland and the adenoma occurred approximately 50 s after the start of the contrast medium injection. A microadenoma was depicted as a less enhanced area relative to normal pituitary tissue. The macroadenomas were depicted as a less enhanced mass with cavernous sinus invasion in 1 patient and as a non-uniformly enhanced mass in another patient. Bone destruction and incomplete opening of the sellar floor during previous surgery were clearly detected in 2 patients with macroadenomas. These pituitary adenomas were removed via the transnasal route based on information from the MSDCT-MPR images only. The findings were verified surgically. Conclusion: The MSDCT-MPR provided the information needed for surgery with good image quality in the 3 patients with pacemakers. MSDCT-MPR appears to be a useful technique for patients with a pituitary adenoma in whom MR imaging is not available. This is the first report, to our knowledge, of the MSDCT-MPR technique being used to demonstrate pituitary disorders

  1. Evaluation of pituitary adenomas by multidirectional multislice dynamic CT

    Energy Technology Data Exchange (ETDEWEB)

    Abe, T.; Izumiyama, H. [Showa Univ. School of Medicine, Tokyo (Japan). Dept. of Neurosurgery; Fujisawa, I. [Kishiwada City Hospital, Kishiwada (Japan). Dept. of Radiology

    2002-11-01

    Purpose: Multidetector-row CT is a new technology with a short scanning time. Multislice dynamic CT (MSDCT) in various directions can be obtained using the multidetector-row CT with multiplanar reformatting (MPR) technique. Material and Methods: We evaluated the initial results of sagittal and coronal MSDCT images reconstructed by MPR (MSDCT-MPR) in 3 pituitary adenoma patients with a pacemaker. Results: In a patient with microadenoma, the maximum contrast between the normal anterior pituitary gland and the adenoma occurred approximately 50 s after the start of the contrast medium injection. A microadenoma was depicted as a less enhanced area relative to normal pituitary tissue. The macroadenomas were depicted as a less enhanced mass with cavernous sinus invasion in 1 patient and as a non-uniformly enhanced mass in another patient. Bone destruction and incomplete opening of the sellar floor during previous surgery were clearly detected in 2 patients with macroadenomas. These pituitary adenomas were removed via the transnasal route based on information from the MSDCT-MPR images only. The findings were verified surgically. Conclusion: The MSDCT-MPR provided the information needed for surgery with good image quality in the 3 patients with pacemakers. MSDCT-MPR appears to be a useful technique for patients with a pituitary adenoma in whom MR imaging is not available. This is the first report, to our knowledge, of the MSDCT-MPR technique being used to demonstrate pituitary disorders.

  2. Patients with liver FNH and HCC patients with negative AFP: plain and dynamic enhanced MRI and CT findings

    Directory of Open Access Journals (Sweden)

    LI Mingtong

    2015-05-01

    Full Text Available ObjectiveTo investigate plain and dynamic enhanced magnetic resonance imaging (MRI and computed tomography (CT findings in patients with focal nodular hyperplasia (FNH of the liver and hepatocellular carcinoma (HCC patients with negative alpha-fetoprotein (AFP. MethodsA statistical analysis was performed on the clinical data of 124 cases of liver tumor admitted to Beijing Miyun County Hospital from April 2012 to April 2014. ResultsFifty-five of the 74 patients with FNH underwent CT examination, among whom 38 patients received three-phase dynamic enhanced scan and 16 received only plain scan; 62 cases had plain and enhanced MRI with the application of contrast agent Gd-BOPTA in 42 patients. Among the 50 HCC patients with negative AFP, CT examination was performed in 40 and 10 only had plain scan; 46 patients received plain and enhanced MRI with the use of contrast agent Gd-BOPTA in 30. Delayed scan after 1-2 h demonstrated low signal in 30 lesions of the 30 cases. ConclusionFor patients with liver FNH and AFP-negative HCC patients, their plain and dynamic enhanced MRI and CT scan have respective characteristics. A combination of multiple examination methods can significantly improve diagnostic yield of the two diseases.

  3. 3D printing for orthopedic applications: from high resolution cone beam CT images to life size physical models

    Science.gov (United States)

    Jackson, Amiee; Ray, Lawrence A.; Dangi, Shusil; Ben-Zikri, Yehuda K.; Linte, Cristian A.

    2017-03-01

    With increasing resolution in image acquisition, the project explores capabilities of printing toward faithfully reflecting detail and features depicted in medical images. To improve safety and efficiency of orthopedic surgery and spatial conceptualization in training and education, this project focused on generating virtual models of orthopedic anatomy from clinical quality computed tomography (CT) image datasets and manufacturing life-size physical models of the anatomy using 3D printing tools. Beginning with raw micro CT data, several image segmentation techniques including thresholding, edge recognition, and region-growing algorithms available in packages such as ITK-SNAP, MITK, or Mimics, were utilized to separate bone from surrounding soft tissue. After converting the resulting data to a standard 3D printing format, stereolithography (STL), the STL file was edited using Meshlab, Netfabb, and Meshmixer. The editing process was necessary to ensure a fully connected surface (no loose elements), positive volume with manifold geometry (geometry possible in the 3D physical world), and a single, closed shell. The resulting surface was then imported into a "slicing" software to scale and orient for printing on a Flashforge Creator Pro. In printing, relationships between orientation, print bed volume, model quality, material use and cost, and print time were considered. We generated anatomical models of the hand, elbow, knee, ankle, and foot from both low-dose high-resolution cone-beam CT images acquired using the soon to be released scanner developed by Carestream, as well as scaled models of the skeletal anatomy of the arm and leg, together with life-size models of the hand and foot.

  4. The Primary Care Electronic Library: RSS feeds using SNOMED-CT indexing for dynamic content delivery.

    Science.gov (United States)

    Robinson, Judas; de Lusignan, Simon; Kostkova, Patty; Madge, Bruce; Marsh, A; Biniaris, C

    2006-01-01

    Rich Site Summary (RSS) feeds are a method for disseminating and syndicating the contents of a website using extensible mark-up language (XML). The Primary Care Electronic Library (PCEL) distributes recent additions to the site in the form of an RSS feed. When new resources are added to PCEL, they are manually assigned medical subject headings (MeSH terms), which are then automatically mapped to SNOMED-CT terms using the Unified Medical Language System (UMLS) Metathesaurus. The library is thus searchable using MeSH or SNOMED-CT. Our syndicate partner wished to have remote access to PCEL coronary heart disease (CHD) information resources based on SNOMED-CT search terms. To pilot the supply of relevant information resources in response to clinically coded requests, using RSS syndication for transmission between web servers. Our syndicate partner provided a list of CHD SNOMED-CT terms to its end-users, a list which was coded according to UMLS specifications. When the end-user requested relevant information resources, this request was relayed from our syndicate partner's web server to the PCEL web server. The relevant resources were retrieved from the PCEL MySQL database. This database is accessed using a server side scripting language (PHP), which enables the production of dynamic RSS feeds on the basis of Source Asserted Identifiers (CODEs) contained in UMLS. Retrieving resources using SNOMED-CT terms using syndication can be used to build a functioning application. The process from request to display of syndicated resources took less than one second. The results of the pilot illustrate that it is possible to exchange data between servers using RSS syndication. This method could be utilised dynamically to supply digital library resources to a clinical system with SNOMED-CT data used as the standard of reference.

  5. Filtered backprojection proton CT reconstruction along most likely paths

    Energy Technology Data Exchange (ETDEWEB)

    Rit, Simon; Dedes, George; Freud, Nicolas; Sarrut, David; Letang, Jean Michel [Universite de Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, Universite Lyon 1, Centre Leon Berard, 69008 Lyon (France)

    2013-03-15

    Purpose: Proton CT (pCT) has the potential to accurately measure the electron density map of tissues at low doses but the spatial resolution is prohibitive if the curved paths of protons in matter is not accounted for. The authors propose to account for an estimate of the most likely path of protons in a filtered backprojection (FBP) reconstruction algorithm. Methods: The energy loss of protons is first binned in several proton radiographs at different distances to the proton source to exploit the depth-dependency of the estimate of the most likely path. This process is named the distance-driven binning. A voxel-specific backprojection is then used to select the adequate radiograph in the distance-driven binning in order to propagate in the pCT image the best achievable spatial resolution in proton radiographs. The improvement in spatial resolution is demonstrated using Monte Carlo simulations of resolution phantoms. Results: The spatial resolution in the distance-driven binning depended on the distance of the objects from the source and was optimal in the binned radiograph corresponding to that distance. The spatial resolution in the reconstructed pCT images decreased with the depth in the scanned object but it was always better than previous FBP algorithms assuming straight line paths. In a water cylinder with 20 cm diameter, the observed range of spatial resolutions was 0.7 - 1.6 mm compared to 1.0 - 2.4 mm at best with a straight line path assumption. The improvement was strongly enhanced in shorter 200 Degree-Sign scans. Conclusions: Improved spatial resolution was obtained in pCT images with filtered backprojection reconstruction using most likely path estimates of protons. The improvement in spatial resolution combined with the practicality of FBP algorithms compared to iterative reconstruction algorithms makes this new algorithm a candidate of choice for clinical pCT.

  6. CT-based attenuation correction and resolution compensation for I-123 IMP brain SPECT normal database: a multicenter phantom study.

    Science.gov (United States)

    Inui, Yoshitaka; Ichihara, Takashi; Uno, Masaki; Ishiguro, Masanobu; Ito, Kengo; Kato, Katsuhiko; Sakuma, Hajime; Okazawa, Hidehiko; Toyama, Hiroshi

    2018-03-19

    Statistical image analysis of brain SPECT images has improved diagnostic accuracy for brain disorders. However, the results of statistical analysis vary depending on the institution even when they use a common normal database (NDB), due to different intrinsic spatial resolutions or correction methods. The present study aimed to evaluate the correction of spatial resolution differences between equipment and examine the differences in skull bone attenuation to construct a common NDB for use in multicenter settings. The proposed acquisition and processing protocols were those routinely used at each participating center with additional triple energy window (TEW) scatter correction (SC) and computed tomography (CT) based attenuation correction (CTAC). A multicenter phantom study was conducted on six imaging systems in five centers, with either single photon emission computed tomography (SPECT) or SPECT/CT, and two brain phantoms. The gray/white matter I-123 activity ratio in the brain phantoms was 4, and they were enclosed in either an artificial adult male skull, 1300 Hounsfield units (HU), a female skull, 850 HU, or an acrylic cover. The cut-off frequency of the Butterworth filters was adjusted so that the spatial resolution was unified to a 17.9 mm full width at half maximum (FWHM), that of the lowest resolution system. The gray-to-white matter count ratios were measured from SPECT images and compared with the actual activity ratio. In addition, mean, standard deviation and coefficient of variation images were calculated after normalization and anatomical standardization to evaluate the variability of the NDB. The gray-to-white matter count ratio error without SC and attenuation correction (AC) was significantly larger for higher bone densities (p correction. The proposed protocol showed potential for constructing an appropriate common NDB from SPECT images with SC, AC and spatial resolution compensation.

  7. Dynamic CT myocardial perfusion imaging: performance of 3D semi-automated evaluation software

    Energy Technology Data Exchange (ETDEWEB)

    Ebersberger, Ullrich [Medical University of South Carolina, Heart and Vascular Center, Charleston, SC (United States); Heart Center Munich-Bogenhausen, Department of Cardiology and Intensive Care Medicine, Munich (Germany); Marcus, Roy P.; Nikolaou, Konstantin; Bamberg, Fabian [University of Munich, Institute of Clinical Radiology, Munich (Germany); Schoepf, U.J.; Gray, J.C.; McQuiston, Andrew D. [Medical University of South Carolina, Heart and Vascular Center, Charleston, SC (United States); Lo, Gladys G. [Hong Kong Sanatorium and Hospital, Department of Diagnostic and Interventional Radiology, Hong Kong (China); Wang, Yining [Medical University of South Carolina, Heart and Vascular Center, Charleston, SC (United States); Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Department of Radiology, Beijing (China); Blanke, Philipp [Medical University of South Carolina, Heart and Vascular Center, Charleston, SC (United States); University Hospital Freiburg, Department of Diagnostic Radiology, Freiburg (Germany); Geyer, Lucas L. [Medical University of South Carolina, Heart and Vascular Center, Charleston, SC (United States); University of Munich, Institute of Clinical Radiology, Munich (Germany); Cho, Young Jun [Medical University of South Carolina, Heart and Vascular Center, Charleston, SC (United States); Konyang University College of Medicine, Department of Radiology, Daejeon (Korea, Republic of); Scheuering, Michael; Canstein, Christian [Siemens Healthcare, CT Division, Forchheim (Germany); Hoffmann, Ellen [Heart Center Munich-Bogenhausen, Department of Cardiology and Intensive Care Medicine, Munich (Germany)

    2014-01-15

    To evaluate the performance of three-dimensional semi-automated evaluation software for the assessment of myocardial blood flow (MBF) and blood volume (MBV) at dynamic myocardial perfusion computed tomography (CT). Volume-based software relying on marginal space learning and probabilistic boosting tree-based contour fitting was applied to CT myocardial perfusion imaging data of 37 subjects. In addition, all image data were analysed manually and both approaches were compared with SPECT findings. Study endpoints included time of analysis and conventional measures of diagnostic accuracy. Of 592 analysable segments, 42 showed perfusion defects on SPECT. Average analysis times for the manual and software-based approaches were 49.1 ± 11.2 and 16.5 ± 3.7 min respectively (P < 0.01). There was strong agreement between the two measures of interest (MBF, ICC = 0.91, and MBV, ICC = 0.88, both P < 0.01) and no significant difference in MBF/MBV with respect to diagnostic accuracy between the two approaches for both MBF and MBV for manual versus software-based approach; respectively; all comparisons P > 0.05. Three-dimensional semi-automated evaluation of dynamic myocardial perfusion CT data provides similar measures and diagnostic accuracy to manual evaluation, albeit with substantially reduced analysis times. This capability may aid the integration of this test into clinical workflows. (orig.)

  8. An experimental study on the radiation-induced injury of the rabbit lung: Correlation of soft-tissue radiograph and high- resolution CT findings with pathologic findings

    International Nuclear Information System (INIS)

    Lee, Ki Nam; Nam, Kyung Jin; Park, Byeoung Ho; Jeong, Jin Sook; Lee, Hyung Sik

    1994-01-01

    To describe soft-tissue radiographic and high-resolution CT findings of radiation-induced lung injury of rabbit over time and to correlate them with pathologic findings. 15 rabbits were irradiated in the right lung with one fracture of 2000 cGy. After 4, 6, 12, 20, 24 weeks 3 rabbits in each group were sacrificed and soft-tissue radiographs and high-resolution CT of their lung tissue were obtained. Radiological findings were correlated with pathologic findings. On soft-tissue radiogram, radiation pneumonitis shown as consolidation with air- bronchogram occurred in 3 cases after 6 weeks , and in 1 case after 12 weeks of irradiation. In addition, pneumonic consolidation with adjacent pleural contraction was seen in 2 cases after 12 weeks of irradiation. Fibrotic changes indicated by decreased volume occurred after 20 weeks and combined bronchiectatic change and bronchial wall thickening appeared after 20 weeks(N=1), and 24 weeks(N=3). HRCT findings of radiation pneumonitis were homogeneous, increased attention after 4 weeks(N=3), 6 and 12 weeks(each N=1), patchy consolidation after 6 and 12 weeks(each N=2), discrete consolidation after 12, 20 and 24 weeks(each N=1) and solid consolidation after 20 and 24 weeks(each N=2). Pathologically radiation pneumonitis and pulmonary congestion were seen after 4 and 6 weeks. After 6 weeks, collagen and reticulin fibers were detected along alveolar wall. Mixed radiation pneumonitis and fibrosis were detected after 12 weeks. 20 weeks after irradiation, fibrosis was well defined in interstitium and in 24 weeks, decreased number of alveoli and thickening of bronchial wall were defined. Radiation pneumonitis was provoked 4 weeks after irradiation on rabbit lung and progressed into radiation fibrosis 20 weeks after irradiation on soft-tissue radiographs and high-resolution CT. High-resolution CT is more precise in detecting early radiation pneumonitis and detailed pathologic findings

  9. 18F-Fluorodeoxyglucose PET/CT and dynamic contrast-enhanced MRI as imaging biomarkers in malignant pleural mesothelioma

    OpenAIRE

    Hall, D. O.; Hooper, C. E.; Searle, J.; Darby, M.; White, P.; Harvey, J. E.; Braybrooke, J. P.; Maskell, N. A.; Masani, V.; Lyburn, I. D.

    2018-01-01

    Purpose\\ud \\ud The purpose of this study was to compare the use of fluorine-18-fluorodeoxyglucose (18F-FDG) PET with computed tomography (CT) and dynamic contrast-enhanced (DCE) MRI to predict prognosis and monitor treatment in malignant pleural mesothelioma.\\ud \\ud Patients and methods\\ud \\ud 18F-FDG PET/CT and DCE-MRI studies carried out as part of the South West Area Mesothelioma Pemetrexed trial were used. 18F-FDG PET/CT and DCE-MRI studies were carried out before treatment, and after two...

  10. Tensor-based dictionary learning for dynamic tomographic reconstruction

    International Nuclear Information System (INIS)

    Tan, Shengqi; Wu, Zhifang; Zhang, Yanbo; Mou, Xuanqin; Wang, Ge; Cao, Guohua; Yu, Hengyong

    2015-01-01

    In dynamic computed tomography (CT) reconstruction, the data acquisition speed limits the spatio-temporal resolution. Recently, compressed sensing theory has been instrumental in improving CT reconstruction from far few-view projections. In this paper, we present an adaptive method to train a tensor-based spatio-temporal dictionary for sparse representation of an image sequence during the reconstruction process. The correlations among atoms and across phases are considered to capture the characteristics of an object. The reconstruction problem is solved by the alternating direction method of multipliers. To recover fine or sharp structures such as edges, the nonlocal total variation is incorporated into the algorithmic framework. Preclinical examples including a sheep lung perfusion study and a dynamic mouse cardiac imaging demonstrate that the proposed approach outperforms the vectorized dictionary-based CT reconstruction in the case of few-view reconstruction. (paper)

  11. Tensor-based Dictionary Learning for Dynamic Tomographic Reconstruction

    Science.gov (United States)

    Tan, Shengqi; Zhang, Yanbo; Wang, Ge; Mou, Xuanqin; Cao, Guohua; Wu, Zhifang; Yu, Hengyong

    2015-01-01

    In dynamic computed tomography (CT) reconstruction, the data acquisition speed limits the spatio-temporal resolution. Recently, compressed sensing theory has been instrumental in improving CT reconstruction from far few-view projections. In this paper, we present an adaptive method to train a tensor-based spatio-temporal dictionary for sparse representation of an image sequence during the reconstruction process. The correlations among atoms and across phases are considered to capture the characteristics of an object. The reconstruction problem is solved by the alternating direction method of multipliers. To recover fine or sharp structures such as edges, the nonlocal total variation is incorporated into the algorithmic framework. Preclinical examples including a sheep lung perfusion study and a dynamic mouse cardiac imaging demonstrate that the proposed approach outperforms the vectorized dictionary-based CT reconstruction in the case of few-view reconstruction. PMID:25779991

  12. Quantitative Myocardial Perfusion with Dynamic Contrast-Enhanced Imaging in MRI and CT: Theoretical Models and Current Implementation

    Directory of Open Access Journals (Sweden)

    G. J. Pelgrim

    2016-01-01

    Full Text Available Technological advances in magnetic resonance imaging (MRI and computed tomography (CT, including higher spatial and temporal resolution, have made the prospect of performing absolute myocardial perfusion quantification possible, previously only achievable with positron emission tomography (PET. This could facilitate integration of myocardial perfusion biomarkers into the current workup for coronary artery disease (CAD, as MRI and CT systems are more widely available than PET scanners. Cardiac PET scanning remains expensive and is restricted by the requirement of a nearby cyclotron. Clinical evidence is needed to demonstrate that MRI and CT have similar accuracy for myocardial perfusion quantification as PET. However, lack of standardization of acquisition protocols and tracer kinetic model selection complicates comparison between different studies and modalities. The aim of this overview is to provide insight into the different tracer kinetic models for quantitative myocardial perfusion analysis and to address typical implementation issues in MRI and CT. We compare different models based on their theoretical derivations and present the respective consequences for MRI and CT acquisition parameters, highlighting the interplay between tracer kinetic modeling and acquisition settings.

  13. Practical considerations for high spatial and temporal resolution dynamic transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Michael R. [Materials Science and Technology Division, Chemistry and Materials Science Directorate, Lawrence Livermore National Laboratory, P.O. Box 808, L-356, Livermore, CA 94550 (United States)], E-mail: armstrong30@llnl.gov; Boyden, Ken [Materials Science and Technology Division, Chemistry and Materials Science Directorate, Lawrence Livermore National Laboratory, P.O. Box 808, L-356, Livermore, CA 94550 (United States); Browning, Nigel D. [Materials Science and Technology Division, Chemistry and Materials Science Directorate, Lawrence Livermore National Laboratory, P.O. Box 808, L-356, Livermore, CA 94550 (United States); Department of Chemical Engineering and Materials Science, University of California-Davis, One Shields Avenue, Davis, CA 95616 (United States); Campbell, Geoffrey H.; Colvin, Jeffrey D.; De Hope, William J.; Frank, Alan M. [Materials Science and Technology Division, Chemistry and Materials Science Directorate, Lawrence Livermore National Laboratory, P.O. Box 808, L-356, Livermore, CA 94550 (United States); Gibson, David J.; Hartemann, Fred [N Division, Physics and Advanced Technologies Directorate, Lawrence Livermore National Laboratory, P.O. Box 808, L-280, Livermore, CA 94550 (United States); Kim, Judy S. [Materials Science and Technology Division, Chemistry and Materials Science Directorate, Lawrence Livermore National Laboratory, P.O. Box 808, L-356, Livermore, CA 94550 (United States); Department of Chemical Engineering and Materials Science, University of California-Davis, One Shields Avenue, Davis, CA 95616 (United States); King, Wayne E.; La Grange, Thomas B.; Pyke, Ben J.; Reed, Bryan W.; Shuttlesworth, Richard M.; Stuart, Brent C.; Torralva, Ben R. [Materials Science and Technology Division, Chemistry and Materials Science Directorate, Lawrence Livermore National Laboratory, P.O. Box 808, L-356, Livermore, CA 94550 (United States)

    2007-04-15

    Although recent years have seen significant advances in the spatial resolution possible in the transmission electron microscope (TEM), the temporal resolution of most microscopes is limited to video rate at best. This lack of temporal resolution means that our understanding of dynamic processes in materials is extremely limited. High temporal resolution in the TEM can be achieved, however, by replacing the normal thermionic or field emission source with a photoemission source. In this case the temporal resolution is limited only by the ability to create a short pulse of photoexcited electrons in the source, and this can be as short as a few femtoseconds. The operation of the photo-emission source and the control of the subsequent pulse of electrons (containing as many as 5x10{sup 7} electrons) create significant challenges for a standard microscope column that is designed to operate with a single electron in the column at any one time. In this paper, the generation and control of electron pulses in the TEM to obtain a temporal resolution <10{sup -6} s will be described and the effect of the pulse duration and current density on the spatial resolution of the instrument will be examined. The potential of these levels of temporal and spatial resolution for the study of dynamic materials processes will also be discussed.

  14. Practical considerations for high spatial and temporal resolution dynamic transmission electron microscopy

    International Nuclear Information System (INIS)

    Armstrong, Michael R.; Boyden, Ken; Browning, Nigel D.; Campbell, Geoffrey H.; Colvin, Jeffrey D.; De Hope, William J.; Frank, Alan M.; Gibson, David J.; Hartemann, Fred; Kim, Judy S.; King, Wayne E.; La Grange, Thomas B.; Pyke, Ben J.; Reed, Bryan W.; Shuttlesworth, Richard M.; Stuart, Brent C.; Torralva, Ben R.

    2007-01-01

    Although recent years have seen significant advances in the spatial resolution possible in the transmission electron microscope (TEM), the temporal resolution of most microscopes is limited to video rate at best. This lack of temporal resolution means that our understanding of dynamic processes in materials is extremely limited. High temporal resolution in the TEM can be achieved, however, by replacing the normal thermionic or field emission source with a photoemission source. In this case the temporal resolution is limited only by the ability to create a short pulse of photoexcited electrons in the source, and this can be as short as a few femtoseconds. The operation of the photo-emission source and the control of the subsequent pulse of electrons (containing as many as 5x10 7 electrons) create significant challenges for a standard microscope column that is designed to operate with a single electron in the column at any one time. In this paper, the generation and control of electron pulses in the TEM to obtain a temporal resolution -6 s will be described and the effect of the pulse duration and current density on the spatial resolution of the instrument will be examined. The potential of these levels of temporal and spatial resolution for the study of dynamic materials processes will also be discussed

  15. CT anatomy of the spine

    International Nuclear Information System (INIS)

    Haughton, V.M.; Williams, A.L.

    1980-01-01

    Effective CT scanning of the spine requires gantry opening greater than 50 cm, spatial resolution of less than 1 mm, contrast resolution of better than 0.5%, and a method for exact localization and selection of cut levels. With a suitable scanner, excellent images of the intervertebral disc, dural sac, spinal cord, facet joints, ligamentum flavum, and epidural veins can be obtained. The purpose of this report is to describe the normal CT appearance of the spinal soft tissues. (orig.) [de

  16. The Cryosphere Model Comparison Tool (CmCt): Ice Sheet Model Validation and Comparison Tool for Greenland and Antarctica

    Science.gov (United States)

    Simon, E.; Nowicki, S.; Neumann, T.; Tyahla, L.; Saba, J. L.; Guerber, J. R.; Bonin, J. A.; DiMarzio, J. P.

    2017-12-01

    The Cryosphere model Comparison tool (CmCt) is a web based ice sheet model validation tool that is being developed by NASA to facilitate direct comparison between observational data and various ice sheet models. The CmCt allows the user to take advantage of several decades worth of observations from Greenland and Antarctica. Currently, the CmCt can be used to compare ice sheet models provided by the user with remotely sensed satellite data from ICESat (Ice, Cloud, and land Elevation Satellite) laser altimetry, GRACE (Gravity Recovery and Climate Experiment) satellite, and radar altimetry (ERS-1, ERS-2, and Envisat). One or more models can be uploaded through the CmCt website and compared with observational data, or compared to each other or other models. The CmCt calculates statistics on the differences between the model and observations, and other quantitative and qualitative metrics, which can be used to evaluate the different model simulations against the observations. The qualitative metrics consist of a range of visual outputs and the quantitative metrics consist of several whole-ice-sheet scalar values that can be used to assign an overall score to a particular simulation. The comparison results from CmCt are useful in quantifying improvements within a specific model (or within a class of models) as a result of differences in model dynamics (e.g., shallow vs. higher-order dynamics approximations), model physics (e.g., representations of ice sheet rheological or basal processes), or model resolution (mesh resolution and/or changes in the spatial resolution of input datasets). The framework and metrics could also be used for use as a model-to-model intercomparison tool, simply by swapping outputs from another model as the observational datasets. Future versions of the tool will include comparisons with other datasets that are of interest to the modeling community, such as ice velocity, ice thickness, and surface mass balance.

  17. Noninvasive assessment of pulmonary vascular and airway response to physiologic stimuli with high-resolution CT

    International Nuclear Information System (INIS)

    Herold, C.J.; Wetzel, R.C.; Herold, S.M.; Martin, L.; Zerhouni, E.A.; Robotham, J.

    1990-01-01

    This paper reports on reactivity of pulmonary vasculature under various stimuli studied invasively with perfused isolated lung models. We used high- resolution CT (HRCT) to demonstrate noninvasively the effects of hypoxia and volume variation on pulmonary circulation and airways. Five anesthetized and ventilated pigs were examined with HRCT (10 contiguous 2-mm sections through the lower lobes) during varying oxygen tensions and intravascular volume states. Blood pressures, pulmonary artery pressures, blood gas levels, and cardiac indexes (thermodilution) were measured. HRCT scans were digitized, and vessel and airway areas were determined with use of a computer edging process

  18. Temporal Scalability of Dynamic Volume Data using Mesh Compensated Wavelet Lifting.

    Science.gov (United States)

    Schnurrer, Wolfgang; Pallast, Niklas; Richter, Thomas; Kaup, Andre

    2017-10-12

    Due to their high resolution, dynamic medical 2D+t and 3D+t volumes from computed tomography (CT) and magnetic resonance tomography (MR) reach a size which makes them very unhandy for teleradiologic applications. A lossless scalable representation offers the advantage of a down-scaled version which can be used for orientation or previewing, while the remaining information for reconstructing the full resolution is transmitted on demand. The wavelet transform offers the desired scalability. A very high quality of the lowpass sub-band is crucial in order to use it as a down-scaled representation. We propose an approach based on compensated wavelet lifting for obtaining a scalable representation of dynamic CT and MR volumes with very high quality. The mesh compensation is feasible to model the displacement in dynamic volumes which is mainly given by expansion and contraction of tissue over time. To achieve this, we propose an optimized estimation of the mesh compensation parameters to optimally fit for dynamic volumes. Within the lifting structure, the inversion of the motion compensation is crucial in the update step. We propose to take this inversion directly into account during the estimation step and can improve the quality of the lowpass sub-band by 0.63 dB and 0.43 dB on average for our tested dynamic CT and MR volumes at the cost of an increase of the rate by 2.4% and 1.2% on average.

  19. Radiotherapy volume delineation using dynamic [18F]-FDG PET/CT imaging in patients with oropharyngeal cancer: a pilot study.

    Science.gov (United States)

    Silvoniemi, Antti; Din, Mueez U; Suilamo, Sami; Shepherd, Tony; Minn, Heikki

    2016-11-01

    Delineation of gross tumour volume in 3D is a critical step in the radiotherapy (RT) treatment planning for oropharyngeal cancer (OPC). Static [ 18 F]-FDG PET/CT imaging has been suggested as a method to improve the reproducibility of tumour delineation, but it suffers from low specificity. We undertook this pilot study in which dynamic features in time-activity curves (TACs) of [ 18 F]-FDG PET/CT images were applied to help the discrimination of tumour from inflammation and adjacent normal tissue. Five patients with OPC underwent dynamic [ 18 F]-FDG PET/CT imaging in treatment position. Voxel-by-voxel analysis was performed to evaluate seven dynamic features developed with the knowledge of differences in glucose metabolism in different tissue types and visual inspection of TACs. The Gaussian mixture model and K-means algorithms were used to evaluate the performance of the dynamic features in discriminating tumour voxels compared to the performance of standardized uptake values obtained from static imaging. Some dynamic features showed a trend towards discrimination of different metabolic areas but lack of consistency means that clinical application is not recommended based on these results alone. Impact of inflammatory tissue remains a problem for volume delineation in RT of OPC, but a simple dynamic imaging protocol proved practicable and enabled simple data analysis techniques that show promise for complementing the information in static uptake values.

  20. Studies on image quality, high contrast resolution and dose for the axial skeleton and limbs with a new, dedicated CT system (ISO-C-3D)

    International Nuclear Information System (INIS)

    Rock, C.; Kotsianos, D.; Linsenmaier, U.; Fischer, T.

    2002-01-01

    Purpose: Evaluation of 3D-CT imaging of the axial skeleton and different joints of the lower and upper extremities with a new dedicated CT system (ISO-C-3D) based on a mobile isocentric C-arm image amplifier. Material and Methods: 27 cadaveric specimes of different joints of the lower and upper extremities and of the spinal column were examined with 3D-CT imaging (ISO-C-3d). All images were evaluated by 3 radiologists for image quality using a semiquantitative score (score value 1: poor quality; score value 4: excellent quality). In addition, dose measurements and measurements of high contrast resolution were performed in comparison to conventional and low-dose spiral CT using a high contrast phantom (Catphan, Phantom Laboratories). Results: Adequate image quality (mean score values 3-4) could be achieved with an applied dose comparable to low-dose CT in smaller joints such as wrist, elbow, ankle and knee. A remarkably inferior image quality resulted in imaging of the hip, lumbar and thoracic spine (mean score values 2-3) in spite of almost doubling the dose (dose increased by 85 percent). The image quality of shoulder examinations was insufficient (mean score value 1). Phantom studies showed a high-contrast resolution comparable to helical CT in the xy-axis (9 lp/cm). Conclusion: Preliminary results show, that image quality of C-arm-based CT-imaging (ISO-C-3D) seems to be adequate in smaller joints. ISO-C-3D images of the hip and axial skeleton show a decreased image quality, which does not seem to be sufficient for diagnosing subtle fractures. (orig.) [de

  1. Clinical studies of functional imaging of dynamic CT for chronic brain-damaged patients

    International Nuclear Information System (INIS)

    Inada, Haruo; Miyano, Satoshi

    1995-01-01

    The 311 brain-damaged patients, mostly of cerebrovascular disease (CVD) were examined by functional imaging to dynamic CT (FIDCT) at Tokyo Metropolitan Rehabilitation Hospital. The abnormal patterns of FIDCT were classified according to two categories, i.e. focal area where plain CT showed low density area (LDA), and extra-focal area where plain CT showed no abnormal findings. These patterns were diagnosed by using the two parameters, i.e. Corrected First Moment (CM) and Time to Peak (TP). Over 50% of the focal abnormal FIDCT revealed tha same area with LDA on plain CT. The extra-focal FIDCT showed various abnormal patterns, and only 11% of all the findings had no abnormalities. The correlation of the specific patterns of extra-focal FIDCT with the multiple CVD episodes was investigated, and the findings that had significant correlation were (a) delayed CM of bilateral white matter, (b) diffusely delayed TP of the affected hemisphere, and the patient group that showed no extra-focal abnormal FIDCT had significant low incidence of multiple CVD episodes. From these results, it is concluded that the high-risk group of stroke recurrence can be predicted by extra-focal findings of FIDCT. (author)

  2. Clinical studies of functional imaging of dynamic CT for chronic brain-damaged patients

    Energy Technology Data Exchange (ETDEWEB)

    Inada, Haruo; Miyano, Satoshi [Jikei Univ., Tokyo (Japan). School of Medicine

    1995-03-01

    The 311 brain-damaged patients, mostly of cerebrovascular disease (CVD) were examined by functional imaging to dynamic CT (FIDCT) at Tokyo Metropolitan Rehabilitation Hospital. The abnormal patterns of FIDCT were classified according to two categories, i.e. focal area where plain CT showed low density area (LDA), and extra-focal area where plain CT showed no abnormal findings. These patterns were diagnosed by using the two parameters, i.e. Corrected First Moment (CM) and Time to Peak (TP). Over 50% of the focal abnormal FIDCT revealed tha same area with LDA on plain CT. The extra-focal FIDCT showed various abnormal patterns, and only 11% of all the findings had no abnormalities. The correlation of the specific patterns of extra-focal FIDCT with the multiple CVD episodes was investigated, and the findings that had significant correlation were (a) delayed CM of bilateral white matter, (b) diffusely delayed TP of the affected hemisphere, and the patient group that showed no extra-focal abnormal FIDCT had significant low incidence of multiple CVD episodes. From these results, it is concluded that the high-risk group of stroke recurrence can be predicted by extra-focal findings of FIDCT. (author).

  3. Early dynamic imaging in 68Ga- PSMA-11 PET/CT allows discrimination of urinary bladder activity and prostate cancer lesions.

    Science.gov (United States)

    Uprimny, Christian; Kroiss, Alexander Stephan; Decristoforo, Clemens; Fritz, Josef; Warwitz, Boris; Scarpa, Lorenza; Roig, Llanos Geraldo; Kendler, Dorota; von Guggenberg, Elisabeth; Bektic, Jasmin; Horninger, Wolfgang; Virgolini, Irene Johanna

    2017-05-01

    PET/CT with 68 Ga-labelled prostate-specific membrane antigen (PSMA)-ligands has been proven to establish a promising imaging modality in the work-up of prostate cancer (PC) patients with biochemical relapse. Despite a high overall detection rate, the visualisation of local recurrence may be hampered by high physiologic tracer accumulation in the urinary bladder on whole body imaging, usually starting 60 min after injection. This study sought to verify whether early dynamic 68 Ga-PSMA-11 (HBED-CC)PET/CT can differentiate pathologic PC-related tracer uptake from physiologic tracer accumulation in the urinary bladder. Eighty consecutive PC patients referred to 68 Ga -PSMA-11 PET/CT were included in this retrospective analysis (biochemical relapse: n = 64; primary staging: n = 8; evaluation of therapy response/restaging: n = 8). In addition to whole-body PET/CT acquisition 60 min post injection early dynamic imaging of the pelvis in the first 8 min after tracer injection was performed. SUV max of pathologic lesions was calculated and time-activity curves were generated and compared to those of urinary bladder and areas of physiologic tracer uptake. A total of 55 lesions consistent with malignancy on 60 min whole body imaging exhibited also pathologic 68 Ga-PSMA-11 uptake during early dynamic imaging (prostatic bed/prostate gland: n = 27; lymph nodes: n = 12; bone: n = 16). All pathologic lesions showed tracer uptake within the first 3 min, whereas urinary bladder activity was absent within the first 3 min of dynamic imaging in all patients. Suv max was significantly higher in PC lesions in the first 6 min compared to urinary bladder accumulation (p dynamic imaging in 68 Ga-PSMA-11 PET/CT reliably enables the differentiation of pathologic tracer uptake in PC lesions from physiologic bladder accumulation. Performance of early dynamic imaging in addition to whole body imaging 60 min after tracer injection might improve the detection rate

  4. Dynamic Contrast-Enhanced Perfusion Area-Detector CT: Preliminary Comparison of Diagnostic Performance for N Stage Assessment With FDG PET/CT in Non-Small Cell Lung Cancer.

    Science.gov (United States)

    Ohno, Yoshiharu; Fujisawa, Yasuko; Sugihara, Naoki; Kishida, Yuji; Seki, Shinichiro; Koyama, Hisanobu; Yoshikawa, Takeshi

    2017-11-01

    The objective of our study was to directly compare the capability of dynamic first-pass contrast-enhanced (CE) perfusion area-detector CT (ADCT) and FDG PET/CT for differentiation of metastatic from nonmetastatic lymph nodes and assessment of N stage in patients with non-small cell lung carcinoma (NSCLC). Seventy-seven consecutive patients, 45 men (mean age ± SD, 70.4 ± 5.9 years) and 32 women (71.2 ± 7.7 years), underwent dynamic first-pass CE-perfusion ADCT at two or three different positions for covering the entire thorax, FDG PET/CT, surgical treatment, and pathologic examination. From all ADCT data for each of the subjects, a whole-chest perfusion map was computationally generated using the dual- and single-input maximum slope and Patlak plot methods. For quantitative N stage assessment, perfusion parameters and the maximum standardized uptake value (SUV max ) for each lymph node were determined by measuring the relevant ROI. ROC curve analyses were performed for comparing the diagnostic capability of each of the methods on a per-node basis. N stages evaluated by each of the indexes were then statistically compared with the final pathologic diagnosis by means of chi-square and kappa statistics. The area under the ROC curve (A z ) values of systemic arterial perfusion (A z = 0.89), permeability surface (A z = 0.78), and SUV max (A z = 0.85) were significantly larger than the A z values of total perfusion (A z = 0.70, p Dynamic first-pass CE-perfusion ADCT is as useful as FDG PET/CT for the differentiation of metastatic from nonmetastatic lymph nodes and assessment of N stage in patients with NSCLC.

  5. Optimization of the spatial resolution for the GE discovery PET/CT 710 by using NEMA NU 2-2007 standards

    Science.gov (United States)

    Yoon, Hyun Jin; Jeong, Young Jin; Son, Hye Joo; Kang, Do-Young; Hyun, Kyung-Yae; Lee, Min-Kyung

    2015-01-01

    The spatial resolution in positron emission tomography (PET) is fundamentally limited by the geometry of the detector element, the positron's recombination range with electrons, the acollinearity of the positron, the crystal decoding error, the penetration into the detector ring, and the reconstruction algorithms. In this paper, optimized parameters are suggested to produce high-resolution PET images by using an iterative reconstruction algorithm. A phantom with three point sources structured with three capillary tubes was prepared with an axial extension of less than 1 mm and was filled with 18F-fluorodeoxyglucose (18F-FDG) with concentrations above 200 MBq/cc. The performance measures of all the PET images were acquired according to the National Electrical Manufacturers Association (NEMA) NU 2-2007 standards procedures. The parameters for the iterative reconstruction were adjusted around the values recommended by General Electric GE, and the optimized values of the spatial resolution and the full width at half maximum (FWHM) or the full width at tenth of maximum (FWTM) values were found for the best PET resolution. The axial and the transverse spatial resolutions, according to the filtered back-projection (FBP) at 1 cm off-axis, were 4.81 and 4.48 mm, respectively. The axial and the transaxial spatial resolutions at 10 cm off-axis were 5.63 mm and 5.08 mm, respectively, and the trans-axial resolution at 10 cm was evaluated as the average of the radial and the tangential measurements. The recommended optimized parameters of the spatial resolution according to the NEMA phantom for the number of subsets, the number of iterations, and the Gaussian post-filter are 12, 3, and 3 mm for the iterative reconstruction VUE Point HD without the SharpIR algorithm (HD), and 12, 12, and 5.2 mm with SharpIR (HD.S), respectively, according to the Advantage Workstation Volume Share 5 (AW4.6). The performance measurements for the GE Discovery PET/CT 710 using the NEMA NU 2

  6. Aquilion ONE / ViSION Edition CT scanner realizing 3D dynamic observation with low-dose scanning

    International Nuclear Information System (INIS)

    Kazama, Masahiro; Saito, Yasuo

    2015-01-01

    Computed tomography (CT) scanners have been continuously advancing as essential diagnostic imaging equipment for the diagnosis and treatment of a variety of diseases, including the three major disease classes of cerebrovascular disease, cardiovascular disease, and cancer. Through the development of helical CT scanners and multislice CT scanners, Toshiba Medical Systems Corporation has developed the Aquilion ONE, a CT scanner with a scanning range of up to 160 mm per rotation that can obtain three-dimensional (3D) images of the brain, heart, and other organs in a single rotation. We have now developed the Aquilion ONE / ViSION Edition, a next-generation 320-row multislice CT scanner incorporating the latest technologies that achieves a shorter scanning time and significant reduction in dose compared with conventional products. This product with its low-dose scanning technology will contribute to the practical realization of new diagnosis and treatment modalities employing four-dimensional (4D) data based on 3D dynamic observations through continuous rotations. (author)

  7. Volumetric dynamic contrast enhanced Computed Tomography (DCE-CT) for preoperative assessment of the vascularity of spinal metastases

    DEFF Research Database (Denmark)

    Lauridsen, Carsten Ammitzbøl

    Purpose To investigate the feasibility of measuring and grading the vascularity of spinal metastases using dynamic contrast enhanced CT (DCE-CT). Materials and methods Prior to surgical treatment of symptomatic metastatic spinal cord compression, 20 patients were examined using DCE-CT. The 320......–detector row CT scanner allowed a volumetric acquisition over a range of 16 cm, covering three to four vertebrae. Image analysis was performed at a dedicated workstation, encompassing quantitative and qualitative measurement of the arterial flow (AF) in mL/min/100mL of the vertebrae. The perfusion values...... were analysed using a single input, maximum slope model. The AF assessed by DCE-CT of affected and non-affected vertebrae will be compared, and furthermore, the correlation between AF and intraoperative blood loss will be examined. Results Preliminary results for 5 patients: In two patients the AF...

  8. Use of dynamic CT in acute respiratory distress syndrome (ARDS) with comparison of positive and negative pressure ventilation

    Energy Technology Data Exchange (ETDEWEB)

    Helm, Emma; Babyn, Paul [Hospital for Sick Children, Department of Diagnostic Imaging, Toronto (Canada); Talakoub, Omid; Alirezaie, Javad [Ryerson University, Department of Electrical and Computer Engineering, Toronto, ON (Canada); Grasso, Francesco; Engelberts, Doreen; Kavanagh, Brian P. [Hospital for Sick Children and the University of Toronto, Departments of Anesthesia and Critical Care Medicine and the Program in Pulmonary and Experimental Medicine, Toronto (Canada)

    2009-01-15

    Negative pressure ventilation via an external device ('iron lung') has the potential to provide better oxygenation with reduced barotrauma in patients with ARDS. This study was designed to see if oxygenation differences between positive and negative ventilation could be explained by CT. Six anaesthetized rabbits had ARDS induced by repeated saline lavage. Rabbits were ventilated with positive pressure ventilation (PPV) and negative pressure ventilation (NPV) in turn. Dynamic CT images were acquired over the respiratory cycle. A computer-aided method was used to segment the lung and calculate the range of CT densities within each slice. Volumes of ventilated lung and atelectatic lung were measured over the respiratory cycle. NPV was associated with an increased percentage of ventilated lung and decreased percentage of atelectatic lung. The most significant differences in ventilation and atelectasis were seen at mid-inspiration and mid-expiration (ventilated lung NPV=61%, ventilated lung PPV=47%, p<0.001; atelectatic lung NPV=10%, atelectatic lung PPV 19%, p<0.001). Aeration differences were not significant at end-inspiration. Dynamic CT can show differences in lung aeration between positive and negative ventilation in ARDS. These differences would not be appreciated if only static breath-hold CT was used. (orig.)

  9. High throughput static and dynamic small animal imaging using clinical PET/CT: potential preclinical applications

    International Nuclear Information System (INIS)

    Aide, Nicolas; Desmonts, Cedric; Agostini, Denis; Bardet, Stephane; Bouvard, Gerard; Beauregard, Jean-Mathieu; Roselt, Peter; Neels, Oliver; Beyer, Thomas; Kinross, Kathryn; Hicks, Rodney J.

    2010-01-01

    The objective of the study was to evaluate state-of-the-art clinical PET/CT technology in performing static and dynamic imaging of several mice simultaneously. A mouse-sized phantom was imaged mimicking simultaneous imaging of three mice with computation of recovery coefficients (RCs) and spillover ratios (SORs). Fifteen mice harbouring abdominal or subcutaneous tumours were imaged on clinical PET/CT with point spread function (PSF) reconstruction after injection of [18F]fluorodeoxyglucose or [18F]fluorothymidine. Three of these mice were imaged alone and simultaneously at radial positions -5, 0 and 5 cm. The remaining 12 tumour-bearing mice were imaged in groups of 3 to establish the quantitative accuracy of PET data using ex vivo gamma counting as the reference. Finally, a dynamic scan was performed in three mice simultaneously after the injection of 68 Ga-ethylenediaminetetraacetic acid (EDTA). For typical lesion sizes of 7-8 mm phantom experiments indicated RCs of 0.42 and 0.76 for ordered subsets expectation maximization (OSEM) and PSF reconstruction, respectively. For PSF reconstruction, SOR air and SOR water were 5.3 and 7.5%, respectively. A strong correlation (r 2 = 0.97, p 2 = 0.98; slope = 0.89, p 2 = 0.96; slope = 0.62, p 68 Ga-EDTA dynamic acquisition. New generation clinical PET/CT can be used for simultaneous imaging of multiple small animals in experiments requiring high throughput and where a dedicated small animal PET system is not available. (orig.)

  10. Incorporating human-water dynamics in a hyper-resolution land surface model

    Science.gov (United States)

    Vergopolan, N.; Chaney, N.; Wanders, N.; Sheffield, J.; Wood, E. F.

    2017-12-01

    The increasing demand for water, energy, and food is leading to unsustainable groundwater and surface water exploitation. As a result, the human interactions with the environment, through alteration of land and water resources dynamics, need to be reflected in hydrologic and land surface models (LSMs). Advancements in representing human-water dynamics still leave challenges related to the lack of water use data, water allocation algorithms, and modeling scales. This leads to an over-simplistic representation of human water use in large-scale models; this is in turn leads to an inability to capture extreme events signatures and to provide reliable information at stakeholder-level spatial scales. The emergence of hyper-resolution models allows one to address these challenges by simulating the hydrological processes and interactions with the human impacts at field scales. We integrated human-water dynamics into HydroBlocks - a hyper-resolution, field-scale resolving LSM. HydroBlocks explicitly solves the field-scale spatial heterogeneity of land surface processes through interacting hydrologic response units (HRUs); and its HRU-based model parallelization allows computationally efficient long-term simulations as well as ensemble predictions. The implemented human-water dynamics include groundwater and surface water abstraction to meet agricultural, domestic and industrial water demands. Furthermore, a supply-demand water allocation scheme based on relative costs helps to determine sectoral water use requirements and tradeoffs. A set of HydroBlocks simulations over the Midwest United States (daily, at 30-m spatial resolution for 30 years) are used to quantify the irrigation impacts on water availability. The model captures large reductions in total soil moisture and water table levels, as well as spatiotemporal changes in evapotranspiration and runoff peaks, with their intensity related to the adopted water management strategy. By incorporating human-water dynamics in

  11. Ventilation abnormalities in obstructive airways disorder. Detection with pulmonary dynamic densitometry by means of spinal CT versus dynamic Xe-133 SPECT

    International Nuclear Information System (INIS)

    Suga, Kazuyoshi; Nishigauchi, Kazuya; Kume, Norihiko; Takana, Katsuyuki; Koike, Shinji; Shimizu, Kensaku; Matsunaga, Naofumi

    1999-01-01

    The usefulness of pulmonary dynamic densitometry (PDD) acquired by spiral computed tomography (CT) to detect ventilation abnormalities in obstructive airway disorders was evaluated in comparison with dynamic xenon-133 (Xe-133) SPECT. Eight-second, continuous spiral CT scan was performed over 2-3 respiratory cycles in six healthy volunteers, 19 patients with airways disorder, and six patients with restrictive lung disease. The data set were reconstructed as 36 one-second temporally overlapping images at 0.2-second intervals, and regional PDD curves were displayed. Regional ventilation was assessed by Xe-133 clearance-time on Xe-133 SPECT. Normal lungs showed smooth, sinusoidal PDD curves with maximal amplitude in lung attenuation change (MALAC) of 54.9+24.5 HU; whereas, obstructive airways disorders with prolonged Xe-133 clearance showed significantly diminished MALAC (31.6+20.1 HU, P<0.0001), accompanied by irregularity, asynchronous phase, and deterioration of normal ventral-to-dorsal gradients in MALAC and lung attenuation. Restrictive diseases without prolonged Xe-133 clearance did not show statistically significant reduction in MALAC. In total 251 lung regions, regional MALAC correlated inversely with Xe-133 clearance-time (r=842). PDD acquired by spiral CT is acceptable for detecting ventilation abnormalities in obstructive airways disorder. (author)

  12. Dynamic MR imaging of hepatoma treated by transcatheter arterial embolization therapy

    International Nuclear Information System (INIS)

    Yamashita, Y.; Yoshimatsu, S.; Sumi, M.; Harada, M.; Takahashi, M.

    1993-01-01

    The effect of transcatheter arterial chemo-embolization theory (TACE) for hepatoma was evaluated with dynamic MR imaging with Gd-DTPA in 37 patients (44 tumors). TACE was performed using Lipiodol/cis-platinum and gelatin sponge (or microspheres) as an embolic material. All patients were examined with dynamic CT and MR imaging before and after treatment. On conventional spin echo images, changes of signal intensity after treatment varied regardless of presence of Lipiodol. Dynamic MR imaging revealed changes of tumor vascularity before and after treatment. On histologic correlation, areas of persistent tumor enhancement on dynamic MR imaging corresponded to areas of viable tumor cells while areas of nonenhancement corresponded to areas of necrosis. Dynamic MR imaging was superior in contrast resolution and was not influenced by the presence of Lipiodol compared with dynamic CT, and therefore residual viable tumors were better defined by dynamic MR imaging. (orig.)

  13. CT-diagnosis of temporal bone trauma

    Energy Technology Data Exchange (ETDEWEB)

    Valavanis, A.; Stuckmann, G.; Antonucci, F.; Schubiger, O.

    1986-02-01

    73 patients with 78 fractures of the temporal bone were examined by high-resolution computed tomography (CT). Analysis of the CT-findings disclosed 55 longitudinal, 12 transverse, 8 combined and 3 atypical fractures. For determination of the fracture type, axial sections usually proved sufficient. However, for precise topographic analysis of the course of the fracture additional coronal sections were necessary in most of the cases. In the radiologic evaluation of temporal bone fractures detection of associated. Complications is clinically important since these can be surgically corrected. In this series 20 lesions of the ossicular chain were demonstrated by the combined performance of axial and coronal sections and sagittal reformations. High resolution CT demonstrated a lesion of the facial nerve canal in 79% of a patient group with traumatic facial nerve palsy. The most frequent site of injury of the facial nerve canal was the region of the geniculate ganglion. With the use of metrizaminde-CT-cisternography the site of cerebrospinal fluid leakage was demonstrated in 7 of 9 patients with liquorrhea. It is concluded that high-resolution CT is the radiologic method of choice for both topographic evaluation of temporal bone fractures and detection and precise localization of fracture-complications. (orig.).

  14. Idiopathic pulmonary fibrosis with coexisting emphysema : high-resolution CT and clinical correlation

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Eun Young; Kim, Kyeong Ah; Oh, Yu Whan; Shim, Jae Jeong; Kang, Kyung Ho [Korea Univ. College of Medicine, Seoul (Korea, Republic of)

    1997-05-01

    To correlate high-resolution CT (HRCT) findings with smoking history and pulmonary function test (PFT) in patients with idiopathic pulmonary fibrosis (IPF) with or without coexisting emphsema. The study included 24 patients who had undergone HRCT and in whom IPF had been confirmed pathologically (n=7) and clinically (n=17). The patients included 19 men and 5 women aged between from 44 and 78(mean 59) years. HRCT findings were reviewed by two radiologists and assessed for the presence and extent of emphysema (CT emphysema score;CES) and honeycombing (CT honeycombing score;CHS). CES and CHS were retrospectively correlated with smoking status and pulmonary function test. Evidence of emphysema was seen on HRCT in 20 fo 24 patients with IPF (83%). CES was 14.3 and CHS was 18.1 in smokers with IPF, as compared with 1.8 and 6.7 in nonsmokers (p<0.01). Pulmonary function tests showed lower percent predicted FEVI (69.3%), FVC (64.7%), TLC (73.7%), and RV (77.3%), a lower percent predicted diffusing capacity of carbon monoxide (58.2%), and normal FEVI/FVC (99.1%). The pulmonary function test in smokers showed higher TLC and RV than in nonsmokers. Eight of nine patients whose CES was higher than their CHS, an seen on HRCT, were smokers and had a smoking history of 33.1 pack-years. Seven of 15 whose CHS was higher than their CES were smokers and had a smoking history of 16.8 pack-years. In patients with a higher CES than CHS pulmonary function test results showed normal TLC(85%) and RV(100.7%); this contrasted with decreased TLC(72%) and RV (68%) in patients whose CHS was higher than their CES. Emphysema is a frequently associated finding in patients with IPF, as seen on HRCT, and emphysema is more frequent and extensive in smokers with IPF than non-smokers. HRCT is useful for detecting emphysema in patients with IPF, and the extent of emphysema on HRCT correlates with the results of the pulmonary function test and smoking status.

  15. Idiopathic pulmonary fibrosis with coexisting emphysema : high-resolution CT and clinical correlation

    International Nuclear Information System (INIS)

    Kang, Eun Young; Kim, Kyeong Ah; Oh, Yu Whan; Shim, Jae Jeong; Kang, Kyung Ho

    1997-01-01

    To correlate high-resolution CT (HRCT) findings with smoking history and pulmonary function test (PFT) in patients with idiopathic pulmonary fibrosis (IPF) with or without coexisting emphsema. The study included 24 patients who had undergone HRCT and in whom IPF had been confirmed pathologically (n=7) and clinically (n=17). The patients included 19 men and 5 women aged between from 44 and 78(mean 59) years. HRCT findings were reviewed by two radiologists and assessed for the presence and extent of emphysema (CT emphysema score;CES) and honeycombing (CT honeycombing score;CHS). CES and CHS were retrospectively correlated with smoking status and pulmonary function test. Evidence of emphysema was seen on HRCT in 20 fo 24 patients with IPF (83%). CES was 14.3 and CHS was 18.1 in smokers with IPF, as compared with 1.8 and 6.7 in nonsmokers (p<0.01). Pulmonary function tests showed lower percent predicted FEVI (69.3%), FVC (64.7%), TLC (73.7%), and RV (77.3%), a lower percent predicted diffusing capacity of carbon monoxide (58.2%), and normal FEVI/FVC (99.1%). The pulmonary function test in smokers showed higher TLC and RV than in nonsmokers. Eight of nine patients whose CES was higher than their CHS, an seen on HRCT, were smokers and had a smoking history of 33.1 pack-years. Seven of 15 whose CHS was higher than their CES were smokers and had a smoking history of 16.8 pack-years. In patients with a higher CES than CHS pulmonary function test results showed normal TLC(85%) and RV(100.7%); this contrasted with decreased TLC(72%) and RV (68%) in patients whose CHS was higher than their CES. Emphysema is a frequently associated finding in patients with IPF, as seen on HRCT, and emphysema is more frequent and extensive in smokers with IPF than non-smokers. HRCT is useful for detecting emphysema in patients with IPF, and the extent of emphysema on HRCT correlates with the results of the pulmonary function test and smoking status

  16. Towards high resolution mapping of 3-D mesoscale dynamics from observations

    Directory of Open Access Journals (Sweden)

    B. Buongiorno Nardelli

    2012-10-01

    Full Text Available The MyOcean R&D project MESCLA (MEsoSCaLe dynamical Analysis through combined model, satellite and in situ data was devoted to the high resolution 3-D retrieval of tracer and velocity fields in the oceans, based on the combination of in situ and satellite observations and quasi-geostrophic dynamical models. The retrieval techniques were also tested and compared with the output of a primitive equation model, with particular attention to the accuracy of the vertical velocity field as estimated through the Q vector formulation of the omega equation. The project focused on a test case, covering the region where the Gulf Stream separates from the US East Coast. This work demonstrated that innovative methods for the high resolution mapping of 3-D mesoscale dynamics from observations can be used to build the next generations of operational observation-based products.

  17. Imaging of head and neck tumors -- methods: CT, spiral-CT, multislice-spiral-CT

    International Nuclear Information System (INIS)

    Baum, Ulrich; Greess, Holger; Lell, Michael; Noemayr, Anton; Lenz, Martin

    2000-01-01

    Spiral-CT is standard for imaging neck tumors. In correspondence with other groups we routinely use spiral-CT with thin slices (3 mm), a pitch of 1.3-1.5 and an overlapping reconstruction increment (2-3 mm). In patients with dental fillings a short additional spiral parallel to the corpus of the mandible reduces artifacts behind the dental arches and improves the diagnostic value of CT. For the assessment of the base of the skull, the orbital floor, the palate and paranasal sinuses an additional examination in the coronal plane is helpful. Secondary coronal reconstructions of axial scans are helpful in the evaluation of the crossing of the midline by small tumors of the tongue base or palate. For an optimal vascular or tissue contrast a sufficient volume of contrast medium and a start delay greater than 70-80 s are necessary. In our opinion the best results can be achieved with a volume of 150 ml, a flow of 2.5 ml/s and a start delay of 80 s. Dynamic enhanced CT is only necessary in some special cases. There is clear indication for dynamic enhanced CT where a glomus tumor is suspected. Additional functional CT imaging during i-phonation and/or Valsalva's maneuver are of great importance to prove vocal cords mobility. Therefore, imaging during i-phonation is an elemental part of every thorough examination of the hypopharynx and larynx region. Multislice-spiral-CT allows almost isotropic imaging of the head and neck region and improves the assessment of tumor spread and lymph node metastases in arbitrary oblique planes. Thin structures (the base of the skull, the orbital floor, the hard palate) as well as the floor of the mouth can be evaluated sufficiently with multiplanar reformations. Usually, additional coronal scanning is not necessary with multislice-spiral-CT. Multislice-spiral-CT is especially advantageous in defining the critical relationships of tumor and lymph node metastases and for functional imaging of the hypopharynx and larynx not only in the

  18. Physical performance evaluation of GE DST PET-CT and evaluation of characteristics in dynamic image acquisition

    International Nuclear Information System (INIS)

    Lee, B. I.; Kim, J. Y.; Min, J. J.; Song, H. C.; Bom, H. S.; Kim, J. S.; Lee, J. S.

    2005-01-01

    As a new standard for performance measurement, NEMA NU2-2001 was presented recently. In this study, we investigated the spatial resolution, sensitivity, scatter fraction, and noise equivalent count ratio (NECR) in order to know the information of physical characteristics and system performance. Bismuth germinate crystals (6 X 6 array, 6.3mm X 6.3mm X 30mm) were used in discovery ST (energy window: 375-650 keV, coincidence window: 11.7 nsec). To measure the sensitivity, five aluminum sleeves (Data Spectrum Corp., Chapel Hill, NC., USA, thickness:1.25 mm) -NEMA sensitivity phantom- filled with F-18 solution were used. Spatial resolution was estimated using a point source (F-18, 0.1 mCi). Data were acquired while the count reaches at 100,000 and another experiment was performed at a distance of one-fourth the axial extent of the FOV. Scatter fraction and NECR was tested. Dynamic data were acquired for 7 half-lives. And true to background ratio was averaged at last three frames when the random rate was as small as ignorable for the calculation of scatter fraction. Sensitivity was 1.79 cps/kBq (2D) and 9.84 cps/kBq (3D) at the center and 1.78 cps/kBq (2D) and 9.60 cps/kBq (3D) at 10 cm off from the center. Spatial resolution at center was 6.15 mm (2D), 6.16 mm (3D) transverse direction and 5.77 mm (2D) and 5.93 mm (3D) at axial direction. At 10 cm radius, resolution of transverse radial was 7.19 mm (2D) and 7.16 mm (3D) and transverse tangential was 6.81 mm (2D) and 6.80mm (3D). Scatter fraction was 45.1% in 3D mode. Peak true rate and NECR were 325.1 kcps at 30.1 kBq/cc and 59.3 kcps at 13.7 kBq/cc. Dynamic image acquisition and gating image acquisition were acquired successfully. The physical characteristics of PET-CT were investigated. The sensitivity of installed system in 3D mode was better than the result of published study. We anticipate this overall evaluated results could be used for the quantification and optimized image acquisition for clinical research

  19. Characterization of tumor heterogeneity using dynamic contrast enhanced CT and FDG-PET in non-small cell lung cancer

    International Nuclear Information System (INIS)

    Elmpt, Wouter van; Das, Marco; Hüllner, Martin; Sharifi, Hoda; Zegers, Catharina M.L.; Reymen, Bart; Lambin, Philippe; Wildberger, Joachim E.; Troost, Esther G.C.; Veit-Haibach, Patrick; De Ruysscher, Dirk

    2013-01-01

    Purpose: Dynamic contrast-enhanced CT (DCE-CT) quantifies vasculature properties of tumors, whereas static FDG-PET/CT defines metabolic activity. Both imaging modalities are capable of showing intra-tumor heterogeneity. We investigated differences in vasculature properties within primary non-small cell lung cancer (NSCLC) tumors measured by DCE-CT and metabolic activity from FDG-PET/CT. Methods: Thirty three NSCLC patients were analyzed prior to treatment. FDG-PET/CT and DCE-CT were co-registered. The tumor was delineated and metabolic activity was segmented on the FDG-PET/CT in two regions: low (<50% maximum SUV) and high (⩾50% maximum SUV) metabolic uptake. Blood flow, blood volume and permeability were calculated using a maximum slope, deconvolution algorithm and a Patlak model. Correlations were assessed between perfusion parameters for the regions of interest. Results: DCE-CT provided additional information on vasculature and tumor heterogeneity that was not correlated to metabolic tumor activity. There was no significant difference between low and high metabolic active regions for any of the DCE-CT parameters. Furthermore, only moderate correlations between maximum SUV and DCE-CT parameters were observed. Conclusions: No direct correlation was observed between FDG-uptake and parameters extracted from DCE-CT. DCE-CT may provide complementary information to the characterization of primary NSCLC tumors over FDG-PET/CT imaging

  20. Suitability of an MRMCE (multi-resolution minimum cross entropy) algorithm for online monitoring of a two-phase flow

    International Nuclear Information System (INIS)

    Wang, Qi; Wang, Huaxiang; Xin, Shan

    2011-01-01

    The flow regimes are important characteristics to describe two-phase flows, and measurement of two-phase flow parameters is becoming increasingly important in many industrial processes. Computerized tomography (CT) has been applied to two-phase/multi-phase flow measurement in recent years. Image reconstruction of CT often involves repeatedly solving large-dimensional matrix equations, which are computationally expensive, especially for the case of online flow regime identification. In this paper, minimum cross entropy reconstruction based on multi-resolution processing (MRMCE) is presented for oil–gas two-phase flow regime identification. A regularized MCE solution is obtained using the simultaneous multiplicative algebraic reconstruction technique (SMART) at a coarse resolution level, where important information on the reconstructed image is contained. Then, the solution in the finest resolution is obtained by inverse fast wavelet transformation. Both computer simulation and static/dynamic experiments were carried out for typical flow regimes. Results obtained indicate that the proposed method can dramatically reduce the computational time and improve the quality of the reconstructed image with suitable decomposition levels compared with the single-resolution maximum likelihood expectation maximization (MLEM), alternating minimization (AM), Landweber, iterative least square technique (ILST) and minimum cross entropy (MCE) methods. Therefore, the MRMCE method is suitable for identification of dynamic two-phase flow regimes

  1. Iodine and freeze-drying enhanced high-resolution MicroCT imaging for reconstructing 3D intraneural topography of human peripheral nerve fascicles.

    Science.gov (United States)

    Yan, Liwei; Guo, Yongze; Qi, Jian; Zhu, Qingtang; Gu, Liqiang; Zheng, Canbin; Lin, Tao; Lu, Yutong; Zeng, Zitao; Yu, Sha; Zhu, Shuang; Zhou, Xiang; Zhang, Xi; Du, Yunfei; Yao, Zhi; Lu, Yao; Liu, Xiaolin

    2017-08-01

    The precise annotation and accurate identification of the topography of fascicles to the end organs are prerequisites for studying human peripheral nerves. In this study, we present a feasible imaging method that acquires 3D high-resolution (HR) topography of peripheral nerve fascicles using an iodine and freeze-drying (IFD) micro-computed tomography (microCT) method to greatly increase the contrast of fascicle images. The enhanced microCT imaging method can facilitate the reconstruction of high-contrast HR fascicle images, fascicle segmentation and extraction, feature analysis, and the tracing of fascicle topography to end organs, which define fascicle functions. The complex intraneural aggregation and distribution of fascicles is typically assessed using histological techniques or MR imaging to acquire coarse axial three-dimensional (3D) maps. However, the disadvantages of histological techniques (static, axial manual registration, and data instability) and MR imaging (low-resolution) limit these applications in reconstructing the topography of nerve fascicles. Thus, enhanced microCT is a new technique for acquiring 3D intraneural topography of the human peripheral nerve fascicles both to improve our understanding of neurobiological principles and to guide accurate repair in the clinic. Additionally, 3D microstructure data can be used as a biofabrication model, which in turn can be used to fabricate scaffolds to repair long nerve gaps. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Correlative investigation of dynamic contrast CT and positron emission tomography with 18-fluorodeoxy glucose standardized uptake value in non-small cell lung cancer

    International Nuclear Information System (INIS)

    Ding Qiyong; Hua Yanqing; Zhu Feng; Mao Dingbiao; Ge Xiaojun; Zhang Guozhen; Guan Yihui; Zhao Jun

    2005-01-01

    Objective: To explore the correlation of dynamic enhanced CT attenuation and 18-fluorodeoxy glucose ( 18 F-FDG) standardized uptake value (SUV) in non-small cell lung cancer (NSCLC). Methods: Twenty-eight NSCLC patients and 13 patients with benign nodules (28 male, 13 female; age range 15-79 years, median 57 years; the diameter range from 0.8-4.0 cm, mean 2.2 cm) were examined on Siemens biograph sensation 16 PET-CT with 18 F-FDG. Dynamic enhanced CT scan was performed on Siemens sensation 16 PET-CT or 16 slice CT in 23 patients and other 18 patients had the results of dynamic CT from other hospitals. The mean CT attenuation of ROI on precontrast and postcontrast multi-phase images, the maxium and average SUV of 18 F-FDG were respectively measured. The correlation between the peak attenuation (A PA ) and SUV was analyzed with pearson correlation coefficient test. Results: The CT A PA between NSCLC and benign nodules had no significance difference (t=1.374, P=0.189). The difference of maximum and average SUV between NSCLC and benignity were significant (t=-3.972, P PA , maximum SUV (7.23 ± 4.38), and average SUV (4.93±3.53) (r=-0.040, P=0.839 and r=0.056, P=0.778). Conclusion: There is no correlation between A PA and SUV in NSCLC. SUV is probably not suitable for the evaluation of the effects of anti-angiogenesis therapy. (authors)

  3. Clinical role of early dynamic FDG-PET/CT for the evaluation of renal cell carcinoma.

    Science.gov (United States)

    Nakajima, Reiko; Abe, Koichiro; Kondo, Tsunenori; Tanabe, Kazunari; Sakai, Shuji

    2016-06-01

    We studied the usefulness of early dynamic (ED) and whole-body (WB) FDG-PET/CT for the evaluation of renal cell carcinoma (RCC). One hundred patients with 107 tumours underwent kidney ED and WB FDG-PET/CT. We visually and semiquantitatively evaluated the FDG accumulation in RCCs in the ED and WB phases, and compared the accumulation values with regard to histological type (clear cell carcinoma [CCC] vs. non-clear cell carcinoma [N-CCC]), the TNM stage (high stage [3-4] vs. low stage [1-2]), the Fuhrman grade (high grade [3-4] vs. low grade [1-2]) and presence versus absence of venous (V) and lymphatic (Ly) invasion. In the ED phase, visual evaluation revealed no significant differences in FDG accumulation in terms of each item. However, the maximum standardized uptake value and tumour-to-normal tissue ratios were significantly higher in the CCCs compared to the N-CCCs (p PET/CT is a useful tool for the evaluation of RCCs. • ED and WB FDG-PET/ CT helps to assess patients with RCC • ED FDG-PET/CT enabled differentiation between CCC and N-CCC • FDG accumulation in the WB phase reflects tumour aggressiveness • Management of RCC is improved by ED and WB FDG-PET/CT.

  4. Imaging of bronchiectasis: the great value of high-resolution CT in differential diagnosis; Differenzialdiagnose der Bronchiektasen: High-resolution CT als wertvolle Hilfe

    Energy Technology Data Exchange (ETDEWEB)

    Heckmann, M.; Kramann, B.; Heinrich, M. [Klinik fuer Diagnostische und Interventionelle Radiologie, Universitaetsklinikum des Saarlandes, Homburg/Saar (Germany); Uder, M. [Inst. fuer Diagnostische Radiologie, Friedrich-Alexander-Univ. Erlangen-Nuernberg, Erlangen (Germany)

    2006-07-01

    Bronchiectasis is defined as localized irreversible dilatation of the bronchial tree. Brochiectasis has been associated with a wide variety of causes, but it is mostly caused by acute, chronic or recurrent infections. This paper should give a review about the manifestation of bronchiectasis and bronchioloectasis in HR-CT and discuss the causing entities. However, integration of bronchiectasis and other HR-CT findings may enable a narrower differential diagnosis, in some cases it is possible to give the correct diagnose directly. (orig.)

  5. Comparison of blood flow models and acquisitions for quantitative myocardial perfusion estimation from dynamic CT

    International Nuclear Information System (INIS)

    Bindschadler, Michael; Alessio, Adam M; Modgil, Dimple; La Riviere, Patrick J; Branch, Kelley R

    2014-01-01

    Myocardial blood flow (MBF) can be estimated from dynamic contrast enhanced (DCE) cardiac CT acquisitions, leading to quantitative assessment of regional perfusion. The need for low radiation dose and the lack of consensus on MBF estimation methods motivates this study to refine the selection of acquisition protocols and models for CT-derived MBF. DCE cardiac CT acquisitions were simulated for a range of flow states (MBF = 0.5, 1, 2, 3 ml (min g) −1 , cardiac output = 3, 5, 8 L min −1 ). Patient kinetics were generated by a mathematical model of iodine exchange incorporating numerous physiological features including heterogenenous microvascular flow, permeability and capillary contrast gradients. CT acquisitions were simulated for multiple realizations of realistic x-ray flux levels. CT acquisitions that reduce radiation exposure were implemented by varying both temporal sampling (1, 2, and 3 s sampling intervals) and tube currents (140, 70, and 25 mAs). For all acquisitions, we compared three quantitative MBF estimation methods (two-compartment model, an axially-distributed model, and the adiabatic approximation to the tissue homogeneous model) and a qualitative slope-based method. In total, over 11 000 time attenuation curves were used to evaluate MBF estimation in multiple patient and imaging scenarios. After iodine-based beam hardening correction, the slope method consistently underestimated flow by on average 47.5% and the quantitative models provided estimates with less than 6.5% average bias and increasing variance with increasing dose reductions. The three quantitative models performed equally well, offering estimates with essentially identical root mean squared error (RMSE) for matched acquisitions. MBF estimates using the qualitative slope method were inferior in terms of bias and RMSE compared to the quantitative methods. MBF estimate error was equal at matched dose reductions for all quantitative methods and range of techniques evaluated. This

  6. High-resolution imaging of pulmonary ventilation and perfusion with {sup 68}Ga-VQ respiratory gated (4-D) PET/CT

    Energy Technology Data Exchange (ETDEWEB)

    Callahan, Jason [Centre for Molecular Imaging, Peter MacCallum Cancer Centre, East Melbourne, VIC (Australia); Hofman, Michael S. [The University of Melbourne, Department of Medicine, Peter MacCallum Cancer Centre, Centre for Molecular Imaging, East Melbourne, VIC (Australia); Siva, Shankar [The University of Melbourne, Peter MacCallum Cancer Centre, Department of Radiation Oncology, East Melbourne, VIC (Australia); The University of Melbourne, Sir Peter MacCallum Department of Oncology, East Melbourne, VIC (Australia); Kron, Tomas [The University of Melbourne, Sir Peter MacCallum Department of Oncology, East Melbourne, VIC (Australia); The University of Melbourne, Peter MacCallum Cancer Centre, Department of Physical Sciences, East Melbourne, VIC (Australia); Schneider, Michal E. [Monash University, Department of Medical Imaging and Radiation Science, Clayton, VIC (Australia); Binns, David; Eu, Peter [Peter MacCallum Cancer Centre, Centre for Cancer Imaging, East Melbourne, VIC (Australia); Hicks, Rodney J. [The University of Melbourne, Sir Peter MacCallum Department of Oncology, Peter MacCallum Cancer Centre, Centre for Molecular Imaging, East Melbourne, VIC (Australia)

    2014-02-15

    PET/CT is feasible and the blurring caused by respiratory motion is well corrected with 4-D acquisition, which principally reduces artefact at the lung bases. The images with the highest spatial overlap were the combined expiration phase or FB PET and average CT. With higher resolution than SPECT/CT, the PET/CT technique has a broad range of potential clinical applications including diagnostic algorithms for patients with suspected pulmonary embolism, preoperative evaluation of regional lung function and improving assessment or understanding of pulmonary physiology in the vast range of pulmonary diseases. (orig.)

  7. Evaluation of image quality with different field of view in CT scan of the body in children

    International Nuclear Information System (INIS)

    Gao Dechun; Wu Tai; Mao Dingli; Weng Zhigao

    2005-01-01

    Objective: To evaluate the relationship between field of view (FOV) and quality of CT images. Methods: Scanning of the phantoms of spatial resolution and density resolution was performed with FOVs of 25 cm x 25 cm, 35 cm x 35 cm, and 42 cm x 42 cm, respectively, and the spatial resolution and density resolution of CT images with different FOVs were measured. 20 patients underwent CT scanning using 25 cm x 25 cm and 35 cm x 35 cm FOVs, respectively. The images were evaluated by 3 qualified CT doctors by using a double-blind reading. Results: As FOVs changed, the spatial resolution and density resolution were different. The best spatial resolution and density resolution were obtained on 25 cm x 25 cm FOV images. The best spatial resolution could distinguish four 0.6 mm-diameter eyelets, and the best density resolution could distinguish five 2.5 mm-diameter eyelets. The CT images with 25 cm x 25 cm FOV were obviously better than those with 35 cm x 35 cm FOV (P<0.05). Conclusion: On the range of conventional FOV of CT, the spatial resolution and density resolution of CT images are the best when 25 cm x 25 cm FOV is used. (authors)

  8. Time-resolved CT angiography in aortic dissection

    International Nuclear Information System (INIS)

    Meinel, Felix G.; Nikolaou, Konstantin; Weidenhagen, Rolf; Hellbach, Katharina; Helck, Andreas; Bamberg, Fabian; Reiser, Maximilian F.; Sommer, Wieland H.

    2012-01-01

    Objectives: We performed this study to assess feasibility and additional diagnostic value of time-resolved CT angiography of the entire aorta in patients with aortic dissection. Materials and methods: 14 consecutive patients with known or suspected aortic dissection (aged 60 ± 9 years) referred for aortic CT angiography were scanned on a dual-source CT scanner (Somatom Definition Flash; Siemens, Forchheim, Germany) using a shuttle mode for multiphasic image acquisition (range 48 cm, time resolution 6 s, 6 phases, 100 kV, 110 mAs/rot). Effective radiation doses were calculated from recorded dose length products. For all phases, CT densities were measured in the aortic lumen and renal parenchyma. From the multiphasic data, 3 phases corresponding to a triphasic standard CT protocol, served as a reference and were compared against findings from the time-resolved datasets. Results: Mean effective radiation dose was 27.7 ± 3.5 mSv. CT density of the true lumen peaked at 355 ± 53 HU. Compared to the simulated triphasic protocol, time-resolved CT angiography added diagnostic information regarding a number of important findings: the enhancement delay between true and false lumen (n = 14); the degree of membrane oscillation (n = 14); the perfusion delay in arteries originating from the false lumen (n = 9). Other additional information included true lumen collapse (n = 4), quantitative assessment of renal perfusion asymmetry (n = 2), and dynamic occlusion of aortic branches (n = 2). In 3/14 patients (21%), these additional findings of the multiphasic protocol altered patient management. Conclusions: Multiphasic, time-resolved CT angiography covering the entire aorta is feasible at a reasonable effective radiation dose and adds significant diagnostic information with therapeutic consequences in patients with aortic dissection.

  9. Dynamic computed tomography (CT) in the rat kidney and application to acute renal failure models

    International Nuclear Information System (INIS)

    Ishikawa, Isao; Saito, Tadashi; Ishii, Hirofumi; Bansho, Junichi; Koyama, Yukinori; Tobita, Akira

    1995-01-01

    Renal dynamic CT scanning is suitable for determining the excretion of contrast medium in the cortex and medulla of the kidney, which is valuable for understanding the pathogenesis of disease processes in various conditions. This form of scanning would be convenient for use, if a method of application to the rat kidney were available. Therefore, we developed a method of applying renal dynamic CT to rats and evaluated the cortical and medullary curves, e.g., the corticomedullary junction time which is correlated to creatinine clearance, in various rat models of acute renal failure. The rat was placed in a 10deg oblique position and a bilateral hilar slice was obtained before and 5, 10, 15, 20, 25, 30, 40, 50, 60, 80, 100, 120, 140, 160 and 180 sec after administering 0.5 ml of contrast medium using Somatom DR. The width of the slice was 4 mm and the scan time was 3 sec. The corticomedullary junction time in normal rats was 23.0±10.5 sec, the peak value of the cortical curve was 286.3±76.7 Hounsfield Unit (HU) and the peak value of the medullary curve was 390.1±66.2 HU. Corticomedullary junction time after exposure of the kidney was prolonged compared to that of the unexposed kidney. In rats with acute renal failure, the excretion pattern of contrast medium was similar in both the glycerol- and HgCl2-induced acute renal failure models. The peak values of the cortical curve were maintained three hours after a clamp was placed at the hilar region of the kidney for one hour, and the peak values of the medullary curve were maintained during the administration of 10μg/kg/min of angiotensin II. Dynamic CT curves in the acute renal failure models examined were slightly different from those in human acute renal failure. These results suggest that rats do not provide an ideal model for human acute renal failure. However, the application of dynamic CT to the rat kidney models was valuable for estimating the pathogenesis of various human kidney diseases. (author)

  10. Non-invasive breast biopsy method using GD-DTPA contrast enhanced MRI series and F-18-FDG PET/CT dynamic image series

    Science.gov (United States)

    Magri, Alphonso William

    This study was undertaken to develop a nonsurgical breast biopsy from Gd-DTPA Contrast Enhanced Magnetic Resonance (CE-MR) images and F-18-FDG PET/CT dynamic image series. A five-step process was developed to accomplish this. (1) Dynamic PET series were nonrigidly registered to the initial frame using a finite element method (FEM) based registration that requires fiducial skin markers to sample the displacement field between image frames. A commercial FEM package (ANSYS) was used for meshing and FEM calculations. Dynamic PET image series registrations were evaluated using similarity measurements SAVD and NCC. (2) Dynamic CE-MR series were nonrigidly registered to the initial frame using two registration methods: a multi-resolution free-form deformation (FFD) registration driven by normalized mutual information, and a FEM-based registration method. Dynamic CE-MR image series registrations were evaluated using similarity measurements, localization measurements, and qualitative comparison of motion artifacts. FFD registration was found to be superior to FEM-based registration. (3) Nonlinear curve fitting was performed for each voxel of the PET/CT volume of activity versus time, based on a realistic two-compartmental Patlak model. Three parameters for this model were fitted; two of them describe the activity levels in the blood and in the cellular compartment, while the third characterizes the washout rate of F-18-FDG from the cellular compartment. (4) Nonlinear curve fitting was performed for each voxel of the MR volume of signal intensity versus time, based on a realistic two-compartment Brix model. Three parameters for this model were fitted: rate of Gd exiting the compartment, representing the extracellular space of a lesion; rate of Gd exiting a blood compartment; and a parameter that characterizes the strength of signal intensities. Curve fitting used for PET/CT and MR series was accomplished by application of the Levenburg-Marquardt nonlinear regression

  11. Optimization of a retrospective technique for respiratory-gated high speed micro-CT of free-breathing rodents

    International Nuclear Information System (INIS)

    Ford, Nancy L; Wheatley, Andrew R; Holdsworth, David W; Drangova, Maria

    2007-01-01

    The objective of this study was to develop a technique for dynamic respiratory imaging using retrospectively gated high-speed micro-CT imaging of free-breathing mice. Free-breathing C57Bl6 mice were scanned using a dynamic micro-CT scanner, comprising a flat-panel detector mounted on a slip-ring gantry. Projection images were acquired over ten complete gantry rotations in 50 s, while monitoring the respiratory motion in synchrony with projection-image acquisition. Projection images belonging to a selected respiratory phase were retrospectively identified and used for 3D reconstruction. The effect of using fewer gantry rotations-which influences both image quality and the ability to quantify respiratory function-was evaluated. Images reconstructed using unique projections from six or more gantry rotations produced acceptable images for quantitative analysis of lung volume, CT density, functional residual capacity and tidal volume. The functional residual capacity (0.15 ± 0.03 mL) and tidal volumes (0.08 ± 0.03 mL) measured in this study agree with previously reported measurements made using prospectively gated micro-CT and at higher resolution (150 μm versus 90 μm voxel spacing). Retrospectively gated micro-CT imaging of free-breathing mice enables quantitative dynamic measurement of morphological and functional parameters in the mouse models of respiratory disease, with scan times as short as 30 s, based on the acquisition of projection images over six gantry rotations

  12. Optimization of a retrospective technique for respiratory-gated high speed micro-CT of free-breathing rodents

    Energy Technology Data Exchange (ETDEWEB)

    Ford, Nancy L [Department of Physics, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3 (Canada); Wheatley, Andrew R [Imaging Research Laboratories, Robarts Research Institute, 100 Perth Drive, PO Box 5015, London, Ontario N6A 5K8 (Canada); Holdsworth, David W [Imaging Research Laboratories, Robarts Research Institute, 100 Perth Drive, PO Box 5015, London, Ontario N6A 5K8 (Canada); Drangova, Maria [Imaging Research Laboratories, Robarts Research Institute, 100 Perth Drive, PO Box 5015, London, Ontario N6A 5K8 (Canada)

    2007-09-21

    The objective of this study was to develop a technique for dynamic respiratory imaging using retrospectively gated high-speed micro-CT imaging of free-breathing mice. Free-breathing C57Bl6 mice were scanned using a dynamic micro-CT scanner, comprising a flat-panel detector mounted on a slip-ring gantry. Projection images were acquired over ten complete gantry rotations in 50 s, while monitoring the respiratory motion in synchrony with projection-image acquisition. Projection images belonging to a selected respiratory phase were retrospectively identified and used for 3D reconstruction. The effect of using fewer gantry rotations-which influences both image quality and the ability to quantify respiratory function-was evaluated. Images reconstructed using unique projections from six or more gantry rotations produced acceptable images for quantitative analysis of lung volume, CT density, functional residual capacity and tidal volume. The functional residual capacity (0.15 {+-} 0.03 mL) and tidal volumes (0.08 {+-} 0.03 mL) measured in this study agree with previously reported measurements made using prospectively gated micro-CT and at higher resolution (150 {mu}m versus 90 {mu}m voxel spacing). Retrospectively gated micro-CT imaging of free-breathing mice enables quantitative dynamic measurement of morphological and functional parameters in the mouse models of respiratory disease, with scan times as short as 30 s, based on the acquisition of projection images over six gantry rotations.

  13. Early dynamic imaging in {sup 68}Ga- PSMA-11 PET/CT allows discrimination of urinary bladder activity and prostate cancer lesions

    Energy Technology Data Exchange (ETDEWEB)

    Uprimny, Christian; Kroiss, Alexander Stephan; Decristoforo, Clemens; Warwitz, Boris; Scarpa, Lorenza; Roig, Llanos Geraldo; Kendler, Dorota; Guggenberg, Elisabeth von; Virgolini, Irene Johanna [Medical University Innsbruck, Department of Nuclear Medicine, Innsbruck (Austria); Fritz, Josef [Medical University Innsbruck, Department for Medical Statistics, Informatics and Health Economics, Innsbruck (Austria); Bektic, Jasmin; Horninger, Wolfgang [Medical University Innsbruck, Department of Urology, Innsbruck (Austria)

    2017-05-15

    PET/CT with {sup 68}Ga-labelled prostate-specific membrane antigen (PSMA)-ligands has been proven to establish a promising imaging modality in the work-up of prostate cancer (PC) patients with biochemical relapse. Despite a high overall detection rate, the visualisation of local recurrence may be hampered by high physiologic tracer accumulation in the urinary bladder on whole body imaging, usually starting 60 min after injection. This study sought to verify whether early dynamic {sup 68}Ga-PSMA-11 (HBED-CC)PET/CT can differentiate pathologic PC-related tracer uptake from physiologic tracer accumulation in the urinary bladder. Eighty consecutive PC patients referred to {sup 68}Ga -PSMA-11 PET/CT were included in this retrospective analysis (biochemical relapse: n = 64; primary staging: n = 8; evaluation of therapy response/restaging: n = 8). In addition to whole-body PET/CT acquisition 60 min post injection early dynamic imaging of the pelvis in the first 8 min after tracer injection was performed. SUV{sub max} of pathologic lesions was calculated and time-activity curves were generated and compared to those of urinary bladder and areas of physiologic tracer uptake. A total of 55 lesions consistent with malignancy on 60 min whole body imaging exhibited also pathologic {sup 68}Ga-PSMA-11 uptake during early dynamic imaging (prostatic bed/prostate gland: n = 27; lymph nodes: n = 12; bone: n = 16). All pathologic lesions showed tracer uptake within the first 3 min, whereas urinary bladder activity was absent within the first 3 min of dynamic imaging in all patients. Suv{sub max} was significantly higher in PC lesions in the first 6 min compared to urinary bladder accumulation (p < 0.001). In the subgroup of PC patients with biochemical relapse the detection rate of local recurrence could be increased from 20.3 to 29.7%. Early dynamic imaging in {sup 68}Ga-PSMA-11 PET/CT reliably enables the differentiation of pathologic tracer uptake in PC lesions from physiologic

  14. Early dynamic imaging in "6"8Ga- PSMA-11 PET/CT allows discrimination of urinary bladder activity and prostate cancer lesions

    International Nuclear Information System (INIS)

    Uprimny, Christian; Kroiss, Alexander Stephan; Decristoforo, Clemens; Warwitz, Boris; Scarpa, Lorenza; Roig, Llanos Geraldo; Kendler, Dorota; Guggenberg, Elisabeth von; Virgolini, Irene Johanna; Fritz, Josef; Bektic, Jasmin; Horninger, Wolfgang

    2017-01-01

    PET/CT with "6"8Ga-labelled prostate-specific membrane antigen (PSMA)-ligands has been proven to establish a promising imaging modality in the work-up of prostate cancer (PC) patients with biochemical relapse. Despite a high overall detection rate, the visualisation of local recurrence may be hampered by high physiologic tracer accumulation in the urinary bladder on whole body imaging, usually starting 60 min after injection. This study sought to verify whether early dynamic "6"8Ga-PSMA-11 (HBED-CC)PET/CT can differentiate pathologic PC-related tracer uptake from physiologic tracer accumulation in the urinary bladder. Eighty consecutive PC patients referred to "6"8Ga -PSMA-11 PET/CT were included in this retrospective analysis (biochemical relapse: n = 64; primary staging: n = 8; evaluation of therapy response/restaging: n = 8). In addition to whole-body PET/CT acquisition 60 min post injection early dynamic imaging of the pelvis in the first 8 min after tracer injection was performed. SUV_m_a_x of pathologic lesions was calculated and time-activity curves were generated and compared to those of urinary bladder and areas of physiologic tracer uptake. A total of 55 lesions consistent with malignancy on 60 min whole body imaging exhibited also pathologic "6"8Ga-PSMA-11 uptake during early dynamic imaging (prostatic bed/prostate gland: n = 27; lymph nodes: n = 12; bone: n = 16). All pathologic lesions showed tracer uptake within the first 3 min, whereas urinary bladder activity was absent within the first 3 min of dynamic imaging in all patients. Suv_m_a_x was significantly higher in PC lesions in the first 6 min compared to urinary bladder accumulation (p < 0.001). In the subgroup of PC patients with biochemical relapse the detection rate of local recurrence could be increased from 20.3 to 29.7%. Early dynamic imaging in "6"8Ga-PSMA-11 PET/CT reliably enables the differentiation of pathologic tracer uptake in PC lesions from physiologic bladder accumulation

  15. Development of a dynamic quality assurance testing protocol for multisite clinical trial DCE-CT accreditation

    Energy Technology Data Exchange (ETDEWEB)

    Driscoll, B. [Department of Radiation Physics, Princess Margaret Cancer Center, 610 University Avenue, Toronto, Ontario M5G 2M9 (Canada); Keller, H. [Department of Radiation Physics, Princess Margaret Cancer Center, 610 University Avenue, Toronto, Ontario M5G 2M9, Canada and Department of Radiation Oncology, University of Toronto, 150 College Street, Toronto, Ontario M5S 3E2 (Canada); Jaffray, D.; Coolens, C. [Department of Radiation Physics, Princess Margaret Cancer Center, 610 University Avenue, Toronto, Ontario M5G 2M9 (Canada); Department of Radiation Oncology, University of Toronto, 150 College Street, Toronto, Ontario M5S 3E2 (Canada); Techna Institute, University Health Network, 124-100 College Street, Toronto, Ontario M5G 1L5 (Canada)

    2013-08-15

    Purpose: Credentialing can have an impact on whether or not a clinical trial produces useful quality data that is comparable between various institutions and scanners. With the recent increase of dynamic contrast enhanced-computed tomography (DCE-CT) usage as a companion biomarker in clinical trials, effective quality assurance, and control methods are required to ensure there is minimal deviation in the results between different scanners and protocols at various institutions. This paper attempts to address this problem by utilizing a dynamic flow imaging phantom to develop and evaluate a DCE-CT quality assurance (QA) protocol.Methods: A previously designed flow phantom, capable of producing predictable and reproducible time concentration curves from contrast injection was fully validated and then utilized to design a DCE-CT QA protocol. The QA protocol involved a set of quantitative metrics including injected and total mass error, as well as goodness of fit comparison to the known truth concentration curves. An additional region of interest (ROI) sensitivity analysis was also developed to provide additional details on intrascanner variability and determine appropriate ROI sizes for quantitative analysis. Both the QA protocol and ROI sensitivity analysis were utilized to test variations in DCE-CT results using different imaging parameters (tube voltage and current) as well as alternate reconstruction methods and imaging techniques. The developed QA protocol and ROI sensitivity analysis was then applied at three institutions that were part of clinical trial involving DCE-CT and results were compared.Results: The inherent specificity of robustness of the phantom was determined through calculation of the total intraday variability and determined to be less than 2.2 ± 1.1% (total calculated output contrast mass error) with a goodness of fit (R{sup 2}) of greater than 0.99 ± 0.0035 (n= 10). The DCE-CT QA protocol was capable of detecting significant deviations from

  16. Normal CT anatomy of the spine

    International Nuclear Information System (INIS)

    Quiroga, O.; Matozzi, F.; Beranger, M.; Nazarian, S.; Salamon, G.; Gambarelli, J.

    1982-01-01

    To analyse the anatomo-radiological correlation of the spine and spinal cord, 22 formalized, frozen anatomical specimens corresponding to different regions of the spinal column (8 cervical, 5 dorsal, and 9 lumbar) were studied by CT scans on axial, sagittal and coronal planes and by contact radiography after they were cut into anatomical slices in order to clarify the normal CT anatomy of the spinal column. The results obtained from CT patient scans, performed exclusively on the axial plane, were compared with those obtained from the anatomical specimens (both CT and contrast radiography). High resolution CT programs were used, enabling us to obtain better individualization of the normal structures contained in the spinal column. Direct sagittal and coronal sections were performed on the specimens in order to get further anatomo-radiological information. Enhanced CT studies of the specimens were also available because of the air already present in the subarachnoid spaces. Excellent visualization was obtained of bone structures, soft tissue and the spinal cord. High CT resolution of the spine appeares to be an excellent neuroradiological procedure to study the spine and spinal cord. A metrizamide CT scan is, however, necessary when a normal unenhanced CT scan is insufficient for diagnosis and when the spinal cord is not clearly visible, as often happens at the cervical level. Clinical findings are certainly very useful to ascertain the exact CT level and to limit the radiation exposure. (orig.)

  17. xMDFF: molecular dynamics flexible fitting of low-resolution X-ray structures

    International Nuclear Information System (INIS)

    McGreevy, Ryan; Singharoy, Abhishek; Li, Qufei; Zhang, Jingfen; Xu, Dong; Perozo, Eduardo; Schulten, Klaus

    2014-01-01

    A new real-space refinement method for low-resolution X-ray crystallography is presented. The method is based on the molecular dynamics flexible fitting protocol targeted at addressing large-scale deformations of the search model to achieve refinement with minimal manual intervention. An explanation of the method is provided, augmented by results from the refinement of both synthetic and experimental low-resolution data, including an independent electrophysiological verification of the xMDFF-refined crystal structure of a voltage-sensor protein. X-ray crystallography remains the most dominant method for solving atomic structures. However, for relatively large systems, the availability of only medium-to-low-resolution diffraction data often limits the determination of all-atom details. A new molecular dynamics flexible fitting (MDFF)-based approach, xMDFF, for determining structures from such low-resolution crystallographic data is reported. xMDFF employs a real-space refinement scheme that flexibly fits atomic models into an iteratively updating electron-density map. It addresses significant large-scale deformations of the initial model to fit the low-resolution density, as tested with synthetic low-resolution maps of d-ribose-binding protein. xMDFF has been successfully applied to re-refine six low-resolution protein structures of varying sizes that had already been submitted to the Protein Data Bank. Finally, via systematic refinement of a series of data from 3.6 to 7 Å resolution, xMDFF refinements together with electrophysiology experiments were used to validate the first all-atom structure of the voltage-sensing protein Ci-VSP

  18. xMDFF: molecular dynamics flexible fitting of low-resolution X-ray structures

    Energy Technology Data Exchange (ETDEWEB)

    McGreevy, Ryan; Singharoy, Abhishek [University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Li, Qufei [The University of Chicago, Chicago, IL 60637 (United States); Zhang, Jingfen; Xu, Dong [University of Missouri, Columbia, MO 65211 (United States); Perozo, Eduardo [The University of Chicago, Chicago, IL 60637 (United States); Schulten, Klaus, E-mail: kschulte@ks.uiuc.edu [University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States)

    2014-09-01

    A new real-space refinement method for low-resolution X-ray crystallography is presented. The method is based on the molecular dynamics flexible fitting protocol targeted at addressing large-scale deformations of the search model to achieve refinement with minimal manual intervention. An explanation of the method is provided, augmented by results from the refinement of both synthetic and experimental low-resolution data, including an independent electrophysiological verification of the xMDFF-refined crystal structure of a voltage-sensor protein. X-ray crystallography remains the most dominant method for solving atomic structures. However, for relatively large systems, the availability of only medium-to-low-resolution diffraction data often limits the determination of all-atom details. A new molecular dynamics flexible fitting (MDFF)-based approach, xMDFF, for determining structures from such low-resolution crystallographic data is reported. xMDFF employs a real-space refinement scheme that flexibly fits atomic models into an iteratively updating electron-density map. It addresses significant large-scale deformations of the initial model to fit the low-resolution density, as tested with synthetic low-resolution maps of d-ribose-binding protein. xMDFF has been successfully applied to re-refine six low-resolution protein structures of varying sizes that had already been submitted to the Protein Data Bank. Finally, via systematic refinement of a series of data from 3.6 to 7 Å resolution, xMDFF refinements together with electrophysiology experiments were used to validate the first all-atom structure of the voltage-sensing protein Ci-VSP.

  19. Initial results of a new generation dual source CT system using only an in-plane comb filter for ultra-high resolution temporal bone imaging.

    Science.gov (United States)

    Meyer, Mathias; Haubenreisser, Holger; Raupach, Rainer; Schmidt, Bernhard; Lietzmann, Florian; Leidecker, Christianne; Allmendinger, Thomas; Flohr, Thomas; Schad, Lothar R; Schoenberg, Stefan O; Henzler, Thomas

    2015-01-01

    To prospectively evaluate radiation dose and image quality of a third generation dual-source CT (DSCT) without z-axis filter behind the patient for temporal bone CT. Forty-five patients were either examined on a first, second, or third generation DSCT in an ultra-high-resolution (UHR) temporal bone-imaging mode. On the third generation DSCT system, the tighter focal spot of 0.2 mm(2) removes the necessity for an additional z-axis-filter, leading to an improved z-axis radiation dose efficiency. Images of 0.4 mm were reconstructed using standard filtered-back-projection or iterative reconstruction (IR) technique for previous generations of DSCT and a novel IR algorithm for the third generation DSCT. Radiation dose and image quality were compared between the three DSCT systems. The statistically significantly highest subjective and objective image quality was evaluated for the third generation DSCT when compared to the first or second generation DSCT systems (all p generation examination as compared to the first and second generation DSCT. Temporal bone imaging without z-axis-UHR-filter and a novel third generation IR algorithm allows for significantly higher image quality while lowering effective dose when compared to the first two generations of DSCTs. • Omitting the z-axis-filter allows a reduction in radiation dose of 50% • A smaller focal spot of 0.2 mm (2) significantly improves spatial resolution • Ultra-high-resolution temporal-bone-CT helps to gain diagnostic information of the middle/inner ear.

  20. Scout-view assisted interior micro-CT

    International Nuclear Information System (INIS)

    Sharma, Kriti Sen; Narayanan, Shree; Agah, Masoud; Holzner, Christian; Vasilescu, Dragoş M; Jin, Xin; Hoffman, Eric A; Yu, Hengyong; Wang, Ge

    2013-01-01

    Micro computed tomography (micro-CT) is a widely-used imaging technique. A challenge of micro-CT is to quantitatively reconstruct a sample larger than the field-of-view (FOV) of the detector. This scenario is characterized by truncated projections and associated image artifacts. However, for such truncated scans, a low resolution scout scan with an increased FOV is frequently acquired so as to position the sample properly. This study shows that the otherwise discarded scout scans can provide sufficient additional information to uniquely and stably reconstruct the interior region of interest. Two interior reconstruction methods are designed to utilize the multi-resolution data without significant computational overhead. While most previous studies used numerically truncated global projections as interior data, this study uses truly hybrid scans where global and interior scans were carried out at different resolutions. Additionally, owing to the lack of standard interior micro-CT phantoms, we designed and fabricated novel interior micro-CT phantoms for this study to provide means of validation for our algorithms. Finally, two characteristic samples from separate studies were scanned to show the effect of our reconstructions. The presented methods show significant improvements over existing reconstruction algorithms. (paper)

  1. Dynamic CT in early stage of cerebral ischemia; Clinical usefulness of dynamic CT for rapid evaluation of patients considered for emergency cerebral revascularization

    Energy Technology Data Exchange (ETDEWEB)

    Aritake, Koichi; Sano, Keiji (Fuji Brain Inst. Hospital, Fujinomiya, Shizuoka (Japan))

    1990-12-01

    In the present study, we correlated collateral flow patterns derived from dynamic CT (DCT) and the evolution of cerebral infarction in patients with ischemic episodes and analyzed the efficacy of emergency cerebral revascularization (ECR) in preventing infarction. Forty-four patients, all of whom presented cerebral arterial occlusion without showing any hypodense areas on their initial CT scans, were examined. Eleven patients underwent ECR. Time-density curves (TDCs) within 239 different regions in territories of occluded arteries were derived from DCT. The degree of collateral flow and delay of circulation time were assessed, comparing peak values and peak times of TDCs on the occluded side with those in corresponding regions on the non-occluded side. Hemodynamic patterns of TDCs were classified into the following three types: Type 1 - the residual flow was considerably preserved with markedly delayed circulation time; Type 2 - the collateral flow was considerably preserved, but its circulation time was minimally or moderately delayed; and Type 3 - the residual flow was minimal or moderate with or without slowing of circulation time. In the medically-treated group, follow-up CT scans demonstrated infarction in 89% of Type 1, 6% of Type 2 and 97% of Type 3. In the surgically-treated group, infarction developed in 20% of Type 1, 0% of Type 2 and 95% of Type 3. The hemodynamic pattern map, demonstrated with the advent of the personal computer, was clinically useful in predicting the appearance and extent of infarction and judging the prognosis of patients, even immediately after the ischemic ictus. It would appear that patients whose preoperative DCT discloses a Type 1 perfusion pattern can be expected to benefit the most from ECR. (author).

  2. Estimation of skull table thickness with clinical CT and validation with microCT.

    Science.gov (United States)

    Lillie, Elizabeth M; Urban, Jillian E; Weaver, Ashley A; Powers, Alexander K; Stitzel, Joel D

    2015-01-01

    Brain injuries resulting from motor vehicle crashes (MVC) are extremely common yet the details of the mechanism of injury remain to be well characterized. Skull deformation is believed to be a contributing factor to some types of traumatic brain injury (TBI). Understanding biomechanical contributors to skull deformation would provide further insight into the mechanism of head injury resulting from blunt trauma. In particular, skull thickness is thought be a very important factor governing deformation of the skull and its propensity for fracture. Current computed tomography (CT) technology is limited in its ability to accurately measure cortical thickness using standard techniques. A method to evaluate cortical thickness using cortical density measured from CT data has been developed previously. This effort validates this technique for measurement of skull table thickness in clinical head CT scans using two postmortem human specimens. Bone samples were harvested from the skulls of two cadavers and scanned with microCT to evaluate the accuracy of the estimated cortical thickness measured from clinical CT. Clinical scans were collected at 0.488 and 0.625 mm in plane resolution with 0.625 mm thickness. The overall cortical thickness error was determined to be 0.078 ± 0.58 mm for cortical samples thinner than 4 mm. It was determined that 91.3% of these differences fell within the scanner resolution. Color maps of clinical CT thickness estimations are comparable to color maps of microCT thickness measurements, indicating good quantitative agreement. These data confirm that the cortical density algorithm successfully estimates skull table thickness from clinical CT scans. The application of this technique to clinical CT scans enables evaluation of cortical thickness in population-based studies. © 2014 Anatomical Society.

  3. The dynamic range of ultra-high-resolution cryogenic gamma-ray spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Shafinaz [Advanced Detector Group, Lawrence Livermore National Laboratory, 7000 East Avenue, L-270, Livermore, CA 94550 (United States); Terracol, Stephane F. [Advanced Detector Group, Lawrence Livermore National Laboratory, 7000 East Avenue, L-270, Livermore, CA 94550 (United States); Drury, Owen B. [Advanced Detector Group, Lawrence Livermore National Laboratory, 7000 East Avenue, L-270, Livermore, CA 94550 (United States); Friedrich, Stephan [Advanced Detector Group, Lawrence Livermore National Laboratory, 7000 East Avenue, L-270, Livermore, CA 94550 (United States)]. E-mail: friedrich1@llnl.gov

    2006-04-15

    We are developing high-resolution cryogenic gamma-ray spectrometers for nuclear science and non-proliferation applications. The gamma-ray detectors are composed of a bulk superconducting Sn foil absorber attached to a multilayer Mo/Cu transition-edge sensor (TES). The energy resolution of a detector with a 1x1x0.25 mm{sup 3} Sn absorber is 50-90 eV FWHM for {gamma}-rays up to 100 keV, and it decreases for larger absorbers. Here, we present the detector performance for different absorber volumes, and discuss the trade-offs between energy resolution and dynamic range.

  4. The Dynamic Range of Ultra-High Resolution Cryogenic Gamma-ray Spectrometers

    International Nuclear Information System (INIS)

    Ali, S; Terracol, S F; Drury, O B; Friedrich, S

    2005-01-01

    We are developing high-resolution cryogenic gamma-ray spectrometers for nuclear science and non-proliferation applications. The gamma-ray detectors are composed of a bulk superconducting Sn foil absorber attached to multilayer Mo/Cu transition-edge sensors (TES). The energy resolution achieved with a 1 x 1 x 0.25 mm 3 Sn absorber is 50 -90eV for γ-rays up to 100 keV and it decreases for large absorber sizes. We discuss the trade-offs between energy resolution and dynamic range, as well as development of TES arrays for higher count rates and better sensitivity

  5. Lung manifestation in rheumatoid arthritis: High-resolution CT in mutual relation to skeletal changes and laboratory parameters

    International Nuclear Information System (INIS)

    Mueller-Leisse, C.; Meyer, O.; Genth, E.; Guenther, R.W.

    1996-01-01

    Purpose: It has been the aim of the following study to evaluate pulmonary changes in rheumatoid arthritis with high-resolution CT and to assess their correlation with joint manifestation and laboratory paramters. Material and methods: The authors prospectively performed computed tomography (CT) in 83 patients with rheumatoid arthritis and graded pulmonary changes for frequency and severity. Included were patients with 6-7/7 ARA, BSR>25/1 min and mean disease duration of 12 years (range, 1-44). Data of medical and drug histories, smoking habits, blood levels of rheumatoid factor (RF), antinuclear antibodies (ANA) and C-reactive protein as well as the degree of joint involvement were taken into account. Results: 58 patients (70%) had pathological CT scans showing the following abnormalities: Interlobular thickening (44.5%), intralobular thickening (34%), nonseptal linear attenuation (35%), nodular or linear pleural thickening (32.5%), ground-glass pattern (19%), centrilobular nodules (13%), honeycombing (13%) and bronchiolectasis (9%). Intralobular thickening, honeycombing and pleural thickening were associated with a higher degree of joint manifestation; pleural thickening, honeycombing and ground-glass pattern were associated with a higher level of rheumatoid factor. There was no relationship between pulmonary changes and either the duration of the disease, antinuclear antibodies (ANA) or C-reactive protein. Conclusion: CT may be a useful noninvasive tool for recognition of RA-associated lung disease. Interstitial lung changes are frequent and they are independent of the duration of the disease. Pulmonary interstitial changes are more frequent and more severe in RF-positive patients and in case of more severe joint involvement. (orig.) [de

  6. Study of CT-based positron range correction in high resolution 3D PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Cal-Gonzalez, J., E-mail: jacobo@nuclear.fis.ucm.es [Grupo de Fisica Nuclear, Dpto. Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain); Herraiz, J.L. [Grupo de Fisica Nuclear, Dpto. Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain); Espana, S. [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States); Vicente, E. [Grupo de Fisica Nuclear, Dpto. Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain); Instituto de Estructura de la Materia, Consejo Superior de Investigaciones Cientificas (CSIC), Madrid (Spain); Herranz, E. [Grupo de Fisica Nuclear, Dpto. Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain); Desco, M. [Unidad de Medicina y Cirugia Experimental, Hospital General Universitario Gregorio Maranon, Madrid (Spain); Vaquero, J.J. [Dpto. de Bioingenieria e Ingenieria Espacial, Universidad Carlos III, Madrid (Spain); Udias, J.M. [Grupo de Fisica Nuclear, Dpto. Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain)

    2011-08-21

    Positron range limits the spatial resolution of PET images and has a different effect for different isotopes and positron propagation materials. Therefore it is important to consider it during image reconstruction, in order to obtain optimal image quality. Positron range distributions for most common isotopes used in PET in different materials were computed using the Monte Carlo simulations with PeneloPET. The range profiles were introduced into the 3D OSEM image reconstruction software FIRST and employed to blur the image either in the forward projection or in the forward and backward projection. The blurring introduced takes into account the different materials in which the positron propagates. Information on these materials may be obtained, for instance, from a segmentation of a CT image. The results of introducing positron blurring in both forward and backward projection operations was compared to using it only during forward projection. Further, the effect of different shapes of positron range profile in the quality of the reconstructed images with positron range correction was studied. For high positron energy isotopes, the reconstructed images show significant improvement in spatial resolution when positron range is taken into account during reconstruction, compared to reconstructions without positron range modeling.

  7. Study of CT-based positron range correction in high resolution 3D PET imaging

    International Nuclear Information System (INIS)

    Cal-Gonzalez, J.; Herraiz, J.L.; Espana, S.; Vicente, E.; Herranz, E.; Desco, M.; Vaquero, J.J.; Udias, J.M.

    2011-01-01

    Positron range limits the spatial resolution of PET images and has a different effect for different isotopes and positron propagation materials. Therefore it is important to consider it during image reconstruction, in order to obtain optimal image quality. Positron range distributions for most common isotopes used in PET in different materials were computed using the Monte Carlo simulations with PeneloPET. The range profiles were introduced into the 3D OSEM image reconstruction software FIRST and employed to blur the image either in the forward projection or in the forward and backward projection. The blurring introduced takes into account the different materials in which the positron propagates. Information on these materials may be obtained, for instance, from a segmentation of a CT image. The results of introducing positron blurring in both forward and backward projection operations was compared to using it only during forward projection. Further, the effect of different shapes of positron range profile in the quality of the reconstructed images with positron range correction was studied. For high positron energy isotopes, the reconstructed images show significant improvement in spatial resolution when positron range is taken into account during reconstruction, compared to reconstructions without positron range modeling.

  8. Accuracy of high-resolution CT in distinguishing between Pneumocystis carinii pneumonia and non-Pneumocystis carinii pneumonia in AIDS patients

    International Nuclear Information System (INIS)

    Hidalgo, A.; Mauleon, S.; Andreu, J.; Caceres, J.; Falco, V.; Crespo, M.; Ribera, E.; Pahissa, A.

    2003-01-01

    The aim of this study was to assess the value of high-resolution CT in distinguishing between Pneumocystis carinii and non-Pneumocystis carinii pneumonia (PCP) in patients HIV-positive and high risk to have PCP. We performed a prospective study in 30 patients with <200 CD4 lymphocytes, clinical symptoms of pulmonary disease and chest X-ray non-conclusive for pulmonary infection. Evaluated CT findings included ground-glass opacities, reticulation, tree-in-bud appearance, consolidation, cystic lesions, bronchiectasis and lymphadenopathies. The diagnosis of ''examination suggestive of PCP'' was applied to cases showing a diffuse or predominant ground-glass pattern in the upper fields, associated or not with reticulations and small cystic lesions. The sensitivity, specificity, positive predictive value and negative predictive value of high-resolution computed tomography (HRCT) for the diagnosis of PCP was 100, 83.3, 90.5 and 100%, respectively. Pneumocystis carinii pneumonia was not demonstrated in any of the cases classified as ''examination not suggestive of PCP''. Significant small airway disease was not observed in any of the PCP cases. We conclude that HRCT is a reliable method for differentiating PCP from other infectious processes in HIV-positive patients and a good method to rule our PCP. Its inclusion in the diagnostic algorithm of lung infections is justified in these patients. (orig.)

  9. Tomography high Resolution CT findings of nontuberculous mycobacterial pulmonary disease: Comparison between the first treatment and the re treatment group

    Energy Technology Data Exchange (ETDEWEB)

    Gwak, Soon Hyuk; Cho, Bum Sang; Jeon, Min Hee; Kim, Eun Young; Kang, Min Ho; Yi, Kyung Sik; Lee, Seung Young; Kim, Sung Jin; Lee, Ki Man [Chungbuk National Univ., Cheongju, (Korea, Republic of)

    2012-06-15

    To analyze and compare the thin section CT findings of first and re treatment nontuberculous mycobacterial (NTM) pulmonary disease. Between January 2005 and April 2010, 121 patients with positive sputum culture for NTM were recruited. We included only 32 patients underwent high resolution chest CT and were confirmed by American Thoracic Society criteria NTM pulmonary infection (first treatment 15, re treatment 17 patients). CT images of 32 patients were reviewed retrospectively. We evaluated the frequency and laterality of the followings; nodule, increased density, bronchial change, parenchymal change. The significantly frequent CT findings of the re treatment NTM group were well defined nodules (retreatment 82.4%, first treatment 33.3%, p = 0.00), consolidations (retreatment 88.2%, first treatment 53.3%, p = 0.03), bronchial changes (bronchiectasis; retreatment 100%, first treatment 66.6%, p = 0.01, bronchial narrowing; retreatment 23.5%, first treatment 0%, p = 0.04 and mucoid impaction; retreatment-58.8%, first treatment-20.0%, p = 0.03) and atelectasis with bronchiectasis (retreatment-88.2%, first treatment 26.7%, p = 0.00). However, most of the evaluated thin section CT findings, such as centrilobular and ill defined nodules, lobular, segmental and subpleural consolidations, ground glass attenuation, bronchial wall thickening, cavities, pleural lesions, fibrotic band, emphysema and laterality of lesions, have not shown significant differences between first treatment and the re treatment group. Thin section CT findings of well defined nodules, consolidations, bronchial changes (bronchiectasis, bronchial narrowing and mucoid impaction) and atelectasis with bronchiectasis are highly suggestive of re treatment NTM pulmonary disease.

  10. Quality control of some CT scanners in Khartoum state

    International Nuclear Information System (INIS)

    Yousif, Ali Mohammed Ali

    2013-06-01

    This study conduced with the aim to evaluate the performance of three CT scanner in Khartoum-Sudan through extensive quality control measurements. Image quality was assessed using a CATPHAN 412 CT image quality phantom. Image quality parameters evaluated were: CT image noise, uniformity, CT number linearity, Low Contrast Resolution, High Contrast Resolution, measurements were performed in accordance with guidelines set out by the Institute of physical science and engineering in medicine (IPEM 91). Image quality parameters tested were within the apoplectic limit specified in the relevant CT guidelines. Measured slice thickness ranged between 9.66-10.5 mm for large slice and 5.25-5.88 for medium slice. The correlation coefficient (R) between the measured and the reference CT number was better than 0.99 for all CT scanners. High resolution for large slice was 7 L P/ cm and 8 L P/ cm for small slice. Low contrast resolution with 1.0% nominal level ranged between 2-3 mm diameter of disc for large slice and 4-7 mm diameter disc for small slice. The measured noise ranged between 1.4-3.4 HU for large slice and 2.92-4.08 HU for small slice. Uniformity ranged between 3.08 to 2.075 HU for large slice and 3.22 to 1.4 HU for small slice thickness. The results indicate that routine maintenance, service and calibration, as well as the frequent quality control of CT scanners play a key rote in achieving the best performance of the system. Since computed tomography (CT) contributes the most to the collective dose compared to other radiological examinations, it is a necessity for quality control and quality assurance programs to be established in each radiology department.(Author)

  11. CtGEM typing: Discrimination of Chlamydia trachomatis ocular and urogenital strains and major evolutionary lineages by high resolution melting analysis of two amplified DNA fragments.

    Science.gov (United States)

    Giffard, Philip M; Andersson, Patiyan; Wilson, Judith; Buckley, Cameron; Lilliebridge, Rachael; Harris, Tegan M; Kleinecke, Mariana; O'Grady, Kerry-Ann F; Huston, Wilhelmina M; Lambert, Stephen B; Whiley, David M; Holt, Deborah C

    2018-01-01

    Chlamydia trachomatis infects the urogenital tract (UGT) and eyes. Anatomical tropism is correlated with variation in the major outer membrane protein encoded by ompA. Strains possessing the ocular ompA variants A, B, Ba and C are typically found within the phylogenetically coherent "classical ocular lineage". However, variants B, Ba and C have also been found within three distinct strains in Australia, all associated with ocular disease in children and outside the classical ocular lineage. CtGEM genotyping is a method for detecting and discriminating ocular strains and also the major phylogenetic lineages. The rationale was facilitation of surveillance to inform responses to C. trachomatis detection in UGT specimens from young children. CtGEM typing is based on high resolution melting analysis (HRMA) of two PCR amplified fragments with high combinatorial resolving power, as defined by computerised comparison of 65 whole genomes. One fragment is from the hypothetical gene defined by Jali-1891 in the C. trachomatis B_Jali20 genome, while the other is from ompA. Twenty combinatorial CtGEM types have been shown to exist, and these encompass unique genotypes for all known ocular strains, and also delineate the TI and T2 major phylogenetic lineages, identify LGV strains and provide additional resolution beyond this. CtGEM typing and Sanger sequencing were compared with 42 C. trachomatis positive clinical specimens, and there were no disjunctions. CtGEM typing is a highly efficient method designed and tested using large scale comparative genomics. It divides C. trachomatis into clinically and biologically meaningful groups, and may have broad application in surveillance.

  12. Acute pulmonary schistosomiasis: Correlation between the high-resolution CT and pathological findings

    Directory of Open Access Journals (Sweden)

    Arthur Soares Souza, Jr.

    2007-09-01

    Full Text Available A 35 years old rural worker presented with a 15 days history of progressive dyspnea, associated with dry cough, mialgia and fever. Few days before the symptoms, he had swim in a river. The chest radiographs demonstrated bilateral reticule-nodular infiltrates. The high-resolution CT showed patchy areas of ground-glass attenuation, irregular interlobular septal thickening, intralobular interstitial thickening, and small nodules, which are confluent in some regions. All the laboratorial investigation were negative. The open lung biopsy shows parenchymal granulomatous inflammation, and numerous schistosome ova. Resumo: Paciente masculino, de 35 anos, trabalhador rural, apresentando-se com história de dispneia progressiva, tosse seca, mialgia e febre, com evolução de 15 dias. Relatava ter nadado num rio, recentemente. As radiografias de tórax mostravam infiltração retículo-nodular bilateral. A tomografia computadorizada de alta resolução evidenciava áreas esparsas de atenuação em vidro fosco, espessamento irregular de septos in- terlobulares e do interstício intralobular e pequenos nódulos, confluentes em algumas regiões. Os exames laboratoriais eram normais. Biópsia pulmonar a céu aberto demonstrou inflamação parenquimatosa granulomatosa, com presença de ovos de esquistossoma. Key-words: Acute schistosomiasis, high-resolution computed tomography, parasitic infection, lungs, Palavras-chave: Esquistossomose aguda, tomografia computadorizada de alta resolução, infecção parasitária, pulmões

  13. Automatic extraction of forward stroke volume using dynamic 11C-acetate PET/CT

    DEFF Research Database (Denmark)

    Harms, Hans; Tolbod, Lars Poulsen; Hansson, Nils Henrik

    Objectives: Dynamic PET with 11C-acetate can be used to quantify myocardial blood flow and oxidative metabolism, the latter of which is used to calculate myocardial external efficiency (MEE). Calculation of MEE requires forward stroke volume (FSV) data. FSV is affected by cardiac loading conditions......, potentially introducing bias if measured with a separate modality. The aim of this study was to develop and validate methods for automatically extracting FSV directly from the dynamic PET used for measuring oxidative metabolism. Methods: 16 subjects underwent a dynamic 27 min PET scan on a Siemens Biograph...... TruePoint 64 PET/CT scanner after bolus injection of 399±27 MBq of 11C-acetate. The LV-aortic time-activity curve (TAC) was extracted automatically from dynamic PET data using cluster analysis. The first-pass peak was derived by automatic extrapolation of the down-slope of the TAC. FSV...

  14. High-resolution coded-aperture design for compressive X-ray tomography using low resolution detectors

    Science.gov (United States)

    Mojica, Edson; Pertuz, Said; Arguello, Henry

    2017-12-01

    One of the main challenges in Computed Tomography (CT) is obtaining accurate reconstructions of the imaged object while keeping a low radiation dose in the acquisition process. In order to solve this problem, several researchers have proposed the use of compressed sensing for reducing the amount of measurements required to perform CT. This paper tackles the problem of designing high-resolution coded apertures for compressed sensing computed tomography. In contrast to previous approaches, we aim at designing apertures to be used with low-resolution detectors in order to achieve super-resolution. The proposed method iteratively improves random coded apertures using a gradient descent algorithm subject to constraints in the coherence and homogeneity of the compressive sensing matrix induced by the coded aperture. Experiments with different test sets show consistent results for different transmittances, number of shots and super-resolution factors.

  15. Post-mortem CT-coronary angiography

    DEFF Research Database (Denmark)

    Pøhlsgaard, Camilla; Leth, Peter Mygind

    2007-01-01

    post-mortem coronary angiography and computerized tomography.  We describe how to prepare and inject the contrast medium, and how to establish a CT-protocol that optimizes spatial resolution, low contrast resolution and noise level. Testing of the method on 6 hearts, showed that the lumen...

  16. Micro-CT Pore Scale Study Of Flow In Porous Media: Effect Of Voxel Resolution

    Science.gov (United States)

    Shah, S.; Gray, F.; Crawshaw, J.; Boek, E.

    2014-12-01

    In the last few years, pore scale studies have become the key to understanding the complex fluid flow processes in the fields of groundwater remediation, hydrocarbon recovery and environmental issues related to carbon storage and capture. A pore scale study is often comprised of two key procedures: 3D pore scale imaging and numerical modelling techniques. The essence of a pore scale study is to test the physics implemented in a model of complicated fluid flow processes at one scale (microscopic) and then apply the model to solve the problems associated with water resources and oil recovery at other scales (macroscopic and field). However, the process of up-scaling from the pore scale to the macroscopic scale has encountered many challenges due to both pore scale imaging and modelling techniques. Due to the technical limitations in the imaging method, there is always a compromise between the spatial (voxel) resolution and the physical volume of the sample (field of view, FOV) to be scanned by the imaging methods, specifically X-ray micro-CT (XMT) in our case In this study, a careful analysis was done to understand the effect of voxel size, using XMT to image the 3D pore space of a variety of porous media from sandstones to carbonates scanned at different voxel resolution (4.5 μm, 6.2 μm, 8.3 μm and 10.2 μm) but keeping the scanned FOV constant for all the samples. We systematically segment the micro-CT images into three phases, the macro-pore phase, an intermediate phase (unresolved micro-pores + grains) and the grain phase and then study the effect of voxel size on the structure of the macro-pore and the intermediate phases and the fluid flow properties using lattice-Boltzmann (LB) and pore network (PN) modelling methods. We have also applied a numerical coarsening algorithm (up-scale method) to reduce the computational power and time required to accurately predict the flow properties using the LB and PN method.

  17. Philips Gemini TF64 PET/CT Acceptance Testing

    International Nuclear Information System (INIS)

    González Gonzalez, Joaquín J.; Calderón Marin, Carlos F.; Varela Corona, Consuelo; Machado Tejeda, Adalberto; González Correa, Héctor J.

    2016-01-01

    The Philips Gemini TF64 is the first PET/CT scanner installed in Cuba at the Institute of Oncology and Radiobiology in 2014. It is a third generation fully tridimensional whole body PET scanner with time-of-flight (TOF) technology combined with a 64-slice Brilliance CT scanner. The CT detector module contains 672x64 solid state detector, incorporating GOS scintillators, optical diodes and electronic signal channels arranged in 64 side by side arcs, with 672 detectors in each arc. There are sixteen 0.75 mm individual detector elements around the center and four 1.5 mm elements at each end, resulting in a 24 mm total detection length. The PET detector consists of 28 pixelar modules of a 23x44 array of 4x4x22 mm3 of LYSO crystals arranged in an Anger-logic detector design. The hardware coincidence-timing window for this scanner is set at 4 ns and delayed coincidence window technique is used to estimate the random coincidences in collected data. In this study the performance characteristics of PET/CT scanner were measured as part of the program tests of acceptance for clinical use.Methodology. The performance characteristics of CT scanner were evaluated by manufacturer protocol using Philips system performance phantom. Some additional geometrical tests were performed by the user. The intrinsic measurements of energy resolution as well as timing resolution, which define the TOF performance of PET scanner, were performed following the recommendations of manufacturer using 18 F. Spatial resolution, sensitivity, scatter fraction, counting rate performance, image quality and accuracy were measured according to the NEMA NU-2 2007 procedures. Additionally, to characterize the effect of TOF reconstruction on lesion contrast and noise, the standard NEMA torso phantom was reconstructed with and without TOF capability. The accuracy of PET/CT image registration was tested according to the manufacturer protocol using an image alignment calibration holder with 6 point sources of 22

  18. SU-C-206-01: Impact of Charge Sharing Effect On Sub-Pitch Resolution for CZT-Based Photon Counting CT Systems

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, X; Cheng, Z; Deen, J; Peng, H [McMaster University, Hamilton, Ontario (Canada); Xing, L [Stanford University School of Medicine, Stanford, CA (United States)

    2016-06-15

    Purposes: Photon counting CT is a new imaging technology that can provide tissue composition information such as calcium/iodine content quantification. Cadmium zinc telluride CZT is considered a good candidate the photon counting CT due to its relatively high atomic number and band gap. One potential challenge is the degradation of both spatial and energy resolution as the fine electrode pitch is deployed (<50 µm). We investigated the extent of charge sharing effect as functions of gap width, bias voltage and depth-of-interaction (DOI). Methods: The initial electron cloud size and diffusion process were modeled analytically. The valid range of charge sharing effect refers to the range over which both signals of adjacent electrodes are above the triggering threshold (10% of the amplitude of 60keV X-ray photons). The intensity ratios of output in three regions (I1/I2/I3: left pixel, gap area and right pixel) were calculated. With Gaussian white noises modeled (a SNR of 5 based upon the preliminary experiments), the sub-pitch resolution as a function of the spatial position in-between two pixels was studied. Results: The valid range of charge sharing increases linearly with depth-of-interaction (DOI) but decreases with gap width and bias voltage. For a 1.5mm thickness CZT detector (pitch: 50µm, bias: 400 V), the range increase from ∼90µm up to ∼110µm. Such an increase can be attributed to a longer travel distance and the associated electron cloud broadening. The achievable sub-pitch resolution is in the range of ∼10–30µm. Conclusion: The preliminary results demonstrate that sub-pixel spatial resolution can be achieved using the ratio of amplitudes of two neighboring pixels. Such ratio may also be used to correct charge loss and help improve energy resolution of a CZT detector. The impact of characteristic X-rays hitting adjacent pixels (i.e., multiple interaction) on charge sharing is currently being investigated.

  19. Detectors for high resolution dynamic positron emission tomography

    International Nuclear Information System (INIS)

    Derenzo, S.E.; Budinger, T.F.; Huesman, R.H.

    1985-01-01

    Tomography is the technique of producing a photographic image of an opaque specimen by transmitting a beam of x-rays or gamma rays through the specimen onto an adjacent photographic film. The image results from variations in thickness, density, and chemical composition, of the specimen. This technique is used to study the metabolism of the human brain. This article examines the design of equipment used for high resolution dynamic positron emission tomography. 27 references, 5 figures, 3 tables

  20. Diagnostic value of transmural perfusion ratio derived from dynamic CT-based myocardial perfusion imaging for the detection of haemodynamically relevant coronary artery stenosis

    Energy Technology Data Exchange (ETDEWEB)

    Coenen, Adriaan; Lubbers, Marisa M.; Dedic, Admir; Chelu, Raluca G.; Geuns, Robert-Jan M. van; Nieman, Koen [Erasmus University Medical Center, Department of Radiology, Rotterdam (Netherlands); Erasmus University Medical Center, Department of Cardiology, Rotterdam (Netherlands); Kurata, Akira; Kono, Atsushi; Dijkshoorn, Marcel L. [Erasmus University Medical Center, Department of Radiology, Rotterdam (Netherlands); Rossi, Alexia [Erasmus University Medical Center, Department of Radiology, Rotterdam (Netherlands); Barts Health NHS Trust, NIHR Cardiovascular Biomedical Research Unit at Barts, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London and Department of Cardiology, London (United Kingdom)

    2017-06-15

    To investigate the additional value of transmural perfusion ratio (TPR) in dynamic CT myocardial perfusion imaging for detection of haemodynamically significant coronary artery disease compared with fractional flow reserve (FFR). Subjects with suspected or known coronary artery disease were prospectively included and underwent a CT-MPI examination. From the CT-MPI time-point data absolute myocardial blood flow (MBF) values were temporally resolved using a hybrid deconvolution model. An absolute MBF value was measured in the suspected perfusion defect. TPR was defined as the ratio between the subendocardial and subepicardial MBF. TPR and MBF results were compared with invasive FFR using a threshold of 0.80. Forty-three patients and 94 territories were analysed. The area under the receiver operator curve was larger for MBF (0.78) compared with TPR (0.65, P = 0.026). No significant differences were found in diagnostic classification between MBF and TPR with a territory-based accuracy of 77 % (67-86 %) for MBF compared with 70 % (60-81 %) for TPR. Combined MBF and TPR classification did not improve the diagnostic classification. Dynamic CT-MPI-based transmural perfusion ratio predicts haemodynamically significant coronary artery disease. However, diagnostic performance of dynamic CT-MPI-derived TPR is inferior to quantified MBF and has limited incremental value. (orig.)

  1. Solitary nodular bronchioloalveolar carcinoma of the lung: prediction of histology at high-resolution CT

    International Nuclear Information System (INIS)

    Jang, Hyun Jung; Lee, Kyung Soo; Choo, In Wook; Kim, Seung Hoon; Lee, Won Jae; Byun, Hong Sik; Kim, Yoo Kyung; Shin, Myung Hee; Kim, Sang Jin

    1998-01-01

    The purpose of this study is to descdribe the characteristic high-resolution (HR) CT findings of solitary nodular bronchioloalveolar carcinoma (BAC) of the lung which are valuable for specific diagnosis of the disease. HRCT scans of 46 patients (31 with malignant and 15 with benign lesion) with a solitary pulmonary nodule seen on chest radiograph were distributed in random order and analyzed retrospectively. Two blinded observers jointly analyzed the marginal and internal characteristics of nodules as seen on HRCT, and decisions on the findings were reached by consensus. Stepwise discriminant analysis for characteristic findings of BAC was performed. The most frequent CT findings of BAC (n=3D15) were internal bubble lucency (14/15, 93%)(p=3D0.001), area of ground-glass opacity (12/15, 80%; average 58% of tumor volume)(p=3D0.0001), pleural tag(12/15, 80%; p=3D0.097), and lobulated and spiculated margin(8/15, 53%; p=3D0.459). Findings of ground-glass opacity (p=3D0.0001) and bubble lucency (p=3D0.0187) appeared to be discriminant in the diagnosis of BAC. Peripheral pulmonary nodules containing an area of ground-glass opacity associated with internal bubble-lucency are characteristic of BAC. Specific histologic diagnosis of solitary nodular BAC can be suggested by careful analysis of HRCT findings.=20

  2. CT and HR-CT of exogenous allergic alveolitis

    International Nuclear Information System (INIS)

    Lederer, A.; Kullnig, P.; Pongratz, M.

    1992-01-01

    The CT changes on conventional and high resolution CT in 14 patients with exogeneous allergic alveolitis (EAA) were analysed retrospectively. There were 8 patients with clinically subacute disease, 5 patients in a chronic stage and 1 patient with acute EAA. The appearances and their distribution were examined. Seven of the 8 patients in the subacute stage showed a ground glass pattern and multiple nodules of less than 2 mm. All patients in the chronic stage showed a combination of fine infiltrates, small nodules and irregular linear densities; distortion of the pulmonary pattern was present in 3 cases. The patient with acute EAA showed diffuse dense areas of consolidation in both lungs as well as multiple nodules and a ground glass pattern. The CT appearances of EAA correspond with the basic micropathology and, within the clinical context, permit diagnostic classification. (orig.) [de

  3. Quantitative Assessment of Degenerative Cartilage and Subchondral Bony Lesions in a Preserved Cadaveric Knee: Propagation-Based Phase-Contrast CT Versus Conventional MRI and CT.

    Science.gov (United States)

    Geith, Tobias; Brun, Emmanuel; Mittone, Alberto; Gasilov, Sergei; Weber, Loriane; Adam-Neumair, Silvia; Bravin, Alberto; Reiser, Maximilian; Coan, Paola; Horng, Annie

    2018-04-09

    The aim of this study was to quantitatively assess hyaline cartilage and subchondral bone conditions in a fully preserved cadaveric human knee joint using high-resolution x-ray propagation-based phase-contrast imaging (PBI) CT and to compare the performance of the new technique with conventional CT and MRI. A cadaveric human knee was examined using an x-ray beam of 60 keV, a detector with a 90-mm 2 FOV, and a pixel size of 46 × 46 μm 2 . PBI CT images were reconstructed with both the filtered back projection algorithm and the equally sloped tomography method. Conventional 3-T MRI and CT were also performed. Measurements of cartilage thickness, cartilage lesions, International Cartilage Repair Society scoring, and detection of subchondral bone changes were evaluated. Visual inspection of the specimen akin to arthroscopy was conducted and served as a standard of reference for lesion detection. Loss of cartilage height was visible on PBI CT and MRI. Quantification of cartilage thickness showed a strong correlation between the two modalities. Cartilage lesions appeared darker than the adjacent cartilage on PBI CT. PBI CT showed similar agreement to MRI for depicting cartilage substance defects or lesions compared with the visual inspection. The assessment of subchondral bone cysts showed moderate to strong agreement between PBI CT and CT. In contrast to the standard clinical methods of MRI and CT, PBI CT is able to simultaneously depict cartilage and bony changes at high resolution. Though still an experimental technique, PBI CT is a promising high-resolution imaging method to evaluate comprehensive changes of osteoarthritic disease in a clinical setting.

  4. High resolution CT of the lungs in acute disseminated tuberculosis and a pediatric radiology perspectice of the term 'miliary'

    International Nuclear Information System (INIS)

    Jamieson, D.H.; Cremin, B.J.

    1993-01-01

    High resolution CT (HRCT) of the lungs in six children with acute disseminated tuberculosis was evaluated. There was a wide variation in the HRCT appearances. This covered differences in size, distribution and concentration of nodular opacities. Coalescence of nodules and the presence of intestitial thickening was variable. The recognition of acute disseminated tuberculosis is important for diagnosis and has prognostic implications. The use of the term 'acute disseminated tuberculosis' rather than 'miliary tuberculosis' is advocated. (orig.)

  5. Fever of unknown origin: A value of 18F-FDG-PET/CT with integrated full diagnostic isotropic CT imaging

    International Nuclear Information System (INIS)

    Ferda, Jiri; Ferdova, Eva; Zahlava, Jan; Matejovic, Martin; Kreuzberg, Boris

    2010-01-01

    Aim: The aim of presented work is to evaluate the clinical value of 18 F-FDG-PET/CT in patients with fever of unknown origin (FUO) and to compare PET/CT finding with the results of the following investigation. Material and method: 48 patients (24 men, 24 women, mean age 57.6 years with range 15-89 years) underwent 18 F-FDG-PET/CT due to the fever of unknown origin. All examinations were performed using complex PET/CT protocol combined PET and whole diagnostic contrast enhanced CT with sub-millimeter spatial resolution (except patient with history of iodine hypersensitivity or sever renal impairment). CT data contained diagnostic images reconstructed with soft tissue and high-resolution algorithm. PET/CT finding were compared with results of biopsies, immunology, microbiology or autopsy. Results: The cause of FUO was explained according to the PET/CT findings and followed investigations in 44 of 48 cases-18 cases of microbial infections, nine cases of autoimmune inflammations, four cases of non-infectious granulomatous diseases, eight cases of malignancies and five cases of proved immunity disorders were found. In 46 cases, the PET/CT interpretation was correct. Only in one case, the cause was overlooked and the uptake in atherosclerotic changes of arteries was misinterpreted as vasculitis in the other. The reached sensitivity was 97% (43/44), and specificity 75% (3/4) respectively. Conclusion: In patients with fever of unknown origin, 18 F-FDG-PET/CT might enable the detection of its cause.

  6. Micro-CT and nano-CT analysis of filling quality of three different endodontic sealers.

    Science.gov (United States)

    Huang, Yan; Celikten, Berkan; de Faria Vasconcelos, Karla; Ferreira Pinheiro Nicolielo, Laura; Lippiatt, Nicholas; Buyuksungur, Arda; Jacobs, Reinhilde; Orhan, Kaan

    2017-12-01

    To investigate voids in different root canal sealers using micro-CT and nano-CT, and to explore the feasibility of using nano-CT for quantitative analysis of sealer filling quality. 30 extracted mandibular central incisors were randomly assigned into three groups according to the applied root canal sealers (Total BC Sealer, Sure Seal Root, AH Plus) by the single cone technique. Subsequently, micro-CT and nano-CT were performed to analyse the incidence rate of voids, void fraction, void volume and their distribution in each sample. Micro-CT evaluation showed no significant difference among sealers for the incidence rate of voids or void fraction in the whole filling materials (p > 0.05), whereas a significant difference was found between AH Plus and the other two sealers using nano-CT (p nano-CT results displayed higher void volume in AH Plus among all the sealers and regions (p nano-CT analysis, when round root canals were treated by the single cone technique. The disparate results suggest that the higher resolution of nano-CT have a greater ability of distinguishing internal porosity, and therefore suggesting the potential use of nano-CT in quantitative analysis of filling quality of sealers.

  7. The role of CT in diagnosing small hepatic tumors; Usefulness of table incremental dynamic CT (ICT)

    Energy Technology Data Exchange (ETDEWEB)

    Usuki, Noriaki; Daikokuya, Hideo; Fukuda, Haruyuki; Saiwai, Shigeo; Nakajima, Hideyuki; Miyamoto, Takeshi; Kudo, Masatoshi (Kobe General Hospital, Hyogo (Japan))

    1992-11-01

    Twenty-seven cases of small hepatic tumors were examined by MRI and CT (ICT). MRI was more sensitive than plain and contrast CT. But ICT could detect more small lesions than MRI. CT is not more superior modality than MRI untill ICT is performed. It is concluded ICT should be done when diagnosing small hepatic tumors by CT. (author).

  8. Accuracy of high-resolution CT in distinguishing between Pneumocystis carinii pneumonia and non-Pneumocystis carinii pneumonia in AIDS patients

    Energy Technology Data Exchange (ETDEWEB)

    Hidalgo, A.; Mauleon, S.; Andreu, J.; Caceres, J. [Department of Radiology, Hospital General Universitari Vall d' Hebron, Universitari Vall d' Hebron, Universitat Autonoma de Barcelona, Paseo Vall d' Hebron 119-129, 08035 Barcelona (Spain); Falco, V.; Crespo, M.; Ribera, E.; Pahissa, A. [Department of Medicine, Service of Infectious Diseases, Hospital General Universitari Vall d' Hebron, Universitari Vall d' Hebron, Universitat Autonoma de Barcelona, Paseo Vall d' Hebron 119-129, 08035 Barcelona (Spain)

    2003-05-01

    The aim of this study was to assess the value of high-resolution CT in distinguishing between Pneumocystis carinii and non-Pneumocystis carinii pneumonia (PCP) in patients HIV-positive and high risk to have PCP. We performed a prospective study in 30 patients with <200 CD4 lymphocytes, clinical symptoms of pulmonary disease and chest X-ray non-conclusive for pulmonary infection. Evaluated CT findings included ground-glass opacities, reticulation, tree-in-bud appearance, consolidation, cystic lesions, bronchiectasis and lymphadenopathies. The diagnosis of ''examination suggestive of PCP'' was applied to cases showing a diffuse or predominant ground-glass pattern in the upper fields, associated or not with reticulations and small cystic lesions. The sensitivity, specificity, positive predictive value and negative predictive value of high-resolution computed tomography (HRCT) for the diagnosis of PCP was 100, 83.3, 90.5 and 100%, respectively. Pneumocystis carinii pneumonia was not demonstrated in any of the cases classified as ''examination not suggestive of PCP''. Significant small airway disease was not observed in any of the PCP cases. We conclude that HRCT is a reliable method for differentiating PCP from other infectious processes in HIV-positive patients and a good method to rule our PCP. Its inclusion in the diagnostic algorithm of lung infections is justified in these patients. (orig.)

  9. Study on the testing standards of quality assurance for CT image

    International Nuclear Information System (INIS)

    Liu Jingxin; Yang Haishan; Liu Gang; Wang Liyun

    2000-01-01

    Objective: To establish national testing standards of quality assurance for CT image. Methods: 104 sets of CT system were tested using quality assurance test phantoms and devices including American RMI 461A, RMI 463, MDH 1015 C with ION Chamber, Sweden UNF 9004 kvp meter. These CT were made from different manufacturers including out of date of CT and state-of-art spiral CT system. Thirteen kinds of standards on CT from different countries and 87 sets of technical specifications of CT were collected. The results of the test were compared using phantoms of RMI, Victoreen, Catphan on the same CT system (Siemens HQS). Results: Based on the test results of this study, with reference to the foreign standards and some of regulations in China, CT test items should include high contrast resolution, low contrast resolution, noise, uniformity, mean CT unit, dose slice thickness, localization light, positioning of patient support and gantry tilt. Standards including acceptance test, status test, and constancy test were made in specification. Among them, constancy test equals to IEC 122-2-6; items and results in acceptance test are stricter than in the status test; and low contrast resolution, uniformity, localization light accuracy and positioning of patient support in the acceptance test are even stricter than that in foreign standards. Conclusion: The testing standards of quality assurance for CT developed in this study shows practical and useful in China, which supplemented to the existing international standards

  10. Dynamic kinetic resolution of biaryl atropisomers by chiral dialkylaminopyridine catalysts.

    Science.gov (United States)

    Ma, Gaoyuan; Deng, Chao; Deng, Jun; Sibi, Mukund P

    2018-05-02

    The acylative dynamic kinetic resolution (DKR) of configurationally unstable biaryl atropisomers is achieved by using newly developed chiral dialkylaminopyridine catalysts with fluxional chirality. Various types of biaryl substrates containing phenolic structures were subjected to the DKR to obtain a range of acylated biaryl products with enantiomeric ratios up to 90 : 10.

  11. Comparison of 133Xe gas dynamic SPECT and thin-section CT in patients with pulmonary emphysema

    International Nuclear Information System (INIS)

    Takahashi, Kazue; Satoh, Katashi; Ohkawa, Motoomi

    2001-01-01

    We assessed 133 Xe gas dynamic single photon emission computed tomography (SPECT) by comparing washout axial images with thin-section CT (TSCT) in patients with pulmonary emphysema. Twenty-three patients were studied. All patients were diagnosed as having pulmonary emphysema on the basis of TSCT. We compared TSCT of upper, middle and lower lung fields with 133 Xe gas dynamic SPECT axial images at the corresponding levels during the 3 to 4 minutes of washout phase. If the degree of 133 Xe gas retention or TSCT finding of ventral and dorsal parts was not the same, the images were divided into two parts. A total of 174 lesions in 23 cases were examined, but 3 lesions having no retention of 133 Xe gas at equilibrium phase were excluded. The results showed that: there were 37 lesions (21.6%) with equivalent severity on both images; there were 42 lesions (24.5%) with more severity on 133 Xe gas dynamic SPECT than on TSCT; and there were 92 lesions (53.8%) with more severity on TSCT than on 133 Xe gas dynamic SPECT. The severity on 133 Xe gas dynamic SPECT and TSCT was not always compatible. One of the reasons for the variable 133 Xe gas retention even when the lesion had the same severity on TSCT, may be bronchial stricture which cannot be seen on TSCT. By comparison of axial images of 133 Xe gas dynamic SPECT with CT images, we could recognize the areas of 133 Xe gas retention in detail. Results suggest that 133 Xe gas dynamic SPECT can be useful to identify ventilation impairment in pulmonary emphysema. (author)

  12. Dynamic multidetector CT and non-contrast-enhanced MR for right adrenal vein imaging: comparison with catheter venography in adrenal venous sampling

    Energy Technology Data Exchange (ETDEWEB)

    Ota, Hideki; Seiji, Kazumasa; Kawabata, Masahiro; Satani, Nozomi; Matsuura, Tomonori; Tominaga, Junya; Takase, Kei [Tohoku University Hospital, Department of Diagnostic Radiology, Sendai (Japan); Omata, Kei; Ono, Yoshikiyo; Iwakura, Yoshitsugu; Morimoto, Ryo; Kudo, Masataka; Satoh, Fumitoshi; Ito, Sadayoshi [Tohoku University Hospital, Division of Nephrology, Endocrinology and Vascular Medicine, Sendai (Japan)

    2016-03-15

    To evaluate visualization of the right adrenal vein (RAV) with multidetector CT and non-contrast-enhanced MR imaging in patients with primary aldosteronism. A total of 125 patients (67 men) scheduled for adrenal venous sampling (AVS) were included. Dynamic 64-detector-row CT and balanced steady-state free precession-based non-contrast-enhanced 3-T MR imaging were performed. RAV visualization based on a four-point score was documented. Both anatomical location and variation on cross-sectional imaging were evaluated, and the findings were compared with catheter venography as the gold standard. The RAV was visualized in 93.2 % by CT and 84.8 % by MR imaging (p = 0.02). Positive predictive values of RAV visualization were 100 % for CT and 95.2 % for MR imaging. Imaging score was significantly higher in CT than MR imaging (p < 0.01). The RAV formed a common trunk with an accessory hepatic vein in 16 % of patients. The RAV orifice level on cross-sectional imaging was concordant with catheter venography within the range of 1/3 vertebral height in >70 % of subjects. Success rate of AVS was 99.2 %. Dynamic CT is a reliable way to map the RAV prior to AVS. Non-contrast-enhanced MR imaging is an alternative when there is a risk of complication from contrast media or radiation exposure. (orig.)

  13. 18F-Fluorodeoxyglucose PET/CT and dynamic contrast-enhanced MRI as imaging biomarkers in malignant pleural mesothelioma.

    Science.gov (United States)

    Hall, David O; Hooper, Clare E; Searle, Julie; Darby, Michael; White, Paul; Harvey, John E; Braybrooke, Jeremy P; Maskell, Nick A; Masani, Vidan; Lyburn, Iain D

    2018-02-01

    The purpose of this study was to compare the use of fluorine-18-fluorodeoxyglucose (F-FDG) PET with computed tomography (CT) and dynamic contrast-enhanced (DCE) MRI to predict prognosis and monitor treatment in malignant pleural mesothelioma. F-FDG PET/CT and DCE-MRI studies carried out as part of the South West Area Mesothelioma Pemetrexed trial were used. F-FDG PET/CT and DCE-MRI studies were carried out before treatment, and after two cycles of chemotherapy, on patients treated with pemetrexed and cisplatin. A total of 73 patients were recruited, of whom 65 had PET/CT and DCE-MRI scans. Baseline measurements from F-FDG PET/CT (maximum standardized uptake value, metabolic tumour volume and total lesion glycolysis) and DCE-MRI (integrated area under the first 90s of the curve and washout slope) were compared with overall survival (OS) using Kaplan-Meier and Cox regression analyses, and changes in imaging measurements were compared with disease progression. PET/CT and DCE-MRI measurements were not correlated with each other. Maximum standardized uptake value, metabolic tumour volume and total lesion glycolysis were significantly related to OS with Cox regression analysis and Kaplan-Meir analysis, and DCE-MRI washout curve shape was significantly related to OS. DCE-MRI curve shape can be combined with F-FDG PET/CT to give additional prognostic information. Changes in measurements were not related to progression-free survival. F-FDG PET/CT and DCE-MRI give prognostic information in malignant pleural mesothelioma. Neither PET/CT nor DCE-MRI is useful for monitoring disease progression.

  14. Cross-sectional imaging of large and dense materials by high energy X-ray CT using linear accelerator

    International Nuclear Information System (INIS)

    Kanamori, Takahiro; Kamata, Shouji; Ito, Shinichi.

    1989-01-01

    A prototype high energy X-ray CT (computed tomography) system has been developed which employs a linear accelerator as the X-ray source (max. photon energy: 12 MeV). One problem encountered in development of this CT system was to reduce the scattered photons from adjacent detectors, i.e. crosstalk, due to high energy X-rays. This crosstalk was reduced to 2% by means of detector shields using tungsten spacers. Spatial resolution was not affected by such small crosstalk as confirmed by numerical simulations. A second problem was to reduce the scattered photons from the test object. This was done using collimators. A third concern was to realize a wide dynamic range data processing which would allow applications to large and dense objects. This problem was solved by using a sample and hold data acquisition method to reduce the dark current of the photo detectors. The dynamic range of this system was experimentally confirmed over 60 dB. It was demonstrated that slits (width: 2 mm) in an iron object (diameter: 25 cm) could be imaged by this prototype CT system. (author)

  15. CT of submandibular gland sialolithiasis

    International Nuclear Information System (INIS)

    Avrahami, E.; Englender, M.; Chen, E.; Shabtay, D.; Katz, R.; Harell, M.

    1996-01-01

    We emphasise the importance of high-resolution CT with reconstruction in the demonstration of submandibular gland (SMG) sialolithiasis and its role in monitoring treatment. We studied 76 patients with swollen and tender SMG, some with fever. They underwent conventional radiography, sonography (US) and high-resolution CT with reconstructions. Conventional radiographs demonstrated single stones in 29 patients. Axial CT, before reconstructions, demonstrated single stones in 63 patients and multiple stones in another 5. Following CT reconstructions, multiple stones were demonstrated in 37 patients. On US stones were diagnosed in only 33 patients, and multiple stones in only 1. All 68 patients with stones shown on imaging and 2 without stones underwent surgery, with good clinical results. Total removal of the SMG and its duct was performed in patients with multiple stones, chronic inflammatory changes in the SMG, or a solitary stone in the SMG or deep in the duct. A small incision for removal of a solitary stone in the distal aspects of Wharton's duct was performed in 15 patients, with excellent clinical results. Another 14 patients with multiple salivary glad stones, diagnosed on CT reconstructions, did not improve following this procedure and needed further surgery; clinical improvement occurred following excision of the SMG and Wharton's duct. Histological examination in all of these confirmed the presence of additional stones. Conservative anti-inflammatory treatment was recommended for 6 patients in whom CT reconstructions did not demonstrate stones. (orig.)

  16. Enhancing pattern of gastric carcinoma at dynamic incremental CT: correlation with gross and histologic findings

    International Nuclear Information System (INIS)

    Shin, Hong Seop; Lee, Dong Ho; Kim, Yoon Hwa; Ko, Young Tae; Lim, Joo Won; Yoon, Yup

    1996-01-01

    To evaluate the enhancing pattern of gastric carcinomas at dynamic incremental CT and to correlate it with pathologic findings. We retrospectively evaluated the enhancement pattern of stomach cancer on dynamic incremental CT of the 78 patients. All the lesions had been pathologically proved after surgery. The enhancement pattern was categorized as good or poor in the early phase;homogeneous, heterogeneous or ring enhancement;the presence or absence of delayed enhancement. There were 16 cases of early gastric cancer (EGC), and 62 cases of advanced gastric cancer(AGC). The Borrmann type of AGC were 1(n=1), 2(n=20), 3=(n=32), 4(n=8) and 5(n=1). The histologic patterns of AGC were tubular(n=49), signet ring cell(n=10), and mucinous(n=3). The enhancing patterns were compared with gross and histologic findings and delayed enhancement was correlated with pathologic evidence of desmoplasia. Good enhancement of tumor was seen in 24/41cases (58.5%) with AGC Borrmann type 3-5, in 6/21(28.6%) with AGC Borrmann type 1-2, and in 3/16(18.8%) with EGC (P<.05). By histologic pattern, good enhancement of tumor was seen in 8/10(80%) with signet ring cell type, in 21/49(42.9%) with tubular type, and in 1/3(33.3%) with mucinous type(P<.05). EGC was homogeneously enhanced in 14/16cases (87.5%), but AGC was heterogeneously enhanced in 33/62(53.2%), respectively(P<.01). There was no significant correlation between delayed enhancement and the presence of desmoplasia. AGC Borrmann type 3-5 and signet ring cell type have a tendency to show good enhancement and EGC is more homogeneously enhanced at dynamic incremental CT

  17. Slice sensitivity profiles and pixel noise of multi-slice CT in comparison with single-slice CT

    International Nuclear Information System (INIS)

    Schorn, C.; Obenauer, S.; Funke, M.; Hermann, K.P.; Kopka, L.; Grabbe, E.

    1999-01-01

    Purpose: Presentation and evaluation of slice sensitivity profile and pixel noise of multi-slice CT in comparison to single-slice CT. Methods: Slice sensitivity profiles and pixel noise of a multi-slice CT equiped with a 2D matrix detector array and of a single-slice CT were evaluated in phantom studies. Results: For the single-slice CT the width of the slice sensitivity profiles increased with increasing pitch. In spite of a much higher table speed the slice sensitivity profiles of multi-slice CT were narrower and did not increase with higher pitch. Noise in single-slice CT was independent of pitch. For multi-slice CT noise increased with higher pitch and for the higher pitch decreased slightly with higher detector row collimation. Conclusions: Multi-slice CT provides superior z-resolution and higher volume coverage speed. These qualities fulfill one of the prerequisites for improvement of 3D postprocessing. (orig.) [de

  18. Dynamic X-ray computed tomography; Tomographie dynamique a rayons X

    Energy Technology Data Exchange (ETDEWEB)

    Grangeat, P

    2003-07-01

    Paper Dynamic computed tomography (CT) imaging aims at reconstructing image sequences where the dynamic nature of the living human body is of primary interest. Main concerned applications are image-guided interventional procedures, functional studies and cardiac imaging. The introduction of ultra-fast rotating gantries along with multi-row detectors and in near future area detectors allows a huge progress toward the imaging of moving organs with low-contrast resolution. This paper gives an overview of the different concepts used in dynamic CT. A new reconstruction algorithm based on a voxel-specific dynamic evolution compensation is also presented. It provides four-dimensional image sequences with accurate spatio-temporal information, where each frame is reconstructed using a long-scan acquisition mode on several half-turns. In the same time, this technique permits to reduce the dose delivered per rotation while keeping the same signal to noise ratio for every frame using an adaptive motion-compensated temporal averaging. Results are illustrated on simulated data. (authors)

  19. Whole-brain dynamic CT angiography and perfusion imaging

    Energy Technology Data Exchange (ETDEWEB)

    Orrison, W.W. [CHW Nevada Imaging Company, Nevada Imaging Centers, Spring Valley, Las Vegas, NV (United States); College of Osteopathic Medicine, Touro University Nevada, Henderson, NV (United States); Department of Health Physics and Diagnostic Sciences, University of Nevada Las Vegas, Las Vegas, NV (United States); Department of Medical Education, University of Nevada School of Medicine, Reno, NV (United States); Snyder, K.V.; Hopkins, L.N. [Department of Neurosurgery, Millard Fillmore Gates Circle Hospital, Buffalo, NY (United States); Roach, C.J. [School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV (United States); Advanced Medical Imaging and Genetics (Amigenics), Las Vegas, NV (United States); Ringdahl, E.N. [Department of Psychology, University of Nevada Las Vegas, Las Vegas, NV (United States); Nazir, R. [Shifa International Hospital, Islamabad (Pakistan); Hanson, E.H., E-mail: eric.hanson@amigenics.co [College of Osteopathic Medicine, Touro University Nevada, Henderson, NV (United States); Department of Health Physics and Diagnostic Sciences, University of Nevada Las Vegas, Las Vegas, NV (United States); Advanced Medical Imaging and Genetics (Amigenics), Las Vegas, NV (United States)

    2011-06-15

    The availability of whole brain computed tomography (CT) perfusion has expanded the opportunities for analysing the haemodynamic parameters associated with varied neurological conditions. Examples demonstrating the clinical utility of whole-brain CT perfusion imaging in selected acute and chronic ischaemic arterial neurovascular conditions are presented. Whole-brain CT perfusion enables the detection and focused haemodynamic analyses of acute and chronic arterial conditions in the central nervous system without the limitation of partial anatomical coverage of the brain.

  20. Mikro-CT: Technology and applications for assessing bone structure

    International Nuclear Information System (INIS)

    Engelke, K.; Karolczak, M.; Lutz, A.; Seibert, U.; Schaller, S.; Kalender, W.

    1999-01-01

    The strength and fracture resistance of bone is determined by the structure of the trabecular network and the cortical shell. While standard 2D techniques like histomorphometry are inadequate to assess the 3D nature of the trabecular network, isotropic 3D datasets of this network can be acquired with the new imaging modality of μCT. However, so far the quantitative analysis of the generated datasets, in particular the extraction of appropriate parameters describing the bone structure, has not been finally solved. In this article we describe the technology and applications of μCT systems relevant in the field of osteology. The most important technical features of current μCT systems in this context are: 1. A spatial resolution down to 5-10 μm can be achieved. 2. The maximum sample size is related to the desired resolution by a factor of approximately 1000, that is, a resolution of 10 μm limits the maximum sample size to approximately 1 cm. 3. Scan times for μCT systems vary between minutes and hours. Currently five areas for the application of μCT systems in osteology can be identified: 1. The search of parameters characterizing the 3D trabecular structure. 2. The application of finite element models to determine the biochemical competence of the structural parameters. 3. The use of μCT in preclinical trials to study drug effects in small animals. 4. The validation of analysis methods used in high-resolution in-vivo imaging systems. 5. The 3D quantification of modeling and remodeling processes. (orig.) [de

  1. Hydrodynamics in adaptive resolution particle simulations: Multiparticle collision dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Alekseeva, Uliana, E-mail: Alekseeva@itc.rwth-aachen.de [Jülich Supercomputing Centre (JSC), Institute for Advanced Simulation (IAS), Forschungszentrum Jülich, D-52425 Jülich (Germany); German Research School for Simulation Sciences (GRS), Forschungszentrum Jülich, D-52425 Jülich (Germany); Winkler, Roland G., E-mail: r.winkler@fz-juelich.de [Theoretical Soft Matter and Biophysics, Institute for Advanced Simulation (IAS), Forschungszentrum Jülich, D-52425 Jülich (Germany); Sutmann, Godehard, E-mail: g.sutmann@fz-juelich.de [Jülich Supercomputing Centre (JSC), Institute for Advanced Simulation (IAS), Forschungszentrum Jülich, D-52425 Jülich (Germany); ICAMS, Ruhr-University Bochum, D-44801 Bochum (Germany)

    2016-06-01

    A new adaptive resolution technique for particle-based multi-level simulations of fluids is presented. In the approach, the representation of fluid and solvent particles is changed on the fly between an atomistic and a coarse-grained description. The present approach is based on a hybrid coupling of the multiparticle collision dynamics (MPC) method and molecular dynamics (MD), thereby coupling stochastic and deterministic particle-based methods. Hydrodynamics is examined by calculating velocity and current correlation functions for various mixed and coupled systems. We demonstrate that hydrodynamic properties of the mixed fluid are conserved by a suitable coupling of the two particle methods, and that the simulation results agree well with theoretical expectations.

  2. Image-based motion compensation for high-resolution extremities cone-beam CT

    Science.gov (United States)

    Sisniega, A.; Stayman, J. W.; Cao, Q.; Yorkston, J.; Siewerdsen, J. H.; Zbijewski, W.

    2016-03-01

    Purpose: Cone-beam CT (CBCT) of the extremities provides high spatial resolution, but its quantitative accuracy may be challenged by involuntary sub-mm patient motion that cannot be eliminated with simple means of external immobilization. We investigate a two-step iterative motion compensation based on a multi-component metric of image sharpness. Methods: Motion is considered with respect to locally rigid motion within a particular region of interest, and the method supports application to multiple locally rigid regions. Motion is estimated by maximizing a cost function with three components: a gradient metric encouraging image sharpness, an entropy term that favors high contrast and penalizes streaks, and a penalty term encouraging smooth motion. Motion compensation involved initial coarse estimation of gross motion followed by estimation of fine-scale displacements using high resolution reconstructions. The method was evaluated in simulations with synthetic motion (1-4 mm) applied to a wrist volume obtained on a CMOS-based CBCT testbench. Structural similarity index (SSIM) quantified the agreement between motion-compensated and static data. The algorithm was also tested on a motion contaminated patient scan from dedicated extremities CBCT. Results: Excellent correction was achieved for the investigated range of displacements, indicated by good visual agreement with the static data. 10-15% improvement in SSIM was attained for 2-4 mm motions. The compensation was robust against increasing motion (4% decrease in SSIM across the investigated range, compared to 14% with no compensation). Consistent performance was achieved across a range of noise levels. Significant mitigation of artifacts was shown in patient data. Conclusion: The results indicate feasibility of image-based motion correction in extremities CBCT without the need for a priori motion models, external trackers, or fiducials.

  3. Optical-CT scanning of polymer gels

    Energy Technology Data Exchange (ETDEWEB)

    Oldham, M [Radiation Oncology Physics, Duke University Medical Center, Duke University, NC (United States)

    2004-01-01

    The application of optical-CT scanning to achieve accurate high-resolution 3D dosimetry is a subject of current interest. The purpose of this paper is to provide a brief overview of past research and achievements in optical-CT polymer gel dosimetry, and to review current issues and challenges. The origins of optical-CT imaging of light-scattering polymer gels are reviewed. Techniques to characterize and optimize optical-CT performance are presented. Particular attention is given to studies of artifacts in optical-CT imaging, an important area that has not been well studied to date. The technique of optical-CT simulation by Monte-Carlo modeling is introduced as a tool to explore such artifacts. New simulation studies are presented and compared with experimental data.

  4. Optical-CT scanning of polymer gels

    International Nuclear Information System (INIS)

    Oldham, M

    2004-01-01

    The application of optical-CT scanning to achieve accurate high-resolution 3D dosimetry is a subject of current interest. The purpose of this paper is to provide a brief overview of past research and achievements in optical-CT polymer gel dosimetry, and to review current issues and challenges. The origins of optical-CT imaging of light-scattering polymer gels are reviewed. Techniques to characterize and optimize optical-CT performance are presented. Particular attention is given to studies of artifacts in optical-CT imaging, an important area that has not been well studied to date. The technique of optical-CT simulation by Monte-Carlo modeling is introduced as a tool to explore such artifacts. New simulation studies are presented and compared with experimental data

  5. Dynamic Raman imaging system with high spatial and temporal resolution

    Science.gov (United States)

    Wang, Lei; Dai, Yinzhen; He, Hao; Lv, Ruiqi; Zong, Cheng; Ren, Bin

    2017-09-01

    There is an increasing need to study dynamic changing systems with significantly high spatial and temporal resolutions. In this work, we integrated point-scanning, line-scanning, and wide-field Raman imaging techniques into a single system. By using an Electron Multiplying CCD (EMCCD) with a high gain and high frame rate, we significantly reduced the time required for wide-field imaging, making it possible to monitor the electrochemical reactions in situ. The highest frame rate of EMCDD was ˜50 fps, and the Raman images for a specific Raman peak can be obtained by passing the signal from the sample through the Liquid Crystal Tunable Filter. The spatial resolutions of scanning imaging and wide-field imaging with a 100× objective (NA = 0.9) are 0.5 × 0.5 μm2 and 0.36 × 0.36 μm2, respectively. The system was used to study the surface plasmon resonance of Au nanorods, the surface-enhanced Raman scattering signal distribution for Au Nanoparticle aggregates, and dynamic Raman imaging of an electrochemical reacting system.

  6. Comparison of high resolution computed tomography and pulmonary function tests in diagnosis of mild emphysema

    International Nuclear Information System (INIS)

    Kuwano, Kazuyoshi; Matsuba, Kenichi; Ikeda, Togo

    1989-01-01

    To assess the ability of high resolution CT scan and pulmonary function tests in detecting and grading mild emphysema, we correlated the high resolution CT scan and pulmonary function tests with the pathologic grade of emphysema and the destructive index of lung specimens from 42 patients undergoing thoracotomy for solitary pulmonary nodules. Using the high resolution CT scan, we could identify the pathologic grade of mild and moderate emphysema. By measuring diffusing capacity per unit alveolar gas volume (DLco/VA), it seemed to be possible to detect the mildest degree of alveolar destruction assessed by the destructive index, which was not detected by high resolution CT scan. The reason for these results seemed to be that we assessed the severity of emphysema by detecting the air space enlargement on high resolution CT scan images caused by the destruction of alveolar walls, which were detectable by measuring DLco/VA. We conclude that it is possible to detect mild emphysema using the combination of high resolution CT scan and pulmomary function tests. (author)

  7. Reversal of flow in the inferior vena cava and hepatic veins on dynamic CT

    International Nuclear Information System (INIS)

    Lelij, H. van der; Mallens, W.M.C.

    1988-01-01

    A tricuspid insufficiency may not be clinically evident and may remain unknown to the clinician. The phenomenon of a reversal of inferior vena caval blood flow and hepatic veins is known to occur in tricuspid regurgitation from right ventricular angiography and duplex scanning. Demonstration of such a reversal flow on a dynamic CT scan, as in our case, has, to our knowledge, not as yet been reported

  8. Computed tomography(CT) of the spontaneous resolution of traumatic epidural and subdural hematomas

    International Nuclear Information System (INIS)

    Hahm, Chang Kok; Lee, Seung Ro; Park, Dong Woo; Joo, Kyung Bin; Lee, Sang Gil

    1989-01-01

    During the period of four years and three months from January 1985 to March 1989, 29 cases in 27 patients with traumatic epidural and subdural hematomas which resolved spontaneously on sequential CT examinations, at the Hanyang University Hospital, show the following results. 1. Of 29 hematomas, there are 20 epidural hematomas including 9 cases (45%) in parietal area, and 4 cases (20%) in frontal area, and 9 subdural hematomas including 6 cases (66%) in temporal area. 2. The thickness of all hematomas in less than 2 cm. The thickness of hematoma is 1.0∼2.0 cm in 10 epidural hematomas (50%), and less than 0.5 cm in 5 subdural hematomas (56%). 3. The size decrease and complete resolution of hematomas within 4 weeks show 24 of 29 hematomas (83%), of which 18 hematomas (62%) show that between 2 and 4 weeks. 4. No difference between absorption rates of hematomas as the degrees of type or size of hematomas is present

  9. Computed tomography(CT) of the spontaneous resolution of traumatic epidural and subdural hematomas

    Energy Technology Data Exchange (ETDEWEB)

    Hahm, Chang Kok; Lee, Seung Ro; Park, Dong Woo; Joo, Kyung Bin; Lee, Sang Gil [Hanyang University School of Medicine, Seoul (Korea, Republic of)

    1989-08-15

    During the period of four years and three months from January 1985 to March 1989, 29 cases in 27 patients with traumatic epidural and subdural hematomas which resolved spontaneously on sequential CT examinations, at the Hanyang University Hospital, show the following results. 1. Of 29 hematomas, there are 20 epidural hematomas including 9 cases (45%) in parietal area, and 4 cases (20%) in frontal area, and 9 subdural hematomas including 6 cases (66%) in temporal area. 2. The thickness of all hematomas in less than 2 cm. The thickness of hematoma is 1.0{approx}2.0 cm in 10 epidural hematomas (50%), and less than 0.5 cm in 5 subdural hematomas (56%). 3. The size decrease and complete resolution of hematomas within 4 weeks show 24 of 29 hematomas (83%), of which 18 hematomas (62%) show that between 2 and 4 weeks. 4. No difference between absorption rates of hematomas as the degrees of type or size of hematomas is present.

  10. Nonspecific interstitial pneumonia: Histologic correlation with high-resolution CT in 29 patients

    Energy Technology Data Exchange (ETDEWEB)

    Sumikawa, Hiromitsu [Department of Radiology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0825 (Japan)], E-mail: h-sumikawa@radiol.med.osaka-u.ac.jp; Johkoh, Takeshi [Department of Radiology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0825 (Japan); Department of Medical Physics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0825 (Japan); Ichikado, Kazuya [Division of Respiratory Medicine, Saiseikai Kumamoto Hospital, 5-3-1 Tikami, Kumamoto 861-4193 (Japan); Taniguchi, Hiroyuki; Kondoh, Yasuhiro [Department of Respiratory Medicine and Allergy, Tosei General Hospital, 160 Nishioiwake-cho, Seto City, Aichi (Japan); Fujimoto, Kiminori [Department of Radiology, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011 (Japan); Yanagawa, Masahiro; Inoue, Atsuo; Mihara, Naoki; Honda, Osamu; Tomiyama, Noriyuki; Nakamura, Hironobu [Department of Radiology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0825 (Japan); Colby, Thomas V. [Department of Pathology, Mayo Clinic, Scottsdale, AZ (United States)

    2009-04-15

    Purpose: To determine the pathological correlation with various high-resolution CT (HRCT) findings in cases with nonspecific interstitial pneumonia (NSIP), paying special attention to pathological subgroups. Material and methods: The study involved 29 patients diagnosed with NSIP by surgical lung biopsy. A total of 54 specimens were obtained and grouped according to Katzenstein's classification (groups 1-3) for NSIP. Two observers then evaluated the HRCT findings for every biopsy site and classified the findings according to the main pattern evident into the following four radiologic pattern groups: A, ground-glass attenuation and fine reticulation; B, ground-glass and coarse reticulation; C, consolidation and D, ground-glass attenuation and consolidation. Results: The pathological pattern was NSIP group 1 in 6 patients, group 2 in 22 and group 3 in 25, while 1 specimen was normal. The main HRCT pattern was pattern A in 15 specimens, B in 8, C in 9 and D in 21. Although there were no significant correlation between HRCT patterns and histological subgroups (Chi-square test, p = 0.07), pattern C was more frequently seen in group 2 (7 of 9) and pattern A was more common in group 3 (11 of 15). HRCT pattern A corresponded pathologically to areas of thickened alveolar septa with temporal uniformity. Pattern B correlated with areas with airspace enlargement/emphysema or dilation of small airways superimposed on thickened alveolar septa. Pattern C was pathologically associated with areas of severe thickened alveolar septa, mucin stasis in the small airways and intraluminal organization. Conclusion: The pathological backgrounds of the same CT findings in patients with NSIP varied among all pathological subgroups. Areas of ground-glass attenuation and air-space consolidation did not always correspond to reversible pathological findings.

  11. Dynamic CT of portal hypertensive gastropathy: significance of transient gastric perfusion defect sign

    International Nuclear Information System (INIS)

    Kim, T.U.; Kim, S.; Woo, S.K.; Lee, J.W.; Lee, T.H.; Jeong, Y.J.; Heo, J.

    2008-01-01

    Aim: To evaluate the 'transient gastric perfusion defect' sign as a way of diagnosing portal hypertensive gastropathy (PHG) on multidetector computed tomography (CT). Materials and methods: Ninety-two consecutive patients with cirrhosis underwent three-phase CT and endoscopy. Endoscopy was performed within 3 days of the CT examination. As controls, 92 patients without clinical evidence of chronic liver diseases who underwent CT and endoscopy were enrolled; the findings at endoscopy were used as a reference standard for patients with PHG. Two radiologists who were unaware of the results of the endoscopy retrospectively interpreted the CT images. PHG was diagnosed on dynamic CT if the transient gastric perfusion defect sign was present. The transient gastric perfusion defect was defined as the presence of transient, segmental or subsegmental hypo-attenuating mucosa in the fundus or body of the stomach on hepatic arterial imaging that returned to normal attenuation on portal venous or equilibrium-phase imaging. The frequency of the transient gastric perfusion defect sign was compared between these two groups using Fisher's exact test. The frequency, sensitivity, specificity, positive predictive values, and negative predictive values of the transient gastric perfusion defect sign were also compared between patients with PHG and without PHG in the cirrhosis group. Results: Nine patients of 92 patients with cirrhosis were excluded because of previous procedure or motion artifact; the remaining 83 patients with cirrhosis were evaluated. In the cirrhosis group, 40 (48.1%) of 83 patients showed the transient gastric perfusion defect sign. In the control group, none of the 92 patients showed the transient gastric perfusion defect sign. In the cirrhotic group, the frequency of the transient gastric perfusion defect sign was significantly higher in the patients with PHG (75%, 36/48) than in patients without PHG (11.4%, 4/35). The sensitivity, specificity, positive predictive

  12. Resolution of Postural Orthostatic Tachycardia Syndrome After CT-Guided, Percutaneous T2 Ethanol Ablation for Hyperhidrosis

    Energy Technology Data Exchange (ETDEWEB)

    Brock, Malcolm, E-mail: mabrock@jhmni.edu [Johns Hopkins University, Department of Thoracic Surgery, Center for Sweat Disorders (United States); Chung, Tae Hwan, E-mail: Tchang7@jhmi.edu [Johns Hopkins University, Physical Medicine and Rehabilitation (United States); Gaddam, Sathvika Reddy, E-mail: drsathvikareddy@yahoo.com; Kathait, Anjaneya Singh, E-mail: askathait@gmail.com [Johns Hopkins University, Vascular & Interventional Radiology (United States); Ober, Cecily, E-mail: ceober21@gmail.com [Johns Hopkins University, Department of Thoracic Surgery (United States); Georgiades, Christos, E-mail: cgeorgi@jhmi.edu [Johns Hopkins University, Vascular & Interventional Radiology (United States)

    2016-12-15

    Postural orthostatic tachycardia syndrome is characterized by orthostatic intolerance. Orthostasis (or other mild physical stress) triggers a cascade of inappropriate tachycardia, lightheadedness, palpitations, and often fainting. The underlying defect is sympathetic dysregulation of the heart, which receives its sympathetic tone from the cervical and upper thoracic sympathetic ganglia. Primary hyperhidrosis is also thought to be the result of sympathetic dysregulation. We present the case of a patient treated with CT-guided, percutaneous T2 EtOH sympatholysis for craniofacial hyperhidrosis. The patient also suffered from postural orthostatic tachycardia syndrome for many years and was unresponsive to treatment. Immediately after sympatholysis, the patient experienced resolution of both craniofacial hyperhidrosis and postural orthostatic tachycardia syndrome.

  13. Examination of hepatic dynamic CT images following infusion of high-concentration contrast media

    International Nuclear Information System (INIS)

    Takeyama, Nobuyuki; Hayashi, Takaki; Kinebuchi, Yuko; Kitahara, Tadashi; Ohbuchi, Masao; Shinjyo, Hidenori; Ohgiya, Yoshimitsu

    2008-01-01

    There are scarce examinations on the integrated effects of given iodine weight (mgI) and its rate (mgI/sec) on the quality and diagnostic accuracy in the hepatic contrast CT imaging while the former is known to affect the image of parenchyma and the latter, of arterial systems. The purpose of this study is to analyze and evaluate the effects qualitatively and quantitatively in hepatic dynamic CT images of patients with moderate body weight in whom different concentrations of I are given at the same flux rate and total weight. Patients having chronic hepatitis suspicious of carcinoma, or cirrhosis were 52-84 years old (M 50/F 55, b. wt. 50-65 kg) and were randomly divided in A and B group. A group received infusion of 25 sec in the right elbow vein of iopamidol, 300 mgI/100 mL, and B group, 370 mgI/80 mL: the I flux of ca. 1.2 gI/sec and total I of ca. 30 gI. Before and at 25 (early arterial phase), 40 (late art. phase), 70 (portal vein) and 180 (equilibrium) sec after infusion, CT images were obtained with the machine Light Speed select (GE Healthcare), Housfield Units before and after enhancing were used for quantitative evaluation, three experts qualitatively read images, and PACS system in Synapse 3.1.0 (Fuji Film Med.) was used for observation of tumor nodules if present. Neither qualitative nor quantitative differences were found in these CT images of the 4 phases and use of high-concentration contrast media was confirmed to be possible for lowered infusion rate. Authors also pointed out the importance of care for radiation exposure in this CT technique. (R.T.)

  14. Improved quantitation and reproducibility in multi-PET/CT lung studies by combining CT information.

    Science.gov (United States)

    Holman, Beverley F; Cuplov, Vesna; Millner, Lynn; Endozo, Raymond; Maher, Toby M; Groves, Ashley M; Hutton, Brian F; Thielemans, Kris

    2018-06-05

    Matched attenuation maps are vital for obtaining accurate and reproducible kinetic and static parameter estimates from PET data. With increased interest in PET/CT imaging of diffuse lung diseases for assessing disease progression and treatment effectiveness, understanding the extent of the effect of respiratory motion and establishing methods for correction are becoming more important. In a previous study, we have shown that using the wrong attenuation map leads to large errors due to density mismatches in the lung, especially in dynamic PET scans. Here, we extend this work to the case where the study is sub-divided into several scans, e.g. for patient comfort, each with its own CT (cine-CT and 'snap shot' CT). A method to combine multi-CT information into a combined-CT has then been developed, which averages the CT information from each study section to produce composite CT images with the lung density more representative of that in the PET data. This combined-CT was applied to nine patients with idiopathic pulmonary fibrosis, imaged with dynamic 18 F-FDG PET/CT to determine the improvement in the precision of the parameter estimates. Using XCAT simulations, errors in the influx rate constant were found to be as high as 60% in multi-PET/CT studies. Analysis of patient data identified displacements between study sections in the time activity curves, which led to an average standard error in the estimates of the influx rate constant of 53% with conventional methods. This reduced to within 5% after use of combined-CTs for attenuation correction of the study sections. Use of combined-CTs to reconstruct the sections of a multi-PET/CT study, as opposed to using the individually acquired CTs at each study stage, produces more precise parameter estimates and may improve discrimination between diseased and normal lung.

  15. Reconstructing misaligned x-ray CT data

    Energy Technology Data Exchange (ETDEWEB)

    Divin, C. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-10-24

    Misalignment errors for x-ray computed tomography (CT) systems can manifest as artifacts and a loss of spatial and contrast resolution. To mitigate artifacts, significant effort is taken to determine the system geometry and minimizing any residual error in the system alignment. This project improved our ability to post-correct data which was acquired on a misaligned CT system.

  16. High resolution propagation-based imaging system for in vivo dynamic computed tomography of lungs in small animals

    Science.gov (United States)

    Preissner, M.; Murrie, R. P.; Pinar, I.; Werdiger, F.; Carnibella, R. P.; Zosky, G. R.; Fouras, A.; Dubsky, S.

    2018-04-01

    We have developed an x-ray imaging system for in vivo four-dimensional computed tomography (4DCT) of small animals for pre-clinical lung investigations. Our customized laboratory facility is capable of high resolution in vivo imaging at high frame rates. Characterization using phantoms demonstrate a spatial resolution of slightly below 50 μm at imaging rates of 30 Hz, and the ability to quantify material density differences of at least 3%. We benchmark our system against existing small animal pre-clinical CT scanners using a quality factor that combines spatial resolution, image noise, dose and scan time. In vivo 4DCT images obtained on our system demonstrate resolution of important features such as blood vessels and small airways, of which the smallest discernible were measured as 55–60 μm in cross section. Quantitative analysis of the images demonstrate regional differences in ventilation between injured and healthy lungs.

  17. Inverse stochastic–dynamic models for high-resolution Greenland ice core records

    Directory of Open Access Journals (Sweden)

    N. Boers

    2017-12-01

    Full Text Available Proxy records from Greenland ice cores have been studied for several decades, yet many open questions remain regarding the climate variability encoded therein. Here, we use a Bayesian framework for inferring inverse, stochastic–dynamic models from δ18O and dust records of unprecedented, subdecadal temporal resolution. The records stem from the North Greenland Ice Core Project (NGRIP, and we focus on the time interval 59–22 ka b2k. Our model reproduces the dynamical characteristics of both the δ18O and dust proxy records, including the millennial-scale Dansgaard–Oeschger variability, as well as statistical properties such as probability density functions, waiting times and power spectra, with no need for any external forcing. The crucial ingredients for capturing these properties are (i high-resolution training data, (ii cubic drift terms, (iii nonlinear coupling terms between the δ18O and dust time series, and (iv non-Markovian contributions that represent short-term memory effects.

  18. Inverse stochastic-dynamic models for high-resolution Greenland ice core records

    Science.gov (United States)

    Boers, Niklas; Chekroun, Mickael D.; Liu, Honghu; Kondrashov, Dmitri; Rousseau, Denis-Didier; Svensson, Anders; Bigler, Matthias; Ghil, Michael

    2017-12-01

    Proxy records from Greenland ice cores have been studied for several decades, yet many open questions remain regarding the climate variability encoded therein. Here, we use a Bayesian framework for inferring inverse, stochastic-dynamic models from δ18O and dust records of unprecedented, subdecadal temporal resolution. The records stem from the North Greenland Ice Core Project (NGRIP), and we focus on the time interval 59-22 ka b2k. Our model reproduces the dynamical characteristics of both the δ18O and dust proxy records, including the millennial-scale Dansgaard-Oeschger variability, as well as statistical properties such as probability density functions, waiting times and power spectra, with no need for any external forcing. The crucial ingredients for capturing these properties are (i) high-resolution training data, (ii) cubic drift terms, (iii) nonlinear coupling terms between the δ18O and dust time series, and (iv) non-Markovian contributions that represent short-term memory effects.

  19. Primary staging of laryngeal and hypopharyngeal cancer: CT, MR imaging and dual-energy CT

    International Nuclear Information System (INIS)

    Kuno, Hirofumi; Onaya, Hiroaki; Fujii, Satoshi; Ojiri, Hiroya; Otani, Katharina; Satake, Mitsuo

    2014-01-01

    Laryngeal and hypopharyngeal cancer, in particular T4a disease associated with cartilage invasion and extralaryngeal spread, needs to be evaluated accurately because treatment can impact heavily on a patient's quality of life. Reliable imaging tools are therefore indispensible. CT offers high spatial and temporal resolution and remains the preferred imaging modality. Although cartilage invasion can be diagnosed with acceptable accuracy by applying defined criteria for combinations of erosion, lysis and transmural extralaryngeal spread, iodine-enhanced tumors and non-ossified cartilage are sometimes difficult to distinguish. MR offers high contrast resolution for images without motion artifacts, although inflammatory changes in cartilage sometimes resemble cartilage invasion. With dual-energy CT, combined iodine overlay images and weighted average images can be used for evaluation of cartilage invasion, since iodine enhancement is evident in tumor tissue but not in cartilage. Extralaryngeal spread can be evaluated from CT, MR or dual-energy CT images and the routes of tumor spread into the extralaryngeal soft tissue must be considered; (1) via the thyrohyoid membrane along the superior laryngeal neurovascular bundle, (2) via the inferior pharyngeal constrictor muscle, and (3) via the cricothyroid membrane. Radiologists need to understand the advantages and limitations of each imaging modality for staging of laryngeal and hypopharyngeal cancer

  20. Dose reduction with adaptive statistical iterative reconstruction for paediatric CT: phantom study and clinical experience on chest and abdomen CT.

    Science.gov (United States)

    Gay, F; Pavia, Y; Pierrat, N; Lasalle, S; Neuenschwander, S; Brisse, H J

    2014-01-01

    To assess the benefit and limits of iterative reconstruction of paediatric chest and abdominal computed tomography (CT). The study compared adaptive statistical iterative reconstruction (ASIR) with filtered back projection (FBP) on 64-channel MDCT. A phantom study was first performed using variable tube potential, tube current and ASIR settings. The assessed image quality indices were the signal-to-noise ratio (SNR), the noise power spectrum, low contrast detectability (LCD) and spatial resolution. A clinical retrospective study of 26 children (M:F = 14/12, mean age: 4 years, range: 1-9 years) was secondarily performed allowing comparison of 18 chest and 14 abdominal CT pairs, one with a routine CT dose and FBP reconstruction, and the other with 30 % lower dose and 40 % ASIR reconstruction. Two radiologists independently compared the images for overall image quality, noise, sharpness and artefacts, and measured image noise. The phantom study demonstrated a significant increase in SNR without impairment of the LCD or spatial resolution, except for tube current values below 30-50 mA. On clinical images, no significant difference was observed between FBP and reduced dose ASIR images. Iterative reconstruction allows at least 30 % dose reduction in paediatric chest and abdominal CT, without impairment of image quality. • Iterative reconstruction helps lower radiation exposure levels in children undergoing CT. • Adaptive statistical iterative reconstruction (ASIR) significantly increases SNR without impairing spatial resolution. • For abdomen and chest CT, ASIR allows at least a 30 % dose reduction.

  1. A hybrid approach for fusing 4D-MRI temporal information with 3D-CT for the study of lung and lung tumor motion

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Y. X.; Van Reeth, E.; Poh, C. L., E-mail: clpoh@ntu.edu.sg [School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459 (Singapore); Teo, S.-K. [Institute of High Performance Computing, Agency for Science, Technology and Research, Singapore 138632 (Singapore); Tan, C. H. [Department of Diagnostic Radiology, Tan Tock Seng Hospital, Singapore 308433 (Singapore); Tham, I. W. K. [Department of Radiation Oncology, National University Cancer Institute, Singapore 119082 (Singapore)

    2015-08-15

    Purpose: Accurate visualization of lung motion is important in many clinical applications, such as radiotherapy of lung cancer. Advancement in imaging modalities [e.g., computed tomography (CT) and MRI] has allowed dynamic imaging of lung and lung tumor motion. However, each imaging modality has its advantages and disadvantages. The study presented in this paper aims at generating synthetic 4D-CT dataset for lung cancer patients by combining both continuous three-dimensional (3D) motion captured by 4D-MRI and the high spatial resolution captured by CT using the authors’ proposed approach. Methods: A novel hybrid approach based on deformable image registration (DIR) and finite element method simulation was developed to fuse a static 3D-CT volume (acquired under breath-hold) and the 3D motion information extracted from 4D-MRI dataset, creating a synthetic 4D-CT dataset. Results: The study focuses on imaging of lung and lung tumor. Comparing the synthetic 4D-CT dataset with the acquired 4D-CT dataset of six lung cancer patients based on 420 landmarks, accurate results (average error <2 mm) were achieved using the authors’ proposed approach. Their hybrid approach achieved a 40% error reduction (based on landmarks assessment) over using only DIR techniques. Conclusions: The synthetic 4D-CT dataset generated has high spatial resolution, has excellent lung details, and is able to show movement of lung and lung tumor over multiple breathing cycles.

  2. Quantitative accuracy of denoising techniques applied to dynamic 82Rb myocardial blood flow PET/CT scans

    DEFF Research Database (Denmark)

    Harms, Hans; Tolbod, Lars Poulsen; Bouchelouche, Kirsten

    with suspected ischemic heart disease underwent a dynamic 7 minute 82Rb scan under resting and adenosine induced hyperaemic conditions after injection of 1100 MBq of 82Rb on a GE Discovery 690 PET/CT. Dynamic images were filtered using HighlY constrained backPRojection (HYPR) and a Hotelling filter of which...... the latter was evaluated using a range of 4 to 7 included factors and for both 2D and 3D filtering. Data were analyzed using Cardiac VUer and obtained MBF values were compared with those obtained when no denoising of the dynamic data was performed. Results: Both HYPR and Hotelling denoising could...

  3. High resolution micro-CT of low attenuating organic materials using large area photon-counting detector

    International Nuclear Information System (INIS)

    Kumpová, I.; Jandejsek, I.; Jakůbek, J.; Vopálenský, M.; Vavřík, D.; Fíla, T.; Koudelka, P.; Kytýř, D.; Zlámal, P.; Gantar, A.

    2016-01-01

    To overcome certain limitations of contemporary materials used for bone tissue engineering, such as inflammatory response after implantation, a whole new class of materials based on polysaccharide compounds is being developed. Here, nanoparticulate bioactive glass reinforced gelan-gum (GG-BAG) has recently been proposed for the production of bone scaffolds. This material offers promising biocompatibility properties, including bioactivity and biodegradability, with the possibility of producing scaffolds with directly controlled microgeometry. However, to utilize such a scaffold with application-optimized properties, large sets of complex numerical simulations using the real microgeometry of the material have to be carried out during the development process. Because the GG-BAG is a material with intrinsically very low attenuation to X-rays, its radiographical imaging, including tomographical scanning and reconstructions, with resolution required by numerical simulations might be a very challenging task. In this paper, we present a study on X-ray imaging of GG-BAG samples. High-resolution volumetric images of investigated specimens were generated on the basis of micro-CT measurements using a large area flat-panel detector and a large area photon-counting detector. The photon-counting detector was composed of a 010× 1 matrix of Timepix edgeless silicon pixelated detectors with tiling based on overlaying rows (i.e. assembled so that no gap is present between individual rows of detectors). We compare the results from both detectors with the scanning electron microscopy on selected slices in transversal plane. It has been shown that the photon counting detector can provide approx. 3× better resolution of the details in low-attenuating materials than the integrating flat panel detectors. We demonstrate that employment of a large area photon counting detector is a good choice for imaging of low attenuating materials with the resolution sufficient for numerical

  4. High resolution micro-CT of low attenuating organic materials using large area photon-counting detector

    Science.gov (United States)

    Kumpová, I.; Vavřík, D.; Fíla, T.; Koudelka, P.; Jandejsek, I.; Jakůbek, J.; Kytýř, D.; Zlámal, P.; Vopálenský, M.; Gantar, A.

    2016-02-01

    To overcome certain limitations of contemporary materials used for bone tissue engineering, such as inflammatory response after implantation, a whole new class of materials based on polysaccharide compounds is being developed. Here, nanoparticulate bioactive glass reinforced gelan-gum (GG-BAG) has recently been proposed for the production of bone scaffolds. This material offers promising biocompatibility properties, including bioactivity and biodegradability, with the possibility of producing scaffolds with directly controlled microgeometry. However, to utilize such a scaffold with application-optimized properties, large sets of complex numerical simulations using the real microgeometry of the material have to be carried out during the development process. Because the GG-BAG is a material with intrinsically very low attenuation to X-rays, its radiographical imaging, including tomographical scanning and reconstructions, with resolution required by numerical simulations might be a very challenging task. In this paper, we present a study on X-ray imaging of GG-BAG samples. High-resolution volumetric images of investigated specimens were generated on the basis of micro-CT measurements using a large area flat-panel detector and a large area photon-counting detector. The photon-counting detector was composed of a 010× 1 matrix of Timepix edgeless silicon pixelated detectors with tiling based on overlaying rows (i.e. assembled so that no gap is present between individual rows of detectors). We compare the results from both detectors with the scanning electron microscopy on selected slices in transversal plane. It has been shown that the photon counting detector can provide approx. 3× better resolution of the details in low-attenuating materials than the integrating flat panel detectors. We demonstrate that employment of a large area photon counting detector is a good choice for imaging of low attenuating materials with the resolution sufficient for numerical simulations.

  5. Influence of dose reduction and iterative reconstruction on CT calcium scores : a multi-manufacturer dynamic phantom study

    NARCIS (Netherlands)

    van der Werf, N R; Willemink, M J; Willems, T P; Greuter, M J W; Leiner, T

    To evaluate the influence of dose reduction in combination with iterative reconstruction (IR) on coronary calcium scores (CCS) in a dynamic phantom on state-of-the-art CT systems from different manufacturers. Calcified inserts in an anthropomorphic chest phantom were translated at 20 mm/s

  6. Scaling law for noise variance and spatial resolution in differential phase contrast computed tomography

    International Nuclear Information System (INIS)

    Chen Guanghong; Zambelli, Joseph; Li Ke; Bevins, Nicholas; Qi Zhihua

    2011-01-01

    Purpose: The noise variance versus spatial resolution relationship in differential phase contrast (DPC) projection imaging and computed tomography (CT) are derived and compared to conventional absorption-based x-ray projection imaging and CT. Methods: The scaling law for DPC-CT is theoretically derived and subsequently validated with phantom results from an experimental Talbot-Lau interferometer system. Results: For the DPC imaging method, the noise variance in the differential projection images follows the same inverse-square law with spatial resolution as in conventional absorption-based x-ray imaging projections. However, both in theory and experimental results, in DPC-CT the noise variance scales with spatial resolution following an inverse linear relationship with fixed slice thickness. Conclusions: The scaling law in DPC-CT implies a lesser noise, and therefore dose, penalty for moving to higher spatial resolutions when compared to conventional absorption-based CT in order to maintain the same contrast-to-noise ratio.

  7. Principles of spiral CT: III. Quality assurance

    International Nuclear Information System (INIS)

    Suess, C.; Kalender, W.A.

    1998-01-01

    Since its introduction in 1989 spiral CT has gained wide clinical acceptance and meanwhile it covers a large range of CT applications. This new technology, however, has not yet been recognized and acknowledged in the national or international regulations on scanner quality assurance (QA) programs. The conventional QA procedures should be extended to check the distribution of resolution and noise within the image plane. Imaging performance in the axial direction constitutes one of the major advantages of spiral scanning. Therefore, the slice sensitivity profiles and the spatial and low-contrast resolution along the z-axis have to be assessed. The high demands on table feed accuracy require additional tests. We suggest phantoms and procedures to check and quantify these parameters. Thereby, we hope to support the ongoing discussion about spiral CT quality assurance. (orig.) [de

  8. Fever of unknown origin: A value of {sup 18}F-FDG-PET/CT with integrated full diagnostic isotropic CT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ferda, Jiri [Department of Nuclear Medicine, Charles University Medical School and Teaching Hospital, Plzen (Czech Republic); Radiodiagnostic Clinic, Charles University Medical School and Teaching Hospital, Plzen (Czech Republic)], E-mail: ferda@fnplzen.cz; Ferdova, Eva [Department of Nuclear Medicine, Charles University Medical School and Teaching Hospital, Plzen (Czech Republic); Radiodiagnostic Clinic, Charles University Medical School and Teaching Hospital, Plzen (Czech Republic); Zahlava, Jan [Department of Nuclear Medicine, Charles University Medical School and Teaching Hospital, Plzen (Czech Republic); Matejovic, Martin [Ist Internal Department, Charles University Medical School and Teaching Hospital, Plzen (Czech Republic); Kreuzberg, Boris [Radiodiagnostic Clinic, Charles University Medical School and Teaching Hospital, Plzen (Czech Republic)

    2010-03-15

    Aim: The aim of presented work is to evaluate the clinical value of {sup 18}F-FDG-PET/CT in patients with fever of unknown origin (FUO) and to compare PET/CT finding with the results of the following investigation. Material and method: 48 patients (24 men, 24 women, mean age 57.6 years with range 15-89 years) underwent {sup 18}F-FDG-PET/CT due to the fever of unknown origin. All examinations were performed using complex PET/CT protocol combined PET and whole diagnostic contrast enhanced CT with sub-millimeter spatial resolution (except patient with history of iodine hypersensitivity or sever renal impairment). CT data contained diagnostic images reconstructed with soft tissue and high-resolution algorithm. PET/CT finding were compared with results of biopsies, immunology, microbiology or autopsy. Results: The cause of FUO was explained according to the PET/CT findings and followed investigations in 44 of 48 cases-18 cases of microbial infections, nine cases of autoimmune inflammations, four cases of non-infectious granulomatous diseases, eight cases of malignancies and five cases of proved immunity disorders were found. In 46 cases, the PET/CT interpretation was correct. Only in one case, the cause was overlooked and the uptake in atherosclerotic changes of arteries was misinterpreted as vasculitis in the other. The reached sensitivity was 97% (43/44), and specificity 75% (3/4) respectively. Conclusion: In patients with fever of unknown origin, {sup 18}F-FDG-PET/CT might enable the detection of its cause.

  9. Verification of a CT scanner using a miniature step gauge

    DEFF Research Database (Denmark)

    Cantatore, Angela; Andreasen, J.L.; Carmignato, S.

    2011-01-01

    The work deals with performance verification of a CT scanner using a 42mm miniature replica step gauge developed for optical scanner verification. Errors quantification and optimization of CT system set-up in terms of resolution and measurement accuracy are fundamental for use of CT scanning...

  10. Acute pancreatitis: clinical vs. CT findings

    International Nuclear Information System (INIS)

    Hill, M.C.; Barkin, J.; Isikoff, M.B.; Silver stein, W.; Kalser, M.

    1982-01-01

    In a prospective study of 91 patients with acute pancreatitis, computed tomographic (CT) findings were correlated with the clinical type of acute pancreatitis. In acute edematous pancreatitis (63 patients; 16 with repeat CT), CT was normal (28%) or showed inflammation limited to the pancreas (61%). Phlegmonous changes were present in 11%, including one patient with focal pancreatic hemorrhage, indicating that clinically unsuspected hemorrhagic pancreatitis can occur. In acute necrotizing (hemorrhagic, suppurative) pancreatitis (nine patients; eight with repeat CT), no patient had a normal CT scan and 89% had phlegmonous changes. One patient had hemorrhagic pancreatitis and three had abscesses. In acute exacerbation of chronic pancreatitis (10 patients; three with repeat CT), there were pancreatic calcifications (70%), a focal mass (40%), and pancreatic ductal dilation (30%). On follow-up CT, the findings of acute pancreatitis did not always disappear with resolution of the clinical symptons. This was especialy true of phlegmonous pancreatitis, where the CT findings could persist for months

  11. Super-resolution microscopy reveals cell wall dynamics and peptidoglycan architecture in ovococcal bacteria.

    Science.gov (United States)

    Wheeler, Richard; Mesnage, Stéphane; Boneca, Ivo G; Hobbs, Jamie K; Foster, Simon J

    2011-12-01

    Cell morphology and viability in Eubacteria is dictated by the architecture of peptidoglycan, the major and essential structural component of the cell wall. Although the biochemical composition of peptidoglycan is well understood, how the peptidoglycan architecture can accommodate the dynamics of growth and division while maintaining cell shape remains largely unknown. Here, we elucidate the peptidoglycan architecture and dynamics of bacteria with ovoid cell shape (ovococci), which includes a number of important pathogens, by combining biochemical analyses with atomic force and super-resolution microscopies. Atomic force microscopy analysis showed preferential orientation of the peptidoglycan network parallel to the short axis of the cell, with distinct architectural features associated with septal and peripheral wall synthesis. Super-resolution three-dimensional structured illumination fluorescence microscopy was applied for the first time in bacteria to unravel the dynamics of peptidoglycan assembly in ovococci. The ovococci have a unique peptidoglycan architecture and growth mode not observed in other model organisms. © 2011 Blackwell Publishing Ltd.

  12. xMDFF: molecular dynamics flexible fitting of low-resolution X-ray structures.

    Science.gov (United States)

    McGreevy, Ryan; Singharoy, Abhishek; Li, Qufei; Zhang, Jingfen; Xu, Dong; Perozo, Eduardo; Schulten, Klaus

    2014-09-01

    X-ray crystallography remains the most dominant method for solving atomic structures. However, for relatively large systems, the availability of only medium-to-low-resolution diffraction data often limits the determination of all-atom details. A new molecular dynamics flexible fitting (MDFF)-based approach, xMDFF, for determining structures from such low-resolution crystallographic data is reported. xMDFF employs a real-space refinement scheme that flexibly fits atomic models into an iteratively updating electron-density map. It addresses significant large-scale deformations of the initial model to fit the low-resolution density, as tested with synthetic low-resolution maps of D-ribose-binding protein. xMDFF has been successfully applied to re-refine six low-resolution protein structures of varying sizes that had already been submitted to the Protein Data Bank. Finally, via systematic refinement of a series of data from 3.6 to 7 Å resolution, xMDFF refinements together with electrophysiology experiments were used to validate the first all-atom structure of the voltage-sensing protein Ci-VSP.

  13. CT findings of chronic eosinophilic pneumonia

    International Nuclear Information System (INIS)

    Kigami, Yusuke; Nishizawa, Sadahiko; Kuroda, Yasumasa

    1992-01-01

    CT scans in 11 cases of chronic eosinophilic pneumonia (CEP) were reviewed. Peripheral dense opacities suggesting air-space consolidation were the most peculiar findings seen in 9 patients on CT, but 7 on chest radiographs. Five patients showed broad plate-like opacities parallel to the pleura, which were the results of resolution from the periphery of the consolidation. Diffuse interstitial opacities suggesting alveolitis were the predominant finding in 3 patients, one of which also had peripheral air-space consolidation. Follow-up CT showed no residual abnormality except one who had DIP concomitant with CEP. CT scans are useful tool for both diagnosis and follow-up of CEP. (author)

  14. Dynamic CT brain scanning in the haemodynamic evaluation of cerebral arterial occlusive disease

    International Nuclear Information System (INIS)

    Davis, S.M.; Melbourne Univ.; Tress, B.M.; Hopper, J.L.; Rossiter, S.C.; Kaye, A.H.

    1987-01-01

    Dynamic cerebral CT scanning (DCT) was used to quantitatively analyse the haemodynamic effects of extracranial and intracranial arterial occlusive lesions in 17 patients with TIA's or minor cerebral infarcts. Using DCT and gamma variate curve fitting, mean transit times were determined for the terminal internal carotid arteries, middle cerebral arteries and middle cerebral-supplied Sylvian cortex at the level of the Circle of Willis. Six patients were studied sequentially, four before and after transcranial bypass surgery. No arterial or tissue delays were found in patients without haemodynamic arterial lesions or cortical infarcts. Seven of nine patients with haemodynamic, extracranial carotid lesions showed ipsilateral delays in arterial or tissue transit times. Tissue delays usually correlated with CT or clinical evidence of infarction. Improved haemodynamics in patients re-studied correlated with the effects of surgery or clinical recovery. DCT has several important limitations but has the potential to provide additional haemodynamic information about the cerebral circulation in selected patients with cerebral arterial occlusive disease. (orig.)

  15. Opportunities for new CT contrast agents to maximize the diagnostic potential of emerging spectral CT technologies.

    Science.gov (United States)

    Yeh, Benjamin M; FitzGerald, Paul F; Edic, Peter M; Lambert, Jack W; Colborn, Robert E; Marino, Michael E; Evans, Paul M; Roberts, Jeannette C; Wang, Zhen J; Wong, Margaret J; Bonitatibus, Peter J

    2017-04-01

    The introduction of spectral CT imaging in the form of fast clinical dual-energy CT enabled contrast material to be differentiated from other radiodense materials, improved lesion detection in contrast-enhanced scans, and changed the way that existing iodine and barium contrast materials are used in clinical practice. More profoundly, spectral CT can differentiate between individual contrast materials that have different reporter elements such that high-resolution CT imaging of multiple contrast agents can be obtained in a single pass of the CT scanner. These spectral CT capabilities would be even more impactful with the development of contrast materials designed to complement the existing clinical iodine- and barium-based agents. New biocompatible high-atomic number contrast materials with different biodistribution and X-ray attenuation properties than existing agents will expand the diagnostic power of spectral CT imaging without penalties in radiation dose or scan time. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. CT of maxillofacial injury

    International Nuclear Information System (INIS)

    DeLaPaz, R.; Brant-Zawadzki, M.; Rowe, L.D.

    1986-01-01

    Computed tomography has the ability to evaluate maxillofacial trauma quickly. The well-known contrast resolution capabilities of CT play a role in the usefulness of this modality. However, it is the image manipulation capability which is of singular advantage in these cases. The spatial resolution of computed tomography has matched that of conventional pluridirectional tomography in current generation equipment. Since a set of axial CT sections can be obtained with automatic table incrementation within 12 minutes, the information content per time of study ratio is improved over that of conventional tomography, despite the fact that image reformation requires extra time on the part of the radiologist. Radiation savings are significantly in favor of computed tomography as well. In the authors' experience, computed tomography is the primary diagnostic imaging modality used in the evaluation of complex facial trauma, after routine screening films are obtained

  17. Recent Advances in Dynamic Kinetic Resolution by Chiral Bifunctional (Thiourea- and Squaramide-Based Organocatalysts

    Directory of Open Access Journals (Sweden)

    Pan Li

    2016-10-01

    Full Text Available The organocatalysis-based dynamic kinetic resolution (DKR process has proved to be a powerful strategy for the construction of chiral compounds. In this feature review, we summarized recent progress on the DKR process, which was promoted by chiral bifunctional (thiourea and squaramide catalysis via hydrogen-bonding interactions between substrates and catalysts. A wide range of asymmetric reactions involving DKR, such as asymmetric alcoholysis of azlactones, asymmetric Michael–Michael cascade reaction, and enantioselective selenocyclization, are reviewed and demonstrate the efficiency of this strategy. The (thiourea and squaramide catalysts with dual activation would be efficient for more unmet challenges in dynamic kinetic resolution.

  18. Quantification of myocardial blood flow using dynamic 320-row multi-detector CT as compared with 15O-H2O PET

    International Nuclear Information System (INIS)

    Kikuchi, Yasuka; Oyama-Manabe, Noriko; Kudo, Kohsuke; Naya, Masanao; Manabe, Osamu; Tomiyama, Yuuki; Tamaki, Nagara; Sasaki, Tsukasa; Katoh, Chietsugu; Shirato, Hiroki

    2014-01-01

    This study introduces a method to calculate myocardium blood flow (MBF) and coronary flow reserve (CFR) using the relatively low-dose dynamic 320-row multi-detector computed tomography (MDCT), validates the method against 15 O-H 2 O positron-emission tomography (PET) and assesses the CFRs of coronary artery disease (CAD) patients. Thirty-two subjects underwent both dynamic CT perfusion (CTP) and PET perfusion imaging at rest and during pharmacological stress. In 12 normal subjects (pilot group), the calculation method for MBF and CFR was established. In the other 13 normal subjects (validation group), MBF and CFR obtained by dynamic CTP and PET were compared. Finally, the CFRs obtained by dynamic CTP and PET were compared between the validation group and CAD patients (n = 7). Correlation between MBF of MDCT and PET was strong (r = 0.95, P CT in the CAD group (2.3 ± 0.8) was significantly lower than that in the validation group (5.2 ± 1.8) (P = 0.0011). We established a method for measuring MBF and CFR with the relatively low-dose dynamic MDCT. Lower CFR was well demonstrated in CAD patients by dynamic CTP. (orig.)

  19. Improved spatial resolution and lower-dose pediatric CT imaging: a feasibility study to evaluate narrowing the X-ray photon energy spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Benz, Mark G. [Safer Pediatric Imaging and Engineering Horizons International, Lincoln, VT (United States); Benz, Matthew W. [Southboro Medical Group, Southboro, MA (United States); Birnbaum, Steven B. [Dartmouth Hitchcock Clinic Manchester, Department of Radiology, Manchester, NH (United States); Chason, Eric; Sheldon, Brian W. [Brown University, Division of Engineering, Materials Science and Engineering Program, Providence, RI (United States); McGuire, Dale [R and D Manager, C and G Technologies Inc., Jeffersonville, IN (United States)

    2014-08-15

    This feasibility study has shown that improved spatial resolution and reduced radiation dose can be achieved in pediatric CT by narrowing the X-ray photon energy spectrum. This is done by placing a hafnium filter between the X-ray generator and a pediatric abdominal phantom. A CT system manufactured in 1999 that was in the process of being remanufactured was used as the platform for this study. This system had the advantage of easy access to the X-ray generator for modifications to change the X-ray photon energy spectrum; it also had the disadvantage of not employing the latest post-imaging noise reduction iterative reconstruction technology. Because we observed improvements after changing the X-ray photon energy spectrum, we recommend a future study combining this change with an optimized iterative reconstruction noise reduction technique. (orig.)

  20. Histopathologic diversity of gastric cancers: Relationship between enhancement pattern on dynamic contrast-enhanced CT and histological type.

    Science.gov (United States)

    Tsurumaru, Daisuke; Miyasaka, Mitsutoshi; Muraki, Toshio; Nishie, Akihiro; Asayama, Yoshiki; Oki, Eiji; Oda, Yoshinao; Honda, Hiroshi

    2017-12-01

    To evaluate the diagnostic value of contrast-enhanced computed tomography gastrography (CE-CTG) to predict the histological type of gastric cancer. We analyzed 47 consecutive patients with resectable advanced gastric cancer preoperatively evaluated by multiphasic dynamic contrast-enhanced CT. Two radiologists independently reviewed the CT images and they determined the peak enhancement phase, and then measured the CT attenuation value of the gastric lesion for each phase. The histological types of gastric cancers were assigned to three groups as differentiated-type, undifferentiated-type, and mixed-type. We compared the peak enhancement phase of the three types and compared the CT attenuation values in each phase. The peak enhancement was significantly different between the three types of gastric cancers for both readers (reader 1, p=0.001; reader 2, p=0.009); most of the undifferentiated types had peak enhancement in the delayed phase. The CT attenuation values of undifferentiated type were significantly higher than those of differentiated or mixed type in the delayed phase according to both readers (reader 1, p=0.002; reader 2, p=0.004). CE-CTG could provide helpful information in diagnosing the histological type of gastric cancers preoperatively. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Synchrotron radiation μCT and histology evaluation of bone-to-implant contact

    DEFF Research Database (Denmark)

    Neldam, Camilla Albeck; Sporring, Jon; Rack, Alexander

    2017-01-01

    The purpose of this study was to evaluate bone-to-implant contact (BIC) in two-dimensional (2D) histology compared to high-resolution three-dimensional (3D) synchrotron radiation micro computed tomography (SR micro-CT). High spatial resolution, excellent signal-to-noise ratio, and contrast...... establish SR micro-CT as the leading imaging modality for hard X-ray microtomography. Using SR micro-CT at voxel size 5 μm in an experimental goat mandible model, no statistically significant difference was found between the different treatment modalities nor between recipient and reconstructed bone....... Comparing histology and SR micro-CT evaluation a bias of 5.2% was found in reconstructed area, and 15.3% in recipient bone. We conclude that for evaluation of BIC with histology and SR micro-CT, SR micro-CT cannot be proven more precise than histology for evaluation of BIC, however, with this SR micro-CT...

  2. UT-CT: A National Resource for Applications of High-Resolution X-ray Computed Tomography in the Geological Sciences

    Science.gov (United States)

    Carlson, W. D.; Ketcham, R. A.; Rowe, T. B.

    2002-12-01

    An NSF-sponsored (EAR-IF) shared multi-user facility dedicated to research applications of high-resolution X-ray computed tomography (CT) in the geological sciences has been in operation since 1997 at the University of Texas at Austin. The centerpiece of the facility is an industrial CT scanner custom-designed for geological applications. Because the instrument can optimize trade-offs among penetrating ability, spatial resolution, density discrimination, imaging modes, and scan times, it can image a very broad range of geological specimens and materials, and thus offers significant advantages over medical scanners and desktop microtomographs. Two tungsten-target X-ray sources (200-kV microfocal and 420-kV) and three X-ray detectors (image-intensifier, high-sensitivity cadmium tungstate linear array, and high-resolution gadolinium-oxysulfide radiographic line scanner) can be used in various combinations to meet specific imaging goals. Further flexibility is provided by multiple imaging modes: second-generation (translate-rotate), third-generation (rotate-only; centered and variably offset), and cone-beam (volume CT). The instrument can accommodate specimens as small as about 1 mm on a side, and as large as 0.5 m in diameter and 1.5 m tall. Applications in petrology and structural geology include measuring crystal sizes and locations to identify mechanisms governing the kinetics of metamorphic reactions; visualizing relationships between alteration zones and abundant macrodiamonds in Siberian eclogites to elucidate metasomatic processes in the mantle; characterizing morphologies of spiral inclusion trails in garnet to test hypotheses of porphyroblast rotation during growth; measuring vesicle size distributions in basaltic flows for determination of elevation at the time of eruption to constrain timing and rates of continental uplift; analysis of the geometry, connectivity, and tortuosity of migmatite leucosomes to define the topology of melt flow paths, for numerical

  3. Comparison SPECT-CT with PET-CT in several applications of small-animal models

    International Nuclear Information System (INIS)

    Pan Yifan; Song Shaoli; Huang Gang

    2009-01-01

    With the development of medical science, monitoring dynamic biologic processes in small-animal models of diseases has become one of the most important approaches in medical studies. Important physiologic parameters that traditionally have been characterized by nuclear medicine imaging include blood flow, biochemical metabolism, and cellular receptors. Recently, nuclear medicine has been greatly facilitated by the newer development of dual-modality integrated imaging systems (SPECT-CT and PET-CT), which provide functional and anatomical images in the same scanning session, with the acquired images co-registered by means of the hardware. The purpose of this review is to compare SPECT-CT with PET-CT in several applications of small-animal models. Conclusicn: PET-CT for small animal modes in nledical research in the applications has great advantages, but SPECT-CT is still a very important role, and research low cost. (authors)

  4. Correlation between the quantifiable parameters of blood flow pattern derived with dynamic CT in maliagnant solitary pulmonary nodules and tumor size

    Directory of Open Access Journals (Sweden)

    Chenshi ZHANG

    2008-02-01

    Full Text Available Background and Objective The solitary pulmonary nodules (SPNs is one of the most common findings on chest radiographs. It becomes possible to provide more accurately quantitative information about blood flow patterns of solitary pulmonary nodules (SPNs with multi-slice spiral computed tomography (MSCT. The aim of this study is to evaluate the correlation between the quantifiable parameters of blood flow pattern derived with dynamic CT in maliagnant solitary pulmonary nodules and tumor size. Methods 68 patients with maliagnant solitary pulmonary nodules (SPNs (diameter <=4 cmunderwent multi-location dynamic contrast material-enhanced (nonionic contrast material was administrated via the antecubital vein at a rate of 4mL/s by an autoinjector, 4*5mm or 4*2.5mm scanning mode with stable table were performed. serial CT. Precontrast and postcontrast attenuation on every scan was recorded. Perfusion (PSPN, peak height (PHSPNratio of peak height of the SPN to that of the aorta (SPN-to-A ratioand mean transit time(MTT were calculated. The correlation between the quantifiable parameters of blood flow pattern derived with dynamic CT in maliagnant solitary pulmonary nodules and tumor size were assessed by means of linear regression analysis. Results No significant correlations were found between the tumor size and each of the peak height (PHSPN ratio of peak height of the SPN to that of the aorta (SPN-to-A ratio perfusion(PSPNand mean transit time (r=0.18, P=0.14; r=0.20,P=0.09; r=0.01, P=0.95; r=0.01, P=0.93. Conclusion No significant correlation is found between the tumor size and each of the quantifiable parameters of blood flow pattern derived with dynamic CT in maliagnant solitary pulmonary nodules.

  5. In vivo quantification of plant starch reserves at micrometer resolution using X-ray microCT imaging and machine learning.

    Science.gov (United States)

    Earles, J Mason; Knipfer, Thorsten; Tixier, Aude; Orozco, Jessica; Reyes, Clarissa; Zwieniecki, Maciej A; Brodersen, Craig R; McElrone, Andrew J

    2018-03-08

    Starch is the primary energy storage molecule used by most terrestrial plants to fuel respiration and growth during periods of limited to no photosynthesis, and its depletion can drive plant mortality. Destructive techniques at coarse spatial scales exist to quantify starch, but these techniques face methodological challenges that can lead to uncertainty about the lability of tissue-specific starch pools and their role in plant survival. Here, we demonstrate how X-ray microcomputed tomography (microCT) and a machine learning algorithm can be coupled to quantify plant starch content in vivo, repeatedly and nondestructively over time in grapevine stems (Vitis spp.). Starch content estimated for xylem axial and ray parenchyma cells from microCT images was correlated strongly with enzymatically measured bulk-tissue starch concentration on the same stems. After validating our machine learning algorithm, we then characterized the spatial distribution of starch concentration in living stems at micrometer resolution, and identified starch depletion in live plants under experimental conditions designed to halt photosynthesis and starch production, initiating the drawdown of stored starch pools. Using X-ray microCT technology for in vivo starch monitoring should enable novel research directed at resolving the spatial and temporal patterns of starch accumulation and depletion in woody plant species. No claim to original US Government works New Phytologist © 2018 New Phytologist Trust.

  6. Laboratory based study of dynamical processes by 4D X-ray CT with sub-second temporal resolution

    Czech Academy of Sciences Publication Activity Database

    Vavřík, Daniel; Jakůbek, Jan; Kumpová, Ivana; Pichotka, M.

    2017-01-01

    Roč. 12, February (2017), č. článku C02010. ISSN 1748-0221. [International Workshop on Radiation Imaging Detectors /18./. Barcelona, 03.07.2016-07.07.2016] R&D Projects: GA ČR(CZ) GA15-07210S; GA MŠk(CZ) LO1219 Keywords : computerized tomography (CT) * computed radiography (CR) * inspection with x-rays * pixelated detectors and associated VLSI electronics * X-ray radiography and digital radiography (DR) Subject RIV: JB - Sensors, Measurment, Regulation OBOR OECD: Electrical and electronic engineering Impact factor: 1.220, year: 2016 http://iopscience.iop.org/article/10.1088/1748-0221/12/02/C02010

  7. Resolution enhancement in neural networks with dynamical synapses

    Directory of Open Access Journals (Sweden)

    C. C. Alan Fung

    2013-06-01

    Full Text Available Conventionally, information is represented by spike rates in the neural system. Here, we consider the ability of temporally modulated activities in neuronal networks to carry information extra to spike rates. These temporal modulations, commonly known as population spikes, are due to the presence of synaptic depression in a neuronal network model. We discuss its relevance to an experiment on transparent motions in macaque monkeys by Treue et al. in 2000. They found that if the moving directions of objects are too close, the firing rate profile will be very similar to that with one direction. As the difference in the moving directions of objects is large enough, the neuronal system would respond in such a way that the network enhances the resolution in the moving directions of the objects. In this paper, we propose that this behavior can be reproduced by neural networks with dynamical synapses when there are multiple external inputs. We will demonstrate how resolution enhancement can be achieved, and discuss the conditions under which temporally modulated activities are able to enhance information processing performances in general.

  8. The effects of dynamic hyperinflation on CT emphysema measurements in patients with COPD

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Giordano Rafael Tronco, E-mail: grtalves@gmail.com [Post-graduation Program in Medicine (Radiology), Federal University of Rio de Janeiro (Brazil); Marchiori, Edson [Post-graduation Program in Medicine (Radiology), Federal University of Rio de Janeiro (Brazil); Irion, Klaus Loureiro [Radiology Department, Liverpool Heart and Chest Hospital (United Kingdom); Teixeira, Paulo José Zimmerman [Pulmonology Department, Federal University of Health Sciences of Porto Alegre (Brazil); Berton, Danilo Cortozi [Pulmonology Department, Federal University of Rio Grande do Sul (Brazil); Rubin, Adalberto Sperb [Pulmonology Department, Federal University of Health Sciences of Porto Alegre (Brazil); Hochhegger, Bruno [Post-graduation Program in Medicine (Radiology), Federal University of Rio de Janeiro (Brazil)

    2014-12-15

    Objectives: Dynamic hyperinflation (DH) significantly affects dyspnea and intolerance to exercise in patients with chronic obstructive pulmonary disease (COPD). Quantitative computed tomography (QCT) of the chest is the modality of choice for quantification of the extent of anatomical lung damage in patients with COPD. The purpose of this article is to assess the effects of DH on QCT measurements. Methods: The study sample comprised patients with Global initiative for Chronic Obstructive Lung Disease (GOLD) stages III and IV COPD referred for chest CT. We examined differences in total lung volume (TLV), emphysema volume (EV), and emphysema index (EI) determined by QCT before and after DH induction by metronome-paced tachypnea (MPT). Initial (resting) and post-MPT CT examinations were performed with the same parameters. Results: Images from 66 CT scans (33 patients) were evaluated. EV and EI, but not TLV, increased significantly (p < 0.0001) after DH induction. Conclusion: QCT showed significant increases in EV and EI after MPT-induced DH in patients with GOLD stages III and IV COPD. For longitudinal assessment of patients with COPD using QCT, we recommend the application of a pre-examination rest period, as DH could mimic disease progression. QCT studies of the effects of DH-preventive therapy before exercise could expand our knowledge of effective measures to delay DH-related progression of COPD.

  9. The effects of dynamic hyperinflation on CT emphysema measurements in patients with COPD

    International Nuclear Information System (INIS)

    Alves, Giordano Rafael Tronco; Marchiori, Edson; Irion, Klaus Loureiro; Teixeira, Paulo José Zimmerman; Berton, Danilo Cortozi; Rubin, Adalberto Sperb; Hochhegger, Bruno

    2014-01-01

    Objectives: Dynamic hyperinflation (DH) significantly affects dyspnea and intolerance to exercise in patients with chronic obstructive pulmonary disease (COPD). Quantitative computed tomography (QCT) of the chest is the modality of choice for quantification of the extent of anatomical lung damage in patients with COPD. The purpose of this article is to assess the effects of DH on QCT measurements. Methods: The study sample comprised patients with Global initiative for Chronic Obstructive Lung Disease (GOLD) stages III and IV COPD referred for chest CT. We examined differences in total lung volume (TLV), emphysema volume (EV), and emphysema index (EI) determined by QCT before and after DH induction by metronome-paced tachypnea (MPT). Initial (resting) and post-MPT CT examinations were performed with the same parameters. Results: Images from 66 CT scans (33 patients) were evaluated. EV and EI, but not TLV, increased significantly (p < 0.0001) after DH induction. Conclusion: QCT showed significant increases in EV and EI after MPT-induced DH in patients with GOLD stages III and IV COPD. For longitudinal assessment of patients with COPD using QCT, we recommend the application of a pre-examination rest period, as DH could mimic disease progression. QCT studies of the effects of DH-preventive therapy before exercise could expand our knowledge of effective measures to delay DH-related progression of COPD

  10. Recent Advances in Dynamic Kinetic Resolution by Chiral Bifunctional (Thio)urea- and Squaramide-Based Organocatalysts.

    Science.gov (United States)

    Li, Pan; Hu, Xinquan; Dong, Xiu-Qin; Zhang, Xumu

    2016-10-14

    The organocatalysis-based dynamic kinetic resolution (DKR) process has proved to be a powerful strategy for the construction of chiral compounds. In this feature review, we summarized recent progress on the DKR process, which was promoted by chiral bifunctional (thio)urea and squaramide catalysis via hydrogen-bonding interactions between substrates and catalysts. A wide range of asymmetric reactions involving DKR, such as asymmetric alcoholysis of azlactones, asymmetric Michael-Michael cascade reaction, and enantioselective selenocyclization, are reviewed and demonstrate the efficiency of this strategy. The (thio)urea and squaramide catalysts with dual activation would be efficient for more unmet challenges in dynamic kinetic resolution.

  11. Collateral ventilation quantification using xenon-enhanced dynamic dual-energy CT: Differences between canine and swine models of bronchial occlusion

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun Ah; Goo, Jin Mo; Park, Sang Joon; Lee, Chang Hyun; Park, Chng Min [Dept. of Radiology, Seoul National University College of Medicine and Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul (Korea, Republic of)

    2015-06-15

    The aim of this study was to evaluate whether the difference in the degree of collateral ventilation between canine and swine models of bronchial obstruction could be detected by using xenon-enhanced dynamic dual-energy CT. Eight mongrel dogs and six pigs underwent dynamic dual-energy scanning of 64-slice dual-source CT at 12-second interval for 2-minute wash-in period (60% xenon) and at 24-second interval for 3-minute wash-out period with segmental bronchus occluded. Ventilation parameters of magnitude (A value), maximal slope, velocity (K value), and time-to-peak (TTP) enhancement were calculated from dynamic xenon maps using exponential function of Kety model. A larger difference in A value between parenchyma was observed in pigs than in dogs (absolute difference, -33.0 +/- 5.0 Hounsfield units [HU] vs. -2.8 +/- 7.1 HU, p = 0.001; normalized percentage difference, -79.8 +/- 1.8% vs. -5.4 +/- 16.4%, p = 0.0007). Mean maximal slopes in both periods in the occluded parenchyma only decreased in pigs (all p < 0.05). K values of both periods were not different (p = 0.892) in dogs. However, a significant (p = 0.027) difference was found in pigs in the wash-in period. TTP was delayed in the occluded parenchyma in pigs (p = 0.013) but not in dogs (p = 0.892). Xenon-ventilation CT allows the quantification of collateral ventilation and detection of differences between canine and swine models of bronchial obstruction.

  12. Non-small cell lung cancer: evaluation of the relationship between fibrosis and washout feature at dynamic contrast enhanced CT

    International Nuclear Information System (INIS)

    Ye Xiaodan; Yuan Zheng; Ye Jianding; Li Huimin; Zhu Yuzhao; Zhang Shunmin; Liu Shiyuan; Xiao Xiangsheng

    2010-01-01

    Objective: To correlate dynamic parameters at contrast enhanced CT and interstitial fibrosis grade of' non-small cell lung cancer (NSCLC). Methods: Twenty-nine patients with NSCLC were evaluated by multi-slice CT. Images were obtained before and at 20, 30, 45, 60, 75, 90, 120, 180, 300, 540, 720, 900 and 1200 s after the injection of contrast media, which was administered at a rate of 4 ml/s for a total of 420 mg I/kg body weight. Washout parameters were calculated. Lung cancer specimens were stained with hematoxylin-eosin stain and collagen and elastic double stain. Spearman test was made to analyze correlation between dynamic parameters and interstitial fibrosis grade of tumor. Results: Twenty- nine NSCLC demonstrated washout at 20 min 12.1 (0.32-58.0) HU, washout ratio at 20 minutes 15.3% (0.3%-39.2%), slope of washout at 20 minutes 0.0152%/s (0.0007%/s-0.0561%/s). Interstitial fibrosis of 29 lesions was graded as grade Ⅰ (10), grade Ⅱ (14) and grade Ⅲ (5). There were significant correlation between washout at 20 min (r=-0.402, P<0.05), washout ratio at 20 min (r= -0.372, P<0.05), slope of washout ratio (r=-0.459, P<0.05) and interstitial fibrosis grade in tumors. Conclusion: NSCLC washout features at dynamic multi-detector CT correlates with interstitial fibrosis in the tumor. (authors)

  13. Collateral ventilation quantification using xenon-enhanced dynamic dual-energy CT: Differences between canine and swine models of bronchial occlusion

    International Nuclear Information System (INIS)

    Kim, Eun Ah; Goo, Jin Mo; Park, Sang Joon; Lee, Chang Hyun; Park, Chng Min

    2015-01-01

    The aim of this study was to evaluate whether the difference in the degree of collateral ventilation between canine and swine models of bronchial obstruction could be detected by using xenon-enhanced dynamic dual-energy CT. Eight mongrel dogs and six pigs underwent dynamic dual-energy scanning of 64-slice dual-source CT at 12-second interval for 2-minute wash-in period (60% xenon) and at 24-second interval for 3-minute wash-out period with segmental bronchus occluded. Ventilation parameters of magnitude (A value), maximal slope, velocity (K value), and time-to-peak (TTP) enhancement were calculated from dynamic xenon maps using exponential function of Kety model. A larger difference in A value between parenchyma was observed in pigs than in dogs (absolute difference, -33.0 +/- 5.0 Hounsfield units [HU] vs. -2.8 +/- 7.1 HU, p = 0.001; normalized percentage difference, -79.8 +/- 1.8% vs. -5.4 +/- 16.4%, p = 0.0007). Mean maximal slopes in both periods in the occluded parenchyma only decreased in pigs (all p < 0.05). K values of both periods were not different (p = 0.892) in dogs. However, a significant (p = 0.027) difference was found in pigs in the wash-in period. TTP was delayed in the occluded parenchyma in pigs (p = 0.013) but not in dogs (p = 0.892). Xenon-ventilation CT allows the quantification of collateral ventilation and detection of differences between canine and swine models of bronchial obstruction.

  14. CT cystography

    International Nuclear Information System (INIS)

    Tsili, A.

    2012-01-01

    Full text: Cancer of the urinary bladder is one of the commonest urothelial neoplasms. Conventional cystoscopy remains the mainstay in the diagnosis of urinary bladder carcinomas. But it is an invasive and uncomfortable procedure, associated with complications. Computed tomographic (CT) virtual cystoscopy has been proposed as an alternative imaging modality with potential advantages in the detection of urinary bladder neoplasms and good patient acceptance. It is a minimally invasive technique, allowing imaging of the urinary bladder in multiple planes and a 360 0 view. CT cystoscopy provides information about the location, size and morphologic features of urinary bladder lesions, indicating appropriate areas for biopsy. It can be performed in cases in which conventional cystoscopy is not feasible, such as in the presence of urethral strictures, marked prostatic hypertrophy or active bleeding, and in cases in which cystoscopic findings are inconclusive. The technique can be used to evaluate areas of the urinary bladder difficult to evaluate with cystoscopy, such as the anterior bladder neck and narrowmouthed diverticula. Finally, virtual cystoscopy provides both intraluminal and extraluminal pathologic changes, so intravesical disease and exrtavesical extension can be evaluated in the same study. One of the limitations of this technique is the difficulty to demonstrate small-sized lesions. The introduction of multi-detector row CT (MDCT) scanners was a major technological advancement because among other things it substantially improves z-axis resolution by reducing section collimation and allowing the detection of very small lesions. The near isotropic or isotropic pixels achieved with a multidetector CT scanner, enable the creation of multiplanar reformatted images with a resolution very close to that of the axial images and three-dimensional (3D) renderings of outstanding quality. Transverse, multiplanar reformations and virtual endoscopic images are complementary

  15. Gastrointestinal stromal tumor: role of spiral CT in diagnosis and evaluation of treatment with STI571

    International Nuclear Information System (INIS)

    Hu Jiawang; Zhou Linjiang; Wei Jiangong

    2011-01-01

    Objective: To investigate the CT appearance of gastrointestinal stromal tumors (GISTs) after oral imatinib mesylate (STI571) treatment. Methods: CT scans of 58 cases of GISTs proven by histology and immunohistochemistry were retrospectively analyzed. Dynamic contrast-enhanced CT of 8 patients after STI571 treatment was also evaluated. Results: The tumors originated from the stomach (n=28), small intestine (n=12), duodenum (n=6), colon (n=5), rectum (n=4), mesentery (n=2), and esophagus (n=2). Small GISTs appeared as round or oval, endo- or exophytic masses with well-defined margins and homogeneous contrast enhancement. Large lesions were often irregular infiltrative exophytic masses with heterogeneous enhancement. Ulceration, fistulization and neovascularity can be seen within the larger tumors. CT scans of 5 patients with good treatment response showed rapid transition form a heterogeneously hyper-attenuating pattern to homogeneously hypo-attenuating pattern with resolution of the enhancing tumor nodules and decreased tumor neovascularity. In 3 poor responders, CT showed enlarging or new enhancing nodules within the treated hypo-attenuating tumor, new lesions or metastasis outside the primary tumor. Conclusion: CT can demonstrate changes resulting from treatment of GISTs. It is valuable for guiding and assessing treatment response to STI571. (authors)

  16. SedCT: MATLAB™ tools for standardized and quantitative processing of sediment core computed tomography (CT) data collected using a medical CT scanner

    Science.gov (United States)

    Reilly, B. T.; Stoner, J. S.; Wiest, J.

    2017-08-01

    Computed tomography (CT) of sediment cores allows for high-resolution images, three-dimensional volumes, and down core profiles. These quantitative data are generated through the attenuation of X-rays, which are sensitive to sediment density and atomic number, and are stored in pixels as relative gray scale values or Hounsfield units (HU). We present a suite of MATLAB™ tools specifically designed for routine sediment core analysis as a means to standardize and better quantify the products of CT data collected on medical CT scanners. SedCT uses a graphical interface to process Digital Imaging and Communications in Medicine (DICOM) files, stitch overlapping scanned intervals, and create down core HU profiles in a manner robust to normal coring imperfections. Utilizing a random sampling technique, SedCT reduces data size and allows for quick processing on typical laptop computers. SedCTimage uses a graphical interface to create quality tiff files of CT slices that are scaled to a user-defined HU range, preserving the quantitative nature of CT images and easily allowing for comparison between sediment cores with different HU means and variance. These tools are presented along with examples from lacustrine and marine sediment cores to highlight the robustness and quantitative nature of this method.

  17. CT diagnosis of hepatoma

    Energy Technology Data Exchange (ETDEWEB)

    Itai, Yuji [Tokyo Univ. (Japan). Faculty of Medicine

    1982-04-01

    In hepatocellular carcinoma, present status of CT diagnosis was discussed. Hepatocellular carcinoma is sometimes imaged in same concentration as that of surrounding tissues, and the detection rate ranged from 79 to 94%. The rate of differential diagnosis between primary and metastatic carcinoma was only 83% (includes 22% of false diagnosis) using contrast enhancement. The rates of detection of hepatocellular carcinoma and metastatic one were also only 87% and 75%, respectively, even by the combined use of arterial infusion CT and dynamic CT. However, the CT images is reproducible, and is supplemented by the information of US. Thus, the combination of these methods is useful in diagnosing the presence, extension, and nature of liver carcinoma.

  18. Resolution, sensitivity, and in vivo application of high-resolution computed tomography for titanium-coated polymethyl methacrylate (PMMA) dental implants

    NARCIS (Netherlands)

    Cuijpers, V.M.J.I.; Jaroszewicz, J.; Anil, S.; Al Farraj Aldosari, A.; Walboomers, X.F.; Jansen, J.A.

    2014-01-01

    OBJECTIVES: The aims of this study were (i) to determine the spatial resolution and sensitivity of micro- versus nano-computed tomography (CT) techniques and (ii) to validate micro- versus nano-CT in a dog dental implant model, comparative to histological analysis. MATERIAL AND METHODS: To determine

  19. Morphological analysis and pathological basis of the fine pulmonary reticulation at high-resolution CT

    International Nuclear Information System (INIS)

    Guan Chunshuang; Ma Daqing; Guan Yansheng; Chen Budong; Zhang Yansong

    2010-01-01

    Objective: To study the morphological appearance and pathological basis of the fine pulmonary reticulation at HRCT. Methods: One hundred and seven patients were analyzed about the morphology findings and dynamic changes on pulmonary HRCT. Twenty-four coal worker's pneumoconiosis (CWP) specimens were examined to make comparison between CT and pathology. The data was analyzed by using the Chi-square test. Results: The reticular gap was less than 3 mm in diameter. The morphology of reticulation was round or irregular. Pulmonary parenchyma was seen between the gaps. The reticular wall was smooth or coarse. The thickness was less than 1 mm. One hundred and seven patients had accompanying signs including ground-glass opacity (68.2%, 73 patients), crazy paving (23.4%, 25 patients), interlobular septal thickening (84.1%, 90 patients), emphysema (32.7%, 35 patients), interface sign (58.9%, 63 patients), traction bronchiolectasis (41.1%, 44 patients) and honeycombing (26.2%, 28 patients). The differences of the honeycomb, traction bronchiolectosis, interbobular septal thickening, interface sign and paving were statistically significant between the fibrotic group and pneunonia (P <0.01). Pneumonia showed extensive area of ground-glass opacity (GGO) with fine reticulation. Fine reticculation with both interlobular septal thickening and small nodules were observed more frequently in lmphangitic carcinomatosis. Idiopathic pulmonary fibrosis (IPF) showed fine reticulation among the honeycombing. Connective tissue disease (CTD) showed fine reticulation with rarely honeycombing and it could be partly absorbed. Fine reticulation with emphysema was seen in chronic bronchitis. In the 58 follow-up patients, the fine reticulation increased in 26 patients, decreased or disappeared in 22 patients and showed no change in 10 patients. The major pathological basis of the fine reticulation was intralobular interstitial thickening, including fibrosis hyperplasia, inflammatory cells and tumor

  20. Nontumorous enlargement of the internal auditory canal. A risk factor for sensorineural hearing loss? A high resolution CT-study

    Energy Technology Data Exchange (ETDEWEB)

    Stimmer, H.; Rummeny, E.J. [Technical University Munich, Klinikum rechts der Isar (Germany). Dept. of Radiology; Niedermeyer, H.P. [Technical University Munich, Klinikum rechts der Isar (Germany). ENT-Clinic; Kehl, V. [Technical University Munich, Klinikum rechts der Isar (Germany). Inst. for Medical Statistics and Epidemiology

    2015-06-15

    First aim of the study was to define normal shape and diameter of the internal auditory canal (IAC). In the second part the clinical relevance of IAC-enlargement was analyzed, considering also lesions of the subtle structures at the fundus of the internal auditory canal. 440 high resolution CT-scans of the temporal bone were used for retrospective analysis of the internal auditory canal and its fundus region. The mean value of the IAC diameter in axial and coronal plane was determined. In 20 of 440 patients IAC enlargement was found. In the group with pronounced enlargement (3fold SD) nearly all patients suffered from hearing impairment. In some of them we found structural abnormalities near the IAC fundus in the CSF/perilymph border zone. A new CT-based definition of normal shape and diameter of the internal auditory canal is presented. There is some evidence that a pathologic transmission of CSF-pressure in case of IAC-enlargement and/or abnormal fistulous communications could play an important role in the pathophysiology of hearing loss.

  1. Dynamic contrast-enhanced MR imaging in osteoid osteoma: relationships with clinical and CT characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Pottecher, P. [Hopital Lariboisiere, AP-HP, Department of Osteoarticular Radiology, Paris (France); Hopital du Bocage, Department of Vascular, Oncologic and Interventional Radiology, Dijon (France); Sibileau, E.; Hamze, B.; Parlier, C.; Laredo, J.D.; Bousson, V. [Hopital Lariboisiere, AP-HP, Department of Osteoarticular Radiology, Paris (France); Aho, S. [Hopital du Bocage, Hospital Hygiene and Epidemiology unit, Dijon (France)

    2017-07-15

    To correlate dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) features to clinical and computed tomography (CT) morphological features of osteoid osteoma (OO). Our institutional review board approved this retrospective study, waiving the need for informed consent. We included the 102 patients treated with interstitial laser ablation for histologically documented OO at our institution in 2008-2013. DCE-MRI variables were the time-enhancement pattern and rising slope (Slope{sub rise}) and CT variables were the bone and segment involved (OO{sub bone} and OO{sub segment,} respectively), OO location relative to the native cortex (OO{sub cortex}), nidus surface area, vessel sign, and largest neighboring-vessel diameter (Dmax{sub vessel}). Descriptive statistics and correlations linking DCE-MRI findings to clinical and CT characteristics were computed. DCE-MRI showed early arterial peak enhancement in 95 (93%) cases, with a mean Slope{sub rise} of 9.30 ± 8.10. CT visualized a vessel sign in 84 (82%) cases with a mean Dmax{sub vessel} of 1.10 ± 0.60 mm. By univariate analysis, Slope{sub rise} correlated significantly with pain duration and Dmax{sub vessel} (r = 0.30, P = 0.003; and r = 0.22, P = 0.03; respectively). Analysis of variance showed that Slope{sub rise} correlated significantly with OO{sub bone} (P < 0.001), with a steeper slope for OOs located in short or flat bones. This study suggests more abundant vascularization of OOs with long-lasting pain and location on short or flat bones. (orig.)

  2. CT findings at lupus mesenteric vasculitis

    International Nuclear Information System (INIS)

    Ko, S.F.; Lee, T.Y.; Cheng, T.T.; Ng, S.H.; Lai, H.M.; Cheng, Y.F.; Tsai, C.C.

    1997-01-01

    Purpose: To describe the spectrum of early CT findings of lupus mesenteric vasculitis (LMV) and to assess the utility of CT in the management of this uncommon entity. Methods: Abdominal CT was performed within 1-4 days (average 2.2 days) of the onset of severe abdominal pain and tenderness in 15 women with systemic lupus erythematosus. Prompt high-dose i.v. corticosteroid in 11 patients after the CT diagnosis of LMV was made. CT was performed after abdominal symptoms subsided. Results: Eleven cases revealed CT features suggestive of LMV including conspicuous prominence of mesentric vessels with palisade pattern or comb-like appearance (CT comb sign) supplying focal or diffuse dilated bowel loops (n=11), ascites with slightly increased peritoneal enhancement (n=11), small bowel wall thickening (n=10) with double halo or target sign (n=8). Follow-up CT before high-dose steroid therapy revealed complete or marked resolution of the abnormal CT findings. Conclusion: CT is helpful for confirming the diagnosis of LMV, especially the comb sign which may be an early sign. Bowel ischemia due to LMV is less ominous than previously expected, and the abnormal CT findings were reversible when early diagnosis and prompt i.v. steroid therapy could be achieved. (orig.)

  3. CT findings at lupus mesenteric vasculitis

    Energy Technology Data Exchange (ETDEWEB)

    Ko, S.F. [Chang Gung Medical College and Memorial Hospital, Dept. of Radiology, Kaohsiung Hsien (Taiwan); Lee, T.Y. [Chang Gung Medical College and Memorial Hospital, Dept. of Radiology, Kaohsiung Hsien (Taiwan); Cheng, T.T. [Chang Gung Medical College and Memorial Hospital, Dept. of Rheumatology, Kaohsiung Hsien (Taiwan); Ng, S.H. [Chang Gung Medical College and Memorial Hospital, Dept. of Radiology, Kaohsiung Hsien (Taiwan); Lai, H.M. [Chang Gung Medical College and Memorial Hospital, Dept. of Rheumatology, Kaohsiung Hsien (Taiwan); Cheng, Y.F. [Chang Gung Medical College and Memorial Hospital, Dept. of Radiology, Kaohsiung Hsien (Taiwan); Tsai, C.C. [Chang Gung Medical College and Memorial Hospital, Dept. of Radiology, Kaohsiung Hsien (Taiwan)

    1997-01-01

    Purpose: To describe the spectrum of early CT findings of lupus mesenteric vasculitis (LMV) and to assess the utility of CT in the management of this uncommon entity. Methods: Abdominal CT was performed within 1-4 days (average 2.2 days) of the onset of severe abdominal pain and tenderness in 15 women with systemic lupus erythematosus. Prompt high-dose i.v. corticosteroid in 11 patients after the CT diagnosis of LMV was made. CT was performed after abdominal symptoms subsided. Results: Eleven cases revealed CT features suggestive of LMV including conspicuous prominence of mesentric vessels with palisade pattern or comb-like appearance (CT comb sign) supplying focal or diffuse dilated bowel loops (n=11), ascites with slightly increased peritoneal enhancement (n=11), small bowel wall thickening (n=10) with double halo or target sign (n=8). Follow-up CT before high-dose steroid therapy revealed complete or marked resolution of the abnormal CT findings. Conclusion: CT is helpful for confirming the diagnosis of LMV, especially the comb sign which may be an early sign. Bowel ischemia due to LMV is less ominous than previously expected, and the abnormal CT findings were reversible when early diagnosis and prompt i.v. steroid therapy could be achieved. (orig.).

  4. SYSTEM OF GUARANTEED RESOLUTION OF DYNAMIC CONFLICTS OF AIRCRAFTS IN REAL TIME

    Directory of Open Access Journals (Sweden)

    Svitlana Pavlova

    2017-03-01

    Full Text Available Purpose: The present work is devoted to improving of flight safety in civil aviation by creating and implementing a new system of resolution of dynamic conflict of aircrafts. The developed system is aimed at ensuring a guaranteed level of safety when resolution of rarefied conflict situations of aircraft in real-time. Methods: The proposed system is based on a new method of conflict resolution of aircraft on the basis of the theory of invariance. Results: The development of the system of conflict resolution of aircraft in real time and the implementation of the respective algorithms such control will ensure effective prevention of dangerous approaches. Discussion: The system is implemented as single unified equipment using satellite and radar navigation systems that will ensure the positioning of aircraft in real time. Provided that the system should be installed on all aircraft and integrated on board to properly ensure its functionality and interact with navigation systems.

  5. Parietal pleural invasion/adhesion of subpleural lung cancer: Quantitative 4-dimensional CT analysis using dynamic-ventilatory scanning

    Energy Technology Data Exchange (ETDEWEB)

    Sakuma, Kotaro, E-mail: ksakuma@ohara-hp.or.jp [Department of Radiology, Ohara General Hospital, 6-11 Omachi, Fukushima City, Fukushima 960-8611 (Japan); Department of Radiology and Nuclear Medicine, Fukushima Medical University, 1 Hikariga-oka, Fukushima City, Fukushima 960-1295 (Japan); Yamashiro, Tsuneo, E-mail: clatsune@yahoo.co.jp [Department of Radiology, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa 903-0215 (Japan); Moriya, Hiroshi, E-mail: hrshmoriya@gmail.com [Department of Radiology, Ohara General Hospital, 6-11 Omachi, Fukushima City, Fukushima 960-8611 (Japan); Murayama, Sadayuki, E-mail: sadayuki@med.u-ryukyu.ac.jp [Department of Radiology, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa 903-0215 (Japan); Ito, Hiroshi, E-mail: h-ito@fmu.ac.jp [Department of Radiology and Nuclear Medicine, Fukushima Medical University, 1 Hikariga-oka, Fukushima City, Fukushima 960-1295 (Japan)

    2017-02-15

    Highlights: • 4DCT can be used for assessment of pleural invasion/adhesion by lung cancer. • Quantitative 4DCT indices of lung cancer and adjacent structures are described. • An automatic analysis of pleural invasion/adhesion would be developed in the future. - Abstract: Purpose: Using 4-dimensional dynamic-ventilatory scanning by a 320-row computed tomography (CT) scanner, we performed a quantitative assessment of parietal pleural invasion and adhesion by peripheral (subpleural) lung cancers. Methods: Sixteen patients with subpleural lung cancer underwent dynamic-ventilation CT during free breathing. Neither parietal pleural invasion nor adhesion was subsequently confirmed by surgery in 10 patients, whereas the other 6 patients were judged to have parietal pleural invasion or adhesion. Using research software, we tracked the movements of the cancer and of an adjacent structure such as the rib or aorta, and converted the data to 3-dimensional loci. The following quantitative indices were compared by the Mann-Whitney test: cross-correlation coefficient between time curves for the distances moved from the inspiratory frame by the cancer and the adjacent structure, the ratio of the total movement distances (cancer/adjacent structure), and the cosine similarities between the inspiratory and expiratory vectors (from the cancer to the adjacent structure) and between vectors of the cancer and of the adjacent structure (from inspiratory to expiratory frames). Results: Generally, the movements of the loci of the lung cancer and the adjacent structure were similar in patients with parietal pleural invasion/adhesion, while they were independent in patients without. There were significant differences in all the parameters between the two patient groups (cross-correlation coefficient and the movement distance ratio, P < 0.01; cosine similarities, P < 0.05). Conclusion: These observations suggest that quantitative indices by dynamic-ventilation CT can be utilized as a

  6. High-resolution dynamic pressure sensor array based on piezo-phototronic effect tuned photoluminescence imaging.

    Science.gov (United States)

    Peng, Mingzeng; Li, Zhou; Liu, Caihong; Zheng, Qiang; Shi, Xieqing; Song, Ming; Zhang, Yang; Du, Shiyu; Zhai, Junyi; Wang, Zhong Lin

    2015-03-24

    A high-resolution dynamic tactile/pressure display is indispensable to the comprehensive perception of force/mechanical stimulations such as electronic skin, biomechanical imaging/analysis, or personalized signatures. Here, we present a dynamic pressure sensor array based on pressure/strain tuned photoluminescence imaging without the need for electricity. Each sensor is a nanopillar that consists of InGaN/GaN multiple quantum wells. Its photoluminescence intensity can be modulated dramatically and linearly by small strain (0-0.15%) owing to the piezo-phototronic effect. The sensor array has a high pixel density of 6350 dpi and exceptional small standard deviation of photoluminescence. High-quality tactile/pressure sensing distribution can be real-time recorded by parallel photoluminescence imaging without any cross-talk. The sensor array can be inexpensively fabricated over large areas by semiconductor product lines. The proposed dynamic all-optical pressure imaging with excellent resolution, high sensitivity, good uniformity, and ultrafast response time offers a suitable way for smart sensing, micro/nano-opto-electromechanical systems.

  7. Optimization of CT image reconstruction algorithms for the lung tissue research consortium (LTRC)

    Science.gov (United States)

    McCollough, Cynthia; Zhang, Jie; Bruesewitz, Michael; Bartholmai, Brian

    2006-03-01

    To create a repository of clinical data, CT images and tissue samples and to more clearly understand the pathogenetic features of pulmonary fibrosis and emphysema, the National Heart, Lung, and Blood Institute (NHLBI) launched a cooperative effort known as the Lung Tissue Resource Consortium (LTRC). The CT images for the LTRC effort must contain accurate CT numbers in order to characterize tissues, and must have high-spatial resolution to show fine anatomic structures. This study was performed to optimize the CT image reconstruction algorithms to achieve these criteria. Quantitative analyses of phantom and clinical images were conducted. The ACR CT accreditation phantom containing five regions of distinct CT attenuations (CT numbers of approximately -1000 HU, -80 HU, 0 HU, 130 HU and 900 HU), and a high-contrast spatial resolution test pattern, was scanned using CT systems from two manufacturers (General Electric (GE) Healthcare and Siemens Medical Solutions). Phantom images were reconstructed using all relevant reconstruction algorithms. Mean CT numbers and image noise (standard deviation) were measured and compared for the five materials. Clinical high-resolution chest CT images acquired on a GE CT system for a patient with diffuse lung disease were reconstructed using BONE and STANDARD algorithms and evaluated by a thoracic radiologist in terms of image quality and disease extent. The clinical BONE images were processed with a 3 x 3 x 3 median filter to simulate a thicker slice reconstructed in smoother algorithms, which have traditionally been proven to provide an accurate estimation of emphysema extent in the lungs. Using a threshold technique, the volume of emphysema (defined as the percentage of lung voxels having a CT number lower than -950 HU) was computed for the STANDARD, BONE, and BONE filtered. The CT numbers measured in the ACR CT Phantom images were accurate for all reconstruction kernels for both manufacturers. As expected, visual evaluation of the

  8. Quantitative analysis of 18F-NaF dynamic PET/CT cannot differentiate malignant from benign lesions in multiple myeloma.

    Science.gov (United States)

    Sachpekidis, Christos; Hillengass, Jens; Goldschmidt, Hartmut; Anwar, Hoda; Haberkorn, Uwe; Dimitrakopoulou-Strauss, Antonia

    2017-01-01

    A renewed interest has been recently developed for the highly sensitive bone-seeking radiopharmaceutical 18 F-NaF. Aim of the present study is to evaluate the potential utility of quantitative analysis of 18 F-NaF dynamic PET/CT data in differentiating malignant from benign degenerative lesions in multiple myeloma (MM). 80 MM patients underwent whole-body PET/CT and dynamic PET/CT scanning of the pelvis with 18 F-NaF. PET/CT data evaluation was based on visual (qualitative) assessment, semi-quantitative (SUV) calculations, and absolute quantitative estimations after application of a 2-tissue compartment model and a non-compartmental approach leading to the extraction of fractal dimension (FD). In total 263 MM lesions were demonstrated on 18 F-NaF PET/CT. Semi-quantitative and quantitative evaluations were performed for 25 MM lesions as well as for 25 benign, degenerative and traumatic lesions. Mean SUV average for MM lesions was 11.9 and mean SUV max was 23.2. Respectively, SUV average and SUV max for degenerative lesions were 13.5 and 20.2. Kinetic analysis of 18 F-NaF revealed the following mean values for MM lesions: K 1 = 0.248 (1/min), k 3 = 0.359 (1/min), influx (K i ) = 0.107 (1/min), FD = 1.382, while the respective values for degenerative lesions were: K 1 = 0.169 (1/min), k 3 = 0.422 (1/min), influx (K i ) = 0.095 (1/min), FD = 1. 411. No statistically significant differences between MM and benign degenerative disease regarding SUV average , SUV max , K 1 , k 3 and influx (K i ) were demonstrated. FD was significantly higher in degenerative than in malignant lesions. The present findings show that quantitative analysis of 18 F-NaF PET data cannot differentiate malignant from benign degenerative lesions in MM patients, supporting previously published results, which reflect the limited role of 18 F-NaF PET/CT in the diagnostic workup of MM.

  9. Assessing Tumor Response to Treatment in Patients with Lung Cancer Using Dynamic Contrast-Enhanced CT

    DEFF Research Database (Denmark)

    Strauch, Louise S; Eriksen, Rie Ø; Sandgaard, Michael

    2016-01-01

    Reviews and Meta-Analyses (PRISMA) guidelines. Only original research articles concerning treatment response in patients with lung cancer assessed with DCE-CT were included. To assess the validity of each study we implemented Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2). The initial search......The aim of this study was to provide an overview of the literature available on dynamic contrast-enhanced computed tomography (DCE-CT) as a tool to evaluate treatment response in patients with lung cancer. This systematic review was compiled according to Preferred Reporting Items for Systematic...... yielded 651 publications, and 16 articles were included in this study. The articles were divided into groups of treatment. In studies where patients were treated with systemic chemotherapy with or without anti-angiogenic drugs, four out of the seven studies found a significant decrease in permeability...

  10. Coronary calcium screening with dual-source CT: reliability of ungated, high-pitch chest CT in comparison with dedicated calcium-scoring CT

    Energy Technology Data Exchange (ETDEWEB)

    Hutt, Antoine; Faivre, Jean-Baptiste; Remy, Jacques; Remy-Jardin, Martine [CHRU et Universite de Lille, Department of Thoracic Imaging, Hospital Calmette (EA 2694), Lille (France); Duhamel, Alain; Deken, Valerie [CHRU et Universite de Lille, Department of Biostatistics (EA 2694), Lille (France); Molinari, Francesco [Centre Hospitalier General de Tourcoing, Department of Radiology, Tourcoing (France)

    2016-06-15

    To investigate the reliability of ungated, high-pitch dual-source CT for coronary artery calcium (CAC) screening. One hundred and eighty-five smokers underwent a dual-source CT examination with acquisition of two sets of images during the same session: (a) ungated, high-pitch and high-temporal resolution acquisition over the entire thorax (i.e., chest CT); (b) prospectively ECG-triggered acquisition over the cardiac cavities (i.e., cardiac CT). Sensitivity and specificity of chest CT for detecting positive CAC scores were 96.4 % and 100 %, respectively. There was excellent inter-technique agreement for determining the quantitative CAC score (ICC = 0.986). The mean difference between the two techniques was 11.27, representing 1.81 % of the average of the two techniques. The inter-technique agreement for categorizing patients into the four ranks of severity was excellent (weighted kappa = 0.95; 95 % CI 0.93-0.98). The inter-technique differences for quantitative CAC scores did not correlate with BMI (r = 0.05, p = 0.575) or heart rate (r = -0.06, p = 0.95); 87.2 % of them were explained by differences at the level of the right coronary artery (RCA: 0.8718; LAD: 0.1008; LCx: 0.0139; LM: 0.0136). Ungated, high-pitch dual-source CT is a reliable imaging mode for CAC screening in the conditions of routine chest CT examinations. (orig.)

  11. Full dynamic resolution low lower DA-Converters for flat panel displays

    Directory of Open Access Journals (Sweden)

    C. Saas

    2006-01-01

    Full Text Available It has been shown that stepwise charging can reduce the power dissipated in the source drivers of a flat panel display. However the solution presented only provided a dynamic resolution of 3 bits which is not sufficient for obtaining a full color resolution display. In this work a further development of the basic idea is presented. The stepwise charging is increased to 4 bits and supplemented by a current source to provide an output signal which represents an 8 bit value with sufficient accuracy. Within this work the application is an AM-OLED flat panel display, but the concept can easily be applied to other display technologies like TFT-LCD as well.

  12. Hybrid Spectral Micro-CT: System Design, Implementation, and Preliminary Results

    CERN Document Server

    Bennett, James R; Xu, Qiong; Yu, Hengyong; Walsh, Michael; Butler, Anthony; Butler, Phillip; Cao, Guohua; Mohs, Aaron; Wang, Ge

    2014-01-01

    Spectral CT has proven an important development in biomedical imaging, and there have been several publications in the past years demonstrating its merits in pre-clinical and clinical applications. In 2012, Xu et al. reported that near-term implementation of spectral micro-CT could be enhanced by a hybrid architecture: a narrow-beam spectral "interior" imaging chain integrated with a traditional wide-beam "global" imaging chain. This hybrid integration coupled with compressive sensing (CS)-based interior tomography demonstrated promising results for improved contrast resolution, and decreased system cost and radiation dose. The motivation for the current study is implementation and evaluation of the hybrid architecture with a first-of-its-kind hybrid spectral micro-CT system. Preliminary results confirm improvements in both contrast and spatial resolution. This technology is shown to merit further investigation and potential application in future spectral CT scanner design.

  13. High resolution spiral CT for determining the malignant potential of solitary pulmonary nodules: refining and testing the test

    Energy Technology Data Exchange (ETDEWEB)

    Harders, Stefan Walbom; Madsen, Hans Henrik; Rasmussen, Finn (Dept. of Radiology, Aarhus Univ. Hospital, Aarhus (Denmark)), Email: stefhard@rm.dk; Rasmussen, Torben Riis (Dept. of Pulmonology, Aarhus Univ. Hospital, Aarhus (Denmark)); Hager, Henrik (Dept. of Pathology, Aarhus Univ. Hospital, Aarhus (Denmark))

    2011-05-15

    Background A solitary pulmonary nodule (SPN) may represent early stage lung cancer. Lung cancer is a devastating disease with an overall 5-year mortality rate of approximately 84% but with early detection and surgery as low as 47%. Currently a contrast-enhanced multiple-row detector CT (MDCT) scan is the first examination when evaluating patients with suspected lung cancer. Purpose To apply an additional high resolution CT (HRCT) to SPNs to test whether certain morphological characteristics are associated with malignancy, to assess the diagnostic accuracy of HRCT in the characterization of SPNs, and to address the reproducibility of all measures. Material and Method Two hundred and thirteen participants with SPNs were included in a follow-up study. Blinded HRCT images were assessed with regard to margin risk categories (MRCs), calcification patterns and certain other characteristics and overall malignancy potential ratings (MPRs) were given. Morphological characteristics were tested against reference standard and ROC methodology was applied to assess diagnostic accuracy. Reproducibility was measured with Kappa statistics and 95% confidence intervals were computed for all results. Histopathology (90%) and CT follow-up (10%) were used as reference standard. Results MRCs (P < 0.001), calcification patterns (P = 0.003), and pleural retraction (P < 0.001) were all statistically significantly associated to malignancy. Reproducibility was moderate to substantial. Sensitivity, specificity, and overall diagnostic accuracy of HRCT were 98%, 23% and 87%, respectively. Reproducibility was substantial. Conclusion Statistically significant associations between SPN MRCs, calcification patterns, pleural retraction and malignancy were found. HRCT yielded a very high sensitivity and a somewhat lower specificity for malignancy. Reproducibility was high

  14. High resolution spiral CT for determining the malignant potential of solitary pulmonary nodules: refining and testing the test

    International Nuclear Information System (INIS)

    Harders, Stefan Walbom; Madsen, Hans Henrik; Rasmussen, Finn; Rasmussen, Torben Riis; Hager, Henrik

    2011-01-01

    Background A solitary pulmonary nodule (SPN) may represent early stage lung cancer. Lung cancer is a devastating disease with an overall 5-year mortality rate of approximately 84% but with early detection and surgery as low as 47%. Currently a contrast-enhanced multiple-row detector CT (MDCT) scan is the first examination when evaluating patients with suspected lung cancer. Purpose To apply an additional high resolution CT (HRCT) to SPNs to test whether certain morphological characteristics are associated with malignancy, to assess the diagnostic accuracy of HRCT in the characterization of SPNs, and to address the reproducibility of all measures. Material and Method Two hundred and thirteen participants with SPNs were included in a follow-up study. Blinded HRCT images were assessed with regard to margin risk categories (MRCs), calcification patterns and certain other characteristics and overall malignancy potential ratings (MPRs) were given. Morphological characteristics were tested against reference standard and ROC methodology was applied to assess diagnostic accuracy. Reproducibility was measured with Kappa statistics and 95% confidence intervals were computed for all results. Histopathology (90%) and CT follow-up (10%) were used as reference standard. Results MRCs (P < 0.001), calcification patterns (P = 0.003), and pleural retraction (P < 0.001) were all statistically significantly associated to malignancy. Reproducibility was moderate to substantial. Sensitivity, specificity, and overall diagnostic accuracy of HRCT were 98%, 23% and 87%, respectively. Reproducibility was substantial. Conclusion Statistically significant associations between SPN MRCs, calcification patterns, pleural retraction and malignancy were found. HRCT yielded a very high sensitivity and a somewhat lower specificity for malignancy. Reproducibility was high

  15. Clinical applications of PET/CT

    International Nuclear Information System (INIS)

    Le Ngoc Ha

    2011-01-01

    The purpose of this article is to review the evolution of PET, PET/CT focusing on the technical aspects, PET radiopharmaceutical developments and current clinical applications as well. The newest technologic advances have been reviewed, including improved crystal design, acquisition modes, reconstruction algorithms, etc. These advancements will continue to improve contrast, decrease noise, and increase resolution. Combined PET/CT system provides faster attenuation correction and useful anatomic correlation to PET functional information. A number of new radiopharmaceuticals used for PET imaging have been developed, however, FDG have been considered as the principal PET radiotracer. The current clinical applications of PET and PET/CT are widespread and include oncology, cardiology and neurology. (author)

  16. Multislice CT angiography

    Energy Technology Data Exchange (ETDEWEB)

    Prokop, Mathias E-mail: mathias.prokop@univie.ac.at

    2000-11-01

    Multislice CT has overcome past limitations of CT angiography (CTA): Scan length and spatial resolution can be simultaneously optimized with multislice CTA, contrast medium can be saved, and the evaluation of large anatomic areas and vessels smaller than 1 mm become possible. This article describes how to optimize scanning protocols and contrast injection, and discusses the main clinical applications of this new technique. Only three main scanning protocolssuffice for all indications. A high speed / high-volume protocol (using 4*2mm or 4*2.5mm collimation) can be employed to scan the chest or abdomen in 8-10s, or to cover the whole abdominal aorta and the peripheral runoff including the feet within 40-65s. A high resolution protocol (using 4*1mm or 4*1.25mm) can be employed for the aorta and most regional vascular beds. It allows for near isotrophic imaging and depicts fine vascular structures with excellent detail. Ultra-high resolution protocols (using 2*0.5mm or 4*0.5mm collimation) yield totally isotropic data sets, and are mainly reserved for cerebrovascular imaging. Image processing techniques, and, in particular, volume rendering have made image presentation faster and easier. Multislice CTA exceeds MRA in spatial resolution and is now able to display even small vascular side branches. Its main indications will be aortic diseases, suspected pulmonary embolism but also renal artery stenoses, preoperative workup of abdominal or cerebral vessels, and acute vascular diseases. Multisplice CTA will become a strong competitor of other minimally invasive vascular imaging techniques.

  17. Evaluation of radiation doses delivered in different chest CT protocols

    International Nuclear Information System (INIS)

    Gorycki, Tomasz; Lasek, Iwona; Kamiński, Kamil; Studniarek, Michał

    2014-01-01

    There are differences in the reference diagnostic levels for the computed tomography (CT) of the chest as cited in different literature sources. The doses are expressed either in weighted CT dose index (CTDI VOL ) used to express the dose per slice, dose-length product (DLP), and effective dose (E). The purpose of this study was to assess the radiation dose used in Low Dose Computer Tomography (LDCT) of the chest in comparison with routine chest CT examinations as well as to compare doses delivered in low dose chest CT with chest X-ray doses. CTDI VOL and DLP doses were taken to analysis from routine CT chest examinations (64 MDCT TK LIGHT SPEED GE Medical System) performed in 202 adult patients with FBP reconstruction: 51 low dose, 106 helical, 20 angio CT, and 25 high resolution CT protocols, as well as 19 helical protocols with iterative ASIR reconstruction. The analysis of chest X-ray doses was made on the basis of reports from 44 examinations. Mean values of CTDI VOL and DLP were, respectively: 2.1 mGy and 85.1 mGy·cm, for low dose, 9.7 mGy and 392.3 mGy·cm for helical, 18.2 mGy and 813.9 mGy·cm for angio CT, 2.3 mGy and 64.4 mGy·cm for high resolution CT, 8.9 mGy. and 317.6 mGy·cm for helical ASIR protocols. Significantly lower CTDI VOL and DLP values were observed for low dose and high resolution CT versus the remaining CT protocols; doses delivered in CT ASIR protocols were also lower (80–81%). The ratio between medial doses in low dose CT and chest X-ray was 11.56. Radiation dose in extended chest LDCT with parameters allowing for identification of mediastinal structures and adrenal glands is still much lower than that in standard CT protocols. Effective doses predicted for LDCT may exceed those used in chest X-ray examinations by a factor of 4 to 12, depending on LDCT scan parameters. Our results, as well as results from other authors, suggest a possibility of reducing the dose by means of iterative reconstruction. Efforts towards further dose

  18. 3D printing from microfocus computed tomography (micro-CT) in human specimens: education and future implications.

    Science.gov (United States)

    Shelmerdine, Susan C; Simcock, Ian C; Hutchinson, John Ciaran; Aughwane, Rosalind; Melbourne, Andrew; Nikitichev, Daniil I; Ong, Ju-Ling; Borghi, Alessandro; Cole, Garrard; Kingham, Emilia; Calder, Alistair D; Capelli, Claudio; Akhtar, Aadam; Cook, Andrew C; Schievano, Silvia; David, Anna; Ourselin, Sebastian; Sebire, Neil J; Arthurs, Owen J

    2018-06-14

    Microfocus CT (micro-CT) is an imaging method that provides three-dimensional digital data sets with comparable resolution to light microscopy. Although it has traditionally been used for non-destructive testing in engineering, aerospace industries and in preclinical animal studies, new applications are rapidly becoming available in the clinical setting including post-mortem fetal imaging and pathological specimen analysis. Printing three-dimensional models from imaging data sets for educational purposes is well established in the medical literature, but typically using low resolution (0.7 mm voxel size) data acquired from CT or MR examinations. With higher resolution imaging (voxel sizes below 1 micron, printing of micro-CT imaged specimens can provide insight into craniofacial surgical applications, developmental cardiac anatomy, placental imaging, archaeological remains and high-resolution bone imaging. We conclude with other potential future usages of this emerging technique.

  19. Novel iterative reconstruction method with optimal dose usage for partially redundant CT-acquisition

    International Nuclear Information System (INIS)

    Bruder, H; Raupach, R; Sunnegardh, J; Allmendinger, T; Klotz, E; Stierstorfer, K; Flohr, T

    2015-01-01

    In CT imaging, a variety of applications exist which are strongly SNR limited. However, in some cases redundant data of the same body region provide additional quanta.Examples: in dual energy CT, the spatial resolution has to be compromised to provide good SNR for material decomposition. However, the respective spectral dataset of the same body region provides additional quanta which might be utilized to improve SNR of each spectral component. Perfusion CT is a high dose application, and dose reduction is highly desirable. However, a meaningful evaluation of perfusion parameters might be impaired by noisy time frames. On the other hand, the SNR of the average of all time frames is extremely high.In redundant CT acquisitions, multiple image datasets can be reconstructed and averaged to composite image data. These composite image data, however, might be compromised with respect to contrast resolution and/or spatial resolution and/or temporal resolution. These observations bring us to the idea of transferring high SNR of composite image data to low SNR ‘source’ image data, while maintaining their resolution.It has been shown that the noise characteristics of CT image data can be improved by iterative reconstruction (Popescu et al 2012 Book of Abstracts, 2nd CT Meeting (Salt Lake City, UT) p 148). In case of data dependent Gaussian noise it can be modelled with image-based iterative reconstruction at least in an approximate manner (Bruder et al 2011 Proc. SPIE 7961 79610J).We present a generalized update equation in image space, consisting of a linear combination of the previous update, a correction term which is constrained by the source image data, and a regularization prior, which is initialized by the composite image data. This iterative reconstruction approach we call bimodal reconstruction (BMR).Based on simulation data it is shown that BMR can improve low contrast detectability, substantially reduces the noise power and has the potential to recover spatial

  20. Novel iterative reconstruction method with optimal dose usage for partially redundant CT-acquisition

    Science.gov (United States)

    Bruder, H.; Raupach, R.; Sunnegardh, J.; Allmendinger, T.; Klotz, E.; Stierstorfer, K.; Flohr, T.

    2015-11-01

    In CT imaging, a variety of applications exist which are strongly SNR limited. However, in some cases redundant data of the same body region provide additional quanta. Examples: in dual energy CT, the spatial resolution has to be compromised to provide good SNR for material decomposition. However, the respective spectral dataset of the same body region provides additional quanta which might be utilized to improve SNR of each spectral component. Perfusion CT is a high dose application, and dose reduction is highly desirable. However, a meaningful evaluation of perfusion parameters might be impaired by noisy time frames. On the other hand, the SNR of the average of all time frames is extremely high. In redundant CT acquisitions, multiple image datasets can be reconstructed and averaged to composite image data. These composite image data, however, might be compromised with respect to contrast resolution and/or spatial resolution and/or temporal resolution. These observations bring us to the idea of transferring high SNR of composite image data to low SNR ‘source’ image data, while maintaining their resolution. It has been shown that the noise characteristics of CT image data can be improved by iterative reconstruction (Popescu et al 2012 Book of Abstracts, 2nd CT Meeting (Salt Lake City, UT) p 148). In case of data dependent Gaussian noise it can be modelled with image-based iterative reconstruction at least in an approximate manner (Bruder et al 2011 Proc. SPIE 7961 79610J). We present a generalized update equation in image space, consisting of a linear combination of the previous update, a correction term which is constrained by the source image data, and a regularization prior, which is initialized by the composite image data. This iterative reconstruction approach we call bimodal reconstruction (BMR). Based on simulation data it is shown that BMR can improve low contrast detectability, substantially reduces the noise power and has the potential to recover

  1. Radioembolization and the dynamic role of 90Y PET/CT

    Directory of Open Access Journals (Sweden)

    Alexander S Pasciak

    2014-02-01

    Full Text Available Before the advent of tomographic imaging, it was postulated that decay of 90Y to the 0+ excited state of 90Zr may result in emission of a positron-electron pair. While the branching ratio for pair production is small (~32x10-6, PET has been successfully used to image 90Y in numerous recent patient and phantom studies. 90Y PET imaging has been performed on a variety of PET/CT systems, with and without time-of-flight (TOF and/or resolution recovery capabilities as well as on both BGO and L(YSO based scanners. On all systems, resolution and contrast superior to bremsstrahlung SPECT has been reported. The intrinsic radioactivity present in L(YSO-based PET scanners is a potential limitation associated with accurate quantification of 90Y. However, intrinsic radioactivity has been shown to have a negligible effect at the high activity concentrations common in 90Y radioembolization. Accurate quantification is possible on a variety of PET scanner models, with or without TOF, although TOF improves accuracy at lower activity concentrations. Quantitative 90Y PET images can be transformed into 3D maps of absorbed dose based on the premise that the 90Y activity distribution does not change after infusion. This transformation has been accomplished primarily with the use of 3D dose point-kernel convolution. From a clinical standpoint, 90Y PET provides a superior post-infusion evaluation of treatment technical success owing to its improved resolution. Absorbed dose maps generated from quantitative PET data can be used to predict treatment efficacy and manage patient follow-up. For patients who receive multiple treatments, this information can also be used to provide patient-specific treatment planning for successive therapies, potentially improving response. The broad utilization of 90Y PET has the potential to provide a wealth of dose-response information, which may lead to development of improved radioembolization treatment-planning models in the future.

  2. Experimental research on rear collimator in γ-ray industrial CT

    International Nuclear Information System (INIS)

    Wu Zhifang; Liu Jinhui

    2009-01-01

    Rear collimator is one of the key components in the γ-ray industrial CT, which plays an important role in removing scattering influence and improving the CT spatial resolution. High-performance CT is always associated with a high-quality collimator. By means of experiments, this paper discusses the behavior of collimators with different shapes and structures from the aspects of detector output signal, mass attenuation coefficient of the inspected object and quality of the actual CT image. The qualitative and quantitative results are reached, which are helpful for the design of high-performance industrial CT.

  3. SU-E-T-296: Dosimetric Analysis of Small Animal Image-Guided Irradiator Using High Resolution Optical CT Imaging of 3D Dosimeters

    International Nuclear Information System (INIS)

    Na, Y; Qian, X; Wuu, C; Adamovics, J

    2015-01-01

    Purpose: To verify the dosimetric characteristics of a small animal image-guided irradiator using a high-resolution of optical CT imaging of 3D dosimeters. Methods: PRESAEGE 3D dosimeters were used to determine dosimetric characteristics of a small animal image-guided irradiator and compared with EBT2 films. Cylindrical PRESAGE dosimeters with 7cm height and 6cm diameter were placed along the central axis of the beam. The films were positioned between 6×6cm 2 cubed plastic water phantoms perpendicular to the beam direction with multiple depths. PRESAGE dosimeters and EBT2 films were then irradiated with the irradiator beams at 220kVp and 13mA. Each of irradiated PRESAGE dosimeters named PA1, PA2, PB1, and PB2, was independently scanned using a high-resolution single laser beam optical CT scanner. The transverse images were reconstructed with a 0.1mm high-resolution pixel. A commercial Epson Expression 10000XL flatbed scanner was used for readout of irradiated EBT2 films at a 0.4mm pixel resolution. PDD curves and beam profiles were measured for the irradiated PRESAGE dosimeters and EBT2 films. Results: The PDD agreements between the irradiated PRESAGE dosimeter PA1, PA2, PB1, PB2 and the EB2 films were 1.7, 2.3, 1.9, and 1.9% for the multiple depths at 1, 5, 10, 15, 20, 30, 40 and 50mm, respectively. The FWHM measurements for each PRESAEGE dosimeter and film agreed with 0.5, 1.1, 0.4, and 1.7%, respectively, at 30mm depth. Both PDD and FWHM measurements for the PRESAGE dosimeters and the films agreed overall within 2%. The 20%–80% penumbral widths of each PRESAGE dosimeter and the film at a given depth were respectively found to be 0.97, 0.91, 0.79, 0.88, and 0.37mm. Conclusion: Dosimetric characteristics of a small animal image-guided irradiator have been demonstrated with the measurements of PRESAGE dosimeter and EB2 film. With the high resolution and accuracy obtained from this 3D dosimetry system, precise targeting small animal irradiation can be achieved

  4. Innovations in PET/CT

    DEFF Research Database (Denmark)

    Levin Klausen, T; Høgild Keller, S; Vinter Olesen, O

    2012-01-01

    especially as spatial resolution improves. Software based image fusion remains a complex issue outside the brain. State of the art image quality in a modern PET/CT system includes incorporation of point spread function (PSF) and time-of-flight (TOF) information into the reconstruction leading to the high...

  5. The Role of Spiral Multidetector Dynamic CT in the Study of Williams-Campbell Syndrome

    International Nuclear Information System (INIS)

    Scioscio, V. di; Zompatori, M.; Mistura, I.; Montanari, P.; Santilli, L.; Luccaroni, R.; Sverzellati, N.

    2006-01-01

    Williams-Campbell syndrome is a cystic bronchiectatic disease secondary to deficiency or defect of cartilaginous plates in the wall of the airways. In the literature, two main forms are suggested: congenital and acquired (post-infectious). The most frequent symptoms are represented by recurrent pulmonary infections from childhood. Multislice spiral dynamic CT has a major role in the study of cystic pulmonary disease and in differentiating Williams-Campbell syndrome from the other causes of cystic bronchiectasis, in which even lung function tests can give deceptive results

  6. The Role of Spiral Multidetector Dynamic CT in the Study of Williams-Campbell Syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Scioscio, V. di; Zompatori, M.; Mistura, I.; Montanari, P.; Santilli, L.; Luccaroni, R.; Sverzellati, N. [Medical Univ. of Bologna, S. Orsola-Malpighi Policlinic (Italy). Dept. of Radiology

    2006-10-15

    Williams-Campbell syndrome is a cystic bronchiectatic disease secondary to deficiency or defect of cartilaginous plates in the wall of the airways. In the literature, two main forms are suggested: congenital and acquired (post-infectious). The most frequent symptoms are represented by recurrent pulmonary infections from childhood. Multislice spiral dynamic CT has a major role in the study of cystic pulmonary disease and in differentiating Williams-Campbell syndrome from the other causes of cystic bronchiectasis, in which even lung function tests can give deceptive results.

  7. CT of blunt pancreatic trauma-A pictorial essay

    International Nuclear Information System (INIS)

    Venkatesh, Sudhakar Kundapur; Wan, John Mun Chin

    2008-01-01

    Blunt trauma to pancreas is uncommon and clinical features are often non-specific and unreliable leading to possible delays in diagnosis and therefore increased morbidity. CT has been established as the imaging modality of choice for the diagnosis of abdominal solid-organ injury in the blunt trauma patient. The introduction of multidetector-row CT allows for high resolution scans and multiplanar reformations that improve diagnosis. Detection of pancreatic injuries on CT requires knowledge of the subtle changes produced by pancreatic injury. The CT appearance of pancreatic injury ranges from a normal initial appearance of the pancreas to active pancreatic bleeding. Knowledge of CT signs of pancreatic trauma and a high index of suspicion is required in diagnosing pancreatic injury

  8. Relationship between noise, dose, and pitch in cardiac multi-detector row CT.

    Science.gov (United States)

    Primak, Andrew N; McCollough, Cynthia H; Bruesewitz, Michael R; Zhang, Jie; Fletcher, Joel G

    2006-01-01

    In spiral computed tomography (CT), dose is always inversely proportional to pitch. However, the relationship between noise and pitch (and hence noise and dose) depends on the scanner type (single vs multi-detector row) and reconstruction mode (cardiac vs noncardiac). In single detector row spiral CT, noise is independent of pitch. Conversely, in noncardiac multi-detector row CT, noise depends on pitch because the spiral interpolation algorithm makes use of redundant data from different detector rows to decrease noise for pitch values less than 1 (and increase noise for pitch values > 1). However, in cardiac spiral CT, redundant data cannot be used because such data averaging would degrade the temporal resolution. Therefore, the behavior of noise versus pitch returns to the single detector row paradigm, with noise being independent of pitch. Consequently, since faster rotation times require lower pitch values in cardiac multi-detector row CT, dose is increased without a commensurate decrease in noise. Thus, the use of faster rotation times will improve temporal resolution, not alter noise, and increase dose. For a particular application, the higher dose resulting from faster rotation speeds should be justified by the clinical benefits of the improved temporal resolution. RSNA, 2006

  9. CT of hemodynamically unstable abdominal trauma

    International Nuclear Information System (INIS)

    Petridis, A.; Pilavaki, M.; Vafiadis, E.; Palladas, P.; Finitsis, S.; Drevelegas, A.

    1999-01-01

    This article is an appraisal of the use of CT in the management of patients with unstable abdominal trauma. We examined 41 patients with abdominal trauma using noncontrast dynamic CT. In 17 patients a postcontrast dynamic CT was also carried out. On CT, 25 patients had hemoperitoneum. Thirteen patients had splenic, 12 hepatic, 6 pancreatic, 8 bowel and mesenteric, 12 renal and 2 vascular injuries. Seven patients had retroperitoneal and 2 patients adrenal hematomas. All but five lesions (three renal, one pancreatic, and one splenic) were hypodense when CT was performed earlier than 8 h following the injury. Postcontrast studies (n = 17), revealed 4 splenic, 3 hepatic, 1 pancreatic, 3 renal, and 2 bowel and mesenteric injuries beyond what was found on noncontrast CT. Surgical confirmation (n = 21) was obtained in 81.81 % of splenic, 66.66 % of hepatic, 83.33 % of pancreatic, 100 % of renal, 100 % of retroperitoneal, and 85.71 % of bowel and mesenteric injuries. The majority of false diagnoses was obtained with noncontrast studies. Computed tomography is a remarkable method for evaluation and management of patients with hemodynamically unstable abdominal trauma, but only if it is revealed in the emergency room. Contrast injection, when it could be done, revealed lesions that were not suspected on initial plain scans. (orig.)

  10. Study of Image Quality From CT Scanner Multi-Detector by using Americans College of Radiology (ACR) Phantom

    Science.gov (United States)

    Mulyadin; Dewang, Syamsir; Abdullah, Bualkar; Tahir, Dahlang

    2018-03-01

    In this study, the image quality of CT scan using phantom American College of Radiology (ACR) was determined. Scanning multidetector CT is used to know the image quality parameters by using a solid phantom containing four modules and primarily from materials that are equivalent to water. Each module is 4 cm in diameter and 20 cm in diameter. There is white alignment marks painted white to reflect the alignment laser and there are also “HEAD”, “FOOT”, and “TOP” marks on the phantom to help align. This test obtains CT images of each module according to the routine inspection protocol of the head. Acceptance of image quality obtained for determination: CT Number Accuracy (CTN), CT Number Uniformity and Noise, Linearity CT Number, Slice Technique, Low Contrast Resolution and High Contrast Resolution represent image quality parameters. In testing CT Number Accuracy (CTN), CT Uniform number and Noise are in the range of tolerable values allowed. In the test, Linearity CT Number obtained correlation value above 0.99 is the relationship between electron density and CT Number. In a low contrast resolution test, the smallest contrast groups are visible. In contrast, the high resolution is seen up to 7 lp/cm. The quality of GE CT Scan is very high, as all the image quality tests obtained are within the tolerance brackets of values permitted by the Nuclear Power Control Agency (BAPETEN). Image quality test is a way to get very important information about the accuracy of snoring result by using phantom ACR.

  11. A prototype table-top inverse-geometry volumetric CT system

    International Nuclear Information System (INIS)

    Schmidt, Taly Gilat; Star-Lack, Josh; Bennett, N. Robert; Mazin, Samuel R.; Solomon, Edward G.; Fahrig, Rebecca; Pelc, Norbert J.

    2006-01-01

    A table-top volumetric CT system has been implemented that is able to image a 5-cm-thick volume in one circular scan with no cone-beam artifacts. The prototype inverse-geometry CT (IGCT) scanner consists of a large-area, scanned x-ray source and a detector array that is smaller in the transverse direction. The IGCT geometry provides sufficient volumetric sampling because the source and detector have the same axial, or slice direction, extent. This paper describes the implementation of the table-top IGCT scanner, which is based on the NexRay Scanning-Beam Digital X-ray system (NexRay, Inc., Los Gatos, CA) and an investigation of the system performance. The alignment and flat-field calibration procedures are described, along with a summary of the reconstruction algorithm. The resolution and noise performance of the prototype IGCT system are studied through experiments and further supported by analytical predictions and simulations. To study the presence of cone-beam artifacts, a ''Defrise'' phantom was scanned on both the prototype IGCT scanner and a micro CT system with a ±5 deg.cone angle for a 4.5-cm volume thickness. Images of inner ear specimens are presented and compared to those from clinical CT systems. Results showed that the prototype IGCT system has a 0.25-mm isotropic resolution and that noise comparable to that from a clinical scanner with equivalent spatial resolution is achievable. The measured MTF and noise values agreed reasonably well with theoretical predictions and computer simulations. The IGCT system was able to faithfully reconstruct the laminated pattern of the Defrise phantom while the micro CT system suffered severe cone-beam artifacts for the same object. The inner ear acquisition verified that the IGCT system can image a complex anatomical object, and the resulting images exhibited more high-resolution details than the clinical CT acquisition. Overall, the successful implementation of the prototype system supports the IGCT concept for

  12. Predictors of rapid spontaneous resolution of acute subdural hematoma.

    Science.gov (United States)

    Fujimoto, Kenji; Otsuka, Tadahiro; Yoshizato, Kimio; Kuratsu, Jun-ichi

    2014-03-01

    Acute subdural hematoma (ASDH) usually requires emergency surgical decompression, but rare cases exhibit rapid spontaneous resolution. The aim of this retrospective study was to identify factors predictive of spontaneous ASDH resolution. A total of 366 consecutive patients with ASDH treated between January 2006 and September 2012 were identified in our hospital database. Patients with ASDH clot thickness >10mm in the frontoparietotemporal region and showing a midline shift >10mm on the initial computed tomography (CT) scan were divided into two groups according to subsequent spontaneous resolution. Univariate and multivariate logistic regression analyses were used to identify factors predictive of rapid spontaneous ASDH resolution. Fifty-six ASDH patients met study criteria and 18 demonstrated rapid spontaneous resolution (32%). Majority of these patients were not operated because of poor prognosis/condition and in accordance to family wishes. Univariate analysis revealed significant differences in use of antiplatelet agents before head injury and in the incidence of a low-density band between the hematoma and inner wall of the skull bone on the initial CT. Use of antiplatelet agents before head injury (OR 19.6, 95% CI 1.5-260.1, p=0.02) and the low-density band on CT images (OR 40.3, 95% CI 3.1-520.2, p=0.005) were identified as independent predictive factors by multivariate analysis. Our analysis suggested that use of antiplatelet agents before head injury and a low-density band between the hematoma and inner skull bone on CT images (indicative of cerebrospinal fluid infusion into the subdural space) increase the probability of rapid spontaneous resolution. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Pulmonary Lipiodol Accumulation after Transarterial Chemoembolization: CT Findings and Its Radiologic Outcomes

    Energy Technology Data Exchange (ETDEWEB)

    Youn, In Young; Chong, Se Min; Kwak, Byung Kook; Shin, Hyung Jin; Seo, Gi Young; Seo, Jae Seung; Kim, Jae Kyun [Dept. of Radiology, Chung Ang University Medical Center, Chung Ang University College of Medicine, Seoul (Korea, Republic of)

    2011-12-15

    To evaluate CT findings and radiologic outcomes of pulmonary lipiodol accumulation (PLA) after transarterial chemoembolization (TACE). This retrospective study involved 488 TACEs for hepatocellular carcinoma (HCC) (n = 160) and hepatic metastasis for non-hepatic malignancies (n = 7) in 167 patients. We reviewed the patient clinicoradiologic findings before and after TACE and calculated the incidence of PLA and PLA resolution time after initial CT and after TACE. Lipiodol accumulation in the lungs was seen under CT after TACE in seven patients (M : F = 6 : 1, mean age 61 years). The incidence of PLA at CT was 4.1% (7/167 patients). In five patients, associated intrathoracic abnormalities including pleural effusion with (n 3) or without consolidation (n = 2) were revealed at CT scans. The CT resolution time and PLA recovery time were 56 {+-} 54 days and 66 {+-} 52 days, respectively. The recovery time for lipiodol accumulation was 66 days. It is believed that the clinical and radiologic outcome of PLA without respiratory failure is promising, and conservative treatment will suffice when lipiodol accumulation in the lungs is seen in CT images after TACE.

  14. Cardiac CT

    International Nuclear Information System (INIS)

    Dewey, Marc

    2011-01-01

    Computed tomography of the heart has become a highly accurate diagnostic modality that is attracting increasing attention. This extensively illustrated book aims to assist the reader in integrating cardiac CT into daily clinical practice, while also reviewing its current technical status and applications. Clear guidance is provided on the performance and interpretation of imaging using the latest technology, which offers greater coverage, better spatial resolution, and faster imaging. The specific features of scanners from all four main vendors, including those that have only recently become available, are presented. Among the wide range of applications and issues to be discussed are coronary artery bypass grafts, stents, plaques, and anomalies, cardiac valves, congenital and acquired heart disease, and radiation exposure. Upcoming clinical uses of cardiac CT, such as plaque imaging and functional assessment, are also explored. (orig.)

  15. Cardiac CT

    Energy Technology Data Exchange (ETDEWEB)

    Dewey, Marc [Charite - Universitaetsmedizin Berlin (Germany). Inst. fuer Radiologie

    2011-07-01

    Computed tomography of the heart has become a highly accurate diagnostic modality that is attracting increasing attention. This extensively illustrated book aims to assist the reader in integrating cardiac CT into daily clinical practice, while also reviewing its current technical status and applications. Clear guidance is provided on the performance and interpretation of imaging using the latest technology, which offers greater coverage, better spatial resolution, and faster imaging. The specific features of scanners from all four main vendors, including those that have only recently become available, are presented. Among the wide range of applications and issues to be discussed are coronary artery bypass grafts, stents, plaques, and anomalies, cardiac valves, congenital and acquired heart disease, and radiation exposure. Upcoming clinical uses of cardiac CT, such as plaque imaging and functional assessment, are also explored. (orig.)

  16. First application of liquid-metal-jet sources for small-animal imaging: High-resolution CT and phase-contrast tumor demarcation

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, Daniel H.; Lundstroem, Ulf; Burvall, Anna; Hertz, Hans M. [Department of Applied Physics, KTH Royal Institute of Technology/Albanova, 10691 Stockholm (Sweden); Westermark, Ulrica K.; Arsenian Henriksson, Marie [Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, 17177 Stockholm (Sweden)

    2013-02-15

    Purpose: Small-animal studies require images with high spatial resolution and high contrast due to the small scale of the structures. X-ray imaging systems for small animals are often limited by the microfocus source. Here, the authors investigate the applicability of liquid-metal-jet x-ray sources for such high-resolution small-animal imaging, both in tomography based on absorption and in soft-tissue tumor imaging based on in-line phase contrast. Methods: The experimental arrangement consists of a liquid-metal-jet x-ray source, the small-animal object on a rotating stage, and an imaging detector. The source-to-object and object-to-detector distances are adjusted for the preferred contrast mechanism. Two different liquid-metal-jet sources are used, one circulating a Ga/In/Sn alloy and the other an In/Ga alloy for higher penetration through thick tissue. Both sources are operated at 40-50 W electron-beam power with {approx}7 {mu}m x-ray spots, providing high spatial resolution in absorption imaging and high spatial coherence for the phase-contrast imaging. Results: High-resolution absorption imaging is demonstrated on mice with CT, showing 50 {mu}m bone details in the reconstructed slices. High-resolution phase-contrast soft-tissue imaging shows clear demarcation of mm-sized tumors at much lower dose than is required in absorption. Conclusions: This is the first application of liquid-metal-jet x-ray sources for whole-body small-animal x-ray imaging. In absorption, the method allows high-resolution tomographic skeletal imaging with potential for significantly shorter exposure times due to the power scalability of liquid-metal-jet sources. In phase contrast, the authors use a simple in-line arrangement to show distinct tumor demarcation of few-mm-sized tumors. This is, to their knowledge, the first small-animal tumor visualization with a laboratory phase-contrast system.

  17. MR imaging and CT findings after liver transplantation

    International Nuclear Information System (INIS)

    Langer, M.; Langer, R.; Scholz, A.; Zwicker, C.; Astinet, F.

    1990-01-01

    The aim of the paper is to evaluate MR imaging and dynamic CT as noninvasive procedures to image signs of graft failure after an orthotopic liver transplantation (OLT). Thirty MR studies and 50 dynamic CT examinations were performed within 20 days after OLT. MR examinations were performed with a 0.5-T Siemens Magnetom. CT scans were obtained by using a Siemens Somatom Plus. In all patients, MR images demonstrated a perivascular rim of intermediate signal intensity on T1-weighted and increased signal intensity on T2-weighted images in the hilum of the liver; in 20/26, this was seen in peripheral areas also. In all patients, a perivascular area of low attenuation was diagnosed at angio-CT

  18. 3-D CT for cardiovascular treatment planning

    International Nuclear Information System (INIS)

    Wildermuth, S.; Leschka, S.; Duru, F.; Alkadhi, H.

    2005-01-01

    The recently developed 64-slice CT scanner together with the use of 2-D and 3-D reconstructions can aid the cardiovascular surgeon and interventional radiologist in visualizing exact geometric relationships to plan and execute complex procedures via minimally invasive or standard approaches.Cardiac 64-slice CT considerably benefits from the high temporal and spatial resolution allowing the reliable depiction of small coronary segments. Similarly, abdominal vascular 64-slice CT became possible within short examination times and allowing an optimal arterial contrast bolus exploitation. We demonstrate four representative cardiac and abdominal examples using the new 64-slice CT technology which reveal the impact of the new scanner generation for cardiovascular treatment planning. (orig.)

  19. Studies on image quality, high contrast resolution and dose for the axial skeleton and limbs with a new, dedicated CT system (ISO-C-3D); Untersuchungen zur Bildqualitaet, Hochkontrastaufloesung und Dosis am Stamm- und Gliedmassenskelett mit einem neuen dedizierten CT-System (ISO-C-3D)

    Energy Technology Data Exchange (ETDEWEB)

    Rock, C.; Kotsianos, D.; Linsenmaier, U. [Klinikum der Universitaet Muenchen, Muenchen (Germany). Inst. fuer Klinische Radiologie; Fischer, T. [Klinikum der Universitaet Muenchen, Muenchen (DE). Inst. fuer Klinische Radiologie] (and others)

    2002-02-01

    Purpose: Evaluation of 3D-CT imaging of the axial skeleton and different joints of the lower and upper extremities with a new dedicated CT system (ISO-C-3D) based on a mobile isocentric C-arm image amplifier. Material and Methods: 27 cadaveric specimes of different joints of the lower and upper extremities and of the spinal column were examined with 3D-CT imaging (ISO-C-3d). All images were evaluated by 3 radiologists for image quality using a semiquantitative score (score value 1: poor quality; score value 4: excellent quality). In addition, dose measurements and measurements of high contrast resolution were performed in comparison to conventional and low-dose spiral CT using a high contrast phantom (Catphan, Phantom Laboratories). Results: Adequate image quality (mean score values 3-4) could be achieved with an applied dose comparable to low-dose CT in smaller joints such as wrist, elbow, ankle and knee. A remarkably inferior image quality resulted in imaging of the hip, lumbar and thoracic spine (mean score values 2-3) in spite of almost doubling the dose (dose increased by 85 percent). The image quality of shoulder examinations was insufficient (mean score value 1). Phantom studies showed a high-contrast resolution comparable to helical CT in the xy-axis (9 lp/cm). Conclusion: Preliminary results show, that image quality of C-arm-based CT-imaging (ISO-C-3D) seems to be adequate in smaller joints. ISO-C-3D images of the hip and axial skeleton show a decreased image quality, which does not seem to be sufficient for diagnosing subtle fractures. (orig.) [German] Zielsetzung: Evaluierung der 3D-CT-Bildgebung mit einem C-Bogen-basierten dedizierten CT-System (ISO-C-3D, Fa. Siemens) an Extremitaetengelenken und am Stammskelett. Methodik: 27 humane Leichenpraeparate der unteren und oberen Extremitaet sowie des Stammskeletts wurden am ISO-C-3D untersucht und die Bilddaten anhand eines Bildqualitaetsscores von 3 Untersuchern semiquantitativ evaluiert (Score 1: nicht

  20. Contribution of pulmonary emphysema to functional impairment in patients with severe chronic obstructive pulmonary disease. A high-resolution CT study

    International Nuclear Information System (INIS)

    Zompatori, M.; Fasano, L.; Battista, G.

    1999-01-01

    The purpose of the paper is to investigate whether high-resolution CT (HRCT) can detect the subjects with massive emphysematous destruction in a group of patients with severe chronic obstructive pulmonary disease (COPD) and therefor be of help in selecting the candidates to surgical lung volume reduction. Have been examined 40 former smokers with severe COPD (FEV 1 ≤40% of the predicted value, with no major improvement after inhalation of bronchodilators). The emphysema extent score was significantly correlated with the hematocrit value and Tiffeneau index (p 1 was significantly correlated with emphysema extent (p [it